
Fundamentals of Audio
Programming

Bjorn Roche

XO Audio, LLC

Who Am I?

Software Designer

Consultant

Sterling Sound

Z-Systems

Indaba

Who Am I?

I developed a web-based audio editor called “Mantis” for Indaba Music.
http://www.indabamusic.com/landing/mantis

Who Am I?

Developing a new Audio Editor that lets you collaborate in real-time from anywhere on the globe.
http://www.xonami.com

What is Sound? What is sound on a computer?
(Waves, Sampling)

How do we get sound in and out of a computer?
(Callback and Blocking I/O)

How do we keep sound playback smooth and
uninterrupted? (Buffering)

How does audio playback work? (Inter-thread
communication)

How do we synchronize audio and video in software?
On the web? (HTML 5/Javascript)

How do we synchronize audio and other media?
(Master Clocks)

How do we manipulate sound? (DSP)

What is Sound?

We don’t really need to know that.

For us, it’s a wave.

Thereʼs a lot we just donʼt need to know about sound.

A Wave Is a Function in One
Dimension

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

0.8

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8

1

We just need to know a few things about waves...
1. a wave is a function in one dimension

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

0.8

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8

1

A Wave Is Continuous

Continuous means:
1. It is defined everywhere (it is has no “holes”)
2. Small changes in x -> small changes in y (it has no “jumps”)

Psycho-Acoustics

What is Psycho-Acoustics?

Why Does it Matter?

Do you want to hear more?

Psycho-Acoustics is the study of human perception of sound.
Itʼs relevant when designing audio effects, lossy compression schemes like MP3 and AAC, and at other times.

Psycho-Acoustics

Physical Human Perception

Volume Loudness

Frequency Pitch

Envelope & Spectrum Timbre

Many aspects of sound that we perceive, like loudness and pitch, correspond pretty closely to physical properties, like volume and
frequency. Others like timber donʼt correspond very closely at all.

Limitations of Hearing

Humans don’t hear everything we can.

We are very sensitive to changes in frequency (with
about 1,400 individually discernible pitches in our range
of hearing)

We are not very sensitive to changes in volume (JND
Volume is about 1 dB).

The human ear can handle extremes: the loudest
sound we are comfortable hearing is 1million x louder
than the quietest sound we can hear.

JND, or “Just Noticeable Difference” is the smallest detectable difference between a first and a second level of a stimulus.

Limitations of Hearing

A loud noise will block, or “mask” our ability to hear
other sounds that are nearby in pitch and time.

Echos, or delayed versions of sounds, are perceived as
part of the original sound unless there is at least 30 ms
between the original and echo.

There are many other things that limit our hearing. These limitations are what allow lossy compression schemes to work.

Analog to Digital: Sampling!

0 0.2 0.4 0.6 0.8 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Student Version of MATLAB

Analog electrical signals (shown as a blue line) typically use voltage to represent some physical property, like air pressure. As air
pressure goes up, voltage goes up in real time. In this way, voltage is analogous to the physical property or air pressure (hence the
term analog).

To deal with signals digitally, we measure and record the amplitude of the analog signal at regular intervals. This gives us a stream of
numbers, which is something the computer can deal with.

How often do we sample?

Sample rates vary:

8,000, 11,025, 16,000 Hz: common for speech/
voice applications.

32,000 Hz: miniDV and other consumer applications

44,100 Hz: “CD Quality” and most consumer music.

48,000 Hz: Video.

Higher sample rates (up to 192,000 Hz) are available
on pro sound cards.

By sampling more often, we can record higher frequency signals.

How are the samples
formatted?

All sorts of ways:

packed array of numbers (no headers).

may be interleaved or not (LRLRLR vs LLLRRR).

may be float or int.

Usually signed. Ints are 2’s complement.

but for some reason windows often likes to give
you signed ints when you are doing 8 bit audio

12- and 20-bit audio is usually padded to 16- and
24-bit.

Format Range Use

8-bit Int
“char” or “byte” or

“int8_t”

-128 to 127
or

0 to 256

Old soundcards.
Poor sound quality

16-bit Int
“short” or “int16_t”

-32768 to 32767
Native format to

most soundcards.
CD Quality.

24-bit Int
sometimes

expanded to 32-
bit int

-8388608 to
8388607

Pro soundcards.
“pro” audio

Quality.

32-bit Float
“float”

-1 to 1

Convenient
internal format for
most computer-

based DSP

Some of the more common sample formats and their ranges.
Ints are typically what you get from your soundcard or sound file. Floats are typically what you work with.

How to convert from float to
int:

There’s more than one right way, but there’s lots of
wrong ways. You won’t go far off with this:

(int value) / 2n-1 = float value

(float value) * 2n-1 = int value

where n is the number of bits.

Sound On a Computer
Computers don’t deal well with streams of numbers
produced one sample at a time.

We usually “buffer” the samples in small blocks of
memory. Buffers sizes are often (but not always)
powers of 2.

The size of the buffer is important:

Smaller buffers means we can react to changes in
user settings faster

Bigger buffers means more stable playback and
recording

Sound On a Computer

Buffer A Buffer B

Soundcard

User Software

Buffer A Buffer B

Soundcard

User Software

The simplest playback system: the soundcard reads one buffer while the software fills the second buffer. When the soundcard is done,
it moves to the next buffer and the software switches to the first buffer.

The system can be made more elaborate with more buffers.

There are a variety of ways for communication to occur between the user software and the soundcard, including interrupt, poling,
timers, and so on. The quality of these methods varies greatly, but AFAIK this is the basis for all modern soundcard drivers on modern
OSes.

For this to work, the software must process buffers faster than the soundcard, every time, or a discontinuity may occur.

Buffer Problems

If buffers canʼt be filled fast enough, we end up with sounds like this (buffers repeating and we start to hear discontinuities at the buffer
boundaries)

Callback vs Blocking I/O

Callback: software receives notification when a buffer is
ready.

Blocking: software reads and writes as it would to a file.
If the sound hardware isn’t ready, it forces the software
to wait.

Blocking I/O is usually a software layer written on top of
native callbacks.

Callback vs Blocking I/O

Generally speaking:

Callbacks are used in higher performance systems
where latency (responsiveness) is more important.

blio is used where ease of programming is more
important.

Callbacks vs Blocking
Callback Blocking Other

Windows: ASIO,
WASAPI?

Windows: Direct
Sound?

Mac: Core Audio,
Sound Manager

Linux: ALSA,
JACK?

*nix: OSS, ALSA

Flash? Cinder?
OF?

Java: Java Sound
OF? Javascript/

HTML5

PortAudio/rtAudio PortAudio

Both Blocking I/O and Callback are common. Some systems have other methods, which are higher level calls that allow playback and
mixing, and sometimes other features like scheduling, volume and so on. These systems may be useful for simple applications or
specialized applications like games, but generally donʼt allow direct, sample-level access to data.

Blocking I/O

//Complete, cross-platform example:
// Portaudio: test/patest_write_sine.c

main() {
 ...
 //Create the new stream:
 Stream stream(... parameters ...);
 ...
 // loop: read/write data until done
 for(int i=0; i<whatever; ++i) {
 stream.read(someData);
 ...
 stream.write(someOtherData);
 ...
 }
 //stop the stream:
 stream.stop();
}

Callback//for a complete, cross-platform example
//portaudio: test/patest_sine.c
boolean callback(...);
main() {
 ...
 //Register your callback with the system:
 Stream stream(&callback, ... parameters ...);
 ...
 //start and stop the “stream” as needed, which
 // will cause the system to call the callback
 // whenever it needs audio.
 stream.start();
 while(streamIsRunning)
 sleep(10); //sleep, or whatever
 stream.close();
}
//Create a callback function:
boolean callback(void *audioIn, int sizeIn,
 void *audioOut, int sizeOut) {
 //actual audio processing happens here!
 ...
 if(done)
 return true;
 else
 return false;
}

Callback doesn’t seem so
bad...

The user-defined callback function must process audio
and return in a prescribed amount of time.

Specifically, the callback cannot:

perform I/O (disk or network I/O, terminal output, UI
Updates, etc)

MUTEX lock (trylock may be okay)

new/malloc/free/delete

Some systems place additional restrictions due to
context.

On some systems (Flash?) you can cheat.

How do I get data into and
out of my callback?

Careful RT scheduling (Hard because most systems
handle priority inversion poorly and have poor thread
scheduling latency.)

Lock-free/block-free data-structures and multiple
threads. (Hard because C/C++ have terrible SMP
multithreading support.)

Simple, lock-free data-structures with memory-barriers
for SMP safety.

Ringbuffer
BUFFER

Read Index

Write Index

When the read or write index gets to the end, it simply
wraps around back to zero.

When the write index catches up to the read index, the
buffer is full, and no more can be written.

When the read index catches up to the write index, the
buffer is empty and no more can be read.

For the ringbuffer to work correctly on SMP systems, you must apply memory barriers, sometimes called “fences.”

Simple File Playback Using
Callback I/O

Aux Thread: Read Data off the disk.

Ring Buffer

Callback

Main Thread: Launches threads, calls Audio API,
manages UI, cleans up, etc.

What else can I do?

Use two copies of datastructures and a trylock.

Other non-blocking datastructures exist, but not many
in C/C++.

Get excited about C++0x which will solve this stuff

Use blio (blocking I/O)

More on buffering

If you are playing back audio from the intertubes, it will
come at you in chunks.

Moreover, the chunks you receive are often in the
wrong format.

This requires extra buffering.

Playing back from http

Big Buffer (ring buffer)

MP3 to RAW
Audio

Conversion
Audio callback

http
input

stream

Fill the buffer before you
start callback
(priming the buffer)
How big should your
buffer be?

Synchronization

It’s hard to change the speed of audio playback.

Generally it’s easy to change the speed of other things.

So, synchronize playback of video and other things to
audio, otherwise drift is inevitable, although usually
small.

Audio clocks must be extremely stable or the sound quality suffers significantly, so most soundcards have crystal clocks built in. These
clocks are ultimately the source of all audio timing. Trying to use something else as the source of timing is tricky to say the least.

Synchronizing on the web
This is not an HTML class, but...

HTML 5 allows you to register for updates to audio and
video time playback.

So you can have javascript do things when you get to a
certain point in your audio/movie.

Theoretically, you can use this to sync playback of
multiple A/V events.

You can’t build a DAW this way. but you can do things
like voiceovers. Maybe you can sync audio and video, I
haven’t tried.

Synchronizing on the web
<div id="stage">
 <video src="http://vid.ly/4f3q1f?content=video" controls></video>
 <div id="time"></div>
</div>
<script>
 (function(){
 var v = document.getElementsByTagName('video')[0]
 var t = document.getElementById('time');
 v.addEventListener('timeupdate',function(event){
 t.innerHTML = parseInt(v.currentTime) + ' - ' + v.currentTime;
 },false);
 })();
</script>

http://coding.smashingmagazine.com/2011/03/11/
syncing-content-with-html5-video/

Synchronizing on the Web

Javascript framework for web video with HTML 5:

popcornjs.org

DSP

Reminder:

sound on a computer is a stream of numbers
representing the amplitude at a given time.

Theoretically, that stream could go on forever. We
deal with this by worrying about one buffer at a time.

We’ll assume you have mono, floating point
numbers.

we donʼt have time to even begin covering real DSP, but we can cover some basics.

Volume

To adjust the volume of the a signal, simply multiply
each sample in the signal by a constant.

>1 to increase volume

<1 to decrease volume

to convert from dB: 10x/20, where x is the dB value.

eg. gain of -6 dB = 10-6/20 = 10-0.3 ≈ .501

Volume

adjustVolume(float audio[], float gain) {
for(int i=0; i<audio.length; ++i)
audio[i] *= gain;

}
// adjust volume linearly, which is not always how we want to do it,
// but at least it’s smooth (no discontinuities)

//For more on linear interpolation:
// http://blog.bjornroche.com/2010/10/
// linear-interpolation-for-audio-in-c-c.html

adjustVolume(float audio[], float gainStart, float gainEnd) {
for(int i=0; i<audio.length; ++i) {
// gain is the weighted average of the start and end gain
float weight=i/audio.length
float gain=(1-weight)*gainStart + weight*gainEnd;
audio[i] *= gain ;

}
}

To Deal With “Overs”
There’s more than one way to deal with “overs,” or out
of range values. The right way depends on context.

The simplest way is with hard “clipping.”

This creates distortion, but sometimes it’s all you can
do.

Your Audio API may do this for you.

clip(float audio[]) {
for(int i=0; i<audio.length; ++i)
if(audio[i] > 1)
audio[i] = 1;

else if(audio[i] < -1)
audio[i] = -1;

}

Mixing

mix(float track1[], float track2[], float output[]) {
for(int i=0; i<track1.length; ++i)
output[i] = track1[i] + track2[i] ;

}

watch out for clipping, here, too!

To mix two or more signals, just add
them together, sample, by sample.
(This is super-position)

Panning

// 0 < panValue < 1
// 0 ~ left
// 1 ~ right
// .5 ~ center

pan(float in[], float left[], float right[], float panValue) {
for(int i=0; i<in.length; ++i) {
l[i]=sqrt(panValue)*in[i];
r[i]=sqrt(1-panValue)*in[i];

}
}

There are different ways to pan.

Here is one

Other DSP

Other DSP is made up of a number of components,
including:

Addition
(Usually 2 or more signals)

Multiplication
(Usually by a constant

or a control signal)
X

+

Z-n Delay by n samples

DSP (LSI)

With just multiplication by a constant, addition, and
delay, we can make any LSI (Linear Shift Invariant)
effect.

What’s a LSI effect?

reverb

delay

EQ

DSP: Delay

Z-nInput

Delay Time
(n samples)

+

X

Dry Amount

OutputX

Wet Amount

DSP: Delay with Feedback

Z-nInput

Delay Time
(n samples)

+

X

Dry Amount

OutputX

Wet Amount
X

Feedback

+

Non-Recursive (FIR) EQ
When tone > 0, you can think of this as a moving
average filter. Thus, it eliminates high frequencies, and
keeps low ones.

for tone < 0, it has the opposite effect.

Input +

Z-1

Output

X

Tone

X

1-Tone

This filter is useful in reverbs and simple tone controls, but you wonʼt usually find it in the “EQ” section of your audio software.

Recursive (IIR) EQ
This filter is more selective, but...

It is unstable when tone > 1 or tone < -1

errors in calculation accumulate as the each new value
depends on every prior value.

“Phase” gets shifted (whatever the heck that means).

Input +

Z-1

Output

X

Tone

X

1-|Tone|

This filter does a better job of picking out high and low frequencies, but there are problems with it.

Other FX

Other basic effects you might want to learn about
include:

Reverb

Higher order EQ

Compression/Limiting/Gating

Pitch shifting/time stretching

Chorus/Flanging

Phasing

Other FX

Some APIs have effects built-in, so you don’t have to
reinvent the wheel.

Don’t expect one API’s effects, no matter how simple,
to sound or behave like another’s.

Resources

Priciples of
Digital Audio
Pohlmann

The Science
of Sound
Rossing

DAFX
Zölzer

Computer
Music

Dodge &
Jerse

Digital
Audio with

Java
Lindley

Resources

portaudio.com

popcornjs.org

http://coding.smashingmagazine.com/2011/03/11/
syncing-content-with-html5-video/

musicdsp.org

http://www.musicdsp.org/files/Audio-EQ-
Cookbook.txt

Resources:
Languages and Frameworks

CSound http://www.csounds.com/

Processing http://processing.org/

Matlab http://www.mathworks.com/products/matlab/
index.html

Octave http://www.gnu.org/software/octave/

Scilab http://www.scilab.org/

OpenFrameworks http://www.openframeworks.cc/

Cinder http://libcinder.org/

Resources: C-based I/O

PortAudio http://www.portaudio.com/

RTAudio http://www.music.mcgill.ca/~gary/rtaudio/

libsndfile http://www.mega-nerd.com/libsndfile/

Secret Rabit Code http://www.mega-nerd.com/SRC/

Resources: Me

My Blog: http://blog.bjornroche.com

http://xoaudio.com

http://xonami.com

I don’t tweet, but you can find me on linkedin.

