
149

Introduction
Audio functionality plays a critical role in embedded media processing. While audio
takes less processing power in general than video processing, it should be considered
equally important.

In this chapter, we will begin with a discussion of sound and audio signals, and then
explore how data is presented to the processor from a variety of audio converters. We
will also describe the formats in which audio data is stored and processed.

Additionally, we’ll discuss some software building blocks for embedded audio sys-
tems. Efficient data movement is essential, so we will examine data buffering as it
applies to audio algorithms. Finally, we’ll cover some fundamental algorithms and
finish with a discussion of audio and speech compression.

What Is Sound?

Sound is a longitudinal displacement wave that propagates through air or some
other medium. Sound waves are defined using two attributes: amplitude
and frequency.

The amplitude of a sound wave is a gauge of pressure change, measured in decibels
(dB). The lowest sound amplitude that the human ear can perceive is called the
“threshold of hearing,” denoted by 0 dBSPL. On this SPL (sound pressure level)
scale, the reference pressure is defined as 20 micropascals (20 μPa). The general
equation for dBSPL, given a pressure change x, is

dBSPL = 20 × log (x μPa / 20 μPa)

Chapter 5

Basics of Embedded
Audio Processing

150

Chapter 5

Table 5.1 shows decibel levels for typical sounds. These are all relative to the
threshold of hearing (0 dBSPL).

Table 5.1  Decibel (dBSPL) values for various typical sounds

Threshold of hearing

Normal conversation (3-5 feet away)

Busy traffic

Loud factory

Power saw

Discomfort

Threshold of pain

Jet engine (100 feet away)

0

60-70

70-80

90

110

120

130

150

Source (distance) dBSPL

Decibel (dBSPL) values for various typical sounds

The main point to take away from Table 5.1 is that the range of tolerable audible
sounds is about 120 dB (when used to describe ratios without reference to a specific
value, the correct notation is dB without the SPL suffix). Therefore, all engineered
audio systems can use 120 dB as the upper bound of dynamic range. In case you’re
wondering why all this is relevant to embedded systems, don’t worry—we’ll soon
relate dynamic range to data formats for embedded media processing.

Frequency, the other key feature of sound, is denoted in Hertz (Hz), or cycles per sec-
ond. We can hear sounds in the frequency range between 20 and 20,000 Hz, but this
ability degrades as we age.

Our ears can hear certain frequencies better than others. In fact, we are most sensi-
tive to frequencies in the area of 2–4 kHz. There are other quirky features about the
ear that engineers are quick to exploit. Two useful phenomena, employed in the lossy
compression algorithms that we’ll describe later, are temporal masking and frequency
masking. In temporal masking (Figure 5.1a), loud tones can drown out softer tones
that occur at almost the same time. Frequency masking (Figure 5.1b) occurs when
a loud sound at a certain frequency renders softer sounds at nearby frequencies
inaudible. The human ear is such a complex organ that only books dedicated to
the subject can do it justice. For a more in-depth survey of ear physiology, consult
Reference 23 in the Appendix.

151

Basics of Embedded Audio Processing

Audio Signals

In order to create an analog signal that represents a sound wave, we must use a
transducer to convert the mechanical pressure energy into electrical energy. A more
common name for this audio source transducer is a microphone.

All transducers can be described with a sensitivity (or transduction) curve. In the case
of a microphone, this curve dictates how well it translates pressure into an electrical
signal. Ideal transducers have a linear sensitivity curve—that is, a voltage level is
directly proportional to a sound wave’s pressure.

Figure 5.1  (a) Loud sounds at a specific time can mask out softer
sounds in the temporal vicinity (b) Loud sounds at a specific
frequency can mask softer sounds at nearby frequencies

(b)

(a)

Frequency

Time

Am
pl

itu
de

Am
pl

itu
de

Masked tone (inaudible)

Tone

Mask threshold

Tone

Mask threshold

152

Chapter 5

Since a microphone converts a sound wave into voltage levels, we now need to use
a new decibel scale to describe amplitude. This scale, called dBV, is based on a
reference point of 1V. The equation describing the relationship between a voltage
level x and dBV is

dBV = 20 × log (x volts / 1.0 volts)

An alternative analog decibel scale is based on a reference of 0.775V and uses dBu units.

In order to create an audible mechanical sound wave from an analog electrical signal,
we again need to use a transducer. In this case, the transducer is a speaker or headset.

Speech Processing

Speech processing is an important and complex class of audio processing, and we
won’t delve too deeply here. However, we’ll discuss speech-processing techniques
where they are analogous to the more general audio processing methods. The most
common use for speech signal processing is in voice telecommunications for such
algorithms as echo cancellation and compression.

Most of the energy in typical speech signals is stored within less than 4 kHz of
bandwidth, thus making speech a subset of audio signals. However, many speech-
processing techniques are based on modeling the human vocal tract, so these cannot
be used for general audio processing.

Audio Sources and Sinks
Converting Between Analog and Digital Audio Signals	
Assuming we’ve already taken care of converting sound energy into electrical energy,
the next step is to digitize the analog signals. This is accomplished with an analog-to-
digital converter (A/D converter or ADC). As you might expect, in order to create an
analog signal from a digital one, a digital-to-analog converter (D/A converter or DAC)
is used. Since many audio systems are really meant for a full-duplex media flow, the
ADC and DAC are available in one package called an “audio codec.” The term codec
is used here to mean a discrete hardware chip. As we’ll discuss later in the section on
audio compression, this should not be confused with a software audio codec, which is
a software algorithm.

153

Basics of Embedded Audio Processing

All A/D and D/A conversions should obey the Shannon-Nyquist sampling theorem. In
short, this theorem dictates that an analog signal must be sampled at a rate (Nyquist
sampling rate) equal to or exceeding twice its highest-frequency component (Nyquist
frequency) in order for it to be reconstructed in the eventual D/A conversion. Sampling
below the Nyquist sampling rate will introduce aliases, which are low frequency
“ghost” images of those frequencies that fall above the Nyquist frequency. If we take a
sound signal that is band-limited to 0–20 kHz, and sample it at 2 × 20 kHz = 40 kHz,
then the Nyquist Theorem assures us that the original signal can be reconstructed per-
fectly without any signal loss. However, sampling this 0–20 kHz band-limited signal at
anything less than 40 kHz will introduce distortions due to aliasing. Figure 5.2 shows
how sampling at less than the Nyquist sampling rate results in an incorrect represen-
tation of a signal. When sampled at 40 kHz, a 20 kHz signal is represented correctly
(Figure 5.2a). However, the same 20 kHz sine wave that is sampled at a 30 kHz
sampling rate actually looks like a lower frequency alias of the original sine wave
(Figure 5.2b).

Figure 5.2  (a) Sampling a 20 kHz signal at 40 kHz captures the original
signal correctly (b) Sampling the same 20 kHz signal at 30 kHz captures
an aliased (low frequency ghost) signal

20 kHz Signal Sampled at 40 kHz

Reconstruction from Sampled Points
(No Aliasing Occurs)

20 kHz signal
30 kHz sampling points

20 kHz signal
40 kHz sampling points

20 kHz Signal Sampled at 30 kHz

Reconstruction from Sampled Points
(Aliasing Occurs)

(b)(a)

154

Chapter 5

No practical system will sample at exactly twice the Nyquist frequency, however. For
example, restricting a signal into a specific band requires an analog low-pass filter,
but these filters are never ideal. Therefore, the lowest sampling rate used to reproduce
music is 44.1 kHz, not 40 kHz, and many high-quality systems sample at 48 kHz
in order to capture the 20 Hz–20 kHz range of hearing even more faithfully. As we
mentioned earlier, speech signals are only a subset of the frequencies we can hear;
the energy content below 4 kHz is enough to store an intelligible reproduction of the
speech signal. For this reason, telephony applications usually use only 8 kHz sampling
(= 2 × 4 kHz). Table 5.2 summarizes some sampling rates used by common systems.

Table 5.2  Commonly used sampling rates

Telephone

Compact Disc

Professional Audio

DVD Audio

8000 Hz

44100 Hz

48000 Hz

96000 Hz (for 6-channel audio)

System Sampling Frequency

Commonly used sampling rates

The most common digital representation for audio is a pulse-code-modulated (PCM)
signal. In this representation, an analog amplitude is encoded with a digital level
for each sampling period. The resulting digital wave is a vector of snapshots taken
to approximate the input analog wave. All A/D converters have finite resolution, so
they introduce quantization noise that is inherent in digital audio systems. Figure 5.3
shows a PCM representation of an analog sine wave (Figure 5.3a) converted using an
ideal A/D converter, in which the quantization manifests itself as the “staircase effect”
(Figure 5.3b). You can see that lower resolution leads to a worse representation of the
original wave (Figure 5.3c).

For a numerical example, let’s assume that a 24-bit A/D converter is used to sample
an analog signal whose range is –2.828V to 2.828V (5.656 Vpp). The 24 bits allow
for 224 (16,777,216) quantization levels. Therefore, the effective voltage resolution is
5.656V / 16,777,216 = 337.1 nV. Shortly, we’ll see how codec resolution affects the
dynamic range of audio systems.

155

Basics of Embedded Audio Processing

Analog signal Digitized PCM signal Digitized PCM signal using
fewer bits of precision

(a) (b) (c)

Figure 5.3  (a) An analog signal (b) Digitized PCM signal
(c) Digitized PCM signal using fewer bits of precision

Background on Audio Converters

Audio ADCs

There are many ways to perform A/D conversion. One traditional approach is a
successive approximation scheme, which uses a comparator to test the analog input
signal against a number of interim D/A conversions to arrive at the final answer.

Most audio ADCs today, however, are sigma-delta converters. Instead of employing
successive approximations to create wide resolutions, sigma-delta converters use 1-bit
ADCs. In order to compensate for the reduced number of quantization steps, they are
oversampled at a frequency much higher than the Nyquist frequency. Conversion from
this super-sampled 1-bit stream into a slower, higher-resolution stream is performed
using digital filtering blocks inside these converters, in order to accommodate the
more traditional PCM stream processing. For example, a 16-bit 44.1 kHz sigma-delta
ADC might oversample at 64x, yielding a 1-bit stream at a rate of 2.8224 MHz. A
digital decimation filter (described in more detail later) converts this super-sampled
stream to a 16-bit one at 44.1 kHz.

Because they oversample analog signals, sigma-delta ADCs relax the performance
requirements of the analog low-pass filters that band-limit input signals. They also
have the advantage of reducing peak noise by spreading it over a wider spectrum than
traditional converters.

156

Chapter 5

Audio DACs

Just as in the A/D case, sigma-delta designs rule the D/A conversion space. They can
take a 16-bit 44.1 kHz signal and convert into a 1-bit 2.8224 MHz stream using an
interpolating filter (described later). The 1-bit DAC then converts the super-sampled
stream to an analog signal.

A typical embedded digital audio system may employ a sigma-delta audio ADC
and a sigma-delta DAC, and therefore the conversion between a PCM signal and an
oversampled stream is done twice. For this reason, Sony and Philips have introduced
an alternative to PCM, called Direct-Stream Digital (DSD), in their Super Audio CD
(SACD) format. This format stores data using the 1-bit high-frequency (2.8224 MHz)
sigma-delta stream, bypassing the PCM conversion. The disadvantage is that DSD
streams are less intuitive to process than PCM, and they require a separate set of digi-
tal audio algorithms, so we will focus only on PCM in this chapter.

Connecting to Audio Converters

An ADC Example

OK, enough background information. Let’s do some engineering now. One good
choice for a low-cost audio ADC is the Analog Devices AD1871, which features 24-
bit conversion at 96 kHz. The functional block diagram of the AD1871 is shown in
Figure 5.4a. This converter has left (VINLx) and right (VINRx) input channels, which
is really just another way of saying that it can handle stereo data. The digitized audio
data is streamed out serially through the data port, usually to a corresponding serial
port on a signal processor (like the SPORT interface on Blackfin processors). There is
also an SPI (serial peripheral interface) port provided for the host processor to con-
figure the AD1871 via software commands. These commands include ways to set the
sampling rate, word width, and channel gain and muting, among other parameters.

As the block diagram in Figure 5.4b implies, interfacing the AD1871 ADC to a
Blackfin processor is a glueless connection. The analog representation of the cir-
cuit is simplified, since only the digital signals are important in this discussion. The
oversampling rate of the AD1871 is achieved with an external crystal. The Blackfin
processor shown has two serial ports (SPORTs) and an SPI port used for connecting
to the AD1871. The SPORT, configured in I2S mode, is the data link to the AD1871,
whereas the SPI port acts as the control link.

157

Basics of Embedded Audio Processing

Figure 5.4  (a) Functional block diagram of the AD1871 audio ADC
(b) Glueless connection of an ADSP-BF533 media processor to the AD1871

Analog
Input
Buffer

CAPLN

VINLP

VINLN

VREF

VINRP

VINRN

CAPLP AVDD DVDD ODVDD

CASC

Multibit
Σ−∆

Modulator
Decimator

Filter
Engine

Analog
Input
Buffer

Multibit
Σ−∆

Modulator

Data
Port

SPI
Port

Clock
Divider

Decimator

AD1871

LRCLK
BCLK
DOUT
DIN
RESET

MCLK

CLATCH
Control Clock
CIN
COUT
XCTRL

CAPRN CAPRP AGND DGND

(a)

(b)

12.288
MHz
XTAL

Analog
signal

Clock Divider

MCLK

AD1871 Da
ta

Po
rt

SP
OR

T

SPI Port SPI Port

Blackfin
ADSP-BF533

LRCLK

BCLK

DOUT

RFS

RSCLK

DR

CLATCH

Control Clock

CIN

COUT

SPISS

SCK

MOSI

MISO

158

Chapter 5

I2S (Inter-IC-Sound)
The I2S protocol is a standard developed by Philips for the digital transmission of
audio signals. This standard allows for audio equipment manufacturers to create com-
ponents that are compatible with each other.

In a nutshell, I2S is simply a three-wire serial interface used to transfer stereo data.
As shown in Figure 5.5a, it specifies a bit clock (middle), a data line (bottom), and a
left/right synchronization line (top) that selects whether a left or right channel frame
is currently being transmitted.

In essence, I2S is a time-division-multiplexed (TDM) serial stream with two active
channels. TDM is a method of transferring more than one channel (for example, left
and right audio) over one physical link.

In the AD1871 setup of Figure 5.4b, the ADC can use a divided-down version of the
12.288 MHz sampling rate it receives from the external crystal to drive the SPORT
clock (RSCLK) and frame synchronization (RFS) lines. This configuration insures that
the sampling and data transmission are in sync.

SPI (Serial Peripheral Interface)
The SPI interface, shown in Figure 5.5b, was designed by Motorola for connecting
host processors to a variety of digital components. The entire interface between an
SPI master and an SPI slave consists of a clock line (SCK), two data lines (MOSI and
MISO), and a slave select (SPISS) line. One of the data lines is driven by the master
(MOSI), and the other is driven by the slave (MISO). In the example of Figure 5.4b,
the Blackfin processor’s SPI port interfaces gluelessly to the SPI block of the AD1871.

Audio codecs with a separate SPI control port allow a host processor to change the
ADC settings on the fly. Besides muting and gain control, one of the really useful
settings on ADCs like the AD1871 is the ability to place it in power-down mode. For
battery-powered applications, this is often an essential function.

159

Basics of Embedded Audio Processing

DACs and Codecs

Connecting an audio DAC to a host processor is an identical process to the ADC con-
nection we just discussed. In a system that uses both an ADC and a DAC, the same
serial port can hook up to both, if it supports bidirectional transfers.

But if you’re tackling full-duplex audio, then you’re better off using a single-chip
audio codec that handles both the analog-to-digital and digital-to-analog conversions.
A good example of such a codec is the Analog Devices AD1836, which features three
stereo DACs and two stereo ADCs, and is able to communicate through a number of
serial protocols, including I2S.

AC ’97 (Audio Codec ’97)
I2S is only one audio specification. Another popular one is AC ’97, which Intel Corpo-
ration created to standardize all PC audio and to separate the analog circuitry from the
less-noise-susceptible digital chip. In its simplest form, an AC ’97 codec uses a TDM
scheme where control and data are interleaved in the same signal. Various timeslots in
the serial transfer are reserved for a specific data channel or control word. Most pro-
cessors with serial ports that support TDM mode can de-multiplex an AC ’97 signal
at the expense of some software overhead. One example of an AC ’97 codec is the
AD1847 from Analog Devices.

Figure 5.5  (a) The data signals transmitted by the AD1871 using
the I2S protocol (b) The SPI interface used to control the AD1871

(a)

(b)

RFS

RSCLK

DR

SPISS

SCK

MOSI

MISO

Left Channel Right Channel

160

Chapter 5

Speech Codecs
Since speech processing has slightly relaxed requirements compared to hi-fidelity
music systems, you may find it worthwhile to look into codecs designed specifically
for speech. Among many good choices is the dual-channel 16-bit Analog Devices
AD73322, which has a configurable sampling frequency from 8 kHz all the way
to 64 kHz.

PWM Output
So far, we’ve only talked about digital PCM representation and the audio DACs used
to get those digital signals to the analog domain. But there is a way to use a different
kind of modulation, called pulse-width modulation (PWM), to drive an output circuit
directly without any need for a DAC, when a low-cost solution is required.

In PCM, amplitude is encoded for each sample period, whereas it is the duty cycle
that describes amplitude in a PWM signal. PWM signals can be generated with
general-purpose I/O pins, or they can be driven directly by specialized PWM timers,
available on many processors.

To make PWM audio achieve decent quality, the PWM carrier frequency should be
at least 12 times the bandwidth of the signal, and the resolution of the timer (i.e.,
granularity of the duty cycle) should be 16 bits. Because of the carrier frequency
requirement, traditional PWM audio circuits were used for low-bandwidth audio, like
subwoofers. However, with today’s high-speed processors, it’s possible to carry a
larger audible spectrum.

The PWM stream must be low-pass-filtered to remove the high-frequency carrier.
This is usually done in the amplifier circuit that drives a speaker. A class of amplifiers,
called Class D, has been used successfully in such a configuration. When amplifica-
tion is not required, then a low-pass filter is sufficient as the output stage. In some
low-cost applications, where sound quality is not as important, the PWM streams can
connect directly to a speaker. In such a system, the mechanical inertia of the speaker’s
cone acts as a low-pass filter to remove the carrier frequency.

Interconnections
Before we end this hardware-centric section, let’s review some of the common
connectors and interfaces you’ll encounter when designing systems with embedded
audio capabilities.

161

Basics of Embedded Audio Processing

Connectors
Microphones, speakers, and other analog equipment connect to an embedded system
through a variety of standard connectors (see Figure 5.6). Because of their small size,
1/8" connectors are quite common for portable systems. Many home stereo compo-
nents support 1/4" connectors. Higher performance equipment usually uses RCA
connectors, or even a coaxial cable connector, to preserve signal integrity.

Digital Connections
Some of the systems you’ll design actually won’t require any ADCs or DACs,
because the input signals may already be digital and the output device may accept
digital data. A few standards exist for transfer of digital data from one device to
another.

The Sony Digital InterFace (SDIF-2) protocol is used in some professional products.
It requires an unbalanced BNC coaxial connection for each channel. The Audio
Engineering Society (AES) introduced the AES3 standard for serial transmission of

Figure 5.6  Various audio connectors: (a) 1/8 inch mini plug (b) 1/4 inch plug (c) XLR
connector (d) Male RCA connectors (e) Toslink connector (f) BNC connector

Various audio connectors

1/8 inch mini plug

BNC connector

XLR connector
(female)

Toslink connector

1/4 inch plug

RCA connectors (male)

(a)

(d) (e)

(f)

(b) (c)

162

Chapter 5

data; this one uses an XLR connector. A more ubiquitous standard, the S/PDIF (Sony/
Philips Digital InterFace), is prevalent in consumer and professional audio devices.
Two possible S/PDIF connectors are single-ended coaxial cable and the Toslink
connector for fiber optic connections.

Dynamic Range and Precision
We promised earlier that we would get into a lot more detail on dynamic range of
audio systems. You might have seen dB specs thrown around for various products
available on the market today. Table 5.3 lists a few fairly established products along
with their assigned signal quality, measured in dB.

Table 5.3  Dynamic range comparison of various audio systems

AM Radio

Analog TV

FM Radio

16-bit Audio Codecs

CD Player

Digital Audio Tape (DAT)

20-bit Audio Codecs

24-bit Audio Codecs

48 dB

60 dB

70 dB

90-95 dB

92-96 dB

110 dB

110 dB

110-120 dB

Audio Device Typical Dynamic Range

Dynamic range comparison of various audio systems

So what exactly do those numbers represent? Let’s start by getting some definitions
down. Use Figure 5.7 as a reference diagram for the following discussion.

As you might remember from the beginning of this chapter, the dynamic range for the
human ear (the ratio of the loudest to the quietest signal level) is about 120 dB. In sys-
tems where noise is present, dynamic range is described as the ratio of the maximum
signal level to the noise floor. In other words,

Dynamic Range (dB) = Peak Level (dB) – Noise Floor (dB)

The noise floor in a purely analog system comes from the electrical properties of the
system itself. On top of that, audio signals also acquire noise from ADCs and DACs,
including quantization errors due to the sampling of analog data.

163

Basics of Embedded Audio Processing

Another important term is the signal-to-noise ratio (SNR). In analog systems, this
means the ratio of the nominal signal to the noise floor, where “line level” is the
nominal operating level. On professional equipment, the nominal level is usually
1.228 Vrms, which translates to +4 dBu. The headroom is the difference between nom-
inal line level and the peak level where signal distortion starts to occur. The definition
of SNR is a bit different in digital systems, where it is defined as the dynamic range.

Now, armed with an understanding of dynamic range, we can start to discuss how this
is useful in practice. Without going into a long derivation, let’s simply state what is
known as the “6 dB rule”. This rule holds the key to the relationship between dynamic
range and computational word width. The complete formulation is described in Equa-
tion 5.1, but it is used in shorthand to mean that the addition of one bit of precision
will lead to a dynamic range increase of 6 dB. Note that the 6 dB rule does not take
into account the analog subsystem of an audio design, so the imperfections of the
transducers on both the input and the output must be considered separately. Those
who want to see the statistical math behind the rule should consult Reference 23 in
the Appendix.

Figure 5.7  Relationship between some important terms in audio systems

Nominal
Line Level

Distortion Region

Noise Floor

Analog SNR Dynamic Range Digital SNR

Headroom

+25

+4

-65

-95

Peak Level
(Clipping Point)

dBu

Equation 5.1  The 6 dB rule

Dynamic Range (dB) = 6.02n + 1.76 ≈ 6n dB

where n = the number of precision bits

164

Chapter 5

The 6 dB rule dictates that the more bits we use, the higher the quality of the sys-
tem we can attain. In practice, however, there are only a few realistic choices. Most
devices suitable for embedded media processing come in three word-width flavors:
16-bit, 24-bit and 32-bit. Table 5.4 summarizes the dynamic ranges for these three
types of processors.

Table 5.4  Dynamic range of various fixed-point architectures

16-bit fixed-point precision

24-bit fixed-point precision

32-bit fixed-point precision

96 dB

144 dB

192 dB

Computation word width Dynamic Range (using 6 dB rule)

Table 5-4 Dynamic range of various fixed-point architectures

Since we’re talking about the 6 dB rule, it is worth noting something about nonlinear
quantization methods typically used for speech signals. A telephone-quality linear
PCM encoding requires 12 bits of precision. However, our ears are more sensitive to
audio changes at small amplitudes than at high amplitudes. Therefore, the linear PCM
sampling is overkill for telephone communications. The logarithmic quantization used
by the A-law and μ–law companding standards achieves a 12-bit PCM level of quality
using only 8 bits of precision. To make our lives easier, some processor vendors have
implemented A-law and μ–law companding into the serial ports of their devices. This
relieves the processor core from doing logarithmic calculations.

After reviewing Table 5.4, recall once again that the dynamic range for the human ear
is around 120 dB. Because of this, 16-bit data representation doesn’t quite cut it for
high quality audio. This is why vendors introduced 24-bit processors that extended
the dynamic range of 16-bit systems. The 24-bit systems are a bit nonstandard from a
C compiler standpoint, so many audio designs these days use 32-bit processing.

Choosing the right processor is not the end of the story, because the total quality of an
audio system is dictated by the level of the “lowest-achieving” component. Besides
the processor, a complete system includes analog components like microphones and
speakers, as well the converters to translate signals between the analog and digital
domains. The analog domain is outside of the scope of this discussion, but the audio
converters cross into the digital realm.

165

Basics of Embedded Audio Processing

Let’s say that you want to use the AD1871, the same ADC shown in Figure 5.4a, for
sampling audio. The datasheet for this converter explains that it is a 24-bit converter,
but its dynamic range is not 144 dB—it is 105 dB. The reason for this is that a con-
verter is not a perfect system, and vendors publish only the useful dynamic range in
their documentation.

If you were to hook up a 24-bit processor to the AD1871, then the SNR of
your complete system would be 105 dB. The conversion error would amount to
144 dB – 105 dB = 39 dB. Figure 5.8 is a graphical representation of this situation.
However, there is still another component of a digital audio system that we have not
discussed yet: computation on the processor’s core.

Figure 5.8  An audio system’s SNR consists of the weakest component’s SNR

Nominal
Line Level

Conversion
Error = 144dB - 105dB = 39dBNoise Floor

Distortion Region

Peak Level

Converter
Dynamic

Range = 105dB

“System”
SNR = 105dB

24-bit Processor
(SNR=6dB/bit x 24 bits = 144dB)

Headroom

Passing data through a processor’s computation units can potentially introduce
rounding and truncation errors. For example, a 16-bit processor may be able to add a
vector of 16-bit data and store this in an extended-length accumulator. However, when
the value in the accumulator is eventually written to a 16-bit data register, then some
of the bits are truncated.	

166

Chapter 5

Take a look at Figure 5.9 to see how computation errors can affect a real system.
If we take an ideal 16-bit A/D converter (Figure 5.9a), then its signal-to-noise ratio
would be 16 × 6 = 96 dB. If arithmetic and storage errors did not exist, then 16-bit
computation would suffice to keep the SNR at 96 dB. 24-bit and 32-bit systems would
dedicate 8 and 16 bits, respectively, to the dynamic range below the noise floor. In
essence, those extra bits would be wasted.

However, most digital audio systems do introduce some round-off and truncation
errors. If we can quantify this error to take, for example, 18 dB (or 3 bits), then it
becomes clear that 16-bit computations will not suffice in keeping the system’s SNR
at 96 dB (Figure 5.9b). Another way to interpret this is to say that the effective noise
floor is raised by 18 dB, and the total SNR is decreased to 96 dB – 18 dB = 78 dB.
This leads to the conclusion that having extra bits below the converter’s noise floor
helps to deal with the nuisance of quantization.

Numeric Formats for Audio
There are many ways to represent data inside a processor. The two main processor
architectures used for audio processing are fixed-point and floating-point. Fixed-
point processors are designed for integer and fractional arithmetic, and they usually
natively support 16-bit, 24-bit, or 32-bit data. Floating-point processors provide
excellent performance with native support for 32-bit or 64-bit floating-point data
types. However, they are typically more costly and consume more power than their
fixed-point counterparts, and most real systems must strike a balance between quality
and engineering cost.

167

Basics of Embedded Audio Processing

Figure 5.9  (a) Allocation of extra bits with various word-width computations
for an ideal 16-bit, 96 dB SNR system, when quantization error is neglected
(b) Allocation of extra bits with various word-width computations for an ideal
16-bit, 96 dB SNR system, when quantization noise is present

(a)

(b)

7 6 5 4 3 2 1 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

16-Bit Sample

16-Bit Data Word

24-Bit Data Word

32-Bit Data Word

7 6 5 4 3 2 1 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

16-Bit Sample

Noise Floor

16-Bit Data Word

24-Bit Data Word

32-Bit Data Word

Noise Floor

18 dB of noise

18 dB of noise

18 dB of noise

168

Chapter 5

Fixed-Point Arithmetic

Processors that can perform fixed-point operations typically use a twos-complement
binary notation for representing signals. A fixed-point format can represent both signed
and unsigned integers and fractions. The signed fractional format is most common for
digital signal processing on fixed-point processors. The difference between integer and
fractional formats lies in the location of the binary point. For integers, the binary point
is to the right of the least significant digit, whereas fractions usually have their binary
point to the left of the sign bit. Figure 5.10a shows integer and fractional formats.

While the fixed-point convention simplifies numeric operations and conserves mem-
ory, it presents a tradeoff between dynamic range and precision. In situations that
require a large range of numbers while maintaining high resolution, a radix point that
can shift based on magnitude and exponent is desirable.

Floating-Point Arithmetic

Using floating-point format, very large and very small numbers can be represented
in the same system. Floating-point numbers are quite similar to scientific notation of
rational numbers. They are described with a mantissa and an exponent. The mantissa
dictates precision, and the exponent controls dynamic range.

There is a standard that governs floating-point computations of digital machines. It is
called IEEE 754 (Figure 5.10b) and can be summarized as follows for 32-bit floating-
point numbers. Bit 31 (MSB) is the sign bit, where a 0 represents a positive sign and a
1 represents a negative sign. Bits 30 through 23 represent an exponent field (exp_field)
as a power of 2, biased with an offset of 127. Finally, bits 22 through 0 represent a
fractional mantissa (mantissa). The hidden bit is basically an implied value of 1 to the
left of the radix point.

The value of a 32-bit IEEE 754 floating-point number can be represented with the fol-
lowing equation:

(–1) sign_bit × (1.mantissa) × 2 (exp _field – 127)

169

Basics of Embedded Audio Processing

Figure 5.10  (a) Fractional and integer formats (b) IEEE 754
32-bit single-precision floating-point format

Fractional and Integer Formats IEEE 754 32-Bit Single Precision Floating-Point Format

Fractional format is 1.15/1.23/1.31 notation

S. FFF FFFF FFFF FFFF

S I I I I I I I I I I I I I I I

.

. . . .
Integer format is 16.0/24.0/32.0 notation

binary pointsign bit

sign bit binary point

sign bit 8-bit exponent

hidden bit

24-bit mantissa

31 30 23 22 0

s e7 e0 1. f22 f0

binary point

(a) (b)

Table 5.5  Comparison of dynamic range for various data formats

IEEE 754 Floating-Point (single-precision)

1.15 16-bit fixed-point

1.23 24-bit fixed-point

2-126 ≈ 1.2 × 10-38

2-15 ≈ 3.1 × 10-5

2-23 ≈ 1.2 × 10-7

2128 ≈ 3.4 × 1038

1-2-15 ≈ 9.9 × 10-1

1-2-23 ≈ 9.9 × 10-1

Data type Smallest positive value Largest positive value

Comparison of dynamic range for various data formats

With an 8-bit exponent and a 23-bit mantissa, IEEE 754 reaches a balance between
dynamic range and precision. In addition, IEEE floating-point libraries include
support for additional features such as ±∞, 0 and NaN (not a number).

Table 5.5 shows the smallest and largest values attainable from the common floating-
point and fixed-point types.

170

Chapter 5

Emulation on 16-Bit Architectures

As we explained earlier, 16-bit processing does not provide enough SNR for high qual-
ity audio, but this does not mean that you shouldn’t choose a 16-bit processor for an
audio system. For example, a 32-bit floating-point machine makes it easier to code an
algorithm that preserves 32-bit data natively, but a 16-bit processor can also maintain
32-bit integrity through emulation at a much lower cost. Figure 5.11 illustrates some of
the possibilities when it comes to choosing a data type for an embedded algorithm.

In the remainder of this section, we’ll describe how to achieve floating-point and
32-bit extended-precision fixed-point functionality on a 16-bit fixed-point machine.

Figure 5.11  Depending on the goals of an application, there
are many data types that can satisfy system requirements

Pr
ec

is
io

n

Dynamic Range

Floating-Point Emulation Techniques on a 16-bit Processor

Path of arrows denotes decreasing core cycles required

Rounded
31-bit

fixed point

16-bit
fixed point

32-bit
fixed point

2-word
floating-point

emulation

1.31 format

23-bit mantissa
8-bit exponent

Starting
Point

16-bit mantissa
16-bit exponent

IEEE floating-
point emulation

“Relaxed”
IEEE floating-

point emulation

1.15 format

171

Basics of Embedded Audio Processing

Floating-Point Emulation on Fixed-Point Processors
On most 16-bit fixed-point processors, IEEE 754 floating-point functions are avail-
able as library calls from either C/C++ or assembly language. These libraries emulate
the required floating-point processing using fixed-point multiply and ALU logic. This
emulation requires additional cycles to complete. However, as fixed-point processor
core-clock speeds venture into the 500 MHz–1 GHz range, the extra cycles required
to emulate IEEE 754-compliant floating-point math become less significant.

It is sometimes advantageous to use a “relaxed” version of IEEE 754 in order to
reduce computational complexity. This means that the floating-point arithmetic
doesn’t implement features such ∞ and NaN.

A further optimization is to use a processor’s native data register widths for the mantis-
sa and exponent. Take, for example, the Blackfin architecture, which has a register file
set that consists of sixteen 16-bit registers that can be used instead as eight 32-bit reg-
isters. In this configuration, on every core-clock cycle, two 32-bit registers can source
operands for computation on all four register halves. To make optimized use of the
Blackfin register file, a two-word format can be used. In this way, one word (16 bits) is
reserved for the exponent and the other word (16 bits) is reserved for the fraction.

Double-Precision Fixed-Point Emulation
There are many applications where 16-bit fixed-point data is not sufficient, but where
emulating floating-point arithmetic may be too computationally intensive. For these
applications, extended-precision fixed-point emulation may be enough to satisfy
system requirements. Using a high-speed fixed-point processor will insure a signifi-
cant reduction in the amount of required processing. Two popular extended-precision
formats for audio are 32-bit and 31-bit fixed-point representations.

32-Bit-Accurate Emulation
32-bit arithmetic is a natural software extension for 16-bit fixed-point processors. For
processors whose 32-bit register files can be accessed as two 16-bit halves, the halves
can be used together to represent a single 32-bit fixed-point number. The Blackfin
processor’s hardware implementation allows for single-cycle 32-bit addition and
subtraction.

For instances where a 32-bit multiply will be iterated with accumulation (as is the
case in some algorithms we’ll talk about soon), we can achieve 32-bit accuracy with

172

Chapter 5

16-bit multiplications in just three cycles. Each of the two 32-bit operands (R0 and
R1) can be broken up into two 16-bit halves (R0.H | R0.L and R1.H | R1.L).

Figure 5.12  32-bit multiplication with 16-bit operations

63 47 31 15

R0.H R0.L

R1.H R1.L

R1.L x R0.H

R1.L x R0.L

R1.H x R0.L

R1.H x R0.H

R1 x R0

+

X

+

+

+

32-bit multiplication with 16-bit operations

48 32 16 0

From Figure 5.12, it is easy to see that the following operations are required to emu-
late the 32-bit multiplication R0 × R1 with a combination of instructions using 16-bit
multipliers:

	 •	 Four 16-bit multiplications to yield four 32-bit results

		 1.	 R1.L × R0.L

		 2.	 R1.L × R0.H

		 3.	 R1.H × R0.L

		 4.	 R1.H × R0.H

	 •	 Three operations to preserve bit place in the final answer (the >> symbol
denotes a right shift). Since we are performing fractional arithmetic, the result
is 1.62 (1.31 × 1.31 = 2.62 with a redundant sign bit). Most of the time, the
result can be truncated to 1.31 in order to fit in a 32-bit data register. There-
fore, the result of the multiplication should be in reference to the sign bit, or

173

Basics of Embedded Audio Processing

the most significant bit. This way the least significant bits can be safely dis-
carded in a truncation.

		 1.	 (R1.L × R0.L) >> 32

		 2.	 (R1.L × R0.H) >> 16

		 3.	 (R1.H × R0.L) >> 16

The final expression for a 32-bit multiplication is

((R1.L × R0.L) >> 32 + (R1.L × R0.H) >> 16)
+ ((R1.H × R0.L) >> 16 + R1.H × R0.H)

On the Blackfin architecture, these instructions can be issued in parallel to yield an
effective rate of a 32-bit multiplication in three cycles.

31-Bit-Accurate Emulation
We can reduce a fixed-point multiplication requiring at most 31-bit accuracy to just
two cycles. This technique is especially appealing for audio systems, which usually
require at least 24-bit representation, but where 32-bit accuracy may be a bit exces-
sive. Using the 6 dB rule, 31-bit-accurate emulation still maintains a dynamic range of
around 186 dB, which is plenty of headroom even with rounding and truncation errors.

From the multiplication diagram shown in Figure 5.12, it is apparent that the multipli-
cation of the least significant half-word R1.L × R0.L does not contribute much to the
final result. In fact, if the result is truncated to 1.31, then this multiplication can only
have an effect on the least significant bit of the 1.31 result. For many applications, the
loss of accuracy due to this bit is balanced by the speeding up of the 32-bit multiplica-
tion through eliminating one 16-bit multiplication, one shift, and one addition.

The expression for 31-bit accurate multiplication is

((R1.L × R0.H) + (R1.H × R0.L)) >> 16 + (R1.H × R0.H)

On the Blackfin architecture, these instructions can be issued in parallel to yield an
effective rate of two cycles for each 32-bit multiplication.

174

Chapter 5

Audio Processing Methods
Getting Data to the Processor’s Core

There are a number of ways to get audio data into the processor’s core. For example, a
foreground program can poll a serial port for new data, but this type of transfer is un-
common in embedded media processors, because it makes inefficient use of the core.

Instead, a processor connected to an audio codec usually uses a DMA engine to
transfer the data from the codec link (like a serial port) to some memory space
available to the processor. This transfer of data occurs in the background without
the core’s intervention. The only overhead is in setting up the DMA sequence and
handling the interrupts once the data buffer has been received or transmitted.

Block Processing versus Sample Processing

Sample processing and block processing are two approaches for dealing with digi-
tal audio data. In the sample-based method, the processor crunches the data as soon
as it’s available. Here, the processing function incurs overhead during each sample
period. Many filters (like FIR and IIR, described later) are implemented this way,
because the effective latency is low.

Block processing, on the other hand, is based on filling a buffer of a specific length
before passing the data to the processing function. Some filters are implemented using
block processing because it is more efficient than sample processing. For one, the
block method sharply reduces the overhead of calling a processing function for each
sample. Also, many embedded processors contain multiple ALUs that can parallel-
ize the computation of a block of data. What’s more, some algorithms are, by nature,
meant to be processed in blocks. For example, the Fourier transform (and its practical
counterpart, the fast Fourier transform, or FFT) accepts blocks of temporal or spatial
data and converts them into frequency domain representations.

Double-Buffering

In a block-based processing system that uses DMA to transfer data to and from the
processor core, a “double buffer” must exist to handle the DMA transfers and the
core. This is done so that the processor core and the core-independent DMA engine
do not access the same data at the same time, causing a data coherency problem.
To facilitate the processing of a buffer of length N, simply create a buffer of length
2 × N. For a bidirectional system, two buffers of length 2 × N must be created. As

175

Basics of Embedded Audio Processing

shown in Figure 5.13a, the core processes the in1 buffer and stores the result in the
out1 buffer, while the DMA engine is filling in0 and transmitting the data from
out0. Figure 5.13b depicts that once the DMA engine is done with the left half of
the double buffers, it starts transferring data into in1 and out of out1, while the
core processes data from in0 and into out0. This configuration is sometimes called
“ping-pong buffering,” because the core alternates between processing the left and
right halves of the double buffers.

Note that, in real-time systems, the serial port DMA (or another peripheral’s DMA
tied to the audio sampling rate) dictates the timing budget. For this reason, the block
processing algorithm must be optimized in such a way that its execution time is
less than or equal to the time it takes the DMA to transfer data to/from one half of a
double-buffer.

Figure 5.13  Double-buffering scheme for stream processing

Input buffer

Output buffer

DMA

in 0

out 0

in 1

out 1

block processing

DMA

in 0

out 0

in 1

out 1

block processing

DMA

DMA

Processing right half Processing left half

NNNN

(a) (b)

176

Chapter 5

2D DMA

When data is transferred across a digital link like I2S, it may contain several channels.
These may all be multiplexed on one data line going into the same serial port. In such
a case, 2D DMA can be used to de-interleave the data so that each channel is lin-
early arranged in memory. Take a look at Figure 5.14 for a graphical depiction of this
arrangement, where samples from the left and right channels are de-multiplexed into
two separate blocks. This automatic data arrangement is extremely valuable for those
systems that employ block processing.

Figure 5.14  A 2D DMA engine used to de-interleave
(a) I2S stereo data into (b) separate left and right buffers

I2S Order

Block of N samples
in separate L(left)
and R(right) channels

L 0 R 0 L 1 R 1 L 2 R 2. . . L N R N

Ymodify = -(N-1)

L0 L1 L2 LN

Xmodify = N

 R0 R1 R2 RN

Deinterleaving samples via 2D DMA

(a)

(b)

Basic Operations

There are three fundamental building blocks in audio processing. They are the sum-
ming operation, multiplication, and time delay. Many more complicated effects and
algorithms can be implemented using these three elements. A summer has the obvious
duty of adding two signals together. A multiplication can be used to boost or attenuate
an audio signal. On most media processors, multiple summer and/or multiplier blocks
can execute in a single cycle. A time delay is a bit more complicated. In many audio
algorithms, the current output depends on a combination of previous inputs and/or
outputs. The implementation of this delay effect is accomplished with a delay line,

177

Basics of Embedded Audio Processing

which is really nothing more than an array in memory that holds previous data. For
example, an echo algorithm might hold 500 ms of input samples. The current output
value can be computed by adding the current input value to a slightly attenuated prior
sample. If the audio system is sample-based, then the programmer can simply keep
track of an input pointer and an output pointer (spaced at 500 ms worth of samples
apart), and increment them after each sampling period.

Since delay lines are meant to be reused for subsequent sets of data, the input and
output pointers will need to wrap around from the end of the delay line buffer back to
the beginning. In C/C++, this is usually done by appending the modulus operator (%)
to the pointer increment.

This wrap-around may incur no extra processing cycles if you use a processor that
supports circular buffering (see Figure 5.15). In this case, the beginning address and
length of a circular buffer must be provided only once. During processing, the soft-
ware increments or decrements the current pointer within the buffer, but the hardware
takes care of wrapping around to the beginning of the buffer if the current pointer falls
outside of the buffer’s boundaries. Without this automated address generation, the
programmer would have to manually keep track of the buffer, thus wasting valuable
processing cycles.

Figure 5.15  (a) Graphical representation of a delay line using
a circular buffer (b) Layout of a circular buffer in memory

Pointer
to current
address

Sampled
waveform
stored in the
memory buffer

Wrap around
to top after
last address
is accessed

Zero

Circular buffer
pointer position

D0

D1

D2

(a) (b)

DN-2

DN-1

DN

.

.

.

178

Chapter 5

An echo effect derives from an important audio building block called the comb filter,
which is essentially a delay with a feedback element. When multiple comb filters are
used simultaneously, they can create the effect of reverberation.

Signal Generation
In some audio systems, a signal (for example, a sine wave) might need to be synthe-
sized. Taylor Series function approximations can emulate trigonometric functions.
Moreover, uniform random number generators are handy for creating white noise.

However, synthesis might not fit into a given system’s processing budget. On fixed-
point systems with ample memory, you can use a table lookup instead of generating
a signal. This has the side effect of taking up precious memory resources, so hybrid
methods can be used as a compromise. For example, you can store a coarse lookup
table to save memory. During runtime, the exact values can be extracted from the
table using interpolation, an operation that can take significantly less time than com-
puting a full approximation. This hybrid approach provides a good balance between
computation time and memory resources.

Filtering and Algorithms

Digital filters are used in audio systems for attenuating or boosting the energy content
of a sound wave at specific frequencies. The most common filter forms are high-pass,
low-pass, band-pass and notch. Any of these filters can be implemented in two ways.
These are the finite impulse response filter (FIR) and the infinite impulse response fil-
ter (IIR), and they constitute building blocks to more complicated filtering algorithms
like parametric equalizers and graphic equalizers.

Finite Impulse Response (FIR) Filter

The FIR filter’s output is determined by the sum of the current and past inputs, each
of which is first multiplied by a filter coefficient. The FIR summation equation, shown
in Figure 5.16a, is also known as convolution, one of the most important operations
in signal processing. In this syntax, x is the input vector, y is the output vector, and h
holds the filter coefficients. Figure 5.16a also shows a graphical representation of the
FIR implementation.

Convolution is such a common operation in media processing that many processors
are designed to execute a multiply-accumulate (MAC) instruction along with multiple
data accesses (reads and writes) and pointer increments in one cycle.

179

Basics of Embedded Audio Processing

Infinite Impulse Response (IIR) Filter

Unlike the FIR, whose output depends only on inputs, the IIR filter relies on both
inputs and past outputs. The basic equation for an IIR filter is a difference equation, as
shown in Figure 5.16b. Because of the current output’s dependence on past outputs,
IIR filters are often referred to as recursive filters. Figure 5.16b also gives a graphical
perspective on the structure of the IIR filter.

Fast Fourier Transform

Quite often, we can do a better job describing an audio signal by characterizing its
frequency composition. A Fourier transform takes a time-domain signal and translates
it into the frequency domain; the inverse Fourier transform achieves the opposite,
converting a frequency-domain representation back into the time domain. Math-
ematically, there are some nice property relationships between operations in the time
domain and those in the frequency domain. Specifically, a time-domain convolution
(or an FIR filter) is equivalent to a multiplication in the frequency domain. This tidbit
would not be too practical if it weren’t for a special optimized implementation of the
Fourier transform called the fast Fourier transform (FFT). In fact, it is often more effi-
cient to implement an FIR filter by transforming the input signal and coefficients into
the frequency domain with an FFT, multiplying the transforms, and finally transform-
ing the result back into the time domain with an inverse FFT.

Figure 5.16  (a) FIR filter equation and structure (b) IIR filter equation and structure

delay

delay

delay

delay

delay

delay

delay

delay

delay

FIR Filter IIR Filter

y[n]=Σ (-aiy[n-i])+Σ (bjx[n-j])

y(n)x(n) h0

h1

h2

hK

b0

b1 -a1

-a2

-aM

b2

bL

x(n) y(n)

y[n]=Σ h[k]x[n-k]
k=0 i=1

MK

j=0

L

(a) (b)

180

Chapter 5

There are other transforms that are used often in audio processing. Among them, one
of the most common is the modified discrete cosine transform (MDCT), which is the
basis for many audio compression algorithms.

Sample Rate Conversion

There are times when you will need to convert a signal sampled at one frequency to a
different sampling rate. One situation where this is useful is when you want to decode
an audio signal sampled at, say 8 kHz, but the DAC you’re using does not support that
sampling frequency. Another scenario is when a signal is oversampled, and convert-
ing to a lower sampling frequency can lead to a reduction in computation time. The
process of converting the sampling rate of a signal from one rate to another is called
sampling rate conversion (or SRC).

Increasing the sampling rate is called interpolation, and decreasing it is called deci-
mation. Decimating a signal by a factor of M is achieved by keeping only every Mth
sample and discarding the rest. Interpolating a signal by a factor of L is accomplished
by padding the original signal with L–1 zeros between each sample.

Even though interpolation and decimation factors are integers, you can apply them in
series to an input signal to achieve a rational conversion factor. When you upsample
by 5 and then downsample by 3, then the resulting resampling factor is 5/3 = 1.67.

Figure 5.17  Sample-rate conversion through upsampling and downsampling

x(n)
Sampled at

fx

Upsample
by L

Anti-imaging
lowpass filter

Anti-aliasing
lowpass filter

y(m)
Sampled at

(L/M)fx

Downsample
by M

SRC through upsampling and downsampling

To be honest, we oversimplified the SRC process a bit too much. In order to prevent
artifacts due to zero-padding a signal (which creates images in the frequency domain),
an interpolated signal must be low-pass-filtered before being used as an output or as
an input into a decimator. This anti-imaging low-pass filter can operate at the input
sample rate, rather than at the faster output sample rate, by using a special FIR filter
structure that recognizes that the inputs associated with the L–1 inserted samples have
zero values.

181

Basics of Embedded Audio Processing

Similarly, before they’re decimated, all input signals must be low-pass-filtered to
prevent aliasing. The anti-aliasing low-pass filter may be designed to operate at the
decimated sample rate, rather than at the faster input sample rate, by using a FIR filter
structure that realizes the output samples associated with the discarded samples need
not be computed. Figure 5.17 shows a flow diagram of a sample rate converter. Note
that it is possible to combine the anti-imaging and anti-aliasing filter into one compo-
nent for computational savings.

Audio Compression

Even though raw audio requires a lower bit rate than raw video, the amount of data is
still substantial. The bit rate required to code a single CD-quality audio channel
(44.1 kHz at 16 bits) using the standard PCM method is 705.6 kbps—one minute
of stereo sound requires over 10 Mbytes of storage! Sending this much data over a
network or a serial connection is inefficient, and sometimes impossible. The solution
comes in the form of compression algorithms called audio codecs. These software
codecs, not to be confused with hardware ADCs and DACs discussed already, com-
press raw data either for low-bandwidth transfer or for storage, and decompress for
the reverse effect.

There are lossless codecs and lossy codecs available for audio. Lossless codecs are
constructed in such a way that a compressed signal can be reconstructed to contain
the exact data as the original input signal. Lossless codecs are computationally inten-
sive, and they can reduce audio bit rate by up to about ½. Lossy codecs can compress
audio much more (10× or more, depending on desired quality), and the audio decoded
from a lossy stream sounds very close to the original, even though information is lost
forever in the encoding process. Lossy codecs can throw out data and still preserve
audio integrity, because they are based on a psycho-acoustical model that takes advan-
tage of our ears’ physiology. In essence, a lossy codec can cheat by dropping data
that will not affect how we’ll ultimately perceive the signal. This technique is often
referred to as “perceptual encoding.”

Earlier, we mentioned frequency and temporal masking. Another useful feature for
perceptual encoding—called joint stereo encoding—deals with multiple channels.
The basic premise is that data in two or more channels is correlated. By decoupling
unique features of each channel from the shared features, we can drastically reduce
the data needed to encode the content. If one channel takes 196 kbps, then an encoder

182

Chapter 5

that recognizes the redundancy will allocate much less data than 2 × 196 kbps for
a stereo stream, while still retaining the same perceived sound. The general rule of
thumb is that multichannel audio can be efficiently encoded with an amount of data
proportional to the square root of the number of channels (see Reference 23 in the
Appendix for more details).

In practice, audio encoders use two techniques: sub-band coding and transform cod-
ing. Sub-band coding splits the input audio signal into a number of sub-bands, using
band-pass filters. A psycho-acoustical model is applied on the sub-bands to define
the number of bits necessary to maintain a specified sound quality. Transform coding
uses a transform like the FFT or an MDCT on a block of audio data. Then, a psy-
cho-acoustical model is used to determine the proper quantization of the frequency
components based on a masking threshold to ensure that the output sounds like the
input signal.

Let’s take a look at some of the currently available audio codecs. Some of the algo-
rithms are proprietary and require a license before they can be used in a system. Table
5.6 lists common audio coding standards and the organizations responsible for them.

Table 5.6  Various audio codecs

MP3

AAC

AC-3

Windows Media Audio

RealAudio

Vorbis

FLAC

ISO/IEC

ISO/IEC

Dolby Labs

Microsoft

RealNetworks

Xiph.org

Xiph.org

Audio Coding Standard (Licensing/Standardization Organization)

Representative sampling of audio codecs

183

Basics of Embedded Audio Processing

MP3

MP3 is probably the most popular lossy audio compression codec available today.
The format, officially known as MPEG-1 Audio Layer 3, was released in 1992 as
a complement to the MPEG-1 video standard from the Moving Pictures Experts
Group. MPEG is a group of ISO/IEC, an information center jointly operated by the
International Organization for Standardization and the International Electrotechni-
cal Commission. MP3 was developed by the German Fraunhofer Institut Integrierte
Schaltungen (Fraunhofer IIS), which holds a number of patents for MP3 encoding
and decoding. Therefore, you must obtain a license before incorporating the MP3
algorithm into your embedded systems.

MP3 uses polyphase filters to separate the original signal into sub-bands. Then, the
MDCT transform converts the signal into the frequency domain, where a psycho-
acoustical model quantizes the frequency coefficients. A CD-quality track can be
MP3-encoded at a 128–196 kbps rate, thus achieving up to a 12:1 compression ratio.

AAC

Advanced Audio Coding (AAC) is a second-generation codec also developed by
Fraunhofer IIS. It was designed to complement the MPEG-2 video format. Its main im-
provement over MP3 is the ability to achieve lower bit rates at equivalent sound quality.

AC-3

The AC-3 format was developed by Dolby Laboratories to efficiently handle multi-
channel audio such as 5.1, a capability that was not implemented in the MP3 standard.
The nominal stereo bit rate is 192 kbps, whereas it’s 384 kbps for 5.1 surround sound.

A 5.1 surround-sound system contains five full-range speakers, including front left
and right, rear left and right, and front center channels, along with a low-frequency
(10 Hz–120 Hz) subwoofer.

WMA

Windows Media Audio (WMA) is a proprietary codec developed by Microsoft to
challenge the popularity of MP3. Microsoft developed WMA with paid music distribu-
tion in mind, so they incorporated Digital Rights Management (DRM) into the codec.
Besides the more popular lossy codec, WMA also supports lossless encoding.

184

Chapter 5

RealAudio

RealAudio, developed by RealNetworks, is another proprietary format. It was con-
ceived to allow the streaming of audio data over low bandwidth links. Many Internet
radio stations use this format to stream their content. Recent updates to the codec
have improved its quality to match that of other modern codecs.

Vorbis

Vorbis was created at the outset to be free of any patents. It is released by the Xiph.org
Foundation as a completely royalty-free codec. A full Vorbis implementation for
both floating-point and fixed-point processors is available under a free license from
Xiph.org. Because it is free, Vorbis is finding its way into increasing numbers of
embedded devices.

According to many subjective tests, Vorbis outperforms MP3, and it is therefore in the
class of the newer codecs like WMA and AAC. Vorbis also fully supports multi-chan-
nel compression, thereby eliminating redundant information carried by the channels.
Refer to Chapter 9 for further discussion on the Vorbis codec and its implementation
on an embedded processor.

FLAC

FLAC is another open standard from the Xiph.org Foundation. It stands for Free
Lossless Audio Codec, and as the name implies, it does not throw out any information
from the original audio signal. This, of course, comes at the expense of much smaller
achievable compression ratios. The typical compression range for FLAC is 30–70%.

Speech Compression

Speech compression is used widely in real-time communications systems like cell
phones, and in packetized voice connections like Internet phones.

Since speech is more band-limited than full-range audio, it is possible to employ
audio codecs, taking the smaller bandwidth into account. Almost all speech codecs
do, indeed, sample voice data at 8 kHz. However, we can do better than just take
advantage of the smaller frequency range. Since only a subset of the audible signals
within the speech bandwidth is ever vocally generated, we can drive bit rates even
lower. The major goal in speech encoding is a highly compressed stream with good
intelligibility and short delays to make full-duplex communication possible.

185

Basics of Embedded Audio Processing

The most traditional speech coding approach is code-excited linear prediction
(CELP). CELP is based on linear prediction coding (LPC) models of the vocal tract
and a supplementary residue codebook.

The idea behind using LPC for speech coding is founded on the observation that the
human vocal tract can be roughly modeled with linear filters. We can make two basic
kinds of sounds: voiced and unvoiced. Voiced sounds are produced when our vocal
cords vibrate, and unvoiced sounds are created when air is constricted by the mouth,
tongue, lips and teeth. Voiced sounds can be modeled as linear filters driven by a fun-
damental frequency, whereas unvoiced ones are modeled with random noise sources.
Through these models, we can describe human utterances with just a few parameters.
This allows LPC to predict signal output based on previous inputs and outputs. To
complete the model, LPC systems supplement the idealized filters with residue (i.e.,
error) tables. The codebook part of CELP is basically a table of typical residues.

In real-time duplex communications systems, one person speaks while the other one
listens. Since the person speaking is not contributing anything to the signal, some
codecs implement features like voice activity detection (VAD) to recognize silence,
and comfort noise generation (CNG) to simulate the natural level of noise without
actually encoding it at the transmitting end.

Table 5.7  Various speech codecs

GSM-FR

GSM-EFR

GSM-AMR

G.711

G.723.1

G.729

Speex

13 kbps

12.2 kbps

4.75, 5.15, 5.90, 6.70, 7.40, 7.95, 10.2, 12.2 kbps

64 kbps

5.3, 6.3 kbps

6.4, 8, 11.8 kbps

2 – 44 kbps

ETSI

ETSI

3GPP

ITU-T

ITU-T

ITU-T

Xiph.org

Speech Coding Standard Bit rate Governing Body

Representative sampling of speech codecs

GSM

The GSM speech codecs find use in cell phone systems around the world. The
governing body of these standards is the European Telecommunications Standards
Institute (ETSI). There is actually an evolution of standards in this domain. The

186

Chapter 5

first one was GSM Full Rate (GSM-FR). This standard uses a CELP variant called
Regular Pulse Excited Linear Predictive Coder (RPELPC). The input speech signal
is divided into 20-ms frames. Each of those frames is encoded as 260 bits, thereby
producing a total bit rate of 13 kbps. Free GSM-FR implementations are available for
use under certain restrictions.

GSM Enhanced Full Rate (GSM-EFR) was developed to improve the quality of
speech encoded with GSM-FR. It operates on 20-ms frames at a bit rate of 12.2 kbps,
and it works in noise-free and noisy environments. GSM-EFR is based on the patented
Algebraic Code Excited Linear Prediction (ACELP) technology, so you must purchase
a license before using it in end products.

The 3rd Generation Partnership Project (3GPP), a group of standards bodies,
introduced the GSM Adaptive Multi-Rate (GSM-AMR) codec to deliver even higher
quality speech over lower-bit-rate data links by using an ACELP algorithm. It uses
20-ms data chunks, and it allows for multiple bit rates at eight discrete levels between
4.75 kbps and 12.2 kbps. GSM-AMR supports VAD and CNG for reduced bit rates.

The “G-Dot” Standards

The International Telecommunication Union (ITU) was created to coordinate
the standards in the communications industry, and the ITU Telecommunication
Standardization Sector (ITU-T) is responsible for the recommendations of many
speech codecs, known as the G.x standards.

G.711

G.711, introduced in 1988, is a simple standard when compared with the other
options presented here. The only compression used in G.711 is companding (using
either the μ-law or A-law standards), which compresses each data sample to 8 bits,
yielding an output bit rate of 64 kbps.

G.723.1

G.723.1 is an ACELP-based dual-bit-rate codec, released in 1996, that targets Voice-
Over-IP (VoIP) applications like teleconferencing. The encoding frame for G.723.1 is
30 ms. Each frame can be encoded in 20 or 24 bytes, thus translating to 5.3 kbps and
6.3 kbps streams, respectively. The bit rates can be effectively reduced through VAD
and CNG. The codec offers good immunity against network imperfections like lost
frames and bit errors. This speech codec is part of video conferencing applications
described by the H.324 family of standards.

187

Basics of Embedded Audio Processing

G.729

Another speech codec released in 1996 is G.729, which partitions speech into 10-ms
frames, making it a low-latency codec. It uses an algorithm called Conjugate Structure
ACELP (CS-ACELP). G.729 compresses 16-bit signals sampled at 8 kHz via 10-ms
frames into a standard bit rate of 8 kbps, but it also supports 6.4 kbps and 11.8 kbps
rates. VAD and CNG are also supported.

Speex

Speex is another codec released by Xiph.org, with the goal of being a totally patent-
free speech solution. Like many other speech codecs, Speex is based on CELP with
residue coding. The codec can take 8 kHz, 16 kHz, and 32 kHz linear PCM signals
and code them into bit rates ranging from 2 to 44 kbps. Speex is resilient to network
errors, and it supports voice activity detection. Besides allowing variable bit rates,
another unique feature of Speex is stereo encoding. Source code is available from
Xiph.org in both a floating-point reference implementation and a fixed-point version.

What’s Next?
Now that you’ve got a backgrounder on audio as it relates to embedded media pro-
cessing, we’ll strive to provide you with a similar level of familiarity with video.
Taken together, audio and video provide the core of most multimedia systems,
and once we have explored both, we’ll start looking at multimedia frameworks in
embedded systems.

