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P.31.1 Introduction

Compression
Reduce the amount of data required to represent a media

Why Compression
Stereo Audio
– 16 bits for 96 dB
– 44.1 k sample rate
– 176.4 k bytes per second and 10Mbytes for a minute

Video
– 525 x 360 x 30 x 3 = 17 MB/s or 136 Mb/s
– 1000 Mbytes for a minute

Compression is necessary for storage, communication, ...
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P.41.1 Introduction (c.1)

Advantages of Digital over Analog Signals
Processing Flexibility and Facility
Ease of Precision Control
Higher Signal-to-Noise Resistance

Techniques to Compress Data
Data Redundancies
Perceptual Effects
Applications Requirements

Standards
Speed up the advance of related technology
Increase the compatibility
The landmarks of technical developments.
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P.51.1 Introduction (c.2)

Applications
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P.61.1 Introduction (c.3)
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P.71.2 Redundancy

Data v.s. Information
Coding Redundancy
Interdata Redundancy
Perceptual Redundancy
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P.81.2 Redundancy-- Data v.s. Information

Data Compression
Process of reducing the amount of data required to represent a given 
quantity of information.

Data v.s. Information
Data are means by which information is conveyed.

Data Redundancy
The part of data that contains no relevent information
Not an abstract concept but a mathematically quantifiable entity
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P.91.2 Redundancies-- Data v.s. Information(c.1)

Example
If n1 and n2 denote the number of information carrying units for the 
same information
Relative Data Redundancy, Rd

Compression ratio, Cr

n2 >>n1 ==> large compression ratio and low relative redundancy.

R
Cd

r

= −1 1

C n
nr = 1

2
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P.101.2 Redundancy-- Coding Redundancy

Redundancy Sources
The number of bits used to represent different symbols needs not be 
the same.

Assume that the occurance probability of each symbol rk
is p(rk) and the number of bits used to represent rk is l(rk)

Average number of bits for a symbol is 

Variable Length Coding
Assign fewer bits to the more probable symbols for compression.

L l r p ravg k
k

k= ∑ ( ) ( )
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P.111.2 Redundancy-- Coding Redundancy(c.1)

Variable-Length Coding Example
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P.121.2 Redundancy-- Coding Redundancy(c.2)

Lavg = 2.7 bits; Cr = 3/2.7=1.1; Rd = 1- (1/1.11) = 0.099
Graphical representation the data compression
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P.131.2 Redundancy-- Interdata Redundancy

There is correlation between data
The value of a data can be predicted from its neighbors

The information carried by individual data is relatively small.

Other names
Interpixel Redundancy, Spatial Redundancy, Temporal Redundancy

Ex.
Run-length coding
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P.141.2 Redundancy-- Perceptual Redundancy

Certain information is not essential for normal perceptual 
processing
Example:

Sharpe edges in an image.
Stronger sounds mask the weaker sounds.

Other names
Psychovisual redundancy
Psychoacoustic redundancy
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P.151.3 Compression Models

A General Compression System Model
The Source Encoder and Decoder
The Channel Encoder and Decoder
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P.16

1.3 Compression Models-- A General 
Compression System Model

Encoder
Create a set of symbol from 
input data

Source Encoder
Removes input redundancies

Channel Encoder
Increases the noise immunity 
of the source encoder　
output.

Decoder
Reconstruct the input data

Source 
Encoder
Source 

Encoder

f(x)

f(x)

Encoder

Decoder

Channel
Decoder

Channel
Decoder

Channel
Encoder

Channel
Encoder

ChannelChannel

Source 
Decoder
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P.17

1.3 Compression Models-- The Source 
Encoder and Decoder

S(k)f(x) f(x)

Mapper
Transform the input data into a form designed to reduce interdata
redundancies.

Quantizer
Reduces the accuracy of the mapper　 output in accordance with some
preestablished fidelity criterion.
Irreversible,reduce perceptual redundancy

Symbol Encoder
Creates a fixed- or variable-length codeto represent the quantizer output 
and maps the output in accordance with the code.
Reduce coding redundancy

MapperMapper

Source Encoder Source Decoder

QuantizerQuantizer Symbol
Encoder
Symbol
Encoder

Symbol 
Decoder
Symbol 
Decoder

Inverse
Mapper

Inverse
Mapper
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P.18

1.3 Compression Models-- The Channel 
Encoder and Decoder

Reduce the impact of channel noise by inserting a 
controlled form of redundancy.
Example: (7, 4) Hamming Code

Encoding 4-bit word

Decoding

h b b b1 3 2 0= ⊕ ⊕ h b b b2 3 1 0= ⊕ ⊕

h b b b h b h b h b h b4 2 1 0 3 3 5 2 6 1 7 0= ⊕ ⊕ = = = =; ; ; ;

c h h h h1 1 3 5 7= ⊕ ⊕ ⊕ c h h h h2 2 3 6 7= ⊕ ⊕ ⊕
c h h h h4 4 5 6 7= ⊕ ⊕ ⊕
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P.191.4 Information Theory

Information
Entropy
Conditional Information & Entropy
Mutual Information
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P.201.4 Information Theory (c.1)

Introduction
What does Information Theory talk about  ?
– The field of information theory is concerned with the amount of 

uncertainty associated with the outcome of an experiment .
– The amount of information we receive when the outcome is known 

depends upon how much uncertainty there was about its occurren
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P.211.4 Information Theory (c.2)

Shannon formalism
A random event E that occurs with probability P(E) is said to 
contain   

units of information                                        
The information is a measure of uncertainty associated with 
event E -- the less likely is the event E , the more information 
we receive
For example                                                     
P(E) = 1      =>  I(E) = 0   ( no information is needed)        
P(E) =  1/2  =>  I(E) = 1   ( one bit is needed )               
P(E) =  1/8  =>  I(E) = 3   ( three bits are needed )

I E P E P E( ) log ( ) log ( )= = −1
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P.221.4 Information Theory (c.3) 

H E E I E P E P E
i

K
( ) { ( )} ( ) ( log ( ))= = • −

=
∑

1

Entropy 

The entropy is a measure of expected  information across all outcomes 
of the random vector                                            
The higher entropy is, the more uncertainty it is and thus the more 
information associated with the sourse is needed
For example, Huffman coding
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P.231.4 Information Theory (c.4) 

Conditional Information
The information received about X=x after we already know the outcome 
of Y=y

Conditional Entropy
The average of conditional information for I(x/y)

I X x Y y P X x Y y( ) log ( )= = = − = =2

H X Y I X Y

P X x Y y P X x Y y
X Y

YX

( ) { ( )}

( , ) log ( )
,=

= − = = = =∑∑
ξ

2
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P.241.4 Information Theory (c.5)

Mutual Information 
The shared information in two individual outcome

Expected Mutual Information
The average mutual information

M X x Y y I X x I X x Y y
P X x Y y
P X x P Y y

( ; ) ( ) ( )

log ( , )
( ) ( )

= = = = − = =

=
= =

= =2

M X Y H X H X Y H Y H Y X

P X x Y y P X x Y y
P X x P Y yYX

( ; ) ( ) ( ) ( ) ( )

( , ) log ( , )
( ) ( )

= − = −

= = =
= =

= =∑∑ 2
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P.251.5 Concluding Remarks

Data Redundancy
Coding Redundancy
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Perceptual Redundancy

Compression Models
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P.262. Quantization

Introduction
Scalar Quantization
Vector Quantization
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P.272.1 Introduction

Concepts
Coding of Continuous Sources from a theoretical viewpoints.
Quantization of the amplitude results in waveform distortion.
The minimization of this distortion from the viewpoint of quantizer 
characteristics.

Two Cases
Scalar quantization

the samples are processed "one " at a time 

Vector quantization                        
a  "block" of samples are quantized as a single entity                                          
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P.282.2 Scalar Quantization 

Quantization Error Optimization  
(  Optimal Quantizer Design )

Quantization Model

Q

quantizer

x(n)

q(n)

x'(n)

%( ) [ ( )] ( ) ( )
( ) %( ) ( ) [ ( )] ( )
x n Q x n x n q n
q n x n x n Q x n x n

= = +
= − = −

one sample in
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P.292.2 Scalar Quantization (c.1)

Optimum Design
Select x^(n) ( output level ) and x(n) ( input level ) for a 
particular optimization criterior. 

The optimizaion is to minimize 

Require the knowledge of the pdf together with the variance of 
the input signals. 

D E h q n h f dq= =
−∞

∞

∫{ [ ( )]} ( ) ( )ζ ζ ζ      

D h Q f dx= −
− ∞

∞

∫ [ ( ) ] ( )ζ ζ ζ ζ    
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P.302.2 Scalar Quantization (c.2)
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P.312.3 Vector  Quantization 

Definition 

x x x x N
y y y y N
x i y i i N
x y

RN

=
=

≤ ≤

[ ( ) ( ) ( )]
[ ( ) ( ) ( )]

( ) ( )

1 2
1 2

1

 ..........             
  .......... 

 ,   ,    : real random variables 
 ,    :  N-  dimensional random vector

the vector y has a special distribution in that it may only 

take one of    L    (  deterministic   )  vector values in     
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P.322.3 Vector Quantization (c.1)

Vector quantization

the vector quantization of x may be viewed 
as a  pattern  recognition problem involving 
the classification of the outcomes of the 
random variable x into a discrete number of 
categories                                       or cell in N-
space in a way that optimizes some fidelity 
criterion, such as mean square distortion. 

y Q x= ( )
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P.332.3 Vector Quantization (c.2)

D P x C E d x y x C

d x y
R l l l

k k kk

L

k
N
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=

∞

∑ ( ) { ( , )| }

( , )
1

1 2

   

 are typically the distance measures 
in    , including         ,  ,    norm   

VQ Distortion 

VQ Optimization
minimize the average distortion D.
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P.342.3 Vector Quantization (c.3)

Two conditions for optimality
Nearest Neighbor Selection

minimize average distortion 

=> applied to partition the N-dimensional space into 
cell                      when the joint pdf         is known.

Q x y x C
iff d x y d x y k j j L

k k

k j
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( , ) ( , ,
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P.353 Rate-Distortion Functions

Introduction
Rate-Distortion Function for a Gaussian Source 
Rate-Distortion Bounds
Distortion Measure Methods
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P.363.1 Introduction

Considering question
Given a source-user pair and a channel, under what conditions is it 
possible to design a communication system that reproduces the source 
output for the user with an average distortion that does not exceed 
some specified upper limit D?
– The capacity (C) of a communication channel. 
– The rate distortion function ( R(D)  )of a source-user pair.

Rate-distortion function R(D)
A communication system can be designed that achieves fidelity D if and 
only if the capacity of the channel that connects the source to user 
exceeds R(D).
The lower limit for data compression to achieve a certain fidelity subject 
to a predetermined distortion measure D.
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P.373.1 Introduction (cont.)
Equations representations :

Distortion D :

   

M utual inform ation:

   

Rate distortion function R(D):
        

 distortion m easure for the source word
             = (

D d q p x q y x x y dxdy

I q p x q y x
q y x
q y

dxdy

R D I q Q q y x d q D

x y
x

q Q d
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=

= = =
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∈

( ) ( ) ( | ) ( , )

( ) ( ) ( | ) log
( | )
( )

( ) inf ( ), { ( | ): ( ) }

( , ):
, ...

ρ

ρ
x 1 , ) , ..., )

( ) ( , )

{ , }

x y

n x y

F n

n n

t t
t

n

n

 reproduced as = (y

             

The fam ily  is called the 

single - letter fidelity criterion generated by  .

1

n

y

x, yρ ρ

ρ

ρ
ρ

=

= ≤ < ∞

−

=
∑1

1

1



1995  NCTU/CSIE 
DSPLAB C.M..LIU

P.383.2 Rate-Distortion Bounds

Introduction
Rate-Distortion Function for A Gaussian Source 

R(D) for a memoryless Gaussian source
Source coding with a distortion measure 

Rate-Distortion Bounds
Conclusions 
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P.39

3.3 Rate-Distortion Function for A Gaussian
Source

Rate-Distortion for a memoryless 
Gaussian source

The minimum information rate
(bpn) necessary to represent the 
output of a discrete-time, 
continuous-amplitude,
memoryless stationary Gaussian
source based on an MSE 
distortion measure per symbol.
Equation

R D
D D

Dg
x x

x

( )
log ( ),

,
=

≤ ≤

≥







1
2 2

2 2

2

0

0

σ σ

σ
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P.40

3.3 Rate-Distortion Function for A Gaussian
Source (c.1)

Source coding with a distortion measure 
(Shannon, 1959)

There exists a coding scheme that maps the source output into
codewords such that for any given distortion D, the minimum 
rate R(D) bpn is sufficient to reconstruct the source output with 
an average distortion that is arbitrarily close to D.
Transform the R(D) to distortion-rate function D(R)

D R

D R R

g
R

x

g x

( )

log ( ) log

=

= − +

−2

10 6 10

2 2

10 10
2

σ

σ

Express in dB
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P.41

3.3 Rate-Distortion Function for A Gaussian
Source (c.2)

Comparison between 
different quantizations
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P.423.4 Rate-Distortion Bounds

Source:
Memoryless, continuous-amplitude source with zero mean and finite 
variance      with respect to the MSE distortion measure.

Upper bound
According to the theorem of Berger (1971), it implies that the Gaussian
source requires the maximum rate among all other sources for a 
specified level of mean square distortion.

R D
D

R D D

D R D R

x
g x

g
R

x

( ) log ( ),

( ) ( )

≤ = ≤ ≤

≤ = −

1
2

0

2

2

2
2

2 2

σ
σ

σ

    

σx
2
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P.433.4 Rate-Distortion Bounds (c.1)
Lower bound

R D H x eD

D R
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f x e
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P.443.4 Rate-Distortion Bounds (c.2)

For Gaussian source, the rate-distortion, upper bound and lower bound 
are all identical to each other.
The bound of differential entropy

10 6 6

10 6

6

10

10

log ( ) [ ( ) ( )]

log
( )
( )

[ ( ) ( )]

[ ( ) ( )]
( )

*

*
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D R
D R

H x H x

R D R D
H x

g

g
g

g

g

= − − −

= −

= −

⇒

                        
The differential entropy is upper bounded by 
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P.453.4 Rate-Distortion Bounds (c.3)

Rate-distortion R(D) to channel capacity C
For C > Rg(D) 
– The fidelity (D) can be achieved.

For R(D)<C< Rg(D) 
– Achieve fidelity for stationary source
– May not achieve fidelity for random source

For C<R(D)
– Can not be sure to achieve fidelity
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P.463.4 Rate-Distortion Bounds (c.4)
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P.473.5 Distortion Measure Methods
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P.484. Waveform Coding

Introduction
Pulse Code Modulation(PCM)
Log-PCM
Differential PCM
Adaptive DPCM
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P.494.1 Introduction

Two SCoding Categories 
1 .  Waveform coder
2 .  Perceptual coder

Waveform Coding 
Methods for digitally representing the temporal or spectral 
characteristics of waveforms.

Vocoders
Parametric Coders, the parameters characterize the short-term 
spectrum of a sound.
These parameters specify a mathematical model of human speech 
production suited to a particular sound.
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P.504.2 Pulse Code Modulation

The Quantized Waveform s(n)
s(n) = s(n) + q(n)

Applying uniform quantizer
The quantization noise can be modeled by a stationary 
random process q in which each of the random 
variables q(n) has the uniform pdf.

The step size is 2-R.  The mean square value is

Measured in decibels

^

10
12

10 2
12

6 10 7910

2

10

2

log log .∆
= = − −

− R

R dB  

^

fq n( ) ( ) ,ξ ζ= − ≤ ≤
1

2 2∆
∆ ∆

ξ{ ( )}q n
R

2
2 2

12
2
12

= =
−∆

SamplerSampler

S(t)

QuantizerQuantizer

S(n)

S(n)^
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P.514.3 Log PCM    

Concepts
Small-signal amplitudes occur more  frequently                        than 
large-signal amplitudes in speech signals
Human hearing exhibits a logarithmic sensitivity

Two Nonuniform quantizer
u-law (a standard in the United States and Canada)

A-law (European standard)

SamplerSampler

S(t)

LogLog

S(n)

S(n)^

Uniform 
Quantizer
Uniform 

Quantizer

S'(n)y s
=

+
+

log ( )
log ( )

1
1

µ
µ

y A s
A

=
+

log
log1
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P.524.3 Log PCM(c.1)

Input-Output Magnitude 
Characteristic of u-Law

Two Compression 
Functions
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P.534.4 Differential PCM (DPCM)

Concepts
In PCM , each sample is coded independently of all the other samples.
The average changes in amplitude between samples are very small.
==> Temporal Redundancy.

Approach
Encode the differenced sequence

ex.   e(n) = s(n) - s(n-1)  
ex. Typical predictor

Fewer bits are required to represent the differences
PCM & DPCM encoders are designed on the basis that the source 
output is stationary 
DPCM performs better than PCM at and below 32 kbits/s

A z a zi
i

i

p

( ) = −

=
∑

1
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P.544.4 Differential PCM (c.1)

Block Diagram of a DPCM

Quantizer

S(n)^

--

++

e(n)S(n) e(n)
Quantizer To Channel

s'(n)

PredictorPredictor

Encoder
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P.564.5 Adaptive DPCM

Considerations
Speech signals are quasi-stationary in natual 

Concepts
Adapt to the slowly time-variant statistics of the speech signal 
Adaptive quantizer is used
Feedforward and feedback adaptive quantizer.

Example
looks at only one previosly quantized sample and either expands or 
compresses the quantizer intervals.

∆ ∆n n iM x+ =1 ( ))
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P.574.5 Adaptive DPCM(c.1)

Encoder
Block Diagram

Decoder
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P.584.5 Adaptive DPCM(c.2)

∆ ∆n n iM x+ =1 ( ))Adaptive Step Sizes
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P.594.5 Adaptive DPCM(c.3)

CCITT G.721 standard (1988)
Adaptive quantizer 
– quantize e(n) into 4 bits words.

Adaptive predictor
– Pole-zero predictor with 2 poles, 6 zeros.
– Coefficients are estimated using a gradient algorithm and the 

stability is checked by testing two roots of A(z).
The performance of the coder in terms of MOS is above 4.
The G.721 ADPCM algorithm was modified to accomodate 24 and 40
kbits/s in G.723.
The performance of ADPCM degrades quickly for rates below 24 kbits/s.
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P.604.6 Summary

Introduction
Pulse Code Modulation(PCM)
Log-PCM
Differential PCM
Adaptive DPCM
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P.615. Subband Coding

Concepts
Exploits the redundancy of the signal in the frequency domain.
Quadrature-Mirror Filter for subband coding.
The opportunitylies in both the short-time power spectrum and the 
the perceptual properties of the human ear.

Standards
AT&T voice store-and-forward standard.
– 16 or 24 kbits/s
– Five-band nonuniform tree-structured QMF band in conjunction 

with ADPCM coders
– The frequecy range for each band are 0-0.5, 0.5-1, 1-2, 2-3, 3-4 

kHz.
– {4/4/2/2/0} for 16 kbits and {5/5/4/3/0} for 24 kbits.
– The one-way delay is less than 18 ms. 
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P.625. Subband Coding (c.1)

CCITT G.722
G. 722 algorithm at 64 kb/s have an equivalent SNR gain of 13 db over 
the G.721.
Low-frequency parts permit operation at 6, 5, or 4 bits (64, 56, and 48 
kb/s) per sample with graceful degradation of quality.
Two-band subband coder with ADPCM coding of each subband.
The low- and high-frequency subbands are quantized using 6 and 2 bits 
per sample, respectively.
The filter banks produce a communication delay of about 3 ms.
The MOS at 64 kbits/s is greater than 4  for music signals.
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P.635. Subband Coding (c.2)
Two-Band Subband Coder for 64-kb/s coding of 7-kHz Audio

G. 722 standard
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P.646. Transform Coding

Concepts
The transform components of a unitary transform are quantized at the 
transmitter and decoded and inver-transformed at receiver.

Unitary transforms
Karhunen-Loeve Transform
– Optimal in the sense that the transform components are maximally

decorrelated for any given signal.
– Data dependent.

The Discrete Cosine Transform
– Near optimal.

The Fast Fourier Transform
– Approaches that of DCT for very large block.


	Audio Coding
	1. Fundamentals
	1.1 Introduction
	1.1 Introduction (c.1)
	1.1 Introduction (c.2)
	1.1 Introduction (c.3)
	1.2 Redundancy
	1.2 Redundancy-- Data v.s. Information
	1.2 Redundancies-- Data v.s. Information(c.1)
	1.2 Redundancy-- Coding Redundancy
	1.2 Redundancy-- Coding Redundancy(c.1)
	1.2 Redundancy-- Coding Redundancy(c.2)
	1.2 Redundancy-- Interdata Redundancy
	1.2 Redundancy-- Perceptual Redundancy
	1.3 Compression Models
	1.3 Compression Models-- A General Compression System Model
	1.3 Compression Models-- The Source Encoder and Decoder
	1.3 Compression Models-- The Channel Encoder and Decoder
	1.4 Information Theory
	1.4 Information Theory (c.1)
	1.4 Information Theory (c.2)
	1.4 Information Theory (c.3)
	1.4 Information Theory (c.4)
	1.4 Information Theory (c.5)
	1.5 Concluding Remarks
	2. Quantization
	2.1 Introduction
	2.2 Scalar Quantization
	2.2 Scalar Quantization (c.1)
	2.2 Scalar Quantization (c.2)
	2.3 Vector  Quantization
	2.3 Vector Quantization (c.1)
	2.3 Vector Quantization (c.2)
	2.3 Vector Quantization (c.3)
	3 Rate-Distortion Functions
	3.1 Introduction
	3.1 Introduction (cont.)
	3.2 Rate-Distortion Bounds
	3.3 Rate-Distortion Function for A Gaussian Source
	3.3 Rate-Distortion Function for A Gaussian Source (c.1)
	3.3 Rate-Distortion Function for A Gaussian Source (c.2)
	3.4 Rate-Distortion Bounds
	3.4 Rate-Distortion Bounds (c.1)
	3.4 Rate-Distortion Bounds (c.2)
	3.4 Rate-Distortion Bounds (c.3)
	3.4 Rate-Distortion Bounds (c.4)
	3.5 Distortion Measure Methods
	4. Waveform Coding
	4.1 Introduction
	4.2 Pulse Code Modulation
	4.3 Log PCM
	4.3 Log PCM(c.1)
	4.4 Differential PCM (DPCM)
	4.4 Differential PCM (c.1)
	4.5 Adaptive DPCM
	4.5 Adaptive DPCM(c.1)
	4.5 Adaptive DPCM(c.2)
	4.5 Adaptive DPCM(c.3)
	4.6 Summary
	5. Subband Coding
	5. Subband Coding (c.1)
	5. Subband Coding (c.2)
	6. Transform Coding

