An Intr oduction to the UNIX Shell

S. R. Bourne

ABSTRAT

The shellis a command programming language thavioes an intedce to theUNIX T
operating systemlts features include control-fbo primitives, parameter passingan-
ables and string substitutioonstructs such aghile, if then elsecaseandfor are aail-
able. Two-way communication is possible between shelland commandsString-\al-
ued parameters, typically file names or flags, may be passed to a cominagidirn
code is set by commands that may be used to determine contro&flb the standard
output from a command may be used as shell input.

The shell can modify the erironment in which commands rumnput and output can be
redirected to files, and processes that communicate through ‘pipes’ camoked.in
Commands are found by searching directories in the file system in a sequence that can be
defined by the usetCommands can be read either from the terminal or from a file, which
allows command procedures to be stored for later use.

January 28, 19102

T UNIX is a rgistered trademark of & T Bell Laboratories in the USA and other countries.

An Intr oduction to the UNIX Shell

S. R. Bourne

1.0 Introduction

The shell is both a command language and a programming language Vidgpeam intedce to the UNIX
operating systemThis memorandum describes, witkamples, the UNIX shell.The first section ogers
most of the eeryday requirements of terminal userSome &miliarity with UNIX is an adantage when
reading this section; see, foxample, "UNIX for bginners". unix bginn kemigh 1978gaction 2 describes
those features of the shell primarily intended for use within shell procedlihese include the control-
flow primitives and string-alued \ariables praeided by the shell A knowledge of a programming language
would be a help when reading this sectidrhe last section describes the moreasmbed features of the
shell. Referencesf the form "se@ipe (2)" are to a section of the UNIX manudfenth 1978 ritchie thompson

.SH 1.1 Simple commands
Simple commands consist of one or momrde separated by blank3he first word is the name of the
command to bexecuted; ag remaining vords are passed agaments to the commandor example,

who
is a command that prints the names of users loggetiha.command

Is -l
prints a list of files in the current directoryhe agument-l tellsIs to print status information, size and the
creation date for each file.

1.2 Backgiound commands

To execute a command the shell normally createsvaprecessand waits for it to finish. A command may
be run without waiting for it to finish. For example,

cC pgm.c &

calls the C compiler to compile the fiigm.c . The trailing& is an operator that instructs the shell not to
wait for the command to finishTo help keep track of such a process the shell reports its process number
following its creation.A list of currently actie processes may be obtained usinggheommand.

1.3 Input output redirection

Most commands produce output on the standard output that is initially connected to the térhigmalit-
put may be sent to a file by writing, forample,

Is -1 >file

The notatior>file is interpreted by the shell and is not passed asgqammant tols. If file does not eist
then the shell creates it; otherwise the original conterfiteare replaced with the output fras1 Output
may be appended to a file using the notation

Is -1 >>file

In this casdile is also created if it does not alreadyse

The standard input of a command may bemakom a file instead of the terminal by writing, feample,
wc <file

The commandwc reads its standard input (in this case redirected fiit@nhand prints the number of

characters, wrds and lines foundif only the number of lines is required then
wc —| <file

could be used.

1.4 Pipelines and filters

The standard output of one command may be connected to the standard input of another by writing the
‘pipe’ operatorindicated byl, as in,

Is-I | wc
Two commands connected in thigyconstitute pipelineand the werall effect is the same as
Is -1 >file; wc <file

except that ndile is used. Instead the tw processes are connected by a pipe (see(2)) and are run in
parallel. Pipesre unidirectional and synchronization is aebieby halting wc when there is nothing to
read and haltings when the pipe is full.

A filter is a command that reads its standard input, transforms it in sagnend prints the result as out-
put. Onesuch filter grep,selects from its input those lines that contain some specified skangxample,

Is | grepold

prints those lines, if an of the output fronds that contain the stringld. Another useful filter isort For
example,

who | sort

will print an alphabetically sorted list of logged in users.
A pipeline may consist of more thandwommands, forxample,

Is | grepold wc -l

prints the number of file names in the current directory containing the shting

1.5 File name generation
Many commands accept@uments which are file nameBor example,

Is =l main.c

prints information relating to the fil@ain.c.
The shell preides a mechanism for generating a list of file names that match a p&esxample,

Is—l *.c

generates, asg@uments tds, all file names in the current directory that endcin The character is a pat-
tern that will match anstring including the null stringln generapatternsare specified as fols.

* Matches an string of characters including the null string.
? Matches ap single character
[-] Matches ay one of the characters enclosedl pair of characters separated by a minus will

match ag character Igically between the pair
For example,

[a-z]*
matches all names in the current directorgitweing with one of the letteesthroughz.
lusr/fred/test/?

matches all names in the directdugr/fr ed/testthat consist of a single charactéf no file name is found
that matches the pattern then the pattern is passed, unchanged gasremar

This mechanism is useful both tosedyping and to select names according to some pattemay also be
used to find filesFor example,

echo /usr/fredf/core

finds and prints the names of aetire files in sub-directories dusr/fred . (echois a standard UNIX com-
mand that prints its guments, separated by blank3his last feature can bamensve, requiring a scan of
all sub-directories aofusr/fred.

There is oneeeption to the general rulesvgn for patterns.The character.” at the start of a file name
must be eplicitly matched.

echox
will therefore echo all file names in the current directory ngiriméng with °’.
echo.x

will echo all those file names thatdie with ‘.. This avoids inadwertent matching of the nameséand *..’
which mean ‘the current directory’ and ‘the parent directory’ resyetgti (Notice thatls suppresses infer
mation for the files."and *..".)

1.6 Quoting

Characters that kva a pecial meaning to the shell, such<as *» ? | &, are called metacharacteré
complete list of metacharacters iseai in gopendix B. Any character preceded by\ @ quotedand loses
its special meaning, if gn The\ is elided so that

echo \\?
will echo a single? , and
echo \\\

will echo a singld. To dlow long strings to be continueda more than one line the sequencewlineis
ignored.

\ is corvenient for quoting single characteréd/hen more than one character needs quoting theeatech-
anism is clumsy and error pronA.string of characters may be quoted by enclosing the string between sin-
gle quotes.For example,

echo xx#xx* “XX
will echo
XXF**x XX

The quoted string may not contain a single quatenbay contain nglines, which are presesd. This
guoting mechanism is the most simple and is recommended for casual use.

A third quoting mechanism using double quotes is alsidable that preents interpretation of someub
not all metacharacter®iscussion of the details is deferred to section 3.4

1.7 Prompting
When the shell is used from a terminal it will issue a prompt before reading a comBaddiault this
promptis $’. It may be changed by saying, foeenple,

PStyesdear

that sets the prompt to be the strirggdear .If a nawline is typed and further input is needed then the shell
will issue the prompt>'. Sometimes this can be caused by mistyping a quote mfikis unexpected
then an interruptf{EL) will return the shell to read another commarithis prompt may be changed by
saying, for @ample,

PSZmore

1.8 The shell and login

Fdlowing login (1) the shell is called to read ankkeute commands typed at the terminHlthe users
login directory contains the filgrofile then it is assumed to contain commands and is read by the shell
before reading gncommands from the terminal.

1.9 Summary
. Is
Print the names of files in the current directory
. Is >file
Put the output fronts into file.
. Is | we-l

Print the number of files in the current directory
. Is | grep old
Print those file names containing the strirhdy

. Is | grepold | wc -l
Print the number of files whose name contains the sttohg

. cc pgm.c &
Runccin the background.

2.0 Shell pocedures
The shell may be used to read arecate commands contained in a fileor example,

shfile [ags...]

calls the shell to read commands fréila. Such a file is called @@mmand cedue or shell pocedue.
Arguments may be supplied with the call and are referredft imsing the positional paramete$$, $2,
.... For example, if the filawvg contains

who | grep$l
then

sh wg fred
is equiaent to

who | grepfred

UNIX files have three independent attrites,read, writeandexecute The UNIX commanahmod(1) may
be used to maka fie executable. Br example,

chmod +x wg

will ensure that the filevg has eecute statusFadlowing this, the command
wyg fred

is equiaent to
sh wg fred

This allons shell procedures and programs to be used interchangéaldther case a e process is cre-
ated to run the command.

As well as preiding names for the positional parameters, the number of positional parameters in the call is
awailable asb# . The name of the file beingecuted is mailable as$0 .

A special shell parametéx is used to substitute for all positional parametacept$0 . A typical use of
this is to preide some defult aguments, as in,

nroff -T450-ms $

which simply prepends somegaments to those alreadyven.

2.1 Control flow - for

A frequent use of shell procedures is to loop through thevants $1, $2, ..) executing commands once
for each agument. Anexample of such a proceduretéd that searches the filasr/lib/telnos that contains
lines of the form

fred mh0123
bert mh0789

The text of tel is

fori
do grep $i /usr/lib/telnos; done

The command
tel fred

prints those lines ifusr/lib/telnos that contain the strinfyed .

tel fred bert

prints those lines containirfigedfollowed by those fobert.
Thefor loop notation is recognized by the shell and has the general form

for namein wl w2. ..
do command-list
done

A command-lisis a sequence of one or more simple commands separated or terminatedmvineaare
semicolon. Furthermoragesered words like do and done are only recognized foleing a nevline or
semicolon. nameis a shell ariable that is set to theondswl w2.. . in turn each time theommand-list
following do is executed. Ifin wl w2... is omitted then the loop isxecuted once for each positional
parameter; that isn $* is assumed.

Another kample of the use of tHer loop is thecreatecommand whose xéis
for i do >$i; done

The command
create alpha beta

ensures that tavempty filesalphaandbetaexist and are emptyThe notatiorefile may be used on itsam
to create or clear the contents of a fikotice also that a semicolon (orwime) is required befordone.

2.2 Control flow - case
A multiple way branch is pnaded for by thecasenotation. r example,

case $#in

1) cat>%$1 :;

2) cat>%$2 <$1 ;;

*) echo \'usage: append [from] to\’ ;;
esac

is anappendcommand. Whemalled with one gyjument as
append file

$#is the strindl and the standard input is copied onto the erfidenfising thecat command.
append filel file2

appends the contents fii€1 ontofile2. If the number of ayjuments supplied tappends other than 1 or 2
then a message is printed indicating proper usage.

The general form of theasecommand is

caseword in
pattern) command-list;

esac

The shell attempts to matebord with eachpattern,in the order in which the patterns appeldia match is
found the associatembmmand-lists executed andxecution of thecaseis complete.Sincex is the pattern
that matches arstring it can be used for the @efit case.

A word of caution: no check is made to ensure that only one pattern matches thguwasatar Thdirst
match found defines the set of commands toxeeuwted. Inthe xample bela the commands folleing
the second will never be executed.

case $#in
*) ...
*) ...
esac

Another example of the use of theaseconstruction is to distinguish betweenfeiént forms of an gu-
ment. Theollowing example is a fragment of@ command.

fori

do case $iin
—locs]) ...;
—x) echo \'unknavn flag $iV ;;
*.C) Nlib/cOSi .. .;;
%) echo \'unepected aggument $i\’ ;;
esac

done

To dlow the same commands to be associated with more than one pattease¢bhemmand preides for
alternatve patterns separated byla For example,

case $iin

=xI=y)...
esac

is equiaent to

case $iin

-xy]) ...
esac

The usual quoting ceentions apply so that
case $iin
\\?)

will match the charactet.

2.3 Here documents
The shell proceduriel in section 2.1 uses the filesr/lib/telnos to supply the data fagrep. An alternatve
is to include this data within the shell procedure herdocument, as in,

fori
do grep $i <!

fred mh0123
bert mh0789
!
done
In this kample the shell tas the lines betweew! and! as the standard input fgrep. The string! is
arbitrary the document being terminated by a line that consists of the stringifajle .

Paameters are substituted in the document before it is nvatiebde togrepas illustrated by the folleing
procedure calleddg .

ed $3 <%
0/$1/sli$2/g
w

%

The call
edg string1 string2 file
is then equiaent to the command

ed file <%
g/stringl/s//string2/g
w

%

and changes all occurrencesstiinglin file to string2 . Substitution can be prented using \ to quote the
special characte$ as in

ed $3 <+
1,\$s/$1/$2/g
w

+

(This wersion ofedgis equvalent to the first xcept thated will print a ? if there are no occurrences of the
string $1) Substitution within ahere document may be prented entirely by quoting the terminating
string, for «kample,

grep $i <\\#

#
The document is presented without modificatiogrep. If parameter substitution is not required ihexe
document this latter form is mordfiefent.

2.4 Shell ariables

The shell proides string-alued \ariables. ¥driable names lgin with a letter and consist of letters, digits
and underscoresvariables may be gen values by writing, for @ample,

user=fred box=m000 acct=mh0000

which assignsalues to the ariablesuser, box andacct. A variable may be set to the null string by saying,
for example,

null=
The walue of a ariable is substituted by preceding its name Witior example,
echo $user

will echofred.
Variables may be used intera@lly to provide abbreiations for frequently used stringsor example,

b=/usr/fred/bin
mv pgm $b

will move the filepgmfrom the current directory to the directdnsr/fred/bin. A more general notation is
awailable for parameter (omviable) substitution, as in,

echo ${user}

which is equialent to

echo $user
and is used when the parameter name isvietbby a letter or digitFor example,
tmp=/tmp/ps
ps a >${tmp}a
will direct the output opsto the file/tmp/psa, whereas,
ps a >$tmpa
would cause thealue of the ariabletmpa to be substituted.

Except for$? the folloving are set initially by the shelb?is set after xecuting each command.

$? The «it status (return code) of the last commarecated as a decimal string4ost com-
mands return a zerie status if thg complete successfullptherwise a non-zerox# sta-
tus is returnedTesting the @alue of return codes is dealt with later unidlendwhile com-
mands.

$# The number of positional parameters (in decimbl¥ed, for @ample, in theappendcom-
mand to check the number of parameters.

$$ The process number of this shell (in decim&)nce process numbers are unique among
all existing processes, this string is frequently used to generate unique temporary file
names. Br example,

ps a >/tmp/ps$$

rm /tmp/ps$$
$! The process number of the last process run in the background (in decimal).
$- The current shell flags, such-asand-v.

Some wariables hae a pecial meaning to the shell and should baided for general use.

$MAIL When used interaely the shell looks at the file specified by thariable before it issues
a prompt. Ifthe specified file has been modified sincedswast lookd at the shell prints
the messaggou have maibefore prompting for the mecommand. This variable is typi-
cally set in the fileprofile, in the uses login directory For example,

MAIL =/usr/mail/fred

$HOME The dehult agument for thecd command. Thecurrent directory is used to reselVile
name references that do noglrewith a/, and is changed using tleel command. Br
example,

cd /usr/fred/bin
males the current directovystr/fred/bin .
cat wn

will print on the terminal the filevn in this directory The commanad with no agument
is equialent to

cd $HOME

This variable is also typically set in the the usdogin profile.
$PATH A list of directories that contain commands (gearch path). Eachtime a command is

-10 -

executed by the shell a list of directories is searched foxeruéble file. If $PATH is not
set then the current directofigin, and/usr/bin are searched by daflt. OtherwiseésPATH
consists of directory names separated.bifor example,

PATH=:/usr/fred/bin/bin:/usr/bin

specifies that the current directory (the null string before the Jir&isr/fr ed/bin, /bin and
/usr/bin are to be searched in that ordém this way individual users can ka their avn
‘private’ commands that are accessible independently of the current direléttrg com-
mand name contains/dhen this directory search is not used; a single attempt is made to
execute the command.

$PS1 The primary shell prompt string, by éedt, ‘$'.
$PS2 The shell prompt when further input is needed, bpualéf> .
$IFS The set of characters usedMidgnk interpetation(see section 3.4).

2.5 The test command
Thetestcommand, although not part of the shell, is intended for use by shell progfranezample,

test—f file

returns zerot status iffile exists and non-zeroxé status otherwiseln generakestevduates a predicate
and returns the result as itdtestatus. Some of the more frequently usiegtarguments are gen here, see
test(1) for a complete specification.

tests true if the agumentsis not the null string
test—ffile trueif file exists

test—rfile trueif file is readable

test-w file trueif file is writable

test—d file trueif file is a directory

2.6 Control flow - while

The actions of théor loop and thecasebranch are determined by dataitable to the shell. A while or
until loop and anf then elsebranch are also pvaed whose actions are determined by tkié €atus
returned by command® while loop has the general form

while command-list
do command-list
done

The \alue tested by thevhile command is thexé status of the last simple command fellng while.
Each time round the looppmmand-listis executed; if a zero»dt status is returned thesommand-listis
executed; otherwise, the loop terminatézxr example,

while test $1
do...

shift
done

is equiaent to

fori
do...
done
shiftis a shell command that renames the positional paran$2e$8, . . as$l, $2, .. and lose$1.

Another kind of use for thevhile/until loop is to vait until some gternal &ent occurs and then run some
commands. Imnuntil loop the termination condition iswersed. Br example,

-11 -

until test—f file
do sleep 300; done
commands

will loop until file exists. Eachime round the loop it aits for 5 minutes before trying aig. (Presumably
another process wiliventually create the file.)

2.7 Control flow - if
Also available is a general conditional branch of the form,

if command-list
then command-list
else command-list
fi

that tests thealue returned by the last simple command feithg if.
Theif command may be used in conjunction with tdstcommand to test for theistence of a file as in

if test—f file

then process file

else do something else
fi

An example of the use df, caseandfor constructions is gen in section 2.10
A multiple testif command of the form

if ...

then ...

else if...
then ...
else if...

fi
fi
fi
may be written using arxeension of thef notation as,
if ...
then ...
elif
then ...
elif

fi

The following example is theoudh command which changes the ‘last modified’ time for a list of fildse
command may be used in conjunction withle (1) to force recompilation of a list of files.

-12 -

flag=
fori
do case $iin
—C) flag=N;;
*) if test—f $i
then In$i junk$$; rm junk$$
elif test $flag
then echdile \W$i\\" does notxst
else >$i
fi
esac
done

The —c flag is used in this command to force subsequent files to be createy dotimet already rist.
Otherwise, if the file does noxist, an error message is printeéthe shell ariableflag is set to some non-
null string if the—c argument is encountered:he commands

In..;rm...

malke a [nk to the file and then remae it thus causing the last modified date to be updated.
The sequence

if commandl
then command2
fi

may be written
commandl && command2
Corversely,
commandll | command2
executescommandanly if commandfails. In each case thealue returned is that of the last simple com-

mand &ecuted.

2.8 Command gouping
Commands may be grouped inotways,

{ command-list }
and

(command-lis)

In the firstcommand-lists simply executed. Thesecond formecutescommand-lisas a separate process.
For example,

(cd x; rm junk)
executesrm junkin the directoryk without changing the current directory of thedking shell.
The commands

cd x; rm junk

have the same ééct ut leave the invoking shell in the directory.

-13-

2.9 Delugging shell procedures

The shell preides two tracing mechanisms to help when dgbing shell proceduresthe first is ivoked
within the procedure as

set-v

(v for verbose) and causes lines of the procedure to be printedyasdiread. It is useful to help isolate
syntax errors.It may be iwoked without modifying the procedure by saying

sh-v proc...

whereprocis the name of the shell procedufkhis flag may be used in conjunction with theflag which
prevents eecution of subsequent commanddlote that sayinget—n at a terminal will render the terminal
useless until an end-of-file is typed.)

The command
set-x

will produce an recution trace. Falowing parameter substitution each command is printed as it is
executed. (Ty these at the terminal to see whdeetffthey have) Bothflags may be turned fdby saying

set-

and the current setting of the shell flagsvalable as$-.

2.10 The man command

The following is themancommand which is used to print sections of the UNIX manliak called, for
example, as

man sh
man-t ed
man 2 fork

In the first the manual section fenis printed. Since no section is specified, section 1 is udéte second
example will typesett option) the manual section fed. The last prints théork manual page from sec-
tion 2.

-14 -

cd /usr/man

: “colon is the comment command”
: “default is nrof ($N), section 1 ($s)’
N=n s=1

fori
do case $iin

[1-9]x) s=$i;;

“HYN=t;;

-n) N=n;;

—x) echo unknevn flag \V$i\\" ;;

*) if test—f man$s/$i.$s
then ${N}roff man0/${N}aa man$s/$i.$s
else look through all manual sections’
found=no
forjin123456789
do if test-f man$;j/$i.$j
then man $j $i
found=yes
fi
done
case $found in
no) echo \'$i: manual page not foundV
esac
fi
esac
done

Figure 1 A version of the man command

-15-

3.0 Keyword parameters

Shell ariables may be gén values by assignment or when a shell procedurevikéd. Anarmgument to a
shell procedure of the formame=valuethat precedes the command name causkgeto be assigned to
namebefore &ecution of the procedure gms. Thevalue of namein the irvoking shell is not décted.
For example,

user=fred command

will executecommandwith user set tofred The —k flag causes guments of the forrmame=valueto be
interpreted in this ay arywhere in the gyument list. Suchnamesare sometimes calleceyword parame-
ters. Ifarny arguments remain thyeare available as positional paramete$s, $2, ...

Thesetcommand may also be used to set positional parameters from within a prodestweample,
set—*

will set $1 to the first file name in the current directd®g to the nat, and so on.Note that the first gu-
ment,—, ensures correct treatment when the first file nanginsewith a—.

3.1 Parameter transmission

When a shell procedure isvisked both positional and éyword parameters may be supplied with the call.
Keyword parameters are also madeikable implicitly to a shell procedure by specifying in adee that
such parameters are to beoerted. for example,

export user box

marks the ariablesuser and box for export. Whena shell procedure is oked copies are made of all
exportable wariables for use within thevunked procedure. Modificatioof such wariables within the proce-
dure does not &dct the alues in the imoking shell. It is generally true of a shell procedure that it may not
modify the state of its caller withoux@icit request on the part of the calléGhared file descriptors are an
exception to this rule.)

Names whosealue is intended to remain constant may be deckagatbnly . The form of this command
is the same as that of thgbort command,

readonly name. .

Subsequent attempts to set readoalyables are illgd.

3.2 Parameter substitution

If a shell parameter is not set then the null string is substituted fBoritexample, if the ariabled is not
set

echo $d

or
echo ${d}

will echo nothing. A default string may be gen as in
echo ${d-.}

which will echo the glue of the ariabled if it is set and . otherwise. Thedefault string is eauated
using the usual quoting ceantions so that

echo ${d-"+"}
will echo* if the variabled is not set.Similarly
echo ${d-$1}

will echo the walue ofd if it is set and the alue (if ary) of $1 otherwise. Avariable may be assigned a
default value using the notation

-16 -

echo ${d=}
which substitutes the same string as
echo ${d-.}

and ifd were not preiously set then it will be set to the string ‘ (The notation ${. =.. } i s ot available
for positional parameters.)

If there is no sensible dailt then the notation
echo ${d?message}

will echo the alue of the ariabled if it has one, otherwismessgeis printed by the shell anceeution of
the shell procedure is abandondfimessge is absent then a standard message is prirkeshell proce-
dure that requires some parameters to be set might start assfollo

: ${user?} ${acct?} ${bin?}

Colon) is a @mmand that is lt in to the shell and does nothing once itguanents hee been ®alu-
ated. Ifary of the variablesuser, acct or bin are not set then the shell will abandaeragition of the proce-
dure.

3.3 Command substitution

The standard output from a command can be substituted in a simajatovwparametersThe command
pwd prints on its standard output the name of the current direckoryexample, if the current directory is
{usr/fred/bin then the command

d="pwd"
is equiaent to

d=/usr/fred/bin

The entire string between gmacents (...") is talen as the command to beeeuted and is replaced with
the output from the commandhe command is written using the usual quotingveptions except that a
must be escaped usind.aFor example,

Is “echo "$1"
is equiaent to
Is $1

Command substitution occurs in all cotiiewhere parameter substitution occurs (includieg docu-
ments) and the treatment of the resulting te the same in both caseBhis mechanism alles string pro-
cessing commands to be used within shell proceddtrssxample of such a commandbasenamavhich
removes a pecified suiix from a string. For example,

basename main.c
will print the stringmain . Its use is illustrated by the follang fragment from &c command.

case $A in
*.c) B="basenam$A .c’

esac

that set® to the part offA with the sufix .c stripped.
Here are some compositeamnples.

-17 -

. foriin’ls—t"; do...
The variablei is set to the names of files in time ordaost recent first.

. set “date’; echo $6 $2 $3, $4
will print, e.9.,1977 No 1, 23:59:59

3.4 Ewaluation and quoting

The shell is a macro processor thatvies parameter substitution, command substitution and file name
generation for the guments to commandsThis section discusses the order in which thestuations
occur and the &cts of the arious quoting mechanisms.

Commands are parsed initially according to the grammangdn appendix A. Before a command is
executed the follaving substitutions occur

. parameter substitution, e $user
. command substitution, e.gpwd”
Only one galuation occurs so that if, foxample, the a&lue of the ariableX is the stringby
then
echo $X
will echo$y .
. blank interpretation

Fadlowing the abwe substitutions the resulting characters are broknto non-blank wards
(blank interpetation). For this purpose ‘blanks’ are the characters of the s%$iR§. By
default, this string consists of blank, tab andvixee. Thenull string is not rgarded as a ward
unless it is quotedFor example,

echo”
will pass on the null string as the firsgament toecho, whereas
echo $null

will call echowith no aguments if the &riablenull is not set or set to the null string.
. file name generation

Each word is then scanned for the file pattern charaetefsand[...] and an alphabetical list
of file names is generated to replace tloedv Eachsuch file name is a separatguament.

The evaluations just described also occur in the list ofdé associated withfar loop. Onlysubstitution
occurs in thevord used for acasebranch.

As well as the quoting mechanisms described earlier tisamgl". . .” a third quoting mechanism is pro-
vided using double quote&Vithin double quotes parameter and command substitution oaduikemame
generation and the interpretation of blanks does fbe folloving characters @ a gecial meaning
within double quotes and may be quoted u$ing

$ parameter substitution
) command substitution
ends the quoted string
\ quotes the special charact&rs" \

For example,
echo "$x"

will pass the alue of the ariablex as a single gument toecho. Similarly,
echo "$"

will pass the positional parameters as a singlaraent and is equalent to

-18 -

echo "$1 $2. "

The notatior@ is the same &+ except when it is quoted.
echo "$@"

will pass the positional parameters, valeated, toecho and is equiaent to
echo "$1" "$2"...

The following table gies, for each quoting mechanism, the shell metacharacters thatlasges.

metabaracter
\ $ *) " ’
n n n n n t
h y n n t n n
" y y n y t n
t terminator
y interpreted

n not interpreted

Figure 2 Quoting mechanisms

In cases where more than oweleation of a string is required theili-in commandeval may be usedFor
example, if the ariableX has the alue$y, and if y has the aluepgr then

evd echo $X

will echo the stringpgr .
In general theeval command ealuates its aguments (as do all commands) and treats the result as input to
the shell. The input is read and the resulting command{egued. Br example,

wg=\"eval who! grepV\’
$wg fred

is equiaent to
whol grepfred

In this ekample,ewal is required since there is no interpretation of metacharacters, sughf@kowing
substitution.

3.5 Error handling

The treatment of errors detected by the shell depends on the type of error and on whether the shell is being
used interactiely. An interactve dhell is one whose input and output are connected to a terminal (as deter
mined bygtty (2)). A shell invoked with the—-i flag is also interacte.

Execution of a command (see also 3.7) nalfér ary of the folloving reasons.
. Input output redirection mawif. For example, if a file does nokest or cannot be created.
. The command itself does notigt or cannot bexecuted.

. The command terminates abnormaltyr example, with a "bis error” or "memorydult”. Seerigure
2 below for a complete list of UNIX signals.

. The command terminates normallytiveturns a non-zeroi status.

In all of these cases the shell will go on i@aute the net command. Except for the last case an error
message will be printed by the shell remaining errors cause the shell iitdrom a command proce-
dure. Aninteractive dell will return to read another command from the termitsalch errors include the
following.

-19 -

. Syntax errors.e.g., if...then...done

. A signal such as interrupfThe shell vaits for the current command, ifyario finish execution and
then either xits or returns to the terminal.

. Failure of ary of the hilt-in commands such asl.
The shell flag-e causes the shell to terminate ifyaanror is detected.

1 hangup

2 interrupt

3* quit

4* illegd instruction

5* tracetrap

6* 10T instruction

7* EMT instruction

8* floating point exception

9 kill (cannot be caught or ignored)
10* hbus error

11* segmentation violation

12* badargument to system call

13 writeon a pipe with no one to read it
14 alarmclock

15 software termination (fronkill (1))

Figure 3 UNIX signals

Those signals maekd with an asterisk produce a core dump if not caugbtvever, the shell itself ignores
quit which is the onlyxernal signal that can cause a dunijne signals in this list of potential interest to
shell programs are 1, 2, 3, 14 and 15.

3.6 Fault handling

Shell procedures normally terminate when an interrupt isvegtéiom the terminal. Thetrap command is
used if some cleaning up is required, such as vamgdemporary filesFor example,

trap ‘rm tmp/ps$$;at” 2
sets a trap for signal 2 (terminal interrupt), and if this signal iswertwiill execute the commands
rm /tmp/ps$$; xit

ext is another bilt-in command that terminategeeution of a shell procedurélhe ext is required; other
wise, after the trap has beenaakthe shell will resumexecuting the procedure at the place whereasw
interrupted.

UNIX signals can be handled in one of thremys: Thg can be ignored, in which case the signal igene
sent to the processhey can be caught, in which case the process must decide what actioe tehtak
the signal is receed. Lastly they can be left to cause termination of the process withouwinbéo tale
ary further action.If a signal is being ignored on entry to the shell procedure xiample, by imoking it
in the background (see 3.7) theap commands (and the signal) are ignored.

The use ofrapis illustrated by this modifiedersion of theouch command (Figure 4)The cleanup action
is to remae the filejunk$$.

-20 -

flag=
trap ‘rm-f junk$$; eit” 123 15
fori
do case $iin
—C) flag=N;;
*) if test—f $i
then In$i junk$$; rm junk$$
elif test $flag
then echdile \W'$i\\" does not st
else >$i
fi
esac
done

Figure 4 The touch command

Thetrap command appears before the creation of the temporary file; otherwiseld lae possible for the
process to die without remimg the file.

Since there is no signal 0 in UNIX it is used by the shell to indicate the commandsxeziied on git
from the shell procedure.

A procedure mayitself, elect to ignore signals by specifying the null string as tpenaent to trap.The
following fragment is taén from thenohupcommand.

trap”” 12315

which causefiangup, interrupt, quindkill to be ignored both by the procedure and woled com-
mands.

Traps may be reset by saying
trap2 3

which resets the traps for signals 2 and 3 to theauliefalues. Alist of the current &lues of traps may be
obtained by writing

trap

The procedurscan(Figure 5) is anxample of the use dfap where there is noxé in the trap command.
scantakes each directory in the current directgsypompts with its name, and themeeutes commands
typed at the terminal until an end of file or an interrupt is vedeilnterruptsare ignored whileecuting
the requested commandstlzause termination whesganis waiting for input.

d="pwd"
foriin=
do if test—d $d/$i
then cd $d/$i
while echo "$i:"
trap eit 2
read x
do trap : 2; ea $x; done
fi
done

Figure 5 The scan command

read xis a huilt-in command that reads one line from the standard input and places the resultinattle v

-21 -

X. It returns a non-zeroxé status if either an end-of-file is read or an interrupt is vedei

3.7 Command execution

To run a command (other than ailbin) the shell first creates awerocess using the system ctdlk.

The ecution ewironment for the command includes input, output and the states of signals, and is estab-
lished in the child process before the commandésiged. Thebuilt-in commandexecis used in the rare
cases when no fork is required and simply replaces the shell withh eonemand. Br example, a simple
version of thenohupcommand looks li&

trap\'\V'12315
exec $*

Thetrapturns of the signals specified so that yreee ignored by subsequently created commandegw
replaces the shell by the command specified.

Most forms of input output redirectionVedready been describedn the folloving word is only subject
to parameter and command substitutidfo file name generation or blank interpretationetaklace so
that, for «éample,

echo...>x.c

will write its output into a file whose name#sc. Input output specifications argaluated left to right as
they appear in the command.

> word The standard output (file descriptor 1) is sent to theniilel which is created if it does not
already ®ist.

> word The standard output is sent to fiterd. If the file exists then output is appended (by seeking
to the end); otherwise the file is created.

<word The standard input (file descriptor 0) is¢akfrom the filavord.

< word The standard input is tak from the lines of shell input that follaup to but not including a

line consisting only ofword. If word is quoted then no interpretation of the document
occurs. Ifword is not quoted then parameter and command substitution occllisanded

to quote the characteks$ * and the first character @ford. In the latter casénewline is
ignored (c.f. quoted strings).

>& digit The file descriptodigit is duplicated using the system cadillp (2) and the result is used as
the standard output.

<& digit The standard input is duplicated from file descripligit.
<&- The standard input is closed.
>& - The standard output is closed.

Any of the abee may be preceded by a digit in which case the file descriptor created is that specified by the
digit instead of the dafilt O or 1. For example,

... 2>file
runs a command with message output (file descriptor 2) direcfiéel to
L2281

runs a command with its standard output and message outmednég6trictlyspeaking file descriptor 2 is
created by duplicating file descriptor dthhe efect is usually to mee the tvo Sreams.)

The erironment for a command run in the background such as
listx.cl Ipr&

is modified in tvo ways. Firstlythe de&ult standard input for such a command is the emptydiégnull .
This prevents two processes (the shell and the command), which are running in parallel, from trying to read
the same inputChaos wuld ensue if this were not the caser example,

-22-

ed file &

would allow both the editor and the shell to read from the same input at the same time.

The other modification to the @wronment of a background command is to turihtbbé QUIT and INTER-
RUPT signals so that there ignored by the command-his allonvs these signals to be used at the terminal
without causing background commands to termin&.this reason the UNIX ceention for a signal is
that if it is set to 1 (ignored) then it isuee changed een for a short time.Note that the shell command
trap has no dect for an ignored signal.

3.8 Invoking the shell
The following flags are interpreted by the shell when it i®lked. If the first character of gnment zero is
a minus, then commands are read from the.fitefile .
—C string
If the —c flag is present then commands are read Btring .

-s If the —sflag is present or if no guments remain then commands are read from the standard input.
Shell output is written to file descriptor 2.

=i If the —i flag is present or if the shell input and output are attached to a terminal (as gty byen
this shell isinteractive In this case TERMINTE is ignored (so thakill 0 does not kill an interac-
tive dell) and INTERRIPT is caught and ignored (so theit is interruptable).In all cases QIT
is ignored by the shell.

Acknowledgements

The design of the shell is based in part on the original UNIX &fg|Fommand language thompsging the
PWB/UNIX shell, PWb shell masheunix some features kiang been takn from both. Similarities also ist
with the command interpreters of the Cambridge Multiple Access Syafeifidge multiple access system hartle

and of CTSS.CsS LP | would like to thank Dennis Ritchie and John Maglfer mary discussions during
the design of the shell.am dso grateful to the members of the Computing Science Research Center and to
Joe Maranzano for their comments on drafts of this document.

Appendix A - Grammar

-23-

item: wod
input-output
name = value

simple-command: item
simple-command item

command: simple-command
(command-lis)
{ command-lis}
for namedo command-listdone
for namein word . .. do command-listone
while command-listlo command-listone
until command-listlo command-listlone
caseword in case-part . . esac
if command-listhen command-list else-pafi

pipeline: command
pipeline| command

andor: pipeline
andor&& pipeline
andor I | pipeline

command-list: andor
command-list
command-lis&
command-list andor
command-lis& andor

input-output: > file
< file
>> word
< word

file: word
& digit
& —_

case-part: pattern command-list;

pattern: wod
pattern| wod

else-part: elif command-listhen command-list else-part
elsecommand-list

empty
empty:
word: a equence of non-blank characters
name: a equence of letters, digits or underscores starting with a letter

digit: 0123456789

-24 -

Appendix B - Meta-characters and Resefed Words
a) syntactic

\ pipe symbol

&& ‘andf’ symbol

Il ‘orf’ symbol

; command separator

" case delimiter

& background commands

@] command grouping

< input redirection

< input from a here document
> output creation

> output append

b) patterns
* match ag character(s) including none
? match ag single character
[...] match ag of the enclosed characters

C) substitution
${...} substitute shellariable
substitute command output

d) quoting

\ guote the ne character
quote the enclosed charactexsept for
guote the enclosed charactexsept for$ "\ "

e) resered words

if then else elif fi
case in esac
for while until do done

{}

