

01_583204 ffirs.qxd 3/18/05 9:30 PM Page i

Beginning Shell Scripting

Eric Foster-Johnson, John C. Welch, and Micah Anderson

01_583204 ffirs.qxd 3/18/05 9:30 PM Page i

Beginning Shell Scripting
Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2005 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN-13: 978-0-7645-8320-9
ISBN-10: 0-7645-8320-4

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

1MA/QW/QU/QV/IN

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of
the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA
01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the Legal
Department, Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355, or
online at http://www.wiley.com/go/permissions.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO REPRESEN-
TATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS
WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT LIMITATION WARRANTIES OF
FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES OR PROMO-
TIONAL MATERIALS. THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY
SITUATION. THIS WORK IS SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN REN-
DERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS
REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUB-
LISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGA-
NIZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF
FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFORMA-
TION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER,
READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DIS-
APPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services or to obtain technical support, please contact our Customer
Care Department within the U.S. at (800) 762-2974, outside the U.S. at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available
in electronic books.

Library of Congress Cataloging-in-Publication Data

Foster-Johnson, Eric.
Beginning shell scripting / Eric Foster-Johnson, John C. Welch, and Micah Anderson.

p. cm.
Includes index.
ISBN-13: 978-0-7645-8320-9
ISBN-10: 0-7645-8320-4 (paper/website)
1. Operating systems (Computers) I. Welch, John C., 1967– II. Anderson, Micah, 1974– III. Title.
QA76.76.O63F59717 2005
005.4' 3—dc22

2005002075

Trademarks: Wiley, the Wiley Publishing logo, Wrox, the Wrox logo, Programmer to Programmer and related trade dress are
trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other countries,
and may not be used without written permission. All other trademarks are the property of their respective owners. Wiley
Publishing, Inc., is not associated with any product or vendor mentioned in this book.

01_583204 ffirs.qxd 3/18/05 9:30 PM Page ii

About the Authors
Eric Foster-Johnson (Arden Hills, MN) is a veteran programmer who works daily with Linux, Unix,
Windows, Mac OS X, and other operating systems. By day, he writes enterprise Java software for
ObjectPartners, a Minnesota consulting firm. He has authored a number of Linux and Unix titles includ-
ing Red Hat RPM Guide, Teach Yourself Linux, Teach Yourself Unix, and Perl Modules.

To Katya and Nalana.

John C. Welch (Boston, MA) has more than ten years of Mac experience in the trenches of the IT world.
He packs the hall at Macworld Expo where he’s a regular speaker, sharing his experiences and knowl-
edge on using Macs effectively in business and enterprise IT environments. John’s articles are frequently
featured in MacTech Magazine and WorkingMac.com, and he is semi-regularly featured on The Mac Show
conducting interviews with the geekier side of the Mac community. He’s recently been touring the coun-
try presenting seminars on Mac OS X administration to IT professionals from coast to coast.

First and foremost, this is dedicated to my son, Alex, who is always the angel on my shoulder.

As an only child, I’ve “adopted” my own family over the years to make up for the one I didn’t grow up
with, so in no particular order: Adrian, Jenny, Melissa, Sly, Web, Karen, Skip, Gypsye, Schoun, Harv,
Jessica, the MacTech Crew, Sam, Steve, Shawn, Hilary, the YML list, the list that is never named, and
too many others who help me out in myriad ways.

Oh, and to Randy Milholland, whose work has kept me sane in this very odd world.

Micah Anderson has been a Unix system administrator for more than a decade. He is a Debian
GNU/Linux developer and works as an independent consultant building alternative communication
infrastructure and supporting the technology needs of positive grassroots alternatives.

This is dedicated to my parents, who got me started hacking on the Timex Sinclair and have always sup-
ported me, no matter what I do. This is also dedicated to those around the world who have struggled for
horizontal self-determination in the face of oppression: those who inspire people to dream of a better
world by doing something about it. Slow and steady wins the race.

01_583204 ffirs.qxd 3/18/05 9:30 PM Page iii

Credits
Acquisitions Editor
Debra Williams Cauley

Development Editor
Sara Shlaer

Technical Editor
Dilip Thomas

Copy Editors
Nancy Rapoport
Luann Rouff

Editorial Manager
Mary Beth Wakefield

Vice President & Executive Group Publisher
Richard Swadley

Vice President and Publisher
Joseph B. Wikert

Project Coordinator
Erin Smith

Graphics and Production Specialists
Carrie Foster
Lauren Goddard
Denny Hager
Joyce Haughey
Jennifer Heleine
Barry Offringa

Quality Control Technician
Laura Albert

Proofreading and Indexing
TECHBOOKS Production Services

01_583204 ffirs.qxd 3/18/05 9:30 PM Page iv

Contents

Introduction xiii

Chapter 1: Introducing Shells 1

What Is a Shell? 2
Why Use Shells? 3
What Kind of Shells Are There? 4

The Bourne Shell 4
The C Shell 4
The Korn Shell 5
Bash, the Bourne Again Shell 6
tcsh, the T C Shell 6
Other Shells 7
Graphical Shells 7
The Official POSIX Shell 8
Default Shells 8
Choosing a Shell 9
Changing Your Default Shell 9
Running a Shell from Within Another Shell 12
Finding Out More About the Shell 13

How Do Shells Fit into a Graphical Environment? 13
Running Shells on Linux 15
Running Shells on Mac OS X 17
Running Shells on Unix Systems 18
Running Shells on Windows — Isn’t command.com Enough? 18
Running Shells on PDAs and Other Systems 19

Entering Commands 20
Determining Which Shell You Are Running 21
Command-Line Options 23

Command Editing 27
Command Substitution 27
Viewing the Command History 31
Calling Up an Editor 33
Using File-Name Completion 34

Working with Wildcards 35
The * Wildcard 35
The ? Wildcard 37

Running Commands in the Background 37
Summary 38

02_583204 ftoc.qxd 3/18/05 9:24 PM Page v

vi

Contents

Chapter 2: Introducing Shell Scripts 39

What Are Shell Scripts? 40
Alternatives to Shells: Other Scripting Languages 42

Perl 43
Python 45
Tcl 46
MS-DOS Batch Files 47

Tools to Edit Shell Scripts 47
Using Legacy Editors 47
Moving to Graphical Text Editors 59

Writing Scripts 65
Remembering Commands So You Don’t Have To 66
Outputting Text 67
Variables 71
Gathering Input 76
Commenting Your Scripts 78
Continuing Lines 81

Summary 82
Exercises 83

Chapter 3: Controlling How Scripts Run 85

Referencing Variables 85
Looping and Iteration 89

Looping over Files 90
Looping for a Fixed Number of Iterations 93
Looping Like a C Program — the bash Shell 96
Looping in the C Shell 98
Nested Loops 99

Checking Conditions with if 100
Or Else, What? 101
What Is Truth? 102
Redirecting Output 106
Using elif (Short for else if) 111

Nesting if Statements 113
Testing with the test Command 114

Comparing Numbers 114
Comparing Text Strings 117
Testing Files 120
Using the Binary and Not Operators 121
Creating Shorthand Tests with [123

Making Complex Decisions with case 125
Handling Problematic Input 127
Using case with the C Shell 129

02_583204 ftoc.qxd 3/18/05 9:24 PM Page vi

vii

Contents

Looping While a Condition Is True 131
Looping Until a Condition Is True 132
Summary 134
Exercises 134

Chapter 4: Interacting with the Environment 135

Examining Environment Variables 135
Reading Environment Variables 136
Setting Environment Variables 150

Customizing Your Account 153
How the Bourne Shell Starts Up 153
How the Korn Shell Starts Up 153
How the C Shell Starts Up 154
How the T C Shell Starts Up 154
How Bash Starts Up 154

Handling Command-Line Arguments 155
Reading Command-Line Arguments with the Bourne Shell 156
Reading Command-Line Arguments with the C Shell 160

Making Scripts Executable 160
Marking Files Executable 160
Setting the #! Magic Line 161

Summary 164
Exercises 165

Chapter 5: Scripting with Files 167

Combining Files into Archives 168
Working with File Modes 169
Testing Files with the test Command 171
Dealing with Mac OS X Files 172

The Legacies of NeXT 172
Mobile File Systems and Mac OS X 173
Naming Issues 175

HFS+ Versus UFS: The Mac OS X Holy War 175
The Terror of the Resource Fork 176

Working with Here Files and Interactive Programs 177
Displaying Messages with Here Files 178
Customizing Here Files 179
Driving Interactive Programs with Here Files 183
Turning Off Variable Substitution 186

Summary 187
Exercises 187

02_583204 ftoc.qxd 3/18/05 9:24 PM Page vii

viii

Contents

Chapter 6: Processing Text with sed 189

Introducing sed 190
sed Versions 190
Installing sed 191

Bootstrap Installation 192
Configuring and Installing sed 193

How sed Works 193
Invoking sed 194
Editing Commands 195
Invoking sed with the -e Flag 196
The -n, - -quiet, and - -silent Flags 197
sed Errors 199

Selecting Lines to Operate On 199
Address Ranges 200
Address Negation 201
Address Steps 202

Substitution 203
Substitution Flags 204
Using an Alternative String Separator 205
Address Substitution 206

Advanced sed Invocation 207
The comment Command 209
The insert, append, and change Commands 210

Advanced Addressing 211
Regular Expression Addresses 212
Character Class Keywords 215
Regular Expression Address Ranges 216
Combining Line Addresses with regexps 217

Advanced Substitution 217
Referencing Matched regexps with & 218
Back References 219

Hold Space 220
More sed Resources 222

Common One-Line sed Scripts 222
Common sed Commands 224
Less Common sed Commands 224
GNU sed-Specific sed Extensions 225

Summary 226
Exercises 227

Chapter 7: Processing Text with awk 229

What Is awk (Gawk/Mawk/Nawk/Oawk)? 230
Gawk, the GNU awk 230

02_583204 ftoc.qxd 3/18/05 9:24 PM Page viii

ix

Contents

What Version Do I Have Installed? 231
Installing gawk 232

How awk Works 234
Invoking awk 234
The print Command 237

Using Field Separators 240
Using the printf Command 241
Using printf Format Modifiers 243
Using the sprintf Command 244

Using Variables in awk 244
User-Defined Variables 245
Built-in Variables 245

Control Statements 248
if Statements 249
Comparison Operators 250
Arithmetic Functions 251
Output Redirection 252
While Loops 253
For Loops 253

Functions 254
Resources 255
Summary 256
Exercises 256

Chapter 8: Creating Command Pipelines 257

Working with Standard Input and Output 257
Redirecting Standard Input and Output 258
Redirecting Standard Error 259
Redirecting Both Standard Output and Standard Error 260
Appending to Files 261
Truncating Files 262
Sending Output to Nowhere Fast 263

Piping Commands 263
Piping with Unix Commands 264
Creating Pipelines 266
Using tee to Send the Output to More Than One Process 271

Summary 272
Exercises 273

Chapter 9: Controlling Processes 275

Exploring Processes 275
Checking Process IDs 276
Reading the /proc File System 279
Killing Processes 284

02_583204 ftoc.qxd 3/18/05 9:24 PM Page ix

x

Contents

Launching Processes 285
Running Commands in the Foreground 285
Running Commands in the Background 285
Running Commands in Subshells 286
Running Commands with the exec Command 286

Capturing the Output of Processes 287
Using Backticks for Command Substitution 287
Capturing Program Return Codes 295

Summary 296
Exercises 297

Chapter 10: Shell Scripting Functions 299

Defining Functions 299
Adding Names to Blocks of Code 300
Function Declaration Errors 302

Using Functions 303
Declaring before Use 303
Function Files 306
Common Usage Errors 307
Undeclaring Functions 307

Using Arguments with Functions 308
Using Return Codes with Functions 309
Variable Scope: Think Globally, Act Locally 311
Understanding Recursion 314
Summary 316
Exercises 316

Chapter 11: Debugging Shell Scripts 317

Deciphering Error Messages 318
Finding Missing Syntax 319
Finding Syntax Errors 321

Tracking Down Problems with Debugging Techniques 323
Look Backward 323
Look for Obvious Mistakes 324
Look for Weird Things 324
Look for Hidden Assumptions 325
Divide and Conquer 326
Break the Script into Pieces 326
Trace the Execution 327
Get Another Set of Eyes 327

Running Scripts in Debugging Mode 327
Disabling the Shell 328
Displaying the Script Commands 328

02_583204 ftoc.qxd 3/18/05 9:24 PM Page x

xi

Contents

Combining the -n and -v Options 329
Tracing Script Execution 329

Avoiding Errors with Good Scripting 333
Tidy Up Your Scripts 333
Comment Your Scripts 334
Create Informative Error Messages 334
Simplify Yourself Out of the Box 335
Test, Test, and Test Again 335

Summary 335
Exercises 336

Chapter 12: Graphing Data with MRTG 339

Working with MRTG 339
Monitoring Other Data with MRTG 341
Installing MRTG 341
Writing Scripts for MRTG 342
Configuring MRTG 345

Configuring the Global Values 345
Configuring MRTG Targets for Your Scripts 346
Customizing MRTG Output 347

Running MRTG 350
Viewing Your First MRTG Output 351
Configuring cron 352
Maximizing MRTG Performance 353

Monitoring Your Computer with MRTG 353
Graphing Memory Usage 354
Graphing CPU Usage 358
Graphing Disk Usage 361

Monitoring Networks with MRTG 363
Monitoring Applications with MRTG 366
Summary 372
Exercises 373

Chapter 13: Scripting for Administrators 375

Why Write Scripts? 375
Scripting Complicated Commands 376
Troubleshooting Your Systems 379
Removing Minor Annoyances 385
Cleaning Up Data 387
Automating Daily Work 392
Summary 392
Exercises 392

02_583204 ftoc.qxd 3/18/05 9:24 PM Page xi

xii

Contents

Chapter 14: Scripting for the Desktop 395

Scripting Office Applications 395
Scripting the OpenOffice.org Suite 396
Scripting AbiWord 410
Scripting NEdit 411

Scripting for the Desktop on Mac OS X 411
Open Scripting Architecture 413
AppleScript Basics 414
Mac OS X Terminal Window Settings 425

Scripting Multimedia 432
Scripting the XMMS Music Player 432
Scripting Rhythmbox 433
Scripting the Totem Movie Player 435

Scripting Other Desktop Applications 435
Where to Go from Here 436
Summary 436
Exercises 436

Appendix A: Answers to Exercises 439

Appendix B: Useful Commands 461

Index 493

02_583204 ftoc.qxd 3/18/05 9:24 PM Page xii

Introduction

A shell is a program that takes commands typed by the user and calls the operating system to run those
commands. For example, you may use the shell to enter a command to list the files in a directory, such as
ls, or a command to copy a file, such as cp. A shell acts as a form of wrapper around the operating system,
hence the term shell.

Unix and Linux systems support many different kinds of shells, each with its own command syntax. You
can run a shell window to enter shell commands from a graphical desktop environment.

Shell scripts combine commands together and act similarly to batch files. With a shell and shell scripts,
you can customize your system, automate tedious daily tasks, better perform your work, and get more
out of your computers.

No matter how nice a graphical user interface your system sports, adding the power of a shell can dra-
matically increase the speed and efficiency of what you can do on your computer. Shells provide greater
control over your system and allow you to do some things that simply cannot be done from the graphi-
cal environment. Shells often allow you to perform tasks remotely, which proves useful if you need to do
something to a large number of computers, or computers located at another site.

Furthermore, Apple Computer chose Unix, an inherently scriptable operating system, as the basis for
Mac OS X. In the Macintosh environment, you get the ability to create scripts along with a really neat
desktop user interface.

As many small devices grow in functionality, you’ll find shells even on low-end PDAs and handheld
computers.

Many users fear the command line, which does seem kind of retro in this era of graphical user interfaces.
But the immense power of shell scripts makes it worthwhile to learn about the shell and scripting.

This book covers shells, shell scripts, and a vast array of techniques for getting the most out of your sys-
tems with scripts.

Whom This Book Is For
This book is aimed at anyone who wants to get more out of their computer systems. This especially
includes Mac OS X users who want to take advantage of the powerful underpinnings of Mac OS X, and
Linux users who want to learn more about their systems.

Windows users can take advantage of shells and shell scripts to work around some of the brain-dead
features of that operating system.

03_583204 flast.qxd 3/18/05 9:25 PM Page xiii

xiv

Introduction

You do not need to have any prior experience writing programs or scripts. Wrox “Beginning” books start
with the basics and lead you through the entire process. If you do happen to have programming experi-
ence, many of the topics will prove easier to pick up.

What Does This Book Cover?
This book covers shells and shell scripting with a special emphasis on the Bourne shell, the most com-
monly available shell. Special features of the C shell, bash, and Korn shells are also covered, but the
emphasis is on scripts that are compatible with the Bourne shell. This will allow your scripts to work on
the largest number of systems.

This book starts with the basics of shells and then covers how to make shell scripts. Special chapters
cover interacting with the operating system and more complicated programming techniques. After read-
ing this book, you should have a thorough grounding in how to create shell scripts, as well as the ability
to find out more, an important task in today’s ever-changing world of technology.

Throughout this book, you’ll find a plethora of practical examples. We promise not to show how clever
we are and instead focus on what works.

How This Book Is Structured
The first five chapters of the book cover the basics of shell scripting. Chapters 6 to 11 address more
advanced scripting topics, including awk and sed, two commands that are used in a great many scripts.
The final chapters of the book show how to apply scripting to status monitoring, systems administration,
and the desktop.

The following is a summary of the topics covered in each chapter:

❑ Chapter 1, Introducing Shells: In this first chapter, you see what a shell is and how shells work.
You discover the great variety of shells as well as how to find the shell on your system. You
learn how to call up shell windows so that you can type in commands. You also learn about the
default shells on Mac OS X, Windows (under Cygwin), Linux, QNX, and other systems.

❑ Chapter 2, Introducing Shell Scripts: This chapter extends the discussion of shells to introduce
shell scripts. You find out what a script is, how to create scripts, as well as how to run scripts.
Because scripting requires a text editor, you’ll find a review and recommendation of editors for
Linux, Unix, Windows, and Mac OS X.

❑ Chapter 3, Controlling How Scripts Run: This chapter introduces how scripts run, as well as
how you can control which commands in your scripts get executed. You find out how to have
your scripts make decisions and take alternate paths as needed.

❑ Chapter 4, Interacting with the Environment: No shell is an island. This chapter covers how
your shells can find out about the surrounding environment. This chapter delves into how to
pass data to a shell script and how to modify the environment. Furthermore, you’ll see how the
magic #! line works and you’ll learn how to create executable commands from your scripts.

03_583204 flast.qxd 3/18/05 9:25 PM Page xiv

xv

Introduction

❑ Chapter 5, Scripting with Files: Virtually all modern operating systems allow you to store data
in files. This is important so that most scripts interact with files of some sort. To help with this,
Chapter 5 covers how to create, read, modify, and remove files.

❑ Chapter 6, Processing Text with sed: Sed provides a stream, or batch-mode text editor. Using
sed for text editing would be excruciatingly painful. But, using sed from scripts allows you to
transform files with simple shell commands. This chapter covers how to call on sed’s power
from your scripts.

❑ Chapter 7, Processing Text with awk: Awk is a special tool for working with text. Zillions of
shell scripts use awk for sophisticated parsing and control over text. This chapter introduces
awk and how you can call on awk from your scripts.

❑ Chapter 8, Creating Command Pipelines: Shells and shell scripts come out of the ancient Unix
traditions. These traditions include the quaint notion that each command should perform one
task and one task only. The Unix philosophy includes the ability to combine these building-
block commands into more complex commands. Chapter 8 covers how to create command
pipelines, where the shell sends the output of one command to the input of another.

❑ Chapter 9, Controlling Processes: Chapter 9 discusses the terms “program,” “process,” and
“process IDs.” It shows how you can query about processes, kill processes, and gather informa-
tion about what is running on your system. This chapter also covers how to call on other pro-
cesses from your scripts and then query how the processes ran, such as whether the processes
succeeded or failed.

❑ Chapter 10, Shell Scripting Functions: As your shell scripts grow in size and complexity, you
can use functions to help simplify your scripts. Functions also make it easier to reuse parts of a
script in other scripts you write. Chapter 10 covers functions as they pertain to shell scripts, how
to create functions, and how to use them.

❑ Chapter 11, Debugging Shell Scripts: Much as you’d like, no script is perfect. Software, all soft-
ware, sports little problems called bugs. Debugging is the art of locating and destroying these
problems. This chapter covers techniques for finding bugs as well as tips to reduce the occur-
rence of bugs before they happen.

❑ Chapter 12, Graphing Data with MRTG: MRTG is a really clever package for showing complex
data sets as graphs. MRTG works especially well for graphing aspects of your computing envi-
ronment such as network throughput, memory resources, and disk usage. Chapter 12 shows
how you can call MRTG from your scripts and use MRTG to help monitor your systems.

❑ Chapter 13, Scripting for Administrators: Chapter 13 extends the discussion in Chapter 12 to
cover more general techniques for administering systems using shell scripts.

❑ Chapter 14, Scripting for the Desktop: Scripts are often associated with server systems only,
but you’d be surprised at how well scripts can work on the desktop. This chapter covers how to
call on your desktop applications from scripts, such as office suites, multimedia applications,
and especially the Mac OS X desktop.

❑ Appendixes: Appendix A contains the answers to chapter exercises. Appendix B covers the
most useful commands available on Unix, Linux, Mac OS X, and Windows (under Cygwin).

03_583204 flast.qxd 3/18/05 9:25 PM Page xv

xvi

Introduction

What Do You Need to Use This Book?
This book covers shell scripting. To try out the examples, you will need the following.

❑ A shell, such as the Bourne shell

❑ Text-editing software

Chapter 1 covers the shell requirements in depth and describes how to find the shell on your system. For
Windows users, you should download and install the Cygwin package, also described in Chapter 1.

Chapter 2 covers text-editing software as these packages relate to shells. You’ll find a list of editors, as
well as recommendations.

Conventions
To help you get the most from the text and keep track of what’s happening, a number of conventions are
used throughout the book:

Tips, hints, tricks, and asides to the current discussion are offset and placed in italics like this.

As for styles in the text:

❑ Important words are italicized when first introduced.

❑ Keyboard strokes appear like this: Ctrl-A.

❑ Code within the text appears in a monospaced typeface, like this: persistence.properties.

❑ Code examples are presented in the following way:

Code examples appear in monofont with a gray background.

❑ Within code blocks containing both input and output text, input appears in bold font.

Keyboards differ between systems. For example, Windows and Linux systems usually sport a keyboard
with an Enter key. Mac OS X keyboards from Apple Computer label the key Return instead. This book
uses Enter as this is the most common form.

Source Code
As you work through the examples in this book, you may choose either to type all the code manually or
use the source code files that accompany the book. All the source code used in this book is available for
download at www.wrox.com. Once at the site, simply locate the book’s title (either by using the Search box

Boxes like this one hold important, not-to-be forgotten information that is directly
relevant to the surrounding text.

03_583204 flast.qxd 3/18/05 9:25 PM Page xvi

xvii

Introduction

or by using one of the title lists) and click the Download Code link on the book’s detail page to obtain all
the source code for the book.

Because many books have similar titles, you may find it easiest to search by ISBN; this book’s ISBN is
0-7645-8320-4.

After you download the code, just decompress it with your favorite compression tool. Alternatively, you
can go to the main Wrox code download page at www.wrox.com/dynamic/books/download.aspx to
see the code available for this book and all other Wrox books.

Errata
We make every effort to ensure that there are no errors in the text or in the code. However, no one is per-
fect, and mistakes do occur. If you find an error in one of our books, like a spelling mistake or faulty piece
of code, we would be very grateful for your feedback. By sending in errata you may save another reader
hours of frustration; at the same time, you will be helping us provide even higher quality information.

To find the errata page for this book, go to www.wrox.com and locate the title using the Search box or one
of the title lists. Then, on the book’s details page, click the Book Errata link. On this page, you can view all
errata that has been submitted for this book and posted by Wrox editors. A complete book list including
links to each book’s errata is also available at www.wrox.com/misc-pages/booklist.shtml.

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/techsupport
.shtml and complete the form there to send us the error you have found. We’ll check the information
and, if appropriate, post a message to the book’s errata page and fix the problem in subsequent editions
of the book.

p2p.wrox.com
For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a Web-based sys-
tem for you to post messages relating to Wrox books and related technologies and interact with other
readers and technology users. The forums offer a subscription feature to email you topics of interest of
your choosing when new posts are made to the forums. Wrox authors, editors, other industry experts,
and your fellow readers are present on these forums.

At http://p2p.wrox.com you will find a number of different forums that will help you not only as you
read this book, but also as you develop your own applications. To join the forums, just follow these steps:

1. Go to p2p.wrox.com and click the Register link.

2. Read the terms of use and click Agree.

3. Complete the required information to join as well as any optional information you wish to pro-
vide and click Submit.

4. You will receive an email with information describing how to verify your account and complete
the joining process.

You can read messages in the forums without joining P2P, but in order to post your own messages, you
must join.

03_583204 flast.qxd 3/18/05 9:25 PM Page xvii

xviii

Introduction

Once you join, you can post new messages and respond to messages other users post. You can read mes-
sages at any time on the Web. If you would like to have new messages from a particular forum emailed
to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to ques-
tions about how the forum software works as well as many common questions specific to P2P and Wrox
books. To read the FAQs, click the FAQ link on any P2P page.

03_583204 flast.qxd 3/18/05 9:25 PM Page xviii

1
Introducing Shells

This chapter introduces the shell, obviously the most important component for shell scripting. It
describes the choices among shells, as well as how to find out which shells are available. In mod-
ern graphical desktop environments, it is not always easy to find the shell, but you’d be surprised
at how many systems actually support shells, from Zaurus PDAs to Audrey network appliances to
the beautifully designed Mac OS X systems.

No matter how nice a graphical user interface your system sports, adding the power of a shell
can dramatically increase the speed and efficiency of what you can do on your computer. Shells
provide greater control over your system and allow you to do some things that simply cannot be
done from the graphical environment. Shells often allow you to perform tasks remotely, which is
especially useful if you need to do something to a large number of computers or computers
located at another site.

Even in an environment such as Apple’s Mac OS X, shell scripting is a useful, powerful tool in
anyone’s kit. Apple had the forethought to make it possible to connect shell scripts to the GUI
environment via a number of custom utilities that ship with the OS, so you can link UI-level
scripts done in AppleScript to the shell environment for more power than either environment
alone would have.

Because shells exist to accept your commands, each shell provides help for entering complicated
commands, a set of sometimes-complicated shortcuts that can speed up your work immensely. These
shortcuts include special editing modes, based on the two traditional text editors, emacs and vi.

In this chapter, I discuss the following:

❑ Understanding shells, including a number of different shells with interesting names such
as bash, ksh, and csh.

❑ Finding your shell, which is not always easy in a graphical desktop environment.

❑ Entering commands into shells, editing those commands, and storing a history of your
commands.

❑ Using wildcards in your commands.

04_583204 ch01.qxd 3/18/05 9:26 PM Page 1

If you’re already familiar with the shell, parts of this chapter will likely cover material you already
know. If so, you may want to skim through for anything new and then jump to the next chapter.

What Is a Shell?
A shell is a program that takes commands typed by the user and calls the operating system to run those
commands. The shell interprets your commands. For example, you may use the shell to enter a com-
mand to list the files in a directory, such as ls, or a command to copy a file, such as cp.

There are a number of different shells, which are introduced later in this chapter.

Here’s a short example to give you a taste of using a shell. Launch a shell window, or access a shell. Type
the following command to list all the files in the current directory:

If you don’t know how to launch a shell window on the desktop or log into a shell, that’s okay. See the
section Determining Which Shell You Are Running for more on how to track down the elusive shell on
your system.

$ ls
configuration eclipse icon.xpm plugins startup.jar
cpl-v10.html features notice.html readme workspace

In this example, you simply type ls and press Enter (or Return, depending on your keyboard). The $ is
the shell prompt, which tells you the shell awaits your commands. The remaining lines are the names of
the files in the current directory.

Just going over the basics of running a simple command introduces a lot of complex topics, as shells are
not all that simple. If the following sections don’t make sense, don’t worry. Each topic will be covered in
detail later in this book.

The shell displays its prompt, shown here as $, and then passively awaits your commands. When you
type a command and press Enter (or Return on Mac OS X systems), you are telling the shell to execute
your command.

The shell looks for a program — that is, a file with execute permissions — with the name ls. The shell
looks at all the directories in your command path. The shell runs the first program found that matches
the name (and the execute permissions) and then displays the results of the program to your screen, as
in the second and third lines in the code example.

The command path is stored in the environment variable named PATH. Read more on environment
variables in Chapter 4.

The way the shell interprets commands and executes programs is fairly complicated. Back when shells
were first created, their developers thought shells were pretty nifty. The fact that you’re reading this
book now, more than 30 years later, means those developers were right.

2

Chapter 1

04_583204 ch01.qxd 3/18/05 9:26 PM Page 2

Back in the ancient days of computing, computers ran no shell, or the shell, if it existed, was so connected
to the operating system that it was indistinguishable. You can still see the legacy of these single-shell sys-
tems in the MS-DOS shell on Windows.

Don’t worry, I’ll show you how to break free of the single-shell monopoly on Windows.

A shell acts as a form of wrapper around the OS, hence the term shell. (Nowadays, with object-oriented
parlance, a shell would be called something like a CommandReadingOperatingSystemDecorator.)

Shells were designed long before graphical interfaces existed. As graphical environments mature, most
users explicitly run shells less and less for their daily work. But a shell can automate some very complex
sequences of commands. In addition, most Linux systems are designed to be updated from typed-in
commands — that is, from a shell. Furthermore, whether you know it or not, a shell often powers many
of the graphical commands users run. Learning the shell can help you better understand your computer.

Why Use Shells?
Unix was the first popular operating system to break free of the single-shell monopoly. In Unix (and
Linux), a shell is simply a program. What makes the shell special is that a shell is the program run when
most users log in. (You can configure which program [shell] gets run.)

As such, the shell fits in well with the Unix philosophy that each command should do one thing and do
it well. Complex commands are then built by combining small commands. In this context, a shell is sim-
ply another command — a command that facilitates combining other commands.

You can use shell scripts to automate administrative tasks, encapsulate complex configuration details,
and get at the full power of the operating system. The ability to combine commands allows you to create
new commands, thereby adding value to your operating system. Furthermore, combining a shell with a
graphical desktop environment allows you to get the best of both worlds. You get all the friendliness of
the graphical user interface and all the power of the command line.

On Unix and Unix-like systems such as Linux, a shell interprets your commands, running one or more
programs for each command you enter. In addition, most shells allow you to group a number of com-
mands in a file, called a shell script. When you run the shell script file, the shell executes the commands
in the script file in order.

For example, you can create a shell script to look for all files that have the text string “abc” in the file
name and then sort those files by the date they were last modified and back up those files that contain
the most recent changes. The same script could send you an email when it finishes its work and also
deliver an affirmation that you are a good person.

Each shell provides a different syntax as to what you can enter. The syntax supported by most shells
includes a lot of support for working with files. For example, you can list all the files that start with an
uppercase A or a lowercase a, using a simple command like the following:

$ ls [Aa]*

3

Introducing Shells

04_583204 ch01.qxd 3/18/05 9:26 PM Page 3

The ls part tells the shell to launch the command named ls (which lists file names). The [Aa]* part is
interpreted by the shell and is part of the syntax supported by most shells.

The bracket syntax, [Aa], is considered a regular expression. Many commands, such as grep, support
regular expressions, sometimes with a slightly different syntax. See the Working with Wildcards section
for more on regular expressions and wildcards.

What Kind of Shells Are There?
Since there is no monopoly on shells, you are free to run any shell you desire. That’s all well and good,
but choosing a shell without knowing the alternatives isn’t very helpful. The following sections introduce
the main shells.

The Bourne Shell
The original Unix shell is known as sh, short for shell or the Bourne shell, named for Steven Bourne, the
creator of sh. As shells go, sh remains fairly primitive, but it was quite advanced for the 1970s, when it
first appeared (as part of the Seventh Edition Bell Labs Research version of Unix). The Bourne shell has
been considered a standard part of Unix for decades. Thus, sh should be available on almost all systems
that support Unix or Unix-like commands, including Linux, Unix, and Mac OS X systems.

The Bourne shell feature set, therefore, forms the least common denominator when it comes to shells. If
you truly need to write portable shell scripts, stick to only the features supported by sh. (I’ll highlight
where I go beyond these features in the examples.)

The basic Bourne shell supports only the most limited command-line editing. You can type characters,
remove characters one at a time with the Backspace key, and press Enter to execute the command. If the
command line gets messed up, you can press Ctrl-C to cancel the whole command. That’s about it. Even
so, the Bourne shell supports variables and scripting, and remains in wide use today, especially for sys-
tem administration scripts.

For many years, the Bourne shell was all that was available for interactive Unix usage. Then along came
the C shell, or csh, the first major alternative to the Bourne shell.

The C Shell
Designed by Bill Joy at the University of California at Berkeley, the C shell was so named because much
of its syntax parallels that of the C programming language, at least according to the official documenta-
tion. Finding similarities is not always that easy, so don’t expect C programming skills to help with the C
shell, unfortunately. What is true, however, is that a great many C programmers use the C shell.

The C shell caught on quickly and became the default shell on Unix systems derived from the Berkeley
Software Distribution, or BSD, flavors of Unix. Among the surviving players today, Solaris, based origi-
nally on BSD Unix and later on System V Unix, has many die-hard C shell users.

Csh added some neat features to the Bourne shell, especially the ability to recall previous commands (and
parts of previous commands) to help create future commands. Because it is very likely you will need to
execute more than one command to perform a particular task, this C shell capability is very useful.

4

Chapter 1

04_583204 ch01.qxd 3/18/05 9:26 PM Page 4

The most commonly used special C shell commands include !! to execute the previous command again
and !$ to insert the last argument of the previous command. See the section Entering Commands for
more on these handy shorthand commands.

Note how virtually all shells have sh in their names, such as csh, ksh, bash, and so on. The major excep-
tion is the rc shell, covered later in this chapter.

For many years, the C shell and the Bourne shell were the only games in town. Anyone who used Unix
heavily in the 1980s or early 1990s likely learned the C shell for its superior feature set and command-
line editing capabilities. Most Bourne shell scripts, however, will not run in the C shell because of differ-
ences in syntax.

The C shell was an essential part of the Berkeley, BSD, version of Unix. And the C shell formed one of
the reasons why users wanted to run BSD Unix instead of the official Unix, which came from AT&T at
the time. During this period of rivalry between West Coast Unix (BSD) followers and East Coast Unix
(AT&T) followers, the AT&T folks created an alternative to the C shell called the Korn shell.

The Korn Shell
The Korn shell became one of the main salvos in AT&T’s response to the growing popularity of BSD
Unix. When AT&T developed System V (five) Unix, the developers realized they needed a shell to match
the capabilities of the C shell. (As per software developers everywhere, they chose not to use the freely
licensed C shell that already existed but instead created something new.)

Created by David Korn at AT&T Bell Laboratories, the Korn shell, or ksh, offers the same kind of
enhancements offered by the C shell, with one important difference: The Korn shell is backward compat-
ible with the older Bourne shell syntax. While the C shell created a brand-new syntax, the Korn shell fol-
lows the earlier Bourne shell syntax, extending the syntax as needed. This means that the Korn shell can
run most Bourne shell scripts. The C shell cannot.

You can find out more about the Korn shell at www.kornshell.com.

The Korn shell has been standardized as part of POSIX, the Unix suite of standards, covered later in the
chapter.

The Korn shell ships as a standard part of System V Unix. This means that everyone with a commercial
version of Unix, such as AIX, HP-UX, or Solaris, has the Korn shell (and this is likely the default shell,
too). Users of Berkeley Unix and Linux, however, had no access to the proprietary Korn shell. And that
was a shame because users liked the features of the Korn shell. The proprietary nature of the Korn shell
created a rift. Just about everything in Unix could be made to run on any other version of Unix. But
users of commercial versions of Unix had the Korn shell. Users of free versions of Unix did not because
there was no free alternative for the Korn shell. That meant that Korn shell scripts would not run on the
free versions of Unix. Furthermore, many organizations ran both commercial and free versions of Unix,
adding to the problem of having scripts that run on one system and not on another. The whole idea of
Open Systems, especially promoted by Unix, was that programs could run on any Unix or Unix-like sys-
tem. The Korn shell was one of the first major programs that broke this covenant. The rise of Linux just
made the problem worse because Linux did not run the Korn shell as well, as covered following.

This situation left Unix administrators pulling their hair out because the shells available on different
flavors of Unix acted differently.

5

Introducing Shells

04_583204 ch01.qxd 3/18/05 9:26 PM Page 5

To help with this problem, Eric Gisin wrote a public domain Korn shell, called pdksh, that remains pop-
ular today. Years later, the source code to the official Korn shell was released under an open-source
license. But this all occurred too late to stop the rise of bash.

The Korn shell was king of the shells on proprietary Unix, but that now pales in comparison to the installed
base of Linux. Linux, a Unix work-alike operating system, grew faster than anyone predicted, and Linux
users wanted an advanced shell with features like that of the Korn shell. But Linux users needed a shell
that was freely available under an open-source license. This led to the development of bash.

Where the Korn shell was a form of answer to the success of the C shell, the bash shell can be considered
an answer to the Korn shell.

Bash, the Bourne Again Shell
The bash shell answered a clear need, a need shown by the initial success of the Korn shell. Users
wanted a shell that was compatible with Bourne shell scripts but with advanced features such as com-
mand-line editing. Users also needed a freely available shell, free of proprietary licenses. All of this led
to bash, or the Bourne Again shell, a play on words to link it to the earlier Bourne shell.

Bash offers command-line editing like the Korn shell, file-name completion like the C shell, and a host of
other advanced features. Many users view bash as having the best of the Korn and C shells in one shell.
That’s good because the Korn shell was available only on System V Unix systems. It was not available
on BSD Unix, Linux, or other systems. On these systems, bash filled in the gap left by the lack of a Korn
shell. All this occurred as Linux grew at a spectacular rate, often at the expense of Unix systems. This led
to the situation today, where there are far more bash users than Korn shell users.

Years later, the Korn shell sources were released under an open-source license, but it was too late. Bash
rules the roost now. Bash is by far the most popular shell and forms the default shell on Linux and Mac
OS X systems. The examples in this book focus on the Bourne shell with the extensions provided by bash.

tcsh, the T C Shell
Linux systems popularized the T C shell, or tcsh. Tcsh extends the traditional csh to add command edit-
ing, file-name completion, and more. For example, tcsh will complete file and directory names when you
press the Tab key (the same key as used in bash). The older C shell did not support this feature.

Be aware: Linux and Mac OS X systems actually use the bash (Bourne Again) shell as
the default shell. Bash then masquerades as sh, the Bourne shell. But on standards-
compliant Unix systems such as Solaris, from Sun Microsystems, the sh command is
supposed to be the Korn shell, ksh (covered following). This can lead to a conflict,
unless — and this is very important — you stick to just the older Bourne shell features
supported by both bash and ksh. Another “gotcha” for Mac OS X is that versions of
that environment prior to 10.3.X used tcsh, or T shell, as the default, which is a csh, or
C shell derivative. Because most shell scripts are assuming sh or an sh derivative, not
checking which shell your script is running in can cause problems. Luckily, there’s an
easy way to deal with this, and you learn about it in the book.

6

Chapter 1

04_583204 ch01.qxd 3/18/05 9:26 PM Page 6

For the most part, tcsh acts as a C shell on steroids. It is mostly backward compatible with the C shell. In
fact, on Linux, tcsh is the program that acts both as csh and tcsh, so many Linux C shell users are really
running the enhanced tcsh instead.

Other Shells
Over the years, a number of other shells have appeared, each with a small but devoted following. These
shells include ash, zsh, and rc.

Created by Kenneth Almquist, ash is a Bourne shell–compatible shell that is smaller than bash and runs
certain scripts more accurately than bash. Almquist created ash on NetBSD Unix to better run INN, a pro-
gram for exchanging newsgroup postings with other computers. INN had troubles running under bash.

Ash is the default shell and appears as sh on the Cygwin environment for Windows.

The Z shell, or zsh, focuses on interactive usage. Zsh offers a zillion extended options for working with
wildcards, file listings, directories and paths. These are all very useful on Unix or Linux systems, which
all have a very deep directory hierarchy.

See www.zsh.org for more on the Z shell.

The rc shell comes from the Plan 9 operating system, developed by Bell Laboratories, where Unix origi-
nated. Plan 9 sports some interesting features and takes the Unix philosophy to the next level. With Plan
9, users can log in to any system on the network and see their home directory, regardless of where the
directory is actually stored. A small number of users adopted rc outside of Plan 9.

Graphical Shells
At a time when Unix vendors felt they could compete against Windows in the desktop software arena,
these vendors created a number of graphical extensions to shells, particularly the Korn shell. The Common
Desktop Environment, or CDE, was meant to provide a standard desktop experience for Unix users. CDE
combined elements developed by Hewlett-Packard, Sun, and other Unix workstation vendors. In the end,
however, CDE was too little, too late. It wasn’t until years later, with the development of the Mac OS X
operating system’s Aqua UI, and the Linux GNOME and KDE desktop software, that Unix systems could
really compete with Windows on the desktop.

Out of the CDE effort, however, came dtksh, short for the desktop Korn shell (many CDE programs
sport names that start with dt). Dtksh is the Korn shell and supports all the standard ksh features. In
addition, you can create windows, menus, dialog boxes, and text-input fields using shell commands
built into dtksh.

Another shell with graphical commands is tksh, which combines the Tk (pronounced tee kay) graphical
toolkit that comes with the Tcl (pronounced tickle) scripting language with the Korn shell. Tksh extends the
Korn shell with graphical commands but otherwise uses the Korn shell syntax in place of the Tcl syntax.

For more on tksh, see www.cs.princeton.edu/~jlk/tksh/.

7

Introducing Shells

04_583204 ch01.qxd 3/18/05 9:26 PM Page 7

The Official POSIX Shell
POSIX, the Portable Operating System Interface for Computer Environments standard, defines a stan-
dard for writing portable applications. This is really a standard for writing portable applications at the
source code level on systems that look similar to Unix. Because many applications depend on a shell
(especially for installation), POSIX also standardizes on a shell — the Korn shell.

The POSIX shell, however, is called sh. This means that a host of slightly different applications all mas-
querade as sh, the venerable Bourne shell:

❑ Some Unix systems still include the AT&T-created Bourne shell.

❑ Most modern commercial Unix systems, however, include the POSIX shell, which is really ksh
under the covers in a POSIX compatibility mode.

❑ On Mac OS X and Linux systems, bash acts as sh.

❑ On the Cygwin environment for Windows, as well as NetBSD Unix, ash acts as sh. Each of these
shells can act mostly like the Bourne shell, but all sport some differences. As you can imagine,
this situation can lead to problems when trying to write portable shell scripts.

Note that bash should conform to most of the POSIX 1003.2 standard. The problem occurs, however,
when script writers make assumptions based on whichever shells act as sh for their systems.

To help resolve these problems, you can run bash with the --posix command-line option. This option
tells bash to operate with the POSIX standard default operations instead of the bash-specific operations
where they differ. In other words, this makes bash act more like a POSIX shell. See the Command-Line
Options section for more on how to use command-line options.

Default Shells
The default shell on Linux and Mac OS X is bash, the Bourne Again shell. Bash provides a modern shell
with many features, and it runs on many, many systems where it is not the default. Hence, I use bash as
the primary shell for the examples throughout this book.

Barring extra configuration, the default shells for many systems appear in the following table.

Operating System Default Shell

Mac OS X bash (Mac OS X 10.3, earlier versions use tcsh)

Solaris, HP-UX, System V Unix ksh

QNX 6 ksh

Zaurus PDA bash

Yopy PDA bash

Windows with Cygwin bash

Windows with Services for Unix ksh (not a full version, however)

If your system does not have bash, you can download the sources from www.gnu.org/software/bash/.

8

Chapter 1

04_583204 ch01.qxd 3/18/05 9:26 PM Page 8

Choosing a Shell
Unless you are the administrator or have administrator permissions, you are stuck with the default shell
as defined by your administrator. That’s usually okay because modern shells are all pretty good, and you
may need to deal with assumptions regarding shells as you work. For example, when administrators
assume everyone runs the Korn shell, they may set up parts of the environment that break in strange
ways for users of other shells, particularly users of the C shells. This often happens with commands that
are not specifically shell scripts. And these types of problems can be really hard to track down.

So your best bet is to stick with the default shell as defined by your administrator. If you are the admin-
istrator or you have administrator permissions, you can change your startup shell to run the shell you
prefer.

If you are free to choose but you don’t have any particular requirements or a history with a particular
shell, choose bash if it is available. Bash is under active development and forms the default shell on a
great many systems.

If you don’t have bash available, go with the Korn shell if it is available. (This is sad to say, coming from
a die-hard C shell user.) The C shell was the best thing around in its day, but bash is clearly the most-
used shell today. Bash has most of the good features of the C shell, too.

If you do have a history with a particular shell, go ahead and use that shell, as you will be the most pro-
ductive with a familiar shell.

Changing Your Default Shell
The chsh command, if available, allows you to change your default, or login, shell. This is handy if you
just hate your current shell and your administrator is not open to changing your shell for you. The chsh
command, short for change shell, allows you to modify the system environment for your login. The basic
syntax follows:

chsh username new_default_shell

For example, to change user ericfj to use bash, run the chsh command as follows:

$ chsh ericfj /bin/bash

Note that you need to enter the full path to the shell. The chsh command will likely require you to type in
your password, so that only you and the administrator can change your default shell. The new login shell
will be available for use the next time you log in. (You can log out and log back in to run the new shell.)

On Linux, you need a slightly different syntax:

chsh -s new_default_shell username

On BSD Unix, use the chpass command, which requires the following syntax:

chpass -s new_default_shell username

9

Introducing Shells

04_583204 ch01.qxd 3/18/05 9:26 PM Page 9

On Mac OS X, there are a number of ways to change your shell, depending on your setup. First, you can
run either chpass or chsh (they are both the same program), using the chpass syntax listed previously.
The second and more common way is to change the settings in the Terminal application. (You talk to the
shell in Mac OS X via Terminal, which is just a, well, terminal to the shell environment in Mac OS X.)
From the /Applications/Utilities directory open the Terminal application. From the Application menu,
select Preferences, or press Ô-, (the Command key plus the comma key). The Terminal Preferences win-
dow opens. Select the “Execute this command (specify complete path):” button, and enter the full path
to that shell, such as /bin/tcsh (as shown in Figure 1-1). Note that this method changes the default shell
that Terminal uses for every physical user on that system, so if there’s more than one person and you
change the shell, you may have some irate people on your hands.

Figure 1-1

Another way to change the shell for a specific user is to use NetInfo Manager, which is the GUI interface
to the directory system Mac OS X uses to store user account settings. From the /Applications/Utilities/
directory, open up NetInfo Manager. NetInfo Manager displays a hierarchy of settings in a columnar
fashion; the root is on the left, and the current branch opens to the right. In the middle column, click the
“users” entry, and find your short username (in our example, “admin”) Notice that when you click
admin, the bottom window displays various settings for that user, as shown in Figure 1-2.

To make changes, click the “Click the lock to make changes” button. You must be an admin user to
authenticate; otherwise, you won’t be allowed to change your shell here. After you’ve authenticated,
scroll down in the settings area of the window until you see the “shell” entry. Double-click the path for
the current default shell in the Value(s) column, and enter the full path to the new default shell, as in
Figure 1-3.

10

Chapter 1

04_583204 ch01.qxd 3/18/05 9:26 PM Page 10

Figure 1-2

After you’ve entered the new shell path, hit Ô-S to save. You’ll be asked if you really want to do this.
Click “Update this copy” to save your changes, and quit NetInfo Manager. You should see your change
reflected in Terminal immediately, but if not, log out and log back into your account, and you’ll see the
changes.

11

Introducing Shells

04_583204 ch01.qxd 3/18/05 9:26 PM Page 11

Figure 1-3

Running a Shell from Within Another Shell
Shells are simply programs. Because a shell can run programs, nothing is stopping you from running
a shell from within a shell, or a shell within a shell within a shell, and so on. To do this, simply type in
the shell command you want to run. For example, if your default shell is bash, but you want to try the
features of tcsh, simply type in tcsh and try it out:

$ tcsh
$

The tcsh program responds with a prompt, ready for your commands. Remember now, however, that
you are running a different shell, so the syntax of some commands may differ.

12

Chapter 1

04_583204 ch01.qxd 3/18/05 9:26 PM Page 12

Finding Out More About the Shell
Use the man command to display more information, a lot more information, on your shell. For example,
to learn about the bash shell, use the following command:

$ man bash

You should see copious output.

How Do Shells Fit into a Graphical
Environment?

The shell, combined with the cryptic commands it supports, such as cp and rm, helped form the impres-
sion that Unix and Linux systems are hard to use. Today, just about every system offers a graphical desk-
top environment that makes using the computer a lot easier.

As the various desktop environments mature, users tend to run shells less and less. Some users may even
end up believing that there is no such thing as a shell. For example, you can work with a Macintosh system
for a long time and never need a shell. That’s good. The shell just gives you extra power and flexibility.

The problem of how to embed a shell into a graphical environment was solved years ago with the Unix
xterm application and the Macintosh Programmer’s Workshop (MPW). In both these cases, the shell
runs inside a window on the normal desktop display. The problem was, prior to Mac OS X, the OS didn’t
have the concept of a shell, so it was always a bit of a kludge. Now that Mac OS X is based on BSD Unix,
you now have the full abilities of a true Unix shell environment available, a great improvement over
earlier attempts. This provides a very powerful tool. Shell windows typically add scroll bars, control
over fonts and font sizes, and, most important, the ability to copy and paste text. Place two or more shell
windows on your display, and you have a powerful environment because you can run commands in one
window and then select text for placement into commands entered in another.

The image in Figure 1-4 shows a typical power-user Linux desktop with multiple shell windows.

Because a great many shell commands work on files, you can often use a graphical file manager to elimi-
nate the need for a shell. Graphical file manager programs, however, don’t work well for those tasks that
shells work best at. For example, if you want to change the case of all the file names in a directory from
uppercase to lowercase, shells work far better than file managers. Also, if you want to copy those files
that have been modified after a certain date, for a backup perhaps, shells again work better than file
managers.

13

Introducing Shells

04_583204 ch01.qxd 3/18/05 9:26 PM Page 13

Figure 1-4

Once you determine you need a shell, the next step is to find it.

In modern desktop environments, shells run inside special shell windows that hold a shell-based com-
mand line. Most shell windows also support scroll bars that allow you to review the output of past
commands.

If the shell is the first program run when you log in to a system, it seems odd to have to find the shell.
But on today’s modern operating systems, the desktop environments often hide the shell on purpose.
The intent is not to stop you from using the shell; instead, the goal is to reduce the level of fear of users
taught that Unix-like systems are difficult to use.

If you are logging in using the telnet or ssh programs, then the first program you see will likely be a
shell. Problem solved. You’ve found your shell. If instead you run a graphical desktop environment, you
may need to look around. The following sections describe how to start a shell window for a number of
Unix and Unix-like systems, starting with Linux.

14

Chapter 1

04_583204 ch01.qxd 3/18/05 9:26 PM Page 14

Running Shells on Linux
Linux systems typically run one of two major desktop environments, GNOME or KDE. Both the
GNOME and KDE environments, however, try to appear somewhat like Windows, with the Linux
equivalent of the Windows Start menu usually appearing in the lower-left corner.

On a Fedora or Red Hat Linux system with a GNOME or KDE desktop, choose Terminal from the
System Tools menu. With the default KDE environment, choose Terminal from the System menu.

Your Linux system may sport slightly different menus, but the concept is the same. Nowadays, the shell
is considered a tool or utility and will be available on a sub-menu under the main system menu.

These applications are called terminals or terminal windows because they create a pseudo, or virtual,
terminal, which mimics the behavior of an old-fashioned ASCII terminal. To the underlying operating
system, these actually are terminals, albeit software-only terminals.

Running the GNOME Shell Window
Figure 1-5 shows the gnome-terminal window, which provides the default shell under the GNOME
desktop. Choose Terminal from the System Tools menu to launch this program. (The KDE terminal
window looks similar to the gnome-terminal window, as covered in the following section.)

Figure 1-5

15

Introducing Shells

04_583204 ch01.qxd 3/18/05 9:26 PM Page 15

The first thing you should notice about the gnome-terminal window is the menu bar, which spans the
top of the window. The menus on this menu bar allow you to customize the terminal window. For exam-
ple, you can control the size of the text from the View menu.

The second thing to notice is the very handy scroll bar along the side, which allows you to scroll through
the output. For example, if you list all the files in a large directory, the listing will scroll because there are
likely more file names to display than will fit within the window.

The third thing to notice is the shell prompt, usually ending with a $ character, which shows the shell
running inside the window awaits your commands. The gnome-terminal window will launch your
default shell, usually bash. (As with most things, you can configure this in the profile settings within the
gnome-terminal window.)

To configure the gnome-terminal window, select Edit ➪ Current Profile. You can define the command
launched in the shell window, the text size, text fonts, colors, and other details such as how many lines
to save in the scroll buffer.

The other shell windows on Linux all appear very similar to the gnome-terminal window. There’s not
much you can do with a shell window, anyway.

Running the KDE Shell Window
The KDE shell window, called konsole, looks and feels very similar to the gnome-terminal window. The
konsole application offers a comparable set of features to the GNOME offering. The konsole program
extends what the gnome-terminal offers, however, with greater support for multiple sessions.

Each session is really a separate instance of the shell running. By default, sessions appear in separate
tabs within the konsole window. (The gnome-terminal also supports multiple sessions, each in its own
tab.) You can click the tabs to switch to additional shells.

Another excellent feature of the konsole application is support for bookmarks. Unlike web pages, konsole
allows you to bookmark directories. Choose the Add Bookmark choice from the Bookmarks menu to store
the current directory as a bookmark. You can then select the bookmark directory from the Bookmarks
menu to jump immediately to that directory. The konsole application does this by issuing a cd command
to change to the bookmarked directory.

The KDE konsole window uses Shift-Ins (or Insert) to paste, while the gnome-terminal window uses
Shift-Ctrl-V. These shortcut differences can make it difficult to go back and forth between terminal win-
dows. It is usually better to stick with one type of terminal window.

Active Select and Paste
One thing that may confuse people used to Macintosh or Windows systems is the active select and paste
model used by the X Window System. The X Window System, or X, provides the low-level graphics on
Linux and Unix systems. (You can also run X on Mac OS X or Windows systems, in emulation.)

With X, selected text is instantly available for other programs to use. You can use the left mouse button
to select text and then paste that text into a different window. Typically, the middle mouse button of a
three-button mouse pastes the currently selected text. (Press the two buttons simultaneously on a two-
button mouse to emulate the missing middle button.)

16

Chapter 1

04_583204 ch01.qxd 3/18/05 9:26 PM Page 16

This may seem like the traditional copy and paste model, but you get to skip the copy step. With the X
Window System’s active select and paste model, you can simply select and paste.

In addition, X supports the normal copy and paste model with a clipboard. You can place some text in
the clipboard while selecting other text for active pasting.

A long time ago in a galaxy far, far away, you could be really productive using active select and paste with
the vi text editor in multiple shell windows. Nowadays, most users run graphical text editors, covered in
Chapter 2, instead of vi.

Running Shells on Mac OS X
On Mac OS X, you’ll find a shell window available by using the Terminal application, located in the
/Applications/Utilities/ folder. It defaults to a base terminal window for your default shell. Because Mac
OS X ships with a single-button mouse, there are some oddities that you don’t find in other systems. With
a single-button mouse, or the trackpad on a portable, to emulate the second button, you Control-click
(press the Control key and click the mouse). This brings up a contextual menu that allows you to make
use of features like pasting the selected text without going to the keyboard, as shown in Figure 1-6.

If you find Ctrl-clicking annoying, just replace the standard Mac mouse with a mouse or trackball that
you prefer. Without any added software, Mac OS X supports two buttons and a scroll wheel. Most of
the better mice from Microsoft or Kensington come with improved drivers so you can program the extra
buttons for specific tasks.

Figure 1-6

If you want to use the Xterm application to get to your shell environment under OS X, you can do that
with Apple’s X11 application (in Mac OS X 10.3 or later, it’s a custom install), or by using XFree86.
(X11 is Apple’s implementation of XFree86, so they’re essentially the same thing.) X11 lives in the
/Applications/Utilities/ folder, and when you start it, it opens an xterm window for you by default.
To emulate the second and third buttons, use Option-click and Command-click.

17

Introducing Shells

04_583204 ch01.qxd 3/18/05 9:26 PM Page 17

Running Shells on Unix Systems
On Unix systems under the CDE, or Common Desktop Environment, click the terminal icon that
appears on the taskbar at the bottom of the screen. You’ll see a dtterm window.

The dtterm program appears similar to that of the gnome-terminal or konsole window, although dtterm
supports fewer options from the menu bar.

With the GNOME desktop environment making inroads into commercial Unix systems, especially Sun’s
Solaris, CDE is being used less and less.

Running Shells on Windows—Isn’t command.com Enough?
MS-DOS provides a primitive shell called command.com, or cmd.exe, depending on the version of
Windows. Command.com is the old name for the program that provided the MS-DOS command line
on PCs. On modern Windows systems, you can still see the legacy of command.com with the MS-DOS
Prompt window, the Windows equivalent of a shell window.

This shell, however, doesn’t offer the features of modern Unix and Linux shells, especially when it comes
to shell scripting. Because of this, if you want to write shell scripts on Windows, you need to install
another shell.

Installing Cygwin on Windows
Cygwin is the name for a set of packages that provide a surprisingly large number of Unix-like utilities
for Windows systems. With Cygwin installed, you can make your Windows system act very much like a
Unix system, at least from a user perspective.

For shells, Cygwin includes ash, bash, tcsh, zsh, and pdksh. The default shell is bash, which you should
use for the examples in this book. Download the Cygwin package from www.cygwin.com.

To launch a Cygwin shell, use the Windows Start menu.

Because the Cygwin package includes a number of shells, as well as a plethora of commands, this is
probably the best shell package for Windows users. But you may decide to instead install Microsoft’s
Windows Services for UNIX.

By default, Cygwin installs in C:\cygwin, which becomes the virtual root directory
of the Cygwin environment. When you run the Cygwin bash shell, for example, the
shell starts in your user home directory, from the perspective of Cygwin. This direc-
tory is /home/username, such as /home/ericfj for a user named ericfj. In reality, how-
ever, this directory is located in C:\cygwin\home\ericfj. From the bash shell,
however, this appears as /home/ericfj. You need to pay attention to this if you work
with files.

18

Chapter 1

04_583204 ch01.qxd 3/18/05 9:26 PM Page 18

Installing the Korn Shell on Windows
Microsoft’s Windows Services for UNIX provide a number of Unix commands on Windows. For shells,
this package offers both the Korn shell and the C shell but not bash. Furthermore, the Korn shell as part
of this package is not a complete Korn shell. Because of this, you are better off, from a shell-scripting
perspective, to load Cygwin instead.

For more on the Microsoft’s Windows Services for UNIX, see http://www.microsoft.com/windows
/sfu/default.asp.

Running Shells on PDAs and Other Systems
In addition to running shells on desktop and server systems, you can also run shells on quite a few small
systems such as PDAs, especially Linux-based PDAs.

On the Yopy PDA, click the Linupy menu (similar to the Windows Start menu), and choose Terminal
from the Utilities menu. The Yopy will start a shell window running bash. On low-resolution PDA dis-
plays such as that on the Yopy, however, you will likely see only part of the width of each line, which
makes entering commands and editing files more difficult.

The latest Zaurus PDAs solve the screen resolution problem by providing a 480 × 640 pixel screen in por-
trait mode and 640 × 480 in landscape mode. In both modes, you can see the entire width of a line.

On the Zaurus, choose Terminal from the Applications menu to launch a shell window. Or click the
Home button to see the application launcher. Click the Applications tab, and select the Terminal icon.
Figure 1-7 shows a bash shell window running on the Zaurus.

With QNX 6.0 on an Audrey Internet appliance, choose Terminal from the main Infinity menu (for those
using the Infinity operating system images).

In most cases, it is not that hard to launch a shell window, regardless of the system you use. As you can
see from these examples, even PDAs and Internet applications sport shell windows, ready for you to
play with.

Once you have a shell available, the next step is to start entering shell commands. Shell commands form
the basis of shell scripting.

19

Introducing Shells

04_583204 ch01.qxd 3/18/05 9:26 PM Page 19

Figure 1-7

Entering Commands
Shells display a command prompt and then await your commands. The prompt indicates the shell is
ready.

The prompt usually ends with a dollar sign ($), a percent sign (%) for C shell users, or a hash mark (#,
also called a sharp sign) if you are logged in as the root, or super user. Modern shells often come config-
ured to show your username, machine name, and current directory in the prompt.

For example, the following line shows the default tcsh prompt for user ericfj on a machine named kirk-
wall, in the user’s bin directory:

[ericfj@kirkwall ~/bin]$

Note that the tilde character, ~, is shorthand for the user’s home directory.

20

Chapter 1

04_583204 ch01.qxd 3/18/05 9:26 PM Page 20

Bash, by default, shows a prompt like the following on Linux systems:

[ericfj@kirkwall bin]$

Note how bash just displays the current directory name relative to its parent directory. You can really see
the difference when you change to a user’s home directory. The following shows a bash prompt for the
user’s home directory:

[ericfj@kirkwall ericfj]$

But if you use tcsh, you will see a prompt like the following:

[ericfj@kirkwall ~]$

Prompts are configurable, so your system may differ. In many cases, however, the default prompt is use-
ful enough so that you don’t need to change it. These examples come from a Fedora Core 2 Linux system.

In this book, a dollar sign ($) will act as a shorthand for your shell prompt. While the prompts may dif-
fer, shells all act the same: they patiently await your commands. The examples in this book show $ for
the shell prompt and # for the shell prompt of the root user.

This patience has limits. On some Unix systems, for example, the C shell defaults to a 60-minute auto-
matic logout setting. If you enter no commands for an hour, the shell quits and logs you out. This time
period is also configurable.

Determining Which Shell You Are Running
Once you launch a shell window, the next step is to determine which shell you are running.

Try It Out Which Shell Am I Running?
If you don’t already know what kind of shell it is, try the following command:

$ echo $SHELL
/bin/bash

How It Works
The basic format of a shell command follows:

command argument1 argument2 ...

The command part is the name of a command, a program or shell script, or other file that is somehow
marked as an executable command. In this example, echo is the command. Shells on Windows systems,
for example, would look for commands named echo.exe, echo.com, or echo.bat to execute because
Windows uses file-name extensions (.exe, .com, .bat, and so on) to mark files as executable. Linux and
Unix systems, on the other hand, use file permissions to mark files as executable. Shells on Linux and
Unix systems would look for an executable file named echo in this example.

21

Introducing Shells

04_583204 ch01.qxd 3/18/05 9:26 PM Page 21

Shells look for the commands in directories the shell recognizes as the command path. See Chapter 4 for
more on how to modify your shell’s command path.

Shells expect commands to appear first. After the command, you can pass a number of arguments to the
command. These are values passed directly to the command, which then interprets the arguments as it
sees fit. (There are also command-line options, covered following.)

This example uses the echo command, which displays a line of text, the text you provide. Echo is so
named because it echoes back whatever you provide. This may seem like a very dumb idea for a com-
mand, but echo is surprisingly useful. The echo command allows you to present text to the user or lets
you know details of how a command will run. To use echo, pass the data you want to display as argu-
ments to the echo command.

The example passes $SHELL as an argument to echo. You might expect echo to print out $SHELL, but the
leading dollar sign informs the shell that this is a special value. In this case, the dollar sign indicates that
SHELL is a shell variable. The shell then expands the command by replacing $SHELL with the value of
the shell variable named, appropriately enough, SHELL. Shells usually include quite a few shell variables
populated with values about the computing environment, which is why shell variables are often called
environment variables. While you can quibble over the differences, in most respects, shell variables are the
same as environment variables.

On Linux and Unix systems, the SHELL environment variable holds the name — that is, the program
file — of the user’s default shell. In this case, /bin/bash indicates that the shell is bash, running as the
bash command in the directory /bin. Other results include /bin/tcsh for the T C shell and /bin/ksh for
the Korn shell.

It is the shell that expands $SHELL to the value of the user’s default shell. Thus, in this example, the
echo command is passed the argument /bin/bash, which echo dutifully prints back.

Each command interprets its arguments differently, although usually arguments are file or directory
names. Each command may also accept command-line options that control how the command behaves.

Be careful not to depend too much on the paths, such as /bin/bash. On Unix systems,
except for Mac OS X, bash will likely not be installed in /usr/bin. Instead, bash, as
an add-on package, would be installed in /usr/local/bin or some other directory for
commands added at a particular site. This is because bash is not standard equipment
on a Unix system (other than Mac OS X and other versions of BSD Unix). On the flip
side, Unix systems based on System V Unix will likely have the Korn shell installed
as standard equipment. Linux systems, however, will likely not. So you may find
ksh, the Korn shell, in alternate locations on BSD Unix and Linux systems.

Non-Unix or Linux systems may install shells in entirely different locations. For
example, the default shell on the QNX-based Audrey is ksh, but the command is
located in /nto/bin.

22

Chapter 1

04_583204 ch01.qxd 3/18/05 9:26 PM Page 22

Command-Line Options
In most cases, a command-line argument provides data for a command to work on, while a command-
line option selects among the command’s many options for how to work on the data. This distinction is
not always clear. In the end, you are at the mercy of whoever wrote the command in the first place. The
options and arguments differ by command and are often strangely named.

Unix, which popularized these concepts and commands, has a long, long history that doesn’t always
make sense. For example, the command that alerts users to newly received email is called biff, after the
name of a dog that barked when the postal carrier brought the mail.

So you should always check the documentation for each command you intend to use to see what
options are supported by the command. The basic format for a command can be expanded to include
the following:

command option1 option2 ... argument1 argument2 ...

Command-line options almost always come first. And command-line options almost always start with a
dash character, -. Newer commands (meaning anytime after the late 1980s) often support options that
start with two dashes, --.

Nowadays, the two-dash and the one-dash folks have mostly come to a détente, where the two-dash
options are used with longer, more understandable, names for the options, and the one-dash options are
used with single-letter options. The two-dash options are also often designed for infrequent use, with
the single-dash short options used for the most common options.

For example, the -v option is often (although not always) used to request verbose output. The long form
of this option is often --verbose. You can choose -v or --verbose as you see fit for those commands
that support both options. In most cases, there will be a long option that corresponds to each single-letter
option.

What you consider verbose and what the creator of the command considers verbose may differ greatly.
Verbose may merely mean outputting a few cryptic hex numbers.

On MS-DOS, a forward slash, /, is used in place of a dash for many command options. This is especially
disconcerting to Unix and Linux users, as these systems use a forward dash to separate directories.
Many MS-DOS commands accept either the slash or dash to precede options.

Try It Out Using Command-Line Options
To see more about how command-line options work, first try the following command without any
options:

$ uname
Linux

The uname command, originally short for Unix name, displays information about the operating system.
By default — that is, with no options —uname prints out the kernel name, in this case, Linux.

23

Introducing Shells

04_583204 ch01.qxd 3/18/05 9:26 PM Page 23

Now try adding options. For example, the -o option shows the following on Linux:

$ uname -o
GNU/Linux

You can also try the longer options. For example, try the following command:

$ uname --hardware-platform
i386

With Linux on an Intel-architecture system, the hardware platform is listed as i386. The -p option pro-
vides the processor architecture. On Linux, you may see the following:

$ uname -p
athlon

Note that this Linux system uses an AMD processor.

You can combine all the uname options by using -a, or --all. For example:

$ uname --all
Linux kirkwall 2.6.5-1.358 #1 Sat May 8 09:04:50 EDT 2004 i686 athlon
i386 GNU/Linux
$ uname -a
Linux kirkwall 2.6.5-1.358 #1 Sat May 8 09:04:50 EDT 2004 i686 athlon i386
GNU/Linux

How It Works
The uname command prints out information about a system. This is important if you need to write shell
scripts that can handle different computing environments and operating systems.

The uname command is one of those handy commands that can help your shell scripts determine the
platform the script is running on. But the uname command also shows how not all commands run the
same on all systems.

You can determine what options a command supports and, more important, what these options mean by
using the online manuals. The man command displays the online manual entry for a given command.
The basic format follows:

man command_name

For example:

$ man uname
UNAME(1) User Commands UNAME(1)

NAME
uname - print system information

SYNOPSIS
uname [OPTION]...

24

Chapter 1

04_583204 ch01.qxd 3/18/05 9:26 PM Page 24

DESCRIPTION
Print certain system information. With no OPTION, same as -s.

-a, --all
print all information, in the following order:

-s, --kernel-name
print the kernel name

-n, --nodename
print the network node hostname

-r, --kernel-release
print the kernel release

:

The man command displays the manual entries one screenful at a time, using the more command. (See
Chapter 8 for details on how to create command pipelines using the more and less commands.) You
can use the man command to determine the available command-line options.

The man command is your friend. This is one of the best commands on Unix and Linux systems and
can tell you a lot about your system.

To show how Unix and Linux commands differ, you can try the uname command on another system,
such as Mac OS X.

Try It Out Using Command-Line Options on Mac OS X
On a Mac OS X system, you’ll see the following response for the uname command:

$ uname
Darwin

Darwin is the name of the Mac OS X version of BSD Unix. The -p option tells the uname command to
output the processor type. On a Mac OS X PowerPC system, you will see the following:

$ uname -p
powerpc

How It Works
The uname command performs the same function on Mac OS X as on Linux or Unix systems. But the
uname command differs in the support of command-line options. The Mac OS X uname command, for
example, does not support the --all option, as it just prints out an illegal-option message. Mac OS X
does support the -a option, however:

$ uname --all

uname: illegal option - l
usage: uname [-amnprsv]

$ uname -a

25

Introducing Shells

04_583204 ch01.qxd 3/18/05 9:26 PM Page 25

Darwin Eric-Foster-Johnsons-Computer.local 7.5.0 Darwin Kernel Version 7.5.0: Thu
Aug 5 19:26:16 PDT 2004; root:xnu/xnu-517.7.21.obj~3/RELEASE_PPC Power Macintosh
powerpc

The Mac OS X uname command also doesn’t support the -o or --hardware-platform options. This is
very important. Not all Unix and Unix work-alike systems support the same command-line options.

Combining Options
The normal format for command-line options is to precede the option letter with a dash, as in the follow-
ing command:

$ uname -r
2.6.5-1.358

You can typically provide more than one option. For example:

$ uname -r -p
2.6.5-1.358 athlon

Most Unix and Linux commands also support combining a number of options with just a single dash.
For example:

$ uname -rp
2.6.5-1.358 athlon

This example combines the -r and the -p option but places both on the command line with a single
dash, as -rp. This command has the same effect as if the options were presented separately.

Strange Options
As mentioned earlier, most Unix and Linux commands support options starting with a single dash.
Some newer commands, especially those that come from the GNU project (www.gnu.org), support
longer-named options starting with two dashes.

A few options don’t use either the single or double dash. The dd command, for example, supports a very
different command-line option format. With dd (short for data dumper), the options take the following
format:

dd option1=value1 option2=value2 ...

For example:

$ dd if=backup.iso of=/dev/tape bs=20b

The dd, cpio, and tar commands, all related to backups (at least originally), take radically different
command-line options and syntax. This is just one of the quirks with Unix and its long history.

26

Chapter 1

04_583204 ch01.qxd 3/18/05 9:26 PM Page 26

See the online manual entry for dd for more details. Just remember that Unix and Linux commands are
not all consistent. You should look up the commands you need to use in the online manuals.

With the ability to create long, complex command lines, it becomes essential that you be able to edit the
command line to create these commands. That is where a number of shell features come in handy.

Command Editing
The original command-line editing feature was essentially just the Backspace key. You could delete from
the end and retype commands. Pressing Ctrl-C cancels the entire command. This is useful if your com-
mand is so messed up, it is no longer worth it to fix. Since those early days, shells have advanced quite
far, and now most offer a plethora of features to help edit complex commands.

The original Bourne shell supports only Backspace and Ctrl-C editing of commands. But since the C
shell, all new shells have supported ways to help edit commands. The facilities shells offer include the
ability to repeat previous commands, or parts of previous commands, to recall commands from a history
of commands and the ability to use real text editors to edit commands.

Command Substitution
Most Unix and Linux commands deal with files and directories. Furthermore, the file system supports
a deep hierarchy of directories, something that comes from the rich command sets on Unix and Linux,
which leads to long, complicated commands. Type in a directory name incorrectly and you may wipe
out crucial data, miss an important backup, or inadvertently damage your system.

One thing shell designers noticed right away was that commands usually occur in a sequence. That is,
you will typically enter a number of commands, all of which repeat parts of the previous commands. For
example, you may enter a number of commands that work within a given directory. This can be as sim-
ple as copying a number of files to the same directory or changing the permissions of a number of files
or directories.

To help with this, shells offer a number of ways to repeat parts or all of previous commands.

Repeating Previous Commands
The C shell introduced the double-exclamation mark syntax, !!. This command repeats the previous
command in its entirety. Now, why in the world would anyone want to repeat a command that just ran?
Didn’t the command already do its work? Actually, not always. Trying a command again after an error is
one of the most common reasons for repetition. Other reasons you may want to repeat a previous com-
mand include the following:

Unfortunately, command editing also brings out the differences between shells. The
format and syntax differ greatly between shells.

27

Introducing Shells

04_583204 ch01.qxd 3/18/05 9:26 PM Page 27

❑ To check the status of a system or application: For example, if users report problems with an
Oracle database, you may want to issue a command to check its status. If Oracle appears to be
down, you may want to restart Oracle in another shell window and then repeat the command to
check the status of Oracle until you verify that the database is running again.

❑ To rebuild a software application, especially after modifying files: Software developers do
this all the time. You may edit a file with a graphical editor and then want to rebuild the soft-
ware to see if you have fixed a problem or that everything is working properly. (See the Tools to
Edit Shell Scripts section in Chapter 2 for more on graphical text editors.)

Attempting the same thing over and over again but expecting different results is considered a sign of
insanity.

Try It Out Repeating Commands with !!
With the C shell, T C shell, and the Bourne Again shell, use the !! syntax to repeat the previous com-
mand. For example:

$ df -k
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/hda2 24193540 3679032 19285536 17% /
/dev/hda1 101086 5943 89924 7% /boot
none 502380 0 502380 0% /dev/shm
/dev/hda5 48592392 21111488 25012520 46% /home2
/dev/sda1 499968 286432 213536 58% /mnt/sd
$!!
df -k
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/hda2 24193540 3678992 19285576 17% /
/dev/hda1 101086 5943 89924 7% /boot
none 502380 0 502380 0% /dev/shm
/dev/hda5 48592392 21111488 25012520 46% /home2
/dev/sda1 499968 286432 213536 58% /mnt/sd

How It Works
Shells such as bash, csh, tcsh, or ksh keep track of the previous command, which the !! syntax recalls.

The exclamation mark character, !, is often called a bang. So !! is bang, bang.

The !! command is interpreted entirely by the shell. You won’t find a command program on disk
named !!. With bash, tcsh, or csh, !! will display the previous command, df -k in this example, and
then execute that command.

The df command prints information on how much disk space remains free (df is short for disk free).
The -k option tells df to output in kilobytes rather than 512-byte blocks.

Why check the amount of disk space remaining twice in a row? Because another process may have changed
it (or because you are obsessive). Note how the amount of free space changed for /, or the root file system,

28

Chapter 1

04_583204 ch01.qxd 3/18/05 9:26 PM Page 28

between calls. In this case, you have a small amount of additional space. In real life, however, you’ll most
often use the df command as a disk fills. This can be especially important when a disk is filling rapidly.

See the section Viewing the Command History for more on repeating previous commands.

For another example, the ping command checks network connectivity to a given machine, represented
by the machine’s hostname or network (IP) address. The name ping comes from the pinging sound of
submarine radar systems. Ping sends a certain type of network packet to another system, which should
then send the packet back.

For example, the following command runs the ping command to a system identified by an IP address:

$ ping 192.168.0.4
PING 192.168.0.4 (192.168.0.4) 56(84) bytes of data.

--- 192.168.0.4 ping statistics ---
11 packets transmitted, 0 received, 100% packet loss, time 9998ms

The ping command runs forever unless it encounters a very serious error. In most cases, you need to
terminate ping by pressing Ctrl-C. When you press Ctrl-C, ping displays some statistics, as shown at
the end of the output in the example.

This example shows that you cannot reach the system identified by its IP address 192.168.0.4 (a system
on the local network). This may lead you to check network cables and routers and whether the remote
system is even running.

The ping command is not a full network testing application. If ping works, you know your system can
reach the remote system on the network. If ping doesn’t work, however, you cannot always assume the
network is down. Many network firewalls disable ping messages. Or, the remote system may not run
the process that responds to pings.

A better means to test network connectivity is usually trying to connect to the remote application you
are interested in, such as a remote Web server, file server, database, or other application.

Once you think the network link is repaired, you can try the command again. For example:

$!!
ping 192.168.0.4
PING 192.168.0.4 (192.168.0.4) 56(84) bytes of data.
64 bytes from 192.168.0.4: icmp_seq=0 ttl=64 time=0.069 ms
64 bytes from 192.168.0.4: icmp_seq=1 ttl=64 time=0.062 ms
64 bytes from 192.168.0.4: icmp_seq=2 ttl=64 time=0.060 ms
64 bytes from 192.168.0.4: icmp_seq=3 ttl=64 time=0.059 ms
64 bytes from 192.168.0.4: icmp_seq=4 ttl=64 time=0.061 ms
64 bytes from 192.168.0.4: icmp_seq=5 ttl=64 time=0.063 ms
64 bytes from 192.168.0.4: icmp_seq=6 ttl=64 time=0.060 ms
64 bytes from 192.168.0.4: icmp_seq=7 ttl=64 time=0.060 ms

--- 192.168.0.4 ping statistics ---
8 packets transmitted, 8 received, 0% packet loss, time 6998ms
rtt min/avg/max/mdev = 0.059/0.061/0.069/0.010 ms, pipe 2

29

Introducing Shells

04_583204 ch01.qxd 3/18/05 9:26 PM Page 29

In this case, the ping command succeeded in reaching the other system.

The Korn shell uses the r command instead of !! to repeat the previous command. You must first set up
the command history feature, however. See the section Viewing the Command History for more on com-
mand histories.

Repeating Parts of Previous Commands
In addition to repeating the entire previous command, you can also ask the shell to insert parts of the
previous command in any new command. The most useful feature is the ability to type !$ in place of the
last item on the previous command.

The !$ syntax does not work on the Korn shell.

Try It Out Replacing the Last Item on the Previous Command
When you put !$ in a command in the bash, csh, or tcsh shell, the shell replaces the !$ with the last
item, usually the last argument, of the previous command. For example:

$ mkdir web_files
$ cp *.html !$
cp *.html web_files
$

How It Works
The shell doesn’t do much with the !$ because the shell merely replaces the last item from the previous
command, the directory web_files in this example. You can continue using !$ again and again, but
remember, it repeats only the last item of the most recent command. For example:

$ mkdir web_files
$ cp *.html !$
cp *.html web_files
$ cd !$
cd web_files
$ cp ~/web/external/index.html !$
cp ~/web/external/index.html web_files
cp: cannot create regular file `web_files/index.html’: No such file or directory

Notice how once you’ve changed directories, the subdirectory name web_files no longer applies,
because you are in that directory. Also, note that the !$ syntax repeats the last item on the command line
from the previous command. This is not always what you want. For example:

$ file index.html
index.html: HTML document text
$ cat !$ | more
cat index.html | more
<html>
<head>
<title>Near to the Barking Seals</title>
<link rel=”stylesheet” type=”text/css” href=”pconline.css” />
<LINK REL=”SHORTCUT ICON” HREF=”favicon.ico”>

30

Chapter 1

04_583204 ch01.qxd 3/18/05 9:26 PM Page 30

</head>
<body bgcolor=”#FFFFFF”>
$ tail !$
tail more
tail: cannot open `more’ for reading: No such file or directory

In this example, the file command examines the file index.html to try to determine its file type, which
it assumes is HTML text. The cat command prints out the file to the screen, using !$ to refer to the file
name. The pipe character, |, sends the output of the cat command to the input of the next command,
more. (This is a command pipeline, covered in Chapter 8.) The more command displays one screen at a
time. Use the spacebar to advance to the next screen and the Esc key to quit the more command.

The next command line, tail !$, passes the last item from the previous command to the tail com-
mand. But there’s a problem. The last item of the previous command was not the file name, but instead
the more command. So this command fails (unless you have a file in the current directory named more.

Even with the limitation that you have to pay attention to what the previous command held, the !$ syn-
tax is one of the most useful features provided by the shell. This feature originated with the C shell and
was also picked up for the bash shell. The Korn shell doesn’t support this feature, unfortunately.

Using the Up and Down Arrows
In addition to using !! to repeat the last command and !$ to repeat the last item from the last command,
you can use the up and down arrows to cycle through the previous command.

You can edit each command that appears, modifying the command. Or you can simply run the command
again.

This is one of the few features that appeared to come from the MS-DOS world and the old doskey pro-
gram. Normally, features in Unix and Linux find their way into Windows and MS-DOS, not the other
way around.

Viewing the Command History
The shell can keep track of more than just the previous command. In fact, you can ask the shell to keep
an entire history of the commands you typed in, as the up and down arrows show.

The command-history feature originated with the C shell. The Korn shell uses a different syntax, and
bash supports both the C shell and the Korn shell syntaxes.

In the C shell, you can enable the command history with a command like the following:

$ set history=60

This command tells the C shell to store the 60 previous commands in its history. When the history list
fills, the shell will dump the oldest entry to make room for a new entry. See the section Customizing
Your Account in Chapter 4 for more on setting up the command history when you log in.

31

Introducing Shells

04_583204 ch01.qxd 3/18/05 9:26 PM Page 31

Once set up, you can use the history command to view the command history, as shown following:

$ history
1 12:30 echo $history
2 12:30 history
3 12:30 pwd
4 12:30 cd web_files/
5 12:31 history

In this example, only a few commands are in the history, all executed at about the same time, 12:30. If the
history is long, you may want to pipe the output to the more or less command.

The history holds a number for each command. You can use the number with the exclamation mark, !,
to repeat that command from the history. For example:

$!3
pwd
/home2/ericfj/writing/beginning_shell_scripting/web_files

In this case, command number 3 in the history is the pwd command, which prints the current working
directory.

You can also use the exclamation mark with the start of a command in the history to repeat that com-
mand. For example, the previous command, pwd, starts with p. Use the following example as a guide:

$!p
pwd
/home2/ericfj/writing/beginning_shell_scripting/web_files

You don’t have to use the first letter. You can provide one or more characters. Usually providing a num-
ber of characters ensures that you get the right command. In Unix and Linux, for example, the rlogin
command, which logs in to a remote system, and the rm command, which deletes files, both start with r.
Unless you want to accidentally delete files, you should include a number of characters when running a
command from the history.

The Korn shell supports a command history as well but uses the r command instead of an exclamation
mark. Like the C shell, you may need to set up the history feature first, but set the HISTSIZE value
instead of the C shell’s history:

$ HISTSIZE=60

Once set up, run the fc command (short for fix command) to view the history, with the -l (ell) option:

$ fc -l
1 set -o vi
2 fc
3 pwd
4 pwd
5 fc -l

The fc command can also call up an editor.

32

Chapter 1

04_583204 ch01.qxd 3/18/05 9:26 PM Page 32

When you’ve selected a command, you can execute that command by number or partial text, similar to
the feature in the C shell. Remember to use the r command in the Korn shell, as ksh does not support
the exclamation-mark syntax.

The bash shell supports most of the C shell and Korn shell history features. Like the C shell, bash sup-
ports the history command for listing the command history. Bash supports the !!, !number, and
!partial_txt means to execute previous commands. Like the Korn shell, you can execute the fc -l
command to list the command history. Bash uses the Korn shell HISTSIZE setting to control the size of
the command history. Bash does not support the Korn shell r commands.

The following table shows the main shell history commands.

Shell List Command History Run Last Run by Text Run from Number

bash history, fc -l !! !partial_text !number

csh history !! !partial_text !number

ksh fc -l r r partial_text r number

tcsh history !! !partial_text !number

Calling Up an Editor
In addition to executing commands from the history list, you can call up a text editor to edit any particu-
larly complex command. Of course, you have to imagine you live in a parallel universe where only two
text editors exist: vi and emacs. Even so, this can be handy in rare occasions where you face a particularly
troublesome command.

Each shell, excluding csh, supports a set of editing commands. You can turn on the vi or emacs editing
mode with a command, set -o for bash and ksh or bindkey with tcsh.

This style of command editing is not supported by csh. The tcsh shell adds this ability (one of the additional
features tcsh adds to the csh feature set).

The following table shows the commands to control the editing mode.

Shell Set vi Editing Set emacs Editing

bash set -o vi set -o emacs

csh not supported not supported

ksh set -o vi set -o emacs

tcsh bindkey -v bindkey -e

Once you have set up a particular editing style, you can use the various key sequences supported by
these text editors to work on the command line. For example, in emacs mode, Ctrl-A moves the cursor to

33

Introducing Shells

04_583204 ch01.qxd 3/18/05 9:26 PM Page 33

the beginning of the line. If you use vi or emacs for text editing, these key combinations should come
naturally to you. If you don’t, you’re likely better off using the text editor of your choice to create com-
mand lines or full scripts.

The bash and ksh shells also support the ability to call up a full-screen editor. The fc command, used
previously to list the command history, can call up a text editor. Type fc alone to call up an editor, vi or
emacs, on the previous command. Pass a number to fc to edit the given command in the history, such as
fc 3 to edit command 3 in the history. Pass some text of a previous command, such as fc cp, to edit the
previous command that starts with the given text.

See Chapter 2 for more on vi, emacs, and other text editors.

Using File-Name Completion
File-name completion occurs when the shell offers to help you enter file and directory names. This is one
of the most useful shell features because Unix and Linux systems have many, many directories. To ask
the shell to complete a file name, simply start typing the name and then press Tab to expand the name.
For example, type the following:

$ ls /usr/lo

Now press the Tab key. The shell will expand /usr/lo to /usr/local/:

$ ls /usr/local/

Now type b, the start of bin, and press the Tab key:

$ ls /usr/local/b <Tab>

The shell will expand the b to bin:

$ ls /usr/local/bin

Press Esc-\ in ksh in vi editing mode. Ksh doesn’t support the Tab character for file-name completion.
Bash supports Tab or Esc-/. Note the difference between Esc-/ (bash) and Esc-\ (ksh).

The bash shell also supports a few more features for completing commands. If there is more than one
name the shell can use, press Esc-? to see a list of all the possible files. Type ls /usr/local/ and then press
Tab. Nothing will happen because there is more than one name the shell can expand. Then press Esc-? to
see all the possible files, as shown in the following example.

$ ls /usr/local/ Esc-?
bin games lib man share
etc include libexec sbin src

Use Ctrl-D in the C shell (and tcsh), or Esc-= in the Korn shell to list all the possible names.

34

Chapter 1

04_583204 ch01.qxd 3/18/05 9:26 PM Page 34

The bash shell goes further. Use Esc-~ to expand a username. Use Esc-$ to expand shell variables (a topic
covered in Chapter 2). The Esc-~ comes from the use of a tilde character, ~, to refer to your home directory.

Working with Wildcards
Shells support a rich set of wildcards to help work with files. A wildcard is an expression that the shell
uses to expand to a number of file names — that is, to all files that match the expression.

Wildcards are often called globs. The use of globs is called globbing.

The * Wildcard
The main wildcard is a star, or asterisk (*), character. (Java programmers sometimes call this a splat.) A
star alone matches anything and nothing, sort of Zen-like. Typically, you need to pair a star with some
other characters to form a more specific expression. For example, *.txt matches all file names ending
with .txt, including all of the following:

.txt
a.txt
a_very_long_name.txt
A_FILE_NAME_WITH_UPPERCASE_LETTERS.txt

The * means that you don’t care what letters there are before the .txt.

Typically, an expression such as *.txt will match all text files. You can refine the wildcard expression
further. For example, a*.txt matches all file names that start with a lowercase letter a and end with .txt.
Again, the * means you don’t care about any letters in between. Using the files from the previous list,
a*.txt would match just the following:

a.txt
a_very_long_name.txt

If you want files that start with an uppercase A or a lowercase a and end with .txt, use the expression
[Aa]*.txt. This expression would match the following files:

a.txt
a_very_long_name.txt
A_FILE_NAME_WITH_UPPERCASE_LETTERS.txt

You can use the star more than once — for example, with the expression a*v*.txt. This expression
would match only one file in the example list of files:

a_very_long_name.txt

On MS-DOS, each program has to support wildcards on its own. A few DOS commands, such as DIR,
support a limited number of wildcard expressions. This is very different with Unix and Linux, as the
shell supports the wildcard expressions so each program doesn’t have to.

35

Introducing Shells

04_583204 ch01.qxd 3/18/05 9:26 PM Page 35

Try It Out Using Wildcards
You can use the ls command to get a handle on how wildcard expressions work. For example:

$ ls /usr/lib/l*z*.a
/usr/lib/libbz2.a /usr/lib/libkudzu_loader.a /usr/lib/libz.a
/usr/lib/libkudzu.a /usr/lib/libmusicbrainz.a /usr/lib/libzvt.a

How It Works
In this example, the ls command lists files in the /usr/lib directory, a directory with a lot of files, most
of which start with the lowercase letter l (short for library). In this example, the shell will expand the
wildcard expression to all files with names starting with the lowercase letter l that also have a lowercase
z somewhere in the file name and end with .a (a common file-name extension for libraries).

You can combine expressions, such as the following:

$ ls /usr/lib/l*[Az]*
/usr/lib/libbz2.a /usr/lib/libkudzu_loader.a
/usr/lib/libbz2.so /usr/lib/libmusicbrainz.a
/usr/lib/libbz2.so.1 /usr/lib/libmusicbrainz.so
/usr/lib/libbz2.so.1.0.2 /usr/lib/libmusicbrainz.so.2
/usr/lib/libFLAC++.so.2 /usr/lib/libmusicbrainz.so.2.0.1
/usr/lib/libFLAC++.so.2.1.2 /usr/lib/libOggFLAC++.so.0
/usr/lib/libFLAC.so.4 /usr/lib/libOggFLAC++.so.0.0.4
/usr/lib/libFLAC.so.4.1.2 /usr/lib/libOggFLAC.so.1
/usr/lib/libkdeinit_kaddprinterwizard.la /usr/lib/libOggFLAC.so.1.0.2
/usr/lib/libkdeinit_kaddprinterwizard.so /usr/lib/libz.a
/usr/lib/libkorganizer_eventviewer.la /usr/lib/libz.so
/usr/lib/libkorganizer_eventviewer.so.1 /usr/lib/libz.so.1
/usr/lib/libkorganizer_eventviewer.so.1.0.0 /usr/lib/libz.so.1.2.1.1
/usr/lib/libkorganizer.la /usr/lib/libzvt.a
/usr/lib/libkorganizer.so.1 /usr/lib/libzvt.so
/usr/lib/libkorganizer.so.1.0.0 /usr/lib/libzvt.so.2
/usr/lib/libkudzu.a /usr/lib/libzvt.so.2.2.10

This command lists files in the /usr/lib directory that start with a lowercase l and have an uppercase A
or a lowercase z in their names. Unlike the previous example, this expression does not require that the
file end in .a, or any extension for that matter.

You can use more than two letters inside the square brackets. For example:

$ ls /usr/lib/l*[AFLz]*.a
/usr/lib/libBrokenLocale.a /usr/lib/libkudzu_loader.a /usr/lib/libSDL_mixer.a
/usr/lib/libbz2.a /usr/lib/libmusicbrainz.a /usr/lib/libSDL_net.a
/usr/lib/libIDL-2.a /usr/lib/libSDL.a /usr/lib/libz.a
/usr/lib/libIDL.a /usr/lib/libSDL_image.a /usr/lib/libzvt.a
/usr/lib/libkudzu.a /usr/lib/libSDLmain.a

This example lists all files in /usr/lib that start with l; have an uppercase A, F, L, or lowercase z in their
names; and end with .a.

36

Chapter 1

04_583204 ch01.qxd 3/18/05 9:26 PM Page 36

The ? Wildcard
While the star expression matches all or nothing, the question-mark expression, ?, matches precisely one
character. You might need the question mark to winnow a long list of files names down to a few.

In addition, the question mark proves very useful when working with dot files. Dot files are files and
directories that start with a period, or dot. In Unix and Linux systems, dot files are normally hidden.
The ls command, for example, will skip dot files unless you explicitly ask for them.

A big problem with dot files and wildcard expressions is that the current directory has a name of a single
period (.), and the parent of the current directory has a name of two periods (..), which creates a big prob-
lem if you use a wildcard expression such as .* to list all files that start with a dot. The shell can simply
treat all files in the current directory as having a name that begins with ./, which refers to files in the cur-
rent directory, such as ./a.txt. Also, files in the parent directory can be accessed as ../file_name, such as
../a.txt.

If you just want to view dot files and directories, use the question-mark syntax. In this case, you can start
with all files with names beginning with a period and having at least two more characters, which elimi-
nates the . and .. directories. For example:

$ ls .??*

On a typical Linux system, you will likely have hundreds of files matching this expression. (Mac OS X
systems, by default, sport far fewer dot files and directories.) When you have a better idea what files are
available, you can further refine expressions. For example:

$ ls .j*
.jedit:
abbrevs jars modes recent.xml
activity.log jars-cache perspective.xml session
dtds jtidy PluginManager.download settings-backup
history macros properties startup

.jpi_cache:
file jar

This command lists all files starting with a .j or all files in a directory with a directory name starting with .j.

Running Commands in the Background
When you run a shell command, the shell waits until the command finishes. You cannot execute any more
commands, at least in that shell, until the command finishes or you kill it (typically by pressing Ctrl-C).
All the operating systems discussed in this book, however, support multitasking. So why doesn’t the
shell? It does. Place an ampersand after a command to run it in the background. For example:

$ xmms &
[1] 2280
$

37

Introducing Shells

04_583204 ch01.qxd 3/18/05 9:26 PM Page 37

The shell responds with the process ID of the command. (See Chapter 9 for more on processes and how
you can use this process ID.) Next, the shell displays a prompt. It is ready for further commands. When
the background task completes, you’ll see an extra message from the shell, such as the following:

[1]+ Done xmms

Summary
This chapter introduced the shell, the program that accepts your commands on Unix and Unix-like sys-
tems such as Linux. Shells provide the main interface to the underlying operating system. In this chapter
you learned:

❑ Even if you run a graphical environment, you’ll find one or more shells under the hood, running
commands. Using these shells gives you access to the full power of your system.

❑ Unix and Linux systems offer a plethora of shells. Of these, the most popular shell is bash, the
Bourne Again shell. Bash is the default shell on Linux and the current version of Mac OS X.

❑ Each shell offers a number of features to help enter commands, such as command-line editing
and a history of commands.

❑ Shells differ in syntax, especially between the C shell and the Korn shell. That’s unfortunate
because it makes using a shell harder if you need to switch systems. Luckily, the bash shell
supports many features of the Korn shell and the C shell. For example, bash supports both the
history and the fc -l commands to list the command history.

The next chapter takes you from shells to shell scripting.

38

Chapter 1

04_583204 ch01.qxd 3/18/05 9:26 PM Page 38

2
Introducing Shell Scripts

Chapter 1 introduced the shell, a program that patiently awaits your input in the form of com-
mands. These commands range from a simple ls command to complex command lines made up
of multiple commands. Each shell, such as bash, ksh, or csh, requires a slightly different syntax for
entering commands, although the basics are very similar. Commands often require command-line
options as arguments. All of this can make for complex commands.

Furthermore, you often need to issue a number of commands to accomplish your task. Add this all
together and you can see why Unix has the reputation for being hard to use.

Shell scripts help slice through this mess. Shell scripts can hide the complex command syntax, spe-
cialized command-line options, and the long directory paths needed for many commands. Shell
scripts can gather multiple commands together into one script and thereby act as a single command.

But shells aren’t the only way to write scripts. Specialized scripting languages provide another
means to write scripts for your system. These specialized languages include Perl, Python, and Tcl.

This chapter introduces shell scripts, as well as writing scripts to interact with the user. It
addresses other scripting languages and the tools needed to create your own scripts.

This chapter covers the basics for shell scripts, including:

❑ Writing your first scripts

❑ Choosing a text editor for creating your scripts

❑ Writing scripts to remember strange commands, commands you won’t likely remember

❑ Outputting text in your scripts, to provide data to the user

❑ Storing values in variables

❑ Gathering input from the user

The chapters to follow examine major topics in shell scripting in depth. For now, the best way to
learn is to get started writing scripts.

05_583204 ch02.qxd 3/18/05 9:27 PM Page 39

What Are Shell Scripts?
A shell script is a text file that contains one or more commands. This seems pretty simple after all this
buildup, but that’s all a script really is. The power of shell scripts, however, lies not in the simplicity of
the concept, but in what you can do with these files.

In a shell script, the shell assumes each line of the text file holds a separate command. These commands
appear for the most part as if you had typed them in at a shell window. (There are a few differences, cov-
ered in the chapters to follow.) For example, this code shows two commands:

df -k
ls

The following Try It Out shows you how to make these two commands into a script and run it. You’ll see
a number of very short examples that should provide a quick overview to scripting.

Try It Out Creating a First Script
Type these two commands into a text file. (See the section Tools to Edit Shell Scripts later in this chapter
for more on choices for text editors on various platforms.) Save the file and name it script1.

You can then run script1 with the sh command:

$ sh script1
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/hda2 24193540 3712320 19252248 17% /
/dev/hda1 101086 5943 89924 7% /boot
none 502380 0 502380 0% /dev/shm
/dev/hda5 48592392 25468844 20655164 56% /home2
/dev/sda1 499968 286640 213328 58% /mnt/sd
readpipe.tcl script1 tktext.pl vercompare.py

Chapter 4 shows how to turn a shell script into a command and how to specify the shell to run for the
script.

Running the script1 script generates the same output as if you had typed the two commands, df and
ls, at the shell prompt.

How It Works
This example passes the name of a file, script1, as an argument to the sh command, which is, of
course, the name of the Bourne shell command.

Remember that sh may really be bash or ksh on some systems. This, and the other examples in this chapter,
stick to just the syntax supported by the Bourne shell and so should run on all versions of sh.

The sh command reads in the script1 file one line at a time and executes the commands it encounters.
This is very important to remember: A shell runs every shell script. There is no magic involved. The shell
command, sh, accepts a file name as an argument and executes the named file. Executing the file
involves executing each command in the file one line at a time.

40

Chapter 2

05_583204 ch02.qxd 3/18/05 9:27 PM Page 40

The script1 script file lists two commands, df -k and ls, both commands introduced in Chapter 1.
The df command lists the amount of disk space free on the available file systems. The ls command lists
out the files in the current directory. Because of this, the output on your system will differ, based on the
amount of free disk space on your file systems and the files in your directory. The shell outputs the
results of the commands.

Notice that the output of the df command blends right into the output of the ls command. There is no
separation or any explanation as to what is going on. See the section Outputting Text for more on how to
change this.

You can use wildcards in your shell scripts, too, just as if you were entering commands at the command
line. The following Try It Out shows you how to use wildcards.

Try It Out Using Wildcards in a Script
Enter the following command into a text file, and save the file under the name script2:

ls /usr/lib/l*z*a

You can then run the command with sh:

$ sh script2
/usr/lib/libbz2.a /usr/lib/libkudzu_loader.a
/usr/lib/libkdeinit_kaddprinterwizard.la /usr/lib/libmusicbrainz.a
/usr/lib/libkorganizer_eventviewer.la /usr/lib/libz.a
/usr/lib/libkorganizer.la /usr/lib/libzvt.a
/usr/lib/libkudzu.a

How It Works
Just as if you had entered the ls command at the command line, the asterisks (*) in the argument are
expanded by the shell to a list of those files in the /usr/lib directory that start with l (ell), have a z, and
end with an a. The shell outputs the results of the command.

This is very similar to the wildcard examples in Chapter 1, but this time, you’re using the wildcard
expressions inside a script.

You have to be careful, however, with the commands you place in your shell scripts. Interactive com-
mands, especially full-screen commands, don’t tend to work very well. The following Try It Out lets you
experiment with how shell scripts work when you invoke an interactive command.

Try It Out Running an Interactive Command
Enter the following command into a text file and save the file under the name script3:

vi
ls

41

Introducing Shell Scripts

05_583204 ch02.qxd 3/18/05 9:27 PM Page 41

Then run the script using the following command:

$ sh script3
readpipe.tcl script1 script2 script3 tktext.pl vercompare.py

How It Works
Before you see the final output in the preceding example, you will see the entire shell window area get
taken over by the vi command. The shell will pause script3 until the vi command ends.

The vi text editor, discussed in the section Learning vi Modes, will wait until you enter the proper cryp-
tic vi command to exit. If you are not familiar with vi, try :q!— that is, colon, q, bang (exclamation
point). This will exit the vi command. The shell will then execute the next command in the script3 file,
ls in this example.

Chapter 9 covers some mechanisms to execute programs and capture the output instead of just waiting
for the program to terminate.

If for some reason you make a mistake in a shell script file, the shell will quit executing the command
and display an error message. In many cases, but not always, an error will stop execution of the whole
script. For example, if you accidentally typed the vi command as vex (because that is what it does to
many), you would have a script like the following:

vex
ls

Enter this text and save the file under the name error. Now you can run the script:

$ sh error
error: line 1: vex: command not found
error readpipe.tcl script1 script2 script3 tktext.pl vercompare.py

In this example, the shell continued executing the script even after the error on Linux and Mac OS X.

Chapter 11 covers more on handling errors and debugging scripts.

Alternatives to Shells:
Other Scripting Languages

Shells each provide their own scripting language. For example, C shell scripts are not the same as
Bourne shell scripts. You can choose from any shell you have available for scripting (although the
Bourne shell and bash are good shells to stick with, for reasons explained in the last chapter). In addi-
tion, you can create scripts in a number of specialized languages, languages created just for scripting.

42

Chapter 2

05_583204 ch02.qxd 3/18/05 9:27 PM Page 42

Note that there are a number of reasons why you should write your scripts for the Bourne shell instead
of the C shell. See www.faqs.org/faqs/unix-faq/shell/csh-whynot/ for an interesting list of reasons why
you should avoid the C shell for scripts. The C shell provides a great interactive shell, but you probably
want to use sh or bash to run your scripts. This book covers the C shell, but the main focus remains on
bash and sh.

While this book focuses on shell scripting, you should be aware that there are alternatives. Only you can
determine which language fits your needs.

Some of the reasons to choose one language over another include the following:

❑ Your experience and comfort level: This is similar to the old saying, “If all you have is a hammer,
then all your problems look like nails.” If you know just one scripting language, that language is
the right choice for you. And this is not really a bad idea. There is quite an overlap across script-
ing languages.

❑ The experience and comfort level of others in your organization: If your organization needs
to maintain a number of scripts for a long time, then you’ll want to choose the language that
works best for the rest of the team.

❑ Availability: Some languages may be available, and others may not. For example, if you want
to script a web site, then the two most available languages are PHP and Perl. These are the lan-
guages supported by the majority of web-hosting firms.

❑ What feels right: Some scripting languages support syntaxes that seem, well, downright odd.
This is really a matter of personal preference. But if you really hate the syntax of a language,
you should probably pick another.

❑ What you need to learn: One of the advantages of using the shell for scripting is that you need
to learn the shell as well, just to enter commands. Scripting doesn’t add much more to learn
than what you already need to know about the shell. This is not true for other scripting lan-
guages, where you need to learn an entirely new language.

This book, obviously, focuses on shell scripting. But the following sections should provide a flavor of
other major scripting languages to help you decide. There are literally hundreds of scripting languages,
but three of the most popular are Perl, Python, and Tcl.

Perl
Short for Practical Extraction and Reporting Language, Perl originated as a tool to help system administra-
tors generate reports on system activities. Perl excels at generating reports.

Perl includes many of the powerful text-processing abilities of another language called Awk, covered in
Chapter 7. In addition, thousands of add-on modules provide extra features for Perl, such as networking
and database access.

Perl runs on Windows, Linux, Unix, Mac OS X, and a host of other systems. Furthermore, most web-site
hosting firms support Perl, allowing you to write Perl scripts to process web requests. (These are called
CGI, or common gateway interface, scripts.)

43

Introducing Shell Scripts

05_583204 ch02.qxd 3/18/05 9:27 PM Page 43

The following shows a Perl script:

#!/usr/bin/perl -w

#
Reads DBM file, printing entries.
#
Usage:
Perl sdbm2.pl database

use SDBM_File;
use Fcntl;

Print format for STDOUT.
format STDOUT=
@<<<<<<<<<<<<<<<<<<<<<< @<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
$key, $value
.

format STDOUT_TOP=
Program File Name page @<<<
$%
.

$database = $ARGV[0];

Open DBM database.

$mode = 0666;

$flags = O_RDONLY | binary();

tie(%execs, ‘SDBM_File’, $database, $flags, $mode)
or die

“Can’t open \”$database\” due to $!”;

Process entries.
while (($key,$value) = each(%execs)) {

write;
}

Close database.
untie(%execs);

Subroutine to return
O_BINARY value on Windows,
and nothing if not on Windows.
#
sub binary() {

return O_BINARY if is_windows();
}

44

Chapter 2

05_583204 ch02.qxd 3/18/05 9:27 PM Page 44

#
Subroutine to detect if running under
Windows.
#
sub is_windows() {

return $^O =~ /^(MS)?Win/;
}

This script reads through a DBM database, printing out all the values using a Perl report format. Many
of the concepts in this script, including using a hash or sharp sign, #, for comments, come originally
from shell scripting.

Note how the first line uses the #! format to specify the program to run the script, /usr/bin/perl in
this case. In addition, note how Perl uses double quotes similar to the Bourne shell. When you want to
place double quotes within a double-quoted text string, you need to use a backslash character, \, to
escape the quotes.

Detractors of Perl don’t like the large amount of punctuation you see in even the simplest Perl scripts. Perl
uses a $, @, and % to reference variable values, depending on the type of variable. Perl supports many more
special variables, such as $!, than the shell does. This can also make Perl scripts harder to understand.

For more on Perl, see Cross-Platform Perl, Second Edition by Eric Foster-Johnson (Wiley, 2000).

Python
Python, named for the Monty Python comedy troupe, provides a relatively modern scripting language,
at least compared to Perl, Tcl, bash, ksh, and csh. Python supports object-oriented development and in
its most controversial feature, uses program indenting to define blocks of commands.

The following is a sample Python script:

#!/usr/bin/python

Reads in package header, compares to installed package.
Usage:
python vercompare.py rpm_file.rpm
#

import rpm, os, sys

def readRpmHeader(ts, filename):
“”” Read an rpm header. “””
fd = os.open(filename, os.O_RDONLY)

h = ts.hdrFromFdno(fd)

os.close(fd)
return h

ts = rpm.TransactionSet()
h = readRpmHeader(ts, sys.argv[1])

45

Introducing Shell Scripts

05_583204 ch02.qxd 3/18/05 9:27 PM Page 45

pkg_ds = h.dsOfHeader()
for inst_h in ts.dbMatch(‘name’, h[‘name’]):

inst_ds = inst_h.dsOfHeader()

if pkg_ds.EVR() >= inst_ds.EVR():
print “Package file is same or newer, OK to upgrade.”

else:
print “Package file is older than installed version.”

This Python script compares a software package in RPM format with an RPM file to see which package
should be considered more recent: the installed package or the package file. Most Linux systems use
RPM (short for RPM Package Manager) to manage installed applications.

Python is well known for using whitespace, such as the tab character, to define blocks. While a Bourne
shell script will start an if statement with if and go until the fi statement, Python starts with if and
then all indented lines underneath form the block. While indenting your scripts can improve readability,
mandating the indenting has been the most controversial feature of Python.

Python is more object-oriented than Perl or shell scripts. Although you can create object-oriented scripts
in any language, if you have experience in Java or C++, then Python is more likely to appeal to you.

Tcl
Tcl, pronounced tickle, stands for Tool Command Language. Tcl was created as a lightweight means to add
scripting to applications such as word processors, integrated-circuit testers, and spreadsheets.

Tcl sports a simpler syntax than most shells but even so has proved itself highly useful. The following
script shows how to open a pipe to a program, a topic covered for shell scripting in Chapter 8.

Opening a pipe for reading.

#
Opens command as a pipe for reading.
Pass command without the leading | character.
#
proc read_pipe { command } {

Initialize
set data “”

Start piped command.
set fileid [open |$command r]

if { $fileid != “” } {

Read data.
set data [read $fileid]

close $fileid
}

return $data

46

Chapter 2

05_583204 ch02.qxd 3/18/05 9:27 PM Page 46

}

readpipe.tcl

Tcl has been compared by many to appearing as LISP without all the parentheses. If you know LISP, Tcl
will be easy to learn. Tcl works best if you have a C or C++ program for which you want to add script-
ing. The Tcl interpreter can easily be embedded within a C or C++ application, allowing you to run
scripts from within the application.

You will find that Tcl shares many features with shell scripts, including using a dollar sign, $, to refer-
ence variables.

These sample scripts should give you at least a flavor of these different languages, enabling you to better
decide if one of these will meet your needs.

MS-DOS Batch Files
You could consider MS-DOS batch files as another form of scripting language. While you can write
scripts using the MS-DOS batch syntax, even sophisticated scripts, the batch syntax misses a number of
features provided by modern shells such as bash or ksh. For example, DOS does not support file glob-
bing using wildcards. A true shell scripter, therefore, will look disdainfully on MS-DOS batch files as
being inadequate.

Even so, MS-DOS batch files are proof that scripting has shown itself useful in just about every environment.

Once you have selected a scripting environment (hint: pick sh or bash), the next step is to choose a tool for
editing shell scripts. Because shell scripts are merely text files, the tool you need to select is a text editor.

Tools to Edit Shell Scripts
To write shell scripts, you really need two tools:

❑ A shell

❑ A text editor

The main tool you need to edit shell scripts is a text editor. This makes sense because shell scripts are
simply text files, albeit special text files. If you’ve programmed in any computer language, chances are
you have selected a text editor that meets your needs. By all means, stay with any editor that has proved
productive for your work. There is no reason to change.

If you haven’t selected an editor, or you are running on an operating system you have not used much
before, then the following sections will prove useful.

Using Legacy Editors
Unix, Linux, Mac OS X, and many other operating systems support two legacy editors: emacs and vi.
These are editors that have been around for years and run on nearly every platform you can think of.

47

Introducing Shell Scripts

05_583204 ch02.qxd 3/18/05 9:27 PM Page 47

As of 10.3.5, Mac OS X actually uses vim, or vi Improved. If you’re new to vi, this won’t really make a
difference, although differences between vi and VIM are noted in this book as needed.

The mere mention of these editors makes some people shudder in fear. They aren’t that bad. Really.
Older than many software developers, these editors sport a certain retro feel. They are useful for three
main reasons:

❑ Many people have been trained on these editors. You would be amazed at how muscle memory
works; just watch diehard emacs or vi users as their fingers fly over the keyboard. True diehards
don’t even use the arrow keys or other such modern innovations. These people are most enter-
taining when they use Macintosh systems.

❑ These editors are available anywhere. Well, mostly anywhere. There once was an awful Unix
system from Prime Computer that didn’t even have vi, but that is thankfully long gone. You can
run vi on PDAs and supercomputers and most everything in between. Vi used to even be an
example program for the Borland C compiler on DOS.

❑ These editors don’t require a graphical environment. If you connect to a remote system via tel-
net or ssh, for example, graphical editors will likely not work. Vi or emacs will, however. For
this reason alone, you may want to learn one of these text editors.

The following sections introduce these two retro text editors. Imagine you are back in the 1970s. Disco is
big. Computers are rare and expensive. Computers actually work. And you have an ASCII terminal as
your only means to access computers.

Delving into emacs
If there is a wonder editor that can meet all needs for all people, it is emacs. A product of the GNU pro-
ject, emacs can do anything. Literally anything. That’s because emacs has a built-in LISP program inter-
preter. Originally written by Richard Stallman, leader of the Free Software Foundation and a champion
of free software, emacs provides an extensible text editor with a plethora of features. You can read your
email, browse the news, and even play games, all from within emacs.

Emacs does not ship with all versions of Unix. For example, System V Unix does not include emacs.
You can download emacs from www.gnu.org/software/emacs/emacs.html.

Unlike vi (covered following), emacs is a modeless text editor. So with emacs, you can just type. This
makes editing documents easy. The hard part, however, comes when you want to perform a command
in the editor, such as saving a file. Because emacs is modeless, you need some way to let the emacs pro-
gram know you want to save the file. In modern applications, you’d simply choose Save from the File
menu. Emacs, however, predates the common usage of the mouse and graphical desktops, although
modern versions of emacs work with both.

Like modern desktop applications, emacs uses the equivalent of keyboard shortcuts, but emacs uses
these key combinations for every editor command, and there are hundreds of commands. Thus, for
emacs commands, two keys are important: Control and Meta. Most keyboards show Control as Ctrl,
with Macintosh keyboards showing “control.” The Meta key, however, is nowhere to be found. There
used to be systems that actually showed a Meta key, but for modern keyboards emacs usually maps
Meta to the Alt or Esc key. In most cases, this will be Esc, but you should check the emacs documenta-
tion or online help for your system. (Directions for consulting the emacs documentation and online help
appear later in this section.) On Mac OS X systems, the Meta key maps to the option key, which, on most
Mac keyboards, reads as “option” but may read “alt” instead.

48

Chapter 2

05_583204 ch02.qxd 3/18/05 9:27 PM Page 48

Emacs includes extensive online help available within the application from the Help menu or from help
commands. In the emacs documentation, the key combinations appear as C-x or M-x, short for Ctrl-X
and Alt-X or Esc-X (based on your Meta key mapping). So, for example, the command to save the cur-
rent text is C-x C-s. This translates to Ctrl-X, Ctrl-S. The key combination C-x b for jumping to the next
buffer translates to pressing Ctrl-X and then B. The tables following use the same conventions to get you
used to the emacs way of documenting key combinations.

To get started with emacs, simply type the emacs command:

$ emacs

This launches either an emacs window or the text-only version of emacs. Both versions work the same,
but the graphical version provides extra help in the form of menus and scroll bars. You may find emacs
available from the system menus, usually in a programming or tools section, as emacs is most used by
software developers.

Emacs starts up with a handy help screen unless you provide a command-line argument of a file name
or have otherwise told emacs not to display this help.

Figure 2-1 shows the default emacs help screen.

Figure 2-1

49

Introducing Shell Scripts

05_583204 ch02.qxd 3/18/05 9:27 PM Page 49

As you can see in the figure, modern versions of emacs include a menu bar. The commands available
from the menu bar are invaluable for learning emacs. You don’t have to remember all the strange key
combinations. Many of the menu choices show the corresponding key combination, which helps you
learn emacs gradually instead of all at once.

Emacs can be highly customized. Your version of emacs may differ. Don’t worry. Use the online help to
get started.

You can also tell the emacs command to load a particular file or files on startup, speeding up your work.
For example, to start an emacs session with the script1 file from the first example in this chapter, use
the following command:

$ emacs script1

This command tells emacs to load the file named script1 in the current directory.

The most important commands for using emacs appear in the following table.

Emacs Key Combination Editing Command Long Name

C-x C-s Save text in the current buffer with save-buffer
the current filename.

C-x C-c Save and quit. Saves text in the save-buffers-kill-emacs
current buffer and exits emacs.

C-x C-w Save text in current buffer under a write-file
different file name.

C-x C-f Open file. find-file

C-g Magic operation to cancel a running keyboard-quit
operation that appears hung.

In the previous table, the long name is the official emacs name for the given operation. The long name is
useful should you decide to customize emacs, an advanced topic. The long names also give you an idea
of how emacs names its commands and what kinds of commands are available. You can run a long com-
mand by pressing M-x and then typing the command name.

Press Enter after typing in the command name. For example, to open a new file, you can choose Open
File from the File menu; type C-x C-f; or, to prove you know emacs, type M-x find-file.

The great claim that emacs is modeless isn’t entirely true, as you can find out if you try the M-x key
combination to run an emacs command. M-x won’t always work because of hidden emacs modes. Try
M-x in a buffer that you can edit, which is not a help buffer.

Emacs supports an extensive online help system. This is great because unless you’ve been trained with
emacs, most newcomers get confused by the huge number of editor commands available. The following
table lists the main help commands.

50

Chapter 2

05_583204 ch02.qxd 3/18/05 9:27 PM Page 50

Emacs Key Combination Help Command Long Name

C-h C-h Get help on using emacs help help-for-help

C-h i View the emacs manuals info

C-h c key Show the long command for describe-key-briefly
the given key

C-h k key Show more description describe-key
for the given key

C-h t Enter the emacs tutorial help-with-tutorial

Ch-x command List the keys for a given where-is
long command name

C-h b List all key bindings (long) describe-bindings

C-h a text List all commands containing text command-apropos

The Help menu also provides a lot of options. You’d be amazed to see all the online material on emacs
available from the Help menu. The emacs manuals support a primitive type of hypertext, called info.
The info system was created long before the Internet and HTML became popular.

Because there are so many key combinations, emacs provides a lot of help to figure out which key does
what. You can use the C-h c or C-h k combination to figure out which command emacs will execute for
a given key. With either the C-h c or C-h k combination, you need to press the actual key combination to
see the description. For example, to determine what the C-h t combination does, press C-h c C-h t.

The area at the bottom of the emacs window, called the minibuffer, should then display the following:

C-h t runs the command help-with-tutorial

This feature is great if you try one of the commands listed in this chapter and it doesn’t do what you
think it should.

Emacs provides a huge number of commands to navigate through a file. Remember that emacs was
designed before users could rely on having arrow keys, let alone a mouse or a standardized keyboard.
The following table shows the main emacs navigation commands.

Emacs Key Combination Navigation Command Long Name

C-f Jump forward one character forward-char

C-b Jump backward one character backward-char

C-n Jump down one line next-line

C-p Jump up one line. previous-line

M -f Move forward one word forward-word

Table continued on following page

51

Introducing Shell Scripts

05_583204 ch02.qxd 3/18/05 9:27 PM Page 51

Emacs Key Combination Navigation Command Long Name

M-b Move back one word backward-word

C-a Move to beginning of the line beginning-of-line

C-e Move to the end of the line end-of-line

M-< Move to beginning of file beginning-of-buffer

M-> Move to end of file end-of-buffer

C-v Jump forward one screen scroll-up

M-v Jump backward one screen scroll-down

C-l Clear screen, move cursor to recenter
center of file, and redraw

C-s Search forward isearch-forward

C-r Search backward isearch-backward

Yow. Don’t worry, though. If you run the graphical version of emacs, you can use the scroll bar, the mouse,
Page Up and Down keys, arrow keys, and other modern features you’d expect. In addition, most versions
of emacs come preconfigured for standard PC keyboards. So, for example, the Home key should move the
cursor to the beginning of the line, and the End key should move the cursor to the end of the line.

In older versions of emacs, pressing the Home key moved you to the start of the whole file, while End
moved you to the end of the file. You may still see this behavior, depending on how emacs has been cus-
tomized for your platform.

To type at a particular location, just click the mouse where you want to type.

Emacs supports a powerful search engine. Type C-s to start searching. As you type the text to search for,
emacs already starts searching. This is called an incremental search, and it proves very powerful and fast.
To search for the next occurrence of the text, type C-s again, and so on. Use C-r to search backward.

Emacs uses a block cursor that may confuse you. The Macintosh pioneered the idea that the cursor
appears between two characters, which simplified a lot of issues for how selections and keys should
work. Emacs, however, always places the cursor on a character position rather than between characters.
This can be a bit disconcerting at first.

Emacs also causes confusion with its support for copy and paste. The keys chosen by emacs, at least by
default, conflict with the standardized shortcuts for cut, copy, and paste on most platforms. The follow-
ing table shows the emacs copy and paste commands.

Emacs Key Combination Copy and Paste Command Long Name

C-w Cut selected text kill-region

M-w Copy selected text kill-ring-save

C-y Paste text yank

52

Chapter 2

05_583204 ch02.qxd 3/18/05 9:27 PM Page 52

Emacs provides a powerful concept called a kill buffer. A buffer in emacs is an area that holds text. The kill
buffer is where emacs places text that has been cut. You can bring text back from the kill buffer (what
most people call a paste operation). To copy or paste text, select the text you want with the mouse. You
can also mark text by moving the cursor to the beginning of the text block, marking the start, moving the
cursor to the end of the text block and marking the end, and then cutting or copying the text. Using the
mouse proves a lot easier.

See the online help within emacs for more on how to mark text.

The classic emacs keys for cut, C-w, and paste, C-y, were chosen long, long ago, before the Macintosh
appeared, before IBM’s CUA (Common User Access) interface guidelines (the guidelines for the
Windows interface), even before DECwindows. These keys become a problem, however, when you try
to work with other applications. Now you can do everything, really everything, in emacs But, most
users also run other programs such as word processors, web browsers, and so on.

Microsoft Word in particular conflicts with emacs. C-y, which is the default shortcut for paste in emacs,
is redo in Word (and also in the OpenOffice.org Writer application). C-w, which is the default shortcut
for cut in emacs, closes the current window in both Word and Writer (and in many other applications).

You can remap keys in emacs to help mitigate this problem with interoperability. But C-x, which should
be the cut command in Word, is problematic because C-x is the prefix used for a huge number of emacs
commands.

To be fair, emacs predates Word, Writer, and most other desktop applications. That’s no consolation,
however, when you try to work with multiple applications together.

In addition to cutting selected text, emacs provides a number of commands to delete text, from charac-
ters to words to lines. The following table lists these commands.

Emacs Key Combination Text Deletion Command Long Name

Delete, C-d Deletes the character under delete-char
the cursor

Backspace Deletes the character to the left backward-delete-char-untabify

C-Delete, M-d Deletes word, to the right of kill-word
the cursor

C-k Deletes to the end of the line kill-line

C-t Transposes (swaps) two transpose-chars
characters

Insert Toggles overwrite mode overwrite-mode

As usual, these key combinations can be customized, so your version of emacs may differ slightly.

As mentioned previously, emacs is an old application, appearing prior to graphical windowing systems.
Over the years, however, emacs developed its own text-based windowing system. These textual win-
dows are called buffers.

53

Introducing Shell Scripts

05_583204 ch02.qxd 3/18/05 9:27 PM Page 53

A buffer is both an area of memory that holds text and a subwindow in the emacs window. Sometimes
this second meaning is called a window, but the documentation is not always consistent. Separate top-
level windows in emacs are called frames.

With emacs, the C-x 2 key combination splits the current window into two buffers. That is, press Ctrl-X,
followed by 2. You can edit two separate files, one in each buffer. Or both windows can refer to the
same buffer, allowing you to view and edit at two places in the file at once. This feature can prove very
convenient.

The following table lists the emacs buffer-related commands.

Emacs Key Combination Buffer-Related Command Long Name

C-x 2 Split window split-window-vertically

C-x 1 Return to one window delete-other-windows

C-x b Jump to next buffer switch-to-buffer

C-x b buffer Switch to the named buffer switch-to-buffer

C-x 4 b Jump to next buffer and create switch-to-buffer-other-window
a subwindow for it

C-x C-b List current buffers list-buffers

C-x C-f Load file into buffer find-file

C-x 4 f Load file into new subwindow find-file-other-window

C-x C-s Save current buffer to current save-buffer
file name

In addition to splitting the current window into two subwindows, emacs keeps a list of buffers. You can
have a number of buffers hidden off-screen, such as the kill buffer. The C-x b key combination jumps to
the next buffer in the buffer list. The C-x C-b combination lists all the available buffers.

Once you can find your way around a file and edit text, you can make use of the interactive shell inside
emacs. Using the M-x eshell command starts an eshell, or emacs shell, inside an emacs buffer. This
shell appears in Figure 2-2.

Because this shell appears inside an emacs buffer, you can select text, copy and paste from other buffers,
and grab previous shell commands. Thus, you can edit a shell script in one emacs window while trying
out the commands in another window.

As you can imagine, back in the day emacs was a very, very productive tool. Nowadays, emacs shows its
age, but it still has many users. The embedded shell helps when writing shell scripts.

There is another version of emacs called xemacs, available at www.xemacs.org. Xemacs provides more
support for graphical environments. The two versions differ, and there seems to have been a bit of con-
flict in the past between the emacs and xemacs partisans. Choose whichever version of emacs you prefer.

54

Chapter 2

05_583204 ch02.qxd 3/18/05 9:27 PM Page 54

Figure 2-2

Learning vi Modes
Emacs may show its age, but before there was an emacs, vi was the best thing around. The fact that vi is
still here, and still being used, shows that it, like shells and shell scripts, still serves a purpose for many
users. Vi, short for visual editor, is a modal editor. In vi, there are two modes: insert and command. In
insert mode, the text you type gets entered into the file you are editing. In command mode, the keys you
type are interpreted as vi commands, short cryptic commands that can have a major effect on your files.

To start vi, simply enter the vi command:

$ vi

You can also start vi with a session editing a particular file. For example:

$ vi script1

This command tells vi to edit a file named script1 in the current directory. Vi can create the file if it
does not exist.

55

Introducing Shell Scripts

05_583204 ch02.qxd 3/18/05 9:27 PM Page 55

You can pass more than one file name on the command line. For example:

$ vi script1 script2 script3

Vi shows each file one at a time. The :n command (see the second table following) jumps to the next file.

When you start vi, the editor places you in command mode. Thus, any keys you start typing are
assumed to be commands. Unlike emacs, you cannot just start typing text. Instead, you have to enter a
command to switch to insert mode. The most common command to enter insert mode is a lowercase i,
short for insert.

The following table lists the commands to switch over to insert mode.

Vi Insert Command Purpose

i Inserts before the current character

I Inserts at the beginning of the line

a Appends after (to the right of) the current character

A Appends at the end of the current line

o Inserts a new line after the current line

O Inserts a new line before the current line

Once in insert mode, the text you type gets entered into the file you are editing. Press Esc to exit insert
mode.

Some versions of vi display text at the bottom of the editor telling you that you are in insert mode, such
as the following:

-- INSERT --

But many versions of vi provide no feedback as to which mode you are in. If you’re ever unsure, just
press Esc twice. If you are already in command mode, vi merely beeps at you. When you get into com-
mand mode, vi beeps at you.

One of the best descriptions of vi is that it is a program that beeps at you a lot.

In command mode, you can use the arrow keys to navigate through the file. You can also use special
keys to navigate, as listed in the following table.

Vi Navigation Key Purpose

h Move one character left.

j Move one line down.

k Move one line up.

56

Chapter 2

05_583204 ch02.qxd 3/18/05 9:27 PM Page 56

Vi Navigation Key Purpose

l Move one character right.

Ctrl-D Move down one-half page.

Ctrl-U Move up one-half page.

Ctrl-F Move forward one page.

Ctrl-B Move back one page.

G Jump to the end of the file.

1G Jump to the first line.

number G Jump to the given line number.

The G command takes you to a given line number. This is very useful when you get an error from the
shell about a shell script. Usually the error message tells you which line had the error. While this may
not always be accurate, you can use the G command to quickly jump to the line in question. Simply enter
the line number and then an uppercase G, and vi takes you there.

Chapter 11 covers how to deal with errors and fix them in your scripts.

You can use this method of placing a number before a command to perform the command that many
times. For example, 4j moves the cursor down four lines.

Remember, you must be in command mode for these commands to work.

Vi supports a number of file-related operations, as you’d expect from any text editor. The following table
lists the main file-related operations.

Vi File-Related Command Usage

ZZ Save current file and quit vi.

:w Save current file.

:wq Save current file and quit vi.

:q Quit vi. Does not save.

:q! Really quit vi. (Like shouting.)

:n Jump to the next file.

:rew Go back to the first file.

:w filename Save the current text under a different filename.

:f Report the name of the current file and the current
position.

57

Introducing Shell Scripts

05_583204 ch02.qxd 3/18/05 9:27 PM Page 57

Vi supports a number of special commands that start with a colon character (:). These include :w to
write the current contents to disk (under the current file name) and :q to quit vi. If you try to quit vi
without saving, vi beeps at you. You can force vi to quit with the :q! command. The exclamation mark,
!, acts as a way to force vi to do your bidding. You can use it with other commands, such as :n! to jump
to the next file without saving the current file. Note that any changes you made will be lost, the same as
if you quit without saving.

You can also use :w! to overwrite a read-only file if you are logged in as root.

Like emacs, vi supports yanking (copying and pasting) text, although with a different set of commands,
as shown in the following table.

Vi Copy and Paste Command Usage

yy Yanks current line into buffer, similar to copying to the
clipboard.

p Puts the yanked text on the next line after the current posi-
tion of the cursor.

number yy Yanks more than one line, as specified by number.

u Undoes the last command.

r Redo, when called after an undo, performs the undone com-
mand again. Not supported by default in vim.

. Repeats the last command.

You can yank, or copy, four lines of text with the 4yy command. You can then move the cursor about and
paste the lines into the text with the p command.

You can search in vi with the / command. Just type / and then the text to search for. The following table
summarizes the vi search commands.

Vi Search Command Usage

/text Search for text going forward.

/ Search again for the same text, going forward.

?text Search for text going backward.

? Search again for the same text, going backward.

n Repeat last search.

N Repeat last search, but reverse the direction.

Over the years, versions of vi have advanced far beyond the original simple program that beeps a lot. A
version of vi called vim, short for vi improved, adds a host of new features to vi. Vim provides for syntax
highlighting for programming files, including shell scripts, and an amazing amount of extended func-
tionality. Vim includes extensive online help and multiple split windows.

58

Chapter 2

05_583204 ch02.qxd 3/18/05 9:27 PM Page 58

Linux ships with vim as the default implementation of vi. Thus, if you type vi or vim, you get the vim
command. Mac OS X does the same, using vim for vi.

See www.vim.org for more on vim. Vim is free but considered charityware. The vim web site asks that if
you find vim useful, you consider helping needy children in Uganda.

You may also want to load Cream for Vim, a graphical front-end to vim. This add-on makes vim appear
almost as a fully graphical editor, including scroll bars and menus.

Download Cream for Vim from cream.sourceforge.net.

If vi or emacs isn’t your cup of tea, you can choose from a large variety of graphical modern text editors.

Moving to Graphical Text Editors
In addition to the legacy text editors, you can choose from a wide variety of more modern graphical text
editors. These editors usually include menus, the ability to change the text font, and scroll bars — all
useful features for text editors.

Editors are personal tools. Just as different people like different types of cars, people have different tastes
in text editors. What works for one person may bug the heck out of another. There’s no one right editor
for everyone, so choose one that works for you.

If you are starting with Linux, Mac OS X, or Unix, then you should begin with a more modern editor.
And there are modern editors for just about every taste. You can choose from editors that just run on a
particular platform, such as Mac OS X, or choose from a number of excellent cross-platform editors.

Cross-Platform Editors
Moving between systems can be hard. If you work on any combination of Mac OS X, Linux, Windows,
or Unix systems, you’ll be faced with learning how each system operates over and over. Even something
as simple as quitting an application or closing a window differs by platform. This problem only gets
worse when dealing with text editors, something most script developers use for hours a day.

If you need to work on different systems, especially Linux and Windows systems, you probably want to
get a cross-platform text editor. Instead of having to relearn all the special options for text editors on
each platform, you can learn an editor once and then reuse your skills on multiple boxes. These are all
programs that can run on multiple operating systems and should act the same, or nearly the same, on all
supported systems.

Note that emacs and vi are cross-platform editors as well. You can download versions of either editor for
a plethora of systems. See the section Using Legacy Editors for more on emacs and vi.

jEdit provides one of the favorite cross-platform text editors. Available at www.jedit.org, jEdit runs on
any system that supports Java on the desktop, including all the desktop systems listed so far. jEdit
requires a Java Runtime Environment available from www.java.com, to execute. jEdit is too large a pro-
gram for most PDAs, however.

59

Introducing Shell Scripts

05_583204 ch02.qxd 3/18/05 9:27 PM Page 59

jEdit supports syntax highlighting, showing comments, for example, in a different color. jEdit supports
most source file formats and includes a lot of features. You can download plugins that extend jEdit,
adding new functionality. jEdit can manage the task of downloading and installing plugins, which
makes this whole process painless. In addition, you can customize the jEdit display to place, or dock,
windows where you want them.

jEdit appears in Figure 2-3.

Figure 2-3

Another cross-platform editor, known simply as J, includes a huge amount of functionality right out of
the box. J supports special modes for editing Java, JavaScript, XML, and a number of other file syntaxes.
J works the same for all formats, providing a consistent editing environment. J supports reading and
sending email and the CVS source code control system. There are other neat aspects to J that you just
have to discover.

60

Chapter 2

05_583204 ch02.qxd 3/18/05 9:27 PM Page 60

In addition, J doesn’t barrage you with a huge number of options. This is also the downside of J. You
have to be able to edit J’s property files to customize the editor. If you work in a text editor for a large
part of every day, J can prove quite productive.

Like jEdit, J runs on any system that supports Java on the desktop. Download J from http://armedbear-j
.sourceforge.net.

Jext provides yet another Java-based text editor. Jext, available from www.jext.org, provides a simply
beautiful text editor with a host of features. Like jEdit, Jext supports plugins to extend the functionality
of the editor.

Of these three Java-based text editors, jEdit provides the largest number of features.

Eclipse is a full-blown IDE (Integrated Development Environment) for developing Java applications. A
handy editing plugin called color editor performs syntax highlighting on approximately a hundred file
formats, including shell scripts. The color editor plugin actually uses the jEdit syntax definition files to
highlight the source code.

Download Eclipse from www.eclipse.org and the color editor plugin from http://gstaff.org/colorEditor/.
You will also need a Java Runtime Environment.

Another popular editor for those who work with software is SlickEdit, an editor that runs on Windows,
Linux, Mac OS X, and most popular Unix systems. You need to get a different version of SlickEdit for
each platform. You can purchase SlickEdit from www.slickedit.com.

Mac OS X Editors
For text editors on Mac OS X, you have an embarrassment of riches. Along with the editors mentioned
previously, you have a number of free, shareware, and commercial editors that exist only for Mac OS X
and take advantage of some of the unique features of the Mac operating system.

Luckily, you get one for free, namely TextEdit. This lives in the /Applications folder and is a basic text
editor, with some additional features. One feature that you have to watch out for is that by default,
TextEdit uses RTF, not plain text, for its normal format. Because RTF is not usable for shell scripts, you
want to make sure that you select Make Plain Text from the Format menu, as shown in Figure 2-4. This
ensures that the file you save is a plain text file, as required for shell scripts.

Figure 2-4

While TextEdit is a good basic editor, it’s really not designed for shell scripting. It’s a bit of a station wagon
in that it does everything okay, whereas you want something that’s built with your needs in mind.

61

Introducing Shell Scripts

05_583204 ch02.qxd 3/18/05 9:27 PM Page 61

There are a lot of editors out there, but the best one that won’t cost you a lot of money is SubEthaEdit, by
the appropriately named Coding Monkeys, at www.codingmonkeys.de/subethaedit/. SubEthaEdit is a
programmer’s editor and has a lot of the things you want out of such a beast. First, everything is plain
text. Second, it supports features like syntax highlighting. It’s reasonably extensible. It also allows other
people using SubEthaEdit on your local network to collaborate with you on a document at the same
time. Aside from the shared editing, it also supports features such as regular expression searching (intro-
duced in Chapter 1), the ability to jump to different parts of your script, and split-screen views, which
are great for things such as long scripts where you have one part of the script relying on another part,
and there are 8 billion lines of code between them. Split-screen views let you see both at once, so you
spend more time scripting and less time coding.

If you’re using SubEthaEdit for personal use (read: not in a commercial environment), then it’s free. If
you’re using it in a commercial environment, then the cost for three licenses is $35 U.S., which is pretty
reasonable for such an amazing product.

But the true leader in the Mac OS X text-editor race is BBEdit from Bare Bones Software, at www.bare
bones.com/products/bbedit/. BBEdit is one of those products that have so many tricks and short-
cuts you don’t even realize how badly you need it until you use it. To start with, if you’re an emacs user,
you can tell BBEdit to use emacs keybindings, or keyboard commands, so that your muscle memory
still works. BBEdit has command-line components, so if you’re in a shell window, you can open a file in
BBEdit directly from the shell, edit it, close it, and never have to deal with the Mac OS X open/save dia-
log boxes. BBEdit is shown in Figure 2-5.

BBEdit doesn’t support every emacs shortcut. (For all its coolness, it’s only a text editor. You can’t send
email from it. Although if you need to send email from something with a Bare Bones logo, they’ll happily
sell you an email program.)

Figure 2-5

62

Chapter 2

05_583204 ch02.qxd 3/18/05 9:27 PM Page 62

But wait, there’s more! BBEdit has built-in support for regular expressions and can apply them to multi-
ple files in multiple folders at once. It’s tightly integrated into the shell environment, so you can run the
scripts you’re working on from within BBEdit and never have to switch between BBEdit and a Terminal
window.

Do you want to use Perl or Python within BBEdit? It’s in there. Want to be able to connect to a remote
machine securely via SFTP to edit scripts there? Built in. Want to open those remote files from the shell
in BBEdit via SFTP? Can do. Want to use BBEdit from the shell to check differences between two or more
files? In two or more folders? Got it. BBEdit’s not shareware, nor is it Open Source, but if you want the
ultimate text tool on Mac OS X, then BBEdit is what you want.

Linux Editors
Each of the Linux desktop environments includes one or more text editors, and you can choose from a
plethora of other graphical text editors for Linux.

For the GNOME desktop, one of the main editors is gedit, which appears in Figure 2-6.

Figure 2-6

63

Introducing Shell Scripts

05_583204 ch02.qxd 3/18/05 9:27 PM Page 63

Gedit provides a basic text editor in a friendly-looking window. In addition to basic text editing, gedit
supports the syntax of a number of programming and markup languages, such as Java, C++, XML, and
HTML. Gedit does not highlight shell scripts, unfortunately.

A special gedit plugin allows you to run commands, such as shell scripts, and capture the output of
these commands. Gedit shows the output in a separate window. As with the emacs editor, the ability
to run shell scripts from within the text editor is a great help.

For the KDE desktop, kate defines the main KDE text editor. Kate provides a full-featured text editor,
supporting many more features than gedit, including the capability to manage projects. Each project
includes a number of files, and this feature is very useful for Web site development or programming.

You can rearrange the kate interface, moving and customizing toolbars and keyboard shortcuts. Kate
supports plugins to extend its functionality. For example, the default kate installation includes plugins
for working with C++ programs, HTML web pages, and XML documents.

Cute, available at http://cute.sourceforge.net, provides a text editor aimed at beginners. This editor is
built on the Qt (pronounced cute) libraries. Qt forms the base of the KDE desktop software.

Other graphical editors for Linux include SciTE and Glimmer. SciTE, from www.scintilla.org/SciTE.html,
started as a demonstration application that evolved into a comprehensive programmer’s text editor.
Glimmer, from http://glimmer.sourceforge.net, provides another graphical editor with syntax highlight-
ing for shell scripts and other programmer-related file formats.

Unix Editors
Just about all the Linux editors can work on Unix, although the GNOME or KDE editors may require too
many Linux libraries to make the porting effort worthwhile. For example, unless you have the full
GNOME desktop for your Unix system, it is unlikely you can get an editor such as gedit to work. That’s
because GNOME (and KDE) applications have a large number of dependencies on libraries that come
with the full desktop environments.

The standard Unix desktop is called CDE (Common Desktop Environment). CDE should be available on
most commercial versions of Unix such as Solaris or HP-UX, except for Mac OS X, where there is no rea-
son to run the CDE in place of the Macintosh desktop interface.

The CDE desktop includes a text editor, available from an icon on the task bar. This is a fairly bare-bones
editor but friendlier than vi or emacs.

A favorite Unix text editor is NEdit. NEdit, available at www.nedit.org, requires the Motif libraries (now
freely available for most platforms as OpenMotif from www.openmotif.org). Motif forms the basis of the
CDE as well. You can download prebuilt versions of NEdit for Linux and most versions of Unix from the
NEdit web site.

NEdit looks a bit dated with the standard Motif look, but don’t let that put you off. For Unix text editors,
NEdit provides an amazing amount of power and simplicity. NEdit has been optimized for speed and
keyboard efficiency. It supports shell scripts and lots of other programming-related file formats, such as
C, Java, and so on. You can see NEdit in Figure 2-7.

64

Chapter 2

05_583204 ch02.qxd 3/18/05 9:27 PM Page 64

Figure 2-7

In addition, NEdit can run in a server mode. You can type in the nc command to launch an NEdit win-
dow with a given file or, if NEdit is already running, call up the given file in the running NEdit. This
proves very handy when you browse directories and want to edit or view files.

A networking package also has a command named nc, so you may find conflicts, especially on Linux,
where nedit and its nc command are located in /usr/X11R6/bin while the networking nc command is
located in /usr/bin.

Microsoft Windows Editors
Microsoft Windows includes an ancient editor called Notepad. Generally, because of the way Notepad
handles the end-of-line characters, you should not use this editor for scripting or programming.

Instead, Textpad provides a very good Windows editor. Like many of the other editors listed here,
Textpad highlights the syntax of shell scripts. You can download specific syntax definitions for the
Bourne, C, and Korn shells. Textpad is one of the fastest and most responsive editors for Windows.
There are lots of additional editors to choose from on Windows.

You can download Textpad from www.textpad.com. It is a shareware application.

When you have selected a text editor, you can begin to create shell scripts in earnest. The next sections
cover some of the basics for scripting. The next few chapters continue with the basics.

Writing Scripts
Writing scripts is as simple as editing text files with the commands you want in your scripts. The hard
part comes when you need to enter the commands correctly and tie the commands together into useful
scripts. The following sections introduce the basics of scripting, starting with a very useful task: letting
scripts remember for you.

65

Introducing Shell Scripts

05_583204 ch02.qxd 3/18/05 9:27 PM Page 65

Remembering Commands So You Don’t Have To
A lot of commands sport complex, hard-to-remember arguments. You may find yourself looking up the
online manual pages for a command each time you want to run it. If you run this command a lot, you’ll
start to remember. But if you run this command infrequently, you’ll likely forget.

Even if the commands are simple with a few options, you may want to store the commands in scripts so
that you can simply execute the scripts instead of remembering and typing the whole commands. The
following Try It Out examples illustrate this procedure.

Try It Out Launching a Music Player
Xmms plays music on Linux systems (so do a number of other programs). You can collect a number of
songs into a playlist and store this playlist in a file. Passing the name of this file as a command-line argu-
ment will tell xmms to play the songs on that list.

All of this involves a lot of typing. Instead, create a script like the following:

xmms $HOME/multi/mp3/reggae_playlist.m3u

Save this script under a name such as reggae (the style of music) or favorites or irieriddims or any
other name that makes sense.

How It Works
This script runs the xmms command and passes the name of a playlist file to the command. This script
foreshadows the deep, dark subject of variables. $HOME refers to your home directory on Unix, Linux,
and Mac OS X. You can then run your script in place of typing in the full command.

You need to create the playlist itself inside xmms and then save the playlist to a file. You can replace the
playlist file in the previous script with the name of your playlist file.

You can use this script as a guide for other commands or your own playlists. Of course you like reggae
music, but you may have chosen to store your files in a non-optimal location (as this example shows the
one true location to store music files).

Just kidding. Anyone who tells you that there is one true location for something is just wrong, plain
wrong. Any such person deserves to be trapped in a corner while you patiently explain, again and
again, about how the variable factors such as file system types, inode allocations, and disk-partitioning
schemes impact the true correct location for any particular type of file. Just kidding again. The best bet
is to distract these annoying people by asking which is best: FreeBSD, OpenBSD, or NetBSD Unix. Get
the discussion started and then quietly walk away.

Try It Out Running an Application from Its Installation Directory
As another example, the BuddySpace instant messaging (IM) client communicates with Jabber servers
and also the common protocols for MSN, AIM, Yahoo!, and ICQ instant messaging. BuddySpace is writ-
ten in Java, making it another cross-platform tool.

66

Chapter 2

05_583204 ch02.qxd 3/18/05 9:27 PM Page 66

Cross-platform tools are, by definition, good.

BuddySpace, however, requires that it be started from its installation directory. Otherwise, it may not
find all the needed files.

Enter the following script and save it under the name jabber:

cd $HOME/java/im/BS252pro-complete ; sh buddySpace.sh

How It Works
This command appears in two parts. The first part changes the working directory to the java/im/
BS252pro-complete subdirectory of your home directory (using $HOME again). The second part uses the
sh command to launch a shell script. (Yep, a script can launch another script.)

This example shows another new technique. You can place two commands on one command line. Use a
semicolon to separate the commands.

Download BuddySpace from buddyspace.sourceforge.net.

Outputting Text
Most scripts need to output text of some sort. The output may be the results of a command, covered in
Chapter 8. Or you may just want to prompt the user to enter data for the script. In any case, the primary
way to output text from a script is the echo command, introduced in Chapter 1. Recall that the basic
syntax is:

echo text_to_output

Pass echo the text you want to output. The following example shows how to use echo in a script.

Try It Out Creating a Hello World Script
Enter the following into a file and name the file script4:

echo “Hello World”

When you run this script, you’ll see the following output:

$ sh script4
Hello World
$

How It Works
The echo command simply outputs the text you pass to it. The text “Hello World” is required for any
programming book.

I’m violating convention here by using a name other than helloworld for the script, however. I’m an
iconoclast.

67

Introducing Shell Scripts

05_583204 ch02.qxd 3/18/05 9:27 PM Page 67

After your script completes, you should see the prompt for the next command. The shell isn’t impatient;
it’s just telling you it is ready for the next command. This prompt can prove important with the -n
option to the echo command, as in the following example.

Try It Out Using echo without Newlines
You can pass a -n command-line parameter to echo to tell echo not to print a new line after the text. By
default, echo outputs a new line when complete. To see this at work, enter the following into a file.
Name the file script5:

echo -n “No newline”

Run this script with the sh command:

$ sh script5
No newline[ericfj@kirkwall scripts]$

How It Works
With the -n command-line option, echo prints out its text with no new line.

The term new line handles a yucky abstraction. For years, Unix and Linux systems used a line-feed
character (ASCII 10) to mark the end of a line of text. MS-DOS and Windows use a carriage-return
character (ASCII 13) and a line-feed character to mark the end of a line. Macintosh systems, up through
Mac OS 9, used a carriage-return character to mark the end of a line. Thus, there were three main ways
to signify the end of a line of text, depending on the platform. Programming and scripting languages
have had to deal with this issue for years. For shell scripts, the term new line means whatever character
or characters are needed for a given platform to mark the end of a line of text.

Note how the bash prompt for the next command, [ericfj@kirkwall scripts]$, appears right after
the text from script5, No newline. In this example, the text appears as a confusing mush, but this tech-
nique is very useful when asking for user input (see below).

In addition, you can use the -n option to echo to build up an output message on a number of lines. This
can make your output messages easier to understand inside your script. That is, your script becomes
easier to read should you ever need to look at it again.

Comments, covered below, also make scripts easier to read.

Try It Out Writing Palindromic Scripts
This example shows a palindrome output a bit at a time. Enter this text and save to a file named
script6:

echo -n “A man,”
echo -n “ a plan,”
echo -n “ a canal,”
echo “ Panama.”

68

Chapter 2

05_583204 ch02.qxd 3/18/05 9:27 PM Page 68

When you run this script, you’ll see this output:

$ sh script6
A man, a plan, a canal, Panama.

How It Works
This script merely uses the echo command, with and without the -n command-line option. But it intro-
duces a key point to remember when creating output text.

The output text here is essentially the user interface for your script. Your scripts should be easy to use
and easy to understand.

The key point is that you need to insert spaces to separate items. Note how the second, third, and fourth
lines output a space first. This separates the output from the previous line. You can put the spaces on the
initial line, or the line below, as needed. The spaces make the output clear.

In addition, the punctuation, commas, and a period in this example also help make the output more
understandable. Try making the script without spaces or punctuation. Enter the following text and name
the file script7:

echo -n “A man”
echo -n “a plan”
echo -n “a canal”
echo “Panama”

When you run this script, you’ll see a less understandable output:

$ sh script7
A mana plana canalPanama

The -n option to the echo command works very well if you want to explain the output of a command or
just show that the computer is magical, as in the following Try It Out.

Try It Out Mixing Commands with Text Output from echo
This script shows how the computer can do magic. Enter the script that follows and save under the file
name script8:

echo “I will guess your user name.”
echo -n “It is: “
whoami

When you run this script with sh, you should see output similar to the following:

$ sh script8
I will guess your user name.
It is: ericfj

Your username should appear in place of ericfj.

69

Introducing Shell Scripts

05_583204 ch02.qxd 3/18/05 9:27 PM Page 69

How It Works
The first echo command outputs a sentence that explains what the script will do, using the word guess
to imply that the script has intelligence. The second echo command outputs text that will appear just
prior to the output of the third command, whoami.

The whoami command, short for who am I, outputs the name of the current user, your username. When
put together, through the clever use of echo -n, it looks like the script has guessed your username.

The whoami command does not exist on all platforms. If that is the case for your system, try the follow-
ing script, named script9, instead:

echo “Hmm...determining operating system...”
echo -n “This computer runs: “
uname

This script sports less magic but shows the same concepts. When you run this script, you should see:

$ sh script9
Hmm...determining operating system...
This computer runs: Linux

The output should differ based on your operating system. In Mac OS X, for example, you should see:

$ sh script9
Hmm...determining operating system...
This computer runs: Darwin

On an Audrey (which does not provide the whoami command), you will see:

sh script9
Hmm...determining operating system...
This computer runs: QNX

Note that you are logged in, by default, as the root user on an Audrey.

These examples show how to build up messages with the echo command to make your scripts look bet-
ter and provide more information about what they do.

Following on the topic of letting the computer, in the form of shell scripts, remember data for you, you
can use the echo command to remind yourself of hard-to-remember data as well, as in the following
Try It Out.

Try It Out Remembering Data for You with Scripts
The Yopy PDA connects to a Linux system using networking over a USB port. When you plug in the
PDA, you can type in the proper command to start up the USB networking. (Or you could configure the
Linux system to automatically start USB networking, but that’s not the topic here. There is usually more
than one way to perform a given task.)

70

Chapter 2

05_583204 ch02.qxd 3/18/05 9:27 PM Page 70

To save on brain cells, you can fill in the proper command to start USB networking into a script. Plug in
the PDA, and run the script. The following is an example of such a script:

/sbin/ifconfig usb0 192.168.1.1
echo “Yopy is on 192.168.1.1”

Name this script yopy. When you run this script, you’ll see the following output:

$ sh yopy
Yopy is on 192.168.1.1

Make sure your PDA is on and plugged into the USB port prior to running this script.

How It Works
This script really isn’t that hard to remember. The ifconfig command configures networking inter-
faces. It is a system administrator command, so you will likely find it in /sbin or /usr/sbin. The device
refers to a USB port, so usb0 sounds right. And Internet addresses in the 192.168.x.x range refer to a pri-
vate network. Remembering that it is 192.168.1.1, however, can be a pain, especially if your local net-
work runs on a different address range.

The first command sets up networking on the USB port. The second command displays a message to the
user that the networking is set up. And it helpfully outputs the Internet address for the USB device.

In addition to these uses, the echo command proves very useful to prompt the user to enter data. You
want the user to enter the right data, so you need a prompt to tell the user what to enter. See the section
Gathering Input later in this chapter for more on this.

Variables
As shown in Chapter 1, the echo command can output more than just plain text. You can also store val-
ues in variables and have echo output those values. As with programming, a variable is a named item
that can hold a value. You can store a value in a variable and later use the variable as a placeholder for
that value. This proves very useful for shell scripts.

With scripts, each variable has a name and a value. You assign the named variable to a value. You can
then access the variable’s value using a special syntax. This syntax is:

VARIABLE_NAME=VALUE

The VARIABLE_NAME is the name of the variable. Variable names must start with a letter or an under-
score (_). Subsequent characters in variable names can be letters, numbers, or underscores. You cannot
use spaces in variable names. Most older scripts tend to use all uppercase letters for variables, as this
was considered the most portable across systems. This is not necessary, however. Even from the begin-
ning of the Bourne shell, you could create variables with lowercase letters.

This syntax applies to the Bourne shell, bash, and ksh. The C shell uses a different syntax, discussed later.

71

Introducing Shell Scripts

05_583204 ch02.qxd 3/18/05 9:27 PM Page 71

Do not place a space or anything else between the variable name, the equal sign, and the value.

To access the value of a variable, use a dollar sign, $, as a prefix to the variable name:

$VARIABLE1

This syntax tells the shell to replace the text $VARIABLE1 with the value held in the variable VARIABLE1.

The shell expands the text with the variable name, not the individual commands.

Try It Out Using Variables
Here is one of the simplest uses for shell script variables. Enter this text and save it under the file name
script10:

VARIABLE1=Value
echo “My variable holds: $VARIABLE1”

Run this script with sh:

$ sh script10
My variable holds: Value

How It Works
This simple example sets the variable named VARIABLE1 to a value, conveniently enough, Value.
Setting the variable does nothing other than place the value into a named area of the computer’s mem-
ory. The echo command line then accesses the value of the variable. The shell, sh in this case, replaces
the text $VARIABLE1 with the value of the variable, Value.

If you need to place a space in a variable value, use double quotes around the entire value, as in the fol-
lowing Try It Out.

Try It Out Using Double Quotes with Variables
In this example, you can see the use of double quotes to keep a string containing spaces as a single
value:

VARIABLE1=”A value”
echo “My variable holds: $VARIABLE1”

Save this text under the file name script11. When you run this script with sh, you will see the follow-
ing output:

$ sh script11
My variable holds: A value

72

Chapter 2

05_583204 ch02.qxd 3/18/05 9:27 PM Page 72

How It Works
This script works the same as script10. In this case, however, the variable VARIABLE1 holds the text A
value. Because the text has a space in it, to get the space into the variable you need to enclose the value
in double quotes.

Variables and the C Shell
The syntax shown so far for setting variables does not work with the C shell (or the T C shell). For exam-
ple, if you run script11 with the C shell, you will see the following error messages:

$ csh script11
VARIABLE1=A value: Command not found.
VARIABLE1: Undefined variable.

With the C shell, you need to use the set command:

set variable_name = value

Typically, you should use lowercase variable names with the C shell. You must use the set command. You
can place spaces around the equal sign. Spaces are not required but can often add clarity to your scripts.

The following example shows how to set a variable from the C shell:

set variable1=”A value”
echo “My variable holds: $variable1”

This script is essentially the same as the script11 script for the Bourne shell. If you run this script, how-
ever, you need to run it with the csh command, not sh:

$ csh csh_var
My variable holds: A value

If you skipped past it in Chapter 1, see www.faqs.org/faqs/unix-faq/shell/csh-whynot/ for a list of rea-
sons why you should avoid the C shell for scripts. This document is very technical, but suffice it to say
that industry practice is to use sh, not csh, for scripts.

Combining Variables
You can combine more than one variable in a script, as well as in an individual command line. Practice
with the following Try It Out and then let your imagination run wild.

Try It Out Mixing Variables and Commands
This example shows two variables. Name this file script12:

VARIABLE1=Cool
VARIABLE2=”this system runs “
echo -n “$VARIABLE1 $VARIABLE2”
uname

73

Introducing Shell Scripts

05_583204 ch02.qxd 3/18/05 9:27 PM Page 73

Run this script with sh:

$ sh script12
Cool this system runs Linux

How It Works
This example sets two variables, VARIABLE1 and VARIABLE2. Note how there is no leading space in
VARIABLE2 nor a trailing space in VARIABLE1. A space does separate the values, but this space comes
from the arguments passed to the echo command.

The echo command gets a -n option to tell it to skip the new line at the end of the output. This makes
the output of the next command, uname, appear on the same line.

Building Up Commands with Variables
The script12 example shows the start of building up a command line with variables. The following
examples show how to continue this task and create commands entirely from variables.

Try It Out Listing Directories
First, you can build up the command-line argument or arguments from a variable. For example:

DIRECTORY=/usr/local
ls $DIRECTORY

Save the script as script13. Run this script with sh:

$ sh script13
bin etc games include lib libexec man sbin share src

How It Works
The shell expands the value of the variable DIRECTORY, /usr/local, and passes this value as an argu-
ment to the ls command, which lists the files in that directory.

Try It Out Running Commands from Variables
Second, you can place a command within a variable as well. For example:

DIRECTORY=/usr/local
LS=ls
$LS $DIRECTORY

Save the script as script14.

The output should remain the same. This script performs the same action, in the end, as the previous
script. For example:

$ sh script14
bin etc games include lib libexec man sbin share src

74

Chapter 2

05_583204 ch02.qxd 3/18/05 9:27 PM Page 74

How It Works
This example extends the previous example to set the ls command into a variable, LS. Note how the
command line now is entirely made up of variables. The shell will gladly expand both variables to create
the command to execute.

This may not seem that useful, but if you are writing cross-platform scripts, you may need different
command names for the same purpose on different platforms. For example, some Unix systems do not
have a command named install. On those systems you need to use the cp (copy) command instead.
You can use a variable to hide this difference:

INSTALL=install

Or, on other systems, use a different value:

INSTALL=cp

The difference in the script is then isolated to one section. The rest of this hypothetical installation script
would remain the same regardless of the platform.

As a similar example, the C compiler (for programs written in the C language, not for the C shell) usu-
ally has a name of cc. The GNU C compiler may be named gcc. A compiler from a company named LPI
may be named lcc. You can hide these differences by setting a variable named CC to the C compiler
command for a particular platform.

You may or may not have a command named cc that executes gcc. On Mac OS X systems, you have to
do a separate install of the developer tools to get gcc. If you are going to be doing a lot of shell scripting
in Mac OS X, it is highly recommended that you do this install, because it is free and installs quite a
few nifty tools for you.

Try It Out Storing a Full Command in a Variable
In this Try It Out, you extend the previous examples to create the entire command as a variable. For
example:

DIRECTORY=/usr/local
LS=ls
CMD=”$LS $DIRECTORY”
$CMD

Save the script as script15.

The output should remain the same. This script performs the same task, in the end, as the previous two
scripts. For example:

$ sh script15
bin etc games include lib libexec man sbin share src

75

Introducing Shell Scripts

05_583204 ch02.qxd 3/18/05 9:27 PM Page 75

How It Works
By now, you’ve seen that it doesn’t matter how you create a command to execute, so long as it results in
a valid command. You can use variables and combine variables to your heart’s content.

De-assigning Variables
To de-assign a variable, use the unset command:

unset VARIABLE1

This command essentially removes the variable named VARIABLE1. Do not try to access this variable
again without setting it to a new value.

Up to now, I’ve concentrated on the display of output and storing values. The next step is to gather
input, especially input from the user.

Gathering Input
The read command reads in data from the terminal (really, the keyboard). The read command takes in
whatever the user types and places the text into the variable you name. The syntax is:

read VARIABLE_NAME

Because you are setting a variable value, do not use a dollar sign, $, with the variable name.

You can try out the read command with the following example, which shows prompting the user for
input and then, lo and behold, reading in the input from the user.

Try It Out Reading User Input
Enter the following script and name the file script16:

echo -n “Please enter the new position: “
read POSITION
echo
echo “Congratulations, $POSITION!”

Now run the script with sh:

$ sh script16
Please enter the new position: Grand High Pooh-Bah

Congratulations, Grand High Pooh-Bah!

You need to enter the name of a position, Grand High Pooh-Bah in this example. Type the text and press
Enter.

76

Chapter 2

05_583204 ch02.qxd 3/18/05 9:27 PM Page 76

How It Works
This script uses echo with the -n option to display a prompt, asking the user to enter the name of a new
position. I assume here that you have been promoted at work. Note how the prompt message has a
colon to help signify the computer awaits the user’s input. The prompt also ends with a space to sepa-
rate the user’s input from the prompt. This is a common technique.

After displaying the prompt, the script waits patiently for you to type in the name of the new position. If
you make a mistake while entering the text, you can use the Backspace key to edit the input. Once you
press Enter, however, the text has gone into the variable.

The next command shows a lonely echo. It has no arguments, so this echo command just prints out a
new line. This just shows how you can have greater control over the output. The last echo command
prints out the value you typed in, preceded by a message of congratulations.

You are not limited to just one read command in your scripts. You can prompt the user and read in as
many values as you need, as shown in the following Try It Out.

Try It Out Reading Multiple Values
You can use the read command more than once to capture a number of values from the user. For example:

echo -n “Please enter your first name: “
read FIRSTNAME
echo -n “Please enter your last name: “
read LASTNAME
echo -n “Please enter the name of the state where you live: “
read STATE

FULLNAME=”$FIRSTNAME $LASTNAME”
MESSAGE=”Well, $FULLNAME of $STATE, welcome to our huge”
MESSAGE=”$MESSAGE impersonal company.”

echo “$MESSAGE”
echo “You will now be known as Worker Unit 10236.”

Save this script as script17 and run it with sh:

$ sh script17
Please enter your first name: Eric
Please enter your last name: FJ
Please enter the name of the state where you live: Minnesota
Well, Eric FJ of Minnesota, welcome to our huge impersonal company.
You will now be known as Worker Unit 10236.

77

Introducing Shell Scripts

05_583204 ch02.qxd 3/18/05 9:27 PM Page 77

How It Works
This example illustrates the same concepts as the previous example, except that now you add more than
one read command to read in three values from the user.

The script sets the FULLNAME variable to the user’s first and last name, separated by a space.

Note how the output is built up over a number of lines. First, the MESSAGE variable gets filled with the
start of the message. Then the script sets the value of the MESSAGE variable again, this time using the old
value of the MESSAGE variable itself as part of the new value. This is a method you can use to augment
the value of a variable.

Commenting Your Scripts
Up to now, all of the example scripts have been short and very easy to understand. You don’t need to
engage in detective work to decipher these scripts. But when you start writing real scripts, your scripts
will likely be a lot more complex. To help with this, you can enter comments in your scripts.

Comments are messages to yourself and to future archaeologists (other users) that describe what a script
is supposed to do and how it works. Comments help others understand your script. Comments also
help you understand your own script, should you need to examine the script months after writing it.

Your memory is never as good as you think it is. No matter what your IQ is, Murphy’s law dictates that
when the script you wrote in a panic at 2 a.m. to keep your company afloat and your job intact finally
breaks six months after you wrote it, you’re going to look at it and wonder just how much caffeine is
required for you to keep track of 300 variables all named x1, x2, and so on. Comments are, all too often,
the only documentation you will ever have for your code or anyone else’s code. Comments: Use them,
love them.

Comments are especially useful if you found some very clever technique to create a command. Others of
lesser intelligence may not understand the full might of your cleverness. (This will not be a problem
when you take over the world. But until then, comments can help.)

Another way to pass on knowledge is to sit around a campfire, or at a bar, at night and tell others the
crucial details that ought to have been placed in comments. This technique works best on your last day
at an organization. Refuse to write anything down. Some companies actually use this technique. And
they can see nothing wrong with this method. Until something breaks.

To enter comments in your script, start each comment line with a sharp sign (#). For example:

This is a comment.

The # sign is often called a pound sign, a hash, or a sharp. British users cringe at the use of # as a
pound sign, because # looks nothing like the symbol for pounds sterling.

With a comment, the shell ignores all the text from the sharp sign to the end of the line. You can place
commands inside a comment, but the shell will not execute them. For example:

This is a comment with a command, ls /

78

Chapter 2

05_583204 ch02.qxd 3/18/05 9:27 PM Page 78

You can place a comment after a command so long as you use the sharp sign to start the comment. For
example:

ls /usr/local # List the files in the directory /usr/local

The following Try It Out provides some practice in commenting a script.

Try It Out Commenting Your Scripts
The following script shows an example of some comments:

Script to ask a user’s full name and state of residence.
Script welcomes the user to a company. Good luck!

This is a Bourne shell script. It predates the
Microsoft takeover of all computing, so it is not
written in VB.NET. TODO: Update to VB.NET.

echo -n “Please enter your first name: “
read FIRSTNAME # Read the user’s input.

echo -n “Please enter your last name: “
read LASTNAME
echo -n “Please enter the name of the state where you live: “
read STATE

FULLNAME holds the user’s full name. The reason for
the separate variables is to allow for future modifications
to query on the user’s last name. For that, the last name
must be separate from the first name.
FULLNAME=”$FIRSTNAME $LASTNAME”

NOTE: This message may get long.
MESSAGE=”Well, $FULLNAME of $STATE, welcome to our huge”
MESSAGE=”$MESSAGE impersonal company.”

echo “$MESSAGE”

TODO: Each worker should be assigned a different
WU number. Use the last name to look up the worker’s
WUN.
echo “You will now be known as Worker Unit 10236.”

end of script18

Save this script under the file name script18. The script should work the same as script17 because
none of the commands changed, only the comments. Run the script with sh:

$ sh script18
Please enter your first name: Eric
Please enter your last name: FJ

79

Introducing Shell Scripts

05_583204 ch02.qxd 3/18/05 9:27 PM Page 79

Please enter the name of the state where you live: Minnesota
Well, Eric FJ of Minnesota, welcome to our huge impersonal company.
You will now be known as Worker Unit 10236.

How It Works
Note that this script is essentially the same as script17. Just the comments are new. The comments
serve a number of purposes:

❑ Comments explain what the script does.

❑ Comments explain what kind of script this is — a Bourne shell script in this case. You may want
to also comment how to run a script.

❑ Comments explain why certain techniques were used. This will keep people from second-guessing
the scriptwriter’s intentions later on.

❑ Comments provide warnings for potential problem areas. The note that the output message
may grow too long is one example of this type of comment.

❑ Comments show areas that are left for future extension. This not only tells you the script writer
was thinking ahead but also shows areas you will need to work on should you need to extend
the script.

❑ Comments show areas that are not yet finished. Often, a message will start with TODO, a combi-
nation of To Do.

For a script this short, it has a lot of comments — too many, really.

To create good comments, don’t describe the obvious in boring detail. Instead, with each script, you
should describe, briefly, what the script does. Particularly tricky parts of the script deserve extra com-
ments to help explain what is going on.

You can lie in your comments, but that is not a good idea. You end up merely confusing yourself. You
should also skip profanity, if only to avoid future embarrassment. When the source code for parts of
Microsoft Windows appeared on the Internet, people were amazed at the amount of profanity in the
code. This is one thing that nontechnical people can see and understand in otherwise incomprehensible
source code.

Another thing to avoid are names that have, shall we say, insulting connotations. When Mac OS X was
released, people who had never dealt with Unix before, or the rather unique sense of humor of the Unix
community, went browsing through the various shell scripts that are a part of the system startup and
ran across the term “luser” (rhymes with “loser”). A long time ago, it was short for “local user” or
someone sitting at the physical computer versus someone on a remote terminal. Well, people read com-
ments by an Apple employee talking about “keeping the lusers from doing something stupid” and were
rather snarky about the whole thing. In general, even if you’re in a bad mood, save the pejoratives for
the bar after work.

80

Chapter 2

05_583204 ch02.qxd 3/18/05 9:27 PM Page 80

Continuing Lines
Most shells, including bash, sh, ksh, and csh, support the capability to type in long commands. You can
keep typing away until you enter the entire command. But very long lines are hard to read and harder to
understand. Because of this, you can break up your command using the line-continuation marker. Type
a backslash, \, at the end of a line to continue a command on the next line, as in the following Try It Out.

Try It Out Continuing Commands On and On and On
This example illustrates the use of the backslash character to continue a command on the next line:

$ ls \
> -CF \
> -1 \
> /usr/local
bin/
etc/
games/
include/
lib/
libexec/
man/
sbin/
share/
src/

This forms an extreme example, but you can use this technique when you have to type in long lines.

If you’re using Mac OS X and coming to shell from an AppleScript background, the backslash is similar
to the AppleScript continuation character you get when you hit Option-Return.

How It Works
When you end a line with a backslash, the shell should display a level-two prompt to show you that the
command is not yet complete. Bash presents a > in this example. A question mark, ?, is also common.
(You can configure this prompt.)

In this example, the command starts with ls, the name of the command. A line-continuation marker
appears immediately, continuing the command to the next line. The next line holds two options, -CF,
equivalent to -C and -F, and continues the command again. The next line holds a simple option, -1
(one), and continues on to the next line, thankfully the last. This line presents a directory, /usr/local, as
an argument to the ls command.

This technique, or course, proves of greater use when the command line would really stretch out. For
example, the following command launches a Java application with some complex options and arguments:

exec $JAVACMD $JAVA_OPTS \
-classpath “$CLASSWORLDS_CLASSPATH” \
-Dprogram.name=”$PROGNAME” \
-Dclassworlds.conf=”$CLASSWORLDS_CONF” \
-Dgroovy.home=”$GROOVY_HOME” \
-Dtools.jar=”$TOOLS_JAR” \
org.codehaus.classworlds.Launcher “$@”

81

Introducing Shell Scripts

05_583204 ch02.qxd 3/18/05 9:27 PM Page 81

The “$@” is a special construct. It refers to command-line arguments passed to the script.

This command uses a lot of continuations to make the script, called groovy, easier to understand. Note
how each major command-line option or argument appears on a line by itself. The earlier parts of the
script, not shown here, fill in all the variables. Otherwise, the command would be far longer. For exam-
ple, on Mac OS X, the TOOLS_JAR variable is set as follows (but appearing on one line, with no wrap):

TOOLS_JAR=”/System/Library/Frameworks/JavaVM.framework/Versions/CurrentJDK/Classes/
classes.jar”

As this example shows, a good way to help learn shell scripting is to examine existing scripts, especially
networking scripts or scripts that launch complex commands.

The example also uses the exec command to launch the rest of the command. See Chapter 9 for more
on exec.

Summary
This chapter presents the basics for creating shell scripts. Starting with your choice in text editors, you
can create your own scripts.

❑ For editors, you can choose from a plethora of choices including emacs and vi, two legacy edi-
tors, as well as a number of graphical editors that sport more modern interfaces.

❑ Shell scripting is not the only scripting language. There are quite a few others, including Perl,
Python, and Tcl, discussed in this chapter.

❑ When beginning with scripts, some of the first tasks include displaying output, or text, to the
user. For scripts, the echo command provides the main way to output text to the user. You can
use echo with a command-line option, -n, to skip outputting a new line after the text. This is
most useful when creating prompts for user input.

❑ Most scripts need to store data in some way. For scripts, you can store values in named vari-
ables. These variables can be combined, set to new values, or accessed (read) using the dollar-
sign character, $.

❑ To gather input from the user, use the read command. The read command reads in one line of
user input, terminated by the Enter key. Read places the user input into a variable, the variable
you pass to the read command.

❑ You can (and should) place comments in your script with the # character. You can use the \
character to continue a command on the next line.

The next chapter covers how you can use scripts to make decisions and perform different commands in
the case of different conditions, an important technique for writing your own real-world shell scripts.

82

Chapter 2

05_583204 ch02.qxd 3/18/05 9:27 PM Page 82

Exercises
1. Try at least two text editors and choose one that you find productive.

2. Regardless of which editor you picked in Exercise 1, try entering at least three of the example
scripts in this chapter with vi. Try three more scripts with emacs. Discuss what you like and
dislike about each editor.

3. Write a script to output the text message “A man, a plan, a canal, Panama” with as many com-
mands as possible. Each command must perform something useful for the script. Furthermore,
comments don’t count for the total. See how many commands you can use in your most ineffi-
cient script. Use only the shell scripting concepts introduced so far.

4. Write a command to list the contents of the /usr/bin directory (or a directory that has many
commands). You can only set and evaluate variables in your script. You cannot call any com-
mands directly. Extend this script to add some command-line options for the file listing. Try -1
(one) to list the files in one column.

5. Modify the example script17 file for users in Canada. Instead of asking for the state the user
lives in, Canadian users should be asked which province they live in. Extra credit goes to those
who can output all text in both English and French.

6. To prove you are truly an emacs guru, use M-x backward-char and M-x forward-char, the
long commands, instead of the left and right arrow keys when modifying the script17 file for
the previous question. Aren’t you glad emacs provides this option?

7. Do the same thing with vi when modifying the file script17. Show disdain for the arrow keys
and use h, j, k, and l exclusively. If you start to like these keys and become productive, be afraid.
Be very afraid.

83

Introducing Shell Scripts

05_583204 ch02.qxd 3/18/05 9:27 PM Page 83

05_583204 ch02.qxd 3/18/05 9:27 PM Page 84

3
Controlling How Scripts Run

Once you get beyond some trivial scripts, you’ll soon find that a script that just runs command
after command after command doesn’t work for most real-world scripts. Instead, you need the
capability to perform some sort of logic within the program, test conditions, and take alternative
measures if certain tests fail. You may need to perform some operation on each file in a directory
or back up only selected files. Shell scripting languages offer a variety of ways to test values and
then execute different commands based on the results of the tests. All of these things fall under the
concept of controlling how your scripts run.

This chapter covers:

❑ Advanced variable referencing, useful for conditionals and iteration

❑ Iterating with the for and foreach statements

❑ Using if-then-else statements to test values and execute different commands based on
the results

❑ Testing for a variety of values using the switch-case statements

❑ Looping while a condition is true

Referencing Variables
Chapter 2 introduced the concepts of variables, named data holders. Each variable can hold a value,
which you can later reference by placing a dollar sign in front of the variable name. When it comes
to looping and conditional tests, however, you often need more options for referencing variables.
This section shows you some of those options.

The Bourne shell, along with bash and ksh, provides another means to reference the value of a
variable. The normal means is with a dollar sign:

$variable_name

06_583204 ch03.qxd 3/18/05 9:26 PM Page 85

This example references the value of the variable variable_name. If you have not set a value into
variable_name, you will get no value. This is not an error.

You can also use curly braces to reference a variable’s value:

${variable_name}

This method uses the curly braces to clearly delineate the start and end of the variable name. With just
the dollar sign, you have a clear separation for the start of the variable name but not the end.

This alternate method proves very useful if you want to place a variable with other text immediately
adjacent or, better still, when you need to append something to the value of the variable. For example, if
you have a variable with the value abc and want to output abcdef, the natural way to do this would be
to place the variable name next to the text def. Unfortunately, the following would output nothing
except for a new line:

myvar=abc
echo $myvardef # nothing

Note how the shell sees nothing to separate the name of the variable, myvar, from the text def. Thus, the
shell interprets $myvardef as referencing a variable named myvardef. If you have not set this variable,
which is likely, then myvardef will hold nothing.

But if you use the ${variable_name} alternate format, you can then make a clean separation between
the variable name and the remaining text:

${myvar}def

Try It Out Referencing Variables
To better understand how to reference variables, try the following script:

Set the initial value.
myvar=abc

echo “Test 1 ======”
echo $myvar # abc
echo ${myvar} # same as above, abc
echo {$myvar} # {abc}

echo “Test 2 ======”
echo myvar # Just the text myvar
echo “myvar” # Just the text myvar
echo “$myvar” # abc
echo “\$myvar” # $myvar

echo “Test 3 ======”
echo $myvardef # Empty line
echo ${myvar}def # abcdef

86

Chapter 3

06_583204 ch03.qxd 3/18/05 9:26 PM Page 86

echo “Test 4 ======”
echo $myvar$myvar # abcabc
echo ${myvar}${myvar} # abcabc

echo “Test 5 ======”
Reset variable value, with spaces
myvar=”a b c”
echo “$myvar” # a b c
echo $myvar # a b c

Save this file under the name var_refs. This script goes over the various choices for referencing variables.
When you run the script, you’ll see output like the following:

$ sh var_refs
Test 1 ======
abc
abc
{abc}
Test 2 ======
myvar
myvar
abc
$myvar
Test 3 ======

abcdef
Test 4 ======
abcabc
abcabc
Test 5 ======
a b c
a b c

Should any of the variable references appear confusing, check over the script, its comments, and the out-
put shown here. These are tricky concepts.

How It Works
For such a short script, this example is complex. You should go over the output one line at a time to better
understand how the shell treats these variables. For such a simple subject, this can get surprisingly tricky.

Test 1 shows the normal ways to reference the value of a variable. The script sets the variable myvar to
the value abc. The construct $myvar, familiar from Chapter 2, references the value of the variable. The
shell will replace $myvar with the value abc.

The construct ${myvar} does the same thing. The shell will replace ${myvar} with the value abc.

The construct {$myvar} combines normal curly braces, { and }, with the first construct, $myvar. As
before, the shell will replace $myvar with the value abc. The echo command will output the curly
braces, creating {abc}.

87

Controlling How Scripts Run

06_583204 ch03.qxd 3/18/05 9:26 PM Page 87

In most cases, the construct {$myvar} is a typo. The user likely intended this to be ${myvar} but got the
leading curly brace positioned incorrectly.

Test 2 shows what happens if you skip the dollar sign with the variable name. Without the dollar sign,
the text myvar is just a plain string of text. There is nothing special about myvar, even though you
named a variable with the same string of text.

The construct myvar is just the text myvar. So is the construct “myvar”, which will appear as myvar. The
quotes delimit the text. In both these cases, you can guess that the user forgot to include the dollar sign
to reference the value of the myvar variable rather than the plain text myvar.

The construct “$myvar” outputs abc because $myvar references the value of the variable myvar. The
quotes merely delimit the text. So how can you get the dollar sign to appear? That’s what the next con-
struct, “\$myvar”, does.

The construct “\$myvar” outputs what looks like a variable reference: $myvar. The backslash, \, acts as
a special character, telling the shell to use the following special character, $, as a character instead of a
means to reference a variable. That is, \$ refers to a plain character $, removing the special meaning $
normally holds. Thus, the ending text is “$” and “myvar”, or $myvar when output.

The \$ format is called escaping the dollar sign. You can also use a backslash to escape other characters,
such as quotes needed inside a quoted text string. Additional examples of escaping appear throughout
this book.

Test 3 shows how to combine the values of more than one variable into the same output.

The construct $myvardef references the value of the variable myvardef, which this script has not set.
The echo command outputs a new line with no text because there is no value for the variable. In most
cases, however, this construct was meant to output the value of the variable myvar, with the string of
text def, making abcdef.

The construct ${myvar}def shows how to do just that. This construct combines the value of the myvar
variable, abc, with the string of text def, making abcdef.

If you want a space between the variable values, none of this will be an issue. Just place one variable ref-
erence, a space, and then another variable reference.

Test 4 continues the use of placing data immediately after a variable by using two variables. Both lines
output the same text: the value of the myvar variable appearing twice.

The first construct, $myvar$myvar, handily provides two dollar signs, each of which can delimit the
construct. This way, the shell knows that the second dollar sign starts another variable reference, in this
case to the same variable.

The second construct, ${myvar}${myvar}, makes a clearer separation between the two variable refer-
ences. Use this format to be most clear should you need to combine variable values.

88

Chapter 3

06_583204 ch03.qxd 3/18/05 9:26 PM Page 88

It may not be clear right now why you’d want to combine variable values with text or other variables,
but this is used quite a lot in scripting. Imagine writing a backup script, for example. If you have the
name of a file in the variable filename, you can construct a backup file name using, for example,
$filename.bak, with the .bak extension, short for backup. See the examples in the Looping over Files
section for this construct.

This is one of the differences between script-oriented languages such as shell scripting languages and tra-
ditional programming languages such as C, C++, and Java. Scripting languages tend to allow you to
place the text you want in your script. Bare text, such as def, is assumed to be text. Variables are denoted
with a special syntax, $ in shell scripts. With traditional programming languages, on the other hand, bare
text is assumed to be the names of variables. Any text you want to output must be delimited by quotes.
This isn’t a hard-and-fast rule, but it shows some of the assumptions behind each type of language.

Test 5 shows the difference between using quotes and plain references. This test sets the myvar variable
to a new value. It still holds a, b, and c, but this time the test sets the values with spaces in between each
element. The quotes on the line that sets myvar to the new value preserve the spaces.

When referencing these variables, you can see the difference between using the quotes, which preserves
spaces, and not using them, which treats all the values as individual elements. Because shell scripting
was designed around the command line, each element is placed with a single space to separate it from
the next element.

The first construct, “$myvar”, preserves the spaces in the value of myvar. The second construct, $myvar,
which leaves the bare values on the command line, does not preserve the spaces.

If some of this is confusing, don’t worry. The best way to learn the intricacies of shell scripting is by
experimenting. You can vary the var_refs script to see how different constructs work together. In addi-
tion, you can experiment with later scripts to see what works and what doesn’t.

These variable constructs are useful when you start to test variable values and use variables to control the
flow of how your scripts run. One of the most common means to control the flow in a script is through
looping.

Looping and Iteration
Looping is the process of repeating the same script elements a given number of times. Looping works
best when applied to one of the following tasks:

❑ Performing the same operation on a number of files

❑ Performing an operation for a fixed number of times, such as trying to reconnect to the network
three times (and then giving up if the connection cannot be re-established)

❑ Performing an operation on a given number of items

89

Controlling How Scripts Run

06_583204 ch03.qxd 3/18/05 9:26 PM Page 89

For all of these iterative tasks, you can use the shell for loop. The basic syntax of the for loop is:

for variable in list_of_items
do

command1
command2
...
last_command

done

You need to provide the name of a variable. The shell will set the variable to the current value on each
iteration through the loop. The commands between the do and the done statements get executed on
each iteration.

The list_of_items differs depending on what you want to use for iteration, such as a list of files.

Looping over Files
Quite a few shell scripts need to loop over a list of files. Backup scripts, for example, might check each
file in a directory to see if the file is newer than the last backup. If the file has been modified since the
last backup, then you may want a script to back up the file.

The basic syntax for looping over a number of files is to use the for loop with a list of items that resolves
to the files. For example:

for filename in *
do

command1
command2
...
last_command

done

In this example, the * resolves to the list of files in the current directory. The for loop then iterates over
each file, setting the variable filename to the name of the current file.

Try It Out Making a Primitive ls
You can use this example technique to write a primitive ls script for listing file names. Enter the follow-
ing script and name the file myls:

Example to look at files in a directory and
print out the file names.

for filename in *
do

echo $filename
done

90

Chapter 3

06_583204 ch03.qxd 3/18/05 9:26 PM Page 90

When you run this script, you should see the names of the files in the current directory. For example:

$ sh myls
Makefile
backup1
case_os
check_csh
counter1
counter2
csh_var
error
find_shells
find_shells2
myls
myls2
nested_for1
readpipe.tcl
return0
return1

Your output will differ based on the files in your directory.

How It Works
The for loop in the myls script loops, or iterates, over each item in the list. This list is identified by an
asterisk, *, which does nothing magic. As covered in Chapter 1, the asterisk is called a wildcard or a
glob. The shell expands the asterisk to the names of all the files in the current directory.

Note that hidden files — that is, files with names that start with a period — are not included in the * glob.

The for loop iterates over all the file names in the current directory. The block of commands between
the do and the done uses the echo command to output the file name. Thus, the myls script outputs one
file name per line.

You can place as many commands as you need between the do and the done, or as few, including no
commands.

Try It Out A More Extensive ls
The previous example uses the echo command to print out each file name. You can modify this script to
print out the file’s size along with its name by switching to a different command. Enter the following
script and save it under the name myls2:

Another example to look at files in a directory and
print out the file names.

for filename in *
do

Show the amount of bytes in each file
with the file name. The wc command

91

Controlling How Scripts Run

06_583204 ch03.qxd 3/18/05 9:26 PM Page 91

outputs both.
wc -c $filename

done

When you run this script, you should see output like the following:

$ sh myls2
24 Makefile

187 backup1
412 case_os
232 check_csh
150 counter1
179 counter2
61 csh_var
8 error

764 find_shells
262 find_shells2
121 myls
235 myls2
214 nested_for1
395 readpipe.tcl

7 return0
7 return1

Your output will differ based on the files in your current directory.

How It Works
This script iterates over the same type of list, the names of all the files in the current directory. Between
the do and the done, the myls2 script still has just one command (plus the comments). The command,
however, differs. The myls script used the echo command. The myls2 script uses the wc command,
short for word count. The wc command can count the number of bytes, characters, and lines in a file, as
well as approximate the number of words. (The approximation comes from the fact that wc uses a simple
set of rules to determine where words start and end. The wc command does not understand natural text
in English or any other language; it just uses rules to determine word boundaries.)

Typically, the wc command outputs all the counts it generates. With the -c option, however, wc outputs
only the count of the bytes in the file, not the characters or lines. With the -c option, wc outputs the
byte-count, or size, of each file and the file name. Thus, the myls2 script does not need to call the echo
command.

Iterating over all the files in a directory is a very common operation in shell scripts.

As another example, you can use the for loop to help create a backup script. Backup scripts save a copy
of files to some form of external storage. In most larger environments, administrators run incremental
backups. With incremental backups, administrators first perform a full backup of all files and then selec-
tively back up only those files that have changed since the last full backup. Typically, administrators
start the process again every so often, such as performing a full backup every month or every week.
Every day in between, however, administrators perform incremental backups.

Chapter 13 covers more on administrative tasks such as backups.

92

Chapter 3

06_583204 ch03.qxd 3/18/05 9:26 PM Page 92

Try It Out Creating a Simple Backup Script
You can create a simple backup script using a for loop:

Example backup script, for files with names
ending in .doc
#

for filename in *.doc
do

echo “Copying $filename to $filename.bak”
cp $filename $filename.bak

done

Save this script under the name backup1. When you run this script, you should see output like the
following:

$ sh ../backup1
Copying 2005_Q1.doc to 2005_Q1.doc.bak
Copying 2005_Q2.doc to 2005_Q2.doc.bak
Copying business_plan.doc to business_plan.doc.bak
Copying ent_whitepaper.doc to ent_whitepaper.doc.bak
Copying lin_proposal.doc to lin_proposal.doc.bak
Copying lin_stmt_of_work.doc to lin_stmt_of_work.doc.bak
Copying proposal1.doc to proposal1.doc.bak
Copying world_takeover.doc to world_takeover.doc.bak

Note that the output on your system will differ based on what files are located in your current directory.

How It Works
The backup1 script loops through all the files in the current directory with names ending in .doc, pre-
sumably word processor files. The commands in the for loop copy each file to a file with the same
name but with an extra .bak extension. Note that this will result in files with names in the format of
filename.doc.bak, a sort of double extension. For the most part, shells don’t treat the file name exten-
sion as a special part of the file name. So in the backup1 script, the filename variable holds the name
of the file, such as 2005_Q2.doc, rather than 2005_Q2.

Note that a real backup script would likely need to verify whether the item was a file or a directory and
perhaps check when the file was last modified. In shell scripting terms, this means you need to combine
the loop with conditionals to verify whether a file is one the script should back up or not. See the section
Checking Conditions with if for more on conditionals.

Looping for a Fixed Number of Iterations
In addition to looping over a set of files, you can write scripts that loop for a fixed number of iterations.

The previous example scripts have allowed the shell to fill in the list_of_items from a listing of files.
You can also indicate specific items to iterate over. For example, to teach an expensive computer to
count, you can set up a for loop like the following:

93

Controlling How Scripts Run

06_583204 ch03.qxd 3/18/05 9:26 PM Page 93

for i in 1 2 3 4 5 6 7 8 9 10
do

done

In this example, the for loop will set the variable i to each of the values 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10,
performing whatever commands are in the do-done block.

Try It Out Counting to Ten
For example, create the following script and save under the name counter1:

Counts by looping for a fixed number of times

for i in 1 2 3 4 5 6 7 8 9 10
do

echo -n “...$i”
done

echo # Clean up for next shell prompt

When you run this script, you will see the following output:

$ sh counter1
...1...2...3...4...5...6...7...8...9...10

How It Works
This script uses the same for loop syntax but places specific values for the list of items to iterate over,
where the previous scripts used the shell and the wildcard, or globbing, mechanism of the shell.

In each iteration through the loop, the echo -n command outputs the current item, such as 1, 2, or 3. The
-n command-line option tells the echo command to place the output on one line. The final echo com-
mand prints out a new line so that the next shell prompt won’t appear immediately after the 10.

You can place the for loop and the do statement on the same line, but you must separate the two ele-
ments with a semicolon as if they were separate commands (which in a sense, they are). For example:

Counts by looping for a fixed number of times

Note do on same line requires semicolon.

for i in 1 2 3 4 5 6 7 8 9 10; do
echo -n “...$i”

done

echo # Output newline

The resulting output will be identical to the previous example.

94

Chapter 3

06_583204 ch03.qxd 3/18/05 9:26 PM Page 94

As you can guess from the way the example scripts specify the values to iterate over, there is nothing
stopping you from making a for loop count backward. For example:

Counts backwards

for i in 10 9 8 7 6 5 4 3 2 1
do

echo -n “...$i”
done

echo # Output new line
echo “Blast off!”

Enter this script and save it under the name counter2. When you run this script, you should see the fol-
lowing output:

$ sh counter2
...10...9...8...7...6...5...4...3...2...1
Blast off!

This is the same loop as before, only the values are listed in reverse order. There is also a final echo state-
ment making a space-flight reference. You can place values in any order.

The previous example shows a very efficient countdown to launching a spacecraft because there is no
pause between iterations. By the time you see the 10, you should also see the 1. The craft is ready to
launch. Aside from the remarkable efficiency, you may want to put some kind of wait into a script of this
type. You can do that with the sleep command.

The sleep command takes one command-line argument, the length of time to sleep in seconds. (See the
online manuals on the sleep command for using other units of sleep time.) For example:

sleep 5

This command causes the shell to wait for five seconds before going on to the next command.

Note that the sleep amount will not be exact, as your computer will be performing other work (running
other programs) at the same time. It should be at least five seconds, however, with an amount very close
to five seconds.

Try It Out Sleeping between Iterations
You can try out the sleep command with a for loop script:

Counts backwards and waits each loop iteration.

for i in 10 9 8 7 6 5 4 3 2 1
do

echo -n “$i... “
sleep 1

done

echo # Output new line
echo “Blast off!”

95

Controlling How Scripts Run

06_583204 ch03.qxd 3/18/05 9:26 PM Page 95

Enter this script and save it under the name sleep_counter. If you run this script, you should see the
following when the output is complete:

$ sh sleep_counter
10... 9... 8... 7... 6... 5... 4... 3... 2... 1...
Blast off!

Note that all the numbers appear with a second delay between each number.

How It Works
This script is the same as the counter2 script except for the use of the sleep command to impose a
delay between iterations. (In addition, the three periods are placed after the numbers rather than before.)

The numbers should appear slowly, with a second delay between 10... and 9..., for example. So you
will first see the following:

10...

After a second delay, you see:

10... 9...

This continues until you see the following:

10... 9... 8... 7... 6... 5... 4... 3... 2... 1...

After a final one-second delay, you see the blast-off message:

10... 9... 8... 7... 6... 5... 4... 3... 2... 1...
Blast off!

Looping Like a C Program — the bash Shell
The bash shell supports a for loop syntax that appears a lot like that of the C programming language.
The basic syntax is:

max=upper_limit
for ((i=1; i <= max ; i++))
do

commands...
done

This is like the C programming language, not the C shell.

In this example, the variable max holds the upper limit, such as 10. The for loop will iterate using the
variable i, where i starts at 1 and continues until it reaches a value greater than 10. The i++ syntax
refers to incrementing the variable i.

96

Chapter 3

06_583204 ch03.qxd 3/18/05 9:26 PM Page 96

Some things to note in the syntax include:

❑ You need two sets of parentheses on each side, ((and)).

❑ You reference the loop iteration variable, i in this case, without the $.

❑ This syntax is supported by the bash shell, although you may find it works with the Bourne
shell on systems where bash also provides the Bourne shell, such as Linux and Mac OS X.

If you are familiar with C programming, then this syntax will appear like a C for loop, with some modi-
fications for use in a shell. Otherwise, you probably want to avoid this syntax.

Try It Out Looping Like C Programs
Enter the following script and name the file c_for:

C-language-like for loop.
Must be run with bash.

max=10

for ((i=1; i <= max ; i++))
do

echo -n “$i...”
done

echo

When you run this script in a bash shell, you will see the following output, like that of the previous
scripts:

$ bash c_for
1...2...3...4...5...6...7...8...9...10...

If you run this script with the Bourne shell, sh, you may see an error like the following:

$ sh c_for
c_for: 6: Syntax error: Bad for loop variable

How It Works
The double-parenthesis syntax allows for a finer grain of control over a for loop, with much more com-
pact code than trying to create the same loop using the Bourne shell syntax. Another advantage is that
you do not need a list of all the items to iterate. Instead, you just need a start value and an end value
(1 and 10, respectively, in the example). You’ll often find it is far easier to come up with start and end
values than it is to create a full list of items.

On the downside, however, you must run your script with bash. The bash shell isn’t available on all sys-
tems, so you may have a problem. In addition, while this syntax requires bash, some bash-ized versions of
sh will also support this syntax. Because of the uncertainty, you probably want to avoid using this syntax.

97

Controlling How Scripts Run

06_583204 ch03.qxd 3/18/05 9:26 PM Page 97

Looping in the C Shell
The C shell doesn’t support the for loop but does support something similar, a foreach loop. The syn-
tax for foreach is:

foreach variable (list_of_items)
command1
command2
...
last_command

end

The loop executes once for each value in the list of items. On each iteration, the shell sets the variable to
the current value from the list of items.

Some differences from the Bourne shell for syntax include:

❑ Use foreach instead of for.

❑ There is no in.

❑ There is no do to start the block of commands.

❑ Instead of done, the C shell uses end.

❑ The list of items must be enclosed within parentheses.

Try It Out Creating a C Shell foreach Loop
The following example shows the C shell foreach loop. Enter this script and save it under the name
myls_csh:

C shell foreach

foreach filename (*)
echo $filename

end

When you run this script, you will see a listing of the files in the current directory:

$ csh myls_csh
eden.txt
mail
Mail
motif2.txt
myls_csh
oracle.detect
PL2BAT.BAT
rpmlast
signature.asc
tclbook1.txt
tmp
vpkg-provides.sh

This list will differ based on which files are located in your current directory.

98

Chapter 3

06_583204 ch03.qxd 3/18/05 9:26 PM Page 98

How It Works
The myls_csh script provides the C shell equivalent to the Bourne shell syntax in the myls example
script. The foreach statement is nearly the same as the Bourne shell for statement. In the myls_csh
script, the shell sets the variable filename to the name of a file in the directory on each iteration.

If you try to run this script from the Bourne shell, you will see the following output:

$ sh myls_csh
myls_csh: line 3: syntax error near unexpected token `(*’
myls_csh: line 3: `foreach filename (*)’

Nested Loops
You can nest for loops. Nope, this isn’t about purchasing a really cool High Definition plasma television
and staying at home eating popcorn. In shell script terms, nesting means putting inside. So nested for
loops are loops within loops.

Try It Out Nested for Loops
For example, enter the following script and save the file under the name nested_for:

Nested for loop

for i in 1 2 3 4 5 6 7 8 9 10
do

echo -n “Row $i: “

for j in 1 2 3 4 5 6 7 8 9 10
do

sleep 1
echo -n “$j “

done

echo # Output newline
done

When you run this script, you will see the following:

$ sh nested_for
Row 1: 1 2 3 4 5 6 7 8 9 10
Row 2: 1 2 3 4 5 6 7 8 9 10
Row 3: 1 2 3 4 5 6 7 8 9 10
Row 4: 1 2 3 4 5 6 7 8 9 10
Row 5: 1 2 3 4 5 6 7 8 9 10
Row 6: 1 2 3 4 5 6 7 8 9 10

This syntax is supported only by the C shell, not the Bourne shell.

99

Controlling How Scripts Run

06_583204 ch03.qxd 3/18/05 9:26 PM Page 99

Row 7: 1 2 3 4 5 6 7 8 9 10
Row 8: 1 2 3 4 5 6 7 8 9 10
Row 9: 1 2 3 4 5 6 7 8 9 10
Row 10: 1 2 3 4 5 6 7 8 9 10

Note that this output will appear one item at a time, as this script runs slowly. Put on some spacey music
and enjoy the numbers appearing on your screen.

How It Works
This example breaks no new ground. It just shows that you can place for loops within for loops. Just
remember a few important points:

❑ Use different variables in each loop, or the loops will likely conflict with one another.

❑ You need to keep the do-done code blocks correct. Each do needs a done. The outer loop do-
done block must enclose the inner block entirely.

❑ Note how indenting the script can really help separate the loops.

You can nest loops as deeply as you need; just follow these rules for each for loop.

Checking Conditions with if
The Bourne shell if statement checks whether a condition is true. If so, the shell executes the block of
code associated with the if statement. If the condition is not true, the shell jumps beyond the end of the
if statement block and continues on. Only if the condition is true will the shell execute the block.

The basic syntax of the sh if statement follows:

if (condition_command) then
command1
command2
...
last_command

fi

If the condition_command resolves to a true value (see the section What Is Truth? for more on truth and
falsehood), then the shell executes the commands in the block: command1, command2, and so on to the
last_command in the block. Note how if statements end with a fi (if spelled backward). The fi ends
the block of commands.

The condition_command includes numerical and textual comparisons, but it can also be any command
that returns a status of zero when it succeeds and some other value when it fails.

100

Chapter 3

06_583204 ch03.qxd 3/18/05 9:26 PM Page 100

The if statement is a part of just about every programming language. If you are not familiar with an if
statement, however, think of the following general-purpose tasks:

❑ If a file has been modified since the last backup, then back up the file.

❑ If the Oracle database is not running, then send an email message to an administrator.

❑ If a new version of a software package, such as the Mozilla Firefox Web browser, has been
released, then update the software package.

If you were assigned any of these tasks — that is, writing a shell script to perform these functions — you
would use an if statement. If you are tasked with assignments like these, however, you may need to
reword the assignments. For example, the following tasks mirror those from the preceding list but don’t
use that handy word if:

❑ Only modify those files that have been modified since the last backup.

❑ Whenever the Oracle database is not running, send an email message to an administrator.

❑ Update all applications for which a new package is available.

These task statements don’t include if, but if you think about it for a while, the if statement fits right
in. All of these statements involve a condition. If the condition is true, then the script is supposed to take
some action. This type of task fits well with the if statement.

Another good use for an if statement (or a case statement, covered below) is a script that tries to figure
out the proper commands to use on different operating systems. For example, if a script is running on
Windows, the file copy command will be copy. If the script is running on Unix, then the copy command
will be cp. Handling operating system issues is another good use for an if statement.

Whenever you have a task like these, think of the if statement. The What Is Truth? section later in this
chapter includes examples to show how to create if statements in your scripts.

Or Else, What?
In addition to the normal if statement, you can extend the if statement with an else block. The basic
idea is that if the condition is true, then execute the if block. If the condition is false, then execute the
else block. The basic syntax is:

if (condition_command) then
command1
command2
...
last_command

else
command1
command2
...
last_command

fi

101

Controlling How Scripts Run

06_583204 ch03.qxd 3/18/05 9:26 PM Page 101

Again, the entire statement ends with a fi, if spelled backward. If the condition_command is true, then
the shell executes the first block of commands. If the condition_command is not true, then the shell exe-
cutes the second block of commands.

There is also an elif that combines the else with a nested if statement. See the related section later in the
chapter for more on elif.

What Is Truth?
By convention, Unix commands return a command result of 0 (zero) on success. On errors, most com-
mands return a negative number, although some return a positive number such as 1 (one). Because the
Bourne shell if statement is tied to running a program and testing for success, it only makes sense that 0
be considered true and 1, or any nonzero number, false. Commands return these numbers when they exit.

Try the following scripts to get an idea of how the if statement works, and especially the focus on run-
ning commands.

Try It Out Determining Truth in Scripts
You can simulate a command returning a value by calling the exit command. The exit command ter-
minates your script. You can also pass a number as a command-line argument to the exit command.
This number will be the number the shell sees as coming back from your script. Therefore, this is the
number the if statement will examine.

So you can make a script that returns a success code, 0, with just the exit command:

exit 0

Type in this very long script and save it under the file name return0.

You can also make a script that returns a failure code, 1, or any nonzero number you want to use:

exit 1

Type in this very long script and save it under the file name return1.

You now have two scripts, one to create a true condition and one to create a false condition.

Enter the following script and save it under the file name truth0:

if (sh return0) then
echo “Command returned true.”

else
echo “Command returned false.”

fi

When you run this script, you should see a report of a true value:

$ sh truth0
Command returned true.

102

Chapter 3

06_583204 ch03.qxd 3/18/05 9:26 PM Page 102

How It Works
The truth0 script uses the if statement with the command sh return0. If this command returns true,
then the script outputs the line Command returned true. If the command returns false, then the script
outputs the line Command returned false. In this case, that command is sh return0. The sh command
runs the Bourne shell with the name of a script, return0, and the return0 script calls the exit com-
mand with an exit code of 0, or success. Thus, sh return0 is a command that returns 0, or success.

So wrapping this call up, the if statement resolves to true.

You can test the opposite result. Enter the following script and save it under the name truth1:

if (sh return1) then
echo “Command returned true.”

else
echo “Command returned false.”

fi

Notice how only one line changed: the if statement at the beginning of the script. Instead of calling sh
return0, this test calls sh return1, running the return1 script.

When you run this script, you will see a failure message:

$ sh truth1
Command returned false.

This is because the return1 script calls exit with a command-line argument of 1, a nonsuccess exit code.

Try out these two scripts until you are comfortable with the way shells handle if statements. Just about
every programming language has an if statement. Shells, however, by calling on a program to handle
the condition, can appear odd to anyone who has a programming background. That’s because the if
statement usually compares variables in other programming languages instead of running commands.

Note that you can run the test command to compare variable values. See the section Testing with the
test Command for more on this topic.

In addition to the return0 and return1 scripts shown here, Unix and Linux systems include two spe-
cial programs, true and false, that return a true status and a false status, respectively. These are actual
programs on disk (usually in /bin). Some shells include true and false as built-in commands. Bash,
for example, does this.

Try It Out True and False
You can try out the true and false commands with the if statement:

if (true) then
echo “true is true”

else
echo “true is false”

fi

103

Controlling How Scripts Run

06_583204 ch03.qxd 3/18/05 9:26 PM Page 103

if (false) then
echo “false is true”

else
echo “false is false”

fi

Save this script under the name truth_tf. Run the script, and you will see:

$ sh truth_tf
true is true
false is false

With output like this, you get some reassurance that the universe is indeed operating correctly, at least
the Unix and Linux parts.

How It Works
The truth_tf script includes two if statements. One if statement checks the value of the true com-
mand. The other checks the false command. As you’d hope, the true command is indeed considered
true. And the false command is indeed considered false.

Remember that the if statement wants to run a command. The if statement then examines the results
of the command to decide whether the results were true. You can then use if with different commands
to see the results.

For example, you can call the make command, which is used to control the compiling of software appli-
cations, especially C and C++ programs. The make command will return a success exit code (0) if every-
thing went fine and make successfully built whatever it was supposed to build. The make command will
return a failure exit code on any errors.

Note that you may need to install the make command if the command is not available on your system.
See your system documentation for more on installing software packages. The following section assumes
you have installed make.

Try It Out Testing Commands
Try testing the make command with the following script:

if (make) then
echo “make returned true.”

else
echo “make returned false.”

fi

When you first run this command, you will likely see the following output:

$ sh truth_make
make: *** No targets specified and no makefile found. Stop.
make returned false.

104

Chapter 3

06_583204 ch03.qxd 3/18/05 9:26 PM Page 104

This is because the current directory has not yet been set up for the make command. To do so, you need
to create a file named Makefile. Enter the following and save it to a file named Makefile:

all:
echo “make all”

Note that it is very important to place a tab character at the start of the line with the echo command. If
you don’t, make will fail.

Now, you can run the truth_make script and see the following output:

$ sh truth_make
echo “make all”
make all
make returned true.

How It Works
The Makefile holds a set of rules that tells the make command how to compile and link your application.
The example here merely creates a dummy Makefile that performs no compiling.

Think of this example as an idea generator should you use the make command at your organization.

But because the example Makefile has a rule named all (something the make command looks for),
then make reports that it performed all commands as instructed. This, then, is a success status.

Notice how make, by default, outputs the commands it will run —echo “make all” in this case —
and then make actually runs the command, resulting in the second line of output, make all. The
truth_make script then outputs the fact that make returned true. This is a lot for such a short script!

If your system does not have a make command, you will see output like the following:

$ sh truth_make
truth_make: line 1: make: command not found
make returned false.

The first line of the output comes from the shell, telling you that the command make was not found. The
second line of the output comes from the script, truth_make. The call to the make command resulted in
an error. In other words, the command resolved to a false value. Note that this error and the failure code
come from the shell, not from make (which does not exist on this system).

As mentioned previously, you can call any command as the condition for an if statement. If the command
returns 0, then the result is considered true. Otherwise, the shell considers the result false. Most commands
return 0 if the command succeeded, even if the command does not really perform a test or comparison.

For example, you can call the ls command as an if condition, as the following shows:

if (ls) then
echo “ls is true”

else
echo “ls is false”

fi

105

Controlling How Scripts Run

06_583204 ch03.qxd 3/18/05 9:26 PM Page 105

The ls command will succeed so long as it can list the files specified. (With no command-line argument,
ls lists the files in the current directory.) Thus, ls, as used in this example, should succeed.

If you try an example like this, however, you’ll soon see a problem. The ls command wasn’t designed
for testing. Instead, ls was designed for output. Thus, you’ll get a listing of the files in the current direc-
tory as part of this if condition. In most cases, however, you’d like the if conditions to remain silent,
outputting no data. To help with this, you can redirect the output, as explained in the next section.

Redirecting Output
Most Unix and Linux commands output their results. The ls command, for example, outputs the listing
of the files as requested by you, the user. Use a greater-than sign, >, to redirect the standard output of a
command to a given file. The basic syntax is:

command > output_file

You can try this with the ls command. For example:

$ ls > listing.txt

This command sends the output of the ls command into the file listing.txt. If the file doesn’t exist,
the shell creates the file. If the file already exists, the shell truncates the file. When the command com-
pletes, you should be able to view the contents of the file listing.txt, which should hold the same
data as if the ls command sent its output to the screen.

To get rid of a command’s output, redirect the output to /dev/null. You can try this at the command line:

$ ls > /dev/null
$

The system should respond with another prompt with no output from ls. The greater-than sign, >, redi-
rects the output of the command (ls in this case). Here, the > redirects the output of the ls command to
the file /dev/null, often called the null device or the bit bucket. That’s because /dev/null is a special file
that the operating system considers a device. In this case, /dev/null consumes all input sent to it, kind
of like a black-hole star.

The /dev directory is a special directory that holds what are called device files or device drivers, special
code that interfaces with devices such as hard disks, DVD drives, USB keychain flash drives, and so on.

Chapter 8 covers more on redirecting the standard input, output, and error files. For now, just treat this
command as sending the output of the ls command to the null device, which consumes all the bytes
sent to it.

Note that you can also capture the output of a command into a variable. See the section Capturing the
Output of Processes in Chapter 9 for more on this topic.

To get a taste of redirecting, try the following example, which combines redirection with the ls com-
mand inside an if-then conditional statement.

106

Chapter 3

06_583204 ch03.qxd 3/18/05 9:26 PM Page 106

Try It Out Redirecting Output
Enter the following script and save it as the file truth_ls:

if (ls > /dev/null) then
echo “ls is true”

else
echo “ls is false”

fi

When you run this script, you will see:

$ sh truth_ls
ls is true

How It Works
The ls command is true. So are most commands, unless they detect an error. In the truth_ls script,
however, the if condition has more than just the ls command. The command runs ls but sends all
the normal output of ls to the file /dev/null:

ls > /dev/null

This command should return true because in virtually all cases, you can list the contents of the current
directory. Unlike the previous example with the ls command, in an if-then conditional, you should
not see any output of the ls command unless an error occurs.

You can force ls to generate an error by asking ls to list the contents of a directory that does not exist.
For example:

$ ls /fred > /dev/null
ls: /fred: No such file or directory

Unless your system has a directory named /fred, ls will generate an error.

If you are new to redirection in commands, this command also raises some questions. Didn’t you just
redirect the output of the ls command to /dev/null? If so, why do you see ls outputting an error mes-
sage? This is the result of a very old tradition in Unix (and brought into Linux and Mac OS X). Programs
in Unix, all the way from ancient versions of Unix to modern versions today, have three standard files
associated with each program. In most cases, these are not really files but instead devices, represented in
the operating system as special device files unless redirected.

These files are:

❑ stdin, or standard input, is the keyboard.

❑ stdout, or standard output, is the shell window, or screen.

❑ stderr, or standard error, is the shell window, or screen. Only error messages should be written
to stderr.

All of these standard files can be redirected to real files or to other programs.

107

Controlling How Scripts Run

06_583204 ch03.qxd 3/18/05 9:26 PM Page 107

Note how programs have two channels for output: stdout for the normal output and stderr for errors.
The previous example used > to redirect standard output for the ls command, not standard error. You
can redirect standard error with 2> (in sh, ksh, and bash). For example:

$ ls /fred > /dev/null 2> /dev/null
$

This example redirects the normal output from ls, as well as the error messages.

See Chapter 8 for more on the topic of redirecting program output and input, as well as how to redirect
standard error for csh and tcsh.

You can use these redirection techniques to create a script that tests for the existence of various shells.

Try It Out Checking for Shells
The following script tests to see which of the most common shells you have installed. Enter this script
and save it under the name find_shells:

e
echo “Checking your command path for shells...”

if (sh -c exit > /dev/null 2> /dev/null) then
echo “sh found.”

else
echo “sh NOT found.”

fi

if (bash -c exit > /dev/null 2> /dev/null) then
echo “bash found.”

else
echo “bash NOT found.”

fi

if (ksh -c exit > /dev/null 2> /dev/null) then
echo “ksh found.”

else
echo “ksh NOT found.”

fi

if (csh -c exit > /dev/null 2> /dev/null) then
echo “csh found.”

else
echo “csh NOT found.”

fi

You typically don’t want to redirect error messages to /dev/null. You may be hid-
ing something very important.

108

Chapter 3

06_583204 ch03.qxd 3/18/05 9:26 PM Page 108

if (tcsh -c exit > /dev/null 2> /dev/null) then
echo “tcsh found.”

else
echo “tcsh NOT found.”

fi

if (zsh -c exit > /dev/null 2> /dev/null) then
echo “zsh found.”

else
echo “zsh NOT found.”

fi

if (ash -c exit > /dev/null 2> /dev/null) then
echo “ash found.”

else
echo “ash NOT found.”

When you run this script, it should display output similar to the following:

$ sh find_shells
Checking your command path for shells...
sh found.
bash found.
ksh NOT found.
csh found.
tcsh found.
zsh NOT found.
ash found.

Note that your results will differ based on which shells you have installed.

How It Works
The find_shells script repeats a very similar if statement for each of the shells it checks. Each check
tries to run the shell with the -c option. The -c option, supported in all the shells tested here, runs com-
mands from command-line arguments. So a -c exit command line tells each shell to run the exit
command. The exit command tells the shell to exit. That is, you start up a shell program, asking it to
exit right away.

Put together, this runs commands like the following:

sh -c exit
csh -c exit
ksh -c exit

Now, if your system does not have one of these shells, you will see an error. For example, if you do not
have the Korn shell installed, you will see the following (typing in the command at the shell prompt):

$ ksh -c exit
bash: ksh: command not found

109

Controlling How Scripts Run

06_583204 ch03.qxd 3/18/05 9:26 PM Page 109

If your system does have a shell installed, you will see output like the following:

$ bash -c exit
$

So if the command works, the command quits right away. If the command fails, you get an error. Put the
command into an if statement and you have a test for success (truth) or failure (falsehood).

Note that there are a few issues with this approach to finding shells, including the fact that you may have
a shell installed but not in your shell’s command path. Don’t worry about these other issues. The purpose
of these examples is to show if statements, not handle all possible conditions.

If a shell is not installed on your system, however, you shouldn’t have to slog through a number of error
messages. You can get rid of all program output, if you’d like.

The command passed to the if statements redirects the standard output of each command to /dev/null.
If the command cannot be found, the shell generates an error, which would normally be sent to standard
error. The command passed to the if statements, however, also redirects standard error to /dev/null.

For example, to test for the existence of the sh command, you can use:

$ sh -c exit > /dev/null 2> /dev/null

Note that this command is fairly worthless on the command line because all output gets redirected.
Inside an if statement condition, however, this works fine, relying on the error or success return code
from the command.

You can also try using the which command to test for a program’s existence. The which command displays
the full path to a command, if the command exists. If the command does not exist, the which command
generates an error. For example:

$ which ash
/bin/ash
$ which zsh
/usr/bin/which: no zsh in
(/usr/kerberos/bin:/usr/local/bin:/usr/bin:/bin:/usr/X11R6/bin:
/home2/ericfj/bin:/usr/java/j2sdk1.4.1_03/bin:/opt/jext/bin)

The which command in Mac OS X and the Cygwin utilities for Windows does not support returning a true
or untrue value. The which command always returns a true value. Thus, the tests in the find_shells
script generate falsely positive results.

Look at the repetition in the find_shells script. Such repetition cries out for using functions, the topic
of Chapter 10. You can also use other techniques to reduce the duplication.

Try It Out Finding Shells with a Shorter Script
If you combine the if tests in the find_shells script with the for loop, you can write a version of the
find_shells script that is much shorter. Enter the following script and name it find_shells2:

110

Chapter 3

06_583204 ch03.qxd 3/18/05 9:26 PM Page 110

echo “Checking your command path for shells...”

for check_for in sh bash ksh csh tcsh zsh ash
do

cmd=”$check_for -c exit”

if ($cmd > /dev/null 2> /dev/null) then
echo “$check_for found.”

else
echo “$check_for NOT found.”

fi
done

When you run this script, you should see output like that of the find_shells script. The main change
has been to shorten the script; the basic functionality remains the same.

How It Works
Note that the find_shells2 script is much shorter and easier to understand than the find_shells
script. The for loop in the script iterates over the list of shells. This eliminates the duplicated code in the
find_shells script.

The do-done block in the find_shells2 script builds up a command to check for the shell. As before,
the command is basically an attempt to run each shell, where the shell is one of sh, csh, and so on. The
cmd variable holds the full command to execute. If this command returns true, then the shell was
found. Otherwise, the shell was not found.

Using elif (Short for else if)
The Bourne shell syntax for the if statement allows an else block that gets executed if the test is not
true. You can nest if statements, allowing for multiple conditions. As an alternative, you can use the
elif construct, short for else if. The basic syntax is:

if (condition_command) then
command1
command2
...
last_command

elif (condition_command2) then
command1
command2
...
last_command

else
command1
command2
...
last_command

fi

111

Controlling How Scripts Run

06_583204 ch03.qxd 3/18/05 9:26 PM Page 111

With the normal if statement, and in this case, if the condition_command returns zero (true), then the
shell executes the commands underneath. In this case, if the condition_command returns a nonzero sta-
tus, or false, then the shell will jump to the next condition to check, the condition_command2. If the
condition_command2 returns zero, then the commands shell executes the commands underneath the
elif statement. Otherwise, the shell executes the commands underneath the else statement.

Theoretically, the elif keyword is not needed, as you can nest if statements. But in most cases, if
makes your scripts easier to understand.

Try It Out Using elif
Enter the following script and name the file check_csh:

echo -n “Checking for a C shell: “

if (which csh > /dev/null 2> /dev/null) then
echo “csh found.”

elif (which tcsh > /dev/null 2> /dev/null) then
echo “tcsh found, which works like csh.”

else
echo “csh NOT found.”

fi

When you run this script, you should see output that differs depending on which shells you have
installed. For example:

$ sh check_csh
Checking for a C shell: csh found.

If your system does not have csh but does have tcsh, you will see:

$ sh check_csh
Checking for a C shell: tcsh found, which works like csh.

And if your system has neither csh nor tcsh, you will see:

$ sh check_csh
Checking for a C shell: csh NOT found.

How It Works
The check_csh script tries to determine whether you have a C shell installed. Borrowing the tests from
the find_shells script, the check_csh script first checks for csh. If found, the script is done. If not
found, the script tests for tcsh, in case you have tcsh installed but not csh. In this script, tcsh is consid-
ered good enough to act as csh because tcsh is an extended version of the C shell. Finally, if all else fails,
the script outputs a message that csh was not found.

112

Chapter 3

06_583204 ch03.qxd 3/18/05 9:26 PM Page 112

The script logic follows:

echo -n “Checking for a C shell: “

if (csh_is_present) then
echo “csh found.”

elif (tcsh_is_present) then
echo “tcsh found, which works like csh.”

else
echo “csh NOT found.”

fi

Note that this is not valid shell syntax, as csh_is_present and tcsh_is_present are placeholders for
the real testing code shown in the check_csh script.

You can include more than one elif construct within an if statement, as many as you need.

Nesting if Statements
As with for loops, you can nest if statements, although using the elif construct eliminates many of
the nested if statements that would be required without it.

If you nest too many if statements, your scripts will become very hard to read. After two or three
nested if statements, you should stop.

The following example shows how you can nest if statements.

Try It Out Nesting if Statements
Enter the following script and save it under the name truth_nested:

if (true) then

Only if the first condition is true will
we get here.

if (false) then
echo “The universe is wrong.”

else
echo “All is well in the universe.”

fi
fi

When you run this script, you should see the reassuring message that everything is okay:

$ sh truth_nested
All is well in the universe.

Rest assured, all is well.

113

Controlling How Scripts Run

06_583204 ch03.qxd 3/18/05 9:26 PM Page 113

How It Works
This example contains two if statements. If the first if statement resolves to true, then the shell will
execute the block inside the if statement. This block contains another if statement. If that statement is
true (as well as the first statement, or the shell would not be executing this code), then the script executes
the then part. If the second if statement is not true, then the shell executes the else part.

In this example, the first test runs the true command (or shell built-in command). This command
returns true (always). So the shell executes the block of commands inside the if statement. The second
test runs the false command (or shell built-in command). This command should return false. If not,
the shell outputs a message questioning the foundation of existence.

Testing with the test Command
Because the Bourne shell if statement was designed to work with commands, and because many scripts
need to compare values, the Bourne shell includes the test command. The test command forms a sort
of all-encompassing means to test files, values, and most everything else. Depending on the command-
line options you pass, test can compare values, check for file permissions, and even look for whether
files exist. The test command is normally implemented by the shell as a built-in command. But test
also exists as a program on disk, typically in /usr/bin.

To control what kind of test is performed, you must figure out the needed command-line options for the
test command to build up an expression to test. The test command uses the command-line options to
determine what comparisons to make. Then the test command exits and returns a 0 if the expression
tested was true and a nonzero value (1) if the expression was false. If test encounters an error, it returns
a number greater than 1.

To build up a test, you use the command-line options to specify how to compare values. For example:

test $x -eq $y

This example tests whether the value of x is equal to that of y, using the -eq command-line option. This
is assumed to be a numeric equality test. The shell will try to make numbers out of strings if needed.

Comparing Numbers
The following table shows the numeric test options. The variables x and y should have a numeric value,
obviously.

Test Usage

$x -eq $y Returns true if x equals y

$x -ne $y Returns true if x does not equal y

$x -gt $y Returns true if x is greater than y

$x -ge $y Returns true if x is greater than or equal to y

114

Chapter 3

06_583204 ch03.qxd 3/18/05 9:26 PM Page 114

Test Usage

$x -lt $y Returns true if x is less than y

$x -le $y Returns true if x is less than or equal to y

Passing no test to test results in a false value.

Try It Out Testing Numbers
This Try It Out shows the syntax for various numeric comparisons. Enter the following script and save it
under the file name test_num:

Number test.

echo “**** Numeric comparisons.”
x=5
y=10

echo -n “test -eq: “
if (test $x -eq $y) then

echo “X = Y.”
else

echo “X != Y. Expected.”
fi

echo -n “test -eq: “
if (test $x -eq $x) then

echo “X = X. Expected.”
else

echo “X != X. “
fi

echo -n “test -eq: “
if (test $x -eq 5) then

echo “X = 5. Expected.”
else

echo “X != 5. “
fi

echo -n “test -eq: “
if (test $x -eq “5”) then

echo “X = \”5\”. Expected.”
else

echo “X != \”5\”. “
fi

echo -n “test -ne: “
if (test $x -ne 5) then

echo “X != 5. “

115

Controlling How Scripts Run

06_583204 ch03.qxd 3/18/05 9:26 PM Page 115

else
echo “X = 5. Expected.”

fi

echo -n “test -ne: “
if (test $x -ne $y) then

echo “X != Y. Expected.”
else

echo “X = Y.”
fi

Note extra ! for “not”.
echo -n “test -ne: “
if (test ! $x -eq $y) then

echo “X != Y. Expected.”
else

echo “X = Y.”
fi

echo -n “test -lt: “
if (test $x -lt 5) then

echo “X < 5. “
else

echo “X = 5. Expected.”
fi

echo -n “test -le: “
if (test $x -le 5) then

echo “X <= 5. Expected.”
else

echo “X = 5.”
fi

When you run this script, you should see the following output:

$ sh test_num
**** Numeric comparisons.
test -eq: X != Y. Expected.
test -eq: X = X. Expected.
test -eq: X = 5. Expected.
test -eq: X = “5”. Expected.
test -ne: X = 5. Expected.
test -ne: X != Y. Expected.
test -ne: X != Y. Expected.
test -lt: X = 5. Expected.
test -le: X <= 5. Expected.

In each case, you get the expected results.

116

Chapter 3

06_583204 ch03.qxd 3/18/05 9:26 PM Page 116

How It Works
The test_num script has a lot of if statements showing different types of numeric comparisons. The
tests compare x, set to 5, and y, set to 10.

The script outputs a message with the echo command prior to each if statement. This should help iden-
tify the test by printing out the test on the same line as the result. The script also shows the expected
result, true or false, of the test. For example:

echo -n “test -le: “
if (test $x -le 5) then

echo “X <= 5. Expected.”
else

echo “X = 5.”
fi

In this case, the variable x is indeed less than or equal to 5 because x was assigned to the value 5. The echo
statement that outputs the expected result includes the word Expected to make it very obvious when you
run this script which result you should see. Furthermore, the echo statements include a shorthand to indi-
cate the comparison, such as X = 5 for X is equal to 5, X != Y for X does not equal Y, and X <= 5 for X is less
than or equal to 5. This shorthand text does not use the shell syntax for brevity in the output.

The tests in the test_num script show how to use the test command in general, as well as numeric com-
parisons. Look over all the if statements in the test_num script until you are confident of the results.
This is very important. The test command is used everywhere. You need to master this material.

In addition to comparing numbers, you can compare text strings.

Comparing Text Strings
The test command can also compare text strings. The test command compares text strings by compar-
ing each character in each string. The characters must match for the comparison to be true.

For some reason, text has been called strings or text strings in just about every programming language.
The usage comes from the idea of a text string as a string of characters (often of bytes), one after another.
The analogy doesn’t really hold up, but the terminology has.

You can compare based on the text string values or check whether a string is empty or not. The follow-
ing table shows the text string test options.

Test Usage

"$s1" = "$s2" Returns true if s1 equals s2

"$s1" != "$s2" Returns true if s1 does not equal s2

$s1 Returns true if s1 is not null

Table continued on following page

117

Controlling How Scripts Run

06_583204 ch03.qxd 3/18/05 9:26 PM Page 117

Test Usage

$s1 -z Returns true if the length of s1 (the number of char-
acters in s1) is zero

$s1 -n Returns true if the length of s1 (the number of char-
acters in s1) is not zero

The following Try It Out shows the tests from this table in use in a shell script.

Try It Out Comparing Strings
Enter the following script and save it under the name test_strings:

String test.

echo “**** String comparisons.”
string=”In Xanadu did Kublai Khan...”

echo -n “test of a string: “
if (test “$string”) then

echo “We have a non-null \$string. Expected.”
else

echo “\$string is null.”
fi

echo -n “test of a string: “
if (test $notset) then

echo “How did \$notset get a value?”
else

echo “\$notset has not been set. Expected.”
fi

echo -n “test -z: “
if (test -z $notset) then

echo “Length of \$notset is zero. Expected.”
else

echo “Length of \$notset is NOT zero.”
fi

Note quotes around multi-word string.
echo -n “test -z: “
if (test -z “$string”) then

echo “Length of \$string is zero.”
else

echo “Length of \$string is NOT zero. Expected.”
fi

echo -n “test -n: “
if (test -n “$string”) then

echo “Length of \$string is NOT zero. Expected.”
else

118

Chapter 3

06_583204 ch03.qxd 3/18/05 9:26 PM Page 118

echo “Length of \$string is zero.”
fi

echo -n “test =: “
if (test “$string” = “$string”) then

echo “Strings are equal. Expected.”
else

echo “Strings are not equal.”
fi

Tricky one. Notice the difference.
echo -n “test =: “
if (test “$string” = “$string “) then

echo “Strings are equal. “
else

echo “Strings are not equal. Expected”
fi

echo -n “test =: “
if (test “$string” = “In Xanadu did Kublai Khan...”) then

echo “Strings are equal. Expected.”
else

echo “Strings are not equal.”
fi

echo -n “test !=: “
if (test “$string” != “In Xanadu did Kublai Khan...”) then

echo “Strings are equal.”
else

echo “Strings are not equal. Expected.”
fi

echo -n “test !=: “
if (test “$string” != “$notset”) then

echo “Strings are not equal. Expected.”
else

echo “Strings are equal.”
fi

echo

When you run this script, you should see the following output:

$ sh test_strings
**** String comparisons.
test of a string: We have a non-null $string. Expected.
test of a string: $notset has not been set. Expected.
test -z: Length of $notset is zero. Expected.
test -z: Length of $string is NOT zero. Expected.
test -n: Length of $string is NOT zero. Expected.
test =: Strings are equal. Expected.

119

Controlling How Scripts Run

06_583204 ch03.qxd 3/18/05 9:26 PM Page 119

test =: Strings are not equal. Expected
test =: Strings are equal. Expected.
test !=: Strings are not equal. Expected.
test !=: Strings are not equal. Expected.

As before, all tests work as expected.

How It Works
As with the previous example, the test_strings script contains a number of if statements, each try-
ing out a different form of test. This test uses two variables: string, which is initialized to the start of
a poem, and notset, which is not set and hence has a null value.

As with the previous example, look over the tests to ensure you understand the material. Some of the
tests are tricky. For example, the following differs only by a space:

if (test “$string” = “$string “) then
echo “Strings are equal. “

else
echo “Strings are not equal. Expected”

fi

Each space can be very important when comparing text strings. Note also how empty strings have zero
lengths:

if (test -z $notset) then
echo “Length of \$notset is zero. Expected.”

else
echo “Length of \$notset is NOT zero.”

fi

This may seem obvious, but many computer languages would generate an error instead, reserving a
zero length for strings that exist but have no value. With shell scripts, you can compare variables that
have never been set and so don’t exist.

Testing Files
In addition to the numeric and string tests, you can use the test command to test files. In fact, testing
files is the primary use of the test command in most scripts.

The following table lists the file options for the test commands.

Test Usage

-d filename Returns true if the file name exists and is a directory

-e filename Returns true if the file name exists

-f filename Returns true if the file name exists and is a regular file

120

Chapter 3

06_583204 ch03.qxd 3/18/05 9:26 PM Page 120

Test Usage

-r filename Returns true if the file name exists and you have read
permissions

-s filename Returns true if the file name exists and is not empty
(has a size greater than zero)

-w filename Returns true if the file name exists and you have
write permissions

-x filename Returns true if the file name exists and you have
execute permissions

These tests are described in Chapter 5.

Using the Binary and Not Operators
Each of the test options introduced so far works alone. You can combine tests using the binary and
negation tests. The following table shows these add-in tests.

Test Usage

! Negates the test.

-a Returns true if two tests are both true and false other-
wise. This is an AND operation.

With the negation test, !, you can negate any of the other tests. So, for example, if you use the -eq option
to compare two numeric values for equality, you can use the ! to negate the test, in other words to check
for inequality:

if (test ! $x -eq $y) then
echo “x != y. Expected.”

else
echo “false: x = y.”

fi

In this example, the $x -eq $y tests if the value of x equals the value of y. The test will return true if the
values are equal and false if they are not equal. Placing an exclamation mark into the test converts the
test to return true if the values are not equal and false if they are equal. (Try this test in the
test_binary script following in this section.)

The options -a and -o form the binary test options. But even though these are listed as binary compar-
isons — that is, checks at the bit level — in most cases you can treat -a as a logical AND. Treat -o as a
logical OR. For example:

121

Controlling How Scripts Run

06_583204 ch03.qxd 3/18/05 9:26 PM Page 121

x=3
y=10

if (test $x -eq $x -a $y -eq $y) then
echo “x = x and y = y. Expected.”

else
echo “false: x = x and y = y.”

fi

In this case, x equals x and y equals y. In addition:

if (test $x -eq $x -a $y -ne $y) then
echo “x = x and y = y.”

else
echo “false: x = x and y != y. Expected.”

fi

This example tests whether x equals x and y does not equal y. This is obviously false.

The -a option takes precedence over the -o option if both appear in the same call to the test command.

You can try out the AND, OR, and negation tests with the following example. These tests tend to get
complex because each of these new tests requires an additional test (!) or tests (-a and -o) to run.

Try It Out Combining Tests
Enter the following script and save it under the name test_binary:

Binary test.

echo “**** Binary comparisons.”
x=3
y=10

echo -n “test !: “
if (test ! $x -eq $y) then

echo “x != y. Expected.”
else

echo “false: x = y.”
fi

echo -n “test -a: “
if (test $x -eq $x -a $y -eq $y) then

echo “x = x and y = y. Expected.”
else

echo “false: x = x and y = y.”
fi

echo -n “test -a: “
if (test $x -eq $x -a $y -ne $y) then

echo “x = x and y = y.”

122

Chapter 3

06_583204 ch03.qxd 3/18/05 9:26 PM Page 122

else
echo “false: x = x and y != y. Expected.”

fi

echo -n “test -o: “
if (test $x -eq $x -o $y -ne $y) then

echo “x = x or y != y. Expected”
else

echo “false: x = x or y != y is not true.”
fi

When you run this script, you should see the following output:

$ sh test_binary
**** Binary comparisons.
test !: x != y. Expected.
test -a: x = x and y = y. Expected.
test -a: false: x = x and y != y. Expected.
test -o: x = x or y != y. Expected

How It Works
The binary tests often prove confusing, especially since these tests do not compare at the bit level.

The first test uses the negation operator, !, to negate an equals test:

if (test ! $x -eq $y) then
echo “x != y. Expected.”

else
echo “false: x = y.”

fi

In this case, x holds a value of 3 and y holds a value of 10. These two values are clearly not equal. Thus,
the -eq test will return false. The ! test, however, reverses this test, and so the final test will return true.

The second test insists that two equals tests must both be true, as does the third test. The fourth test uses
the OR operator, -o, to allow one or the other (or both) of two tests to be true.

Creating Shorthand Tests with [
In addition to the test command, you can write your tests using [, a shorthand for test. It may seem
weird, but [is actually a command. You can check this with the which command:

$ which [
/usr/bin/[

Note that] is not a command. The] is interpreted as a command-line argument to the [command.

Even though it is a command, [, like test, is often built into the shell. Shells such as bash, for example,
come with a built-in test and [commands. You can see this by using the type command in bash:

123

Controlling How Scripts Run

06_583204 ch03.qxd 3/18/05 9:26 PM Page 123

$ type [
[is a shell builtin
$ type test
test is a shell builtin

Note that type is also a built-in shell command:

$ type type
type is a shell builtin

If you use type with the name of a command, you will see output like the following:

$ type rm
rm is /bin/rm

This indicates that rm, for removing, or deleting, files, is a command. Shells such as bash, csh, and tcsh
support aliases, where you can enter in an alias name and use the alias in place of a command. The type
command on bash can also tell you about whether a command is aliased or not. For example:

$ type ls
ls is aliased to `ls --color=tty’

The alias command lists all the aliases. When you run this command with bash, you will see output
like the following:

$ alias
alias l.=’ls -d .* --color=tty’
alias ll=’ls -l --color=tty’
alias ls=’ls --color=tty’
alias vi=’vim’

The output on your system may differ, depending on what aliases are set up in your shell.

With tcsh or csh, the output will appear slightly different. For example:

$ alias
h history
l. ls -d .* --color=tty
ll ls -l --color=tty
ls (ls -CF)
qtopia /opt/Qtopia/bin/qtopiadesktop
rm (rm -i)
vi vim
xcd cd !*; echo -n “^[]2;$cwd^G”

As before, the output on your system may differ, depending on what aliases are set up in your shell.

124

Chapter 3

06_583204 ch03.qxd 3/18/05 9:26 PM Page 124

Tying this together, you can write your tests using test or [, as you prefer. The syntax is:

if [test_options]
then

commands
else

commands
fi

Use square brackets, [and], around the test options. Note that this example places the then construct
on the next line. This is needed because this example skips the parenthesis. You can keep the then on the
same line if you include parentheses, but this syntax looks odd:

if ([test_options]) then
commands

else
commands

fi

The test_options should be the command-line options and arguments normally passed to the test
command. For example:

x=5
y=10

if [$x -eq $y]
then

echo “X = Y.”
else

echo “X != Y. Expected.”
fi

The [syntax is supposed to make the tests easier to understand, but using [can be confusing because of
the way [was implemented as a command. Even so, this syntax is used in most scripts in place of the
test command.

Making Complex Decisions with case
Nested if statements work well, but as soon as you are confronted with a number of possible actions
to take, nested if statements start to confuse. You can simplify complex tests with the case statement.
Whenever you have a question or test with a number of choices and a script that requires specific actions
for each choice, you can use the case statement. The case statement is similar to a set of if-elif
constructs.

The syntax of the case statement follows:

case word in
value1)

command1
command2

125

Controlling How Scripts Run

06_583204 ch03.qxd 3/18/05 9:26 PM Page 125

...
last_command

;;
value2)

command1
command2
...
last_command

;;
esac

With this syntax, you compare a word, usually the value of a variable, against a number of values. If
there is a match, the shell executes the commands from the given value up to the two semicolons (;;)
that end an individual case.

The entire statement ends with esac, case spelled backward.

Try It Out Choosing Favorites
The following script shows an example of the case statement. Enter this script and save it under the
name choice1:

echo “Which would you rather have,”
echo “ksh, a platypus, or”
echo -n “MS Word for Windows for Windows for Macintosh? “
read choice

case $choice in
ksh)
echo “There are a lot of neat things you”

echo “can do with the Korn shell.”
;;
platypus)

echo “The Platypus Society thanks you.”
;;
“MS Word for Windows for Windows for Macintosh”)

echo “This is not a real product, you know.”
;;
esac

When you run this script, you will be prompted to provide an answer:

$ sh choose1
Which would you rather have,
ksh, a platypus, or
MS Word for Windows for Windows for Macintosh? ksh
There are a lot of neat things you
can do with the Korn shell.

126

Chapter 3

06_583204 ch03.qxd 3/18/05 9:26 PM Page 126

Each time you run the choose1 script, you can enter a different answer. For example:

$ sh choose1
Which would you rather have,
ksh, a platypus, or
MS Word for Windows for Windows for Macintosh? platypus
The Platypus Society thanks you.

Entering in the last value is left as an exercise.

How It Works
This script offers the choice among three very similar items: a shell, an animal, and an imaginary soft-
ware product. (You can decide which is which.)

Depending on how you answer, the script outputs a different message. In real-world scripts, you are
likely to set a number of variables to different values depending on the match in the case statement. For
example, you may have a script that determines the operating system using the uname command and
then uses a case statement to specify the paths to the CD-ROM drive based on the operating system.
This type of script is very common.

For another example usage, a networking script may need to take different options if the networking is a
wired Ethernet link, a wireless 802.1x link, or an IP over USB connection. These choices would result in
different commands needed to start up networking, or at least different command-line options. The
case statement is a good choice for these types of problems.

Handling Problematic Input
There is a big problem with the choose1 script, however. You can see this problem if you enter some-
thing unexpected. For example:

$ sh choose1
Which would you rather have,
ksh, a platypus, or
MS Word for Windows for Windows for Macintosh? fred
$

If you enter an unexpected value, such as fred, the script does nothing. It cannot handle unexpected
input. Of course, this means the choose1 script is not very robust and will likely fail if you release this
software to the wide world.

To deal with this situation, the case statement also includes a catch-all value of *, which you can use to
capture values that would normally fall through a case statement, matching nothing. The syntax follows:

case word in
value1)

command1
command2
...

127

Controlling How Scripts Run

06_583204 ch03.qxd 3/18/05 9:26 PM Page 127

last_command
;;
value2)

command1
command2
...
last_command

;;
*)

command1
command2
...
last_command

;;
esac

Try It Out Handling Unexpected Input
The following script handles unexpected input as part of a quiz on operating system favorites:

echo “Please enter your favorite operating system, “
echo -n “linux, macosx, windows, amigados, or beos: “
read os

case $os in

linux)
echo “Way cool, you like Linux.”

;;
macosx)

echo “You like Roman numerals.”
;;
windows)

echo “Time to check for a virus.”
;;
amigados)

echo “AmigaDOS will never die.”
;;
beos)

echo “Count yourself lucky.”
;;
*)

echo “Why did you choose $os?”
;;
esac

When you run this script, you will be asked to enter your favorite operating system. For example:

$ sh case_os
Please enter your favorite operating system,
linux, macosx, windows, amigados, or beos: beos
Count yourself lucky.

128

Chapter 3

06_583204 ch03.qxd 3/18/05 9:26 PM Page 128

Each value displays a different message. For example:

$ sh case_os
Please enter your favorite operating system,
linux, macosx, windows, amigados, or beos: macosx
You like Roman numerals.

If you enter an unexpected value, you will see output like the following:

$ sh case_os
Please enter your favorite operating system,
linux, macosx, windows, amigados, or beos: Macintosh System 7
Why did you choose Macintosh System 7?

How It Works
This script uses the techniques of the last example script but adds a *) construct to handle input that
does not match any of the other values. Thus, if you enter Macintosh System 7, as shown shown previ-
ously, then the shell executes the *) construct to handle unexpected input. (This is doubly unexpected,
as Mac OS X is so much better.)

Note that this example is case-sensitive, so BeOS, for example, would not match beos.

This quiz, while being completely objective, does allow the user to enter in unexpected values, sort of
like a write-in candidate in an election. As a general rule, all case statements should include the *)
construct to handle unexpected values.

Using case with the C Shell
The C shell doesn’t support the case statement like the Bourne shell. The C shell, however, does provide
a switch statement, very similar to the Bourne shell case statement.

The C shell syntax is:

switch (word)
case value1:

commands
breaksw

case value1:
commands
breaksw

default
commands

endsw

Instead of case, you see a switch statement. (This is one area where the C shell is quite similar to the
C programming language.) Each value is specified by a case construct. Each case block ends with a
breaksw statement, short for break switch. (This mimics the C language break statement.)

129

Controlling How Scripts Run

06_583204 ch03.qxd 3/18/05 9:26 PM Page 129

A default block specifies the action to take if none of the cases matches.

The entire switch statement ends with an endsw statement, short for end switch.

Try It Out Casing the C Shell
The following script provides the operating system quiz from case_os in C shell syntax, using the
switch construct:

echo “Please enter your favorite operating system, “
echo -n “linux, macosx, windows, amigados, or beos: “
set os = $<

switch ($os)
case linux:

echo “Way cool, you like Linux.”
breaksw

case macosx:
echo “You like Roman numerals.”
breaksw

case windows:
echo “Time to check for a virus.”
breaksw

case amigados:
echo “AmigaDOS will never die.”
breaksw

case beos:
echo “Count yourself lucky.”
breaksw

default
echo “Why did you choose $os?”

endsw

Enter this script and save it under the name switch_os. You can compare this script to the previous
example, case_os.

When you run this script, you will see the familiar quiz. The output should be the same as the previous
example, case_os, even if you enter an unexpected value:

$ csh switch_os
Please enter your favorite operating system,
linux, macosx, windows, amigados, or beos: wince
Why did you choose wince?

How It Works
This script is a conversion, called a port, of the case_os script to the C shell syntax. The switch state-
ment follows the syntax shown previously.

In addition, this script shows how a C shell script reads input from the user. For example:

set os = $<

130

Chapter 3

06_583204 ch03.qxd 3/18/05 9:26 PM Page 130

This statement serves the same purpose as the Bourne shell syntax using read:

read os

Looping While a Condition Is True
Like the for loop, the while loop repeats its block of commands a number of times. Unlike the for
loop, however, the while loop iterates until its while condition is no longer true. The basic syntax is:

while [test_condition]
do

commands...
done

The while loop is sort of like a combination of an if statement and a for loop. Use the while loop
when you don’t know in advance how many iterations you need.

Note that the C shell sports a different syntax for a while loop:

while (test_condition)
commands...

end

Try It Out Looping While a Condition Is True
With the Bourne shell while loop, you can create complex loops, as the following mini command inter-
preter shows. Enter the following script and save it under the name while:

command=”init” # Initialization.

while [“$command” != “exit”]
do

echo -n “Enter command or \”exit\” to quit: “
read command
echo

case $command in
ls)

echo “Command is ls.”
;;
who)

echo “Command is who.”
;;
*)

if [$command != “exit”]
then

echo “Why did you enter $command?”
fi

;;

131

Controlling How Scripts Run

06_583204 ch03.qxd 3/18/05 9:26 PM Page 131

esac

done

When you run this script, you will be prompted to enter commands:

$ sh while
Enter command or “exit” to quit: ls

Command is ls.
Enter command or “exit” to quit: who

Command is who.
Enter command or “exit” to quit: type

Why did you enter type?
Enter command or “exit” to quit: exit

Enter exit to quit the script.

How It Works
This example script manages to combine a while loop, a case statement, an if statement, and the read
command. The while loop forms the outer part of a primitive command interpreter.

Each iteration prompts the user to enter a command. The case statement then outputs a different mes-
sage based on the command. The catch-all case, *, further checks whether the user entered exit and
outputs a message only if the user did not enter exit.

The loop then goes to the top and tests the while loop condition. If the user entered exit, the while
loop test fails, and the shell jumps over the do-done block to the next statement after the while loop, of
which there is none, so the script exits.

Note that this script does not interpret the user input; it merely checks this input for the text exit.

Looping Until a Condition Is True
The until loop is very similar to the while loop. With while, the test must be true to execute the block
of commands in the loop. With until, the test must be false. Otherwise, the two loops are the same.

Think of until as “loop until a condition is true” and while as “loop while this condition remains
true.” In other words, until just reverses the test. The following example shows this test reversal by
modifying the previous example to use the until statement.

Try It Out Looping Until a Condition Is Met
Enter the following script and save it under the name until:

132

Chapter 3

06_583204 ch03.qxd 3/18/05 9:26 PM Page 132

command=”init” # Initialization.

until [“$command” = “exit”]
do

echo -n “Enter command or \”exit\” to quit: “
read command
echo

case $command in
ls)

echo “Command is ls.”
;;
who)

echo “Command is who.”
;;
*)

if [$command != “exit”]
then

echo “Why did you enter $command?”
fi

;;
esac

done

When you run this script, you should see the following output:

$ sh until
Enter command or “exit” to quit: ls

Command is ls.
Enter command or “exit” to quit: whos

Why did you enter whos?
Enter command or “exit” to quit: who

Command is who.
Enter command or “exit” to quit: exit

How It Works
The until script is almost the same as the while script; just the test at the top of the loop changed. Note
how the test must be reversed. For example:

[“$command” = “exit”]

This test results in a true value if the value of the variable command equals exit. The while loop, on the
other hand, used a different test:

[“$command” != “exit”]

This test results in a true value if the value of the variable command does not equal exit.

133

Controlling How Scripts Run

06_583204 ch03.qxd 3/18/05 9:26 PM Page 133

Summary
Yow. That is a lot of syntax for one chapter. This chapter includes the basics on how to control which
commands in your script get executed. These basics include:

❑ You can use the syntax ${variable} to access the value of a variable. This syntax is the same as
$variable, but the curly braces clearly delineate the start and end of the variable name. This
means the variable name cannot get merged into adjacent text.

❑ The for loop allows your script to iterate a given number of times. A special variant of the for
loop iterates over files using wildcard syntax, such as * and *.txt.

❑ The if statement executes a command and tests whether the results of the command are true
or false.

❑ A special command named test provides a zillion command-line options to test different
conditions.

❑ You can use [] in place of the test command, placing the test command-line options and
arguments between square brackets.

❑ The while loop iterates while a condition is true. When the condition resolves to false, the
while loop stops.

❑ The until loop reverses the while loop test. The until loop iterates while the condition is
not true.

The next chapter expands the use of shell scripts to the overarching computer environment, discussing
operating system issues, how shells start up, and how to turn your shell scripts into executable commands.

Exercises
1. Run the choose1 example script and enter the imaginary Microsoft product name. Be sure to

have your license key ready.

2. Extend the myls or myls2 shell scripts to list the files in a different directory from the current
directory, such as /usr/local. The script should still output the name of all the files in the directory.

3. Enhance the script you wrote for Exercise 2 to place the name of the directory in a variable and
access the variable in the for loop.

4. Enhance the script you wrote for Exercise 3 to ask the user for the name of the directory to list.

5. Enhance the script you wrote for Exercise 4. This new script should ask the user the directory to
list and then should output / after directory names and * after executable files. Do not output *
if the file is a directory (and has execute permissions on the directory).

134

Chapter 3

06_583204 ch03.qxd 3/18/05 9:26 PM Page 134

4
Interacting with
the Environment

No shell script is an island. Your scripts run within the environment provided by your computer
and operating system. For shell scripts, most systems provide a Unix-like environment, which
helps a lot because your scripts can query the environment in a consistent manner across systems.
This includes Mac OS X, based on Berkeley Unix, and Linux, a Unix work-alike. Even Windows
and QNX provide Unix-like environments for shell scripts.

A Unix-like environment provides special settings called environment variables, which hold impor-
tant values for determining where commands are located, as well as the user’s home directory.

This chapter covers:

❑ Examining the settings in your system’s environment, getting and setting environment
variables

❑ Customizing your account, especially how shells start up

❑ Handling command-line arguments and using these arguments to change the way your
scripts behave

❑ Making scripts executable so your scripts appear to the end user as operating system
commands, no different from commands such as ls and cp

Examining Environment Variables
Environment variables are a type of shell variables.

For the most part, environment variables are the same as other shell variables. There are four main
differences, however:

❑ Environment variables are set by the environment, the operating system, during the
startup of your shell. (This process is not magic, as you will see in this chapter.)

07_583204 ch04.qxd 3/18/05 9:28 PM Page 135

❑ Shell variables are local to a particular instance of the shell — for example, the shell instance
running a script. Environment variables are inherited by any program you start, including
another shell.

❑ Environment variables have a special meaning that applies to all scripts.

❑ You must make a special operation to set an environment variable.

The following sections cover these points in depth.

Reading Environment Variables
Environment variables are treated, in most respects, as normal shell variables. That means that if you
have an environment variable named HOME, you can access the value of this variable by using the dollar
sign ($) constructor — for example, $HOME. This part is no different than for other variables that you cre-
ate within your shell scripts.

The most crucial thing about these variables, however, is that they hold settings that presumably reflect
the user’s environment and wishes. (Sometimes these variables reflect the administrator’s wishes
instead.)

For example, the LANG environment variable, if set, specifies the user’s locale, a combination of a code
for the user’s language, as well as any variants. A user could have a locale of English with a code of en.
A user in the United Kingdom would have a variant of English in the UK, en_UK, whereas a user in the
United States would have a variant of English in the US, en_US. A spell-checking program can then use
the LANG environment variable to determine which spelling dictionary to load and thus determine
whether specialization or specialisation is correct, for example.

Thus, your scripts should honor environment variable settings where possible. This is complicated, how-
ever, by the fact that not all systems set all variables. Thus, your scripts always have to check whether a
variable is set first and then display a default value if necessary.

The following table lists the most commonly available environment variables.

Variable Usage

COLUMNS Number of text characters that can fit across one line
in the shell window

DISPLAY Names the graphics display for systems using the X
Window System

HISTSIZE Number of commands to store in the command his-
tory (bash and ksh)

HOME User’s home directory

HOSTNAME Computer’s host name

LANG Specifies user’s locale, such as French in France,
French in Canada, French in Switzerland

136

Chapter 4

07_583204 ch04.qxd 3/18/05 9:28 PM Page 136

Variable Usage

LINES Number of text lines that can fit in the shell window

PATH List of directories searched for commands

PWD Current directory

SHELL Default shell

TERM Ancient terminal type, if applicable

USER User name

To see what is defined within your shell, use the set command.

Use setenv instead with csh and tcsh. See below for more on this.

Built into the shell, the set command lists all the variables currently set. If you have access systems run-
ning different operating systems, compare the different environments. The following examples show
common settings on different operating systems.

Note that set shows more than just the true environment variables. This is explained in more detail later
in this chapter.

Try It Out Listing the Environment on Linux
On a Fedora Core 2 Linux system, you will see an environment like the following:

$ set
BASH=/bin/bash
BASH_VERSINFO=([0]=”2” [1]=”05b” [2]=”0” [3]=”1” [4]=”release”
[5]=”i386-redhat-linux-gnu”)
BASH_VERSION=’2.05b.0(1)-release’
COLORS=/etc/DIR_COLORS.xterm
COLORTERM=gnome-terminal
COLUMNS=73
DESKTOP_SESSION=default
DIRSTACK=()
DISPLAY=:0.0
EUID=500
GDMSESSION=default
GNOME_DESKTOP_SESSION_ID=Default
GNOME_KEYRING_SOCKET=/tmp/keyring-tNORrP/socket
GROUPS=()
GTK_RC_FILES=/etc/gtk/gtkrc:/home2/ericfj/.gtkrc-1.2-gnome2
G_BROKEN_FILENAMES=1
HISTFILE=/home2/ericfj/.bash_history
HISTFILESIZE=1000
HISTSIZE=1000
HOME=/home2/ericfj
HOSTNAME=kirkwall
HOSTTYPE=i386

137

Interacting with the Environment

07_583204 ch04.qxd 3/18/05 9:28 PM Page 137

IFS=$’ \t\n’
INPUTRC=/etc/inputrc
KDEDIR=/usr
LANG=en_US.UTF-8
LESSOPEN=’|/usr/bin/lesspipe.sh %s’
LINES=24
LOGNAME=ericfj
LS_COLORS=’no=00:fi=00:di=00;34:ln=00;36:pi=40;33:so=00;35:bd=40;33;01:cd=40;33;01:
or=01;05;37;41:mi=01;05;37;41:ex=00;32:*.cmd=00;32:*.exe=00;32:*.com=00;32:
.btm=00;32:.bat=00;32:*.sh=00;32:*.csh=00;32:*.tar=00;31:*.tgz=00;31:*.arj=00;31:
.taz=00;31:.lzh=00;31:*.zip=00;31:*.z=00;31:*.Z=00;31:*.gz=00;31:*.bz2=00;31:
.bz=00;31:.tz=00;31:*.rpm=00;31:*.cpio=00;31:*.jpg=00;35:*.gif=00;35:*.bmp=00;35:
.xbm=00;35:.xpm=00;35:*.png=00;35:*.tif=00;35:’
MACHTYPE=i386-redhat-linux-gnu
MAIL=/var/spool/mail/ericfj
MAILCHECK=60
OPTERR=1
OPTIND=1
OSTYPE=linux-gnu
PATH=/usr/kerberos/bin:/usr/local/bin:/usr/bin:/bin:/usr/X11R6/bin:/home2/ericfj/
bin:/usr/java/j2sdk1.4.1_03/bin:/opt/jext/bin
PIPESTATUS=([0]=”0”)
PPID=19277
PROMPT_COMMAND=’echo -ne “\033]0;${USER}@${HOSTNAME%%.*}:${PWD/#$HOME/~}\007”’
PS1=’[\u@\h \W]\$ ‘
PS2=’> ‘
PS4=’+ ‘
PWD=/home2/ericfj/web/local
QTDIR=/usr/lib/qt-3.3
SESSION_MANAGER=local/kirkwall:/tmp/.ICE-unix/19167
SHELL=/bin/bash
SHELLOPTS=braceexpand:emacs:hashall:histexpand:history:interactive-comments:monitor
SHLVL=2
SSH_AGENT_PID=19215
SSH_ASKPASS=/usr/libexec/openssh/gnome-ssh-askpass
SSH_AUTH_SOCK=/tmp/ssh-tke19167/agent.19167
SUPPORTED=en_US.UTF-8:en_US:en
TERM=xterm
UID=500
USER=ericfj
WINDOWID=20971638
XAUTHORITY=/home2/ericfj/.Xauthority
_=env

How It Works
As you can see from the listing, there are a lot of environment variables set on Linux. Many of these vari-
ables are specific to particular programs or purposes. For example, the MAILCHECK and MAIL environ-
ment variables are used for determining how often to check for new email as well as where to check.

As a best practice, you should define all environment variables to have uppercase names. This follows
existing conventions.

138

Chapter 4

07_583204 ch04.qxd 3/18/05 9:28 PM Page 138

The online documentation for each program that uses an environment variable should describe what
variables are used as well as how the variables are used. For example, the command to view online doc-
umentation, man, uses the MANPATH environment variable, if set, to determine which directories to look
for online manuals.

Try It Out Listing the Environment on Mac OS X
On a Mac OS X system, you will see variables similar to the following:

$ set
BASH=/bin/bash
BASH_VERSINFO=([0]=”2” [1]=”05b” [2]=”0” [3]=”1” [4]=”release”
[5]=”powerpc-apple-darwin7.0”)
BASH_VERSION=’2.05b.0(1)-release’
COLUMNS=80
DIRSTACK=()
EUID=501
GROUPS=()
HISTFILE=/Users/ericfj/.bash_history
HISTFILESIZE=500
HISTSIZE=500
HOME=/Users/ericfj
HOSTNAME=Stromness.local
HOSTTYPE=powerpc
IFS=$’ \t\n’
LINES=24
LOGNAME=ericfj
MACHTYPE=powerpc-apple-darwin7.0
MAILCHECK=60
OPTERR=1
OPTIND=1
OSTYPE=darwin7.0
PATH=/bin:/sbin:/usr/bin:/usr/sbin
PIPESTATUS=([0]=”0”)
PPID=524
PS1=’\h:\w \u\$ ‘
PS2=’> ‘
PS4=’+ ‘
PWD=/Users/ericfj
SECURITYSESSIONID=10967b0
SHELL=/bin/bash
SHELLOPTS=braceexpand:emacs:hashall:histexpand:history:interactive-comments:monitor
SHLVL=1
TERM=vt100
TERM_PROGRAM=iTerm.app
UID=501
USER=ericfj
_=/etc/bashrc
__CF_USER_TEXT_ENCODING=0x1F5:0:0

139

Interacting with the Environment

07_583204 ch04.qxd 3/18/05 9:28 PM Page 139

How It Works
Note how similar the Mac OS X output is when compared to the Linux output. To a shell script, both
operating systems provide an environment that is very similar. Contrast this with the overall operating
environments, which differ greatly.

Try It Out Listing the Environment on Windows XP
On Windows XP under the Cygwin environment, you will see variables like the following:

$ set
!::=’::\’
!C:=’C:\cygwin\bin’
ALLUSERSPROFILE=’C:\Documents and Settings\All Users’
ANT_HOME=’C:\ericfj\java\apache-ant-1.5.4’
APPDATA=’C:\Documents and Settings\ericfj\Application Data’
BASH=/usr/bin/bash
BASH_VERSINFO=([0]=”2” [1]=”05b” [2]=”0” [3]=”1” [4]=”release”
[5]=”i686-pc-cygwin”)
BASH_VERSION=’2.05b.0(1)-release’
COLUMNS=80
COMMONPROGRAMFILES=’C:\Program Files\Common Files’
COMPUTERNAME=GURNESS
COMSPEC=’C:\WINDOWS\system32\cmd.exe’
CVS_RSH=/bin/ssh
DIRSTACK=()
EUID=1006
FP_NO_HOST_CHECK=NO
GROUPS=()
HISTFILE=/home/ericfj/.bash_history
HISTFILESIZE=500
HISTSIZE=500
HOME=/home/ericfj
HOMEDRIVE=C:
HOMEPATH=’\Documents and Settings\ericfj’
HOSTNAME=kirkwall
HOSTTYPE=i686
IFS=$’ \t\n’
INFOPATH=/usr/local/info:/usr/info:/usr/share/info:/usr/autotool/devel/info:
/usr/autotool/stable/info:
JAVA_HOME=’C:\j2sdk1.4.2_01’
LINES=25
LOGONSERVER=’\\KIRKWALL’
MACHTYPE=i686-pc-cygwin
MAILCHECK=60
MAKE_MODE=unix
MANPATH=/usr/local/man:/usr/man:/usr/share/man:/usr/autotool/devel/man::
/usr/ssl/man
MAVEN_HOME=’C:\ericfj\java\maven-1.0-rc1’
NUMBER_OF_PROCESSORS=1
OLDPWD=/usr/bin
OPTERR=1
OPTIND=1

140

Chapter 4

07_583204 ch04.qxd 3/18/05 9:28 PM Page 140

OS=Windows_NT
OSTYPE=cygwin
PALMTOPCENTERDIR=’C:\Program Files\Sharp Zaurus 2\Qtopia Desktop’
PATH=/usr/local/bin:/usr/bin:/bin:/usr/X11R6/bin:/cygdrive/c/WINDOWS/system32:
/cygdrive/c/WINDOWS:/cygdrive/c/WINDOWS/System32/Wbem:/cygdrive/c/ericfj/apps:/cyg
drive/c/ericfj/java/apache-ant-1.5.4/bin:/cygdrive/c/j2sdk1.4.2_01/bin:/usr/bin:.
PATHEXT=’.COM;.EXE;.BAT;.CMD;.VBS;.VBE;.JS;.JSE;.WSF;.WSH’
PIPESTATUS=([0]=”0”)
PPID=1
PRINTER=’HP LaserJet 2100 PCL6’
PROCESSOR_ARCHITECTURE=x86
PROCESSOR_IDENTIFIER=’x86 Family 15 Model 2 Stepping 9, GenuineIntel’
PROCESSOR_LEVEL=15
PROCESSOR_REVISION=0209
PROGRAMFILES=’C:\Program Files’
PROMPT=’PG’
PS1=$’\\[\\033]0;\\w\\007\n\\033[32m\\]\\u@\\h \\[\\033[33m\\w\\033[0m\\]\n$ ‘
PS2=’> ‘
PS4=’+ ‘
PWD=/home/ericfj
SESSIONNAME=Console
SHELL=/bin/bash
SHELLOPTS=braceexpand:emacs:hashall:histexpand:history:interactive-comments:monitor
SHLVL=1
SYSTEMDRIVE=C:
SYSTEMROOT=’C:\WINDOWS’
TEMP=/cygdrive/c/DOCUME~1/ericfj/LOCALS~1/Temp
TERM=cygwin
TMP=/cygdrive/c/DOCUME~1/ericfj/LOCALS~1/Temp
UID=1006
USER=ericfj
USERDOMAIN=ORKNEY
USERNAME=ericfj
USERPROFILE=’C:\Documents and Settings\ericfj’
WINDIR=’C:\WINDOWS’
_=/home/ericfj/.bashrc
f=

How It Works
In this example, you can see a lot more of the DOS legacy in the use of drive letters such as C:. The
Cygwin package does a good job of merging the Unix assumptions of shell environments with the reali-
ties of the Windows system. Thus, you can see both TMP (Unix) and TEMP (Windows) are set to name
temporary directories, as well as both USER (Unix) and USERNAME (Windows).

Handling Local and Environment Variables
Technically, the set command, used for the previous examples, lists all the variables that have a value.
This includes environment variables as well as any other variables, called local variables. Local variables
are variables available within the current shell. Environment variables are variables that have been
exported. Exported variables are available for subshells. And a subshell is a shell launched from within
a shell. Confused yet?

141

Interacting with the Environment

07_583204 ch04.qxd 3/18/05 9:28 PM Page 141

The concept of subshells introduces a hierarchy of shells, meaning that your scripts may operate within
a subsubshell or a subsubsubshell, and so on. It works like this: When you log in, the system runs an
application, typically a shell. This is the ancestor of all further shells you run. This ancestor shell is con-
sidered a login shell, a shell that gets executed for a user login. The ancestor shell sets up the environ-
ment. The ancestor shell then launches a number of applications. For example, in Linux with a graphical
desktop, the login shell runs the X Window System server process (traditionally called X). The X server
process then launches a number of graphical applications, including any shell windows that appear
when you log in. Each of these shell windows is a graphical application. Each of these shell windows, in
turn, runs shells. These shells are subshells.

You can then run shells from within these subshells. You’ve been doing that for each example so far.
Every time you use commands such as sh, bash, csh, and so on, you are launching a subshell, or more
technically, a subshell of the current subshell. (This is one reason why Unix and Linux systems seem to
run so many processes.)

So when you create an environment variable, your script is setting up the value for subshells, children of
the shell running your script. Thus, this is really useful when your scripts launch child scripts or pro-
grams and want to pass values to the child scripts or programs through environment variables. Your
scripts, however, do not set environment variables in the ancestor shell; environment-variable values
are exported downward, not upward.

In most cases, you will set up the environment for shells when each shell starts. See the section
Customizing Your Account later in this chapter for more on editing the files checked when shells start.

This may seem confusing, but if you use the following guidelines, the situation should make more sense:

❑ Set up the environment for your user account using the standard files defined for that purpose
and described in the section Customizing Your Account.

❑ Otherwise, set environment variables within shell scripts only if your scripts are calling scripts
or programs and you need to modify the environment for the scripts or programs.

❑ In all other cases, just read environment variables inside your scripts.

Try It Out Listing Only Environment Variables
You can run the env or printenv commands to just list the exported variables — that is, just the variables
considered environment variables. For example:

$ printenv
SSH_AGENT_PID=22389
HOSTNAME=kirkwall
SHELL=/bin/bash
TERM=xterm
HISTSIZE=1000
GTK_RC_FILES=/etc/gtk/gtkrc:/home2/ericfj/.gtkrc-1.2-gnome2
WINDOWID=20971679
OLDPWD=/home2/ericfj/writing/beginning_shell_scripting
QTDIR=/usr/lib/qt-3.3
USER=ericfj
LS_COLORS=no=00:fi=00:di=00;34:ln=00;36:pi=40;33:so=00;35:bd=40;33;01:cd=40;33;
01:or=01;05;37;41:mi=01;05;37;41:ex=00;32:*.cmd=00;32:*.exe=00;32:*.com=00;32:

142

Chapter 4

07_583204 ch04.qxd 3/18/05 9:28 PM Page 142

.btm=00;32:.bat=00;32:*.sh=00;32:*.csh=00;32:*.tar=00;31:*.tgz=00;31:*.arj=00;
31:*.taz=00;31:*.lzh=00;31:*.zip=00;31:*.z=00;31:*.Z=00;31:*.gz=00;31:*.bz2=00;
31:*.bz=00;31:*.tz=00;31:*.rpm=00;31:*.cpio=00;31:*.jpg=00;35:*.gif=00;
35:*.bmp=00;35:*.xbm=00;35:*.xpm=00;35:*.png=00;35:*.tif=00;35:
GNOME_KEYRING_SOCKET=/tmp/keyring-Q0LxNA/socket
SSH_AUTH_SOCK=/tmp/ssh-NVH22341/agent.22341
KDEDIR=/usr
SESSION_MANAGER=local/kirkwall:/tmp/.ICE-unix/22341
MAIL=/var/spool/mail/ericfj
DESKTOP_SESSION=default
PATH=/usr/kerberos/bin:/usr/local/bin:/usr/bin:/bin:/usr/X11R6/bin:
/home2/ericfj/bin:/usr/java/j2sdk1.4.1_03/bin:/opt/jext/bin
INPUTRC=/etc/inputrc
PWD=/home2/ericfj/writing/beginning_shell_scripting/scripts
LANG=en_US.UTF-8
GDMSESSION=default
SSH_ASKPASS=/usr/libexec/openssh/gnome-ssh-askpass
HOME=/home2/ericfj
SHLVL=2
GNOME_DESKTOP_SESSION_ID=Default
MY_SHELL=/usr/bin/emacs2
LOGNAME=ericfj
LESSOPEN=|/usr/bin/lesspipe.sh %s
DISPLAY=:0.0
G_BROKEN_FILENAMES=1
COLORTERM=gnome-terminal
XAUTHORITY=/home2/ericfj/.Xauthority
_=/usr/bin/printenv

Your output, as usual, will differ based on your system’s settings.

How It Works
The printenv command lists fewer variables than the set command because set lists all current vari-
ables. The differences follow — that is, the variables reported by set but not by printenv:

BASH=/bin/bash
BASH_VERSINFO=([0]=”2”
BASH_VERSION=’2.05b.0(1)-release’
COLORS=/etc/DIR_COLORS.xterm
COLUMNS=80
DIRSTACK=()
EUID=500
GROUPS=()
G_BROKEN_FILENAMES=1
HISTFILE=/home2/ericfj/.bash_history
HISTFILESIZE=1000
HOSTTYPE=i386
IFS=$’
LESSOPEN=’|/usr/bin/lesspipe.sh
LINES=24
LS_COLORS=’no=00:fi=00:di=00;34:ln=00;36:pi=40;33:so=00;35:bd=40;33;01:cd=40;
33;01:or=01;05;37;41:mi=01;05;37;41:ex=00;32:*.cmd=00;32:*.exe=00;32:*.com=00;
32:*.btm=00;32:*.bat=00;32:*.sh=00;32:*.csh=00;32:*.tar=00;31:*.tgz=00;

143

Interacting with the Environment

07_583204 ch04.qxd 3/18/05 9:28 PM Page 143

31:*.arj=00;31:*.taz=00;31:*.lzh=00;31:*.zip=00;31:*.z=00;31:*.Z=00;31:*.gz=00;
31:*.bz2=00;31:*.bz=00;31:*.tz=00;31:*.rpm=00;31:*.cpio=00;31:*.jpg=00;
35:*.gif=00;35:*.bmp=00;35:*.xbm=00;35:*.xpm=00;35:*.png=00;35:*.tif=00;35:’
MACHTYPE=i386-redhat-linux-gnu
MAILCHECK=60
OPTERR=1
OPTIND=1
OSTYPE=linux-gnu
PIPESTATUS=([0]=”0”)
PPID=22454
PROMPT_COMMAND=’echo
PS1=’[\u@\h
PS2=’>
PS4=’+
SHELLOPTS=braceexpand:emacs:hashall:histexpand:history:interactive-comments:monitor
SUPPORTED=en_US.UTF-8:en_US:en
UID=500
_=

These variables are considered local to the current shell and not environment variables.

Listing the Environment with the C Shell
The T C shell does support a set command, but it does not output the full environment. For example:

$ set
COLORS /etc/DIR_COLORS.xterm
_ !! | sort

addsuffix
argv ()
cwd /home2/ericfj
dirstack /home2/ericfj
dspmbyte euc
echo_style both
edit
file /home2/ericfj/.i18n
gid 500
group ericfj
history 100
home /home2/ericfj
killring 30
owd
path (/usr/kerberos/bin /usr/local/mozilla /bin /usr/bin /usr/local/bin
/usr/X11R6/bin /home2/ericfj/bin /usr/java/j2sdk1.4.1_03/bin /home2/ericfj/eclipse
/home2/ericfj/apache-ant-1.5.4/bin)
prompt [%n@%m %c]$
prompt2 %R?
prompt3 CORRECT>%R (y|n|e|a)?
shell /bin/tcsh
shlvl 2
sourced 1
status 0

144

Chapter 4

07_583204 ch04.qxd 3/18/05 9:28 PM Page 144

tcsh 6.12.00
term xterm
tty pts/19
uid 500
user ericfj
version tcsh 6.12.00 (Astron) 2002-07-23 (i386-intel-linux) options
8b,nls,dl,al,kan,rh,color,dspm,filec

The set command shows internal settings of the C shell, not a list of environment variables. The C shell
equivalent of the Bourne shell set command is setenv. When you run setenv from a T C shell on
Linux, you will see output similar to the following:

$ setenv | sort
COLORTERM=gnome-terminal
CVSROOT=:pserver:ericfj@localhost:/home2/cvsrepos
DESKTOP_SESSION=default
DISPLAY=:0.0
G_BROKEN_FILENAMES=1
GDMSESSION=default
GNOME_DESKTOP_SESSION_ID=Default
GNOME_KEYRING_SOCKET=/tmp/keyring-w8mvQR/socket
GROUP=ericfj
GTK_RC_FILES=/etc/gtk/gtkrc:/home2/ericfj/.gtkrc-1.2-gnome2
HOME=/home2/ericfj
HOST=kirkwall
HOSTNAME=kirkwall
HOSTTYPE=i386-linux
INPUTRC=/etc/inputrc
JAVA_HOME=/usr/java/j2sdk1.4.1_03
KDEDIR=/usr
LANG=en_US.UTF-8
LESSOPEN=|/usr/bin/lesspipe.sh %s
LOGNAME=ericfj
LS_COLORS=no=00:fi=00:di=00;34:ln=00;36:pi=40;33:so=00;35:bd=40;33;01:cd=40;33;
01:or=01;05;37;41:mi=01;05;37;41:ex=00;32:*.cmd=00;32:*.exe=00;32:*.com=00;
32:*.btm=00;32:*.bat=00;32:*.sh=00;32:*.csh=00;32:*.tar=00;31:*.tgz=00;31:*.arj=00;
31:*.taz=00;31:*.lzh=00;31:*.zip=00;31:*.z=00;31:*.Z=00;31:*.gz=00;31:*.bz2=00;
31:*.bz=00;31:*.tz=00;31:*.rpm=00;31:*.cpio=00;31:*.jpg=00;35:*.gif=00;35:*.bmp=00;
35:*.xbm=00;35:*.xpm=00;35:*.png=00;35:*.tif=00;35:
MACHTYPE=i386
MAIL=/var/spool/mail/ericfj
OSTYPE=linux
PATH=/usr/kerberos/bin:/usr/local/mozilla:/bin:/usr/bin:/usr/local/bin:
/usr/X11R6/bin:/home2/ericfj/bin:/usr/java/j2sdk1.4.1_03/bin:/home2/ericfj/eclipse:
/home2/ericfj/apache-ant-1.5.4/bin
PWD=/home2/ericfj
QTDIR=/usr/lib/qt-3.3
SESSION_MANAGER=local/kirkwall:/tmp/.ICE-unix/27573
SHELL=/bin/tcsh
SHLVL=2
SSH_AGENT_PID=27574
SSH_ASKPASS=/usr/libexec/openssh/gnome-ssh-askpass
SSH_AUTH_SOCK=/tmp/ssh-bxy27573/agent.27573
SUPPORTED=en_US.UTF-8:en_US:en

145

Interacting with the Environment

07_583204 ch04.qxd 3/18/05 9:28 PM Page 145

TERM=xterm
USER=ericfj
USERNAME=ericfj
VENDOR=intel
WINDOWID=23068746
XAUTHORITY=/home2/ericfj/.Xauthority

You can also run the printenv or env commands under the C shell to list the environment variables.
For example:

$ printenv
COLORTERM=gnome-terminal
CVSROOT=:pserver:ericfj@localhost:/home2/cvsrepos
DESKTOP_SESSION=default
DISPLAY=:0.0
G_BROKEN_FILENAMES=1
GDMSESSION=default
GNOME_DESKTOP_SESSION_ID=Default
GNOME_KEYRING_SOCKET=/tmp/keyring-w8mvQR/socket
GROUP=ericfj
GTK_RC_FILES=/etc/gtk/gtkrc:/home2/ericfj/.gtkrc-1.2-gnome2
HOME=/home2/ericfj
HOST=kirkwall
HOSTNAME=kirkwall
HOSTTYPE=i386-linux
INPUTRC=/etc/inputrc
JAVA_HOME=/usr/java/j2sdk1.4.1_03
KDEDIR=/usr
LANG=en_US.UTF-8
LESSOPEN=|/usr/bin/lesspipe.sh %s
LOGNAME=ericfj
LS_COLORS=no=00:fi=00:di=00;34:ln=00;36:pi=40;33:so=00;35:bd=40;33;01:cd=40;33;
01:or=01;05;37;41:mi=01;05;37;41:ex=00;32:*.cmd=00;32:*.exe=00;32:*.com=00;
32:*.btm=00;32:*.bat=00;32:*.sh=00;32:*.csh=00;32:*.tar=00;31:*.tgz=00;31:*.arj=00;
31:*.taz=00;31:*.lzh=00;31:*.zip=00;31:*.z=00;31:*.Z=00;31:*.gz=00;31:*.bz2=00;
31:*.bz=00;31:*.tz=00;31:*.rpm=00;31:*.cpio=00;31:*.jpg=00;35:*.gif=00;35:*.bmp=00;
35:*.xbm=00;35:*.xpm=00;35:*.png=00;35:*.tif=00;35:
MACHTYPE=i386
MAIL=/var/spool/mail/ericfj
OSTYPE=linux
PATH=/usr/kerberos/bin:/usr/local/mozilla:/bin:/usr/bin:/usr/local/bin:
/usr/X11R6/bin:/home2/ericfj/bin:/usr/java/j2sdk1.4.1_03/bin:/home2/ericfj/eclipse:
/home2/ericfj/apache-ant-1.5.4/bin
PWD=/home2/ericfj
QTDIR=/usr/lib/qt-3.3
SESSION_MANAGER=local/kirkwall:/tmp/.ICE-unix/27573
SHELL=/bin/tcsh
SHLVL=2
SSH_AGENT_PID=27574
SSH_ASKPASS=/usr/libexec/openssh/gnome-ssh-askpass
SSH_AUTH_SOCK=/tmp/ssh-bxy27573/agent.27573
SUPPORTED=en_US.UTF-8:en_US:en
TERM=xterm
USER=ericfj

146

Chapter 4

07_583204 ch04.qxd 3/18/05 9:28 PM Page 146

USERNAME=ericfj
VENDOR=intel
WINDOWID=23068746
XAUTHORITY=/home2/ericfj/.Xauthority

Testing the Environment
As mentioned previously, your scripts should honor environment variable settings. But your scripts also
need to handle the case where certain variables are not set. In most cases, you need a fallback strategy to
handle such instances.

For example, the DISPLAY environment variable names the X Window System display, which represents
a combination of monitor, keyboard, and mouse. Graphical X Window programs use the DISPLAY set-
ting to know which X display to use. On a multiuser system, this can be very important.

Just about every Linux and Unix system uses the X Window System for graphics. Mac OS X systems can
run X as add-on software. You can even run X under Cygwin on Windows.

If the DISPLAY environment variable has a value, then X Window programs should use that value. If the
DISPLAY environment variable is not set, however, a program or script has three choices:

❑ Use the default value for the DISPLAY, :0.0 in this case.

❑ Assume the X Window System is not running.

❑ Alert the user that the DISPLAY variable is not set, and the script can exit. This is called die a
flaming death in shell scripting parlance.

There’s no magic. Your shell scripts need to make similar decisions if crucial variables are not set. The
following Try It Out shows some strategies for handling missing environment variables.

Try It Out Checking Environment Variables
Enter this script and save it under the name check_env:

Checks for environment variables.

Uncomment the following line to remove the variable.
#unset DISPLAY

if [“$DISPLAY” == “”]
then

echo “DISPLAY not set, using :0.0 as default.”
DISPLAY=”:0.0”

fi

#unset SHELL

if [“$SHELL” == “”]
then

147

Interacting with the Environment

07_583204 ch04.qxd 3/18/05 9:28 PM Page 147

echo “Using /bin/bash, which is the shell you should use.”
SHELL=/bin/bash

fi

#unset USER

if [“$USER” == “”]
then

echo -n “Please enter your username: “
read USER

fi

#unset HOME

if [“$HOME” == “”]
then

Check for Mac OS X home.
if [-d “/Users/$USER”]
then

HOME=”/Users/$USER”

Check for Linux home.
elif [-d “/home/$USER”]
then

HOME=”/home/$USER”

else
echo -n “Please enter your home directory: “
read HOME
echo

fi
fi

Display all the values.

echo “DISPLAY=$DISPLAY”
echo “SHELL=$SHELL”
echo “USER=$USER”
echo “HOME=$HOME”

When you run this script, you will see output like the following:

$ sh check_env
DISPLAY=:0.0
SHELL=/bin/bash
USER=ericfj
HOME=/home2/ericfj

148

Chapter 4

07_583204 ch04.qxd 3/18/05 9:28 PM Page 148

The output will differ based on your system’s values for environment variables. On a Mac OS X system,
for example, you will see output like the following:

$ sh check_env
DISPLAY not set, using :0.0 as default.
DISPLAY=:0.0
SHELL=/bin/bash
USER=ericfj
HOME=/Users/ericfj

Note how this Macintosh does not have the X Window System running.

How It Works
In the check_env script, the general strategy is to try to find a reasonable value for missing variables.
If something cannot be guessed, the next step is to ask the user for the information.

If a value isn’t set, then the script will try to determine the missing data. For example, if the HOME variable
isn’t set, then the check_env script will check for /Users/username, the Mac OS X default home directory,
and /home/username, the Linux default home directory. If neither of these directories exists, then the
check_env script will prompt the user to enter the missing data.

Going through the tests in detail, the script sets the DISPLAY variable to :0.0 if DISPLAY has no value.
This should work on many Unix and Linux systems but not Mac OS X, which by default does not
include the X Window System software.

The check_env script will set the DISPLAY variable if needed. Note that this script is not exporting the
value of the variable (see below), so any setting will be lost when the script ends. This is true of all the
other tests as well.

The test of the SHELL environment variable sets the shell to /bin/bash if there is no value. The script
also outputs a message to alert the user to this fact.

If the USER environment variable is not set, the script prompts the user to enter in the username. While
you could try to guess the username, this is generally difficult, so the script asks the user to provide this
information.

The test for the HOME environment variable needs a value for the USER environment variable so that it
can check for user home directories if needed. If the HOME variable has no value, the script first checks
for a Mac OS X–type home directory and then a Linux-type home directory.

If neither of these home directories exists, the script asks the user to enter the location of the user’s home
directory.

At the end of the script, the script outputs all the current values for the four variables.

You can verify how this script works by using the unset command. Prior to each test, the check_env
script has an unset line commented out. Uncomment the line to unset the given variable. That way, you
force the script to assume the variable is not set and therefore exercise the script logic associated with
finding a value.

149

Interacting with the Environment

07_583204 ch04.qxd 3/18/05 9:28 PM Page 149

To uncomment a line, remove the leading # character that marks the line as a comment.

This is a common technique for testing scripts.

Setting Environment Variables
You can read environment variables just like other shell variables. You can also set environment
variables just like other shell variables. But you must take extra steps to affix your new values into the
environment.

Remember that this environment applies only to programs and shells your script launches. That is, the
environment applies only to subshells. You need to modify the environment for shells by editing the files
listed in the section Customizing Your Account so that the environment gets properly propagated to
subshells.

There are two main reasons to set environment variables:

❑ You want to customize your user account.

❑ Your script needs to set an environment variable that is used by a command or script it calls.

To set an environment variable, you need to export it. To set a variable, you need the following syntax:

VARIABLE=VALUE

To export a variable into the environment of child processes — that is, to make a plain old shell variable
into a super-duper environment variable — use the export command:

export VARIABLE

Thus, you will often see the following pattern used in shell startup scripts:

var=value
export var

You can combine the two commands onto one line, using the semicolon separator. For example:

var=value; export var

You can also use a shorthand version with just the export command:

export var=value

The export command may export more than one variable at a time. For example:

var1=value1
var2=value2
var3=value3
export var1 var2 var3

150

Chapter 4

07_583204 ch04.qxd 3/18/05 9:28 PM Page 150

You will find all of these variants used in various shell scripts you encounter, especially in scripts that
initialize shells.

In the bash shell, you can also use the set -a command to export all variables set in the shell:

$ set -a

Your scripts should not assume that a user has run this command, however.

You can see how the export command works, as well as how to create your own environment variables,
by running the following example scripts.

Try It Out Exporting Variables
Enter the following script and save it under the name echo_myvar:

echo “inside child script, MY_VAR=$MY_VAR”

This script outputs the value of the shell variable MY_VAR. The echo_myvar script, however, does not set
the variable. That job is for the set_myvar script, following:

Set my_var without exporting.
MY_VAR=”Tempest”

echo -n “No export: “
sh echo_myvar

Now, export and try again.

echo -n “export: “
export MY_VAR

sh echo_myvar

Enter this script and save it under the name set_myvar.

To run these scripts, run the set_myvar script. You should see output like the following:

$ sh set_myvar
No export: inside child script, MY_VAR=
export: inside child script, MY_VAR=Tempest

How It Works
The echo_myvar script just outputs the value of the variable MY_VAR. This script does not set any value,
so the script is utterly dependent on the environment in which it runs. If the environment does not set
the variable, the echo_myvar script will display no value. Only if the environment has set a value into
the MY_VAR variable will the echo_myvar script be able to display any value.

151

Interacting with the Environment

07_583204 ch04.qxd 3/18/05 9:28 PM Page 151

The set_myvar script sets the variable MY_VAR to a value and then calls the echo_myvar script. The
echo_myvar script, however, does not see any value for this variable. That’s because the set_myvar
script hasn’t exported the value. Thus far, it has just set the variable.

Next, the set_myvar script calls the export command to export the MY_VAR variable. It then calls the
echo_myvar script. This time, the echo_myvar script sees a value in the MY_VAR variable.

Setting Environment Variables in the C Shell
The variable-setting examples so far have used the syntax for the Bourne shell, sh, supported by ksh and
bash as well. As you’d expect, the C shell requires a different syntax, using the setenv built-in shell
command. The setenv syntax follows:

setenv variable value

Note that there is no equal sign in this syntax.

For a good source of csh examples, see the system files /etc/csh.login and /etc/csh.cshrc, the sys-
tem files for initializing the C shell (and tcsh, too), as covered in the section Customizing Your Account.
For example:

setenv PATH “/bin:/usr/bin:/usr/local/bin:/usr/X11R6/bin”
setenv MAIL “/var/spool/mail/$USER”

You do not call export in csh or tcsh.

Reading Values into the Current Environment
When you run a script, your current shell, such as bash, launches a child shell, most often sh, to run the
script. You can instead execute a script that modifies the current shell environment using the source
command.

The basic syntax is:

source script_filename

The source command runs the given script in the context of the current shell, not in a child shell. This
command is most often used to read in shell startup files to customize the shell.

In addition to the source command, you can use the dot (.) command:

. script_filename

This has the same effect as the source command.

Customizing Your Account
When a shell starts up, it reads from a file or files to initialize settings for your system. These files are
shell scripts. Some of these files, such as /etc/profile, reside in system directories. Most users cannot

152

Chapter 4

07_583204 ch04.qxd 3/18/05 9:28 PM Page 152

modify these files. Other files reside within your home directory. These files are available for you to
modify as needed.

Any system files should normally be left alone, as they establish the proper defaults for your system.
Administrators might customize these files to allow for sitewide settings.

The files in your home directory, however, are intended for you to modify as needed. You can add any
commands you want, using the proper shell syntax, into your personal startup files.

Each shell has a set of files that it looks for, by name. Virtually all personal startup files are located in
your home directory, and all but one start with a dot.

Remember that files with names that start with a dot are considered hidden files. Hidden files don’t appear
in file listings without special command-line options and are ignored by most shell globs, such as *.

The files must have exactly the right name, or the shell will ignore them. For example, for the bash shell,
one of the files is .bashrc. If you want to use this file to initialize bash, you must name it .bashrc (with
a leading dot), and the file must reside in your home directory. You must also have read permission for
this file.

With a very long history, shells typically support more than one file to hold initial settings. Thus, you
may be able to choose from a number of file names, such as .bash_profile or .bash_login, both of
which serve the same purpose.

The following sections describe how each shell starts.

How the Bourne Shell Starts Up
If you run the Bourne shell as a login shell, it looks in your home directory for a file named .profile.
The shell then sources the commands in this file to read any settings into the current environment.

The Bourne shell does this only if the shell is a login shell — that is, the shell run when you first log in.
The Bourne shell does not read the .profile file when subsequent shells start.

The distinction between login shells and other shells is important to how all the shells start.

How the Korn Shell Starts Up
When you run ksh as a login shell, it looks for a file in your home directory named .profile and
sources the commands in that file. This is the same as the Bourne shell.

If you run ksh as a non-login shell, the Korn shell looks for a startup file named by the ENV environment
variable. This is similar to the C shell’s .cshrc file.

Don’t try to set environment variables unless you know how the variable is used.
You may end up messing up applications on your system, applications that expect a
particular value in an environment variable.

153

Interacting with the Environment

07_583204 ch04.qxd 3/18/05 9:28 PM Page 153

If ENV names a directory, the Korn shell looks for a file named ksh_env within that directory. If ENV
names a file, the Korn shell loads that file.

How the C Shell Starts Up
When you start csh as a login shell, it sources the commands in /etc/csh.cshrc and /etc/csh.login.
Then csh looks for a file in your home directory named .cshrc and sources the commands in that file.
After that, csh looks for a file in your home directory named .login and sources the commands in that
file. On logout, a csh login shell sources the commands in /etc/csh.logout and the .logout file in
your home directory.

For non-login shells, csh sources the commands in /etc/csh.cshrc and then .cshrc in your home
directory.

How the T C Shell Starts Up
The T C shell starts up and acts similarly to the C shell. The main difference is that you can name the
startup file .tcshrc or .cshrc. The T C shell will read either file. As with bash, the purpose for sup-
porting the old .cshrc file is to make it easier for users to migrate from csh to tcsh.

How Bash Starts Up
Bash combines features of the C shell, the Bourne shell, and the Korn shell. Thus, you will see a number
of files that appear similar to the files used by ksh or csh.

When you run bash as a login shell, it first executes the /etc/profile file. Then bash looks for files in
your home directory. Bash looks for:

❑ .bash_profile

❑ .bash_login

❑ .profile

Bash looks in this order and executes the first file found. The intent is to make it easier to switch from
ksh or csh to bash.

When a login shell exits, bash looks for a file named .bash_logout in your home directory and sources
the commands in the file.

You can launch bash as a login shell using the --login option. For example:

$ bash --login

Use the --noprofile option to tell a bash login shell not to read the login files on startup.

When you run bash as a child shell and not as a login shell, bash looks in one of two locations. If the
shell is interactive, bash looks for a file named .bashrc in your home directory. Otherwise, bash checks

154

Chapter 4

07_583204 ch04.qxd 3/18/05 9:28 PM Page 154

for an environment variable named BASH_ENV. The BASH_ENV variable serves the same purpose and
usage as the ksh ENV environment variable.

Use the --norc to tell bash to not run the .bashrc file. Use the --rcfile option to tell a noninterac-
tive, non-login bash to use a different file name than .bashrc in your home directory.

The following table summarizes the startup, login, and logout files for the main shells.

Shell Startup File Login File Logout File

bash .bashrc (if not login shell /etc/profile, then .bash_logout
but interactive), .bash_profile, or
$BASH_ENV (if non- .bash_login, or
interactive and not login) .profile

csh /etc/csh.cshrc, then /etc/csh.cshrc, then /etc/csh.logout,
.cshrc /etc/csh.login, then then .logout

.cshrc, then .login

ksh $ENV .profile None

sh None /etc/profile, then None
.profile

tcsh /etc/csh.cshrc, and /etc/csh.cshrc, then /etc/csh.logout,
.tcshrc or .cshrc /etc/csh.login, then then .logout

.tcshrc or .cshrc,
then .login

Handling Command-Line Arguments
Another area where scripts interact with their environment is the command line. Just as you can pass
command-line options and arguments to commands, you can also pass these to shell scripts. Of course,
passing items on the command line is the easy part. The hard part comes in what do you do with them
inside your scripts.

The first step is to examine all the items passed on the command line to your script.

Don’t depend on shell customizations. While it is great that you can customize your
environment, you should not write your shell scripts to depend on these customiza-
tions. That’s because once you move to another system, your scripts may fail in
unexpected ways.

Because the initialization of the shells is performed while the shell starts up, it is
not always apparent what is causing a particular problem. You may spend hours try-
ing to figure out what is wrong in your shell script when the problem lies else-
where: in the shell initialization files.

155

Interacting with the Environment

07_583204 ch04.qxd 3/18/05 9:28 PM Page 155

Reading Command-Line Arguments with the Bourne Shell
When the Bourne shell runs a script, it places the command-line arguments in special variables that you
can access within your script. For example, the variable $1 holds the first item on the command line for
your script. This can be a command-line option, such as -v, or a command-line argument, such as the
name of a file. The item in the first position is stored in $1.

That’s why $1 and the like are called positional variables.

The following table lists the special variables set by the Bourne shell for the command-line arguments.

Special Variable Holds

$0 Name of the script from the command line

$1 First command-line argument

$2 Second command-line argument

$3 Third command-line argument

$4 Fourth command-line argument

$5 Fifth command-line argument

$6 Sixth command-line argument

$7 Seventh command-line argument

$8 Eighth command-line argument

$9 Ninth command-line argument

$# Number of command-line arguments

$* All command-line arguments, separated with spaces

The script itself is given the special variable $0 (zero). The shell sets $0 with the name of the script, as it
appears on the command line.

The command-line arguments are split out into separate variables, $1 to $9. There is no $10 and above.
You are not limited to only nine arguments, however. The special variable $* holds all the arguments.
In addition, $# holds a count of the number of arguments.

The Korn shell understands ${10} for the tenth argument, and so on.

Note that $0 is not counted and not considered part of $*.

156

Chapter 4

07_583204 ch04.qxd 3/18/05 9:28 PM Page 156

Try It Out Listing Command-Line Arguments
The following script lists command-line arguments:

Checks command-line arguments.

echo “Script: $0”

echo “Number of items on command line: $#”

echo “1st argument: $1”

echo “2nd argument: $2”

echo “All arguments [$*]”

Enter this script and save it under the file name args. When you run this script with command-line
arguments, you will see output like the following:

$ sh args arg1 arg2
Script: args
Number of items on command line: 2
1st argument: arg1
2nd argument: arg2
All arguments [arg1 arg2]

If you run the script with many arguments, you will see output like the following:

$ sh args arg1 2 3 4 5 6 7 8 9 10
Script: args
Number of items on command line: 10
1st argument: arg1
2nd argument: 2
All arguments [arg1 2 3 4 5 6 7 8 9 10]

How It Works
The args script first lists the value of the $0 variable, which holds the name of the script. It then lists the
number of arguments, as well as the first two arguments, each called out on its own lines of output.
Finally, the args script outputs all the command-line arguments inside square brackets, [], to show
where the arguments start and end.

This should seem fairly easy, but there are a few quirks, as you can see if you run the args script with
different sets of parameters. For example, run the args script with no parameters:

$ sh args
Script: args
Number of items on command line: 0
1st argument:
2nd argument:
All arguments []

157

Interacting with the Environment

07_583204 ch04.qxd 3/18/05 9:28 PM Page 157

There are zero items, and the arguments are empty.

If you run the script with just one argument, you will see output like the following:

$ sh args arg1
Script: args
Number of items on command line: 1
1st argument: arg1
2nd argument:
All arguments [arg1]

The value held in $0 is the value of the script file, as passed on the command line. Thus, you may see the
full path to a script or other variants of the file name. For example:

$ sh /home/ericfj/beginning_shell_scripting/scripts/args arg1 arg2
Script: /home/ericfj/beginning_shell_scripting/scripts/args
Number of items on command line: 2
1st argument: arg1
2nd argument: arg2
All arguments [arg1 arg2]

This example calls the args script with the full path to the script file, which the shell dutifully sets into
the $0 variable.

In addition, you can pass empty arguments that still count as arguments. For example:

$ sh args arg1 “” “ “ arg4
Script: args
Number of items on command line: 4
1st argument: arg1
2nd argument:
All arguments [arg1 arg4]

In this example, the first argument is arg1, a normal-looking argument. The second argument, however,
is the empty text string “”. The third argument is a long text string of spaces, and the fourth argument
slides back into normalcy with a value of arg4.

When the script shows the value of $* and encloses $* in quotes (with or without extra text, as in the
args script), you see all the spaces in $3 in the output.

Because a space acts as a separator on the command line, and an argument can have spaces (or consist
entirely of spaces), you can sometimes generate confusing output. For example:

$ sh args “1 2 3 4 5 6 7 8 9”
Script: args
Number of items on command line: 1
1st argument: 1 2 3 4 5 6 7 8 9
2nd argument:
All arguments [1 2 3 4 5 6 7 8 9]

158

Chapter 4

07_583204 ch04.qxd 3/18/05 9:28 PM Page 158

This script has just one argument, “1 2 3 4 5 6 7 8 9”. But because of the spaces in the argument, when
the args script outputs the value of $*, it appears as if there were nine command-line arguments.

So your scripts need to be careful when working with command-line arguments.

Command-line arguments can be especially hard on Windows and Mac OS X, where directories with
spaces in their names are common, such as the Windows C:\Program Files directory.

Thus far, the example script has just listed the command-line arguments. The next step is to actually
make use of them, as in the following Try It Out.

Try It Out Using Command-Line Arguments
The myls scripts from Chapter 3 created a simple form of the ls command. You can extend the scripts
from before to have the user pass the name of the directory to list on the command line. Enter the follow-
ing script and save it under the name myls3:

Assumes $1, first command-line argument,
names directory to list.

cd $1
for filename in *
do

echo $filename
done

When you run this script, you will see output like the following, depending on the name of the directory
you pass to the script:

$ sh myls3 /usr/local
bin
etc
games
include
lib
libexec
man
sbin
share
src

How It Works
The myls3 script extends the previous myls script from Chapter 3 and takes the value of the first com-
mand-line argument as the name of a directory to list. The myls3 script then changes to that directory
and then lists out all the files in that directory, one at a time.

Your scripts will perform similarly, using command-line arguments to define directories and files to
work on.

159

Interacting with the Environment

07_583204 ch04.qxd 3/18/05 9:28 PM Page 159

Reading Command-Line Arguments with the C Shell
The C shell and T C shell both support special variables for command-line arguments, similar to sh,
bash, and ksh. The main difference with csh and tcsh, however, is the use of $#argv in place of $#.

With csh and tcsh, the special variable $#argv holds a count of the number of command-line arguments.

Note that tcsh also supports $# as well as $#argv. Both variables hold the same value.

Making Scripts Executable
Up to now, all the scripts require you to run a shell, such as sh, and to pass sh the name of the script file
to execute. This is very different from running normal commands, such as ls. With ls, you just type in
the name of the command, ls. You do not need to pass a script file to ls to generate the output.

As mentioned previously, you can transform your scripts into full-blown executable commands. Users
can just type in the name of the command, and they never need know that your new command is really
a script.

To transform your script into an executable command, you need to:

❑ Mark the script as executable by giving it execute permissions

❑ Add a line to your script to tell the shell how to execute the script

The following sections describe how to perform these steps.

Marking Files Executable
Under Unix and Unix-like systems, all executable files, be they scripts, commands, or something else,
must be marked as executable files. An executable file is one that has execute permission. You can change
permissions with the chmod command.

Before changing permissions, however, you should check what permissions are already set. To do this,
use the ls command with the -l (ell) option. For example:

$ ls -l myls3
-rw-rw-r-- 1 ericfj engineering 124 Oct 12 22:39 myls3

Each rw- describes the permissions for the owner of the file (user ericfj in this example), the group the
file is associated with (engineering in this example), and the final r-- describes the permissions avail-
able to the rest of the world (all other users). The r means read permission. The w means write permis-
sion. A dash means no permission.

So rw- means read and write permission, and r-- means read-only permission. There are no execute
permissions on this file.

160

Chapter 4

07_583204 ch04.qxd 3/18/05 9:28 PM Page 160

To add an execute permission, use chmod. For example:

$ chmod u+x myls3

The u+x argument is in a funny form used by chmod. The u means user — that is, permissions for the
user or owner of the file. The + means add permission. The x means execute permission.

You can also use octal numbers for permissions, leading to permissions such as 0666. See the online
manual for the chmod command for more details.

You can now verify that the script has an execute permission with the ls command:

$ ls -l myls3
-rwxrw-r-- 1 ericfj engineering 124 Oct 12 22:39 myls3

You can now see that the owner of the file has rwx permissions, short for read, write, and execute. Our
script file is now an executable command.

Note that if you are using csh or tcsh, you must execute the rehash command to rebuild the internal list
of executables. For example:

$ rehash

After making the script file executable, the next step is to tell your shell (as well as any other shell) how
to execute the file.

Setting the #! Magic Line
Executable files — that is, commands — come from a variety of sources and appear in a variety of formats.
Most commands are compiled executable programs. Most commands were written in the C programming
language and then compiled into the binary code for your system’s processor.

The main sources of commands, however, take one of the following formats.

❑ Compiled executable programs

❑ Java executable archives, called jar files

❑ Scripts in languages such as Python, Perl, Tcl, Ruby, or Lua

❑ Shell scripts

When you try to run an executable command, the first thing the shell must do is determine the type of
file and then use the correct method to launch the command. For example, if the file is a compiled exe-
cutable program, the first few bytes of the file will contain a special code (often called a magic code or
magic number after the file /etc/magic, which holds many such codes). This special code tells the shell
that it needs to launch the file as a compiled executable program.

The shell follows the same type of process for running shell scripts. First, the shell needs to determine
that the file is a script. This process is helped by the fact that scripts are text files. The first few bytes
(as well as all the bytes) of the file must be printable text characters.

161

Interacting with the Environment

07_583204 ch04.qxd 3/18/05 9:28 PM Page 161

Once the shell determines that the file is a script, the next question is what kind of script. The shell needs
to determine what program should run the script. For example, if your shell is bash, but you write a
Bourne shell script, then bash — your shell — needs to determine which program, sh in this case, to
launch to run the script.

By convention, if your script starts with #! (often called a shebang because it starts with a hash-exclamation
point), then the special comment tells the shell which program should interpret the script. So if the very
first line of your script appears as the following, then the shell knows to launch sh to run your script:

#!/bin/sh

Note that this must be the first line of the file. The # must start on the first column of the file. That is, #
must be the first character in the file. Because # starts a comment, if your shell, for some reason, doesn’t
understand this convention, the #! line will be ignored.

The syntax for the #! line is:

#!/full_path_to_interpreter

The interpreter is the program that interprets the script and executes the commands in the script. For
Bourne shell scripts, the interpreter (or shell) is sh, with a full path of /bin/sh. For shells, the interpreter
is the same as the shell program. But for some languages, such as Tcl, you have a choice of two inter-
preters: tclsh and wish, the latter supporting graphical commands.

Regardless of the interpreter, the shell merely takes the part after the #! and then tries to execute that
program.

The following table lists the main locations for shells and interpreters.

Shell or Interpreter Path

ash #!/bin/ash

bash #!/bin/bash

csh #!/bin/csh

ksh #!/bin/ksh

perl #!/usr/bin/perl or #!/usr/local/bin/perl

python #!/usr/bin/perl or #!/usr/local/bin/perl

sh #!/bin/sh

tclsh (Tcl) #!/usr/bin/tclsh or #!/usr/local/bin/tclsh

tcsh #!/bin/tcsh or #!/usr/local/bin/tcsh

wish (Tcl) #!/usr/bin/wish or #!/usr/local/bin/wish

zsh #!/bin/zsh

162

Chapter 4

07_583204 ch04.qxd 3/18/05 9:28 PM Page 162

Scripting languages such as Perl and Python use the same mechanism. For example, a script starting
with the following line is clearly a Perl script:

#!/usr/bin/perl

There is a problem with software add-ons, however. If a given interpreter is not installed with the operat-
ing system, the program will likely be installed in /usr/local/bin (for commands added locally) or in some
other directory, but not in /bin or /usr/bin. Linux, however, which treats nearly every software package in
existence as part of the Linux distribution, almost always places these interpreters in the system directories
/bin or /usr/bin. Thus, the #! comment won’t always reflect the path to the shell, unfortunately.

Try It Out Making a Script Executable
Starting with the myls3 script, described previously, you can create a script that uses the #! comment to
name the interpreter to run the script. Enter the following and save it under the name myls4:

#!/bin/sh

Assumes $1, first command-line argument,
names directory to list.

cd $1
for filename in *
do

echo $filename
done

Note that this script is exactly the same as the myls3 script shown previously, with only the first line differ-
ent. (This line is marked as bold in the preceding code listing.) You can copy the myls3 file to start editing.

Next, mark the file with execute permissions:

$ chmod u+x myls4

C and T C shell users need to run the rehash command after adding a new command to the command
path. Thus, after you call chmod, you should call rehash:

$ rehash

After calling the chmod command, you can run the script as a command in the current directory:

$./myls4 /usr/local
bin
etc
games
include
lib
libexec
man
sbin
share
src

The output should be the same as for the myls3 script.
163

Interacting with the Environment

07_583204 ch04.qxd 3/18/05 9:28 PM Page 163

How It Works
By making the script executable and by adding the #! line, you provide enough information to run your
script as an executable command. The ./myls4 in the example tells the shell to run the executable
myls4 in the current directory.

If the current directory is part of the shell’s command path, you can run the script as follows:

$ myls4 /usr/local
bin
etc
games
include
lib
libexec
man
sbin
share
src

You can also copy the script file to one of the directories in your shell’s command path. That is, copy the
file to one of the directories listed in the PATH environment variable. You can now extend your operating
system and create new commands.

Summary
Shell scripts are not isolated. Shell scripting was designed specifically to allow users to access their sys-
tem’s environment.

In this chapter, you learned:

❑ Environment variables hold settings specific to your system’s environment. This includes the
operating system, location of commands, and user settings such as settings for the default shell
and a home directory.

❑ Environment variables are regular shell variables. You can access these variables with the dollar
sign, $. You can store new values into these variables. But you must export each variable you
want to propagate to any subshells.

❑ All the data on the command line, arguments and options, are provided by the shell to your
script. The shell stores these values in specially named variables called positional variables,
such as $1 and $5. You can access these from within your scripts.

❑ To make a script into an executable command, you need to mark the script with executable per-
missions and place a specially formatted #! comment in the first line of the script.

The next chapter delves into files. Just about every shell script you write will access files in one way or
another.

164

Chapter 4

07_583204 ch04.qxd 3/18/05 9:28 PM Page 164

Exercises
1. Write a script that dies a flaming death if the SHELL environment variable is not set. Come up

with a way to verify both cases, set and not set, to prove your script works.

2. Write a script that goes through all the command-line arguments and lists each one, no matter
how many arguments there are. Output only the arguments that are not empty. For example, “”
is a valid command-line argument, but it is empty and so should not be listed. Output the total
number of command-line arguments as well.

3. Write a script to list out all the command-line arguments, but your script must run under the C
shell, bash, ksh, and sh. (Hint: The C shell is the trickiest one.)

4. Write a script that takes any number of directories as command-line arguments and then lists
the contents of each of these directories. The script should output each directory name prior to
listing the files within that directory.

165

Interacting with the Environment

07_583204 ch04.qxd 3/18/05 9:28 PM Page 165

07_583204 ch04.qxd 3/18/05 9:28 PM Page 166

5
Scripting with Files

Shells were originally designed to work with files. That’s because a huge portion of what you need
to do on a Unix system relates to files. Unix, for example, stores most configuration settings in
files, and usually text files at that. This is different from Windows, for example, which stores many
configuration settings in the Registry.

This means that many simple commands can manipulate the configuration of many applications,
especially server applications. All of these commands work with files. In addition to the normal
operations of reading from files, writing to files, and so on, shell scripts interact with files in a
number of ways, including:

❑ Combining files into archives.

❑ Testing files with the test command.

❑ Dealing with files on Mac OS X, especially for mobile users.

❑ Outputting files stored within the scripts. These are called here files. You can use here files
to drive interactive programs.

Shells provide a number of built-in commands to work with files, but for the most part, your scripts
will call non–built-in commands for most work with files. That’s because Unix and Unix-like sys-
tems offer a rich set of commands for working with files.

You can also use input redirection to read the contents of files. Output redirection allows you to
send the output of a command to a file. And command pipelines allow you to feed the results of
one command into another. These topics are covered in Chapter 8.

The following sections show all sorts of additional ways to work with files.

08_583204 ch05.qxd 3/18/05 9:30 PM Page 167

Combining Files into Archives
Unix and Unix-like systems include a lot of files as part of the standard operating system. Most anything
you do on such a system involves files. This leads to the problem of how to transfer files from one sys-
tem to another and from one directory to another.

To help with this, you can use the tar command. Tar, short for tape archive, comes from ancient times as
the name suggests. But it remains in heavy use today. With tar, you can combine a number of files into
one large file, usually called a tar file. You can then copy the tar file to another system or directory and
then extract the files. Tar preserves the original directory structure.

To create a tar archive, use the cf command-line options to tar. For example:

$ tar cf myarchive.tar *.doc

This command combines all files with names ending in .doc into a tar archive called myarchive.tar.
(By convention, use a .tar file-name extension for tar archives.)

Because of its age, tar does not use a dash with its command-line options. (With some versions of tar,
you can use a dash before the options.)

The c option specifies to create an archive. The f option names the archive file.

To extract the files in this archive, use the following format:

$ tar xf myarchive.tar

The x option tells the tar command to extract the files.

Following the Unix philosophy of each tool performing one task, tar does not compress files. Instead,
you can use the compress command. Uncompress compressed files with the uncompress command. A
more modern compression program is called gzip. Gzip compresses to smaller files than compress and
so is used for almost all compressed files on Unix and Unix-like systems. A newer program called bzip2
also compresses files.

The gzip file format is not compatible with the Windows PKZIP format, usually called ZIP files.

To use gzip, provide gzip the name of the file to compress. For example:

$ gzip myarchive.tar

By default, the gzip program compresses the given file. It then changes the file name to end with a .gz
extension, indicating that the file is compressed with gzip. The original file is removed. You can verify
this with the ls command:

$ ls myarch*
myarchive.tar.gz

168

Chapter 5

08_583204 ch05.qxd 3/18/05 9:30 PM Page 168

Uncompress a gzipped file with gunzip. For example:

$ gunzip myarchive.tar.gz
$ ls myarch*
myarchive.tar

The gunzip program removes the .gz file and replaces it with an uncompressed version of the original file.

The zip program combines the features of tar and a compression program. Zip creates ZIP file archives
that are compatible with the Windows PKZIP and WinZip programs. If you need to go back and forth to
Windows systems, zip is a good choice. Java applications use the ZIP file format for Java archive, or jar,
files. Macintosh systems often use a compression program called StuffIt. StuffIt files typically show a
.sit file-name extension.

Working with File Modes
Unix systems use file modes to control which users can access files as well as whether the file is marked
executable (covered in Chapter 4). The file modes are divided into three areas that correspond to three
classes of people who can potentially access the file: the user or owner of the file, the group associated
with the file, and everyone else.

Each file is associated with a group. Files you create will be associated, by default, with your default
group. Groups were once very popular, but more recent operating systems tend to make a group for
each user, eliminating most of the benefits of group access. (This change was made for security reasons.)

The following table shows the numeric values of the file modes. Note that all the numbers are in octal
(base 8) rather than decimal (base 10, like normal numbers).

Value Meaning

400 Owner has read permission.

200 Owner has write permission.

100 Owner has execute permission.

040 Group has read permission.

020 Group has write permission.

010 Group has execute permission.

004 All other users have read permission.

002 All other users have write permission.

001 All other users have execute permission.

169

Scripting with Files

08_583204 ch05.qxd 3/18/05 9:30 PM Page 169

The table shows three-digit values, which control the access for the owner of the file, the group associ-
ated with the file, and everyone else, in that order. All these numbers are in octal, which makes it a lot
easier to add modes together. For example, 600 means the owner has read and write permission (and no
one else has any permissions) because 600 = 200 + 400.

If you ever want evidence that Unix is possessed, note that the mode where all users have read and write
permissions is 666.

To change permissions on a file, pass these octal modes to the chmod command. For example:

$ ls -l myarchive.tar
-rw-rw-r-- 1 ericfj ericfj 266240 Oct 24 21:22 myarchive.tar
$ chmod 600 myarchive.tar
$ ls -l myarchive.tar
-rw------- 1 ericfj ericfj 266240 Oct 24 21:22 myarchive.tar

These commands show the file permissions before the change (664) and after the change (600). Note that
in the long file listings, r stands for read permission, w for write permission, and x for execute permis-
sion. The three sets of letters apply to the owner, the group, and all others.

You can use these letters with the chmod command. This is especially useful if octal math is not your cup
of tea, although the alternative is not that easy to understand either. The basic format is u + or - the user
permissions, g + or - the group permissions, and o + or - the other users permissions. Use a plus, +, to
add permissions, and a minus, -, to remove them.

For example, to set a file to have read and write permissions for the owner and no access to anyone else,
use the following as a guide:

$ chmod 666 myarchive.tar
$ ls -l myarchive.tar
-rw-rw-rw- 1 ericfj ericfj 266240 Oct 24 21:22 myarchive.tar
$ chmod u+rw,g-rwx,o-rwx myarchive.tar
$ ls -l myarchive.tar
-rw------- 1 ericfj ericfj 266240 Oct 24 21:22 myarchive.tar

This example first sets read and write permissions for everyone on the file myarchive.tar. The ls com-
mand verifies the new permissions. Then the next chmod command sets the permissions to 600 by
adding and removing permissions. Note that you can remove permissions that are not assigned, such as
the execute permissions in this example.

You can also perform the permission change using a number of commands. For example:

$ chmod u+rw myarchive.tar

This command sets up the user permissions for the owner of the file.

$ chmod g-rwx myarchive.tar

170

Chapter 5

08_583204 ch05.qxd 3/18/05 9:30 PM Page 170

This command removes any permissions from other users in the group associated with the file.

$ chmod o-rwx myarchive.tar

This command removes any permissions for all other users. Note that you do not have to set all permis-
sions at once. You could, for example, just remove the group and other user permissions.

Testing Files with the test Command
The test command, used with conditionals, includes a number of options to test for file permissions as
well as to test the type and size of files.

The following table lists the file options for the test command.

Test Usage

-d file name Returns true if the file name exists and is a directory

-e file name Returns true if the file name exists

-f file name Returns true if the file name exists and is a regular file

-r file name Returns true if the file name exists and you have read permissions

-s file name Returns true if the file name exists and is not empty (has a size
greater than zero)

-w file name Returns true if the file name exists and you have write permissions

-x file name Returns true if the file name exists and you have execute permissions

You can combine the test command with the chmod command, as in the following Try It Out, to lock
down permissions on files so that other users cannot access your files. This is very useful in this era of
security vulnerabilities.

Try It Out Locking Down File Permissions
Enter the following script and name the file lockdown:

Locks down file permissions.

for filename in *
do

Initialize all permissions.
r=””
w=””
x=””

Check to preserve existing permissions.

171

Scripting with Files

08_583204 ch05.qxd 3/18/05 9:30 PM Page 171

if [-r $filename]
then

r=”r”
fi

if [-w $filename]
then

w=”w”
fi

if [-x $filename]
then

x=”x”
fi

Lock down the file permissions.
chmod u+rw$x,g-rwx,o-rwx $filename

done

When you run this script with the following command, there is no output unless there is a problem:

$ sh lockdown

How It Works
The outer for loop in the lockdown script loops through each file in the current directory. For each file,
the script uses the test command (with the [shorthand format) to check which permissions are avail-
able now. Then the script calls the chmod command, using the long letter format. The options to the
chmod command remove all permissions from the group and other users. The options also preserve any
permissions originally available to the user.

This script assumes you own all the files in the current directory. If not, see the chown command
documentation.

Dealing with Mac OS X Files
Mac OS X, while Unix-based, is not laid out in what is considered a “standard” Unix layout. This section
addresses some differences from Unix-based systems that you should be aware of in dealing with files
on a Mac OS X system.

The Legacies of NeXT
Mac OS X’s Unix side has its roots in two places, NeXTSTEP and BSD. Most of the differences from
Unix-based systems come from NeXT. The biggest distinction is the file system layout. On a standard
Mac OS X box, you have a single partition. No swap, no nothing else, just the root partition, /. Swapfiles
are discrete files, living in /var/vm. This method of swap has its good and bad points, but it’s the
generic way of handling swap for Mac OS X, so you don’t have a swap partition unless it’s been imple-
mented manually.

172

Chapter 5

08_583204 ch05.qxd 3/18/05 9:30 PM Page 172

Another missing item is the /opt directory. It’s not a part of the standard OS X setup, and if you assume
it’s going to be there, you’ll have a lot of error messages in your scripts. The /etc, /var, and /tmp direc-
tories are all there but actually live inside a directory named /private and are linked to the root level of
the boot drive.

User home directories are not in the /Home directory but in /Users, except when they are on a server,
and then are in the /Network hierarchy. If your script is going to be running in an elementary/high
school environment, then options such as network homes and NetBoot are going to be quite common,
and that can change things on you if you aren’t prepared for it.

Most nonboot local volumes live in the /Volumes directory, even if they are partitions on the boot drive.
The normal exceptions to this are NFS volumes, which still work like they do with most Unix systems,
although they can live in /Volumes as well. Volumes in /Volumes typically show up on the user’s desk-
top, and unless you set them otherwise, mount on user login only. So if you need a partition to be visible
prior to login, you must manually set up that mount.

Network drives can live in both /Network and /Volumes, depending on the usage and the situation.
The important thing to remember is that Mac OS X is not truly Linux or any other kind of Unix. While
most things will work the way you expect, if you are going to be dealing with Mac OS X on a regular
basis, you should take the time to become familiar with its file system.

Mobile File Systems and Mac OS X
Thanks to the prevalence of FireWire and the ease that the Mac has always had of booting from different
partitions, drives, and the like, you will likely work with file systems that are quite dynamic. For the
Unix world, Mac OS X users are extremely mobile. All those iPod music players can become spare
data drives, or even boot drives, without much work. (Install an OS, and select the iPod in System
Preferences ➪ Startup Disk.) Because of the way Mac OS X deals with mobile drives, the script that was
looking for resources in /usr/local/bin is still going to find that directory, but now it’s a totally different
/usr/local/bin, and what you want is /Volumes/usr/local/bin. While mobile use is starting to become
more common on Linux, the fact is, if you get a room full of Mac users, especially laptop users, together,
it’s a good bet that at least a third will have some kind of portable FireWire drive with them, and they
will be happily using it as a big data shuttle or test boot disk. Many others will be using their iPods.
Again, Mac users have flexible file system configurations.

The message here is don’t hardcode paths in your scripts unless you have to, and if you do, try to warn
users with read-me files.

Another fun aspect of FireWire drives and their relatives is that they allow you to
ignore permissions. Mac OS X enables the local user to ignore permissions on a locally
attached FireWire or USB drive with a click of a button in the Finder’s Get Info win-
dow. So the Unix permissions on a FireWire or USB drive are only a suggestion, not a
rule. Don’t rely solely on Unix file permissions for security. It takes a Mac OS X power
user only about 30 minutes to bypass those, even without using the Terminal.

173

Scripting with Files

08_583204 ch05.qxd 3/18/05 9:30 PM Page 173

Target Disk Mode
Thanks to an Apple feature called Target Disk Mode (TDM), mobile file systems are not limited to just
portable hard drives but can also include the computer itself. That’s correct — the entire Mac.

As a rule of thumb, any Mac with a G4 can run Target Disk Mode, although some G3 Macs can too. If you
aren’t sure whether your Mac supports Target Disk Mode, check the list at http://docs.info.apple.com
/article.html?artnum=58583.

TDM is ridiculously simple to use. You boot, or restart a Mac, and hold down the T key until you see a
giant FireWire symbol moving about the screen. (You can’t miss it.) You then run a FireWire cable from
the machine in Target Disk Mode to another Mac. Wait a few seconds, and voilà! You’ll see the TDM
machine showing up as a big hard drive on the other machine. Not to belabor the point, but again, avoid
assumptions about the file system layout wherever possible, and if you can’t, give plenty of warning.

Mobile File Systems and Disk Images
Disk images are everywhere. They’ve become the preferred method of software distribution on the Mac,
If you see .dmg or .smi files, you’re dealing with disk images. From a Unix point of view, these are
physical disks. For example, here’s the result of a mount command with a CD, a disk image, and a
FireWire drive mounted:

$ mount
automount -nsl [291] on /Network (automounted)
automount -fstab [318] on /automount/Servers (automounted)
automount -static [318] on /automount/static (automounted)
/dev/disk1s0 on /Volumes/NWN_XP2 (local, nodev, nosuid, read-only)
/dev/disk2s3 on /Volumes/Untitled 1 (local, nodev, nosuid, journaled)
/dev/disk3 on /Volumes/Casper Suite 2.2 (local, nodev, nosuid, read-only, mounted
by foo)

So which line is the disk image? Well, NWN_XP2 is the PC CD of the fantastic game Neverwinter
Nights. Untitled 1 is a FireWire drive. Casper Suite 2.2 is a disk image. Note that there’s really no way to
tell which is which. CD-ROMs are always read-only, but disk images can be read/write, too. The biggest
advantages of disk images are that they compress well, they’re easy to use, and because they support
AES encryption, they can be quite useful as a way to securely send data. (That last feature is a nice way
to get around the “ignore permissions” issue on mobile drives, by the way.)

While you may feel you’ve been beaten about the head regarding the mobility of file systems in a Mac
OS X world, there’s a reason: You cannot assume that Mac OS X is like every other Unix. It’s mostly like
them at the shell level, but there are some real differences that you are not going to see too many other
places, and if you forget that and hardcode everything to reflect a Linux/Solaris/HP-UX/AIX world-
view, Mac OS X will make your scripts very sad and unhappy. That’s not to say it’s all bad. The vast
majority of Mac OS X users don’t tend to reconfigure their file layouts. They leave things alone. If the OS
wants swapfiles in /var/vm instead of a separate swap partition, they’re fine with that. If the OS wants
to mount things that aren’t boot partitions in /Volumes, great! As long as they don’t have to dink with it,
they’re happy. You tend to not see the kind of hardcore customizations at the Unix level that you see on
a different platform, so you can avoid most problems by testing to make sure that what you think is the
way the world looks is actually the way the world is.

174

Chapter 5

08_583204 ch05.qxd 3/18/05 9:30 PM Page 174

Naming Issues
Before I get into the differences between HFS+ and “normal” Unix physical file systems, there’s one
more thing to look at, and it’s important. It can be summed up as: “Beware the colon and the space” or
“Mac users are crazy.”

It is fairly uncommon to see volume names with spaces in the rest of the Unix world. The root partition
is /, and the others tend to have normal names such as swap, opt, and so on. This is not true in the Mac
OS X world. Mac users name their drives, especially portable drives, things that just don’t tend to hap-
pen in the traditional Unix world. Consider, for example, the person who names all his drives after char-
acters in Herman Melville novels; he mounts drives named Moby Dick, The Pequod, and Quee-Queg.

If you assume that spaces are not used, it can bite you back, and it can bite you back hard. It bit Apple
on one particularly memorable occasion, wherein a shell script misassumption in the iTunes 2.0
installer caused people with multiple volumes, or spaces in the names of their boot volumes, to suddenly
find their drives erased. That would be what those in the IT field call bad.

As well, while most traditional shell scripters know that the / character is a directory delimiter, on Mac
OS X boxes, under the default file system, the colon can do that job as well. So if you use colons in file
names, Mac users are going to potentially see some very odd things when they look at those files in the
Finder, the file system UI for Mac OS X.

HFS+ Versus UFS: The Mac OS X Holy War
One thing that traditional shell scripters will run into when they start dealing with Mac OS X is the file
system. It’s not UFS, or EXTFS*. It’s normally (at least 95 percent of the time) the Hierarchical File
System Extended FS, or more simply HFS+. This was the file system used on the Classic Mac OS starting
with Mac OS 8.1, and it’s the default file system on every shipping Mac. Luckily, if you sidestep philo-
sophical issues, there are not too many differences between HFS+ and other Unix file systems.

The biggest difference is in the way HFS+ handles case. HFS+ is case insensitive but case preserving.
So while it’s not going to change the case of any file or directory names, it also doesn’t care about it. To
HFS+, filename and FILENAME are the same thing. If you’re doing a lot of work with Apache on Mac
OS X, you’ll want to ensure that the hfs_apple_module is loaded and in use, and the case issue shouldn’t
cause you problems there either.

HFS+’s case insensitivity is going to bite you less than you think because to most Mac users, this is
how it’s always been, so they don’t think that using filename, Filename, and FILENAME is a great
way to keep different versions of the same file around. As long as you don’t assume case-sensitivity in
your scripts (and you shouldn’t rely on this as a filing system anyway; it’s really a poor way to version
data), you should never hit a difference.

Another difference you’ll see, but shouldn’t be affected by, is the creation date. In most Unix systems,
the only date you use is the modification date. On Mac OS X, HFS+ supports the creation date separately
from the modification data as a part of a file’s metadata. It’s mostly used by users when finding files,
and you’d have to explicitly code for it to use it, so it’s not something you’re going to stumble over.

175

Scripting with Files

08_583204 ch05.qxd 3/18/05 9:30 PM Page 175

Because HFS+ doesn’t use inodes, it emulates those for the shell environment. It’s unlikely you’ll ever
run into this, because HFS+ emulates hard links and inodes well enough that it should never cause you
problems. But if you ask a Mac OS X user about inodes, you’re probably going to get a blank look.

While HFS+ emulates hard links and supports symbolic links, it also supports a third lightweight file ref-
erence, namely the alias. An alias is like a symbolic link, but with an added feature: with a symbolic link,
if you move what the link points to, the link dies. With an alias, if you move what the alias points to, as
long as you don’t move that file or folder off of the volume, the alias doesn’t die; it just gets updated to
the new location of the target. An alias appears as a file on disk, but the Finder treats an alias like a link.
This dualism can cause problems in your scripts. You’re unlikely to create aliases in your scripts. But if
your script comes across what appears to be a file, and your script can’t use it, it could be an alias.

The Terror of the Resource Fork
The final major difference between HFS+ and UFS file systems involves something that isn’t really as
much of a concern anymore: the resource fork. In the original versions of the Mac OS file systems, MFS
and HFS, each file had two forks: a data fork and a resource fork. The data fork held data and maybe
some metadata. The resource fork held things such as icons, code, comments, and so on. The problem
was that if you just copied a dual-forked file to something like UFS, the resource fork tended to wither
and die, and all you got was the data fork. For documents, this was anything from a nonissue to an
annoyance. For applications, it was a death sentence.

However, HFS+ deals with this differently. It certainly supports the resource fork, but it’s no longer a
hard part of the file. It’s just a metadata fork, à la an NTFS file stream that is mostly used by older appli-
cations. There are some modern Mac OS X applications that still use resource forks; the biggest example
is Microsoft Office. But the vast majority don’t do that anymore. They use a single-forked bundle format,
which is just a directory that acts like a single file.

The resource fork will not show up directly in listings by the ls command. And the mv and cp com-
mands won’t properly copy the resource forks. Thus, you want to use the Finder to move or copy files
on a Mac OS X system.

If you want to avoid resource forks, here are some rules of thumb that will keep you out of trouble:

❑ Stay out of /Applications (Mac OS 9) and /System Folder. While old-style apps can live outside
of those locations, almost everything in those directories uses a resource fork, and shell scripts
have no business in them.

❑ If the application looks like a directory and ends in .app, then it’s a single-forked app.
Otherwise, it’s probably a dual-forked app.

For example, here’s a directory listing for Microsoft Word (which uses a resource fork) and
Adobe Photoshop CS (which doesn’t use a resource fork):

-rwxrwxr-x 1 jwelch admin 17069566 Sep 13 12:00 Microsoft Word
drwxrwxrwx 3 jwelch jwelch 102 Nov 24 2003 Adobe Photoshop CS.app

Note that Word is a single file without the .app extension, whereas Photoshop is a directory
with the .app extension. If you are using non–resource fork–aware shell utilities (almost all of
them), and you see the Photoshop structure, you’re probably okay. If you see the Word structure

176

Chapter 5

08_583204 ch05.qxd 3/18/05 9:30 PM Page 176

on an app, then you should proceed with caution. Unfortunately, it’s hard to tell if a file is just a
file or a resource-forked application. It’s not impossible, but you’re not going to do it with stan-
dard Unix tools on a Linux system. However, Microsoft Office is one of the last major Mac OS X
apps to still use resource forks, so there’s one final rule of thumb.

❑ Stay out of any directory whose name contains Microsoft Office in the path or name. There is
nothing in there you wish to mess with.

Note that these tips apply to applications. Files are trickier, but they also don’t fall apart without a
resource fork as often. Nine times out of ten, you just lose an icon. The only notable problem children
here are clipping files (which end in .clipping, .textClipping, or .webloc) and old StuffIt Archives
(which end in .sit). If you run into a file and aren’t sure, make a copy and work on that. If you guess
wrong, at least you’ve just mangled a copy.

At the moment, there aren’t a lot of tools that handle resource forks well (although Mac OS X 10.4, aka
Tiger, is supposed to fix a lot of this). Apple provides two with its developer tools, namely mvMac and
cpMac, which are resource fork–aware versions of mv and cp, respectively. There are some third-party
tools, such as hfstar, hfspax, and RsyncX, but they don’t ship with the OS, so you can’t rely on them.
Unfortunately, resource forks are still a way of life on the Mac, so your best bet is to just avoid the places
they are likely to be.

Working with Here Files
and Interactive Programs

You’ve seen the mantra again and again in this book: Shell scripts were designed to work with files. You
can take advantage of a special feature called here files to embed files within your scripts.

A here file or here document is a section of text in your shell script that the shell pulls out and treats as a
separate file. You can use a here file to create a block of text, for output to the user, or for input to a com-
mand such as ftp, telnet, and other interactive applications. The shell runs the command as if you
typed in the here file text as input for the command.

You can think of here files as “here is the file.” Otherwise, the term sounds very odd.

The basic syntax for a here file is:

command <<FileContinuesUntilHere
...text of here file...
FileContinuesUntilHere

Use the << operator to signify that the text of the file is embedded within the script. The text
FileContinuesUntilHere acts as a marker. The shell treats FileContinuesUntilHere as the
end-of-file marker for the here file. (You can choose your own text as the end-of-file marker. You do not
have to use FileContinuesUntilHere. Do not use an end-of-file marker that may appear in the text,
however. Make your end-of-file markers unique.)

Here files are very similar to input redirection, covered in Chapter 8.

177

Scripting with Files

08_583204 ch05.qxd 3/18/05 9:30 PM Page 177

Displaying Messages with Here Files
One of the simplest ways to use here files is to output a message to the user. While the echo command
also outputs messages to the user, if you need to output more than three lines, the echo command
becomes inconvenient. In this case, a here file works a lot easier for you, the scripter.

In most cases, you can use the cat command to output a here file to the user, as shown in the following
Try It Out example.

Try It Out Displaying Text with Here Files
Enter the following script and save it under the name cat_here:

Uses a here file with the cat command.

cat <<HERE
This is a notice that the official company dress code policy
has changed. All employees are required to follow the new
policy.

We don’t want to make a big deal about the policy, which has
been in effect since last September, but it appears that some
people have not been following the new guidelines. Because of
this, we felt it appropriate to introduce the new guidelines
for all employees.

The new policy is available on the company InfoCENTRE. You
will need level 3 security access to view the new company dress
code policy. All employees should view this policy TODAY. Be
careful, though, not to overload the company InfoCENTRE server.
If you have trouble logging in to the secure company InfoCENTRE
site, please call the 800 number for the internal security
hotline. This number is available on the secure company InfoCENTRE.

You won’t be sent home for violating the company dress code policy,
but you will need to work out any issues with your supervisor.
HERE

Here file has ended, so the shell expects commands.

echo “Please follow this policy immediately.”

When you run the cat_here script, you see output like the following:

$ sh cat_here
This is a notice that the official company dress code policy
has changed. All employees are required to follow the new
policy.

We don’t want to make a big deal about the policy, which has
been in effect since last September, but it appears that some
people have not been following the new guidelines. Because of
this, we felt it appropriate to introduce the new guidelines

178

Chapter 5

08_583204 ch05.qxd 3/18/05 9:30 PM Page 178

for all employees.

The new policy is available on the company InfoCENTRE. You
will need level 3 security access to view the new company dress
code policy. All employees should view this policy TODAY. Be
careful, though, not to overload the company InfoCENTRE server.
If you have trouble logging in to the secure company InfoCENTRE
site, please call the 800 number for the internal security
hotline. This number is available on the secure company InfoCENTRE.

You won’t be sent home for violating the company dress code policy,
but you will need to work out any issues with your supervisor.
Please follow this policy immediately.

How It Works
The cat_here script outputs enough text to make it inconvenient to use the echo command for each
line of text. Instead, the cat_here script passes a here file to the cat command, which outputs all the
text. The echo command works best for single-line messages, whereas the cat command was designed
to output the entire contents of a file. The script terminates the here file with the market text HERE.

After the marker HERE, the script continues. You can place any additional commands before and after the
here file. In this example, the script calls the echo command after the here file ends.

This script does not reflect an actual corporate memo. It is instead a paraphrase of a memo, a secure web
site, and an hour-long meeting held at a large services firm. It helps to be paid by the minute if you are
forced to endure something like this.

Customizing Here Files
Another advantage of here files over input redirection is that you can customize the text in the here file,
using shell variables. The shell expands any variables referenced within a here file, just as the shell
expands variables within the rest of your scripts. The following Try It Out demonstrates this.

Try It Out Sending a Message to All Logged-In Users
Enter the following script and name the file tps_report1:

wall <<EndOfText
Please complete all TPS reports and have them
on my desk by EOB today.

Your cooperation in this matter helps the smooth
flow of our departmental structure.

-Dick
EndOfText

echo “Message sent”

179

Scripting with Files

08_583204 ch05.qxd 3/18/05 9:30 PM Page 179

When you run the tps_report1 script, you see the following output on the shell window you used to
run the script:

$ sh tps_report1

Broadcast message from ericfj (Sat Oct 28 12:24:13 2006):

Please complete all TPS reports and have them
on my desk by EOB today.

Your cooperation in this matter helps the smooth
flow of our departmental structure.

-Dick
Message sent

All other users see just the message. For example:

Broadcast message from ericfj (Sat Oct 28 12:24:13 2006):

Please complete all TPS reports and have them
on my desk by EOB today.

Your cooperation in this matter helps the smooth
flow of our departmental structure.

-Dick

How It Works
The wall command, short for write (to) all (users), comes from the ancient times when users were
logged in to plain ASCII terminals. In this example, wall is a handy command to call to test here files.
In this more modern era, you can often use instant messaging, or IM, programs to communicate with
logged-in users.

This example just sets up the here file; it does not customize the here file with variable values (the sub-
ject of the next Try It Out).

Using a here file as shown in this example is not the most efficient way to pass input
to most programs. Instead, you can use input redirection, covered in Chapter 8. Here
files provide an advantage, however, if you want to insert variables into the input
passed to a program or if the program is normally an interactive program. Interactive
programs, such as ftp and telnet, work better for the here file approach.

As with most aspects of shell scripting, you can approach any problem in more than
one way. You can use here files or not, depending on your needs. There is no one
true way to perform any task.

180

Chapter 5

08_583204 ch05.qxd 3/18/05 9:30 PM Page 180

Try It Out Changing the Input with Variables
To customize a here file, you merely need to insert variables into the here file in the script. The following
example shows this.

Use of variables within a here file.

If the user forgets to pass the command-line
arguments, fill in defaults.

if [$# -lt 1]
then

date_required=today
else

date_required=$1
fi

if [$# -lt 2]
then

pithy_statement=”Action, urgency, excellence”
else

pithy_statement=$2
fi

wall <<EndOfText
Please complete all TPS reports and have them
on my desk by EOB $date_required.

Your cooperation in this matter helps the smooth
flow of our departmental structure.

$pithy_statement!
-Dick
EndOfText

echo “Message sent”

Enter this script and save it under the file name tps_report2. When you run this script, you see output
like the following:

$ sh tps_report2 Monday Onward

Broadcast message from ericfj (Sat Oct 28 12:45:35 2006):

Please complete all TPS reports and have them
on my desk by EOB Monday.

Your cooperation in this matter helps the smooth
flow of our departmental structure.

181

Scripting with Files

08_583204 ch05.qxd 3/18/05 9:30 PM Page 181

Onward!
-Dick
Message sent

How It Works
As before, this script passes the here file to the wall command to send a message to all users using shell
windows or terminals who are logged into your system. In this case, however, the script places variables
at strategic locations within the script.

To promote reuse, the date_required variable holds the day the TPS reports are due. With this, you
can reuse the script for any time the reports are due. The pithy_statement variable holds a pithy state-
ment to end the message.

Both variables set their values from the arguments passed on the command line. The first argument is
used for the date_required variable and the second for the pithy_statement. Note that this script
could have used the command-line positional variables $1 and $2 directly. Instead, the script checks for
the existence of the positional variables. If not set, the script fills in reasonable defaults.

Another approach to the same problem of validating input is to output an error message to the user if
there are missing arguments.

If you omit the second argument, you see output like the following:

$ sh tps_report2 Monday

Broadcast message from ericfj (Sat Oct 28 12:45:35 2006):

Please complete all TPS reports and have them
on my desk by EOB Monday.

Your cooperation in this matter helps the smooth
flow of our departmental structure.

Action, urgency, excellence!
-Dick
Message sent

And if the user omits all the arguments, you see output like the following:

$ sh tps_report2

Broadcast message from ericfj (Sat Oct 28 12:45:35 2006):

Please complete all TPS reports and have them
on my desk by EOB today.

Your cooperation in this matter helps the smooth
flow of our departmental structure.

Action, urgency, excellence!
-Dick
Message sent

182

Chapter 5

08_583204 ch05.qxd 3/18/05 9:30 PM Page 182

Driving Interactive Programs with Here Files
In addition to placing variables within a here file, another use of here files comes when you need to
drive interactive programs from a script.

Try It Out Driving ftp with a Here File
Enter the following script and name the file ftpget:

Driving an interactive program, ftp.

Validate number of arguments.
if [$# -lt 2]
then

echo “Error, usage is:”
echo “ftpget hostname filename [directory].”
exit -1

fi

hostname=$1
filename=$2

directory=”.” # Default value

if [$# -ge 3]
then

directory=$3
fi

ftp <<EndOfSession
open $hostname

cd $directory
get $filename
quit

EndOfSession

echo “FTP session ended.”

You also need to set up something called auto-login for the ftp command. See the online documentation
for the ftp command for more information on this. The auto-login feature sets up the username and
password for the FTP site you attempt to contact. The script needs this feature because the here docu-
ment does not work well with the ftp command when the ftp command prompts the user for a user-
name and password.

FTP is short for File Transfer Protocol. The example script uses the ftp program, which is a client pro-
gram designed to access remote FTP servers.

183

Scripting with Files

08_583204 ch05.qxd 3/18/05 9:30 PM Page 183

When you run this script (after setting up the ftp auto-login feature), you see minimal output like the
following or an error if something goes wrong:

$ sh ftpget ftp.somehost.yow index.html WWW
FTP session ended.

How It Works
The ftpget script is one of the trickiest scripts because of variations in the ftp command as well as how
the ftp command prompts for your login to a remote system.

The basic mode of operation is that the ftpget script logs in to a remote site using the ftp command.
The script then changes to a given directory and downloads the given file name. This seemingly simple
task is fraught with error when using a here document because the remote server can output an error,
which your script cannot handle. If the session runs well, however, you should see the file on the local
system in the current directory.

The here file passes a number of ftp commands to the ftp program. The ftp program, designed for inter-
active use, supports a number of commands within the program itself. The ftpget script uses a here file
to pass these commands to the ftp command, one at a time.

The ftpget script starts with the open command, to open an FTP session to the remote system. This is
where the auto-login feature comes into play. When opening the session to the remote system, the ftp
command reads in your username and password on the remote system from the .netrc file in your
home directory. If the open fails, the script won’t download the file.

The empty space in the here file sends new lines to the remote server because you cannot tell in advance
how long it will take for the remote server to be ready for commands.

The script then issues a cd command to change directories on the remote system and the get command
to download a file. The quit command ends the FTP session.

If you don’t pass enough parameters to the ftpget script, you see an error message like the following:

$ sh ftpget
Error, usage is:
ftpget hostname filename [directory].

Note that there are severe limits to using here files to drive interactive programs. If any part of the inter-
active program has changed, your here file will no longer work. Furthermore, if any errors occur within
the interactive program, your here file–scripted set of commands won’t be able to handle the errors.

A package called expect provides greater control over interactive programs. It shines with tasks that are
too complex for here files. You can find out more on expect at expect.nist.gov. Also, the wget command
was designed for use within scripts.

Try It Out Driving vi
The ftpget script showed an example of how you can use here files to automate interactive programs.
A more predictable interactive program is the vi text editor, introduced in Chapter 2.

184

Chapter 5

08_583204 ch05.qxd 3/18/05 9:30 PM Page 184

The following script runs a session with the vi text editor:

filename=test.txt

vi $filename <<EndOfCommands
i
This file was created automatically from
a shell script
^[
ZZ
EndOfCommands

Save this script under the name run_vi. You can then run the script:

$ sh run_vi

If you run this script with vim acting as vi, then you will likely see output like the following:

$ sh run_vi
Vim: Warning: Input is not from a terminal

The file is still edited. The vim command includes more code for detecting whether the editor is run
from a terminal. Vim can tell that it is being run from a script or program.

After running the script, you should see the following added to the file test.txt:

$ cat test.txt

This file was created automatically from
a shell script

If you run the script a second time, it appends to the file. For example:

$ sh run_vi
Vim: Warning: Input is not from a terminal
$ cat test.txt

This file was created automatically from
a shell script

This file was created automatically from
a shell script

How It Works
The run_vi script provides a file name to the vi command. It then uses a here file to pass text to the vi
edit session. The i command places vi in insert mode. The next two lines of text are inserted, as is an
extra newline (because the next command appears on a separate line). An Escape character pushes vi
out of insert mode and back into command mode. The ZZ command saves the file and exits vi.

185

Scripting with Files

08_583204 ch05.qxd 3/18/05 9:30 PM Page 185

The ^[text in the file must be an Escape character. Most text editors won’t let you enter an Escape char-
acter into the document. One of the easiest ways to enter an Escape is to use vi. In vi, go into insert mode
and then press Ctrl-V Ctrl-[, and you get an actual Escape character.

Before trying to automate a session in vi to perform scripted edits, take a look at the sed program, covered
in Chapter 6.

Turning Off Variable Substitution
By default, the shell substitutes variable values into the text of any here files. You can turn off this fea-
ture by enclosing the end of the here document marker in quotes. For example:

cat <<’QuotedEndMarker’
...text...
QuotedEndMarker

This allows you to include special formatting in your here file, for example, if you write a script that out-
puts a script or program source code.

Try It Out Here with No Substitution
Enter the following script to see how to avoid variable substitution in here files. Save the script under
the name here_no:

filename=”test1”

cat <<’QuotedEndMarker’

With quotes around the here document marker,
you can include variable references such
as $HOME, $filename, and $USER.

QuotedEndMarker

When you run this script, you see output like the following:

$ sh here_no

With quotes around the here document marker,
you can include variable references such
as $HOME, $filename, and $USER.

How It Works
This script uses an ordinary here file, but it turns off the variable substitution. Otherwise, you would see
the values of $HOME, $filename, and $USER in the output instead of the literal text.

All of this is done by the magic of enclosing the end marker, QuotedEndMarker, in quotes at the original
reference. Do not enclose the marker in quotes at the end of the here file.

186

Chapter 5

08_583204 ch05.qxd 3/18/05 9:30 PM Page 186

Summary
Files. Files. Files. Most shell scripts work with files of some sort. This chapter extends the basic opera-
tions on files to include:

❑ Combining files into archives with the tar command.

❑ Compressing files with the gzip command.

❑ Working with file permissions such as 600 for user read and write but no access to any others.

❑ Testing files with the test command. This includes testing file permissions.

❑ Handling issues on Mac OS X, especially regarding mobile computers and the file system issues
that arise as users move from site to site.

❑ Using the oddly named here files to output text, even including programs.

The next chapter covers sed, a program you can use to make script-driven modifications to files. You’ll
find sed to be a powerful command that warrants its own syntax. You’ll also find that sed is used in a
huge number of shell scripts.

Exercises
1. Modify the lockdown script to remove only the group and other user permissions. Hint: The

script will then no longer need to check and preserve the existing user permissions.

2. Make the lockdown script an executable script. Show all the necessary steps.

3. Rewrite the tps_report2 script. Preserve the concept that if the user forgets to pass command-
line arguments, the script will fill in useful defaults. But create a more compact way to test the
arguments using nested if statements.

4. Rewrite the tps_report2 script using a case statement instead of if statements.

5. Write a script with a here file that when run outputs a script that, in turn, when run outputs a
script. That is, write a script that outputs a script that outputs a script. Hint: Start with a script
that outputs another script. Then add the additional script.

187

Scripting with Files

08_583204 ch05.qxd 3/18/05 9:30 PM Page 187

08_583204 ch05.qxd 3/18/05 9:30 PM Page 188

6
Processing Text with sed

When you need to edit a file, you typically open up your favorite editor, perform the change, and
then save the file and exit. Editors are great for modifying files and seem to be suitable for any
type of editing needed. However, imagine you have a web site with a couple of thousand HTML
files that need the copyright year at the bottom changed from 2004 to 2005. The interactive nature
of editors would require you to type every change that you need to make. You would launch your
editor and open each file individually and, like an automaton, make the change, save, exit, repeat.
After spending hours performing the same change on thousands of files, you realize you’ve for-
gotten about a whole section of the web site and actually have several thousand more, and next
year you will need to do this again, with more files. There has to be a better way.

Fortunately, there is. This chapter introduces you to sed, an intelligent text-processing tool that
will save you not only time but also, more important, your sanity. The sed command gives you
the power to perform these changes on the command line, or in a shell script, with very little
headache. Even better, sed will allow you to repeat the advanced batch editing of files simply.
Sed can be run on the command line and is a powerful addition to any shell scriptwriter’s toolbox.
Learning the building blocks of sed will enable you to create tools to solve complex problems
automatically and efficiently.

This chapter introduces you to the building blocks of sed by covering the following subjects:

❑ Getting and installing sed

❑ Methods of invoking sed

❑ Selecting lines to operate on

❑ Performing substitutions with sed

❑ Advanced sed invocation

❑ Advanced addressing

❑ Common one-line sed scripts

09_583204 ch06.qxd 3/18/05 9:25 PM Page 189

Introducing sed
In this chapter, I give you a gentle introduction to sed and its powerful editing capabilities. Learning sed
can take some time, but the investment pays off tenfold in time saved. It can be frustrating to figure out
how to use sed to do what you need automatically, and at times you may decide you could do the rote
changes interactively in less time. However, as you sharpen your skills, you’ll find yourself using sed
more frequently and in better ways. Soon you will revel in the divine realm of automation and reach to
the programmer’s version of nirvana.

The name sed means stream editor. It’s designed to perform edits on a stream of data. Imagine a bubbling
stream of cool mountain water filled with rainbow trout. You know that this stream empties into a
sewage system a few miles down, and although you aren’t a big trout fan you want to save the fish. So
you do a little work to reroute the stream through a pipe to drain into a healthy lake. (The process of
piping is discussed in Chapter 8.) With sed, you can do a little magic while the stream is flowing through
the pipe to the lake. With a simple sed statement, the stream and all the trout would flow into the pipe,
and out would come the same icy mountain stream, filled with catfish instead of trout. You could also
change the cool water into iced tea, but that won’t help the fish. Using your traditional text editor is like
manually replacing each trout in the stream with catfish by hand; you’d be there forever, fish frustrat-
ingly slipping out of your grasp. With sed, it’s a relatively simple and efficient task to make global
changes to all the data in your stream.

Sed is related to a number of other Unix utilities, and what you learn in this chapter about sed will be
useful for performing similar operations using utilities such as vi and grep. Sed is derived originally
from the basic line editor ed, an editor you will find on most every Unix system but one that is rarely
used because of its difficult user interface. (Although unpopular as an editor, ed continues to be dis-
tributed with Unix systems because the requirements to use this editor are very minimal, and thus it is
useful in dire recovery scenarios when all other editors may fail because their required libraries are not
available.)

Sed is shell independent; it works with whatever shell you want to use it with. Because the default shell
on most systems is Bash, the examples here are based on the Bash shell.

Sed can be ugly and frightening, but it is also quite powerful. Maybe you’ve seen some unintelligible,
scary sed, such as the following line, and are wary of learning it because it looks like gibberish:

sed ‘/\n/!G;s/\(.\)\(.*\n\)/&\2\1/;//D;s/.//’ myfile.txt

Even someone who knows sed well would have to puzzle over this line for a while before they under-
stood that this reversed the order of every character in every line of myfile.txt, effectively creating a
mirror image of the file. This line makes most people’s heads spin. But don’t worry. I’ll start off with the
basics, giving you a strong foundation so that you’ll no longer find sed frightening and unintelligible.

sed Versions
Sed is a brick-and-mortar Unix command. It comes standard with nearly every Unix that exists, includ-
ing Linux and Mac OS X, and it generally does not need to be installed, as it is such an essential shell
command. However, it is possible that some systems don’t ship with sed or come with a version that
doesn’t have the same features as others.

190

Chapter 6

09_583204 ch06.qxd 3/18/05 9:25 PM Page 190

In fact, there is a dizzying array of sed implementations. There are free versions, shareware versions, and
commercial versions. Different versions may have different options, and some of the examples in this
chapter, especially the more advanced ones, may not work as presented with every version.

The most common version is arguably GNU sed, currently at revision 4.1.2. This version is used in the
examples throughout this chapter. The GNU sed has a number of extensions that the POSIX sed does not
have, making things that used to be difficult much simpler. If you need multibyte support for Japanese
characters, there is a BSD implementation that offers those extensions. There is a version of sed called
ssed (super-sed) that has more features than GNU sed and is based on the GNU sed code-base. There are
versions of sed that are designed for constrained environments so they are small and fast (minised), ver-
sions that can be plugged into the Apache web server (mod_sed), and color versions of sed (csed). Most
implementations will do the basics of what I cover here, so it is not necessary that you have GNU sed;
however, you may find that the extensions that GNU sed offers will make your life easier.

Mac OS X comes with the BSD version of sed; GNU/Linux tends to distribute GNU sed. If your operat-
ing system is something else, you will be able to find a version of sed that works for you. The sed
Frequently Asked Questions has an entire section devoted to the different versions of sed and where you
can find one that works for your operating system (see http://sed.sourceforge.net/sedfaq2.html#s2.2).

Not all sed implementations are without cost. Commercial versions of sed are available, useful because
many of them include support or provide sed for an esoteric or outdated operating system. Aside from
that reason, they don’t offer much more than GNU sed, probably have fewer features, and do not adhere
as strictly to POSIX standards.

Sed is generally found at /bin/sed or /usr/bin/sed.

To see what version you have on your system, type the following command:

$ sed --version
GNU sed version 4.1.2
Copyright (C) 2003 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE,
to the extent permitted by law.

If this doesn’t work, try just typing sed by itself on the command line to see if you get anything at all.
You may have to specify /bin/sed or /usr/bin/sed. If the --version argument is not recognized by
your system, you are not running GNU sed. In that case, try the following command to get the current
version number:

$ strings /bin/sed | grep -i ver

Installing sed
If you find that you don’t have any version of sed installed, I recommend getting a version targeted for
your operating system or the one directly from GNU. Mac OS X comes with a BSD version of sed, but
you can easily install the GNU version through fink (http://fink.sourceforge.net/). On Debian
GNU/Linux you can install sed as root by typing apt-get install sed.

191

Processing Text with sed

09_583204 ch06.qxd 3/18/05 9:25 PM Page 191

Installing GNU sed by hand is not very difficult. The process is even less difficult if you have a system
that already has another version of sed installed, as the GNU sed installation requires some form of sed
installed to install itself. This sounds like a chicken-and-egg problem, but the GNU sed provides the nec-
essary bootstrap sed as part of the installation to resolve this. You can get the latest .tar.gz file of GNU
sed from ftp://ftp.gnu.org/pub/gnu/sed/. After you have obtained the sed tar, you uncompress it as
you would any normal tar file:

$ tar -zxf sed-4.1.2.tar.gz
$ cd sed-4.1.2

Read the README file that is included with the source for specific instructions.

Bootstrap Installation
If you are building sed on a system that has no preexisting version of sed, you need to follow a bootstrap
procedure outlined in README.boot. (If you have the BSD version of sed, you won’t need to do this and
can skip to the section Configuring and Installing sed.) This is because the process of making sed requires
sed itself. The standard GNU autoconf configure script uses sed to determine system-dependent vari-
ables and to create Makefiles.

To bootstrap the building of sed, you run the shell script bootstrap.sh. This attempts to build a basic
version of sed that works for the configure script. This version of sed is not fully functional and should
not be used typically for anything other than bootstrapping the build process.

You should see output like the following when you run bootstrap.sh:

$ sh ./bootstrap.sh
Creating basic config.h...
+ rm -f ‘lib/*.o’ ‘sed/*.o’ sed/sed
+ cd lib
+ rm -f regex.h
+ cc -DHAVE_CONFIG_H -I.. -I. -c alloca.c

It continues building and may report a number of compiler warnings. Don’t worry about these; how-
ever, if you get errors and the bootstrap version of sed fails to build, you will need to edit the config.h
header file that was created for your system. Read the README.boot file and the comments that are con-
tained in the config.h file to determine how to solve this. On most systems, however, this bootstrap
version of sed should build fine.

Once the build has completed, you need to install the bootstrapped version of sed somewhere in your
$PATH so you can build the full version. To do this, simply copy the sed binary that was built in the sed
directory to somewhere in your $PATH. In the following example you create the bin directory in your
home directory, append that path to your existing $PATH environment variable, and then copy the sed
binary that was created in the bootstrap procedure into your $HOME/bin directory. This will make this
version of sed available for the remainder of the build process.

$ mkdir $HOME/bin
$ export PATH=$PATH:$HOME/bin
$ cp sed/sed $HOME/bin

192

Chapter 6

09_583204 ch06.qxd 3/18/05 9:25 PM Page 192

Configuring and Installing sed
If you already have a version of sed installed on your system, you don’t need to bootstrap the installa-
tion but can simply use the following command to configure sed:

$ sh ./configure
checking for a BSD-compatible install... /usr/bin/install -c
checking whether build environment is sane... yes
checking for gawk... gawk
checking whether make sets $(MAKE)... yes
checking for gcc... gcc

This will continue to run through the GNU autoconf configuration, analyzing your system for various
utilities, variables, and parameters that need to be set or exist on your system before you can compile
sed. This can take some time before it finishes. If this succeeds, you can continue with compiling sed
itself. If it doesn’t, you will need to resolve the configuration problem before proceeding.

To compile sed, simply issue a make command:

$ make
make all-recursive
make[1]: Entering directory `/home/micah/working/sed-4.1.2’
Making all in intl
make[2]: Entering directory `/home/micah/working/sed-4.1.2/intl’

This will continue to compile sed, which shouldn’t take too long. On my system the configuration took
longer than the compile. If this succeeds, you can install the newly compiled sed simply by issuing the
make install command as root:

$ su
Password:
make install

Sed will be put in the default locations in your file system. By default, make install installs all the
files in /usr/local/bin, /usr/local/lib, and so on. You can specify an installation prefix other than
/usr/local using --prefix when running configure; for instance, sh ./configure --prefix=$HOME
will make sed so that it will install in your home directory.

How sed Works
Because sed is a stream editor, it does its work on a stream of data it receives from stdin, such as through a
pipe, writing its results as a stream of data on stdout (often just your screen). You can redirect this output

Warning! Be very careful that you do not overwrite your system-supplied sed, if it
exists. Some underlying systems may depend on that version, and replacing it with
something other than what the vendor supplied could result in unexpected behav-
ior. Installing into /usr/local or into your personal home directory is perfectly safe.

193

Processing Text with sed

09_583204 ch06.qxd 3/18/05 9:25 PM Page 193

to a file if that is what you want to do (see Chapter 8 for details on redirecting). Sed doesn’t typically mod-
ify an original input file; instead you send the contents of your file through a pipe to be processed by sed.
This means that you don’t need to have a file on the disk with the data you want changed; this is particu-
larly useful if you have data coming from another process rather than already written in a file.

Invoking sed
Before you get started with some of the examples that follow, you will need some data to work with.
The /etc/passwd file, available on all Unix derivatives, contains some useful data to parse with sed.
Everyone will have a slightly different /etc/passwd file, so your results may vary slightly. The output
that is shown in the following examples and exercises will be based on the following lines from my
/etc/passwd file; you can copy this and save it or download it from the Wrox web site.

If for some reason your system’s version of /etc/passwd produces unrecognizably different output from the
examples, try using this version instead. If you use this version instead of the file on your system, you will
need to change the path in each example from /etc/passwd to the specific location where you put this file.

root:x:0:0:root user:/root:/bin/sh
daemon:x:1:1:daemon:/usr/sbin:/bin/sh
bin:x:2:2:bin:/bin:/bin/sh
sys:x:3:3:sys:/dev:/bin/sh
sync:x:4:65534:sync:/bin:/bin/sync
games:x:5:60:games:/usr/games:/bin/sh
man:x:6:12:man:/var/cache/man:/bin/sh
mail:x:8:8:mail:/var/mail:/bin/sh
news:x:9:9:news:/var/spool/news:/bin/sh
backup:x:34:34:backup:/var/backups:/bin/sh

As mentioned previously, sed can be invoked by sending data through a pipe to it. Take a look at how
this works by piping your password file through sed using the following command. You should see out-
put similar to that shown here, which lists the command usage description for sed:

$ cat /etc/passwd | sed
Usage: sed [OPTION]... {script-only-if-no-other-script} [input-file]...

-n, --quiet, --silent
suppress automatic printing of pattern space

-e script, --expression=script
add the script to the commands to be executed

-f script-file, --file=script-file
add the contents of script-file to the commands to be executed

-i[SUFFIX], --in-place[=SUFFIX]
edit files in place (makes backup if extension supplied)

-l N, --line-length=N
specify the desired line-wrap length for the `l’ command

--posix
disable all GNU extensions.

-r, --regexp-extended
use extended regular expressions in the script.

-s, --separate
consider files as separate rather than as a single continuous
long stream.

194

Chapter 6

09_583204 ch06.qxd 3/18/05 9:25 PM Page 194

-u, --unbuffered
load minimal amounts of data from the input files and flush
the output buffers more often

--help display this help and exit
--version output version information and exit

If no -e, --expression, -f, or --file option is given, then the first
non-option argument is taken as the sed script to interpret. All
remaining arguments are names of input files; if no input files are
specified, then the standard input is read.

E-mail bug reports to: bonzini@gnu.org .
Be sure to include the word ``sed’’ somewhere in the ``Subject:’’ field.

Many of the different sed options you see here are covered later in this chapter. The important thing to
note right now is that because you did not tell sed what to do with the data you sent to it, sed felt that
you needed to be reminded about how to use it.

This command dumps the contents of /etc/passwd to sed through the pipe into sed’s pattern space.
The pattern space is the internal work buffer that sed uses to do its work, like a workbench where you lay
out what you are going to work on.

Simply putting something on a workbench doesn’t do anything at all; you need to know what you are
going to do with it. Similarly, dumping data into sed’s pattern space doesn’t do anything at all; you need
to tell sed to do something with it. Sed expects to always do something with its pattern space, and if you
don’t tell it what to do, it considers that an invocation error. Because you incorrectly invoked sed in this
example, you found that it spit out to your screen its command usage.

Editing Commands
Sed expects you to provide an editing command. An editing command is what you want sed to do to
the data in the pattern space. The following Try It Out example uses the delete-line editing command,
known to sed as d. This command will delete each line in the pattern buffer.

Try It Out Deleting All Lines with sed
Invoke sed again, but this time tell sed to use the editing command delete line, denoted by the single
letter d:

$ cat /etc/passwd | sed ‘d’
$

How It Works
Because sed was invoked properly this time with an editing command, it didn’t give the command
usage. In fact, it didn’t print anything at all. What did happen? This command sent the entire contents of
the /etc/passwd file through the pipe to sed. Sed took the first line of /etc/passwd and read it into its
pattern buffer. It then performed the delete line editing command on the contents of its pattern buffer
and then printed out the pattern buffer. Because the editing command deleted the line in the pattern
buffer, the pattern buffer was empty, so when sed printed the pattern buffer, nothing was printed. Sed

195

Processing Text with sed

09_583204 ch06.qxd 3/18/05 9:25 PM Page 195

then read the next line of the /etc/password file and repeated this process until it reached the end of
the file. Sed effectively read in each line to the pattern buffer, deleted the line in the buffer, and then
printed the empty buffer. This results in printing nothing over and over, not even a new line, so it
appears as if nothing happens at all, but internally there is work happening.

Keep in mind that the original /etc/passwd file was not altered at all. Sed only read the contents of the
file as input; you did not tell it to write to the file, only read from it. The results of the editing commands
on each line are printed to standard output. In this case, nothing was printed to the screen because you
used the d editing command to delete every line in the file.

Another important aspect of sed to learn from this example is that it operates line by line. The editing
command was not applied to the entire file all at once. Whatever editing command you tell sed to per-
form will be done to each line in the pattern buffer, in the order that the lines are placed into the buffer.

The editing command was surrounded with single quotes. This was not absolutely necessary, but it is a
good habit to get into. This same example could be written without the single quotes and the same out-
put would result (in this case nothing). The singles quotes are useful to explicitly delineate your editing
command. Without the single quote, some instances of editing commands might be incorrectly parsed
and expanded by the shell. Without the single quotes, the shell may try to change your editing com-
mand unexpectedly to something other than you intended, so it’s a good habit to add them routinely.

This example piped the contents of the file /etc/passwd to sed. This is a perfectly valid way of using
sed, taking input from standard input and sending the output to standard output. However, the next set
of examples shows a few different ways that sed can be invoked, to the same effect.

Invoking sed with the -e Flag
Instead of invoking sed by sending a file to it through a pipe, you can instruct sed to read the data from
a file, as in the following example.

Try It Out Reading Data from a File
The following command does exactly the same thing as the previous Try It Out, without the cat command:

$ sed -e ‘d’ /etc/passwd
$

How It Works
Invoking sed in this manner explicitly defines the editing command as a sed script to be executed on the
input file /etc/passwd. The script is simply a one-character editing command, but it could be much
larger, as you’ll see in later examples. In this case, input is taken from the file /etc/passwd, and stan-
dard output is the screen.

Output from sed is to standard output, which is generally the screen, but you can change this by redi-
recting the output to a file, using standard output redirection in the shell. Although it is useful to see

196

Chapter 6

09_583204 ch06.qxd 3/18/05 9:25 PM Page 196

the output of your sed commands on the screen, often you will want to save the output to a file, rather
than simply viewing the results. Because the results of your sed commands are sent to standard output,
you simply need to use your shell’s I/O redirection capabilities to send standard output to a file. To do
this, you use the redirection operator > to place the output into a file, as in the next Try It Out.

Chapter 8 covers redirection of standard output.

Try It Out Redirection
The following example redirects the standard output from the sed command into the file called new-
passwd in the /tmp directory:

$ sed -e ‘d’ /etc/passwd > /tmp/newpasswd
$

How It Works
Because this command deletes all the lines in the file, this results in an empty file.

Typically, what you will do with sed is to redirect your output to a new file. If everything is fine, then
you can replace the old file with your new one. GNU sed has an option that allows you to perform your
sed operations in-line on the file itself; however, this is dangerous and should be used with care.

The -n, - -quiet, and - -silent Flags
As you saw in the preceding examples, sed by default prints out the pattern space at the end of process-
ing its editing commands and then repeats that process.

The -n flag disables this automatic printing so that sed will instead print lines only when it is explicitly
told to do so with the p command.

The p command simply means to print the pattern space. If sed prints out the pattern space by default,
why would you want to specify it? The p command is generally used only in conjunction with the -n
flag; otherwise, you will end up printing the pattern space twice, as demonstrated in the following Try
It Out.

Be careful not to redirect the standard out from your sed commands to the original
file, or you will cause problems. You may want to actually replace the original file
with the results of your sed command, but do not use this command to do so,
because the >redirection operator will overwrite the file before adding the results of
your sed command. It is important to make sure your sed commands will produce
the results you want before you overwrite your original file!

197

Processing Text with sed

09_583204 ch06.qxd 3/18/05 9:25 PM Page 197

Try It Out Extra Printing
Type the following command to see what sed will output when you specify the p command without
the -n flag:

$ cat /etc/passwd | sed ‘p’ | head -10
root:x:0:0:root user:/root:/bin/sh
root:x:0:0:root user:/root:/bin/sh
daemon:x:1:1:daemon:/usr/sbin:/bin/sh
daemon:x:1:1:daemon:/usr/sbin:/bin/sh
bin:x:2:2:bin:/bin:/bin/sh
bin:x:2:2:bin:/bin:/bin/sh
sys:x:3:3:sys:/dev:/bin/sh
sys:x:3:3:sys:/dev:/bin/sh
sync:x:4:65534:sync:/bin:/bin/sync
sync:x:4:65534:sync:/bin:/bin/sync
games:x:5:60:games:/usr/games:/bin/sh
games:x:5:60:games:/usr/games:/bin/sh
man:x:6:12:man:/var/cache/man:/bin/sh
man:x:6:12:man:/var/cache/man:/bin/sh
mail:x:8:8:mail:/var/mail:/bin/sh
mail:x:8:8:mail:/var/mail:/bin/sh
news:x:9:9:news:/var/spool/news:/bin/sh
news:x:9:9:news:/var/spool/news:/bin/sh
backup:x:34:34:backup:/var/backups:/bin/sh
backup:x:34:34:backup:/var/backups:/bin/sh

Type the same command, this time specifying the -n flag:

$ cat /etc/passwd | sed -n ‘p’ | head -10
root:x:0:0:root user:/root:/bin/sh
daemon:x:1:1:daemon:/usr/sbin:/bin/sh
bin:x:2:2:bin:/bin:/bin/sh
sys:x:3:3:sys:/dev:/bin/sh
sync:x:4:65534:sync:/bin:/bin/sync
games:x:5:60:games:/usr/games:/bin/sh
man:x:6:12:man:/var/cache/man:/bin/sh
lp:x:7:7:lp:/var/spool/lpd:/bin/sh
mail:x:8:8:mail:/var/mail:/bin/sh
news:x:9:9:news:/var/spool/news:/bin/sh
backup:x:34:34:backup:/var/backups:/bin/sh

How It Works
As you can see in the output from the first command, if you specify the p editing command without the
-n flag, duplicate lines are printed. In the second example, however, there are no duplicate lines printed
because sed was instructed to be silent and print only the lines you specified (in this case, all of them).

The -n flag has a couple of synonyms; if you find it easier to remember --quiet or --silent, these
flags do the same thing.

198

Chapter 6

09_583204 ch06.qxd 3/18/05 9:25 PM Page 198

These are the basic methods for invoking sed. Knowing these will allow you to move forward and use
sed in a more practical way. When you are more familiar with some of sed’s editing capabilities, you’ll
be ready for the more advanced methods covered in the Advanced sed Invocation section of this chapter.

sed Errors
It is easy to incorrectly specify your sed editing commands, as the syntax requires attention to detail.
If you miss one character, you can produce vastly different results than expected or find yourself faced
with a rather cryptic error message.

Sed is not friendly with its error messages, and unfortunately, different versions of sed have different
cryptic errors for the same problems. GNU sed tends to be more helpful in indicating what was missing,
but it is often very difficult for sed to identify the source of the error, and so it may spit out something
that doesn’t help much in fixing the problem. I explained in the previous section how GNU sed will out-
put its command usage if you incorrectly invoke it, and you may get other strange errors as well.

Selecting Lines to Operate On
Sed also understands something called addresses. Addresses are either particular locations in a file or
a range where a particular editing command should be applied. When sed encounters no addresses, it
performs its operations on every line in the file.

The following command adds a basic address to the sed command you’ve been using:

$ cat /etc/passwd | sed ‘1d’ |more
daemon:x:1:1:daemon:/usr/sbin:/bin/sh
bin:x:2:2:bin:/bin:/bin/sh
sys:x:3:3:sys:/dev:/bin/sh
sync:x:4:65534:sync:/bin:/bin/sync
games:x:5:60:games:/usr/games:/bin/sh
man:x:6:12:man:/var/cache/man:/bin/sh
mail:x:8:8:mail:/var/mail:/bin/sh
news:x:9:9:news:/var/spool/news:/bin/sh
backup:x:34:34:backup:/var/backups:/bin/sh

Notice that the number 1 is added before the delete edit command. This tells sed to perform the edit-
ing command on the first line of the file. In this example, sed will delete the first line of /etc/password
and print the rest of the file. Because your /etc/passwd file may have so many lines in it that the top of
the file scrolls by, you can send the result to the pager more. Notice that the following line is missing
from the output:

root:x:0:0:root user:/root:/bin/sh

Most Unix systems have the root user as the first entry in the password file, but after performing this
command you will see the entire password file, with the root user line missing from the top. If you
replaced the number 1 with a 2, only the second line is removed.

199

Processing Text with sed

09_583204 ch06.qxd 3/18/05 9:25 PM Page 199

Address Ranges
So what if you want to remove more than one line from a file? Do you have to tell sed every single line
you want to remove? Fortunately not; you can specify a range of lines that you want to be removed by
telling sed a starting line and an ending line to perform your editing commands on, as in the following
Try It Out.

Try It Out Address Ranges
Type the following command to see how an address range works with sed:

$ cat /etc/passwd | sed ‘1,5d’
games:x:5:60:games:/usr/games:/bin/sh
man:x:6:12:man:/var/cache/man:/bin/sh
mail:x:8:8:mail:/var/mail:/bin/sh
news:x:9:9:news:/var/spool/news:/bin/sh
backup:x:34:34:backup:/var/backups:/bin/sh

How It Works
When you specify two numbers, separated by commas, sed performs the editing command specified on
the range that starts with the first number and ends with the second. This example will delete the first
five lines of the file.

You do not need to start deleting from the first line of the file but can set an address range for any range
within the file, as long as it is in chronological order. 4,10d will delete the range 4-10, for example.

What happens if you specify a reverse chronological order range?

Try It Out Reverse Address Ranges
Try specifying the address range ‘10,4d’ to see what happens:

$ cat /etc/passwd | sed ‘10,4d’
root:x:0:0:root user:/root:/bin/sh
daemon:x:1:1:daemon:/usr/sbin:/bin/sh
bin:x:2:2:bin:/bin:/bin/sh
sys:x:3:3:sys:/dev:/bin/sh
sync:x:4:65534:sync:/bin:/bin/sync
games:x:5:60:games:/usr/games:/bin/sh
man:x:6:12:man:/var/cache/man:/bin/sh
mail:x:8:8:mail:/var/mail:/bin/sh
news:x:9:9:news:/var/spool/news:/bin/sh

How It Works
In this example, sed reads in each line individually, in order, and applies the editing command to it.
Because you’ve told it to start deleting from line 10, it reads in each line into the pattern buffer until it
has counted up to 10, and then it deletes that line. Sed then looks for the range 9-4 to delete, but it won’t
see those lines after it has reached line 10. Sed does not back up in its processing to look for those lines,
so line 10 is deleted, but nothing else.

200

Chapter 6

09_583204 ch06.qxd 3/18/05 9:25 PM Page 200

Now that you have a better understanding of how sed applies its commands to its pattern buffer, what
do you think sed does if you specify a line number or range that doesn’t exist in the file? Sed dutifully
looks for the lines that you specify to apply its command, but it never finds them, so you get the entire
file printed out with nothing omitted.

If you forget to complete your address range, you receive an error from sed. The cryptic nature of sed’s
errors means that sed will tell you something is wrong, but not in a helpful way. For example, if you for-
got the number after the comma, sed won’t understand that you were trying to specify an address range
and will complain about the comma:

$ cat /etc/passwd | sed ‘1,d’
sed: -e expression #1, char 3: unexpected `,’

If you forgot the number before the comma in your address range, sed thinks that you are trying to spec-
ify the comma as an editing command and tells you that there is no such command:

$ cat /etc/passwd | sed ‘,10d’
sed: -e expression #1, char 1: unknown command: `,’

You can also instruct sed to match an address line and certain numbers following that first match.

Suppose you want to match line 4 and the five lines following line 4. You do this by appending a plus
sign before the second address number, as in the following command:

$ cat /etc/passwd | sed ‘4,+5d’
root:x:0:0:root:/root:/bin/sh
daemon:x:1:1:daemon:/usr/sbin:/bin/sh
bin:x:2:2:bin:/bin:/bin/sh
backup:x:34:34:backup:/var/backups:/bin/sh

This will match line 4 in the file, delete that line, continue to delete the next five lines, and then cease its
deletion and print the rest.

Address Negation
By appending an exclamation mark at the end of any address specification, you negate that address
match. To negate an address match means to match only those lines that do not match the address range.

Try It Out Address Negation
Beginning with the previous example where you specified deleting the first five lines of the /etc/passwd
file, you can simply negate that match to say that you want to keep the first ten lines and delete the rest.
Type the following command to try this:

$ cat /etc/passwd | sed ‘1,5!d’
root:x:0:0:root user:/root:/bin/sh
daemon:x:1:1:daemon:/usr/sbin:/bin/sh
bin:x:2:2:bin:/bin:/bin/sh
sys:x:3:3:sys:/dev:/bin/sh
sync:x:4:65534:sync:/bin:/bin/sync

201

Processing Text with sed

09_583204 ch06.qxd 3/18/05 9:25 PM Page 201

How It Works
Appending the exclamation mark to the address range 1,5 told sed to match everything except the first
five lines and perform the deletion. Address negation also works for single-line addresses.

Address Steps
GNU sed has a feature called address steps that allows you to do things such as selecting every odd line,
every third line, every fifth line, and so on.

Address steps are specified in the same way that you specify a delete range, except instead of using a
comma to separate the numbers, you use a tilde (~). The number before the tilde is the number that you
want the stepping to begin from. If you want to start stepping from the beginning of the file, you use the
number 1. The number that follows the tilde is what is called the step increment. The step increment tells
sed how many lines to step. The following Try It Outs provide examples of address steps.

Try It Out Address Stepping
Suppose that you want to delete every third line in your file, beginning with the first line. Run the fol-
lowing command to use an address step to accomplish this:

$ cat /etc/passwd | sed ‘1~3d’
daemon:x:1:1:daemon:/usr/sbin:/bin/sh
bin:x:2:2:bin:/bin:/bin/sh
sync:x:4:65534:sync:/bin:/bin/sync
games:x:5:60:games:/usr/games:/bin/sh
mail:x:8:8:mail:/var/mail:/bin/sh
news:x:9:9:news:/var/spool/news:/bin/sh

How It Works
This deletes the first line, steps over the next three lines, and then deletes the fourth line. Sed continues
applying this pattern until the end of the file.

Try It Out More Address Stepping
If you want to start deleting every other line, starting with the second line, you can do so as follows:

$ cat /etc/passwd | sed ‘2~2d’
root:x:0:0:root user:/root:/bin/sh
bin:x:2:2:bin:/bin:/bin/sh
sync:x:4:65534:sync:/bin:/bin/sync
man:x:6:12:man:/var/cache/man:/bin/sh
news:x:9:9:news:/var/spool/news:/bin/sh

How It Works
This tells sed to delete the second line, step over the next line, delete the next line, and repeat until the
end of the file is reached.

202

Chapter 6

09_583204 ch06.qxd 3/18/05 9:25 PM Page 202

Substitution
This section introduces you to one of the more useful editing commands available in sed, the substitu-
tion command. This command is probably the most important command in sed and has a lot of options.

The substitution command, denoted by s, will substitute any string that you specify with any other
string that you specify. To substitute one string with another, you need to have some way of telling sed
where your first string ends and the substitution string begins. This is traditionally done by bookending
the two strings with the forward slash (/) character.

Try It Out Substitution
Type the following command to perform a basic literal string substitution, replacing the login name
root with the reverse:

$ cat /etc/passwd | sed ‘s/root/toor/’
toor:x:0:0:root user:/root:/bin/sh
daemon:x:1:1:daemon:/usr/sbin:/bin/sh
bin:x:2:2:bin:/bin:/bin/sh
sys:x:3:3:sys:/dev:/bin/sh
sync:x:4:65534:sync:/bin:/bin/sync
games:x:5:60:games:/usr/games:/bin/sh
man:x:6:12:man:/var/cache/man:/bin/sh
mail:x:8:8:mail:/var/mail:/bin/sh
news:x:9:9:news:/var/spool/news:/bin/sh
backup:x:34:34:backup:/var/backups:/bin/sh

How It Works
This command substitutes the first occurrence on a line of the string root with the string toor. (Notice
that this line uses the s editing command and not d.)

If you forget to specify the trailing slash to the sed command, you will get an error. GNU sed will tell
you that there is an unterminated s command; other sed implementations will just say that your com-
mand is garbled:

$ cat /etc/passwd | sed ‘s/root/toor’
sed: command garbled: s/root/toor

It is very important to note that sed substitutes only the first occurrence on a line. If the string root occurs
more than once on a line (which it does in the example file), only the first match will be replaced. Usually
you want to replace every string in the file with the new one instead of just the first occurrence. To do
this, you must tell sed to make the substitution globally, replacing every occurrence of the string on
every line of the file. To tell sed to do a global substitution, add the letter g to the end of the command:

$ cat /etc/passwd | sed ‘s/root/toor/g’
toor:x:0:0:toor user:/toor:/bin/sh
daemon:x:1:1:daemon:/usr/sbin:/bin/sh
bin:x:2:2:bin:/bin:/bin/sh
sys:x:3:3:sys:/dev:/bin/sh
sync:x:4:65534:sync:/bin:/bin/sync

203

Processing Text with sed

09_583204 ch06.qxd 3/18/05 9:25 PM Page 203

games:x:5:60:games:/usr/games:/bin/sh
man:x:6:12:man:/var/cache/man:/bin/sh
mail:x:8:8:mail:/var/mail:/bin/sh
news:x:9:9:news:/var/spool/news:/bin/sh
backup:x:34:34:backup:/var/backups:/bin/sh

Appending the g at the end of the substitution is passing a flag to the substitution command. The follow-
ing section covers other substitution flags.

Substitution Flags
There are a number of other useful flags that can be passed in addition to the g flag, and you can specify
more than one at a time.

The following is a full table of all the flags that can be used with the s substitution command.

Flag Meaning

g Replace all matches, not just the first match.

NUMBER Replace only NUMBERth match.

p If substitution was made, print pattern space.

w FILENAME If substitution was made, write result to FILENAME. GNU sed
additionally allows writing to /dev/stderr and /dev/stdout.

I or i Match in a case-insensitive manner.

M or m In addition to the normal behavior of the special regular
expression characters ^ and $, this flag causes ^ to match the
empty string after a newline and $ to match the empty string
before a newline.

A useful flag to pass to a substitution command is i or its capital incarnation, I. Both indicate to sed to
be case insensitive and match either the uppercase or lowercase of the characters you specify. If the
/etc/passwd file had both the strings Root and root, the previous sed operation would match only the
lowercase version. To get both throughout the entire file, you specify both the i flag and the g flag, as in
the following example. Type the following sed substitution command:

$ cat /etc/passwd | sed ‘s/Root/toor/ig’
toor:x:0:0:toor user:/toor:/bin/sh
daemon:x:1:1:daemon:/usr/sbin:/bin/sh
bin:x:2:2:bin:/bin:/bin/sh
sys:x:3:3:sys:/dev:/bin/sh
sync:x:4:65534:sync:/bin:/bin/sync
games:x:5:60:games:/usr/games:/bin/sh
man:x:6:12:man:/var/cache/man:/bin/sh
mail:x:8:8:mail:/var/mail:/bin/sh
news:x:9:9:news:/var/spool/news:/bin/sh
backup:x:34:34:backup:/var/backups:/bin/sh

204

Chapter 6

09_583204 ch06.qxd 3/18/05 9:25 PM Page 204

If you specify any number as a flag (NUMBER flag), this tells sed to act on the instance of the string that
matched that number. The /etc/passwd file has three instances of the string root in the first line, so if
you want to replace only the third match on, add the number 3 at the end of the substitution delimiter,
as in the following:

$ cat /etc/passwd | sed ‘s/root/toor/3’ |head -2
root:x:0:0:root user:/toor:/bin/sh
daemon:x:1:1:daemon:/usr/sbin:/bin/sh

With this command, sed searches for the third instance of the string root in the file /etc/passwd and
substitutes the string toor. (I piped the output through the Unix command head with the flag -2 to
limit the output to the first two lines for brevity.)

The POSIX standard doesn’t specify what should happen when the NUMBER flag is specified with the
g flag, and there is no wide agreement on how this should be interpreted amongst the different sed
implementations. The GNU implementation of sed ignores the matches before the NUMBER and then
matches and replaces all matches from that NUMBER on.

Using an Alternative String Separator
You may find yourself having to do a substitution on a string that includes the forward slash character.
In this case, you can specify a different separator by providing the designated character after the s.
Suppose you want to change the home directory of the root user in the passwd file. It is currently set to
/root, and you want to change it to /toor. To do this, you specify a different separator to sed. I use a
colon (:) in this example:

$ cat /etc/passwd | sed ‘s:/root:/toor:’ | head -2
root:x:0:0:root user:/toor:/bin/sh
daemon:x:1:1:daemon:/usr/sbin:/bin/sh

Notice this is exactly like doing string substitution with the slash character as a separator; the first
string to look for is /root; the replacement is /toor.

It is possible to use the string separator character in your string, but sed can get ugly quickly, so you
should try to avoid it by using a different string separator if possible. If you find yourself in the situation
where you do need to use the string separator, you can do so by escaping the character. To escape a char-
acter means to put a special character in front of the string separator to indicate that it should be used as
part of the string, rather than the separator itself. In sed you escape the string separator by putting a
backslash before it, like so:

$ cat /etc/passwd | sed ‘s/\/root/\/toor/’ | head -2
root:x:0:0:root user:/toor:/bin/sh
daemon:x:1:1:daemon:/usr/sbin:/bin/sh

This performs the exact search and replace as the example before, this time using the slash as a string
separator, escaping the slash that appears in the string /root so it is interpreted properly. If you do not
escape this slash, you will have an error in your command, because there will be too many slashes pre-
sented to sed and it will spit out an error. The error will vary depending on where in the process sed
encounters it, but it will be another example of sed’s rather cryptic errors:

205

Processing Text with sed

09_583204 ch06.qxd 3/18/05 9:25 PM Page 205

sed: -e expression #1, char 10: unknown option to `s’

You can use any separator that you want, but by convention people use the slash separator until they
need to use something else, as in this case.

String substitution is not limited to single words. The string you specify is limited only by the string sep-
arator that you use, so it is possible to substitute a whole phrase, if you like. The following command
replaces the string root user with absolutely power corrupts:

$ cat /etc/passwd | sed ‘s/:root user/:absolutely power corrupts/g’ |head -2
root:x:0:0:absolutely power corrupts:/root:/bin/sh
daemon:x:1:1:daemon:/usr/sbin:/bin/sh

It is often useful to replace strings of text with nothing. This is a funny way of saying deleting words or
phrases. For example, to remove a word you simply replace it with an empty string, as in the following
Try It Out.

Try It Out Replacing with Empty Space
Use an empty substitution string to delete the root string from the /etc/passwd file entirely:

$ cat /etc/passwd | sed ‘s/root//g’ | head -2
:x:0:0::/:/bin/sh
daemon:x:1:1:daemon:/usr/sbin:/bin/sh

How It Works
The ‘s/root//g’ tells sed to replace all instances of root with the empty replacement string that fol-
lows the separator.

The same goes for strings with spaces in them. If you want to remove the root user string, you can
replace it with an empty string:

$ cat /etc/passwd | sed ‘/root user//g’ | head -2
root:x:0:0::/root:/bin/sh
daemon:x:1:1:daemon:/usr/sbin:/bin/sh

Address Substitution
As with deletion, it is possible to perform substitution only on specific lines or on a specific range of
lines if you specify an address or an address range to the command.

If you want to substitute the string sh with the string quiet only on line 10, you can specify it as follows:

$ cat /etc/passwd | sed ‘10s/sh/quiet/g’
root:x:0:0:root user:/root:/bin/sh
daemon:x:1:1:daemon:/usr/sbin:/bin/sh
bin:x:2:2:bin:/bin:/bin/sh

206

Chapter 6

09_583204 ch06.qxd 3/18/05 9:25 PM Page 206

sys:x:3:3:sys:/dev:/bin/sh
sync:x:4:65534:sync:/bin:/bin/sync
games:x:5:60:games:/usr/games:/bin/sh
man:x:6:12:man:/var/cache/man:/bin/sh
mail:x:8:8:mail:/var/mail:/bin/sh
news:x:9:9:news:/var/spool/news:/bin/sh
backup:x:34:34:backup:/var/backups:/bin/quiet

This is just like the line-specific delete command, but you are performing a substitution instead of a dele-
tion. As you can see from the output of this command, the substitution replaces the sh string with quiet
only on line 10.

Similarly, to do an address range substitution, you could do something like the following:

$ cat /etc/passwd | sed ‘1,5s/sh/quiet/g’
root:x:0:0:root user:/root:/bin/quiet
daemon:x:1:1:daemon:/usr/sbin:/bin/quiet
bin:x:2:2:bin:/bin:/bin/quiet
sys:x:3:3:sys:/dev:/bin/quiet
sync:x:4:65534:sync:/bin:/bin/sync
games:x:5:60:games:/usr/games:/bin/sh
man:x:6:12:man:/var/cache/man:/bin/sh
mail:x:8:8:mail:/var/mail:/bin/sh
news:x:9:9:news:/var/spool/news:/bin/sh
backup:x:34:34:backup:/var/backups:/bin/sh

As you can see from the output, the first five lines had the string sh changed to quiet, but the rest of the
lines were left untouched.

Advanced sed Invocation
You often want to make more than one substitution or deletion or do more complex editing using sed. To
use sed most productively requires knowing how to invoke sed with more than one editing command at
a time.

You can specify multiple editing commands on the command line in three different ways, explained in
the following Try It Out. The editing commands are concatenated and are executed in the order that they
appear. You must specify the commands in appropriate order, or your script will produce unexpected
results.

Try It Out Advanced sed Invocation
This Try It Out shows you three ways to use multiple commands to produce the same output. Create a
simple text file called stream.txt, using your favorite editor, and put the following lines in it:

Imagine a quaint bubbling stream of cool mountain water filled with rainbow trout
and elephants drinking iced tea.

207

Processing Text with sed

09_583204 ch06.qxd 3/18/05 9:25 PM Page 207

The first way to specify multiple editing commands on the command line is to separate each editing
command with a semicolon. To replace the trout with catfish and remove the elephants, try the follow-
ing command, using semicolons to separate editing commands:

$ cat stream.txt | sed ‘s/trout/catfish/; s/ and elephants//’

The second way to specify multiple editing commands on the command line is to specify multiple -e
arguments. Try the following command on the stream.txt file:

$ cat stream.txt | sed -e ‘s/trout/catfish/’ -e ‘s/ and elephants//’

The third way to specify multiple editing commands on the command line is to use the multiline capa-
bility of the Bash shell. Bash knows when you have not terminated a single quote and prompts you for
more input until you enter the completing single quote.

To do the example in this way, try typing the following in a Bash shell. After the first single quote, press
Enter (Return) as follows:

$ cat stream.txt | sed ‘
> s/trout/catfish/
> s/ and elephants//’

How It Works
Each of the three examples in this Try It Out results in the following text:

Imagine a quaint bubbling stream of cool mountain water filled with rainbow catfish
drinking iced tea.

In the first example, two separate editing commands, separated by semicolons, were specified to one sed
command. The first command performed a substitution of the string trout with the replacement cat-
fish, and then a semicolon was placed after the trailing substitution delimiter. The second editing com-
mand follows immediately afterward; it replaces the string and elephants with an empty string,
effectively deleting that string. The two substitution commands are grouped together, surrounded by the
single quotes. Each editing command supplied is performed on each input line in the order they appear;
this means that the first substitution is performed, and the resulting text is then provided to the next
command for the next substitution. The second command is not run before the first, and the input that
the second line receives is always the processed data from the first command. The data progresses in a
sequential manner through all the supplied editing commands until it reaches the end.

The second example contains two -e arguments, each individual editing command paired with its own
-e flag. Each editing command passed on the command line is performed sequentially on each input
line, in the same manner as it is done in the first example.

You can invoke sed using both the semicolon-separated method of the first example and the multiple -e
argument of the second example together, as many times as you require. Sed simply concatenates all the
commands and script files together in the order they appear. So the first command or commands speci-
fied will be executed first, followed by the next, until there are no more commands to execute. The third
example, using the multiline capability, results in the exact same output as the previous two examples. It
is simply a different way of invoking sed. Korn, Bourne, and zsh all perform in this manner; however,
the C shell does not work this way.

208

Chapter 6

09_583204 ch06.qxd 3/18/05 9:25 PM Page 208

These three methods are ways to invoke sed by specifying editing commands on the command line. The
other method of invoking sed is to specify a file that contains all the commands that you want sed to
run. This is useful when your commands become cumbersome on the command line or if you want to
save the commands for use in the future. If you make a mistake on the command line, it can be confus-
ing to try to fix that mistake, but if your commands are specified in a file you can simply re-edit that file
to fix your mistake.

To specify the file containing the editing commands you want sed to perform, you simply pass the -f flag
followed immediately by the file name containing the editing commands, as in the following Try It Out.

Try It Out sed Scripts
Create a text file called water.sed with your favorite editor. Place the following text in the file, and then
save and exit your editor:

s/trout/catfish/
s/ and elephants//

As you can see, this file consists of two editing commands and nothing else.

Using the stream.txt file from the previous examples, execute the following command:

$ sed -f water.sed stream.txt
Imagine a quaint bubbling stream of cool mountain water filled with rainbow catfish
drinking iced tea.

How It Works
This executes the commands you saved in the file water.sed on the stream.txt file. The water.sed
file simply contains the editing commands in the order that they should be executed. This produces the
same results as the three preceding examples.

As your sed scripts become more complicated, you will find it more and more useful to put them into
files and execute them this way.

The comment Command
As in most programming languages, it’s useful to include comments in your script to remember what
different parts do or to provide information for others who might be trying to decipher your script. To
add a comment in a sed script, you do what you do in other shell scripting environments: precede the
line with the # character. The comment then continues until the next newline.

There are two caveats with the comment command: the first is that comments are not portable to non-
POSIX versions of sed. If someone is running a version of sed that is not POSIX-conformant, their sed
may not like comments anywhere in your sed script except on the very first line.

The second caveat with the comment command is that if the first two characters of your sed script are
#n, the -n (no auto-print) option is automatically enabled. If you find yourself in the situation where

209

Processing Text with sed

09_583204 ch06.qxd 3/18/05 9:25 PM Page 209

your comment on the first line should start with the n character, simply use a capital N or place a space
between the # and the n:

Not going to enable -n

#Not going to enable -n

#no doubt, this will enable -n

The insert, append, and change Commands
The insert and append commands are almost as harmless as the comment command. Both of these com-
mands simply output the text you provide. Insert (i) outputs the text immediately, before the next
command, and append (a) outputs the text immediately afterward.

A classic example that illustrates these commands is converting a standard text file into an HTML file.
HTML files have a few tags at the beginning of the files, followed by the body text and then the closing
tags at the end. Using i and a, you can create a simple sed script that will add the opening and closing
tags to any text file.

Try It Out Inserting and Appending
Place the following sed program into a file called txt2html.sed:

#! /bin/sed -f

1 i\
<html>\
<head><title>Converted with sed</title></head>\
<body bgcolor=”#ffffff”>\
<pre>\

$ a\
</pre>\
</body>\
</html>

Now take a text file (such as stream.txt) and run it through this sed script:

$ cat stream.txt | sed -f txt2html.sed
<html>
<head><title>Converted with sed</title></head>
<body bgcolor=”#ffffff”>
<pre>

Imagine a quaint bubbling stream of cool mountain water filled with rainbow trout
and elephants drinking iced tea.
</pre>
</body>
</html>

210

Chapter 6

09_583204 ch06.qxd 3/18/05 9:25 PM Page 210

How It Works
You will see that sed inserted, starting at line 1, the four opening HTML tags that indicate that the file is
HTML, and set the <title> and the background color. Then your text file is printed, and at the end of
your file (denoted by the $), sed appended the closing HTML tags.

The insert and append commands add information only. On the other hand, the change (c) command
replaces the current line in the pattern space with the text that you specify. The only difference between
the substitute command (s) and the change command (c) is that substitute works on a character-by-
character basis, whereas the change command changes the entire line. It works much like substitute but
with broader strokes; it completely replaces one thing for another regardless of the context.

To illustrate this, change your water.sed script to the following and name it noelephants.sed:

s/trout/catfish/
/ and elephants/ c\Although you can substitute trout with catfish, there is no
substitute for elephants, so we cannot offer this item.

Run this as you did previously in the sed Scripts Try It Out:

$ cat stream.txt | sed -f noelephants.sed
Although you can substitute trout with catfish, there is no substitute for
elephants, so we cannot offer this item.

Although the first substitution was run, changing the trout string to catfish, the change command
replaces the entire line. When substitute was used in the earlier example, you matched the string and
elephants and replaced it with an empty string. In this example, you again matched the string and
elephants but this time used the change command, and instead of substituting, the entire original line
was modified.

Advanced Addressing
Knowing exactly where in your file you want to perform your sed operations is not always possible. It’s
not so easy to know the exact line number or range of numbers you want the command(s) to act upon.
Fortunately, sed allows you to apply your knowledge of regular expressions (regexps) to make your
addressing much more powerful and useful.

In the Selecting Lines to Operate On section, you learned how to specify addresses and address ranges
by specifying a line number or range of line numbers. When addresses are specified in this manner, the
supplied editing command affects only the lines that you explicitly denoted in the address.

The same behavior is found when you use regular expressions in addresses; only those addresses that
match the regular expression will have the editing command applied to them.

211

Processing Text with sed

09_583204 ch06.qxd 3/18/05 9:25 PM Page 211

Regular Expression Addresses
To specify an address with a regular expression, you enclose the regular expression in slashes. The follow-
ing example shows the top of my /etc/syslog.conf file as an example (yours may be slightly different):

/etc/syslog.conf Configuration file for syslogd.
#
For more information see syslog.conf(5)
manpage.

First some standard logfiles. Log by facility.

auth,authpriv.* /var/log/auth.log

As you can see, a number of comments are in the file, followed by a few spaces and then some lines that
are used for syslog. The following Try It Out shows you how to use a simple regular expression to
remove all the comments in this file.

Try It Out Regular Expression Addresses
Take a look at your /etc/syslog.conf file to see the comments and then perform the following com-
mand to remove them with a regular expression:

$ cat /etc/syslog.conf | sed ‘/^#/d’

auth,authpriv.* /var/log/auth.log

Notice how the blank lines are also printed.

How It Works
To understand this command, you need to look at each piece. The first part looks a little bit like a cartoon
character swearing, /^#/. This is the address that you are specifying, and in this case it is a regular
expression address. (You can tell this because the address is surrounded by slashes.) Directly following
the trailing slash is the familiar d editing command that says to delete. The editing command you spec-
ify will be applied only to lines that match the pattern you specify in the regular expression.

The ^ character means to match the beginning of the line. Given that, you can extract this regular expres-
sion address to mean “match the # character if it is at the beginning of the line.” Sed applies the editing
command — in this case, the delete command — to every match it finds.

The result of this command is that every line beginning with the # character is deleted and the rest are
printed out.

A good way to see exactly what a regular expression will actually match is to do things the other way
around. Instead of deleting all the matches, print only the matches, and delete everything else. By using
the -n flag to tell sed to not print anything, unless you explicitly tell it to, combined with the p flag, sed
prints only the matches it finds and deletes all the other lines:

212

Chapter 6

09_583204 ch06.qxd 3/18/05 9:25 PM Page 212

sed -n -e ‘/regexp/p’ /path/to/file

or

cat /path/to/file | sed -n ‘/regexp/p’

Note the p command is specified after the regular expression, rather than the d.

Try It Out Inverted Regular Expression Match
Try the sed regular expression command from the previous Try It Out, this time printing only the
matches and deleting everything else:

$ cat /etc/syslog.conf | sed -n ‘/^#/p’
/etc/syslog.conf Configuration file for syslogd.
#
For more information see syslog.conf(5)
manpage.
#
First some standard logfiles. Log by facility.
#

How It Works
This command prints to your screen all the comments in the /etc/syslog.conf file and nothing else.

The following table lists four special characters that are very useful in regular expressions.

Character Description

^ Matches the beginning of lines

$ Matches the end of lines

. Matches any single character

* Matches zero or more occurrences of the previous character

In the following Try It Out examples, you use a few of these to get a good feel for how regular expressions
work with sed.

Try It Out Regular Expression Example 1
Using a regular expression as an address, try this command. Remember that your output might differ
slightly if your input syslog.conf is different from the example used here:

$ cat /etc/syslog.conf | sed ‘/^$/d’
/etc/syslog.conf Configuration file for syslogd.
#

213

Processing Text with sed

09_583204 ch06.qxd 3/18/05 9:25 PM Page 213

For more information see syslog.conf(5)
manpage.
#
First some standard logfiles. Log by facility.
#
auth,authpriv.* /var/log/auth.log

How It Works
Here, you use two special regular expression characters in your search string. The first special character
is the same as that used in the previous example, the ^ character, which matches the beginning of the
lines. The second character is the $ character, which matches the end of lines.

This combination means that sed looks through /etc/syslog.conf and matches and then deletes those
lines that have nothing between the beginning and end of the line. The result of this sed command is the
removal of all blank lines in the file.

It is important to note that an empty line in a file does not contain a line full of spaces, tabs, or anything
other than a newline.

If you are concerned that your regular expression might match something that you are not expecting,
you can try it with the -n flag and the print command. This tells sed to print all the matches of blank
lines and nothing else:

$ cat /etc/syslog.conf | sed -n ‘/^$/p’

If the only thing printed is blank lines and nothing else (as is shown in the preceding code), then the reg-
ular expression is matching what you expect it to.

Try It Out Regular Expression Example 2
Here’s another example to illustrate the uses of regular expressions with sed. Suppose you want to print
only the lines that begin with the letter a, b, or c. Try this command:

$ cat /etc/syslog.conf | sed -n ‘/^[abc]/p’
auth,authpriv.* /var/log/auth.log

How It Works
This combines the regular expression ^ (match at the beginning of the line) with the regular expression
[abc] to print only those lines that begin with one of those characters. Notice that it does not look for
lines that begin with the string abc but instead looks for any one of those characters.

The square brackets denote a range of characters; you can specify [g-t] to get all lowercase characters
between g and t or specify [3-25] to get all numbers between 3 and 25.

214

Chapter 6

09_583204 ch06.qxd 3/18/05 9:25 PM Page 214

Character Class Keywords
Some special keywords are commonly available to regexps, especially GNU utilities that employ reg-
exps. These are very useful for sed regular expressions as they simplify things and enhance readability.

For example, the characters a through z as well as the characters A through Z constitute one such class of
characters that has the keyword [[:alpha:]], meaning all alphabetic characters. Instead of having to
specify every character in a regular expression, you can simply use this keyword instead, as in the fol-
lowing example.

Using the alphabet character class keyword, this command prints only those lines in the /etc
/syslog.conf file that start with a letter of the alphabet:

$ cat /etc/syslog.conf | sed -n ‘/^[[:alpha:]]/p’
auth,authpriv.* /var/log/auth.log

If you instead delete all the lines that start with alphabetic characters, you can see what doesn’t fall
within the [[:alpha:]] character class keyword:

$ cat /etc/syslog.conf | sed ‘/^[[:alpha:]]/d’
/etc/syslog.conf Configuration file for syslogd.
#
For more information see syslog.conf(5)
manpage.

#
First some standard logfiles. Log by facility.
#

The following table is a complete list of the available character class keywords in GNU sed.

Character Class Keyword Description

[[:alnum:]] Alphanumeric [a-z A-Z 0-9]

[[:alpha:]] Alphabetic [a-z A-Z]

[[:blank:]] Blank characters (spaces or tabs)

[[:cntrl:]] Control characters

[[:digit:]] Numbers [0-9]

[[:graph:]] Any visible characters (excludes whitespace)

[[:lower:]] Lowercase letters [a-z]

[[:print:]] Printable characters (noncontrol characters)

[[:punct:]] Punctuation characters

[[:space:]] Whitespace

[[:upper:]] Uppercase letters [A-Z]

[[:xdigit:]] Hex digits [0-9 a-f A-F]

215

Processing Text with sed

09_583204 ch06.qxd 3/18/05 9:25 PM Page 215

Character classes are very useful and should be used whenever possible. They adapt much better to non-
English character sets, such as accented characters.

Regular Expression Address Ranges
I demonstrated in the Address Ranges section that specifying two line numbers, separated by commas,
is equivalent to specifying a range of lines over which the editing command will be executed.

The same behavior applies with regular expressions. You can specify two regular expressions, separated
by a comma, and sed will match all of the lines from the first line that matches the first regular expres-
sion all the way up to, and including, the line that matches the second regular expression. The following
Try It Out demonstrates this behavior.

Try It Out Regular Expression Address Ranges
Create a file called story.txt containing the following data:

The Elephants and the Rainbow Trout
- a moral story about robot ethics

Once upon a time, in a land far far away,
there was a stream filled with elephants drinking ice tea
while watching rainbow trout swim by.

The end.

No, really, the story is over, you can go now.

Using a simple regular expression address range, you can print specific lines:

$ sed -n -e ‘/Once upon a time/,/The end./p’ somefile.txt
Once upon a time, in a land far far away,
there was a stream filled with elephants drinking ice tea
while watching rainbow trout swim by.

The end.

How It Works
This regular expression range prints all the lines between the two matching regular expressions, includ-
ing those lines. It will not print anything before or after those regular expressions.

If Once upon a time is not found, no data is printed. However, if Once upon a time is found, but not
The end., then all subsequent lines are printed. If you specify an address range to sed, it goes through
the entire file, printing each line, waiting for the second element of the address range. It has no idea
whether The end. will appear in the next line it reads or not. The same concept applies when you spec-
ify address ranges in terms of line numbers. If you specify a line number that does not exist in the file,
sed just prints until it reaches the end of the file, looking for that line number but never finding it. It is
perhaps easier to think of the first address as the address where the action will start and the second
where it will be stopped. Actions are started as soon as the first match is made, and the action continues
on all following lines until the second match stops the action.

216

Chapter 6

09_583204 ch06.qxd 3/18/05 9:25 PM Page 216

Combining Line Addresses with regexps
If you want to use a line address in combination with a regular expression, sed won’t stop you. In fact,
this is an often-used addressing scheme.

Simply specify the line number in the file where you want the action to start working and then use the
regular expression to stop the work.

Try It Out Line Addresses
Try the following line address, mixed with a regular expression address range using a character class
keyword:

$ cat /etc/syslog.conf | sed ‘1,/^$/d’
#
First some standard logfiles. Log by facility.
#

auth,authpriv.* /var/log/auth.log

How It Works
This command starts deleting from the first line in the file and continues to delete up to the first line that
is blank.

Advanced Substitution
Doing substitutions with regular expressions is a powerful technique.

Using address ranges with regular expressions simply required taking what you already knew about
address ranges and using regular expressions in place of simple line numbers. The same one-to-one
mapping works with substitution and regular expressions. You already know that to substitute the
string trout with the string catfish throughout the stream.txt file, you simply do the following:

$ cat stream.txt | sed ‘s/trout/catfish/g’
Imagine a quaint bubbling stream of cool mountain water filled with rainbow catfish
and elephants drinking iced tea.

To do regular expression substitutions, you simply map a regular expression onto the literal strings as
you mapped the regular expression on top of the literal line numbers in the previous section. Suppose
you have a text file with a number of paragraphs separated by blank lines. You can change those blank
lines into HTML <p> markers, using a regular expression substitution command:

sed ‘s/^$/<p>/g’

The first part of the substitution looks for blank lines and replaces them with the HTML <p> paragraph
marker.

217

Processing Text with sed

09_583204 ch06.qxd 3/18/05 9:25 PM Page 217

Add this sed command to the beginning of your txt2html.sed file. Now your HTML converter will
add all the necessary headers, convert any blank lines into <p> markers so that they will be converted
better in your browser, and then append the closing HTML tags.

Referencing Matched regexps with &
Matching by regular expression is useful; however, you sometimes want to reuse what you matched in
the replacement. That’s not hard if you are matching a literal string that you can identify exactly, but
when you use regular expressions you don’t always know exactly what you matched. To be able to reuse
your matched regular expression is very useful when your regular expressions match varies.

The sed metacharacter & represents the contents of the pattern that was matched. For instance, say you
have a file called phonenums.txt full of phone numbers, such as the following:

5555551212
5555551213
5555551214
6665551215
6665551216
7775551217

You want to make the area code (the first three digits) surrounded by parentheses for easier reading. To
do this, you can use the ampersand replacement character, like so:

$ sed -e ‘s/^[[:digit:]][[:digit:]][[:digit:]]/(&)/g’ phonenums.txt
(555)5551212
(555)5551213
(555)5551214
(666)5551215
(666)5551216
(777)5551217

Let’s unpack this; it’s a little dense. The easy part is that you are doing this sed operation on the file pho-
nenums.txt, which contains the numbers listed. You are doing a regular expression substitution, so the first
part of the substitution is what you are looking for, namely ^[[:digit:]][[:digit:]][[:digit:]].
This says that you are looking for a digit at the beginning of the line and then two more digits. Because an
area code in the United States is composed of the first three digits, this construction will match the area code.
The second half of the substitution is (&). Here, you are using the replacement ampersand metacharacter
and surrounding it by parentheses. This means to put in parentheses whatever was matched in the first half
of the command. This will turn all of the phone numbers into what was output previously.

This looks nicer, but it would be even nicer if you also included a dash after the second set of three num-
bers, so try that out.

Try It Out Putting It All Together
Using what you know already, you can make these phone numbers look like regular numbers. Put the
previous list of numbers in a file, name the file phonenums.txt, and try this command:

218

Chapter 6

09_583204 ch06.qxd 3/18/05 9:25 PM Page 218

$ sed -e ‘s/^[[:digit:]]\{3\}/(&)/g’ -e ‘s/)[[:digit:]]\{3\}/&-/g’ phonenums.txt >
nums.txt
$ cat nums.txt
(555)555-1212
(555)555-1213
(555)555-1214
(666)555-1215
(666)555-1216
(777)555-1217

How It Works
That command is a mouthful! However, it isn’t much more than you already did. The first part of the
command is the part that puts the parentheses around the first three numbers, exactly as before, with
one change. Instead of repeating the character class keyword [[:digit:]] three times, you replaced it
with \{3\}, which means to match the preceding regular expression three times.

After that, you append a second pattern to be executed by adding another -e flag. In this second regular
expression substitution, you look for a right parenthesis and then three digits, in the same way as before.

Because these commands are concatenated one after another, the first regular expression substitution has
happened, and the first three numbers already have parentheses around them, so you are looking for the
closing parenthesis and then three numbers. Once sed finds that, it replaces the string by using the amper-
sand metacharacter to place the numbers where they already were and then adds a hyphen afterward.

At the very end of the command, the output is redirected to a new file called nums.txt. When redirect-
ing to a file, no output is printed to the screen, so you run cat nums.txt to print the output.

Back References
The ampersand metacharacter is useful, but even more useful is the ability to define specific regions in a
regular expressions so you can reference them in your replacement strings. By defining specific parts of
a regular expression, you can then refer back to those parts with a special reference character.

To do back references, you have to first define a region and then refer back to that region. To define a
region you insert backslashed parentheses around each region of interest. The first region that you sur-
round with backslashes is then referenced by \1, the second region by \2, and so on.

Try It Out Back References
In the previous example you formatted some phone numbers. Now continue with that example to illus-
trate back references. You now have a file called nums.txt that looks like this:

(555)555-1212
(555)555-1213
(555)555-1214
(666)555-1215
(666)555-1216
(777)555-1217

219

Processing Text with sed

09_583204 ch06.qxd 3/18/05 9:25 PM Page 219

With one sed command, you can pick apart each element of these phone numbers by using back refer-
ences. First, define the three regions in the left side of the sed command. Select the area code, the second
set of numbers up to the dash, and then the rest of the numbers.

1. To select the area code, define a regular expression that includes the parenthesis:

/.*)/

This matches any number of characters up to a right-parenthesis character. Now, if you want to
reference this match later, you need to enclose this regular expression in escaped parentheses,
like this:

/\(.*)\)/

Now that this region has been defined, it can be referenced with the \1 character.

2. Next, you want to match the second set of numbers, terminated by the hyphen character. This is
very similar to the first match, with the addition of the hyphen:

/\(.*-\)/

This regular expression is also enclosed in parentheses, and it is the second defined region, so it
is referenced by \2.

3. The third set of numbers is specified by matching any character repeating up to the end of the
line:

/\(.*$\)/

This is the third defined region, so it is referred to as \3.

4. Now that you have all your regions defined, put them all together in a search and then use the
references in the replacement right side, like so:

$ cat nums.txt | sed ‘s/\(.*)\)\(.*-\)\(.*$\)/Area code: \1 Second: \2 Third: \3/’
Area code: (555) Second: 555- Third: 1212
Area code: (555) Second: 555- Third: 1213
Area code: (555) Second: 555- Third: 1214
Area code: (666) Second: 555- Third: 1215
Area code: (666) Second: 555- Third: 1216
Area code: (777) Second: 555- Third: 1217

How It Works
As you see, this command line takes each number and defines the regions that you specified as output.

Hold Space
Like the pattern space, the hold space is another workbench that sed has available. The hold space is a
temporary space to put things while you do other things, or look for other lines. Lines in the hold space
cannot be operated on; you can only put things in the hold space and take things out from it. Any actual
work you want to do on lines has to be done in the pattern space. It’s the perfect place to put a line that

220

Chapter 6

09_583204 ch06.qxd 3/18/05 9:25 PM Page 220

you found from a search, do some other work, and then pull out that line when you need it. In short, it
can be thought of as a spare pattern buffer.

There are a couple of sed commands that allow you to copy the contents of the pattern space into the
hold space. (Later, you can use other commands to copy what is in the hold space into the pattern
space.) The most common use of the hold space is to make a duplicate of the current line while you
change the original in the pattern space.

The following table details the three basic commands that are used for operating with the hold space.

Command Description of Command’s Function

h or H Overwrite (h) or append (H) the hold space with the con-
tents of the pattern space. In other words, it copies the
pattern buffer into the hold buffer.

g or G Overwrite (g) or append (G) the pattern space with the
contents of hold space.

x Exchange the pattern space and the hold space; note that
this command is not useful by itself.

Each of these commands can be used with an address or address range.

The classic way of illustrating the use of the hold space is to take a text file and invert each line in the file
so that the last line is first and the first is last, as in the following Try It Out.

Try It Out Using the Hold Space
Run the following sed command on the story.txt file:

$ cat story.txt | sed -ne ‘1!G’ -e ‘h’ -e ‘$p’
No, really, the story is over, you can go now.

The end.

while watching rainbow trout swim by.
there was a stream filled with elephants drinking ice tea
Once upon a time, in a land far far away,

- a moral story about robot ethics
The Elephants and the Rainbow Trout

How It Works
First, notice that there are actually three separate commands, separated by -e flags. The first command
has a negated address (1)and then the command G. This means to apply the G command to every line
except the first line. (If this address had been written 1G, it would mean to apply the G command only to
the first line.)

221

Processing Text with sed

09_583204 ch06.qxd 3/18/05 9:25 PM Page 221

Because the first line read in didn’t have the G command applied, sed moved onto the next command,
which is h. This tells sed to copy the first line of the file into the hold space.

The third command is then executed. This command says that if this line is the last line, then print it.
Because this is not the last line, nothing is printed. Sed is finished processing the first line of the file, and
the only thing that has happened is it has been copied into the hold space.

The cycle is repeated by sed reading in the second line of the file. Because the second line does not match
the address specified in the first command, sed actually executes the G command this time. The G takes
the contents of the hold space, which contains the first line because you put it there in the first cycle, and
appends this to the end of the pattern space. Now the pattern space contains the second line, followed
by the first line.

The second sed command is executed. This takes the contents of the pattern space and overwrites the
hold space with it. This means that it is now taking the pattern space, which contains the second line of
the file and the first line, and then it places it in the hold space.

The third command is executed, and because sed is not at the end of the file, it doesn’t print anything.

This cycle continues until sed reaches the last line of the file, and the third command is finally executed,
printing the entire pattern space, which now contains all the lines in reverse order.

More sed Resources
Refer to the following resources to learn even more about sed:

❑ You can find the source code for GNU sed at ftp://ftp.gnu.org/pub/gnu/sed.

❑ The sed one-liners (see the following section) are fascinating sed commands that are done in one
line: http://sed.sourceforge.net/sed1line.txt.

❑ The sed FAQ is an invaluable resource: http://sed.sourceforge.net/sedfaq.html.

❑ Sed tutorials and other odd things, including a full-color, ASCII breakout game written only in
sed, are available at http://sed.sourceforge.net/grabbag/scripts/.

❑ The sed-users mailing list is available at http://groups.yahoo.com/group/sed-users/.

❑ The man sed and info sed pages have the best information and come with your sed installation.

Common One-Line sed Scripts
The following code contains several common one-line sed commands. These one-liners are widely circu-
lated on the Internet, and there is a more comprehensive list of one-liners available at http://sed.source
forge.net/sed1line.txt.

The comments indicate the purpose of each script. Most of these scripts take a specific file name immedi-
ately following the script itself, although the input may also come through a pipe or redirection:

222

Chapter 6

09_583204 ch06.qxd 3/18/05 9:25 PM Page 222

Double space a file
sed G file

Triple space a file
sed ‘G;G’ file

Under UNIX: convert DOS newlines (CR/LF) to Unix format
sed ‘s/.$//’ file # assumes that all lines end with CR/LF
sed ‘s/^M$// file # in bash/tcsh, press Ctrl-V then Ctrl-M

Under DOS: convert Unix newlines (LF) to DOS format
sed ‘s/$//’ file # method 1
sed -n p file # method 2

Delete leading whitespace (spaces/tabs) from front of each line
(this aligns all text flush left). ‘^t’ represents a true tab
character. Under bash or tcsh, press Ctrl-V then Ctrl-I.
sed ‘s/^[^t]*//’ file

Delete trailing whitespace (spaces/tabs) from end of each line
sed ‘s/[^t]*$//’ file # see note on ‘^t’, above

Delete BOTH leading and trailing whitespace from each line
sed ‘s/^[^t]*//;s/[^]*$//’ file # see note on ‘^t’, above

Substitute “foo” with “bar” on each line
sed ‘s/foo/bar/’ file # replaces only 1st instance in a line
sed ‘s/foo/bar/4’ file # replaces only 4th instance in a line
sed ‘s/foo/bar/g’ file # replaces ALL instances within a line

Substitute “foo” with “bar” ONLY for lines which contain “baz”
sed ‘/baz/s/foo/bar/g’ file

Delete all CONSECUTIVE blank lines from file except the first.
This method also deletes all blank lines from top and end of file.
(emulates “cat -s”)
sed ‘/./,/^$/!d’ file # this allows 0 blanks at top, 1 at EOF
sed ‘/^$/N;/\n$/D’ file # this allows 1 blank at top, 0 at EOF

Delete all leading blank lines at top of file (only).
sed ‘/./,$!d’ file

Delete all trailing blank lines at end of file (only).
sed -e :a -e ‘/^\n*$/{$d;N;};/\n$/ba’ file

If a line ends with a backslash, join the next line to it.
sed -e :a -e ‘/\\$/N; s/\\\n//; ta’ file

If a line begins with an equal sign, append it to the previous
line (and replace the “=” with a single space).
sed -e :a -e ‘$!N;s/\n=/ /;ta’ -e ‘P;D’ file

223

Processing Text with sed

09_583204 ch06.qxd 3/18/05 9:25 PM Page 223

Common sed Commands
In addition to the substitution command, which is used most frequently, the following table lists the
most common sed editing commands.

Editing Command Description of Command’s Function

Comment. If first two characters of a sed script are #n,
then the -n (no auto-print) option is forced.

{ COMMANDS } A group of COMMANDS may be enclosed in curly
braces to be executed together. This is useful when you
have a group of commands that you want executed on
an address match.

d[address][,address2]]d Deletes line(s) from pattern space.

n If auto-print was not disabled (-n), print the pattern
space, and then replace the pattern space with the next
line of input. If there is no more input, sed exits.

Less Common sed Commands
The remaining list of commands that are available to you in sed are much less frequently used but are
still very useful and are outlined in the following table.

Command Usage

: label Label a line to reference later for transfer of control via b
and t commands.

a[address][,address2]a\Append text after each line matched by address or address
text range.

b[address][,address2]]b[label] Branch (transfer control unconditionally) to :label.

c[address][,address2]]\Delete the line(s) matching address and then output the lines
text of text that follow this command in place of the last line.

D[address][,address2]]D Delete first part of multiline pattern (created by N command)
space up to newline.

g Replace the contents of the pattern space with the contents
of the hold space.

G Add a newline to the end of the pattern space and then
append the contents of the hold space to that of the pattern
space.

h Replace the contents of the hold space with the contents of
the pattern space.

224

Chapter 6

09_583204 ch06.qxd 3/18/05 9:25 PM Page 224

Command Usage

H Add a newline to the end of the hold space and then
append the contents of the pattern space to the end of the
pattern space.

i[address][,address2]\Immediately output the lines of text that follow this
text command; the final line ends with an unprinted “\”.

l N Print the pattern space using N lines as the word-wrap
length. Nonprintable characters and the \ character are
printed in C-style escaped form. Long lines are split with a
trailing “\” to indicate the split; the end of each line is
marked with “$”.

N Add a newline to the pattern space and then append the
next line of input into the pattern space. If there is no more
input, sed exits.

P Print the pattern space up to the first newline.

r[address][,address2] FILENAME Read in a line of FILENAME and insert it into the output
stream at the end of a cycle. If file name cannot be read, or
end-of-file is reached, no line is appended. Special file
/dev/stdin can be provided to read a line from standard
input.

w[address][,address2] FILENAME Write to FILENAME the pattern space. The special file
names /dev/stderr and /dev/stdout are available to GNU
sed. The file is created before the first input line is read. All
w commands that refer to the same FILENAME are output
without closing and reopening the file.

x Exchange the contents of the hold and pattern spaces.

GNU sed-Specific sed Extensions
The following table is a list of the commands specific to GNU sed. They provide enhanced functionality
but reduce the portability of your sed scripts. If you are concerned about your scripts working on other
platforms, use these commands carefully!

Editing Command Description of Command’s Function

e [COMMAND] Without parameters, executes command found in pattern
space, replacing pattern space with its output. With parame-
ter COMMAND, interprets COMMAND and sends output
of command to output stream.

L N Fills and joins lines in pattern space to produce output lines
of N characters (at most). This command will be removed in
future releases.

Table continued on following page

225

Processing Text with sed

09_583204 ch06.qxd 3/18/05 9:25 PM Page 225

Editing Command Description of Command’s Function

Q [EXIT-CODE] Same as common q command, except that it does not print
the pattern space. It provides the ability to return an EXIT-
CODE.

R FILENAME Reads in a line of FILENAME and inserts it into the output
stream at the end of a cycle. If file name cannot be read or
end-of-file is reached, no line is appended. Special file
/dev/stdin can be provided to read a line from standard
input

T LABEL Branch to LABEL if there have been no successful substitu-
tions (s) since last input line was read or branch taken. If
LABEL is omitted, the next cycle is started.

v VERSION This command fails if GNU sed extensions are not sup-
ported. You can specify the VERSION of GNU sed required;
default is 4.0, as this is the version that first supports this
command.

W FILENAME Write to FILENAME the pattern space up to the first new-
line. See standard w command regarding file handles.

Summary
As you use sed more and more, you will become more familiar with its quirky syntax and you will be
able to dazzle people with your esoteric and cryptic-looking commands, performing very powerful text
processing with a minimum of effort.

In this chapter, you learned:

❑ The different available versions of sed.

❑ How to compile and install GNU sed, even on a system that doesn’t have a working version.

❑ How to use sed with some of the available editing commands.

❑ Different ways to invoke sed: on the command line with the -e flag, separated by semicolons,
with the bash multiline method, and by writing sed scripts.

❑ How to specify addresses and address ranges by specifying the specific line number or specific
range of line numbers. You learned address negation and stepping, and regular expression
addressing.

❑ The bread and butter of sed, substitution, was introduced, and you learned how to do substitu-
tion with flags, change the substitution delimiter, do substitution with addresses and address
ranges, and do regular expression substitutions.

❑ Some of the other basic sed commands: the comment, insert, append, and change commands.

226

Chapter 6

09_583204 ch06.qxd 3/18/05 9:25 PM Page 226

❑ What character class keywords are and how to use them.

❑ About the & metacharacter and how to do numerical back references.

❑ How to use the hold space to give you a little breathing room in what you are trying to do in the
pattern space.

The next chapter covers how to read and manipulate text from files using awk. Awk was designed for
text processing and works well when called from shell scripts.

Exercises
1. Use an address range negation to print only the fifth line of your /etc/passwd file. Hint: Use

the delete editing command.

2. Use an address step to print every fifth line of your /etc/passwd file, starting with the tenth.

3. Use an address step to delete the tenth line of your /etc/passwd file and no other line.

4. Write a sed command that takes the output from ls -l issued in your home directory and
changes the owner of all the files from your username to the reverse. Make sure not to change
the group if it is the same as your username.

5. Do the same substitution as Exercise 4, except this time, change only the first ten entries and
none of the rest.

6. Add some more sed substitutions to your txt2html.sed script. In HTML you have to escape
certain commands in order that they be printed properly. Change any occurrences of the amper-
sand (&) character into & for proper HTML printing. Hint: You will need to escape your
replacement. Once you have this working, add a substitution that converts the less than and
greater than characters (< and >) to < and > respectively.

7. Change your txt2html.sed script so that any time it encounters the word trout, it makes it
bold by surrounding it with the HTML bold tags (° and the closing). Also make the
script insert the HTML paragraph marker (<p>) for any blank space it finds.

8. Come up with a way to remove the dash from the second digit so instead of printing Area
code: (555) Second: 555- Third: 1212, you instead print Area code: (555) Second: 555
Third: 1212.

9. Take the line reversal sed script shown in the Hold Space section and re-factor it so it doesn’t
use the -n flag and is contained in a script file instead of on the command line.

227

Processing Text with sed

09_583204 ch06.qxd 3/18/05 9:25 PM Page 227

09_583204 ch06.qxd 3/18/05 9:25 PM Page 228

7
Processing Text with awk

Awk is a programming language that can be used to make your shell scripts more powerful, as
well as to write independent scripts completely in awk itself. Awk is typically used to perform
text-processing operations on data, either through a shell pipe or through operations on files. It’s a
convenient and clear language that allows for easy report creation, analysis of data and log files,
and the performance of otherwise mundane text-processing tasks. Awk has a relatively easy-to-
learn syntax. It is also a utility that has been a standard on Unix systems for years, so is almost cer-
tain to be available. If you are a C programmer or have some Perl knowledge, you will find that
much of what awk has to offer will be familiar to you. This is not a coincidence, as one of the origi-
nal authors of awk, Brian Kernighan, was also one of the original creators of the C language.
Many programmers would say that Perl owes a lot of its text processing to awk. If programming C
scares you, you will find awk to be less daunting, and you will find it easy to accomplish some
powerful tasks.

Although there are many complicated awk programs, awk typically isn’t used for very long pro-
grams but for shorter one-off tasks, such as trimming down the amount of data in a web server’s
access log to only those entries that you want to count or manipulate, swapping the first two
columns in a file, or manipulating comma-separated (CSV) files. This chapter introduces you to
the basics of awk, providing an introduction to the following subjects:

❑ The different versions of awk and how to install gawk (GNU awk)

❑ The basics of how awk works

❑ The many ways of invoking awk

❑ Different ways to print and format your data

❑ Using variables and functions

❑ Using control blocks to loop over data

10_583204 ch07.qxd 3/18/05 9:28 PM Page 229

What Is awk (Gawk/Mawk/Nawk/Oawk)?
Awk was first designed by Alfred V. Aho, Peter J. Weinberger, and Brian W. Kernighan at AT&T Bell
Laboratories. (If you take the first letter of each of their last names, you see the origin of awk.) They
designed awk in 1977, but awk has changed over the years through many different implementations.
Because companies competed, rather than cooperated, in their writing of their implementations of the
early Unix operating system, different versions of awk were developed for SYSV Unix compared to
those for BSD Unix. Eventually, a POSIX standard was developed, and then a GNU Free Software ver-
sion was created. Because of all these differing implementations of awk, different systems often have
different versions installed.

The many different awks have slightly different names; together, they sound like a gaggle of birds
squawking. The most influential and widely available version of awk today is GNU awk, known as gawk
for short. Some systems have the original implementation of awk installed, and it is simply referred to as
awk. Some systems may have more than one version of awk installed: the new version of awk, called
nawk, and the old version available as oawk (for either old awk or original awk). Some create a symlink
from the awk command to gawk, or mawk.

However it is done on your system, it may be confusing and difficult to discern which awk you have. If
you don’t know which version or implementation you have, it’s difficult to know what functionality
your awk supports. Writing awk scripts is frustrating if you implement something that is supported in
GNU awk, but you have only the old awk installed.

Gawk, the GNU awk
Gawk is commonly considered to be the most popular version of awk available today. Gawk comes from
the GNU Foundation, and in true GNU fashion, it has many enhancements that other versions lack.

The enhancements that gawk has over the traditional awks are too numerous to cover here; however, a
few of the most notable follow:

❑ Gawk tends to provide you with more informative error messages. Most awk implementations
try to tell you what line a syntax error occurs, but gawk does one better by telling you where in
that line it occurs.

❑ Gawk has no built-in limits that people sometimes run into when using the other awks to do
large batch processing.

❑ Gawk also has a number of predefined variables, functions, and commands that make your awk
programming much simpler.

❑ Gawk has a number of useful flags that can be passed on invocation, including the very prag-
matic options that give you the version of gawk you have installed and provide you with a
command summary (--version and --help, respectively).

❑ Gawk allows you to specify line breaks using \ to continue long lines easily.

❑ Gawk’s regular expression capability is greatly enhanced over the other awks.

230

Chapter 7

10_583204 ch07.qxd 3/18/05 9:28 PM Page 230

❑ Although gawk implements the POSIX awk standard, the GNU extensions it has do not adhere
to these standards, but if you require explicit POSIX compatibility this can be enabled with
gawk using the invocation flags --traditional or --posix. For a full discussion of the GNU
extensions to the awk language, see the gawk documentation, specifically Appendix A.5 in the
latest manual.

If these features are not enough, the gawk project is very active, with a number of people contributing,
whereas mawk has not had a release in several years. Gawk has been ported to a dizzying array of archi-
tectures, from Atari, Amiga, and BeOS to Vax/VMS. Gawk is the standard awk that is installed on
GNU/Linux and BSD machines.

The additional features, the respect that the GNU Foundation has in making quality free (as in freedom)
software, the wide deployment on GNU/Linux systems, and the active development in the project are
all probable reasons why gawk has become the favorite over time.

What Version Do I Have Installed?
There is no single test to find out what version or implementation of awk you have installed. You can do
a few things to deduce it, or you can install it yourself so you know exactly what is installed. Check your
documentation, man pages, and info files to see if you can find a mention of which implementation is
referenced, looking out for any mention of oawk, nawk, gawk, or mawk. Also, poke around on your sys-
tem to find where the awk binary is, and see if there are others installed. It is highly unlikely that you
have no version installed, but the hard part is figuring out which version you do have.

Gawk takes the standard GNU version flags to determine what version you are running. If you run awk
with these flags as shown in the following Try It Out, and it succeeds, you know that you have GNU
awk available.

Try It Out Checking Which Version of awk You Are Running
Run awk with the following flags to see if you can determine what implementation you have installed:

$ awk --version
GNU Awk 3.1.4
Copyright (C) 1989, 1991-2003 Free Software Foundation.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

231

Processing Text with awk

10_583204 ch07.qxd 3/18/05 9:28 PM Page 231

How It Works
The GNU utilities implement a standard library that standardizes some flags, such as --version and
--help, making it easy to determine if the version you have installed is the GNU awk.

This output showed that GNU awk, version 3.1.4, is installed on the system. If you do not have GNU
awk, you get an error message. For example, if you have mawk installed, you might get this error:

$ awk --version
awk: not an option: --version

In this case, you see that it is not GNU awk, or you would have been presented with the version number
and the copyright notice. Try the following to see if it is mawk:

$ awk -W versions
mawk 1.3.3 Nov 1996, Copyright (C) Michael D. Brennan

compiled limits:
max NF 32767
sprintf buffer 1020

Because this flag succeeded, and it shows you what implementation and version (mawk, 1.3.3) is
installed, you know that your system has mawk installed.

Installing gawk
By far the most popular awk is the GNU Foundation’s implementation, gawk. If you find that your sys-
tem does not have gawk installed, and you wish to install it, follow these steps. If you have a system that
gawk has not been ported to, you may need to install a different awk. The known alternatives and where
they can be found are listed in the awk FAQ at www.faqs.org/faqs/computer-lang/awk/faq/.

By far the easiest way to install gawk is to install a prepackaged version, if your operating system pro-
vides it. Installation this way is much simpler and easier to maintain. For example, to install gawk on the
Debian GNU/Linux OS, type this command:

apt-get install gawk

Be careful when putting gawk on your system! Some systems depend on the version
of awk that they have installed in /usr/bin, and if you overwrite that with gawk, you
may find your system unable to work properly, because some system scripts may
have been written for the older implementation. For example, fink for Mac OS X
requires the old awk in /usr/bin/awk. If you replace that awk with gawk, fink no
longer works properly. The instructions in this section show you how to install
gawk without overwriting the existing awk on the system, but you should pay
careful attention to this fact!

232

Chapter 7

10_583204 ch07.qxd 3/18/05 9:28 PM Page 232

Mac OS X has gawk available through fink. Fink is a command-line program that you can use to fetch
and easily install some useful software that has been ported to OS X. If you don’t have fink installed on
your system, you can get it at http://fink.sourceforge.net/download/index.php.

If your system does not have packages, or if you want to install gawk on your own, follow these steps:

1. Obtain the gawk software. The home page for GNU gawk is www.gnu.org/software/gawk/.
You can find the latest version of the software at http://ftp.gnu.org/gnu/gawk/. Get the latest
.tar.gz from there, and then uncompress and untar it as you would any normal tar:

$ tar -zxf gawk-3.1.4.tar.gz
$ cd gawk-3.1.4

2. Review the README file that is included in the source. Additionally, you need to read the OS-
specific README file in the directory README_d for any notes on installing gawk on your spe-
cific system.

3. To configure awk, type the following command:

$ sh ./configure
checking for a BSD-compatible install... /usr/bin/install -c
checking whether build environment is sane... yes
checking for gawk... gawk
checking whether make sets $(MAKE)... yes
checking for gcc... gcc

This continues to run through the GNU autoconf configuration, analyzing your system for vari-
ous utilities, variables, and parameters that need to be set or exist on your system before you
can compile awk. This can take some time before it finishes. If this succeeds, you can continue
with compiling awk itself. If it doesn’t, you need to resolve the configuration problem(s) that are
presented before proceeding. Autoconf indicates if there is a significant problem with your con-
figuration and requires you to resolve it and rerun ./configure before it can continue. It is not
uncommon for autoconf to look for a utility and not find it and then proceed. This does not
mean it has failed; it exits with an error if it fails.

4. To compile awk, issue a make command:

$ make
make ‘CFLAGS=-g -O2’ ‘LDFLAGS=-export-dynamic’ all-recursive

make[1]: Entering directory `/home/micah/working/gawk-3.1.4’
Making all in intl
make[2]: Entering directory `/home/micah/working/gawk-3.1.4/intl’
make[2]: Nothing to be done for `all’.
make[2]: Leaving directory `/home/micah/working/gawk-3.1.4/intl’
Making all in .

This command continues to compile awk. It may take a few minutes to compile, depending on
your system.

5. If everything goes as expected, you can install the newly compiled awk simply by issuing the
make install command as root:

$ su
Password:
make install

233

Processing Text with awk

10_583204 ch07.qxd 3/18/05 9:28 PM Page 233

Awk is placed in the default locations in your file system. By default, make install installs
all the files in /usr/local/bin, /usr/local/lib, and so on. You can specify an installation prefix
other than /usr/local using --prefix when running configure; for instance, sh ./config-
ure --prefix=$HOME will make awk so that it installs in your home directory. However, please
heed the warning about replacing your system’s installed awk, if it has one!

How awk Works
Awk has some basic functionality similarities with sed (see Chapter 6). At its most basic level, awk sim-
ply looks at lines that are sent to it, searching them for a pattern that you have specified. If it finds a line
that matches the pattern that you have specified, awk does something to that line. That “something” is
the action that you specify by your commands. Awk then continues processing the remaining lines until
it reaches the end. Sed acts in the same way: It searches for lines and then performs editing commands
on the lines that match. The input comes from standard in and is sent to standard out. In this way, awk is
stream-oriented, just like sed.

In fact, there are a number of things about awk that are similar to sed. The syntax for using awk is very
similar to sed; both are invoked using similar syntax; both use regular expressions for matching patterns.

Although the similarities exist, there are syntactic differences. When you run awk, you specify the pattern,
followed by an action contained in curly braces. A very basic awk program looks like this:

awk ‘/somedata/ { print $0 }’ filename

The rest of this brief section provides just an overview of the basic steps awk follows in processing the
command. The following sections fill in the details of each step.

In this example, the expression that awk looks for is somedata. This is enclosed in slashes, and the
action to be performed, indicated within the curly braces, is print $0. Awk works by stepping through
three stages. The first is what happens before any data is processed; the second is what happens during
the data processing loop; and the third is what happens after the data is finished processing. Before any
lines are read in to awk and then processed, awk does some preinitialization, which is configurable in
your script, by specifying a BEGIN clause. At the end of processing, you can perform any final actions by
using an END clause.

Invoking awk
You can invoke awk in one of several ways, depending on what you are doing with it. When you
become more familiar with awk, you will want to do quick things on the command line, and as things
become more complex, you will turn them into awk programs.

The simplest method is to invoke awk on the command line. This is useful if what you are doing is rela-
tively simple, and you just need to do it quickly. Awk can also be invoked this way within small shell
scripts. You run an awk program on the command line by typing awk and then the program, followed by
the files you want to run the program on:

awk ‘program’ filename1 filename2

234

Chapter 7

10_583204 ch07.qxd 3/18/05 9:28 PM Page 234

The filename1 and filename2 are not required. You can specify only one input file, or two or more,
and awk can even be run without any input files. Or you can pipe the data to awk instead of specifying
any input files:

cat filename1 | sed ‘program’

The program is enclosed in single quotes to keep the shell from interpreting special characters and to
make the program a single argument to awk. The contents of program are the pattern to match, fol-
lowed by the curly braces, which enclose the action to take on the pattern. The following Try It Out gives
you some practice running basic awk programs.

Try It Out A Simple Command-Line awk Program
Try this simple awk program, which runs without any input files at all:

$ awk ‘{ print “Hi Mom!” }’

If you run this as written, you will see that nothing happens. Because no file name was specified, awk is
waiting for input from the terminal. If you hit the Enter key, you see the string “Hi Mom!” printed on the
terminal. You need to issue an end-of-file to get out of this input; do this by pressing Ctrl-D.

Awk can also be invoked using bash’s multiline capability. Bash is smart enough to know when you
have not terminated a quote or a brace and prompts you for more input until you close the open quote
or brace.

To do the preceding example in this way, type the following in a bash shell. After the first curly brace,
press the Enter key to move to the next line:

$ awk ‘{
> print “Hi Mom!”
> }’

Once you have typed these three lines, hit the Enter key, and you will see again the string “Hi Mom!”
printed on the terminal. Again you will need to issue an end-of-file by pressing Ctrl-D to get out of this
input.

How It Works
The result of this command is the same output from the preceding command, just invoked in a different
manner. The Korn, Bourne, and Z shell all look for closing single quotes and curly braces, and prompt
you when you haven’t closed them properly.

Note, however, that the C shell does not work this way.

Your awk commands will soon become longer and longer, and it will be cumbersome to type them on the
command line. At some point you will find putting all your commands into a file to be a more useful way
of invoking awk. You do this by putting all the awk commands into a file and then invoking awk with the
-f flag followed by the file that contains your commands. The following Try It Out demonstrates this way
of invoking awk.

235

Processing Text with awk

10_583204 ch07.qxd 3/18/05 9:28 PM Page 235

Try It Out Running awk Scripts with awk -f
In this Try It Out, you take the simple program from the previous Try It Out, place it into a file, and
use the -f flag to invoke this program. First, take the text that follows and place it into a file called
hello.awk:

{ print “Hi Mom!” }

Notice that you do not need to place single quotes around this text, as you did when you were invoking
awk on the command line. When the program is contained in a file, this is not necessary.

Adding .awk at the end of the file is not necessary but is a useful convention to remember what files
contain what types of programs.

Next, invoke sed using the -f flag to point it to the file that contains the program to execute:

$ awk -f hello.awk

This outputs the exact same output as the previous two examples did:

“Hi Mom!”

How It Works
Awk takes the -f flag, reads the awk program that is specified immediately afterward, and executes it.
This outputs exactly the same way as the example showing you how to invoke awk on the command line.

You can also write full awk shell scripts by adding a magic file handle at the top of the file, as in the fol-
lowing Try It Out.

Try It Out Creating Self-Contained awk Programs
Type the following script, including the { print “Hi Mom!” } from the preceding example, into a file
called mom.awk:

#!/usr/bin/awk -f
This is my first awk script!
I will add more as I learn some more awk

{ print “Hi Mom!” } # This prints my greeting

If the awk on your system is located somewhere other than /usr/bin/awk, you need to change that path
accordingly.

Now make the mom.awk script executable by typing the following on the command line:

$ chmod +x mom.awk

236

Chapter 7

10_583204 ch07.qxd 3/18/05 9:28 PM Page 236

Now you can run this new shell script on the command line as follows:

$./hello.awk
Hi Mom!

This command tells the shell to execute the file hello.awk located in the current working directory. If you
are not currently in the same directory as the script is located, this will not work. You need to type the
full path of the script.

How It Works
Because the execute bit was set on the program, the shell knows that it should be able to run this file,
rather than it simply containing data. It sees the magic file marker at the beginning, denoted by the
shebang (#!), and uses the command that immediately follows to execute the script.

You may have noticed the comments that were snuck into the awk script. It is very common in shell
scripting to add comments by placing the # symbol and then your comment text. In awk, the comments
are treated as beginning with this character and ending at the end of the line. Each new line that you
want to have a comment on requires another # symbol.

The print Command
Earlier, in the section How awk Works, you saw the basic method of using awk to search for a string and
then print it. In this section, you learn exactly how that print command works and some more
advanced useful incarnations of it.

First, you need some sample data to work with. Say you have a file called countries.txt, and each
line in the file contains the following information:

Country Internet domain Area in sq. km Population Land lines Cell phones

The beginning of the file has the following contents:

Afghanistan .af 647500 28513677 33100 12000
Albania .al 28748 3544808 255000 1100000
Algeria .dz 2381740 32129324 2199600 1447310
Andorra .ad 468 69865 35000 23500
Angola .ao 1246700 10978552 96300 130000

The following command searches the file countries.txt for the string Al and then uses the print
command to print the results:

$ awk ‘/Al/ { print $0 }’ countries.txt
Albania .al 28748 3544808 255000 1100000
Algeria .dz 2381740 32129324 2199600 1447310

As you can see from this example, the regular expression surrounds the string to be searched for, in this
case Al, and this matches two lines. The lines that are matched then have the command specified within
the curly braces acted on it; in this case print $0 is executed, printing the lines.

237

Processing Text with awk

10_583204 ch07.qxd 3/18/05 9:28 PM Page 237

This isn’t very interesting, because you can do this with grep or sed. This is where awk starts to become
interesting, because you can very easily say that you want to print only the matching countries’ landline
and cell phone usage:

$ awk ‘/Al/ { print $5,$6 }’ countries.txt
255000 1100000
2199600 1447310

In this example, the same search pattern was supplied, and for each line that is matched, awk performs
the specified actions, in this case, printing the fifth and sixth field. Awk automatically stores each field in
its numerical sequential order. By default, awk defines the fields as any string of printing characters sep-
arated by spaces. The first field is the $0 field, which represents the entire line; this is why when you
specified the action print $0, the entire line was printed for each match. Field $1 represents the first
field (in our example, Country), the $2 represents the second field (Internet Domain), and so on.

By default, awk’s behavior is to print the entire line, so each of the following lines results in the same
output:

awk ‘/Al/’ countries.txt
awk ‘/Al/ { print $0 }’ countries.txt
awk ‘/Al/ { print }’ countries.txt

Although explicitly writing print $0 is not necessary, it does make for good programming practice
because you are making it very clear that this is your action instead of using a shortcut.

It is perfectly legal to omit a search pattern from your awk statement. When there is no search pattern
provided, awk by default matches all the lines of your input file and performs the action on each line.

For example, the following command prints the number of cell phones in each country:

$ awk ‘{ print $6 }’ countries.txt
12000
1100000
1447310
23500
130000

It prints each line because I did not specify a search pattern.

You can also insert text anywhere in the command action, as demonstrated in the following Try It Out.

Try It Out Inserting Text
Type the following awk command to see the number of cell phones in use in each of the countries
included:

$ awk ‘{ print “Number of cell phones in use in”,$1”:”,$6 }’ countries.txt
Number of cell phones in use in Afghanistan: 12000
Number of cell phones in use in Albania: 1100000
Number of cell phones in use in Algeria: 1447310
Number of cell phones in use in Andorra: 23500
Number of cell phones in use in Angola: 130000

238

Chapter 7

10_583204 ch07.qxd 3/18/05 9:28 PM Page 238

How It Works
The print command is used only one time, not multiple times for each field. A comma separates the
print elements in most cases, except after the $1 in this example. The comma inserts a space between the
element printed before and after itself. (Try putting a comma after the $1 in the preceding command to
see how it changes the output.)

For each line in the file, awk prints the string Number of cell phones in use in, and then it prints a
space (because of the comma). Then it prints field number 1 (the country), followed by the simple string
: (colon), and then another comma puts in a space, and finally field number 6 (cell phones) is inserted.

Print is a simple command; all by itself it just prints the input line. With one argument it prints the
argument; with multiple arguments it prints all the arguments, separated by spaces when the arguments
are separated by commas or together without spaces when the arguments are not comma delineated.

If you want to print a newline as part of your print command, just include the standard newline
sequence as part of the string, as in the following Try It Out.

Try It Out Printing Newlines
Write a quick letter to Mom that puts the strings on separate lines, so it looks nicer:

$ awk ‘BEGIN { print “Hi Mom,\n\nCamp is fun.\n\nLove,\nSon” }’
Hi Mom,

Camp is fun.

Love,
Son

How It Works
In this example, you put the entire awk program into a BEGIN block by placing the word BEGIN right
before the first opening curly brace. Whatever is contained in a BEGIN block is executed one time imme-
diately, before the first line of input is read (similarly, the END construct is executed once after all input
lines have been read). Previously, you were putting your awk programs into the main execution block,
and the BEGIN was empty and was not specified. Commands that are contained in the main block are
executed on lines of input that come from a file or from the terminal. If you recall, the previous Try It
Out sections required that you hit the Enter key for the output to be printed to the screen; this was the
input that awk needed to execute its main block. In this example, all your commands are contained in
the BEGIN block, which requires no input, so it prints right away without your needing to provide input
with the Enter key.

Awk uses the common two-character designation \n to mean newline. Whenever awk encounters this
construct in a print command, it actually prints a newline rather than the string \n.

239

Processing Text with awk

10_583204 ch07.qxd 3/18/05 9:28 PM Page 239

Using Field Separators
The default field separator in awk is a blank space. When you insert a blank space by pressing the space-
bar or Tab key, awk delineates each word in a line as a different field. However, if the data that you are
working with includes spaces within the text itself, you may encounter difficulties.

For example, if you add more countries to your countries.txt file to include some that have spaces in
them (such as Dominican Republic), you end up with problems. The following command prints the area
of each country in the file:

$ awk ‘{ print $3 }’ countries.txt
647500
28748
2381740
.do
468
1246700

Why is the .do included in the output? Because one of the lines of this file contains this text:

Dominican Republic .do 8833634 48730 901800 2120400

The country Dominican Republic counts as two fields because it has a space within its name. You need
to be very careful that your fields are uniform, or you will end up with ambiguous data like this. There
are a number of ways to get around this problem; one of the easiest methods is to specify a unique field
separator and format your data accordingly. In this case, you need to format your countries.txt file
so that any country that has spaces in its name instead had underscores, so Dominican Republic
becomes Dominican_Republic.

Unfortunately, it isn’t always practical or possible to change your input data file. In this case, you can
invoke awk with the -F flag to specify an alternative field separator character instead of the space. A very
common field separator is the comma, so to instruct awk to use a comma as the character that separates
fields, invoke awk using -F, to indicate the comma should be used instead. Most databases are able to
export their data into CSV (Comma Separated Values) files. If your data is formatted using commas to
separate each field, you can specify that field separator to awk on the command line, as the following Try
It Out section demonstrates.

Try It Out Alternative Field Separators
Reformat your countries.txt file so the fields are separated by commas instead of spaces, and save it
in a file called countries.csv, so it looks like the following:

Afghanistan,.af,647500,28513677,33100,12000
Albania,.al,28748,3544808,255000,1100000
Algeria,.dz,2381740,32129324,2199600,1447310
Andorra,.ad,468,69865,35000,23500
Angola,.ao,1246700,10978552,96300,130000
Dominican Republic,.do,8833634,48730,901800,2120400

240

Chapter 7

10_583204 ch07.qxd 3/18/05 9:28 PM Page 240

Then run the following on the command line:

$ awk -F, ‘{ print $3 }’ countries.csv
647500
28748
2381740
8833634
468
1246700

As with spaces, make sure that the new field separator that you specify isn’t being used in the data as
well. For example, if the numbers in your data are specified using commas, as in 647,500, the numbers
before and after the commas will be interpreted as two separate fields.

How It Works
Awk processes each line using the comma as the character that separates fields instead of a space. It
reads each line of your countries.csv file, looks for the third field, and then prints it. This makes
entries such as Dominican Republic, which has a space in its name, to be processed as you expect and
not as two separate fields.

Using the printf Command
The printf (formatted print) command is a more flexible version of print. If you are familiar with C,
you will find the printf command very familiar; it was borrowed from that language. Printf is used
to specify the width of each item printed. It also can be used to change the output base to use for num-
bers, to determine how many digits to print after the decimal point, and more. Printf is different from
print only because of the format string, which controls how to output the other arguments. One main
difference between print and printf is that printf does not include a newline at the end. Another
difference is that with printf you specify how you want to format your string. The printf command
works in this format:

printf(<string>,<format string>)

The parentheses are optional, but otherwise, the basic print command that you have been using so far
is almost identical:

printf(“Hi Mom!\n”)

The string is the same with the exception of the added \n character, which adds a newline to the end of
the string. This doesn’t seem very useful, because now you have to add a newline when you didn’t
before. However, printf has more flexibility because you can specify format codes to control the results
of the expressions, as shown in the following Try It Out examples.

241

Processing Text with awk

10_583204 ch07.qxd 3/18/05 9:28 PM Page 241

Try It Out The printf Command
Try the following printf command:

$ awk ‘{ printf “Number of cell phones in use in %s: %d\n”, $1, $6 }’ countries.txt
Afghanistan .af 647500 28513677 33100 12000
Albania .al 28748 3544808 255000 1100000
Algeria .dz 2381740 32129324 2199600 1447310
Andorra .ad 468 69865 35000 23500
Angola .ao 1246700 10978552 96300 130000

How It Works
As you see, this prints the output in exactly the same format as the command that used print instead of
printf.

The printf command prints the string that is enclosed in quotes until it encounters the format specifier,
the percent symbol followed by a format control letter. (See the table following the next Try It Out for a
list of format control characters and their meanings.) The first instance, %s, tells awk to substitute a
string, which is the first argument (in this case, $1), so it puts the $1 string in place of the %s. It then
prints the colon and a space, and then encounters the second format specifier, %d, which tells awk to
substitute a digit, the second argument. The second argument is $6, so it pulls that information in and
replaces the %d with what $6 holds. After that, it prints a newline.

Try It Out printf Format Codes
Try the following command to print the number of cell phones in each country in decimal, hex, and octal
format:

$ awk ‘{ printf “Decimal: %d, Hex: %x, Octal: %o\n”, $6, $6, $6 }’ countries.txt
Decimal: 12000, Hex: 2ee0, Octal: 27340
Decimal: 1100000, Hex: 10c8e0, Octal: 4144340
Decimal: 1447310, Hex: 16158e, Octal: 5412616
Decimal: 23500, Hex: 5bcc, Octal: 55714
Decimal: 130000, Hex: 1fbd0, Octal: 375720

How It Works
In this example, the same number is being referenced three times by the $6, formatted in decimal format,
hexadecimal format, and octal format, depending on the format control character specified.

The following table lists the format control characters and what kind of values they print:

Format Control Character Kind of Value Printed

%c Prints a number in ASCII format. awk '{ printf "%c", 65 }'
outputs the letter A.

%d %i Either character prints a decimal integer.

%e %E Prints number in exponential format. awk '{ printf "
%3.2e\n", 2134 }' prints 2.13e+03.

242

Chapter 7

10_583204 ch07.qxd 3/18/05 9:28 PM Page 242

Format Control Character Kind of Value Printed

%f Prints number in floating-point notation. awk '{ printf "
%3.2f\n", 2134 }' prints 213.40.

%g %G Prints a number in scientific notation or in floating-point
notation, depending on which uses the least characters.

%o Prints an unsigned octal integer.

%s Prints a string.

%u Prints an unsigned decimal integer.

%x %X Prints an unsigned hexadecimal integer; using %X prints
capital letters.

%% Outputs a % character.

Using printf Format Modifiers
These printf format characters are useful for representing your strings and numbers in the way that
you expect. You can also add a modifier to your printf format characters to specify how much of the
value to print or to format the value with a specified number of spaces.

You can provide an integer before the format character to specify a width that the output would use, as
in the following example:

$ awk ‘{ printf “|%16s|\n”, $6 }’ countries.txt
| Afghanistan|
| Albania|
| Algeria|

Here, the width 16 was passed to the format modifier %s to make the string the same length in each line
of the output. You can left-justify this text by placing a minus sign in front of the number, as follows:

$ awk ‘{ printf “|%-16s|\n”, $1 }’ countries.txt
|Afghanistan |
|Albania |
|Algeria |

Use a fractional number to specify the maximum number of characters to print in a string or the number
of digits to print to the right of the decimal point for a floating-point number:

$ awk ‘{ printf “|%-.4s|\n”, $1 }’ countries.txt
|Afgh|
|Alba|
|Alge|

243

Processing Text with awk

10_583204 ch07.qxd 3/18/05 9:28 PM Page 243

Try It Out Using printf Format Modifiers
In this example, you use printf to create headings for each of the columns in the countries.txt file
and print the data underneath each column. Put the following into a file called format.awk:

BEGIN { printf “%-15s %20s\n\n”, “Country”, “Cell phones” }
{ printf “%-15s %20d\n”, $1, $6 }

Then call this script, using the countries.txt file as input:

$ awk -f format.awk countries.txt
Country Cell phones

Afghanistan 12000
Albania 1100000
Algeria 1447310
Andorra 23500

How It Works
The first block is contained within a BEGIN statement, so it is executed initially and only one time. This
allows the header to be printed, and then the main execution block is run over the input data.

Printf format specifiers are used to left-justify the first string and specify that the column width be 15
characters wide; the second string has 20 characters specified as the format string. Because you used the
same format string specifiers for the headers, they line up above the data.

Using the sprintf Command
The sprintf function operates exactly like printf, with the same syntax. The only difference is that it
assigns its output to a variable (variables are discussed in the next section), rather than printing it to
standard out. The following example shows how this works:

$ awk ‘{ variable = sprintf(“[%-.4s]”, $1); print variable}’ countries.txt
|Afgh|
|Alba|
|Alge|

This assigns the output from the sprintf function to the variable variable and then prints that vari-
able, which results in the same output as if you had used printf.

Using Variables in awk
In Chapter 2, variables were introduced as a mechanism to store values that can be manipulated or read
later, and in many ways they operate the same in awk, with some differences in syntax and particular
built-in variables. The last section introduced the sprintf command, which assigns its output to a vari-
able. The example in that section was a user-defined variable. Awk also has some predefined, or built-in,
variables that can be referenced. The following sections provide more detail on using these two types
of variables with awk.

244

Chapter 7

10_583204 ch07.qxd 3/18/05 9:28 PM Page 244

User-Defined Variables
User-defined variables have a few rules associated with them. They must not start with a digit and are
case sensitive. Besides these rules, your variables can consist of alphanumeric characters and underscores.
A user-defined variable must not conflict with awk’s reserved built-in variables or commands. For exam-
ple, you may not create a user-defined variable called print, because this is an awk command. Unlike
some programming languages, variables in awk do not need to be initialized or declared. The first time
you use a variable, it is set to an empty string (“”) and assigned 0 as its numerical value. However, relying
on default values is a bad programming practice and should be avoided. If your awk script is long, define
the variables you will be using in the BEGIN block, with the values that you want set as defaults.

Variables are assigned values simply by writing the variable, followed by an equal sign and then the
value. Because awk is a “weak-typed” language, you can assign numbers or strings to variables:

myvariable = 3.141592654
myvariable = “some string”

When you perform a numeric operation on a variable, awk gives you a numerical result; if a string oper-
ation is performed, a string will be the result.

In the earlier section on printf, the Try It Out example used format string modifiers to specify colum-
nar widths so that the column header lined up with the data. This format string modifier could be set in
a variable instead of having to type it each time, as in the following code:

BEGIN { colfmt=”%-15s %20s\n”; printf colfmt, “Country”, “Cell phones\n” }
{ printf colfmt, $1, $6 }

In this example, a user-defined variable called colfmt is set, containing the format string specifiers that
you want to use in the rest of the script. Once it is defined, you can reference it simply by using the vari-
able; in this case it is referenced twice in the two printf statements.

Built-in Variables
Built-in variables are very useful if you know what they are used for. The following subsections intro-
duce you to some of the most commonly used built-in variables.

Remember, you should not create a user-defined variable that conflicts with any of awk’s built-in variables.

The FS Variable
FS is awk’s built-in variable that contains the character used to denote separate fields. In the section
Using Field Separators you modified this variable on the command line by passing the -F argument to
awk with a new field separator value (in that case, you replaced the default field separator value with a
comma to parse CSV files). It is actually more convenient to put the field separator into your script using
awk’s built-in FS variable rather than setting it on the command line. This is more useful when the awk
script is in a file, rather on the command line where specifying flags to awk is not difficult.

To change the field separator within a script you use the special built-in awk variable, FS. To change the
field separator variable, you need to assign a new value to it at the beginning of the script. It must be
done before any input lines are read, or it will not be effective on every line, so you should set the field
separator value in an action controlled by the BEGIN rule, as in the following Try It Out.

245

Processing Text with awk

10_583204 ch07.qxd 3/18/05 9:28 PM Page 245

Try It Out Using the Field Separator Variable
Type the following into a file called countries.awk:

Awk script to print the number of cell phones in use in each country

BEGIN { FS = “,” } # Our data is separated by commas

{ print “Number of cell phones in use in”,$1”:”,$6 }

Note that there are double quotes around the comma and that there are no single quotes around the
curly braces, as there would be on the command line.

This script can be invoked using the -f flag. Use it against the CSV version of the countries.csv file
that contains each field separated by a comma:

$ awk -f countries.awk countries.csv

Note the difference between the -F flag and the -f flag. You use the -f flag here to execute the specified coun-
tries.awk script. This script sets the field separator (FS) variable to use a comma as the field separator,
rather than setting the field separator using the -F flag on the command line, as in a previous example.

How It Works
In the BEGIN block of the awk script, the FS built-in variable is set to the comma character. It remains set
to this throughout the script (as long as it doesn’t get redefined later). Awk then uses this to determine
what separates fields, just like it did when the -F flag was used on the command line.

FS Regular Expressions
The FS variable can contain more than a single character, and when it does, it is interpreted as a regular
expression. If you use a regular expression for a field separator, you then have the ability to specify sev-
eral characters to be used as delimiters, instead of just one, as in the following Try It Out.

Try It Out Field Separator Regular Expressions
The following assignment of the FS variable identifies a comma followed by any number of spaces as the
field separator:

$ echo “a,,, b,,,,, c,, d, e,, f, g” | awk ‘BEGIN {FS=”[,]+[]+”} {print $2}’
b

How It Works
The FS variable is set to match the regular expression that says any number of commas and any number
of spaces. Notice that no matter how many spaces or commas there are between fields, the regular
expression matches the fields as expected.

246

Chapter 7

10_583204 ch07.qxd 3/18/05 9:28 PM Page 246

The NR Variable
The built-in variable NR is automatically incremented by awk on each new line it processes. It always
contains the number of the current record. This is a useful variable because you can use it to count how
many lines are in your data, as in the following Try It Out.

Try It Out Using the NR Variable
Try using the NR variable to print the number of lines in your countries.txt file:

$ awk ‘END { print “Number of countries:”, NR }’ countries.txt
Number of countries: 5

How It Works
Each line is read into awk and processed, but because there is no BEGIN or main code block, nothing
happens until all of the lines have been read in and processed. After all of the lines have been processed
(the processing is nothing, but awk still reads each line in individually and does nothing to them), the
END block is executed. The NR variable has been automatically incremented internally for each line read
in, so at the END the variable has the total of all the lines that have been read in from the file, giving you a
count of the lines in a file.

Of course, you could use the much easier Unix utility wc to get the same output.

Try It Out Putting It All Together
In this Try It Out, you add line numbers to the output that you created in the earlier columnar display
example by adding the NR variable to the output. Edit the format.awk script so it looks like the following:

BEGIN { colfmt=”%-15s %20s\n”; printf colfmt, “Country”, “Cell phones\n” }
{ printf “%d. “ colfmt, NR, $1, $6 }

And then run it:

$ awk -f format.awk countries.txt
Country Cell phones

1. Afghanistan 12000
2. Albania 1100000
3. Algeria 1447310
4. Andorra 23500
5. Angola 130000

How It Works
You set the colfmt variable to have the printf format specifier in the BEGIN block, as you did in the
User-Defined Variables section, and then print the headers. The second line, which contains the main
code block, has a printf command with the format character %d. This specifies that a digit will be put
in this position, followed by a period and then a space. The colfmt format specifier variable is set, and
then the elements of the printf command are specified. The first is the NR variable; because this is a

247

Processing Text with awk

10_583204 ch07.qxd 3/18/05 9:28 PM Page 247

digit and is the first element, it gets put into the %d. position. The first line read in will have NR set to the
number 1, so the first line prints 1. followed by the formatting and field 1 and field 6. When the next
line is read in, NR gets set to 2, and so on.

The following table contains the basic built-in awk variables and what they contain. You will find these
very useful as you make awk scripts and you need to make decisions about how your script runs
depending on what is happening internally.

Built-in Variable Contents

ARGC, ARGV Contains a count and an array of the command-line arguments.

CONVFMT Controls conversions of numbers to strings; default value is set to %.6g.

ENVIRON Contains an associative array of the current environment. Array indices
are set to environment variable names.

FILENAME The name of the file that awk is currently reading. Set to - if reading
from STDIN; is empty in a BEGIN block.

FNR Current record number in the current file, incremented for each line
read. Set to 0 each time a new file is read.

FS Input field separator; default value is " ", a string containing a single
space. Set on command line with flag -F.

NF Number of fields in the current input line. NF is set every time a new
line is read.

NR Number of records processed since the beginning of execution. It is
incremented with each new record read.

OFS Output field separator; default value is a single space. The contents of
this variable are output between fields printed by the print statement.

ORS Output record specifier; the contents of this variable are output at the
end of every print statement. Default value is \n, a newline.

PROCINFO An array containing information about the running program. Elements
such as “gid”, “uid”, “pid”, and “version” are available.

RS Input record separator; default value is a string containing a newline, so
an input record is a single line of text.

Control Statements
Control statements are statements that control the flow of execution of your awk program. Awk control
statements are modeled after similar statements in C, and the looping and iteration concepts are the
same as were introduced in Chapter 3. This means you have your standard if, while, for, do, and
similar statements.

248

Chapter 7

10_583204 ch07.qxd 3/18/05 9:28 PM Page 248

All control statements contain a control statement keyword, such as if, and then what actions to per-
form on the different results of the control statement.

if Statements
One of the most important awk decision making statements is the if statement. It follows a standard if
(condition) then-action [else else-action] format, as in the following Try It Out.

Try It Out Using if Statements
Type the following command to perform an if statement on the countries.txt file:

$ awk ‘{ if ($3 < 1000) print }’
Andorra .ad 468 69865 35000 23500

How It Works
Awk reads in each line of the file, looks at field number 3, and then does a check to see if that field’s con-
tents are less than the number 1,000, performing a comparative operation on the field. (Comparative opera-
tions are tests that you can perform to see if something is equal to, greater than, less than, true/false, and
so on.) With this file, only the Andorra line has a third field containing a number that is less than 1,000.

Notice that the if conditional does not use a then, it just assumes that whatever statement follows the
condition (in this case, print) is what should be done if the condition is evaluated to be true.

If statements often have else statements as well. The else statements define what to do with the data
that does not match the condition, as in this Try It Out.

Try It Out Using else
Type the following into a file called ifelse.awk to see how an else statement enhances an if:

{ if ($3 < 1000)
printf “%s has only %d people!\n”, $1, $3

else
printf “%s has a population larger than 1000\n”, $1 }

Notice how the script has been formatted with whitespace to make it easier to read and understand how
the flow of the condition works. This is not required but is good programming practice!

Then run the script:

$ awf -f ifelse.awk countries.txt
Afghanistan has a population larger than 1000
Albania has a population larger than 1000
Algeria has a population larger than 1000
Andorra has only 468 people!
Angola has a population larger than 1000

249

Processing Text with awk

10_583204 ch07.qxd 3/18/05 9:28 PM Page 249

How It Works
The condition if ($3 < 1000) is tested. If it is true for a country, the first printf command is executed;
otherwise, the second printf command is executed.

An else statement can include additional if statements to make the logic fulfill all conditions that you
require. For example:

{ if ($1 == “cat”)
print “meow”;

else if ($1 == “dog”)
print “woof”;

else if ($1 == “bird”)
print “caw”;

else
print “I do not know what kind of noise “ $1 “ makes!” }

Each condition is tested in the order it appears, on each line in succession. Awk reads in a line, tests the
first field to see if it is cat and if so, prints meow. Otherwise, awk goes on to test whether the first field is
instead dog and, if so, prints woof. This process continues until awk reaches a condition that tests to be
true or runs out of conditions. If $1 isn’t cat, dog, or bird, then awk admits it doesn’t know what kind
of noise the animal that is in $1 makes.

Comparison Operators
These examples use the less than operation, but there are many other operators available for making con-
ditional statements powerful. Another example is the equal comparison operator, which checks to see if
something is equal to another thing. For example, the following command looks in the first field on each
line for the string Andorra and, if it finds it, prints it:

awk ‘{ if ($1 == “Andorra”) print }’

Unlike some languages, relational expressions in awk do not return a value; they evaluate to a true con-
dition or a false condition only.

The following table lists the comparison operators available in awk.

Comparison Operator Description

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

!= Not equal

== Equal

250

Chapter 7

10_583204 ch07.qxd 3/18/05 9:28 PM Page 250

It is also possible to combine as many comparison operators in one statement as you require by using
AND (&&) as well as OR (||) operators. This allows you to test for more than one thing before your con-
trol statement is evaluated to be true.

For example:

$ awk ‘{ if ((($1 == “Andorra”) && ($3 <= 500)) || ($1 == “Angola”)) print }’
Andorra .ad 468 69865 35000 23500
Angola .ao 1246700 10978552 96300 130000

This prints any line whose first field contains the string Andorra and whose third field contains a num-
ber that is less than or equal to 500, or any line whose first field contains the string Angola.

As this example illustrates, each condition that you are testing must be surrounded by parentheses.
Because the first and second condition are together (the first field has to match Andorra and the third
field must be less than or equal to 500), the two are enclosed together in additional parentheses. There
are also opening and closing parentheses that surround the entire conditional.

Arithmetic Functions
The comparison operators are useful for making comparisons, but you often will want to make changes
to variables. Awk is able to perform all the standard arithmetic functions on numbers (addition, subtrac-
tion, multiplication, and division), as well as modulo (remainder) division, and does so in floating point.
The following Try It Out demonstrates some arithmetic functions.

Try It Out Using awk as a Calculator
Type the following commands on the command line:

$ awk ‘BEGIN {myvar=10; print myvar+myvar}’
20
$ awk ‘BEGIN {myvar=10; myvar=myvar+1; print myvar}’
11

How It Works
In these examples, you start off setting the variable myvar to have the value of 10. The first example
does a simple addition operation to print the result of adding the value of myvar to myvar, resulting in
adding 10 + 10. The second example adds 1 to myvar, puts that value into myvar, and then prints it. In
the first example, myvar was not changed from its value of 10, so after the print statement, it still con-
tains the value 10, but in the second example, the result is added to the variable, so myvar changed to
the new value.

In the second example, you used an arithmetic operation to increase the value of the variable by one.
There is actually a shorter way of doing this in awk, and it has some additional functionality. You can
use the operator ++ to add 1 to a variable, and the operator -- to subtract 1. The position of these opera-
tors makes the increase or decrease happen at different points.

251

Processing Text with awk

10_583204 ch07.qxd 3/18/05 9:28 PM Page 251

Try It Out Increment and Decrement Operators
To get a good understanding of how this works, try typing the following examples on the command line:

$ awk ‘BEGIN {myvar=10; print ++myvar; print myvar}’
11
11
$ awk ‘BEGIN {myvar=10; print myvar++; print myvar}’
10
11

How It Works
In these two examples, the variable myvar is initialized with the value of 10. In the first example, a
print is done on ++myvar that instructs awk to increment the value of myvar by 1 and then print it; this
results in the printing of the first 11. Then you print myvar a second time to illustrate that the variable
has actually been set to the new incremented value of 11. This is the same process shown in the previous
section using myvar=myvar+1.

The second command is an example of a postincrement operation. The value of myvar is first printed
and then it is incremented. The new value of myvar is then printed to illustrate that the variable was
actually incremented.

A third set of increment operator shortcuts are the += and the -= operators. These allow you to add to or
subtract from the variable.

Try It Out Using the Add-to Operator
For example, you can use the += operator to add up all the cell phone users in your countries.txt file:

$ awk ‘BEGIN {celltotal = 0}
>{celltotal += $6}
>END { print celltotal }’ /tmp/countries.txt
2712810

How It Works
This example uses the += operator to add to the celltotal variable the contents of field number 6. The
first line of the file is read in, and celltotal gets the value of the sixth field added to it (the variable
starts initialized as 0 in the BEGIN block). It then reads the next line of the file, taking the sixth field and
adding it to the contents of the celltotal variable. This continues until the end, where the value of that
variable is printed.

Output Redirection
Be careful when using comparison operators, because some of them double as shell output variables in
different contexts. For example the > character can be used in an awk statement to send the output from
a command or a function into the file specified. For example, if you do the following:

$ awk ‘BEGIN { print 4+5 > “result” }’

252

Chapter 7

10_583204 ch07.qxd 3/18/05 9:28 PM Page 252

you create a file called result in your current working directory and then print the result of the sum of
4 + 5 into the file. If the file result already exists, it will be overwritten, unless you use the shell append
operator, as follows:

$ awk ‘BEGIN { print 5+5 >> “result” }’

This appends the summation of 5 + 5 to the end of the result file. If that file doesn’t exist, it will be
created.

Output from commands can also be piped into other system commands in the same way that this can be
done on the shell command line.

While Loops
While statements in awk implement basic looping logic, using the same concepts introduced in Chapter
3. Loops continually execute statements until a condition is met. A while loop executes the statements
that you specify while the condition specified evaluates to true.

While statements have a condition and an action. The condition is the same as the conditions used in if
statements. The action is performed as long as the condition tests to be true. The condition is tested; if it
is true, the action happens, and then awk loops back and tests the condition again. At some point, unless
you have an infinite loop, the condition evaluates to be false, and then the action is not performed and
the next statement in your awk program is executed.

Try It Out Using while Loops
Try this basic while loop to print the numbers 1 through 10:

$ awk ‘BEGIN { while (++myvar <= 10) print myvar }’

How It Works
The variable myvar starts off with the value of 0. Awk then uses the variable increment operators to incre-
ment myvar by 1 to have the value of 1. The while condition is tested, “Is myvar less than or equal to 10?”
The answer is that myvar is 1, and 1 is less than 10, so print the value of myvar. The loop repeats, the myvar
variable is incremented by 1, the condition is tested, it passes, and the value of the variable is printed (2).

For Loops
For loops are more flexible and provide a syntax that is easier to use, although they may seem more
complex. They achieve the same results as a while loop but are often a better way of expressing it.
Check out this example.

Try It Out Using for Loops
This for loop prints every number between 1 and 10:

$ awk ‘BEGIN { for (myvar = 1; myvar <= 10; myvar++) print myvar }’

253

Processing Text with awk

10_583204 ch07.qxd 3/18/05 9:28 PM Page 253

How It Works
For loops have three pieces. The first piece of the for loop does an initial action; in this case, it sets the
variable myvar to 1. The second thing it does is set a condition; in this case, as long as myvar is less than
or equal to 10, continue looping. The last part of this for loop is an increment; in this example, you
increment the variable by 2. So in English, you could read this a, “For every number between 1 and 1-,
print the number.”

Functions
Awk has some built-in functions that make life as an awk programmer easier. These functions are always
available; you don’t need to define them or bring in any extra libraries to make them work. A function is
called with arguments and returns the results. Functions are useful for things such as performing
numeric conversions, finding the length of strings, changing the case of a string, running system com-
mands, printing the current time, and the like.

Different functions have different requirements for how many arguments must be passed in order for
them to work. Many have optional arguments that do not need to be included or have defaults that can
be set if you desire. If you provide too many arguments to a function, gawk gives you a fatal error, while
some awk implementations just ignore the extra arguments.

Functions are called in a standard way: the function name, an opening parenthesis, and then before the
final parenthesis the arguments to the function. For example, sin($3) is calling the sin function and pass-
ing the argument $3. This function returns the mathematical sine value of whatever argument is sent to it.

Function arguments that are expressions, such as x+y, are evaluated before the function is passed those
arguments. The result of x+y is what is passed to the function, rather than “x+y” itself.

Try It Out Function Examples
Try these functions to see how they work:

$ awk ‘BEGIN {print length(“dog”)}’
3
$ awk ‘BEGIN {x=6; y=10; print sqrt(x+y)}’
4

How It Works
The first function in the example is the length function. It takes a string and tells you how many charac-
ters are in it. You pass the argument do, and it returns the length of that string.

The second sets two variables and then calls the square root function, using the additive of those two
variables as the function argument. Because the expression is evaluated before the function is passed the
argument, x+y is evaluated to be 16 and then sqrt(16) is called.

Awk has a number of predefined, built-in functions, and gawk has even more extensive ones available.
The number of functions available are too many to list here, but you should look through the manual

254

Chapter 7

10_583204 ch07.qxd 3/18/05 9:28 PM Page 254

pages to see what functions are available, especially before you struggle to try to do something that may
be implemented already in a built-in function.

The following table provides a list of some of the more common functions and what they do.

Function Description of Function

atan(x,y) Returns arctangent of y/x in radians

cos(x) Returns the cosine of x

exp() Returns the exponential e^x

index(in, find) Searches string in for the first occurrence of find and returns
its character position

int(x) Returns nearest integer to x

length([string]) Returns number of characters in string

log(x) Returns the logarithm of x

rand() Returns a random number between 0 (zero) and 1

sin(x) Returns the radial sine of x

sqrt(x) Returns the square root of x

strftime(format) Returns the time in the format specified, similar to the C
function strftime().

tolower(string), toupper(string) Changes the case of string

system(command) Executes command and returns the exit code of that command

systime() Returns the current seconds since the system epoch

Resources
The following are some good resources on the awk language:

❑ You can find the sources to awk at ftp://ftp.gnu.org/pub/gnu/awk.

❑ The Awk FAQ has many useful answers to some of the most commonly asked questions. It is
available at www.faqs.org/faqs/computer-lang/awk/faq/.

❑ The GNU Gawk manual is a very clear and easy-to-understand guide through the language:
www.gnu.org/software/gawk/manual/gawk.html.

❑ The newsgroup for awk is comp.lang.awk.

255

Processing Text with awk

10_583204 ch07.qxd 3/18/05 9:28 PM Page 255

Summary
Awk can be complex and overwhelming, but the key to any scripting language is to learn some of the
basics and start writing some simple scripts. As you practice, you will become more proficient and faster
with writing your scripts. Now that you have a basic understanding of awk, you can dive further into
the complexities of the language and use what you know to accomplish whatever it is you need to do in
your shell scripts.

In this chapter:

❑ You learned what awk is and how it works, all the different versions that are available, and how
to tell what version you have installed on your system. You also learned how to compile and
install gawk, the most frequently used awk implementation.

❑ You learned how awk programs flow, from BEGIN to END, and the many different ways that awk
can be invoked: from the command line or by creating independent awk scripts.

❑ You learned the basic awk print command and the more advanced printf and sprintf.

❑ You learned about different fields, the field separator variable, and different ways to change this
to what you need according to your data.

❑ You learned about string formatting and format modifier characters, and now you can make
nice-looking reports easily.

❑ You learned how to create your own variables and about the different built-in variables that are
available to query throughout your programs.

❑ Control blocks were introduced, and you learned how to do if, for, and do loops.

❑ Arithmetic operators and comparison operators were introduced, as well as different ways to
increment and decrement variables.

❑ You were briefly introduced to some of awk’s standard built-in functions.

Exercises
1. Pipe your /etc/passwd file to awk, and print out the home directory of each user.

2. Change the following awk line so that it prints exactly the same but doesn’t make use of commas:

awk ‘{ print “Number of cell phones in use in”,$1”:”,$6 }’ countries.txt

3. Print nicely formatted column headings for each of the fields in the countries.txt file, using
a variable to store your format specifier.

4. Using the data from the countries.txt file, print the total ratio of cell phones to all the land-
lines in the world.

5. Provide a total of all the fields in the countries.txt at the bottom of the output.

256

Chapter 7

10_583204 ch07.qxd 3/18/05 9:28 PM Page 256

8
Creating Command Pipelines

The designers of Unix created an operating system with a philosophy that remains valid to this
day. The Unix designers established the following:

❑ Everything is a file. Devices are represented as special files, as are networking connections
and plain old normal files.

❑ Each process runs in an environment. This environment includes standard files for input,
output, and errors.

❑ Unix has many small commands, each of which was designed to perform one task and to
do that task well. This saves on memory and processor usage. It also leads to a more ele-
gant system.

❑ These small commands were designed to accept input from the standard input file and
send output to the standard output files.

❑ You can combine these small commands into more complex commands by creating com-
mand pipelines.

This chapter delves into these concepts from the perspective of shell scripts. Because shell scripts
were designed to call commands, the ability to create command pipelines, thereby making new,
complex commands from the simple primitive commands, provides you with extraordinary
power. (Be sure to laugh like a mad scientist here.)

This chapter covers how you can combine commands and redirect the standard input, output, and
errors, as well as pipe commands together.

Working with Standard Input and Output
Every process on Unix or a Unix-like system is provided with three open files (usually called file
descriptors). These files are the standard input, output, and error files. By default:

11_583204 ch08.qxd 3/18/05 9:42 PM Page 257

❑ Standard input is the keyboard, abstracted as a file to make it easier to write scripts and programs.

❑ Standard output is the shell window or terminal from which the script runs, abstracted as a file
to again make writing scripts and programs easier.

❑ Standard error is the same as standard output: the shell window or terminal from which the
script runs.

When your script calls the read command, for example, it reads data from the standard input file. When
your script calls the echo command, it sends data to the standard output file.

A file descriptor is simply a number that refers to an open file. By default, file descriptor 0 (zero) refers to
standard input and is often abbreviated as stdin. File descriptor 1 refers to stdout, and file descriptor 2
refers to stderr. These numbers are important when you need to access a particular file, especially when
you want to redirect these files to other locations. File descriptor numbers go up from zero.

Redirecting Standard Input and Output
Because the keyboard and shell window are treated as files, it’s easier to redirect a script’s output or
input. That is, you can send the output of a script or a command to a file instead of to the shell window.
Similarly, you can change the input of a script or command to come from a file instead of the keyboard.
To do this, you create commands with a special > or < syntax.

To review, the basic syntax for a command is:

command options_and_arguments

The options are items such as -l for a long file listing (for the ls command). Arguments are items such as
file names.

To redirect the output of a command to a file, use the following syntax:

command options_and_arguments > output_file

To redirect the input of a command to come from a file, use the following syntax:

command options_and_arguments < input_file

You can combine both redirections with the following syntax:

command options_and_arguments < input_file > output_file

You can use this syntax within your scripts or at the command line.

Try It Out Redirecting Command Output
To try this, type in the following command at the prompt:

$ ls /usr/bin > commands.txt

258

Chapter 8

11_583204 ch08.qxd 3/18/05 9:42 PM Page 258

You can then see the data that would have gone to the screen with the more command:

$ more commands.txt
[
411toppm
a2p
a2ps
ab
abiword
AbiWord-2.0
ac
access

The output will continue for quite a while. The commands you see will differ based on your system, but
you should see commands such as [, covered in Chapter 3.

How It Works
The > operator tells the shell to redirect the output of the command to the given file. If the file exists, the
shell deletes the old contents of the file and replaces it with the output of the command, ls in this case.
Each line in the file commands.txt will contain the name of a file from /usr/bin, where many system
commands reside.

The more command sends the contents of the file to the shell window, one window at a time.

Note that if your system does not have the more command, try the less command. Cygwin on Windows,
for example, does not include the more command by default.

Try It Out Redirecting a Command’s Input
Use the < operator to redirect the input for a command. For example:

$ wc -l < commands.txt
2291

How It Works
The wc command, short for word count, counts the number of bytes, words, and lines in a file. The -l (ell)
option tells the wc command to output only the number of lines. This gives you a rough estimate as to
the number of commands in /usr/bin.

In this example, the input to the wc command comes from the file named commands.txt. The shell
sends the contents of the file commands.txt as the standard input for the wc command. You’ll find input
redirection very useful for programs that cannot open files on their own, such as the mail command.

Redirecting Standard Error
In addition to redirecting the standard input and output for a script or command, you can redirect stan-
dard error. Even though standard error by default goes to the same place as standard output — the shell
window or terminal — there are good reasons why stdout and stderr are treated separately. The main

259

Creating Command Pipelines

11_583204 ch08.qxd 3/18/05 9:42 PM Page 259

reason is that you can redirect the output of a command or commands to a file, but you have no way of
knowing whether an error occurred. Separating stderr from stdout allows the error messages to appear
on your screen while the output still goes to the file.

To redirect stderr from a command to a file, use the following syntax:

command options_and_arguments 2> output_file

The 2 in 2> refers to file descriptor 2, the descriptor number for stderr.

The C shell uses a different syntax for redirecting standard error. See the next section for more on this.

Redirecting Both Standard Output and Standard Error
In the Bourne shell (as well as Bourne-shell derivatives such as bash and ksh), you can redirect stderr to
the same location as stdout in a number of ways. You can also redirect standard error to a separate file.
As part of this, you need to remember that the file descriptors for the standard files are 0 for stdin, 1 for
stdout, and 2 for stderr.

Try It Out Sending stderr to the Same Place as stdout
If you redirect stdout to a file, you can use the 2>&1 syntax to redirect stderr to the same location as stdout:

$ ls /usr/bin > commands.txt 2>&1

How It Works
The example command has three parts.

❑ ls /usr/bin is the command run — that is, ls with its argument, /usr/bin.

❑ > commands.txt redirects the output of the ls command — that is, stdout — to the file named
commands.txt.

❑ 2>&1 sends the output of file descriptor 2, stderr, to the same location as file descriptor 1, std-
out. Because you already redirected stdout, any errors will also go into the file commands.txt.

You can see this if you try the ls command with a directory that does not exist. For example:

$ ls /usr2222/bin > commands.txt 2>&1
$ more commands.txt
ls: /usr2222/bin: No such file or directory

Note that this example assumes that your system has no directory named /usr2222/bin.

You have to be very careful entering in 2>&1 because an ampersand (&) alone means
to run a command in the background. Do not place any spaces around 2>&1.

260

Chapter 8

11_583204 ch08.qxd 3/18/05 9:42 PM Page 260

Try It Out Redirecting Both stderr and stdout at Once
You can redirect both stdout and stderr to the same location with the &> syntax. For example:

$ ls /usr2222/bin &> commands.txt
$ more commands.txt
ls: /usr2222/bin: No such file or directory

How It Works
In this example, ls is the command, /usr2222/bin is the argument to the ls command, and
&> commands.txt redirects both stdout and stderr to the file named commands.txt.

If you do not redirect both file descriptors, then errors will be sent to the shell window or terminal. For
example:

$ ls /usr2222/bin > commands.txt
ls: /usr2222/bin: No such file or directory

In this case, errors go to the screen, and any output would go to the file named commands.txt. (There
will be no output in the case of an error like this one.)

Appending to Files
The > operator can be quite destructive. Each time you run a command redirecting stdout to a file with
>, the file will be truncated and replaced by any new output. In many cases, you’ll want this behavior
because the file will contain just the output of the command. But if you write a script that outputs to a
log file, you typically don’t want to destroy the log each time. This defeats the whole purpose of creating
a log.

To get around this problem, you can use the >> operator to redirect the output of a command, but
append to the file, if it exists. The syntax follows:

command >> file_to_append

The shell will create the file to append if the file does not exist.

The C shell equivalent to redirect both stdout and stderr to the same place is >&. For
example:

ls >& output.txt

There is no easy way to redirect stderr to one place and then stdout to another. See
the note on Csh Programming Considered Harmful at www.faqs.org/faqs/unix-faq
/shell/csh-whynot/ for more on why you may not want to use the C shell for scripting.

261

Creating Command Pipelines

11_583204 ch08.qxd 3/18/05 9:42 PM Page 261

Try It Out Appending to a File
Enter the following commands:

$ uptime >> sysload.txt
$ uptime >> sysload.txt
$ uptime >> sysload.txt
$ more sysload.txt
20:45:09 up 23 days, 1:54, 78 users, load average: 0.23, 0.13, 0.05
20:45:21 up 23 days, 1:54, 78 users, load average: 0.20, 0.13, 0.05
20:45:24 up 23 days, 1:54, 78 users, load average: 0.18, 0.12, 0.05

How It Works
The uptime command lists how long your system has been up — that is, the time since the last reboot.
It also lists a system load average. By using the >> append operator, you can view the output of the
uptime command over time.

Use the >> operator any time you want to preserve the original contents of a file but still want to write
additional data to the file.

Use the > operator when there is no need to preserve the contents of a file or where you explicitly want
to overwrite the file.

Truncating Files
You can use a shorthand syntax for truncating files by omitting the command before the > operator. The
syntax follows:

> filename

You can also use an alternate format with a colon:

: > filename

Note that : > predates the use of smiley faces in email messages.

Both of these command-less commands will create the file if it does not exist and truncate the file to zero
bytes if the file does exist.

Try It Out Truncating Files
Try the following commands to see file truncating in operation:

$ ls /usr/bin > commands.txt
$ ls -l
total 5
-rw-r--r-- 1 ericfj None 3370 Nov 1 07:25 commands.txt
drwxr-xr-x+ 2 ericfj None 0 Oct 13 12:30 scripts
-rw-r--r-- 1 ericfj None 232 Sep 27 10:09 var

262

Chapter 8

11_583204 ch08.qxd 3/18/05 9:45 PM Page 262

$: > commands.txt
$ ls -l
total 1
-rw-r--r-- 1 ericfj None 0 Nov 1 07:25 commands.txt
drwxr-xr-x+ 2 ericfj None 0 Oct 13 12:30 scripts
-rw-r--r-- 1 ericfj None 232 Sep 27 10:09 var

How It Works
The original command redirects the output of ls to a file named commands.txt. You can then perform
a long listing on the file to see how many bytes are in the file, 3370 in this example (your results should
differ).

Next, the : > operator truncates the file to a length of zero bytes. Again, use a long listing to verify the size.

Sending Output to Nowhere Fast
On occasion, you not only want to redirect the output of a command, you want to throw the output
away. This is most useful if:

❑ A command creates a lot of unnecessary output.

❑ You want to see error messages only, if there are any.

❑ You are interested only in whether the command succeeded or failed. You do not need to see the
command’s output. This is most useful if you are using the command as a condition in an if or
while statement.

Continuing in the Unix tradition of treating everything as a file, you can redirect a command’s output to
the null file, /dev/null. The null file consumes all output sent to it, as if /dev/null is a black hole star.

The file /dev/null is often called a bit bucket.

To use this handy file, simply redirect the output of a command to the file. For example:

$ ls /usr/bin > /dev/null

The Cygwin environment for Windows includes a /dev/null to better support Unix shell scripts.

Redirecting input and output is merely the first step. The next step is to combine commands into com-
mand pipelines.

Piping Commands
Command pipelines extend the idea of redirecting the input and output for a program. If you can redi-
rect the output of one command and also redirect the input of another, why not connect the output of
one command as the input of another? That’s exactly what command pipelines do.

263

Creating Command Pipelines

11_583204 ch08.qxd 3/18/05 9:45 PM Page 263

The basic syntax is:

command options_and_arguments | command2 options_and_arguments

The pipe character, |, acts to connect the two commands. The shell redirects the output of the first com-
mand to the input of the second command.

Note that command pipelines are often redundant to the normal redirection. For example, you can pass
a file as input to the wc command, and the wc command will count the characters in the file:

$ wc < filename

You can also pass the name of the file as a command-line argument to the wc command:

$ wc filename

Or you can pipe the output of the cat command to the wc command:

$ cat filename | wc

Not all commands accept file names as arguments, so you still need pipes or input redirection. In addi-
tion, you can place as many commands as needed on the pipeline. For example:

command1 options_and_arguments | command2 | command3 | command4 > output.txt

Each of the commands in the pipeline can have as many arguments and options as needed. Because of
this, you will often need to use the shell line-continuation marker, \, at the end of a line. For example:

command1 options_and_arguments | \
command2 | \
command3 | \
command4 > output.txt

You can use the line-continuation marker, \, with any long command, but it is especially useful when
you pipe together a number of commands.

Note that in your scripts, you don’t need to use the line-continuation marker.

Piping with Unix Commands
Unix commands were designed with pipes in mind, as each command performs one task. The designers
of Unix expected you to pipe commands together to get any useful work done.

For example, the spell command outputs all the words it does not recognize from a given file. (This is
sort of a backward way to check the spelling of words in a file.) The sort command sorts text files, line
by line. The uniq command removes duplicate lines. You can combine these commands into a primitive
spell-checking command.

264

Chapter 8

11_583204 ch08.qxd 3/18/05 9:45 PM Page 264

Try It Out Checking Spelling the Primitive Way
Imagine you are living in a cave. Saber-toothed tigers roam outside. Mammoths taste bad. Try the fol-
lowing command line:

$ spell filename.txt | sort | uniq > suspect_words.txt

Choose a text file and pass it as the file name to the spell command. This is the file that will be checked.
Any file with a lot of words will do. Running this command on an outline for this book generates a num-
ber of suspect words:

$ more suspect_words.txt
AppleScript
arg
Awk
backticks
basename
bashrc
BBEdit
bc
builtin
CDE
commnads
csh
Csh
CSH
CVS
drive’s
dtedit
elif
eq
expr
fc
--More--(28%)

At least one of these words, commnads, is misspelled.

How It Works
The spell command goes through the file named by the command-line argument and outputs every
word that is not in its internal word list. The assumption is that these words must be misspelled. As you
can see from the example, virtually all computer and shell scripting terms are considered errors.

Note that modern programs such as the OpenOffice.org office suite contain much better spell-checking
packages. The spell command is a really old Unix command but very useful for testing pipelines.

The spell command outputs these words to stdout, one word per line. This one-per-line style is common
among many Unix commands because this style makes it so easy to process the data. The command
pipeline then pipes the output of the spell command to the input of the sort command. The sort
command sorts the lines. (Modern versions of the spell command may sort as well, making this step
unnecessary.)

265

Creating Command Pipelines

11_583204 ch08.qxd 3/18/05 9:45 PM Page 265

The output of the sort command is a list of words, one per line, in sorted order. The command line
pipes this output to the uniq command (another command always used in examples like this). The uniq
command, short for unique, removes duplicate adjacent lines. Thus, the input must be sorted before call-
ing uniq.

Finally, the command pipeline sends the data to the file named suspect_words.txt. You can then
check this file to see a list of all the words that spell flagged as errors.

As you can see, the invention of word processing software really made life easier. The buildup of print-out
paper forced people out of caves and into suburbia.

The concepts here work the same for any pipelines you need to create.

Creating Pipelines
Creating command pipelines can be difficult. It’s best to approach this step by step, making sure each
part of the pipeline works before going on to the next part.

For example, you can create a series of commands to determine which of many user accounts on a Unix
or Linux system are for real users. Many background services, such as database servers, are given user
accounts. This is mostly for the sake of file permissions. The postgres user can then own the files asso-
ciated with the Postgres database service, for example. So the task is to separate these pseudo user
accounts from real live people who have accounts on a system.

On Unix and Linux, user accounts are traditionally stored in /etc/passwd, a specially formatted text
file with one line per user account.

Mac OS X supports a /etc/passwd file, but in most cases, user accounts are accessed from
DirectoryServices or lookup. You can still experiment with the following commands to process format-
ted text in the /etc/passwd file, however. In addition, many systems do not use /etc/passwd to store all
user accounts. Again, you can run the examples to see how to process formatted text.

An /etc/passwd file from a Linux system follows:

$ more /etc/passwd
root:x:0:0:root:/root:/bin/bash
bin:x:1:1:bin:/bin:/sbin/nologin
daemon:x:2:2:daemon:/sbin:/sbin/nologin
adm:x:3:4:adm:/var/adm:/sbin/nologin
lp:x:4:7:lp:/var/spool/lpd:/sbin/nologin
sync:x:5:0:sync:/sbin:/bin/sync
shutdown:x:6:0:shutdown:/sbin:/sbin/shutdown
halt:x:7:0:halt:/sbin:/sbin/halt
mail:x:8:12:mail:/var/spool/mail:/sbin/nologin
news:x:9:13:news:/etc/news:
uucp:x:10:14:uucp:/var/spool/uucp:/sbin/nologin
operator:x:11:0:operator:/root:/sbin/nologin
games:x:12:100:games:/usr/games:/sbin/nologin
gopher:x:13:30:gopher:/var/gopher:/sbin/nologin
ftp:x:14:50:FTP User:/var/ftp:/sbin/nologin
nobody:x:99:99:Nobody:/:/sbin/nologin

266

Chapter 8

11_583204 ch08.qxd 3/18/05 9:45 PM Page 266

rpm:x:37:37::/var/lib/rpm:/sbin/nologin
vcsa:x:69:69:virtual console memory owner:/dev:/sbin/nologin
nscd:x:28:28:NSCD Daemon:/:/sbin/nologin
sshd:x:74:74:Privilege-separated SSH:/var/empty/sshd:/sbin/nologin
rpc:x:32:32:Portmapper RPC user:/:/sbin/nologin
rpcuser:x:29:29:RPC Service User:/var/lib/nfs:/sbin/nologin
nfsnobody:x:65534:65534:Anonymous NFS User:/var/lib/nfs:/sbin/nologin
pcap:x:77:77::/var/arpwatch:/sbin/nologin
mailnull:x:47:47::/var/spool/mqueue:/sbin/nologin
smmsp:x:51:51::/var/spool/mqueue:/sbin/nologin
apache:x:48:48:Apache:/var/www:/sbin/nologin
squid:x:23:23::/var/spool/squid:/sbin/nologin
webalizer:x:67:67:Webalizer:/var/www/usage:/sbin/nologin
dbus:x:81:81:System message bus:/:/sbin/nologin
xfs:x:43:43:X Font Server:/etc/X11/fs:/sbin/nologin
named:x:25:25:Named:/var/named:/sbin/nologin
ntp:x:38:38::/etc/ntp:/sbin/nologin
gdm:x:42:42::/var/gdm:/sbin/nologin
postgres:x:26:26:PostgreSQL Server:/var/lib/pgsql:/bin/bash
ericfj:x:500:500:Eric Foster-Johnson:/home2/ericfj:/bin/bash
bobmarley:x:501:501:Bob Marley:/home/bobmarley:/bin/bash

The /etc/passwd file uses the following format for each user account:

username:password:userID:groupID:Real Name:home_directory:starting_shell

Each field is separated by a colon. So you can parse the information for an individual user:

bobmarley:x:501:501:Bob Marley:/home/bobmarley:/bin/bash

In this case, the user name is bobmarley. The password, x, is a placeholder. This commonly means that
another system handles login authentication. The user ID is 501. So is the user’s default group ID. (Linux
systems often create a group for each user, a group of one, for security reasons.) The user’s real name is
Bob Marley. His home directory is /home/bobmarley. His starting shell is bash. (Good choice.)

Like the ancient spell command used previously, making broad assumptions is fun, although not
always accurate. For this example, a real user account is a user account that runs a shell (or what the
script thinks is a shell) on login and does not run a program in /sbin or /usr/sbin, locations for sys-
tem administration commands. As with the spell command, this is not fully accurate but good enough
to start processing the /etc/passwd file.

You can combine all this information and start extracting data from the /etc/passwd file one step at a
time.

Try It Out Processing User Names
The cut command extracts, or cuts, pieces of text from formatted text files. The following command tells
cut to extract the username, real name, and starting shell fields from the /etc/passwd file:

$ cut -d: -f1,5,7 /etc/passwd
root:root:/bin/bash
bin:bin:/sbin/nologin

267

Creating Command Pipelines

11_583204 ch08.qxd 3/18/05 9:37 PM Page 267

daemon:daemon:/sbin/nologin
adm:adm:/sbin/nologin
lp:lp:/sbin/nologin
sync:sync:/bin/sync
shutdown:shutdown:/sbin/shutdown
halt:halt:/sbin/halt
mail:mail:/sbin/nologin
news:news:
uucp:uucp:/sbin/nologin
operator:operator:/sbin/nologin
games:games:/sbin/nologin
gopher:gopher:/sbin/nologin
ftp:FTP User:/sbin/nologin
nobody:Nobody:/sbin/nologin
rpm::/sbin/nologin
vcsa:virtual console memory owner:/sbin/nologin
nscd:NSCD Daemon:/sbin/nologin
sshd:Privilege-separated SSH:/sbin/nologin
rpc:Portmapper RPC user:/sbin/nologin
rpcuser:RPC Service User:/sbin/nologin
nfsnobody:Anonymous NFS User:/sbin/nologin
pcap::/sbin/nologin
mailnull::/sbin/nologin
smmsp::/sbin/nologin
apache:Apache:/sbin/nologin
squid::/sbin/nologin
webalizer:Webalizer:/sbin/nologin
dbus:System message bus:/sbin/nologin
xfs:X Font Server:/sbin/nologin
named:Named:/sbin/nologin
ntp::/sbin/nologin
gdm::/sbin/nologin
postgres:PostgreSQL Server:/bin/bash
ericfj:Eric Foster-Johnson:/bin/bash
bobmarley:Bob Marley:/bin/bash

With the cut command, you have narrowed the data, removing extraneous fields, which makes it easier
to filter the entries.

Note that cut starts counting with 1. Many Unix-related commands start at 0.

The next step is to filter out all the items with starting programs in the /sbin directory, especially the
aptly named /sbin/nologin, which implies an account where the user is not allowed to log in. To do this,
you can pipe the results to the grep command:

$ cut -d: -f1,5,7 /etc/passwd | grep -v sbin
root:root:/bin/bash
sync:sync:/bin/sync
news:news:
postgres:PostgreSQL Server:/bin/bash
ericfj:Eric Foster-Johnson:/bin/bash
bobmarley:Bob Marley:/bin/bash

268

Chapter 8

11_583204 ch08.qxd 3/18/05 9:37 PM Page 268

The -v option tells grep to output all lines that do not match the expression. This is very useful for shell
scripts.

You now have a lot less data. The next filter should focus on keeping only those user accounts that run a
shell. Because all shells have sh in their names, you can use grep again:

$ cut -d: -f1,5,7 /etc/passwd | grep -v sbin | grep sh
root:root:/bin/bash
postgres:PostgreSQL Server:/bin/bash
ericfj:Eric Foster-Johnson:/bin/bash
bobmarley:Bob Marley:/bin/bash

Note that not all shells are required to have sh in their names. This is an assumption used for simplicity.

The data looks good — well, mostly good. You still have a false positive with the postgres account
because it is listed as having bash for its shell. (Exercise 3 in the exercises at the end of the chapter aims
to get you to solve this issue.)

The next step is to display the data in a way that looks better than the previous output. To display the
data, you can go back to the awk command. The following awk program will format the data better:

awk -F’:’ ‘ { printf(“%-12s %-40s\n”, $1, $2) } ‘ users.txt

See Chapter 7 for more on the awk command.

This command tells awk to process the data in the file named users.txt. To create this file, you can
redirect the output of the previous command:

cut -d: -f1,5,7 /etc/passwd | grep -v sbin | grep sh | sort > users.txt

For example:

$ cut -d: -f1,5,7 /etc/passwd | grep -v sbin | grep sh > users.txt
$ more users.txt
root:root:/bin/bash
postgres:PostgreSQL Server:/bin/bash
ericfj:Eric Foster-Johnson:/bin/bash
bobmarley:Bob Marley:/bin/bash

The data now appears in the file named users.txt, ready for the awk command. To make for a better
display, the sort command rearranges the output in alphabetical order:

$ cut -d: -f1,5,7 /etc/passwd | grep -v sbin | grep sh | sort > users.txt
$ more users.txt
bobmarley:Bob Marley:/bin/bash
ericfj:Eric Foster-Johnson:/bin/bash
postgres:PostgreSQL Server:/bin/bash
root:root:/bin/bash

269

Creating Command Pipelines

11_583204 ch08.qxd 3/18/05 9:37 PM Page 269

Putting this all together, enter the following script and save it under the name listusers:

cut -d: -f1,5,7 /etc/passwd | grep -v sbin | grep sh | sort > users.txt

awk -F’:’ ‘ { printf(“%-12s %-40s\n”, $1, $2) } ‘ users.txt

Clean up the temporary file.
/bin/rm -rf users.txt

When you run this script, you should see output like the following:

$ sh listusers
bobmarley Bob Marley
ericfj Eric Foster-Johnson
postgres PostgreSQL Server
root root

Your output will differ based on the user accounts listed in /etc/passwd on your system.

How It Works
Yow. That is a lot of work for a very short script. Note how you build up the piped command line slowly,
one step at a time. You’ll often need to follow this approach when creating a complicated command line.

Also note that there are a lot of commands available on your system, just waiting for you to use them in
shell scripts.

The listusers script makes a lot of assumptions. Each of these assumptions can break down and cause
the script to miss a user or, more likely, include false positives in the list of user accounts. The postgres
account in the example output shows a false positive. Furthermore, someone with a real name of
Linusbinsky would fail the sbin grep test. You probably don’t have a user with this name, but it shows
that people’s names often make filtering rules very hard to create.

In addition to piping between commands, you can pipe data to and from your shell scripts, as in the fol-
lowing Try It Out.

Try It Out Piping with Scripts
Enter the following script and save it under the name echodata:

#!/bin/sh
echo -n “When is the project due? “
read DUE
echo
echo “Due $DUE.”

Mark the script file as executable:

$ chmod a+x echodata

270

Chapter 8

11_583204 ch08.qxd 3/18/05 9:37 PM Page 270

This is a very simple script that prompts the user to enter data and a due date, and then repeats the data.
The purpose of the script is just to experiment with pipes.

Enter the following piped command:

$ echo today | ./echodata
When is the project due?
Due today.

How It Works
The echodata script prompts the user with the echo command and then uses the read command to
read input from stdin, normally the keyboard. You can pipe the output of the echo command to the
echodata script. With that, the script has the data it needs from stdin, so the script will complete right
away. It will not wait for you to type in any data.

Using tee to Send the Output to More Than One Process
The tee command sends output to two locations: a file as well as stdout. The tee command copies all
input to both locations. This proves useful, for example, if you need to redirect the output of a command
to a file and yet still want to see it on the screen. The basic syntax is:

original_command | tee filename.txt | next_command

In this example, the tee command sends all the output of the original_command to both the
next_command and to the file filename.txt. This allows you to extract data from the command with-
out modifying the result. You get a copy of the data, written to a file, as well as the normal command
pipeline.

Try It Out Tee Time
To see the tee command in action, try the following commands:

$ ls -1 /usr/bin | tee usr_bin.txt | wc -l
2291
$ more usr_bin.txt
[
411toppm
a2p
a2ps
ab
abiword
AbiWord-2.0
ac
access
aclocal
aclocal-1.4
aclocal-1.5
aclocal-1.6

271

Creating Command Pipelines

11_583204 ch08.qxd 3/18/05 9:37 PM Page 271

aclocal-1.7
aclocal-1.8
aconnect
activation-client
addftinfo
addr2line
addr2name.awk
addresses
allcm
--More--(0%)

How It Works
This command counts the number of files in the directory /usr/bin. The -1 (one) option tells the ls
command to output each file name one to a line. The -l (ell) option tells the wc command to report just
the number of lines in the data.

Note how the wc command consumes the data. With the wc command, you have a count, but the data
itself is gone. That’s where the tee command comes into play. The tee command feeds all the data to
the wc command, but it also makes a copy to the file usr_bin.txt.

Summary
You can get a lot of work done by combining simple commands. Unix systems (and Unix-like systems)
are packed full of these types of commands. Many in the programming community liken scripting to the
glue that ties commands together. You can think of the operating system as a toolbox and the shell as a
way to access these tools. This philosophy will make it a lot easier to write shell scripts that you can use
again and again.

This chapter covers redirecting input, output, and errors, as well as creating command pipelines.

❑ You can redirect the output of commands to files using the > operator. The > operator will trun-
cate a file if it already exists. Use >> in place of > if you want to append to the file.

❑ You can redirect the error output of commands using &>, or 2>&1 to send the error output to the
same location as the normal output.

❑ You can redirect the input of commands to come from files using the < operator.

❑ Redirect the output of one command to the input of another using the pipe character, |. You can
pipe together as many commands as you need.

❑ The tee command will copy its input to both stdout and to any files listed on the command line.

The next chapter shows how to control processes, capture the output of commands into variables, and
mercilessly kill processes.

272

Chapter 8

11_583204 ch08.qxd 3/18/05 9:37 PM Page 272

Exercises
1. Discuss the ways commands can generate output. Focus particularly on commands called from

shell scripts.

2. Use pipes or redirection to create an infinite feedback loop, where the final output becomes the
input again to the command line. Be sure to stop this command before it fills your hard disk.
(If you are having trouble, look at the documentation for the tail command.)

3. Modify the listusers script so that it does not generate a false positive for the postgres user
and other, similar accounts that are for background processes, not users. You may want to go
back to the original data, /etc/passwd, to come up with a way to filter out the postgres
account.

273

Creating Command Pipelines

11_583204 ch08.qxd 3/18/05 9:37 PM Page 273

11_583204 ch08.qxd 3/18/05 9:37 PM Page 274

9
Controlling Processes

Shell scripts were designed to run commands. Up to this point, all the scripts in the book have
launched various commands, but all in isolation. The most you’ve seen so far is piping commands
to connect the output of one command to the input of another. But the commands run from the
scripts do not provide data back to the scripts, other than through writing data to a file. To make
processes better fit into shell scripts, you need the capability to start and stop processes, as well as
capture the output of processes into shell variables.

This chapter delves into processes and shows how you can launch and control processes from
your scripts, including:

❑ Exploring the processes running on your system

❑ Launching processes in the foreground and the background

❑ Using command substitution to set variables from commands

❑ Checking the return codes of processes

Exploring Processes
There is a lot of terminology associated with processes. Don’t be daunted; it’s easier to understand
when you see it in action than to explain.

Simply put, a process is a running program. A program is a file on disk (or other storage) that can be
executed. Most programs are compiled into the binary format required by the processor chip and
operating system. For example, the ls command is a program, compiled for a particular system. An
ls program compiled for Linux on a Pentium system will not run in Windows, even on the same
computer and processor chip. That’s because the operating system defines the format of executable
binary files.

A command is a program that is part of the operating system. For example, ls is a command in
Linux and Windows systems, while format.exe is a command in Windows.

12_583204 ch09.qxd 3/18/05 9:27 PM Page 275

The act of making a program stored on disk into a process is called launching or running. The operating
system reads the program file on disk, creates a new process, and loads the program into that process.
Some operating systems allow for multiple processes to run from the same program. Other operating
systems impose a limit, such as allowing only one instance of a program to run at any given time.

There are a lot of differences between operating systems and how they handle processes. Luckily, shells
abstract a lot of the details, making for a more consistent view.

Checking Process IDs
When the operating system launches a process, it gives the process and ID. You can view this ID if you
list the running processes with the ps command on Unix and Linux systems, or use the Task Manager in
Windows. Figure 9-1 shows the Windows XP Task Manager.

Figure 9-1

In Figure 9-1, each process has a process ID, or PID. Each process ID uniquely identifies one process. The
process ID is the number you need if you want to control or terminate the process.

Isn’t it odd that the main way you interact with a running process is to terminate it?

The ps command lists the active processes. For example:

$ ps -ef
UID PID PPID C STIME TTY TIME CMD
root 1 0 0 Oct08 ? 00:00:05 init [5]
root 2 1 0 Oct08 ? 00:00:00 [ksoftirqd/0]

276

Chapter 9

12_583204 ch09.qxd 3/18/05 9:27 PM Page 276

root 3 1 0 Oct08 ? 00:00:02 [events/0]
root 4 3 0 Oct08 ? 00:00:00 [kblockd/0]
root 6 3 0 Oct08 ? 00:00:00 [khelper]
root 5 1 0 Oct08 ? 00:00:00 [khubd]
root 7 3 0 Oct08 ? 00:00:10 [pdflush]
root 10 3 0 Oct08 ? 00:00:00 [aio/0]
root 9 1 0 Oct08 ? 00:00:10 [kswapd0]
root 117 1 0 Oct08 ? 00:00:00 [kseriod]
root 153 1 0 Oct08 ? 00:00:04 [kjournald]
root 1141 1 0 Oct08 ? 00:00:00 [kjournald]
root 1142 1 0 Oct08 ? 00:00:08 [kjournald]
root 1473 1 0 Oct08 ? 00:00:00 syslogd -m 0
root 1477 1 0 Oct08 ? 00:00:00 klogd -x
rpc 1505 1 0 Oct08 ? 00:00:00 portmap
rpcuser 1525 1 0 Oct08 ? 00:00:00 rpc.statd
root 1552 1 0 Oct08 ? 00:00:00 rpc.idmapd
root 1647 1 0 Oct08 ? 00:00:00 /usr/sbin/smartd
root 1657 1 0 Oct08 ? 00:00:00 /usr/sbin/acpid
root 1858 1 0 Oct08 ? 00:00:00 /usr/sbin/sshd
root 1873 1 0 Oct08 ? 00:00:00 xinetd -stayalive -pidfile /var
root 1892 1 0 Oct08 ? 00:00:01 sendmail: accepting connections
smmsp 1901 1 0 Oct08 ? 00:00:00 sendmail: Queue runner@01:00:00
root 1912 1 0 Oct08 ? 00:00:00 gpm -m /dev/input/mice -t imps2
root 1923 1 0 Oct08 ? 00:00:00 crond
xfs 1945 1 0 Oct08 ? 00:00:01 xfs -droppriv -daemon
daemon 1964 1 0 Oct08 ? 00:00:00 /usr/sbin/atd
dbus 1983 1 0 Oct08 ? 00:00:00 dbus-daemon-1 --system
root 1999 1 0 Oct08 ? 00:00:00 mdadm --monitor --scan
root 2017 1 0 Oct08 tty1 00:00:00 /sbin/mingetty tty1
root 2018 1 0 Oct08 tty2 00:00:00 /sbin/mingetty tty2
root 2024 1 0 Oct08 tty3 00:00:00 /sbin/mingetty tty3
root 2030 1 0 Oct08 tty4 00:00:00 /sbin/mingetty tty4
root 2036 1 0 Oct08 tty5 00:00:00 /sbin/mingetty tty5
root 2042 1 0 Oct08 tty6 00:00:00 /sbin/mingetty tty6
root 2043 1 0 Oct08 ? 00:00:00 /usr/bin/gdm-binary -nodaemon
root 2220 2043 0 Oct08 ? 00:00:25 /usr/bin/gdm-binary -nodaemon
root 2231 2220 0 Oct08 ? 05:52:20 /usr/X11R6/bin/X :0 -audit 0 -au
root 2805 1 0 Oct08 ? 00:00:00 /sbin/dhclient -1 -q -lf /var/li
root 18567 3 0 Oct18 ? 00:00:09 [pdflush]
root 20689 1 0 Nov03 ? 00:00:00 /usr/libexec/bonobo-activation-s
ericfj 22282 1 0 Nov04 ? 00:00:00 /usr/libexec/bonobo-activation-s
ericfj 25801 2220 0 Nov06 ? 00:00:02 /usr/bin/gnome-session
ericfj 25849 25801 0 Nov06 ? 00:00:00 /usr/bin/ssh-agent /etc/X11/xinit
ericfj 25853 1 0 Nov06 ? 00:00:01 /usr/libexec/gconfd-2 5
ericfj 25856 1 0 Nov06 ? 00:00:00 /usr/bin/gnome-keyring-daemon
ericfj 25858 1 0 Nov06 ? 00:02:12 metacity --sm-save-file 10940799
ericfj 25860 1 0 Nov06 ? 00:00:03 /usr/libexec/gnome-settings-daem
ericfj 25865 1873 0 Nov06 ? 00:00:08 fam
ericfj 25879 1 0 Nov06 ? 00:00:04 xscreensaver -nosplash
ericfj 25888 1 0 Nov06 ? 00:00:13 gnome-panel --sm-config-prefix
/ericfj 25890 1 0 Nov06 ? 00:00:28 magicdev --sm-config-prefix /mag
ericfj 25895 1 0 Nov06 ? 00:00:39 nautilus --sm-config-prefix /nau
ericfj 25909 1 0 Nov06 ? 00:00:03 eggcups --sm-config-prefix /eggc
ericfj 25912 1 0 Nov06 ? 00:00:00 /usr/libexec/gnome-vfs-daemon -
ericfj 25914 1 0 Nov06 ? 00:00:10 gnome-terminal --sm-config-prefi

277

Controlling Processes

12_583204 ch09.qxd 3/18/05 9:27 PM Page 277

ericfj 25939 1 0 Nov06 ? 00:00:01 /usr/bin/pam-panel-icon --sm-cli
root 25944 25939 0 Nov06 ? 00:00:00 /sbin/pam_timestamp_check -d roo
ericfj 25946 1 0 Nov06 ? 00:00:00 /usr/libexec/mapping-daemon
ericfj 25948 1 0 Nov06 ? 00:00:04 /usr/libexec/nautilus-throbber
ericfj 25949 25914 0 Nov06 ? 00:00:00 gnome-pty-helper
ericfj 25950 25914 0 Nov06 pts/92 00:00:00 bash
ericfj 25959 25914 0 Nov06 pts/93 00:00:00 bash
ericfj 25962 25914 0 Nov06 pts/94 00:00:00 bash
ericfj 26007 1 0 Nov06 ? 00:00:02 /usr/libexec/clock-applet --oaf-
ericfj 26009 1 0 Nov06 ? 00:00:01 /usr/libexec/notification-area-a
ericfj 26011 1 0 Nov06 ? 00:00:01 /usr/libexec/mixer_applet2 --oaf
ericfj 26018 1 0 Nov06 ? 00:00:28 /usr/libexec/wnck-applet --oaf-a
ericfj 26020 1 0 Nov06 ? 00:00:04 /usr/libexec/wireless-applet --o
ericfj 26022 1 0 Nov06 ? 00:00:02 /usr/libexec/gweather-applet-2
ericfj 26025 25950 0 Nov06 pts/92 00:00:00 /bin/sh /home2/ericfj/bin/favs
ericfj 26026 26025 0 Nov06 pts/92 00:00:32 xmms /home2/ericfj/multi/mp3/fav
root 26068 1 0 Nov06 ? 00:00:00 [usb-storage]
root 26069 1 0 Nov06 ? 00:00:00 [scsi_eh_12]
ericfj 26178 1 0 Nov06 ? 00:00:00 /bin/sh /usr/lib/firefox-0.9.3/f
ericfj 26188 26178 0 Nov06 ? 00:00:00 /bin/sh /usr/lib/firefox-0.9.3/r
ericfj 26193 26188 0 Nov06 ? 00:07:47 /usr/lib/firefox-0.9.3/firefox-b
root 26232 25950 0 Nov06 pts/92 00:00:00 su
root 26235 26232 0 Nov06 pts/92 00:00:00 bash
ericfj 27112 1 0 Nov06 ? 00:00:00 /usr/bin/artsd -F 10 -S 4096 -s
root 27742 1 0 04:08 ? 00:00:00 cupsd
ericfj 8585 1 0 07:51 ? 00:01:03 /usr/lib/ooo-1.1/program/soffice
ericfj 8604 8585 0 07:51 ? 00:00:00 /usr/lib/ooo-1.1/program/getstyl
ericfj 8615 1 0 07:53 ? 00:00:09 gedit file:///home2/ericfj/writi
ericfj 9582 1 0 19:22 ? 00:00:03 /usr/bin/esd -terminate -nobeeps
ericfj 9621 25962 0 19:37 pts/94 00:00:00 ps -ef

On most modern operating systems, you will find a lot of processes running at any given time.

Note that the options to the ps command to view all processes are either -ef or -aux, depending on the
version of Unix. Berkeley-derived versions of Unix such as Mac OS X tend to use -aux, and System
V–based versions of Unix tend to use -ef.

Linux systems support both types of options.

With Bourne shell scripts, a special variable, $$, holds the process ID, or PID, of the current process —
that is, the process running your script. Note that this process is most likely a running instance of /bin/sh.

Another special variable, $!, holds the PID of the last command executed in the background. If your
script has not launched any processes in the background, then $! will be empty.

Try It Out Reading Process IDs
Enter the following script. Save it under the file name process_id:

echo “The current process ID is $$.”

if [“$!” != “”]

278

Chapter 9

12_583204 ch09.qxd 3/18/05 9:27 PM Page 278

then
echo “The ID of the last-run background process is $!.”

else
echo “No background process ID stored in” ‘$!’

fi

Now, run something in the background.
ls > /dev/null &
if [“$!” != “”]
then

echo “The ID of the last-run background process is $!.”
else

echo “No background process ID stored in” ‘$!’
fi

When you run this script, you’ll see output like the following:

$ sh process_id
The current process ID is 9652.
No background process ID stored in $!
The ID of the last-run background process is 9653.

It is very likely that the process ID numbers will differ on your system, however. Each operating system
assigns process IDs to each new process. Operating systems differ in how they choose the numbers to assign.
In addition, if one system has run a lot of processes, it will have used up more process IDs than another sys-
tem that may have run only a few processes. Just assume that each process has an ID number.

How It Works
The process_id script first outputs the value of $$. The shell fills in $$ with the ID of its process. Next,
the process_id script checks if the special variable $! has a value. If set, $! holds the ID of the last-run
background process — that is, the background process last run from your script. Because the script has
not launched any processes in the background, you should expect this to be empty.

Notice how the if statement test places the variable $! within quotes. That’s so there actually is an argu-
ment for the test command, [, even if the variable $! is empty. This is important, or the if statement will not
operate properly.

Next, the process_id script launches a process, ls in this case, in the background. Now the special
variable $! should have a value.

Reading the /proc File System
In addition to the normal process listings, Linux systems support a special file system called /proc. The /proc
file system holds information on each running process as well as hardware-related information on your sys-
tem. The /proc file system started out holding just process information. Now it holds all sorts of operating
system and hardware data.

The neat thing about the /proc file system is that it appears to be a normal directory on disk. Inside /proc,
you’ll find more directories and plain text files, making it easy to write scripts. Each process, for example,
has a directory under /proc. The directory name is the process ID number.

279

Controlling Processes

12_583204 ch09.qxd 3/18/05 9:27 PM Page 279

The /proc file system holds more than information on processes. It also contains information on devices
connected on USB ports, system interrupts, and other hardware-related statuses.

Try It Out Listing Files in /proc
Concentrating on processes, you can use the standard file-related commands to view the contents of the
/proc file system. For example:

$ ls -CF /proc
1/ 11234/ 11572/ 1892/ 2231/ dma mounts@
10/ 11237/ 11575/ 1901/ 27112/ driver/ mtrr
11087/ 11238/ 11594/ 1912/ 27742/ execdomains net/
11135/ 11248/ 11623/ 1923/ 2805/ fb partitions
11139/ 11293/ 11632/ 1945/ 3/ filesystems pci
11142/ 11295/ 117/ 1964/ 4/ fs/ scsi/
11144/ 11297/ 11751/ 1983/ 5/ ide/ self@
11146/ 11304/ 12032/ 1999/ 6/ interrupts slabinfo
11151/ 11306/ 1473/ 2/ 7/ iomem stat
11165/ 11308/ 1477/ 2017/ 9/ ioports swaps
11174/ 11312/ 1505/ 2018/ acpi/ irq/ sys/
11179/ 11322/ 1525/ 2024/ asound/ kcore sysrq-trigger
11181/ 11327/ 153/ 2030/ buddyinfo kmsg sysvipc/
11195/ 11379/ 1552/ 2036/ bus/ loadavg tty/
11198/ 11380/ 1647/ 2042/ cmdline locks uptime
11200/ 1141/ 1657/ 2043/ cpuinfo mdstat version
11225/ 1142/ 18567/ 20689/ crypto meminfo vmstat
11230/ 11564/ 1858/ 2220/ devices misc
11232/ 11565/ 1873/ 22282/ diskstats modules

Note all the numbered directories. These represent the processes in the system. Inside each process-specific
directory, you’ll find information about the particular process. For example:

$ ls -CF /proc/12032
attr/ cmdline environ fd/ mem root@ statm task/
auxv cwd@ exe@ maps mounts stat status wchan

How It Works
The /proc file system isn’t really a directory on disk. Instead, it is a virtual file system, where the Linux
kernel maps internal kernel data structures to what looks like files and directories on disk. This is really
handy because so many Linux commands are designed to work with files.

The first ls command lists the contents of /proc at a given time. This means your output will differ but
should still appear similar to the example.

The -CF option to the ls command appends / on directories, * on executable files, and @ on symbolic links.

Next, select a running process. In this example, the next ls command views the contents of the /proc/12032
directory. Note that your process numbers will very likely differ.

You can guess what some of the files in this directory hold. For example, the cmdline file holds the com-
mand-line parameters to the process. The environ file holds the environment variables and their values

280

Chapter 9

12_583204 ch09.qxd 3/18/05 9:27 PM Page 280

under which the process was launched. The fd subdirectory lists the open file descriptors. A long listing
of the fd subdirectory can be the most interesting. For example:

$ ls -CFl /proc/12032/fd
total 4
lrwx------ 1 ericfj ericfj 64 Nov 8 20:08 0 -> /dev/pts/97
lrwx------ 1 ericfj ericfj 64 Nov 8 20:08 1 -> /dev/pts/97
lrwx------ 1 ericfj ericfj 64 Nov 8 20:08 2 -> /dev/pts/97
lr-x------ 1 ericfj ericfj 64 Nov 8 20:08 255 ->
/home2/ericfj/writing/beginning_shell_scripting/scripts/exercise_09_01

Note the three open file descriptors 0, 1, and 2. These correspond to stdin, stdout, and stderr, respectively.
There is also file descriptor 255.

A more interesting process has more open file descriptors. For example:

$ ls -CFl /proc/11751/fd
total 25
lr-x------ 1 ericfj ericfj 64 Nov 8 20:09 0 -> /dev/null
l-wx------ 1 ericfj ericfj 64 Nov 8 20:09 1 -> pipe:[9645622]
lr-x------ 1 ericfj ericfj 64 Nov 8 20:09 10 -> pipe:[9710243]
l-wx------ 1 ericfj ericfj 64 Nov 8 20:09 11 -> pipe:[9710243]
lrwx------ 1 ericfj ericfj 64 Nov 8 20:09 12 -> socket:[9710244]
lrwx------ 1 ericfj ericfj 64 Nov 8 20:09 13 -> socket:[9710250]
lrwx------ 1 ericfj ericfj 64 Nov 8 20:09 14 -> socket:[9710252]
lrwx------ 1 ericfj ericfj 64 Nov 8 20:09 15 -> socket:[9710255]
lrwx------ 1 ericfj ericfj 64 Nov 8 20:09 16 -> socket:[9710260]
lrwx------ 1 ericfj ericfj 64 Nov 8 20:09 17 -> socket:[9710256]
lr-x------ 1 ericfj ericfj 64 Nov 8 20:09 18 -> pipe:[9710402]
lrwx------ 1 ericfj ericfj 64 Nov 8 20:09 19 -> socket:[9710284]
l-wx------ 1 ericfj ericfj 64 Nov 8 20:09 2 -> pipe:[9645622]
l-wx------ 1 ericfj ericfj 64 Nov 8 20:09 20 -> pipe:[9710402]
lr-x------ 1 ericfj ericfj 64 Nov 8 20:09 21 -> pipe:[9710403]
l-wx------ 1 ericfj ericfj 64 Nov 8 20:09 22 -> pipe:[9710403]
lrwx------ 1 ericfj ericfj 64 Nov 8 20:09 23 -> socket:[9710404]
lrwx------ 1 ericfj ericfj 64 Nov 8 20:09 24 -> socket:[9710407]
lrwx------ 1 ericfj ericfj 64 Nov 8 20:09 3 -> socket:[9710237]
lr-x------ 1 ericfj ericfj 64 Nov 8 20:09 4 -> pipe:[9710240]
l-wx------ 1 ericfj ericfj 64 Nov 8 20:09 5 -> pipe:[9710240]
lr-x------ 1 ericfj ericfj 64 Nov 8 20:09 6 -> pipe:[9710241]
l-wx------ 1 ericfj ericfj 64 Nov 8 20:09 7 -> pipe:[9710241]
lr-x------ 1 ericfj ericfj 64 Nov 8 20:09 8 -> pipe:[9710242]
l-wx------ 1 ericfj ericfj 64 Nov 8 20:09 9 -> pipe:[9710242]

This process is using quite a number of network sockets and pipes. This is for a GNOME text editor, gedit.

Explore the /proc file system to see what you can find. Once you find some interesting files, you can use
the cat command to view the file contents. For example:

$ cat /proc/11751/environ
SSH_AGENT_PID=11135HOSTNAME=kirkwallTERM=dumbSHELL=/bin/bashHISTSIZE=1000QTDIR=/u
sr/lib/qt3.3USER=ericfjLS_COLORS=SSH_AUTH_SOCK=/tmp/sshPwg11087/agent.110
87KDEDIR=/usrPATH=/usr/kerberos/bin:/usr/local/bin:/usr/bin:/bin:/usr/X11R6/b

281

Controlling Processes

12_583204 ch09.qxd 3/18/05 9:27 PM Page 281

in:/home2/ericfj/bin:/usr/java/j2sdk1.4.1_03/bin:/opt/jext/binDESKTOP_S
ESSION=defaultMAIL=/var/spool/mail/ericfjPWD=/home2/ericfjINPUTRC=/etc/in
putrcLANG=en_US.UTF-8GDMSESSION=defaultSSH_ASKPASS=/usr/libexec/openssh/gn
ome-ssh-askpassSHLVL=1HOME=/home2/ericfjLOGNAME=ericfjLESSOPEN=|usr/bin/less
pipe.sh%sDISPLAY=:0.0G_BROKEN_FILENAMES=1XAUTHORITY=/home2/ericfj/.Xau
thorityGTK_RC_FILES=/etc/gtk/gtkrc:/home2/ericfj/.gtkrc-1.2-
gnome2SESSION_MANAGER=local/kirkwall:/tmp/.ICE-unix/11087GNOME_KEYRI
NG_SOCKET=/tmp/keyring-9XCKKR/socketGNOME_DESKTOP_SESSION_ID=Default

If you stare at this output long enough (with your eyes in a slight squint), you can see a set of environment
variables. The problem is that the output is all mashed together.

Try It Out Viewing Process Data from /proc
To see what is going on in the preceding code block, you can use the od command, short for octal dump.
The od command dumps the file contents as a set of octal characters. With the -a option, it also prints
out ASCII text for all printable characters.

For example:

$ od -a /proc/11751/environ
0000000 S S H _ A G E N T _ P I D = 1 1
0000020 1 3 5 nul H O S T N A M E = k i r
0000040 k w a l l nul T E R M = d u m b nul
0000060 S H E L L = / b i n / b a s h nul
0000100 H I S T S I Z E = 1 0 0 0 nul Q T
0000120 D I R = / u s r / l i b / q t -
0000140 3 . 3 nul U S E R = e r i c f j nul
0000160 L S _ C O L O R S = nul S S H _ A
0000200 U T H _ S O C K = / t m p / s s
0000220 h - P w g 1 1 0 8 7 / a g e n t
0000240 . 1 1 0 8 7 nul K D E D I R = / u
0000260 s r nul P A T H = / u s r / k e r
0000300 b e r o s / b i n : / u s r / l
0000320 o c a l / b i n : / u s r / b i
0000340 n : / b i n : / u s r / X 1 1 R
0000360 6 / b i n : / h o m e 2 / e r i
0000400 c f j / b i n : / u s r / j a v
0000420 a / j 2 s d k 1 . 4 . 1 _ 0 3 /
0000440 b i n : / o p t / j e x t / b i
0000460 n nul D E S K T O P _ S E S S I O
0000500 N = d e f a u l t nul M A I L = /
0000520 v a r / s p o o l / m a i l / e
0000540 r i c f j nul P W D = / h o m e 2
0000560 / e r i c f j nul I N P U T R C =
0000600 / e t c / i n p u t r c nul L A N
0000620 G = e n _ U S . U T F - 8 nul G D
0000640 M S E S S I O N = d e f a u l t
0000660 nul S S H _ A S K P A S S = / u s
0000700 r / l i b e x e c / o p e n s s
0000720 h / g n o m e - s s h - a s k p
0000740 a s s nul S H L V L = 1 nul H O M E
0000760 = / h o m e 2 / e r i c f j nul L
0001000 O G N A M E = e r i c f j nul L E

282

Chapter 9

12_583204 ch09.qxd 3/18/05 9:27 PM Page 282

0001020 S S O P E N = | / u s r / b i n
0001040 / l e s s p i p e . s h sp % s nul
0001060 D I S P L A Y = : 0 . 0 nul G _ B
0001100 R O K E N _ F I L E N A M E S =
0001120 1 nul X A U T H O R I T Y = / h o
0001140 m e 2 / e r i c f j / . X a u t
0001160 h o r i t y nul G T K _ R C _ F I
0001200 L E S = / e t c / g t k / g t k
0001220 r c : / h o m e 2 / e r i c f j
0001240 / . g t k r c - 1 . 2 - g n o m
0001260 e 2 nul S E S S I O N _ M A N A G
0001300 E R = l o c a l / k i r k w a l
0001320 l : / t m p / . I C E - u n i x
0001340 / 1 1 0 8 7 nul G N O M E _ K E Y
0001360 R I N G _ S O C K E T = / t m p
0001400 / k e y r i n g - 9 X C K K R /
0001420 s o c k e t nul G N O M E _ D E S
0001440 K T O P _ S E S S I O N _ I D =
0001460 D e f a u l t nul
0001470

Now you can see that this file uses a null (ASCII 0) character, displayed as nul, to separate each entry.
The null character doesn’t work well with normal Unix and Linux tools for working with text files,
unfortunately. Hence, the mashed-looking output.

To get around this, use the tr command:

$ tr “\000” “\n” < /proc/11751/environ | sort
DESKTOP_SESSION=default
DISPLAY=:0.0
G_BROKEN_FILENAMES=1
GDMSESSION=default
GNOME_DESKTOP_SESSION_ID=Default
GNOME_KEYRING_SOCKET=/tmp/keyring-9XCKKR/socket
GTK_RC_FILES=/etc/gtk/gtkrc:/home2/ericfj/.gtkrc-1.2-gnome2
HISTSIZE=1000
HOME=/home2/ericfj
HOSTNAME=kirkwall
INPUTRC=/etc/inputrc
KDEDIR=/usr
LANG=en_US.UTF-8
LESSOPEN=|/usr/bin/lesspipe.sh %s
LOGNAME=ericfj
LS_COLORS=
MAIL=/var/spool/mail/ericfj
PATH=/usr/kerberos/bin:/usr/local/bin:/usr/bin:/bin:/usr/X11R6/bin:/home2/ericfj/
bin:/usr/java/j2sdk1.4.1_03/bin:/opt/jext/bin
PWD=/home2/ericfj
QTDIR=/usr/lib/qt-3.3
SESSION_MANAGER=local/kirkwall:/tmp/.ICE-unix/11087
SHELL=/bin/bash
SHLVL=1
SSH_AGENT_PID=11135
SSH_ASKPASS=/usr/libexec/openssh/gnome-ssh-askpass

283

Controlling Processes

12_583204 ch09.qxd 3/18/05 9:27 PM Page 283

SSH_AUTH_SOCK=/tmp/ssh-Pwg11087/agent.11087
TERM=dumb
USER=ericfj
XAUTHORITY=/home2/ericfj/.Xauthority

Now you can see the environment variables in all their glory.

How It Works
The tr command, short for translate, translates one pattern of text for another in its input, outputting the
translated text. In this case, tr converts \000, the null character (ASCII 0), to \n, a newline. Most Unix
and Linux tools work much better with newlines as the delimiter between entries, as opposed to a null
character as the delimiter.

The double quotes around the \000 and \n are essential, as you want the shell to interpret these charac-
ters and substitute the two actual characters, ASCII 0 and ASCII 10, in place of \000 and \n, respectively.
The \000 entry is formatted as an octal number.

Killing Processes
Armed with a process ID, you can kill a process. Typically, processes end when they are good and ready.
For example, the ls command performs a directory listing, outputs the results, and then exits. Other
processes, particularly server processes, remain around for some time. And you may see a process that
remains running when it no longer should. This often happens with processes that get stuck for some
reason and fail to exit at the expected time.

Stuck is a technical term for when something weird happens in software, and the program won’t do
what it should or stop doing what it shouldn’t. This is the software equivalent of when your mom says
to you that “I put the thing in the thing and now it won’t come out,” referring to a CD-ROM lovingly
shoved into the gap between two optical drives, and the CD-ROM would apparently not eject.

Ironically, in Unix and Linux systems, the kill command merely sends a signal to a process. The pro-
cess typically decides to exit, or commit suicide, when it receives a signal. Thus, kill doesn’t really kill
anything. It is more of an accessory to the crime. Think of this as a “Manchurian Candidate” kind of
event, as most commands are programmed to commit suicide on a signal.

The kill command needs the process ID of the process to signal as a command-line argument. You can use
command-line options to determine which kind of signal to send. In most cases, you want to use the -9
option, which sends a kill signal (known as SIGKILL) to the process. For example, to kill a process with the
ID of 11198, use the following command:

$ kill -9 11198

You need to own the process or be logged in as the root user to kill a process. The online documentation
for the kill command can tell you other signals. Not all commands support all signals.

284

Chapter 9

12_583204 ch09.qxd 3/18/05 9:27 PM Page 284

Launching Processes
Most often, your scripts will launch processes instead of kill them. With the rich command set available,
your scripts can perform a lot of work by running one command after another.

The actual task of launching processes differs by operating system. For example, in Windows, you need
to call CreateProcess, a Win32 API call. In Unix and Linux, you can call fork and exec. The fork call
clones your current process, and exec launches a process in a special way, covered following.

Fortunately, the shell hides some of these details for you. Even so, you still need to make a number of
choices regarding how you want to launch processes.

The following sections describe four such ways:

❑ Running commands in the foreground

❑ Running commands in the background

❑ Running commands in subshells

❑ Running commands with the exec command

Running Commands in the Foreground
To run a command from within your scripts, simply place the command in your script. For example:

ls

This tells the script to execute the command and wait for the command to end. This is called running the
command in the foreground. You’ve been doing this since Chapter 2.

The shell treats any extra elements on the same line as the command as options and arguments for the
command. For example:

ls -l /usr/local

Again, this is what you have been adding to your scripts since Chapter 2. The key point is that the shell
runs the command in the foreground, waiting for the command to exit before going on.

Running Commands in the Background
Place an ampersand character, &, after a command to run that command in the background. This works
on the command line. You can also use this technique in your shell scripts.

This can work for any command, but commands don’t work well if run in the background if:

❑ They send output to stdout, unless you redirect stdout for the command.

285

Controlling Processes

12_583204 ch09.qxd 3/18/05 9:27 PM Page 285

❑ They need to read from stdin to get input from the user, unless you redirect stdin for the command.

❑ Your script needs to interact with the command.

Running Commands in Subshells
Placing a set of commands inside parentheses runs those commands in a subshell, a child shell of the cur-
rent shell. For example:

(cd /usr/local/data; tar cf ../backup.tar .)

In this case, the subshell runs the cd command to change to a different directory and then the tar com-
mand to create an archive from a number of files.)

See Chapter 4 for more on using subshells.

Running Commands with the exec Command
The exec command runs a command or shell script and does not return to your original script. Short for
execute, exec runs any script or command, replacing your current script with the process you execute. In
other words, the exec command overlays your script with another process, a script, or a command.

This is based on the C language exec call.

The basic syntax for exec follows:

exec command options arguments

To use exec, all you really need to do is prefix a command and all its options and arguments with exec.
For example:

$ exec echo “Hello from exec.”

This command uses exec to launch the echo command. The effects of exec, however, are more apparent
when you call exec in a script, as in the following example.

Try It Out Calling exec from a Script
Enter the following script and save it under the name exec1:

Test of exec.

exec echo “Hello from exec. Goodbye.”

echo “This line will not get output.”

When you run this script, you will see only the first line of output. For example:

$ sh exec1
Hello from exec. Goodbye.

286

Chapter 9

12_583204 ch09.qxd 3/18/05 9:27 PM Page 286

How It Works
This script outputs only one of two commands. The first command uses exec to launch the echo com-
mand. The output of this command appears. Then the script exits. The shell never encounters the second
echo command and so never runs it.

Launching a process from exec is a handy way to start processes, but you always need to keep in mind
that exec does not return. Instead, the new process runs in place of the old. This means your script exits,
or more precisely, the exec command overlays the shell running your script with the command exec
launches.

Using exec is more efficient than merely launching a process because you free up all the resources used
by your script. Note that while your scripts may be small, the shell that runs them, such as /bin/sh, is
not a trivial program, so it uses system resources, especially memory.

Typically, scripts call exec near the end. For example, a script may determine which device driver to
load based on the operating system or hardware capabilities. Then the script can call exec to run the
process that loads the device driver. Whenever you have a similar need for a script that makes some
decisions and then launches a process, exec is the call for you.

Don’t limit your use of exec to just scripts that decide which program to run. You can find exec useful
for scripts that need to set up the environment or locate files for another program to use. In this case,
your script needs to find the necessary items, set up the environment using the export command, and
then call exec to launch the process.

Capturing the Output of Processes
In addition to being able to launch commands from your scripts, you can run commands and capture the
output of those commands. You can set variables from the output of commands or even read whole files
into variables. You can also check on the return codes from processes. Return codes are another way pro-
cesses can output information.

Using Backticks for Command Substitution
Surround a command with backtick characters, `, to execute a command in place. The shell runs the com-
mand within the backticks and then replaces the backtick section of the script with the output of the
command. This format, often called command substitution, fills in the output from a command. This is simi-
lar to variable substitution, where the shell replaces $variable with the value of the variable.

The ` character is often called a backtick. That’s because an apostrophe, ‘, is called a tick, so ` is a backtick.
This is similar to /, a slash, and \, a backslash.

The basic syntax follows:

`command`

287

Controlling Processes

12_583204 ch09.qxd 3/18/05 9:27 PM Page 287

If the command requires options or arguments, place these inside the backtick characters, too. For example:

`command option argument argument2`

You can also use variables as arguments or options to the command. For example:

`command $1 $2 $3`

This backtick syntax proves very, very useful for building up text messages and values in your scripts.
For example, you can use the output of the date command in a message output by the echo command. For
example:

$ echo “The date is `date`”
The date is Sun Nov 12 16:01:23 CST 2006

You can also use the backtick syntax in for loops, as in the following Try It Out.

Try It Out Using Backticks in for Loops
Enter the following script and name the file tick_for:

echo “Using backticks in a for loop.”

for filename in `ls -1 /usr/local`
do

echo $filename
done

When you run this script, you will see output like the following, depending on what is in your /usr/local
directory:

$ sh tick_for
Using backticks in a for loop.
bin
etc
games
include
lib
libexec
man
sbin
share
src

How It Works
This script uses command substitution to create a list that the for loop can use for iteration. The script
creates the list from the files in the /usr/local directory, using the ls command. On each iteration
through the loop, the script outputs one file name.

This is very similar to the myls example scripts in Chapter 3.

288

Chapter 9

12_583204 ch09.qxd 3/18/05 9:27 PM Page 288

This example shows how you can use the backtick syntax to execute commands within control structures
such as a for loop. In most cases, however, you’ll want to set variables to hold the results of commands.

Using Parentheses in Place of Backticks
The backtick syntax has been around a long, long time. Newer shell scripts, however, may use an alternate
format using parentheses:

$(command)

This syntax is very similar to the syntax for subshells, used in a previous example and described in
Chapter 4.

You can also pass arguments and options to the command:

$(command options argument1 argument2)

The two formats, backticks or $(), are both acceptable for command substitution. The parenthesis format
is preferred for the future, but most old scripts use the older backtick format.

Setting Variables from Commands
The basic format for using command substitution with variable settings follows:

variable=`command`

For example:

today=`date`

As you’d expect, you can also pass options or arguments to the command. For example:

scriptname=`basename $0`

The basename command returns the base file name, removing any path information and any file-name
extension. For example, the basename command transforms /usr/local/report.txt to report.txt:

$ basename /usr/local/report.txt
report.txt

You can also have basename strip a suffix or file-name extension:

$ basename /usr/local/report.txt .txt
report

In this example, you need to pass the suffix to remove, .txt, as a separate command-line argument.

Many scripts use the basename command as a handy way to get the base name of the script. For example,
if $0, the special variable holding the script name, holds /usr/local/bin/backup, you may want to display
messages with just the name backup.

289

Controlling Processes

12_583204 ch09.qxd 3/18/05 9:27 PM Page 289

Of course, you can place the name inside your script. This is called hard-coding the value. You can also
use the basename command with the $0 variable to return the base name of your script.

Performing Math with Commands
Another common use for command substitution is to perform math operations and then set variables to
the results. Shell scripts weren’t made for performing computations. The moment you try to calculate
anything, you see the truth of this. To help get around this problem, you can call on a number of math-
related commands, including expr and bc.

The expr command, short for expression evaluator, provides an all-purpose evaluator for various types of
expressions, including math expressions.

Try It Out Using the expr Command
Try entering the following commands to get an idea for how expr works:

$ expr 40 + 2
42
$ expr 40 / 10
4
$ expr 42 % 10
2
$ expr 4 * 10
expr: syntax error
$ expr “4 * 10”
4 * 10
$ expr 4 * 10
40
$ expr 42 - 2
40

How It Works
In most cases, you can merely pass a math expression to expr. For example, the following command
adds the numbers 40 and 2:

$ expr 40 + 2
42

In addition, the percent sign, %, provides the remainder in a division operation, while / divides.

The hardest math expression, however, is multiplication. The expr command, as do many programming
languages, uses an asterisk, *, as the multiplication sign. Unfortunately, the shell also uses the asterisk in
wildcard globs. So the following command passes far more than three arguments to the expr command:

$ expr 4 * 10
expr: syntax error

The * in this command gets interpreted by the shell first, not expr. The shell assumes that you wanted a
listing of all the files in the current directory, passing all of these to the expr command. This is what
causes the syntax error in this example.

290

Chapter 9

12_583204 ch09.qxd 3/18/05 9:27 PM Page 290

The following command passes a text string to expr, which gets you no closer to performing multiplication:

$ expr “4 * 10”
4 * 10

This command passes one argument, a text string, to expr. Because there is nothing to evaluate, expr
outputs the text string itself.

It’s these types of things that make many people leave Unix and Linux in total frustration.

What you need to do is escape the asterisk. The shell uses a backslash to escape characters. For example:

$ expr 4 * 10
40

You can also use expr with shell variables, as shown in the following Try It Out.

Try It Out Using Variables with expr
Enter the following commands to see how expr uses shell variables:

$ x=10
$ expr $x + 10
20
$ x=`expr $x + 10`
$ echo $x
20
$ x=`expr $x + 10`
$ echo $x
30

How It Works
In this example, expr works with a variable, x. In the first command, you set x to 10. The expr com-
mand then gets 10 + 10 and, as you’d expect, outputs 20. Note that you did not change the value of x,
which remains 10.

Next, you set x to the results of the expression $x + 10. Because the value of x remains 10, this command
again passes 10 + 10 to expr, which outputs 20. In this case, however, you set the value of x to 20. Also
note how no output appears. That’s because the backticks sent the output of the expr command to the
shell, which used that output to set the variable x. To see the value of x, use the echo command, as
shown in this example. The value of x is now 20.

Run the same two commands again, and the shell sets x to 30.

You can nest backticks within a backtick expression by escaping the interior backticks. To do this, use a
backslash prior to the interior backticks, as in the following example.

291

Controlling Processes

12_583204 ch09.qxd 3/18/05 9:27 PM Page 291

Try It Out Nesting Backticks
Enter the following script and save it under the name ticktick:

Nested backticks.

tock=`tick=\`expr 5 * 10\`; expr $tick + 10`

echo “tock = $tock.”

When you run this script, you’ll see output like the following:

$ sh ticktick
tock = 60.

How It Works
In this example, the ticktick script sets the tock variable, using command substitution. Inside the
backticks for the command substitution, however, the script also sets the tick variable, also using com-
mand substitution. When the script sets the tick variable, however, it needs to use the backslash back-
tick format, \’. In addition, and just to make things more complicated, the multiplication operator, *,
requires a backslash as well.

See the online documentation on the expr command for more on how it can evaluate logical expressions,
much like the test command, as well as string expressions.

Reading Files into Variables
You can take advantage of command substitution to read in files into variables. For example, you can
use the output of the cat command with command substitution, as shown following:

file_contents=`cat filename`

In addition, you can use the shorthand method by redirecting stdin with no command. For example:

file_contents=`<filename`

Both these constructs will have the same results.

Using expr is far easier than most alternatives, but the expr command works best for small expressions.
If you have a complicated set of calculations to perform, or you need to work with decimal numbers
(often called real or floating-point numbers), your best bet is to use the bc command.

Be careful with this construct. Do not load a huge file into a shell variable. And
never load a binary file into a shell variable. Evaluating such a variable can lead to
unexpected results, depending on the data in the file. The shell gives you awesome
power. Don’t use that power to hurt yourself.

292

Chapter 9

12_583204 ch09.qxd 3/18/05 9:27 PM Page 292

The bc command provides a mini programming language, and you can pass it a number of commands in
its special language. To use the bc command, you typically pipe a set of bc commands to the program.

The bc syntax is similar to that of the C language. The most crucial difference from shell scripts is that you
do not use a dollar sign, $, in front of variables when you want to access their values. This will create an
error in bc.

Try It Out Running bc Interactively
You can run bc interactively or from scripts. To run bc interactively, run the bc command from the shell
prompt. For example:

$ bc
bc 1.06
Copyright 1991-1994, 1997, 1998, 2000 Free Software Foundation, Inc.
This is free software with ABSOLUTELY NO WARRANTY.
For details type `warranty’.
scale=2
x=10
x + 10
20
x
10
tax=100*7/100
tax
7.00
x = x + tax
x
17.00
print x
17.00
quit

How It Works
Once you run the bc command, you’re in the world of bc (in more ways than one). By default, bc doesn’t
display a prompt. Instead, you simply type in expressions and commands for bc to evaluate. You set vari-
ables similar to how the shell does it.

The scale command sets the amount of decimal precision to two decimal places. (Within bc, scale is a spe-
cial variable.) The next bc command sets the variable x to 10. You can create an expression such as x + 10. The
bc command outputs the result but does not change the variable x. You can enter the name of the variable
alone, such as x, to output its value. But as mentioned previously, do not use a $ when accessing the value of
a variable.

The example sets the variable tax to 100 times 7 divided by 100. The bc command will evaluate these
operators in a defined order. As in math class, you can use parentheses to define the way to evaluate the
expression. In this case, the default order suffices.

Note how once x is set to a decimal value, it always appears with two decimal places (the result of the
earlier scale setting).

293

Controlling Processes

12_583204 ch09.qxd 3/18/05 9:27 PM Page 293

The print command outputs a variable or a text string. In this example, you need to press the Enter key
to continue.

If running interactively, you need to use the quit command to exit from bc. You do not need this if calling
bc from a script.

You can pass these same commands to bc to perform calculations for you, as in the following Try It Out.

Try It Out Running bc from Scripts
Enter the following script and save it under the name math1:

Using bc for math.
Calculates sales tax.

echo -n “Please enter the amount of purchase: “
read amount
echo

echo -n “Please enter the total sales tax: “
read rate
echo

result=$(echo “
scale=2; tax=$amount*$rate/100.00;total=$amount+tax;print total” | bc)

echo “The total with sales tax is: \$ $result.”

When you run this script, you will see output like the following:

$ sh math1
Please enter the amount of purchase: 100.0

Please enter the total sales tax: 7

The total with sales tax is: $ 107.00.

How It Works
This script calculates sales tax on purchases. It asks the user to input an amount of purchase and then a
tax rate, in percent.

For those readers not in the United States, sales tax is similar to a VAT but charged only at the point of
final sale to a customer.

The math1 script calls the bc command using command substitution with the parenthesis format. The
echo command outputs a number of bc commands, which the script pipes to the bc command. The echo
command is important because it converts the text in the script, the bc commands, to stdout. The pipe then
connects the echo command’s stdout to the bc command’s stdin. If you just put the bc commands without
the echo command, the shell will try to interpret these commands.

294

Chapter 9

12_583204 ch09.qxd 3/18/05 9:27 PM Page 294

This pattern of using echo to output commands to the bc command is very common. You can also store
the bc commands in a file and redirect bc’s stdin to that file. Or you can use a here document in your
script, shown in the next example.

You can enter the numbers with as much decimal precision as desired. The bc command won’t care. The first
command passed to bc is scale, which sets the decimal precision to two decimal places for this example.

The final bc command prints the variable you are interested in, total. The shell will set the result
variable to the value of this variable.

If you have a lot of commands, the echo approach will not be convenient. Instead, you can place the
commands inside a here document, covered in Chapter 5. Enter the following script and save it under
the name math2:

Using bc for math with a here document.
Calculates sales tax.

echo -n “Please enter the amount of purchase: “
read amount
echo

echo -n “Please enter the total sales tax: “
read rate
echo

result=$(bc << EndOfCommands
scale=2 /* two decimal places */

tax = ($amount * $rate) / 100
total=$amount+tax

print total

EndOfCommands
)

echo “The total with sales tax is: \$ $result.”

When you run this script, you will see output like the following:

$ sh math2
Please enter the amount of purchase: 100.00

Please enter the total sales tax: 7

The total with sales tax is: $ 107.00.

Another useful math command is dc, the desktop calculator. Despite its name, dc is a command-line tool.

Capturing Program Return Codes
The Bourne shell supports a special variable, $?. The shell sets this variable to the return code of the last
process executed. A value of zero means the command was successful — that is, the command exited
with a nonerror status. Any other value means the command exited with an error.

295

Controlling Processes

12_583204 ch09.qxd 3/18/05 9:27 PM Page 295

You can check the value of $? in your scripts to see whether commands succeeded or not. You can also
place commands in if statements as described in Chapter 3.

Try It Out Checking Return Codes
Enter the following script and save it under the name return_codes:

DIR=/
ls $DIR > /dev/null
echo “Return code from [ls $DIR] was $?.”

DIR=/foobar
ls $DIR > /dev/null 2>&1
echo “Return code from [ls $DIR] was $?.”

When you run this script, you should see the following output:

$ sh return_codes
Return code from [ls /] was 0.
Return code from [ls /foobar] was 1.

Your output will differ if you actually have a directory named /foobar.

How It Works
This script runs a command, ls /, that should work. The return code is 0 because the ls command exited
normally. The second ls command, however, should fail, because most systems do not have a directory
named /foobar. Trying to list a nonexistent directory results in an error. The ls command returns a nonzero,
and therefore nonsuccess, status.

If the script did not redirect stdout and stderr, then you would see an error message like the following:

$ ls /foobar
ls: /foobar: No such file or directory

Summary
You now have a number of ways to run programs and scripts from within your scripts, listed in the
following table.

Method Usage

sh script_file Runs script_file with the Bourne shell in a separate process.

. script_file Runs script_file from within the current process.

script_file Runs script_file if it has execute permissions and is in the command path,
the PATH environment variable, or if you provide the full path to the script.

command Runs command, assumed to be a program, if it has execute permissions
and is in the command path, the PATH environment variable, or if you
provide the full path to the command executable.

296

Chapter 9

12_583204 ch09.qxd 3/18/05 9:27 PM Page 296

Method Usage

exec script_or_command Launches the given script or command in place of the current script.
This does not return to the original script.

$(script_or_command) Runs script or command and replaces the construct with the output of
the script or command.

`script_or_command` Runs script or command and replaces the construct with the output of
the script or command.

You can add all these methods to your scripting toolbox. More important, when you look at system shell
scripts, you’ll be able to decipher these constructs.

This chapter covers how to:

❑ Find which processes are running on your system using the Windows Task Manager or the Unix
and Linux ps command.

❑ Determine the process IDs for these processes from the lists of running processes.

❑ Query information about processes. In Linux, you can access the special /proc file system to get
detailed information on running processes.

❑ Kill processes with the kill command.

❑ Run a process and check its return value to see if the process succeeded or not.

Shells provide a special variable that holds the process ID, $$. Another special variable, $!, holds the
process ID of the last-run process. The special variable $? holds the return code of the last-run process. A
value of zero indicates success. Any other value indicates a failure.

The next chapter shows how to create blocks within your scripts, called functions, so that you can reuse com-
mon blocks of scripting commands. Functions also allow you to hide a lot of the complexity of scripting.

Exercises
1. Write a short script that outputs its process number and waits, allowing you to view the con-

tents of the Linux /proc in another shell window. That is, this script should remain at rest long
enough that you can view the contents of the process-specific directory for that process.

2. The tick_for example of using the ls command within a for loop appears, at least at first
glance, to be a bit clumsy. Rewrite the tick_for script using a wildcard glob, such as *.txt.
Make the output appear the same. Discuss at least one major difference between these scripts.

3. Rewrite the math1 or math2 script using the expr command instead of the bc command. Note
that expr will not work well with floating-point, or decimal, numbers.

297

Controlling Processes

12_583204 ch09.qxd 3/18/05 9:27 PM Page 297

12_583204 ch09.qxd 3/18/05 9:27 PM Page 298

10
Shell Scripting Functions

In writing shell scripts, you will often find yourself repeating the same code over and over again.
Repeatedly typing the same code can be tiring and can lead to errors. This is where shell scripting
functions should be used. Shell functions are used to simplify your shell scripts, making them easier
to read and maintain.

Shell functions are like a magic box: You throw some things into it, it begins to shake and glow
with a holy aura, and then out pops your data, magically changed. The magic that is performed on
your data is a set of common operations that you have encapsulated into the function and given a
name. A function is simply a way of taking a group of commands and putting a name on them.
The bash man page describes functions as storing “a series of commands for later execution. When
the name of a shell function is used as a simple command name, the list of commands associated
with that function name is executed.”

Other programming languages call functions subroutines. In essence they are atomic shell scripts,
having their own exit codes and arguments. The main difference is that they run within your current
shell script. This means that you have one instantiation of the shell, rather than spawning a new
instance of the shell for each function. Instead of defining functions, you can put your functions into
separate shell scripts, in separate files, and then run those scripts from within your shell script.
However, this means you have to maintain a number of individual files, and that can get messy.

This chapter covers the following topics:

❑ Defining and using functions

❑ Using arguments and returning data from functions

❑ Function variable scope

❑ Understanding recursion

Defining Functions
The syntax for defining functions is not complex. Functions just need to be named and have a list
of commands defined in the body. Choose function names that are clear descriptions of what the
function does and short enough that they are useful. In bash, a function is defined as follows:

13_583204 ch10.qxd 3/18/05 9:27 PM Page 299

name () { commandlist; }

This function is very dry, but it illustrates the syntax of the most basic function definition. The name of the
function is name. It is followed by a required set of parentheses that indicates this to be a function. Then a
set of commands follows, enclosed in curly braces, each command separated by semicolons. The space
immediately following the first curly brace is mandatory, or a syntax error will be generated.

The curly braces surround what is known as a block of code, sometimes referred to as the body of the function.
A block of code combines several different commands into one unit. Anything that is contained in a block of
code is executed as one unit. Blocks of code are valid shell scripting constructs outside of functions.

For example, the following is valid bash syntax defining two distinct blocks of code:

$ { ls -l; df -h; } ; { df -h; ls -l; }

If you were to type this rather useless bit of shell code into the shell and run it, you would find that the
first block of code has both its commands executed in order, and then the second block of code has its
two commands executed in order.

Blocks of code behave like anonymous functions; they have no name, and unlike functions, variables
used in blocks of code are visible outside of the function. So if you set a value to a variable in a block of
code, it can be referenced outside of that block of code:

$ { a=1; }
$ echo $a
1

Blocks of code are not functions because they have no names and because their variables are visible out-
side of the block. They are useful for combining sequences of commands, but they cannot be replicated
without retyping the block of code.

Adding Names to Blocks of Code
A function is simply a block of code with a name. When you give a name to a block of code, you can
then call that name in your script, and that block of code will be executed.

You can see how functions work by defining a basic function in the shell.

Try It Out A Basic Function
Type the following in a bash shell:

$ diskusage() { df -h; }

How It Works
After you type this line and press Enter, you are returned to the shell prompt, and nothing is printed to
the screen unless there was an error in your syntax. You’ve just defined your first simple function. The
name of the function is diskusage, and the function runs the command df -h when it is referenced.

300

Chapter 10

13_583204 ch10.qxd 3/18/05 9:27 PM Page 300

You can see the function that you have just declared by using the built-in bash command declare with
the -f flag:

$ declare -f diskusage
diskusage ()
{

df -h
}

Notice that the shell has reformatted the function. It’s actually more readable like this, and when you write
functions in shell scripts, it is good programming practice to format your functions like this for legibility.

If you put more than one command in your function’s block of code, separate each command with a
semicolon, and end the list of commands with a final semicolon. For example, the following function
places three separate commands in the code block:

$ diskusage () { df; df -h ; du -sch ; }
$

When you print out the function in the shell using the declare shell built-in command, you will see
how multiple commands look when they have been formatted:

$ declare -f diskusage
diskusage ()
{

df;
df -h;
du -sch

}

You can declare a function on the command line using the shell’s multiline input capability.

Try It Out Multiline bash Function Declaration
Type diskusage () and then press the Enter key to begin declaring this function:

$ diskusage ()
> {
> df
> df -h
> }
$

Note how the commands that are placed within the command block do not have a semicolon after them.
It is perfectly legal to omit the semicolon in a multiline function declaration, as the newline is inter-
preted as the end of the command. You must include a semicolon in single-line declarations because
without it the shell does not know when one command ends and another begins.

301

Shell Scripting Functions

13_583204 ch10.qxd 3/18/05 9:27 PM Page 301

How It Works
The shell’s multiline input capability kicks in after you enter the first line by prompting you with the >
character. The shell knows that there is more to the function that you are inputting and so is prompting
you to continue. When the shell encounters the } character, it knows that the function has been fully
entered, and it returns you to the standard shell prompt.

Function Declaration Errors
It is easy to incorrectly declare and use functions. Because everyone does it, it is good to know what the
most common syntax mistakes and their resulting errors are so you can recognize them and fix them.

If you forget to include the parentheses in your function declaration, the error you receive will not tell
you that; it will instead be confused by the unexpected curly braces.

Try It Out Function Declaration Errors
Incorrectly define the function diskusage without using parentheses:

$ diskusage { df -h ; }
bash: syntax error near unexpected token `}’

How It Works
Bash attempts to parse this and does not have any idea that you are trying to declare a function, so its
error message is a little cryptic. Watch out for this; it means that you forgot to include the required
parentheses in your function declaration.

Another common error is encountered when specifying the contents of the code block. If you do not put
the proper spaces between the curly braces and the commands, bash will be confused about what you
are trying to do.

Try It Out Function Formatting Errors
Use bad formatting to declare the diskusage format, omitting the required spaces within the curly braces:

$ diskusage () {df -h;}
bash: syntax error near unexpected token `{df’
$ diskusage () { df -h;}
$

How It Works
The first attempted function declaration neglects to include the required space that must immediately follow
the first curly brace. Without that space, bash gives you an error because it isn’t expecting what it finds. The
second command puts the initial space after the opening curly brace but does not include a space immedi-
ately before the closing curly brace; because this is valid syntax, bash does not complain, and the declaration
works. You do not need that final space, but it makes your functions more readable and is a good standard
to adopt.

302

Chapter 10

13_583204 ch10.qxd 3/18/05 9:27 PM Page 302

Using Functions
To use a function that you have declared is as simple as executing a command in the shell, using the
name of the function as the command.

Try It Out Using Functions
You can execute the diskusage function that you declared in the shell in the previous section by simply
typing the command in the shell in which you declared the function:

$ diskusage
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/hdb3 474474 235204 214771 53% /
...

How It Works
Calling the function that you declared causes the shell to execute the commands enclosed in the code
block of the function. In this case, disk usage commands were placed in the code block, so the output of
the df command specified is printed to the screen.

This function has been defined in the currently running shell, and it is available there only. After you have
defined a function, it is known in the shell you defined it in, as well as any subshell started by that shell.
Additionally, a function is available only in the shell script that you define it in and not in any others,
unless you define it there as well. See how this works in this Try It Out.

Try It Out Function Availability
Open a new shell, different from the one you defined the diskusage function in from the previous Try It
Out, either in another window or by simply typing bash in your current shell. Now attempt to call the
diskusage function you defined in the other shell:

$ diskusage
bash: diskusage: command not found

How It Works
You get an error about the command not being found because the diskusage function was declared in
the other shell, and it is not available in this new shell — only in the shell instance where you defined it.
This is covered later in the chapter under the discussion of function scope.

Declaring before Use
When you define a function, the commands that are in the block of code are not executed. The shell does
parse the list of commands to verify that the syntax is valid, and if so, it stores the name of the function
as a valid command.

As demonstrated in the previous section, the shell must have the function name stored before it can be
called, or there will be an error. This means that a function must be known by a shell script before it can be

303

Shell Scripting Functions

13_583204 ch10.qxd 3/18/05 9:27 PM Page 303

used; otherwise, it is an unknown command. You should always make sure that your functions are declared
early in your shell scripts so that they are useful throughout the rest of your scripts. The following Try It Out
shows what happens when you try to call a function before declaring it.

Try It Out Calling Functions before Declaring Them
Put the following basic script into a file and call it functiondisorder.sh:

#!/bin/sh

diskusage

diskusage() {
df -h

}

Now make this script executable by running the following command:

$ chmod +x functiondisorder.sh

Finally, run the script:

$./functiondisorder.sh
./functiondisorder.sh: line 3: diskusage: command not found

How It Works
As you can see from the output of running this script, the function diskusage was not known before it
was used, so it generated an error. If the function is moved to the beginning of the script, before it is ref-
erenced, it will run properly.

The order of your function declarations does not matter as long as they are declared before they are
called, as demonstrated in the following Try It Out.

Try It Out Proper Function Order
Put the following text into a file called functionorder.sh:

#!/bin/sh

quit () {
exit 0

}

greetings () {
echo “Greetings! Thanks for running this function!”

}

greetings
quit
echo “The secret message is: You will never see this line.”

304

Chapter 10

13_583204 ch10.qxd 3/18/05 9:27 PM Page 304

Now make this script executable by changing the mode to have the execute bit set:

$ chmod +x functionorder.sh

And finally, run the script to see what it outputs:

$./functionorder.sh
Greetings! Thanks for running this function!

How It Works
The shell parses the shell script and loads the functions that are defined at the beginning. It does not care
in what order you are going to call them, so putting one before the other causes no errors. Once the func-
tions have been loaded, they are called in the script, causing the first echo line to be printed and then the
script to exit with a zero exit code. Notice that the second echo line is not printed.

It is good practice to declare all of your functions at the beginning of your shell script so that they are all in
one central place and can be found easily later. If you realize halfway through a long shell script that you
need a function and declare it there, and then use it afterward throughout the script, it will not cause any
technical problem, but this practice makes for code that tends toward tangled spaghetti. Such code is hard
to understand, hard to maintain, and more likely to contain bugs than the corresponding cleaner code.

It is instructive to note that if you try to declare a function within the declaration of another function, the
second function will not be defined until the first function is called. It is better to avoid this headache
and keep each function as an entirely separate unit.

Although you do not want to define functions inside of functions, it is not uncommon to call a function
from within another function, as in the following example.

Try It Out Calling Functions from within Other Functions
Put the following into a file called functioncall.sh:

#!/bin/bash

puerto_rico () {
echo “Calling from Puerto Rico”
haiti

}
haiti () {

echo “Answering from Haiti”
}

puerto_rico

Notice that the haiti() function is being called before it is defined.

Now make the file executable:

$ chmod +x functioncall.sh

305

Shell Scripting Functions

13_583204 ch10.qxd 3/18/05 9:27 PM Page 305

And finally, run the script:

$./functioncall.sh
“Calling from Puerto Rico”
“Answering from Haiti”

How It Works
Calling a function before it is defined seems contrary to the previous dictum regarding declaring func-
tions before you use them. However, if you ran this script, you would see that it works. The puerto_rico
function is called; it echoes Calling from Puerto Rico, and then it calls the second function, which sim-
ply echoes Answering from Haiti.

This script doesn’t fail because of how bash works. Namely, it loads the two functions, but it does not
execute any commands until it reaches the part of the script that actually calls the puerto_rico func-
tion. By the time it calls the function to actually execute it, it already has loaded into memory both the
puerto_rico function and the haiti function.

Function Files
If you are writing a shell script that is long, I hope you will find yourself abstracting many aspects of
your script into functions so that you may reuse your code rather than rewrite your code. Putting your
functions at the beginning of your script is good practice; however, if the number of functions that you
have defined becomes so large that your actual script doesn’t start for pages and pages, you should con-
sider putting all your functions into a function file.

A function file simply contains all of your functions, rather than putting them in your main script. To
create a function file, remove your functions from your main script, and put them in a separate file. You
must also add a line into your main script to load these functions; otherwise, they will not be known to
the main script. To load these functions from your function file, you would replace the functions in your
main script with the following line:

source function_file

The bash command source reads in and executes whatever file you specify; in this case, the file you are
specifying is function_file. The name of this file is up to you. Because function_file contains only
functions, bash simply loads all of these into memory and makes them available to the main script. (If
you have commands outside of functions in this file, they are also run.) If you want to decrease the legi-
bility of your shell script by taking a shortcut, you can substitute a period (.) for the bash command
source; the period does the same thing as source but is much harder to notice. It is better to explicitly
spell out that this is what you are doing by using source to keep your code readable.

When abstracting your functions into a function file, you should consider a number of things. One
important consideration is where in the file system your function file is located. In the preceding exam-
ple, no path was specified, so function_file has to exist in the directory where the main script is
located. It must be located here every time this script is run. If you wish to put your functions in another
location, you simply need to specify the path locating the function_file. This brings up another con-
sideration: namely, that now you must manage multiple files associated with your one script. If these are
worthy tradeoffs, then it makes sense to put your functions into a separate file; otherwise, it may be wise
to leave them in the script itself.

306

Chapter 10

13_583204 ch10.qxd 3/18/05 9:27 PM Page 306

Putting your functions into a function file makes these functions available to other scripts. You can write
useful functions that you may want to reuse in the future, and instead of copying and pasting the func-
tions from one script to another, you can simply reference the appropriate function files. Functions do
not have to be associated with a particular script; they can be written to be completely atomic so that
they are useful for as many scripts as possible.

Common Usage Errors
A common problem when invoking functions is including the parentheses when you shouldn’t. You
include the parentheses only when you are defining the function itself, not when you are using it. In the
following Try It Out, you see what happens when you try to invoke a function using parentheses.

Try It Out Incorrect Invocation
If you still have the diskusage function defined in your shell, try invoking it with parentheses:

$ diskusage ()
>

How It Works
It doesn’t work! In fact, it gives you a bash continuation prompt; why is that? This will not work because
the shell interprets it as a redefinition of the function diskusage. Typically, such an incorrect invocation
results in a prompt similar to what you see in the preceding code. This is because the shell is interpreting
what you thought was an invocation as a declaration of the function. This is no different from the multiline
shell declaration example earlier on. If you try to invoke a function with parentheses within a script, you
may get various different errors, usually of the form syntax error near unexpected token: and then
the next line in your script. It can get confusing trying to figure out what went wrong, so try to remember
that the parentheses are required for declaring a function only and must be omitted when using a function.

Undeclaring Functions
If you have defined a function, but you no longer want to have that function defined, you can undeclare
the function using the unset command, as in the following example.

Try It Out Undeclaring Functions
If you still have the diskusage function defined, you can unset it as follows:

$ declare -f diskusage
diskusage ()
{

df -h
}
$ unset diskusage
$ declare -f diskusage
$ diskusage
bash: diskusage: command not found

307

Shell Scripting Functions

13_583204 ch10.qxd 3/18/05 9:27 PM Page 307

How It Works
The first command shows that the diskusage function is still defined. Then you unset that function
with the second command so it is not printed when you run the declare -f command the second time.
The last command attempts to invoke the function, but the shell gives an error because the function is no
longer defined. When a function is undefined, it is unknown to the shell as a valid command and cannot
be used any longer.

Using Arguments with Functions
After functions have been declared, you effectively use them as if they were regular commands. Most reg-
ular Unix commands can take various arguments to change their behavior or to pass specific data to the
command. In the same way that you can pass arguments to commands, you can use arguments when you
execute functions. When you pass arguments to a function, the shell treats them in the same way that
positional parameter arguments are treated when they are passed to commands or to shell scripts.

The individual arguments that are passed to functions are referenced as the numerical variables, $1, $2,
and so on. The number of arguments is known as $#, and the set of variables available as $@. This is no
different from how shell scripts themselves handle arguments.

Try It Out Having Arguments
Put the following into a file called arguments.sh:

#!/bin/sh

arg ()
{

echo “Number of arguments: $#”
echo “Name of script: $0”
echo “First argument: $1”
echo “Second argument: $2”
echo “Third argument: $3”
echo “All the arguments: $@”

}

arg no yes maybe

Then make the script executable:

$ chmod +x arguments.sh

Then execute the argument.sh script:

$./arguments.sh
Number of arguments: 3
Name of script: ./arguments.sh
First argument: no
Second argument: yes
Third argument: maybe
All the arguments: no yes maybe

308

Chapter 10

13_583204 ch10.qxd 3/18/05 9:27 PM Page 308

How It Works
The $# argument is expanded to print the number of arguments passed to the function. This does not
include the $0 argument, or the $@ argument; the $0 argument is still set to the name of the script, not to
the name of the function, as is apparent from the output; the first, second, and third arguments are all
printed, and then the set of arguments is printed when $@ is echoed.

Using Return Codes with Functions
Every command you run in Unix returns an exit code, indicating the success or various failures that
could occur. This exit code is not output on the screen after every command you type, but it is set into a
shell variable, $?. Every time you run a command, this variable is set to the new exit code of that com-
mand. It is common in shell scripting to test this variable to see if something you ran succeeded the way
you expect. Typically, if you run a command and it succeeds, an exit code of 0 is set into the $? variable;
if the command doesn’t succeed, the exit code will be set to a nonzero status. The different nonzero num-
bers that can be used for an exit code that fails depend solely on the program itself; generally, what they
mean is documented in the man page of the command under the EXIT STATUS section of the man page.
You can see the exit code at any point in the shell simply by running echo $?, which prints the exit code
of the last command run, as you can see in the following Try It Out.

Try It Out Shell Exit Codes
Run the following command in the shell:

$ nonexistant
bash: nonexistant: command not found

Then, before you type anything else, test the exit code:

$ echo $?
127

Compare the result with a valid command:

$ pwd
/tmp
$ echo $?
0

How It Works
The first command was a nonexistent Unix command, and bash gave an error indicating this. An exit code
is also set, and in the first case, a nonexistent command exit code (127) is visible when you run echo $?
immediately after running the command. The second example shows that when you run a valid command,
the exit code is set to zero.

In the same way that commands in Unix return exit codes, shell scripts are often written to exit with dif-
ferent codes depending on the relative success or failure of the last command executed in the script, or if
you explicitly specify an exit code with the exit command.

309

Shell Scripting Functions

13_583204 ch10.qxd 3/18/05 9:27 PM Page 309

Within shell scripts themselves, functions are also designed to be able to return an exit code, although
because the shell script isn’t actually exiting when a function is finished, it is instead called a return code.
Using return codes enables you to communicate outside of your function to the main script the relative
success or failure of what happened within the function. In the same way that you can specify in your
shell script exit with the exit code, you can specify return with a return code in a function. Analogous
to exit codes, return codes are by convention a success if they are zero and a failure if they are nonzero.
Additionally, in the same manner that exit codes work, if no return code is specified in a function, the
success or failure of the last command in the function is returned by default.

Try It Out Returning from Functions
Put the following into a text file called return.sh:

#!/bin/sh

implicit_good_return ()
{

echo
}

explicit_good_return ()
{

echo
return
this wont ever be executed

}

implicit_bad_return ()
{

nosuchcommand
}

explicit_bad_return ()
{

nosuchcommand
return 127

}

implicit_good_return
echo “Return value from implicit_good_return function: $?”

explicit_good_return
echo “Return value from explicit_good_return function: $?”

implicit_bad_return
echo “Return value from implicit_bad_return_function: $?”

explicit_bad_return
echo “Return value from explicit_bad_return function: $?”

Then make it executable:

$ chmod +x return.sh

310

Chapter 10

13_583204 ch10.qxd 3/18/05 9:27 PM Page 310

Finally, run it to see what it outputs:

$./return.sh
Return value from implicit_good_return function: 0

Return value from explicit_good_return function: 0
./return.sh: line 17: nosuchcommand: command not found
Return value from implicit_bad_return_function: 127
./return.sh: line 22: nosuchcommand: command not found
Return value from explicit_bad_return function: 127

How It Works
There are four functions defined at the top of the script, each one demonstrating different aspects of
using return in functions. After the declaration of each function, they are invoked in turn, and their
return codes are echoed to the screen.

The first function, implicit_good_return, simply runs the command echo when invoked (this is why
there is the first empty line in the output). This function does not explicitly issue a return, but it is
implicitly defined as the result code of the last command in the function that was executed. In this func-
tion’s case, it is the result code of the echo command. This command executes successfully, and the $?
exit code variable is set to zero, so the return value from this function is implicitly set to zero.

The second function explicitly issues a return call after it is finished executing its commands. It runs
the echo command, as the first function did, and then it explicitly issues a return. The return has no
numeric value provided in this example, so bash returns the value of the last command, in this case the
result code of running echo. When the return is encountered, the function immediately exits and pro-
ceeds no further. It is for this reason the line after the return is never executed. When the return is
encountered, the function is completed.

The third function deliberately executes a command that doesn’t exist and implicitly returns, as the first
example did, with no explicit return specified. Because of this, it returns the exit code of the last com-
mand run; in this case, the last command run fails because of error 127, so it returns this value. Error 127
is bash’s error code for no such command.

In the final example, the same command as the third function is attempted, but in this case an explicit
return is specified, this time with a result code, 127. This is a little redundant, because this result code is
set already, but it shows that you can specify your own return value; it does not have to be the default
shell built-in error codes. In fact, you may wish to return values from functions in situations where there
is no error, but you want to know which way a function went.

Variable Scope: Think Globally, Act Locally
Functions are often written to perform work and produce a result. That result is something that you usually
want to use in your shell script, so it needs to be available outside the context of the function where it is set. In
many programming languages, variables in functions and subroutines are available only within the functions
themselves. These variables are said to have local scope because they are local only to the function. However, in
bash shell scripts, variables are available everywhere in the script; hence, they are referred to as having global
scope and are called global variables.

311

Shell Scripting Functions

13_583204 ch10.qxd 3/18/05 9:27 PM Page 311

Programmers who fancy themselves to have style will recognize global variables as the path that leads to sloppy
code. Throwing the scope wide open allows for mistakes and carelessness, because there are no formal restric-
tions keeping you from doing something that obfuscates or redefines a variable without your knowing it.
Programs are generally easier to read, understand, and hence maintain when global variables are restricted. If
you can read and modify a variable anywhere in your script, it becomes difficult to remember every place that
you have used it and hard to reason through all the potential uses and changes it might undergo. It is easy to
end up with unexpected results if you are not careful. You may even forget that you used a variable in some
function and then use it again, thinking it has never been used.

However, you can still write good, clean code by being careful. Keeping your variable names unique to avoid
namespace pollution is a good first step. In the same way that your function names should be named clearly,
so should your variables. It is bad practice to use variables such as a or b; instead use something descriptive so
you aren’t likely to use it again unless you are using it for the exact purpose it was meant for.

Try It Out Variable Scope
The following shell script, called chaos.sh, provides a good illustration of how variable scope works:

#!/bin/bash

chaos () {
if [“$1” = “begin”]
then

butterfly_wings=”flapping”
location=”Brazil”
return 0

else
return 1

fi
}

theorize () {

chaos_result=$?
if [“$butterfly_wings” = “flapping”]
then

tornado=”Texas”
fi

if [$chaos_result -eq 0]
then

echo -n “If a butterfly flaps its wings in $location, a tornado”
echo “ is caused in $tornado.”

else
echo -n “When a butterfly rests at night in $location, the”
echo “ stars are big and bright in $tornado.”

fi
}

Begin the chaos
chaos yes

What happens when we instigate chaos?

312

Chapter 10

13_583204 ch10.qxd 3/18/05 9:27 PM Page 312

theorize

Stop the madness
chaos no

What happens when there is no chaos?
theorize

How It Works
This script illustrates not only how variables are available in a global scope but also bad scripting practice
involving global variables and, as a bonus, a mixed metaphor. Let’s go over it from the beginning to fully
understand what is going on.

In the beginning, the function chaos is defined. It tests the first positional argument to see if it is set to
yes; if it is, the function sets the butterfly wings flapping, sets the location to Brazil, and finally returns a
zero. If the first positional argument is not set to yes, then the function returns a 1 and sets no variables.

The second function is then defined. This function looks at the result returned from the first function. (This
implicitly makes the theorize function useful only if it is called after the chaos function; this can be
improved so that if a mistake is made and you theorize before calling chaos, you will have an expected
result, preferably an error.) It then looks to see if the butterfly wings are flapping, and if they are, it starts
up a tornado in Texas. Here, you see an example of global variables: The value of the butterfly_wings
variable in the chaos function is available in this theorize function. If the variable scope were limited,
you would not have this variable available. The next thing that happens in the function is that the
chaos_result variable is tested. If it equals 0, it prints out the first message; otherwise, it prints out the
second message.

After the two functions have been defined, they are called at the end of the script, first by passing the vari-
able yes to the chaos function and then calling the theorize function to see what happens when chaos
has been passed the yes variable. It then calls the chaos function again with no and then theorizes what
happens when there is no chaos.

If you run this script, it prints the first echo line, followed by the second echo line. This seems to be the cor-
rect behavior. However, because of sloppy programming, I am using global variables in ways that I think
work, and they appear to work in this way, but you will soon discover that this approach has problems with
some cases. If you change the script slightly so that chaos is called with the no variable first and with the
yes variable second, and then run the script, unplanned results occur:

When a butterfly rests at night in , the stars are are big and bright in .
If a butterfly flaps its wings in Brazil, a tornado is caused in Texas.

Some locations are missing in this output. You might argue that you would never call the functions in
this order, but trying to remember this is not the solution; the code should be written so you don’t have
to remember this.

Using the global variable $tornado sloppily in the output to stand for a location is not the right way to
do things (nor is theorizing like this). When you typed the line in the script that said:

echo “ stars are big and bright in $tornado”

313

Shell Scripting Functions

13_583204 ch10.qxd 3/18/05 9:27 PM Page 313

it did seem odd that stars would be big and bright in a tornado, didn’t it? It sometimes requires more code
to be less sloppy, but lines of code should be saved by using functions, rather than by cutting corners.

Understanding Recursion
Recursion has been humorously defined as follows: “When a function calls itself, either directly or indirectly.
If this isn’t clear, refer to the definition of recursion.” Recursion can be very powerful when used in functions
to get work done in a beautifully simple manner. You have seen how it is possible to call a function from
within another function. To perform recursion, you simply have a function call itself, rather than calling
another function. Variables in functions need to change every time they are recursed; otherwise, you end up
with an infinite loop scenario, so your program, infinitely recursing over itself without ever finishing, will
never end. The beauty of recursion is to loop just the right number of times and not infinitely. Recursion
allows you to loop as many times as necessary without having to define the number of times. The following
Try It Out shows you how to perform simple recursion.

Try It Out Recursion
Type the following script into a file called recursion.sh:

#!/bin/bash

countdown() {

if [$1 -lt 0]
then

echo “Blast off!”
return 0

fi

current_value=$1
echo $current_value
current_value=`expr $1 - 1`
countdown $current_value

}

countdown 10

if [$? -eq 0]
then
echo “We have lift-off!”
exit 0

fi

Make the script executable:

$ chmod +x recursion.sh

Then run it:

$./recursion.sh
10
9

314

Chapter 10

13_583204 ch10.qxd 3/18/05 9:27 PM Page 314

8
7
6
5
4
3
2
1
0
“Blast off!”
“We have lift-off!”

How It Works
This shell script contains only one function, countdown, and when it is called with a numerical argument,
it counts down from that number to 0. This works through function recursion.

The function first tests to see if the positional argument $1 is less than 0. If it is, the rocket blasts off, and
the function returns 0. This is an important element of a recursive function; it stops an endless loop from
happening. If you would like to see what an endless loop looks like, remove this if block, and run the
script again. You will need to interrupt the endless loop with Ctrl-C, otherwise, it will run forever.

In the first pass through this function, the positional argument $1 is set to the number 10. The if block tests
and finds that 10 is not less than 0, so it does not exit and instead continues with the rest of the code block.

The next step in the process is for the value of the positional argument $1 to be put into the variable
current _value; then this value is echoed to the screen. Then the current_value variable has 1 sub-
tracted from it, and the result of this subtraction is placed into the value itself.

The next and last command in this code block is to call the function itself, passing the variable current_
value to the function. This is where the recursion happens. Because prior to this, the current_value
variable had 1 subtracted from it, the second iteration of the function will be called with the number 9,
rather than 10 again.

This recursion happens until the test at the beginning of the function has found that the value of $1 is
less than 0. When it is, it launches the rocket and then returns a success value. The script continues by
testing the result of the countdown function, and if it finds that the result was good, it announces to the
world, We have lift-off!

This example shows that recursion requires two things. The first is that something must change in the
function each time it is iterated over; otherwise, it will do the same thing over and over until eternity.
The thing that is changed each time can be a variable, an array, a string, or the like. The second thing that
must be in place to keep recursion from happening infinitely is that there must be a test of the thing that
changes in order to determine when the recursion should end.

315

Shell Scripting Functions

13_583204 ch10.qxd 3/18/05 9:27 PM Page 315

Summary
Functions are an essential aspect of shell scripting. They allow you to organize your scripts into modular
elements that are easier to maintain and to enhance. Although you do not need to use functions, they often
help you save time and typing by defining something once and using it over and over again. Because the
syntax for defining functions is very simple, you are encouraged to use them whenever you can. Functions
can be understood, both conceptually as well as syntactically, as shell scripts within shell scripts. This con-
cept is extended even more powerfully when you use functions recursively.

In this chapter, you learned:

❑ What functions are and how they are useful in saving time and typing

❑ What makes a function: the function name and the associated code block

❑ How to declare functions in a single line, on multiple lines, in shell scripts, and in separate func-
tion files

❑ How to show what a function is defined as, how to test if a function is defined, and how to
undefine a function

❑ Some common function declaration missteps and how to avoid them

❑ How numerical positional variables can be used as function arguments as well as the standard
shell arguments

❑ How to define and use exit status and return values in functions

❑ Variable scope, global variables, and problematic aspects to global variables

❑ And finally, how to use recursion in functions to perform powerful operations

Tracking down difficult bugs in your scripts can sometimes be the most time-consuming process of shell
scripting, especially when the error messages you get are not very helpful. The next chapter covers tech-
niques for debugging your shell scripts that will make this process easier.

Exercises
1. Experiment with defining functions: See what happens when you fail to include a semicolon on

the command line between commands or when you forget to close the function with the final
curly brace. Become familiar with what happens when functions are defined incorrectly so you
will know how to debug them when you use them practically.

2. What is wrong with creating a function called ls that replaces the existing command with a
shortcut to your favorite switches to the ls command?

3. What is the difference between defining a shell function and setting a shell alias?

4. Write an alarm clock script that sleeps for a set number of seconds and then beeps repeatedly
after that time has elapsed.

5. Use a recursive function to print each argument passed to the function, regardless of how many
arguments are passed. You are allowed to echo only the first positional argument (echo $1).

316

Chapter 10

13_583204 ch10.qxd 3/18/05 9:27 PM Page 316

11
Debugging Shell Scripts

According to legend, the first computer bug was a real insect, a moth that caused problems for the
inner workings of an early computer. Since that time, problems in computer software have been
termed bugs. Debugging is the glorified act of removing errors from your scripts.

Let’s face it, scripts aren’t always perfect. Even so, almost everything surrounding bugs remains
controversial. Whether a particular behavior in a program or script is a bug or a feature can inspire
great debate. Many companies consider the term bug itself to be pejorative, so they mandate more
innocent-sounding terms. For example, Microsoft uses issue instead of bug. Apparently, using the
term bug or defect could imply that their software isn’t perfect.

Calling a behavior a bug can hurt people’s feelings. For your own scripting efforts, however, con-
sider debugging to simply be the act of making your scripts work the way you’d like and leave it
at that.

Scripts can create a lot of havoc on your system. For example, your script may remove files neces-
sary for the system to properly function. Or, worse yet, your scripts might accidentally copy a file
on top of a crucial system file. The act of changing file permissions may inflict your system with a
security hole. For example, a malicious script was discovered as one of the first attacks on Mac OS
X systems. Therefore, numerous issues demand your attention.

In most cases, though, you simply need to do the following:

1. Determine what has gone wrong.

2. Correct the problem.

Sounds simple, doesn’t it? Unfortunately, this is not always the case. However, several techniques
can help, including the following:

❑ If the shell outputs an error message, you need to decipher the message to determine the
real error that caused problems for the shell.

❑ Whether or not you see an error message, you can use several general techniques to track
down bugs.

14_583204 ch11.qxd 3/18/05 9:29 PM Page 317

❑ The shell can help, too. You can run your scripts in a special debugging mode to get a better
idea of what is going on and where the problem occurs.

❑ You can often avoid bugs in the first place by thoroughly testing your scripts prior to using them in
a production environment. Furthermore, following good scripting practices will help avoid bugs.

This chapter covers general debugging techniques, as well as specific ways to track down and correct
problems in scripts, whether in your scripts or scripts created by someone else. Most of these techniques
are, by their nature, general-purpose techniques. Despite over 50 years of software development, on the
earliest computers to modern PCs, the industry still faces problems with bugs. No magic techniques
have appeared, despite any claims to the contrary. Although you can follow many practices to help find
bugs and avoid them in the first place, you should expect bugs.

One of the first steps you need to take is to decipher any error messages.

Deciphering Error Messages
When the shell outputs an error message, it does so with a reason. This reason isn’t always readily
apparent, but when the shell outputs an error, there is likely some problem with your script. The error
message may not always indicate the true nature of the problem or the real location within your script,
but the message indicates that the shell has detected an error.

What you need to do, of course, is the following:

1. Decipher the error message to figure out what the shell is complaining about.

2. Track down the error to the real location of the problem in your script.

3. Fix the error.

All of these are easier said than done, and much of the difficulty results from how the shell processes
your script.

The shell processes your scripts sequentially, starting with the first command and working its way down
to the end, or an exit statement, which may terminate the script prior to the end of the file. The shell
doesn’t know in advance what the values of all variables will be, so it cannot determine in advance
whether the script will function or not.

For example, consider the following script from Chapter 2:

DIRECTORY=/usr/local
LS=ls
CMD=”$LS $DIRECTORY”
$CMD

This script builds a command in a variable and then executes the value of the variable as a command
with arguments. Any similar constructs in your scripts make it hard for the shell to determine in
advance if the script is correct, at least as far as syntax is concerned.

318

Chapter 11

14_583204 ch11.qxd 3/18/05 9:29 PM Page 318

In this particular example, all variables are set from within the script. This means that prior analysis
could work. However, if the script used the read command to read in a value from the user, or if the
script used an environment variable, then there is no way the shell can know in advance of running the
script whether all variables have values that will make the script operate correctly.

The following sections work through some examples that show different types of errors you are likely to
encounter and provide tips for deciphering the messages and tracking down the problems.

Finding Missing Syntax
One of the most common problems when writing shell scripts is following the often-cryptic syntax
requirements. If you miss just one little thing, then the shell will fail to run your script.

Try It Out Detecting Syntax Errors
Enter the following script and name the file debug_done:

Has an error in a for loop.
#

for filename in *.doc
do

echo “Copying $filename to $filename.bak”
cp $filename $filename.bak

done

echo “Completed backup operation on `date`.”

Can you find the error? When you run this script, you’ll see output like the following:

$ sh debug_done
debug_done: line 11: syntax error: unexpected end of file

How It Works
This script makes it easy to find the error, as the correct syntax appears commented out. Afor loop must
have a do-done block. In the debug_done script, the done is missing, at least as far as the shell is concerned.

The shell here is not very helpful. It tells you that the error appears at line 11, which is an empty line at
the end of the script file. The shell doesn’t detect the error until the end of the file because the for loop
could continue for an arbitrarily long time. The fact that some lines are indented and others are not
makes no difference to the shell. The shell cannot tell your intent. The shell can only look at the existing
syntax. (The indenting, though, should help you find the problem.)

That said, it would be nicer if the shell output an error message such as the following:

for loop started at line 4 without a done statement.

This is indeed the error, but, alas, the shell outputs a cryptic message:

debug_done: line 11: syntax error: unexpected end of file

319

Debugging Shell Scripts

14_583204 ch11.qxd 3/18/05 9:29 PM Page 319

To help decipher this, think of unexpected end of file as shell-speak for something started but didn’t
end and now I am at the end of the file.

When you see such an error, work backward from the end of the file back to the beginning. Look for
block constructs, such as if statements and for loops. Look for a missing ending element, such as the
done statement in the preceding example.

The next example shows a case where the shell is a bit more forthcoming about the detected problem.

Try It Out Tracking Errors to the Right Location
Enter the following script and name the file debug_quotes:

Shows an error.

echo “USER=$USER
echo “HOME=$HOME”
echo “OSNAME=$OSNAME”

When you run this script, you’ll see twice the shell’s output as the last script:

$ sh debug_quotes
debug_quotes: line 6: unexpected EOF while looking for matching `”’
debug_quotes: line 8: syntax error: unexpected end of file

How It Works
Wow. The shell messages have increased 100 percent. Aren’t you lucky? Actually, this time you are lucky.
From these error messages, you know two things:

❑ There is a missing double quote.

❑ Something in the script started but did not properly end.

Combining these two, you can guess, just from the error message, that the problem is a missing double
quote, “, at the end of an item. The shell detected the start of a double-quoted text sequence but never the
end of the sequence.

Because this script is so short, it isn’t that hard to track down the error to the first echo statement:

echo “USER=$USER

This statement is clearly missing the ending double-quote character.

If the script were longer, it might be harder to track down the missing double quote. Knowing what to
look for really helps.

If you choose a text editor that performs syntax highlighting, you can often use the highlight colors to
help track down problems. That’s because syntax errors will often cause the highlight colors to go awry

320

Chapter 11

14_583204 ch11.qxd 3/18/05 9:29 PM Page 320

or appear to be missing something. For example, in this case with the missing ending double quote, the
editor will likely show the text message as continuing to the next line. The colors should then look
wrong for this type of construct, alerting you to a potential problem. Editors such as jEdit
(www.jedit.org) and others described in Chapter 2 perform syntax highlighting.

Finding Syntax Errors
Another common source of scripting errors lies in simple typos — errors of some kind in the script. For
example, forgetting something as simple as a space can create a lot of problems.

Try It Out Missing Spaces
Enter the following script and save it under the name debug_sp:

Shows an error.
echo -n “Please enter the amount of purchase: “
read amount
echo

echo -n “Please enter the total sales tax: “
read rate
echo

if [$rate -lt 3]
then

echo “Sales tax rate is too small.”
fi

When you run this script, you’ll see the following error:

$ sh debug_sp
Please enter the amount of purchase: 100

Please enter the total sales tax: 7

debug_sp: line 11: [7: command not found

How It Works
This example shows how picky the shell can be. All the necessary syntax elements are present. The script
looks correct for all intents and purposes. However, one little problem exists: a missing space on line 11,
as shown in the following:

if [$rate -lt 3]

This statement is wrong because of the way in which the if statement works. With
if, the next element is assumed to be a command. Remember that [is a command, a
shorthand for the test command. The] is really just a command-line argument for
the [command. In other programming languages, [and] would be considered part
of the syntax, but with shell scripts, [is a command. The if statement runs the next
element as a command. With this error, [$rate should resolve to a command. It
does not, so the shell outputs an error.

321

Debugging Shell Scripts

14_583204 ch11.qxd 3/18/05 9:29 PM Page 321

In this example, the shell correctly identifies the line with the error. This is good because the sequence [7,
identified as the error, does not appear in the file. The [7 comes from the [$rate construct. The 7 comes
from the value entered by the user and stored in the variable rate. The [comes from the if statement.

To solve this problem, you need to perform a bit of detective work. The strange value 7 appears nowhere
in the script. You need to somehow associate the 7 with the value entered for the rate variable. When
corrected, the line should read as follows:

if [$rate -lt 3]

The error was a missing space between the [and the variable value specified by $rate.

Notice that in this case, the shell ran the script up to the point where the error occurs. You will often not
see an error until the shell has executed part of the script.

The next example shows one of the errors most difficult to track down: a syntax error in a command,
which the shell will not detect.

Try It Out Errors in Calling Programs
Enter the following script and save the file under the name debug_call:

Shows another error, harder to find.

Using bc for math.
Calculates sales tax.

echo -n “Please enter the amount of purchase: “
read amount
echo

echo -n “Please enter the total sales tax: “
read rate
echo

result=$(echo “
scale=2; tax=$amount*$rate/100.00;total=$amount+tax;print total” | bc)

echo “The total with sales tax is: \$ $result.”

When you run this script, you’ll see the following output:

$ sh debug_call
Please enter the amount of purchase: 100

Please enter the total sales tax: 7

(standard_in) 2: illegal character: \
The total with sales tax is: $.

322

Chapter 11

14_583204 ch11.qxd 3/18/05 9:29 PM Page 322

How It Works
This example is tough. The shell doesn’t stop the script until it detects an error. That means quite a few
commands could have run before that time. If these commands involve removing or modifying files,
you could experience trouble when the script dies prematurely.

The shell outputs useful errors in this case, because it indicates that the backslash character is an illegal
character. Therefore, now you just need to find the backslash character. Luckily, this script only has two
backslash characters.

All of these examples are fairly simple. You can find the errors without a lot of work. That won’t always
be true when you are working with a larger shell script, especially a script that was written a while ago
and is no longer fresh in anyone’s memory. In addition, if someone else wrote the script, you have an
even larger burden to decipher someone else’s scripting style. To help solve script problems, you can try
the following general-purpose techniques.

Tracking Down Problems with
Debugging Techniques

Because computers have been plagued by bugs since the very beginning, techniques for foiling bugs
have been around almost as long.

Learn these techniques and you’ll become an excellent programmer. These techniques apply to shell
scripts and programming in any computer language.

If you can, try to track the errors to the actual commands in the script that appear to be causing the errors.
This is easier said than done, of course; otherwise, this book wouldn’t need a chapter on the subject of
debugging.

In general, you want to isolate the problem area of the script and then, of course, fix the problem. The
larger the script, the more you need to isolate the problem area. Fixing the problem isn’t always easy
either, especially if you can only isolate the area where the bug occurs and not the actual cause of the bug.

Use the following points as a set of guidelines to help track down and solve scripting problems.

Look Backward
Start with the line number that the shell outputs for the error and work backward, toward the beginning
of the script file. As shown previously, the line number reported by the shell often fails to locate the
problem. That’s because the shell cannot always track errors back to their sources. Therefore, you need
to start with the reported error line and work backward, trying to find an error.

Typically, the shell detects an error, such as a missing double quote or ending statement for an if, for, while,
or other construct. The shell’s error message tells you where the shell detected the problem, often at the end of
the file. You need to traverse backward toward the beginning of the file, looking for the missing item.

323

Debugging Shell Scripts

14_583204 ch11.qxd 3/18/05 9:29 PM Page 323

In many cases, the shell will help out by telling you what kind of item is missing, which can narrow the
search considerably.

Look for Obvious Mistakes
Look for syntax errors, typos, and other obvious mistakes. These types of errors are usually the easiest to
find and fix.

For example, a typo in a variable name will likely not get flagged as an error by the shell but may well
be problematic. In most cases, this will mean a variable is accessed (read) but never set to a value. The
following script illustrates this problem:

echo -n “Please enter the amount of purchase: “
read amount
echo

echo -n “Please enter the total sales tax: “
read rate
echo

if [$tax_rate -lt 3]
then

echo “Sales tax rate is too small.”
fi

The variable read in is rate, but the variable accessed is tax_rate. Both are valid variable names, but
the tax_rate variable is never set.

Look for Weird Things
No, this is not another front in the culture wars between conservative pundits and the rest of us. Instead,
the goal is to focus your energies on any part of a script that looks strange. It doesn’t matter what appears
strange or whether the strangeness can be justified. Look for any part of the script that appears weird for
any reason.

What you are doing is trying to find likely places for an error. The assumption here is that anything that
looks weird is a good candidate for the error.

Of course, weird is another one of those technical terms sporting a nonprecise definition. All that can be
said is that you’ll know it when you see it. Moreover, as your experience with scripts grows, you’ll be
better able to separate the normal from the strange.

To help determine what is weird and what is not, use the following guidelines:

❑ Any use of command substitution, especially when several items are piped to a command, as
shown in the previous examples with the bc command.

❑ Any here document. These are just weird. Very useful, but weird.

324

Chapter 11

14_583204 ch11.qxd 3/18/05 9:29 PM Page 324

❑ Any statement calling a command you do not recognize.

❑ Any if statement with a complex test, such as an AND or OR operation combining two or more
test conditions.

❑ Any use of awk if it looks like the output is not correct.

❑ Any use of sed if the script is modifying a number of files and the files are not modified correctly.

❑ Any redirection of stderr.

❑ Any statement that looks too clever for its own good.

These guidelines may seem a bit strict, but they’ve proved useful in practice. Again, you’re trying to
identify areas of the script you should examine more closely, areas with a higher potential for holding
the error or errors.

Look for Hidden Assumptions
For example, not all Unix systems include a compiler for programs written in the C programming lan-
guage. Sun’s Solaris is rather well known for the lack of a general-purpose C compiler with its standard
operating system. Scripts that assume all systems contain a C compiler are making an unjustified
assumption. Such an assumption may be buried within the script, making it even harder to find.

Windows systems rarely include a C compiler either, but if you have loaded the Cygwin environment
for scripting on Windows, you can use the C compiler that is part of Cygwin.

Common assumptions include the following:

❑ That a certain command exists on the given system. Or, that the command has a certain name.
For example, the C compiler command name has traditionally been cc, but you can find names
such as lpicc, or gcc for C compilers. With gcc, however, there is usually a shell script called
cc that calls gcc.

❑ That a command takes a certain type of option. For example, the ps command options to list all
processes may be aux or ef, depending on the system.

❑ That a command will actually run. This may sound hilarious, but such a problem may occur on
purpose or by silly oversight. For example, Fedora Core 3 Linux ships with a shell script named
/usr/bin/java. This script outputs an error message that is a placeholder for the real java
command. Unfortunately, however, if you install the latest version of the java command from
Sun Microsystems, you’ll find the java command under /usr/java. The Sun java package
does not overwrite the /usr/bin/java script. Therefore, even if the java command is
installed, you may get the wrong version, depending on your command path.

❑ That files are located in a certain place on the hard disk. This is especially true of device files.
For example, SUSE Linux normally mounts the CD-ROM drive at /cdrom. Older versions of
Red Hat Linux mounted the CD-ROM drive at /mnt/cdrom by default. Newer versions of
Fedora Core Linux mount the CD-ROM drive at /media/cdrom. In addition, these are all very
similar versions of Linux.

325

Debugging Shell Scripts

14_583204 ch11.qxd 3/18/05 9:29 PM Page 325

Divide and Conquer
This technique worked for the ancient Romans; why not make it work for you? The divide-and-conquer
technique is a last resort when you cannot narrow down the location of a problem. You’ll use this most
often when debugging long shell scripts written by others.

You start by choosing a location about halfway into the script file. You do not have to be exact. Stop the
script at the halfway point with an exit statement. Run the script. Does the error occur? If so, you know
the problem lies within the first half of the script. If not, then you know the problem lies within the last
half of the script.

Next, you repeat the process in whichever half of the script appears to have the error. In this case, you
divide the relevant half of the script in half again (into one-fourth of the entire script). Keep going until
you find the line with the error.

You should not have to divide the script more than 10 times. Any book on computer algorithms should
be able to explain why.

This technique is simple, but it doesn’t always work. Some scripts simply aren’t appropriate for stop-
ping at some arbitrary location. Nor is this technique appropriate if running part of the script will leave
your system in an uncertain state — for example, starting a backup without completing the backup.

In this case, you can try a less aggressive approach. Instead of stopping the script at a dividing point, put
in a read statement, as shown in the following example:

echo “Press enter to continue.”
read ignored

This example requires the user to press the Enter key. The variable read in, ignored, is, you guessed it,
ignored. The point of this snippet of a script is to pause the script. You can extend this technique by
accessing the values of variables in the message passed to the echo command. This way, you can track
the value of key variables through the script.

Break the Script into Pieces
This technique is analogous to the divide-and-conquer method. See if you can break the script into small
pieces. You want the pieces to be small enough that you can test each one independently of the others.
By making each piece work, you can then make the entire script work, at least in theory.

In many cases, if you can break each piece of the script into a function, then you can test each function
separately. (See Chapter 10 for more information about writing functions.) Otherwise, you need to
extract a section of script commands into a separate script file.

In either case, you want to verify that the scripted commands work as expected. To test this, you need to
provide the expected input and verify that the script section or function produces the required output.
This can be tedious, so you may want to do this only for areas you’ve identified as likely error areas
(using the other techniques in this section, of course).

Once you verify that all of the pieces work, or you fix them to work, you can start assembling the pieces.
Again, take a step-by-step approach. You want to assemble just two pieces first and then add another,
and another, and so on. The idea is to ensure that you always have a working script as you assemble the

326

Chapter 11

14_583204 ch11.qxd 3/18/05 9:29 PM Page 326

pieces back together. When finished, you should have a working version of the original script. Your
script may now look a lot different from the original, but it should work.

Trace the Execution
This technique is a lot like a Dilbert cartoon with a tagline of “You be the computer now.” You need to pretend
to be the computer and step through the script. Start at the beginning, examining each statement. Essentially,
you pretend you are the shell executing the script. For each statement, determine what the statement does
and how that affects the script. You need to work through the script step by step.

Look over all the commands, especially each if statement, for loop, case statement, and so on. What
you want to do is see how the script will really function. Often, this will show you where the error or
errors are located. For example, you’ll see a statement that calls the wrong command, or an if statement
with a reversed condition, or something similar. This process is tedious, but usually, with time, you can
track down problems.

While you step through the code, statement by statement, keep in mind the other techniques, especially
the ones about looking for hidden assumptions and detecting weird things. If any statement or group of
statements stands out, perform more investigation. For example, look up the online documentation for
the commands. You can see if the script is calling the commands properly.

Another good technique is to replace commands in the script with echo. That way, you see the command
that would be executed but avoid the problematic commands.

Get Another Set of Eyes
Following this advice literally may help you defeat biometric security, but actually you want more than
the eyes. Ask another person to look at the script.

Start by describing the problem and then explain how you narrowed down the search to the area in
which you think the error occurs. Then ask the person to look at the script. The goal of this technique is
obvious: Often, another person can see what you have overlooked. This is especially true if you have
been working at the problem for a while.

Don’t feel embarrassed doing this, as top-level software developers use this technique all the time.

All of these techniques are manual techniques, however. You must perform all of the work yourself.
While primitive, the shell does offer some help for debugging your scripts through the use of special
command-line options.

Running Scripts in Debugging Mode
What’s missing from all these attempts to track down bugs is a good debugger. A debugger is a tool that
can run a program or script that enables you to examine the internals of the program as it runs. In most
debuggers, you can run a script and stop it at a certain point, called a breakpoint. You can also examine
the value of variables at any given point and watch for when a variable changes values.

Most other programming languages support several debuggers. Shells don’t, however. With shell scripting,
you’re stuck with the next best thing: the ability to ask the shell to output more information.

327

Debugging Shell Scripts

14_583204 ch11.qxd 3/18/05 9:29 PM Page 327

The following sections describe the three main command-line options to help with debugging, -n, -v, and -x.

Disabling the Shell
The -n option, short for noexec (as in no execution), tells the shell to not run the commands. Instead, the
shell just checks for syntax errors. This option will not convince the shell to perform any more checks.
Instead, the shell just performs the normal syntax check. With the -n option, the shell does not execute
your commands, so you have a safe way to test your scripts to see if they contain syntax errors.

The following example shows how to use the -n option.

Try It Out Checking for Syntax Only
Run the example debug_quotes script, previously shown, with the -n option:

$ sh -n debug_quotes
debug_quotes: line 6: unexpected EOF while looking for matching `”’
debug_quotes: line 8: syntax error: unexpected end of file

How It Works
This example doesn’t do any more than try to run the script, except for one crucial thing: The shell does
not execute the commands. This allows for a much safer way to test a script.

This option is safer because the shell is not executing potentially error-ridden commands. When a script
dies due to an error, it usually does not die at the end of the code. Instead, it dies somewhere in the mid-
dle. This means all the ending commands, which are presumably needed for proper operation, are never
run. Thus, the script may leave your system in an undetermined state, causing all sorts of problems —
not only now but some time later as well.

Displaying the Script Commands
The -v option tells the shell to run in verbose mode. In practice, this means that the shell will echo each
command prior to executing the command. This is very useful in that it can often help you find errors.

Try It Out Listing Users Verbosely
Run the listusers script from Chapter 8 as follows:

$ sh -v listusers

cut -d: -f1,5,7 /etc/passwd | grep -v sbin | grep sh | sort > users.txt

awk -F’:’ ‘ { printf(“%-12s %-40s\n”, $1, $2) } ‘ users.txt
ericfj Eric Foster-Johnson
netdump Network Crash Dump user
root root

Clean up the temporary file.
/bin/rm -rf users.txt

328

Chapter 11

14_583204 ch11.qxd 3/18/05 9:29 PM Page 328

If the listusers script is not handy, you can try this with any valid script that produces some output.

How It Works
Notice how the output of the script gets mixed in with the commands of the script. It’s rather hard to tell
them apart. For example, the following lines are the script’s output:

ericfj Eric Foster-Johnson
netdump Network Crash Dump user
root root

These lines appear right after the awk command in the script — naturally so, as the awk command pro-
duces the output. However, with the -v option, at least you get a better view of what the shell is doing
as it runs your script.

Note that if you specify the -v option by itself, the shell will execute every line in the script.

Combining the -n and -v Options
You can combine the shell command-line options. Of these, the -n and -v options make a good combi-
nation because you can check the syntax of a script while seeing the script output.

The following example shows this combination.

Try It Out Combining Options
This example uses the previously-shown debug_quotes script. Run the script as follows:

$ sh -nv debug_quotes

Shows an error.

echo “USER=$USER
echo “HOME=$HOME”
echo “OSNAME=$OSNAME”

debug_quotes: line 6: unexpected EOF while looking for matching `”’
debug_quotes: line 8: syntax error: unexpected end of file

How It Works
This example shows the lines of the script as the shell checks the syntax. Again, the shell does not exe-
cute the commands in the script. The shell does, however, output two errors.

Tracing Script Execution
The -x option, short for xtrace or execution trace, tells the shell to echo each command after performing
the substitution steps. Thus, you’ll see the value of variables and commands. Often, this alone will help
diagnose a problem.

329

Debugging Shell Scripts

14_583204 ch11.qxd 3/18/05 9:29 PM Page 329

In most cases, the -x option provides the most useful information about a script, but it can lead to a lot
of output. The following examples show this option in action.

Try It Out Tracing a User List
Run the listusers script with the following command:

$ sh -x listusers
+ cut -d: -f1,5,7 /etc/passwd
+ grep -v sbin
+ grep sh
+ sort
+ awk -F: ‘ { printf(“%-12s %-40s\n”, $1, $2) } ‘ users.txt
ericfj Eric Foster-Johnson
netdump Network Crash Dump user
root root
+ /bin/rm -rf users.txt

How It Works
Note how the shell outputs a + to start each line that holds a command. With this output, you can better
separate the script’s commands from the script’s output.

The preceding example shows a relatively straightforward script. The following examples show slightly
more complicated scripts.

Try It Out Tracing through Nested Statements
Enter the following script and name the file nested_if:

if [“$MYHOME” == “”]
then

Check for Mac OS X home.
if [-d “/Users/$USER”]
then

HOME=”/Users/$USER”

Check for Linux home.
elif [-e “/home/$USER”]
then

if [-d “/home/$USER”]
then

HOME=”/home/$USER”
fi

else
echo -n “Please enter your home directory: “
read HOME
echo

fi
fi

330

Chapter 11

14_583204 ch11.qxd 3/18/05 9:29 PM Page 330

When you trace this script, you’ll see the following output, depending on your home directory:

$ sh -x nested_if
+ ‘[‘ ‘’ == ‘’ ‘]’
+ ‘[‘ -d /Users/ericfj ‘]’
+ ‘[‘ -e /home/ericfj ‘]’
+ ‘[‘ -d /home/ericfj ‘]’
+ HOME=/home/ericfj

Note that everyone should choose ericfj as their user name.

How It Works
This example shows how the shell steps through a set of nested if statements. This particular example
runs on a Linux system, or at least a system that places user home directories under /home.

Note that testing for the existence of the user’s home directory and testing whether the user’s home
directory is a directory is redundant. You could simply use the test, or [, -d option to check whether the
item is a directory. The -d option will fail if the item does not exist.

With the tracing, you can see each if statement that gets executed, but note how the output does not
include the if. Instead, the output shows the if condition with the [shorthand for the test command.

Try It Out Tracing with Command Substitution
Enter the following script and save it under the name trace_here:

Using bc for math with a here document.
Calculates sales tax.

echo -n “Please enter the amount of purchase: “
read amount
echo

echo -n “Please enter the total sales tax: “
read rate
echo

result=$(bc << EndOfCommands
scale=2 /* two decimal places */

tax = ($amount * $rate) / 100
total=$amount+tax

print total

EndOfCommands
)

echo “The total with sales tax is: \$ $result on `date`.”

331

Debugging Shell Scripts

14_583204 ch11.qxd 3/18/05 9:29 PM Page 331

When you run this script, you’ll see the following output, depending on the values you enter:

$ sh -x trace_here
+ echo -n ‘Please enter the amount of purchase: ‘
Please enter the amount of purchase: + read amount
100
+ echo

+ echo -n ‘Please enter the total sales tax: ‘
Please enter the total sales tax: + read rate
7
+ echo

++ bc
+ result=107.00
++ date
+ echo ‘The total with sales tax is: $ 107.00 on Thu Nov 25 07:51:36 CST 2004.’
The total with sales tax is: $ 107.00 on Thu Nov 25 07:51:36 CST 2004.

How It Works
You can see the shell’s output includes lines with two plus signs, ++. This shows where the shell performs
command substitution.

In the next example, you can see how the -x option tells the shell to output information about each itera-
tion in a for loop. This is very useful if the loop itself contains a problem. The -x option enables you to
better see how the script looks from the shell’s point of view.

Try It Out Tracing a for Loop
Enter the following script, the myls3 script from Chapter 4:

Assumes $1, first command-line argument,
names directory to list.

cd $1
for filename in *
do

echo $filename
done

When you trace this script, you will see the following output, depending on the contents of your /usr/
local directory:

$ sh -x myls3 /usr/local
+ cd /usr/local
+ for filename in ‘*’
+ echo bin
bin
+ for filename in ‘*’
+ echo etc
etc

332

Chapter 11

14_583204 ch11.qxd 3/18/05 9:29 PM Page 332

+ for filename in ‘*’
+ echo games
games
+ for filename in ‘*’
+ echo include
include
+ for filename in ‘*’
+ echo lib
lib
+ for filename in ‘*’
+ echo libexec
libexec
+ for filename in ‘*’
+ echo man
man
+ for filename in ‘*’
+ echo sbin
sbin
+ for filename in ‘*’
+ echo share
share
+ for filename in ‘*’
+ echo src
src

How It Works
Note the huge amount of output for such a small script. The shell traces each iteration through the for loop.

Avoiding Errors with Good Scripting
After all this work, you can see that tracking down errors can be difficult and time-consuming. Most
script writers want to avoid this. While there is no magical way to never experience errors, you can follow
a few best practices that will help you avoid problems.

The basic idea is to write scripts so that errors are unlikely to occur; and if they do occur, the errors are
easier to find. The following sections provide some tips to help you reduce the chance of errors.

Tidy Up Your Scripts
Because many script errors are caused by typos, you can format your script to make the syntax clearer.
The following guidelines will not only make it easier to understand your scripts, but also help you see if
they contain syntax errors:

❑ Don’t jam all the commands together. You can place blank lines between sections of your script.

❑ Indent all blocks inside if statements, for loops, and so on. This makes the script clearer, as
shown in the following example:

333

Debugging Shell Scripts

14_583204 ch11.qxd 3/18/05 9:29 PM Page 333

if [$rate -lt 3]
then

echo “Sales tax rate is too small.”
fi

Note how the echo statement is indented.

❑ Use descriptive variable names. For example, use rate or, better yet, tax_rate instead of r or,
worse, r2.

❑ Store file and directory names in variables. Set the variables once and then access the values of
the variables in the rest of your script, as shown in the following example:

CONFIG_DIR=$HOME/config
if [-e $CONFIG_DIR]
then

Do something....
fi

This way, if the value of the directory ever changes, you have only one place in your script to change.
Furthermore, your script is now less susceptible to typos. If you repeatedly type a long directory name,
you may make a mistake. If you type the name just once, you are less likely to make a mistake.

Comment Your Scripts
The shell supports comments for a reason. Every script you write should have at least one line of com-
ments explaining what the script is supposed to do.

In addition, you should comment all the command-line options and arguments, if the script supports
any. For each option or argument, explain the valid forms and how the script will use the data.

These comments don’t have to be long. Overly verbose comments aren’t much help. However, don’t use
this as an excuse to avoid commenting altogether. The comments serve to help you, and others, figure
out what the script does. Right now, your scripts are probably fresh in your memory, but six months
from now you’ll be glad you commented them.

Any part of your script that appears odd, could create an error, or contains some tricky commands mer-
its extra comments. Your goal in these places should be to explain the rationale for the complex section
of commands.

Create Informative Error Messages
If the cryptic error messages from the shell impede your ability to debug scripts, then you shouldn’t con-
tribute to the problem. Instead, fight the Man and be a part of the solution. Create useful, helpful error
messages in your scripts.

One of the most interesting, and perhaps confusing, error messages from a commercial application was
“Pre-Newtonian degeneracy discovered.” The error was a math error, not a commentary about the
moral values of old England.

334

Chapter 11

14_583204 ch11.qxd 3/18/05 9:29 PM Page 334

Error messages should clearly state the problem discovered, in terms the user is likely to understand,
along with any corrective actions the user can take.

You may find that the error messages are longer than the rest of your script. That’s okay. Error messages
are really a part of your script’s user interface. A user-friendly interface often requires a lot of commands.

Simplify Yourself Out of the Box
Clever commands in your scripts show how clever you are, right? Not always, especially if one of your
scripts doesn’t work right. When faced with a script that’s too clever for itself, you can focus on simplifying
the script. Start with the most complicated areas, which are also likely to be the areas that aren’t working.
Then try to make simpler commands, if statements, for loops, case statements, and so on.

Often, you can extract script commands from one section into a function or two to further clarify the situa-
tion. The idea is to end up with a script that is easier to maintain over the long run. Experience has shown
that simpler scripts are far easier to maintain than overly complicated ones.

Test, Test, and Test Again
Test your scripts. Test your scripts. Yep, test your scripts. If you don’t test your scripts, then they will
become examples for others of problematic debugging.

In many cases, especially for larger scripts, you may need to follow the techniques described in the sec-
tion on breaking scripts into pieces. This concept works well for the scripts you write as well. If you can
build your scripts from small, tested pieces, then the resulting whole is more likely to work (and more
likely to be testable).

The only way you can determine whether your scripts work is to try them out.

Summary
Scripts can experience problems. Usually, it isn’t the script suffering from a bad hair day. Instead, there is
usually some sort of problem in the script or a faulty assumption that caused the problem. When a prob-
lem occurs, the shell should output some sort of error message. When this happens, you need to remem-
ber the following:

❑ One of the first things you have to do is decipher the error messages from the shell, if there are any.

❑ Error messages may not always refer to the right location. Sometimes you have to look around
in the script to find the error.

❑ The script may contain more than one error.

❑ The shell -v command-line option runs a script in verbose mode.

❑ The shell -n command-line option runs a script in no-execute mode. The shell will not run any
of the commands. Instead, it will just check the syntax of your script.

335

Debugging Shell Scripts

14_583204 ch11.qxd 3/18/05 9:29 PM Page 335

❑ The shell -x command-line option runs the shell in an extended trace mode. The shell will print out
information on each command, including command substitution, prior to executing the command.

❑ Always test your scripts prior to using them in a production environment.

This chapter ends the part of the book that covers the beginning steps of shell scripting. The next chapter
begins by showing you how to use scripts — in this case, how to use scripts to graph system performance
data, along with any other data you desire. With the next chapter, you’ll use the techniques introduced so
far in real-world situations.

Exercises
1. What is wrong with the following script? What is the script supposed to do? At least, what does

it look like it is supposed to do? Write a corrected version of the script.

Assumes $1, first command-line argument,
names directory to list.

directory=$1

if [-e $directory]
then

directroy=”/usr/local”
fi

cd $directroy
for filename in *
do

echo -n $filename

if [-d $filename]
then

echo “/”
elif [! -x $filename]
then

echo “*”
else

echo
fi

done

2. What is wrong with this script? What is the script supposed to do? At least, what does it look
like it is supposed to do? Write a corrected script.

#!/bin/sh

Using bc for math,
calculates sales tax.

echo -n Please enter the amount of purchase: “
read amount

336

Chapter 11

14_583204 ch11.qxd 3/18/05 9:29 PM Page 336

echo

echo -n “Please enter the total sales tax rate: “
read rate
echo

result=$(echo “
scale=2; tax=$amount*$rate/100.00;total=$amount+tax;print total” | bc)

if [$(expr “$result > 200”)]
then

echo You could qualify for a special free shipping rate.
echo -n Do you want to? “(yes or no) “
read shipping_response
if [$shipping_response -eq “yes”]
then

echo “Free shipping selected.
fi

fi

echo “The total with sales tax = \$ $result.”
echo “Thank you for shopping with the Bourne Shell.”

337

Debugging Shell Scripts

14_583204 ch11.qxd 3/18/05 9:29 PM Page 337

14_583204 ch11.qxd 3/18/05 9:29 PM Page 338

12
Graphing Data with MRTG

System administrators use scripts every day. Quite a lot of this activity involves using scripts to
verify that systems continue to run properly, as well as to gather performance information.

MRTG, short for the Multi Router Traffic Grapher, was originally designed to monitor the network traf-
fic from one or more routers. MRTG takes a very useful approach to network monitoring: It outputs
web pages showing the network traffic data. The actual graphs are image files in PNG format. Thus,
you need no special software to view the network statistics. In addition, you can view the data
remotely if you have a web server running on the system on which MRTG runs.

One of the most useful aspects of MRTG is that the package can monitor just about anything. In
addition, anything it can monitor, it can graph. Furthermore, MRTG uses a fixed amount of disk
space for storing its statistics. (Older data get replaced by averages.) This means MRTG won’t fill
your hard disks with data files over time.

MRTG proves useful for all of the following purposes:

❑ Monitoring network throughput, the purpose for which MRTG was originally designed

❑ Monitoring CPU usage

❑ Tracking disk usage

❑ Watching for spikes in allocated memory

❑ Ensuring that applications such as web servers, database managers, and network firewalls
remain functioning

This chapter covers using MRTG to graph system, network, and application data. Using MRTG is fun, as
you can get immediate visual feedback about your scripts. As you’ll see, however, this chapter covers far
more than just MRTG. Along the way, you’ll learn how to use scripts to monitor your system’s CPU,
disk, memory, networks, and applications. These techniques are useful even if you never run MRTG.

Working with MRTG
MRTG is an application that, when run, checks a configuration file. MRTG then monitors all of the
items defined in the configuration file, called targets. A target is a system or network router to monitor

15_583204 ch12.qxd 3/18/05 9:29 PM Page 339

or, more important, a script to run. You configure which targets MRTG should graph by editing a text file.
MRTG then runs the configured script for each target. MRTG stores the data in special MRTG data files. At
the end of its run, MRTG generates graphs for all of the configured items. By default, MRTG generates daily,
weekly, monthly, and yearly graphs of the monitored data. Figure 12-1 shows an example web page created
by MRTG.

Figure 12-1

To graph data over time, you need to run MRTG periodically. By default, you should run MRTG every
five minutes. On Unix and Linux systems, use a utility called cron to run MRTG every five minutes. On
Windows, you can set up MRTG as a scheduled task.

For example, MRTG includes code to monitor the traffic going through network routers. Running MRTG
every five minutes enables you to see the network throughput in terms of input and output packets, over
time. You can use MRTG’s graphs to identify times of the day when your servers face the heaviest load
and also help to track down network problems.

cron enables you to run applications or scripts in the background at scheduled intervals. For example,
you may want to run a backup every night.

MRTG uses SNMP, the Simple Network Management Protocol, to monitor network routers. If your routers
support SNMP, you can use MRTG out of the box to monitor the router traffic. If you run SNMP on other
systems, you can configure MRTG to monitor any values provided by SNMP.

340

Chapter 12

15_583204 ch12.qxd 3/18/05 9:29 PM Page 340

Monitoring Other Data with MRTG
MRTG works by polling for values during every specified time period — that is, every time you run
MRTG. By default, MRTG expects to poll for data every five minutes. The data MRTG acquires every five
minutes is merely two values per item, or target, MRTG monitors. In addition, because MRTG only needs
two values (numbers) per target it monitors, you can set up all sorts of interesting monitoring scripts.

In addition to supporting SNMP-accessible data, MRTG can graph literally anything that can provide
two values over time. It is this factor that makes MRTG so interesting. See the section Writing Scripts for
MRTG, later in this chapter, for more on this topic.

Installing MRTG
MRTG is written in Perl, another scripting language, with performance-intensive parts written in C. The C
parts must be compiled for each platform. This means you need to either build MRTG from the source code
or download MRTG prebuilt for your system.

Download MRTG from the MRTG home page at http://people.ee.ethz.ch/~oetiker/webtools/mrtg/. MRTG
is free under an open-source license.

For Linux systems, you can download an RPM package file of MRTG. Or you can use a tool such as apt,
yum, or up2date, shown in the following example, to download and install MRTG:

up2date mrtg

In this example, the up2date command will download the package named mrtg and then install the
package, if there are no conflicts with existing packages.

See Red Hat RPM Guide (Wiley, 2002) for more on RPM package management on Linux and other
operating systems.

SNMP includes a network protocol for gathering data from remote network devices.
Most routers support SNMP to report statistics on packets sent and received, errors
encountered, and so on. With SNMP client software, included in MRTG, you can
query the remote device for whatever data it provides. (The remote device may be
protected by security to prevent unwanted access.)

Because so many routers support SNMP, MRTG is enabled to read data via SNMP.

Many server systems also provide information via SNMP. If this is the case, you can
use SNMP to query for available disk space, memory usage, and a full listing of
every running process. SNMP-enabled printers can even report when they run out
of paper. You can configure MRTG to monitor any of this data.

341

Graphing Data with MRTG

15_583204 ch12.qxd 3/18/05 9:29 PM Page 341

Writing Scripts for MRTG
Each time you run the mrtg command, MRTG either uses SNMP to gather data or executes a script or
program for each configured target.

MRTG runs a script or program that MRTG expects to output four values. Each value should appear on
a separate line. MRTG then collects the data. Each run of the script provides one data point. The format
required is listed in the following table.

Line Holds

Line 1 Value of the first variable

Line 2 Value of the second variable

Line 3 Uptime of the system, as a human-readable text string

Line 4 Name of the system or target

In normal usage, the first variable holds the count of incoming bytes or packets. The second variable
holds the count of outgoing bytes or packets.

You can set the third line to either the output of the uptime command or to dummy text (such as dummy).
This value is only used in the HTML web output. If you remove that section from the output, you can output
dummy text. Otherwise, you want to output text that states how long the system has been up, or running,
since its last shutdown or crash.

The fourth name should be the system or target name. This name, again, is just used for the display. In prac-
tice, it usually works well to pass this name on the command line to your script. This approach enables your
script to monitor several targets. For example, a script that tracks disk usage could be applied to monitor any
system at your organization. By passing the hostname of the system, you can make a more generic script.

For a script to work with MRTG, you must mark the script with execute permission, and you must insert
the magic first-line comment that specifies the shell that should run the script. The following first-line
comment, for example, specifies that the Bourne shell should run the script:

Part of MRTG’s success is due to its use of a fixed amount of disk space to store its
statistics. By compressing past data to averages, MRTG dramatically cuts the amount
of space it requires. In addition, by sticking to a fixed amount of space, you don’t
have to worry about MRTG filling your hard disk over time. The last thing you want
from a monitoring tool is the tool itself crashing your system.

The fixed-size database of statistics is available separately from MRTG. It’s called
RRD, for round-robin database, and you can download this package from http://people
.ee.ethz.ch/~oetiker/webtools/rrdtool/.

You can script the rrdtool program to store statistics and later retrieve them. You can
also use rrdtool to generate images on the fly, creating graphs of the data on demand.

342

Chapter 12

15_583204 ch12.qxd 3/18/05 9:29 PM Page 342

#!/bin/sh

See Chapter 4 for more information about the magic first-line comment.

You can test this out by writing a script to read from the Linux /proc file system, as in the following example.
The Linux /proc file system holds special pseudo-files that contain system information. Your scripts can read
directly from these pseudo-files as if they were real files. The files in /proc contain information on memory
usage, disk consumption, and network statistics, along with detailed information on each running process.

Try It Out Monitoring System Uptime
Enter the following script and name the file up2mrtg:

#!/bin/sh
Gets system uptime. $1 is the host name.
upt=`</proc/uptime`

for line in $upt dummy $1
do

echo “$line”
done

You must mark this script with execute permission. Use the following command as a guide:

$ chmod a+x up2mrtg

This command adds execute permission for all users, making the script executable.

When you run this script, you need to pass the hostname of the system. For example, on a system named
kirkwall, use a command like the following:

$./up2mrtg kirkwall
1488565.42
1348929.42
dummy
kirkwall

How It Works
The Linux file /proc/uptime contains two values: the number of seconds the system has been running
and the number of seconds spent idle. The lower the second number in relation to the first, the more
busy your system is. You can view this file with the following command:

$ more /proc/uptime
1488765.25 1349093.59

Note that the /proc filesystem is specific to Linux.

The up2mrtg script outputs the four values as required by MRTG. You must remember, however, to pass
the system hostname on the command line.

343

Graphing Data with MRTG

15_583204 ch12.qxd 3/18/05 9:29 PM Page 343

Try It Out Writing a More Complete Script
To expand on the previous example, enter the following script and name the file up2mrtg2:

#!/bin/sh
Gets system uptime.
upt=`</proc/uptime`

for line in $upt
do

echo “$line”
done
echo `uptime`
echo `hostname`

Again, mark the file as executable:

$ chmod a+x up2mrtg2

When you run this script, you’ll see output like the following:

$./up2mrtg2
1489021.22
1349304.98
21:07:31 up 17 days, 5:37, 5 users, load average: 0.06, 0.09, 0.18
kirkwall

How It Works
This script extends the previous script to actually output the system uptime, as all MRTG scripts should
do. You can decide whether or not to include this information in your scripts. Note how this script
changes the handy for loop. The last two lines now appear separately. This enables you to better see the
last two data items.

The third line uses the echo command to output the value of the uptime command. The fourth line uses
the echo command to output the value of the hostname command.

Note that you could also skip the echo command and call the uptime and hostname commands
directly. Each command outputs one line of text.

Remember to test your scripts before you try to use MRTG to run them. Luckily,
because your scripts are supposed to output four lines, you can easily test these
scripts to determine whether they work properly. Chapter 11 has more on the whys
and wherefores of testing.

It is vitally important that you test your scripts prior to running them from MRTG.
Because MRTG runs in the background, you may never know something has gone
wrong until you have lost a lot of valuable data.

344

Chapter 12

15_583204 ch12.qxd 3/18/05 9:29 PM Page 344

Once you have a script and you’ve tested it, you’re ready to start working on MRTG.

Configuring MRTG
The most difficult aspect of using MRTG is writing the configuration file. Once you’ve done this, though,
you can simply copy a configuration file and edit just a few values. Furthermore, if you have an example
configuration file from which to work, configuring MRTG will be a lot easier.

On Linux, the default MRTG configuration file is located at /etc/mrtg/mrtg.cfg. Because you pass the
name of the configuration file to the mrtg command, you can store this file anywhere. If you use MRTG to
monitor routers or other SNMP devices, store the configuration file in a secure directory that other users
cannot read, because the MRTG configuration file will hold SNMP community names and passwords.

MRTG comes with good documentation, but expect to attempt to run MRTG a few times before everything
works to your satisfaction. You’ll usually need to edit the MRTG configuration file, run the mrtg command,
and then view the output a few times before everything works right. Expect to repeat this cycle until it all
works. The following sections show you how to configure MRTG and create the configuration file needed
by this program.

Each time you run MRTG, the mrtg command loads in its configuration file. This file defines which targets
to monitor. The configuration file also defines output options for customized HTML and other aspects of a
single MRTG run.

To configure MRTG, you need to do the following:

❑ Configure the mrtg command to run your scripts by editing the MRTG configuration file.

❑ Customize the output, again by editing the MRTG configuration file.

The first step in configuring MRTG is to define the directories it should work in and use to store data.

Configuring the Global Values
To run MRTG, you first need to name a number of directories. You need to define output directories in
which MRTG finds images used in HTML files and where MRTG should store the HTML files it produces.
Normally, MRTG should create one HTML file per target you define.

For example, to define the output directories, you can use the following:

HtmlDir: /var/www/mrtg
ImageDir: /var/www/mrtg

You also need to define at least two directories in which MRTG will log data and alert you if data crosses
thresholds, as shown here:

LogDir: /var/lib/mrtg
ThreshDir: /var/lib/mrtg

You can define several threshold settings. See the MRTG documentation for more information.

345

Graphing Data with MRTG

15_583204 ch12.qxd 3/18/05 9:29 PM Page 345

You can also set the WorkDir directory to define one top-level directory, as shown in the following example:

WorkDir: /opt/mrtg

All other directories will then be located underneath the work directory. In many cases, you need to separate
the HTML output to a set of directories that can be accessed by your web server (such as Apache). Thus, the
output directories need to be in a more public location. The internal working files used by MRTG, and the
logs and alerts it generates, should reside in a less public directory. Because of this, all the examples define
the HtmlDir, ImageDir, LogDir, and ThreshDir separately. None of the examples use the WorkDir setting.

After you set up the MRTG directory settings, you can optionally tell MRTG to run forever in daemon
mode. (A daemon is a process that runs in the background as a server. The term is essentially equivalent
to a Windows service.)

If you run MRTG in daemon mode, then the mrtg command will run forever (until killed). The mrtg
command will handle all scheduling tasks, such as gathering data every five minutes. If you tell MRTG
to run as a daemon, you should also define the data-gathering interval, such as five minutes:

RunAsDaemon: Yes
Interval: 5

When you have verified that MRTG works properly with your configuration, you can define MRTG either
as a daemon or to run from cron. If you define MRTG as a daemon, you need to edit your system startup
scripts to launch MRTG each time your system reboots.

After filling in the global values, the next step is to configure MRTG to run your scripts.

Configuring MRTG Targets for Your Scripts
You need to configure MRTG to call your scripts. Do this by setting up a target for each script you want
MRTG to run.

You must define at least two parameters per target: the target itself, which defines the script to run, and
the maximum number of bytes. The syntax follows:

Target[target_name]: `script_to_run`
MaxBytes[target_name]: value

Replace the target_name with the name of your target. You must be consistent with the name over all
the settings for that target. For example, if the target name is uptime, you could define a target as follows:

Target[uptime]: `/usr/local/bin/up2mrtg kirkwall`
MaxBytes[uptime]: 10001010

Even if you plan to run MRTG in daemon mode, don’t set this up yet. You’ll want to
run the mrtg command repeatedly as you wring out all the configuration and script
issues. Only when everything works fine should you set up daemon mode or run
MRTG under cron or another scheduler.

346

Chapter 12

15_583204 ch12.qxd 3/18/05 9:29 PM Page 346

Be sure to place the script to run, with all its needed parameters, inside the backticks. (This is similar to how
you define command substitution in a shell script.) Note how the example passes the command-line argu-
ment kirkwall to the script. In addition, note how you need to include the full path to your script. You may
want to copy your scripts to a common system directory, such as /usr/local/bin, as used in this example.

Set the MaxBytes to some large setting (this is most useful for SNMP-related targets).

You can define additional targets, all of which require the Target and MaxBytes settings. These two settings
are all you really need to define a shell script as a target.

Customizing MRTG Output
After defining the basics for a target, you most likely will want to customize the HTML output, along
with the graphs. If you don’t, you’ll see graph legends appropriate for router traffic, which is probably
not what you want. The next two sections elaborate on how you can customize the HTML produced by
MRTG, along with the graphs, which are generated as image files.

Configuring Target HTML Outputs
The Title option sets the title of the generated HTML document:

Title[uptime]: System Uptime

As shown previously, you must use a consistent name for the target, here referenced as uptime. You can
define HTML codes for the top of the output page using the PageTop option, as shown here:

PageTop[uptime]: <H2>Uptime For Kirkwall</H2>
Yow, this is a start with MRTG.
This is another line in the page top.

This shows an example of a multi-line value. With MRTG, you must indent each following line by a few
spaces. If you don’t, MRTG won’t know that you want a longer value.

You can also define several HTML configuration options, as shown in the following table.

Option Holds

PageTop HTML codes added to the beginning of the document body.

PageFoot HTML codes added to the end of the document body.

AddHead Adds text between the end of the title tag and prior to the end of the head tag. This
is mostly useful for linking to external Cascading Style Sheets (CSS files).

BodyTag Defines the HTML document body tag. You can define a background image, mar-
gins, and so on.

By default, MRTG generates a graph for the current day, as well as averages over the last week, month,
and year. You can turn off, or suppress, any of these graphs. For example, if the average over the last year
isn’t helpful, you can suppress the output of the graph, as shown in the following example:

Suppress[uptime]: y

347

Graphing Data with MRTG

15_583204 ch12.qxd 3/18/05 9:29 PM Page 347

Generating images files is one of the more expensive operations performed by MRTG. Suppressing one
or more images for a target can help reduce the burden of monitoring.

In addition to customizing the HTML output, you can customize the graphs.

Configuring Graphs
To be as portable as possible, and to enable you to view the data in normal web browsers, such as Firefox,
Safari, or Internet Explorer, MRTG outputs graphs as image files in PNG format. This is really one of the
cleverest features of MRTG. You can view these images in web pages as well as in other applications that can
display images.

You can define several configuration options to control how the graph images are made.

The PNGTitle option defines the text to appear immediately above the graph (still within the generated
image). You likely don’t want a router-based title. Change the title by setting the following option:

PNGTitle[uptime]: System uptime

The YLegend similarly controls the text displayed with the y axis, as shown here:

YLegend[uptime]: Seconds

You want to ensure that you do not define a lot of text for this option, as the text is drawn vertically.

MRTG normally draws a legend at the bottom of the HTML output that shows what the colors on each
graph depict. The default text is not appropriate for uptime measurements. You can turn this off by set-
ting the LegendI and LegendO (oh) options to empty text, as shown in the following example:

LegendI[uptime]:
Legend-”Oh” not zero
LegendO[uptime]:

The Options option provides the most complicated setting. You can define a comma-delimited list of
options to set for the graphs for the given target:

Options[uptime]: noinfo, gauge, nopercent, transparent

This example sets the noinfo, gauge, nopercent, and transparent options. The noinfo option sup-
presses the text near the start of the HTML document that lists the system name and uptime. If you sup-
press this, you do not have to output the system uptime from your scripts, enabling the MRTG task to
use less system resources.

The gauge option tells MRTG that each reading holds the current status of the device or system. For example,
when monitoring disk usage, the current reading is the value of disk space used. MRTG should not add this
value to previous readings. In other words, the gauge option tells MRTG that this target is not a counter.
(Many network routers act as counters.)

The nopercent option tells MRTG not to print usage percentages. Again, when monitoring something
other than a network router, you probably want to turn off the percentages.

348

Chapter 12

15_583204 ch12.qxd 3/18/05 9:29 PM Page 348

The transparent option tells MRTG to make the PNG images have a transparent background color.
This enables the images to appear better against a variety of background colors.

The following complete example in the Try It Out section enables you to work with MRTG yourself.

Try It Out Verifying Your MRTG Configuration
Create the following MRTG configuration file (save the file under the name mrtg_uptime.cfg):

HtmlDir: /var/www/mrtg
ImageDir: /var/www/mrtg
LogDir: /var/lib/mrtg
ThreshDir: /var/lib/mrtg

Target[uptime]: `/usr/local/bin/up2mrtg kirkwall`
MaxBytes[uptime]: 10001010

HTML output settings.
Title[uptime]: System Uptime
PageTop[uptime]: <H2>Uptime For Kirkwall</H2>

Yow, this is a start with MRTG.
This is another line in the page top.

Suppress[uptime]: y

Graph output settings.

Options[uptime]: noinfo, gauge, nopercent, transparent

PNGTitle[uptime]: System uptime
YLegend[uptime]: Seconds
LegendI[uptime]:
Legend-”Oh” not zero
LegendO[uptime]:

Once you have a configuration file ready, try the mrtg command with the --check option. This option
tells the mrtg command to verify the configuration file.

On many Linux systems, you will see output like the following the first time you run the mrtg command:

$ mrtg --check mrtg_uptime.cfg

ERROR: Mrtg will most likely not work properly when the environment

variable LANG is set to UTF-8. Please run mrtg in an environment
where this is not the case. Try the following command to start:

env LANG=C /usr/bin/mrtg --check mrtg_uptime.cfg

This complaint results from the default value of the LANG environment variable for Fedora Core 3
Linux (in the United States). You can view this value with the echo command, as described in Chapter 4:

349

Graphing Data with MRTG

15_583204 ch12.qxd 3/18/05 9:29 PM Page 349

$ echo $LANG
en_US.UTF-8

The suggested command changes the environment and then runs the command. You can try this com-
mand as follows:

$ env LANG=C /usr/bin/mrtg --check mrtg_uptime.cfg
$

Unless you see some output, you can assume that the file appears okay to the mrtg command.

How It Works
The --check option tells the mrtg command to just check your configuration file. Because so much of
the behavior of the command depends on the configuration file, this is a good starting point.

You can add blank lines in your configuration file to make the file easier to understand. In addition, as
with shell scripts, # indicates a comment.

If you have a typo in your configuration file, you may see output like the following:

$ env LANG=C /usr/bin/mrtg --check mrtg_uptime.cfg
WARNING: “MaxBytes[uptime]” not specified
ERROR: Please fix the error(s) in your config file

If you see this type of output, you need to fix an error in your configuration file.

Running MRTG
The basic syntax for running the mrtg command is as follows:

mrtg /full/path/to/config/file

You may also need to prepend an environment setting, as shown here:

env LANG=C /usr/bin/mrtg /full/path/to/config/file

Try It Out Running MRTG
You can then run the mrtg command as follows:

$ env LANG=C /usr/bin/mrtg mrtg_uptime.cfg
/usr/bin//rateup: Permission denied
Rateup ERROR: Can’t open uptime.tmp for write
ERROR: Skipping webupdates because rateup did not return anything sensible
WARNING: rateup died from Signal 0
with Exit Value 1 when doing router ‘uptime’
Signal was 0, Returncode was 1

350

Chapter 12

15_583204 ch12.qxd 3/18/05 9:29 PM Page 350

If you see an error like this, the likely problem is that the user trying to run the mrtg command (that is,
you) does not have permissions to modify the MRTG working or output directories, as defined in the
MRTG configuration file. You can change permissions on the directories or change the configuration to
name directories for which you have the necessary permissions.

You may also see some warnings the first few times you run the mrtg command. Just try it a few times
until you either know you have a real problem or mrtg stops complaining. A normal run should gener-
ate no output to the shell:

$ env LANG=C /usr/bin/mrtg mrtg_uptime.cfg

How It Works
Run in the nondaemon mode, the mrtg command will start up, parse the configuration file, and then
run your script. When complete, you should see image files and an HTML file, named uptime.html in
this example (the base name comes from the target name defined in the configuration file). The mrtg
command will write out these files to the directory you configured for images.

Viewing Your First MRTG Output
The HTML output created by this first example should look something like what is shown in Figure 12-2.

Figure 12-2 351

Graphing Data with MRTG

15_583204 ch12.qxd 3/18/05 9:29 PM Page 351

Note that at the beginning, you won’t see a lot of data. You have to run mrtg a number of times until it
gathers enough data to create meaningful graphs.

Now you should have mrtg ready to run whenever you want. You can then set up cron or some other pro-
gram to run the mrtg command every five minutes or so. Alternatively, you can run the mrtg command in
daemon mode.

Configuring cron
cron enables you to run applications or scripts in the background at scheduled intervals. In most cases,
you’ll want to run MRTG every five minutes.

To set up a periodic task with cron, you need to create a crontab file. A crontab file tells cron when to
run your task, as well as the command to run. The crontab file defines one task to run periodically per
line. Each line has six fields, as shown in the following table.

Field Holds

1 Minutes after the hour

2 Hour, in 24-hour format

3 Day of the month

4 Month

5 Day of the week

6 Command to run

The first five fields specify the times to run the command. The last field defines the actual command to run.

You can use an asterisk, *, to indicate that the command should be run for every value for that field.
That is, run the command for the range of the first possible value of the field to the last. For example, if
you place an asterisk for the month field, this tells cron to run your command every month, at the times
specified by the other fields. Similarly, an asterisk in the day of the week field tells cron to run your
command every day. Most crontab entries, therefore, have several asterisks.

The day of the week starts at 0, for Sunday. Minutes range from 0 to 59, and hours of the day from 0 to 23.
You can use ranges, such as 10-15, or a comma-delimited list of times, such as 5,10,15,20.

Remember to include the full paths in your commands. The pseudo-user running
the cron scheduler will probably not have as extensive a path setting as you do.

Don’t set up cron to run MRTG until you have fully configured and tested your
MRTG setup.

352

Chapter 12

15_583204 ch12.qxd 3/18/05 9:29 PM Page 352

A special asterisk syntax of fractions enables you to define running a task every two hours, or every five
minutes. (The latter time is most useful for MRTG.) Use */2 for the hours field to specify every two
hours and */5 in the minutes field to specify every five minutes.

For example, to run the mrtg command every five minutes, you would create a crontab entry like the
following:

*/5 * * * * env LANG=C /usr/bin/mrtg /path/to/mrtg_uptime.cfg

See the online documentation on the crontab file format, the crontab command, and the cron sched-
uler for more information about setting up cron to run mrtg.

Maximizing MRTG Performance
Performance is a big consideration when using MRTG. Normally, you’d think that a process that runs
every five minutes should not take up too much processing resources. However, if you monitor several
systems, MRTG can start to slow your system. Some steps you can take to improve the performance of
MRTG include the following:

❑ Reduce the use of awk. Awk was designed to create reports, and if you use awk to generate just
four lines of data, this tends to be overkill. Often, the smaller cut program will suffice for gener-
ating data for MRTG.

❑ Simplify your data-gathering scripts. Every command in your scripts is one more thing that
must be run every time MRTG gathers data.

❑ Reduce the number of graphs generated. Do you really need to see the averages over the last
year? In many cases, a monthly average is sufficient.

❑ Increase the interval time. Can you run MRTG every ten minutes instead of every five?

❑ Try running the mrtg command in daemon mode instead of running mrtg with cron. In this
mode, you remove the time required to start the Perl interpreter with each mrtg run.

❑ Use rrdtool to store the MRTG data. Often, users integrate rrdtool along with generating
images only on demand. Normally, MRTG generates images for each target each time MRTG is
run. With rrdtool, however, you can generate images only when a user (typically an adminis-
trator) wants to see the data. This avoids a huge amount of work normally done by MRTG. See
the MRTG documentation for more information about this.

Now you should be able to set up and run MRTG to graph any sort of data you desire. The following
sections show you how to write scripts to monitor your computer, your network, and your applications
with MRTG, with a special emphasis on writing MRTG scripts.

Monitoring Your Computer with MRTG
Unix and Linux systems support several commands that your scripts can call to monitor aspects of the
computer and its resources. In all cases, though, the steps are essentially the same:

1. Try the commands you think will provide the data points you need.

353

Graphing Data with MRTG

15_583204 ch12.qxd 3/18/05 9:29 PM Page 353

2. Write a script to monitor the data points you need.

3. Test your script.

4. Configure MRTG to run your script and produce the output you want.

5. Test MRTG running your script.

You may need to repeat some of the steps as you tweak how your script or MRTG should run.

The following sections show examples for monitoring the memory, CPU, and disk usage on a given system.

Graphing Memory Usage
Memory usage provides one of the most important measurements for enterprise systems, especially for
application servers, which are often bound by memory more than anything else. (Java applications tend
to use a lot of memory.)

The first step is to determine a command that reports the needed data. Surprisingly, this can be hard to
come by, at least in a convenient format.

The vmstat program reports on the usage of virtual memory. With the -s option, it provides a rather
long listing, as shown in the following example:

$ vmstat -s
1003428 total memory
994764 used memory
541292 active memory
357064 inactive memory

8664 free memory
219024 buffer memory
445344 swap cache

4096564 total swap
132 used swap

4096432 free swap
7454093 non-nice user cpu ticks

9889 nice user cpu ticks
334778 system cpu ticks

89245397 idle cpu ticks
187902 IO-wait cpu ticks
175440 IRQ cpu ticks

0 softirq cpu ticks
9668006 pages paged in

12105535 pages paged out
14 pages swapped in
45 pages swapped out

996496185 interrupts
167392215 CPU context switches

1100813430 boot time
114917 forks

All the values you want are here, but the output covers more than one line, which can prove harder to
create a script to monitor.

354

Chapter 12

15_583204 ch12.qxd 3/18/05 9:29 PM Page 354

The command is vm_stat on Mac OS X.

In addition, the vmstat command-line options differ on Solaris, Linux, and other systems. Therefore,
you need to determine which options are available on your system and then test the most promising
ones to see how the data appears.

Without any options, the vmstat command provides a briefer report:

$ vmstat
procs -----------memory---------- ---swap-- -----io---- --system-- ----cpu----
r b swpd free buff cache si so bi bo in cs us sy id wa
2 0 132 12056 220112 441864 0 0 10 12 9 40 8 1 92 0

An even better report uses the -a option, to show active memory:

$ vmstat -a
procs -----------memory---------- ---swap-- -----io---- --system-- ----cpu----
r b swpd free inact active si so bi bo in cs us sy id wa
2 0 464 11048 235860 568736 0 0 9 11 15 3 9 0 90 0

You can refine the output to filter out the header information by using the tail command. By default, the
tail command prints the last ten lines of a file. With the -1 (one) option, however, you can ask tail to
print the last line. Combine tail with vmstat, and you have output that’s easier to parse, as shown here:

$ vmstat -a | tail -1
1 0 464 8880 237840 568908 0 0 9 11 15 3 9 0 90 0

This is the command that the example script uses, but you may want to explore other interesting commands.
As before, the commands may not be available on all systems; and the options may differ, too, even where
the commands are available.

The free command lists the amount of free memory, as shown in the following example:

$ free
total used free shared buffers cached

Mem: 1003428 994984 8444 0 219072 446128
-/+ buffers/cache: 329784 673644
Swap: 4096564 132 4096432

You can also access the Linux pseudo-file, /proc/meminfo:

$ more meminfo
MemTotal: 1003428 kB
MemFree: 15640 kB
Buffers: 219988 kB
Cached: 439816 kB

There are many more lines of output. The first two lines, though, are enough to track memory usage. As
you can see, a wealth of information is available.

Using the vmstat -a command, you can create an MRTG monitoring script, as shown in the following
example. You can actually create a monitoring script from any of these commands.

355

Graphing Data with MRTG

15_583204 ch12.qxd 3/18/05 9:29 PM Page 355

Try It Out Graphing Memory Usage with MRTG
Enter the following script and name the file mem2mrtg:

#!/bin/sh
Gets system memory usage.
Active memory, free memory.
stats=`vmstat -a | tail -1`

set $stats ; echo $6
set $stats ; echo $4

echo `uptime`
echo `hostname`

As with all the examples, you need to mark the file with execute permission. When you run this script,
you’ll see output like the following:

$./mem2mrtg
568228
39736
22:21:40 up 19 days, 6:51, 5 users, load average: 0.13, 0.35, 0.34
kirkwall

How It Works
This script takes advantage of a side effect of calling the built-in set command. The set command normally
expects a variable to set. With no command-line arguments, set prints out the current environment.
However, if you have command-line arguments that are not variable settings, then the set command will
extract the values into the positional variables $1, $2, $3, and so on (just like the command-line positional
variables). Thus, the script can call set with a complex output line and then use the positional variables to
hold the numeric values the script deems interesting. Tricky, but very useful.

In this script, the variable stats holds the results of the command, vmstat -a | tail -1. The set
command then extracts the values into the positional parameters, $1, $2, and so on. The echo command
outputs the sixth parameter, the active memory usage.

The next line repeats the set command, extracting the fourth parameter. This is technically unnecessary.
You can simply add another echo command, as shown here:

set $stats ; echo $6 ; echo $4

This approach would be more efficient. For clarity, though, the script separates the lines.

After you have created the script to monitor memory usage, you need to configure MRTG to run your
script, as well as define the output options for the graph. The following Try It Out example shows how
to set this up.

Try It Out Configuring MRTG to Monitor Memory Usage
You can define an MRTG configuration for this target as follows:

356

Chapter 12

15_583204 ch12.qxd 3/18/05 9:29 PM Page 356

Memory usage.
Target[kirkwall.memory.usage]: `/usr/local/bin/mem2mrtg`
MaxBytes[kirkwall.memory.usage]: 10001010

HTML output settings.
Title[kirkwall.memory.usage]: Kirkwall Memory Usage
PageTop[kirkwall.memory.usage]: <H2>Memory Usage For Kirkwall</H2>

Suppress[kirkwall.memory.usage]: ym

Graph output settings.
Options[kirkwall.memory.usage]: gauge, nopercent, transparent, growright

PNGTitle[kirkwall.memory.usage]: kirkwall vm

YLegend[kirkwall.memory.usage]: Memory
ShortLegend[kirkwall.memory.usage]:b
kMG[kirkwall.memory.usage]: k,m
Legend1[kirkwall.memory.usage]: Active Memory
Legend2[kirkwall.memory.usage]: Free Memory
Legend3[kirkwall.memory.usage]: Max Active Memory
Legend4[kirkwall.memory.usage]: Max Free Memory
LegendI[kirkwall.memory.usage]: Active:
LegendO[kirkwall.memory.usage]: Free:

Note that this example holds just the part of the MRTG configuration file that works with the memory
target. Place this example into your MRTG configuration file. You may want to change the target name,
shown here as kirkwall.memory.usage.

How It Works
This configuration example defines an MRTG target named kirkwall.memory.usage (for a system with
a hostname of kirkwall). The target tells MRTG to run the mem2mrtg script, located in /usr/local/bin.

Remember to copy the script to the proper directory location.

The Options setting introduces the growright option, which tells MRTG to generate a graph going to
the right, instead of to the left. This changes where the history appears on the graph.

The ShortLegend defines the units, here listed as b for bytes. The oddly named kMG setting sets the prefix
to m, short for mega, as in megabytes, and k, short for kilo.

The best way to get the hang of these types of settings is to play around with different values, run mrtg,
and see what results you get. The MRTG documentation describes each option, but the effect of changes
is not readily apparent until you can see the resulting HTML page and graphs. In addition, remember
that you won’t have much of a graph until about 20 minutes have elapsed.

The legend settings define the graph’s legend and are shown here for an example from which to work.

When you use this configuration, you’ll see output similar to that in Figure 12-3.

357

Graphing Data with MRTG

15_583204 ch12.qxd 3/18/05 9:29 PM Page 357

Figure 12-3

Graphing CPU Usage
The up2mrtg script, shown previously, provides an example for monitoring CPU usage. This script, how-
ever, works on Linux only, as the /proc file system is available only on Linux. A more general approach can
be achieved with the uptime command, which includes a system load average, along with the number of
active users.

The number of active users is often wrong. A single user may appear to the system to be many users
when the user is running a graphical desktop.

The basic format provided by the uptime command follows:

$ uptime
22:07:29 up 11 days, 6:36, 5 users, load average: 0.03, 0.15, 0.27

Two useful values from this output include the number of users and the load average. The uptime com-
mand outputs the load average for the last minute, the last 5 minutes, and the last 15 minutes. Because
MRTG already averages, the best value to use is the number from the last minute.

358

Chapter 12

15_583204 ch12.qxd 3/18/05 9:29 PM Page 358

Note how this follows the first step listed previously. You need to first try the command or commands
you think will provide the necessary data.

Try It Out Graphing CPU Usage with MRTG
Enter the following script and name the file load2mrtg:

#!/bin/sh
Gets system load average.

stats=`uptime | cut -d’,’ -f2,3`

set $stats ; load=$5
users=$1

echo $load
echo $users

echo `uptime`
echo `hostname`

When you run this command, you’ll see output like the following:

$./load2mrtg
0.30
4
20:23:39 up 1:02, 4 users, load average: 0.30, 0.37, 0.64
kirkwall

How It Works
This example pipes the output of the uptime command to the cut command. The cut command, using
a comma as a separator, pulls out the user’s number and the system load averages. The set command
again places the extracted text into the positional variables $1, $2, and so on. From there, you can extract
the two desired numbers.

The load2mrtg script outputs both the user count and the average CPU load. You can optionally turn
off one or more values, as these two points don’t graph together well.

Try It Out Configuring MRTG to Monitor CPU Usage
Enter the following configuration to your MRTG configuration file:

Target[kirkwall.cpu.load]: `/usr/local/bin/load2mrtg`
MaxBytes[kirkwall.cpu.load]: 10001010

HTML output settings.
Title[kirkwall.cpu.load]: Kirkwall CPU Load
PageTop[kirkwall.cpu.load]: <H2>CPU Load For Kirkwall</H2>
Suppress[kirkwall.cpu.load]: ym

Graph output settings.

359

Graphing Data with MRTG

15_583204 ch12.qxd 3/18/05 9:29 PM Page 359

Options[kirkwall.cpu.load]: gauge, nopercent, transparent, growright

PNGTitle[kirkwall.cpu.load]: kirkwall CPU

YLegend[kirkwall.cpu.load]: Load avg.
ShortLegend[kirkwall.cpu.load]: avg.
Legend1[kirkwall.cpu.load]: Average CPU load
Legend2[kirkwall.cpu.load]: Number of users
Legend3[kirkwall.cpu.load]: Max CPU load
Legend4[kirkwall.cpu.load]: Max users
LegendI[kirkwall.cpu.load]: Load:
LegendO[kirkwall.cpu.load]: Users:

How It Works
This configuration example defines an MRTG target named kirkwall.cpu.load (again for a system with
a hostname of kirkwall). The target tells MRTG to run the load2mrtg script, located in /usr/local/bin. You
need to add this example to your MRTG configuration file.

The options are the same as for the previous configuration. When you use this configuration, you’ll see
output similar to what is shown in Figure 12-4.

Figure 12-4

360

Chapter 12

15_583204 ch12.qxd 3/18/05 9:29 PM Page 360

Graphing Disk Usage
The df command, short for disk free, displays the amount of free disk space, along with used and total
space. Without any command-line arguments or options, df generates output on all mounted file systems,
as shown in the following example:

$ df
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/hda2 24193540 3908604 19055964 18% /
/dev/hda1 101086 8384 87483 9% /boot
none 501712 0 501712 0% /dev/shm
/dev/hda5 48592392 24888852 21235156 54% /home2
/dev/sda1 499968 373056 126912 75% /media/CRUZER

Due to boneheaded defaults on Unix, you should pass the -k option to the df command. The -k option
tells the df command to output values in kilobytes, rather than 512-byte blocks (or half-kilobytes). On
Linux, as shown in this example, the default output of df is in kilobytes. However, for many Unix systems
this is not true, so you should always pass the -k option to df.

HP-UX was historically particularly annoying in this regard.

If you pass a file system, or its mount point, the df command will output data for only that file system,
as shown in the following example:

$ df -k /media/CRUZER/
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/sda1 499968 373056 126912 75% /media/CRUZER

This example shows the disk usage of a 512 MB USB flash, or thumb, drive on a Linux system.

With this example, you can see that you’re close to extracting the data to be monitored. If you pipe the out-
put of the df command to the tail command, as shown in the mem2mrtg script, then you will eliminate the
clutter and have one line of output, as shown in this example:

$ df -k /media/CRUZER/ | tail -1
/dev/sda1 499968 373056 126912 75% /media/CRUZER

With this, you should have enough information to create a script.

Try It Out Graphing Disk Usage with MRTG
Enter the following script and name the file df2mrtg:

#!/bin/sh
Gets system disk usage.
Pass file system, such as / as $1

Save argument before we overwrite it.

361

Graphing Data with MRTG

15_583204 ch12.qxd 3/18/05 9:29 PM Page 361

filesystem=$1

stats=`df -k $filesystem | tail -1`

set $stats

echo $3 # Used
echo $4 # Available

echo `uptime`
echo `hostname`

When you run this script, you need to pass the name of the file system to be monitored or a mount point,
such as / or /boot. When you run this script, you should see output like the following:

$./df2mrtg /
3908608
19055960
22:13:55 up 2:52, 4 users, load average: 0.35, 0.45, 0.63
kirkwall

How It Works
This script is very similar to the previous scripts. By now, you should be seeing a pattern to the scripts.
The main difference here is that this script requires a command-line argument of the file system to moni-
tor. It also calls the df command to acquire the data.

Try It Out Configuring MRTG to Monitor Disk Usage
Enter the following MRTG configuration for this target:

Target[kirkwall.disk.slash]: `/usr/local/bin/df2mrtg /`
MaxBytes[kirkwall.disk.slash]: 10001010

HTML output settings.
Title[kirkwall.disk.slash]: / Disk Usage
PageTop[kirkwall.disk.slash]: <h2>Disk usage for /</h2>
Suppress[kirkwall.disk.slash]: ym

Options[kirkwall.disk.slash]: gauge, nopercent, transparent, growright

PNGTitle[kirkwall.disk.slash]: Disk usage
YLegend[kirkwall.disk.slash]: Kilobytes

ShortLegend[kirkwall.disk.slash]: b
Legend1[kirkwall.disk.slash]: Used space
Legend2[kirkwall.disk.slash]: Available space
Legend3[kirkwall.disk.slash]: Max Used
Legend4[kirkwall.disk.slash]: Max Available
LegendI[kirkwall.disk.slash]: Used:
LegendO[kirkwall.disk.slash]: Available:

362

Chapter 12

15_583204 ch12.qxd 3/18/05 9:29 PM Page 362

How It Works
Again, by now you should recognize the pattern to these configurations. Add this configuration to your
MRTG configuration file. You can copy this configuration and change the title and the command-line argu-
ment passed to the df2mrtg script to monitor another file system, as shown in the following example:

Monitor another file system.

Target[kirkwall.disk.home]: `/usr/local/bin/df2mrtg /home2`
MaxBytes[kirkwall.disk.home]: 10001010

HTML output settings.
Title[kirkwall.disk.home]: /home2 Disk Usage
PageTop[kirkwall.disk.home]: <h2>Disk usage for /home2</h2>
Suppress[kirkwall.disk.home]: ym

Graph output settings.
Options[kirkwall.disk.home]: gauge, nopercent, transparent, growright

PNGTitle[kirkwall.disk.home]: Disk usage
YLegend[kirkwall.disk.home]: Kilobytes

ShortLegend[kirkwall.disk.home]: b
Legend1[kirkwall.disk.home]: Used space
Legend2[kirkwall.disk.home]: Available space
Legend3[kirkwall.disk.home]: Max Used
Legend4[kirkwall.disk.home]: Max Available
LegendI[kirkwall.disk.home]: Used:
LegendO[kirkwall.disk.home]: Available:

This example monitors a /home2 file system.

Once you’ve established a means to monitor a system, you can expand it to monitor other systems. The
next step is to monitor the connections, especially network connections, between systems.

Monitoring Networks with MRTG
Probably the simplest command to start with is ping. Named after the echoing sound made by old sub-
marine radar systems, ping sends out network packets to a remote host. On the remote side, the host
should send those same packets back. The ping command then times the response or times out if there
is a network problem.

Here is an example:

$ ping -c 1 stromness
PING stromness (127.0.0.1) 56(84) bytes of data.
64 bytes from stromness (127.0.0.1): icmp_seq=0 ttl=64 time=0.089 ms

--- stromness ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 0.089/0.089/0.089/0.000 ms, pipe 2

363

Graphing Data with MRTG

15_583204 ch12.qxd 3/18/05 9:29 PM Page 363

By default, the ping command runs forever. You normally need to use Ctrl-C to stop, or kill, the ping
command. The -c 1 (one) option shown here tells ping to send out one block of data and then stop.
You’ll need to use options like this if you use ping in a script.

Unfortunately, ping suffers from two main problems:

1. Most firewalls block ping requests.

2. Some network hardware responds to ping requests on its own. This means you can get a false
positive result from ping, whereby ping thinks the connection is working, but the remote com-
puter may have crashed.

Another handy command is netstat, short for network status. With the -i option, netstat returns
information about all of the available network interfaces, as shown here:

$ netstat -i
Kernel Interface table
Iface MTU Met RX-OK RX-ERR RX-DRP RX-OVR TX-OK TX-ERR TX-DRP TX-OVR Flg
eth0 1500 0 1564596 0 0 0 865349 664 0 0 BMRU
lo 6436 0 5800 0 0 0 5800 0 0 0 LRU

In this example, the eth0 interface is the normal Ethernet port. The lo interface is the software-only
loopback interface. To filter for a particular interface, you can pipe the output of the netstat command
to the grep command, as shown in the following example:

$ netstat -i | grep eth0
eth0 1500 0 65798 0 0 0 47099 28 0 0 BMRU

On a Mac OS X system, the typical name for the first (and usually only) Ethernet interface is en0. On
Linux, the default name is eth0.

Also on Mac OS X, the netstat command returns more than one line per network interface. Because of
this, you can pipe the results to the tail -1 (one) command, as shown in the following:

$ netstat -i | grep eth0 | tail -1
eth0 1500 0 65798 0 0 0 47099 28 0 0 BMRU

The netstat command outputs several values for each network interface. The normal values to check
are the count of packets sent and received okay —TX-OK and RX-OK in the example shown previously.

Armed with the netstat command, you can create a shell script to check a network interface that can
be called by MRTG, as shown in the following example.

Try It Out Graphing Network Connectivity with MRTG
Enter the following script and name the file net2mrtg:

#!/bin/sh
Network status.
Pass name of network interface, such as eth0, as $1.

364

Chapter 12

15_583204 ch12.qxd 3/18/05 9:29 PM Page 364

interface=$1 # Save value, because we overwrite $1

stats=`netstat -i | grep $interface | tail -1`

set $stats
echo $4
echo $8

echo `uptime`
echo `hostname`

When you run this script, you need to pass the name of a network interface, such as eth0, en0, and so on:

$./net2mrtg eth0
65798
47099
22:45:56 up 3:24, 4 users, load average: 0.65, 0.34, 0.31
kirkwall

How It Works
As with the previous examples, this script makes use of the handy set command. You then need to con-
figure MRTG to use this script, as shown in the following example.

Try It Out Configuring MRTG to Monitor Network Throughput
Add the following to your MRTG configuration file:

Target[kirkwall.net.eth0]: `/usr/local/bin/net2mrtg eth0`
MaxBytes[kirkwall.net.eth0]: 10001010

HTML output settings.
Title[kirkwall.net.eth0]: Net Stats for eth0
PageTop[kirkwall.net.eth0]: <h2>Net Stats for eth0</h2>
Suppress[kirkwall.net.eth0]: y

Graph output settings.
Options[kirkwall.net.eth0]: gauge, nopercent, transparent, growright

PNGTitle[kirkwall.net.eth0]: Net Throughput
YLegend[kirkwall.net.eth0]: Packets

How It Works
This example follows most of the previous patterns, but because the net2mrtg script monitors network
throughput, you can accept a number of MRTG defaults for the legends on the graphs.

To graph data from routers, servers, and other systems, see http://people.ee.ethz.ch/~oetiker/webtools/
mrtg/links.html.

Up to now, you’ve only examined how to monitor your system-level computing infrastructure. Taking
this up one level, you may need to monitor several applications.

365

Graphing Data with MRTG

15_583204 ch12.qxd 3/18/05 9:29 PM Page 365

Monitoring Applications with MRTG
One of the most commonly used applications, especially on Unix and Unix-like systems, is some form of
web server. Many systems run the Apache web server, but it really shouldn’t matter. Because web servers
support a known and very simple network protocol, you can attempt to monitor a web server from any
system on the network.

There are some things you cannot monitor remotely, of course, but this example focuses on the tech-
niques needed to monitor applications remotely.

When you monitor a remote application, you may want to time how long it takes to get the data, perform
some known operation and verify that you got the expected amount of data, or both. You may additionally
try to verify the content of the data, but that’s going far beyond the purpose for which MRTG was designed.

To test a web server, one of the commands you would likely try is the wget command, a command-line
program that downloads web pages.

A good web page to download is the root document, as this should be available on just about every web
server. For example, to download the root document from a book publisher’s site, try a command like
the following:

$ wget http://www.wiley.com/
--23:26:57-- http://www.wiley.com/

=> `index.html’
Resolving www.wiley.com... xxx.xxx.xxx.xxx
Connecting to www.wiley.com[xxx.xxx.xxx.xxx]:80... connected.
HTTP request sent, awaiting response... 301
Location: /WileyCDA/ [following]
--23:26:57-- http://www.wiley.com/WileyCDA/

=> `index.html’
Connecting to www.wiley.com[xxx.xxx.xxx.xxx]:80... connected.
HTTP request sent, awaiting response... 200 OK
Length: unspecified [text/html]

[<=>] 42,840 141.31K/s

23:26:58 (140.88 KB/s) - `index.html’ saved [42,840]

In this example (which has the network IP address blocked out), you can see that the wget command
downloaded index.html, and the file downloaded is 42,840 bytes. The file is important, as wget actu-
ally saves the file to disk. Any script for MRTG should then delete the file when done. In addition, the
number of bytes has an annoying comma, which you’ll want to filter out.

Furthermore, there are too many lines of output. Luckily, wget helps reduce the output. The -nv com-
mand-line option, short for not verbose, reduces the output (and the -q, or quiet, option eliminates the
output). For example:

$ wget -nv http://www.wiley.com/
23:32:14 URL:http://www.wiley.com/WileyCDA/ [42,840] -> “index.html.2” [1]

366

Chapter 12

15_583204 ch12.qxd 3/18/05 9:29 PM Page 366

Now you can see one line of output. But notice how wget creates a new file, index.html.2, to avoid
overwriting the first file. Any command that will be called repeatedly, as MRTG will do with your scripts,
should not fill up the system’s hard disk. Therefore, you need some way to change the output options.

The -O (oh) option tells wget to output to a given file instead of outputting to names that match the
remote file names. A special file name, -, tells wget to send the output to stdout. You can then cheat and
redirect stdout to /dev/null, to throw away the output, as shown in the following example:

$ wget -nv -O - http://www.wiley.com/ > /dev/null
23:37:16 URL:http://www.wiley.com/WileyCDA/ [42,840] -> “-” [1]

Notice that the wget summary output remains. You can see why with the following command:

$ wget -nv -O - http://www.wiley.com/ > /dev/null 2> /dev/null
$

The summary output is sent to stderr, not stdout.

The next step is to filter out the number of bytes from the summary output. You can use the cut command
for this.

Try It Out Retrieving a Document from a Web Server
Try the following command:

$ wget -nv -O - http://www.wiley.com/ 2>&1 > /dev/null | \
cut -d’ ‘ -f3 | tr “\[\]” “ “ | tr -d “,”
42840

Note that your byte count may differ the next time this book publisher changes its home page.

How It Works
This example command finally cleans up the output to one number, without the superfluous comma.
Breaking this complex command into pieces, you can see the following:

wget -nv -O - http://www.wiley.com/ 2>&1 > /dev/null | \
cut -d’ ‘ -f3 | \
tr “\[\]” “ “ | \
tr -d “,”

The wget command downloads the web document. The -nv option turns on not-verbose mode. The -O
(oh) option tells wget to output the document to a file, and the dash, -, sets the file to stdout. The next
step is pretty tricky. The 2>&1 redirects stderr to stdout. This must occur before the > /dev/null,
because that redirects stdout to the null device. If you reverse the two, you’ll get no output.

The cut command splits the output on spaces and extracts the third field. That leaves just the number in
square brackets, as shown in this example:

$ wget -nv -O - http://www.wiley.com/ 2>&1 > /dev/null | \
cut -d’ ‘ -f3
[42,840]

367

Graphing Data with MRTG

15_583204 ch12.qxd 3/18/05 9:29 PM Page 367

The next command, tr, translates the square brackets into blank spaces:

$ wget -nv -O - http://www.wiley.com/ 2>&1 > /dev/null | \
cut -d’ ‘ -f3 | \
tr “\[\]” “ “
42,840

The pattern passed to the tr command, “\[\]”, uses the backslash characters to escape the square
brackets, as brackets are used in regular expressions.

The output of this command line gets tantalizingly closer to the desired output. The second tr com-
mand removes the yucky comma, as shown in this example:

$ wget -nv -O - http://www.wiley.com/ 2>&1 > /dev/null | \
cut -d’ ‘ -f3 | \
tr “\[\]” “ “ | \
tr -d “,”
42840

Note how this example successively cleans up the output for usage in a script. You’ll often need to fol-
low a similar process to gradually make the output more usable.

You can then write a script to graph the data retrieved from a remote web server. The assumption is that
if the graph dips, there is a problem.

Try It Out Monitoring a Web Server
Enter the following script and name the file web2mrtg:

#!/bin/sh
Retrieves a document from a web server.
You need to pass the URL to test.
Data output is ONE value: the number of bytes
downloaded.

stats=`wget -nv “$url” 2>&1 | cut -d’ ‘ -f3,5 | tr “\[\”]” “ “ | tr -d “,”`

stats=`wget -nv -O - “$1” 2>&1 > /dev/null | \
cut -d’ ‘ -f3 | \
tr “\[\]” “ “ | \
tr -d “,”

`

set $stats

bytes=$1

echo $bytes
echo 0

echo `uptime`
echo `hostname`

368

Chapter 12

15_583204 ch12.qxd 3/18/05 9:29 PM Page 368

When you run this script, you’ll see output like the following:

$./web2mrtg http://www.wiley.com/
42840
0
00:07:46 up 4:46, 4 users, load average: 0.16, 0.28, 0.25
kirkwall

How It Works
After delving into the complex command line, the rest of the script follows the pattern used so far.

Of course, there are several other ways you can monitor web servers and other network server applications.
This example should get you started and open up a whole range of possibilities.

Try It Out Configuring MRTG to Monitor Web Servers
The following example shows an MRTG configuration for this target:

Application monitoring.
Target[web.download.bytes]: `/usr/local/bin/web2mrtg http://www.wiley.com/`
MaxBytes[web.download.bytes]: 10001010

HTML output settings.
Title[web.download.bytes]: Web Page Download
PageTop[web.download.bytes]: <H2>Web Page Download</H2>

Dips in the graph indicate problems.

Suppress[web.download.bytes]: ym

Graph output settings.
Options[web.download.bytes]: gauge, nopercent, transparent, growright, noo

PNGTitle[web.download.bytes]: Web

YLegend[web.download.bytes]: Bytes
ShortLegend[web.download.bytes]:b

Legend1[web.download.bytes]: Downloaded
Legend3[web.download.bytes]: Max Downloaded Memory
LegendI[web.download.bytes]: Downloaded:

How It Works
This example follows most of the previous patterns. It introduces the noo option, which tells mrtg not to
graph the second variable (the output variable if you were monitoring a network router — hence, no-o or
no-output). This means you only have to set up half the legends.

The web2mrtg script, shown previously, takes in the URL to download. Thus, you can monitor any web
page, not just the root document of a particular server.

369

Graphing Data with MRTG

15_583204 ch12.qxd 3/18/05 9:29 PM Page 369

For reference, the following example shows a full MRTG configuration file, named mrtg_sys.cfg:

HtmlDir: /var/www/mrtg
ImageDir: /var/www/mrtg
LogDir: /var/lib/mrtg
ThreshDir: /var/lib/mrtg

Target[kirkwall.net.eth0]: `/usr/local/bin/net2mrtg eth0`
MaxBytes[kirkwall.net.eth0]: 10001010

HTML output settings.
Title[kirkwall.net.eth0]: Net Stats for eth0
PageTop[kirkwall.net.eth0]: <h2>Net Stats for eth0</h2>
Suppress[kirkwall.net.eth0]: y

Graph output settings.
Options[kirkwall.net.eth0]: gauge, nopercent, transparent, growright

PNGTitle[kirkwall.net.eth0]: Net Throughput
YLegend[kirkwall.net.eth0]: Packets

Target[kirkwall.disk.slash]: `/usr/local/bin/df2mrtg /`
MaxBytes[kirkwall.disk.slash]: 10001010

HTML output settings.
Title[kirkwall.disk.slash]: / Disk Usage
PageTop[kirkwall.disk.slash]: <h2>Disk usage for /</h2>
Suppress[kirkwall.disk.slash]: ym

Options[kirkwall.disk.slash]: gauge, nopercent, transparent, growright

PNGTitle[kirkwall.disk.slash]: Disk usage
YLegend[kirkwall.disk.slash]: Kilobytes

ShortLegend[kirkwall.disk.slash]: b
Legend1[kirkwall.disk.slash]: Used space
Legend2[kirkwall.disk.slash]: Available space
Legend3[kirkwall.disk.slash]: Max Used
Legend4[kirkwall.disk.slash]: Max Available
LegendI[kirkwall.disk.slash]: Used:
LegendO[kirkwall.disk.slash]: Available:

Monitor another file system.
Target[kirkwall.disk.home]: `/usr/local/bin/df2mrtg /home2`
MaxBytes[kirkwall.disk.home]: 10001010

HTML output settings.
Title[kirkwall.disk.home]: /home2 Disk Usage
PageTop[kirkwall.disk.home]: <h2>Disk usage for /home2</h2>
Suppress[kirkwall.disk.home]: ym

Graph output settings.

370

Chapter 12

15_583204 ch12.qxd 3/18/05 9:29 PM Page 370

Options[kirkwall.disk.home]: gauge, nopercent, transparent, growright

PNGTitle[kirkwall.disk.home]: Disk usage
YLegend[kirkwall.disk.home]: Kilobytes

ShortLegend[kirkwall.disk.home]: b
Legend1[kirkwall.disk.home]: Used space
Legend2[kirkwall.disk.home]: Available space
Legend3[kirkwall.disk.home]: Max Used
Legend4[kirkwall.disk.home]: Max Available
LegendI[kirkwall.disk.home]: Used:
LegendO[kirkwall.disk.home]: Available:

Target[kirkwall.cpu.load]: `/usr/local/bin/load2mrtg`
MaxBytes[kirkwall.cpu.load]: 10001010

HTML output settings.
Title[kirkwall.cpu.load]: Kirkwall CPU Load
PageTop[kirkwall.cpu.load]: <H2>CPU Load For Kirkwall</H2>

Suppress[kirkwall.cpu.load]: ym

Graph output settings.
Options[kirkwall.cpu.load]: gauge, nopercent, transparent, growright

PNGTitle[kirkwall.cpu.load]: kirkwall CPU

YLegend[kirkwall.cpu.load]: Load avg.
ShortLegend[kirkwall.cpu.load]: avg.
Legend1[kirkwall.cpu.load]: Average CPU load
Legend2[kirkwall.cpu.load]: Number of users
Legend3[kirkwall.cpu.load]: Max CPU load
Legend4[kirkwall.cpu.load]: Max users
LegendI[kirkwall.cpu.load]: Load:
LegendO[kirkwall.cpu.load]: Users:

Memory usage.
Target[kirkwall.memory.usage]: `/usr/local/bin/mem2mrtg`
MaxBytes[kirkwall.memory.usage]: 10001010

HTML output settings.
Title[kirkwall.memory.usage]: Kirkwall Memory Usage
PageTop[kirkwall.memory.usage]: <H2>Memory Usage For Kirkwall</H2>

Suppress[kirkwall.memory.usage]: ym

Graph output settings.

371

Graphing Data with MRTG

15_583204 ch12.qxd 3/18/05 9:29 PM Page 371

Options[kirkwall.memory.usage]: gauge, nopercent, transparent, growright

PNGTitle[kirkwall.memory.usage]: kirkwall vm

YLegend[kirkwall.memory.usage]: Memory
ShortLegend[kirkwall.memory.usage]:b
kMG[kirkwall.memory.usage]: k,m
Legend1[kirkwall.memory.usage]: Active Memory
Legend2[kirkwall.memory.usage]: Free Memory
Legend3[kirkwall.memory.usage]: Max Active Memory
Legend4[kirkwall.memory.usage]: Max Free Memory
LegendI[kirkwall.memory.usage]: Active:
LegendO[kirkwall.memory.usage]: Free:

Application monitoring.
Target[web.download.bytes]: `/usr/local/bin/web2mrtg http://www.wiley.com/`
MaxBytes[web.download.bytes]: 10001010

HTML output settings.
Title[web.download.bytes]: Web Page Download
PageTop[web.download.bytes]: <H2>Web Page Download</H2>

Dips in the graph indicate problems.

Suppress[web.download.bytes]: ym

Graph output settings.
Options[web.download.bytes]: gauge, nopercent, transparent, growright, noo

PNGTitle[web.download.bytes]: Web

YLegend[web.download.bytes]: Bytes
ShortLegend[web.download.bytes]:b

Legend1[web.download.bytes]: Downloaded
Legend3[web.download.bytes]: Max Downloaded Memory
LegendI[web.download.bytes]: Downloaded:

Yow. MRTG configurations can grow large, and this example monitors only a few items.

You can do a lot more with MRTG. If you have any data available via SNMP, consult the MRTG documen-
tation for information on how to configure MRTG to monitor data via SNMP. In addition, look for the
webalizer command to find a utility similar to MRTG but designed to work with web server log files.

One drawback to MRTG, however, is that you need to reconfigure MRTG each time you change a router
or system.

Summary
MRTG provides a handy tool for monitoring anything on your system, which is why this tool has stood
the test of time and been adopted in major corporations. You can write scripts to monitor disk and mem-
ory usage, network throughput, and so on.

372

Chapter 12

15_583204 ch12.qxd 3/18/05 9:29 PM Page 372

This chapter doesn’t cover every MRTG option. For more details, refer to the MRTG documentation.
Instead, this chapter has focused on how to get started with MRTG. Armed with these techniques, you
should be able to configure MRTG to suit your needs.

MRTG enables you to do all of the following:

❑ Generate graphs that show the values output by your scripts over time.

❑ View detailed information for the current day.

❑ View summary information for the last week, month, and year.

❑ Monitor systems without filling your hard disk. The fact that MRTG uses a fixed amount of disk
space really helps.

The next chapter extends the discussion to using shell scripts to help administer your systems.

Exercises
1. What are some types of things that you could monitor the same way, whether you were working

on Windows, Mac OS X, Unix, or Linux?

2. How would you go about graphing data on a database such as Oracle, Postgres, SQL Server, or DB2?

3. Look up some other monitoring packages, such as mon or Big Brother. (Both are available free on
the Internet.) You can also try commercial packages such as HP OpenView and CA Unicenter.

373

Graphing Data with MRTG

15_583204 ch12.qxd 3/18/05 9:29 PM Page 373

15_583204 ch12.qxd 3/18/05 9:29 PM Page 374

13
Scripting for Administrators

The last chapter covered a major use of scripts for administrators: monitoring the systems you admin-
ister. Using MRTG, you can monitor CPU usage, available disk space, and network router throughput,
among other things, but scripts come in handy in quite a few other areas. This chapter won’t show
you magical ways to run all of your systems. Instead, it describes how you can use scripts to improve
your daily life and manage your systems with less work, including the following:

❑ Deciding when and where to write scripts

❑ Creating scripts in an organized fashion

❑ Scripting complicated commands

❑ Troubleshooting with scripts

❑ Removing annoyances with scripts

❑ Cleaning up yucky data formats

❑ Automating your daily work with scripts

This chapter contains some very simple scripts and some complicated scripts. In all cases, though,
the goal is to show techniques, not cleverness, and to focus on generating ideas for making your
work easier.

Why Write Scripts?
From an administrator’s point of view, scripts enable you to do the following:

❑ Automate frequently run tasks

❑ Remember complicated command-line options and file paths

❑ Filter through data and respond with just the crucial items that require your attention

In these cases, scripts come in handy and, best of all, generally do not require a long time to write.

16_583204 ch13.qxd 3/18/05 9:28 PM Page 375

Scripting is fun. In about three minutes, you can create a useful script. The problem is that if you write
all of your scripts in a totally ad hoc manner, you will end up with a confusing mess. If you approach
your administration scripts with even a small amount of discipline, you will create a script library that
will save you hours and hours of time.

Following a few simple guidelines will help you avoid ending up with a confusing mess:

❑ Use a consistent style. Indent your scripts to make them easier to read. (Use any indenting style
you prefer; you’re not limited to the style shown by the examples in this book.)

❑ Store your scripts in a common location. For example, store your scripts in /usr/local/bin or
the bin subdirectory of your home directory, $HOME/bin. You might also want to separate your
administrative scripts into a directory of their own.

❑ Document your scripts. Comment liberally. You want to especially document why you wrote
the script or what problem it helps to solve. In addition, specify how to call the script, the com-
mand-line arguments and options, and so on.

None of these guidelines should require much work or restrict your creativity.

Note that some very sick people have even gone so far as to write poetry in scripts, usually in another
scripting language called Perl. Avoid these people. They are the first who will become zombies when the
big meteor hits the Earth. Remember, you were warned.

You’ve probably noticed the focus on not spending a lot of time. In today’s IT environments, administra-
tors typically manage too many systems with too few resources. Spend your time going after the prover-
bial low-hanging fruit, the easy ones, first. Tackle the harder stuff later.

Scripting Complicated Commands
Computers can remember things very well. People can’t always do the same. If you have commands you
need to run, but you tend to forget the command-line arguments or options, you can solve the problem by
storing the command in a script. For example, the following script has only one actual command.

Try It Out Turning on Networking over USB
Enter the script and name the file yopy:

#!/bin/sh

Starts networking over a USB port for a connected device.
Turn the device on, plug in the Yopy PDA, and then run this
script.

/sbin/ifconfig usb0 192.168.1.1
echo “Yopy is on 192.168.1.1”

When you run this script, you’ll see the following output:

$ yopy
Yopy is on 192.168.1.1

376

Chapter 13

16_583204 ch13.qxd 3/18/05 9:28 PM Page 376

If the USB port cannot be configured for networking, you’ll see an error like the following:

$ yopy
SIOCSIFADDR: Permission denied
usb0: unknown interface: No such device
Yopy is on 192.168.1.1

How It Works
In this script, the comments are longer than the commands. Don’t worry about that, though. Enter as
many comments as you think you need in your scripts, regardless of the length. These small scripts are
not going to fill up your hard drive.

See the section on Commenting Your Scripts in Chapter 2 for more information on the importance of
comments.

This script calls the ifconfig command to turn on TCP/IP networking over a USB link. The real purpose
of the script is to enable a network link to a Yopy PDA over a USB cable. The Yopy runs Linux, the popular
MySQL database, and the minimalist Boa web server.

See www.yopy.com for more information about this cool PDA.

While the script was written to establish a network link to a PDA, from a scripting point of view, this
script remembers things for the poor, overworked administrator:

❑ The ifconfig command resides in /sbin on this Linux system, not /bin, /usr/bin, nor /usr/sbin.

❑ The USB networking device is usb0, although this is usually easy to figure out.

❑ The IP address to talk to the Yopy is statically configured to 192.168.1.1. This is important for the
Yopy’s MySQL database security.

Any time you face a similar situation, turn to scripts to keep crucial data for you. Even a one-line script
is worth creating if it saves you time and frustration.

The next example shows a few more lines of scripting commands but is similarly short.

Try It Out Monitoring HTTP Data
Enter the following script and name the file tcpmon:

#!/bin/sh

Runs the Apache Axis TCP monitor as a proxy between
a web client and server. The tcpmon program then
displays all the HTTP traffic between the client
and server.
#
AXIS=$HOME/java/xml/axis-1_2RC2/lib ; export AXIS

CLASSPATH=$AXIS/axis.jar:$AXIS/log4j-1.2.8.jar ; export CLASSPATH

java org.apache.axis.utils.tcpmon [listenPort targetHost targetPort]
java -Xmx400m org.apache.axis.utils.tcpmon 28080 vodka.liquor.vod 85

377

Scripting for Administrators

16_583204 ch13.qxd 3/18/05 9:28 PM Page 377

Run this script as shown here:

$./tcpmon

This script generates no output. Instead, it creates a window for monitoring network traffic.

How It Works
This script runs the Apache Axis TCP monitor program. Axis is a package for accessing web services
from Java applications. The tcpmon program is a utility program in the Axis package.

See ws.apache.org/axis/ for more information about Apache Axis.

The tcpmon program displays a window showing each HTTP request to a remote web server and the
full contents of the corresponding response. With web servers, the data sent to the remote server, along
with the response, are encoded in XML and usually not visible to the user. Thus, a tool such as tcpmon
can shed some light on any problems that might develop when calling on remote web services.

Because Axis requires a Java runtime engine, you must have the java command available on your sys-
tem. Prior to calling the java command, you need to set up the classpath, the set of directories that hold
compiled Java code that the program requires.

This script sets the CLASSPATH environment variable, used by the java command, to hold two files:
axis.jar and log4j-1.2.8.jar. Both of these files reside inside the Axis distribution. The script sets
the AXIS environment variable to this directory, which makes it easier to change the name of the direc-
tory if Axis is installed in another location or upgraded to a new version. Using the AXIS environment
variable also shortens the line that sets the CLASSPATH environment variable.

The tcpmon script, therefore, remembers the following:

❑ Where on disk the Axis package was installed. Because the installation directory has the version
number, this can be hard to remember.

❑ Which Java libraries, called jar files, are required by the tcpmon program.

❑ The Java class name of the tcpmon program, org.apache.axis.utils.tcpmon. The class
name is needed to launch the application.

❑ That the tcpmon program can use a lot of memory. The -Xmx400m sets the program to use a
maximum of 400 megabytes of memory for Java objects.

❑ The command-line arguments needed for the tcpmon program, as well as the required order for
the command-line arguments.

❑ The hostname and port number of the remote server.

❑ The local port number used as a proxy for the remote server.

As you can see, even with a short script, you can save a lot of useful information in a script.

The preceding script was instrumental in testing a web site designed for a vodka promotion. The web
site shown, vodka.liquor.vod, is fake, to protect the innocent.

378

Chapter 13

16_583204 ch13.qxd 3/18/05 9:28 PM Page 378

While the scripting of complicated commands usually results in fairly small scripts, troubleshooting
enables you to create more detailed scripts. Creating larger scripts does not necessarily show your scripting
prowess. The goal, as always, is to solve problems.

Troubleshooting Your Systems
Just as writing larger scripts is not an end in itself, it is very important when troubleshooting that you
don’t end up reporting too much information. Therefore, when you create your troubleshooting scripts,
focus on reporting only problems or essential information.

One of the most common problems on systems, especially those with minimal attention, is filling disks. To
see how much space is used on a given disk or on all your system’s disks, you can use the df command,
as shown here:

$ df -k
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/hda2 24193540 3980000 18984568 18% /
/dev/hda1 101086 10933 84934 12% /boot
none 501696 0 501696 0% /dev/shm
/dev/hda5 48592392 25049972 21074036 55% /home2
/dev/sda1 507104 147936 359168 30% /media/TITAN

This example shows all the disks mounted on a particular system. The -k command-line option tells the df
command to return the results in 1K blocks. You can then interpret the results to determine whether any of the
disks requires further attention. Alternatively, you could write a script to perform the interpretation for you.

Try It Out Checking Disk Space
Enter the following script and name the file diskcheck:

#!/bin/sh

Output warnings if disks are too full (in percentage
terms) or have too little space available.

This script goes through all the mounted file systems
and checks each to see if the disk is nearly full,
reporting only on those disks that warrant more attention.

Set thresholds
min_free=4000

max_in_use=90

Get a list of all file systems.
filesystems=`df -k | grep -v Use | grep -v none | awk ‘{ print $6 }’`

for filesystem in $filesystems
do

Cache results for this file system.

379

Scripting for Administrators

16_583204 ch13.qxd 3/18/05 9:28 PM Page 379

entry=`df -k $filesystem | tail -1`

Split out the amount of space free as well as in-use percentage.
free=`echo $entry | cut -d’ ‘ -f4`
in_use=`echo $entry | cut -d’ ‘ -f5 | cut -d’%’ -f1 `

Check the file system percent in use.
if [$(expr “$in_use > $max_in_use”)]
then

echo “$filesystem has only $free KB free at $in_use%.”
else

Check the available space against threshold.
Only make this check if the in use is OK.

result=$(echo “
scale=2 /* two decimal places */
print $free < $min_free” | bc)

if [$(expr “$result != 0”)]
then

echo “$filesystem has only $free KB free.”
fi

fi

done

When you run this script, and if everything is okay, you’ll see no output:

$ sh diskcheck
$

Conversely, if you have a disk or disks that are nearly filled up, you’ll see output like the following:

$ sh diskcheck
/home2 has only 200768 KB free at 91%.

How It Works
This script introduces no new concepts, so you should be able to read the script and determine what it does.

This script uses two threshold values to check disk space: a percentage full value and an amount free. If
the disk is more than the threshold amount full, in percentage terms, the script considers this a problem.
Furthermore, if the disk has only a minimal amount of space left, the script considers this a problem.
These two thresholds enable the script to work for most any disk, large or small.

The thresholds appear at the top of the script to make it easier to change the values. Feel free to modify
the values to whatever makes sense in your environment.

After setting the thresholds, the first major command extracts the name of each mounted file system
using the df command:

filesystems=`df -k | grep -v Use | grep -v none | awk ‘{ print $6 }’`

380

Chapter 13

16_583204 ch13.qxd 3/18/05 9:28 PM Page 380

Breaking this command line into pieces, the first command, df -k, lists the amount of disk space in kilobytes
(-k). Most modern versions of df use kilobytes by default, but even so, using this option is safe and harmless.
If you come across a system that uses the 512-byte blocks instead, the -k option will fix up the results.

The grep -v command looks for all lines that do not match the given pattern. The grep -v Use command
removes the first header line. The second grep command, grep -v none, removes the special /dev/shm
entry on Linux systems. You can add other grep commands to remove any extraneous devices.

The last command on this line, awk, prints the sixth field in the output. This is the name of the mount
point where the file system is mounted. Use $1 instead of $6 if you want the device entry for the file
system instead. In most cases, the mount point, such as /, /tmp, or /home, proves more meaningful than
the device entry, such as /dev/hda5 or /dev/sdb1.

The next step is to loop over all the file systems, using a for loop:

for filesystem in $filesystems
do

...
done

In each iteration of the loop, the first step is to call the df command again with just the name of the spe-
cific file system:

entry=`df -k $filesystem | tail -1`

This is not very efficient, as the script just called the df command previously, but this format makes it
easier to extract the data. The script pipes the results of the df command to the tail command to
remove the header line.

Once the script has the data on a file system, it can retrieve the most interesting values. In this case, these
values are the percent used and the amount of free space:

Split out the amount of space free as well as in-use percentage.
free=`echo $entry | cut -d’ ‘ -f4`
in_use=`echo $entry | cut -d’ ‘ -f5 | cut -d’%’ -f1 `

The script sets the free variable to the amount of free space, held in the fourth field of the data. The cut
command extracts the necessary field.

You should always pass a field delimiter to the cut command. Set this using the -d option.

The script sets the in_use variable to the percentage of the disk that is used. In this case, the script calls the
cut command twice. The first call to cut extracts the value, such as 51%. The second cut command removes
the percent sign and leaves just the number, so the script can perform comparisons on the percentage.

The most important comparison is to check whether the disk is too full, percentagewise:

if [$(expr “$in_use > $max_in_use”)]
then

echo “$filesystem has only $free KB free at $in_use%.”
else

...
fi

381

Scripting for Administrators

16_583204 ch13.qxd 3/18/05 9:28 PM Page 381

The if statement contains a lot of syntax. You must put the value passed to the expr command in
quotes; otherwise, the shell will interpret > as redirecting stdout and, similarly, < as redirecting stdin.

If the first check passes, then the script verifies that at least a certain minimal amount of disk space is
available. This test does not make sense if the script is already displaying a warning about the disk, so
the script only performs this check if the first check passes.

This check uses the bc command:

result=$(echo “
scale=2 /* two decimal places */
print $free < $min_free” | bc)

if [$(expr “$result != 0”)]
then

echo “$filesystem has only $free KB free.”
fi

An earlier version of this script used the expr command, similar to the first check:

if [$(expr “$free < $min_free”)]
then

echo “$filesystem has only $free KB free.”
fi

This did not work, surprisingly. The numbers reported by the df command are all whole numbers (integers),
so no floating-point math is required. Previously, we needed the bc command to handle floating-point math.
The numbers, while integers, were too big for the poor old expr command. Any disks with gigabytes of
space will overload expr, hence the use of the bc command.

Another important task when troubleshooting a system is verifying that the necessary processes are running,
such as a web server or a database, as shown in the following Try It Out.

Try It Out Checking for Processes
As shown in a number of previous examples, you can use the ps command to list processes:

$ ps -e
PID TTY TIME CMD

1 ? 00:00:00 init
2 ? 00:00:00 ksoftirqd/0
3 ? 00:00:00 events/0
4 ? 00:00:00 khelper
5 ? 00:00:00 kacpid

27 ? 00:00:00 kblockd/0
28 ? 00:00:00 khubd
37 ? 00:00:00 pdflush
38 ? 00:00:00 pdflush
40 ? 00:00:00 aio/0
39 ? 00:00:00 kswapd0

113 ? 00:00:00 kseriod
187 ? 00:00:00 kjournald

1014 ? 00:00:00 udevd

382

Chapter 13

16_583204 ch13.qxd 3/18/05 9:28 PM Page 382

1641 ? 00:00:00 kjournald
1642 ? 00:00:00 kjournald
1892 ? 00:00:00 syslogd
1896 ? 00:00:00 klogd
1917 ? 00:00:00 portmap
1937 ? 00:00:00 rpc.statd
1970 ? 00:00:00 rpc.idmapd
2040 ? 00:00:00 nifd
2070 ? 00:00:00 mDNSResponder
2083 ? 00:00:00 smartd
2093 ? 00:00:00 acpid
2105 ? 00:00:00 cupsd
2141 ? 00:00:00 sshd
2152 ? 00:00:00 xinetd
2172 ? 00:00:00 sendmail
2180 ? 00:00:00 sendmail
2191 ? 00:00:00 gpm
2201 ? 00:00:00 crond
2227 ? 00:00:00 xfs
2246 ? 00:00:00 atd
2265 ? 00:00:00 dbus-daemon-1
2278 ? 00:00:00 cups-config-dae
2289 ? 00:00:13 hald
2299 tty1 00:00:00 mingetty
2339 tty2 00:00:00 mingetty
2340 tty3 00:00:00 mingetty
2411 tty4 00:00:00 mingetty
2447 tty5 00:00:00 mingetty
2464 tty6 00:00:00 mingetty
2587 ? 00:00:00 gdm-binary
2763 ? 00:00:00 gdm-binary
2773 ? 00:03:37 X
3000 ? 00:00:00 ssh-agent
3226 ? 00:00:00 gconfd-2
3352 ? 00:00:00 dhclient
3452 ? 00:00:00 artsd
5226 ? 00:00:00 gnome-session
5254 ? 00:00:00 ssh-agent
5281 ? 00:00:00 dbus-daemon-1
5282 ? 00:00:00 dbus-launch
5286 ? 00:00:01 gconfd-2
5289 ? 00:00:00 gnome-keyring-d
5291 ? 00:00:00 bonobo-activati
5293 ? 00:00:03 metacity
5295 ? 00:00:00 gnome-settings-
5301 ? 00:00:03 gam_server
5310 ? 00:00:00 xscreensaver
5316 ? 00:00:00 gnome-volume-ma
5318 ? 00:00:01 gnome-panel
5320 ? 00:00:10 nautilus
5325 ? 00:00:00 eggcups
5331 ? 00:00:00 evolution-alarm
5333 ? 00:00:02 gnome-terminal
5335 ? 00:00:04 gedit
5337 ? 00:00:01 rhythmbox
5342 ? 00:00:00 evolution-data-

383

Scripting for Administrators

16_583204 ch13.qxd 3/18/05 9:28 PM Page 383

5361 ? 00:00:00 gnome-vfs-daemo
5369 ? 00:00:00 mapping-daemon
5371 ? 00:00:00 nautilus-throbb
5373 ? 00:00:03 wnck-applet
5375 ? 00:00:00 pam-panel-icon
5376 ? 00:00:00 pam_timestamp_c
5389 ? 00:00:00 gnome-pty-helpe
5394 pts/1 00:00:00 bash
5404 pts/2 00:00:00 bash
5409 pts/3 00:00:00 bash
5441 ? 00:00:00 notification-ar
5443 ? 00:00:00 mixer_applet2
5454 ? 00:00:00 clock-applet
5456 ? 00:00:00 gnome-netstatus
5458 ? 00:00:00 gweather-applet
5502 ? 00:00:00 scsi_eh_0
5503 ? 00:00:00 usb-storage
5619 ? 00:00:51 soffice.bin
5689 ? 00:00:00 firefox
5706 ? 00:00:00 run-mozilla.sh
5711 ? 00:00:04 firefox-bin
5857 pts/3 00:00:00 ps

How It Works
The -e command-line option tells the ps command to list every process. Most people use the -e option
with -f, for full output. In this example, however, the goal is to get the command name and skip the rest
of the output; therefore, this uses only -e and not -ef as command-line options to ps.

Note that on BSD-derived Unix systems, such as Mac OS X, the ps option will be aux instead of -e.

This example ran on a desktop system. Note that on a server system, you would likely have a lot more
processes.

You can place this type of check into a script, of course, leading to the next example.

Try It Out Verifying Processes Are Running
Enter the following script and name the file processcheck:

#!/bin/sh

Checks to see if a given process is running.
Pass in a command-line argument of the pattern
to look for. The script will output all the
occurrences.

pattern=$1

ps -e | grep -v $$ | grep $pattern | awk ‘{print $4}’

When you run this script, you need to pass a pattern for grep to use to search for the processes, as
shown in this example:

384

Chapter 13

16_583204 ch13.qxd 3/18/05 9:28 PM Page 384

$./processcheck k
ksoftirqd/0
khelper
kacpid
kblockd/0
khubd
kswapd0
kseriod
kjournald
kjournald
kjournald
klogd
gnome-keyring-d
wnck-applet
clock-applet
awk

Alternately, you can try a longer pattern, such as the following:

$./processcheck gnome
gnome-session
gnome-keyring-d
gnome-settings-
gnome-volume-ma
gnome-panel
gnome-terminal
gnome-vfs-daemo
gnome-pty-helpe
gnome-netstatus

How It Works
The processcheck script calls the ps command to list all the processes running on the system. The
script directs the output of the ps command to the grep -v command. This command filters out the
current process, which should always match the pattern, as the pattern is a command-line argument.
(This is called a false positive match.)

The $$ variable is described in Chapter 9.

The script next takes the first command-line argument and passes this to the grep command, filtering
out all but the process entries that match the pattern. Finally, the awk command strips out the extraneous
data, leaving just the process names. The process names are important in case you pass a partial name as
the pattern to match. For example, many system kernel-related processes start with the letter k. Similarly,
many desktop applications that are part of the KDE desktop environment also start with the letter k.
Without seeing the full process names, you cannot tell what is running.

Note that if you use ps with the aux option, you need to change the awk command to print $11 instead of $4.

Removing Minor Annoyances
Minor annoyances are anything that bugs you (anything small, that is, so Windows security issues don’t
count). You can use the capabilities of scripts to perform the necessary setup work for commands, so you
don’t have to.

385

Scripting for Administrators

16_583204 ch13.qxd 3/18/05 9:28 PM Page 385

Whenever possible, let the script do the work, as in the following example.

Try It Out Running a Command in a Directory
Enter the following script and name the file jabber:

#!/bin/sh
cd $HOME/java/im/BS211-complete ; sh buddySpace.sh

When you run this script, you’ll see output like the following:

$./jabber
loading preferences...
initializing core...
loading GUI...
loading sounds...
initializing plug-ins...
loading conferencing...
loading mapping...
loading html view...
loading browse...

This script launches the BuddySpace window, shown in Figure 13-1. This simple script performs one task:
This version of BuddySpace won’t start unless you launch it from its installation directory. Having to change
directories prior to launching a program, and having to do this every day, counts as a minor annoyance.

Figure 13-1

386

Chapter 13

16_583204 ch13.qxd 3/18/05 9:28 PM Page 386

How It Works
BuddySpace provides an instant messaging, or IM, client using the Jabber protocol. Jabber gateways
then enable connections to MSN, AOL, Yahoo!, and other IM networks.

See www.jabber.org for more information on the Jabber protocol. See kmi.open.ac.uk/projects/buddys-
pace for more information about the BuddySpace client application. BuddySpace is written in Java, so it
runs on Mac OS X, Windows, Linux, Solaris, and other versions of Unix. BuddySpace also includes an
extensive set of frequently asked questions.

Whenever you face a similar situation, you can write a similar script to remove the annoyance. The next
script follows a similar concept.

Try It Out Playing Your Favorite Songs
Enter this script and name the file favs:

#!/bin/sh
xmms $HOME/multi/mp3/fav_playlist.m3u

How It Works
This is another tiny script. It launches the XMMS multimedia player application and passes XMMS the name
of a playlist file, telling XMMS which songs to play. Again, the whole point of this script is to save typing.

These examples, while short, should give you some ideas about what you can do with scripts. Once you
start scripting the small things, larger things become a lot easier.

Cleaning Up Data
Many programs, systems, and devices log information or can describe themselves, sometimes in excruci-
ating detail. It’s the detail that is the problem. You can become overwhelmed by the massive amount of
information to slog through just to get to the useful bits. As you’d suspect, scripts can help here as well.

Try It Out Viewing Linux USB Port Details
On a Linux system, you can gather a lot of information on the USB ports by looking at the special file
/proc/bus/usb/devices:

$ cat /proc/bus/usb/devices

T: Bus=03 Lev=00 Prnt=00 Port=00 Cnt=00 Dev#= 1 Spd=12 MxCh= 3
B: Alloc= 0/900 us (0%), #Int= 0, #Iso= 0
D: Ver= 1.10 Cls=09(hub) Sub=00 Prot=00 MxPS= 8 #Cfgs= 1
P: Vendor=0000 ProdID=0000 Rev= 2.06
S: Manufacturer=Linux 2.6.9-1.681_FC3 ohci_hcd
S: Product=OHCI Host Controller
S: SerialNumber=0000:00:02.1
C:* #Ifs= 1 Cfg#= 1 Atr=e0 MxPwr= 0mA
I: If#= 0 Alt= 0 #EPs= 1 Cls=09(hub) Sub=00 Prot=00 Driver=hub

387

Scripting for Administrators

16_583204 ch13.qxd 3/18/05 9:28 PM Page 387

E: Ad=81(I) Atr=03(Int.) MxPS= 2 Ivl=255ms

T: Bus=03 Lev=01 Prnt=01 Port=00 Cnt=01 Dev#= 7 Spd=12 MxCh= 0
D: Ver= 1.10 Cls=00(>ifc) Sub=00 Prot=00 MxPS= 8 #Cfgs= 1
P: Vendor=0781 ProdID=8888 Rev= 1.00
C:* #Ifs= 1 Cfg#= 1 Atr=80 MxPwr=100mA
I: If#= 0 Alt= 0 #EPs= 3 Cls=08(stor.) Sub=06 Prot=50 Driver=usb-storage
E: Ad=81(I) Atr=02(Bulk) MxPS= 64 Ivl=0ms
E: Ad=02(O) Atr=02(Bulk) MxPS= 64 Ivl=0ms
E: Ad=83(I) Atr=03(Int.) MxPS= 2 Ivl=1ms

T: Bus=02 Lev=00 Prnt=00 Port=00 Cnt=00 Dev#= 1 Spd=12 MxCh= 3
B: Alloc= 14/900 us (2%), #Int= 1, #Iso= 0
D: Ver= 1.10 Cls=09(hub) Sub=00 Prot=00 MxPS= 8 #Cfgs= 1
P: Vendor=0000 ProdID=0000 Rev= 2.06
S: Manufacturer=Linux 2.6.9-1.681_FC3 ohci_hcd
S: Product=OHCI Host Controller
S: SerialNumber=0000:00:02.0
C:* #Ifs= 1 Cfg#= 1 Atr=e0 MxPwr= 0mA
I: If#= 0 Alt= 0 #EPs= 1 Cls=09(hub) Sub=00 Prot=00 Driver=hub
E: Ad=81(I) Atr=03(Int.) MxPS= 2 Ivl=255ms

T: Bus=02 Lev=01 Prnt=01 Port=01 Cnt=01 Dev#= 2 Spd=1.5 MxCh= 0
D: Ver= 1.10 Cls=00(>ifc) Sub=00 Prot=00 MxPS= 8 #Cfgs= 1
P: Vendor=046d ProdID=c00b Rev= 6.10
S: Manufacturer=Logitech
S: Product=USB Mouse
C:* #Ifs= 1 Cfg#= 1 Atr=a0 MxPwr=100mA
I: If#= 0 Alt= 0 #EPs= 1 Cls=03(HID) Sub=01 Prot=02 Driver=usbhid
E: Ad=81(I) Atr=03(Int.) MxPS= 8 Ivl=10ms

T: Bus=01 Lev=00 Prnt=00 Port=00 Cnt=00 Dev#= 1 Spd=480 MxCh= 6
B: Alloc= 0/800 us (0%), #Int= 0, #Iso= 0
D: Ver= 2.00 Cls=09(hub) Sub=00 Prot=01 MxPS= 8 #Cfgs= 1
P: Vendor=0000 ProdID=0000 Rev= 2.06
S: Manufacturer=Linux 2.6.9-1.681_FC3 ehci_hcd
S: Product=EHCI Host Controller
S: SerialNumber=0000:00:02.2
C:* #Ifs= 1 Cfg#= 1 Atr=e0 MxPwr= 0mA
I: If#= 0 Alt= 0 #EPs= 1 Cls=09(hub) Sub=00 Prot=00 Driver=hub
E: Ad=81(I) Atr=03(Int.) MxPS= 2 Ivl=256ms

T: Bus=01 Lev=01 Prnt=01 Port=00 Cnt=01 Dev#= 8 Spd=480 MxCh= 0
D: Ver= 2.00 Cls=00(>ifc) Sub=00 Prot=00 MxPS=64 #Cfgs= 1
P: Vendor=0781 ProdID=7108 Rev=20.00
S: Manufacturer=SanDisk Corporation
S: Product=Cruzer Titanium
S: SerialNumber=00000000000000104629
C:* #Ifs= 1 Cfg#= 1 Atr=80 MxPwr=100mA
I: If#= 0 Alt= 0 #EPs= 2 Cls=08(stor.) Sub=06 Prot=50 Driver=usb-storage
E: Ad=81(I) Atr=02(Bulk) MxPS= 512 Ivl=0ms
E: Ad=02(O) Atr=02(Bulk) MxPS= 512 Ivl=31875us

388

Chapter 13

16_583204 ch13.qxd 3/18/05 9:28 PM Page 388

How It Works
In this example, the Linux box has four USB ports, two on the front and two on the back. Three devices
are plugged in: a Logitech USB mouse and two USB flash drives. One of the USB flash drives requires a
USB 2.0 port, at least on Linux. Note that although this system has four USB ports, it contains extra
entries where devices are plugged in.

Entries with a speed of 480 are USB 2.0 ports. In this data, speed appears as Spd. Entries with a speed of
12 are USB 1.1 ports. USB mice typically reduce the speed. For example, the mouse shown here indicates
a speed of 1.5.

USB ports are odd ducks. You can plug in more than one device to each port if the first device has another
port or is itself a USB hub with more than one port. Therefore, the system needs to report on any connected
devices along with the capabilities of the ports themselves.

Note that reading /proc/bus/usb/devices can take a long time. This is not a real file but part of the pseudo-
file system, /proc. You can speed things up with the lsusb command, a Linux-specific command, as shown
in the next Try It Out.

Try It Out Using the lsusb Command
The lsusb command provides a quick overview of the USB ports and devices on a system:

$ /sbin/lsusb
Bus 003 Device 001: ID 0000:0000
Bus 002 Device 002: ID 046d:c00b Logitech, Inc. MouseMan Wheel
Bus 002 Device 001: ID 0000:0000
Bus 001 Device 003: ID 0781:7108 SanDisk Corp.
Bus 001 Device 001: ID 0000:0000

The lsusb command can also output data in tree mode, as shown here:

$ /sbin/lsusb -t
Bus# 3
`-Dev# 1 Vendor 0x0000 Product 0x0000

`-Dev# 2 Vendor 0x0c76 Product 0x0003
Bus# 2
`-Dev# 1 Vendor 0x0000 Product 0x0000

`-Dev# 2 Vendor 0x046d Product 0xc00b
Bus# 1
`-Dev# 1 Vendor 0x0000 Product 0x0000

`-Dev# 3 Vendor 0x0781 Product 0x7108

The preceding example shows the three USB buses, each with a connected device.

You can ask the lsusb command for more information, but you usually must be logged in as the root
user to do so. You will also need a kernel at version 2.3.15 or newer. The -v option, for example, tells the
lsusb command to output verbose information, as shown here:

/sbin/lsusb -v -s 003

Bus 001 Device 003: ID 0781:7108 SanDisk Corp.
Device Descriptor:

389

Scripting for Administrators

16_583204 ch13.qxd 3/18/05 9:28 PM Page 389

bLength 18
bDescriptorType 1
bcdUSB 2.00
bDeviceClass 0 (Defined at Interface level)
bDeviceSubClass 0
bDeviceProtocol 0
bMaxPacketSize0 64
idVendor 0x0781 SanDisk Corp.
idProduct 0x7108
bcdDevice 20.00
iManufacturer 1 SanDisk Corporation
iProduct 2 Cruzer Titanium
iSerial 3 00000000000000104629
bNumConfigurations 1
Configuration Descriptor:

bLength 9
bDescriptorType 2
wTotalLength 32
bNumInterfaces 1
bConfigurationValue 1
iConfiguration 0
bmAttributes 0x80
MaxPower 100mA
Interface Descriptor:

bLength 9
bDescriptorType 4
bInterfaceNumber 0
bAlternateSetting 0
bNumEndpoints 2
bInterfaceClass 8 Mass Storage
bInterfaceSubClass 6 SCSI
bInterfaceProtocol 80 Bulk (Zip)
iInterface 0
Endpoint Descriptor:

bLength 7
bDescriptorType 5
bEndpointAddress 0x81 EP 1 IN
bmAttributes 2

Transfer Type Bulk
Synch Type none
Usage Type Data

wMaxPacketSize 0x0200 bytes 512 once
bInterval 255

Endpoint Descriptor:
bLength 7
bDescriptorType 5
bEndpointAddress 0x02 EP 2 OUT
bmAttributes 2

Transfer Type Bulk
Synch Type none
Usage Type Data

wMaxPacketSize 0x0200 bytes 512 once
bInterval 255

Language IDs: (length=4)
0409 English(US)

390

Chapter 13

16_583204 ch13.qxd 3/18/05 9:28 PM Page 390

How It Works
This example just prints out verbose information on one device, 003 (Bus 001 Device 003 from the
previous example). One line in particular indicates that this system supports at least one USB 2.0 port:

bcdUSB 2.00

You can use the grep command to search for this entry on all USB devices:

/sbin/lsusb -v | grep bcdUSB
bcdUSB 1.10
bcdUSB 1.10
bcdUSB 1.10
bcdUSB 2.00
bcdUSB 2.00

The USB 2.0 ports indicate that a given system can support more sophisticated USB devices. You can
look for them with the following script.

Try It Out Checking for Modern USB Ports
Enter the following script and name the file usbcheck:

#!/bin/sh

Checks for the USB version support, typically 1.1 or
2.0, for USB ports on a given Linux system.
#
NOTE: You must be logged in as root to run this script.

echo “USB support:”
/sbin/lsusb -v | grep bcdUSB | awk ‘{print $2}’

When you run this script, you’ll see output like the following:

./usbcheck
USB support:
1.10
1.10
1.10
2.00
2.00

How It Works
Remember that you must be logged in as root to run this script. This script starts with the lsusb com-
mand in verbose mode, which outputs far too much information to be useful. The script redirects the
output of the lsusb command to the grep command to search for the entries on USB specification sup-
port, such as 2.0. The script redirects the output of the grep command to the awk command, to remove
the odd bsdUSB text and just show the USB version numbers.

In addition, the script outputs a header line of its own, to help explain the output.

391

Scripting for Administrators

16_583204 ch13.qxd 3/18/05 9:28 PM Page 391

Ironically, this script and the information extracted from /proc/bus/usb/devices helped determine that an
older Linux box had two USB 2.0 ports, on the rear of the machine, of course. The front USB ports are
all USB 1.1. This is important because certain devices won’t work on Linux connected to a 1.1 port. The
Sandisk Cruzer Titanium, listed in the previous output, is one such device.

Automating Daily Work
Anything you do day in and day out falls into this category. Use the techniques shown in the previous
examples, as well as the previous chapters. Once you have created a script to automate some aspect of
your work, you can schedule that script to run at a particular time.

The cron scheduler, introduced in Chapter 12, enables you to run commands on a periodic schedule.
You can use cron by setting up a crontab file that specifies when to run the script. Other than the
scheduling, however, this type of scripting is the same as any other kind.

Summary
Scripts are an administrator’s best friend. They can remember things for you, speed up your work, and
sort through yucky output, extracting just the nuggets of useful information necessary to make informed
decisions.

This chapter focused on using scripts, and spending very little time writing them, for a big return in time
saved for common administrative work. The scripts in this chapter are intended to provoke discussion
and further thought about what you can do with scripts.

In the administrative arena, scripts can help you with the following:

❑ Remembering complicated commands, command-line options, and command-line arguments for you

❑ Troubleshooting, such as checking the amount of available disk space and whether certain types
of processes are running

❑ Removing minor annoyances

❑ Digesting voluminous data and extracting useful information

❑ Repetitive tasks you do every day

❑ Anything else that bothers you or you think is ripe for scripting

The next chapter switches gears from boring administrative work to fun, graphical, splashy desktop
automation. You can use scripts to help with desktop applications as well, especially on that most graphical
of systems, Mac OS X.

Exercises
1. Identify some issues at your organization and discuss how you can use scripts to help reduce the

problems. (Stick to issues related to your computer systems, rather than annoying colleagues or
dim-witted managers.)

392

Chapter 13

16_583204 ch13.qxd 3/18/05 9:28 PM Page 392

2. Look at the online documentation for the ps command. Discuss at least three useful things ps
can report.

3. Write a script to determine whether a given file system or mount point is mounted, and output
the amount of free space on the file system if it is mounted. If the file system is not mounted, the
script should output an error.

393

Scripting for Administrators

16_583204 ch13.qxd 3/18/05 9:28 PM Page 393

16_583204 ch13.qxd 3/18/05 9:28 PM Page 394

14
Scripting for the Desktop

This chapter introduces scripting for the desktop, or common user applications and the desktop
environment. It describes how to script such tasks as playing music, controlling word processors,
and the like. Special focus is given to Mac OS X and its unique Apple Open Scripting Architecture,
or OSA, that enables the shell environment to interact with applications such as Photoshop or
Microsoft Word. While you can do a lot with just the operating system, at some point you’re going
to want to start gluing various applications together. If you think about it, that’s what shell script-
ing is: gluing applications together. However, it’s not limited to things such as sed, awk, and other
traditional Unix applications. You can even glue design applications and music applications
together with scripting, shell and otherwise.

While part of this chapter focuses on Mac OS X and linking the shell to AppleScript, the basic con-
cepts apply to any application. For example, OpenOffice contains an extensive scripting imple-
mentation that is syntactically very similar to Microsoft’s Visual Basic for Applications (VBA).
Microsoft Word on the Mac has a full VBA implementation that can be called from AppleScript,
which can be called from the shell environment. In other words, regardless of which language an
application uses, if it runs on some form of Unix, you can probably get to it from the shell.

This chapter covers scripting for the desktop, including the following:

❑ Scripting office applications, such as the AbiWord word processors and the OpenOffice.org
office suite

❑ Scripting Mac OS X applications using AppleScript to drive OSA-enabled applications

❑ Scripting audio players and video players

❑ Tips on scripting other desktop applications

Scripting Office Applications
Office applications provide nice foundations upon which to create scripts. This includes both scripting
within an application, such as using Visual Basic for Applications (VBA) inside Microsoft Office, and
gluing applications together, such as creating documents for the OpenOffice.org suite.

17_583204 ch14.qxd 3/18/05 9:29 PM Page 395

Scripting the OpenOffice.org Suite
The OpenOffice.org suite includes a word processor, spreadsheet, presentation program, database front
end, and a whole lot more. Designed as a drop-in replacement for Microsoft Office, the applications in
the OpenOffice.org suite can load and save most Microsoft Office files. In fact, the majority of this book
was written using the OpenOffice.org suite.

Note that the name OpenOffice is owned by a company not associated with the free office suite — hence
the awkward name OpenOffice.org, often shortened to OOo. You can download the suite from
www.openoffice.org. The suite runs on Unix, Linux, Windows, and Mac OS X. For Mac OS X, you can
run OpenOffice.org from the X11 environment or download NeoOffice/J from www.neooffice.org for a
Macintosh-native version of the OpenOffice.org suite. The suite comes with most Linux distributions.

The suite supports OpenOffice.org Basic, a built-in programming language similar to BASIC or
Microsoft’s Visual Basic for Applications (VBA). With OpenOffice.org Basic, you can create simple
macros or complex programs that run within the OpenOffice.org environment. This is very useful for
operations you need to perform repeatedly. OpenOffice.org even includes an integrated development
environment (IDE), for creating, testing, and debugging OpenOffice.org Basic add-ons.

OpenOffice.org also supports a programming API, which enables access from Java, C++, Perl, Python,
and other programming languages. You can program far more than you’d ever imagine possible using
the OpenOffice.org API. Furthermore, all native file formats are textual XML files, which makes it a lot
easier to modify these files from your scripts or programs.

Scripting OpenOffice with the Shell
OpenOffice.org can be run from a single command, ooffice. By using command-line arguments and
options, you can tell the program to print files, run macros, or start in a particular mode. The most useful
command-line arguments and options appear in the following table.

Command Usage

-invisible Starts in invisible background mode.

-writer Starts the word processor with an empty document.

-p filename Prints the file filename.

macro:///library.module.method Runs the macro method in the given module in the given library.

‘macro:///library.module.method Runs the macro method in the given module in the given
(“Param1”,”Param2”)’ library, passing the given parameters (two in this case). You

likely need to quote the whole command-line argument.

-calc Starts the spreadsheet with an empty document.

-draw Starts the drawing program with an empty document.

-math Starts the math program with an empty document.

-global Starts with an empty global document.

-web Starts with an empty HTML document.

-impress Starts the presentation program with an empty document.

396

Chapter 14

17_583204 ch14.qxd 3/18/05 9:29 PM Page 396

You can use these command-line arguments in your scripts to launch ooffice. For example, the back-
ground -invisible option is especially useful when ooffice is called by a script.

With the macro argument, you can tell ooffice to run a given macro, written in OpenOffice.org Basic.

Scripting OpenOffice.org in Basic
BASIC is one of the older programming languages. It was designed long ago for newcomers to program-
ming. Since that time, BASIC has matured into a sophisticated programming environment. Microsoft’s
Visual Basic for Applications (VBA), provides a way to write BASIC programs that run within the
Microsoft Office environment. OpenOffice.org Basic similarly provides a way to write BASIC programs
that run within the OpenOffice.org environment. As such, you can write BASIC programs, or program
snippets called macros, to manipulate documents, update spreadsheets, and so on. Furthermore, you can
combine OpenOffice.org Basic with the OpenOffice.org database module to provide a simplified inter-
face for writing programs that access databases.

All of this is rather neat, but best of all is the fact that you can call these OpenOffice.org Basic programs
from shell scripts. The scripts can launch the OpenOffice.org suite and run your BASIC programs, all
from convenient shell scripts. Note that this exercise isn’t trivial. To do this, you need to combine the
OpenOffice.org suite, programs written in OpenOffice.org Basic, and shell scripts that run from the
shell’s command line. This is really an attempt to marry two disparate environments.

OpenOffice.org Basic organizes macros into modules and modules into libraries. Libraries are stored
inside objects, such as the OpenOffice.org suite itself, or within a document file.

397

Scripting for the Desktop

What’s in a Name?
A module is a program written in OpenOffice.org Basic. A module contains multiple sub-
routines and functions.

These subroutines and functions are collectively called methods, especially when you
invoke a method from shell scripts. The same subroutines and functions are called
macros as well. You edit macros inside the OpenOffice.org suite.

A library is a collection of modules or programs.

All these terms can be quite confusing. The OpenOffice.org documentation doesn’t
always make it clear what each item represents. This is further complicated by the fact
that you can program in Java, which uses the term methods; C++, which uses the term
functions; Perl, which uses the term subroutines; Python, which supports functions and
methods; and Basic, which uses functions and subroutines.

17_583204 ch14.qxd 3/18/05 9:29 PM Page 397

To get started, the first step is to create a library and a module inside that library, as shown in the follow-
ing Try It Out. Just consider these storage locations for your Basic program code.

Try It Out Creating an OpenOffice.org Basic Module
Launch an OpenOffice.org application, such as the Writer word processor. Select Tools ➪ Macros ➪

Macro, and you’ll see the Macro window, much like the window shown in Figure 14-1.

Figure 14-1

Note that the look of each version of the OpenOffice.org suite varies. Therefore, you may see a slightly
different window displayed. Luckily, OpenOffice.org comes with a very good set of on-line help.

Click the Organizer button. This displays the Module and Library Organizer window, as shown in
Figure 14-2.

Figure 14-2

398

Chapter 14

17_583204 ch14.qxd 3/18/05 9:29 PM Page 398

Click the Libraries tab, shown in Figure 14-3.

Figure 14-3

You need to start with a library. The Application/Document drop-down list shows soffice. This drop-
down list may be hard to find because it is small and appears in a way that does not stand out. Leave the
setting at soffice. Click the New button to create a new library. Name the library shellscripting, as
shown in Figure 14-4.

Figure 14-4

Next, you need to create a module within the library. Click the Modules tab in the Macro Organizer win-
dow and then click the New Module button. Enter a name of scriptingmodule in the dialog box, as
shown in Figure 14-5.

Figure 14-5

You now have a container to hold your new macros.

399

Scripting for the Desktop

17_583204 ch14.qxd 3/18/05 9:29 PM Page 399

How It Works
You need to create a library and a module as a place to hang your OpenOffice.org Basic macros. You can
use names of your choice. The names shown in this example are used in later examples in this chapter.

Starting with a library, you can place the library inside an application or a document. If you place the
library inside the application, you can call on the library from anywhere in the OpenOffice.org suite. If you
place the library within only a document, you can only access the macros when editing that document.

Sun Microsystems sells a commercialized version of the OpenOffice.org suite as StarOffice. With StarOffice,
the name for the executable program is soffice. Thus, you’ll sometimes see ooffice or soffice used
interchangeably in the OpenOffice.org on-line help and libraries. For example, to create a library that is
accessible anywhere within OpenOffice.org, you create the library with the Application/Document setting
as soffice, not ooffice, even though you are running OpenOffice.org.

Once you have a module set up, you can start to create macros, another word for Basic subroutines and
functions, as shown in the next example.

Try It Out Creating an OpenOffice.org Basic Macro
Select Tools ➪ Macros ➪ Macro, and you’ll see the Macro window. Click the Organizer button to see the
Macro Organizer window. In this window, select the library and then the scriptingmodule module
you created in the preceding example, as shown in Figure 14-6.

Figure 14-6

Next, click the Edit button. You’ll see the OpenOffice.org Basic IDE, as shown in Figure 14-7.

400

Chapter 14

17_583204 ch14.qxd 3/18/05 9:29 PM Page 400

Figure 14-7

Figure 14-7 shows the default empty module just created. The next step is to edit the module. Enter the
following code and click the Save icon or menu option:

REM ***** BASIC *****

Sub Main
REM Call our macros, for testing.
call ShowUserName

End Sub

REM Shows a dialog with the user name.

401

Scripting for the Desktop

17_583204 ch14.qxd 3/18/05 9:29 PM Page 401

Sub ShowUserName
userName = Environ(“USER”)
MsgBox “User name is “ + userName, 0, “User”

End Sub

Figure 14-8 shows the final macro.

Figure 14-8

Click the Run icon, indicated in Figure 14-9, to run the macro.

402

Chapter 14

17_583204 ch14.qxd 3/18/05 9:29 PM Page 402

Figure 14-9

When you click the Run button, you will see a window like the one shown in Figure 14-10 (with your
username, of course).

Figure 14-10

You have now written and executed a Basic macro in OpenOffice.org.

403

Scripting for the Desktop

17_583204 ch14.qxd 3/18/05 9:29 PM Page 403

How It Works
You only need to enter the code marked in bold. OpenOffice.org created the rest for you when you
defined a new module.

The BASIC language is not that hard to learn. You can probably grasp enough to get started just by look-
ing at this short example. The REM command, short for remark, indicates a comment. The Sub command
starts a subroutine. By default, when you run a module or program, the subroutine named Main is what is
actually run. It is a good idea to split your work into separate subroutines and not clutter the Main sub-
routine, but to test, this example shows the call command calling the new subroutine ShowUserName.

The ShowUserName subroutine gets the name of the user from the USER environment variable. (Sound
familiar?) In OpenOffice.org Basic, call the Environ function to get the value of this environment vari-
able and return that value into the userName variable.

A function in BASIC is a subroutine that returns a value. By default, subroutines return no value.

The MsgBox command displays a dialog box with the given text. The first parameter, “User name is “ +
userName, holds the text that should appear within the dialog window. The second parameter, 0, is a
special code that indicates what kind of dialog box to create. The third parameter, “User”, holds the text
for the dialog box’s title bar.

The following table lists the numeric codes for the dialog box types supported by the MsgBox command.

Code Meaning

0 Show the OK button

1 Show the OK and Cancel buttons

2 Show the Cancel and Retry buttons

3 Show the Yes, No, and Cancel buttons

4 Show the Yes and No buttons

5 Show the Retry and Cancel buttons, reversed from above

16 Place the Stop icon in the dialog box

32 Place the Question icon in the dialog box

48 Place the Exclamation icon in the dialog box

64 Place the Information icon in the dialog box

128 Make the first button the default button (if the user presses the Enter key)

256 Make the second button the default button

512 Make the third button the default button

These codes control the buttons and icons shown in the dialog box. You can combine codes to see more
than one option. You can find these values, and more, in the on-line help. Look for the document titled
Help About OpenOffice.org Basic.

404

Chapter 14

17_583204 ch14.qxd 3/18/05 9:29 PM Page 404

Note that the current version of the OpenOffice.org Basic IDE does not support using the Ctrl-S key com-
bination to save your work. This is very, very frustrating. You need to click the Save icon on the toolbar, or
select the Save option from the File menu, to save your work. Save often.

Instead of editing in the OpenOffice.org Basic IDE, you can also record your interactions with the
OpenOffice.org suite and save the recording as a macro to be called again later.

You can also use the Shell function to run a shell script or program from within the OpenOffice.org
environment. With this scenario, you might end up with a shell script calling an OpenOffice.org Basic
module, which in turn calls a shell script.

Try It Out Running an OpenOffice.org Macro from the Command Line
You can run the macro you created in the preceding example from the command line, using a command
like the following:

$ ooffice -quickstart macro:///shellscripting.scriptingmodule.ShowUserName

You should see the same message box dialog window shown previously.

How It Works
This example shows you how to bring the power of OpenOffice.org Basic macros to the shell.

If the OpenOffice.org suite is not running, the ooffice command will start the application and then dis-
play the dialog window. If the OpenOffice.org suite is already running, the message box dialog window
should appear.

The -quickstart command-line option tells the ooffice command to skip the display of the startup
screen.

When you click the OK button, the ooffice command will quit (if OpenOffice.org was not already
running when you ran the command).

The macro shown so far requires no parameters. It can get all the data it needs from within the
OpenOffice.org environment. Often, however, you’ll need to pass a parameter or two to the macro to
give the macro the information it needs. The following example shows how to do that.

Try It Out Passing Parameters from the Command Line to OpenOffice.org
Edit the previous macro definition to appear as follows:

REM ***** BASIC *****

Sub Main
REM Call our macros, for testing.
call ShowUserName
call ShowMsgBox “Hello from OpenOffice.org”, “Hello”

End Sub

REM Shows a dialog with the user name.

405

Scripting for the Desktop

17_583204 ch14.qxd 3/18/05 9:29 PM Page 405

Sub ShowUserName
userName = Environ(“USER”)
MsgBox “User name is “ + userName, 0, “User”

End Sub

REM Shows a handy message dialog.
Sub ShowMsgBox(pMessage as String, pTitle as String)

MsgBox pMessage, 0 + 48 + 128, pTitle
End Sub

The new text is indicated in bold. Click the Run icon, and you will see the dialog box shown in Figure
14-11. Note that you will first see the username message dialog. Click the OK button, and you should see
the following window.

Figure 14-11

Run the subroutine from the command line. Enter the following command:

$ ooffice -quickstart \
‘macro:///shellscripting.scriptingmodule.ShowMsgBox(“Hi there”,”Howdy”)’

You should see the window shown in Figure 14-12. Note the different text.

Figure 14-12

How It Works
The ShowMsgBox subroutine expects two parameters: the text to display and the title for the message win-
dow. You can pass these parameters within OpenOffice.org Basic subroutines or, more important, from
the command line or a shell script. This example shows how to pass parameters to the OpenOffice.org
Basic subroutines from the command line. To do this, you use parentheses around the parameters, using
the same library.module.method naming scheme used so far from the ooffice command line.

Because the first parameter has a space, you need to quote the Basic parameter value. In addition, to
avoid any conflicts with the shell, it is a good idea to surround the entire macro:/// argument in
quotes. The two different types of quotes, ‘ and “, enable you to clearly distinguish these purposes.

The ShowMsgBox subroutine also adds several numeric codes together to get a display that shows the excla-
mation icon (48), sets the first (and only) button to the default (128), and displays only one button, OK (0).

406

Chapter 14

17_583204 ch14.qxd 3/18/05 9:29 PM Page 406

You can write OpenOffice.org Basic programs to create files, such as word processor documents. The fol-
lowing example shows how to create a TPS report reminder.

Try It Out Creating Files from Scripts
Edit the previous macro definition to appear as follows:

REM ***** BASIC *****

Sub Main
REM Call our macros, for testing.
REM call ShowUserName
REM call ShowMsgBox “Hello from OpenOffice.org”, “Hello”
call CreateTpsReport(“tps1.doc”, “This is my TPS Report”)

End Sub

REM Shows a dialog with the user name.
Sub ShowUserName

userName = Environ(“USER”)
MsgBox “User name is “ + userName, 0, “User”

End Sub

REM Shows a handy message dialog.
Sub ShowMsgBox(pMessage as String, pTitle as String)

MsgBox pMessage, 0 + 48 + 128, pTitle
End Sub

REM Create a TPS report from text passed in.
Sub CreateTpsReport(fileName, fileText)

fileNum = Freefile
Open fileName For Output As #fileNum
Print #fileNum, fileText
Close #fileNum

MsgBox “TPS Report “ + fileName + “ created.”, 64, “Done”
End Sub

The new text is indicated in bold.

Next, create the following shell script (remember those?) and name the file tps_create:

#!/bin/sh

Launches OpenOffice.org to create a TPS report reminder.
Pass the name of the report file and the date required
on the command line, in order. Both arguments
are optional.
#

dir=`pwd`

if [$# -lt 1]
then

407

Scripting for the Desktop

17_583204 ch14.qxd 3/18/05 9:29 PM Page 407

filename=”$dir/tpsreport.doc”
else

filename=”$dir/$1”
fi

if [$# -lt 2]
then

date_required=today
else

date_required=$2
fi

Build the message as one long line.
msg=$(tr “\n” “ “ <<EndOfText
“Please complete all TPS reports and have them
on my desk by EOB $date_required.”
EndOfText
)

Send the message
echo “[$msg]”

macro=macro:///shellscripting.scriptingmodule.CreateTpsReport
ooffice -quickstart “${macro}(\”$filename\”, $msg)”

echo “Message sent”

When you run this script, you should see output like the following:

$./tps_create
[“Please complete all TPS reports and have them on my desk by EOB today.”]
Message sent

You should also see a message box like the one shown in Figure 14-13.

Figure 14-13

If no errors appear, you should see the document shown in Figure 14-14 in your current directory.

408

Chapter 14

17_583204 ch14.qxd 3/18/05 9:29 PM Page 408

Figure 14-14

How It Works
This is a fairly complicated example because it contains so many parts.

In the OpenOffice.org Basic macro, the CreateTpsReport subroutine opens a file for writing, writes out
the passed-in message, and then closes the file. The Freefile function returns a file number, much like the
file descriptor introduced in Chapter 5. You need this number because the Open command requires it. (In
other words, this is a quirk of OpenOffice.org Basic.)

The Open command opens a file for writing (Output), using the passed-in file name. The Print com-
mand prints text to a file number, and the Close command closes a file represented by a file number.

You can test the CreateTpsReport subroutine from within the OpenOffice.org Basic IDE by clicking the
Run icon, as shown previously.

Next, the Bourne shell script tps_create invokes the OpenOffice.org Basic macro.

The tps_create script is similar to the tps_report1 and tps_report2 scripts from Chapter 5.

409

Scripting for the Desktop

17_583204 ch14.qxd 3/18/05 9:29 PM Page 409

The tps_create script gets the current directory from the pwd command. This ensures that OpenOffice.org
creates files in the current directory. Optionally, you can pass the file name to create (a document file) and
the date the TPS reports are required.

The next command in the tps_create script creates a message. It is important that this message be only
one line due to the way in which the script passes the message as a parameter to the OpenOffice.org
Basic macro. The tr command acts on a here file to remove any new lines and replace them with spaces.
In addition, the text should not contain any commas.

The tps_create script uses the echo command to output the created message. This helps diagnose
problems in the script.

Next, the tps_create script calls the ooffice command. Because the command line is so long, the
script uses a variable for the long name of the OpenOffice.org Basic macro, shellscripting.
scriptingmodule.CreateTpsReport.

Together, all of this enables you to script OpenOffice.org applications. See the on-line help on
OpenOffice.org Basic as well as the office applications for more information on writing macros.

In addition to OpenOffice.org, you can script other office applications, mentioned here briefly to spur ideas.

Scripting AbiWord
AbiWord provides another word processor. Unlike the OpenOffice.org suite, however, AbiWord is just a
word processor, not a full suite. Nonetheless, AbiWord provides an extremely fast and small word processor,
especially when compared to Microsoft Word. AbiWord starts faster than Microsoft Word or OpenOffice.org
Write, but it does not support the Microsoft file formats or OpenOffice.org.

Find out more about AbiWord at www.abisource.com. AbiWord runs on many platforms, including
Unix, Linux, Windows, QNX, and Mac OS X.

AbiWord, like every other major application, supports the capability to plug in add-ons to the application.
Two very useful add-ons for scripting are as follows:

❑ The AbiCommand plug-in enables you to run the abiword command from shell scripts or the
command line.

❑ The ScriptHappy plug-in works inside the AbiWord application. With the ScriptHappy plug-in,
you can run a shell script or command from within AbiWord. The word processor will capture
the output of the script or command and insert that text into the current document.

To do this, your script must be set up as an executable script. It must have execute permissions, as well as
the magic first-line comment, such as the following:

The parameters passed to the OpenOffice.org Basic macro must be in quotes.
Otherwise, you can crash the OpenOffice suite.

410

Chapter 14

17_583204 ch14.qxd 3/18/05 9:29 PM Page 410

#!/bin/sh

This first-line commend indicates that this script is a Bourne shell script. See Chapter 4 for more infor-
mation on the magic first-line comment.

Scripting NEdit
The NEdit text editor, which ships with most Linux distributions and can run on most Unix platforms,
provides a server mode that you can access from scripts. To use this mode, launch the nedit command
with the -server command-line argument, as shown in the following example:

$ nedit -server &

Once you do this, the nedit command will listen for requests — in most cases, requests to open text files
for editing. The nc command then sends messages to the nedit command. Without any special options,
pass the file name to the nc command to call up the file in the text editor.

You can also download the application from www.nedit.org. NEdit requires the X Window System to run.

Another text editor called jEdit also supports a server mode. See Chapter 2 for more information on text
editors.

Scripting for the Desktop on Mac OS X
Let’s assume that you’re one of those hard-working people who needs to be reminded when it’s time to
go home. (You are a computer geek, right?) You could probably find a dozen tools that will act as an
alarm clock for you in Mac OS X, or Linux, or anything else, but where’s the fun in that? The following
Try It Out combines the shell with AppleScript and iTunes in Mac OS X to accomplish this, because
that’s what being a geek is all about!

Try It Out Building Your Own Alarm Clock
In this Try It Out, you begin by setting up an AppleScript to control iTunes. Next, you set up a shell
script to be run by cron to talk to that AppleScript, and finally, you set up cron to run that shell script.

1. Set up the AppleScript to control iTunes. (You’ll learn more about AppleScript shortly; for now,
just follow along.) From /Applications/AppleScript/, open Script Editor. You are presented
with a blank script window. Type the following code into that window:

Due to an unfortunate coincidence, another command named nc may very well be
on your system. Short for netcat, or network concatenate, this nc command does not
work with the nedit command. Check which command you have. On Linux sys-
tems, for example, nedit and its nc command should be located in /usr/X11R6/bin/
by default, whereas the netcat nc command will be in /usr/bin.

411

Scripting for the Desktop

17_583204 ch14.qxd 3/18/05 9:29 PM Page 411

ignoring application responses
tell application “iTunes”

activate
play

end tell
end ignoring

Click the Compile icon, and the code will be nicely formatted for you. This script is a relatively
simple one. The first and last lines are an ignoring block. You don’t want this script to run
until iTunes isn’t playing anymore. Instead, you want it to start, start iTunes, send it a command
or two, and then get out of the way, and ignoring applications responses is how you do
that in AppleScript. The second and fifth lines are a tell block. With AppleScript, each applica-
tion has unique terms that apply only to that application. It wouldn’t make much sense to tell
Word to import CD audio or to tell iTunes to print the fourth paragraph of a document. To avoid
that, you use tell blocks, which target the lines inside the block at the specific application —
namely, iTunes. The third line tells iTunes to start (if it isn’t running) and become the frontmost
application. (Even if your sound is turned off, you’re going to see iTunes coming up). The fourth
line tells iTunes to just play anything.

2. You now have a script that will start iTunes and play it, but you still have to link that into cron.
Due to security and operational issues, you can’t directly run an AppleScript from cron. You
can, however, run a shell script, and shell scripts can talk to AppleScripts in several ways. The
simplest way to do this is to save the script as an application in your home directory. You can
save it directly or create a folder called cronscripts (or whatever you like), and save the script as
an application in there. For the options, make sure the Run Only, Startup Screen, and Stay Open
boxes are unchecked. Give it a name like itunesalarm, press Save, and that part’s done.

To hook this to cron, you need to create a shell script that cron can run by taking advantage of
a shell command created for NextSTEP (the OS that Apple bought when it bought NeXT, which
contributed most of Mac OS X’s architecture), the open command. This command will enable
you to run the AppleScript application you just created as though you were double-clicking on
it. (Yes, you could just open iTunes, but it wouldn’t play, so that would only be half of it.) This
script is really simple, only two lines:

#! /bin/sh
open /Users/jwelch/cronscripts/itunesalarm.app

Change the path to match that of your script application.

That’s it. Two lines. The first one sets up the shell you’re going to use, and the next one opens
the script application. Save the script as itunesalarm.sh or whatever you like (I suggest sav-
ing it in the same folder as the script app), and change the permissions so that it’s executable
(chmod 755).

3. You now have a shell script and an AppleScript application that you need to tie into cron. You
don’t want to add it to the root crontab file in /etc, as it would run as root (bad idea), and it
would try to run even if you weren’t logged in. Because iTunes won’t run outside of a user login,
that’s a prescription for errors. Instead, take advantage of cron’s ability to run user-specific cron
jobs. (See the man crontab page for more details.) First, you need to create your own crontab
file and name it mycrontab. The file itself is short and simple:

As before, substitute your own paths for the ones shown here.

412

Chapter 14

17_583204 ch14.qxd 3/18/05 9:29 PM Page 412

/Users/jwelch/mycrontab
SHELL=/bin/sh
PATH=/etc:/bin:/sbin:/usr/bin:/usr/sbin
HOME=/Users/jwelch/Library/Logs
#
#minute hour mday month wday who command
#
Run daily/weekly/monthly jobs.
55 16 * * * sh /Users/jwelch/cronscripts/itunesalarm.sh

Most of the lines here should be obvious to you. The first line is a comment, so you know where
this file is going to live. The next three lines set up the shell, your path, and the path to where
you want any logs resulting from this to live. The last line is where all the fun happens. 55 is the
minute when the script runs, and 16 is the hour (4 P.M.). Therefore, the script will run every day
at 4:55 P.M. (You can get far more specific with cron, but then this would be a cron tutorial). You
can’t leave the other spaces blank, so use a series of asterisks (*), each preceded by a tab to
ensure that cron knows that this doesn’t run weekly or monthly and isn’t a “standard” job. The
last line is the command, telling sh to run the itunesalarm shell script. That’s the crontab file
for your alarm clock.

4. One step left: telling cron to use the script. To do this, use the crontab command as follows:

sudo crontab -u jwelch /Users/jwelch/mycrontab

This tells crontab to create a crontab for user jwelch, and use /Users/jwelch/mycrontab as
the source. Because you have to run as root, you use the sudo command to run crontab as root.
When it’s done, if you look inside of /var/cron/tabs/, you see a file named jwelch. If you look
at the contents of this file, you see the crontab info you created, along with some things that
crontab adds, such as dire warnings not to directly edit this file. That’s it. You now have quite
the little alarm clock, and you didn’t need to be a shell or AppleScript wizard to do it.

How It Works
This alarm clock is pretty simple in function. crontab sets up the crontab file, which is used by cron.
(cron searches the /var/cron/tabs/ directory for crontab files named after valid users on that system.
It looks there once per minute. When it finds a file, it reads it. If it’s time to run any of the jobs, cron
runs the jobs specified in the crontab.) In this case, cron runs a shell script that opens an AppleScript
that opens iTunes and tells it to start playing. Therefore, with only two applications, one daemon, and
one script, you can play music at 4:55 P.M. every day to remind you to go home. Is Unix cool or what?

Obviously, this specific method is only going to work on Mac OS X systems, but the principles will apply to
any Unix systems; just change the application you use to make noise at 4:55 P.M. However, Mac OS X is one
of the few Unix-based operating systems that enable you to combine a shell script with major commercial
apps such as Photoshop, or even Microsoft Word, so from a shell scripting point of view, it’s interesting. Mac
OS X also has a very well defined scripting architecture, which I touch on in the next section, and that’s kind
of neat too.

Open Scripting Architecture
When I talk about linking the shell to “native” OS X applications, I’m referring to using the Open
Scripting Architecture, or OSA, to connect different environments. OSA has been a part of the Mac OS

413

Scripting for the Desktop

17_583204 ch14.qxd 3/18/05 9:29 PM Page 413

since the System 7 days and is conceptually just a glue mechanism. It creates a set of interfaces, or APIs,
to the Interapplication Communications mechanisms in Mac OS X.

When I talk about “native” Mac OS X applications, it’s perhaps easier to define what I’m not talking about:

❑ Command-line applications such as shell scripts

❑ Applications that require the X11 environment to function

❑ Older applications that require Mac OS 9 (or earlier) or the Classic Compatibility Environment to run

Everything else is native.

Interapplication Communication, or IAC, is simply the way that applications or, more correctly, processes
share data. Each OS has several different methods for doing this, from shared memory to copy and paste.

If developers take advantage of OSA when they write their application, then you, the scripter, can use an
OSA language, such as AppleScript, to control that application, which brings us to another major point
about OSA.

It is an all-too-common myth that the only way to use OSA and OSA-enabled applications is with
AppleScript. This has never been true, and with Mac OS X, it’s especially not true. OSA is not a lan-
guage. It’s just a set of APIs that enable you to use an OSA-supported language to get work done.
AppleScript is the most traditional language used, and with AppleScript Studio, you can do a lot of
really nifty things with it, but it’s not the only game in town. Late Night Software has a JavaScript OSA
implementation that you can download for free from its web site (www.latenightsw.com), and OSA con-
nectors for Perl, Python, and more are available.

In other words, if you don’t want to use AppleScript but want the power that OSA gives you in Mac OS
X, relax. You don’t need to learn AppleScript if you don’t want to (but it’s really cool, albeit different
from almost every other language).

AppleScript Basics
Even though you can use all kinds of other languages with OSA, the examples in this section use AppleScript,
mostly because it has explicit support for interaction with the shell, and Apple has supplied shell applications
that enable you to interact with AppleScript.

As I mentioned earlier, AppleScript syntax can be different. One reason for this is to enhance accessibility
by people who aren’t going to ever be hardcore programmers. The syntax had to be more inviting than tra-
ditional programming languages. This is good in that it’s somewhat easier to dope out AppleScript syntax
when you’re first getting into it, but it’s bad in that AppleScript’s verbosity can result in some very bizarre
statements, such as the following:

set theiChatStatusMessageText to the contents of text field “iChatStatusMessage” of
window “iChatStatusSet”

That’s AppleScript referring to something that in dot notation, à la Visual Basic, would look more like
this (or something similar):

iChatStatusSet.iChatStatusMessage.contents

414

Chapter 14

17_583204 ch14.qxd 3/18/05 9:29 PM Page 414

This book is not meant to be a tutorial on AppleScript, but this section does show you some neat tricks
you can do with shell and AppleScript and Mac OS X applications, and explain what the script is doing
on both sides.

You do need background on one aspect of AppleScript for the examples, and that’s targeting applications,
as this is critical to using AppleScript. Unlike a lot of languages, AppleScript has dynamic syntax that is
application specific. In other words, depending on the application you’re trying to target, doing the
exact same thing can be syntactically different.

For example, suppose you want to create a new signature for an email application and set it to “Custom
Sigs ROCK.” If you use Microsoft Entourage, you would use this syntax:

tell application “Microsoft Entourage”
make new signature with properties {name:”Shell Scripting Book Sig”,

content:”--\rCustom Sigs ROCK”, include in random:false}
end tell

However, if you’re targeting Apple’s Mail application, you have to use this:

tell application “Mail”
make new signature with properties {name:” Shell Scripting Book Sig “,

content:”Custom Sigs ROCK”}
end tell

While both operations are similar, there’s a minor difference or two. For one thing, Entourage has a parame-
ter or property in AppleScript for making this signature appear randomly. Because I didn’t want this, I set it
to false, as it’s a boolean value. Because Mail doesn’t support this, I don’t use it for Mail. Entourage requires
you to add the -Space, which is the standard signature precedent line for email signatures, as a part of the
contents, whereas Mail doesn’t. Therefore, with Entourage, the sig starts with -- \r, which inserts the
<dash><dash><space><return> characters needed for the signature.

The thing to remember is that AppleScript terminology is dynamic and can change depending on what
application you’re talking to. However, it’s not like you have to guess or go searching in obscure loca-
tions for documentation that may or may not be current. Every scriptable application carries within itself
a guide to how you can script it: the AppleScript Dictionary.

AppleScript Dictionaries
The dictionary is just what it sounds like: a guide to the AppleScript terms and functions that exist for
use with that application. Dictionaries can range in size from nonexistent (meaning the application is not
scriptable) to hundreds of pages in size (Adobe InDesign, Microsoft Word).

Every scriptable application and OSAX (Open Scripting Architecture extension) has its own dictionary, and
they all work the same, with one exception: If you are using an application’s dictionary, you have to use a
tell block of some kind, whereas with an OSAX you don’t need the tell block — you just use the terms.

The following figures show some examples of dictionaries from three applications: Figure 14-15 shows
Camino, a Mac OS X–only web browser based on the Mozilla project’s Gecko rendering engine. Figure 14-16
shows Firefox, a cross-platform Web browser also based on Gecko, and Figure 14-17 shows Adobe InDesign
CS. As you can see, even though Camino and Firefox are based on the same engine, Camino is more script-
able, and InDesign is more scriptable than both of the others combined. InDesign’s UI suite (in AppleScript
terms, a collection of similar scripting terms within a dictionary) is almost bigger than Camino’s and
Firefox’s combined. You can do a lot with AppleScript in InDesign.

415

Scripting for the Desktop

17_583204 ch14.qxd 3/18/05 9:29 PM Page 415

Figure 14-15

Figure 14-16

416

Chapter 14

17_583204 ch14.qxd 3/18/05 9:29 PM Page 416

Figure 14-17

Opening a dictionary is simple. Start up Script Editor in /Applications/AppleScript/, and select Open
Dictionary in the File menu. Navigate to the application for which you want to open the dictionary, and
voila! Dictionary!

Now you can figure out what terms an application directly supports. However, that’s not the entire syntax of
AppleScript. AppleScript is a programming language with its own syntax, just like C, or Java, or COBOL. Apple
has created a language guide for you: The AppleScript Language Guide, available as a PDF from Apple at
http://developer.apple.com/documentation/AppleScript/Conceptual/AppleScriptLangGuide/AppleScript
LanguageGuide.pdf, is the best general guide available, and it’s free. If you want to develop a good under-
standing of the building blocks of AppleScript, it’s the best place to start.

417

Scripting for the Desktop

17_583204 ch14.qxd 3/18/05 9:29 PM Page 417

AppleScript’s Shell Support
How do you actually link AppleScript and shell script together? As you saw in the earlier example, you can
use a shell script to start an AppleScript application. What if you can’t prebuild the script ahead of time, or
you need to talk to the shell environment from AppleScript? Worry not, Apple has taken care of that.

Going from Shell to AppleScript
You can use three shell commands to connect a shell script to AppleScript:

❑ osalang

❑ osacompile

❑ osascript

osalang is the command that enables you to see what OSA languages are installed on a given Mac. If I
run osalang with the -L switch on the Mac on which I’m writing this chapter, which gives me all the
available languages and their capabilities, I get the following:

[Aurora:~] jwelch% osalang -L
Jscr LNS cgxe-v-h JavaScript (JavaScript Scripting System)
asDB asDB cgxe-v-h AppleScript Debugger (Script Debugger’s AppleScript debugger)
ascr appl cgxervdh AppleScript (AppleScript.)
scpt appl cgxervdh Generic Scripting System (Transparently supports all installed
OSA scripting systems.)

The output shows that I have a few different potential languages with different capabilities. The capabilities
of the languages translate as follows:

c compiling scripts.
g getting source data.
x coercing script values.
e manipulating the event create and send functions.
r recording scripts.
v ``convenience’’ APIs to execute scripts in one step.
d manipulating dialects.
h using scripts to handle Apple Events.

In other words, by using osalang and grep, you can test for a given language or set of capabilities. For
example, to look for JavaScript and get its feature set, you use the following:

osalang -L|grep “JavaScript”

The preceding command would return the following:

Jscr LNS cgxe-v-h JavaScript (JavaScript Scripting System)

Therefore, if you need a specific OSA language, osalang is a handy way to test for that.

osacompile is the second part of the command line AppleScript trio, and a very powerful one. This
command enables you to create a compiled script, or script application, from shell input or a text file.
You can also specify the OSA language you wish to use; in fact, you can even use different languages
depending on the capabilities of the system you’re running. For example, you could test for Perl and

418

Chapter 14

17_583204 ch14.qxd 3/18/05 9:29 PM Page 418

JavaScript while using AppleScript as a fallback by taking the output of osalang and using that to test
for the languages you want. osacompile has a nice set of switches that give you a lot of power (see the
man osacompile page for full details), but the following list shows the major switches:

❑ -l enables you to specify the language in which you want the script compiled. For example, if
you want the script compiled as JavaScript, use osacompile -l JavaScript.

❑ -e enables you to enter the script commands as part of the statement. This can be tricky because
AppleScript uses a lot of characters that need to be escaped or properly quoted to make it past

The final part of the AppleScript shell command triumvirate is osascript, which is the complement to
osacompile. osascript executes a given script file or input command but doesn’t create a script. It has simi-
lar flags to osacompile; in fact, the -l and -e flags are identical. The -s flag is for setting options that specify
how the script output and errors should be handled. Normally, the output of a script is in human-readable for-
mat, so the command osacompile -e ‘set foo to {“listitem1”,”listitem2”}’ followed by osascript
a.scpt returns listitem1, listitem2. However, if you use the s option for the -s flag, osascript -s s
a.scpt, on the same script, you get the results in the “real” form, which could be compiled into another script:
{“listitem1”, “listitem2”}. Normally, osascript passes errors to stderr, not the screen. If you want to
see runtime errors (not compile errors; those always go to the screen), use -s owith osascript.

There are some limitations with osascript and osacompile. First, you can’t play outside your sandbox.
If you want to play with things that are above your authentication level, it’s not going to work unless you
use sudo or su to run the command. Second, you can’t use osascript to run scripts that require user
interaction. Therefore, while you can use osacompile to create scripts that require user interaction, you
can’t use osascript to run them. Considering that user interaction in AppleScripts happens outside of
the command-line environment, this makes sense. However, you could use the open command, as in the
alarm-clock example shown earlier, to run an AppleScript application that requires user interaction.
Finally, you can’t get too interactive with these commands. The only result you can directly get from an
AppleScript is the last one. For anything else, you’ll need to have the script write results to a text file.

Going from AppleScript to Shell
While going from shell to AppleScript is really cool, it’s only half the story. You can run shell scripts directly
from AppleScript via the do shell script command. do shell script is a fairly self-explanatory com-
mand, with a limited set of parameters. From the Standard Additions dictionary:

do shell script string -- the command or shell script to execute. Examples are
‘ls’ or ‘/bin/ps -auxwww’
[as type class] -- the desired type of result; default is Unicode text (UTF-8)
[administrator privileges boolean] -- execute the command as the administrator
[password string] -- use this administrator password to avoid a password dialog
[altering line endings boolean] -- change all line endings to Mac-style and trim a
trailing one (default true)

[Result: string] -- the command output

There’s not a lot to do here, parameterwise. You can specify how you want the result. You can run the shell
script as root, but if you do, you have to provide a password. You can enter the password in more than one
way: as part of a displayed dialog box (somewhat secure), embedded in the script (not secure at all, not even
if it’s run-only), or by fetching the password from the user’s secure password storage, aka the Keychain or
the Keychain Scripting application. (I’ll leave the Keychain scripting up to you as an extra-credit trick, but
it’s really cool, and the only way to get the password is to have an event tap or read it directly from RAM. If
someone has cracked your machine to that level, you have greater problems than a shell script.) Altering line
endings enables you to have the script output results as a Mac-style string, not a Unix-style string. Change
that setting to false for Unix line endings.

This feature is a huge hit among the AppleScript community, because it enables them to leverage the
strengths of other languages without having to resort to bizarre workarounds. Therefore, if you need high-
level text manipulation, instead of trying to do it in AppleScript (a tedious proposition), you can use do
shell script, and connect to a Perl or shell routine that will manipulate text far faster and more effi-
ciently. It’s also handy for doing things when you don’t feel like waiting for others. For example, until quite
recently, Virex, an antivirus utility for the Mac, couldn’t automatically scan items. You had to manually
invoke the scan engine in the UI or use the shell command, vscanx, manually or via cron. Of course, that’s

420

Chapter 14

17_583204 ch14.qxd 3/18/05 9:29 PM Page 420

not the same as autoscanning a file as soon as it’s downloaded. Therefore, I used do shell script to cre-
ate a routine for scanning files with vscanx.

First, I set a property that contained the command I needed with all the arguments that I wanted to use:

property theScan : “/usr/local/vscanx/vscanx --allole --dam --delete --one-file-
system --recursive --secure --summary “

This command scans every kind of file (--secure, --allole) inside of any folder it’s presented with
(--recursive), cleans all macros from a potentially infected file (--dam), deletes any infected file (--delete),
resides on a single file system (--one-file-system), and prints a summary to the screen of what it found
(--summary). (Note that because Unix can make remote file systems look like a part of the local file system,
and because the AFS distributed file system can make entire global networks look like part of the local file sys-
tem, the --one-file-system option is important.) This way, I could use theScan instead of the full command
line and parameters.

Next, I created another property that would use grep to scan the results of the viral scan for an infected
file result:

property theGrep : “|grep \”Possibly Infected\””

That was only part of it, however. AppleScript in OS X uses something it calls folder actions, commands that
run as part of something that happens to a folder, such as adding a file to a folder — that is, downloading a
file to the Desktop. Using that and some do shell script wizardry, I built an autoscan system for Virex
that did not need to interact with OS X at the kernel level (as do most of these systems). It was fast, and I
had it working a year before McAfee was able to get a stable version of Virex that had autoscan out the
door. The full code, with explanations, follows:

property theScan : “/usr/local/vscanx/vscanx --allole --dam --delete --one-file-
system --recursive --secure --summary “

The property statement uses a variable for the scan command with the full path to vscanx; that way, I
didn’t have to rely on user shell configurations.

property theGrep : “|grep \”Possibly Infected\”” --this will check for infected
file result

The preceding line checks for the infected file indicated in the summary.

property theResult : “”

theResult is a placeholder text variable.

property theMessage : “”

theMessage is a placeholder text variable.

on adding folder items to this_folder after receiving added_items

421

Scripting for the Desktop

17_583204 ch14.qxd 3/18/05 9:29 PM Page 421

This line is part of the folder action handler (AppleScript lingo for subroutine) that deals with adding items to
a folder. this_folder and added_items are standard names in this statement, and almost every example
of this kind of folder action uses them. I used an example from Apple’s AppleScript web site to help me out
on this.

tell application “Finder”
set the folder_name to the name of this_folder

end tell

Because the Finder is the standard file and folder manipulation application, I use its capabilities to get
the name of this_folder and put that in folder_name.

-- find out how many new items have been placed in the folder
set the item_count to the number of items in the added_items

The preceding step gets the number of items that have been added to the folder and puts that number in
item_count.

repeat with x in added_items

repeat loops are AppleScript’s version of for-next and while loops. In this case, I am using the num-
ber of items in added_items as the control for the loop; and for each iteration, I assign a new item to x.

set theFileInfo to info for x --get info for the downloading file(s)

info for is a record (a list where each item has a label) that is an array of properties for a file, so I put
that record into theFileInfo.

set theBaseSize to size of theFileInfo --get initial size

I want to get the current size of the file and use it as a baseline (I’ll explain why in a second).

delay 3 --wait 3 seconds
set theFileInfo to info for x --get info again

This code refreshes the information in theFileInfo.

set theCompareSize to size of theFileInfo --get a newer size

This line gets the most current size of the file.

repeat while theCompareSize theBaseSize --if they don’t equal, loop until
they do

As of Panther, Mac OS X 10.3, it’s hard to tell when a file is still downloading. While the Finder does
have a busy flag, it’s not used if you are transferring files, say, via ftp, sftp, or some other command-
line option. (Well, it may or may not, but as of version 10.3, it’s not reliable). Therefore, to work around
that, I wrote a loop that compares the starting size with the current size every three seconds. Even on a
slow link, the size should change by a byte or two in three seconds. If they aren’t equal, theBaseSize is
set to theCompareSize, the system waits three seconds, refreshes theFileInfo, gets a new
theCompareSize, and checks again. Eventually, the two sizes will match, and as far as the script is con-
cerned, the download is done. The next five lines handle this:

422

Chapter 14

17_583204 ch14.qxd 3/18/05 9:29 PM Page 422

set theBaseSize to theCompareSize --new base size
delay 3 --wait three seconds
set theFileInfo to info for x --get info
set theCompareSize to size of theFileInfo --get a newer size

end repeat --once the sizes match, the download is done

set thePath to “ \”” & (POSIX path of x) & “\”” --this quotes the file
path so that odd characters are handled correctly

In Mac OS X, path delimiters aren’t a / (slash) character but a : (colon). The shell environment only uses
slashes, so to get around this, use the POSIX path command to get the shell-compatible path of the file from the
Mac OS X path. Because it needs to have quotes in it, I insert those by escaping them with the \” character:

set theCommand to theScan & thePath & theGrep as string --build the
entire command, but only caring if infected files are found

Now build the command. Take the theCommand variable, set its contents to the theScan variable con-
catenated with the thePath variable I just created, and then concatenate them with the theGrep vari-
able. And make sure the entire thing is a string, as that’s what’s needed in the next step:

set theResult to do shell script theCommand --run the command

Run vscanx against the current item in added_items, and set that to text:

set theTextResult to theResult as text --text version of the result

Even though this is normally a string, I like to be sure, so I use the as text coercion:

set oldDelims to AppleScript’s text item delimiters --temp store Applescript
current delimiters

Because the result is going to contain a lot of words and spaces (and I only care about one thing), I’m
going to parse it. Normally, Apple uses the null character as a text delimiter. I want to use a space, so I
first store the current delimiter in a variable for safekeeping. oldDelims is traditionally used for this.

set AppleScript’s text item delimiters to “ “ --use spaces as the current delimiter

The preceding line sets the text item delimiters to a space.

set theNewResult to (every text item of theTextResult) --this turns the text into a
list, with the number at the end

Now turn the result from a single text line to a list of words. When vscanx returns a summary, the num-
ber of items found is always the last word/item in the line. Therefore, I turn this into a list, and the last
item in the list is going to indicate how many infected items were found and deleted.

set theTest to the last item of theNewResult as number --since the last item is the
number of possibly infected files, let’s treat it as one

Remember that in a string, a number character is just that: a character. It’s not a number, but we need it
to be one, as numerical tests are really easy and reliable compared to text tests. Set theTest to the last
item of the newly created list from the summary to force, or coerce, that value to be a number.

423

Scripting for the Desktop

17_583204 ch14.qxd 3/18/05 9:29 PM Page 423

if theTest 0 then --only display a dialog if possible infections are found

As long as it’s not zero, it’s a positive integer. (If it returns a negative, then vscanx is way buggy, and we
can’t possibly work around that here anyway. In any event, I’ve never seen that happen or heard of it
happening.)

set theTest to theTest as text --display dialog only likes text

A nonzero return indicates a possible bad virus, and because the file’s already been deleted, I should
probably tell the user. To do that, I need a display dialog step, and that requires text, so I coerce
theTest back to a text variable.

display dialog theTest & “ possibly infected files were found in
“ & thePath & “, and deleted!” --give the user the number of infected files and
location

The preceding code tells the user how many infected files were deleted and where they were. I put this
in the repeat loop, so if users wanted to kill the scan on the spot, they could by hitting the Cancel but-
ton in the dialog box. It creates an error that kills the script. It’s a bit abrupt, but it works well here, and it
definitely stops the script from running, which is what I want.

end if

This is the close of the if statement, aka fi in shell. AppleScript closes things with an end whatever.
More verbose, but in many cases clearer, and much nicer if you’re a tad dyslexic.

set AppleScript’s text item delimiters to oldDelims

Because I can’t always count on the script’s ending cleanly, I restore the delimiters to the state they were
in before each iteration. I haven’t seen that this creates a noticeable slowdown.

--display dialog theResult --add some grep routines to parse for actual infections

The preceding line is a reminder of stuff I should do one day.

end repeat

This line closes the repeat loop.

end adding folder items to

Finally, the preceding line ends the folder action.

This is a great, albeit not glamorous, use for do shell script, and it shows how it can be a force multi-
plier for AppleScript. I could use the GUI Virex application here, but if it’s not running, the user has to
deal with it popping up, eating CPU even in the background, taking up space in the Dock, and so on,
even if there’s no virus to be found. This way, everything is scanned (regardless of the folder to which
you attach this action), and the only time the user is bothered is when a virus is found. Because this hap-
pens within three seconds of the file’s completing a download, it’s unlikely that the user will be able to

424

Chapter 14

17_583204 ch14.qxd 3/18/05 9:29 PM Page 424

open the file before the scan happens. True, you have to manually assign this script to every folder on
which you want it to run, but it enabled me to enjoy autoscan in a safe, nonkernel patching manner a
year before McAfee could offer it. Viruses don’t pose the same worry on the Mac as they do on
Windows, so this is a more than acceptable level of virus protection for the platform.

Like using osacompile and the others, do shell script has some limitations. First, it’s a one-shot deal.
You can’t use it to create user or even script interactions between shell and AppleScript. The command
runs, and you get a return. It’s no more interactive than that. You can have the shell script write results to a
text file and use AppleScript to read those, but that’s it. Second, unless you use an ignoring application
responses block, as in the iTunes alarm-clock example, AppleScript will pause script or application execu-
tion until the script ends. If you use ignoring application responses with do shell script, you can’t
get the result of the do shell script step with any reliability. Finally, do shell script uses sh for its
environment, and you can’t change it unless you include the specific shell in the do shell script state-
ment or in the script you’re running. For full details on do shell script, read Apple Technical Note TN
2065, available at http://developer.apple.com/technotes/tn2002/tn2065.html. It is the authoritative
answer to almost every do shell script question you’ll ever have.

There, in a nutshell, are the basics of AppleScript and shell interaction. You can do a lot more with these
two very powerful languages, but I leave that for your own inventive/demented needs.

Mac OS X Terminal Window Settings
Although you can use xterm windows in Mac OS X, most folks use the Terminal application as their
shell interface. It’s there by default, and you don’t have to fire up another windowing environment to
get to it. Terminal has the standard features that you find in any terminal window application, plus
some pretty spiffy uncommon ones.

Terminal has two areas for settings, Preferences and Window Settings, both accessed from Terminal’s
application menu, as shown in Figure 14-18.

Figure 14-18

The Preferences for Terminal are fairly basic. You can set the initial shell and the initial terminal type,
and you can specify a .term file to run when Terminal starts, as shown in Figure 14-19.

425

Scripting for the Desktop

17_583204 ch14.qxd 3/18/05 9:29 PM Page 425

Figure 14-19

However, it’s in the Window Settings that you find the juicy Terminal goodness. You’ll notice quite a few
settings here. One thing to note right away is that by default, these settings only apply to the active
Terminal window. If you want them to apply to all future windows, click the Use Settings as Defaults
button at the bottom of the window.

The first setting is the Shell setting, shown in Figure 14-20. This is where you set the window behavior
when the shell exits. The options are self-explanatory. Just remember that the shell runs inside the win-
dow, so it is the window behavior when you quit the shell that you set here.

Figure 14-20

426

Chapter 14

17_583204 ch14.qxd 3/18/05 9:29 PM Page 426

Next are the Processes settings. These settings, shown in Figure 14-21, have two major functions: to show
you the current process in the frontmost Terminal window and to set the window (not shell or application)
closing behavior. The main feature here is that you can insert processes that you should be reminded are
running before the window closes, as opposed to always being prompted or never being prompted. This
can be handy if you have a script that takes a long time to run and you don’t want to accidentally close the
window on it while it’s running, but you don’t want to be always prompted.

Figure 14-21

The Emulation settings, shown in Figure 14-22, contain the basic terminal emulation options, including
non-ASCII character handling, newline pasting behavior, bell behavior, and cursor positioning.

Scrollback settings specifying the size of the scrollback buffer are handled via the Buffer settings. Also
included here are settings for line-wrap behavior and scroll behavior on input, as shown in Figure 14-23.

427

Scripting for the Desktop

17_583204 ch14.qxd 3/18/05 9:29 PM Page 427

Figure 14-22

Figure 14-23

428

Chapter 14

17_583204 ch14.qxd 3/18/05 9:29 PM Page 428

Shown in Figure 14-24 are the Display settings. This could just as easily be called Type because this is
where you set your type and cursor settings. Because Mac OS X is fully Unicode capable (indeed, all text
strings are actually stored as Unicode and translated on the fly to your default encoding), you can spec-
ify how to handle Japanese/Chinese and other “larger” character sets. You can also set blinking text
options, how dragging text into and around the window is handled, and what font you want to use.

It is worth mentioning here that Terminal in Mac OS X enables you to get the full path to a folder or file
by dragging the folder or file into the Terminal window. This can be handy when you are looking inside
frameworks, where the path is long and repetitive, or when a lot of special/nonstandard characters are
contained in the path name.

Figure 14-24

Next up are the Color settings, where you can set text colors, background colors, or even a background
image in your window. The last setting, Transparency, however, is the coolest thing about Terminal. It
enables you to set individual or default transparency for Terminal windows. This is where Mac OS X’s
imaging model and alpha channels support really shine. It’s hard to describe, but Figure 14-25 shows a
transparent Terminal window overlaying an opaque Terminal window and a Microsoft Word file, illus-
trating why this is a definite “ooooooooh” feature.

429

Scripting for the Desktop

17_583204 ch14.qxd 3/18/05 9:29 PM Page 429

Figure 14-25

The Color settings dialog box is shown in Figure 14-26.

Figure 14-26

430

Chapter 14

17_583204 ch14.qxd 3/18/05 9:29 PM Page 430

The penultimate Terminal dialog box, Window, is shown in Figure 14-27. This is where you set the default
width of the window, the primary title for the window that shows in the title bar, and any other bits of infor-
mation you want in the title bar, such as active process name, shell command name, TTY name, dimensions,
.term filename, and the command key combo you need to enter to bring this window to the front.

Figure 14-27

The final Terminal settings dialog box, Keyboard, is shown in Figure 14-28. This can be one of the most
critical settings if you are dealing with custom Terminal environments, such as tn3270 or tn5250, where
you need to be able to customize the actual codes sent by the forward delete key, the function keys, and
so on. You can also set your Mac keyboard’s option key to the Terminal meta key (critically important for
EMACS users) and just map the forward key to backspace.

That covers all of the UI settings for Terminal. (There is at least one more hidden setting, but you can fig-
ure that out on your own for another extra-credit project. It’s not that hard; Google should find it quite
fast.) Mac OS X gives you a wide range of settings for the Terminal application itself, in addition to the
nearly infinite number of ways you can customize your shell environment. Between that and the excel-
lent shell-to-desktop-application connections provided by Apple, you can do a lot with shell at virtually
every layer of Mac OS X.

431

Scripting for the Desktop

17_583204 ch14.qxd 3/18/05 9:29 PM Page 431

Figure 14-28

Scripting Multimedia
Two of the main Linux and Unix audio players include the X Multi-Media System (XMMS) and Rhythmbox.
XMMS looks a lot like the Windows application Winamp. Rhythmbox looks a lot like the Macintosh applica-
tion iTunes. Both applications can be controlled from the command line, which means, of course, that both
applications can be controlled from scripts.

In addition, the Totem movie player can be controlled from the command line.

The following sections provide an overview of the command-line options available to control these
applications.

Scripting the XMMS Music Player
The XMMS application, xmms, creates one or more windows to play music, visualize the music, and
manage playlists, or lists of songs. Figure 14-29 shows xmms in action.

Once started, you can run the xmms command from the shell or a script to control the already-running
xmms by passing command-line options that manipulate the current playlist. For example, to jump
ahead to the next song on the playlist, use the following command:

$ xmms --fwd

432

Chapter 14

17_583204 ch14.qxd 3/18/05 9:29 PM Page 432

Notice the two dashes in front of fwd. When you run this command, xmms jumps to the next song in the
playlist.

Figure 14-29

The following table shows the most useful xmms commands for scripting.

Command Usage

xmms --rew Jump to the previous song in the playlist

xmms --fwd Jump to the next song in the playlist

xmms --pause Pause the music

xmms --play Play the music, resuming from pause mode

Scripting Rhythmbox
The Rhythmbox player presents a larger user interface by default, as shown in Figure 14-30.

433

Scripting for the Desktop

17_583204 ch14.qxd 3/18/05 9:29 PM Page 433

Figure 14-30

You can script the Rhythmbox music player in a similar fashion to XMMS. Launch the rhythmbox com-
mand normally and then run a second rhythmbox command with a special command-line option. For
example, to jump to the next song in the playlist, use the following command:

$ rhythmbox --next

When you run this command, the display should change to show the next song.

The following table shows the most useful rhythmbox commands for scripting.

Command Usage

rhythmbox --previous Jump to the previous song in the playlist

rhythmbox --next Jump to the next song in the playlist

rhythmbox --volume-up Raise the volume

rhythmbox --volume-down Lower the volume

434

Chapter 14

17_583204 ch14.qxd 3/18/05 9:29 PM Page 434

Command Usage

rhythmbox --play-pause Toggle the play or pause mode — if playing music,
then pause; otherwise, play music

rhythmbox --toggle-mute Toggle the mute mode — if muting, then resume
normal volume; otherwise, mute

One odd aspect to Rhythmbox is the use of toggles. The --play-pause option switches the state of
Rhythmbox, but it is highly dependent on the initial state. The --toggle-mute options works similarly. If you
do not know the initial state, then toggling the state will leave the application in an unknown state as well.

Scripting the Totem Movie Player
The totem command-line arguments are very similar to those for the Rhythmbox music player. The
main command-line options appear in the following table.

Command Usage

totem --previous Jump to the previous movie or chapter

totem --next Jump to the next movie or chapter

totem --volume-up Raise the volume

totem --volume-down Lower the volume

totem --play-pause Toggle the play or pause mode — if playing, then pause; otherwise,
play video

totem --seek-fwd Tells Totem to seek forward 15 seconds

totem --seek-bwd Tells Totem to seek backward 15 seconds

totem --quit Tells Totem to quit

Scripting Other Desktop Applications
In addition to the desktop applications listed here, you can do a lot more with scripts. Any time you type
in a complex command, think of scripting the command instead. Furthermore, any application, be it a
server program or desktop suite, can be scripted, so long as you can launch the application from a com-
mand line. If you can do this, you can launch the application from a shell script.

Some applications, however, work better for scripting than others. For example, the Totem movie player
works better with scripts than other movie-playing applications, such as Xine or mplayer. That’s simply
because the Totem application supports more useful command-line parameters.

Some tips when scripting desktop applications include the following:

❑ Look for applications that support several command-line options and arguments. These appli-
cations typically work better for scripting than other applications.

435

Scripting for the Desktop

17_583204 ch14.qxd 3/18/05 9:29 PM Page 435

❑ Look for a listing of the command-line options and arguments. On Unix and Linux systems, you can
view the on-line manuals with the man command. Some applications, notably the OpenOffice.org
suite, seem to go to great lengths not to describe the command-line options and arguments.

❑ If a desktop application has a server or background mode, chances are good that the application
was meant to be controlled by other applications. Such applications work well in scripts. The
terms server and background are used in a lot of desktop application documentation.

❑ As always, test the commands you want to script from the command line. Work out all the
needed parameters. Then add these commands to your scripts.

Where to Go from Here
By now, you should feel comfortable writing scripts, as well as choosing what will script well and what
will be more difficult. Even though this book is titled Beginning Shell Scripting, it has covered a lot of
tough topics. After getting this far, you should be able to start scripting on your own.

Furthermore, you should be able to perform web searches to find additional information. The Internet is
by far the best source for specific information on ever-changing environments and commands. For example,
you can find an early paper by Steven Bourne, creator of the Bourne shell, at laku19.adsl.netsonic.fi/
era/unix/shell.html, or the Advanced Bash-Scripting Guide at www.tldp.org/LDP/abs/html/.

Summary
Most users think of scripting and server-related systems as if these two were joined at the hip, but you
can also do a lot with desktop applications and shell scripts:

❑ Office applications such as the OpenOffice.org suite and the AbiWord word processor offer sev-
eral ways to script their applications. The OpenOffice.org suite is especially interesting. You
should be able to write scripts that run on multiple platforms that can update documents and
fill out forms.

❑ Despite a long history of hostility to the command line, modern Mac OS X systems are surpris-
ingly ready for scripting. You can automate large portions of the desktop with AppleScript as
well as traditional shell scripts.

❑ Multimedia applications are also open to scripting, especially the XMMS, Rhythmbox, and
Totem media-playing programs.

This chapter should spur a number of ideas as to what you can use scripts for in your environment.

Exercises
1. What is the name of the OpenOffice suite? What is the command that launches the suite?

2. In OpenOffice.org Basic, what are methods, macros, modules, and libraries? What is the difference
between subroutines and functions?

436

Chapter 14

17_583204 ch14.qxd 3/18/05 9:29 PM Page 436

3. Can you pass parameters from a shell script to an OpenOffice.org Basic subroutine? If so, how?

4. What is the name of the architecture Apple created to enable scripting of applications in Mac OS X?

5. What is the AppleScript command used to run shell scripts from within an AppleScript?

6. What is the shell command used to compile AppleScript code from the shell environment?

437

Scripting for the Desktop

17_583204 ch14.qxd 3/18/05 9:29 PM Page 437

17_583204 ch14.qxd 3/18/05 9:29 PM Page 438

A
Answers to Exercises

Chapter 2
1. It is good to learn vi and emacs, if only because those editors are available nearly every-

where. Which you choose depends on your preferences. Don’t worry if you dislike the
choices made by your colleagues. The key is to find an editor that works for you.

Some criteria that may help choose an editor:

❑ Does it work on the platforms you need to use? For example, at a university, does
the editor work in the computer labs as well as on the computers you have avail-
able where you live?

❑ Is the performance good enough? Some editors, especially high-end Java
Integrated Development Environments, or IDEs, can run painfully slow on sys-
tems without at least 1 GB of RAM.

❑ Do you like the “feel” of the editor? This is very subjective but quite important.
You may never quite get into the feel of emacs, for example.

2. Vi can be a real pain in the rear end. It can also be very, very productive. Some of the best
features of vi include:

❑ Its speed. Vi starts fast and runs fast.

❑ The dot command (.), which repeats the previous operation. This can be very
powerful.

❑ The ability to execute a command a number of times, such as 4yy (yank four
lines) or 100dd (delete 100 lines).

❑ All the enhancements in vim. Vim really creates a new, and much better, editor.

Emacs can be a real pain in the rear end. It can also be very, very productive. Some of the
best features of emacs include:

❑ The multiple buffers. You can really make use of separate buffers when perform-
ing complex edits.

18_583204 appa.qxd 3/18/05 9:24 PM Page 439

❑ The integrated shell. You can execute shell commands from within the context of the
editor.

❑ The directory browser. You can look through directories, selecting files to edit.

❑ The ability to edit the same file in multiple places.

❑ The ability to program the editor. Anything your computer can do can be done within
emacs.

3. This is just one example of the extreme ugliness you can create with shell scripts:

See if you can come up with more statements than this.
This is ugly. In case we forget, this script outputs:
A man, a plan, a canal, Panama

a=A
echo -n “$a”
unset a
a=” “
echo -n “$a”
unset a
a=”m”
echo -n “$a”
unset a
a=”a”
echo -n “$a”
unset a
a=”n”
echo -n “$a”
unset a
a=”,”
echo -n “$a”
unset a
a=” “
echo -n “$a”
unset a
a=”a”
echo -n “$a”
unset a
a=” “
echo -n “$a”
unset a
a=”p”
echo -n “$a”
unset a
a=”l”
echo -n “$a”
unset a
a=”a”
echo -n “$a”
unset a
a=”n”
echo -n “$a”
unset a
a=”,”

440

Appendix A

18_583204 appa.qxd 3/18/05 9:24 PM Page 440

echo -n “$a”
unset a
a=” “
echo -n “$a”
unset a
a=”a”
echo -n “$a”
unset a
a=” “
echo -n “$a”
unset a
a=”c”
echo -n “$a”
unset a
a=”a”
echo -n “$a”
unset a
a=”n”
echo -n “$a”
unset a
a=”a”
echo -n “$a”
unset a
a=”l”
echo -n “$a”
unset a
a=”,”
echo -n “$a”
unset a
a=” “
echo -n “$a”
unset a
a=”P”
echo -n “$a”
unset a
a=”a”
echo -n “$a”
unset a
a=”n”
echo -n “$a”
unset a
a=”a”
echo -n “$a”
unset a
a=”m”
echo -n “$a”
unset a
a=”a”
echo -n “$a”
unset a
a=”.”
echo -n “$a”
unset a

echo

441

Answers to Exercises

18_583204 appa.qxd 3/18/05 9:24 PM Page 441

4. The following scripts show how you can create commands, store those commands within a vari-
able, and then access the variable to execute the command:

Starting script.
DIRECTORY=/usr/local
LS=ls
CMD=”$LS $DIRECTORY”
$CMD # Note how the command is executed indirectly.

Add a -1 (one) command-line option.
DIRECTORY=/usr/local
LS=ls
LS_OPTS=”-1”
CMD=”$LS $LS_OPTS $DIRECTORY”
$CMD

Even more indirect script.
DIRECTORY=/usr/local
LS=ls
LS_OPTS=”-1”
LS_CMD=”$LS $LS_OPTS”
CMD=”$LS_CMD $DIRECTORY”
$CMD

5. This is about the smallest change to make the script apply to Canadian users:

echo -n “Please enter your first name: “
read FIRSTNAME
echo -n “Please enter your last name: “
read LASTNAME
echo -n “Please enter the name of the province where you live: “
read PROVINCE

FULLNAME=”$FIRSTNAME $LASTNAME”
MESSAGE=”Well, $FULLNAME of $PROVINCE, welcome to our huge”
MESSAGE=”$MESSAGE impersonal company.”

echo “$MESSAGE”
echo “You will now be known as Worker Unit 10236.”

6. You don’t need to be a guru. You don’t have to show off. Just pick an editor that works for you.

7. There is a reason modern keyboards have Page Up, Page Down, Home, End, arrows, and other
keys: these keys have proved useful.

Chapter 3
1. Do it. Really. You may want to discuss why many applications allow you to click on long choices

like this or provide some other means to quickly make selections. Any script that interacts with
the user has a user interface, and it behooves you to make an interface that at least isn’t difficult to
understand.

442

Appendix A

18_583204 appa.qxd 3/18/05 9:24 PM Page 442

2. This example extends the myls script. You can use the same technique for the myls2 script:

This example extends the myls script.

Change to the directory
so the file listing is all relative file names.
cd /usr/local

List the files.
for filename in *
do

echo $filename
done

Note how this script uses the cd command to change to the target directory. This means that
the for loop will list all relative file names, such as bin, and not absolute file names, such as
/usr/local/bin.

You can also take an approach such as the following:

for filename in /usr/local/*
do

echo $filename
done

This example will output absolute file names, however.

3. These scripts extend the ones from the previous question:

This example extends the myls script.

DIRECTORY=/usr/local

Change to this directory
so the file listing is all relative file names.

cd $DIRECTORY

List the files.
echo “Listing $DIRECTORY”

for filename in *
do

echo $filename
done

The second approach that outputs absolute file names looks like the following:

DIRECTORY=/usr/local

for filename in $DIRECTORY/*
do

echo $filename
done

443

Answers to Exercises

18_583204 appa.qxd 3/18/05 9:24 PM Page 443

4. This problem is solved by adding a read command to read in the directory name, rather than
setting the name to a fixed directory:

This example extends the myls script.

echo -n “Please enter the directory to list: “
read DIRECTORY

Change to this directory
so the file listing is all relative file names.

cd $DIRECTORY

List the files.
echo “Listing $DIRECTORY”

for filename in *
do

echo $filename
done

5. Try the ls -CF1 (C, F, one) command to get an idea how this output should look. To do this, use
the file-specific test options of the test command:

This example extends the myls script.

echo -n “Please enter the directory to list: “
read DIRECTORY

Change to this directory
so the file listing is all relative file names.

cd $DIRECTORY

List the files.
echo “Listing $DIRECTORY”

for filename in *
do

if [-d $filename]
then

echo “$filename/”
elif [-x $filename]
then

echo “$filename*”
else

echo $filename
fi

done

444

Appendix A

18_583204 appa.qxd 3/18/05 9:24 PM Page 444

Chapter 4
1.
#unset SHELL

if [“$SHELL” == “”]
then

echo “SHELL not set.”
echo “Bailing out.”
exit -1

fi

Uncomment the unset SHELL line to run the script with the SHELL environment variable not set,
and verify the script works with both cases.

2.
for arg in $*
do

if [“$arg” != “”]
then

echo “Arg: $arg”
fi

done

echo “Total args: $#”

This exercise combines the for loop and if statement from Chapter 3 with the command-line
arguments introduced in this chapter.

3. This may seem like a total cheat:

echo “All arguments [$*]”

The crucial point here is that while the C shell uses a different variable to hold the number of
command-line arguments, the variable $* works in all of the listed shells and, conveniently
enough, holds all the command-line arguments.

4. This exercise requires one loop to iterate over the command-line arguments, each of which
names a directory, and a second, nested loop to iterate over the files within each directory:

Assumes each command-line argument
names a directory to list.

for directory in $*
do

echo “$directory:”
cd $directory
for filename in *
do

echo $filename
done
echo

done

445

Answers to Exercises

18_583204 appa.qxd 3/18/05 9:24 PM Page 445

Chapter 5
1.
Locks down file permissions.

for filename in *
do

Lock down the file permissions.
chmod g-rwx,o-rwx $filename

done

2. Add the following text to the first line of the script:

#! /bin/sh
Then, mark the script with execute permissions.
$ chmod a+x lockdown
The full script then appears as follows:
#!/bin/sh

Locks down file permissions.

for filename in *
do

Initialize all permissions.
r=””
w=””
x=””

Check to preserve existing permissions.

if [-r $filename]
then

r=”r”
fi

if [-w $filename]
then

w=”w”
fi

if [-x $filename]
then

x=”x”
fi

Lock down the file permissions.
chmod u+rw$x,g-rwx,o-rwx $filename

done

3. There are a number of ways to do this, but one of the simplest is to reverse the tests from less-
than comparisons to greater-than or equal checks. For example:

446

Appendix A

18_583204 appa.qxd 3/18/05 9:24 PM Page 446

If the user forgets to pass the command-line
arguments, fill in defaults.

pithy_statement=”Action, urgency, excellence”

if [$# -ge 1]
then

date_required=$1

if [$# -ge 2]
then

pithy_statement=$2
fi

else
date_required=today

fi

wall <<EndOfText
Please complete all TPS reports and have them
on my desk by EOB $date_required.

Your cooperation in this matter helps the smooth
flow of our departmental structure.

$pithy_statement!
-Dick
EndOfText

echo “Message sent”

4. Again, there are a number of ways to approach this. Here is the most straightforward:

If the user forgets to pass the command-line
arguments, fill in defaults.

case $# in
0)

pithy_statement=”Action, urgency, excellence”
date_required=today
;;

1)
pithy_statement=”Action, urgency, excellence”
date_required=$1
;;

*)
pithy_statement=$2
date_required=$1
;;

esac

wall <<EndOfText
Please complete all TPS reports and have them
on my desk by EOB $date_required.

447

Answers to Exercises

18_583204 appa.qxd 3/18/05 9:24 PM Page 447

Your cooperation in this matter helps the smooth
flow of our departmental structure.

$pithy_statement!
-Dick
EndOfText

echo “Message sent”

5. Here is one such script:

First script, outputs a second, that in turn, outputs a third.

cat <<’End1’

This is a comment in a script.
cat <<’End2’

echo “This is the next output script.”
echo “It doesn’t do anything.”

End2

End1

Note that the end markers must start at the beginning of a line.

When you run this script, it outputs the following:

This is a comment in a script.
cat <<’End2’

echo “This is the next output script.”
echo “It doesn’t do anything.”

End2

Save this text to a file, and run this script. When run, it outputs the following:

echo “This is the next output script.”
echo “It doesn’t do anything.”

Save this text to a file, and run this script. When run, it outputs the following:

This is the next output script.
It doesn’t do anything.

Chapter 6
1.
cat /etc/passwd | sed ‘5!d’

2.
cat /etc/passwd | sed -n ‘10~5d’

3.
cat /etc/passwd | sed ‘10~d’ or cat /etc/passwd | sed ‘10~0d’

448

Appendix A

18_583204 appa.qxd 3/18/05 9:24 PM Page 448

4.
ls -l $HOME | sed ‘s/micah/hacim/’

5.
ls -l $HOME | sed ‘1,10s/micah/hacim’

6.
#! /bin/sed -f

1 i\
<html>\
<head><title>Converted with sed</title></head>\
<body bgcolor=”#ffffff”>\
<pre>\

s/&/\&/g
s/</\</g
s/>/\>/g

$ a\
</pre>\
</body>\
</html>

7.
#! /bin/sed -f

1 i\
<html>\
<head><title>Converted with sed</title></head>\
<body bgcolor=”#ffffff”>\
<pre>\

s/&/\&/g
s/</\</g
s/>/\>/g
s/trout/trout<\/b>/g
s/^$/<p>/g

$ a\
</pre>\
</body>\
</html>

8. You can do this in many different ways, but one of the easiest solutions is to put the dash out-
side of the backreference:

cat nums.txt | sed ‘s/\(.*)\)\(.*\)-\(.*$\)/Area code: \1 Second: \2 Third: \3/’

449

Answers to Exercises

18_583204 appa.qxd 3/18/05 9:24 PM Page 449

9.
#!/bin/sed -f

1!G
h
$!d

Chapter 7
1.
$ cat /etc/passwd | awk -F: ‘{print $6}’

2.
awk ‘{ print “Number of cell phones in use in “ $1 “: “ $6 }’ countries.txt

3. Note that many different answers are possible. Here’s one possibility:

BEGIN { myformat=”%-15s %3s %16s %11s %12s %15s\n”
printf myformat,

“Country”, “TLD”, “Area in sq. km”, \
“Population”, “Land lines”, “Cell phones”

printf myformat,
“-------”, “---”, “--------------”, \
“----------”, “----------”, “-----------” }

{ printf myformat, $1, $2, $3, $4, $5, $6 }

4. Note that many different answers are possible. Here’s one possibility:

{celltotal += $6; landtotal += $5 }
END { print “Cell phones make up “ landtotal/celltotal “% of landlines” }

5. There are many different ways to do this. Here’s one method:

BEGIN { myformat=”%-15s %3s %16s %11s %12s %12s\n”
printf myformat,

“Country”, “TLD”, “Area in sq. km”, \
“Population”, “Land lines”, “Cell phones”

printf myformat,
“-------”, “---”, “--------------”, \
“----------”, “----------”, “-----------” }

{ printf myformat,
$1, $2, $3, $4, $5, $6

areatot += $3
poptot += $4
landtot += $5
celltot += $6 }

END { printf myformat,
“\nTotals:”, NR, areatot, poptot, landtot, celltot “\n” }

450

Appendix A

18_583204 appa.qxd 3/18/05 9:24 PM Page 450

Chapter 8
1. The key points come from the focus on shell scripts. These include:

❑ Sending data to stdout

❑ Sending data to stderr

❑ The exit code, or value a command can return (used in if statements)

In addition, of course, you can add:

❑ Writing to network sockets.

❑ Writing UDP datagrams.

❑ Creating a device driver to output directly to a device.

❑ Outputting graphics. Note that with the X Window System on Unix and Linux, this is a
networking operation.

❑ Printing.

Going more esoteric, you can add:

❑ System V Unix shared memory

❑ System V Unix message queues

❑ FIFOs and named pipes

❑ The Windows Event system

Can you name any more?

2. You can do this simply by using the following command:

$ tail -f filename.txt >> filename.txt

Make sure there are a few lines in the file filename.txt at the start. Press Ctrl-C to kill the
command line.

3.
cut -d: -f1,5,6,7 /etc/passwd |

grep -v sbin |
grep home |
grep sh |
sort |
cut -d: -f1,2,4 > users.txt

awk -F’:’ ‘ { printf(“%-12s %-40s\n”, $1, $2) } ‘ users.txt

Clean up the temporary file.
/bin/rm -rf users.txt

In this example, the grep home filter passes only those lines that have the text home. This is
another assumption, that users have home directories in /home or something similar.

451

Answers to Exercises

18_583204 appa.qxd 3/18/05 9:24 PM Page 451

Chapter 9
1. Note: This will work on Linux only.

The following script shows the current process ID and then waits for you to press the Enter or
Return key:

echo “The current process ID is $$.”
echo “Press return to continue.”
read var
When you run this script, you should see output like the following:
$ sh exercise_09_01
The current process ID is 12048.
Press return to continue.

While the script awaits the Enter or Return key, you can switch to another shell window and
view /proc/12048 (the number will differ on your system).

2. This script outputs the same data as the tick_for example script:

echo “Using a wildcard glob in a for loop.”
cd /usr/local
for filename in *
do

echo $filename
done

A big difference is that this script changes the directory to the /usr/local directory. The original
script did not. You can get around this by saving the current directory and then using the cd
command to return to that directory.

3. Here is a script that comes out close:

Using expr for math.
Calculates sales tax.

echo -n “Please enter the amount of purchase: “
read amount
echo

echo -n “Please enter the total sales tax: “
read rate
echo

tax_base=`expr $amount * $rate`

tax=`expr $tax_base / 100`

total=`expr $amount + $tax`

result=$total

echo “The total with sales tax is: \$ $result.”
When you run this script, you’ll see:
$ sh exercise_09_03
Please enter the amount of purchase: 107

452

Appendix A

18_583204 appa.qxd 3/18/05 9:24 PM Page 452

Please enter the total sales tax: 7

The total with sales tax is: $ 114.
Compare this with the math2 script:
$ sh math2
Please enter the amount of purchase: 107

Please enter the total sales tax: 7

The total with sales tax is: $ 114.49.

Chapter 10
1. The more you experiment, the more familiar you will become with the way functions work.

2. While it is possible to create a function called ls, it isn’t recommended, because this is an exist-
ing command and you would create an infinite loop when you ran it. The function ls would
look something like this:

$ ls () {
ls -F --color=auto
}

You would call this function by typing ls on the command line. This would then execute the
code block that contains ls, the shell would call the ls function, this would execute the code
block in the function, and this would be repeated over and over very quickly and could cause
your system to no longer respond properly.

3. At first glance, shell functions appear to be very similar to shell aliases. However, on closer
inspection you can see many differences. The most basic difference is that aliases are defined
using the alias built-in command. Another difference is that you can redefine a command with
an alias and you will not have an infinite-loop problem, as you did in Exercise 2. Some other
differences are that aliases are simply name substitutions for existing single commands; they
also do not contain multiple commands like functions can; and they do not contain logic or
positional arguments. This means you cannot manipulate the $@ argument list. In shell scripts,
because aliases are very limited, they are not typically used.

Aliases were first introduced in csh and then later adopted by ksh, bash, and zsh. Most imple-
mentations of the Bourne shell do not support aliases.

4. Here’s one possible answer:

#!/bin/sh
#
This script takes at minimum one argument: the time that the alarm should go off
using the format hh:mm, it does only rudimentary checks that the format is
specified is correct. An optional second argument specifies what should be done
when the alarm goes off. If no second argument is supplied, a simple shell bell
is used.
#
Be sure this bell works before you go to sleep!
#
If the second argument is included and the alarm method is more than one command,
it will need to be enclosed in quotes.

453

Answers to Exercises

18_583204 appa.qxd 3/18/05 9:24 PM Page 453

First check that the required minimum arguments have been supplied, and that
the time is of the format hh:mm. If not exit with the proper usage.

if [$# -eq 0]
then

echo “Usage: $0 hh:mm [alarm-method]”
echo “eg. $0 13:30 \”mplayer /media/music/dr_octagon/01.mp3\” “
exit 1

else
alarm_time=”$1”

Check that the format for the alarm time is correct, the first digit
should be a number between 0-2, followed by a colon, and ending with a
number between zero and 60. NB: This check is not perfect.

if [! `echo “$alarm_time” | sed -n ‘/[0-2][[:digit:]]:[0-60]/p’`]
then

echo “Incorrect time specified, please use format hh:mm”
exit 1

fi

fi

Set the number of seconds in a minute
seconds=1

Test to see if a second argument is supplied, if it is not then set the
bell to a shell bell. The -e argument to echo specifies that echo should
enable interpretation of the backslash character, and \a is defined in
the echo(1) man page as a bell.

if [! $2]
then

bell=”echo -e \a”
else

bell=$2
fi

The wait_between_checks function sleeps for the specified number of
seconds and then calls the check_time function when it is done sleeping.
This makes the script only check the time once a minute, instead of constantly.

wait_between_checks ()
{

sleep $seconds
check_time

}

The check_time function looks at the current time (in hh:mm format) and
compares it to the $alarm_time, if they match, then it calls the wakeup function
otherwise it goes back to sleep by calling the wait_between_checks function
again.

454

Appendix A

18_583204 appa.qxd 3/18/05 9:24 PM Page 454

check_time ()
{

current_time=`date +%H:%M`

if [“$current_time” = “$alarm_time”]
then

wakeup
else

wait_between_checks
fi

}

The wakeup function simply rings the bell over and over until the script
is interrupted.

wakeup ()
{

echo -n “Wake up! Hit control-c to stop the madness”
$bell
sleep 1
wakeup

}

Finally the main body of the script simply starts things up by calling the
wait_between_checks function

wait_between_checks

5.
#!/bin/sh

recurarrg () {
if [$# -gt 0] ; then
echo $1
shift
recurarrg “$@”

fi
}

recurarrg one two three four

Chapter 11
1. This script runs, which makes it appear to be correct. It is not. It appears to be a script that acts

similarly to the ls command. It should change to the given directory (passed as the first posi-
tional variable on the command line, $1) and then list the files in that directory. If a file is exe-
cutable, it should append a *. If the file is a directory, it should append a /. This output is similar
to the ls -CF command.

This script, however, has a few things wrong, including the following:

455

Answers to Exercises

18_583204 appa.qxd 3/18/05 9:24 PM Page 455

❑ The first if statement should be negated with a !. That is, if the passed-in directory
does not exist, then use /usr/local. The way it reads, if the directory exists, it will exe-
cute the then-fi block. This script really should output an error message if the direc-
tory does not exist, not silently list another directory.

❑ The then-fi block sets the variable directroy, not directory.

❑ The cd command changes to the directory held in the variable directroy.

❑ The elif condition is negated. Remove the exclamation mark.

The following script is an improvement. The error message could be better:

Assumes $1, first command-line argument,
names directory to list.

directory=$1

if [! -e $directory]
then

echo “Error: You must pass in the name of a directory.”
exit -1

fi

cd $directory
for filename in *
do

echo -n $filename

if [-d $filename]
then

echo “/”
elif [-x $filename]
then

echo “*”
else

echo
fi

done

2. This script is a front-end for a very primitive electronic shopping system. It calculates the sales
tax and then checks whether the amount is larger than $200. If so, it offers free shipping.

This script is missing two double quotes, starting with the first echo statement. The free ship-
ping echo statement is also missing a double quote. The missing quotes should flag an error
with the (yes or no) text, as this text appears to be calling a subshell.

A corrected script follows:

#!/bin/sh

Using bc for math,
calculates sales tax.

echo -n “Please enter the amount of purchase: “
read amount
echo

456

Appendix A

18_583204 appa.qxd 3/18/05 9:24 PM Page 456

echo -n “Please enter the total sales tax rate: “
read rate
echo

result=$(echo “
scale=2; tax=$amount*$rate/100.00;total=$amount+tax;print total” | bc)

if [$(expr “$result > 200”)]
then

echo You could qualify for a special free shipping rate.
echo -n Do you want to? “(yes or no) “
read shipping_response
if [$shipping_response -eq “yes”]
then

echo “Free shipping selected.”
fi

fi

echo “The total with sales tax = \$ $result.”
echo “Thank you for shopping with the Bourne Shell.”

Chapter 12
1. Anything that you can monitor externally would be monitored the same if called from any

system or run on any system. For example, a web server can be monitored externally, with the
monitoring scripts answering the question of how long it takes to retrieve a certain web page.

As another example, SNMP MIBs are standardized. (A MIB is similar to an XML schema for
SNMP data.) If a Windows system or a Unix system provides data via SNMP, you can monitor
both types of systems the same way, by reading SNMP values.

2. The quick answer is to follow the guidelines listed in the chapter:

❑ Try out the commands you think will provide the data points you need.

❑ Write a script to monitor the data points you need.

❑ Test your script.

❑ Configure MRTG to run your script and produce the output you want.

❑ Test MRTG running your script.

You may need to repeat a number of steps as you tweak how your script or MRTG should run.

For a database system such as Oracle or Postgres, you can look into two ways to monitor:

❑ Run a database-specific client program and see if it works or how long it takes to per-
form some operation.

❑ Try a remote query of a table in the database and see how long this takes. The advan-
tage of this approach is that you don’t have to run MRTG on the same system as the
database.

3. Your answer will depend on the packages you select. Of all these packages, however, mon is
very similar to MRTG in that mon is written in Perl and was designed to be extended by your
scripts. These two details are very much like MRTG. MRTG focuses on drawing graphs,

457

Answers to Exercises

18_583204 appa.qxd 3/18/05 9:24 PM Page 457

whereas mon wants to monitor the health of systems. Mon, for example, can page an adminis-
trator when a problem occurs.

HP OpenView is also similar to MRTG, with the focus on using SNMP to gather data and con-
trol systems. (OpenView, however, is a whole suite of products.)

The real goal of this exercise, however, is to see some other packages that are available and start
to make choices as to which packages can help in your environment.

Chapter 13
1. Of course, it is more fun to talk about those dimwits. The important thing to remember is to stay

focused on a few problems that are solvable. Use the techniques shown in this chapter to help
guide the discussion.

2. Some things you can use ps to do include the following:

❑ Determine whether a given process is running at all. This comes from an example, so
you should have gotten it.

❑ List all processes owned by a given user. Desktop users should have a lot of processes.
Users logged in over a network link, using ssh, telnet, and so on, should have far fewer
processes running.

❑ In tree mode, the ps command can report on a hierarchy of processes, such as which
process begat which.

❑ List the cumulative CPU time used by each process. You can find the most CPU-
intensive processes.

❑ List how many copies of a given process are running. Web servers often launch a num-
ber of processes.

❑ On Linux, ps can output information about threads (essentially subprocesses).
Enterprise applications such as Oracle, WebSphere, WebLogic, and so on, use many
threads.

See if you can come up with more.

3. You can approach this in a number of ways. You can simply run the df command with the name
of the given file system. Or you can write a script like the following:

#!/bin/sh

Output warnings if a given file system is not mounted.
Oftentimes, this could be due to a network issue or
a hard disk failure.

Pass the name of the file system or the mount point
as the first command-line argument.
filesystem=$1

df “$filesystem” > /dev/null 2&>1
result=$?

if [“$result” == 0]
then

458

Appendix A

18_583204 appa.qxd 3/18/05 9:24 PM Page 458

entry=`df -k $filesystem | tail -1`

Split out the amount of space free as well as in-use percentage.
free=`echo $entry | cut -d’ ‘ -f4`
in_use=`echo $entry | cut -d’ ‘ -f5 | cut -d’%’ -f1 `

echo “Filesystem $filesystem is $in_use% used with $free KB free.”
else

echo “ERROR: Filesystem $filesystem not found.”
fi

Chapter 14
1. The suite is called OpenOffice.org. The command that launches the suite is ooffice.

2. A method is a macro, and a subroutine is a function. A module is like a program, and it holds
subroutines and functions. A library holds one or more modules.

Subroutines do not return values. Functions return values. This is the main difference.

3. Try the following, using the name of your library, module, and subroutine:

$ ooffice -quickstart ‘macro:///library.module.SubroutineName(“param1”, “param2”)’

4. The Open Scripting Architecture

5. do shell script

6. osacompile

459

Answers to Exercises

18_583204 appa.qxd 3/18/05 9:24 PM Page 459

18_583204 appa.qxd 3/18/05 9:24 PM Page 460

B
Useful Commands

The commands on your system form the building blocks that you can glue together in your scripts.
The following sections cover some of the more useful commands from a scripting point of view,
divided into related sections. The listings here appear in a brief format. As always, however, you
can find detailed information on these and other commands by perusing the online documentation.

Because of differences between Unix, Mac OS X, Linux, and the Cygwin environment on
Windows, the listings here focus on the most common options for these commands. As always,
use the ever-handy online manuals to look up the full documentation on each command.

Navigating the System
These commands help you interact with the operating system.

exit
exit exit_code

Description
Exits the current shell. You can pass an optional exit code, a number. An exit code of 0 (zero) indi-
cates the script executed successfully. A nonzero value indicates an error.

Example
$ exit

Exits the current shell.

Options
None.

19_583204 appb.qxd 3/18/05 9:30 PM Page 461

file
file options filename

Description
Attempts to classify the type of each file passed on the command line. Usually, the file command does
this by reading the first few bytes of a file and looking for matches in a file of magic values, /etc/magic.
This isn’t really magic but simple comparisons. For example, the file command should be able to deter-
mine ASCII text files, executable programs, and other types of files.

The file command does not always classify correctly, but it usually does a good job.

Examples
$ file `which sh`
/bin/sh: symbolic link to `bash’

Prints the type of file of sh. On this system, sh is implemented by bash.

$ file vercompare.py
vercompare.py: a /usr/bin/python script text executable

Checks the type of a Python script.

Options

Option Usage

-c Outputs a checking printout of the magic file

-f file Reads in a given file and then runs the command on each file name in that
file, assuming one file name per line

-m file:file:file Uses the named files as the magic files instead of /etc/magic

kill
kill options process_IDs

Description
Sends a signal to the given process or processes. In most cases, the processes die upon receipt of the signal.

You can send signals only to processes that you own, unless you are logged in as the root user.

Examples
$ kill -SIGKILL 4753

462

Appendix B

19_583204 appb.qxd 3/18/05 9:30 PM Page 462

Sends the kill signal (SIGKILL) to process number 4753.

$ kill -9 4754

Sends the kill signal (9) to process number 4754.

$ kill -l
1) SIGHUP 2) SIGINT 3) SIGQUIT 4) SIGILL
5) SIGTRAP 6) SIGABRT 7) SIGBUS 8) SIGFPE
9) SIGKILL 10) SIGUSR1 11) SIGSEGV 12) SIGUSR2

13) SIGPIPE 14) SIGALRM 15) SIGTERM 17) SIGCHLD
18) SIGCONT 19) SIGSTOP 20) SIGTSTP 21) SIGTTIN
22) SIGTTOU 23) SIGURG 24) SIGXCPU 25) SIGXFSZ
26) SIGVTALRM 27) SIGPROF 28) SIGWINCH 29) SIGIO
30) SIGPWR 31) SIGSYS 34) SIGRTMIN 35) SIGRTMIN+1
36) SIGRTMIN+2 37) SIGRTMIN+3 38) SIGRTMIN+4 39) SIGRTMIN+5
40) SIGRTMIN+6 41) SIGRTMIN+7 42) SIGRTMIN+8 43) SIGRTMIN+9
44) SIGRTMIN+10 45) SIGRTMIN+11 46) SIGRTMIN+12 47) SIGRTMIN+13
48) SIGRTMIN+14 49) SIGRTMIN+15 50) SIGRTMAX-14 51) SIGRTMAX-13
52) SIGRTMAX-12 53) SIGRTMAX-11 54) SIGRTMAX-10 55) SIGRTMAX-9
56) SIGRTMAX-8 57) SIGRTMAX-7 58) SIGRTMAX-6 59) SIGRTMAX-5
60) SIGRTMAX-4 61) SIGRTMAX-3 62) SIGRTMAX-2 63) SIGRTMAX-1
64) SIGRTMAX

Lists the signals and their numbers.

Options

Option Usage

-l Lists the available signals

-number Sends the given signal by its number, such as 9 for SIGKILL

-signal Sends the given named signal, such as SIGHUP

man
man options command

Description
Displays the online manual entry for the given command.

Example
$ man man
man(1) man(1)

NAME
man - format and display the on-line manual pages

463

Useful Commands

19_583204 appb.qxd 3/18/05 9:30 PM Page 463

SYNOPSIS
man [-acdfFhkKtwW] [--path] [-m system] [-p string] [-C config_file]
[-M pathlist] [-P pager] [-S section_list] [section] name ...

DESCRIPTION
man formats and displays the on-line manual pages. If you specify
section, man only looks in that section of the manual. name is nor-
mally the name of the manual page, which is typically the name of a
command, function, or file. However, if name contains a slash (/)
then man interprets it as a file specification, so that you can do man
./foo.5 or even man /cd/foo/bar.1.gz.

See below for a description of where man looks for the manual page
files.

...

Displays help on the man command.

Options
Options differ by platform. Try the man man command to see the options for your platform.

nohup
nohup command options arguments &

Description
Short for no hangup, the nohup command runs a command and keeps that command running even if you
log out. Typically, when you log out, all the commands you launched are terminated if they are still run-
ning. The “no hangup” terminology comes from the days when users logged in using a modem over a
phone line and would literally hang up the phone when exiting.

Example
$ nohup xclock &
[1] 4833
nohup: appending output to `nohup.out’

Runs the xclock command in the background, preserving the process even if you log out.

Options
None.

printenv
printenv environment_variable

Description
Prints out the value of a given environment variable or all environment variables if you pass no argu-
ments to this command.

464

Appendix B

19_583204 appb.qxd 3/18/05 9:30 PM Page 464

Example
$ printenv USER
ericfj

Prints the USER environment variable.

Options
None.

ps
ps options

Description
Prints the status of current processes, depending on the command-line options. With no options, ps lists
just the current shell and the ps process. With options, you can list all the processes running on the system.

Note that Berkeley Unix-based systems, including Mac OS X, support a different set of options than
System V Unix-based systems. The options to list all processes is aux for Berkeley Unix-based systems
and -ef for System V Unix-based systems. Linux systems support both types of options.

Examples
$ ps

PID TTY TIME CMD
4267 pts/2 00:00:00 bash
4885 pts/2 00:00:00 ps

Lists the current process (the ps command) and its parent shell.

$ ps -ef
UID PID PPID C STIME TTY TIME CMD
root 1 0 0 09:57 ? 00:00:00 init [5]
root 2046 1 0 08:46 ? 00:00:00 klogd -x
rpc 2067 1 0 08:46 ? 00:00:00 portmap
rpcuser 2087 1 0 08:46 ? 00:00:00 rpc.statd
root 2290 1 0 08:46 ? 00:00:00 /usr/sbin/sshd
root 2340 1 0 08:46 ? 00:00:00 gpm -m /dev/input/mice -t imps2
root 2350 1 0 08:46 ? 00:00:00 crond
xfs 2376 1 0 08:46 ? 00:00:00 xfs -droppriv -daemon
dbus 2414 1 0 08:46 ? 00:00:00 dbus-daemon-1 --system
root 2427 1 0 08:46 ? 00:00:00 cups-config-daemon
...

Lists all processes in System V Unix style (-ef).

$ ps aux
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
root 1 0.0 0.0 3488 560 ? S 09:57 0:00 init [5]
root 2 0.0 0.0 0 0 ? SN 09:57 0:00 [ksoftirqd/0]

465

Useful Commands

19_583204 appb.qxd 3/18/05 9:30 PM Page 465

root 3 0.0 0.0 0 0 ? S< 09:57 0:00 [events/0]
root 4 0.0 0.0 0 0 ? S< 09:57 0:00 [khelper]
root 5 0.0 0.0 0 0 ? S< 09:57 0:00 [kacpid]
root 27 0.0 0.0 0 0 ? S< 09:57 0:00 [kblockd/0]
root 28 0.0 0.0 0 0 ? S 09:57 0:00 [khubd]
root 37 0.0 0.0 0 0 ? S 09:57 0:00 [pdflush]
root 38 0.0 0.0 0 0 ? S 09:57 0:00 [pdflush]
root 40 0.0 0.0 0 0 ? S< 09:57 0:00 [aio/0]
root 39 0.0 0.0 0 0 ? S 09:57 0:00 [kswapd0]
root 113 0.0 0.0 0 0 ? S 09:57 0:00 [kseriod]
root 187 0.0 0.0 0 0 ? S 08:46 0:00 [kjournald]
root 1014 0.0 0.0 1612 448 ? S<s 08:46 0:00 udevd
...

Lists all processes in Berkeley Unix style (aux).

Options

Option Usage

-a Lists information on all processes except group leaders and processes not
associated with a terminal

-d Lists information on all processes except group leaders

-e Lists information on every process

-f Lists full information on processes

a List all processes with a terminal

u Displays data in the user-oriented format

x Lists processes without a terminal

sleep
sleep number_of_seconds

Description
Sleeps for a given number of seconds. You can use an m suffix to indicate minutes and an h suffix for
hours.

Examples
$ sleep 2

Sleeps for two seconds.

466

Appendix B

19_583204 appb.qxd 3/18/05 9:30 PM Page 466

$ sleep 3h

Sleeps for three hours.

Options
None.

type
type options command_name

Description
Determines the type of command, such as a command on disk or a shell built-in command.

Examples
$ type sleep
sleep is /bin/sleep

Returns the type of the sleep command.

$ type type
type is a shell builtin

Returns the type of the type command.

$ type -t type
builtin

Returns the type name of the type command.

$ type -p sleep
/bin/sleep

Returns the path to the sleep command.

$ type -t sleep
file

Returns the type name of the sleep command.

$ type -a true
true is a shell builtin
true is /bin/true

Returns information on all instances found of the true command.

467

Useful Commands

19_583204 appb.qxd 3/18/05 9:30 PM Page 467

Options

Option Usage

-a Searches for all places for a command and lists them all

-f Don’t look for built-in commands

-P Forces a search over the command path

-p Returns the name of the file for the command or nothing if the command is
built in

-t Returns a one-word type of the command, either alias, built-in, file, function, or
keyword

uname
uname option

Description
Prints information on the system. Short for Unix name.

Examples
$ uname -p
powerpc

Lists the processor type.

$ uname
Darwin

Lists the Unix name.

$ uname -o
GNU/Linux

Lists the OS name.

$ uname -s
Linux

Lists the kernel name (OS name, really).

$ uname --hardware-platform
i386

Lists the hardware platform, similar to the processor type.

468

Appendix B

19_583204 appb.qxd 3/18/05 9:30 PM Page 468

Options

Option Usage

-a Prints all information

-o Prints the operating system

-p Lists the processor type

-s Prints the kernel name

who
who options files

Description
Shows who is logged on, as well as information about the system.

Examples
$ who am i
ericfj pts/1 Jan 16 15:28 (:0.0)

Lists who the user is.

$ who -b
system boot Jan 16 08:46

Lists the last boot time.

$ who
ericfj :0 Jan 16 15:28
ericfj pts/1 Jan 16 15:28 (:0.0)
ericfj pts/2 Jan 16 15:28 (:0.0)
ericfj pts/3 Jan 16 15:28 (:0.0)

Lists all logged-in users. Note how it thinks the same user is logged in multiple times. The pts 1, 2, and
3 values come from shell windows.

$ who -H
NAME LINE TIME COMMENT
ericfj :0 Jan 16 15:28
ericfj pts/1 Jan 16 15:28 (:0.0)
ericfj pts/2 Jan 16 15:28 (:0.0)
ericfj pts/3 Jan 16 15:28 (:0.0)

Adds a header line to the normal who output.

$ who -q
ericfj ericfj ericfj ericfj
users=4

469

Useful Commands

19_583204 appb.qxd 3/18/05 9:30 PM Page 469

Lists in quick mode.

$ who -r
run-level 5 Jan 16 08:46 last=S

Lists the system run level. On Linux, run level 5 usually means the X Window System has been started
for graphics.

Options

Option Usage

am i Returns your username

-a Same as all the other options combined

-b Prints time of last system boot

-d Prints dead processes

-H Inserts a line of column headings

-l Prints the system login process

-p Lists processes launched from the init command that are still running

-q Quick mode, lists user names and a count

-r Prints the current run level

-s Short output, default

-t Prints last system clock change

-T Adds a +, -, or ? for the status of each user

-u Prints users logged in

whoami
whoami

Description
Prints out the username of the current user.

Examples
$ whoami
ericfj

Lists who the user is.

Options
None.

470

Appendix B

19_583204 appb.qxd 3/18/05 9:30 PM Page 470

Working with Files and Directories
Many scripts need to work with files. These commands are among the oldest in Unix history, as files
have always been important.

basename
basename path suffix

Description
Extracts the base file name from a long path. The optional suffix allows you to extract a file-name exten-
sion, such as .txt.

Examples
$ basename /home/ericfj/rpms/thunderbird-1.0-1.fc3.i386.rpm
thunderbird-1.0-1.fc3.i386.rpm
$ basename /home/ericfj/rpms/thunderbird-1.0-1.fc3.i386.rpm .rpm
thunderbird-1.0-1.fc3.i386

Options
None.

cat
cat options files

Description
Concatenates files to standard output. You can concatenate one or more files. With just one file, cat
prints the file to standard output, and you can use this to display the contents of short files. With multi-
ple files, cat prints them all to standard output, allowing you to combine files together. You’ll often use
output redirection such as > or >> with cat.

Examples
$ cat /etc/passwd
root:x:0:0:root:/root:/bin/bash
bin:x:1:1:bin:/bin:/sbin/nologin
daemon:x:2:2:daemon:/sbin:/sbin/nologin
adm:x:3:4:adm:/var/adm:/sbin/nologin
lp:x:4:7:lp:/var/spool/lpd:/sbin/nologin
sync:x:5:0:sync:/sbin:/bin/sync
shutdown:x:6:0:shutdown:/sbin:/sbin/shutdown
halt:x:7:0:halt:/sbin:/sbin/halt
...

Shows the contents of the file /etc/password.

471

Useful Commands

19_583204 appb.qxd 3/18/05 9:30 PM Page 471

$ cat /etc/shells
/bin/sh
/bin/bash
/sbin/nologin
/bin/ash
/bin/bsh
/bin/ksh
/usr/bin/ksh
/usr/bin/pdksh
/bin/tcsh
/bin/csh
/bin/zsh

Shows the contents of the file /etc/shells.

Options
Options differ by platform. See your online documentation for details on your platform.

chmod
chmod option mode filenames

Description
Changes the mode, the permissions, on a file.

The following table lists the numeric modes for the chmod command. Note that these modes are all in
octal, base 8, numbers.

Value Meaning

400 Owner has read permission.

200 Owner has write permission.

100 Owner has execute permission.

040 Group has read permission.

020 Group has write permission.

010 Group has execute permission.

004 All other users have read permission.

002 All other users have write permission.

001 All other users have execute permission.

You then need to add these values together, as in the following table.

472

Appendix B

19_583204 appb.qxd 3/18/05 9:30 PM Page 472

Value Meaning

400 Owner has read permission.

200 Owner has write permission.

100 Owner has execute permission.

040 Group has read permission.

020 Group has write permission.

004 All other users have read permission.

764 Total

This example results in a total of 764.

In addition to the numeric modes, you can use the symbolic modes, as shown in the following table.

Value Meaning

u The user who is the owner.

g Group.

o All other users.

all Sets permissions for all users. Can also use a.

+ Adds the permissions following.

- Removes (subtracts) the permissions following.

= Assigns just the permissions following and removes any old permissions on the
files.

r Read permission.

w Write permission.

x Execute permission.

l Locks the files during access.

Examples
$ chmod a+x script1

Adds execute permissions for all users to script1.

$ chmod 764 script1

473

Useful Commands

19_583204 appb.qxd 3/18/05 9:30 PM Page 473

Allows the user to read, write, and execute script1, the members of the group to read and write, and
everyone else to just read.

Options

Option Usage

-R Goes recursively through all subdirectories and files, changing the permissions
on all

chown
chown option owner files

Description
Changes the ownership of files. You must be the owner of the file or files.

Example
$ chown ericfj script1 script2 script3

Options

Option Usage

-R Goes recursively through all subdirectories and files, changing the ownership
on all

cp
cp options sourcefiles destination

Description
Copies a file or files. If you copy multiple files, then the destination must be a directory. If you just copy
one file, then the destination can be a file name or a directory.

Examples
$ cp * /usr/local/bin

Copies all files in the current directory to /usr/local/bin.

$ cp report.txt report.backup

Copies a file to a backup file.

474

Appendix B

19_583204 appb.qxd 3/18/05 9:30 PM Page 474

Options

Option Usage

-i Interactive mode that prompts you before overwriting a file

-f Forces a copy by removing the target files if needed and trying again

-p Preserves file permissions on the copy

-r Same as -R

-R Goes recursively through all subdirectories and files, copying all

df
df options filesystems_or_directories

Description
Short for disk free, df returns the amount of space used and available on all mounted file systems. With
no arguments, df lists information for all mounted file systems. You can pass the name of the file sys-
tems, either the file system or the mount point, to list information on just those file systems. You can also
provide the name of a directory, and df displays information on the file system that contains that direc-
tory. This is very handy so you don’t have to remember all the file system names.

For example, an all-too-frequent problem occurs when the /tmp, or temporary, directory fills up. On
some systems, /tmp is mounted as its own file system (and disk partition). On other systems, /tmp is
part of the root, or /, file system. You can pass /tmp as the name of a file system to the df command.
Even if /tmp is not mounted as part of its own file system, the df command will display information on
the file system holding /tmp.

Examples
$ df
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/hda2 24193540 3979392 18985176 18% /
/dev/hda1 101086 10933 84934 12% /boot
none 501696 0 501696 0% /dev/shm
/dev/hda5 48592392 26391104 19732904 58% /home2

Lists all mounted file systems.

$ df /tmp
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/hda2 24193540 3979392 18985176 18% /

Lists the information for the file system containing /tmp.

475

Useful Commands

19_583204 appb.qxd 3/18/05 9:30 PM Page 475

Options

Option Usage

-k Returns the output in 1K blocks

-l Displays information on local file systems only.

du
du filenames

Description
Lists the amount of disk space used for a given set of files or directories. Technically, du estimates the
amount of disk usage. You can use du on a file or a directory. The command will traverse all subdirec-
tories and report on the total for each directory it examines. Command-line options can modify this
behavior.

Examples
$ du
360 ./mrtg/html
632 ./mrtg/working
1100 ./mrtg
328 ./marketing
88 ./web_files
18860 ./figures/tmp/chap14
19460 ./figures/tmp
20 ./figures/.xvpics
136 ./figures/chap1
1416 ./figures/chap2
9872 ./figures/chap14_1
8996 ./figures/chap14_2
53508 ./figures
2228 ./scripts/foo
37284 ./scripts
18688 ./chapter12
5076 ./author_review
122364 .

Shows the size of the current directory and all subdirectories.

$ du -s
122364 .

Runs the same command but in silent mode, showing just a total size.

476

Appendix B

19_583204 appb.qxd 3/18/05 9:30 PM Page 476

Options

Option Usage

-a Prints a line of output for each file, rather than just one line per directory.

-s Silent mode. Displays only the total line.

find
find start_at conditions actions

Description
The find command searches the files on disk from a given starting location, start_at, looking for files
and directories that match the given conditions and then taking the given actions, such as printing out
the file names.

This is a very complex command. It is often used to make backups (finding the list of files modified
since the last backup), report on large files (finding the list of files larger than a certain size), or in fascist
environments, remove all old files (finding all files older than a given date and then removing them).

In some cases, you’ll want to combine the output of find with other commands. But the number of
actions available to the find command itself means that you can often just run the command alone.

Older versions of the find command did not print out the names found, in a very stupid default. Most
modern versions of find print out the names of the files or directories found. If your system uses the
stupid default, add a -print option at the end of the find command to print out the results.

Examples
$ find . -ctime -1 -print
./scripts
./scripts/nohup.out
./583204_appb_efj.doc

Finds all files in the current directory and below that have been modified in the last day. The -print
option is not necessary.

$ find $HOME -name ‘script*’
./scripting_outline.txt
./scripts
./scripts/script1
./scripts/script3
./scripts/script2
./scripts/script_q
./scripts/script1.sh
./scripts/script_y

477

Useful Commands

19_583204 appb.qxd 3/18/05 9:30 PM Page 477

./scripts/script5

./scripts/script4

./scripts/script8

./scripts/script6

./scripts/script7

./scripts/script9

./scripts/script10

./scripts/script11

./scripts/script12

./scripts/script13

./scripts/script14

./scripts/script15

./scripts/script16

./scripts/script17

./scripts/script18

Finds all files in the user’s home directory (and below) with a name that starts with script.

Options
See the online manual entry on find, as there are a huge number of options that differ by platform.

grep
grep options pattern files

Description
Searches for text based on a pattern (called a regular expression). The lines of text that match the pattern
are printed. You need to tell grep what to look for and which files to examine.

Other related commands include fgrep and egrep.

Examples
$ grep while *
whilepipe:while read filename; do

Looks for all files in the current directory for the text while. This is found in one file.

$ grep -h while *
while read filename; do

Performs the same search but does not output the names of the files.

$ grep -o while *
whilepipe:while

Performs the same search but outputs only the pattern match.

478

Appendix B

19_583204 appb.qxd 3/18/05 9:30 PM Page 478

Options

Option Usage

-h Does not return the names of the files.

-i Ignores case when searching.

-l Just lists the file names, not the matched text.

-q Quiet mode. Used when you just want to check the program’s exit status.

-s Suppresses error messages.

-v Looks for lines that do not contain the match.

In addition to these options, you’ll find a number of platform-specific options in your online manuals.

head
head options files

Description
Displays the beginning of a text file. By default, head prints out the first ten lines in the file.

Examples
$ head /etc/passwd
root:x:0:0:root:/root:/bin/bash
bin:x:1:1:bin:/bin:/sbin/nologin
daemon:x:2:2:daemon:/sbin:/sbin/nologin
adm:x:3:4:adm:/var/adm:/sbin/nologin
lp:x:4:7:lp:/var/spool/lpd:/sbin/nologin
sync:x:5:0:sync:/sbin:/bin/sync
shutdown:x:6:0:shutdown:/sbin:/sbin/shutdown
halt:x:7:0:halt:/sbin:/sbin/halt
mail:x:8:12:mail:/var/spool/mail:/sbin/nologin
news:x:9:13:news:/etc/news:

Lists the first ten lines of /etc/passwd.

$ head -2 /etc/passwd
root:x:0:0:root:/root:/bin/bash
bin:x:1:1:bin:/bin:/sbin/nologin

Lists the first two lines of /etc/passwd.

Options

Option Usage

-number Displays the given number of lines

479

Useful Commands

19_583204 appb.qxd 3/18/05 9:30 PM Page 479

ls
ls options files_or_directories

Description
Lists file names. You can display a long listing or a short listing. This is a surprisingly complex command
for such a simple purpose.

Examples
$ ls /usr/local
bin etc games include lib libexec man sbin share src

Lists the files in /usr/local.

$ ls -CF /usr/local
bin/ etc/ games/ include/ lib/ libexec/ man/ sbin/ share/ src/

Lists the files in /usr/local with a slash after directory names, an @ for links, and a * for executable files.

$ ls -l /usr/local
total 80
drwxr-xr-x 2 root root 4096 Dec 9 00:00 bin
drwxr-xr-x 2 root root 4096 Aug 12 12:02 etc
drwxr-xr-x 2 root root 4096 Aug 12 12:02 games
drwxr-xr-x 2 root root 4096 Aug 12 12:02 include
drwxr-xr-x 2 root root 4096 Aug 12 12:02 lib
drwxr-xr-x 2 root root 4096 Aug 12 12:02 libexec
drwxr-xr-x 3 root root 4096 Nov 15 20:35 man
drwxr-xr-x 2 root root 4096 Aug 12 12:02 sbin
drwxr-xr-x 4 root root 4096 Nov 15 17:17 share
drwxr-xr-x 2 root root 4096 Aug 12 12:02 src

Presents a long listing of the files in /usr/local.

Options

Option Usage

-1 Lists one item per line

-a Lists all files, including hidden (dot) files

-b Prints octal values of characters you don’t see

-c Lists by last modified time

-C Lists in columns (the default)

-d Lists only the name of directories, not the files in them

480

Appendix B

19_583204 appb.qxd 3/18/05 9:30 PM Page 480

Option Usage

-F Appends an indicator to show directories (/), executable files (*), links (@), and
pipes (|)

-g Lists in long form but without the owner’s name

-l Lists information in long form

-L Lists the names links are linked to

-m Lists files across the screen separated by commas

-n Lists in long form, but with user and group numbers instead of names

-o Lists in long form but omits the group

-q Lists nonprintable characters as a question mark, ?

-r Lists items in reverse order

-R Recursively goes into all subdirectories

-s Lists file sizes in blocks, not bytes

-t Sorts the files by the modification time

-u Sorts by last access time

-x Sorts entries by lines instead of by columns

In addition to these options, you’ll find a number of platform-specific options in your online manuals.

mkdir
mkdir options directory_names

Description
Creates one or more directories.

Examples
$ mkdir tmp

Creates directory tmp.

$ mkdir -m 664 tmp
$ ls -dl tmp
drw-rw-r-- 2 ericfj ericfj 4096 Jan 16 20:58 tmp

Creates directory tmp with the given permissions (verified by the ls command).

481

Useful Commands

19_583204 appb.qxd 3/18/05 9:30 PM Page 481

Options

Option Usage

-m mode Defines the permissions mode for the new directories

mv
mv options source target

Description
Moves a file or files. If you move multiple files, the target must be a directory. If you move one file, the
target can be a file name or a directory name (naming the directory in which to move the file).

Examples
$ mv *.html old_web

Moves all HTML files to the directory named old_web.

$ mv index.htm index.html

Renames the file index.htm to index.html.

Options

Option Usage

-f Forces the move, ignoring the -i option

-i Asks for confirmation if the command would overwrite a file

rm
rm options files

Description
Removes (deletes) files.

Examples
$ rm -rf ./tmp

Removes the tmp subdirectory and all files and directories in it.

$ rm -i index.html
rm: remove regular file `index.html’? y

Removes the file named index.html but requires you to confirm the deletion (a smart option).

482

Appendix B

19_583204 appb.qxd 3/18/05 9:30 PM Page 482

Options

Option Usage

-f Forces the move, ignoring the -i option

-i Asks for confirmation if the command would overwrite a file

-r Recursively removes files and directories

rmdir
rmdir options directories

Description
Removes (deletes) directories. The directories must be empty to be deleted. Watch out for hidden files
(files with names that start with a period), because you won’t see these files, but their presence will stop
rmdir from deleting a directory.

Examples
$ rmdir tmp

Removes the subdirectory tmp.

Option

Option Usage

-p Removes the directory and any parent directories as long as they are empty

tail
tail option files

Description
Prints out the last ten lines of a file. You can define the number of lines. The -f option tells the tail
command to output forever, checking the file periodically for new lines and then printing those. This is
most useful with log files for a service or when building a huge software package.

Examples
$ tail /etc/passwd
mailnull:x:47:47::/var/spool/mqueue:/sbin/nologin
smmsp:x:51:51::/var/spool/mqueue:/sbin/nologin
pcap:x:77:77::/var/arpwatch:/sbin/nologin
apache:x:48:48:Apache:/var/www:/sbin/nologin
squid:x:23:23::/var/spool/squid:/sbin/nologin
webalizer:x:67:67:Webalizer:/var/www/usage:/sbin/nologin

483

Useful Commands

19_583204 appb.qxd 3/18/05 9:30 PM Page 483

xfs:x:43:43:X Font Server:/etc/X11/fs:/sbin/nologin
ntp:x:38:38::/etc/ntp:/sbin/nologin
gdm:x:42:42::/var/gdm:/sbin/nologin
ericfj:x:500:500:Eric Foster-Johnson:/home2/ericfj:/bin/bash

Lists the last ten lines of /etc/passwd.

$ tail -2 /etc/passwd
gdm:x:42:42::/var/gdm:/sbin/nologin
ericfj:x:500:500:Eric Foster-Johnson:/home2/ericfj:/bin/bash

Lists the last two lines of /etc/passwd.

$ tail -f /var/log/dmesg
EXT3 FS on hda1, internal journal
EXT3-fs: mounted filesystem with ordered data mode.
SELinux: initialized (dev hda1, type ext3), uses xattr
SELinux: initialized (dev tmpfs, type tmpfs), uses transition SIDs
kjournald starting. Commit interval 5 seconds
EXT3 FS on hda5, internal journal
EXT3-fs: mounted filesystem with ordered data mode.
SELinux: initialized (dev hda5, type ext3), uses xattr
Adding 4096564k swap on /dev/hda3. Priority:-1 extents:1
SELinux: initialized (dev binfmt_misc, type binfmt_misc), uses genfs_contexts

Outputs the contents of the log file dmesg forever (until killed).

Options

Option Usage

-number Prints the given number of lines.

-f Forever or follow mode. Prints the end of the file as new lines are added.
Usually used with log files.

-s seconds Sleeps for the given number of seconds between checks. Used only with -f.

touch
touch options files

Description
By touching a file, you modify it. (Think of what happens when children touch something.) At the most
basic level, touch is used to update the time a file was last modified. You can also set the time to a par-
ticular value.

Typically, if a file doesn’t exist, touch will create it, making it 0 (zero) bytes in size.

To set the time to a particular value, use one of the following formats: CCYYMMddhhmm,
YYMMddhhmm, MMddhhmm, or MMddhhmmYY. The following table explains the formats.

484

Appendix B

19_583204 appb.qxd 3/18/05 9:30 PM Page 484

Format Holds

MM Month, 1–12

dd Day of month, 1–31

hh Hour of the day, 00–23

mm Minute of the hour, 00–59

CC Century, such as 20

YY Year in century, such as 06 for 2006

Examples
$ touch *.c

Updates the modification date for all files ending in .c to the current time.

$ touch -t 201012251159 mozilla_coffee_order.html
$ ls -l mozilla_coffee_order.html
-rw-rw-r-- 1 ericfj ericfj 7663 Dec 25 2010 mozilla_coffee_order.html

Sets the modification time to Christmas in 2010 for the given file and verifies the time with the ls
command.

Options

Option Usage

-a Changes only the last access time

-c Does not create a new file if none exists

-m Changes only the modification time

-t timestamp Sets the time to the given timestamp

Manipulating Text
In addition to working with files and directories, there are quite a few commands that manipulate text.
(Some of these distinctions are arbitrary.) These commands are used primarily to output text, while the
commands in the following Transforming Data section are used primarily for modifying text.

awk
awk ‘/somedata/ { actions }’ filenames

485

Useful Commands

19_583204 appb.qxd 3/18/05 9:30 PM Page 485

Description
The awk command runs a program, typically placed between single quotes (as shown here) or in a sepa-
rate file. The awk command searches the files passed to it for the pattern /somedata/ and then applies
the given actions to all lines matching the pattern.

See Chapter 7 for a lot of information on awk. This is a very complex command.

Example
$ awk -F’:’ ‘/eric/ { print $5 }’ /etc/passwd
Eric Foster-Johnson

Searches for the pattern eric in the file /etc/passwd and then prints out the fifth field from all match-
ing lines. Sets the field separator to a colon (:) instead of the default spaces because of the format of the
/etc/passwd file.

Options

Option Usage

-f program_file Loads the awk program from the given file

-F field_separator Changes the default field separator to the given value

echo
echo option text

Description
Echoes its data to standard output. If you place the data in double quotes, echo expands variables inside
text strings.

Examples
$ echo $HOME
/home2/ericfj

Lists the user’s home directory.

$ echo “User ${USER}’s home directory is ${HOME}.”
User ericfj’s home directory is /home2/ericfj.

Lists the user’s username and home directory.

$ echo hello there
hello there

Outputs the two arguments, with one space in between.

486

Appendix B

19_583204 appb.qxd 3/18/05 9:30 PM Page 486

$ echo “hello there”
hello there

Outputs the same data with the embedded spaces included.

$ echo -n “What is your name? “
What is your name?

Outputs the question and leaves the cursor after the question mark.

Options

Option Usage

-n Doesn’t output a new line

Transforming Data
These commands modify data, usually assuming that the data are all text.

cut
cut options files

Description
Extracts data as columns, based on a field separator, usually a space.

Example
$ cut -d’:’ -f1,5 /etc/passwd
root:root
bin:bin
daemon:daemon
adm:adm
lp:lp
sync:sync
shutdown:shutdown
halt:halt
mail:mail
news:news
uucp:uucp
operator:operator
games:games
gopher:gopher
ftp:FTP User
nobody:Nobody
dbus:System message bus
vcsa:virtual console memory owner
nscd:NSCD Daemon

487

Useful Commands

19_583204 appb.qxd 3/18/05 9:30 PM Page 487

rpm:
haldaemon:HAL daemon
netdump:Network Crash Dump user
sshd:Privilege-separated SSH
rpc:Portmapper RPC user
rpcuser:RPC Service User
nfsnobody:Anonymous NFS User
mailnull:
smmsp:
pcap:
apache:Apache
squid:
webalizer:Webalizer
xfs:X Font Server
ntp:
gdm:
ericfj:Eric Foster-Johnson

Cuts the first and fifth fields from the /etc/passwd file.

Options

Option Usage

-dDelimiter Sets the field separator to the given delimiter character. Usually, you need to
place this in quotes.

-s Suppresses the output of lines that don’t have a field separator.

sed
sed options ‘program’ files

Description
A stream, or noninteractive, text editor. Use sed to modify files in a programmed manner.

See Chapter 6 for a lot of information on sed.

Example
$ cat /etc/passwd | sed ‘p’ | head -10
root:x:0:0:root:/root:/bin/bash
root:x:0:0:root:/root:/bin/bash
daemon:x:1:1:daemon:/usr/sbin:/bin/sh
daemon:x:1:1:daemon:/usr/sbin:/bin/sh
bin:x:2:2:bin:/bin:/bin/sh
bin:x:2:2:bin:/bin:/bin/sh
sys:x:3:3:sys:/dev:/bin/sh
sys:x:3:3:sys:/dev:/bin/sh
sync:x:4:65534:sync:/bin:/bin/sync
sync:x:4:65534:sync:/bin:/bin/sync

488

Appendix B

19_583204 appb.qxd 3/18/05 9:30 PM Page 488

Sends the contents of the /etc/passwd file to the sed command. The ‘p’ program tells sed to print out
the lines. This output is redirected to the head command, which shows only the first ten lines.

Options

Option Usage

-e 'script' Uses the given script as the sed program

-f script_file Loads the script from the given file

-n Disables the automatic printing

sort
sort options files

Description
Sorts files line by line.

Examples
$ printenv | sort | head -4
COLORTERM=gnome-terminal
DBUS_SESSION_BUS_ADDRESS=unix:abstract=/tmp/dbus-LFVLT6j4Fj
DESKTOP_SESSION=default
DISPLAY=:0.0

Sorts the data returned by printenv.

$ printenv | sort | sort -c
$ printenv | sort -c
sort: -:2: disorder: HOSTNAME=kirkwall

Shows how the -c option works. If the data are sorted, -c tells the sort command to do nothing.
Otherwise, it generates an error on the first out-of-order line.

Options

Option Usage

-b Ignores leading blank space or tab characters.

-c Checks if the file is sorted. Does not sort.

-d Sorts in dictionary order, ignoring punctuation.

-f Ignores case when sorting.

-i Ignores nonprinting characters.

-m Merges already-sorted files. Does not sort.

Table continued on following page

489

Useful Commands

19_583204 appb.qxd 3/18/05 9:30 PM Page 489

Option Usage

-M Assumes the first three letters of each line is a month abbreviation and then
sorts by months.

-n Sorts numerically.

-o filename Sends output to the given file instead of standard output.

-r Sorts in reverse order.

-u Throws away duplicate lines.

strings
strings options files

Description
Searches for printable strings in a file or files and then outputs these strings.

Example
$ strings `which awk` | grep opyright
copyright

-W copyright --copyright
Copyright (C) 1989, 1991-%d Free Software Foundation.

Searches the awk command for the string opyright (short for copyright).

Options

Option Usage

-n number Searches for blocks of printable text with at least the given number of
characters. Four is the default.

tr
tr options set1 set2

Description
Translates or deletes characters.

Example
$ cat /etc/passwd | tr ‘:’ ‘ ‘ | tail -4
xfs x 43 43 X Font Server /etc/X11/fs /sbin/nologin
ntp x 38 38 /etc/ntp /sbin/nologin
gdm x 42 42 /var/gdm /sbin/nologin
ericfj x 500 500 Eric Foster-Johnson /home2/ericfj /bin/bash

490

Appendix B

19_583204 appb.qxd 3/18/05 9:30 PM Page 490

Translates the colon in the /etc/passwd file to a space, for easier reading. Prints the last four lines.

Options

Option Usage

-c Complements. Uses all characters not in set1.

-d Deletes all characters in set1.

-s Squeezes the output by eliminating repeats.

Resolving Expressions
Shell scripts don’t work that well with mathematical expressions. That’s because the shells really treat
most values as text strings. If you do need to resolve mathematical expressions, the following commands
may help.

bc
bc options filenames

Description
Provides a programmable calculator. The bc command supports its own mini programming language. You
can enter commands in the bc language at the command line or pipe the text of the commands to bc.

In bc, the basic data element is a number. You can then use math statements to modify numbers, or you
can invoke functions. As a programming language, there are quite a few commands within bc.

Example
$ bc
bc 1.06
Copyright 1991-1994, 1997, 1998, 2000 Free Software Foundation, Inc.
This is free software with ABSOLUTELY NO WARRANTY.
For details type `warranty’.
scale=2
x=10
x + 10
20
x
10
tax=100*7/100
tax
7.00
x = x + tax
x
17.00
print x
17.00
quit

491

Useful Commands

19_583204 appb.qxd 3/18/05 9:30 PM Page 491

Options

Option Usage

-l Loads the math library

-s Runs bc in POSIX standard mode

expr
expr expression

Description
Evaluates an expression, usually a numeric expression. Note that expr works only with whole numbers
(integers). For floating-point numbers, use bc.

Examples
$ expr 40 + 2
42

Adds 40 plus 2.

$ expr 40 / 10
4

Divides 40 by 10.

$ expr 42 % 10
2

Returns the remainder after dividing 42 by 10.

Options
None.

492

Appendix B

19_583204 appb.qxd 3/18/05 9:30 PM Page 492

In
de

x

Index

Symbols and Numerics
& (ampersand)

for redirecting standard output and standard error,
260–261

for running in the background, 37–38
as sed metacharacter, 218–219

< > (angle brackets)
in awk comparison operators, 250
for end-of-file marker (<<), 177
for redirecting and appending output (>), 261–262
for redirecting input (<), 259
for redirecting output (>), 106–108, 258–259
for redirecting standard error (>), 260
for truncating files when redirecting, 262–263

* (asterisk). See * (star)
\ (backslash) for continuing lines, 81–82
` (backtick)

for command substitution, 287–289
nesting, 292
reading files into variables, 292
setting variables from commands, 289–290
using parentheses instead of, 289

! (bang). See ! (exclamation mark)
[] (brackets)

for regular expressions, 4
as test command shorthand ([), 123–125

^ (caret) for beginning of line in sed, 212, 213
: (colon)

as Mac directory delimiter, 175
as sed string separator, 205–206
vi commands using, 58

{ } (curly braces)
for referencing variables, 86
for sed commands, 224

- (dash) preceding command-line options, 23, 26
$ (dollar sign)

for end of line in sed, 213
as environment variable constructor, 136
PID-related variables ($$ and $!), 278
for repeating parts of commands (!$), 30–31
for return codes variable ($?), 295–296, 309
in shell prompt, 2, 16, 20–21
as variable name prefix, 22, 72, 85–86, 88

. (dot)
for character matching in sed, 213
as prefix for hidden files, 91, 153
source command compared to, 152

! (exclamation mark)
for address negation with sed, 201–202
in awk comparison operators (!=), 250
with command history, 32–33
in csh special commands, 5
in magic line (!#), 161–163
for negation with test command, 121, 122–123
for repeating commands, 27–30, 32–33
for repeating parts of commands (!$), 30–31
for variable holding PID of last command ($!), 278

/ (forward slash). See / (slash)
> (greater-than sign). See < > (angle brackets)
(hash mark)

for comment lines in scripts, 78–80
in magic line (!#), 161–163
for sed comments, 209–210, 224
in shell prompt, 20

< (less-than sign). See < > (angle brackets)
() (parentheses)

for command substitution, 289
double parentheses syntax with for loop, 96–97

% (percent sign)
in printf format control characters, 243–244
in shell prompt, 20

. (period). See . (dot)
| (pipe character). See piping commands
(pound sign). See # (hash mark)
? (question mark)

for return codes variable ($?), 295–296, 309
as wildcard, 37

“ (quotation marks) for variable values including
spaces, 72

; (semicolon) for separating commands, 94
(sharp sign). See # (hash mark)
/ (slash)

for command options in MS-DOS, 23
for searching in vi, 58
as sed string separator, 203, 205, 206
surrounding sed regular expression addresses, 212

20_583204 bindex.qxd 3/18/05 9:25 PM Page 493

* (star)
as case statement catch-all value, 127–129
for character matching in sed, 213
hidden files and, 91
as wildcard, 35–36

~ (tilde) for user’s home directory, 20
_ (underscore) beginning variable names, 71
zero, as success return code, 100, 102–103

A
AbiWord word processor, 410–411
active select and paste model, 16–17
addresses in sed

advanced addressing, 211–217
combining line addresses with regular expressions,

217
negating, 201–202
ranges, 200–201
regular expression address ranges, 216
regular expression addresses, 212–214
stepping, 202
substitution, 206–207

administrative scripting. See also MRTG (Multi Router
Traffic Grapher)

for automating daily work, 392
checking disk space, 379–382
checking USB port versions, 391–392
for cleaning up data, 387–392
for complicated commands, 376–379
exercises and answers, 392–393, 458–459
guidelines, 376
listing active processes, 382–384
monitoring HTTP data, 377–378
playing favorite songs, 387
for removing minor annoyances, 385–387
running a command in a directory, 386–387
starting USB networking, 376–377
for troubleshooting systems, 379–385
uses for, 375, 392
verifying processes are running, 384–385
viewing Linux USB port details, 387–391

Advanced Bash-Scripting Guide, 436
alarm clock script, 411–413
Almquist, Kenneth (shell creator), 7
Alt key, as emacs Meta key, 48
ampersand (&)

for redirecting standard output and standard error,
260–261

for running in the background, 37–38
as sed metacharacter, 218–219

AND operation for binary tests, 121–123
angle brackets (< >)

in awk comparison operators, 250
for end-of-file marker (<<), 177
for redirecting and appending output (>), 261–262

for redirecting input (<), 259
for redirecting output (>), 106–108, 258–259
for redirecting standard error (>), 260
for truncating files when redirecting, 262–263

Apache Axis TCP monitor program, 378
append command (sed), 210–211
Apple. See AppleScript (Mac OS X); Mac OS X
The AppleScript Language Guide (Apple publication),

417
AppleScript (Mac OS X)

alarm clock script using, 411–413
AppleScript Studio environment, 419
dictionaries, 415–417
further information, 417
going from shell to, 418–420
going to shell from, 420–425
Open Scripting Architecture extension (OSAX), 415
OSA and, 414
targeting applications, 415
verbosity of, 414

applications. See also programs; specific applications
monitoring remotely with MRTG, 366–372
“native” Mac OS X, 413–414
targeting (AppleScript), 415

archives, combining files into, 168–169
arguments

command-line, 23, 156–160
debugging options, 327–333
with functions, 308–309
for ooffice command, 396–397

arithmetic functions (awk), 251–252
ash shell, 7
asterisk. See star (*)
Audrey Internet appliances, running shells on, 19
awk command, 485–486
awk language

arithmetic functions, 251–252
awk command, 485–486
basic functionality, 234
built-in variables, 245–248
checking version of, 231–232
comparison operators, 250–251
control statements, 248–254
creating self-contained programs, 236–237
exercises and answers, 256, 450
field separators, 240–241, 246
for loops, 253–254
FS variable, 245–246
functions, 254–255
further information, 255
gawk (GNU awk), 230–231
if statements, 249–250
installing gawk, 232–233
invoking, 234–237
output redirection, 252–253
overview, 229–230

494

* (star)

20_583204 bindex.qxd 3/18/05 9:25 PM Page 494

print command, 237–241
printf command, 241–244
running scripts with -f flag, 236
sed compared to, 234
simple command-line program, 235
sprintf command, 244
user-defined variables, 245
user-defined versus built-in variables, 244
versions, 230
while loops, 253

Axis TCP monitor program (Apache), 378

B
background

running commands in, 37–38, 285–286
running MRTG in, 352–353

checking environment variables, 147–150
child shells. See subshells
chmod command

adding execute permissions, 161, 163
changing permissions, 170–171
overview, 472–474

chown command, 474
chpass command, 9, 10
chsh command, 9, 10
cmd.exe shell (Windows), 18. See also MS-DOS
Coding Monkeys’ SubEthaEdit text editor, 62
colon (:)

as Mac directory delimiter, 175
as sed string separator, 205–206
vi commands using, 58

color editor (Eclipse), 61
Color settings (Mac OS X Terminal), 429–430
combining command-line options, 26
command history, 31–33
command pipelines. See piping commands
command substitution

backtick for, 287–289
for math, 290–292
nesting backticks, 292
parentheses for, 289
reading files into variables, 292
for setting variables from commands, 289–290
tracing with, 331–332

command.com shell (Windows), 18. See also MS-DOS
command-line arguments

debugging options, 327–333
defined, 23
exercises and answers, 165, 445
listing, 157–159
for ooffice command, 396–397
reading with Bourne shell, 156–159
reading with C shell, 160
reading with Korn shell, 156
reading with T C shell, 160
using, 159

command-line editing
cycling through previous commands, 31
need for, 27
repeating parts of previous commands, 30–31
repeating previous commands, 27–30
shell differences and, 27
shells and support for, 4, 5, 6
text editor for, 33–34
viewing the command history, 31–33

command-line options
combining, 26
defined, 23
inconsistency in, 26–27
on Mac OS X, 25–26
man command for information about, 24–25
on Unix and Linux, 23–25

commands. See also specific commands and programs
arguments, defined, 23
basic format, 21
building up with variables, 74–76
command-line options, 23–27
complex, storing in scripts, 66–67
defined, 275
determining type of, 467–468
editing, 27–35
entering, 20–27
executing from the prompt, 2
for files and directories, 471–485
interactive, in shell scripts, 41–42
math using command substitution, 290–292
mixing with text output, 69–70
mixing with variables, 73–74
for operating system navigation, 461–470
path for, 2, 22
reading command-line arguments, 156–160
for resolving expressions, 491–492
return codes, 102–106, 309
running from variables, 74–75
running in directories, 386–387
running in subshells, 286
running in the background, 37–38, 285–286
running in the foreground, 285
running with exec, 286–287
sed commands, 224–226
separating with semicolon, 94
setting variables from, 289–290
storing in variables, 75–76
for text manipulation, 485–487
for transforming data, 487–491
viewing history of, 31–33
wildcards, 35–37

comments
for avoiding errors, 334
defined, 78
for documenting scripts, 376
entering in scripts, 78–80
need for, 78
sed comment command, 209–210
tips for, 80

Common Desktop Environment (CDE), 7, 18, 64
comparison operators (awk), 250–251
compatibility issues, 5, 6, 7, 9
compilers, setting variable for, 75
compiling sed, 193
compress command, 168
compressing files, 168, 169
concatenating. See cat command
configuring

MRTG, 345–350, 369–372
sed text-processing tool, 193

continuing lines in scripts, 81–82
Control key for emacs, 48, 49

496

checking environment variables

20_583204 bindex.qxd 3/18/05 9:25 PM Page 496

control statements (awk)
arithmetic functions, 251–252
comparison operators, 250–251
defined, 248
for loops, 253–254
if statements, 249–250
output redirection, 252–253
while loops, 253

controlling how scripts run
bash shell loops, 96–97
C shell loops, 98–99
case statement for complex decisions, 125–131
checking conditions with if, 100–113
exercises and answers, 134, 442–444
looping for fixed number of iterations, 93–96
looping over files, 90–93
looping overview, 89–90
looping until condition is true, 132–133
looping while condition is true, 131–132
nested loops, 99–100
nesting if statements, 113–114
referencing variables, 85–89
test command for, 114–125

controlling processes. See processes
copying

active select and paste model for, 16–17
emacs commands for, 52–53
files with cp, 474–475
vi commands for, 58

cp command, 474–475
CPU, graphing usage with MRTG, 358–360
Cream for Vim graphical front-end, 59
cron program

alarm clock script using, 411–413
configuring for MRTG, 352–353

crontab file, 412, 413
cross-platform text editors, 59–61
csh. See C shell
.cshrc file, 154, 155
curly braces ({ })

for referencing variables, 86
for sed commands, 224

customizing your account
bash startup, 154–155
Bourne shell startup, 153
C shell startup, 154
Korn shell startup, 153–154
system files versus personal startup files, 152–153
T C shell startup, 154

cut command, 487–488
Cute text editor, 64
Cygwin environment

default shell, 7, 8, 18
installing on Windows, 18
listing the environment, 140–141
shells included with, 18

D
dash (-) preceding command-line options, 23, 26
data transformation commands, 487–491
dd command, 26
de-assigning variables, 76
debugging mode

combining -n and -v options, 329
disabling the shell with -n option, 328
displaying commands with -v option, 328–329
tracing execution with -x option, 329–333

debugging scripts. See also error messages
asking for help, 327
avoiding errors, 333–335
basic steps, 317–318
breaking the script into pieces, 326–327
checking syntax with -n option, 327, 329
debuggers for, 327
deciphering error messages, 318–323
divide and conquer technique, 326
errors in calling programs, 322–323
exercises and answers, 336–337, 455–457
finding missing syntax, 319–321
finding syntax errors, 321–323
looking for hidden assumptions, 325
looking for obvious mistakes, 324
looking for weird things, 324–325
missing spaces, 321–322
need for, 317
techniques for, 323–327
tracing the execution, 327, 329–333
tracking errors to right location, 320–321
verbose mode for, 328–329
working backward, 323–324

declaring functions, 303–305
default shell, 6, 8, 9–12
deleting

directories, 483
emacs commands for, 53
files, 482–483
sed command for, 195–196

desktop-related scripting
for AbiWord word processor, 410–411
exercises and answers, 436–437, 459
on Mac OS X, 411–432
for multimedia, 432–435
for NEdit text editor, 411
for OpenOffice.org suite, 396–410
tips for scripting applications, 435–436
uses for, 395

/dev directory, 106
/dev/null device, redirecting output to, 106–108,

263
df command

checking disk space, 380–382
diskusage function for, 300–304

497

df command

In
de

x

20_583204 bindex.qxd 3/18/05 9:25 PM Page 497

df command (continued)
graphing disk usage, 361
overview, 475–476
repeating, 28–29

dictionaries (AppleScript), 415–417
“die a flaming death” alert, 147, 165, 445
directories

checking disk space used by, 476–477
commands for, 471–485
creating, 481–482
deleting, 483
Mac OS X versus Unix standard, 172–173

disk images, mobile file systems and, 174
disk usage

checking disk space, 379–382, 475–477
graphing with MRTG, 361–363
by MRTG, 342

diskusage function, 300–304
Display settings (Mac OS X Terminal), 429
.dmg files (Mac OS X), 174
do shell script command (AppleScript), 420–425
dollar sign ($)

for end of line in sed, 213
as environment variable constructor, 136
PID-related variables ($$ and $!), 278
for repeating parts of commands (!$), 30–31
for return codes variable ($?), 295–296, 309
in shell prompt, 2, 16, 20–21
as variable name prefix, 22, 72, 85–86, 88

DOS. See MS-DOS
dot (.)

for character matching in sed, 213
as prefix for hidden files, 91, 153
source command compared to, 152

down arrow for cycling through commands, 31
downloading, resources for. See Internet resources
downloading web pages with wget command, 366–368
du command, 476–477

E
echo command

determining which shell is running, 21–22
listing command-line arguments, 157–159
mixing commands with text output, 69–70
mixing commands with variables, 73–74
without newlines (-n option), 68–69
overview, 486–487
for simple text output, 67–68
using interactively with read, 76–78
variables with, 21–22, 71–74

Eclipse IDE, 61
editing. See also text editors

command-line editing, 27–35
emacs commands for, 50

sed commands, 195–196, 207–209
shell commands using text editors, 33–34

elif construct, 111–113
emacs command, 49
emacs text editor

buffer-related commands, 54
buffers, 54
conflicts with other program usages, 52–53
Control and Meta keys for, 48, 49
copy and paste commands, 52–53
as cross-platform editor, 59
downloading, 48
editing commands, 50
editing shell commands using, 33–34
frames, 54
graphical version, 49–50
help commands, 50–51
help online, 49
interactive shell within, 54
kill buffer, 53
loading files on startup, 50
long names for commands, 50
minibuffer area, 51
navigation commands, 51–52
running long commands, 50
searching with, 52
shell commands for, 33
starting, 49
text deletion commands, 53
usefulness of, 48

Emulation settings (Mac OS X Terminal), 427, 428
enabling command history, 31
end-of-file marker for here files, 177
env command, 142, 146
environment variables

C shell and, 144–147
checking, 147–150
commonly available variables, 136–137
defined, 135, 141
documentation for program use of, 139
guidelines for using, 142
listing on Linux, 137–138
listing on Mac OS X, 138–139
listing on Windows XP, 140–141
listing only environment variables, 142–144
printing value of, 464–465
reading the environment, 136–150
reading values into current variables, 152
setting, 150–152
shell variables compared to, 22, 135–136
uppercase names for, 138

error messages. See also debugging scripts
deciphering, 318–323
function declaration errors, 302
function formatting errors, 302

498

df command (continued)

20_583204 bindex.qxd 3/18/05 9:25 PM Page 498

incorrect function invocation, 307
informative, creating, 334–335
script execution stopped by, 42
from sed, 199, 201
standard output for, 107–108

esac ending case statements, 126
Esc key, as emacs Meta key, 48
/etc/passwd file

creating pipelines for, 266–270
invoking sed with data from, 194–195

exclamation mark (!)
for address negation with sed, 201–202
in awk comparison operators (!=), 250
with command history, 32–33
in csh special commands, 5
in magic line (!#), 161–163
for negation with test command, 121, 122–123
for repeating commands, 27–30, 32–33
for repeating parts of commands (!$), 30–31
for variable holding PID of last command ($!), 278

exec command, 286–287
executable files

defined, 160
magic line (!#) for, 161–163
making scripts executable, 163–164
marking files as, 160–161
rebuilding list of, 161

executing. See loading; running
execution trace mode. See tracing script execution
exit command
if statements testing return codes, 102–106
overview, 461
shell exit codes, 309

export command, 150–152
expr command

checking disk space, 382
evaluating math expressions, 290–291
overview, 492
using variables with, 291

extracting files from archives, 168

F
false command, 103–104
fi ending if statements, 100, 102
field separators (awk), 240–241, 246
file command, 462
file descriptors, 258
file systems

Mac OS X versus Unix standard, 175–177
mobile, Mac OS X and, 173–174
/proc, 279–284

files
changing ownership of, 474
checking disk space used by, 476–477
checking permissions, 161

classifying type with file, 462
combining into archives, 168–169
commands for, 471–485
compressing and uncompressing, 168–169
copying, 474–475
creating from OpenOffice.org Basic scripts, 407–410
deleting, 482–483
extracting from archives, 168
file-name completion feature, 34–35
finding files, 477–478
finding strings in, 490
for functions, 306–307
here files, 177–186
listing for current directory, 2
loading on awk startup, 234–235
loading on emacs startup, 50
loading on vi startup, 55–56
locking down permissions, 171–172
login files, 153–155
logout files, 155
looping over, 90–93
Mac OS X files, 172–177
magic line (!#) for, 161–163
marking executable, 160–161
modes, 169–171
moving, 482
MRTG configuration file, 370–372
personal startup files, 153–155
reading into variables, 292
redirecting output to, 106–108
shells versus file managers, 13
sorting line by line, 266, 489–490
standard input, output, and error files, 107–108
system files, 152–153
test command for, 120–121, 171–172
updating with touch, 484–485
vi file-related commands, 57–58
viewing first few lines, 479
viewing last few lines, 483–484

find command, 477–478
finding

with emacs text editor, 52
files, 477–478
installed shells, 108–111
missing syntax, 319–321
strings in files, 490
syntax errors, 321–323
with vi text editor, 58

FireWire, mobile file systems and, 173–174
for loop

in awk language, 253–254
in bash shell, 96–97
basic syntax, 90
checking for shells, 110–111
in diskcheck script, 381
double parentheses syntax, 96–97

499

for loop

In
de

x

20_583204 bindex.qxd 3/18/05 9:25 PM Page 499

for loop (continued)
looping for fixed number of iterations, 93–96
looping over files, 90–93
nested loops, 99–100
in simple backup script, 93
sleep command for pausing iterations, 95–96
tracing, 332–333

foreach loop (C shell), 98–99
foreground, running commands in, 285
format control characters (awk printf command),

242–244
forward slash. See slash (/)
frames in emacs, 54
FS variable (awk), 245–246
ftp command, driving with here files, 183–184
functions (awk), 254–255
functions (shell)

arguments with, 308–309
calling within other functions, 305–306
declaration errors, 302
declaring before use, 303–305
diskusage example, 300–304
exercises and answers, 316, 453–455
formatting errors, 302
function files for, 306–307
incorrect invocation errors, 307
as named code blocks, 299, 300
naming blocks of code, 300–302
recursion, 314–315
return codes with, 309–311
syntax for defining, 299–300
undeclaring, 307–308
uses for, 299
using (calling), 303
variable scope and, 311–314

G
gawk (GNU awk) language. See also awk language

checking version of, 231–232
further information, 255
installing, 232–233
obtaining, 233
overview, 230–231

gedit text editor (GNOME), 63–64
Gisin, Eric (shell creator), 6
Glimmer text editor, 64
globs or globbing. See wildcards
GNOME desktop

gedit text editor, 63–64
running the shell window, 15–16

gnome-terminal window, 15–16
GNU Linux

gawk (GNU awk) language, 230–231, 255
sed commands, 225–226
sed information, 222
sed version, 191

graphical text editors
Cream for Vim, 59
cross-platform editors, 59–61
emacs graphical version, 49–50
for Linux, 63–64
for Mac OS X, 61–63
for Microsoft Windows, 65
for Unix, 64–65

graphical user interfaces. See also specific interfaces
and operating systems

file managers versus shells, 13
power increased by shells, 1, 3
shell support by, 1, 7
shell use reduced by, 13

graphing. See MRTG (Multi Router Traffic Grapher)
greater-than sign (>). See angle brackets (< >)
grep command, 478–479
gunzip program, 169
gzip program, 168

H
hash mark (#)

for comment lines in scripts, 78–80
in magic line (!#), 161–163
for sed comments, 209–210, 224
in shell prompt, 20

head command, 479
help. See also Internet resources; man command

asking for, when debugging, 327
emacs commands for, 50–51
for OpenOffice.org Basic, 404

here files
basic syntax, 177
changing input with variables, 181–182
defined, 177
displaying messages with, 178–179
driving interactive programs with, 183–186
end-of-file marker, 177
redirecting input versus, 179, 180
turning off variable substitution, 186
variables in, 181–186

HFS+ file system (Mac OS X), 175–177
hidden files, wildcards and, 91
history of commands used, 31–33
hold space (sed), 220–222
HTTP data, monitoring, 377–378

I
IAC (Interapplication Communication), 414
if statements

in awk language, 249–250
basic syntax, 100
checking for shells, 108–111
in diskcheck script, 381–382
elif construct with, 111–113

500

for loop (continued)

20_583204 bindex.qxd 3/18/05 9:25 PM Page 500

else block with, 101–102, 249–250
fi ending, 100, 102
nesting, 111, 112, 113–114
redirecting output with, 106–108
test command with, 115–123
testing make command, 104–106
for true and false return codes, 102–106
uses for, 101

ifconfig command
directory for, 377
for starting USB networking, 71, 376

IM (instant messaging), 66–67, 386–387
incremental search, 52
indenting

in Python scripting language, 45–46
for readability, 333–334, 376

initialization files for shells, 153–155
input redirection. See redirecting input
insert command (sed), 210–211
inserting

awk print command for, 238–239
vi commands for, 56

installing
Cygwin on Windows, 18
gawk (GNU awk), 232–233
Korn shell on Windows, 19
MRTG, 341
sed text-processing tool, 191–193

instant messaging (IM), 66–67, 386–387
interactive commands or programs. See also specific

commands
driving with here files, 183–186
expect package for, 184
gathering keyboard input, 76–78, 130–131
running bc interactively, 293–294
using in scripts, 41–42

Interapplication Communication (IAC), 414
Internet resources

AbiWord information, 410–411
Advanced Bash-Scripting Guide, 436
Apache Axis information, 378
AppleScript information, 417
awk information, 255
bash shell, 8
Bourne shell information, 436
Cream for Vim, 59
emacs text editor, 48
gawk (GNU awk), 233
Java Runtime Environment, 59
Java-based text editors, 59, 61
Linux text editors, 64
Motif libraries, 64
MRTG home page, 341
NEdit text editor, 64
OpenOffice.org Basic help, 404
round-robin database (RRD), 342

sed information, 222
sed text-processing tool, 191–192
SubEthaEdit text editor, 62
Textpad text editor, 65
tksh shell information, 7
Windows Services for UNIX information, 19
xemacs text editor, 54
Yopy PDA information, 377
Z shell information, 7

interpreters, 162
invoking. See running
iterations, looping for fixed number of, 93–96
iTunes, alarm clock script using, 411–413

J
J text editor, 60–61
Java Runtime Environment, 59
jEdit text editor, 59–60, 411
Jext text editor, 61
Joy, Bill (shell creator), 4

K
kate text editor (KDE), 64
KDE desktop

kate text editor, 64
konsole application, 16
running the shell window, 16

keyboard
Control and Meta keys on, 48
gathering input with read, 76–78
gathering input with set, 130–131
as standard input, 107, 258
Terminal settings (Mac OS X), 431–432

Keychain Scripting application (Mac OS X), 420
keywords for character classes (sed), 215–216
kill command, 284, 462–463
konsole application (KDE), 16
Korn, David (shell creator), 5
Korn shell (ksh)

command-history feature, 31, 32–33
file-name completion feature, 34
installing on Windows, 19
overview, 5–6
POSIX standard and, 5, 8
public domain version (pdksh), 6
reading command-line arguments, 156
startup by, 153–154
tksh as extension of, 7

L
LANG environment variable, 136
launching. See loading; running
legacy editors. See emacs text editor; vi text editor
less-than sign (<). See angle brackets (< >)

501

less-than sign (<)

In
de

x

20_583204 bindex.qxd 3/18/05 9:25 PM Page 501

libraries (OpenOffice.org Basic)
creating, 398–400
defined, 397

Linux. See also GNU Linux; Unix
bash as default shell for, 6
bash popularity and, 6
changing the default shell, 9
checking USB port versions, 391–392
command-line options on, 23–25
graphical text editors, 63–64
Korn shell not supported by, 6
listing the environment, 137–138
running shells on, 15–17
tcsh popularity and, 6
viewing USB port details, 387–391

LISP, 47, 48
listing. See also ls command; viewing

active processes, 276–278, 382–384
command-line arguments, 157–159
environment variables on Linux, 137–138
environment variables on Mac OS X, 138–139
environment variables on Windows XP, 140–141
files for current directory, 2
myls script for, 90–91
myls2 script for, 91–93
only environment variables, 142
PIDs with ps command, 276–278
/proc files, 280–281

loading. See also running
AppleScript dictionaries, 417
files on awk startup, 234–235
files on emacs startup, 50
files on vi startup, 55–56

local variables, 141
locking down file permissions, 171–172
logic constructs. See controlling how scripts run
login files, shells and, 153–155
logout files, shells and, 155
looping. See also for loop

in bash shell, 96–97
basic for loop syntax, 90
in C shell, 98–99
defined, 89
for fixed number of iterations, 93–96
nested loops, 99–100
over files, 90–93
overview, 89–90
sleep command for pausing iterations, 95–96
until condition is true, 132–133
while condition is true, 131–132

ls command
bracket syntax with, 3–4
for checking permissions, 160–161
file-name completion with, 34–35
listing files in current directory, 2
listing /proc files, 280–281

overview, 480–481
redirecting output to file, 106–108, 258–259
redirecting output to null file, 263
redirecting standard error and output, 260–261
running from a variable, 74–75
scripts mimicking, 90–93
storing in a variable, 75–76
testing with if statement, 105–108
truncating files when redirecting output, 262–263
variables as arguments for, 74

lsusb command (Linux)
checking USB port versions, 391–392
viewing USB port details, 389–391

M
Mac OS X. See also AppleScript

alarm clock script, 411–413
bash as default shell for, 6, 8
changing the default shell, 10–12
command-line options on, 25–26
compatibility issues, 6
HFS+ file system, 175–177
Interapplication Communication (IAC), 414
layout not standard Unix, 172–173
listing the environment, 138–139
mobile file systems and, 173–174
naming issues, 175
NeXT legacy in, 172–173
Open Scripting Architecture (OSA), 413–414
resource forks, 176–177
running shells on, 17
sed version, 191
Target Disk Mode (TDM), 174
Terminal application, 10, 17, 425–432
text editors, 61–63
vim text editor, 58–59, 65

macros (OpenOffice.org Basic)
creating a macro, 400–405
for creating files from scripts, 407–410
defined, 397
passing parameters from the command line, 405–406
recording, 405
running from the command line, 405

magic line (!#), 161–163
make command, 104–106, 193
Makefile file, 105
man command

for command-line option information, 24–25
MANPATH environment variable for, 139
overview, 463–464
for shells, 13

math using command substitution, 290–292
mathematical expressions, resolving, 491–492
memory usage, graphing with MRTG, 354–358

502

libraries (OpenOffice.org Basic)

20_583204 bindex.qxd 3/18/05 9:25 PM Page 502

messages. See also error messages
displaying with here files, 178–179
instant messaging (IM), 66–67, 386–387
sending to all logged-in users, 179–180

Meta key for emacs, 48, 49
methods (OpenOffice.org Basic), 397
Microsoft Windows. See Windows
minibuffer area (emacs), 51
mkdir command, 481–482
modules (OpenOffice.org Basic)

creating, 398–400
defined, 397

monitoring. See also MRTG (Multi Router Traffic
Grapher)

applications remotely with MRTG, 366–372
computer and resources with MRTG, 353–363
HTTP data, 377–378
networks with MRTG, 363–365
other data with MRTG, 341
routers with MRTG, 340
system uptime with MRTG, 343–344
web servers with MRTG, 368–372

more command, 259
Motif libraries, 64
mount command, mobile file systems and, 174
mouse

active select and paste model and, 16–17
replacing Mac single-button mouse, 17

moving files, 482
MRTG (Multi Router Traffic Grapher)

basic syntax, 350
configuration file for, 345
configuring cron for, 352–353
configuring global values, 345–346
configuring graphs, 348–349
configuring target HTML outputs, 347–348
configuring targets, 346–347
configuring to monitor web servers, 369–372
customizing output from, 347–350
disk space required by, 342
exercises and answers, 373, 457–458
graphing CPU usage, 358–360
graphing disk usage, 361–363
graphing memory usage, 354–358
installing, 341
maximizing performance, 353
monitoring applications remotely, 366–372
monitoring computer and resources, 353–363
monitoring networks, 363–365
monitoring other data, 341
monitoring routers, 340
monitoring system uptime, 343–344
obtaining, 341
running, 350–351
SNMP protocol used by, 340–341
steps for configuring, 345

targets, 339–340, 346–348
testing scripts, 344
uses for, 339, 373
verifying your configuration, 349–350
viewing output, 351–352
working with, 339–340
writing scripts for, 342–344

mrtg_sys.cfg file, 370–372
MS-DOS

batch files as scripting language, 47
primitive shell provided by, 18
slash for command options, 23
wildcards and, 35

MsgBox dialog box types (OpenOffice.org Basic), 404
Multi Router Traffic Grapher. See MRTG
multimedia scripting

Rhythmbox music player, 433–435
totem movie player, 435
xmms music player, 66, 387, 432–433

multitasking, shell support for, 37–38
music players

Rhythmbox, 433–435
xmms, 66, 387, 432–433

mv command, 482
myls script, 90–91
myls2 script, 91–93

N
names and naming

emacs long command names, 50
for environment variables, uppercase, 138
extracting base file name from path, 471
file-name completion feature, 34–35
functions as named code blocks, 299, 300
insulting, avoiding, 80
Mac naming issues, 175
naming blocks of code, 300–302
personal startup file names, 153
storing paths in variables, 334
test command for file names, 120–121, 171–172
variable names, 71, 334

navigation
emacs commands for, 51–52
of operating system, commands for, 461–470
vi commands for, 56–57

nc command, 65, 411
NEdit text editor, 64–65, 411
negating addresses with sed, 201–202
negation test, 121, 122–123
nesting

backticks, 292
if statements, 111, 112, 113–114
loops, 99–100
tracing nested statements, 330–331

NetInfo Manager (Mac OS X), 10–12

503

NetInfo Manager (Mac OS X)

In
de

x

20_583204 bindex.qxd 3/18/05 9:25 PM Page 503

netstat command, 364–365
networks

monitoring with MRTG, 363–365
starting USB networking, 70–71, 376–377

newlines
echo command without, 68–69
printing with awk, 239

NeXTSTEP, Mac OS X legacy from, 172–173
noexec mode, 327, 329
nohup command, 464
Notepad text editor, 65
NR variable (awk), 247–248
null device, redirecting output to, 106–108, 263
numbers, test command for, 114–117

O
octal file modes, 169–170
od command, 282–283
ooffice command. See also OpenOffice.org suite

command-line arguments, 396–397
running macros with, 405

Open Scripting Architecture (OSA), 413–414
Open Scripting Architecture extension (OSAX), 415
opening. See loading; running
OpenMotif libraries, 64
OpenOffice.org Basic

creating files from scripts, 407–410
creating macros, 400–405
creating modules, 398–400
help online, 404
numeric codes for MsgBox dialog box types, 404
overview, 396, 397
passing parameters from the command line, 405–406
terminology, 397

OpenOffice.org suite. See also OpenOffice.org Basic
emacs conflicts with Writer, 53
name explained, 396
ooffice command-line arguments, 396–397
passing parameters from command line to, 405–406
programming API with, 396
programs in, 396
recording macros, 405
running macros from the command line, 405
Sun Microsystems StarOffice version, 400

operating systems. See also specific operating systems
commands for navigating, 461–470
default shells, 8
determining which is running, 70
if statements for commands specific to, 101
printing system information, 468–469
single-shell systems, 3

operators, comparison (awk), 250–251
options. See command-line options
OR operation for binary tests, 121–123

OSA (Open Scripting Architecture), 413–414
osacompile command (Mac OS X), 418–419
osalang command (Mac OS X), 418
osascript command (Mac OS X), 420
OSAX (Open Scripting Architecture extension), 415
output redirection. See redirecting output

P
parentheses [()]

for command substitution, 289
double parentheses syntax with for loop, 96–97

pasting, active select and paste model for, 16–17
paths

for commands, 2, 22
in Cygwin environment, 18
extracting base file name from, 471
magic line (!#), 161–163
mobile file systems and, 173
not depending on, 22
shell and interpreter locations, 162
storing in variables, 334

pattern space (sed), 195
PDAs

running shells on, 19
script for starting USB networking, 70–71, 376–377

pdksh (public domain Korn shell), 6
percent sign (%)

in printf format control characters, 243–244
in shell prompt, 20

period. See dot (.)
Perl (Practical Extraction and Reporting Language),

43–45, 63
permissions

adding execute permissions, 161, 163
changing with chmod, 170–171, 472–474
checking with ls, 160–161
checking with test, 121, 171
file modes, 169–171
locking down file permissions, 171–172
mobile file systems and, 173

personal startup files
bash shell, 154–155
Bourne shell, 153
C shell, 154
Korn shell, 153–154
naming, 153
system files versus, 152–153
T C shell, 154

PIDs (process IDs)
defined, 276
killing processes, 284
listing with ps command, 276–278
reading, 278–279

ping command, 29–30, 363–364

504

netstat command

20_583204 bindex.qxd 3/18/05 9:25 PM Page 504

piping commands
basic syntax, 264
checking spelling, 265–266
creating pipelines, 266–271
exercises and answers, 273, 451
power of, 257
processing /etc/passwd user names, 267–270
with scripts, 270–271
tee command for multiple locations, 271–272
Unix commands, 264–266

playing
movies, 435
songs, 66, 387, 432–435

positional variables
Bourne shell, 156–159
defined, 156
Korn shell, 156

POSIX (Portable Operating System Interface for
Computer Environments) standard

bash command-line option for, 8
Korn shell and, 5, 8
sed version, 191

pound sign. See hash mark (#)
Practical Extraction and Reporting Language (Perl),

43–45, 63
print command (awk)

field separators with, 240–241
inserting text, 238–239
overview, 237–238
printing newlines, 239

printenv command
under the C shell, 146–147
listing only environment variables, 142–144
overview, 464–465

printf command (awk)
format control characters, 242–243
overview, 241–242
using format modifiers, 243–244

/proc file system
defined, 279
information in, 279–280
listing files in, 280–281
viewing file contents, 281–282
viewing process data, 282–284

process IDs. See PIDs
processes

active, listing with ps command, 276–278, 382–384
backticks for command substitution, 287–289
capturing output of, 287–296
defined, 275
exercises and answers, 297, 452–453
killing, 284, 462–463
reading PIDs, 278–279
reading the /proc file system, 279–284

running from scripts, 285–287, 296–297
Terminal settings (Mac OS X), 427
verifying processes are running, 384–385

processing text. See awk language; sed text-processing
tool

.profile file, 153, 154–155
programs. See also applications; interactive commands

or programs; processes; specific programs
defined, 275
errors in calling, 322–323
in OpenOffice.org suite, 396
running, defined, 276
running within scripts, 296–297
self-contained, creating with awk, 236–237

prompt. See shell prompt
ps command

listing active processes, 276–278, 382–384
overview, 465–466
verifying processes are running, 384–385

public domain Korn shell (pdksh), 6
Python scripting language, 45–46, 63

Q
question mark (?)

for return codes variable ($?), 295–296, 309
as wildcard, 37

quotation marks (“) for variable values including
spaces, 72

R
rc shell, 7
read command, 76–78, 258
reading

command-line arguments, 156–160
environment variables, 136–147
file data with sed -e flag, 196–197, 208
files into variables, 292
PIDs, 278–279
/proc file system, 279–284

reading command-line arguments
Bourne shell, 156–159
C shell, 160
Korn shell, 156
T C shell, 160

reading environment variables
with C shell, 144–147
checking, 147–150
on Linux, 137–138
listing only environment variables, 142–144
on Mac OS X, 139–140
need for, 136
on Windows XP, 140–141

recording macros (OpenOffice.org), 405
recursion, 314–315

505

recursion

In
de

x

20_583204 bindex.qxd 3/18/05 9:25 PM Page 505

redirecting input. See also piping commands
here files versus, 179, 180
standard input, 258, 259

redirecting output. See also piping commands
appending to file, 261–262
with awk, 252–253
destructive nature of, 261
exercises and answers, 273, 451
with if statements, 106–108
to null file, 106–108, 263
from sed, 197
standard error, 108, 259–260
standard output, 106, 108, 258–259
standard output and standard error, 260–261
tee command for multiple locations, 271–272
truncating files, 262–263

referencing variables
curly braces for, 86
dollar sign as prefix for, 22, 72, 85–86, 88
script illustrating, 86–89

regular expressions
for address ranges in sed, 216
for addresses in sed, 212–214
for back references in sed, 219–220
for combining line addresses in sed, 217
for FS variable (awk), 246
grep searches using, 478–479
for referencing matched expressions in sed, 218–219
syntax and, 4
wildcards for, 35–40

rehash command, 161
repeating

parts of previous commands, 30–31
previous commands, 27–30

resource forks (Mac OS X), 176–177
return codes

with functions, 309–311
if statements testing, 102–106
shell exit codes, 309
variable for ($?), 295–296, 309

reverse address ranges with sed, 200–201
Rhythmbox music player, 433–435
rm command, 482–483
rmdir command, 483
round-robin database (RRD), 342
routers, monitoring, 340
rrdtool program, 342
running. See also loading

awk, invoking, 234–237
awk scripts with -f flag, 236
checking syntax with -n option, 327, 329
commands from the prompt, 2
commands from variables, 75–76
commands in directories, 386–387
commands in subshells, 286
commands in the background, 37–38, 285–286

commands in the foreground, 285
commands with exec, 286–287
in debugging mode, 327–333
defined, 276
emacs text editor, 49
functions, calling, 303, 305–306
initialization files for shells, 153–155
making scripts executable, 160–164
MRTG, 350–351
OpenOffice.org macros from the command line, 405
processes from scripts, 285–287
programs or scripts within scripts, 296–297
sed, advanced invocation, 207–211
sed, invoking with /etc/passwd data, 194–195
sed, invoking with flags, 196–199
shell scripts with sh command, 40
shell within a shell, 12
shells on Linux, 15–17
shells on Mac OS X, 17
shells on PDAs and other systems, 19
shells on Unix, 18
shells on Windows, 18–19
startup process for shells, 153–155
tracing script execution, 327, 329–333
in verbose mode, 328–329
vi text editor, 55
xmms music player from scripts, 66, 387, 432–433

S
SciTE text editor, 64
scope of variables, 311–314
screen, as standard output, 107, 258
scripting languages

as alternatives to shells, 39, 42–43
choosing, 43
MS-DOS batch files, 47
Perl, 43–45, 63
programming languages versus, 89
Python, 45–46, 63
Tcl, 46–47

scripting with files
combining files into archives, 168–169
exercises and answers, 187, 446–448
file modes, 169–171
here files, 177–186
Mac OS X files, 172–177
overview, 167
testing with test command, 120–121, 171–172

Scrollback settings (Mac OS X Terminal), 427–428
searching. See finding
sed command, 488–489
sed text-processing tool

address negation, 201–202
address ranges, 200–201
address stepping, 202

506

redirecting input

20_583204 bindex.qxd 3/18/05 9:25 PM Page 506

address substitution, 206–207
advanced addressing, 211–217
advanced invocation, 207–211
advanced substitution, 217–220
alternative string separators, 205–206
ampersand metacharacter, 218–219
append command, 210–211
awk compared to, 234
back references, 219–220
bootstrap installation, 192
change command, 211
character class keywords, 215–216
checking version of, 191
combining line addresses with regular expressions,

217
commands, 224–226
comment command, 209–210
common one-line scripts, 222–223
configuring, 193
deleting all lines using, 195–196
disabling automatic printing, 197, 224
editing commands, 195–196, 207–209
error messages, 199, 201
exercises and answers, 227, 448–450
-f flag, 209
further information, 222
GNU sed commands, 225–226
hold space, 220–222
insert command, 210–211
installing, 191–193
invoking with /etc/passwd data, 194–195
invoking with flags, 196–199
-n,--quiet, or--silent flags, 197–198, 224
obtaining, 191–192
option usages, 194–195
overview, 189–190
pattern space, 195
printing with p command, 197–198
reading file data using -e flag, 196–197, 208
redirecting output from, 197
referencing matched regular expressions, 218–219
regular expression address ranges, 216
regular expression addresses, 212–214
replacing with empty space, 206
running on command line, 189
sed command, 488–489
sed scripts, 209
selecting lines to operate on, 199–202
specifying multiple editing commands, 207–209
as stream editor, 193–194
substitution command, 203–207
substitution flags, 204–205
versions, 190–191

selecting, active select and paste model for, 16–17
semicolon (;) for separating commands, 94

set command
C shell and, 144–145
for exporting environment variables, 151
for listing the environment, 137–141

setenv command
for listing the environment, 137, 145–146
for setting environment variables, 152

setting environment variables, 150–152
sh. See Bourne shell
sh command

for running shell scripts, 40
shells masquerading as, 6, 8

sharp sign. See hash mark (#)
shell prompt

convention in this book, 21
defined, 2
in gnome-terminal window, 16
overview, 20–21

shell scripts. See also specific kinds
continuing lines in, 81–82
defined, 40
entering comments in, 78–80
exercises and answers, 83, 439–442
first example, 40–41
for gathering input, 76–78
interactive commands in, 41–42, 76–78
making executable, 160–164
need for, 39
for outputting text, 67–71
for piping commands, 270–271
running programs or scripts from, 296–297
for storing complex commands, 66–67
using variables, 71–76
wildcards in, 40

SHELL variable, 21, 22
shell variables. See environment variables; variables
shells. See also specific shells

automatic logout time for, 21
changing the default shell, 9–12
choosing, 9
default shells, 6, 8
defined, 2
determining which are installed, 108–111
determining which is running, 21–22
editing commands, 27–35
emacs interactive shell, 54
entering commands, 20–27
file managers versus, 13
file-name completion feature, 34–35
further information, 13
going from AppleScript to, 418–420
going to AppleScript from, 420–425
graphical environments and, 7, 13–20
hierarchy of, 142
locations for, 162

507

shells

In
de

x

20_583204 bindex.qxd 3/18/05 9:25 PM Page 507

shells (continued)
login versus others, 153–155
origin of term, 3
POSIX standard shell, 8
running a shell within a shell, 12
running commands in the background, 37–38
single-shell systems, 3
startup process for, 153–155
Terminal settings (Mac OS X), 426
types of, 4–7
uses for, 3–4
wildcards, 35–37
window as standard output, 107, 258

Simple Network Management Protocol (SNMP),
340–341, 372

simplifying scripts, 335
slash (/)

for command options in MS-DOS, 23
for searching in vi, 58
as sed string separator, 203, 205, 206
surrounding sed regular expression addresses, 212

sleep command, 95–96, 466–467
SlickEdit text editor, 61
.smi files (Mac OS X), 174
SNMP (Simple Network Management Protocol),

340–341, 372
soffice command, 400
sort command, 266, 489–490
source command

for function files, 306–307
reading values into current environment, 152

spaces
as awk field separators, 240, 246
Mac naming issues and, 175
missing, debugging, 321–322

spell command, 265–266
splat. See star (*)
sprintf command (awk), 244
Stallman, Richard (emacs creator), 48
standard error (stderr)

defined, 107, 258
redirecting standard output and, 260–261
redirecting to file, 108, 259–260

standard input (stdin). See also keyboard
defined, 107, 258
redirecting, 258, 259

standard output (stdout)
defined, 107, 258
redirecting and appending to file, 261–262
redirecting standard error and, 260–261
redirecting to file, 106, 108, 258–259
redirecting to null file, 106–108, 263
truncating files when redirecting, 262–263

star (*)
as case statement catch-all value, 127–129
for character matching in sed, 213

hidden files and, 91
as wildcard, 35–36

StarOffice (Sun Microsystems), 400
starting. See loading; running
stderr. See standard error
stdin. See standard input
stdout. See standard output
strings command, 490
strings, test command for, 117–120
StuffIt program (Mac OS X), 169
SubEthaEdit text editor (Coding Monkeys), 62
subshells

defined, 141
hierarchy of, 142
running commands in, 286
scripts run in, 152

substitution. See command substitution
substitution command (sed)

address substitution, 206–207
advanced substitution, 217–220
alternative string separators, 205–206
back references, 219–220
flags, 204–205
overview, 203–204
referencing matched regular expressions, 218–219
replacing with empty space, 206

Sun Microsystems StarOffice, 400
swapfiles, Mac OS X and, 172
switch statement (C shell), 129–131
syntax errors. See also debugging scripts

avoiding, 333–334
checking with -n option, 328, 329
finding, 321–322
missing syntax, 319–321

system files, leaving alone, 152–153
system uptime, monitoring, 343–344

T
T C shell (tcsh)

file-name completion feature, 34
overview, 6–7
prompt, 20, 21
reading command-line arguments, 160
rebuilding list of executables, 161
set command, 144–145
setenv command, 145–146
startup by, 154
variables and, 73

tail command, 483–484
tar command, 168
Target Disk Mode (TDM), 174
targeting applications (AppleScript), 415
targets (MRTG)

configuring, 346–347
HTML output configuration, 347–348
overview, 339–340

508

shells (continued)

20_583204 bindex.qxd 3/18/05 9:25 PM Page 508

Tcl (Tool Command Language), 46–47
tcpmon program, 378
tcsh. See T C shell
.tcshrc file, 154, 155
TDM (Target Disk Mode), 174
tee command, 271–272
Terminal application (Mac OS X)

changing the default shell, 10
Preferences, 425–426
running shells using, 17
Window Settings, 426–432

Terminal Inspector (Mac OS X)
Color settings, 429–430
Display settings, 429
Emulation settings, 427, 428
Keyboard settings, 431–432
Processes settings, 427
Scrollback settings, 427–428
Shell setting, 426
Window settings, 431

test command
binary tests, 121–123
bracket as shorthand for, 123–125
for files, 120–121, 171–172
negation test, 121, 122–123
for numbers, 114–117
overview, 114
for text strings, 117–120

testing scripts, 335, 344
text editors. See also specific editors

cross-platform, 59–61
editing shell commands using, 33–34
graphical, 59–65
legacy, 47–59
for Linux, 63–64
for Mac OS X, 61–63
need for, 47
for Unix, 64–65
for Windows, 65

text manipulation commands, 485–487
text processing. See awk language; sed text-processing

tool
TextEdit text editor, 61
Textpad text editor, 65
tilde (~) for user’s home directory, 20
Tkl scripting language, 7
tksh shell, 7
Tool Command Language (Tcl), 46–47
totem movie player, 435
touch command, 484–485
tr command, 283–284, 490–491
tracing script execution

with command substitution, 331–332
for loops, 332–333
listusers example, 330
manually looking over commands, 327

nested statements, 330–331
-x option for, 329–333

true command, 103–104
type command, 467–468

U
uname command

combining options with, 26
on Mac OS X, 25–26
overview, 468–469
on Unix and Linux, 23–24
using with echo command, 70

uncompress command, 168
uncompressing files, 168, 169
undeclaring functions, 307–308
underscore (_) beginning variable names, 71
uniq command, 266
Unix. See also Linux; Mac OS X

Bourne shell support on, 4
C shell and distributions of, 4, 5
changing the default shell, 9
command-line options on, 23–25
default shells for systems, 8
design philosophy of, 257
graphical text editors, 64–65
Korn shell and commercial versions of, 5
piping commands, 264–266
running shells on, 18

unset command, 76
until loop, 132–133
up arrow for cycling through commands, 31
uptime command, 262, 358–359
USB

checking port versions, 391–392
lsusb command (Linux), 389–392
port oddities, 389
script for starting networking, 70–71, 376–377
viewing port details in Linux, 387–391

user-defined variables, 244, 245. See also variables

V
variables. See also environment variables

building up commands with, 74–76
C shell or TC shell and, 73
combining in scripts, 73–74, 88–89
for command-line arguments, 156–160
de-assigning, 76
defined, 71
double quotes with, 72–73
echo command with, 21–22, 71–74
gathering keyboard input to, 76–78
in here files, 181–186
local, defined, 141
naming, 71, 334
PID-related ($$ and $!), 278

509

variables

In
de

x

20_583204 bindex.qxd 3/18/05 9:25 PM Page 509

variables (continued)
positional, 156–159
reading files into, 292
referencing values for, 72, 85–89
for return codes ($?), 295–296, 309
running commands from, 75–76
scope of, 311–314
scripting languages versus programming languages

and, 89
setting from commands, 289–290
shell variables, 22
with sprintf command (awk), 244
storing commands in, 75–76
user-defined versus built-in, 244

verbose mode, 328–329
vi text editor

colon starting commands, 58
copy and paste commands, 58
as cross-platform editor, 59
driving with here files, 184–185
editing shell commands using, 33–34
file-related commands, 57–58
insert commands, 56
jumping between files, 56
loading files on startup, 55–56
navigation commands, 56–57
search commands, 58
shell commands for, 33
starting, 55
usefulness of, 48
using in scripts, 41–42
vim (vi improved), 58–59, 65

viewing. See also listing
command history, 31–33
environment variables values, 464–465
first few lines of files, 479
last few lines of files, 483–484
MRTG output, 351–352
/proc file contents, 281–282
process data in /proc, 282–284
USB port details in Linux, 387–391

vim text editor, 58–59, 65
vmstat program, 354–358
vscanx command, AppleScript for, 420–425

W
wall command, 179–180
wc command, 92, 259
web servers

downloading pages with wget command, 366–368
monitoring with MRTG, 368–372
webalizer command for log files, 372

webalizer command, 372
wget command, 366–368
while loop, 131–132, 253

who command, 469–470
whoami command, 69–70, 470
wildcards

defined, 35
as globs, 35
MS-DOS and, 35
question mark (?), 37
in shell scripts, 41
star (*), 35–36

Window settings (Mac OS X Terminal), 431
Windows (Microsoft). See also Cygwin environment

installing Cygwin, 18
listing the environment, 140–141
running shells on, 18–19
as single-shell system, 3
text editors, 65

Windows Services for UNIX (Microsoft), 19
Word (Microsoft), emacs conflicts with, 53
Writer (OpenOffice.org), emacs conflicts with, 53
writing scripts

commenting, 78–80, 334
for complex commands, 66–67
continuing lines, 81–82
creating informative error messages, 334–335
for gathering input, 76–78
guidelines for administrative scripts, 376
guidelines for tidy scripts, 333–334
for MRTG, 342–344
for outputting text, 67–71
practices for avoiding errors, 333–335
simplifying, 335
testing, 335
using variables, 71–76

X
X Window System active select and paste model,

16–17
X11 application (Mac OS X), 17
xemacs text editor, 54
xmms music player, 66, 387, 432–433

Y
Yopy PDAs

further information, 377
running shells on, 19
script for starting USB networking, 70–71, 376–377

Z
Z shell (zsh), 7
Zaurus PDAs, running shells on, 19
zero, as success return code, 100, 102–103
zip program, 169

510

variables (continued)

20_583204 bindex.qxd 3/18/05 9:25 PM Page 510

