
Assembly Language
Programming

EE3376

1

Moving Up Levels of Abstraction

Problems

Algorithms

Language

Machine (ISA) Architecture

Microarchitecture

Circuits

Devices Transistors

Logic gates, multiplexers, memory, etc.

MSP430 Architecture

Machine code

Assembly code

Adapted from notes from BYU ECE124 2

High Level vs. Assembly

l  High Level Languages
–  More programmer friendly
–  More ISA independent
–  Each high-level statement translates to several

instructions in the ISA of the computer
l  Assembly Languages

–  Lower level, closer to ISA
–  Very ISA-dependent
–  Each instruction specifies a single ISA instruction
–  Makes low level programming more user friendly
–  More efficient code

Adapted from notes from BYU ECE124 3

Assembler Syntax

l  Each assembly line begins with either a label, a
blank (tab), an asterisk, or a semicolon

l  Each line has four fields:

 {label[:]} mnemonic {operand list} {;comment}

l  Some line examples are:

 .sect ".sysmem" ; data space
 var1 .word 2 ; variable var1 declaration
 .text ; program space
 loop: mov #COUNT,r5 ; get counter
 .end ; end of program

Adapted from notes from BYU ECE124 4

Symbols / Labels
l  Symbols

–  Symbols are used as labels, constants, and substitution values
–  Symbols are stored in a symbol table
–  A symbol name

l  is a string of up to 200 alphanumeric characters (A-Z, a-z, 0-9, $, and _)
l  cannot contain embedded blanks
l  first character cannot be a number
l  case sensitive

–  Symbols used as labels become symbolic addresses that are associated
with locations in the program

l  Label Field
–  Labels are symbols
–  Labels must begin in column 1.
–  A label can optionally be followed by a colon
–  The value of a label is the current value of the Location Counter (address

within program)
–  A label on a line by itself is a valid statement
–  Labels used locally within a file must be unique.

Adapted from notes from BYU ECE124 5

Mnemonics / Operands

l  Mnemonic Field
–  The mnemonic field follows the label field.
–  The mnemonic field cannot start in column 1; if it does, it is interpreted

as a label.
–  The mnemonic field contains one of the following items:

l  MSP430 instruction mnemonic (ie. ADD, MOV, JMP)
l  Assembler directive (ie. .data, .list, .equ)
l  Macro directive (ie. .macro, .var, .mexit)
l  Macro call

l  Operand Field
–  The operand field follows the mnemonic field and contains one or more

operands.
–  The operand field is not required for all instructions or directives.
–  An operand may consist of:

l  Symbols
l  Constants
l  Expressions (combination of constants and symbols)

–  Operands are separated with commas
Adapted from notes from BYU ECE124 6

Assembler Directives

l  Assembly directives are used to specify:
–  Starting addresses for programs
–  Starting values for memory locations
–  Specify the end of program text.

;***
; CS/ECEn 124 Example Code
;***

 .cdecls C,LIST, "msp430x22x4.h“ ; include C header

COUNT .equ 2000

;--

 .bss cnt,2 ; ISR counter
;--
 .text ; Program reset
RESET: mov.w #0x0280,SP ; Initialize stack pointer

 mov.w #WDT_MDLY_0_5,&WDTCTL ; Set Watchdog interval to ~0.5ms
 bis.w #LPM0+GIE,SR ; Enter LPM0 w/ interrupt
 jmp $; Loop forever; interrupts do all

 .sect ".reset" ; MSP430 RESET Vector
 .word RESET ; Power Up ISR
 .end

Directives

Current Location Counter
Adapted from notes from BYU ECE124 7

Assembly Code Example
;***
; CS/ECEn 124 Lab 4 - morse.asm: Student Code
;***

 .cdecls C,LIST, "msp430x22x4.h“ ; include C header

COUNT .equ 2000

;--
 .data ; data

 .bss cnt,2 ; ISR counter
;--
 .text ; Program reset
RESET: mov.w #0x0280,SP ; Initialize stack pointer

 mov.w #WDT_MDLY_0_5,&WDTCTL ; Set Watchdog interval to ~0.5ms
 mov.b #WDTIE,&IE1 ; Enable WDT interrupt
 bis.b #0x01,&P1DIR ; P1.0 output
 bis.b #0x20,&P4DIR ; P4.0 output
 mov.w #COUNT,&cnt ; initialize counter
 bis.w #LPM0+GIE,SR ; Enter LPM0 w/ interrupt
 jmp $; Loop forever; interrupts do all

; Watchdog Timer interrupt service routine
;
WDT_ISR: xor.b #0x20,&P4OUT ; pulse buzzer

 dec.w &cnt ; decrement counter
 jne WDT_exit
 mov.w #COUNT,&cnt ; initialize counter
 xor.b #0x01,&P1OUT ; toggle P1.0

WDT_exit: reti ; return from interrupt

 .sect ".int10" ; MSP430 RESET Vector
 .word WDT_ISR ; Watchdog ISR

 .sect ".reset" ; MSP430 RESET Vector
 .word RESET ; Power Up ISR
 .end

Labels

Instructions

Comments

Directives
Adapted from notes from BYU ECE124 Adapted from notes from BYU ECE124 8

Common Assembler Directives

Mnemonic and Syntax Description
.bss symbol, size in bytes[, alignment] Reserves size bytes in the .bss (uninitialized data) section

.sect "section name" Assembles into a named (initialized) section

.text Assembles into the .text (executable code) section

.byte value1[, ..., valuen] Initializes one or more successive bytes in the current section

.string "string1"[, ..., "stringn"] Initializes one or more text strings

.word value1[, ... , valuen] Initializes one or more 16-bit integers

.align [size in bytes] Aligns the LC on a boundary specified by size in bytes; must be a
power of 2; defaults to word (2 byte)

.def symbol1[, ... , symboln] Identifies one or more symbols that are defined in current module
and that can be used in other modules

.include ["]filename["] Includes source statements from another file

.ref symbol1[, ... , symboln] Identifies one or more symbols used in the current module that are
defined in another module

symbol .equ value Equates value with symbol

symbol .set value Equates value with symbol

.cdecls [options,] "filename" Share C headers between C and assembly code

.end Ends program

Adapted from notes from BYU ECE124 9

CCS Window – C/C++ Perspective

Independent debugging
and Programming view 1-click project debug

Project View
•  List of Projects

Code Window
•  Breakpoints
•  Syntax highlighting

Console
Build information

Problems View
•  Information
•  Warnings
•  Errors

Adapted from notes from BYU ECE124 10

Assembly List File

l  A line in a listing
file has four fields:
–  Field 1: contains

the source code
line counter

–  Field 2: contains
the section
program counter

–  Field 3: contains
the object code

–  Field 4: contains
the original source
statement.

Adapted from notes from BYU ECE124 11

Compilation

Algorithm

C-language program
c = a + b;

by hand

Machine language programs
0100 0100 0000 0101

assembler

Assembly language program
ADD r4,r5

compiler

to machine for execution

However, low-level
assembly language is
often used for
programming
directly.

We will start from
assembly language
but use high-level C
language to help
understand it.

Compiler often directly
generates machine code.

The assembly language
stage is often skipped…

Adapted from notes from BYU ECE124

12

MSP 430 Micro-Architecture

Memory Address Register

Arithmetic Logic Unit

Program Counter Address Bus

Data Bus
Condition Codes Memory

Port 1 Output

Instruction Register

Source Operand

Destination Operand

Adapted from notes from BYU ECE124

13

MSP 430 Data Storage

n  The MSP430 CPU has 64KB memory space
and 16 registers for data storage

n  R0 (PC) – Program Counter
n  This register always points to the next instruction to be fetched

n  R1 (SP) – Stack Pointer
n  The MSP430 CPU stores the return address of routines or interrupts on

the stack
n  User programs store local data on the stack

n  R2 (SR/CG1) – Status Register
n  The status of the MSP430 CPU is defined by a set of bits contained in

register R2

Adapted from notes from BYU ECE124

14

l  R2 (SR/CG1), R3 (CG2) – Constant Generators
–  Six different constants commonly used in programming

can be generated using the registers R2 and R3, without
adding a 16-bit extension word of code to the instruction

Register As Constant Remarks
R2 00 - Register mode
R2 01 (0) Absolute mode
R2 10 00004h +4, bit processing
R2 11 00008h +8, bit processing
R3 00 00000h 0, word processing
R3 01 00001h +1
R3 10 00002h +2, bit processing
R3 11 0FFFFh -1, word processing

MSP 430 Registers

Adapted from notes from BYU ECE124
15

MSP 430 Registers

l  R4-R15 – General Purpose registers
–  The general purpose registers R4 to R15 can be used

as data registers, data pointers and indices.
–  They can be accessed either as a byte or as a word
–  Instruction formats support byte or word accesses
–  The status bits of the CPU in the SR are updated

after the execution of a register instruction.

Adapted from notes from BYU ECE124

16

MSP430G2553 Memory Map

17

Format I: 12 Double Operand Instructions

l  Double operand instructions:
Mnemonic Operation Description
Arithmetic instructions
ADD(.B or .W) src,dst src+dst→dst Add source to destination
ADDC(.B or .W) src,dst src+dst+C→dst Add source and carry to destination
DADD(.B or .W) src,dst src+dst+C→dst (dec) Decimal add source and carry to destination
SUB(.B or .W) src,dst dst+.not.src+1→dst Subtract source from destination
SUBC(.B or .W) src,dst dst+.not.src+C→dst Subtract source and not carry from destination
Logical and register control instructions
AND(.B or .W) src,dst src.and.dst→dst AND source with destination
BIC(.B or .W) src,dst .not.src.and.dst→dst Clear bits in destination
BIS(.B or .W) src,dst src.or.dst→dst Set bits in destination
BIT(.B or .W) src,dst src.and.dst Test bits in destination
XOR(.B or .W) src,dst src.xor.dst→dst XOR source with destination
Data instructions
CMP(.B or .W) src,dst dst-src Compare source to destination
MOV(.B or .W) src,dst src→dst Move source to destination

Adapted from notes from BYU ECE124

18

Examples

MOV.w #0x08,R5! !; move source to destination !
! ! !; assign a hexadecimal value 0x08 to Register R5 !

AND.w #0x00,R6! !; bitwise AND source with destination !
! ! !; whatever value in R6 is ANDed with 0 -> R6=0!

ADD.w #0x03,R6! !; add source to destination !
! ! !; R6 = R6+3 = 0+3 = 3!

SUB.w !R6, R5 ! !; subtract source from destination!
! ! !; R5 = R5-R6 = R5+(Not R6)+1 = 8-3 = 5!

XOR.w !R6, R5 ! !; bitwise XOR source with destination !
! ! !; R5 = 0011 XOR 0101 = 0110 = 6!

BIC.w !#0x03, R5 !; clear bits in destination!
! ! !; (Not 0011) AND 0110 = 1100 AND 0110 = 0100 = 4!

BIS.w !#0x08, R5 !; set bits in destination!
! ! !; 1000 OR 0100 = 1100 = 12!

BIT.w !#0x08, R5 !; test bits in destination!
! ! !; 1000 AND 1100 = 1000 -> Bit 3 is not zero!

CMP.w !R6, R5 ! !; compare source to destination!
! ! !; R5-R6 = 12-6 = 6 greater than 0, so R5 > R6!

Adapted from notes from BYU ECE124

19

Format II: 7 Single Operand Instructions

l  Single operand instructions:
Mnemonic Operation Description
Logical and register control instructions
RRA(.B or .W) dst MSB→MSB→…

LSB→C
Roll destination right

RRC(.B or .W) dst C→MSB→…LSB→C Roll destination right through carry
SWPB(or .W) dst Swap bytes Swap bytes in destination
SXT dst bit 7→bit 8…bit 15 Sign extend destination
PUSH(.B or .W) src SP-2→SP, src→@SP Push source on stack
Program flow control instructions
CALL(.B or .W) dst SP-2→SP,

PC+2→@SP
dst→PC

Subroutine call to destination

RETI @SP+→SR, @SP+→SP Return from interrupt

Adapted from notes from BYU ECE124

20

Examples

MOV.w #0xF009,R5 !; move source to destination !
! ! !; assign a hexadecimal value 0x08 to Register R5 !

!

RRA.w R5 ! !; Roll destination right and send LSB to Carry!
! ! !; 1111 0000 0000 1001 -> 1111 1000 0000 0100 C=1 !

RRC.w R5 ! !; Roll destination right through Carry!
! ! !; 1111 1000 0000 0100 -> 1111 1100 0000 0010 C=0 !

SWPB.w !R5 ! !; subtract source from destination!
! ! !; 1111 1100 0000 0010 -> 0000 0010 1111 1100 !

SXT !R5 ! !; sign extension!
! ! !; 1111 1100 -> 1111 1111 1111 1100 !
! ! !; (bit 7 is 1) bits 8~15 are all set to 1!

!
PUSH, CALL, and RETI will be discussed later !

Adapted from notes from BYU ECE124

21

Jump Instruction Format

l  Jump instructions are used to direct program flow to
another part of the program.

l  The condition on which a jump occurs depends on the
Condition field consisting of 3 bits:

–  JNE/JNZ : jump if not equal
–  JEQ/JZ : jump if equal
–  JNC/JLO : jump if carry flag equal to zero
–  JC/JHS : jump if carry flag equal to one
–  JN : jump if negative (N = 1)
–  JGE : jump if greater than or equal (N = V)
–  JL : jump if lower (less) (N ≠ V)
–  JMP : unconditional jump (no condition check)

Adapted from notes from BYU ECE124

22

Examples

MOV.w #0x05,R5! !; move source to destination !
! ! !; assign a hexadecimal value 0x05 to Register R5 !

MOV.w #0x03,R6! !; move source to destination !
! ! !; assign a hexadecimal value 0x03 to Register R6 !

CMP.w !R6, R5 ! !; compare source to destination!
! ! !; R5-R6 = 5-3 = 2 greater than 0, so R5 > R6!

!

JNE !somewhere !; jump if not equal!
! ! ; The program will jump to “somewhere” because R5 ≠ R6!

Adapted from notes from BYU ECE124

23

Emulated Instructions

l  In addition to the 27 instructions of the CPU there
are 24 emulated instructions

l  The CPU coding is unique
l  The emulated instructions make reading and

writing code easier, but do not have their own op-
codes

l  Emulated instructions are replaced automatically
by CPU instructions by the assembler

l  There are no penalties for using emulated
instructions.

Adapted from notes from BYU ECE124

24

Emulated Instructions

Mnemonic Operation Emulation Description

Arithmetic instructions

ADC(.B or .W) dst dst+C→dst ADDC(.B or .W) #0,dst Add carry to destination

DADC(.B or .W) dst d s t + C → d s t
(decimally)

DADD(.B or .W) #0,dst Decimal add carry to
destination

DEC(.B or .W) dst dst-1→dst SUB(.B or .W) #1,dst Decrement destination

DECD(.B or .W) dst dst-2→dst SUB(.B or .W) #2,dst Decrement destination twice

INC(.B or .W) dst dst+1→dst ADD(.B or .W) #1,dst Increment destination

INCD(.B or .W) dst dst+2→dst ADD(.B or .W) #2,dst Increment destination twice

SBC(.B or .W) dst dst+0FFFFh+C→dst
dst+0FFh→dst

SUBC(.B or .W) #0,dst Subtract source and
borrow /.NOT. carry from
dest.

Adapted from notes from BYU ECE124

25

Emulated Instructions

Mnemonic Operation Emulation Description
Logical and register control instructions
INV(.B or .W) dst .NOT.dst→dst XOR(.B or .W)

#0(FF)FFh,dst
Invert bits in destination

RLA(.B or .W) dst C←MSB←MSB-1
LSB+1←LSB←0

ADD(.B or .W) dst,dst Rotate left arithmetically
(multiplied by 2)

RLC(.B or .W) dst C←MSB←MSB-1
LSB+1←LSB←C

ADDC(.B or .W) dst,dst Rotate left through carry

Program flow control
BR dst dst→PC MOV dst,PC Branch to destination
DINT 0→GIE BIC #8,SR Disable (general) interrupts
EINT 1→GIE BIS #8,SR Enable (general) interrupts
NOP None MOV #0,R3 No operation
RET @SP→PC

SP+2→SP
MOV @SP+,PC Return from subroutine

Adapted from notes from BYU ECE124

26

Emulated Instructions

Mnemonic Operation Emulation Description
Data instructions
CLR(.B or .W) dst 0→dst MOV(.B or .W) #0,dst Clear destination
CLRC 0→C BIC #1,SR Clear carry flag
CLRN 0→N BIC #4,SR Clear negative flag
CLRZ 0→Z BIC #2,SR Clear zero flag
POP(.B or .W) dst @SP→temp

SP+2→SP
temp→dst

MOV(.B or .W) @SP
+,dst

Pop byte/word from
stack to destination

SETC 1→C BIS #1,SR Set carry flag
SETN 1→N BIS #4,SR Set negative flag
SETZ 1→Z BIS #2,SR Set zero flag
TST(.B or .W) dst dst + 0FFFFh + 1

dst + 0FFh + 1
CMP(.B or .W) #0,dst Test destination

Adapted from notes from BYU ECE124

27

Example: Emulated Instructions

l  Emulated instructions are replaced automatically
by CPU instructions by the assembler

l  Could be replaced differently
l  Clear the contents of register R5:

l  Increment the content of register R5:

l  Decmrent the content of register R5:

CLR R5 = MOV.W #0, R5

INC R5 = ADD.W #1, R5

DEC R5 = SUB.W #1, R5

Adapted from notes from BYU ECE14

28

l  Decrement by two the contents of register R5:

l  Do not carry out any operation:

l  Add the carry flag to the register R5:

DECD R5 = SUB.W #2, R5

NOP = MOV.W R3, R3

ADC R5 = ADC.W #0, R5

Example: Emulated Instructions

Adapted from notes from BYU ECE124 29

Source Addressing Modes

l  The MSP430 has four basic modes for the source
address:

–  Rs - Register
–  x(Rs) - Indexed Register
–  @Rs - Register Indirect (not for destination)
–  @Rs+ - Indirect Auto-increment (not for destination)

l  In combination with registers R0-R3, three additional
source addressing modes are available:

–  label - PC Relative, x(PC)
–  &label – Absolute, x(SR)
–  #n – Immediate, @PC+ (not for destination)

Adapted from notes from BYU ECE124 30

Destination Addressing Modes

l  There are two basic modes for the destination
address:

–  Rd - Register
–  x(Rd) - Indexed Register

l  In combination with registers R0/R2, two
additional destination addressing modes are
available:

–  label - PC Relative, x(PC)
–  &label – Absolute, x(SR)

Adapted from notes from BYU ECE124

31

Register Mode (Rn)

l  The most straightforward addressing mode and is
available for both source and destination

–  Example:
mov.w r5,r6 ; move word from r5 to r6

l  The registers are specified in the instruction; no further
data is needed

l  Also the fastest mode and does not require an addition
cycle

l  Byte instructions use only the lower byte, but clear the
upper byte when writing

0 1 0 0 0 1 0 1 0 0 0 0 0 1 1 0

Op-code S-reg Ad b/w As D-reg
Adapted from notes from BYU ECE124

32

Indexed Mode x(Rn)

l  The address is formed by adding a constant (index) to the
contents of a CPU register

–  Example:
mov.b 3(r5),r6 ; move byte from

 ; M(310+r5) to r6
l  Indexed addressing can be used for source and/or

destination, value in r5 is unchanged.
l  The index is located in the memory word following the

instruction and requires an additional memory cycle
l  There is no restriction on the address for a byte, but words

must lie on even addresses

0 1 0 0 0 1 0 1 0 1 0 1 0 1 1 0

Op-code S-reg Ad b/w As D-reg
Adapted from notes from BYU ECE124

33

Symbolic Mode (PC Relative)
l  The address if formed by adding a constant (index) to the

program counter (PC)
–  Example: (mov.w x(PC), r6 where x=Cnt-PC)

mov.w Cnt,r6 ; move word
 ; M(Cnt) or M(x+PC) to r6

l  The PC relative index is calculated by the assembler
l  Produces position-independent code, but rarely used in the

MSP430 because absolute addressing can reach all memory
addresses

l  Note: this is NOT an appropriate mode of addressing when
referencing fixed locations in memory such as the special
function registers (SFR’s)

0 1 0 0 0 0 0 0 0 0 0 1 0 1 1 0

Op-code S-reg Ad b/w As D-reg
Adapted from notes from BYU ECE124

34

Absolute Mode (&label)
l  The address is formed directly from a constant (index) and

specified by preceding a label with an ampersand (&)
–  Example: (mov.w x(SR), r6 where 0 is used for SR)

mov.w &Cnt,r6 ; move word
 ; M(Cnt) to r6

l  Same as indexed mode with the base register value of 0 (by
using the status register SR as the base register)

l  The absolute address is stored in the memory word following
the instruction and requires an additional cycle

l  Note: this is the preferred mode of addressing when referencing
fixed locations in memory such as the special function registers
(SFR’s)

0 1 0 0 0 0 1 0 0 0 0 1 0 1 1 0

Op-code S-reg Ad b/w As D-reg
Adapted from notes from BYU ECE124

35

Indirect Register Mode (@Rn)
l  The address of the operand is formed from the contents of

the specified register
–  Example:

mov.w @r5,r6 ; move word
 ; M(r5) to r6

l  Only available for source operands
l  Same as indexed mode with index equal to 0, but does not

require an additional instruction word
l  The value of the indirect register is unchanged

0 1 0 0 0 1 0 1 0 0 1 0 0 1 1 0

Op-code S-reg Ad b/w As D-reg
Adapted from notes from BYU ECE124

36

Indirect Autoincrement Mode (@Rn+)

l  The address of the operand is formed from the contents of the
specified register and afterwards, the register is automatically
increment by 1 if a byte is fetched or by 2 if a word is fetched
–  Example:

mov.w @r5+,r6 ; move word
 ; M(r5) to r6
 ; increment r5 by 2

l  Only available for source operands.
l  Usually called post-increment addressing.
l  Note: All operations on the first address are fully completed

before the second address is evaluated
0 1 0 0 0 1 0 1 0 0 1 1 0 1 1 0

Op-code S-reg Ad b/w As D-reg
Adapted from notes from BYU ECE124

37

Immediate Mode (#n)
l  The operand is an immediate value

–  Example (mov.w @PC+, r6)
mov.w #100,r6 ; 100 -> r6

l  The immediate value is located in the memory word following
the instruction

l  Only available for source operands
l  The immediate mode of addressing is a special case of auto-

increment addressing that uses the program counter (PC) as
the source register.

l  The PC is automatically incremented after the instruction is
fetched; hence points to the following word

0 1 0 0 0 0 0 0 0 0 1 1 0 1 1 0

Op-code S-reg Ad b/w As D-reg
Adapted from notes from BYU ECE124

38

mov.w R5, R6 ; move the content of R5 (0010) to R6

mov.w @R7, R8 ; use the content of R7 (9000) as the address to move data (000F) to R8

mov.w &0x9004, R6 ; go to the absolute address (9004) to move data (0011) to R6

mov.w 2(R7), R9 ; use the content of R7 (9000) as the base address and offset it by 2 (9002)

 to move data (0010) to R9
mov.w &0x9006, R5 ; go to the absolute address (9006) to move data (0012) to R5
mov.w @R7+, R6 ; use the content of R7 (9000) as the address to move data (000F) to R6 and

 then increment R7 by 2 (one word is 2 bytes)
mov.w #0x9000, R7 ; move the immediate value (9000) to R7

mov.w label, R7 ; move the data (0012) in the memory space represented by “label” to R7

Examples - Source

000F
0010
0011
0012
0013

x9000

x9002

x9004

x9006

x9008

0010
0020
9000
9004
9006

R5

R6

R7

R8

R9

registers memory

label:

Adapted from notes from BYU ECE124

39

mov.w R5, R6 ; move the content of R5 (0010) to R6

mov.w R5, 4(R7) ; use the content of R7 (9000) as the base address and offset it by 4 (9004)
 and move the content of R5 (0010) to the effective address (9004)

mov.w R6, label ; move the content of R6 (0012 moved from R5) to the memory space
 represented by “label”

mov.w &0x9004, &0x9008 ; go to the absolute address (9004) to move data (0011) to the
 memory location of the absolute address (9008)

mov.w R6, &label ; move the content of R6 (0012 moved from R5) to the memory space
 represented by the absolute address “label”

Examples - Destination

000F
0010
0011
0012
0013

x9000

x9002

x9004

x9006

x9008

0010
0020
9000
9004
9006

R5

R6

R7

R8

R9

registers memory

label:

Adapted from notes from BYU ECE124
40

High Level vs. Assembly

l  High Level Languages
–  More programmer friendly
–  More ISA independent
–  Each high-level statement translates to several

instructions in the ISA of the computer
l  Assembly Languages

–  Lower level, closer to ISA
–  Very ISA-dependent
–  Each instruction specifies a single ISA instruction
–  Makes low level programming more user friendly
–  More efficient code

Adapted from notes from BYU ECE124

41

The first assembly program
;***!
; MSP430 Micro-Architecture Simulator Code;!
; Description:!
; Display an incrementing counter in the simulator LEDs.!
; MSP430!
; -----------------!
; | |!
; | P1.0|-->RED LED!
; | P1.1|-->YELLOW LED!
; | P1.2|-->BLUE LED!
; | P1.3|-->GREEN LED!
;***

!.cdecls C,LIST, "msp430x22x4.h" !
;-- !

!.text ; Program reset!
;--!
RESET: !

!mov.w #0x0300,SP ; Initialize stack pointer !
!mov.w #WDTPW+WDTHOLD,&WDTCTL ; Stop WDT !
!bis.b #0x0f,&P1DIR ; Set P1.0-3 output !
!mov.w #0,r14!

Mainloop: mov.b r14,&P1OUT ; output P1.0-3 !
!inc.w r14 !
!and.w #0x000f,r14 ; mask counterWait: !
!mov.w Delay,r15 ; Delay to R15 !
!push r15!

L1: !dec.w 0(sp) ; decrement delay counter !
!jnz L1 ; delay over? !
!mov.w @sp+,r15 ; y !
!jmp Mainloop ; repeat!

Delay: .word 2!
;--!

!.sect ".reset" ; MSP430 RESET Vector !
!.short RESET ; NMI !
!.end

Labels

Directives

Directives

Instructions

Comments

Comments
Output Pins
to control
the LEDs

Adapted from notes from BYU ECE124

42

What does it do?

RESET: !
! mov.w #0x0300,SP ; Initialize stack pointer !
! mov.w #WDTPW+WDTHOLD,&WDTCTL ; Stop WDT !
! bis.b #0x0f,&P1DIR ; Set P1.0-3 output !
! mov.w #0,r14!

Mainloop: mov.b r14,&P1OUT ; output P1.0-3 !
! inc.w r14 !
! and.w #0x000f,r14 ; mask counterWait: !
! mov.w Delay,r15 ; Delay to R15 !
! push r15!

L1: dec.w 0(sp) ; decrement delay counter !
! jnz L1 ; delay over? !
! mov.w @sp+,r15 ; y !
! jmp Mainloop ; repeat!

Delay: .word 2!

Move an immediate
value #0x0300 into

stack pointer
register SP (R1)

Move an immediate value that is the OR’ed
result of WDTPW and WDTHOLD (both are

predefined memory addresses) into a
memory location at the absolute address

WDTCTL (also a predefined address)

Set the lowest 4 bits of the value
stored in the absolute address

location P1DIR to all ‘1’. This is to
set Pins 0~3 of Port 1 to be for

output controls (turn LEDs on or off)

Move an immediate
value 0 to register
#14. 0 is actually

created by hardware

Move the value stored in register
#14 to the absolute address

location PIOUT (predefined for
Port 1 output register)

Increment value in register #14 by 1

AND the value in register #14 with
0x000F (0000 0000 0000 1111) to
keep only the lowest 4 bits in r14.

Move a value “Delay” to r15

Move the value in r15 onto the stack

Decrement the value
stored on top of the stack

If the previous instruction result
is NOT zero, then jump to
location labeled L1, else

continue to the next instruction

Move the value stored on
top of the stack to r15 and

then increment SP by 2
Unconditionally (always) jump
to location labeled Mainloop

.word directive assigned
a work value 2 to Delay

Adapted from notes from BYU ECE124

43

RESET: !
! mov.w #0x0300,SP ; Initialize stack pointer !
! mov.w #WDTPW+WDTHOLD,&WDTCTL ; Stop WDT !
! bis.b #0x0f,&P1DIR ; Set P1.0-3 output !
! mov.w #0,r14!

Mainloop: mov.b r14,&P1OUT ; output P1.0-3 !
! inc.w r14 !
! and.w #0x000f,r14 ; mask counterWait: !
! mov.w Delay,r15 ; Delay to R15 !
! push r15!

L1: dec.w 0(sp) ; decrement delay counter !
! jnz L1 ; delay over? !
! mov.w @sp+,r15 ; y !
! jmp Mainloop ; repeat!

Delay: .word 2!

Immediate mode Register mode Absolute mode

Label (PC relative) mode

Indexed register mode

Indirect auto-increment
mode

Adapted from notes from BYU ECE124

What does it do?

44

Three Basic Constructs

Task

Subtask 1

Subtask 2
Subtask 1 Subtask 2

Test
condition

Subtask

Test
condition

Sequential Conditional Iterative

True

True

False
False

Adapted from notes from BYU ECE124

45

if-then-else Translation

if (buzzerON == 1)
{
 pulse_buzzer();
 turn_on_LED();
}
else
{
 turn_off_LED();
}

 cmp.w #1,&buzzerON ;
 jne myElse ;
 xor.b #0x20,&P4OUT ;
 bis.b #0x02,&P1OUT ;
 jmp myNext ;
myElse: ;
 bic.b #0x02,&P1OUT ;
 ;
myNext: ;

Could be different addressing modes

If a > b?

Subtask 1

Subtask 2

n

y

Adapted from notes from BYU ECE124

46

while Translation
#define TRUE 1

while (TRUE)
{
 LED_ON();
 delay();
 LED_OFF();
 delay();
}

 ;
while_loop: ;
 bit.w #1,R4 ;
 jnz while_done ;
 call #LED_ON ;
 call #delay ;
 call #LED_OFF ;
 call #delay ;
 jmp while_loop ;

while_done: ;

Adapted from notes from BYU ECE124

47

for-loop Translation

int i;

for(i=0; i<10; i++)
{

 do_dot();
 delay();
 do_dash();
 delay();

}

 .bss i,2 ;

 mov.w #0,&i ;
fl_ck: cmp.w #10,&i ;
 jge for_done ;
 call #do_dot ;
 call #delay ;
 call #do_dash ;
 call #delay ;
 add.w #1,&i ;
 jmp fl_ck ;

for_done: ;

Adapted from notes from BYU ECE124
48

Better for-loop Translation

int i;

for(i=10; i>0; i--)
{ do_dot();
 delay();
 do_dash();
 delay();

}

 .bss i,2 ;

 mov.w #0,&i ;
fl_ck: call #do_dot ;
 call #delay ;
 call #do_dash ;
 call #delay ;
 dec.w &i ;
 jnz fl_ck ;
for_done: ;

Adapted from notes from BYU ECE124
49

switch/case Translation

l  switch/case

switch (myByte)
{
 case DOT:
 do_dot();
 break;

 case DASH:
 do_dash();
 break;

 default:
}

 cmp.w #DOT,&myByte ;
 jne sw_01 ;
 call #do_dot ;
 jmp sw_end ;

sw_01:
 cmp.w #DASH,&myByte ;
 jne sw_end ;
 call #do_dash ;
 jmp sw_end ;
 ;
sw_end: ;

Adapted from notes from BYU ECE124
50

Cycles Per Instruction...

Src Dst Cycles Length Example

Rn Rm 1 1 MOV R5,R8

 @Rm 2 1 MOV R5,@R6

 x(Rm) 4 2 ADD R5,4(R6)

 EDE 4 2 XOR R8,EDE

 &EDE 4 2 MOV R5,&EDE

#n x(Rm) 5 3 MOV #100,TAB(R8)

&TONI &EDE 6 3 MOV &TONI,&EDE

See “How To Determine Cycles Per Instruction...” in Blinky Lab
instructions.

Instruction Timing

Adapted from notes from BYU ECE124

51

Include #N & @Rs+
Include Symbolic &
Absolute Address

Include Symbolic &
Absolute Address Include Symbolic &

Absolute Address Include Symbolic &
Absolute Address

Adapted from notes from BYU ECE124

52

Instruction Timing

mainloop: xor.b #0x01,&P1OUT ; toggle P1.0
 mov.w #0,r15 ; use R15 as delay counter

delayloop: dec.w r15 ; delay over?
 jnz delayloop ; n
 jmp mainloop ; y, toggle led

4 cycles

1 cycle

1 cycle

2 cycles

2 cycles

Adapted from notes from BYU ECE124

53

