Modern X86
Assembly Language
Programming

Daniel Kusswurm

Apress’

Modern X86 Assembly Language Programming: 32-bit, 64-bit, SSE, and AVX
Copyright © 2014 by Daniel Kusswurm

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are
brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for
the purpose of being entered and executed on a computer system, for exclusive use by the purchaser
of the work. Duplication of this publication or parts thereof is permitted only under the provisions

of the Copyright Law of the Publisher’s location, in its current version, and permission for use must
always be obtained from Springer. Permissions for use may be obtained through RightsLink at the
Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4842-0065-0
ISBN-13 (electronic): 978-1-4842-0064-3

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, and
images only in an editorial fashion and to the benefit of the trademark owner, with no intention of
infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility
for any errors or omissions that may be made. The publisher makes no warranty, express or implied,
with respect to the material contained herein.

Managing Director: Welmoed Spahr

Lead Editors: Steve Weiss (Apress); Patrick Hauke (Intel)

Technical Reviewer: Paul Cohen

Editorial Board: Steve Anglin, Gary Cornell, Louise Corrigan, James T. DeWolf, Jonathan
Gennick, Robert Hutchinson, Michelle Lowman, James Markham, Matthew Moodie,
Jeff Olson, Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Gwenan Spearing,
Matt Wade, Steve Weiss

Coordinating Editor: Melissa Maldonado

Copy Editor: Kezia Endsley

Compositor: SPi Global

Indexer: SPi Global

Artist: SPi Global

Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York,

233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit waw.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional
use. eBook versions and licenses are also available for most titles. For more information, reference
our Special Bulk Sales-eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available
to readers at www. apress. com. For detailed information about how to locate your book’s source code,
g0 to Wwww.apress.com/source-code/.

http://orders-ny@springer-sbm.com
http://www.springeronline.com
http://rights@apress.com
http://www.apress.com
http://www.apress.com/bulk-sales
www.apress.com
http://www.apress.com/source-code/

This book is dedicated to those individuals who suffer the ravages of Alzheimer’s
disease and their unsung compassionate caregivers.

Contents at a Glance

About the Authorcccnimmnsmns e ———— Xix
About the Technical ReVIEWErcccesmsmsmssmsmsssmssssmsssssssssssssassnsnss xxi
Acknowledgments.......cccuseemmmnmssnsnmmnsssnnmmssssssnnmsssssssnnsssssnnsssnnn xxiii
Introduction.........ccccssismmis s ———— XXV
Chapter 1: X86-32 Core Architectureccccusemmrrssssnnsnsssssnsssssssnns 1
Chapter 2: X86-32 Core Programmingcccussesssssssssssssssssasssssanss 27
Chapter 3: X87 Floating-Point Unit..........ccccusemmmmmsssnnnnmsssssnsnnsssnnns 87
Chapter 4: X87 FPU Programming.....ccuccessesssssssssssssssnssssssnnsssssss 103
Chapter 5: MMX Technologycccrummsssemnmmsssssnnssssssssnssssssnnssnsans 133
Chapter 6: MMX Technology Programmingccccusssssssssssssssssssss 147
Chapter 7: Streaming SIMD Extensions.........ccccrummssensnssssssnsnsnssss 179
Chapter 8: X86-SSE programming - Scalar Floating-Point 207
Chapter 9: X86-SSE Programming - Packed Floating-Point....... 237
Chapter 10: X86-SSE Programming - Packed Integers.............. 273
Chapter 11: X86-SSE Programming - Text Stringsccccurunae 303
Chapter 12: Advanced Vector Extensions (AVX)ccccusessesssnssssans 327
Chapter 13: X86-AVX Programming - Scalar Floating-Point 351
Chapter 14: X86-AVX Programming - Packed Floating-Point............ 377
Chapter 15: X86-AVX Programming - Packed Integers 405

CONTENTS AT A GLANCE

Chapter 16: X86-AVX Programming - New Instructions............. 439
Chapter 17: X86-64 Core Architectureccccccmrrrrssssssnnnnnnnnnnas 491
Chapter 18: X86-64 Core Programmingccceurssssssnsssssssnnsnssns 503
Chapter 19: X86-64 SIMD Architecturecccccmmrrrsssssssssnsnsnsnnnns 557
Chapter 20: X86-64 SIMD Programmingcuceesesssssssssssssssnssssnns 563
Chapter 21: Advanced Topics and Optimization Techniques 623
Chapter 22: Advanced Topics Programmingccucceesssssssnssssssns 637
IN@X..eiiieesnesrimsssnssssms s s —— 657

vi

Contents

About the AULNOFcoueeeiiiirreerrrrres s nnnans Xix
About the Technical REVIEWETcceurmrrrmmmmmnssssssnsssssssssssssssssnsnsnnss XXI
Acknowledgments........cccrnnssssmnsnnmsmsmsssssssssssssnmsssssssssssssnsssnssssnns XXiii

INtroducCtion.........cceciiiieeeriineee s r e n e nnn e anmmanan e mmnnn XXV

Chapter 1: X86-32 Core Architectureuuseemmrrnnnnssssssssssssnsnsssssnns 1

Historical OVEIrVIBW ... 1
Data TYPLS .ot n e nn e nnen 4
Fundamental Data TYPESccoveeererrnerenerne s sssnns 4
NUMEriCal DAta TYPES.....eveeererrrreererreeses e nesnns 5
Packed Data TYPES.......coceerererreereresreeesessseesesssss s ses s se s ss s e sesssesssssssaes 6
Miscellaneous Data TYPESccccccrerrerererene s sa e sas e sae s 7
Internal ArChItECLUTE..........cviccccrr 8
LT T (e LT] (=T 9
General-Purpose REJISTErS........cevrereriererere s rere s ree e se s e s e s saesesaenesaenanaens 9
EFLAGS REQISIENccveereererererereererereraeseserassessesessesessesassesassessssesssssssssessesassesssnenes 11
INSTrUCEION POINLENcvviicrctriccs 13
INSErUCEION OPEIANAScoveereeereeer et ra e ae e a e e s e e sae e s 13
Memory Addressing MOAES ..o 14
InStruction Set OVErVIEWcccorrernncnsnsssens s 15
Data TranSTer ... ——————— 18
Binary ArthmetiCccoceerceercrccc e 18
Data COMPANISONc.evereererere e sa e s sa e ae e aesaesaesaesaesaenens 20

vii

CONTENTS

Data ConVErSIioN ... 20
o [| 21
Rotate and Shift.........couviimnnn s ——— 21
Byte Set and Bit StriNgccovvererrerere et 22
31 22
Flag Manipulation...........cocccceeeererrrerererereresrereesereesesaesessesesessesessssessssessssassessssenes 23
CONtrol TrANSTENcceirirrcccrsr i 24
MISCEIIANBOUS.......cvuiririiisis i 25
SUMMAIY ...t s 25

Chapter 2: X86-32 Core Programmingcccusseesssssssssssssssssssssssssas 27

Getting Startedccocveervrerre e ————— 28
First Assembly Language FUNClion............ccovveeeveccnccscssc s 28
Integer Multiplication and DiViSionccovvererrennesne s 32

X86-32 Programming Fundamentalsc.cccverervrcrcescessencescencennens 36
Calling CoNVENTION...........cceeecrereeecrer e e 37
Memory Addressing MOUEScccoururercrerrrencriree e 4
INtEgEr AAGItION ... 46
CoNdition COUES.......cocrererireririririir s 49

AITAQYS ...ttt sn e s n e s r e s sn e s en e e eene e e e nesnennenn 54
0NE-DIMENSIONAI AITAYScoveereererrererererersssersesessesessessssesssessesesssssssessssesassessssees 55
TWO-DIMENSIONAI AITAYSccveeerererrererrerererasersesersesessesessesssessssessessssessssessesesssasaes 60

SHUCIUNES......cc e ———— 67
SIMPIE SHUCTUIEScveeeeeereerer e s sre e sae e sa s ae e saesesnenanaens 67
Dynamic Structure Creationcccecernienennnnnessn s ses e sesssens 70

SIINGS et nenen 73
Counting CharaCters.........cccovurueercrineercres e 74
String Concatenationc.ccocerereiercrreec s 76

viii

CONTENTS

COMPAIING AITAYSc.veereererererereesersesersessssessssersssessessssessssessssessesessssssssssssssassessssees 80
Array BEVEISALcveeeeeteceeer et ss s sa e s sn e sn s sn s a e sn s sa e sn e sa e sn e sn e sn e nn s 83
SUMMAIY ... s s n e s 86
Chapter 3: X87 Floating-Point Unit..........ccccosemmnnssnnnnnnsssnnsnnsssns 87
X87 FPU Core ArchiteCtUureccorrerersnssnssesse s 87
Data REgISIErSccceveierrerrcrre s e e 88
X87 FPU Special-Purpose REgiSters........cccumrierrnnencrinnssesesssesesesessssesessssssesenens 88
X87 FPU Operands and ENCOINGS.........cccceerrerrererrenenesensessssessesesss e sessessssessesesnes 91
X87 FPU INStruction Set...........ccooeeiiermnmiicnnisesesscsese s 95
Data TranSTer ..o s 95
Basic Arithmetic ... 96
Data COMPANISONcoceereeecrerreescrer et n s 98
TranScendental ... ———————————— 100
CONSTANIS.....cccicir e —————————— 101
CONIOL .. 101
1111 1P S 102
Chapter 4: X87 FPU Programming.......ccusssssssssassssssssassssassssnsnnas 103
X87 FPU Programming Fundamentals............cccvervrrrsrsensessensensennenns 103
Simple AfthMELICee e re e e 104
Floating-Point COMPArEScceeeerererererererereserassersesessesessesessesassessesessssessssenaes 108
X87 FPU Advanced Programming..........ccceeerrersersessessessesssssesssssssssnsenns 112
Floating-Point Arrays........ccccoreenienisenesese s sss s e ssssessssessssesnes 112
Transcendental INStructions ... —————— 120
Advanced STACK USAQEcccevureererinrncnerinsse s sss s sesssssesessssssesessssssessnns 124
111 1] 1P SRS 130

ix

CONTENTS

Chapter 5: MMX Technologyccccurussssnnmmsssssnnsssssssssssssssnnsnnssss 133
SIMD Processing CONCEPLSccvvverrerrerrerrersenses s e ses e sessessessesns 133
Wraparound vs. Saturated Arithmeticc.ccocverceercscecr s 135
MMX Execution ENVIironmentcccecrvrvrsnnensensessesses s sessessessenens 137
MMX INStruction Set.........coeciceerirerrcr s 138
DAta TrANSTEN ... e 139
AFTAMETIC ... es 139
0]] 0 0 142
0] 11T 10 142
Logical and SNift..........ccceevrerrierrrere e s e rse e e ras e sas e saesesaeenaes 142
Unpack and SUFFIEcceverrerrrere v res e res e re e se e sas e sae e saesesaeenaes 143
Insertion and EXraction...........cooceeeeeerererencrcnescscsesese e 144
State and Cache CONTIOL.........cccceeeereeeee e 145
SUMMANY ...t n s sn e n s sn e sn e n e nr s nn e nnnnn s 145
Chapter 6: MMX Technology Programmingccccussssessssssssnsssssns 147
MMX Programming Fundamentals............cccooverercrcscscescesses e, 147
Packed Integer Addition...........ccovceeeceecnecnerre s 149
Packed Integer SNifts ... 156
Packed Integer Multiplication ..o 160
MMX Advanced Programming........cccceueeeenmsesessmsessssesssssssessssesssssnsens 164
Integer Array PrOCESSINGcccoeeercrernesesessssesesesesssssessssssssesessssessesessssssesssssseaes 164
Using MMX and the X87 FPUcccovrerenrrneneneresssesesessss s sessssssens 172
1111 P2 178
Chapter 7: Streaming SIMD EXtensions........ccccessssrsssssssssssnsnnsnnas 179
X86-SSE OVEIVIBWccovrerrerrerrssessessssessessssessssssssssssesssssssessssssnsssssens 179
X86-SSE Execution Environment...........ccccvevcrcersessessnnsesses s sessnsnnnns 180

X86-SSE RegiSter Sel ...t 181

CONTENTS

XB6-SSE DAt TYPES ...coveeereeereererereeersesersesesseressessssessesessssessessssessssessessssensssssanaens 181
X86-SSE Control-Status REGISTErccveerierererereree e rere e res e s e saenenaens 183
X86-SSE Processing TeChNIQUES........c.ceeeererrseresense s s e 184
X86-SSE Instruction Set OVerviewcccvevnnecsncncsssseseseeses 188
Scalar Floating-Point Data TranSfer ..o 190
Scalar Floating-Point Arithmetic...........ccoeoeeerriieccrreeeee e 190
Scalar Floating-Point COMPAriSON.ccccerrinencreresiesesesse e 191
Scalar Floating-Point CONVErSIONccccerrinencrersescses e 191
Packed Floating-Point Data Transferocoenrennnnnnescreeseesesesee s 192
Packed Floating-Point Arithmetic ..o 193
Packed Floating-Point COMPAriSONcoouieiererereescrreesereses e 195
Packed Floating-Point CONVErSioN...........ccooieieeererenescrirnesese e 195
Packed Floating-Point Shuffle and Unpackoeoeerernoennnnicccnreecercne 196
Packed Floating-Point Insertion and Extraction............cccooeccennnieicnnneccscnnnnenes 197
Packed Floating-Point BIend ...t 197
Packed Floating-Point LOGICalcccoeoeeererercierirreecrersesee e 198
Packed Integer EXIENSIONS ..o 198
Packed Integer Data Transfer ..o 199
Packed Integer ArthMELCccoeecrereecr s 199
Packed Integer COMPAriSON.........cccoceurureierereresererse e s 200
Packed Integer CONVEISION..........cccoceururcrererereseser e s 201
Packed Integer Shuffle and Unpackcoocoeerrenescnnnncncsinsee s 202
Packed Integer Insertion and EXraction............cocoveeeecrernncncnensesesesseesesesesenes 202
Packed Integer BIENd...........ccoouiieicrreeereeeser s 203
Packed Integer Shift ..o s 203
Text String ProCESSING......cccverureererereccrere e 204
Non-Temporal Data Transfer and Cache Control...........c..ccoocenrneccnnncscscnennnenes 204
MiSCEIIANGOUS........cceeiiii s 205
1111] 1P 2SS 206

xi

CONTENTS

Chapter 8: X86-SSE programming - Scalar Floating-Point........ 207
Scalar Floating-Point Fundamentals..........c.ccocvvrvrvnnnsencensensensensennns 207
Scalar Floating-Point ArithmetiC.........ccovverrvererere s ree s 207
Scalar Floating-Point COMPAre.........ccccvvverererereresererereressessesessesessesessessssesseseres 212
Scalar Floating-Point CONVEISIONS..........ccceerereererererererseressersesessesessesessessssessesees 217
Advanced Scalar Floating-Point Programmingcccceeeevevesensennnnns 225
Scalar Floating-Point SPheres...........co s 225
Scalar Floating-Point Parallelograms.............cecvvnevniennncnnnncne e sesssenns 228
SUMMAIY ...t nn s 236
Chapter 9: X86-SSE Programming - Packed Floating-Point....... 237
Packed Floating-Point Fundamentals...........c.cccccvervrvrcrcrsescensencennn, 237
Packed Floating-Point Arithmeticccccovvrievrirrcrcrrr e 238
Packed Floating-Point COMPArEccceererrrerenirreescresse e 244
Packed Floating-Point CONVEISIONS.........ccccevieverierenserenene e sessesessesessessesenaes 248
Advanced Packed Floating-Point Programming.........cccceeevvvveriniennnnns 254
Packed Floating-Point Least SQUAreS..........cccevrverrrerererereresereresserssseseesessssenas 254
Packed Floating-Point 4 x 4 MatriCeScccvrererrererrerrererserersesereressersssessesessenenaes 260
SUMMANY ...t sn s r s sn s sr e n e n e nn s n e nnnn s 271
Chapter 10: X86-SSE Programming — Packed Integers.............. 273
Packed Integer Fundamentals..........c.cccccvvrririnncnsnncncnncen e 273
Advanced Packed Integer Programming..........cccucceenmresensesnesesesenenns 279
Packed Integer HiStOgram ..o sesssses 279
Packed Integer TRreShold............cccoceirreccrirsesese s 288
1111] 1P 302

xii

CONTENTS

Chapter 11: X86-SSE Programming — Text Stringsccusesssuees 303
Text String Fundamentals..........c.ccoovvrvrvnvnrnsnserrr s 303
Text String Programming..........ccocceeveersessessensessessessesses s ssssesssssessssenns 311
Text String Calculate Length.........coocociecniecncccrcre st sennens 311
Text String Replace CharacCters ... 316
111 1] 112 SRS 325
Chapter 12: Advanced Vector Extensions (AVX)ccceurssssnnsnssans 327
XB6-AVX OVEIVIBW.......cocererererersessessessessesses e s e e s e s sessnssnssessnssnssnsnnns 327
X86-AVX Execution ENVIroONMmMent..........ovvncnmnenmennnnssesese s 329
X86-AVX REQISLEr SBLcvrirriissiirisissninss s 329
X86-AVX Data TYPES....cevveerrrrerrirrir et ses s sas s e sn e e s s sn e ss e sa s sa s snssrssnssse s nnes 329
X86-AVX INSTruCtion SYNTAX......cccceeevereerererererer e reseree s s sseres e rsesessesesaenanaens 330
X86-AVX Feature EXtENSIONSccccerernsmnerenssssese s 332
X86-AVX Instruction Set OVErVIeWcccvvvcrcercensessesses s ses e 333
Promoted X86-SSE INSLrUCHIONS.......c.oeeecrerrrcererireeese s 333
NEW INSIFUCLIONS......c.coeerereeeereree e 336
Feature EXtension INSTIUCLIONSccoveecrerrrciererreescre s 342
1111 1P 349
Chapter 13: X86-AVX Programming - Scalar Floating-Point 351
Programming Fundamentals............cccvvrvrvernenvensensenses e e e 351
Scalar Floating-Point ArithmetiC.........ccovverrrererere s 351
Scalar Floating-Point COMPAreS.........ccocvveverereerererereresesessersesessesessesessessssessesees 355
Advanced Programming.......ccccccceeeesesesessessessssssssesssssssssssssssssssssnsnns 360
Roots of a Quadratic EQUAtioN ..o 360
Spherical Coordinatesccoveiernerniernnre e 368
SUMMAIY ...t 376

xiii

CONTENTS

Chapter 14: X86-AVX Programming - Packed Floating-Point............ 377
Programming Fundamentals............ccccvervrnernnnensensessesses s senens 377
Packed Floating-Point Arithmeticccccoveverrerrrerrrererere v 378
Packed Floating-Point COMPArESc..ccceeererrererieressersesersesessesesseressessssessssessssesaes 385
Advanced Programming.......ccccccceeeeresesessessesssssessssssssssssssssssssssssnsnns 389
Correlation COEffiCIBNt.........coverrninirinirinisnss s 389
Matrix Column MEANS.........cccoerureererirerercri e 396
SUMMAIY ...t nn s 403
Chapter 15: X86-AVX Programming - Packed Integers 405
Packed Integer Fundamentals.............cccooorernrnrnnsnnnsesee e 405
Packed Integer ArthMELICoceeecerrreccrrresee s 405
Packed Integer Unpack OPErationsc.coueeeeerereenencsesssescsesssssssesessssssessssnsens 412
Advanced Programming.......ccccoccveererersssssnsssssssssssssssssssssssssssssssssssnns 417
IMage PiXel ClIPPING ...ceererererererrerrerersesersesessesesessssessssessesessessssesassessssessssesasssaes 417
Image Threshold Part DEUX.........ccoevererinenenre e sse s sessesseesssssssesssssessesses 425
SUMMAIYceire et sa e s sae e sne s nennean 437
Chapter 16: X86-AVX Programming - New Instructions............. 439
Detecting Processor Features (CPUID)ccccververeercescessessessessensennens 439
Data-Manipulation Instructions..........cccvervrervrcrcscrcr e 447
Data BroadCastcccourrrenererereererisee s s 447
Data BIENG........coeeeeecerirecers e 453
Data PEIMULE......cveeeecere e 458
Data GALHE ..o s 463
Fused-Multiply-Add Programming.........cccceeevverversensensessessessessessessensens 470
General-Purpose Register Instructionscccooeeeveeecececcceeseccnene, 482
Flagless Multiplication and Bit Shiftscccoivirinininsncrcr e, 482
Enhanced Bit Manipulation.............coceveveveninnnnsnse s ses e e 486
SUMMAIY ...t 490

xiv

CONTENTS

Chapter 17: X86-64 Core Architectureccccemrrrrsssssssnnnnnnnnnnas 491
Internal ArChiteCture..........coviiiicnnnnir s 491
General-Purpose REQISIErS......covvrerrerererererereres s se e ras e sss e saesesasenans 492
RFLAGS REQISTEN ... ccveereerereererererersesersesessesessesessessssessssessssessesassesassessssesssnesssnsnaes 494
Instruction Pointer REGISTEr........ccvevererere s sa e sae e enes 494
INSErUCTION OPEIANASc.evveeereerererre vt re s e rs e sse e se s sas e rae e sae e saeenaes 494
Memory Addressing MOUEScccverereererererererseressersesessesessessssesassessssessesesssnssaes 495
Differences Between X86-64 and X86-32............cocuverernenernssesernseens 497
INStruction Set OVEIVIEWcccevcirciicien e 499
BasiC INSLrUCHION USE.......cccoeeereieceeeeeene s 499
INValid INSTFUCLIONS ... 500
NEW INSEIUCLIONS........ceeeiecceecce s 500
Deprecated RESOUICEScocvurreerererrresesesssseseses e sesss e sesessssssesssssssas 502
1111 1P 502
Chapter 18: X86-64 Core Programmingcccsrssssssnssssssansssssss 503
X86-64 Programming Fundamentalsc.ccccverersrcscessessessensennns 503
Integer ArthMELICcocoe s 504
MemOry AdAreSSiNg.........coceeeererreercrereeseses e 511
INtEGEr OPEIANGSccerereeeerer e 514
Floating-Point AfthMERiC.........o.oeoeeeeeeecr s 519
X86-64 Calling Convention...........ccccvververversensessessessessessessessessssssssessenns 523
BasiC Stack Frames.........ccvvnnnnnssssssssssss s 524
Using Non-Volatile REGISTErSccoevererererererere s rer e res e see e aenennes 528
Using Non-Volatile XMM ReQIStErS.........ccecererrererrererrereerereesersesesesessersssessssesseseraes 533
Macros for Prologs and EPilOgs........ccceeeerereriererseressereesersesersesessesessessssessssessssesaes 539
X86-64 Arrays and Stringsccccccvveerreresnsesnsene s 546
TWO-DImenSioNal ArTAYS.......ccceerrverrererresesesesse s ssssessesessessssssssessssesssssssssssssssssens 546
111 553
SUMMANY ...t sr e sn e n e n e n e n e nn e n s 956

CONTENTS

Chapter 19: X86-64 SIMD Architecturecccccmmrrrrsssssssnssnnnnnnnas 557
X86-SSE-64 Execution Environment ... 557
XB86-SSE-64 REgISTEr SEL......cccererereerereerererererereresersesessesessesassesasessesessesessenanaens 557
XB6-SSE-64 DAt TYPES...ceverereerererrerersererserersessssersssessesessessssessssessssesssssssessssessssens 559
X86-SSE-64 Instruction Set OVErvIEW ... 559
X86-AVX Execution Environment.........ccocoviinnnnnnn 960
X86-AVX-64 RegiSIEr Set........coeeeerercceriree et 560
X86-AVX-64 DAt TYPEScccrererreerererreeseressse e sesssse e snsnssssnas 561
X86-AVX-64 Instruction Set OVErVIEWccvvrrnnnnisssesssssssesesssesesesesesenes 562
SUMMAIY ...t nn s 562
Chapter 20: X86-64 SIMD Programmingcccccessseessssssssssssnssseas 563
X86-SSE-64 Programmingccceeeerseresmssesensessssssessssssssssssssssssssens 563
IMAge HiSTOGgram ... s 563
IMAQGE CONVEISION ... s s s 571
VECTON AITAYScvveeeceressecsesesssssesessesesesesss s e s ssss s s sssssssssssssssssssssssssssssssssnsnns 580
X86-AVX-64 Programmingccevverrersersersersessessessessssssssssssssssssssssssnas 590
Ellipsoid CalCUIALIONS..........ccvrererrerrererrerererereresersssersesessesessesessesassessssesssnesssenaes 590
RGB IMage PrOCESSING ...ccvevererererrerserersesersesssseressessssersesessessssessssessssessssesssssssssssaes 595
MaLFiX INVEISE.....ciiririiis s 602
Miscellaneous INSLrUCONS..........cv s 617
SUMMANY ...t sn s r s sn s sr e n e n e nn s n e nnnn s 622
Chapter 21: Advanced Topics and Optimization Techniques...... 623
Processor MicroarchiteCturecoueerncsnnnnnnisnssse s 623
Multi-Core ProcesS0or OVEIVIEWcocueresesesssssmssssssssssssssssssssssssssssssssssss s 624
Microarchitecture Pipeline Functionality.........ccccccoovvnnnnnnniecncenncensccneseceenas 626
EXECULION ENQINGc.veeieeeecrecteer et sa e r e s 628

xvi

CONTENTS

Optimizing Assembly Language Codecccooeeererereesnesnesnssessensennns 629
Basic Optimizations..........cccvveeninnsrecr s 630
Floating-Point Arthmetic..........cocoeieeneecee s 631
Program BranChes...........occerreencninrescis s 631
Data AlIGNMENT ... s 633
SIMD TECHNIGUESeeereeercrtecrreere e e e sn s n e sre s 634

SUMMAIY ...t sn s nn e 635

Chapter 22: Advanced Topics Programmingccussessssssssssssssns 637

Non-Temporal Memory STOresccccuerermseresessesessessesessessssessssessens 637

Data PrefetCh........occcnicncs s 645

SUMMANY ...t n s n s sn e sn e n s n e nn e n s 656

1T - 657

xvii

About the Author

Daniel Kusswurm has over 30 years of professional
experience as a software developer and computer
scientist. During his career, he has developed innovative
software for medical devices, scientific instruments,
and image processing applications. On many of these
projects, he successfully employed x86 assembly
language to significantly improve the performance of
computationally-intense algorithms or solve unique
programming challenges. His educational background
includes a BS in Electrical Engineering Technology from
Northern Illinois University along with an MS and PhD
in Computer Science from DePaul University.

Xix

About the Technical
Reviewer

Paul Cohen joined Intel Corporation during the very
early days of the x86 architecture, starting with the
8086, and retired from Intel after 26 years in sales/
marketing/management. He is currently partnered
with Douglas Technology Group, focusing on the
creation of technology books on behalf of Intel and
other corporations. Paul also teaches a class that
transforms middle and high school students into
real, confident entrepreneurs, in conjunction with
the Young Entrepreneurs Academy (YEA) and is

a Traffic Commissioner for the City of Beaverton,
Oregon and on the Board of Directors of multiple
non-profit organizations.

xxi

Acknowledgments

The production of a motion picture and the publication of a book are somewhat
analogous. Movie trailers extol the performances of the lead actors. The front cover

of a book trumpets the authors’ names. Actors and authors ultimately receive public
acclamation for their efforts. It is, however, impossible to produce a movie or publish a
book without the dedication, expertise, and creativity of a professional behind-the-scenes
team. This book is no exception.

I'would like to thank Patrick Hauke for his valuable advice and championing of the
book project during its conceptual stage. I am indebted to Steve Weiss for his editorial
savvy and guidance through the book publishing jungle. I am extremely appreciative of
Melissa Maldonado’s efforts to keep me and everyone else focused and on schedule. Paul
Cohen deserves kudos for his meticulous technical review and practical suggestions.
Copy editor Kezia Endsley and proofreader Ed Kusswurm merit applause and recognition
for their hard work and constructive feedback. I accept full responsibility for any
remaining imperfections.

I'would also like to thank Dhaneesh Kumar and the entire production staff at Apress
for their contributions, Vyacheslav Klochkov and Mitch Bodart for their help in clarifying
how to effectively use the FMA instructions, and my professional colleagues for their
support and encouragement. Finally, I would like to recognize parental nodes Armin
(RIP) and Mary along with sibling nodes Mary, Tom, Ed, and John for their inspiration
during the writing of this book

xxiii

Introduction

Since the invention of the personal computer, software developers have used assembly
language to create innovative solutions for a wide variety of algorithmic challenges.
During the early days of the PC era, it was common practice to code large portions of

a program or complete applications using x86 assembly language. Even as the use of
high-level languages such as C, C++, and C# became more prevalent, many software
developers continued to employ assembly language to code performance-critical
sections of their programs. And while compilers have improved remarkably over the
years in terms of generating machine code that is both spatially and temporally efficient,
situations still exist where it makes sense for software developers to exploit the benefits of
assembly language programming.

The inclusion of single-instruction multiple-data (SIMD) architectures in modern
x86 processors provides another reason for the continued interest in assembly language
programming. A SIMD-capable processor includes computational resources that
facilitate concurrent calculations using multiple data values, which can significantly
improve the performance of applications that must deliver real-time responsiveness.
SIMD architectures are also well-suited for computationally-intense problem domains
such as image processing, audio and video encoding, computer-aided design, computer
graphics, and data mining. Unfortunately, many high-level languages and development
tools are unable to fully (or even partially) exploit the SIMD capabilities of a modern x86
processor. Assembly language, on the other hand, enables the software developer to take
full advantage of a processor’s entire computational resource suite.

Modern X86 Assembly Language Programming

Modern X86 Assembly Language Programming is an edifying text on the subject of x86
assembly language programming. Its primary purpose is to teach you how to code
functions using x86 assembly language that can be invoked from a high-level language.
The book includes informative material that explains the internal architecture of an x86
processor as viewed from the perspective of an application program. It also contains
an abundance of sample code that is structured to help you quickly understand x86
assembly language programming and the computational resources of the x86 platform.
Major topics of the book include the following:

e X86 32-bit core architecture, data types, internal registers,
memory addressing modes, and the basic instruction set

e X87 core architecture, register stack, special purpose registers,
floating-point encodings, and instruction set

XXV

INTRODUCTION

e MMX technology and the fundamentals of packed integer
arithmetic

e Streaming SIMD extensions (SSE) and Advanced Vector
Extensions (AVX), including internal registers, packed integer and
floating-point arithmetic, and associated instruction sets

e XB86 64-bit core architecture, data types, internal registers,
memory addressing modes, and the basic instruction set

e 64-bit extensions to SSE and AVX technologies

e X86 microarchitecture and assembly language optimization
techniques

Before proceeding I should also explicitly mention some of the topics that are
not covered. This book does not examine legacy aspects of x86 assembly language
programming such as 16-bit real-mode applications or segmented memory models.
Except for a few historical observations and comparisons, all of the discussions and
sample code emphasize x86 protected-mode programming using a flat linear memory
model. This book does not discuss x86 instructions or architectural features that are
managed by operating systems or require elevated privileges. It also doesn’t explore how
to use x86 assembly language to develop software that is intended for operating systems
or device drivers. However, if your ultimate goal is to use x86 assembly language to create
software for one of these environments, you will need to thoroughly understand the
material presented in this book.

While it is still theoretically possible to write an entire application program using
assembly language, the demanding requirements of contemporary software development
make such an approach impractical and ill advised. Instead, this book concentrates on
creating x86 assembly language modules and functions that are callable from C++. All of
the sample code and programing examples presented in this book use Microsoft Visual
C++ and Microsoft Macro Assembler. Both of these tools are included with Microsoft’s
Visual Studio development tool.

Target Audience

The target audience for this book is software developers, including:

e Software developers who are creating application programs
for Windows-based platforms and want to learn how to write
performance-enhancing algorithms and functions using x86
assembly language.

e Software developers who are creating application programs for
non-Windows environments and want to learn x86 assembly
language programming.

XXVi

INTRODUCTION

e Software developers who have a basic understanding of x86
assembly language programming and want to learn how to use
the x86’s SSE and AVX instruction sets.

e Software developers and computer science students who want or
need to gain a better understanding of the x86 platform, including
its internal architecture and instruction sets.

The principal audience for Modern X86 Assembly Language Programming is Windows
software developers since the sample code uses Visual C++ and Microsoft Macro Assembler.
It is important to note, however, that this is not a book on how to use the Microsoft
development tools. Software developers who are targeting non-Windows platforms also can
learn from the book since most of the informative content is organized and communicated
independent of any specific operating system. In order to understand the book’s subject
material and sample code, a background that includes some programming experience
using C or C++ will be helpful. Prior experience with Visual Studio or knowledge of a
particular Windows API is not a prerequisite to benefit from the book.

Outline of Book

The primary objective of this book is to help you learn x86 assembly language
programming. In order to achieve this goal, you must also thoroughly understand the
internal architecture and execution environment of an x86 processor. The book’s chapters
and content are organized with this in mind. The following paragraphs summarize the
book’s major topics and each chapter’s content.

X86-32 Core Architecture—Chapter 1 covers the core architecture of the x86-32
platform. It includes a discussion of the platform’s fundamental data types, internal
architecture, instruction operands, and memory addressing modes. This chapter
also presents an overview of the core x86-32 instruction set. Chapter 2 explains the
fundamentals of x86-32 assembly language programming using the core x86-32
instruction set and common programming constructs. All of the sample code discussed
in Chapter 2 (and subsequent chapters) is packaged as working programs, which means
that you can run, modify, or otherwise experiment with the code in order to enhance your
learning experience.

X87 Floating-Point Unit—Chapter 3 surveys the architecture of the x87 floating-
point unit (FPU) and includes operational descriptions of the x87 FPU'’s register stack,
control word register, status word register, and instruction set. This chapter also delves
into the binary encodings that are used to represent floating-point numbers and certain
special values. Chapter 4 contains an assortment of sample code that demonstrates how
to perform floating-point calculations using the x87 FPU instruction set. Readers who
need to maintain an existing x87 FPU code base or are targeting processors that lack the
scalar floating-point capabilities of x86-SSE and x86-AVX (e.g., Intel’s Quark) will benefit
the most from this chapter.

MMX Technology—Chapter 5 describes the x86’s first SIMD extension, which is
called MMX technology. It examines the architecture of MMX technology including its
register set, operand types, and instruction set. This chapter also discusses a number
of related topics, including SIMD processing concepts and the mechanics of packed-

xxvii

INTRODUCTION

integer arithmetic. Chapter 6 includes sample code that illustrates basic MMX operations,
including packed-integer arithmetic (both wraparound and saturated), integer array
processing, and how to properly handle transitions between MMX and x87 FPU code.

Streaming SIMD Extensions—Chapter 7 focuses on the architecture of Streaming
SIMD Extensions (SSE). X86-SSE adds a new set of 128-bit wide registers to the x86
platform and incorporates several instruction set additions that support computations
using packed integers, packed floating-point (both single and double precision), and text
strings. Chapter 7 also discusses the scalar floating-point capabilities of x86-SSE, which
can be used to both simplify and improve the performance of algorithms that require
scalar floating-point arithmetic. Chapters 8 - 11 contain an extensive collection of sample
code that highlights use of the x86-SSE instruction set. Included in this chapter are several
examples that demonstrate using the packed-integer capabilities of x86-SSE to perform
common image-processing tasks, such as histogram construction and pixel thresholding.
These chapters also include sample code that illustrates how to use the packed floating-
point, scalar floating-point, and text string-processing instructions of x86-SSE.

Advanced Vector Extensions—Chapter 12 explores the x86’s most recent SIMD
extension, which is called Advanced Vector Extensions (AVX). This chapter explains the
x86-AVX execution environment, its data types and register sets, and the new three-
operand instruction syntax. It also discusses the data broadcast, gather, and permute
capabilities of x86-AVX along with several x86-AVX concomitant extensions, including
fused-multiply-add (FMA), half-precision floating-point, and new general-purpose
register instructions. Chapters 13 - 16 contain sample code that depicts use of the various
x86-AVX computational resources. Examples include using the x86-AVX instruction set
with packed integers, packed floating-point, and scalar floating-point operands. These
chapters also contain sample code that explicates use of the data broadcast, gather,
permute, and FMA instructions.

X86-64 Core Architecture—Chapter 17 peruses the x86-64 platform and includes
a discussion of the platform’s core architecture, supported data types, general purpose
registers, and status flags. It also explains the enhancements made to the x86-32 platform
in order to support 64-bit operands and memory addressing. The chapter concludes with
a discussion of the x86-64 instruction set, including those instructions that have been
deprecated or are no longer available. Chapter 18 explores the fundamentals x86-64
assembly language programming using a variety of sample code. Examples include how
to perform integer calculations using operands of various sizes, memory addressing
modes, scalar floating-point arithmetic, and common programming constructs. Chapter
18 also explains the calling convention that must be observed in order to invoke an x86-64
assembly language function from C++.

X86-64 SSE and AVX—Chapter 19 describes the enhancements to x86-SSE and x86-
AVX that are available on the x86-64 platform. This includes a discussion of the respective
execution environments and extended data register sets. Chapter 20 contains sample
code that highlights use of the x86-SSE and x86-AVX instruction sets with the x86-64 core
architecture.

Advanced Topics—The last two chapters of this book consider advanced topics and
optimization techniques related to x86 assembly language programming. Chapter 21
examines key elements of an x86 processor’s microarchitecture, including its front-end
pipelines, out-of-order execution model, and internal execution units. It also includes
a discussion of programming techniques that you can employ to write x86 assembly

xxviii

INTRODUCTION

language code that is both spatially and temporally efficient. Chapter 22 contains sample
code that illustrates several advanced assembly language programming techniques.

Appendices—The final section of the book includes several appendices. Appendix
A contains a brief tutorial on how to use Microsoft’s Visual C++ and Macro Assembler.
Appendix B summarizes the x86-32 and x86-64 calling conventions that assembly
language functions must observe in order to be invoked from a Visual C++ function.
Appendix C contains a list of references and resources that you can consult for more
information about x86 assembly language programming.

Sample Code Requirements

You can download the sample code for this book from the Apress website at
http://www.apress.com/9781484200650. The following hardware and software is required to
build and run the sample code:

e APCwith an x86 processor that is based on a recent
microarchitecture. All of the x86-32, x87 FPU, MMX, and
x86-SSE sample code can be executed using a processor based
on the Nehalem (or later) microarchitecture. PCs with processors
based on earlier microarchitectures also can be used to run
many of the sample code programs. The AVX and AXV2 sample
code requires a processor based on the Sandy Bridge or Haswell
microarchitecture, respectively.

e Microsoft Windows 8.x or Windows 7 with Service Pack 1. A 64-bit
version of Windows is required to run the x86-64 sample code.

e Visual Studio Professional 2013 or Visual Studio Express
2013 for Windows Desktop. The Express edition can be freely
downloaded from the following Microsoft website: http://msdn.
microsoft.com/en-us/vstudio. Update 3 is recommended for both
Visual Studio editions.

Caution The primary purpose of the sample code is to elucidate the topics and
technologies presented in this book. Minimal attention is given to important software
engineering concerns such as robust error handling, security risks, numerical stability,
rounding errors, or ill-conditioned functions. You are responsible for addressing these issues
should you decide to use any of the sample code in your own programs.

XXix

http://www.apress.com/9781484200650
http://msdn.microsoft.com/en-us/vstudio
http://msdn.microsoft.com/en-us/vstudio

INTRODUCTION

Terminology and Conventions

The following paragraphs define the meaning of common terms and expressions used
throughout this book. A function, subroutine, or procedure is a self-contained unit of
executable code that accepts zero or more arguments, performs an operation, and
optionally returns a value. Functions are typically invoked using the processor’s call
instruction. A thread is the smallest unit of execution that is managed and scheduled by
an operating system. A task or process is a collection of one or more threads that share the
same logical memory space. An application or program is a complete software package
that contains at least one task.

The terms x86-32 and x86-64 are used respectively to describe 32-bit and 64-bit
aspects, resources, or capabilities of a processor; x86 is employed for features that are
common to both 32-bit and 64-bit architectures. The expressions x86-32 mode and
x86-64 mode denote a specific processor execution environment with the primary
difference being the latter mode’s support of 64-bit registers, operands, and memory
addressing. Common capabilities of the x86’s SIMD extensions are described using
the terms x86-SSE for Streaming SIMD Extensions or x86-AVX for Advanced Vector
Extensions. When discussing aspects or instructions of a specific SIMD enhancement, the
original acronyms (e.g., SSE, SSE2, SSE3, SSSE3, SSE4, AVX, and AVX2) are used.

Additional Resources

An extensive set of x86-related documentation is available from both Intel and AMD.
Appendix C lists a number of resources that both aspiring and experienced x86 assembly
language programmers will find useful. Of all the resources listed Appendix C, the

most important tome is Volume 2 of the reference manual entitled Intel 64 and IA-32
Architectures Software Developer’s Manual—Combined Volumes: 1, 2A, 2B, 2C, 3A, 3B and
3C (Order Number: 325462). This volume contains comprehensive information for each
processor instruction, including detailed operational descriptions, lists of valid operands,
affected status flags, and potential exceptions. You are strongly encouraged to consult this
documentation when developing your own x86 assembly language functions in order to
verify correct instruction usage.

XXX

	Contents at a Glance
	Contents
	About the Author
	About the Technical
Reviewer
	Acknowledgments
	Introduction

