
file:///E|/TEMP/Assembly%20LanguageChapt%200.htm

Assembly Language:
Step-by-Step

Jeff Duntemann

file:///E|/TEMP/Assembly%20LanguageChapt%200.htm (1 of 23) [9/30/02 08:15:26 PM]

file:///E|/TEMP/Assembly%20LanguageChapt%200.htm

John Wiley & Sons, Inc.
New York • Chichester • Brisbane • Toronto • Singapore

This publication is designed to provide accurate and authoritative information in regard to
the subject matter covered. It is sold with the understanding that the publisher is not
engaged in rendering legal, accounting, or other professional service. If legal advice or
other expert assistance is required, the services of a competent professional person should
be sought. FROM A DECLARATION OF PRINCIPLES JOINTLY ADOPTED BY A
COMMITTEE OF THE AMERICAN BAR ASSOCIATION AND A COMMITTEE OF
PUBLISHERS.

Copyright © 1992 by John Wiley & Sons, Inc.

All rights reserved. Published simultaneously in Canada

Reproduction or translation of any part of this work beyond that permitted by section 107
or 108 of the 1976 United States Copyright Act without the written permission of the
copyright owner is unlawful. Requests for permission or further information should be
addressed to the Permissions Department, John Wiley & Sons, Inc.

file:///E|/TEMP/Assembly%20LanguageChapt%200.htm (2 of 23) [9/30/02 08:15:27 PM]

file:///E|/TEMP/Assembly%20LanguageChapt%200.htm

For Kathleen M. Duntemann, Godmother

... who gave me books when all I could do was put teeth marks in

It was a good investment.

Recognizing the
importance of
preserving what
has been written, it
is a policy of John
Wiley & Sons,
Inc. to have books
of enduring value
published in the
United States
printed on acid-
free paper, and we
exert our best
efforts to that end.

Library of Congress Cataloging-in-Publication Data
Duntemann, Jeff. 1952 -

Assembly language : step-by-step / Jeff Duntemann.
p. cm. Includes index.

ISBN 0-471-57814-2 (paper : alk. paper) 1. Assembler language (Computer program

file:///E|/TEMP/Assembly%20LanguageChapt%200.htm (3 of 23) [9/30/02 08:15:27 PM]

file:///E|/TEMP/Assembly%20LanguageChapt%200.htm

language) QA76.73.A8D87 1992 005.265-dc20

I. Title.

92-16665 CIP

Printed in the United States of America

93 10 9876543

Introduction:
Agony in the Key of AX

What astonishes me about learning how to program is not that it's so hard, but that it's so
easy. Am I nuts? Hardly. It's just that my curse is the curse of a perfect memory, and I
remember piano lessons. My poor mother paid $600 in 1962 for a beautiful cherrywood
spinet, and every week for two years I trucked off to Wilkins School of Music for a five
dollar lesson. It wasn't that I was a reluctant student; I love music and I genuinely wanted
to master the damned thing. But after two years, the best I could do was play "Camelot"
well enough to keep the dog from howling. I can honestly say that nothing I ever tried

file:///E|/TEMP/Assembly%20LanguageChapt%200.htm (4 of 23) [9/30/02 08:15:27 PM]

file:///E|/TEMP/Assembly%20LanguageChapt%200.htm

and failed to achieve after that (including engineering school and sailboarding) was
anything close to that difficult.
That's why I say: if you can play the piano, you can learn to program in assembly
language. Even if you can't play the piano, I hold that you can learn to program in
assembly language, if:
• You've ever done your own long-form taxes
• You've earned a degree in medicine, law, or engineering
• You've ever put together your kid's swing set
• You've ever cooked a five-course dinner for eight and gotten everything to the table,
hot, at all the right times
Still, playing the piano is the acid test. There are a lot more similarities than there are
differences. To wit:
In both cases, you sit down in front of a big expensive machine with a keyboard. You try
to memorize a system of notation that seems to have originated on Mars. You press the
keys according to incomprehensible instructions in stacks of books. Ultimately, you sit
there and grit your teeth while making so many mistakes your self-confidence dribbles
out of your pores and disappears into the carpet padding. In many cases, it gets so bad
that you hurl the books against the wall and stomp off to play Yahtzee with your little
brother.
The differences are fewer: mistakes committed while learning assembly language won't
make the dog howl. And, more crucially, what takes years of agony in front of a piano
can be done in a couple of months in front of your average PC.
Furthermore, I'll do my best to help.
That's what this book is for: to get you started as an assembly-language programmer from
a dead stop. I'll assume that you know how to run your machine. That is, I won't go
through all that nonsense about flipping the big red switch and inserting a disk in a drive
and holding down the Ctrl key while pressing the C key. Van Wolverton can teach you all
that stuff.
On the other hand, I won't assume that you know anything about programming, nor very
much about what happens inside the box itself. That means the first few sections will be
the kind of necessary groundwork that will start you nodding off if you've been through it
already. There's no helping that. Skip to Section 3 or so if you get bored.
I also have to come clean here and admit that this book is not intended to be a complete
tutorial on assembly language, or even close to it. What I want to do is get you familiar
enough with the jargon and the assumptions of assembly language so that you can pick up
your typical "introduction" to assembly language and not get lost by page 6. I specifically
recommend Tom Swan's excellent book, Mastering Turbo Assembler, which will take

file:///E|/TEMP/Assembly%20LanguageChapt%200.htm (5 of 23) [9/30/02 08:15:27 PM]

file:///E|/TEMP/Assembly%20LanguageChapt%200.htm

you the rest of the way if you use Borland's assembler. A comparable book devoted to
Microsoft's MASM has not yet been written, but even if you use MASM, Tom's book will
still be valuable and you'll learn a lot from it. Mastering Turbo Assembler can
occasionally be found in bookstores, or you can order it by mail through PC
TECHNIQUES Bookstream.
Assembly language is almost certainly the most difficult kind of computer programming,
but keep in mind that we're speaking in relative terms here. Five pushups are harder to do
than five jumping jacks—but compared to running the Marathon, both amount to almost
nothing. Assembly language is more difficult to learn than Pascal, but compared to
raising your average American child from birth to five years, it's a cakewalk.
So don't let the mystique get you. Assembly-language programmers feel pretty smug
about what they've learned to do, but in our workaday lives we are forced to learn and do
things that put even assembly language to shame. If you're willing to set aside a couple
months' worth of loose moments, you can pick it up too. Give it a shot. Your neighbors
will thank you.
And so will the dog.
—-Jeff Duntemann Scottsdale, AZ March 1992

A Note to People Who
Have Never Programmed
Before
More than anyone else, this book was written for you. Starting with assembly language
would not be most people's first choice in a computer language, but it's been done; it can
be done, and it can be done with less agony than you might think. Still, it's a novel aim
for a computer book, and I'd like you to do a little quality control for me and tell me how
I'm doing.
While you're going through this book, ask yourself once in a while: is it working? And if

file:///E|/TEMP/Assembly%20LanguageChapt%200.htm (6 of 23) [9/30/02 08:15:27 PM]

file:///E|/TEMP/Assembly%20LanguageChapt%200.htm

not, why not?
If I lose you somewhere in the discussion, jot a note in the margin. Tell me where I lost
you. If possible, tell me why. (And saying, "I just don't get it" is perfectly acceptable, as
long as you tell me where in the book you were when you started not to get it.)
As with all my books, I hope to keep this one in print well into the 21st century, revising
it as need be to hone my technique and follow the technology. Telling me how the book
works or doesn't work will, in time, help me make a better book.
Write to me at:
Jeff Duntemann PC TECHNIQUES Magazine
7721 E. Gray Road #204
Scottsdale, A2 85260

I can't reply individually to all letters, (not if I ever intend to get another book written!)
but you'll have my eternal gratitude nonetheless.

How to Get the Most
from this Book
By design, this is a serial-access book. I wrote it to be read like one of those
bad/wonderful novels, starting at page one and moving right along to the end. Virtually
all of the chapters depend on the chapters that came before them, and if you read a
chapter here and a chapter there, there's some danger that the whole thing won't gel.
If you're already familiar with programming, you could conceivably skip Chapters 0,1,
and 2. But why not assume there's a hole or two in parts of your experience and a little
rust on the rest? Skill is not simply knowledge, but the resonance that comes of seeing
how different facets of knowledge reinforce one another.

Do it all. Get the big picture. (Keep in mind that I've hidden some funny stories in
there as bait!)

file:///E|/TEMP/Assembly%20LanguageChapt%200.htm (7 of 23) [9/30/02 08:15:27 PM]

file:///E|/TEMP/Assembly%20LanguageChapt%200.htm

Contents
Chapter 0 Another Pleasant Valley Saturday
Understanding What Computers Really Do
0.1 It's All in the Plan 2
0.2 Had This Been the Real Thing... 5
0.3 Do Not Pass GO 5

Chapter 1 Alien Bases 13
Getting Your Arms around Binary and Hexadecimal
1. 1 The Return of the New Math Monster 14
1.2 Counting in Martian 14
1.3 Octal: How the Grinch Stole 8 and 9 19
1.4 Hexadecimal: Solving the Digit Shortage 22
1.5 From Hex to Decimal and From Decimal to Hex 25
1.6 Arithmetic in Hex 29
1.7 Binary 34
1.8 Hexadecimal as Shorthand for Binary 38

Chapter 2 Lifting The Hood 41
Discovering What Computers Actually Are
2.1 RAXie, We Hardly Knew Ye... 42
2.2 Switches, Transistors, and Memory 43
2.3 The Shop Foreman and the Assembly Line 53
2.4 The Box that Follows a Plan 58

Chapter 3 The Right To Assemble 63
The Process of Making Assembly-Language Programs
3.1 Nude with Bruises and Other Perplexities 64
3.2 DOS and DOS Files 65
3.3 Compilers and Assemblers 71
3.4 The Assembly-Language Development Process 79

file:///E|/TEMP/Assembly%20LanguageChapt%200.htm (8 of 23) [9/30/02 08:15:27 PM]

file:///E|/TEMP/Assembly%20LanguageChapt%200.htm

3.5 DEBUG and How to Use It 89

Chapter 4 Learning and Using Jed 99
A Programming Environment for Assembly Language
4.1 A Place to Stand with Access to Tools 100
4.2 JED's Place to Stand 101
4.3 Using JED's Tools 104
4.4 JED's Editor in Detail 116

Chapters An Uneasy Alliance 131
The 8086/8088 CPU and Its Segmented Memory System
5.1 Through a Glass, with Blinders 132
5.2 "They're Diggin' It up in Choonks!" 135
5.3 Registers and Memory Addresses 141

Chapter 6 Following Your Instructions 153
Meeting Machine Instructions Up Close and Personal
6.1 Assembling and Executing Machine Instructions
with DEBUG 154
6.2 Machine Instructions and Their Operands 157
6.3 Assembly-Language References 167
6.4 An Assembly-Language Reference for Beginners 168
6.5 Rally 'Round the Flags, Boys! 173
6.6 Using Type Overrides 178

Chapter7 Our Object All Sublime 181
Creating Programs That Work
7.1 The Bones of an Assembly-Language Program 182
7.2 First In, First Out via the Stack 193
7.3 Using DOS Services through INT 200
7.4 Summary: EAT.ASM on the Dissection Table 209

file:///E|/TEMP/Assembly%20LanguageChapt%200.htm (9 of 23) [9/30/02 08:15:27 PM]

file:///E|/TEMP/Assembly%20LanguageChapt%200.htm

Chapter8 Dividing and Conquering 215
Using Procedures and Macros to Battle Complexity
8.1 Programming in Martian 216
8.2 Boxes Within Boxes 216
8.3 Using BIOS Services 224
8.4 Building External Libraries of Procedures 235
8.5 Creating and Using Macros 248

Chapter 9 Bits, Flags, Branches, and Tables 261
Easing into Mainstream Assembly Programming
9.1 Bits is Bits (and Bytes is Bits) 262
9.2 Shifting Bits 269
9.3 Flags, Tests, and Branches 276
9.4 Assembler Odds'n'Ends 290

Chapter 10 Stringing Them Up 311
Those Amazing String Instructions
10.1 The Notion of an Assembly-Language String 312
10.2 REP STOSW: The Software Machine Gun 314
10.3 The Semiautomatic Weapon: STOSW without REP 318
10.4 Storing Data to Discontinuous Strings 327
•

Chapter 11 O Brave New World! 339
The Complications of Assembly-Language Programming in the '90s
11.1 A Short History of the CPU Wars 341
11.2 Opening Up the Far Horizon 342
11.3 Using the "New" Instructions in the 80286 346
11.4 Moving to 32 Bits with the 386 and 486 352
11.5 Additional 386/486 Instructions 357
11.6 Detecting Which CPU Your Code Is Running On 360

Chapter 12 Conclusion 369

file:///E|/TEMP/Assembly%20LanguageChapt%200.htm (10 of 23) [9/30/02 08:15:27 PM]

file:///E|/TEMP/Assembly%20LanguageChapt%200.htm

Not the End, but Only the Beginning
Appendix A Partial 8086/8088 Instruction Set Reference 373
Appendix B The Extended ASCII Code and Symbol Set 421
Appendix C Segment Register Assumptions 425
Index 427

Another Pleasant Valley
Saturday
Understanding What Computers Really Do
0.1 It's All in the Plan > 1
0.2 Had This Been the Real Thing... > 5
0.3 Do Not Pass GO > 5

file:///E|/TEMP/Assembly%20LanguageChapt%200.htm (11 of 23) [9/30/02 08:15:27 PM]

file:///E|/TEMP/Assembly%20LanguageChapt%200.htm

0.1 It's All in the Plan

Quick, get the kids up, it's past 7. Nicky's got Little League at 9 and Dione's got ballet at
10. Mike, give Max his heartworm pill! (We're out of them, ma, remember?) Your father
picked a great weekend to go fishing.. .here, let me give you ten bucks and go get more
pills at the vet's...my God, that's right, Hank needed gas money and left me broke. There's
a teller machine over by K-Mart, and I if I go there I can take that stupid toilet seat back
and get the right one.
I guess I'd better make a list.
It's another Pleasant Valley Saturday, and thirty-odd million suburban home-makers sit
down with a pencil and pad at the kitchen table to try and make sense of a morning that
would kill and pickle any lesser being. In her mind, she thinks of the dependencies and
traces the route:
Drop Nicky at Rand Park, go back to Dempster and it's about ten minutes to Golf Mill
Mall. Do I have gas? I'd better check first—if not, stop at Del's Shell or I won't make it to
Milwaukee Avenue. Bleed the teller machine at Golf Mill, then cross the parking lot to K-
Mart to return the toilet seat that Hank bought last weekend without checking what shape
it was. Gotta remember to throw the toilet seat in back of the van—write that at the top of
the list.
By then it'll be half past, maybe later. Ballet is all the way down Greenwood in Park
Ridge. No left turn from Milwaukee—but there's the sneak path around behind the Mall. I
have to remember not to turn right onto Milwaukee like I always do—jot that down.
While I'm in Park Ridge I can check and see if Hank's new glasses are in—should call but
they won't even be open until 9:30. Oh, and groceries—can do that while Dione dances.
On the way back I can cut over to Oakton and get the dog's pills.
In about ninety seconds flat the list is complete:
• Throw toilet seat in van

file:///E|/TEMP/Assembly%20LanguageChapt%200.htm (12 of 23) [9/30/02 08:15:27 PM]

file:///E|/TEMP/Assembly%20LanguageChapt%200.htm

• Check gas—if empty, stop at Del's Shell
• Drop Nicky at Rand Park
• Stop at Golf Mill teller machine
• Return toilet seat at K-Mart
• Drop Dione at ballet (remember back path to Greenwood)
• See if Hank's glasses are at Pearle Vision—if they are, make double sure they
remembered the extra scratch coating
• Get groceries at Jewel
• Pick up Dione
• Stop at vet's for heartworm pills
• Drop off groceries at home

• If it's time, pick up Nicky. If not, collapse for a few minutes, then pick up Nicky.
• Collapse!
In what we often call a "laundry list" (whether it involves laundry or not) is the perfect
metaphor for a computer program. Without realizing it, our intrepid homemaker has
written herself a computer program, and then set out (acting as the computer) to execute it
completely before noon.
Computer programming is nothing more than this: You the programmer write a list of
steps and tests. The computer then performs each step and test in sequence. When the list
of steps has been executed, the computer stops.
A computer program is a list of steps and tests, nothing more.

Steps and Tests

Think for a moment about what I call a "test" in the laundry list shown above. A test is
the sort of either/or decision we make dozens or hundreds of times on even the most
placid of days, sometimes nearly without thinking about it.
Our homemaker performed a test when she jumped into the van to get started on her
adventure. She looked at the gas gauge. The gas gauge would tell her one of two things:
1) She has enough gas, or 2) no, she doesn't. If she has enough gas, she takes a right and
heads for Rand Park. If she doesn't have enough gas, she takes a left down to the corner
and fills the tank at Del's Shell. (Del takes credit cards.) Then, with a full tank, she
continues the program by taking a U-turn and heading for Rand Park.
In the abstract, a test consists of those two parts:
• First you take a look at something that can go one of two ways.

file:///E|/TEMP/Assembly%20LanguageChapt%200.htm (13 of 23) [9/30/02 08:15:27 PM]

file:///E|/TEMP/Assembly%20LanguageChapt%200.htm

• Then you do one of two things, depending on what you saw when you took a look.
Toward the end of the program, our homemaker got home, took the groceries out of the
van, and took a look at the clock. If it wasn't time to get Nicky back from Little League,
she has a moment to collapse on the couch in a nearly empty house. If it is time to get
Nicky, there's no rest for the ragged: She sprints for the van and heads back to Rand Park.
(Any guesses as to whether she really gets to collapse when the program is complete?)

More than Two Ways?

You might object that many or most tests involve more than two alternatives.
Except for totally impulsive behavior, every human decision comes down to the choice of
one of two alternatives.
What you have to do is look a little more closely at what goes through your mind when
you make decisions. The next time you buzz down to Moo Foo Goo for fast Chinese,
observe yourself while you're poring over the menu. The choice might seem, at first, to be
of one item out of 26 Cantonese main courses. Not so—the choice, in fact, is between
choosing one item and not choosing that one item. Your eyes rest on Cashew Chicken.
Naw, too bland. That was a test. You slide down to the next item. Chicken with Black
Mushroom. Hmmm, no, had that last week. That was another test. Next item: Kung Pao
Chicken. Yeah, that's it! That was a third test.
The choice was not among Cashew Chicken, Chicken with Black Mushrooms, or Kung
Pao Chicken. Each dish had its moment, poised before the critical eye of your mind, and
you turned thumbs up or thumbs down on it, individually. Eventually, one dish won, but
it won in that same game of "To eat or Not to eat."
Many of life's most complicated decisions come about because 99% of us are not nudists.
You've been there-. You're standing in the clothes closet in your underwear, flipping
through your rack of pants. The tests come thick and fast. This one? No. This one? No.
This one? No. This one? Yeah. You pick a pair of blue pants, say. (It's a Monday, after
all, and blue would seem an appropriate color.) Then you stumble over to your sock
drawer and take a look. Whoops, no blue socks. That was a test. So you stumble back to
the clothes closet, hang your blue pants back on the pants rack, and start over. This one?
No. This one? No. This one? Yeah. This time it's brown pants, and you toss them over
your arm and head back to the sock drawer to take another look. Nertz, out of brown
socks, too. So it's back to the clothes closet....
What you might consider a single decision, or perhaps two decisions inextricably tangled
(like picking pants and socks of the same color, given stock on hand) is actually a series

file:///E|/TEMP/Assembly%20LanguageChapt%200.htm (14 of 23) [9/30/02 08:15:27 PM]

file:///E|/TEMP/Assembly%20LanguageChapt%200.htm

of small decisions, always binary in nature: Pick 'em or don't pick'em. Find 'em or don't
find 'em. The Monday morning episode in the clothes closet is a good analog of a
programming structure called a loop. You keep doing a series of things until you get it
right, and then you stop. (Assuming you're not the kind of guy who wears blue socks with
brown pants.) But whether you get everything right always comes down to a sequence of
simple, either/or decisions.

Computers Think Like Us
I can almost hear what you're thinking: "Sure, it's a computer book, and he's trying to get
me to think like a computer." Not at all. Computers think like us.

We designed them; how else could they think? No, what I'm trying to do is get you to
take a long hard look at how you think. We run on automatic for so much of our lives that
we literally do most of our thinking without really thinking about it.
The very best model for the logic of a computer program is the very same logic we use to
plan and manage our daily affairs. No matter what we do, it comes down to a matter of
confronting two alternatives and picking one. What we might think of as a single large
and complicated decision is nothing more than a messy tangle of many smaller decisions.
The skill of looking at a complex decision and seeing all the little decisions in its tummy
will serve you well in learning how to program. Observe yourself the next time you have
to decide something. Count up the little decisions that make up the big one. You'll be
surprised.
And, surprise! You'll be a programmer.

0.2 Had This Been the Real Thing...

Do not be alarmed. What you have just experienced was a metaphor. It was not the real
thing. (The real thing comes later.)
I'll be using metaphors a lot in this book. A metaphor is a loose comparison drawn
between something familiar (like a Saturday morning laundry list) and something
unfamiliar (like a computer program.) The idea is to anchor the unfamiliar in the terms of
the familiar, so that when I begin tossing facts at you you'll have someplace comfortable
to lay them down. The facts don't start until Chapter 1. (That's why I call this Chapter 0:
Metaphors only, please.)
The most important thing for you to do right now is keep an open mind. If you know a

file:///E|/TEMP/Assembly%20LanguageChapt%200.htm (15 of 23) [9/30/02 08:15:27 PM]

file:///E|/TEMP/Assembly%20LanguageChapt%200.htm

little bit about computers or programming, don't pick nits. Yes, there are important
differences between a homemaker following a scribbled laundry list and a computer
executing a program. I'll mention those differences all in good time.
For now, it's still Chapter 0. Take these initial metaphors on their own terms. Later on,
they'll help a lot.

0.3 Do Not Pass GO

"There's a reason bored and board are homonyms," said my best friend Art one evening,
as we sat (two super-sophisticated twelve-year-olds) playing some game in his basement.
(He may have been unhappy because he was losing.) Was it Mille Bornes? Or Stratego?
Or Monopoly? Or something else entirely? I confess I don't remember. I simply recall
hopping some little piece of plastic shaped like a pregnant bowling pin up and down a
series of colored squares that told me to do dumb things like go back two spaces or put $100
in the pot or nuke Outer Mongolia.

Outer Mongolia notwithstanding, there are strong parallels to be drawn between that
peculiar American obsession, the board game, and assembly-language programming.
First of all, everything we said before still holds: Board games, by and large, consist of a
progression of steps and tests. In some games, like Trivial Pursuit, every step on the board
is a test: To see if you can answer, or not answer, a question on a card. In other board
games, each little square on the board contains some sort of instruction: Lose One Turn;
Go Back Two Squares; Take a Card from Community Chest; and, of course, Go to Jail.
Certain board games made for some lively arguments between Art and me (it was that or
be bored, as it were) concerning what it meant to Go Forward or Backward Five Steps. It
seemed to me that you should count the square you were already on. Art, traditionalist
always, thought you should start counting with the first step in the direction you had to
go. This made a difference in the game, of course. (I conveniently forgot to press my
point when doing so would land me on something like Park Place with fifteen of Art's
hotels on it...)

The Game of Big Bux

To avoid getting in serious trouble, I have invented my own board game to continue with
this particular metaphor. In the sense that art mirrors life, the Game of Big Bux mirrors
life in Silicon Valley, where money seems to be spontaneously created (generally in

file:///E|/TEMP/Assembly%20LanguageChapt%200.htm (16 of 23) [9/30/02 08:15:27 PM]

file:///E|/TEMP/Assembly%20LanguageChapt%200.htm

somebody else's pocket) and the three big Money Black Holes are fast cars, California
real estate, and messy divorces.
A portion of the Big Bux game board is shown on the following page. The line of
rectangles on the left side of the page continues all the way around the board. In the
middle of the board are cubbyholes to store your play money and game pieces; stacks of
cards to be read occasionally; and short "detours" with names like Messy Divorce and
Start a Business, which are brief sequences of the same sort of action rectangles as those
forming the path around the edge of the board.
Unlike many board games, you don't throw dice to determine how many steps around the
board you take. Big Bux requires that you move one step forward on each turn, unless the
square you land on instructs you to move forward or backward or go somewhere else, like
through a detour. This makes for a considerably less random game. In fact, Big Bux is a
pretty deterministic game, meaning that whether you win or lose is far less important than
just going through the ringer and coming out the other side. (Again, this mirrors Silicon
Valley, where you come out either bankrupt or ready to flee to Peoria and open a
hardware store. That other kind of hardware.)
There is some math involved. You start out with one house, a cheap car, and $50,000 in
cash. You can buy CDs at a given interest rate, payable each time you make it once
around the board. You can invest in stocks and other securities whose value is determined
by a changeable index in economic indicators, which fluctuates based on cards chosen
from the stack called
Fickle Finger of Fate. You can sell cars on a secondary market, buy and sell houses, and
wheel and deal with the other players. Each time you make it once around the board you
have to recalculate your net worth. All of this involves some addition, subtraction,
multiplication, and division, but there's no math more complex than compound interest.
Most of Big Bux involves nothing more than taking a step and following the instructions
at each step. Is this starting to sound familiar?

Playing Big Bux

At one corner of the Big Bux board is the legend Move In, since that's how people start
life in California—no one is actually born there. Once you're moved in, you begin
working your way around the board, square by square, following the instructions in the
squares.
Some of the squares simply tell you to do something, like Buy condo in Palo Alto for 5%
down. Many of the squares involve a test of some kind. For example, one square reads: Is
your job boring? (Prosperity Index 0.3 but less than 4.0) If not, jump ahead 3 squares.

file:///E|/TEMP/Assembly%20LanguageChapt%200.htm (17 of 23) [9/30/02 08:15:27 PM]

file:///E|/TEMP/Assembly%20LanguageChapt%200.htm

The test is actually to see if the Prosperity Index has a value between 0.3 and 4.0. Any
value outside those bounds (i.e., runaway prosperity or Four Horsemen class recession)
are defined as Interesting Times, and cause a jump ahead by three squares.
You always move one step forward at each turn, unless the square you land on directs you
to do something else, like jump forward three squares or jump back five squares.
The notion of taking a detour is an interesting one. Two detours are shown in the portion
of the board I've provided. Taking a detour means leaving the main run around the edge
of the game board and stepping through a series of squares elsewhere on the board. The
detours involve some specific process; i.e., starting a business or getting divorced.
You can work through a detour, step by step, until you hit the bottom. At that point you
simply pick up your journey around the board right where you left it. You may also find
that one of the squares in the detour instructs you to go back to where you came from.
Depending on the logic of the game (and your luck and finances) you may completely run
through a detour, or get thrown out somewhere in the middle.
Also note that you can take a detour from within a detour. If you detour through Start a
Business and your business goes bankrupt, you leave Start a Business temporarily and
detour through Messy Divorce. Once you leave Messy Divorce you return to where you
left Start a Business. Ultimately, you also leave Start a Business and return to wherever it
was you were when you took the detour.
The same detour (for example, Start a Business) can be taken from any of several
different places along the game board.

file:///E|/TEMP/Assembly%20LanguageChapt%200.htm (18 of 23) [9/30/02 08:15:27 PM]

file:///E|/TEMP/Assembly%20LanguageChapt%200.htm

Assembly Language Programming as a Board Game

Now that you're thinking in terms of board games, take a look at Figure 0.2. What I've
drawn is actually a fair approximation of assembly language as it was used on some of
our simpler microprocessors about ten or twelve years ago. The PROGRAM
INSTRUCTIONS column is the main path around the edge of the board, of which only a
portion can be shown here. This is the assembly language computer program, the actual
series of steps and tests that, when executed, causes the computer to do something useful.
Setting up this series of program instructions is what programming in assembly language
actually is.
Everything else is odds and ends in the middle of the board that serve the game in
progress. You're probably noticing (perhaps with sagging spirits) that there are a lot of
numbers involved. (They're weird numbers, too—what, for example, does "004B" mean?

file:///E|/TEMP/Assembly%20LanguageChapt%200.htm (19 of 23) [9/30/02 08:15:27 PM]

file:///E|/TEMP/Assembly%20LanguageChapt%200.htm

I'll deal with that issue in Chapter 2: Alien Bases) I'm sorry, but that's simply the way the
game is played. Assembly language, at the innermost level, is nothing but numbers, and if
you hate numbers the way most people hate anchovies, you're going to have a rough time
of it.
I should caution you that the Game of Assembly Language represents no real computer
processor like the 8088. Also, I've made the names of instructions more clearly
understandable than the names of the instructions in 86 assembly language. In the real
world, instruction names are typically things like STOSB, DAA, BVC, SBB, and other
crypticisms that cannot be understood without considerable explanation. We're easing
into this stuff sidewise, and in this chapter I have to sugar-coat certain things a little to
draw the metaphors clearly.

Code and Data

Like most board games (including Big Bux), the assembly language board game consists
of two broad categories of elements: Game steps and places to store things. The "game
steps" are the steps and tests I've been speaking of all along. The places to store things are
just that: The cubbyholes into which you can place numbers, with the confidence that
those numbers will remain where you put them until you take them out or change them
somehow.
In programming terms, the game steps are called code, and the numbers in their
cubbyholes (as distinct from the cubbyholes themselves) are called data. The cubbyholes
themselves are usually called storage.
The Game of Big Bux works the same way. Look back to Figure 0.1 and note that in the
Start a Business detour, there is an instruction that reads Add $850,000 to checking
account. The checking account is one of several different kinds of storage in this game,
and money values are a type of data. It's no different conceptually from an instruction in
the Game of Assembly Language that reads AJDLJ 5 to Register A. An ADD
instruction in the code alters a data value stored in a cubbyhole named Register A.
 Code and data are two very different kinds of critters, but they interact in ways that make
the game interesting. The code includes steps that place data into storage (MOVE
instructions) and steps that alter data that is already in storage (INCREMENT and
DECREMENT instructions.) Most of the time you'll think of code as being the master of
data, in that the code writes data values into storage. Data does influence code as well,
however. Among the tests that the code makes are tests that examine data in storage
(COMPARE instructions). If a given data value exists in storage, the code may do one

file:///E|/TEMP/Assembly%20LanguageChapt%200.htm (20 of 23) [9/30/02 08:15:27 PM]

file:///E|/TEMP/Assembly%20LanguageChapt%200.htm

thing; if that value does not exist in storage, the code will do something else, as in the
JUMP BACK and JUMP AHEAD instructions.
The short block of instructions marked PROCEDURE is a detour off the main stream of
instructions. At any point in the program you can duck out into the procedure, perform its
steps and tests, and then return to the very place from which you left. This allows a
sequence of steps and tests that is generally useful and used frequently to exist in only
one place rather than exist as a separate copy everywhere it is needed.

file:///E|/TEMP/Assembly%20LanguageChapt%200.htm (21 of 23) [9/30/02 08:15:27 PM]

file:///E|/TEMP/Assembly%20LanguageChapt%200.htm

Addresses

Another critical concept lies in the funny numbers at the left side of the program step
locations and data locations. Each number is unique, in that a location tagged with that
number appears only once inside the computer. This location is called an address. Data is
stored and retrieved by specifying the data's address in the machine. Procedures are called
by specifying the address at which they begin.
The little box (which is also a storage location) marked PROGRAM COUNTER keeps
the address of the next instruction to be performed. The number inside the program
counter is increased by one (we say, "incremented") each time an instruction is performed
unless the instruction tells the program counter to do something else.
Notice the JUMP BACK 7 instruction at address 0049. When this instruction is
performed, the program counter will back up by seven counts. This is analogous to the
"go back three spaces" concept in most board games.

Metaphor Check!

That's about as much explanation of the Game of Assembly Language as I'm going to
offer for now. This is still Chapter 0, and we're still in metaphor territory. People who
have had some exposure to computers will recognize and understand more of what Figure
0.2 is doing. (There's a real, traceable program going on in there—I dare you to figure out
what it does—and how!) People with no exposure to computer innards at all shouldn’t
feel left behind for being utterly lost. I created the Game of Assembly Language solely to
put across the following points:
• The individual steps are very simple. One single instruction rarely does more than move
a single byte from one storage cubbyhole to another, or compare the value contained in
one storage cubbyhole to a value contained in another. This is good news, because it
allows you to concentrate on the simple task accomplished by a single instruction without
being overwhelmed by complexity. The bad news, however, is that...
• It takes a lot of steps to do anything useful. You can often write a useful program in
Pascal or BASIC in five or six lines. A useful assembly language program cannot be
implemented in fewer than about fifty lines, and anything challenging takes hundreds or

file:///E|/TEMP/Assembly%20LanguageChapt%200.htm (22 of 23) [9/30/02 08:15:27 PM]

file:///E|/TEMP/Assembly%20LanguageChapt%200.htm

thousands of lines. The skill of assembly language programming lies in structuring these
hundreds or thousands of instructions so that the program can be read and understood.
And finally,
• The key to assembly language is understanding memory addresses. In languages like
Pascal and BASIC, the compiler takes care of where something is located—you simply
have to give that something a name, and call it by that name when you want it. In
assembly language, you must always be cognizant of where things are in your
computer's memory. So in working through this book, pay special attention to the concept
of addressing, which is nothing more than the art of specifying where something is. The
Game of Assembly Language is peppered with addresses and instructions that work with
addresses. (Such as MOVE data at B to C, which means move the data stored at the
address specified by register B to the address specified by register C.) Addressing is by
far the trickiest part of assembly language, but master it and you've got the whole thing in
your hip pocket.
Everything I've said so far has been orientation. I've tried to give you a taste of the big
picture of assembly language and how its fundamental principles relate to the life you've
been living all along. Life is a sequence of steps and tests, and so are board games—and
so is assembly language. Keep those metaphors in mind as we proceed to "get real" by
confronting the nature of computer numbers.

file:///E|/TEMP/Assembly%20LanguageChapt%200.htm (23 of 23) [9/30/02 08:15:27 PM]

file:///E|/TEMP/Chapter1%20Revised.htm

Alien Bases
Getting Your Arms around Binary and Hexadecimal

1.1 The Return of the New Math Monster >• 14
1.2 Counting in Martian >• 14
1.3 Octal: How the Grinch Stole 8 and 9 >• 19
1.4 Hexadecimal: Solving the Digit Shortage >• 22
1.5 From Hex to Decimal and From Decimal to Hex >• 25
1.6 Arithmetic in Hex >• 29
1.7 Binary >• 34
1.8 Hexadecimal as Shorthand for Binary >• 38

1.1 The Return of the New Math Monster

1966. Perhaps you were there. New Math burst upon the grade school curricula of the
nation, and homework became a turmoil of number lines, sets, and alternate bases. Middle-
class fathers scratched their heads with their children over questions like, "What is 17 in
base 5?" and "Which sets does the Null Set belong to?" In very short order (I recall a
period of about two months) the whole thing was tossed in the trash as quickly as it had
been concocted by addle-brained educrats with too little to do.
This was a pity, actually. What nobody seemed to realize at the time was that, granted, we
were learning New Math—except that Old Math had never been taught at the grade school

file:///E|/TEMP/Chapter1%20Revised.htm (1 of 30) [9/30/02 08:19:10 PM]

file:///E|/TEMP/Chapter1%20Revised.htm

level either. We kept wondering of what possible use it was to know what the intersection
of the set of squirrels and the set of mammals was. The truth, of course, was that it was no
use at all. Mathematics in America has always been taught as applied mathematics—
arithmetic—heavy on the word problems. If it won't help you balance your checkbook or
proportion a recipe, it ain't real math, man. Little or nothing of the logic of mathematics
has ever made it into the elementary classroom, in part because elementary school in
America has historically been a sort of trade school for everyday life. Getting the little
beasts fundamentally literate is difficult enough. Trying to get them to appreciate the
beauty of alternate number systems simply went over the line for practical middle-class
America.
I was one of the few who enjoyed fussing with math in the New Age style back in 1966,
but I gladly laid it aside when the whole thing blew over. I didn't have to pick it up again
until 1976, when, after working like a maniac with a wire-wrap gun for several weeks, I
fed power to my COSMAC ELF computer, and was greeted by an LED display of a pair
of numbers in base 16!
Mon dieu, New Math redux...
This chapter exists because at the assembly-language level, your computer does not
understand numbers in our familiar base 10. Computers, in a slightly schizoid fashion,
work in base 2 and base 16—all at the same time. If you're willing to confine yourself to
BASIC or Pascal, you can ignore these alien bases altogether, or perhaps treat them as an
advanced topic once you get the rest of the language down pat. Not here. Everything in
assembly language depends on your thorough understanding of these two number bases.
So before we do anything else, we're going to learn how to count all over again—in
Martian.

1.2 Counting in Martian

There is intelligent life on Mars.
That is, the Martians are intelligent enough to know from watching our TV programs these
past forty years that a thriving tourist industry would not be to their advantage. So they've
remained in hiding, emerging only briefly to carve big rocks into the shape of Elvis's face
to help the National Enquirer ensure that no one will ever take Mars seriously again. The
Martians do occasionally communicate with us science fiction writers, knowing full well
that nobody has ever taken us seriously. Hence the information in this section, which
involves the way Martians count.
Martians have three fingers on one hand, and only one finger on the other. Male Martians
have their three fingers on the left hand, while females have their three fingers on the right

file:///E|/TEMP/Chapter1%20Revised.htm (2 of 30) [9/30/02 08:19:10 PM]

file:///E|/TEMP/Chapter1%20Revised.htm

hand. This makes waltzing and certain other things easier.

Like human beings and any other intelligent race, Martians started counting by using their
fingers. Just as we used our ten fingers to set things off in groups and powers of ten, the
Martians used their four fingers to set things off in groups and powers of four. Over time,
our civilization standardized on a set of ten digits to serve our number system. The
Martians, similarly, standardized on a set of four digits for their number system. The four
digits follow, along with the names of the digits as the Martians pronounce them: Θ (Xip)
, ⌠ (Foo) , ∩ (Bar), ≡ (Bas).
Like our zero, xip is a placeholder representing no items, and while Martians sometimes
count from xip, they usually start with foo, representing a single item. So they start
counting: Foo, bar, bas...
Now what? What comes after bas? Table 1.1 demonstrates how the Martians count to
what we would call twenty-five.

file:///E|/TEMP/Chapter1%20Revised.htm (3 of 30) [9/30/02 08:19:10 PM]

file:///E|/TEMP/Chapter1%20Revised.htm

file:///E|/TEMP/Chapter1%20Revised.htm (4 of 30) [9/30/02 08:19:10 PM]

file:///E|/TEMP/Chapter1%20Revised.htm

file:///E|/TEMP/Chapter1%20Revised.htm (5 of 30) [9/30/02 08:19:10 PM]

file:///E|/TEMP/Chapter1%20Revised.htm

The Essence of a Number Base

Since tourist trips to Mars are unlikely to begin any time soon, of what Earthly use is
knowing the Martian numbering system? Just this: it's an excellent way to see the sense in
a number base without getting distracted by familiar digits and our universal base 10.
In a columnar system of numeric notation like both ours and the Martians', the base of the
number system is the magnitude by which each column of a number exceeds the
magnitude of the column to its right. In our base 10 system, each column represents a
value ten multiplied by the column to its right. In a base fooby system, each column
represents a value fooby multiplied by that of the column to its right. (In case you haven't
already caught on, the Martians are actually using base 4—but I wanted you to see it from
the Martians' own perspective.) Each has a set of digit symbols, the number of which is
equal to the base. In our base 10, we have ten symbols, from 0 through 9. In base 4, there
are four digits from 0 through 3. In any given number base, the base itself can never be
expressed in a single digit!

file:///E|/TEMP/Chapter1%20Revised.htm (6 of 30) [9/30/02 08:19:10 PM]

file:///E|/TEMP/Chapter1%20Revised.htm

1 .3 Octal: How the Grinch Stole 8 and 9

Farewell to Mars. Aside from lots of iron oxide and some terrific a capella groups, they
haven't much to offer us ten-fingered folk. There are some similarly odd number bases in
use here, and I'd like to take a quick detour through one that occupies a separate world
right here on Earth: The world of Digital Equipment Corporation, better known as DEC.
Back in the '60s, DEC invented the minicomputer as a challenger to the massive
mainframes pioneered by IBM. To ensure that no software could possibly be moved from
an IBM mainframe to a DEC minicomputer, DEC designed its machines to understand
only numbers expressed in base 8.
Let's think about that for a moment, given our experience with the Martians. In base 8,
there must be eight digits. DEC was considerate enough not to invent their own digits, so
what they used were the traditional digits from 0 through 7. There is no digit 8 in base 8!
That always takes a little getting used to, but it's part of the definition of a number base.
DEC gave a name to its base 8 system: octal.
A columnar number in octal follows the rule we encountered in thinking about the Martian
system: Each column has a value 8 multiplied by that of the column to its right.

Who Stole 8 and 9?

Counting in octal starts out in a very familiar fashion: One, two, three, four, five, six,
seven...ten.
This is where the trouble starts. In octal, ten comes after seven. What happened to eight
and nine? Did the Grinch steal them? (Or the Martians?) Hardly. They're still there—but
they have different names. In octal, when you say "ten" you mean "eight." Worse, when
you say "eleven" you mean "nine."
Unfortunately, what DEC did not do was invent clever names for the column values. The
first column is, of course, the units column. The next column to the left of the units
column is the tens column, just as it is in our own decimal system. But here's the rub, and
the reason I dragged Mars into this: Octal's "tens" column actually has a value of 8.
A counting table will help. Table 1.3 counts up to thirty octal, which has a value of 24
decimal. I dislike the use of the terms eleven, twelve, and so on in bases other than ten, but
the convention in octal has always been to pronounce the numbers as we would in
decimal, only with the word "octal" after them.
Remember, each column in a given number base has a value base multiplied by the

file:///E|/TEMP/Chapter1%20Revised.htm (7 of 30) [9/30/02 08:19:10 PM]

file:///E|/TEMP/Chapter1%20Revised.htm

column to its right, so the tens column in octal is actually the eights column. (They call it
the tens column because it is written 10, and pronounced "ten.") Similarly, the column to
the left of the tens column is the hundreds

Table 1.3.
Counting

in octal, base 8

Octal Numerals Pronunciation Decimal Equivalent
0 Zero 0
1 One 1
2 Two 2
3 Three 3
4 Four 4
5 Five 5
6 Six 6
7 Seven 7
10 Ten 8
11 Eleven 9
12 Twelve 10
13 Thirteen 11
14 Fourteen 12
15 Fifteen 13
16 Sixteen 14
17 Seventeen 15
20 Twenty 16
21 Twenty-one 17
22 Twenty-two 18
23 Twenty-three 19
24 Twenty-four 20
25 Twenty-five 21
26 Twenty-six 22
27 Twenty-seven 23
30 Thirty 24

column (because it is written 100) but the hundreds column actually has a value of 8

file:///E|/TEMP/Chapter1%20Revised.htm (8 of 30) [9/30/02 08:19:11 PM]

file:///E|/TEMP/Chapter1%20Revised.htm

multiplied by 8, or 64. The next column over has a value of 64 multiplied by 8, or 512,
and the column left of that has a value of 512 multiplied by 8, or 4096.
This is why if someone talks about a value of "ten octal" they mean 8; "one hundred octal"
they mean 64, and so on. Table 1.4 summarizes the octal column values and their decimal
equivalents.
A digit in the first column (the units, or 1's column) tells how many units are contained in
the octal number. A digit in the next column to the left, the tens column, tells how many
8's are contained in the octal number. A digit in the third column, the hundreds column,
tells how many 64's are in the number, and so on. For example, 400 octal means that the
number contains 4 64's; that is, 256 in decimal.

file:///E|/TEMP/Chapter1%20Revised.htm (9 of 30) [9/30/02 08:19:11 PM]

file:///E|/TEMP/Chapter1%20Revised.htm

It works the same way it does in Martian, or decimal, or any other number base. In
general: Each column has a value consisting of the number base raised to the power
represented by the ordinal position of the column minus one. That is, the value of the first
column is the number base raised to the 1-1, or 0, power. Since any number raised to the
zero power is one, the first column in any number base always has the value of one and is
called the units column. The second column has the value of the number based raised to
the 2—1, or 1st power, which is the value of the number base itself. In octal this is 8; in
decimal, 10; in Martian base fooby, fooby. The third column has a value consisting of the
number base raised to the 3-1, or 2nd power, and so on.
Within each column, the digit holding that column tells how many instances of that
column's value is contained in the number as a whole. Here, the 6 in 76225 octal tells us
that there are six instances of its column's value in the total value 76225 octal. The six
occupies the fourth column, which has a value of 84-1, which is 83, or 512. This tells us
that six 512 values are in the number as a whole.
You can convert the value of a number in any base to decimal (our base 10) by
determining the value of each column in the alien base, then multiplying the value of each
column by the digit contained in that column, (to create the decimal equivalent of each
digit) and then finally taking the sum of the decimal equivalent of each column. This is
done in Figure 1.2, and the octal number and its decimal equivalent are both shown.
Now that we've looked at columnar notation from both a Martian and an octal perspective,
make sure you understand how columnar notation works in any arbitrary base before we
go on.

Log in Please

file:///E|/TEMP/Chapter1%20Revised.htm (10 of 30) [9/30/02 08:19:11 PM]

file:///E|/TEMP/Chapter1%20Revised.htm

You may use an octal number every day. You may, in fact, have it memorized. This
number is your ID number on the CompuServe timesharing system. CompuServe runs on
a (large) bank of DEC computers, and their user IDs are all in octal. Notice, if you use
CompuServe, that nowhere in any of the ID numbers attached to the messages you read
will you find either the digit 8 or the digit 9.

1.4 Hexadecimal: Solving the Digit Shortage

Octal is unlikely to be of use to you unless you choose to become a minicomputer
programmer, which is about as exciting as blowing packing peanuts into boxes on
somebody else's shipping dock. As I mentioned earlier, the real numbering system to
reckon with in the microcomputer world is base 16, which we call hexadecimal, or (more
affectionately) simply hex.
Hexadecimal shares the essential characteristics of any number base, including both
Martian and octal: It is a columnar notation, in which each column has a value sixteen
times the value of the column to its right. It has sixteen digits, running from 0 to...what?
We have a shortage of digits here. From zero through nine we're in fine shape. Ten,
eleven, twelve, thirteen, fourteen, and fifteen, however, need to be expressed in single
digits. Without any additional numeric digits, the people who developed hexadecimal
notation in the early 1950s borrowed the first six letters of the alphabet to act as the
needed digits.
Counting in hexadecimal, then, goes like this: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F,
10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 1A, IB, 1C and so on. Table 1.5 restates this in a
more organized fashion, with the decimal equivalents up to 32.

Table 1.5. Counting in hexadecimal, base 16
Hexadecimal Pronunciation Decimal
Numerals (follow with "hex") Equivalent
0 Zero 0
1 One 1
2 Two 2
3 Three 3
4 Four 4
5 Five 5
6 Six 6

file:///E|/TEMP/Chapter1%20Revised.htm (11 of 30) [9/30/02 08:19:11 PM]

file:///E|/TEMP/Chapter1%20Revised.htm

7 Seven 7
8 Eight 8
9 Nine 9
A A 10
B B 11
C C 12
D D 13
E E 14
F F 15
10 Ten (or, One-oh) 16
11 One-one 17

12 One-two 18
13 One-three 19
14 One-four 20
15 One-five 21
16 One-six 22
17 One-seven 23
18 One-eight 24

Table 1.5. Counting in hexadecimal, base 16 (continued)
Hexadecimal Pronunciation Decimal
Numerals (follow with "hex") Equivalent

19 One-nine 25
1A One-A 26
IB One-B 27
1C One-C 28
ID One-D 29
IE One-E 30
IF One-F 31
20 Twenty (or, Two-oh) 32

One of the conventions in hexadecimal that I favor is the dropping of words like "eleven"

file:///E|/TEMP/Chapter1%20Revised.htm (12 of 30) [9/30/02 08:19:11 PM]

file:///E|/TEMP/Chapter1%20Revised.htm

and "twelve" that are too tied to our decimal system and only promote gross confusion.
Confronted by the number 11 in hexadecimal (usually written 11H to let us know what
base we're speaking) we would say, "one-one hex." Don't forget to say "hex" after a
hexadecimal number, again to avoid gross confusion. This is unnecessary with the digits 0
through 9, which represent the exact same values in both decimal and hexadecimal.
Some people still say things like "twelve hex", which is valid, and means 18 decimal. But
I don't care for it, and advise against it. This business of alien bases is confusing enough
without giving the aliens Charlie Chaplin masks.
Each column in the hexadecimal system has a value 16 multiplied by that of the column to
its right. (The rightmost column, as in any number base, is the units column and has a
value of 1.) As you might imagine, the values of the individual columns goes up
frighteningly fast as move from right to left. Table 1.6 shows the values of the first seven
columns in hexadecimal. For comparison's sake, note that the seventh column in decimal
notation has a value of 1,000,000, while the seventh column in hexadecimal has a value of
16,777,216.

file:///E|/TEMP/Chapter1%20Revised.htm (13 of 30) [9/30/02 08:19:11 PM]

file:///E|/TEMP/Chapter1%20Revised.htm

To help you understand how hexadecimal numbers are constructed, I've dissected a typical
hex number in Figure 1.3, in the same fashion that I dissected numbers earlier in both
Martian base fooby, and in octal. Just as in octal, zero holds a place in a column without
adding any value to the number as a whole. Note in Figure 1.3 that no 256 values are
present in the number 3COA9H.
As in Figure 1.2, the decimal values of each column are shown beneath the column, and
the sum of all columns is shown in both decimal and hex.

From Hex to Decimal and From Decimal to Hex

file:///E|/TEMP/Chapter1%20Revised.htm (14 of 30) [9/30/02 08:19:11 PM]

file:///E|/TEMP/Chapter1%20Revised.htm

Most of the manipulation of hex numbers you'll be performing will be simple conversions
between hex and decimal, in both directions. The easiest way to perform such conversions
is by way of a hex calculator, either a "real" calculator like the venerable TI Programmer
(which I still have, wretched battery-eater that it is) or a TSR software calculator like
Sidekick. This demands nothing of your grey matter, of course, and won't help you
understand the hexadecimal number system any better. So while you're a green student,
lay off anything that understands hex, hardware, software, or human associates.
In fact, the best tool is a simple four-function memory calculator. The conversion methods
I'll describe here all make use of such a calculator, since what I'm trying to teach you is
number base conversion, not decimal addition or long division.

From Hex to Decimal

As you'll come to understand, converting hex numbers to decimal is a good deal easier
than going the other way. The general method is to do what we've been doing all along in
the dissection figures: Derive the value represented by each individual column in the hex
number, and then add up the total of all the column values in decimal.
Let's try an easy one. The hex number is 7A2. Start at the right column. This is the units
column in any number system. You have 2 units, so enter 2 into your calculator. Now
store that 2 into memory. (Or press the SUM button, if you have one.)
So much for units. Keep in mind that you're keeping a running tally of the values of the
columns in the hex number. Move to the next column to the left. Remember that each
column represents a value 16 times the value of the column to its right. So the second
column from the right is the 16s column. (Refer to Table 1.6 if you lose track of the
column values.) The 16s column has an A in it. A in hex is decimal 10. The total value of
that column, therefore, is 16 X 10, or 160. Perform that multiplication on your calculator,
and add the product to the 2 that you stored in memory. (Again, the SUM button is a
handy way to do this if your calculator has one.)
Remember what you're doing: Evaluating each column in decimal and keeping a running
total. Now, move to the third column from the right. This one contains a 7. The value of
the third column is 16 x 16, or 256. Multiply 256 by 7 on your calculator, and add the
product to your running total.
You're done. Retrieve the running total from your calculator memory. The
total should be 1954, which is the decimal equivalent of 7A2 hex.
Let's try it again, with a little less natter and a much larger number: C6FODB.
Evaluate the units column. B X 1 = ll X l = ll. Start your running total.

file:///E|/TEMP/Chapter1%20Revised.htm (15 of 30) [9/30/02 08:19:11 PM]

file:///E|/TEMP/Chapter1%20Revised.htm

Evaluate the l6s column. D X 16 = 13 X 16 = 208. Add 208 to your running
total.
Evaluate the 256s column. 0 x 256 = 0. Move on.
Evaluate the 4096s column. F X 4096 = 15 x 2096 = 61,440. Add it to your
running total.
Evaluate the 65536s column. 6 X 65536 = 393,216. Add it to the running
total.
Evaluate the 1048576s column. C S 1048576 = 12 S 1048576 = 12,582,912.
Add it to your total.
The running total should be 13037787.
Finally, do it yourself, using the hex number 1A55BE.

From Decimal to Hex

The lights should be coming on about now. This is good, because going in the other
direction, from our decimal base 10 to hex, is much harder, and involves more math. What
we have to do is find the hex column values within a decimal number—and that involves
some considerable use of that fifth-grade boogeyman, long division.
But let's get to it; again, starting with a fairly easy number: 449. The calculator will be
handy, in spades. Tap in the number 449 and store it in the calculator's memory.
What we need to do first is find the largest hex column value that is contained in 449 at
least once. Remember grade-school "gazintas"? (12 gazinta 855 how many times?) It's
something like that. Looking back at Table 1.6, we can see that 256 is the largest power of
16, and hence the largest hex column value, that is present in 449 at least once. (The next
largest power of 16, 512, is obviously too large to be present in 449.)
So we start with 256, and determine how many times 256 gazinta 449. 449 •/• 256 =
1.7539- At least once, but not quite twice. So 449 contains only one 256. Write down a 1
on paper. Don't enter it into your calculator. We're not keeping a running total here; if
anything, we could say we're keeping a running remainder. The 1 is the leftmost hex digit
of the hex value equivalent to decimal 449.
We know that there is only one 256 contained in 449. What we must do now is subtract
that 256 from the original number, now that we've counted it by writing a 1 down on
paper. Subtract 256 from 449. Store the difference, 193, into memory.
The 256 column has been removed from the number we're converting. Now we move to
the next column to the right, the l6s. How many 16s are contained in 193? 193 + 16 =
12.0625. This means the 16s column in the hex equivalent of 449 contains a... 12?
Hmmmm.. .remember the digit shortage, and the fact that in hex, the value we call 12 is

file:///E|/TEMP/Chapter1%20Revised.htm (16 of 30) [9/30/02 08:19:11 PM]

file:///E|/TEMP/Chapter1%20Revised.htm

represented by the letter C. From a hex perspective, we have found that the original
number contains C in the 16s column. Write a C down to the right of your 1: 1C. So far so
good.
We've got the 16s column, so just as with the 256s, we have to remove the 16s from what's
left of the original number. The total value of the 16s column is C x 16 = 12 x 16 = 192.
Bring the 193 value out of your calculator's memory, and subtract 192 from it A lonelv
little 1 is all that's left
So we're down to the units column. There is one unit in one, obviously. Write that 1 down
to the right of the C in our hexadecimal number: 1C1. Decimal 449 is equivalent to hex
1C1.
Now perhaps you'll begin to understand why Sidekick is so popular.
Let's glance back at the big picture of the decimal-to-hex conversion. We're looking for
the hexadecimal columns "hidden" in the decimal value. We find the largest column
contained in the decimal number, find that column's value, and subtract that value from
the decimal number. Then we look for the next smallest hex column, and the next
smallest, and so on, removing the value of each column from the decimal number as we
go. In a sense, we're dividing the number by consecutively smaller powers of 16, and
keeping a running remainder by removing each column as we tally it.
Let's try it again. The secret number is 988,664.
The largest column contained in 988,664 from Table 1.6 is 65536. Divide
988,664 by 65536 = 15 and change. Ignore the change. 15 = F in hex. Write
down the F.
Subtract the sum of F x 65536 from 988,664. Store the remainder (5624).
Move to the next smallest column. 5624 • /• 4096 = 1 and change. Write down
the 1.
Remove 1 X 4096 from the remainder: 5624 - 4096 = 1528. Store the new remainder:
1528.
Move to the next smallest column. 1528 •/• 256 = 5 and change. Write down the 5.
Remove 5 x 256 from the stored remainder, 1528. Store 248 as the new remainder.
Move to the next smallest column. 248 •/•16 = 15 and change. 15 = F in hex.
Write down the F.
Remove F x 16 from stored remainder, 248. The remainder, 8, is the number of units in
the final column. Write down the 8.
There you have it. 988,664 decimal = F15F8H.
Again, note the presence of the H at the end of the hex number. From now on, every hex
number in the text of this book will have that H affixed to its hindparts. It's important,
because not every hex number contains letter digits. There is a 157H as surely as a 157

file:///E|/TEMP/Chapter1%20Revised.htm (17 of 30) [9/30/02 08:19:11 PM]

file:///E|/TEMP/Chapter1%20Revised.htm

decimal, and the two are not the same number. Don't forget to include the H when writing
your assembler programs, as I'll be reminding you later on.

Practice. Practice! PRACTICE!

The best (actually, the only) way to get a gut feel for hex notation is to use it lots. Convert
each of the following hex numbers to decimal. Lay each number out on the dissection
table and identify how many 1’s, how many 16’s, how many 256s, how many 4096’s, and
so on, are present in the number, and then add them up in decimal.
CCH
157H
D8H
BB29H
7AH
8177H
A011H
99H
2B36H
FACEH
8DB3H
9H

 That done, now turn it inside out, and convert each of the following decimal numbers to
hex. Remember the general method: From Table 1.6, choose the largest power of 16 that
is less than the decimal number to be converted. Find out how many times that power of
16 is present in the decimal number, and write it down as the leftmost converted hex digit.
Then subtract the total value represented by that hex digit from the decimal number. Then
repeat the process, using the next smallest power of 16 until you've subtracted the decimal
number down to nothing.
39
413
22
67.349
6.992
41
1,117
44,919
12,331
124,217

file:///E|/TEMP/Chapter1%20Revised.htm (18 of 30) [9/30/02 08:19:11 PM]

file:///E|/TEMP/Chapter1%20Revised.htm

91.198
307
112,374,777
(Extra credit for that last one...) If you need more practice, choose some decimal numbers
and convert them to hex, and then convert them back.

: 1.6 Arithmetic in Hex

As you become more skilled in assembly language, you'll be doing more arithmetic in
base 16. You may even (good grief) come to do it in your head. (I tend to do most of mine
on my memory resident hex calculator.) Still, it takes some practice.
Addition and subtraction are no different than what we know in decimal,
with a few extra digits tossed in for flavor. The trick is nothing more than knowing your
addition tables to OFH. This is best done not by thinking to yourself, "Now, if C is 12 and
F is fifteen, then C + F is twelve plus fifteen, which is 27 decimal but 1BH." Instead, you
should simply say inside your head, "C + F are 1BH."
Yes, that's asking a lot. But I ask you now, as I will ask you again on this journey, Do you
wanna hack DOS...or do you just wanna fool around? It takes practice to learn the piano,
and it takes practice to get really greased up on the foundation concepts of assembly
language programming.
So let me sound like an old schoolmarm and tell you to memorize the following.
Make flash cards if you must:

file:///E|/TEMP/Chapter1%20Revised.htm (19 of 30) [9/30/02 08:19:11 PM]

file:///E|/TEMP/Chapter1%20Revised.htm

file:///E|/TEMP/Chapter1%20Revised.htm (20 of 30) [9/30/02 08:19:11 PM]

file:///E|/TEMP/Chapter1%20Revised.htm

 If nothing else, this exercise should make you glad computers don’t work in base 64.

Columns and Carries

With all of the single-column additions committed (more or less) to memory, you can
tackle multicolumn addition. It works pretty much the same way it does with decimal.
Add each column starting from the right, and carry into next column anytime a single
column's sum exceeds OFH. For example:
 1 1
 2 F 3 1 A DH
 +9 6 B A 0 7H

 C 5 E B B 4H

Work this one through, column by column. The sum of the first column (the rightmost) is
14H, which cannot fit in a single column, so we must carry the one into the next column to

file:///E|/TEMP/Chapter1%20Revised.htm (21 of 30) [9/30/02 08:19:11 PM]

file:///E|/TEMP/Chapter1%20Revised.htm

the left. Even with the additional 1, however, the sum of the second column is OBH,
which fits in a single column and no carry is required.
Keep on adding moving left. The second-to-last column will again overflow, and you will
need to carry the one into the last column. As long as you have your single-digit sums
memorized, it s a snap. Well, more or less.
Now, here's something you should take note of:
 The most you can ever carry out of a single-column addition of two numbers is 1.
It doesn't matter what base: 16, 10, fooby, or 2. You will either carry a 1 out of a column,
or carry nothing at all. This is important when you add numbers on paper or within the
silicon of your CPU, as we'll learn a few chapters on.

Subtraction and Borrows

If you have your single-column sums memorized, you can usually grim your way through
subtraction with a shift into a sort of mental reverse: if E + 6 equals 14H, then 14H - E
must equal 6. The alternative is memorizing an even larger number of tables, and since I
haven't memorized them, I won't ask you to.
But over time, that's what tends to happen. In hex subtraction, you should be able to dope
out any given single-column subtraction by turning a familiar hexadecimal sum inside-out.
And just as with base 10, multicolumn subtractions are done one column at a time:
 F76CH
- A05BH
 5711H
During your inspection of each column, you should be asking yourself, "What number
added to the bottom number yields the top number?" Here, you should know from your
tables that B + 1 = C, so the difference between B and C is 1. The leftmost column is
actually more challenging: what number added to A gives you F? Chin up; even I have to
think about it on an off day.
The problems show up, of course, when the top number in a column is smaller than its
corresponding bottom number. Then (like the federal government on a bomber binge)
you have no recourse but to borrow.
Borrowing is one of those grade-school rote-learned processes that very few people really
understand. (To understand it is tacit admittance that something of New Math actually
stuck. Horrors!) From a height, what happens in a borrow is that one count is taken from a
column and applied to the column on its right. I say "applied" rather than "added to"
because in moving from one column to the column on its right, that single count is
multiplied by 10, where "ten" represents the number base. (Remember that "ten" in octal

file:///E|/TEMP/Chapter1%20Revised.htm (22 of 30) [9/30/02 08:19:11 PM]

file:///E|/TEMP/Chapter1%20Revised.htm

has a value of 8, while "ten" in hexadecimal has a value of 16.)
It sounds worse than it is. Let's look at a borrow in action, and you'll get the idea.

92H
 -4FH
Here the subtraction in the rightmost column can't happen as-is, because F is larger than 2.
So we borrow from the next column to the left.
Nearly thirty years out of the past, I can still hear old Sister Marie Bernard toughing it out
on the blackboard, albeit in base 10: "Cross out the 9; make it an 8 Make the 2 a 12. And
12 minus F is what, class?" 3, Sister. And that's how borrowing works. (I hope the poor
dear will forgive me for putting hex bytes in her mouth...)
Think about what happened there, functionally. We subtracted I from the 9 and added 10H
to the 2. One obvious mistake is to subtract 1 from the 9 and add 1 to the 2, which (need I
say) won't work. Think of it this way: We're moving part of one column's surplus value
over to its right, where some extra value is needed. The overall value of the upper number
doesn't change (which is why we call it "borrowing" and not "stealing") but the recipient
of the loan is increased by 10, not 1.
After the borrow, what we have looks something like this:
 81 2H
- 4 FH
And of course, once we're here the columnar subtractions all work out, and we discover
that the difference is 43H.
People sometimes ask if you ever have to borrow more than 1. The answer, plainly, is no.
If you borrow 2, for example, you would add 20 to the recipient column, and 20 minus any
single digit remains a 2-digit number. That is, the difference won't fit into a single
column. Subtraction contains an important symmetry with addition:
The most you ever need to borrow in any single-column subtraction of two numbers is 1.

Borrowing Across Multiple Columns

Understanding that much about borrowing gets you most of the way there. But, life is
wont, you will frequently come across a subtraction similar to this:

 F 0 0 OH
–3 B 6 CH
Column 1 needs to borrow, but neither column 2 nor column 3 have anything to lend.
Back in grade school, Sister Marie Bernard would have rattled out with machine-gun
efficiency: "Cross out the F, make it an E. Make the 0 a 10;

file:///E|/TEMP/Chapter1%20Revised.htm (23 of 30) [9/30/02 08:19:12 PM]

file:///E|/TEMP/Chapter1%20Revised.htm

cross it out, make it an F. Make the next 0 a 10; cross it out, make it an F. Then make the
last 0 a 10.” Got that?
What happens is that the middle two 0’s act as loan brokers between the F and the
rightmost 0, keeping a commission in the form of enough value to allow for subtraction in
their own columns. Each column to the right of the last column borrows 10 from its
neighbor to the left, and loans 1 to the neighbor on its right. After all the borrows trickle
through the upper number, what we have looks like this (minus all those cross-outs):
 E F F1 OH
- 3 B 6 CH
At this point, each columnar subtraction can take place, and the difference is B494H.
In remembering your grade-school machinations, don't fall into the old rut of thinking,
"cross out the 10, make it a 9." In the world of hexadecimal, 10H -1 = F. Cross out the 10,
make it an F.

What's the Point?

Even if you have a hex calculator or a hex-capable screen calculator to do your figuring
for you, the point I'm getting at is practice. Hexadecimal is the lingua franca of
assemblers, to multiply-mangle a metaphor. The more you burn a gut-level understanding
of hex into your reflexes, the easier assembly language will be. Furthermore,
understanding the internal structure of the machine itself will be much easier if you have
that intuitive grasp of hex values. We're laying important groundwork here. Take it
seriously now and you'll lose less hair later on.

1.7 Binary

Hexadecimal is excellent practice for taking on the strangest number base of all: Binary.
Binary is base 2. Given what we've learned about number bases so far, we can surmise the
following about base 2.
• Each column has a value two times the column to its right.
• There are only two digits (0 and 1) in the base.
Counting is a little strange in binary, as you might imagine. It goes like this:
0,1,10,11,100,101,110,111,1000... Because it sounds absurd to say, "Zero, one, ten,
eleven, one hundred...," in binary, you simply enunciate the digits, followed by the word
"binary." For example, most people say "one zero one one one zero one binary" instead of
"one million, eleven thousand, one hundred one binary" when pronouncing the number

file:///E|/TEMP/Chapter1%20Revised.htm (24 of 30) [9/30/02 08:19:12 PM]

file:///E|/TEMP/Chapter1%20Revised.htm

1011101—which sounds enormous until you consider that its value in decimal is only 93-
Odd as it may seem, binary follows all of the same rules regarding number bases that
we've discussed in this chapter. Converting between binary and decimal is done using the
same methods described for hexadecimal in Section 1.5.
Because counting in binary is as much a matter of counting columns as counting digits
(since there are only two digits) it makes sense to take a long,
close look at Table 1.7, which shows the values of the binary number columns out to 32
places.
One look at that imposing pyramid implies that it's even hopeless to think of pronouncing
the larger columns as strings of digits: "One zero zero zero zero zero zero zero..." and so
on. There's a crying need for a shorthand notation here, so I'll provide you with one in a
little while (and its identity will surprise you).

file:///E|/TEMP/Chapter1%20Revised.htm (25 of 30) [9/30/02 08:19:12 PM]

file:///E|/TEMP/Chapter1%20Revised.htm

You might think that such large numbers as the bottommost in the table aren't likely to be
encountered in ordinary programming. Sorry, but a 32-bit microprocessor like the 80386
can swallow numbers like that in one electrical gulp, and eat billions of them for lunch.
You must become accustomed to thinking in terms of numbers like 232, which, after all, is
only a trifling four billion in decimal. You can't even run NASA on numbers like that, and
it's the poor orphan at the Federal trough.
Just as with hexadecimal, there can be identity problems when using binary. The number
101 in binary is not the same as 101 in hex, or 101 in decimal. For this reason, always
append the letter B to your binary values to make sure people reading your programs
(including you, six weeks after the fact) know what base you're working from.

Values in Binary

Converting a value in binary to a value in decimal is done the same way it's done in
hex—more simply in fact. You no longer have to count how many times a value is present
in its corresponding column. That is, in hex, you have to see how many 16s are present in
the 16s column, and so on. In binary, a column's value is either present (1 time) or not
present (0 times.)
Running through a simple example should make this clear. The binary number 1101101
OB is a relatively typical binary value in small-time computer work. (On the small side,
actually—many common binary numbers are twice this size.) Converting 11011010B to
decimal comes down to scanning it from right to left with the help of Table 1.7, and
keeping a tally of each column's value when that column contains a 1. Ignore any column
containing a 0.
Clear your calculator and let's get started:
Column 0 contains a 0; skip it.
Column 1 contains a 1. That means its value, 2, is present in the value of the
number. So we punch 2 into the calculator.
Column 2 contains a 0; skip it.
Column 3 contains a 1. This column's value is 23, or 8; add 8 to the tally.
Column 4 also contains a 1. This columns value is 24 or 16; Add 16 to the tally.

file:///E|/TEMP/Chapter1%20Revised.htm (26 of 30) [9/30/02 08:19:12 PM]

file:///E|/TEMP/Chapter1%20Revised.htm

Column 5 contains a 0; skip it.
Column 6 contains a 1. This column's value is 64; add 64 to the tally.
Column 7 contains a 1. This column's value is 27, or 128; add 128 to the
tally. What do we have? 218. It's as easy as that.
Converting from decimal to binary, while more difficult, is done exactly the same way as
converting from decimal to hex. Go back and read that section again, searching for the
general method used. (You can also see section 1.8 for more information.) In other words,
see what was done and separate the essential principles from any references to a specific
base like hex.
I'll bet by now you can figure it out without much trouble.
As a brief aside, perhaps you noticed that I started counting columns from 0 rather than 1.
A peculiarity of the computer field is that we always begin counting things from 0.
Actually, that's unfair; the computer's method is the reasonable one, because 0 is a
perfectly good number and should not be discriminated against. The rift occurred because
in our world, counting things tells us how many things are there, while in the computer
world counting things is more generally done to name them. That is, we need to deal with
bit 0, and then bit 1, and so on, far more than we need to know how many bits there are.
This is not a quibble, by the way. The issue will come up again and again in connection
with memory addresses, which as I have said and will say again, are the key to
understanding assembly language.
In programming circles, always begin counting from 0!
This is a good point to get some practice in converting numbers from binary to decimal
and back. Sharpen your teeth on these:
110 10001
11111011
101
1100010111010010
11000
1011

When that's done, convert these decimal values to binary:

77
42
106
255
18
6309

file:///E|/TEMP/Chapter1%20Revised.htm (27 of 30) [9/30/02 08:19:12 PM]

file:///E|/TEMP/Chapter1%20Revised.htm

121
58
18,446

Why Binary?

If it takes eight whole digits (11011010) to represent an ordinary three-digit number like
218, binary as a number base would seem to be a bad intellectual investment. Certainly for
us it would be a waste of mental bandwidth, and even aliens with only two fingers would
probably have come up with a better system.

The problem is, lights are either on or they're off.
This is just another way of saying (as I'll discuss in detail in the next chapter) that at the
bottom of it, computers are electrical devices. In an electrical device, voltage is either
present or it isn't; current either flows or it doesn't. Very early in the game, computer
scientists decided that the presence of a voltage in a computer circuit would indicate a 1
digit, while lack of a voltage at that same point in the circuit would indicate a 0 digit This
is the only reason we use binary, but it's a pretty compelling one, and we're stuck with it.
However, you will not necessarily drown in 1s and 0s, because I've already taught you a
form of shorthand.

1.8 Hexadecimal as Shorthand for Binary

The number 218 expressed in binary is 11011010B. Expressed in hex, however, the same
value is quite compact: DAH. The two hex digits comprising DAH merit a closer look.
AH (or OAH as your assembler will require it for reasons I'll explain later) represents 10
decimal. Converting any number to binary simply involves detecting the powers of 2
within it. The largest power of 2 within 10 decimal is 8. Jot down 1 and subtract 8 from
10. What's left is 2. Even though 4 is a power of two, no 4's are hiding within 2. Write a 0
to the right of the 1. The next smallest power of 2 is 2, and there is a 2 in 2. Jot down
another 1 to the right of the 0. Subtract 2 from 2 and you get 0, so there are no 1s left in
the number. Jot down a final 0 to the right of the rest of the numbers to represent the 1s
column. What you have is this:
1010
Look back at the binary equivalent of 218: 11011010. The last four digits are 1010. 1010
is the binary equivalent of OAH.

file:///E|/TEMP/Chapter1%20Revised.htm (28 of 30) [9/30/02 08:19:12 PM]

file:///E|/TEMP/Chapter1%20Revised.htm

The same will work for the upper half of DAH. ODH, if you work out the binary
equivalence as we just did (and it would be good mental exercise), is 1101. Look at the
binary equivalent of 218 this way:

218 decimal
1101 1010 binary
D A hex

It should be dawning on you that you can convert long strings of binary 1s and 0s into
more compact hex format by converting every four binary digits (starting from the right,
not from the left) into a single hex digit.
As an example, here is a 32-bit binary number that is not the least bit remarkable:

11110000000000001111101001101110

This is a pretty obnoxious collection of bits to remember or manipulate, so let's split it up
into groups of four from the right:

1111 0000 0000 0000 1111 1010 0110 1110

Each of these groups of four binary digits can be represented by a single hexadecimal
digit. Do the conversion now. What you should get is the following:

1111 0000 0000 0000 1111 1010 0110 1110

F 0 0 0 F A 6 E

In other words, the hex equivalent of that mouthful is FOOOFA6E
In use, of course, you would append an H on the end, and also put a 0 at the beginning, so
the number would actually be written OFOOOFA6EH.
This is still a good-sized number, but such 32-bit addresses are the largest quantities you
will typically encounter in journeyman-level, assembly language-programming. Most
hexadecimal numbers you will encounter are either four or two hex digits long instead.
Furthermore, the PC's CPU likes to deal with 32-bit addresses 16 bits at a time, so most of
the time you will look upon enormous hex numbers like OFOOFA6EH as the pair
OFOOH and OFA6EH.
Suddenly, this business starts looking a little more graspable.
Hexadecimal is the programmer's shorthand for the computer's binary numbers.
This is why I said earlier that computers use base 2 (binary) and base 16 (hexadecimal)

file:///E|/TEMP/Chapter1%20Revised.htm (29 of 30) [9/30/02 08:19:12 PM]

file:///E|/TEMP/Chapter1%20Revised.htm

both at the same time in a rather schizoid fashion. What I didn't say is that the computer
isn't really the schizoid one; you are. At their very heart (as I'll explain in the next chapter)
computers use only binary. Hex is a means by which you and I make dealing with the
computer easier. Fortunately, every four binary digits may be represented by a hex digit,
so the correspondence is clean and comprehensible.

Prepare to Compute

Everything up to this point has been necessary groundwork. I've explained conceptually
what computers do and given you the tools to understand the slightly alien numbers they
use. But I've said nothing so far about what computers actually are, and it's well past
time. We'll return to hexadecimal numbers again and again in this book; I've said nothing
about hex multiplication or bit-banging. The reason is plain: Before you can bang a bit,
you must know where the bits live. So let's lift the hood and see if we can catch a few in
action.

file:///E|/TEMP/Chapter1%20Revised.htm (30 of 30) [9/30/02 08:19:12 PM]

file:///E|/TEMP/Chapter%202%20Lifting%20The%20Hood.htm

Lifting The Hood
Discovering What Computers Actually Are

2.1 RAXie, We Hardly Knew Ye... >• 42
2.2 Switches, Transistors, and Memory >• 43
2.3 The Shop Foreman and the Assembly Line >• 53
2.4 The Box that Follows a Plan >• 58

2.1 RAXie, We Hardly Knew Ye...

In 1970, I was a senior in high school, and the Chicago Public Schools had installed a
computer somewhere. A truckful of these fancy typewriter gimcracks was delivered to
Lane Tech, and a bewildered math teacher was drafted into teaching computer science
(they had the nerve to call it) to a high school full of rowdy males.
I figured it out fairly quickly. You pounded out a deck of these goofy computer cards on
the card punch, dropped them into the hopper of one of the typewriter gimcracks, and
watched in awe as the typewriter danced its little golfball over the greenbar paper,
printing out your inevitable list of error messages. It was fun. I got straight As. I even
kept the first program I ever wrote that did something useful: a little deck of cards that
generated a table of parabolic correction factors for hand-figuring telescope mirrors.
The question that kept gnawing at me was exactly what sort of beast RAX (the computer's
wonderfully appropriate name) actually was. What we had were ram-charged typewriters
that RAX controlled over phone lines. But what was RAX?
I asked the instructor. In brief, the conversation went something like this:

file:///E|/TEMP/Chapter%202%20Lifting%20The%20Hood.htm (1 of 22) [9/30/02 08:28:34 PM]

file:///E|/TEMP/Chapter%202%20Lifting%20The%20Hood.htm

ME: "Umm, sir, what exactly is RAX?"
HE: "Eh? Um, a computer. An electronic computer."
ME: "That's what it says on the course notes. But I want to know what RAX is made of
and how it works."
HE: "Well, I'm sure RAX is all solid-state."
ME: "You mean, there's no levers and gears inside."
HE: "Oh, there may be a few. But no radio tubes."
ME: "I wasn't worried about tubes. I suppose it has a calculator in it somewhere. But
what makes it remember that A comes before B? How does it know what FORMAT
means? How does it tell time? What does it have to do to dial the phone?"
HE: "Now, come on, that's why computers are so great! They put it all together so that we
don't have to worry about that sort of thing! Who cares what RAX is? RAX knows
FORTRAN, and will execute any correct FORTRAN program. That's what matters, isn't
it?"
He was starting to sweat. So was I. End of conversation.
That June, I graduated with three inches of debugged and working FORTRAN punch
cards in my bookbag, and still had absolutely no clue as to what RAX was.
It has bothered me to this day.

Gus to the Rescue

I was thinking about RAX six years later, while on the Devon Avenue bus heading for
work, with the latest copy of Popular Electronics in my lap. The lead story involved a
little thing called the COSMAC ELF, which consisted of a piece of perfboard full of
integrated circuit chips, all wired together, plus some toggle switches and a pair of LED
numeric displays.
It was a computer. (Said so right on the label.) The article told us how to put it together,
and that was about all. What did those chips do? What did the whole thing do? It was
driving me nuts.
As usual, my friend Gus Flassig got on the bus at Ashland Avenue and sat down beside
me. I asked him what the damned thing did. He was the first human being to make the
concept hang together for me:
"These are memory chips. You load numbers into the memory chips by flipping these
switches in different code patterns. Each number means something to the CPU chip. One
number makes it add; another number makes it subtract; another makes it write different
numbers into memory, and lots of other things. A program consists of a bunch of these
instruction numbers in a row in memory. The computer reads the first number, does what

file:///E|/TEMP/Chapter%202%20Lifting%20The%20Hood.htm (2 of 22) [9/30/02 08:28:34 PM]

file:///E|/TEMP/Chapter%202%20Lifting%20The%20Hood.htm

the number instructs it to do, and then reads the second one, does what that number says
to do, and so on until it runs out of numbers."
If you don't find that utterly clear; don't worry. I had the advantage of being an electronics
hobbyist (so I knew what some of the chips did) and had already written some programs
in RAX's FORTRAN. But for me, my God, everything suddenly hit critical mass and
exploded in my head until the steam started pouring out of my ears.
No matter what RAX was, I knew that he had to be something like the COSMAC ELF on
a larger scale. I built an ELF. It was quite an education, and allowed me to understand the
nature of computers at a very deep level. I don't recommend that anybody but total crazies
wirewrap their own machines out of loose chips anymore, although it was a common
enough thing to do in the mid-to late Seventies. In this chapter, I'll try and provide you
with some of the insights that I obtained while assembling my own machine the hard way.
(You wonder where the "hard" in "hardware" comes from? Not from the sound it makes
when you bang it on the table, promise...)

2.2 Switches, Transistors, and Memory

Switches remember.
Think about it. You flip the switch by the door, and the light in the middle the ceiling
comes on. It stays on. When you leave the room, you flip the switch down again, and the
light goes out. It stays out. Poltergeists notwithstanding, the switch will remain in the
position you last left it until you (or someone else) come back and flip it to its other
position.
In a sense, it remembers what its last command was until you change it, and "overwrite"
that command with a new one. In this sense, a light switch represents a sort of
rudimentary memory element.
Light switches are more mechanical than electrical, which does not prevent them from
acting as memory; in fact, the very first computer (Babbage's 19th-century difference
engine) was entirely mechanical. In fact, the far larger version he designed but never
finished was to have been steam powered. Babbage's machine had lots of little cams that
could be flipped by other cams from one position to another. Numbers were encoded and
remembered as patterns of cam positions.

One if by Land

Whether a switch is mechanical, electrical, hydraulic, or something else is irrelevant.

file:///E|/TEMP/Chapter%202%20Lifting%20The%20Hood.htm (3 of 22) [9/30/02 08:28:34 PM]

file:///E|/TEMP/Chapter%202%20Lifting%20The%20Hood.htm

What counts is that a switch contains a pattern: On or off; up or down, flow or no flow.
To that pattern can be assigned a meaning. Paul Revere told his buddy to set up a code in
the Old North Church: "One if by land, two if by sea." Once lit, the lamps in the steeple
remained lit (and thus remembered that very important code) long enough for Paul to call
out the militia and whup the British.
In general then, what we call "memory" is an aggregate of switches that will retain a
pattern long enough for that pattern to be read and understood by a person or a
mechanism. For our purposes, those switches will be electrical, but keep in mind that both
mechanical and hydraulic computers have been proposed and built with varying degrees
of success.
Memory consists of containers for alterable patterns that retain an entered pattern until
someone or something alters the pattern.

Transistor Switches

One problem with building a computer memory system of light switches is that light
switches are pretty specialized: they require fingers to set them, and their "output" is a
current path for electricity. Ideally, a computer memory switch should be operated by the
same force it controls to allow the patterns in memory locations to be passed on to other
memory locations. In the gross electromechanical world, such a switch is called a "relay."
A relay is a switch that is operated by electricity, and also controls electricity. You "flip"
a relay by feeding it a pulse of electricity, which powers a little hammer that whaps a
lever to one side or another. This lever then opens or closes a set of electrical contacts,
just as your garden-variety light switch does. Computers have been made out of relays,
although as you might imagine (with a typical relay being about the size of an ice-cube)
they weren’t especially powerful computers.
 Fully electronic computers are made out of transistor switches. Transistors are tiny
crystals of silicon that use the peculiar electrical properties of silicon to act as switches. I
won’t try to explain what these properties are, since that explanation would take an entire
(fat) book unto itself. Let’s consider a transistor switch a sort of electrical ‘black box’ and
describe it in terms of inputs and outputs.
 Figure 2.1 shows a transistor switch. When an electrical current is fed through pin 1,
current ceases to flow between pins 2 and 3.
 In real life, a tiny handful of other components (typically diodes and capacitors) are
necessary to make things work smoothly in a computer memory context. These
components are not necessarily little gizmos connected by wires to the outside of the

file:///E|/TEMP/Chapter%202%20Lifting%20The%20Hood.htm (4 of 22) [9/30/02 08:28:34 PM]

file:///E|/TEMP/Chapter%202%20Lifting%20The%20Hood.htm

transistor (although in early transistorized computers they were), but are now cut from the
same silicon crystal the transistor itself is cut from, and occupy almost no space at all.
Taken together, the transistor switch and its support components are called a memory cell.
I've hidden the electrical complexity of the memory cell within an appropriate black-box
symbol in Figure 2.1.
A memory cell keeps current flow through it to a minimum, because electrical current
flow produces heat, and heat is the enemy of electrical components. The memory cell's
circuit is arranged so that if you put a tiny voltage on its input pin and a similar voltage on
its select pin, a voltage will appear and remain on its output pin. That output voltage will
remain in its set state until you take away the voltage from the cell as a whole, or remove
the voltage from the input pin while putting a voltage on the select pin.

The "on" voltage being applied to all of these pins is kept at a consistent level. (Except, of
course, when it is removed entirely.) In other words, you don't put 12 volts on the input

file:///E|/TEMP/Chapter%202%20Lifting%20The%20Hood.htm (5 of 22) [9/30/02 08:28:34 PM]

file:///E|/TEMP/Chapter%202%20Lifting%20The%20Hood.htm

pin and then change that to 6 volts or 17 volts. The computer designers pick a voltage and
stick with it. (Most memory cells operate at a constant 5 volts, although many operate at
12 volts.) The pattern is binary in nature: you either put a voltage on the input pin or you
take away the voltage entirely. Likewise, the output pin either holds a fixed voltage or no
voltage at all.
We apply a code to that state of affairs: the presence of voltage indicates a binary 1, and
the lack of voltage indicates a binary 0. This code is arbitrary. We could as well have said
that the lack of voltage indicates a binary 1 and vise versa (and computers have been built
this way for obscure reasons) but the choice is up to us. Having the presence of something
indicate a binary 1 is more natural, and that is the way things have evolved in the
computing mainstream.
A single computer memory cell, such as the transistor-based one we're speaking of here,
holds one binary digit, either a 1 or a 0. This is called a bit. A bit is the indivisible atom of
information. There is no half-a-bit, and no bit-and-a-half. (This has been tried. It works
badly. But that didn't stop it from being tried.)
A bit is a single binary digit, either 1 or 0.

The Incredible Shrinking Bit

One bit doesn't tell us much. To be useful, we need to bring a lot of memory cells
together. Transistors started out small (the originals from the Fifties looked a lot like
stove-pipe hats for tin soldiers) and went down from there. The first transistors were
created from little chips of silicon crystal about an eighth of an inch square. The size of
the crystal chip hasn't changed outrageously since then, but the transistors have shrunk
incredibly.
In the beginning, one chip held one transistor. In time, the designers crisscrossed the chip
into four equal areas, making each area an independent transistor. From there it was an
easy jump to adding the other minuscule components needed to turn a transistor into a
computer memory cell.
The silicon chip was a tiny and fragile thing, and was encased in an oblong molded plastic
housing, like a stick of Dentyne gum with metal legs for the electrical connections.
What we had now was a sort of electrical egg carton: four little cubbyholes, each of which
could contain a single binary bit. Then the shrinking process began: first 8 bits, then 16
bits, then multiples of 8 and 16, all on the same tiny silicon chip. By the late Sixties, 256
memory cells could be made on one chip of silicon, usually in an array of 8 cells by 32. In
1976, my COSMAC ELF computer contained two memory chips. On each chip was an

file:///E|/TEMP/Chapter%202%20Lifting%20The%20Hood.htm (6 of 22) [9/30/02 08:28:34 PM]

file:///E|/TEMP/Chapter%202%20Lifting%20The%20Hood.htm

array of memory cells 4 wide and 256 long. (Picture a real long egg carton.) Each chip
could thus hold 1024 bits.
This was a pretty typical memory chip capacity at that time. We called them 1K RAM
chips, because they held roughly 1000 bits of random access memory (RAM). The "K"
comes from "kilobit," that is, one thousand bits. We'll get back to the notion of what
"random access" means shortly.
Toward the mid-seventies, the great memory shrinking act was kicking into high gear. 1K
chips were further divided into 4K chips containing 4096 bits of memory. The 4K chips
were almost immediately divided into 16K chips (16,384 bits of memory). These 16K
chips were the standard when the IBM PC appeared in 1981. By 1982 the chips had been
divided once again, and 16K became 64K, with 65,536 bits inside that same little
gumstick. Keep in mind that we're talking more than 65,000 transistors (plus other odd
components) formed on a square of silicon about a quarter-inch on a side.
Come 1985 and the 64K chip had been pushed aside by its drawn-and-quartered child, the
256K chip (262,144 bits). Chips always increase in capacity by a factor of 4 simply
because the current-generation chip is divided into four equal areas, onto each of which is
then placed the same number of transistors that the previous generation of chip had held
over the whole silicon chip.
Today, in late 1992, that 256K chip is history. It was subdivided into four areas in the mid-
to late Eighties, (producing a chip containing 1,048,576 bits) and again in 1990. Now, for
our mainstream memory container we have the 4M chip. The "M" stands for "mega,"
which is Greek for million, and the critter has a grand total of 4,194,304 bits in its tummy,
still no larger than that stick of Dentyne gum.
Will it stop here? Ha. The Japanese, patrons of all things small, have begun making
quantities of chips containing 16,777,216 bits. Some physicists think that even the
Japanese will have trouble dividing that little wafer one more time, since the transistors
are now so small that it gets hard pushing more than one electron at a time through them.
At that point some truly ugly limitations of life called quantum mechanics begin to get in
the way. More than likely, the next generation of chips will be stacked vertically for
greater capacity. Many people are off in the labs looking for other tricks, and don't make
the oft-made mistake of assuming that they won't find any.

Random Access

These chips are called RAM chips, because they contain random access memory.
Newcomers sometimes find this a perplexing and disturbing word, because random often
connotes chaos or unpredictability. What the word really means is at random, meaning

file:///E|/TEMP/Chapter%202%20Lifting%20The%20Hood.htm (7 of 22) [9/30/02 08:28:34 PM]

file:///E|/TEMP/Chapter%202%20Lifting%20The%20Hood.htm

you can reach into a megabit memory chip and pick out any of those million-plus bits
without disturbing any of the others, just as you might select one book at random from a
library's many shelves of thousands of books without sifting through them in order.
Memory didn't always work this way. Before memory was placed on silicon chips, it was
stored on magnetic gadgets of some kind, usually rotating drums or disks distantly related
to the hard drives we use today. Rotating memory sends a circular collection of bits
beneath a magnetic sensor. The bits pass beneath the sensor one at a time, and if you miss
the one you want, like a Chicago bus in January, you simply have to wait for it to come
by again. These are serial access devices. They present their bits to you, in a fixed order,
one at a time, and you have to wait for the one you want to come up in its order.
No need remembering that; we've long since abandoned serial-access devices for main
computer memory. We still use such systems for mass storage, as I'll describe a few
pages down the road.
Random access works like this: Inside the chip, each bit is stored in its own memory cell,
identical to the memory cell diagrammed in Figure 2.1. Each of the however-many
memory cells has a unique number. This number is a cell's (and hence a bit's) address. It's
like the addresses on a street: The bit on the corner is #0 Silicon Alley, and the bit next
door is #1, and so on. You don't have to knock on the door of Bit #0 and ask which bit it
is, then go to the next door and ask there too, until you find the bit you want. If you have
the address, you can zip right down the street and park square in front of the bit you
intend to visit.
Each chip has a number of pins coming out of it. (This is the computer room's equivalent
of the Killer Rake: don't step on one in the dark!) The bulk of these pins are called
address pins. One pin is called a data pin. (See Figure 2.2.) The address pins are electrical
leads that carry a binary address code. Your address is a binary number, expressed in 1s
and 0s only. You apply this address to the address pins by encoding a binary 1 as five
volts and a binary 0 as zero volts. Special circuits inside the RAM chip decode this
address to one of the select inputs of the numerous memory cells inside the chip. For any
given address applied to the address pins, only one select input will be raised to five volts,
thereby selecting that cell.
Depending on whether you intend to read a bit or write a bit, the data pin is switched
between the memory cells' input or output, as shown in Figure 2.2.
But that's all done internally to the chip. As far as you on the outside are concerned, once
you've applied the address to the address pins, voila! The data pin will contain a voltage
representing the value of the bit you requested. If that bit contained a binary 1, the data
pin will contain a 5 volt signal; otherwise, the binary 0 bit will be represented by 0 volts.

file:///E|/TEMP/Chapter%202%20Lifting%20The%20Hood.htm (8 of 22) [9/30/02 08:28:34 PM]

file:///E|/TEMP/Chapter%202%20Lifting%20The%20Hood.htm

Memory Access Time

Chips are graded by how long it takes for the data to appear on the data pin after you've
applied the address to the address pins. Obviously, the faster the better, but some chips
(for electrical reasons that again are difficult to explain) are faster than others.
The times seem so small as to be insignificant: 100 nanoseconds is a typical memory chip
access time. A nanosecond is a billionth of a second, so 100 nanoseconds is one ten-
millionth of a second. Great stuff—but to accomplish anything useful, a computer needs
to access memory hundreds of thousands or millions of times. It adds up. If you become
an expert assembly language programmer, you will jump through hoops to shave the
number of memory accesses your program needs to perform, because memory access is
the ultimate limiting factor in a computer's performance. Michael Abrash, in fact, has
published a whole book on doing exactly that: Zen of Assembly Language, which can be
(badly) summarized in just these few words: Stay out of memory whenever you can!
(You'll discover just how difficult this is soon enough.)

Bytes, Words, and Double Words

The days are long gone when a serious computer can exist on only one memory chip. My
poor 1976 COSMAC ELF even needed at least two chips. Today's computers need
dozens, or even hundreds of chips, regardless of the fact that today's chips hold megabits
rather than the ELF's paltry 2,048 bits. Understanding how a computer gathers its
memory chips together into a coherent memory system is critical when you wish to write
efficient assembly-language programs. Whereas an infinity of ways exist to hook memory
chips together, the system I'll describe here is that of the IBM PC type of computer, which
includes the PC, XT, AT, PS/2, and a veritable plethora of clones.

file:///E|/TEMP/Chapter%202%20Lifting%20The%20Hood.htm (9 of 22) [9/30/02 08:28:34 PM]

file:///E|/TEMP/Chapter%202%20Lifting%20The%20Hood.htm

Our memory system must store our information. How we organize a memory system out
of a hatful of memory chips will be dictated largely by how we organize our information.
The answer begins with this thing called a byte. The fact that the grandaddy of all
computer magazines took this word for its title indicates its importance in the computer
scheme of things. From a functional perspective, memory is measured in bytes. A byte is
eight bits. Two bytes side-by-side are called a word, and two words side-by-side are
called a double word. There are other terms like nybble and quad word, but you can do
quite well with bits, bytes, words, and double words.
A bit is a single binary digit, 0 or 1.
A byte is eight bits side-by-side.
A word is two bytes side-by-side.
A double word is two words side-by-side.
Computers were designed to store and manipulate human information. The basic elements
of human discourse are built from a set of symbols consisting of letters of the alphabet
(two of each for upper- and lowercase), numbers, and symbols like commas, colons,
periods, and exclamation marks. Add to these the various international variations on

file:///E|/TEMP/Chapter%202%20Lifting%20The%20Hood.htm (10 of 22) [9/30/02 08:28:34 PM]

file:///E|/TEMP/Chapter%202%20Lifting%20The%20Hood.htm

letters like a and 6 plus the more arcane mathematical symbols, and you'll find that human
information requires a symbol set of well over 200 symbols. (The symbol set used in all
PC-style computers is given in Appendix A.)
Bytes are central to the scheme because one symbol out of that symbol set can be neatly
expressed in one byte. A byte is eight bits, and 28 is 256. This means that a binary number
eight bits in size can be one of 256 different values, numbered from 0 to 255. Because we
use these symbols, most of what we do in computer programs is done in byte-sized
chunks. In fact, except for the very odd and specialized kind of computers we are now
building into intelligent food processors, no computer processes information in chunks
smaller than one byte. Most computers today, in fact, process information either a word or
a double word at a time.

Pretty Chips All in a Row

One of the more perplexing things for beginners to understand is that today's standard 1
megabit RAM chip does not even contain one byte...just 1,048,576 bits. Remember that
today's RAM chips have only one data pin. To store a byte you would have to store eight
bits in sequence at eight consecutive addresses, and to retrieve that byte you would have
to retrieve eight bits in sequence. Since it takes 80 nanoseconds at very least to store a bit
in one of those chips, storing a byte would take at least 640 nanoseconds, and in practical
terms, close to a microsecond, which (believe it!) is far, far too slow to be useful.
What is actually done is to distribute a single stored byte across eight separate RAM
chips, with one bit from the stored byte in each chip, at the same address across all chips.
This way, when a single address is applied to the address pins of all eight chips, all eight
bits appear simultaneously on the eight output pins, and we can retrieve a full byte in 80
nanoseconds instead of 640 nanoseconds. See Figure 2.3.
We call this row of eight chips a bank of memory, and how much memory is contained in
a bank depends on the type of chips incorporated in the bank. A row of eight 64K chips
contains 64K bytes—8 x 64K or 512K bits. (Remember, computers deal with information
a minimum of 8 bits at a time.) A row of eight 256K chips contains 256K bytes, and so
on.
This is the system used in the IBM PC, the XT, and their clones. The IBM AT and its
clones process information a word at a time, so their memory systems use a row of 16
memory chips to store and retrieve a full 16-bit word at once, Furthermore, the newest
generation of IBM-compatible machines using the 0386 and 80486 processors handles
memory a double word at a time, so those machines access a row of 32 memory chips at a
time. (A double word consists of 4 bytes, or 32 bits.)

file:///E|/TEMP/Chapter%202%20Lifting%20The%20Hood.htm (11 of 22) [9/30/02 08:28:34 PM]

file:///E|/TEMP/Chapter%202%20Lifting%20The%20Hood.htm

 Actual computers combine various combinations of memory banks in various ways to
produce different amounts of memory. I'll take up the subject again when we begin
talking specifically about the PC in Chapter 6.

2.3 The Shop Foreman and the Assembly Line

The gist of the previous section was only this: electrically, your computer's memory
consists of one or more rows of memory chips, each chip containing a large number of
memory cells consisting of transistors and other minuscule electrical components. Most
of the time, it's just as useful to forget about the transistors and even the rows of chips to
avoid confusion. (My high school computer science teacher was not entirely wrong...but
he was right for the wrong reasons.)
It's better in most cases to envision a very long row of byte-sized containers, each with
its own address. Don't assume that, in computers that process information a word at a
time, only words have addresses; it is a convention with the PC architecture that every
byte has its own address regardless of how many bytes are pulled from memory at one
time.
Every byte of memory in the computer has its own unique address, even in computers that
process two bytes, or even four bytes, of information at a time.
If this seems counterintuitive, yet another metaphor will help. When you go to the library
to take out the three volumes of Tolkien's massive fantasy The Lord of the Rings, you'll
find that each of the three volumes has its own card catalog number (essentially that
volume's address in the library) but that you take all three down at once and process them
as a single entity. If you really want to, you can take only one of the books out at a time,
but to do so will require yet another trip to the library to get the next volume, which is
wasteful of your time and effort.
So it is with 16-bit or 32-bit computers. Every byte has its own address, but when a 16-bit
computer accesses a byte, it actually reads two bytes starting at the address of the
requested byte. You can use the second byte or ignore it if you don't need it—but if you
later decide you do need the second byte you'll have to access memory again to get it.
Best to save time and get it all at one swoop.
(There is an additional complication here involving whether addresses are odd or even or
divisible by 4 or 16.. .but we'll cover that in detail later on.)

file:///E|/TEMP/Chapter%202%20Lifting%20The%20Hood.htm (12 of 22) [9/30/02 08:28:34 PM]

file:///E|/TEMP/Chapter%202%20Lifting%20The%20Hood.htm

The Honcho Chip

All of this talk about reading things from memory and writing things to memory has thus

file:///E|/TEMP/Chapter%202%20Lifting%20The%20Hood.htm (13 of 22) [9/30/02 08:28:34 PM]

file:///E|/TEMP/Chapter%202%20Lifting%20The%20Hood.htm

far carefully skirted the question of who is doing the reading and writing. The who is
almost always a single chip, and a remarkable chip it is, too: the central processing unit,
or CPU. If you are the president and CEO of your personal computer, the CPU is your
shop foreman. The foreman sees that your orders are carried out down in the chips where
the work gets done.
Some would say that the CPU is what actually does the work, but that's an
oversimplification. Plenty of real work is done in the memory system, and especially in
what are called peripherals, like video display boards, serial and parallel ports, and
modems. So while the CPU does do a good deal of the work, it parcels out quite a bit to
other components within the computer. I think its role of foreman outweighs its role as
assembly-line grunt.
The CPU chips used in IBM-compatible computers all come from a company called
Intel, which pretty much invented the single-chip CPU back in the early seventies. Intel's
first bang-up success was the 8080 chip, which helped trigger the personal computer
revolution after it was chosen for the seminal MITS Altair 8800 computer introduced in
Popular Electronics, in December of 1974. The 8080 was an eight-bit computer because
it accessed memory eight bits (one byte) at a time. The 8080 is now pretty well extinct,
but it gave birth to a pair of next-generation CPU chips called the 8086 and the 8088.
These two chips are nearly identical except that the 8088 is an 8-bit CPU, while the 8086
is a 16-bit CPU, and accesses memory a word (two bytes) at a time. IBM chose the 8088
for its original 1981 IBM PC and later the XT, but the 8086 never made it into a true IBM
computer until the somewhat forgettable PS/2 models 25 and 30 appeared in 1987.
Intel produced yet another generation of CPU chip in 1983, and by 1984 the 80286
became the beating heart of the enormously successful PC/AT. The 80286 is a more
powerful 16-bit CPU, capable of everything the 8086 can do, plus numerous additional
things. Early 1986 brought Intel's 80386 CPU chip to market. The 80386 upped the ante
by being a 32-bit machine, which can read and write memory a double word (four bytes)
at a time. The 80386 is enormously more powerful than the 80286, and a great deal
faster. The newest Intel chip, the 80486, is more powerful and faster still. (I'll tell the
story of the CPU wars in more detail in Chapter 11, once we've covered some more
essential background.)
Many experts think that 32 bits is an ideal format for CPU memory access, and that
increasing memory access beyond 32 bits at a time would begin to slow things down.
And in this business, you do not want to slow things down.

Talking to Memory

file:///E|/TEMP/Chapter%202%20Lifting%20The%20Hood.htm (14 of 22) [9/30/02 08:28:34 PM]

file:///E|/TEMP/Chapter%202%20Lifting%20The%20Hood.htm

All the assorted Intel CPUs operate at varying speeds with various features, but they are
conceptually identical, and this discussion will apply to all of them.
The CPU chip's most important job is to communicate with the computer's memory
system. Like a memory chip, a CPU chip is a small square of silicon onto which a great
many transistors have been placed. The fragile silicon chip is encased in a plastic or
ceramic housing with a large number of pins protruding from it. Like the pins of memory
chips, the CPU's pins transfer information encoded as voltage levels. Five volts indicate a
binary 1, and zero volts indicate a binary 0.
Like the memory chips, the CPU chip has a number of pins devoted to memory addresses,
and these pins are connected directly to the computer's banks of memory chips. When the
CPU desires to read a byte (or a word or double word) from memory, it places the
memory address of the byte to be read on its address pins, encoded as a binary number.
About 100 nanoseconds later, the byte appears (also as a binary number) on the data pins
of the memory chips. The CPU chip also has data pins, and it slurps up the byte presented
by the memory chips through its own data pins. See Figure 2.4.
The process, of course, also works in reverse: to write a byte into memory, the CPU first
places the memory address where it wants to write onto its address pins. Nanoseconds
later, it places the byte it wishes to write into memory on its data pins. The memory chips
obediently store the byte inside themselves at the requested address.

Riding the Bus

This give-and-take between the CPU and the memory system represents the bulk of what
happens inside your computer. Information flows from memory into the CPU and back
again. Information flows in other paths as well. Your computer contains additional
devices called peripherals that are either sources or destinations (or both) for information.
Video display boards, disk drives, printer ports, and modems are the most common
peripherals in PC-type computers. Like the CPU and memory, they are all ultimately
electrical devices. Most modern peripherals consist of one or two large chips and several
smaller chips that support the larger chips. Like both the CPU and memory chips, these
peripheral devices have both address pins and data pins. Some, video boards in particular,
have their own memory chips.

file:///E|/TEMP/Chapter%202%20Lifting%20The%20Hood.htm (15 of 22) [9/30/02 08:28:34 PM]

file:///E|/TEMP/Chapter%202%20Lifting%20The%20Hood.htm

Peripherals "talk" to the CPU (i.e., pass the CPU data or take data from the CPU) and
sometimes to one another. These conversations take place across the electrical
connections, linking the address pins and data pins that all devices in the computer have
in common. These electrical lines are called a data bus, and form a sort of party line
linking the CPU with all other parts of the computer. There is an elaborate system of
electrical arbitration that determines when and in what order the different devices can use
this party line to talk with one another. But it happens the same way: an address is placed
on the bus, followed by a byte (or word or double word) of data. Special signals go out on
the bus with the address to indicate whether the address is of a location in memory, or of
one of the peripherals attached to the data bus. The address of a peripheral is called an I/O
address to differentiate between it and a memory address such as we've been discussing
all along.
The data bus is the major element in the expansion slots present in most PC-type
computers, and most peripherals are boards that plug into these slots. The peripherals talk
to the CPU and to memory through the data bus connections brought out as electrical pins
in the expansion slots.

file:///E|/TEMP/Chapter%202%20Lifting%20The%20Hood.htm (16 of 22) [9/30/02 08:28:34 PM]

file:///E|/TEMP/Chapter%202%20Lifting%20The%20Hood.htm

The Foreman's Pockets

Every CPU contains very few data storage cubbyholes called registers. These registers
are at once the foreman's pockets and the foreman's workbench. When the CPU needs a
place to tuck something away for awhile, an empty register is just the place. The CPU
could always store the data out in memory, but that takes a lot of time. Because the
registers are actually inside the CPU, placing data in a register or reading it back again is
fast.
But more important, registers are the foreman's workbench. When the CPU needs to add
two numbers, the easiest and fastest way is to place the numbers in two registers and add
the two registers together. The sum (in usual CPU practice) replaces one of the two
original numbers that were added, but after that, the sum could then be placed in yet
another register, or added to another number in another register, or stored out in memory,
or any of a multitude of other operations.
The CPU's immediate work-in-progress is held in temporary storage containers called
registers.
Work involving registers is always fast, because the registers are within the CPU and very
little movement of data is necessary.
Like memory cells and, indeed, like the entire CPU, registers are made out of transistors.
But rather than having numeric addresses, registers have names like AX or DI. To make
matters even more complicated, while all CPU registers have certain common properties,
most registers have unique special powers not shared by other registers. Understanding
the ways and the limitations of CPU registers is something like following the Watergate
hearings: there are partnerships, alliances, and a bewildering array of secret agendas that
each register follows. I'll be devoting most of a chapter to registers later in this book.
Most peripherals also have registers, and peripheral registers are even more limited in
scope than CPU registers. Their agendas are quite explicit and in no way secret. This does
not prevent them from being confusing, as anyone who has tried programming the EGA
video board at a register level will attest.

The Assembly Line

If the CPU is the shop foreman, then the peripherals are the assembly line workers, and
the data bus is the assembly line itself. (Unlike most assembly lines, however, the
foreman works the line as hard or harder than the rest of his crew!)
As an example: information enters the computer through a modem peripheral, which
assembles bits received from the telephone line into bytes of data representing characters

file:///E|/TEMP/Chapter%202%20Lifting%20The%20Hood.htm (17 of 22) [9/30/02 08:28:34 PM]

file:///E|/TEMP/Chapter%202%20Lifting%20The%20Hood.htm

and numbers. The modem then places the assembled byte onto the bus, from which the
CPU picks it up, tallies it, and then places it back on the data bus. The video board then
retrieves the byte from the bus and writes it into video memory so that you can see it on
your screen.
Obviously, lots is going on inside the box. Continuous, furious communication along the
data bus between CPU, memory, and peripherals is what accomplishes the work that the
computer does. The question then arises: who tells the foreman and crew what to do? You
do. How do you do that? You write a program. Where is the program? It's in memory,
along with all the rest of the data stored in memory. In fact, the program is data, and that
is the heart of the whole idea of programming as we know it.

2.4 The Box that Follows a Plan

Finally we come to the essence of computing: the nature of programs and how they direct
the CPU to control the computer.
We've seen how memory can be used to store bytes of information. These bytes are all
binary codes, patterns of 1s and 0s stored as minute electrical voltage levels and making
up binary numbers. We've also spoken of symbols, and how certain binary codes may be
interpreted as meaning something to us human beings, things like letters, digits,
punctuation, and so on.
Just as the table in Appendix A contains a set of codes and symbols that mean something
to us, there is a set of codes that mean something to the CPU. These codes are called
machine instructions, and their name is evocative of what they actually are, instructions to
the CPU.
Let's take an example or two from the venerable 8088 CPU. The binary code 01000000
(40H) means something to the 8088 chip. It is an order: add one to register AX. That's
about as simple as they get. Most machine instructions occupy more than a single byte.
The binary codes 11010110 01110011 (OB6H 73H) comprise another order: load the
value 73H into register DH. On the other end of the spectrum, the binary codes 11110011
10100100 (OF3H OA4H) direct the CPU to do the following (take a deep breath): Begin
moving the number of bytes specified in register CX from the 32-bit address stored in
registers DS and SI to the 32-bit address stored in registers ES and DI, updating the
address in both SI and DI after moving each byte, and also decreasing CX by one each
time, stopping when CX becomes 0.
The rest of the several hundred instructions understood by the Intel CPUs fall in and
among those three in terms of complication and power. There are instructions that

file:///E|/TEMP/Chapter%202%20Lifting%20The%20Hood.htm (18 of 22) [9/30/02 08:28:34 PM]

file:///E|/TEMP/Chapter%202%20Lifting%20The%20Hood.htm

perform arithmetic operations (addition, subtraction, multiplication, and division) and
logical operations (AND, OR, etc.), and instructions that move information around
memory or exchange information with peripherals.

Fetch and Execute

A computer program is nothing more than a table of these machine instructions stored in
memory. There's nothing special about the table nor where it is positioned in memory; it
could be anywhere, and the bytes in the table are nothing more than binary numbers.
The binary numbers comprising a computer program are special only in the way that the
CPU treats them. When the CPU is started running, it fetches a byte from an agreed-upon
address in memory. This byte is read from memory and loaded into the CPU. The CPU
examines the byte, and then begins performing the task that the fetched machine
instruction directs it to do. In many cases, this means fetching another byte (or another
two or three) from memory to complete the machine instruction before the real work
begins.
For example, if it fetches the binary code 40H (as mentioned above), it immediately adds
one to the value stored in register AX. But if it fetches the binary code OB6H, it knows it
must go back out to memory and fetch an additional byte to complete the instruction.
When both bytes are in the CPU, then the CPU takes the required action, which is to load
the second byte into register DH.
As soon as it finishes executing an instruction, the CPU goes out to memory and fetches
the next byte in sequence. Inside the CPU is a register called the instruction pointer that
quite literally contains the address of the next instruction to be executed. Each time an
instruction is completed, the instruction pointer is updated to point to the next instruction
in memory.
So the process goes: fetch and execute; fetch and execute. The CPU works its way
through memory, with the instruction pointer register leading the way. As it goes it
works, moving data around in memory, moving values around in registers, passing data to
peripherals, and "crunching" data in arithmetic or logical operations.
Computer programs are lists of binary machine instructions stored in memory. They are
no different from any other list of data bytes stored in memory except in how they are
treated when fetched by the CPU.

The Foreman's Innards

file:///E|/TEMP/Chapter%202%20Lifting%20The%20Hood.htm (19 of 22) [9/30/02 08:28:34 PM]

file:///E|/TEMP/Chapter%202%20Lifting%20The%20Hood.htm

I made the point earlier that machine instructions are binary codes. This is something we
often gloss over, yet to understand the true nature of the CPU, we have to step away from
the persistent image of machine instructions as numbers. They are not numbers. They are
binary patterns designed to throw electrical switches.
Inside the CPU are a very large number of transistors. Some small number of those
transistors go into making the foreman's pockets—machine registers for holding
information. The vast bulk of those transistors (which now number over a million in
CPUs like the 80386) are switches connected to other switches, which are connected to
still more switches in a mind-numbing complex network.

The machine instruction 01000000 (40H) directs the CPU to add 1 to the value stored in
register AX. It's very instructive of the true nature of computers to think about the
execution of machine instruction 01000000 in this way: the CPU fetches a byte
containing the code 01000000 from memory. Once the byte is fully within the CPU, the
CPU in essence lets the machine instruction byte push eight transistor switches. The lone
1 digit pushes its switch "up" electrically; the rest of the digits, all 0s, push their switches
"down."
In a chain reaction, those eight switches flip the states of first dozens, then hundreds, then
thousands, and finally tens of thousands of tiny transistor switches within the CPU. It isn't
random—this furious moment of electrical activity within the CPU operates utterly
according to patterns etched into the silicon of the CPU by Intel's teams of engineers.
Ultimately—perhaps after hundreds of thousands of individual switch throws—the value
contained in register AX is suddenly one greater than it was before.
How this happens is difficult to explain, but you must remember that any number within
the CPU can also be looked at as a binary code, including numbers stored in registers.
Also, most switches within the CPU contain more than one "handle." These switches are
called gates and work according to the rules of logic. Perhaps two, or three, or even more
"up" switch throws have to simultaneously arrive at a particular gate in order for one
"down" switch throw to pass through that gate.
These gates are used to build complex internal machinery within the CPU. Collections of
gates can add two numbers in a device called an adder, which again is nothing more than
a crew of dozens of little switches working together first as gates and then as gates
working together to form an adder.
As part of the cavalcade of switch throws kicked off by the binary code 01000000, the
value in register AX was dumped trap-door style into an adder, while at the same time the
number 1 was fed into the other end of the adder. Finally, rising on a wave of switch
throws, the new sum emerges from the adder and ascends back into register AX—and the

file:///E|/TEMP/Chapter%202%20Lifting%20The%20Hood.htm (20 of 22) [9/30/02 08:28:34 PM]

file:///E|/TEMP/Chapter%202%20Lifting%20The%20Hood.htm

job is done.
The foreman of your computer, then, is made of switches—just like all the other parts of
the computer. The chap contains a mind-boggling number of such switches,
interconnected in even more mind-boggling ways. But the important thing is that whether
you are boggled or (like me on off days) merely jaded by it all, the CPU, and ultimately
the computer, does what we tell it to. We set up a list of machine instructions as a table in
memory, and then, by God, that mute iron brick comes alive and starts earning its keep.

Changing Course

The first piece of genuine magic in the nature of computers is that a string of binary codes
in memory tells the computer what to do, step by step. The second piece of that magic is
really the jewel in the crown. There are machine instructions that change the order in
which machine instructions are fetched and executed.
In other words, once the CPU has executed a machine instruction that does something
useful, the next machine instruction may tell the CPU to go back and play it again—and
again, and again, as many times as necessary. The CPU can keep count of the number of
times that it has executed that particular instruction or list of instructions, and keep
repeating them until a prearranged count has been met.
Or the CPU can arrange to skip certain sequences of machine instructions entirely if they
don't need to be executed at all.
What this means is that the list of machine instructions in memory does not necessarily
begin at the top and run without deviation to the bottom. The CPU can execute the first
fifty or a hundred or a thousand instructions, then jump to the end of the program—or
jump back to the start and begin again. It can skip and bounce up and down the list like a
stone tossed over a calm pond. It can execute a few instructions up here, then zip down
somewhere else and execute a few more instructions, then zip back and pick up where it
left off, all without missing a beat or even wasting too much time.
How is this done? Recall that the CPU contains a register that always contains the address
of the next instruction to be executed. This register, the instruction pointer, is not
essentially different from any of the other registers in the CPU. Just as a machine
instruction can add one to register AX, another machine instruction can add (or subtract)
some number from the address stored in the instruction pointer. Add one hundred to the
instruction pointer, and the CPU will instantly skip one hundred bytes down the list of
machine instructions before it continues. Subtract one hundred from the address stored in
the instruction pointer, and the CPU will instantly jump back one hundred bytes up the

file:///E|/TEMP/Chapter%202%20Lifting%20The%20Hood.htm (21 of 22) [9/30/02 08:28:34 PM]

file:///E|/TEMP/Chapter%202%20Lifting%20The%20Hood.htm

machine instruction list.
And finally, the third whammy: the CPU can change its course of execution based on the
work it has been doing. The CPU can "decide" whether or not to execute a given
instruction or group of instructions, based on values stored in memory, or based on the
state of special one-bit CPU registers called flags. The CPU can count up how many
times it needs to do something, and then do that something that number of times.
So not only can you tell the CPU what to do, you can tell it where to go. Better, you can
sometimes let the CPU, like a faithful bloodhound, sniff out the best course forward in the
interest of getting the work done the quickest possible way.
Back in Chapter 0, I spoke of a computer program being a sequence of steps and tests.
Most of the machine instructions understood by the CPU are steps, but others are tests.
The tests are always two-way tests, and in fact, the choice of what to do is always the
same: jump or don't jump. That's all. You can test for any of numerous different
conditions, but the choice is always one jumping to another place in the program, or just
keep truckin' along.

The Plan

I can sum it all up by borrowing one of the most potent metaphors for computing ever
uttered: the computer is a box that follows apian. These are the words of Ted Nelson,
author of the uncanny book ComputerLib/Dream Machines, and one of those very rare
people who have the infuriating habit of being right most of the time.
You write the plan. The computer follows it by passing the instructions, byte by byte, to
the CPU. At the bottom of it, the process is a hellishly involved electrical chain reaction
involving tens of thousands of switches composed of hundreds of thousands or even
millions of transistors.
This plan, this list of machine instructions in memory, is your assembly-language
program. The whole point of this book is to teach you to correctly arrange machine
instructions in memory for the use of the CPU.
With any luck at all, by now you'll have a reasonable conceptual understanding of both
what computers do and what they are. It's time to start looking more closely at the nature
of the operations that machine instructions force the CPU to do.

file:///E|/TEMP/Chapter%202%20Lifting%20The%20Hood.htm (22 of 22) [9/30/02 08:28:34 PM]

file:///E|/TEMP/Chapter%203%20The%20Right%20To%20Assemble.htm

The Right To Assemble
The Process of Making Assembly-Language
Programs
3.1 Nude with Bruises and Other Perplexities >• 64
3.2 DOS and DOS Files >• 65
3.3 Compilers and Assemblers >• 71
3.4 The Assembly-Language Development Process >• 79
3.5 DEBUG and How to Use It >• 89

3.1 Nude with Bruises and Other Perplexities

Years ago (back in the Sixties; had to be!), I recall reading about a comely female artist
who produced her oil paintings by the intriguing process of rolling naked on a tarp
splattered with multicolored oil paint, and then throwing herself against a canvas taped to
the studio wall. (I can see the headline now: 'NUDE WITH BRUISES DRAWS RECORD
PRICE AT NY AUCTION...)
I've seen people write programs this way. The BASIC language makes it easy: you roll in
an intoxicating collection of wild and powerful program statements, and then smear them
around on the screen until something works. And something invariably does work, no
matter how little thought goes into the program's design. BASIC is like that. It's "moron-
friendly," and will stoop to whatever level of carelessness goes into a program's
preparation.
The programs that result, while workable in that they don't crash the machine, can take

file:///E|/TEMP/Chapter%203%20The%20Right%20To%20Assemble.htm (1 of 39) [9/30/02 08:29:46 PM]

file:///E|/TEMP/Chapter%203%20The%20Right%20To%20Assemble.htm

seven seconds to paint a screen, or an hour and a half to sort a database with 150 check
records in it.
You can't paint Nude with Bruises in assembly language. Trust me.

The Sears Catalog Fallacy

But there are other perfectly proper programming paradigms that won't work with
assembly language, either. One of these models is commonly used with my own beloved
Turbo Pascal: decide what you want to do, sketch out a design based on a reasonable
amount of forethought, and then go hunting through a veritable Sears catalog of toolbox
products looking for stock procedures like:

SearchDataFlleForFirstRecordBeginningWithStringAndDisplayInRed

Basically, this method glues together other people's canned procedures into programs
that aren't exactly canned, but are more or less polybagged. Which is OK — I do it all the
time. I also eat at Burger King a couple of times a week, because it's quick and cheap —
and because I get hungry no matter how hard I try not to. When I need a software tool in
a bad way and just can't get around not having it, I look for the quickest possible way of
producing it.
(As an interesting side note, I once produced a necessary utility — my JRead utility —
by starting with Borland's FirstEd example editor from their Editor Toolbox, and cutting
things out of it until the program did what I needed. I ended up writing only about 20
lines of new code, all tolled. It was programming in reverse — you can't do it all the
time, but this time it allowed me to make a solid, useful tool in about an hour and a half.
Keep your eyes open for opportunities like that.)
There is an occasional toolbox of assembly language routines, but hardly enough to
avoid having to think too much about the task at hand — which is what many people
think by way of the Sears catalog fallacy.
I started this chapter this way as a warning: you can't write assembly-language programs
by trial and error, nor can you do it by letting other people do your thinking for you. It is
a complicated and tricky process compared to either BASIC or we-do-it-all-for-you
languages like Turbo Pascal. You have to pay close attention. You have to read the sheet
music. And, most of all, you have to practice.

3.2 DOS and DOS Files

file:///E|/TEMP/Chapter%203%20The%20Right%20To%20Assemble.htm (2 of 39) [9/30/02 08:29:46 PM]

file:///E|/TEMP/Chapter%203%20The%20Right%20To%20Assemble.htm

In the previous chapter, I defined what a computer program is, from the computer's
perspective. It is, metaphorically, a long journey in very small steps. A long list of binary
codes direct the CPU to do what it must to accomplish the job at hand. These codes are,
even in their hexadecimal shorthand form, gobbledegook to us here in the land of the
living. Here is a perfect example:

FE FF A2 37 4C OA 29 00 91 CB 60 61 E8 E3 20 00 A8 00 B8 29 IF FF 69 55 7B
F4 F8 5B 31

Is this a real program or isn't it? You'd probably have to ask the CPU, unless you were a
machine-code maniac of the kind that hasn't been seen since 1977. (It isn't.)
But the CPU has no trouble with programs presented in this form. In fact, the CPU can't
handle programs any other way. The CPU simply isn't equipped to understand a string of
characters like

LET X = 42
or even something we out here would call assembly language:

MOV AX,42
To the CPU, it's binary only, and hold the text, please, ma'am.
So while it is possible to write computer programs in pure binary (I have done it, but not
since 1977) it's unpleasant work, and will take you until the next Ice Age to accomplish
anything useful.
The process of developing assembly-language programs is a path that runs from what we
call source code that you can read, to something called machine code that the CPU can
execute. In the middle is a resting-point called object code that we'll take up a little later.
The process of creating true machine-code programs is one of translation.
You must start with something that you and the rest of us can read and
understand, and then somehow convert that to something the CPU can understand and
execute. Before examining either end of that road, however, we need to understand a
little more about the land on which the road is built.

The God Above, the Troll Below

Most of all, we need to understand DOS. Some people look upon DOS as a god; others
as a kind of troll. In fact, DOS is a little of both. Mostly what you must put behind you is

file:///E|/TEMP/Chapter%203%20The%20Right%20To%20Assemble.htm (3 of 39) [9/30/02 08:29:46 PM]

file:///E|/TEMP/Chapter%203%20The%20Right%20To%20Assemble.htm

the common notion that DOS is a part of the machine itself and somehow resides in the
same sort of silicon as the CPU. Not so! DOS is a computer program of an only slightly
special nature, called an operating system.
In part, an operating system is a collection of routines that do nothing but serve the
components of the computer itself. By components I mean things like disk drives,
printers, and so on. DOS acts something like a troll living under the bridge to your disk
drive. You tell the troll what you want to do with the disk drive, and the troll does it, bis
way, and at some cost (in machine cycles) to you.
You could write a program to handle every little aspect of disk operation itself (many
game programs do exactly that) but it would be more trouble than it's worth, because
every program that runs on a computer needs to access the disk drives. And regardless of
how grumpy the troll is, he does get the job done, and (assuming your disk drives aren't
falling-down damaged) does it right every time. Can you guarantee that you know all
there is to know about running a disk drive? Forgive me if I have my doubts. That is, in
my opinion, what trolls are for.
The other (and more interesting thing) that operating systems do is run programs. It is
here that DOS seems more godlike than troll-like. When you want to run a program on
your computer, you type its name at the DOS command line. DOS goes out and searches
one or more disk drives for the named program, loads it into memory at a convenient
spot, sets the instruction pointer to the start of the program, and boots the CPU in the rear
to get it going.
DOS then patiently waits for the program to run its course and stop. When the program
stops, it hands the CPU obediently back to DOS, which again tilts a hand to its ear and
listens for your next command from the command line.
So as programmers, we use DOS two ways: one is as a sort of toolkit; an army of trolls,
each of which can perform some service for your program, saving your program that
effort. The other is as a means of loading a program into memory and getting it going,
and then catching the machine gracefully on the rebound when your program is through.
I'll be mentioning DOS again and again in this book. Everywhere you look in assembly
language, you're going to see the old troll's face. Get used to it.

DOS Files: Magnetic Memory

Very simply, DOS files are memory banks stored on a magnetic coating rather than
inside silicon chips. A DOS file contains some number of bytes, stored in a specific
order. One difference from RAM memory is that DOS files stored on disk are sequential-

file:///E|/TEMP/Chapter%203%20The%20Right%20To%20Assemble.htm (4 of 39) [9/30/02 08:29:46 PM]

file:///E|/TEMP/Chapter%203%20The%20Right%20To%20Assemble.htm

access memory banks.
A disk (floppy or hard) is a circular platform coated with magnetic plastic of some sort.
In a floppy disk drive, the platform is a flexible disk of tough plastic; in a hard disk the
platform is a rigid platter of aluminum metal. Data is stored as little magnetic
disturbances on the plastic coating in a fashion similar to that used in audio cassettes and
VCRs. A sensor called a read/write head sits very close beside the rotating platform, and
waits for the data to pass by.
A simplified illustration of a rotating disk device is shown in Figure 3.1. The area of the
disk is divided into concentric circles called tracks. The tracks are further divided
radially into sectors. A sector (typically containing 512 bytes) is the smallest unit of
storage that can be read from or written to at one time. A DOS disk file consists of one or
more sectors containing the file's data.
The read/write head is mounted on a sliding shaft that is controlled by a solenoid
mechanism. The solenoid can move the head horizontally to position the head over a
specific track. (In Figure 3.1, the head is positioned over track 2—counting from 0,
remember!) However, once the head is over a particular track, it has to count sectors until
the sector it needs passes beneath it. The tracks can be accessed at random, just like bytes
in the computer's memory banks, but the sectors within a track must be accessed
sequentially.
Perhaps the single most valuable service DOS provides is handling the headaches of
distributing data onto empty sectors on a disk. Programs can hand sectors of data to
DOS,

file:///E|/TEMP/Chapter%203%20The%20Right%20To%20Assemble.htm (5 of 39) [9/30/02 08:29:46 PM]

file:///E|/TEMP/Chapter%203%20The%20Right%20To%20Assemble.htm

one at a time, and let DOS worry about where on the disk they can be placed. Each sector
has a number, and DOS keeps track of what sectors belong together as a file. The first
sector in a file might be stored on track 3, sector 9; the second sector might be stored on
track 0, sector 4, and so on. You don't have to worry about that. When you ask for sector
0 of your file, DOS looks up its location in its private tables, goes directly to track 3,
sector 9 and brings the sector's data back to you.

Binary Files

The data that is stored in a file is just binary bytes and can be anything at all. Files like
this, where there are no restrictions on the contents of a file, are called binary files,
because they can legally contain any binary code. Like all files, a binary file consists of
some whole number of sectors, with each sector (typically) containing 512 bytes. The
least space any file can occupy on your disk is 512 bytes; when you see the DOS DIR
command tell you that a file has 17 bytes it in, that's the count of how many bytes are
stored in that file. But like a walk-in closet with only one pair of shoes in it, the rest of
the sector is still there, empty but occupying space on the disk.

file:///E|/TEMP/Chapter%203%20The%20Right%20To%20Assemble.htm (6 of 39) [9/30/02 08:29:46 PM]

file:///E|/TEMP/Chapter%203%20The%20Right%20To%20Assemble.htm

A binary file has no structure, but is simply a long series of binary codes divided into
numbered groups of 512 and stored out on disk in a scheme that is best left to DOS to
understand.

Text Files

If you've ever tried to use the TYPE command to display a binary file (like an .EXE or
.COM file) to the screen, you've seen some odd things indeed. There's no reason for such
files to be intelligible on the screen; they're intended for other "eyes," typically the
CPU's.
There is a separate class of files that is specifically restricted to containing human-
readable information. These files are called text files because they contain the letters,
digits, and symbols of which printed human information (text) is composed.
Unlike binary files, text files have a certain structure to them. The characters in text files
are divided into lines. A line in a text file is defined not so much by what it contains as
by how it ends. Two invisible characters called an end-of-line (or EOL) marker (or
EOL) tag the end of a line. The EOL marker is not one character but two: the carriage
return character (called CR by those who know and love it) followed by the linefeed
character (similarly called LF). You don't see these characters on the screen as separate
symbols, but you see what they do: they end the line. Anywhere a line ends in an
ordinary DOS text file, you'll find a mostly invisible partnership of one CR character and
one LF character hanging out. The first line in a text file runs from the first byte in the
file to the first EOL marker; the second line starts immediately after the first EOL
marker and runs to the second EOL marker, and so on. The text characters falling
between two sequential EOL markers is considered a single line.
Why two characters to end a line? Long ago, there was (and still is at hamfests, lordy) an
incredible mechanical nightmare called a teletype machine. These were invented during
World War II as robot typewriters that could send written messages over long distances
through electrical signals that could pass over wires. Returning the typing carriage to the
left margin of the paper (carriage return) and feeding the paper up one line to expose the
next clean line of paper to the typing carriage (line feed) are separate mechanical
operations. A separate electrical signal was required to do each of these operations.
Although I don't know why separate signals were necessary, it has carried over into the
solid-state autumn of the 20th century in the form of those two characters, CR and LF.
Not only is this a case of the tail wagging the dog; it is a case of the tail walking around
twenty years after the poor dog rolled over and died.

file:///E|/TEMP/Chapter%203%20The%20Right%20To%20Assemble.htm (7 of 39) [9/30/02 08:29:46 PM]

file:///E|/TEMP/Chapter%203%20The%20Right%20To%20Assemble.htm

Figure 3.2 shows how CR and LF divide what might otherwise be a single meaningless
string of characters into a structured sequence of lines. It's important to understand the
structure of a text file because that structure dictates how some important software tools
operate, as I'll explain a little later.
The CR character is actually character 13 in the ASCII character set summarized in
Appendix A. The LF character is character 10. They are two of a set of several invisible
characters called whitespace, indicating their role in positioning text characters within
the white space of a text page. The other whitespace characters include the space
character (character 32) the tab character (character 9) and the form feed character
(character 12), which can further divide a text file into pages.
Another character, the bell character (BEL) falls in between binary and text characters.
When either displayed or printed, it signals that a tone should be sounded. Back in the
old teletype days, the BEL character caused the teletype machine to ring its bell. BEL
characters are allowed in text files, but are generally considered sloppy practice.
One more invisible character plays an important role in the structure of a text file: The
end-of-file (EOF) marker character. Unlike EOL, EOF is a single character, ASCII
character 26, sometimes written as Ctrl+Z because you generate the EOF character by
holding down the Ctrl key then pressing the Z key.
By convention, the EOF marker is considered the last significant character in a text file,
and DOS will ignore any characters following it, even if the file goes on for thousands of
additional bytes. Those additional bytes will be ignored by the assembler and by most
text editors.
An EOF marker can be mistakenly placed in the middle of a text file by some utilities.
The most frequent source of false EOF markers comes from saving a text file to disk in a
word processor program's "native" mode, which may write EOF characters and many
other unprintable characters into a text file. Such native mode document files are not
actually text files, but are binary files intended to be read only by that particular word
processor.

file:///E|/TEMP/Chapter%203%20The%20Right%20To%20Assemble.htm (8 of 39) [9/30/02 08:29:46 PM]

file:///E|/TEMP/Chapter%203%20The%20Right%20To%20Assemble.htm

.
Text Editors

Manipulating a text file is done with a program called a text editor. A text editor is a
word processor for program source code files. In its simplest form, a text editor works
like this: you type characters at the keyboard and they appear on the screen. When you
press the Enter key, an EOL marker is placed at the end of a line, and the cursor moves
down to the next line.
A text editor also allows you to move the cursor into existing text to change, or edit, it.
You can delete words and whole lines and, if necessary, replace them with new text.
Ultimately, when you are finished, you press a key like F2 or a key combination like
Ctrl+KD, and the text editor saves the text you entered from the keyboard as a text file.
This text file is the source code file you'll later present to the assembler for processing.
Later on, you can load that same text file back into the editor to make repairs on faulty

file:///E|/TEMP/Chapter%203%20The%20Right%20To%20Assemble.htm (9 of 39) [9/30/02 08:29:46 PM]

file:///E|/TEMP/Chapter%203%20The%20Right%20To%20Assemble.htm

lines that cause errors during assembly or bugs during execution.
A great many people still use their word processors as program text editors. WordStar,
WordPerfect, and most of the others make acceptable text editors, as long as you
remember to write your text file to disk in "non-document mode" or "ASCII text mode".
Most true word processors embed countless strange little codes in their text files, to
control things like margin settings, font selections, headers and footers, and soft page and
line breaks. These codes are not recognized ASCII characters but binary values, and
actually change the document file from a text file to a binary file. The codes will give
the assembler fits. If you write a program source code file to disk as a document file, it
will not assemble. See the word processor documentation for details on how to export a
document file as a pure ASCII text file.
There are numerous text editor products on the market specifically for use by assembly-
language programmers. Two of the best are called Brief and Epsilon. A very good editor,
Point, is often sold as an accessory with the Logitech Mouse. The Sidekick notepad
editor makes a perfectly reasonable text editor for assembly-language work, as do the
editors built into Microsoft's Quick language compilers and Borland's Turbo language
compilers.
If you have no other editor, I have put one together and given it to various user groups
around the country. If you can't find my JED editor anywhere, you can order it directly
from me through the address on the flyleaf. JED works very much like the editor in the
Turbo language products, because I produced it with the Turbo Pascal Editor Toolbox
and Turbo Pascal 5.0.
Because there are so many different text editors in use among programmers, I'll be using
JED as the example editor in this book. When you see a command line incorporating the
name JED, keep in mind that you will have to substitute the name and command suite
for whatever editor you may be using if you're not using JED.
Chapter 4 describes JED in detail. JED has the advantage (over editors like Brief and
Epsilon) of being simple. I designed it for beginning assembly-language programmers,
and if you've ever used any of the Turbo language products, JED will feel just like home.

3.3 Compilers and Assemblers

With that understanding of DOS files under your belt, you can come to understand the
nature of two important kinds of programs: compilers and assemblers. Both fall into a
category of programs we call translators.
A translator is a program that accepts human-readable source code files and generates

file:///E|/TEMP/Chapter%203%20The%20Right%20To%20Assemble.htm (10 of 39) [9/30/02 08:29:46 PM]

file:///E|/TEMP/Chapter%203%20The%20Right%20To%20Assemble.htm

some kind of binary file. The binary file could be an executable program file that the
CPU can understand, or it could be a font file, or a Compressed binary data file, or any of
a hundred other types of binary file.
Program translators are translators that generate machine instructions that the CPU can
understand. A program translator reads a source code file line by line, and writes a binary
file of machine instructions to accomplish the actions that the source code file describes.
This binary file is called an object code file.
A compiler is a program translator that reads in source code files written in higher-level
languages like C and Pascal and outputs object code files.
An assembler is a special type of compiler. It, too, is a program translator that reads
source code files and outputs object code files for the CPU. However, an assembler is a
translator designed specifically to translate what we call assembly language into object
code. In the same sense that a language compiler for Pascal or C compiles a source code
file to an object code file, we say that an assembler assembles an assembly language
source code file to an object code file. The process, one of translation, is similar in both
cases. An assembler, however, has an overwhelmingly important characteristic that sets
it apart from other compilers: total control over the object code.

Assembly Language

Some people define assembly language as a language in which one line of source code
generates one machine instruction. This has never been literally true, since some lines in
an assembly-language source code file are instructions to the translator program and do
not generate machine instructions. My own definition follows:
Assembly language is a language that allows total control over every individual machine
instruction generated by the translator program.
Pascal or C compilers, on the other hand, make a multitude of invisible and inalterable
decisions about how a given language statement will be translated into machine
instructions. For example, the following single Pascal instruction assigns a value of 42 to
a numeric variable called I:
I : = 42:
When a Pascal compiler reads this line, it outputs a series of four or five machine
instructions that take the value 42 and store it in memory at a location encoded by the
name I. Normally, you the programmer have no idea what these four or five instructions
actually are, and you have utterly no way of changing them, even if you know a sequence
of machine instructions that is faster and more efficient than the sequence the compiler

file:///E|/TEMP/Chapter%203%20The%20Right%20To%20Assemble.htm (11 of 39) [9/30/02 08:29:46 PM]

file:///E|/TEMP/Chapter%203%20The%20Right%20To%20Assemble.htm

uses. The Pascal compiler has its own way of generating machine instructions, and you
have no choice but to accept what it writes to disk to accomplish the Pascal statements in
the source code file.
An assembler, however, has at least one line in the source code file for every machine
instruction it generates. It has more lines than that to handle numerous other things, but
every machine instruction in the final object code file is controlled by a corresponding
line in the source code file.
Each of the CPU's many machine instructions has a corresponding mnemonic in
assembly language. As the word suggests, these mnemonics began as devices to help
programmers remember a particular machine instruction. For example, the mnemonic for
machine instruction 9CH, which pushes the flags register onto the stack, is
PUSHF—which is a country mile easier to remember than 9CH.
When you write your source code file in assembly language, you will arrange series of
mnemonics, typically one mnemonic to a source code file text line. A portion of a source
code file might look like this:
MOV AH.12H : 12H is Motor Information Service
MOV AL.03H : 03H is Return Current Speed function
XOR BH.BH ; Zero BH for safety's sake
INT 71H ; Call Motor Services Interrupt

Here, the words MOV, XOR, and INT are the mnemonics. The numbers and other items
to the immediate right of each mnemonic are that mnemonics's operands. There are
various kinds of operands for various machine instructions, and some instructions (like
PUSHF mentioned above) have no operands at all. We'll thoroughly describe each
instruction's operands when we cover that specific instruction.
Taken together, a mnemonic and its operands are called an instruction. This is the word
we'll be using most of the time in this book to indicate the human-readable proxy of one
of the CPU's pure binary machine code instructions. To talk about the binary code
specifically, we'll always refer to a machine instruction.
The assembler's most important job is to read lines from the source code file and write
machine instructions to an object code file. See Figure 3.3.

Comments

To the right of each instruction is some information starting with a semicolon.
This information is called a comment, and its purpose should be plain: to cast
some light on what the associated assembly language instruction is for. The instruction

file:///E|/TEMP/Chapter%203%20The%20Right%20To%20Assemble.htm (12 of 39) [9/30/02 08:29:46 PM]

file:///E|/TEMP/Chapter%203%20The%20Right%20To%20Assemble.htm

MOV AH,12H places the value 12H in register AH—but why? The comment provides
the why.
Far more than in any other programming language, comments are critical to success of
your assembly language programs. My own recommendation is every instruction in your
source code files have a comment to its right.
 Structurally, a comment starts with the first semicolon on a line, and continues to the
EOL marker at the end of that line. This is one instance where understanding how a text
file

is structured is very important—because in assembly language, comments end at the ends
of lines. In most other languages, comments are placed between pairs of comment
delimeters like (* and *), and EOL markers at line ends are ignored.
.
Comments begin at semicolons, and end at an EOL marker

Beware "Write-Only" Source Code!

This is as good a time as any to point out a serious problem with assembly language. The
instructions themselves are almost vanishingly brief, and while each instructions states
what it does, there is nothing to indicate the context in which that instruction operates.

file:///E|/TEMP/Chapter%203%20The%20Right%20To%20Assemble.htm (13 of 39) [9/30/02 08:29:46 PM]

file:///E|/TEMP/Chapter%203%20The%20Right%20To%20Assemble.htm

With some skill and discipline, you can build that context into your Pascal or BASIC
code but in assembly language you can add context only through comments.
Without context, assembly language starts to turn into what we call "write-only" code. It
can happen like this: on November 1, in the heat of creation, you crank out about 300
instructions in a short utility program that does something important. You go back on
January 1 to add a feature to the program and discover that you no longer remember how
it works. The individual instructions are all correct, but knowledge of how it all came
together and how it works from a height have vanished under Christmas memories and
eight weeks of doing other things. In other words, you wrote it, but you can no longer
read it, or change it. Voila! Write-only code.
Comment like crazy. Each individual line should have a comment, and every so often in
a sizable source code file, take a few lines out and make entire lines into comments,
explaining what the code is up to at this point in its execution.
While comments do take room in your source code disk files, they are not copied into
your object code files, and a program with loads of comments runs exactly as fast as the
same program with no comments at all.
You will be investing a considerable amount of time and energy into writing your
assembly-language programs. It's more difficult than just about any other way of writing
programs, and if you don't comment you may end up having to simply toss out hundreds
of lines of inexplicable code and write it again, from scratch.
Work smart. Comment till you drop.

Object Code and Linkers

There's no reason at all why an assembler could not read a source-code file and write out
a finished, executable program file as its object-code file. Most assemblers don't work
this way, however. Object-code files produced by the major assemblers are a sort of
intermediate step between source code and executable program. This intermediate step is
a type of binary file called a relocatable object module, or (more simply) an .OBJ file,
which is the file extension used by the assembler when it creates the file. For example, a
source-code file called FOO.ASM would be assembled into an object file called
FOO.OBJ. (The "relocatable" portion of the concept is crucial, but a little advanced for
this chapter. More on it later.)
Because .OBJ files cannot be run as programs, an additional step, called linking, is
necessary to turn these files into executable program files.
The reason for using .OBJ files as intermediate steps is that a single, large source-code

file:///E|/TEMP/Chapter%203%20The%20Right%20To%20Assemble.htm (14 of 39) [9/30/02 08:29:46 PM]

file:///E|/TEMP/Chapter%203%20The%20Right%20To%20Assemble.htm

file may be divided, (using your text editor) into numerous smaller source-code files to
keep them manageable in size and complexity. The assembler assembles the various
component fragments separately, and the several resulting .OBJ files are woven together
into a single, executable program file. This process is shown in Figure 3.4.
When you're first starting out, it's unlikely that you will be writing large programs spread
out across several source-code files. Even if you only have a small source-code file that
produces a single .OBJ file, you must still use the linker to change the single .OBJ file
into an executable program file, as I'll explain a little later.
The larger your programs become, however, the more time can be saved by cutting them
up into components. There are two reasons for this:

1. You can move tested, proven routines into separate libraries and link them into any
program you write that might need them. This way, you can reuse code over and
over again and not build the same old wheels every time you begin a new
programming project in assembly language.

2. Once portions of a program are tested and found to be correct, there's no need to
waste time assembling them over and over again along with newer, untested
portions of a program. Once a major program gets into the tens of thousands of
lines of code (and you'll get there sooner than you might think), you can save an
enormous amount of time by only assembling the portion of a program that you are
currently working on, and linking the finished portions into the final program
without reassembling the whole thing every time.

Executable Program Files

The linker program may be seen as a kind of translator program, but its major role is in
combining multiple object code files into a single executable program file. This
executable file is sometimes called an .EXE file from the file extension that the linker
appends to the file's name. For example, a source code file named FOO.ASM would be
assembled to an object code file named FOO.OBJ, which would then be processed by
the linker to an executable program file called FOO.EXE.
The executable file can be run by typing its name (without the .EXE extension) at the
DOS prompt (for example, C:\>FOO) and then pressing Enter.

file:///E|/TEMP/Chapter%203%20The%20Right%20To%20Assemble.htm (15 of 39) [9/30/02 08:29:46 PM]

file:///E|/TEMP/Chapter%203%20The%20Right%20To%20Assemble.htm

Real Assembler Products: MASM and TASM

For quite a few years there was only one assembler product in general use for the PC:
Microsoft's Macro Assembler, better known as MASM. MASM is still an enormously
popular program, and has established a standard for assembler operation on the PC. The
source code in this book is all designed to be assembled by MASM.

file:///E|/TEMP/Chapter%203%20The%20Right%20To%20Assemble.htm (16 of 39) [9/30/02 08:29:46 PM]

file:///E|/TEMP/Chapter%203%20The%20Right%20To%20Assemble.htm

MASM is by no means perfect, however, and in 1988 Borland International released
their answer to MASM in the form of Turbo Assembler, which was quickly christened
TASM by syllable-conserving programmers. TASM is a great deal faster than MASM,
and has numerous advanced features that I won't be able to utilize in this book. However,
at the level we're describing in this book, MASM and TASM are totally compatible in
that they will assemble identical source code files identically. MASM and TASM are the
two most popular assemblers for Intel's 86-family of CPUs, and the information in this
book can be applied to either assembler.
 I won't, however, attempt to describe the two assemblers' operation in detail. There are
many differences in the ways the two assemblers function, and you'll have to delve into
the manuals to get the full story. Very fortunately, when you're first starting out, there
isn't a whole lot to using either TASM or MASM, and I'll describe the simple commands
for invoking each assembler where appropriate.
The most recent releases of MASM now come with their own text editor, but for years
MASM was "editor less" and you had to supply your own editor. Currently, TASM does
not come with a text editor, so if you're a TASM user, you'll have to come up with a text
editor on your own. I recommend using something simple, like my JED editor described
in Chapter 4.
Both MASM and TASM come with their own special debugging tools, called debuggers.
MASM's debugger is called CodeView, and TASM's debugger is called Turbo Debugger.
Both are enormously sophisticated programs, and I won't be discussing either in this
book, due in part to their complexity but mostly because there is a debugger shipped with
every copy of PC DOS. This debugger, simply named DEBUG, is more than enough
debugger to cut your teeth on, and will get you familiar enough with debugger theory to
move up to CodeView or Turbo Debugger later on.
I'll be describing DEBUG much more fully in Section 3.5.

Setting Up a Working Subdirectory

The process of creating and perfecting assembly-language programs involves a lot of
different kinds of DOS files and numerous separate software tools. Unlike the tidy, fully-
integrated environments offered by the Turbo and Quick languages, assembly language
development conies in a great many pieces with some assembly required.
I recommend setting up a development subdirectory on your hard disk and putting all of
the various pieces in that subdirectory. Create, then change to a subdirectory called ASM
by using these DOS commands:

file:///E|/TEMP/Chapter%203%20The%20Right%20To%20Assemble.htm (17 of 39) [9/30/02 08:29:47 PM]

file:///E|/TEMP/Chapter%203%20The%20Right%20To%20Assemble.htm

MD ASM
CD ASM

Then, from within the ASM subdirectory, copy the following files or groups of files into
the subdirectory:
• Your text editor. If you're using JED (see Chapter 4), you need only copy the file
JED.EXE. If you're using a memory-resident editor like Sidekick's notepad, you may not
need to copy any editor program into your development subdirectory, because it will be
memory resident when you boot. For other editors like Brief, you'll need to consult the
documentation.

• Your assembler. Again, consult the documentation to see what files are necessary to
assembler a source code file. Usually, there is a single executable file like MASM.EXE
or TASM.EXE and perhaps some help files or configuration files. The older versions of
MASM stood alone as MASM.EXE and needed nothing else in the subdirectory to
operate. Similarly, the first release of TASM allows the file TASM.EXE to work alone.

• Your linker. Both MASM and TASM include their own linkers. MASM's linker
program is LINK.EXE. TASM's linker is TLINK.EXE. Copy the appropriate file. Both
linkers stand alone and do not require any support files.

• DEBUG. On your DOS distribution disk (or in your DOS subdirectory, if you have a
DOS subdirectory) there should be a file called DEBUG.COM. Files with a .COM
extension are, like .EXE files, executable programs. .COM programs are slightly old-
fashioned and not much used anymore since Turbo Pascal 3.0 was supplanted by version
4.0 in 1987. Copy DEBUG.COM into your development subdirectory.
• Odds and ends. A source code listing program, while not essential, can be very
helpful—such programs print out neatly formatted listings on your printer. (I have
written a useful one called JLIST10 that I have placed on the listings diskette for this
book—but it only operates with the LaserJet laser printers.) Add anything else that may
be helpful, keeping in mind that a lot of files are generated during assembly language
development, and you should strive to keep unnecessary clutter to a minimum.

3.4 The Assembly-Language Development Process

As you can see, there are a lot of different file types and a fair number of programs

file:///E|/TEMP/Chapter%203%20The%20Right%20To%20Assemble.htm (18 of 39) [9/30/02 08:29:47 PM]

file:///E|/TEMP/Chapter%203%20The%20Right%20To%20Assemble.htm

involved in the cycle of writing, assembling, and testing an assembly-language program.
The cycle itself sounds more complex than it is. I've drawn you a map to help you keep
your bearings during the discussions in this chapter. Figure 3.5 shows the assembly-
language development process in a "view from a height." At first glance it may look like
a map of the L.A. freeway system, but in reality the flow is fairly straightforward. Follow
along on a quick tour.

Assembling the Source-Code File

You use the text editor to first create a new text file and then to edit that same text file, as
you perfect your assembly language program. As a convention, most assembly language
source code files are given a file extension of .ASM. In other words, for the program
named FOO, the assembly language source code file would be named FOO.ASM.
It is possible to use file extensions other than .ASM, but I feel that using the .ASM
extension can eliminate some confusion by allowing you to tell at a glance what a file is
for—just by looking at its name. All tolled, about nine different kinds of files can be
involved during assembly language development.
We're only going to speak of four or five in this book.) Each type of file will have its
own standard file extension. Anything that will help you keep all that complexity in line
will be worth the (admittedly) rigid confines of a standard naming convention.

As you can see from the flow in Figure 3.5, the editor produces a source code text file,
which we show as having the .ASM extension. This file is then passed to the assembler
program itself, for translation to a relocatable object module file with an extension of
.OBJ.
Invoking the assembler is very simple. For small standalone assembly-language
programs in Turbo Assembler, it's nothing more than the name of the assembler followed
by the name of the program to be assembled (for example, C:\ASM>TASM FOO).
 For Microsoft's MASM, you need to put a semicolon on the end of the command. This
tells MASM that no further prompts are necessary (for example C:\ASM>MASM
FOO). If you omit the semicolon, nothing bad will happen, but MASM will ask you for
the names of several other files, and you will have to press Enter several times to select
the defaults.
DOS will load the assembler from disk and run it. The assembler will open the source
code file you named after the name of the assembler, and begin processing the file.
Almost immediately afterward, it will create an object file with the same name as the

file:///E|/TEMP/Chapter%203%20The%20Right%20To%20Assemble.htm (19 of 39) [9/30/02 08:29:47 PM]

file:///E|/TEMP/Chapter%203%20The%20Right%20To%20Assemble.htm

source file, but with the .OBJ extension.
As the assembler reads lines from the source code file, it will examine them, construct
the binary machine instructions the source code lines represent, and then write those
machine instructions to the object code file.
When the assembler detects the EOF marker signaling the end of the source code file, it
will close both source code file and object code file and return control to DOS

.

file:///E|/TEMP/Chapter%203%20The%20Right%20To%20Assemble.htm (20 of 39) [9/30/02 08:29:47 PM]

file:///E|/TEMP/Chapter%203%20The%20Right%20To%20Assemble.htm

Assembler Errors

The previous three paragraphs describe what happens if the .ASM file is correct. By
correct, I mean the file is completely comprehensible to the assembler, and can be
translated into machine instructions without the assembler getting confused. If the
assembler encounters something it doesn't understand when it reads a line from the
source code file, we call the misunderstood text an error, and the assembler displays an
error message.
For example, the following line of assembly language will confuse the assembler and
summon an error message:

MOV AX.VX

The reason is simple: there's no such thing as a "VX." What came out as "VX" was
actually intended to be "BX," which is the name of a register. (The V key is right next to
the B key and can be struck by mistake without your fingers necessarily knowing that
they done wrong.)
Typos are by far the easiest kind of error to spot. Others that take some study to find
usually involve transgressions of the assembler's rules. Take for example the line:

MOV ES,OFFOOH

This looks like it should be correct, since ES is a real register and 0F000H is a real, 16-bit
quantity that will fit into ES. However, among the multitude of rules in the fine print of the
86-family of assemblers is that you cannot directly move an immediate value (any number
like 0FF00H) directly into a segment register like ES,DS;SS, or CS. It simply isn't part of
the CPU's machinery to do that.
 Instead, you must first move the immediate value into a register like AX, and then move
AX into ES.
You don't have to remember the details here; we'll go into the rules later on. For now,
simply understand that some things that look reasonable are simply "against the rules"
and are considered an error.
There are much, much more difficult errors that involve inconsistencies between two
otherwise legitimate lines of source code. I won't offer any examples here, but I wanted
to point out that errors can be truly ugly, hidden things that can take a lot of study and
torn hair to find. Toto, we are definitely not in BASIC anymore...
The error messages vary from assembler to assembler, but they may not always be as

file:///E|/TEMP/Chapter%203%20The%20Right%20To%20Assemble.htm (21 of 39) [9/30/02 08:29:47 PM]

file:///E|/TEMP/Chapter%203%20The%20Right%20To%20Assemble.htm

helpful as you might hope. The error TASM displays upon encountering the VX typo
follows:

Turbo Assembler Version 1.0 Copyright (c) 1988 by Borland International
Assembling file: FOO.ASM
Error FOO.ASMC74) Undefined symbol: VX
Error messages: 1
Warning messages: None
Remaining memory: 395k

This is pretty plain, assuming you know what a "symbol" is. The error message TASM
will present when you try to load an immediate value into ES is less helpful:

Turbo Assembler Version 1.0 Copyright (c) 1988 by Borland International
Assembling file: IBYTECPY.ASM
Error IBYTECPY.ASMC74) Illegal use of segment register
Error messages: 1
Warning messages: None
Remaining memory: 395k

It'll let you know you're guilty of performing illegal acts with a segment register, but
that's it. You have to know what's legal and what's illegal to really understand what you
did wrong. As in running a stop sign, ignorance of the law is no excuse.
Assembler error messages do not absolve you from understanding the CPU's or the
assembler's rules.
I hope I don't frighten you too terribly by warning you that for more complex errors, the
error messages may be almost no help at all.
You may make (or will make; let's get real) more than one error in writing your source
code files. The assembler will display more than one error message in such cases, but it
may not necessarily display an error for every error present in the source code file. At
some point, multiple errors confuse the assembler so thoroughly that it cannot necessarily
tell right from wrong anymore. While it's true that the assembler reads and translates
source code files line by line, there is a cumulative picture of the final assembly language
program that is built up over the course of the whole assembly process. If this picture is
shot too full of errors, in time the whole picture collapses.
The assembler will stop and return to DOS, having printed numerous error messages.
Start at the first one and keep going. If the following errors don't make sense, fix the first
one or two and assemble again.

file:///E|/TEMP/Chapter%203%20The%20Right%20To%20Assemble.htm (22 of 39) [9/30/02 08:29:47 PM]

file:///E|/TEMP/Chapter%203%20The%20Right%20To%20Assemble.htm

Back to the Editor

The way to fix errors is to load the .ASM file back into your text editor and start hunting
up the error. This "loopback" is shown in Figure 3.5.
The error message will almost always contain a line number. Move the cursor to that line
number and start looking for the false and the fanciful. If you find the error immediately,
fix it and start looking for the next.
Here's a little logistical snag: how do you make a list of the error messages on paper so
that you don't have to memorize them or scribble them down on paper with a pencil?
You may or may not be aware that you can redirect the assembler's error message
displays to a DOS text file on disk.
It works like this: you invoke the assembler just as you normally would, but add the
redirection operator > and the name of the text file to which you want the error
messages sent. If you were assembling FOO.ASM with TASM and wanted your error
messages written out to a disk file named ERRORS.TXT, you would invoke TASM by
entering C:\ASM>TASM FOO > ERRORS.TXT.
Here, error messages will be sent to ERRORS.TXT in the current DOS directory
C:\ASM. When you use redirection, the output does not display on the screen. The
stream of text from TASM that you would ordinarily see is quite literally steered in its
entirety to another place, the file ERRORS.TXT.
Once the assembly process is done, the DOS prompt will appear again. You can then
print the ERRORS.TXT file on your printer and have a handy summary of all that the
assembler discovered was wrong with your source code file.

Assembler Warnings

As taciturn a creature as an assembler may appear to be, it genuinely tries to help you
any way it can. One way it tries to help is by displaying warning messages during the
assembly process. These warning messages are a monumental puzzle to beginning
assembly language programmers: are they errors or aren't they? Can I ignore them or
should I fool with the source code until thev go away?
There is no clean answer. Sorry about that.
Warnings are the assembler acting as experienced consultant, and hinting that something
in your source code is a little dicey. Now, in the nature of assembly language, you may
fully intend that the source code be dicey. In an 86-family CPU, dicey code may be the

file:///E|/TEMP/Chapter%203%20The%20Right%20To%20Assemble.htm (23 of 39) [9/30/02 08:29:47 PM]

file:///E|/TEMP/Chapter%203%20The%20Right%20To%20Assemble.htm

only way to do something fast enough or just to do it at all. The critical factor is that you
had better know what you're doing.
The most common generator of warning messages is doing something that goes against
the assembler's default conditions and assumptions. If you're a beginner doing ordinary,
100%-by-the-book sorts of things, you should crack your assembler reference manual
and figure out why the assembler is tut-tutting you. Ignoring a warning may cause
peculiar bugs to occur later on during program testing. Or, ignoring a warning message
may have no undesirable consequences at all. I feel, however, that it's always better to
know what's going on. Follow this rule:
Ignore a warning message only if you know exactly what it means.
In other words, until you understand why you're getting a warning message, treat it as
though it were an error message. Only when you fully understand why it's there and what
it means should you try to make the decision whether or not to ignore the message.
In summary, the first part of the assembly language development process (as shown in
Figure 3.5) is a loop. You must edit your source code file, assemble it, and return to the
editor to fix errors until the assembler spots no further errors. You cannot continue until
the assembler gives your source code file a clean bill of health.
When no further errors are found, the assembler will write an .OBJ file to disk, and you
will be ready to go on to the next step.

Linking

Theoretically, an assembler could generate an .EXE (executable) program file directly
from your source code .ASM file. Some obscure assemblers have been able to do this,
but it's not a common assembler feature.
What actually happens is that the assembler writes an intermediate object code file with
an .OBJ extension to disk. You can't run this .OBJ file, even though it contains all the
machine instructions that your assembly language source code file specified. The .OBJ
file needs to be processed by another translator program, the linker.
The linker performs a number of operations on the ,OBJ file, most of which would be
meaningless to you at this point. The most obvious task the linker does is to weave
several .OBJ files into a single .EXE program file. Creating an assembly language
program from multiple .ASM files is called modular assembly.
Why create multiple .OBJ files when writing a single executable program? One of two
major reasons is size. A middling assembly-language application might be 50,000 lines
long. Cutting that single monolithic .ASM file up into multiple 8,000 line .ASM files

file:///E|/TEMP/Chapter%203%20The%20Right%20To%20Assemble.htm (24 of 39) [9/30/02 08:29:47 PM]

file:///E|/TEMP/Chapter%203%20The%20Right%20To%20Assemble.htm

would make the individual .ASM files smaller and much easier to understand.
The other reason is to avoid assembling completed portions of the program every time
any part of the program is assembled. One thing you'll be doing is writing assembly
language procedures, small detours from the main run of steps and tests that can be taken
from anywhere within the assembly language program. Once you write and perfect a
procedure, you can tuck it away in an .ASM file with other completed procedures,
assemble it, and then simply link the resulting .OBJ file into the "working" .ASM file.
The alternative is to waste time by reassembling perfected source code over and over
again every time you assemble the main portion of the program.
Notice that in the upper-right corner of Figure 3.5 is a row of .OBJ files. These .OBJ
files were assembled earlier from correct .ASM files, yielding binary disk files
containing ready-to-go machine instructions. When the linker links the .OBJ file
produced from your in-progress .ASM file, it adds in the previously assembled .OBJ
files, which are called modules. The single .EXE file that the linker writes to disk
contains the machine instructions from all of the .OBJ files handed to the linker when
then linker is invoked.
Once the in-progress .ASM file is completed and made correct, its .OBJ module can be
put up on the rack with the others, and added to the next in-progress .ASM source code
file. Little by little you construct your application program out of the modules you build
one at a time.
A very important bonus is that some of the procedures in an .OBJ module may be used
in a future assembly language program that hasn't even been begun yet. Creating such
libraries of toolkit procedures can be an extraordinarily effective way to save time by
reusing code over and over again, without even passing it through the assembler again!
Something to keep in mind is that the linker must be used even when you have only one
.OBJ file. Connecting multiple modules is only one of many essential things the linker
does. To produce an .EXE file, you must invoke the linker, even if your program is a
little thing contained in only one .ASM and hence one .OBJ file.
Invoking the linker is again done from the DOS command line. Each assembler typically
has its own linker. MASM's linker is called LINK, and TASM's is called TLINK. Like
the assembler, the linker understands a suite of commands and directives that I can't
describe exhaustively here. Read your assembler manuals carefully.
For single-module programs, however, there's nothing complex to be do Linking our
hypothetical FOO.OBJ object file into an .EXE file using TLINK ' done by entering
C:\ASM>TLINK FOO at the DOS prompt.
If you're using MASM, using LINK is done much the same way. Again, as with MASM,

file:///E|/TEMP/Chapter%203%20The%20Right%20To%20Assemble.htm (25 of 39) [9/30/02 08:29:47 PM]

file:///E|/TEMP/Chapter%203%20The%20Right%20To%20Assemble.htm

you need to place a semicolon at the end of the command to avoid a series of questions
about various linker defaults (for example, C:\ASM>LINK FOO;)
Linking multiple files involves naming each file on the command line. With TLINK, you
simply name each .OBJ file on the command line after the word TLINK, with a space
between each filename. You do not have to include the .OBJ extension—TLINK
assumes that all modules to be linked end in .OBJ:

C:\ASM>TLINK FOO BAR BAS

Under MASM, you do the same thing, except that you place a plus sign (+) between each
of the .OBJ filenames:

C:\ASM>LINK FOO+BAR+BAS

In both cases, the name of the .EXE file produced will be the name of the first .OBJ file
named, with the .EXE extension replacing the .OBJ extension.

Linker Errors

As with the assembler, the linker may discover problems as it weaves multiple .OBJ files
together into a single .EXE file. Linker errors are subtler than assembler errors and are
usually harder to find. Fortunately, they are rarer and not as easy to make.
As with assembler errors, when you are presented with a linker error you have to return
to the editor and figure out what the problem is. Once you've identified the problem (or
think you have) and changed something in the source code file to fix the problem, you
must reassemble and relink the program to see if the linker error went away. Until it
does, you have to loop back to the editor, try something else, and assemble/link once
more.
If possible, avoid doing this by trial and error. Read your assembler and linker manuals.
Understand what you're doing. The more you understand about what's going on within
the assembler and the linker, the easier it will to determine who or what is giving the
linker fits.

Testing the .EXE File

If you receive no linker errors, the linker will create and fill a single .EXE file with the

file:///E|/TEMP/Chapter%203%20The%20Right%20To%20Assemble.htm (26 of 39) [9/30/02 08:29:47 PM]

file:///E|/TEMP/Chapter%203%20The%20Right%20To%20Assemble.htm

machine instructions present in all of the .OBJ files named on the linker command line.
The .EXE file is your executable program. You can run it by simply naming it on the
DOS command line and pressing Enter:

C:\ASM>FOO

When you invoke your program in this way, one of two things will happen: the program
will work as you intended it to, or you'll be confronted with the effects of one or more
program bugs. A bug is anything in a program that doesn't work the way you want it to.
This makes a bug somewhat more subjective than an error. One person might think red
characters displayed on a blue background is a bug, while another might consider it a
clever New Age feature and be quite pleased. Settling bug vs. feature conflicts like this is
up to you. Consensus is called for here, with fistfights only as a last resort.
There are bugs and there are bugs. When working in assembly language, it's quite
common for a bug to completely "blow the machine away," which is less violent than
some think. A system crash is what you call it when the machine sits there mutely, and
will not respond to the keyboard. You may have to press Ctrl+Alt+Delete to reboot the
system, or (worse) have to press the reset button, or even power down and then power up
again. Be ready for this—it will happen to you, sooner and oftener than you will care for.
Figure 3.5 announces the exit of the assembly language development process as
happening when your program works perfectly. A very serious question is this: How do
you know when it works perfectly? Simple programs assembled while learning the
language may be easy enough to test in a minute or two. But any program that
accomplishes anything useful will take hours of testing at minimum. A serious and
ambitious application could take weeks—or months—to test thoroughly. A program that
takes various kinds of input values and produces various kinds of output should be tested
with as many different combinations of input values as possible, and you should examine
every possible output every time.
Even so, finding every last bug is considered by some to be an impossible ideal.
Perhaps—but you should strive to come as close as possible, in as efficient a fashion as
you can manage. I'll have a lot more to say about bugs and debugging throughout the rest
of this book.

Errors Versus Bugs

In the interest of keeping the Babel-effect at bay, I think it's important to carefully draw

file:///E|/TEMP/Chapter%203%20The%20Right%20To%20Assemble.htm (27 of 39) [9/30/02 08:29:47 PM]

file:///E|/TEMP/Chapter%203%20The%20Right%20To%20Assemble.htm

the distinction between errors and bugs. An error is something wrong with your source
code file that either the assembler or the linker kick out as unacceptable. An error
prevents the assembly or link process from going to completion, and will thus prevent a
final .EXE file from being produced.
A bug, by contrast, is a problem discovered during execution of a program Under DOS.
Bugs are not deferred by either the assembler or the linker can be benign, such as a
misspelled word in a screen message or a line positioned on the wrong screen row; or a
bug can make your DOS session run off into the bushes and not come back.
Both errors and bugs require that you go back to the text editor and change something in
your source code file. The difference here is that most errors are reported with a line
number telling you where to go in your source code file to fix the problem. Bugs, on the
other hand, are left as an exercise for the student. You have to hunt them down, and
neither the assembler nor the linker will give you much in the line of clues.

Debuggers and Debugging

The final, and almost certainly the most painful part of the assembly language
development process is debugging. Debugging is simply the systematic process by which
bugs are located and corrected. A debugger is a utility program designed specifically to
help you locate and identify bugs.
Debugger programs are among the most mysterious and difficult to understand of all
programs. Debuggers are part X-ray machine and part magnifying glass. A debugger
loads into memory with your program and remains in memory, side by side with your
program. The debugger then puts tendrils down into both DOS and into your program,
and enables some truly peculiar things to be done.
One of the problems with debugging computer programs is that they operate so quickly.
Thousands of machine instructions can be executed in a single second, and if one of
those instructions isn't quite right, it's long gone before you can identify which one it is
by staring at the screen. A debugger allows you to execute the machine instructions in a
program one at a time, allowing you to pause indefinitely between each one to examine
the effects of the last instruction on the screen. The debugger also lets you look at the
contents of any location in memory, and the values stored in any register, during that
pause between instructions.
As mentioned previously, both MASM and TASM are packaged with their own
advanced debuggers. MASM's CodeView and TASM's Turbo Debugger are brutally
powerful (and hellishly complicated) creatures that require manuals considerably thicker

file:///E|/TEMP/Chapter%203%20The%20Right%20To%20Assemble.htm (28 of 39) [9/30/02 08:29:47 PM]

file:///E|/TEMP/Chapter%203%20The%20Right%20To%20Assemble.htm

than this book. For this reason, I won't try to explain how to use either CodeView or
Turbo Debugger.
Very fortunately, every copy of DOS is shipped with a more limited but perfectly good
debugger called DEBUG. DEBUG can do nearly anything that a beginner would want
from a debugger, and in this book we'll do our debugging with DEBUG.

3.5 DEBUG and How to Use It

The assembler and the linker are rather single-minded programs. As translators, they do
only one thing: translate. This involves reading data from one file and writing a
translation of that data into another file.
That's all a translator needs to do. The job isn't necessarily an easy thing for the translator
to do, but it's easy to describe and understand. Debuggers, by contrast, are like the
electrician's little bag of tools—they do lots of different things in a great many different
ways, and take plenty of explanation and considerable practice to master.
In this chapter I'll introduce you to DEBUG, a program that will allow you to single step
your assembly language programs and examine their and the machine's innards between
each and every machine instruction. This section is only an introduction—DEBUG is
learned best by doing, and you'll be both using and learning DEBUG's numerous powers
all through the rest of this book. By providing you with an overview of what DEBUG
does here, you'll be more capable of integrating its features into your general
understanding of assembly language development process as we examine it through the
rest of the book.

DEBUG's Bag of Tricks

It's well worth taking a page or so simply to describe what sorts of things DEBUG can
do before actually showing you how they're done. It's actually quite a list:
• Display or change memory and files. Your programs will both exist in and affect
memory, and DEBUG can show you any part of memory—which implies that it can
show you any part of any program or binary file as well. DEBUG displays memory as a
series of hexadecimal values, with a corresponding display of any printable ASCII
characters to the right of the values. We'll show you some examples a little later on. In
addition to seeing the contents of memory, you can change those contents as well. And,
if the contents of memory represent a file, you can write the changed file back out to
disk.

file:///E|/TEMP/Chapter%203%20The%20Right%20To%20Assemble.htm (29 of 39) [9/30/02 08:29:47 PM]

file:///E|/TEMP/Chapter%203%20The%20Right%20To%20Assemble.htm

• Display or change the contents of all CPU registers. CPU registers allow you to
work very quickly, and you should use them as much as you can. You need to see what's
going on in the registers while you use them, and with one command, DEBUG can
display the contents of all machine registers and flags at one time. If you want to change
the contents of a register while stepping through a program's machine instructions, you
can do that as well.
• Fill a region of memory with a single value. If you have an area of memory that you
want "blanked out," DEBUG will allow you to fill that area of memory with any
character or binary value.
• Search memory for sequences of binary values. You can search any area of memory
for a specific sequence of characters or binary value, including names stored in memory
or sequences of machine instructions. You can then examine or change something that
you know exists somewhere in memory but not where.
• Assemble new machine instructions into memory. DEBUG contains a simple
assembler that does much of what MASM and TASM can do—one machine instruction
at a time. If you want to replace a machine instruction somewhere within your program,
you can type MOV AX,BX rather than having to look up and type 8BH OC3H.
• "Un-assemble" binary machine instructions into their mnemonics and operands.
The flipside of the last feature is also possible: DEBUG can take the two hexadecimal
values 8BH and OC3H and tell you that they represent the assembly language mnemonic
MOV AX,BX. This feature is utterly essential when you need to trace a program in
operation and understand what is happening when the next two bytes in memory are read
into the CPU and executed. If you don't know what machine instruction those two bytes
represent, you'll be totally lost.
• Single step a program under test. Finally, DEBUG's most valuable skill is to run a
program one machine instruction at a time, pausing between each instruction. During this
pause you can look at or change memory, look at or change registers, search for things in
memory, "patch" the program by replacing existing machine instructions with new ones,
and so on. This is what you'll do most of the time with DEBUG.

Taking DEBUG for a Spin

DEBUG can be a pretty forbidding character, terse to the point of being mute. You'll be
spending a lot of time standing on DEBUG's shoulders and looking around, however, so
you'd best get used to him now.
The easiest way to start is to use DEBUG to load a file into memory and examine it. On

file:///E|/TEMP/Chapter%203%20The%20Right%20To%20Assemble.htm (30 of 39) [9/30/02 08:29:47 PM]

file:///E|/TEMP/Chapter%203%20The%20Right%20To%20Assemble.htm

the listings disk associated with this book is a file called SAM.TXT. It's an ordinary
DOS text file. (Its contents were used to demonstrate the line structuring of text files with
CR and LF in Figure 3.1.) If you don't have the listings disk, you can simply load your
text editor and enter the following lines:
Sam
 was
a
man.

Make sure you press Enter after the period at the end of "man." Then save the file to disk
as SAM.TXT.
Let's lay SAM out on DEBUG's dissection table and take a look at his innards. DEBUG
will load itself and the file of your choice into memory at the same time, with only one
command. Type DEBUG followed by the name of the file you want to load, as in the
following example:

C:\ASM>DEBUG SAM.TXT

Make sure you use the full filename. Some programs like MASM and TASM will allow
you to use only the first part of the filename and assume a file extension like .ASM, but
DEBUG requires the full filename.
Like old Cal Coolidge, DEBUG doesn't say much, and never more than he has to. Unless
DEBUG can't find SAM.TXT, all it will respond with is a single dash character (-) as its
prompt, indicating that all is well and that DEBUG is awaiting a command.

Looking at a Hex Dump

Looking at SAM.TXT's interior is easy. Just type a D at the dash prompt. (Think dump.)
DEBUG will obediently display a hex dump of the first 128 bytes of memory containing
the contents of SAM.TXT read from disk. The hexadecimal numbers will probably look
bewilderingly mysterious, but to their right you'll see the comforting words "Sam was a
man" in a separate area of the screen. To help a little, I've taken the hex dump of
SAM.TXT as you'll see it on your screen and annotated it in Figure 3.6.
This is a hex dump. It has three parts: the leftmost part on the screen is the address of the
start of each line of the dump. Each line contains 16 bytes. An address has two parts, and
you'll notice that the left part of the address does not change while the right part is 16
greater at the start of each succeeding line. The 86-family CPU's two-part addresses are a

file:///E|/TEMP/Chapter%203%20The%20Right%20To%20Assemble.htm (31 of 39) [9/30/02 08:29:47 PM]

file:///E|/TEMP/Chapter%203%20The%20Right%20To%20Assemble.htm

source of considerable confusion and aggravation, and I'll take them up in detail in
Chapter 5. For now, ignore the unchanging part of the address and consider the part that
changes to be a count of the bytes on display, starting with 100H.
The part to the right of the address is the hexadecimal representation of the 128 bytes of
memory being displayed. The part to the right of the hexadecimal values are those same
128 bytes of memory displayed as ASCII characters. Now, not all binary values have
corresponding printable ASCII characters. Any invisible or unprintable characters are
shown as period (.) characters.
This can be confusing. The last displayable character in SAM.TXT is a period, and is
actually the very first character on the second line of the hex dump. The ASCII side
shows four identical periods in a row. To find out what's a period and what's simply a
nondisplayable character, you must look back to the hexadecimal side and recognize the
ASCII code for a period, which is 2EH.
Here is a good place to point out that an ASCII table of characters and their codes is an
utterly essential thing to have. Borland's Sidekick product includes a very good table, and
it's always waiting in memory only a keystroke away. If you don't have Sidekick, I'd
advise you to take a photocopy of the ASCII table provided in Appendix B and keep it
close at hand.

Memory "Garbage"

Take a long, close look at the hexadecimal equivalents of the characters in SAM.TXT.
Notice that SAM.TXT is a very short file (20 bytes), but that 128 bytes are displayed.
Look for the EOF (end of file) marker on the second line.
Character 1AH is always considered the last byte of any text file. All the other bytes after
the EOF marker are called "garbage," and that's pretty much what they are: random bytes
that existed in memory before SAM.TXT rode in from disk. DEBUG works only from
memory, and displays hex dumps of memory in 128-byte chunks by default. (You can
direct DEBUG to display more bytes at a time by using some additional commands,
which I won't go into here.) Only the first 20 bytes of SAM.TXT are significant
information, but DEBUG obligingly shows you what's in memory well beyond the end
of SAM's data.
The bytes are probably not entirely random, but instead may be part of the code or data
left over from the last program to be loaded and executed in that area of memory.
Because the garbage bytes fall after the EOF marker, you can safely ignore them, but
should know just what they are and why they appear in your hex dump. You might

file:///E|/TEMP/Chapter%203%20The%20Right%20To%20Assemble.htm (32 of 39) [9/30/02 08:29:47 PM]

file:///E|/TEMP/Chapter%203%20The%20Right%20To%20Assemble.htm

occasionally see recognizable data strings from other programs in memory garbage and
wonder how they got into your current program.

They didn't get into your current program. They were just there, and now show through
beyond the end of the file you last loaded under DEBUG. Knowing where legitimate
information ends and where garbage begins is always important, and not usually as clear-
cut as it is here.

Changing Memory with DEBUG

DEBUG can easily change bytes in memory, whether they are part of a file loaded from
disk or not. The DEBUG command to change bytes is the E command. (Think enter new

file:///E|/TEMP/Chapter%203%20The%20Right%20To%20Assemble.htm (33 of 39) [9/30/02 08:29:47 PM]

file:///E|/TEMP/Chapter%203%20The%20Right%20To%20Assemble.htm

data.) You can use the E command to change some of the data in SAM.TXT. Part of this
process is shown in Figure 3.6. Notice the following command line:
-e 010e

To taciturn Mr. Debug, this means, "Begin accepting entered bytes at address 010EH." I
show the lower case e's used in the command to put across the point that DEBUG is not
case sensitive, even for letters used as hexadecimal digits. In other words, there is
nothing sacred about using uppercase A through E for hex digits. They can be lowercase
or uppercase as you choose, and you don't even have to be consistent about it.
What DEBUG does in response to the E command shown in Figure 3-6 is display the
following prompt:

38E3:010E 61.
The cursor waits after the period for your input. What DEBUG has done is shown you
what value is already at address 010EH, so that you can decide whether you want to
change it. If not, just press Enter, and the dash prompt will return.

Otherwise, enter a hexadecimal value to take the place of value 6lH. In Figure 3.6 I
entered 6FH. Once you enter a replacement value, you have the choice of completing
your change by pressing Enter and returning to the dash prompt; or changing the byte at
the next address. If a change is your choice press the spacebar instead of pressing Enter.
DEBUG will display the byte at the next highest address and wait for your replacement
value, just as it did the first time.
This is shown in Figure 3.6. In fact, Figure 3.6 shows four successive replacements of
bytes starting at address 010EH. Notice the lonely hex byte 0A followed by a period.
What happened there is that I pressed Enter without typing a replacement byte, ending
the E command and returning to the dash prompt.
You'll also note that the next command typed at the dash prompt was "q", for Quit.
Typing Q at the dash prompt will return you immediately to DOS.

The Dangers of Modifying Files

Keep in mind that what I've just demonstrated was not changing a file, but simply
changing the contents of a file loaded into memory. A file loaded into memory through
DEBUG as we did with SAM.TXT is called a memory image of that file. Only the
memory image of the file was changed. SAM.TXT remains on disk, unchanged and

file:///E|/TEMP/Chapter%203%20The%20Right%20To%20Assemble.htm (34 of 39) [9/30/02 08:29:47 PM]

file:///E|/TEMP/Chapter%203%20The%20Right%20To%20Assemble.htm

unaware of what was happening to its doppelganger in memory.
You can save the altered memory image of SAM.TXT back to disk with a simple
command: type W and then press Enter. (Think write.) DEBUG remembers how many
bytes it read in from disk, and it writes those bytes back out again. It provides a tally as it
writes:
Writing 0014 bytes

The figure is given in hex, even though DEBUG does not do us the courtesy of
displaying an H after the number. 14H is 20 decimal, and there are exactly 20 bytes in
SAM.TXT, counting the EOF marker. DEBUG writes out only the significant
information in the file. It does not write out anything that it didn't load in, unless you
explicitly command DEBUG to write out additional bytes beyond the end of what was
originally read.
If you haven't already figured out what was done to poor SAM.TXT, you can dump it
again and take a look. If you simply press D for another dump, however, you're in for a
surprise: the new dump does not contain any trace of SAM.TXT at all. (Try it!) If you're
sharp you'll notice that the address of the first line is not what it was originally, but
instead is this:
38E3:0180

(The first four digits will be different on your system, but that's all right—look at the
second four digits instead during this discussion.) If you know your hex, you'll see that
this is the address of the next eight lines of dumped memory, starting immediately after
where the first dump left off.
The D command works that way. Each time you press D, you get the next 128 bytes of
memory, starting with 0100H. To see SAM.TXT again, you need to specify the starting
address of the dump, which was 0100H:
-d 0100

Enter that command, and you'll see the following dump with the altered memory image
of SAM.TXT:

38E3:0100 53 61 6D 00 OA 77 61 73-OD OA 61 OD OA 6D 6F 6F Sam..was. .a. .moo
38E3:0110 73 65 OA 1A C4 76 04 26-F7 24 5D C2 04 00 55 8B se...v.&.$].. .U.
38E3:0120 EC 83 EC 12 FF 76 06 FF-76 04 9A 66 17 7D 30 89 v..v..f.}0.
38E3:0130 46 FE 83 7E 10 00 75 OF-C4 76 08 26 8B 34 F7 DE F..-..u..V.&.4..
38E3:0140 C4 5E OC 03 DE EB 03 C4-5E OC 89 5E F6 8C 46 F8 .A......A..A..F.
38E3:0150 C4 76 08 26 8B 1C C4 7E-F6 26 8D 01 8C C2 89 46 .v.&...-.&.....F

file:///E|/TEMP/Chapter%203%20The%20Right%20To%20Assemble.htm (35 of 39) [9/30/02 08:29:47 PM]

file:///E|/TEMP/Chapter%203%20The%20Right%20To%20Assemble.htm

38E3:0160 F2 89 56 F4 2B C9 51 06-57 FF 76 OA FF 76 08 OE ..V. + .Q.W.v.. v..
38E3:0170 E8 83 06 50 FF 76 06 FF-76 04 9A 4B 05 EF 32 FF ... P. v..v.. K. .2.

Sam, as you can see, is now something else again entirely.
Now, something went a little bit wrong when you changed Sam from a man to a moose.
Look closely at memory starting at address 0111H. After the "e" (65H) is half of an EOL
marker. The carriage return character (ODH) is gone, because you wrote an "e" over it.
Only the line feed character (OAH) remains.
This isn't fatal, but it isn't right. A lonely line feed can cause trouble or not, depending on
what you try to do with it. If you load the altered SAM.TXT into the JED editor, you'll
see a ghostly "J" after the word "moose." This is how JED indicates certain invisible
characters that are not EOL or EOF markers, as I'll explain in the next chapter, which
describes JED in detail. The J tells you an LF character is present at that point in the
file.
The lesson here is that DEBUG is a gun without a safety catch. There are no safeguards.
You can change anything inside a file with it, whether it makes sense or not, or whether
it's dangerous or not. All safety considerations are up to you. You must be aware of
whether or not you're overwriting important parts of the file.
This is a theme that will occur again and again in assembly language: safety is up to you.
Unlike BASIC, which wraps a protective cocoon around you and keeps you from
banging yourself up too badly, assembly language lets you hang yourself without a
whimper of protest.
Keep this in mind as we continue.

Examining and Changing Registers

If you saved SAM.TXT back out to disk in its altered state, you created a damaged file.
Fixing SAM.TXT requires reconstructing the last EOL marker by inserting the CR
character that you overwrote using the E command. Unfortunately, this means you'll be
making SAM.TXT larger than it was when DEBUG read it into memory. To save the
corrected file back out to disk, we need to somehow tell DEBUG that it needs to save
more than 14H bytes out to disk. To do this we need to look at and change a value in one
of the CPU registers.
Registers, if you recall, are special-purpose memory cubbyholes that exist inside the
CPU chip itself, rather than in memory chips outside the CPU. DEBUG has a command
that allows us to examine and change register values as easily as we examined and
changed memory.

file:///E|/TEMP/Chapter%203%20The%20Right%20To%20Assemble.htm (36 of 39) [9/30/02 08:29:47 PM]

file:///E|/TEMP/Chapter%203%20The%20Right%20To%20Assemble.htm

At the dash prompt, type R. (Think registers.) You'll see a display like this:
-r
AX-0000 BX-0000 CX-0014 DX=0000 SP=FFEE BP-0000 SI=0000 DI=0000
DS-1980 ES-1980 SS=1980 CS=1980 IP=0100 NV UP El PL
NZ NA PO NC 1980:0100 53 PUSH BX

The bulk of the display consists of register names followed by equal signs, followed by
the current values of the registers. The cryptic characters NV UP El PL NZ NA PO NC
are the names of flags, and we'll discuss them later in the book.
The line beneath the register and flag summaries is a disassembly of the byte at the
address contained by the instruction pointer. (The instruction pointer is a register which
is displayed by the DEBUG R command, under the shorter name IP. Find IP's value in
the register display above—it should be 0100H, which is also the address of the "S" in
"Sam".) This line will be useful when you are actually examining an executable program
file in memory. In the case of SAM.TXT the disassembly line is misleading, because
SAM is not an executable program and contains nothing we intend to be used as machine
instructions.
The hexadecimal value 53H, however, is a legal machine instruction as well as the
ASCII code for uppercase "S". DEBUG doesn't know what kind of file SAM.TXT is.
SAM could as well be a program file as a text file; DEBUG makes no assumptions based
on the file's contents or its file extension. DEBUG examines memory at the current
address and displays it as though it were a machine instruction. If memory contains data
instead of machine instructions, the disassembly line should be ignored.
This is once again an example of the problems you can have in assembly language if you
don't know exactly what you're doing. Code and data look the same in memory. They are
only different in how you interpret them. In SAM.TXT, the hex value 53H is the letter
"S"; in an executable program file 53H would be the instruction PUSH BX. We'll be
making good use of the disassembly line later on in the book, when we get down to
examining real assembly language programs. For now, just ignore it.
When DEBUG loads a file from disk, it places the number of bytes in the file in the CX
register. CX is a general-purpose register, but it is often used to contain such count
values, and is therefore sometimes called the count register.
Notice that the value of CX is 14H—just the number DEBUG reported when it wrote the
altered SAM.TXT out to disk in response to the W command. If we change the value in
CX, we change the number of bytes DEBUG will write to disk.
So let's fix SAM.TXT. In changing the word "man" to "moose" we wrote over two

file:///E|/TEMP/Chapter%203%20The%20Right%20To%20Assemble.htm (37 of 39) [9/30/02 08:29:47 PM]

file:///E|/TEMP/Chapter%203%20The%20Right%20To%20Assemble.htm

characters: the period at the end of the sentence and the CR character portion of the last
line's EOL marker. We could start at address 0112H and enter a period character
(2EH—use your ASCII table!) followed by a CR character (ODH). In doing so,
however, we would overwrite the LF character and the EOF marker character, which is
just as bad or worse.
Unlike a text editor, DEBUG will not just "shove over" the values to the right of the
point where you wish to insert new values. DEBUG has no insert mode. You have to
enter all four characters: the period, the CR, the LF, and the EOF.
Use the E command to enter them, and then display a dump of the file again:

-e 0112
1980:0112 OD.2e OA.Od lA.0a OD.la
-d 0100
38E3:0100 53 61 60 OD OA 77 61 73-OD OA 61 OD OA 6D 6F 6F Sam..was. .a. .moo
38E3:0110 73 65 2E OD OA 1A 04 26-F7 24 5D C2 04 00 55 88 se.....&.$]...U.
38E3:0120 EC 83 EC 12 FF 76 06 FF-76 04 9A 66 17 7D 30 89 v..v..f.}0.
38E3:0130 46 FE 83 7E 10 00 75 OF-C4 76 08 26 8B 34 F7 DE F..-.. u..V.&.4..
38E3:0140 C4 5E OC 03 DE EB 03 C4-5E OC 89 5E F6 8C 46 F8 .A......A..A..F.
38E3:0150 C4 76 08 26 88 1C C4 7E-F6 26 8D 01 8C C2 89 46 .v.&...-.&.....F
38E3:0160 F2 89 56 F4 28 C9 51 06-57 FF 76 OA FF 76 08 OE ..V. + .Q.W.v..v. .
38E3:0170 E8 83 06 50 FF 76 06 FF-76 04 9A 4B 05 EF 32 FF ...P.v..v.. K. .2.

Now the file is repaired, and we can write it back to disk. Except—SAM.TXT in
memory is now two bytes longer than SAM.TXT on disk. We need to tell DEBUG that
it needs to write two additional bytes to disk when it writes SAM.TXT back out.
DEBUG keeps its count of SAM's length in the BX and CX registers. The count is
actually a 32-bit number split between the two 16-bit registers BX and CX, with BX
containing the high half of the 32-bit number. This allows us to load very large files into
DEBUG, with byte counts that cannot fit into a single 16-bit register like CX. 16-bit
registers can only contain values up to 65,535. If we wanted to use DEBUG on an
80,000 byte file (which is not all that big, as files go) we'd be out of luck if DEBUG only
kept a 16-bit count of the file size in a single register.
But for small changes to files, or for working with small files, we only have to be aware
of and work with the count in CX. Adding 2 to the byte count only changes the low half
of the number, contained in CX. Changing the value of CX is done with the R command,
by specifying CX after R:
-r ex

DEBUG responds by displaying the name "CX," its current value, and a colon prompt on

file:///E|/TEMP/Chapter%203%20The%20Right%20To%20Assemble.htm (38 of 39) [9/30/02 08:29:47 PM]

file:///E|/TEMP/Chapter%203%20The%20Right%20To%20Assemble.htm

the next line:
CX 0014
:
To add 2 to the value of CX, enter 0016 at the prompt, then press Enter. DEBUG simply
returns the dash prompt—remember, it's a utility of few words.
Now, however, when you enter a W command to write SAM.TXT back to disk,
DEBUG displays this message:
Writing 0016 bytes

The new, longer SAM.TXT has been written to disk in its entirety. Problem solved.
One final note on saving files back out to disk from DEBUG: if you change the values in
either BX or CX to reflect something other than the true length of the file, and then
execute a W command to write the file to disk, DEBUG will write as many bytes to disk
as are specified in BX and CX. This could be 20,000 bytes more than the file contains, or
it could be 0 bytes, leaving you with an empty file. You can destroy a file this way.
Either leave BX and CX alone while you're examining and "patching" a file with
DEBUG, or write the initial values in BX and CX down, and enter them back into BX
and CX just before issuing the W command.

The Hacker's Best Friend

There is a great deal more to be said about DEBUG, but most of it involves concepts we
haven't yet covered. DEBUG is the single most useful tool you have as an assembly-
language programmer, and I'll be teaching you more of its features as we get deeper and
deeper into the programming process itself.
The next chapter describes JED, a simple program editor and development environment
I created for people who have not purchased a commercial editor product like Brief or
Epsilon. If you do not intend to use JED, you can skip Chapter 4 and meet us on the
other side in Chapter 5, where we begin our long trek through the 86-family instruction
set.

file:///E|/TEMP/Chapter%203%20The%20Right%20To%20Assemble.htm (39 of 39) [9/30/02 08:29:48 PM]

file:///E|/TEMP/Chapter%204%20Learning%20and%20Using%20Jed.htm

Learning and Using Jed
A Programming Environment for Assembly
Language
4.1 A Place to Stand with Access to Tools >• 100
4.2 JED's Place to Stand >• 101
4.3 Using JED's Tools >• 104
4.4 JED's Editor in Detail •> 116

4.1 A Place to stand with Access to Tools

"Give me a lever long enough, and a place to stand, and I will move the Earth."
Archimedes was speaking literally about the power of the lever, but behind his words
there is a larger truth about work in general: To get something done, you need a place to
work, with access to tools. My radio bench in the garage is set up that way: A large, flat
space to lay ailing transmitters down, and a shelf above where my oscilloscope, VTVM,
frequency counter, signal generator, and dip meter are within easy reach.
Much of the astonishing early success of Turbo Pascal was grounded in that truth. For
the first time, a compiler vendor gathered up the most important tools of software
development and put them together in an intuitive fashion so that the various tasks
involved in creating software flowed easily from one step to the next. From a menu that
was your place to stand, you pressed one key, and your Pascal program was compiled.
You pressed another one, and the program was run. It was simple, fast, and easy to learn.
Turbo Pascal literally took Pascal from a backwater language favored by academics to
the most popular compiled language in history, BASIC not excluded.

file:///E|/TEMP/Chapter%204%20Learning%20and%20Using%20Jed.htm (1 of 33) [9/30/02 08:30:47 PM]

file:///E|/TEMP/Chapter%204%20Learning%20and%20Using%20Jed.htm

What Borland so boldly introduced in 1983 was adopted (reluctantly at times) by their
major competitor, Microsoft. Today, Turbo Pascal, Turbo C, Turbo BASIC, Turbo
Prolog, Quick C, and Quick BASIC are what we call integrated development
environments. They provide well-designed menus to give you that place to stand, and a
multitude of tools that are only one or two keystrokes away.
A little remarkably, there is no true equivalent to Turbo Pascal in the assembly-language
field. Neither MASM nor Borland's own Turbo Assembler have that same comfortable
place to stand. The reasons for this may seem peculiar to you, the beginner: seasoned
assembly-language programmers either create their own development environments
(they are, after all, the programming elite) or they simply work from the naked DOS
prompt. The appeal of a Turbo Pascal-type environment is not so strong to them as it is
to you. An integrated development environment for MASM and TASM may happen in
time, but you must understand that both Microsoft and Borland are catering to their most
important audience, the established assembly-language programmer.
That doesn't do much good for you. One glance back at Figure 3.5 can give you the
screaming willies. Assembly-language development not a simple process, and grabbing
all the tools from the DOS prompt is complicated and error prone; rather like standing on
a ball-bearing bar stool to get the shot glasses down from the high shelf over the bar.
So, to make things a little easier for you, I've created a program called JED. JED is a
beginner's development environment for either MASM or TASM. It's nowhere near as
powerful as the environments provided with the Turbo or Quick languages, but it's
powerful enough to get you started on the long road toward assembly-language
proficiency.

Laying Hands on JED

JED.EXE is written in Turbo Pascal 5.0. You can get a copy from many of the larger
user groups around the country. Perhaps your friends have a copy; ask around. I've
allowed people to copy it freely in the hopes that it will be widely used. If you can't find
it anywhere, you can order the listings diskette from me through the coupon on the
flyleaf. Both source code and .EXE versions of JED are included on the listings diskette.
You don't need Turbo Pascal to run JED.EXE. It's fully compiled and ready to run.
I must emphasize that not quite all of the source code for JED is on the listings diskette.
JED contains a powerful text editor provided with Borland's Turbo Pascal Editor
Toolbox. You can get JED's source code from the listings diskette, but keep in mind that
it's not all there; you must buy the Turbo Pascal Editor Toolbox and own Turbo Pascal

file:///E|/TEMP/Chapter%204%20Learning%20and%20Using%20Jed.htm (2 of 33) [9/30/02 08:30:47 PM]

file:///E|/TEMP/Chapter%204%20Learning%20and%20Using%20Jed.htm

5.0 in order to compile or modify JED.
I need to emphasize right now that you don't need to have JED to work with assembly
language, or to use this book. JED smoothes access to your tools like TASM and
TLINK, and provides a very good text editor to boot, but you can work very well from
the DOS prompt using some other text editor. I'll be referencing JED as I discuss the
assembly language process in this book; there are a multitude of ways to work with
assembly language and I have to settle on something. But the information on assembly
language itself is independent of the text editor and programming environment you may
choose to use.

4.2 JED's Place to Stand

Like Turbo Pascal and the other integrated development environments from both Borland
and Microsoft, JED's most visible part is a text editor. If you'll look back once again to
Figure 3.5, you'll see that all roads seem to lead back to the text editor in good time. In
general, you do most of your thinking while staring at the text editor screen, so it seems a
logical location to put your place to stand. Running JED is easy. The first time you want
to work on a particular source code file, you type the name JED followed by the name of
the source code file:
C:\ASM>JED EAT2.ASM

(Here, EAT2.ASM is the name of a source code file described a little later in this book.)
DOS will load and run JED, and then JED will load the text file EAT2.ASM into its
editor workspace. You'll get a view like that shown in Figure 4.1.

The Status Line

Apart from the very top line, everything on the edit screen is a display of your text file.
This top line, the status line, contains several important items of information about the
file that p is displaying in the edit screen, which is called the current file. The first two
items tell you the position of the cursor in terms of line number and column number. In
case you're unfamiliar with such things, the line numbers run from top to bottom with
line 1 at the top, and column numbers run from left to right, with column 1 at the left
margin. As you move the cursor around the file using the cursor-control keys (see
Section 4.4) the cursor position will be updated in the status line.

file:///E|/TEMP/Chapter%204%20Learning%20and%20Using%20Jed.htm (3 of 33) [9/30/02 08:30:48 PM]

file:///E|/TEMP/Chapter%204%20Learning%20and%20Using%20Jed.htm

The word Insert will display in the status line if JED's editor is in insert mode. Insert
mode indicates that characters typed at the keyboard will be inserted at the cursor
position, pushing ahead the characters to the right of the cursor position. When the word
Insert is not present, JED's editor is in overwrite mode. Overwrite mode indicates that
characters typed at the cursor position will replace or overwrite characters that already
exist on the screen, and that those underlying characters will be lost. I'll say more on this
item later in this chapter.
Similarly, the word Indent indicates that the editor is in indent mode. In indent mode,
indenting one line by spacing over from the left margin will cause subsequent lines to
automatically indent to the same number of spaces from the margin. Again, more on this
later in this chapter.
The name of the current file also displays in the status line. Finally, the current time
according to DOS's clock, is shown in the upper-right hand corner of the screen.

The Prompt Bar

At the bottom of the screen, highlighted in blue (if you have a color monitor) is a single
line bar that summarizes most of JED's important commands. This bar is called the
prompt bar. It provides always-visible reminders as to which tools are available while
you are standing at JED's Edit screen. Each tool is invoked by pressing one of the PC's
ten function keys.

file:///E|/TEMP/Chapter%204%20Learning%20and%20Using%20Jed.htm (4 of 33) [9/30/02 08:30:48 PM]

file:///E|/TEMP/Chapter%204%20Learning%20and%20Using%20Jed.htm

Eight of the ten function keys are summarized in the prompt bar. The two that are not
present, F7 and F8, are actually text editing commands, and will be discussed along with
all of the other editing commands in Section 4.4.

JED's Help Screen

Perhaps the single most important command to remember while you're still a beginner is
the Help command, Fl. Pressing Fl instantly brings up a 24-line help display of all its
commands and most of the text editing commands. If you ever forget a command or are
unsure of what one of the prompt bar reminders means (like F4:Cmds, which is
something less than obvious) simply press Fl and read the available information. JED's
Help screen is shown in Figure 4.2.
Once the Help screen is displayed, you can put it away and return to the Edit screen by
pressing any non-shift key. (That is, any key but the Shift, Ctrl, or Alt keys.)

Figure 4.2. JED's Help screen

Version l.0 — Released 1/8/89 — ALT-X EXITS!
(c) 1988, 1989 Jeff Duntemann — ALL RIGHTS RESERVED

 COMMAND SET
Fl: Display this screen
F2: Save current source code file
F3: Invoke DEBUG on current .EXE file
F4: Update assemble/link command lines
F5: Shell out to DOS
F6: Show last assemble/link screen
F7: Mark beginning of block
F8: Mark end of block
F9: Assemble only
F10: Assemble/link (if needed) and Go!

*KD>: Quit and save file
AKQ: Quit without saving
AKU: Write marked block to disk
AKR: Read a file to cursor position

file:///E|/TEMP/Chapter%204%20Learning%20and%20Using%20Jed.htm (5 of 33) [9/30/02 08:30:48 PM]

file:///E|/TEMP/Chapter%204%20Learning%20and%20Using%20Jed.htm

AKH: Hide/unhide the marked block
AKY: Delete marked block
AKU: Move marked block
AKC: Copy marked block
AQL: Undo changes to line
Alt-F: Change current source code file

QR: Move to start of file AY: Delete line AT: Delete word
 AQ¥: Del. to EOL

^QC: Move to end of file AQF: Find AQA: Find/Replace
 AL: Find/repl. again
: A Move 1 word left Options: N: Without asking U: Whole words
only ^F Move 1 word right G: Global U: Ignore case B:
Backwards

«REMEMBER!!» If your .ASM file is not a standalone program, but a device
driver or a library of procedures, pressing F10 may lock up your system!!

4.3 Using JED's Tools

The very best way to explain JED's commands and how they are used is to run through a
simple JED session with a real assembly language program and explain what happens as
we go. The program we'll use is EAT2.ASM, which is shown in chapter 7. EAT2.ASM
is not much of a program, but gets you started in understanding the internal mechanisms
of a real, working assembly-language program. When you run EAT2.EXE from the
DOS prompt, this simple message displays on your screen:

Eat at Joe's...
...ten million flies can't ALL be wrong!

After it displays those two lines, this program ends and returns control to DOS.
EAT2.ASM is the source-code file from which the executable program file EAT2.EXE
is assembled and linked. EAT2.ASM is present on the disk with JED. If you have
somehow obtained JED without the rest of the example files from this book, you can
type EAT2.ASM into JED after running JED.

file:///E|/TEMP/Chapter%204%20Learning%20and%20Using%20Jed.htm (6 of 33) [9/30/02 08:30:48 PM]

file:///E|/TEMP/Chapter%204%20Learning%20and%20Using%20Jed.htm

If you, as I suggested earlier, created a subdirectory on your hard disk called ASM, copy
all of the files on the JED disk into subdirectory ASM. In order for JED to operate
correctly, the following files must be present in the subdirectory with JED:
• Your assembler. This can be any command-line oriented assembler, but will typically
be either MASM.EXE or TASM.EXE.
• Your assembler's linker. Assemblers are usually shipped with their own linker. This is
certainly true of MASM and TASM. Some assemblers may not use their own linker, but
will use the DOS linker, LINK.EXE, instead.
• The DOS debugger, DEBUG.COM. Some versions of DOS are no longer shipped
with DEBUG, which is offered as part of an additional utilities disk. Prior to DOS 3.2,
all versions have DEBUG.COM. If you don't have DEBUG.COM, you will find it slow
going, since nearly all of the debugging skills I'll be teaching in this book center on
DEBUG.COM.
Of course, other files can be present without any hindrance to your work.

Invoking JED

Make the current directory your working assembly-language subdirectory, which I have
suggested you call ASM. From the DOS prompt, invoke JED and load EAT2.ASM

C:\ASM>JED EAT2

Notice that you don't have to type the .ASM extension at the end of the filename. JED
has a default file extension of .ASM. In other words, if you don't enter a file extension,
JED will append the file extension .ASM on the end of the name you enter on the
command line. (You can also enter the full filename including extension.) In either case,
JED will consider the name of the current file to be EAT2.ASM.
Now, either EAT2.ASM exists on your disk or it doesn't. JED won't mind if the file
doesn't exist—new files have to start somewhere! If JED can't find the file you entered
on the command line, it will display the words "New file" in the upper-left corner of the
Edit screen and create an empty text file on your hard disk. When you type text into the
Edit screen, JED will save the text into that new file.
The file may well exist on disk, and if it does, JED will load the file into the editor
screen and display it for you. Assuming you entered the name EAT2, the screen should
look almost identical to that shown in Figure 4.1.
You might wonder what will happen if you simply type JED at the DOS command line
without specifying filename. One of two things will happen:

file:///E|/TEMP/Chapter%204%20Learning%20and%20Using%20Jed.htm (7 of 33) [9/30/02 08:30:48 PM]

file:///E|/TEMP/Chapter%204%20Learning%20and%20Using%20Jed.htm

• JED will load the file that you last worked on from within JED. JED keeps a record
of this file in a small file named JED.CFG. If it can find JED.CFG, and if the file
named in JED.CFG is in current subdirectory, JED will load that file. JED updates
JED.CFG automatically.
• If there is no JED.CFG on your disk, JED will create a file imaginatively named
NONAME.ASM and store your text into a new file with that name. NONAME.ASM is
a pretty rank name for any assembly-language program, so you might as well think of a
better name and enter that when invoking JED.
JED's ability to remember the name of the last file you worked on makes it unnecessary
for you to remember what project you were in the middle of when you pulled the plug
and went to bed. Furthermore, JED also remembers the cursor position when you saved
your file and exited from JED.

Moving around the Edit Screen

Your place to stand is JED's text editor, and when nothing else is going on (like
assembling, linking, debugging, or running your program) you'll be in the text editor.
When you're in the text editor, any characters you type will be inserted into the current
file and displayed on the Edit screen. You can move the cursor around the current file by
using any of a number of cursor control keys.
The easiest to remember are the PC's keypad keys. The four arrow keys will
move the cursor one character position in the direction the arrow points. The
PgUp key will move the cursor one page up the size of your screen; typically 25,
43, or 50 lines, whereas PgDn will move the cursor one page down. The Home key will
move the cursor immediately to the left screen margin, and the End key will move the
cursor immediately to the end of the current line (End of the line is defined as the
character after the rightmost non blank character in the line.)
There are numerous other cursor control keys that you can use within JED. I'll describe
them all in detail in Section 4.4.
Take a few moments scooting around inside EAT2 until you feel comfortable with it.

Making Changes to the File

The simplest way to change the file is to enter something from the keyboard. All
characters you type will appear at the cursor position. The cursor will move one position
to the right as you enter each character.

file:///E|/TEMP/Chapter%204%20Learning%20and%20Using%20Jed.htm (8 of 33) [9/30/02 08:30:48 PM]

file:///E|/TEMP/Chapter%204%20Learning%20and%20Using%20Jed.htm

You can insert a new line beneath the current line by pressing Enter.
Getting rid of unwanted text is as important as adding new text. You can delete one
character at a time by moving the cursor to the immediate right of the offending
character, and pressing Backspace to back the cursor over it. The character will
disappear.
You can delete an entire line by placing the cursor on the line and pressing Ctrl+Y. Be
careful when using Ctrl+Y! You don't want to accidentally lose a line that you may or
may not have in your head or written down on paper.
JED contains numerous other ways to delete text, all of which will be described in
Section 4.4. For the sake of the current guided tour through JED, move the cursor to the
blank line immediately beneath EAT2's comment header (line 9 in the file) and type the
word "FOO". That done, press Enter and add a new line beneath it.

Saving Changes to a File

As they say in Chicago, that grand old (and cold) town where I grew up, "Vote early and
often." The same philosophy applies to saving the changes you make to your current file
under JED. Every so often, perhaps when you kick back in your chair to think for a bit,
save your work. It's easy: one keystroke, the function key F2. JED will display the word
"Saving..." in the status line at the top of the screen while it saves your file to disk. If you
have a fast hard disk this will rarely take more than a second. If you're still working on
diskettes, the process may take a few seconds more, especially if the current file is a
good size.
Get in the habit of pressing F2 once in a while. Keep in mind that if you save your work
every five minutes, you will never lose more than five minutes of work!

JED keeps an eye on things and does its level best to keep you from losing any of your
work. If you try to exit JED without saving your file to disk, JED will remind you with
the following prompt:

File modified. Save it? (Y/N)
If you press "Y", JED will save your work to disk. Pressing "N" will allow you to exit
JED without saving your work. All other keys but Y and N will be ignored. JED also
automatically saves your work every time you go out to use the assembler, linker, or
debugger, or when you run the program you're developing, as I'll explain a little later.

file:///E|/TEMP/Chapter%204%20Learning%20and%20Using%20Jed.htm (9 of 33) [9/30/02 08:30:48 PM]

file:///E|/TEMP/Chapter%204%20Learning%20and%20Using%20Jed.htm

Changing the Current File

If you want to change the current file while you're in JED, simply press Alt+F. (Think
File.) A window will appear in the center of the screen displaying the name of the current
file above a field where you can enter the name of the new file.
The name of the current file will be in the field. You can do one of two things to the
name:
• Begin typing a new name. The old name will vanish as soon as you press a printable
character key.
• Backspace over some portion of the old name. This allows you to change the name of
the current file from EAT2.ASM to EAT3.ASM without typing the whole name.
When you press Enter, JED will attempt to load the specified file. If the file does not
exist, or if you left the name field blank, JED will create a new file according to the rules
summarized in the previous section.

Checking and Changing the Assemble and Link Commands

The whole point of JED is to help you do your work in assembly language, and the
central task in assembly-language work is processing a correct file through an assembler.
JED can execute your assembler program and assemble your current file with only one
keystroke on your part. That keystroke is function key F9, as you'll see from the prompt
bar at the bottom of the screen. Before you press F9 on our tour, however, we'd better
make sure JED has your assembler and linker commands straight.
As programs go, JED is pretty clever, but it doesn't read minds. It can make use of any
assembler that operates from the DOS command line, but you have to tell JED how to
invoke the assembler you've chosen. MASM and TASM are invoked in different ways,
and JED must know which assembler you're using to invoke the assembler program from
disk and make use of it.
Pressing function key F4 displays a whole new screen that allows you to specify your
assembler. See Figure 4.3. The screen contains two command lines, one that invokes
your assembler, and another that invokes your linker. I've set JED up to assume the use
of Borland's Turbo Assembler TASM, which is faster and in many ways more
sophisticated than Microsoft's MASM. If you are using TASM, you needn't change
JED's built-in default command lines. Figure 4.3 shows the default command lines for
TASM.

file:///E|/TEMP/Chapter%204%20Learning%20and%20Using%20Jed.htm (10 of 33) [9/30/02 08:30:48 PM]

file:///E|/TEMP/Chapter%204%20Learning%20and%20Using%20Jed.htm

To use MASM or some other assembler, however, you'll need to change both command
lines. This will require some knowledge of how your assembler and linker operate. I'll
provide you with some basic information about MASM and TASM; for other assemblers
(or for using specialized features of MASM and TASM) you're on your own.
The line beneath the prompt "Assemble command" is the line JED will use to invoke
your assembler. The default is
TASM ~

which will invoke Borland's Turbo Assembler with all default conditions in force. The
tilde character ~ is used to indicate where in the line JED is to substitute the name of the
current file. In other words, when JED goes out to DOS to execute TASM on the file
EAT2.ASM, it will substitute EAT2.ASM for the tilde, using the following line for invoking
TASM:
TASM EAT2.ASM

If you're using MASM instead, you must change the Assemble command. Invoking
MASM with all defaults in force (using the tilde to indicate the position of the filename)
requires this command line:
MASM ~;

Again, in our example JED would automatically expand the line to read:
MASM EAT2.ASM;

The semicolon is very important, and prevents MASM from going into interactive
mode. If you omit the semicolon, MASM will stop and begin asking questions from the
keyboard. JED is not equipped to answer these questions, and while you yourself could
answer MASM's questions from the keyboard, there's no point to it if all we want to do is
use MASM's defaults. If you're using MASM, make sure you enter that semicolon!
Modifying a command line isn't difficult. You can backspace over the existing command
line and replace it with a new one, or zap the whole line at once by pressing Ctrl+X, and
then typing in your new command line.
When the changes are the way you want them, press Enter to retain the changes and
record them in JED.CFG. If somehow you change your mind after zapping or otherwise
altering the existing command line, you can abandon your changes and leave the original
command line untouched by simply pressing Esc.
You'll notice that while you're editing a command line, a line of periods runs from the
end of the command line to the right margin. These periods indicate how large the
command line can be. You can type as far as the periods allow. If you try to type further,

file:///E|/TEMP/Chapter%204%20Learning%20and%20Using%20Jed.htm (11 of 33) [9/30/02 08:30:48 PM]

file:///E|/TEMP/Chapter%204%20Learning%20and%20Using%20Jed.htm

JED will quite literally say "uh-uh." Try it and see!
Changing the link command line is done the same way. TASM's link command line is
this:
TLINK ~

MASM's link command line, on the other hand, requires a semicolon, and for the same
reasons mentioned before:
LINK ~;

These are the absolute simplest command lines possible, and will suffice for simple
learning programs like EAT2.ASM. For more advanced work you may need to use
assembler or linker options, which are additional commands that provide special
information to the assembler or linker about the job at hand.

Figure 4.3. Changing JED's assembler and link commands

\\JED\\ Assenble/link command edit screen

Assemble connand:

**

Link connand:

 TLINK ~

Line editing commands:

CR: Accepts changes and continues
ESC: Abandons changes and continues
Ctrl-X: Clears entire field to empty string
BS: Destructive backspace

For example, under MASM you can specify that the assembler write the program's
segments to disk in alphabetical order (don't mind for now if you don't know what that
means) by using the /A option. This requires that you enter the /A option as part of the
assemble command line:
MASM /A ~;

file:///E|/TEMP/Chapter%204%20Learning%20and%20Using%20Jed.htm (12 of 33) [9/30/02 08:30:48 PM]

file:///E|/TEMP/Chapter%204%20Learning%20and%20Using%20Jed.htm

Both TASM and MASM have numerous options of this type. You won't need any of
them while working your way through this book. Later on, when you graduate to larger,
more sophisticated assembly-language work, you will need to understand and use these
options. If you continue to use JED at that stage, you'll have to add the desired options to
the assemble and link command lines.

Assembling the Current File

If you're satisfied that the assemble and link command lines are correct, it's time to
assemble EAT2. Press F9, and the following things happen:
• JED saves the current file to disk. Any time JED transfers control outside of itself
(by executing the program under development or by executing one of the utilities) it
saves the current file.
• The screen clears, and JED invokes your assembler using the assemble command
line described in the previous subsection. The assembler displays its copyright notice
and certain other information on the screen. (Precisely what information displays
depends on the assembler you're using.) This information will include error messages, if
your source code file contains any errors.
• When the assembler is finished, JED saves the contents of the screen.
You can recall the information (typically error messages) back for examination later on.
Saving the screen's contents happens invisibly and takes almost no time.
• A prompt reading "Press any key to return to JED" appears in the center of the bottom
line of the screen. JED then waits for a keystroke, which allows you to take time to read
the displayed error messages. When you're ready to resume work, press a key and the
Editor screen will reappear. An example of the screen at this point is shown in Figure
4.4.
If you recall, you made a change to EAT2.ASM a little earlier, by typing the word
"FOO" on line 9. This word at this location in the file means nothing, and it will generate
an assembler error message. You can see this error message as

Figure 4.4. A TASM error message

Turbo Assembler Version 2.0 Copyright (c) 1988, 1990 Borland International
Assembling file: EAT2.ASM
Error EAT2.ASM(9) Illegal instruction

file:///E|/TEMP/Chapter%204%20Learning%20and%20Using%20Jed.htm (13 of 33) [9/30/02 08:30:48 PM]

file:///E|/TEMP/Chapter%204%20Learning%20and%20Using%20Jed.htm

Error messages: 1
Warning Messages: None
Passes: 1
Remaining Memory: 93k
Press any key to return to JED...
**

TASM presents it, along with TASM's copyright notice and other information, in Figure
4.4. TASM calls the word "FOO" an illegal instruction because no FOO instruction
exists in the 86-family instruction set. If you misspelled a genuine instruction (say, by
fumble-fingering MOV into MVO) you would most likely see the same error message.
Both MASM and TASM are helpful in that they identify the line where they first noticed
an error. (This line is not always where the error actually is, but we'll return to that matter
later in the book.) This time, the error is a pretty obvious one and no assembler should
have any trouble telling you that the problem exists in line 9 of the source code file. Once
you press a key and return to JED's Edit screen, move to line 9 and delete the offending
line. Just press Ctrl+Y and the line will vanish. Save the repaired file by pressing F2.
Finally, invoke the assembler again by pressing F9. This time you won't see any error
messages.

"Make"ing and Running an Executable File

What, exactly, does running the assembler actually accomplish? By itself, not much.
Invoking the assembler alone is useful to determine if there are any errors in your source
code file. If the file contains no errors, you still don't have an executable program file
after the assembler has done its job. What you do have is a relocatable object file, with
the same name as the current file but with an .OBJ file extension. In our example here,
the assembler read in the current file, EAT2.ASM, and produced a new file, EAT2.OBJ.
You can't run EAT2.OBJ, and you can't read it or print it. You can't do much of anything
with it, in fact, except link it. As I explained in the previous chapter linking is a process
by which one or more .OBJ files are translated into an executable program file with an
.EXE extension. It's called linking because more than one .OBJ file can be combined into
a single .EXE file through the linking process. However, even if you only have one .OBJ
file (as we do here with EAT2) you must still perform the link step on that file to create
an executable program file.
JED can perform the link step very easily. It does not, however, perform the link step all
by itself. Running the assembler alone is useful to identify errors, but running the linker

file:///E|/TEMP/Chapter%204%20Learning%20and%20Using%20Jed.htm (14 of 33) [9/30/02 08:30:48 PM]

file:///E|/TEMP/Chapter%204%20Learning%20and%20Using%20Jed.htm

alone is pretty pointless unless you intend to run the executable program file produced by
the link step. JED combines the link step with the step of actually running your new
assembly language program to see what it does. Furthermore, it performs the assemble
step again, so that you can do it all in one keystroke: assemble, link, and away you go!
When you press F10, JED will do basically the same things it did when you pressed F9,
and then some:
• JED saves the current file to disk. The first time you run any new assembly-language
program, you had better prepare to reboot your machine. It happens to the best of us
now and then, and it will happen to you with dismaying frequency. Because we humans
sometimes forget to save the source code file before running the .EXE file, JED never
forgets.
• JED executes the assembler. If there are no errors in the file JED produces an .OBJ
version of the current file. If errors are detected, no .OBJ file is generated and JED
immediately takes control back from the assembler without performing the link and "go"
(that is, execute) steps. JED will wait for a keystroke so that you can stare at the error
messages for awhile.
• If there were no assembler errors, JED executes the linker The .OBJ file is
translated into a .EXE file. Again, there is the possibility that linker errors will occur,
although they are much less common than assembler errors. If errors are detected, JED
takes control back directly from the linker and the .EXE file will not be run. In the event
of an error, JED waits for a keystroke so that you can examine the wreckage before
pressing a key and going on.
• The .EXE file is executed. Your fledgling program runs, and when it finishes JED will
once again wait for a keystroke as you examine your program's output. In our test case of
EAT2, this output consists of those two lines of text shown earlier about eating at Joe's.
At this point, I have a confession to make.

What I just told you was the truth, but not the whole truth. The F10 command is a little
more complicated than just those four steps. Suppose, for example, that you use the F10
command to create and run an .EXE file as we just did. Then suppose that you wanted to
see it work again almost immediately, without making any further changes to the
program. You press F10, expecting to have to wait through the assemble and link step
again.
But no...
The second time you press F10, the .EXE file executes immediately, with neither the
assembler nor the linker doing their thing.

file:///E|/TEMP/Chapter%204%20Learning%20and%20Using%20Jed.htm (15 of 33) [9/30/02 08:30:48 PM]

file:///E|/TEMP/Chapter%204%20Learning%20and%20Using%20Jed.htm

What gives?
JED is pretty clever after all. Since you didn't make any further changes to the source
code file, there was no need for JED to reassemble and relink to recreate an .EXE file
no different from the one created a few seconds earlier. JED simply executed the .EXE
file as it did the first time, without making you wait through a needless assemble step and
link step.
Here's what happens: when you press F10, JED looks at two files on disk. The first one
is the .EXE file. If no .EXE file exists on disk, obviously, JED has to create one by
executing both the assembler and the linker. But if the .EXE file does exist, JED looks at
the file's time stamp and stores a copy of the time stamp.
A time stamp is DOS's way of knowing when a file was last changed. Every file created
under DOS has both a time and a date attached to it. When you execute a DIR command
from the DOS command line, the files listed tell you when they were last changed by
displaying their time stamps as date and time values:

Volume in drive C is DISK1_VOL1 Directory of C:\TURBO\JED OED
BAK 27659 1-08-89 4:39p
JED PAS 27633 1-08-89 4:39p
JED EXE 31920 1-08-89 4:39p
JED CFG 326 1-08-89 5:25p
4 File(s) 10803200 bytes free

The two rightmost columns are the date and time portions of each file's time stamp.
Once it stores a copy of the .EXE file's time stamp, JED examines the current source
code .ASM file, and stores a copy of its time stamp. Once JED has both time stamps, it
compares them.
If the .ASM file's time stamp shows a time more recent than the .EXE file's time stamp,
JED re-creates the .EXE file by invoking both the assembler and the linker. If the .ASM
file's time stamp says the .ASM file is older than the .EXE file, JED simply runs the
.EXE file without re-creating it.

Think about that for a moment until it makes perfect sense. (It's important!) If the .ASM
file is older than the .EXE file, there is no possibility that changes made to the .ASM file
have not been reflected in the .EXE file. However, if the .ASM file is newer than the
.EXE file, it might mean that changes were made to the .ASM file that have not yet been
reflected in the .EXE file. JED therefore updates the .EXE file so that it is guaranteed to
reflect all possible changes made in the source code .ASM file.

file:///E|/TEMP/Chapter%204%20Learning%20and%20Using%20Jed.htm (16 of 33) [9/30/02 08:30:48 PM]

file:///E|/TEMP/Chapter%204%20Learning%20and%20Using%20Jed.htm

This process is a common one among software development tools. The name of the
process is "make," meaning that when necessary, JED will choose to "make" the .EXE
file from the .ASM file by invoking the assembler and the linker. The make process is
efficient because it only happens when it has to. If the .EXE file is found to be up-to-
date, the assemble and link steps are skipped.
As I've hinted before, running a brand new assembly-language program is dangerous
business, especially for new assembly-language programmers. High-level languages like
Pascal and C protect you to a considerable extent from your own ignorance. Assembly
language offers almost no such protection. Until you really really know what you're
doing, your assembly-language programs will crash your machine hard more often than
they let it live. (This is why most assembly-language programmers choose machines with
hard-reset buttons on the front panel. Pushing RESET is much gentler on the machine
than turning it off and on again.)
So don't get discouraged when you crash. As that old Desiderata poem on your day-glo
sixties psychedelic posters takes pains to point out, "No doubt the universe is unfolding
as it should." Crashing is part of the process. What is stupid is crashing again and again
without knowing why. Figuring out why you're crashing is one of the most difficult and
rewarding facets of assembly-language programming, as we'll see by and by.

Taking Another Look at Your Error Messages

The assembler won't give you a lot of clues as to where you went wrong when it detects
an error, so you have to make the most of what clues you get. The assembler displays
error messages during the assemble step. It would be handy to keep those error messages
around and refer to them when you're back in JED's Edit screen, staring at your errant
source code.
JED can do it. Before JED clears the assembler's error messages from the screen and
returns you to the text editor, it saves the screen information in memory. Later on, you
can redisplay the screen as it was immediately after the assemble step by pressing F6.
The only time this system fails a little bit is if you have so many errors in the source code
file that they begin to scroll off the top of the screen. This means, first of all, that you
have some wholesale error hunting to do. But there is a way to avoid losing the first few
error messages of a multi error assemble step. As soon as the first few error messages
appear, halt the assemble step by pressing Ctrl+C. It's wise to treat the first error
messages first, because error messages sometimes breed other error messages, and
getting rid of the first one might well purge five or fifteen others further down the file.

file:///E|/TEMP/Chapter%204%20Learning%20and%20Using%20Jed.htm (17 of 33) [9/30/02 08:30:48 PM]

file:///E|/TEMP/Chapter%204%20Learning%20and%20Using%20Jed.htm

If you try to recall an error message screen before running the assembler, JED will clear
the screen and explain the situation.
You should also keep in mind that if an assemble step occurs without errors, you will still
be able to recall the assembler's copyright notice and status information by pressing F6.
JED is not particular; whether errors occur or not, it saves the screen from the last time
the assembler was run.

Running DEBUG

An important part of developing assembly language programs is using the DEBUG
utility. , JED can run DEBUG for you with a single keystroke. Once you've produced a
working EAT2.EXE file, press F3. JED will invoke DEBUG.COM, using the current
.EXE file as its command-line parameter. DEBUG will execute and in turn load your
.EXE file into memory. The screen will clear, and you'll see DEBUG's terse little dash
prompt.
Press D, and DEBUG will dump the first 128 bytes of EAT2.EXE as it was loaded into
memory. Press R, and DEBUG will show you the current state of the registers. You can
actually run EAT2.EXE by pressing G (for Go) at DEBUG's prompt. Finally, you can
quit DEBUG by pressing Q. JED will take back control and wait for one final keystroke
so you can grab a last look at what DEBUG has displayed.
One additional feature is that the last screenful of information displayed by DEBUG is
saved in memory by JED, and can be recalled by pressing F6, just as with assembler
error screens. This is handy when you need to refer back to a hex dump of a region of
memory while examining a berserk source code file in the Edit screen.

"Ducking Out" to DOS

For all that it does do, JED is a modest program and doesn't try to do everything. I was
tempted to build printer support into it so that you could create a printed listing of the
current file by pressing a single key, but decided against it. There are a multitude of
different kinds of printers out there, each with its own font sizes and setup strings and
control sequences. Rather than try to cover all the printer bases, I decided to build a
quick trap door into JED so that you can quickly duck out to DOS and run your own
listing program, or do anything else that can be done from DOS.
To exit to DOS, press F5. JED will (to be safe) save the current file to disk, clear the
screen, and take you back out to the DOS command prompt. It looks very much like JED

file:///E|/TEMP/Chapter%204%20Learning%20and%20Using%20Jed.htm (18 of 33) [9/30/02 08:30:48 PM]

file:///E|/TEMP/Chapter%204%20Learning%20and%20Using%20Jed.htm

has terminated and returned control to DOS, but not so: JED is very much alive in
memory, waiting patiently for you to finish your business with DOS and come back
home.
From DOS you can do things like search the directory for a lost file, make room on your
disk by erasing some clutter, or even (in a pinch) run another major program like Turbo
Pascal. The only caution here is that JED and your program take up a certain amount of
memory, memory that is therefore not available to other programs like Turbo Pascal.
Very large programs like Ventura Publisher or Paradox may not execute at all if you try
to execute them from "beneath" JED, not because you've done anything wrong but only
because such large programs barely run at all even in 640K of RAM, and need the
memory JED is taking up.
By actual examination using the CHKDSK utility, I've found that JED and its
workspace take up about 180K of RAM. That's a lot of RAM, and you have to take its
loss into account when you try to do things with JED waiting in memory.
Getting back into JED is easy. Just type the command EXIT at the DOS command
prompt. JED will instantly take you back with open arms, and you can continue work as
though you had never taken a DOS break at all.
One interesting thing to do: create and run a .EXE file by pressing F10, then duck out to
DOS by pressing F5, and delete the .EXE file. Return to JED, and press F10 again. Even
though you made no additional changes to the source code file, JED will search for the
.EXE file before attempting to run it. Since no .EXE file exists, JED has no choice but
to remake it.

4.4 JED's Editor in Detail

As JED's beating heart, the text editor deserves a little space all to itself. JED's editor is
the Borland Binary Editor, essentially the same editor as used in the Turbo languages and
Sidekick. Borland disengaged the editor module from its other products and made it
available in linkable form (essentially one of those .OBJ files I described a while back)
and placed it in the Turbo Pascal Editor Toolbox. If you own the Turbo Pascal Editor
Toolbox, you can read up on the Binary Editor's many commands in the Editor Toolbox
documentation. I'll describe them all briefly in this section.

Loading Files into the Editor

When you invoke JED and it begins running, it loads either the file you named on the

file:///E|/TEMP/Chapter%204%20Learning%20and%20Using%20Jed.htm (19 of 33) [9/30/02 08:30:48 PM]

file:///E|/TEMP/Chapter%204%20Learning%20and%20Using%20Jed.htm

command line or the last file it worked on, as recorded in JED.CFG. The file is loaded
into an area of memory called the editor workspace. The editor workspace is limited to
64K in size, and any file to be loaded must fit into memory in its entirety. If the file is too
large to fit in available memory, you will see this message:
Insufficient text buffer size

JED will then have no choice but to throw up its hands and return to DOS. You'll have to
cut the monster file up into smaller files (which is a good idea anyway) and invoke JED
again on only a portion of the oversized file.
Also keep in mind that individual lines within an edit file are limited to 248 characters.
Loading a file with longer lines will cause the editor to insert hyphens at the 248-
character point.

Moving the Cursor

Apart from the keypad keys and F7 and F8 function keys (used for marking text blocks,
as I'll explain below) all editor commands are control keystrokes. That is, you must hold
the Ctrl key down while pressing another key or two keys. All of the keys that control
cursor movement are grouped together for you in a cluster toward the left hand side of
the keyboard:
 W E R
A S D F
 Z X C
This arrangement of cursor control keys will be familiar to anyone who has worked with
the WordStar word processor.

One Character at a Time

Moving the cursor one character at a time can be done in all four directions: pressing
Ctrl+E or Up Arrow moves the cursor Up one character; pressing Ctrl+X or Down
Arrow moves the cursor Down one character; pressing Ctrl+S or Left Arrow moves the
cursor Left one character; and pressing Ctrl+D or Right Arrow moves the cursor Right
one character.
The position of these four keys (E, X, S, and D) provide a hint as to which way they
move the cursor. Look at how they are arranged on the keyboard:
 E

file:///E|/TEMP/Chapter%204%20Learning%20and%20Using%20Jed.htm (20 of 33) [9/30/02 08:30:48 PM]

file:///E|/TEMP/Chapter%204%20Learning%20and%20Using%20Jed.htm

S D
 X
Until the directions become automatic to your fingers (as they will, if you do enough
editing!) thinking of the magic diamond will remind you which way the cursor will move
for which keypress.
When you move the cursor to the bottom of the screen and press Ctrl+X one more time,
the screen will scroll. All the lines on the screen will jump up by one, and the top line
will disappear. As long as the cursor is on the bottom line of the screen and you continue
to press Ctrl+X, the screen will scroll upward. If use Ctrl+E to move the cursor back in
the opposite direction (upward) until it hits the top of the screen, continually pressing
Ctrl+E will scroll the screen downward one line per Ctrl+E.

One Word at a Time

JED will also move the cursor left or right one word at a time: pressing Ctrl+A or
Ctrl+Left Arrow moves the cursor Left one word; while pressing Ctrl+F or Ctrl+Right
Arrow moves the cursor Right one word.
More hints are given here, since the A key is on the left side of the magic diamond, and
the F key is on the right side of the magic diamond.

One Screen at a Time

It is also possible to move the cursor upward or downward through the file one entire
screen at a time. "Upward" in this sense means toward the beginning of the file;
"downward" means toward the end of the file: pressing Ctrl+R or PgUp moves the cursor
Up one screen; while pressing Ctrl+C or PgDn moves the cursor down one screen.
A screen is the height of your CRT display (25, 43, or 50 lines, depending on what
display adapter is installed and what font is currently loaded) minus two lines for the
editor status line at the top of the screen and the prompt bar at the bottom of the screen.

Moving the Cursor by Scrolling the Screen

I have described how the screen will scroll when you use the one-character-at-a-time
commands to move upward (Ctrl+E) from the top line of the screen or downward
(Ctrl+X) from the bottom line of the screen. You can scroll the screen upward or
downward no matter where the cursor happens to be by using the scrolling commands:

file:///E|/TEMP/Chapter%204%20Learning%20and%20Using%20Jed.htm (21 of 33) [9/30/02 08:30:48 PM]

file:///E|/TEMP/Chapter%204%20Learning%20and%20Using%20Jed.htm

pressing Ctrl+W scrolls the screen Down one line; while pressing Ctrl+Z scrolls the
screen Up one line.
When you scroll the screen with these commands, the cursor "rides" with the screen as it
scrolls upward or downward, until the cursor hits the top or bottom of the screen. Then
further scrolling will make the screen slip past the cursor. The cursor will always remain
visible.
These are all of the cursor control commands that can be accomplished in one Ctrl
keystroke. There are a few more that are accomplished by holding theCtrl key down and
pressing two keys in succession. You must hold the Ctrl key down through both
keypresses!

Moving to the End of a Line

No matter where your cursor is on the screen, it is always within a line, even if that line
happens to be empty of characters. The editor provides two commands to move the
cursor either to the beginning (left end) of the line (screen column 1) or to the end of the
line, (the position following the last visible character on the line): pressing Ctrl+Q/S or
Home sends the cursor to the Beginning of the line; while pressing Ctrl+Q/D or End
sends the cursor to the End of the line.

Moving to the End of a File

The last set of cursor control commands I'll describe takes the cursor to the beginning of
the file or to the end of the file. If the file you are editing is more than a few screens long,
the following commands can save you a great deal of pounding on the keyboard:
pressing Ctrl+Q/R or Ctrl+PgUp sends the cursor to the Beginning of the file; while
pressing Ctrl+Q/C or Ctrl+PgDn sends the cursor to the End of the file.
Because all of the current file is in memory all of the time, moving between the ends of
the file can be done very quickly.

The Status Line

At the very top of JED's Edit screen is the status line, which provides you with some
important information while you are editing. A typical instance of the status line looks
like this:
Line 1 Col 1 Insert Indent C:EAT2.ASM 09:04:45

file:///E|/TEMP/Chapter%204%20Learning%20and%20Using%20Jed.htm (22 of 33) [9/30/02 08:30:48 PM]

file:///E|/TEMP/Chapter%204%20Learning%20and%20Using%20Jed.htm

While you were moving the cursor around, the line and column numbers were
continually changing to reflect where the cursor was in the file. The column number
reflects the position of the cursor within its line; the line number indicates which line in
the file contains the cursor, counting from the beginning of the file, not from the top of
the screen. At the other end of the status line is the name of the current file.
Insert and Indent, described earlier in this chapter, are the names of two toggles. A toggle
is a condition that exists in one of two different states. A toggle is like a switch
controlling the lights in a room; the switch is either on or off.
Insert determines how newly typed characters are added to your work file. When Insert is
on (that is, when the word Insert appears in the status line) characters you type are
inserted into the file. The characters appear over the cursor and immediately push the
cursor and the rest of the line to the left to make room for themselves. The line becomes
one character longer for each character that you type. If you press Enter, the cursor
moves down one line carrying with it the part of the line lying to its right.
When Insert is off (i.e., if the word Insert is not displayed in the status line) characters
you type will overwrite characters that already exist in the file. No new characters are
added to the file unless you move the cursor to the end of the line or the end of the file
and keep typing. If you press Enter, the cursor will move down to the first character of
the next line down, but nothing else will change. A line will only be added to the file if
you press Enter with the cursor on the last line of the file.
Turning Insert on and off is done by pressing Ctrl+V.

Indent is also a toggle, which indicates whether JED's auto-indent feature is on or off.
When Indent is on, the cursor will automatically move beneath the first visible character
on a new line when you press Enter. In other words (assuming that Indent is on), given
this little bit of text on your screen
Adjust:
MOV AX, [BP] + 6
SUB AX, Increment_ <-Before pressing Enter
_
^
I After pressing Enter

the cursor is at the end of the last line of text. When you press Enter, the cursor will
move down one line, but it will also space over automatically until it is beneath the "S" in
"SUB". This allows you to begin typing the next line of code without having to space the

file:///E|/TEMP/Chapter%204%20Learning%20and%20Using%20Jed.htm (23 of 33) [9/30/02 08:30:48 PM]

file:///E|/TEMP/Chapter%204%20Learning%20and%20Using%20Jed.htm

cursor over so that it is beneath the start of the previous line.
Like Insert, Indent can be toggled on and off; however, it takes a double control
keystroke to do it: press Ctrl+Q/I to toggle Indent on and off. Indent is on when the word
Indent appears in the status line.

Tab Mode

The status line also displays the current tab mode. Tabbing is the automatic spacing to
the right when the Tab key is pressed. On the PC's keyboard, there is no key labeled
"Tab"; instead, the key is imprinted with two arrows pointing in opposite directions, with
a vertical bar at the head of each arrow:
Some clone keyboards do label the Tab key. The Tab key is usually positioned directly
over the Ctrl key. There are two kinds of tabs in JED's editor. The default tabs are not
tabs as most people knew them prior to the onset of Borland's Turbo Pascal. These
smart" tabs move the cursor to the position beneath the start of the next word on the
previous line. That is, using the following line as our example, if the cursor was
positioned beneath this line, the caret marks show where the cursor would pause at each
successive press of the Tab key:

Think of it as evolution in action...
 ^ ^ ^ ^ ^ ^
This tabbing is done by inserting spaces, not by inserting the ASCII Tab (Ctrl+I)
character.
Smart tabs, as described above, are the default tab mode in the editor. Pressing Ctrl+O/T
toggles to the opposite tab mode, which supports true, eight-character fixed tabs that
insert Ctrl+I characters at each press of the Tab key. If fixed tabs are in effect, the word
Tab will be shown on the status line between the word Indent and the filename:
Line 1 Col 1 Insert Indent Tab C:EAT2.ASM 09:45:07

In summary on tab mode, pressing Ctrl+O/T toggles between smart tabs and fixed tabs.

Inserts and Deletes

We've already seen how to insert characters into a text file: you make sure Insert is on,
then type away. Each typed character will be inserted into the file at the cursor position.
It is also possible to insert entire blank lines. One way, of course, is to move the cursor to
the beginning of a line and press Enter. (Remember, Insert must be on.) A new blank line

file:///E|/TEMP/Chapter%204%20Learning%20and%20Using%20Jed.htm (24 of 33) [9/30/02 08:30:48 PM]

file:///E|/TEMP/Chapter%204%20Learning%20and%20Using%20Jed.htm

will be inserted above the line with the cursor, and the rest of the file will be pushed
downward. The cursor will ride down with the text pushed downward.
Another way to insert a line independent of the insert mode is to move the cursor to the
beginning of a line and press Ctrl+N. A new line will appear, pushing the rest of the file
downward, but the cursor will not move down with the other text. That is, pressing
Ctrl+N inserts a new line at the cursor position.
There are also a number of different ways to delete text as well. The simplest is to use the
Del (Delete) key. Pressing Ctrl+G performs exactly the same delete function: pressing
Del deletes one Character to the Right of the cursor, and pressing Ctrl+G deletes one
Character to the Right of the cursor.
The cursor does not move. It "swallows" the character to its right, and the rest of the line
to its right moves over to fill in the position left by the deleted character.
The Backspace key is used to delete characters to the left of the cursor; with this method
the cursor rides to the left on each deletion.
You can think of backspace as "eating" one character to the left as it moves the cursor
leftward.
You can also (to save a few keystrokes) delete one word to the right of the cursor by
pressing Ctrl+T.
When you press Ctrl+T, all characters from the cursor position rightward to the end of
the current word will be deleted. If the cursor happens to be on a space (or group of
spaces) between words, that space (or spaces) will be deleted up to the beginning of the
next word.
You can also delete from the cursor position to the end of the current line by pressing
Ctrl+Q/Y.
And finally, you can delete the entire line with a single control keystroke by pressing
Ctrl+Y.
The line beneath the cursor moves up to take the place of the deleted line, pulling up the
rest of the file behind it.
A warning here for those of you with thick fingers: the T and Y characters are right next
to one another on the keyboard. In a late night frenzy at the keyboard you may find
yourself reaching for Ctrl+T to delete a word and hit Ctrl+Y instead, losing the entire
line irretrievably. I've done this often enough that I simply broke myself of the habit of
using Ctrl+T at all.

Undoing Changes to a Line

file:///E|/TEMP/Chapter%204%20Learning%20and%20Using%20Jed.htm (25 of 33) [9/30/02 08:30:49 PM]

file:///E|/TEMP/Chapter%204%20Learning%20and%20Using%20Jed.htm

JED's editor keeps a "backup" copy of each line while you're working on it, and retains
that copy as long as the cursor remains within the line. Therefore, if you delete a word or
some other portion of the line, or add something to a line by mistake, you can undo those
changes to the line as long as you haven't yet left the line. Once you leave the line, even
momentarily, the editor throws away the backup copy, and "undoing" is no longer
possible. You can restore a line to its previous condition by pressing Ctrl+Q/L.
One drawback is that the undo feature will not restore a line deleted entirely with the
Ctrl+Y command. Once a line is deleted, the cursor (by necessity) leaves the line, and so
the editor does not retain the backup copy of the line. Be careful how you use Ctrl+Y!

Markers and Blocks

JED's editor supports two different kinds of markers; that is, positions in the file that
have a name or number and can be moved around as needed by the programmer. These
are place markers and block markers.

Place Markers

There is no such thing as a page number in an editor file. You can move the cursor to the
beginning or end of the file with a single command, but to move to a specific place in the
file is harder. The best way is to remember a distinctive title, procedure name, or
something like that and search for it. (See below.) You might also make use the editor's
place marker feature.
The editor supports four place markers, numbered 0 through 3. These can be placed at
any position in a text file with a single command: pressing Ctrl+K<n> sets marker <n>
within a file, when <n> is 0,1,2, or 3.
For example, to set marker 2, you would press Ctrl+K2.
Once a place marker has been set, you can move the cursor to it with a single command:
pressing Ctrl+Q<n> moves the cursor to marker <n>.
For example, to move to marker 2 you would press Ctrl+Q2. If you have two or three
"construction zones" within a largish source file, you might drop one of the place
markers at the start of each zone, so you can shuttle between the zones with a single
command.
The markers are invisible, and if you forget where they are, about all you can do is move
the cursor to them with the Ctrl+Q<n> command.

file:///E|/TEMP/Chapter%204%20Learning%20and%20Using%20Jed.htm (26 of 33) [9/30/02 08:30:49 PM]

file:///E|/TEMP/Chapter%204%20Learning%20and%20Using%20Jed.htm

Block Markers

Block markers are used to specify the beginning and end of text blocks. There are only
two of these markers, B and K, and in consequence only one block may be marked
within a file at any given time.
The block markers are invisible and do not appear on your screen in any way. If both are
present in a file, however, all the text between them (the currently marked block) is
shown as highlighted text.
Placing each block marker is a two-character control keystroke: pressing Ctrl+K/B places
the B marker; the shortcut is F7. Pressing Ctrl+K/K places the K marker; the shortcut is
F8.
Note the two function key shortcuts, which are extremely convenient and fast.
A marker is placed at the cursor position and remains there until you move it elsewhere.
You cannot delete or remove a marker once placed, although you can "hide" the block of
text that lies between the markers, which effectively gets the markers out of the picture.
(See below for more on hiding marked blocks.)

Moving the Cursor to a Block Marker

There are also commands to move the cursor to the block markers: pressing Ctrl+Q/B
moves the cursor to the B marker; while pressing Ctrl+Q/K moves the cursor to the K
marker.

Hiding and Unhiding Blocks of Text

The major use of markers, however, is to define a block of text. There are a number of
commands available in JED's editor that manipulate the text that lies between the B and
K markers.
You probably noticed while experimenting with setting markers that as soon as you
positioned both the B and K markers in a file, the text between them became highlighted.
The highlighted text is a marked text block. As we mentioned before, there is no way to
remove a marker completely from a file once it has been set. You can, however, suppress
the highlighting of text between the two markers. This is called hiding a block: pressing
Ctrl+K/H will hide a block of text.
Remember that the markers are still there. Ctrl+K/H is a toggle. You invoke it once to
hide a block, and you can invoke it a second time to unhide the block and bring out the

file:///E|/TEMP/Chapter%204%20Learning%20and%20Using%20Jed.htm (27 of 33) [9/30/02 08:30:49 PM]

file:///E|/TEMP/Chapter%204%20Learning%20and%20Using%20Jed.htm

highlighting again on the text between the two blocks.
Something else to keep in mind: the other block commands we'll be looking at below
work only on highlighted blocks. Once a block is hidden, it is hidden from the block
commands as well as from your eyes.

Marking a Word as a Block

Ordinarily, to mark a word as a block, you'd have to move the cursor to the beginning of
the word, press F7, then move to the end of the word and press F8. The editor, however,
includes a short form of this command sequence: move the cursor to any position within
a word and press Ctrl+K/T.

Block Commands

The simplest block command to understand is delete block. Getting rid of big chunks of
text that are no longer needed is easy: mark the text as a block using the B and K
markers, then press Ctrl+K/Y.
The markers themselves are not deleted with the block of text. They close up and occupy
the same single cursor position, but they are still there, and you can move the cursor to
them with the Ctrl+Q/B or Ctrl+Q/K commands.
Copy block is useful when you have some standard text construction (a standard
boilerplate comment header for procedures, perhaps) that you need to use several times
within the same text file. Rather than retyping the block each time, you type it once,
mark it as a block, and then place a copy of the original into each position where you
need it. Simply position the cursor where the first character of the copied text must go,
then press Ctrl+K/C.
Moving a block of text is similar to copying a block of text. The difference, of course, is
that the original block of text that you marked vanishes from its original position and
reappears at the cursor position. To move a block of text you must first mark the text,
then position the cursor where you wish the marked text to go, and then press Ctrl+K/C.
The last two block commands allow you to write a block of text to disk, or to read (place
a copy of) a text file from disk into the current file. To write a block to disk, you begin
by marking the block you want saved as a separate text file, then you press Ctrl+K/W.
The editor needs to know the name of the disk file into which you want to write the
marked block of text. It prompts you for the filename with a dialog box entitled "Write
Block To File." You must type the name of the file, with full path if you intend the block

file:///E|/TEMP/Chapter%204%20Learning%20and%20Using%20Jed.htm (28 of 33) [9/30/02 08:30:49 PM]

file:///E|/TEMP/Chapter%204%20Learning%20and%20Using%20Jed.htm

to be written outside of the current directory, and then press Enter. The block is written
to disk and remains highlighted in the editor. Note that the cursor does not move.
Reading a text file from disk into your work file is also easy. You position the cursor
where the first character of the text from the file should go, and then press Ctrl+K/R.
Just as with the write block command, the editor will prompt you for the name of the file
you want to read from disk with a dialog box entitled "Read Block From File."
There is one small "gotcha" that you must be aware of in connection with filenames. If
you enter a filename without a period or file extension (that is, a filename like FOO
rather than FOO.ASM) JED's editor will first look for a file named FOO. If it does not
find one, it will then look for a file named FOO.ASM. If it still cannot find the file, it
will issue this error message within an alarming red (if you have a color monitor) box:
Unable to open FOO.ASM. Press <ESC>

Pressing Esc cancels the command entirely. To enter the name correctly you will need to
issue the Ctrl+K/R command again.
When JED finds the text file, it will insert the file as a marked block into your work file
at the cursor position. You will have to issue the hide block command to remove the
highlighting. Remember also that reading a block of text from disk will effectively move
your two block markers from elsewhere in your file and place them around the text that
was read in.
The editor is not especially picky about the type of files you read from disk. Text files
need not have been generated by JED's editor. In fact, files need not be text files at all,
but remember, reading raw binary data into a text file can cause the file to appear
foreshortened—the first binary 26 (Ctrl+Z) encountered in a text file is assumed to signal
the end of the file. Data after that first Ctrl+Z may or may not be accessible.
Furthermore, the editor will attempt to display the binary characters as is, and loading
(for example) an .EXE file will fill the screen with some pretty lively garbage.

Finding and Replacing

Much of the power of electronic text editing lies in the ability to search for a particular
character pattern in a text file. Furthermore, once found, it is a logical extension of the
search concept to replace the found text string with a different text string. For example, if
you decide to change the name of a variable to something else to avoid conflict with
another identifier in a program, you might wish to have the text editor locate every
instance of the old variable name in a program and replace each one with the new

file:///E|/TEMP/Chapter%204%20Learning%20and%20Using%20Jed.htm (29 of 33) [9/30/02 08:30:49 PM]

file:///E|/TEMP/Chapter%204%20Learning%20and%20Using%20Jed.htm

variable name.
JED's editor can perform both Find and Find/Replace operations with great ease. Being
able to locate a given text string in a program is often better than having page numbers
(which JED's editor does not) in a file. If you wish to work on the part of a program that
contains a particular procedure, all you need do is search for that procedure's name by
pressing Ctrl+Q/F and JED will move the cursor right to the spot you want.
When you issue the Find command, the editor prompts you with a single word:

Find:
You must then type the text string you want found, and then press Enter. The editor then
prompts you for command options:

Options:
There are several command options that you can use with both the Find and
Find/Replace commands. These options are single letters (or numbers) that can be
grouped together in any order without spaces in between:

Options: BWU
We'll be discussing each option in detail shortly. When you press Enter after keying in
the options (if any) the editor executes the command. For the Find command, the cursor
will move to the first character of the found text string. If the editor cannot find any
instance of the requested text string in the work file, it displays this message:
Search string not found. Press <ESC>

You must then press Esc to continue editing.

Find/Replace

The Find/Replace command goes that extra step for you. Once the search text is found, it
will replace the search text with a replacement text. The options mean everything here:
you can replace only the first instance of the search text; you can replace all instances of
the search text; and you can have the editor ask permission before replacing, or simply
go ahead and do the deed to as many instances of the search text as it finds. (This last
operation is especially beloved of programmers, who call it a "search and destroy".)
As with Find, the editor prompts for the search text and options. It must also (for
Find/Replace) prompt for the replacement string:
Replace with:

file:///E|/TEMP/Chapter%204%20Learning%20and%20Using%20Jed.htm (30 of 33) [9/30/02 08:30:49 PM]

file:///E|/TEMP/Chapter%204%20Learning%20and%20Using%20Jed.htm

If you have not specified any options, the editor will locate the first instance of the search
string, place the cursor beneath it, and give you the permission prompt:
Replace (Y/N):
If you type a Y here (no Enter required) the editor will perform the replacement. If you
type an N, nothing will change.

Find/Replace Options

The editor's find/replace options allow you to "fine-tune" a Find or Find/ Replace
command to cater to specific needs. For example, without any options the Find command
is case sensitive. In other words, "FOO", "foo", and "Foo" are three distinct text strings,
and searching for "FOO" will not discover instances of "foo." With the U option in
force, however, "FOO", "foo", and "Foo" are considered identical and searching for any
of the three forms will turn up instances of any of the three that are present. There are
several such options to choose from within the editor. In general they are the same
Find/Replace options used by WordStar:
• B is the Search Backwards option. Ordinarily, a search will proceed from the cursor
position toward the end of the file. If the object of the search is closer to the beginning of
the file than the cursor, the search will not find it. With the B option in force, the search
proceeds backwards through the file, toward the beginning.
• G is the Global Search option. As mentioned above, searches normally begin at the
cursor position and proceed toward one end of the file or the other, depending on
whether or not the B option is in force. With the G option in force, searches begin at the
beginning of the file and proceed to the end, ignoring the cursor position. The G option
overrides the B option.
• N is the Replace Without Asking option. Without this option, the editor (during a
Find/Replace) will prompt you for a yes/no response each time it locates an instance of
the search text. With N in force, it simply does the replacement. Combining the G and N
options means that the editor will search the entire file and replace every instance of the
search text with the replacement text, without asking. Make sure you set it up right, or
you can cause wholesale damage to your work file. In general, don't use G and N
together without W. (See below for details on the W option.)
• U is the Ignore Case option. Without this option, searches are case sensitive. "FOO"
and "foo" are considered distinct and searching for one will not find the other. With the
U option in force, corresponding upper- and lowercase characters are considered
identical. "FOO" and "foo" will both be found on a search for either.

file:///E|/TEMP/Chapter%204%20Learning%20and%20Using%20Jed.htm (31 of 33) [9/30/02 08:30:49 PM]

file:///E|/TEMP/Chapter%204%20Learning%20and%20Using%20Jed.htm

• W is the Whole Words option. Without this option, the search text will be found even
when it is embedded in a larger word. For example, searching for "LOCK" will find both
"BLOCK" and "CLOCK." With W in force, the search text must be bounded by spaces to
be found. This option is especially important for global Find/Replace commands, when
(if you omit W) replacing all instances of "LOCK" with "SECURE" will change all
instances of "BLOCK" to "BSECURE" and all instances of "CLOCK" to "CSECURE."
You may also give a number as one of the options. For the Find command, this tells the
editor to find the nth instance of the search text. For Find/Replace, a number tells the
editor to find and replace text n times.

Find or Find/Replace Again

The editor remembers the last Find or Find/Replace command—search text, replacement
text, options, and all. You can execute that last Find or Find/Replace command again
simply by issuing the Find or Find/Replace again command: pressing Ctrl+L will
perform the last Find or Find/Replace command again.
Ctrl+L can save you some considerable keystroking. Suppose, for example, you wanted
to examine the header line of every procedure in a large (perhaps 1000 line) program
with thirty or forty procedures. The way to do it is to search for the string "PROC" with
the G, U, and W options in force. The first time you execute this command, the editor
will find the first procedure in your program file. To find the next one, simply press
Ctrl+L. You need not reenter the search text or the options. Each time you press Ctrl+L,
the editor will find the next instance of the reserved word "PROC" until it runs out of
file, or until you issue a new and different Find or Find/Replace command.

Saving Your Work

It is very important to keep in mind what is happening while you edit text files with the
editor. You are editing entirely within memory. Nothing goes out to disk while you are
actually doing the edit. You can work on a file for hours, and one power failure will
throw it all away. You must develop the discipline of saving your work every so often.
The easiest way to execute a Save command from within the editor is with the Save
shortcut, F2. The "longcut" to saving the file from within the editor is Ctrl+K/S, (useful
if you have WordStar burned into your synapses) but F2 is easier to type and remember.

Exiting the Editor

file:///E|/TEMP/Chapter%204%20Learning%20and%20Using%20Jed.htm (32 of 33) [9/30/02 08:30:49 PM]

file:///E|/TEMP/Chapter%204%20Learning%20and%20Using%20Jed.htm

There is more than one way to get out of JED once you're finished with the job at hand.
You can get out with any of these commands:
Ctrl+K/D saves the current file and exits to DOS. Ctrl+K/Q ends the edit without saving
and exits to DOS. Alt+X saves the current file if necessary and exits to DOS.
The differences between them are subtle. Ctrl+K/D always saves the current file and
exits to DOS, whether the file has been modified or not. If the current file is very large,
this can mean a delay of several seconds while the file is written out to disk (especially if
you're working from diskettes).
Ctrl+K/Q, on the other hand, may be used to exit from JED without saving the current
file, even if the current file has been modified since it was last saved. JED, always the
one for safety, will ask you if you want to abandon the changes you've made. You can
answer only Y or N; Y will indeed exit to DOS without saving the current file. N, on the
other hand, indicates a change of heart on your part and JED will save the current file to
disk before exiting.
Finally, Alt+X is the smart way out. If you made changes to the current file since the last
time it was saved to disk, JED will save the file to disk. If no changes were made, JED
will not waste your time with an unnecessary save, but will drop you out to DOS
immediately.
No matter how you exit to DOS, JED considerately restores the DOS screen that existed
just before you invoked it.
One important use of Ctrl+K/Q is to "undo" a disastrous search-and-destroy operation
that went bad using Ctrl+Q/A. If you've changed every one of 677 instances of MOV to
MUV by accident, and haven't yet saved the damaged file to disk using F2, your only
course of action is to exit to DOS without saving the damaged file to disk. That done,
you can invoke JED again and load the last, undamaged version of the current file.
So be careful, huh?

file:///E|/TEMP/Chapter%204%20Learning%20and%20Using%20Jed.htm (33 of 33) [9/30/02 08:30:49 PM]

file:///E|/TEMP/Chapter%205%20new.htm

An Uneasy Alliance
The 8086/8088 CPU and Its Segmented
Memory System
5.1 Through a Glass, with Blinders >• 132
5.2 "They're Diggin' It up in Choonks!" >• 135
5.3 Registers and Memory Addresses >• 141

As comedian Bill Cosby once said, "I told you that story so I could tell you this one...."
We're pretty close to half finished with this book, and I haven't eve begun describing the
principal element in PC assembly language: The 8086/ 8088 CPU. Most books on
assembly language, even those targeted at beginners assume that the CPU is as good a
place as any to start their story, without considering the mass of groundwork without
which most beginning programmers get totally lost and give up.
That's why I began at the real beginning, taking half a book to get to where the other
guys start.
Keep in mind that this book was created to supply that essential groundwork. It is not a
complete course in PC assembly language. Once you run off the end of this book, you'll
have one leg up on any of the multitude of "beginner" books on assembly language from
other publishers.
And it's high time we got right to the heart of things, and met the foreman of the PC
himself.

5.1 Through a Glass, with Blinders
But having worked my way up to the good stuff, I find myself faced with a tricky

file:///E|/TEMP/Chapter%205%20new.htm (1 of 23) [9/30/02 08:31:40 PM]

file:///E|/TEMP/Chapter%205%20new.htm

conundrum. Programming involves two major components of the PC: the CPU and
memory. Most books begin by choosing one or the other and describing it. My own
opinion is that you can't really describe memory and memory addressing without
describing the CPU, and you can't really describe the CPU without going into memory
and memory addressing. So let's do both at once.

The Nature of a Megabyte
The 8086 and 8088 CPUs are identical in most respects, which is why we often refer to
them and their cousins as the "86 family." The 8088 is used in IBM's original PC and XT
and their ubiquitous clones. The 8086 is used in two of IBM's newer machines, the PS/2
models 25 and 30. Both machines can contain and use up to a megabyte of directly
addressable memory. This memory is also called real memory or DOS memory. There is
another kind of memory that you may have heard of, called expanded memory, that
follows the Lotus-Intel-Microsoft (LIM) expanded memory specification (EMS). We're
not speaking of expanded memory at all in this book; I consider it an advanced topic.
As I discussed briefly in Chapter 2, a megabyte of memory is actually not 1,000,000
bytes of memory, but 1,048,576 bytes. It doesn't come out even in our base 10 because
computers insist on base 2. 1,048,576 bytes expressed in base 2 is
100000000000000000000B bytes. (We don't use commas in base 2—that's yet another
way to differentiate binary notation from decimal, apart from the suffixed "B".) That's
220, a fact that we'll return to shortly. The number100000000000000000000B is so bulky
that it's better to express it in the compatible (and much more compact) base 16, which
we call hexadecimal. 220 is equivalent to 165, and may be written in hexadecimal as
100000H. (If the notion of number bases still confounds you, I'd recommend another trip
through Chapter 1, if you haven't been through it already. Or, perhaps, even if you have.)
Now, here's a tricky and absolutely critical question: in a memory bank containing
100000H bytes, what's the address of the very last byte in the bank? The answer is not
100000H. The clue is the flipside to that question: what's the address of the first byte in
the memory bank? That answer, you might recall, is 0. Computers always begin counting
from 0. It's a dichotomy that will occur again and again in computer programming. The
last in a row of four items is item 3, because the first item in a row of four is item 0.
Count: 0,1,2,3.
The address of a byte in a memory bank is just the number of that byte starting from
zero. This means that the last, or highest address in a memory bank containing one
megabyte is 100000H minus one, or 0FFFFFH. (The initial zero, while not
mathematically necessary, is there for the convenience of your assembler. Get in the

file:///E|/TEMP/Chapter%205%20new.htm (2 of 23) [9/30/02 08:31:40 PM]

file:///E|/TEMP/Chapter%205%20new.htm

habit of using an initial zero on any hex number beginning with the hex digits A through
F.)
The addresses in a megabyte of memory, then, run from 00000H to 0FFFFFH. In binary
notation, that is equivalent to the range of 000000000000000000000B to
11111111111111111111B. That's a lot of bits—20, to be exact. If you'll look back to
Figure 2.3 in Chapter 2, you'll see that a megabyte memory bank has 20 address lines.
One of those 20 bits is routed to each of those 20 address lines, so that any address
expressed as 20 bits will identify one and only one of the 1,048,576 bytes contained in
the memory bank.
That's what a megabyte of memory is: some arrangement of memory chips within the
computer, connected by an address bus of 20 lines. A 20-bit address is fed to those 20
address lines to identify one byte out of the megabyte.

16-Bit Blinders

The 8088 and 8086 can "see" a full megabyte. That is, the CPU chips have 20 address
pins, and can pass a full 20-bit address to the memory system. From that perspective, it
seems pretty simple and straightforward. However...the bulk of all the trouble you're ever
likely to have in understanding the 86-family CPUs stems from this fact: although the
CPUs can see a full megabyte of memory, they are constrained to look at that megabyte
through 16-bit blinders.
You may call this peculiar. (Later on, you'll probably call it much worse.) But you must
understand it, and understand it thoroughly.
The blinders metaphor is closer to literal than you might think. Look at Figure 5.1. The
long rectangle represents the megabyte of memory that the 8088 can address. The CPU is
off to the right. In the middle is a piece of metaphorical cardboard with a slot cut in it.
The slot is one byte wide and 65,536 bytes long. The CPU can slide that piece of
cardboard up and down the full length of its memory system. However, at any one time,
it can only access 65,536 bytes.
The CPU's view of memory is peculiar. It is constrained to look at memory in chunks,
where no chunk can be larger than 65,536 bytes in length.
The number 64K is important, just as 1Mb is. (We call 65,536 64K for the same reason
that we call 1,048,576 "1Mb"—it's just shorthand for what is actually a binary number
that "comes out even.") In fact, 64K is more important in assembly language
programming than 1Mb; This is the number that circumscribes almost everything that an
assembly-language programmer needs to do with the 86-family CPUs. It is, for one

file:///E|/TEMP/Chapter%205%20new.htm (3 of 23) [9/30/02 08:31:40 PM]

file:///E|/TEMP/Chapter%205%20new.htm

thing, the largest single number that the CPU can actually count and remember as an
integral whole. You'll encounter it again and again and again.
Remember: 65,536 in binary is 10000000000000000B; in hex it's 10000H. The important
characteristic of 64K is that the number can be expressed in 16 bits. As a multiple of one
byte, 16 bits carries with it some of the magic quality of the byte as data atom in our
computer universe. The 8088 and 8086 are often called 16-bit computers, because they
typically and most efficiently process 16 bits at once crunch. As we begin to discuss
CPU registers, you'll come to fully understand just why the magical number 65,536 is as
important and all-pervasive as it is.

file:///E|/TEMP/Chapter%205%20new.htm (4 of 23) [9/30/02 08:31:40 PM]

file:///E|/TEMP/Chapter%205%20new.htm

5.2 "They're Diggin' It up in Choonks!"

That's what Ray Walston shouted jubilantly in the marvelous film version of Paint Your
Wagon. He was referring to gold being mined somewhere else (of course), but the
metaphor to 86-family memory manipulation is apt. As we pointed out in the last section,
the 8088 and its brothers only dig memory in chunks—that's how they're made.
Furthermore, it may not be as bad an idea as most programmers think.
To cement my point, let's talk about another type of nugget: native copper. The better
part of a mile under the Mesabe range in upper Michigan is an enormous nugget of
native copper the size of a freight locomotive. It may even be larger; the mining
company that discovered it isn't entirely sure how large it is. This super nugget was
discovered before World War II and is still down there at the end of a long tunnel,
basically forgotten.
Why leave a fortune in copper sitting where it was found, you ask? OK, wise guy—how
do you get it out? Pure copper is a notoriously intractable metal. While not horribly hard,
it is tough in ways that make cutting tools become dull and cause them to get stuck in
their holes. The truth is that cutting the giant nugget up into manageable pieces would
literally cost more than the copper would be worth at today's prices. Hauling out easily-
crushed copper ore in fist-sized chunks is enormously easier on men and equipment so
supernugget remains in its hole, a curiosity and nothing more.
The lesson here is twofold: first of all, just as most mining companies do not encounter
locomotive-sized nuggets every day (or even every century) most jobs a computer has to
do not involve enormous quantities of memory at one time. Second, even on computers
that don't have a set of 64K blinders playing with a megabyte all at once is hard work,
and costly in machine performance.

file:///E|/TEMP/Chapter%205%20new.htm (5 of 23) [9/30/02 08:31:40 PM]

file:///E|/TEMP/Chapter%205%20new.htm

It may be that the 86-family's blinders enable it to work more quickly and efficiently
within its megabyte of memory. Whether true or not, this notion of seeing memory as a
number of chunks, called segments, is key to understanding the 86-family CPUs as well.

The Nature of Segments

In 86-parlance, a segment is a region of memory that begins on a paragraph boundary
and extends for some number of bytes less than or equal to 64K (65,536). We've spoken
of the number 64K before. But paragraphs?
Time out for a lesson in 86-family trivia. A paragraph is a measure of memory equal to
16 bytes. It is one of numerous technical terms used to describe various quantities of
memory. We've spoken of some of them before, and all of them are even multiples of
one byte. Bytes are data atoms, remember; loose memory bits never exist in the absence
of a byte of memory to contain them. Table 5.1 lists the terms you should be aware of.
Table 5.1 lists two names for each term. One is the technical term that you and I and all
the rest of the humans use in speaking. However, the assembler has its own names for
these terms, which you will have to use when writing assembly-language programs.
Some of these terms, like ten byte, occur very rarely, and others, like page, occur almost
never. The term paragraph is almost never used, except in connection with the places
where segments may begin.

Table 5. 1 . Collective terms for memory
NAME SIZE
Technical Assembler Decimal Hex
Byte BYTE 1 01H
Word WORD 2 02H
Double word DWORD 4 04H
Quad word QWORD 8 08H
Ten byte TBYTE 10 OAH
Paragraph PARA 16 10H
Page PAGE 256 100H
Segment SEGMENT 65,536 10000H

Any memory address evenly divisible by 16 is called a paragraph boundary. The first
paragraph boundary is address 0. The second is address 10H; the third address 20H, and
so on. (Remember that 10H is equal to decimal 16.) Any paragraph boundary may be
considered the start of a segment.

file:///E|/TEMP/Chapter%205%20new.htm (6 of 23) [9/30/02 08:31:40 PM]

file:///E|/TEMP/Chapter%205%20new.htm

This doesn't mean that a segment actually starts every 16 bytes up and down throughout
that megabyte of memory. A segment is like a shelf in one of those modern adjustable
bookcases. On the back face of the bookcase are a great many little slots spaced one-half
inch apart. A shelf bracket can be inserted into any of the little slots. However, there
aren't hundreds of shelves, but only four or five. Most of the slots are empty. They exist
so that a much smaller number of shelves may be adjusted up and down the height of the
bookcase as needed.
In a very similar manner, paragraph boundaries are little slots at which a segment may
start. An assembly-language program may make use of only four or five segments, but
each of those segments may begin at any of the 65,536 paragraph boundaries existing in
the 8088's megabyte of memory.
There's that number again: 65,536; our beloved 64K. There are 64K different paragraph
boundaries where a segment may begin. Each paragraph boundary has a number. As
always, the numbers begin from 0, and go to 64K minus one; in decimal 65,535, or in
hex 0FFFFH. Because a segment may begin at any paragraph boundary, the number of
the paragraph boundary at which a segment begins is called the segment address of that
particular segment. We rarely, in fact, speak of paragraphs or paragraph boundaries at all.
When you see the term "segment address," keep in mind that each segment address is 16
bytes (one paragraph) farther along in memory than the segment address before it. See
Figure 5.2.
In short, segments may begin at any segment address. There are 65,536 segment
addresses evenly distributed across the 8088's full megabyte of memory, 16 bytes apart.
A segment address is more a permission than a compulsion; for all the 64K possible
segment addresses, only five or six are ever actually used to begin segments at any one
time. Think of segment addresses as slots where segments may be placed.
So much for segment addresses; now, what of segments themselves? A segment may be
up to 64K bytes in size, but it doesn't have to be. A segment may be only 1 byte long, or
256 bytes long, or 21,378 bytes long, or any length at all short of 64K bytes.

A Horizon, Not a Place

You define a segment primarily by stating where it begins. What, then, defines
how long a segment is? Nothing, really—and we get into some really tricky
semantics here. A segment is more a horizon than a place. Once you define
where a segment begins. that segment can encompass any location in memory
between that starting place and the horizon, which is 65,536 bytes down the line.
Nothing says, of course, that a segment must use all of that memory. In most cases, when

file:///E|/TEMP/Chapter%205%20new.htm (7 of 23) [9/30/02 08:31:40 PM]

file:///E|/TEMP/Chapter%205%20new.htm

you define a segment to exist at some segment address, you only end up considering the
next few hundred bytes as part of that segment, until you get into some truly world-class
programs. Most beginners read about segments and think of them as some kind of
memory allocation, a protected region of memory with walls on both sides, reserved for
some specific use.

This is about as far from true as you can get. Nothing is protected within a segment, and
segments are not reserved for any specific register or access method. Segments can

file:///E|/TEMP/Chapter%205%20new.htm (8 of 23) [9/30/02 08:31:40 PM]

file:///E|/TEMP/Chapter%205%20new.htm

overlap. Segments don't really exist, in a very real sense, except as horizons beyond
which a certain type of reference cannot go. It comes back to that set of 64K blinders the
CPU wears, as I drew in Figure 5.1. I think of it this way. a segment is the location in
memory at which the CPU's 64K blinders are positioned. In looking at memory through
the blinders, you can see bytes starting at the segment address, and going on until the
blinders cut you off, 64K bytes down the way.
The key to understanding this admittedly metaphysical definition of a segment is
knowing how segments are used. And coming to understand that finally brings us to the
subject of registers.

Making 20-Bit Addresses out of 16-Bit Registers

The 8088 and 8086 are often called 16-bit CPUs because their internal registers are
almost all 16 bits in size. A register, as I've hinted before, is a memory location inside
the CPU chip rather than outside in a memory bank. The 86 family has a fair number of
registers, and they are an interesting crew indeed.
Registers do many jobs, but one of their more important jobs is holding addresses of
important locations in memory. If you'll recall, the 8088 has 20 address pins, and its
megabyte of memory requires addresses 20 bits in size.
How do you put a 20-bit memory address in a 16-bit register?
Easy. You don't.
You put a 20-bit address in two 16-bit registers.
What happens is this: all locations within the 8088's megabyte of memory have not one
address but two. Every byte in memory is assumed to reside in a segment. A byte's
complete address, then, consists of the address of its segment, along with the distance of
the byte from the start of that segment. The address of the segment is (as we said before)
the byte's segment address. The byte's distance from the start of the segment is the byte's
offset address. Both addresses must be specified to completely describe any single byte's
location within the full megabyte of memory. When written, the segment address comes
first, followed by the offset address. The two are separated with a colon. Segment:offset
addresses are always written in hexadecimal. Make sure the colon is there so that people
know you're specifying an address and not just a couple of numbers!
I've drawn Figure 5.3 to help make this a little clearer. A byte of data we'll call
"MyByte" exists in memory at the location marked. Its address is given as 0001:001D.
This means that MyByte falls within segment 0001H, and is located 001DH bytes from
the start of that segment. Note that when two numbers are used to specify an address with

file:///E|/TEMP/Chapter%205%20new.htm (9 of 23) [9/30/02 08:31:40 PM]

file:///E|/TEMP/Chapter%205%20new.htm

a colon between them, you do not end each of the two numbers with the hexadecimal
suffix.
You can omit leading zeroes if you like; however, remember the assembly-language
policy of never allowing a hex number to begin with the hex digits A through F. For
example, the address 00B2:0004 could be written 0B2:4. As a good rule of thumb,
however, I recommend using all four hex digits in both components of the address except
when all four digits are zero. In other words, you can abbreviate 0000:0061 to 0:0061 or
0B00:0000 to 0B00:0.

file:///E|/TEMP/Chapter%205%20new.htm (10 of 23) [9/30/02 08:31:40 PM]

file:///E|/TEMP/Chapter%205%20new.htm

The universe is perverse, however, and clever eyes will perceive that MyByte can have
two other perfectly legal addresses: 0:002D and 0002:000D. How so? Keep in mind that
a segment may start every 16 bytes throughout the full megabyte of real memory. A
segment, once begun, embraces all bytes from its origin to 65,535 bytes further up in
memory. There's nothing wrong with segments overlapping, and in Figure 5.3 we have
three overlapping segments. MyByte is 2DH bytes into the first segment, which begins
at segment address 0000H. MyByte is IDH bytes into the second segment, which begins
at segment address 0001H. It's not that MyByte is in two or three places at once. It's in
only one place, but that one place may be described in any of three ways.
It's a little like Chicago's street number system. Howard Street is 76 blocks from
Chicago's "origin," Madison Street. Howard Street is, however, only 4 blocks from
Touhy Avenue. You can describe Howard Street's location relative to either Madison
Street or Touhy Avenue, depending on what you want to do.
An arbitrary byte somewhere in the middle of the 8086's megabyte of memory may fall
within literally tens of thousands of different segments. Which segment the byte is
actually in is strictly a matter of convention.
This problem appears in real life to confront programmers of the IBM PC. The PC keeps
its time and date information in a series of memory bytes that starts at address
0040:006C. There is also a series of memory bytes containing PC timer information
located at 0000:046C. You guessed it—we're talking about exactly the same starting
byte. Different writers speaking of that same byte may give its address in either of those
two ways, and they'll all be completely correct.
The way, then, to express a 20-bit address in two 16-bit registers is to put the segment
address into one 16-bit register, and the offset address into another 16-bit register. The
two registers taken together identify one byte among all 1,048,576 bytes in a megabyte.

5.3 Registers and Memory Addresses

Think of the segment address as the starting position of the 8086/8088's 64K blinders.
Typically, you'll move the blinders to encompass the location where you wish to work,
and then leave the blinders in one place while moving around within their 64K limits.
This is exactly how registers tend to be used in 8086/8088 assembly language. The
8088, 8086, and 80286 have exactly four segment registers specifically designated as

file:///E|/TEMP/Chapter%205%20new.htm (11 of 23) [9/30/02 08:31:40 PM]

file:///E|/TEMP/Chapter%205%20new.htm

holders of segment addresses. (The 386 and 486 have two more—but we'll return to that
in Chapter 11.) Each segment register is a 16-bit memory location existing within the
CPU chip itself. No matter what the CPU is doing, if it's addressing some location in
memory, the segment address of that location is present in one of the four segment
registers.
The segment registers have names that reflect their general functions: CS DS, SS, and
ES.
• CS stands for Code Segment. Machine instructions exist at some offset into a code
segment. The segment address of the code segment of the currently executing instruction
is contained in CS.
• DS stands for Data Segment. Variables and other data exist at some offset into a
data segment. There may be many data segments, but the CPU may only use one at a
time, by placing the segment address of that segment in register DS.
• SS stands for Stack Segment. The stack is a very important component of the CPU
used for temporary storage of data and addresses. I'll explain how the stack works a little
later; for now simply understand that, like everything else within the 8086/8088's
megabyte of memory, the stack has a segment address, which is contained in SS.
• ES stands for Extra Segment. The extra segment is exactly that: a spare segment
that may be used for specifying a location in memory.

General-Purpose Registers

The segment registers exist only to hold segment addresses. They can be forced to do a
few other things, but by and large segment registers should be considered specialists in
"segment address containing." The 8086/8088 CPU has a crew of generalist registers to
do the rest of the work of assembly-language computing. Among many other things,
these general-purpose registers are used to hold the offset addresses that must be paired
with segment addresses to pin down a single location in memory.
Like the segment registers, the general-purpose registers are memory locations existing
inside the CPU chip itself. They all have names rather than numeric addresses: AX, BX,
CX, DX, SP, BP, SI, and DI. The general-purpose registers really are generalists in that
all of them share a large suite of capabilities. However, each of the general-purpose
registers also has what I call its "hidden agenda": a task or set of tasks that only it can
perform.
I'll explain all these hidden agendas as I go. For now, we'll concentrate on the role of the
general-purpose registers in addressing memory.

file:///E|/TEMP/Chapter%205%20new.htm (12 of 23) [9/30/02 08:31:40 PM]

file:///E|/TEMP/Chapter%205%20new.htm

Several of the general-purpose registers (BX, BP, SP, SI, and DI) may contain an offset
address. This offset address may be used in combination with any of the segment
registers to pinpoint any one of the 1,048,576 bytes in the megabyte address space of the
8086/8088. All you need to do is specify which two registers are to be used together,
with the segment register first and the general-purpose register second. For example:

SS : SP
SS : BP
ES : DI
DS : SI
CS : BX

Register Halves

General-purpose registers AX, BX, CX, and DX have an important property: they can be
cut in half. Actually, assemblers recognize special names for the two halves of these four
registers. The A, B, C, and D are retained, but instead of the X, a half is specified with an
"H" for "High half or an "L" for "Low half." Each register half is one byte (eight bits) in
size, allowing the entire register to be 16 bits in size, or one word.
Thus, making up the 16-bit register AX you have byte-sized register halves AH and AL;
within BX there is BH and BL, and so on. One nice thing about this arrangement is that
you can read and change one half of a 16-bit number without disturbing the other half.
This means that if you place the 16-bit hexadecimal value 76E9H into register AX, you
can read the byte-sized value 76H from register AH, and OE9H from register AL. Better
still, if you then store the value OAH into register AL and then read back register AX,
you'll find that the original value of 76E9H has been changed to 760AH.
Being able to treat the AX, BX, CX, and DX registers as 8-bit halves can be extremely
handy in situations where you're manipulating a lot of 8-bit quantities. Each register half
can be considered a separate register, leaving you twice the number of places to put
things while your program works. As you'll see later on, finding a place to stick a value
in a pinch is one of the great challenges facing assembly-language programmers.
Keep in mind that this dual nature involves only general-purpose registers AX, BX, CX,
and DX. The other general-purpose registers SP, BP, SI, and DI, are not similarly
equipped. There are no SIH and SIL 8-bit registers, for example, as convenient as that
would sometimes be.

The Instruction Pointer
file:///E|/TEMP/Chapter%205%20new.htm (13 of 23) [9/30/02 08:31:40 PM]

file:///E|/TEMP/Chapter%205%20new.htm

Yet another type of register lives inside the 8086/8088 CPU. The instruction pointer
(usually called IP) is in a class by itself. IP is far more of a specialist than are any of the
segment registers. IP can do only one thing: it contains the offset address of the next
machine instruction to be executed.
While executing a program, the CPU uses IP to keep track of where it is. Each time an
instruction is executed, IP is incremented by some number of bytes. The number of
bytes is the size of the instruction just executed. The net result is to bump IP further into
memory, so that it points to the start of the next instruction to be executed. Instructions
come in different sizes, ranging typically from one to six bytes. (Some of the more
arcane forms of the more arcane instructions may be even larger.) The CPU is careful to
increment IP by just the right number of bytes, so that it does in fact end up pointing to
the start of the next instruction, and not merely into the middle of the last instruction.
If IP contains the offset address of the next machine instruction, where is the segment
address? The segment address is kept in the code segment register CS. Together, CS and
IP contain the full 20-bit address of the next machine instruction to be executed.
The full 20-bit address of the next machine instruction to be executed is kept CS:IP.
A code segment is an area of memory where machine instructions are stored. The steps
and tests of which a program is made are contained in code segments. There may be
many code segments in a program, but small programs like the ones in this book will
most likely have only one. The current code segment is that code segment whose
segment address is currently stored in code segment register CS. At any given time, the
machine instruction currently being executed exists within the current code segment.
Typically, large programs are divided up into chunks, with each chunk considered to be
part of a separate code segment. Switching from one code segment to another is done
with a class of instructions called branching instructions, which I'll be covering in
Chapter 9.
IP is notable in being the only register that can neither be read nor written to directly. It's
possible to obtain the current value of IP, but the method involves some trickery that will
have to wait until we discuss branching instructions in Chapter 9.

The Flags Register

There is one additional type of register inside the CPU: the Flags register. The Flags
register is 16 bits in size, and most of those 16 bits are single-bit registers called flags.
Each of these individual flags has a name, like CF, DF, OF, and so on.

file:///E|/TEMP/Chapter%205%20new.htm (14 of 23) [9/30/02 08:31:40 PM]

file:///E|/TEMP/Chapter%205%20new.htm

When your program performs a test, what it tests is one or another of the single-bit flags
in the Flags register. Since a single bit may contain one of only two values, 1 or 0, a test
in assembly language is truly a two-way affair: either a flag is set to 1 or it isn't. If the
flag is set to 1, the program takes one action; if the flag is set to 0, the program takes a
different action.
We're concentrating on memory addressing at the moment, so for now I'll simply
promise to go into flag lore in more detail at more appropriate moments later in the book.

Reading and Changing Registers with DEBUG

The DOS DEBUG utility provides a handy window into the CPU's hidden world of
registers. How DEBUG does this is the blackest of all black arts and I can't begin to
explain it in an introductory text. For now, just consider DEBUG a magic box.
Looking at the registers from DEBUG doesn't even require that you load a program into
DEBUG. Simply run DEBUG, and at the dash prompt, type R. The display will look
something very close to this:

-r

AX=0000 BX=0000 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
DS=1980 ES=1980 SS=1980 CS=1980 IP=0100 NV UP El PL NZ NA PO NC
1980:0100 389A5409 CMP [BP+SI+0954],BL
SS:0954=8A

I say "something very close" because details of the display will vary depending on what
resident programs you have loaded in memory, which version of DOS you're using, and
so on. What will vary will be the values listed as present in the various registers, and the
machine instruction shown in the third line of the display (Here, CMP [BP+SI+0954],
BL).
What will not vary is the fact that every CPU register has its place in the display, along
with its current value shown to the right of an equal sign. The series of characters NV UP
El PL NZ NA PO NC are a summary of the current values of the flags in the flags
register.
The display shown above is that of the registers when no program has been loaded. All of
the general-purpose registers except for SP have been set to 0, and all of the segment
registers have been set to the value 1980H. These are the default conditions set up by
DEBUG in the CPU when no program has been loaded. (The 1980H value will probably

file:///E|/TEMP/Chapter%205%20new.htm (15 of 23) [9/30/02 08:31:40 PM]

file:///E|/TEMP/Chapter%205%20new.htm

be different for you—it represents the first available segment in memory above DOS,
and where that segment falls depends on what else exists in memory both above and
below DOS.)
Changing a register is done very simply, again using DEBUG's R command. To change
the value of AX, type R AX

-R AX

AX:0000

:OA7B

DEBUG will respond by displaying the current value of AX, and then, on the following
line, a colon prompt. DEBUG will then wait for you to either enter a new numeric value
for AX or press Enter. If you press Enter, the current value of the register will not be
changed. In the example shown above, I typed OA7B (you needn't type the H indicating
hex) and then pressed Enter.

Once you do enter a new value and then press Enter, DEBUG does nothing to verify the
change. To see the change to register AX, you must display all the registers again using
the R command:

-r
AX=OA7B BX=0000 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 01=0000
DS-1980 ES=1980 SS=1980 CS=1980 IP=0100 NV UP EI PL NZ NA PO NC
1980:0100 389A5409 CMP [BP+SI+0954],BL SS:0954=8A

Take a few minutes to practice entering new values for the general-purpose registers,
then display the registers as a group to verify that the changes were made. While
exploring you might find that the IP register can be changed, even though I said earlier
that it can't be changed directly. The key word is directly-, DEBUG knows all the dirty
tricks.

Inspecting the Video Refresh Buffer with DEBUG

One good way to help your knowledge of memory addressing sink in is to use DEBUG
to take a look at some interesting places in the PC's memory space.

file:///E|/TEMP/Chapter%205%20new.htm (16 of 23) [9/30/02 08:31:40 PM]

file:///E|/TEMP/Chapter%205%20new.htm

One easy thing to do is look at the PC's video display adapter's refresh buffer. A video
refresh buffer is a region of memory with a difference: any characters written to buffer
memory are instantly displayed on the computer screen. This screen refresh feature is
accomplished electrically through special use of the information that comes out of the
memory data pins. Precisely how it is done is outside the scope of this book. For now,
simply understand that writing a character to your display screen can be done by writing
the ASCII code for that character into the correct address in the video refresh buffer
portion of memory.
As with any memory location anywhere within the PC, the video refresh buffer has a
segment address. What that segment address is depends on the kind of display installed
in the PC. There are two possibilities: if your PC has a color screen, the segment address
of the video refresh buffer is 0B800H; if your PC has a monochrome screen, the segment
address is 0B000H.
It takes two bytes in the buffer to display a character. The first of the two (that is, first in
memory) is the ASCII code of the character itself. For example, an "A" would require the
ASCII code 41H; a "B" would require the ASCII code 42H, and so on. (The full ASCII
code set is shown in Appendix B.) The second of the two bytes is the character's
attribute. Think of it this way: the ASCII code says what character to display and the
attribute says how to display it. The attribute dictates the color of a character and its
background cell on a color screen. On a monochrome screen, the attribute specifies if a
character is underlined or displayed in reverse video. (Reverse video is a character
display mode that shows dark characters on a light background, rather than the traditional
light character on a dark or black background.) Every character byte has an attribute byte
and every attribute byte has its character byte; neither can exist alone.
The very first character/attribute pair in the video refresh buffer corresponds to the
character you see in the upper-left corner of the screen. The next character/attribute pair
in the buffer is the character at the second position on the top line of the screen, and so
on. I've drawn a diagram of the relationship between characters on the screen and byte
values in the video refresh buffer, in Figure 5.4.

file:///E|/TEMP/Chapter%205%20new.htm (17 of 23) [9/30/02 08:31:40 PM]

file:///E|/TEMP/Chapter%205%20new.htm

In Figure 5.4, the three letters "ABC" are displayed in the upper-left corner of the screen.
Notice that the "C" is underlined. The screen shown in Figure5.4 is monochrome. The
video refresh buffer therefore begins at 0B000:0. The byte located at address 0B000:0 is
ASCII code 41H, corresponding to the letter "A." The byte at address 0B00:0001 is the
corresponding attribute value of 07H. The value 07H as an attribute dictates normal text
in both color and monochrome displays, where normal means white characters on a black
background.
The byte at 0B000:0005 is also an attribute byte, but its value is 01H. On a monochrome
display, 01H makes the corresponding character underlined. On a color display, 01H
makes the character blue on a black background.
There is nothing about the video refresh buffer to divide it into the lines you see on the
display. The first 160 characters (80 ASCII codes plus their 80 attribute bytes) are shown
as the first line, and the next set of 160 characters is shown on the next line down, and so

file:///E|/TEMP/Chapter%205%20new.htm (18 of 23) [9/30/02 08:31:40 PM]

file:///E|/TEMP/Chapter%205%20new.htm

on.
You might rightfully ask what ASCII code is in the video refresh buffer for locations on
the screen that show no character at all. The answer, of course, is that there is a character
in every "empty" space: the space character, whose ASCII code is 20H.
You can inspect the memory within the video refresh buffer directly through DEBUG,
by following these steps:
1. Clear the screen by entering CLS at the DOS prompt and then pressing Enter.
2. Invoke DEBUG.
3. Enter the segment address of your video refresh buffer into the ES register by using
the R command. Remember: Color screens use the 0B800H segment address, while
monochrome screens use the 0B000H segment address. Note that 0B800H must be
entered into DEBUG as "B800," without the leading zero. TASM and MASM must have
that leading zero, and DEBUG cannot have it. Sadly, no one ever said that all parts of
this business had to make perfect sense.
4. Enter D ES:0 to dump the first 128 bytes of the video refresh buffer.
5. Enter the D command (by itself) a second time to dump the next 128 bytes of the
video refresh buffer.
What you'll see should look a lot like the session dump shown below:

C:\ASM>debug -r es ES 1980 :b800 -d es:0
B800:0000 20 07 20 07 20 07 20 07-20 07 20 07 20 07 20 07
B800:0010 20 07 20 07 20 07 20 07-20 07 20 07 20 07 20 07
B800:0020 20 07 20 07 20 07 20 07-20 07 20 07 20 07 20 07
B800:0030 20 07 20 07 20 07 20 07-20 07 20 07 20 07 20 07
B800:0040 20 07 20 07 20 07 20 07-20 07 20 07 20 07 20 07
B800:0050 20 07 20 07 20 07 20 07-20 07 20 07 20 07 20 07

B800:0060 20 07 20 07 20 07 20 07-20 07 20 07 20 07 20 07
B800:0070 20 07 20 07 20 07 20 07-20 07 20 07 20 07 20 07

-d

B800:0080 20 07 20 07 20 07 20 07-20 07 20 07 20 07 20 07
B800:0090 20 07 20 07 20 07 20 07-20 07 20 07 20 07 20 07
B800:00A0 43 07 3A 07 5C 07 41 07-53 07 4D 07 3E 07 64 07 C.:.\A.S.M.>.d.
B800:00B0 65 07 62 07 75 07 67 07-20 07 20 07 20 07 20 07
e.b.u.g.....
B800:0000 20 07 20 07 20 07 20 07-20 07 20 07 20 07 20 07
B800:0000 20 07 20 07 20 07 20 07-20 07 20 07 20 07 20 07
B800:OOEO 20 07 20 07 20 07 20 07-20 07 20 07 20 07 20 07

file:///E|/TEMP/Chapter%205%20new.htm (19 of 23) [9/30/02 08:31:41 PM]

file:///E|/TEMP/Chapter%205%20new.htm

8800:OOFO 20 07 20 07 20 07 20 07-20 07 20 07 20 07 20 07

The first 80 character/attribute pairs are the same: 20H/07H, which display as plain
ordinary blank space. When you execute the CLS command on most machines, the
screen is cleared, and the DOS prompt reappears on the second line from the top of the
screen, not the top line. The top line is typically left blank, as is the case here.
You'll see in the second block of 128 dumped bytes the DOS prompt and the invocation
of DEBUG in lowercase. Keep in mind when reading DEBUG hex dumps that any
character not readily displayed as one of the standard ASCII letters, numbers, or
punctuation marks is represented as a period character. This is why the 07H attribute
character on the right portion of DEBUG's display is shown as a period character, since
the ASCII code 07H has no displayable equivalent.
You can keep dumping further into the video refresh buffer by pressing DEBUG's D
command repeatedly.

Reading the BIOS Revision Date

Another interesting item that's easy to locate in your PC is the revision date in the ROM
BIOS. Read-only memory (ROM) chips are special memory chips that retain their
contents when power to the PC is turned off. The BIOS (Basic Input/ Output System) is a
collection of assembly-language routines that perform basic services for the PC: disk
handling, video handling, printer handling, etc. The BIOS is kept in ROM at the very top
of the PC's megabyte of address space.
The BIOS contains a date, indicating when it was declared finished by its authors. This
date is always at the same address, and can be easily displayed using DEBUG's D
command. The address of the date is 0FFFF:0005. The DEBUG session is shown
below. Note again that the hex number 0FFFFH must be entered without its leading
zero:

-d ffff:0005
FFFF:0000 30 34 2F-33 30 2F 38 37 00 FC BB 04/30/87...
FFFF:0010 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
FFFF:0020 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 00
FFFF:0030 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 00

FFFF:0040 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
FFFF:0050 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
FFFF:0060 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

file:///E|/TEMP/Chapter%205%20new.htm (20 of 23) [9/30/02 08:31:41 PM]

file:///E|/TEMP/Chapter%205%20new.htm

FFFF:0070 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
FFFF:0080 00 00 00 00 00

One peculiarity of DEBUG illustrated here is that when you begin a hex dump of
memory at an address that is not evenly divisible by 16, DEBUG spaces the first byte of
the dump over to the right so that paragraph boundaries still fall at the left margin.
Another rather peculiar thing to keep in mind while looking at the dump shown above is
that only the first line of memory shown in the dump really exists. The segment 0FFFFH
begins only sixteen bytes before the end of the 8086/8088's megabyte of memory space.
(See Figure 5.2 for a good illustration of this.) The byte at 0FFFF:000F is the last byte
in memory. Addresses from 0FFFF:00l0 to 0FFFF:0FFFF would require more than 20
address bits to express, so they simply don't exist. DEBUG won't tell you that, it'll just
give you endless pages of zeroes for memory beyond the 8086/8088 megabyte pale.
(Several readers have told me that certain versions of DEBUG take a different approach:
DEBUG "wraps" their display around to the bottom of memory instead, and begins
displaying bytes at 0000:0000 once it runs out of high memory. It's something to watch
out for, and if memory "beyond" the FFFF:000F point are not zeroes, you're in fact
seeing such a wrap to low memory.)

Transferring Control to Machine Instructions in ROM

So far we've looked at locations in memory as containers for data. All well and
good—but memory contains machine instructions as well. A very effective illustration of
a machine instruction at a particular address is also provided by the ROM BIOS—and
right next door to the BIOS revision date, at that.
The machine instruction in question is located at address 0FFFF:0. Recall that, by
convention, the next machine instruction to be executed is the one whose address is
stored in CS:IP. Run DEBUG. Load the value 0FFFFH into code segment register CS,
and 0 into instruction pointer IP. Then dump memory at 0FFFF:0:

-r cs

CS 1980
:ffff
-r ip
IP 0100
:0
-r

file:///E|/TEMP/Chapter%205%20new.htm (21 of 23) [9/30/02 08:31:41 PM]

file:///E|/TEMP/Chapter%205%20new.htm

AX=0000 BX=0000 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 01=0000
DS=1980 ES=1980 SS=1980 CS=FFFF IP=0000 NV UP El PL NZ NA PO NC
FFFFr0000 EA5BE000F0 JMP F000:E05B
-d cs:0
FFFF:0000 EA 5B EO 00 FO 30 34 2F-33 30 2F 38 37 00 FC B8 .[...04/30/87...
FFFF:0010 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
FFFF:0020 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
FFFF:0030 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
FFFF:0040 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
FFFF:0050 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
FFFF:0060 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
FFFF:0070 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

Look at the third line of the register display, which we've been ignoring up until now. To
the right of the address display is this series of five bytes: EA5BE000F0.
These five bytes make up the machine instruction we want. Notice that the first line of
the memory dump begins with the same address, and, sure enough, shows us the same
five bytes.
Trying to remember what machine instruction EA5BE000F0 is would try anyone's
intellect, so DEBUG is a good sport and translates the five bytes into a more readable
representation of the machine instruction. We call this process of translating binary
machine codes back into human-readable, assembly-language mnemonics unassembly
or, more commonly, disassembly.

JMP F000:E05B.

What this instruction does, quite simply, is tell the CPU to "jump" to the address
0F000:0E05B and begin executing the machine instructions located there. If we execute
the machine instruction at CS:IP, that's what will happen: the CPU will jump to the
address 0F000:OE05B and begin executing whatever machine instructions it finds there.
All PC's have a JMP instruction at address 0FFFF:0. The address to which that JMP
instruction jumps will be different for different makes and models of PC. This is why on
your machine you won't necessarily see the exact five bytes EA5BE000F0, but whatever
five bytes you find at 0FFFF:0, they will always begin with 0EAH. The 0EAH byte
specifies that this instruction will be a JMP instruction. The remainder of the machine
instruction is the address to which the CPU must jump. If that address as given in the
machine instruction looks a little scrambled, well, it is.. but that's the way the 86-family
of CPUs do things. We'll return to the issue of funny-looking addresses a little later.
DEBUG has a command, G (for Go) that begins execution at the address stored in

file:///E|/TEMP/Chapter%205%20new.htm (22 of 23) [9/30/02 08:31:41 PM]

file:///E|/TEMP/Chapter%205%20new.htm

CS:IP. If you enter the G command and press Enter, the CPU will jump to the address
built into the JMP instruction and begin executing machine instructions. What happens
then?
Your machine will go into a cold boot, just as it would if you powered down and
powered up again. (So make sure you're ready for a reboot before you try it!)

This may seem odd. But consider this: the CPU chip has to begin execution somewhere.
When the CPU wakes up after being off all night with the power removed, it must get a
first machine instruction from somewhere and start executing. Built into the silicon of the
8086/8088 CPU chips is the assumption that a legal machine instruction will exist at
address 0FFFF:0. When power is applied to the CPU chip, the first thing it does is place
0FFFH in CS, and 0 in IP. Then it starts fetching instructions from the address in CS:IP
and executing them, one at a time, in the manner that CPUs must.
This is why all PC's have a JMP instruction at 0FFFF:0, and why this JMP instruction
always jumps to the routines that bring the PC up from stone cold dead to fully
operational.
So go ahead: load 0FFFFH into CS and 0 into IP, and press G. Feel good?
It's what we call the feeling of power.

file:///E|/TEMP/Chapter%205%20new.htm (23 of 23) [9/30/02 08:31:41 PM]

file:///E|/TEMP/Chapter%206%20new.htm

Following Your
Instructions
Meeting Machine Instructions Up Close and
Personal
6.1 Assembling and Executing Machine Instructions with
DEBUG >• 154
6.2 Machine Instructions and Their Operands >• 157
6.3 Assembly-Language References >• 167
6.4 An Assembly-Language Reference for Beginners >• 168
6.5 Rally'Round the Flags, Boys! >• 173
6.6 Using Type Overrides >• 178

Machine instructions, those atoms of action that are the steps a program rnust take to get
its work done, are the most visible part of any assembly-language program. The
collection of instructions supported by a given CPU is that CPU's instruction set. The
8086 and 8088 CPUs share the same instruction set, which is why most people consider
them the same CPU.
This cannot be said for the 80286 and 80386, both of which offer additional instructions
not found in the 8086/8088. By and large, I'll only be introducing instructions in this
book that the 8086/8088 understand. (I'll show you a few more from the more advanced

file:///E|/TEMP/Chapter%206%20new.htm (1 of 30) [9/30/02 08:32:40 PM]

file:///E|/TEMP/Chapter%206%20new.htm

CPUs in Chapter 11, but there are fewer truly useful new instructions than you might
have hoped for.) Furthermore, I can't cover all machine instructions in this book, even
limiting myself to the 8086/ 8088. Those that I will describe are the most common and
most useful.
Nor will I abandon my discussion of memory addressing begun in Chapter 5. As I've said
before, understanding how the CPU and its instructions address memory is more difficult
but probably more important than understanding the instructions themselves. In and
around the descriptions of the machine instructions I'll present from this point on there
will be discussions and elaborations on memory addressing. Pay attention! If you don't
learn the concepts of memory addressing, memorizing the entire instruction set will do
you no good at all.

6.1 Assembling and Executing Machine Instructions with
DEBUG

The most obvious way to experiment with machine instructions is to build a short
program out of them and watch it go. This can easily be done (and we'll be doing it a lot
in later chapters) but it's far from the fastest way to do things. Editing, assembling, and
linking all take time, and when you only want to look at one machine instruction in
action (rather than a crew of them working together) the full development cycle is
overkill.
Once more, we turn to DEBUG.
At the close of the last chapter we got a taste of a DEBUG feature called unassembly,
which is a peculiar way of saying what most of us call disassembly. This is the reverse of
the assembly process we looked at in detail in Chapter 3-Disassembly is the process of
taking a binary machine instruction like 42H and converting it into its more readable
assembly-language equivalent,
INC DX.
In addition to all its other tools, DEBUG also contains a simple assembler, suitable for
taking assembly-language mnemonics like INC DX and converting them to their binary
machine code form. Later on we'll use a standalone assembler like TASM or MASM to
assemble complete assembly-language programs. For the time being, we can use
DEBUG to do things one or two instructions at a time.

Assembling a MOV Instruction

file:///E|/TEMP/Chapter%206%20new.htm (2 of 30) [9/30/02 08:32:40 PM]

file:///E|/TEMP/Chapter%206%20new.htm

The single most common activity in assembly-language work is getting data from here to
there. There are several specialized ways to do this, but only one truly general way: the
MOV instruction. MOV can move a byte or word of data from one register to another,
from a register into memory, or from memory into a register. What MOV cannot do is
move data directly from one address in memory to a different address in memory.
The name MOV is a bit of a misnomer, since what is actually happening is that data is
copied from a source to a destination. Once copied to the destination, however, the data
does not vanish from the source, but continues to exist in both places. This process
conflicts a little with our intuitive notion of moving, which usually means that something
disappears from a source and reappears at a destination.
Because MOV is so general and obvious in its action, it's a good place to start in working
with DEBUG's assembler.
Invoke DEBUG and use the R command to display the current state of the registers. You
should see something like this:

-r
AX-0000 BX=0000 CX=0000 DX=0000 SP=FFEE BP=0000 SI-0000 DI-0000
DS=1980 ES=1980 SS=1980 CS=1980 IP=0100 NV UP El PL NZ NA PO NC
1980:0100 701D JO 011F

We ignored the third line of the register display before. Now let's think a little bit more
about what it means.
When DEBUG is loaded without a specific file to debug, it simply takes the empty
region of memory where a file would have been loaded (had a file been loaded when
DEBUG was invoked) and treats it as though a program file were really there. The
registers all get default values, most of which are zero. IP, however, starts out with a
value of 0100H, and the code segment register CS gets the segment address of DEBUG's
workspace, which is theoretically empty.
Memory is never really "empty." A byte of memory always contains some value,
whether true garbage that happened to reside in memory at power-up time, or a leftover
value remaining from the last time that byte of memory was used. In the above register
dump, memory at CS:IP contains a JO (jump on overflow) instruction. This rather
obscure instruction was not placed there
deliberately, but is simply DEBUG's interpretation of the two bytes 701DH that happen
to reside at CS:IP. Most likely, the 701D value was part of some data belonging to the
last program to use that area of memory. It could have been part of a word-processor file,
a spreadsheet, or anything else. Just don't that some program necessarily put a JO

file:///E|/TEMP/Chapter%206%20new.htm (3 of 30) [9/30/02 08:32:40 PM]

file:///E|/TEMP/Chapter%206%20new.htm

instruction in memory. Machine
instructions are just numbers, after all, and what numbers do in memory depends
completely on how you interpret them—and what utility program you feed them to.
DEBUG's internal assembler assembles directly into memory, and places instructions
one at a time—as you enter them at the keyboard—into memory CS:IP. Each time you
enter an instruction, IP is incremented to the next free location in memory. So by
continuing to enter instructions, you can actually type an assembly-language program
directly into memory.
Try it. Type the A (assemble) command and press Enter. DEBUG responds by
displaying the current value of CS:IP, and then waits for you to enter an assembly-
language instruction. Type MOV AX,1 and press Enter. DEBUG again displays CS:IP
and waits for a second instruction. It will continue waiting for instructions until you press
Enter without typing anything. Then you'll see DEBUG's dash prompt again.
Now, use the R command again to display the registers. You should see something like
this:
-r
AX=0000 BX=0000 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
DS=1980 ES=1980 SS=1980 CS=1980 IP=0100 NV UP EI PL NZ NA PO NC
1980:0100 B80100 MOV AX,0001

The registers haven't changed—but now the third line shows that the JO instruction is
gone, and that the MOV instruction you entered has taken its place. Notice once again
that CS contains 1980H, and IP contains 0100H. The address of the MOV instruction is
shown as 1980:0100; in other words, at CS:IP.

Executing a MOV Instruction with the Trace Command

Note that you haven't executed anything. You've simply used DEBUG's command to
write a machine instruction into a location in memory.
There are two ways to execute machine instructions from within DEBUG. One way is to
execute a program in memory, starting at CS:IP. This means that DEBUG will simply
start the CPU executing whatever sequence of instructions begins at CS:IP. We looked
at the G command very briefly at the end of the last chapter, when we found the JMP
instruction that reboots your PC on power up, and used G to execute that instruction. The
command is quite evocative: Go. But don't type G just yet....
You haven't entered a program. You've entered one instruction, and one instruction does
not a program make. The instruction after your MOV instruction could be anything at

file:///E|/TEMP/Chapter%206%20new.htm (4 of 30) [9/30/02 08:32:40 PM]

file:///E|/TEMP/Chapter%206%20new.htm

all, recalling that DEBUG is simply interpreting garbage values in memory as random
machine instructions. A series of random machine instructions could easily go berserk,
locking your system into an endless loop or writing zeroes over an entire segment of
memory that r contain part of DOS or of DEBUG itself. We'll use DEBUG's G
command a little later, once we've constructed a complete program in memory.

For now, consider the mechanism DEBUG has for executing one machine instruction at
a time. It's called Trace, and you invoke it by typing T. The T command will execute the
machine instruction at CS:IP, then give control of the machine back to DEBUG. Trace
is generally used to "single-step" a machine-code program one instruction at a time, in
order to watch what it's up to every step of the way. For now, it's a fine way to execute a
single instruction and examine that instruction's effects.
DEBUG's G command executes programs in memory starting at CS:IP; DEBUG's T
command executes the single instruction at CS:IP.
So type T. DEBUG will execute the MOV instruction you entered at CS:IP, and then
immediately display the registers before returning to the dash prompt. You'll see this:

-r
AX-0001 BX=0000 CX-0000 DX=0000 SP-FFEE BP=0000 SI-0000 DI-0000
DS=1980 ES=1980 SS=1980 CS-1980 IP=0103 NV UP EI PL NZ NA PO NC
1980:0103 6E DB 6E

Look at the first line. DEBUG says AX is now equal to 0001. It held the default value
0000 before; obviously, your MOV instruction worked.
And there's something else to look at here: the third line shows an instruction called DB
at CS:IP. Not quite true—DB is not a machine instruction, but an assembly-language
directive that means define byte. (We'll return to DB later on, in Chapter 7.) It's
DEBUG's way of saying that the number 6EH does not correspond to any machine
instruction. It is truly a garbage byte sitting in memory, doing nothing. Executing a 6EH
byte as though it were an instruction, however, could cause your machine to do
unpredictably peculiar things, up to and including locking up hard.

6.2 Machine Instructions and Their Operands

As we said earlier, MOV copies data from a source to a destination. MOV is an
extremely versatile instruction, and understanding its versatility demands a little study of

file:///E|/TEMP/Chapter%206%20new.htm (5 of 30) [9/30/02 08:32:41 PM]

file:///E|/TEMP/Chapter%206%20new.htm

this notion of source and a destination.

Source and Destination Operands

Many machine instructions, MOV included, have one or more operands. In the machine
instruction MOV AX,1 there are two operands. The first is AX, and the second is "1."
By convention in assembly language, the first operand belonging to a machine
instruction is the destination operand. The second operand is the source operand.
With the MOV instruction the sense of the two operands is pretty literal: The source
operand is copied to the destination operand. In MOV AX,1, the source operand 1 is
copied into the destination operand AX. The sense of source and destination is not nearly
so literal in other instructions, but a rule of thumb is this: whenever a machine instruction
causes a new value to be generated, that new value is placed in the destination operand.
There are three different flavors of data that may be used as operands: memory data,
register data, and immediate data. I've blown some example MOV instructions up to
larger-than-life size in Figure 6.1, to give you a flavor for how the different types of data
are specified as operands to the MOV instruction.
Immediate data is the easiest to understand. We'll look at it first.

Immediate Data

The MOV AX,1 machine instruction that you entered into DEBUG was a good example
of what we call immediate data which is accessed through an addressing mode called
immediate addressing. Immediate addressing gets its name from the fact that the item
being addressed is immediate data built right into the machine instruction. The CPU
does not have to go anywhere to find immediate data. It's not in a register, or stored in a
data segment somewhere out in memory.Immediate data is always right inside the
instruction being fetched and executed—in this case, the source operand, 1.

file:///E|/TEMP/Chapter%206%20new.htm (6 of 30) [9/30/02 08:32:41 PM]

file:///E|/TEMP/Chapter%206%20new.htm

Immediate data must be of an appropriate size for the operand. In other words, you can't
move a 16-bit immediate value into an 8-bit register half like AH or DL. Neither
DEBUG nor the standalone assemblers will allow you to assemble an instruction like
this:
MOV CL.67EFH

Because it's built right into a machine instruction, you might think immediate data
would be quick to access. This is true only to a point: fetching anything from memory
takes more time than fetching anything from a register, and instructions are, after all,
stored in memory.
So, while addressing immediate data is somewhat quicker than addressing ordinary data
stored in memory, neither is anywhere near as quick as simply pulling a value from a
CPU register.
Also keep in mind that only the source operand may be immediate data. The destination
operand is the place where data goes, not where it comes from. Since immediate data
consists of literal constants (numbers like 1, 0, or 7F2BH) trying to copy something into
immediate data rather than from immediate data simply has no meaning.

Register Data

Data stored inside a CPU register is known as register data, and is accessed directly
through an addressing mode called register addressing. Register addressing is done by

file:///E|/TEMP/Chapter%206%20new.htm (7 of 30) [9/30/02 08:32:41 PM]

file:///E|/TEMP/Chapter%206%20new.htm

simply naming the register you want to work with. Here are some examples of register
data and register addressing:

MOV AX,BX
MOV BP,SP
MOV BL.CH
MOV ES.DX
ADD DI.AX
AND DX.SI

The last two examples point up the fact that we're not speaking only of the MOV
instruction here. Register addressing happens any time data in a register is acted on
directly.
The assembler keeps track of certain things that don't make sense, and one such situation
is having a 16-bit register and an 8-bit register half within the same instruction. Such
operations are not legal—after all, what would it mean to move a two-byte source into a
one-byte destination? And while moving a one-byte source into a two-byte destination
might seem more reasonable, the CPU does not support it and it cannot be done.
Playing with register addressing is easy using DEBUG. Bring up debug and assemble the
following series of instructions:
.
MOV AX,67FE
MOV BX,AX
MOV CL,BH
MOV CH,BL

Now, reset the value of IP to 0100 using the R command. Then execute each of the
machine instructions, one by one, using the T command. The session under DEBUG
should look like this:

-A
333F:0100 MOV AX.67FE
333F:0103 MOV BX,AX
333F:0105 MOV CL,BH
333F:0107 MOV CH,BL
333F:0109
-R IP
IP 0100
:0100
-R

file:///E|/TEMP/Chapter%206%20new.htm (8 of 30) [9/30/02 08:32:41 PM]

file:///E|/TEMP/Chapter%206%20new.htm

AX=0000 BX=0000 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
DS=333F ES=333F SS=333F CS=333F IP=0100 NV UP EI PL NZ NA PO NC
333F:0100 B8FE67 MOV AX,67FE
-T

AX=67FE BX=0000 CX=0000 DX=0000 SP-FFEE BP=0000 SI=0000 DI=0000
DS-333F ES-333F SS-333F CS=333F IP=0103 NV UP EI PL NZ NA PO NC
333F:0103 89C3 MOV BX,AX
-T

AX=67FE BX=67FE CX=0000 OX=0000 SP=FFEE BP=0000 SI=0000 01=0000
DS=333F ES=333F SS=333F CS=333F IP=0105 NV UP EI PL NZ NA PO NC
333F:0105 88F9 MOV CL,BH
-T

AX=67FE BX=67FE CX=0067 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
DS=333F ES=333F SS=333F CS=333F IP=0107 NV UP EI PL NZ NA PO NC
333F:0107 88DD MOV CH,BL
-T

AX=67FE BX=67FE CX=FE67 DX=0000 SP=FFEE BP=0000 SI=0000 01=0000
DS=333F ES=333F SS=333F CS=333F IP=0109 NV UP EI PL NZ NA PO NC
333F:0109 1401 ADCAL,01

Keep in mind that the T command executes the instruction displayed in the third line of
the most recent R command display. The ADC instruction in the last register display is
yet another garbage instruction, and although executing it would not cause any harm, I
recommend against executing random instructions just to see what happens. Executing
certain jump or interrupt instructions could wipe out sectors on your hard disk or, worse,
cause internal damage to DOS that would not show up until later on.
Let's recap what these four instructions accomplished. The first instruction is an example
of immediate addressing—the hexadecimal value 067FEH was moved into the AX
register. The second instruction used register addressing to move register data from AX
into BX. (Keep in mind that the way the operands are arranged is slightly contrary to the
common-sense view of things. The destination operand comes first. Moving something
from AX to BX is done by executing MOV BX,AX. Assembly language is just like that
sometimes.)
The third instruction and fourth instruction both move data between register halves
rather than full, 16-bit registers. These two instructions accomplish something

file:///E|/TEMP/Chapter%206%20new.htm (9 of 30) [9/30/02 08:32:41 PM]

file:///E|/TEMP/Chapter%206%20new.htm

interesting. Look at the last register display, and compare the value of BX and CX. By
moving the value from BX into CX a byte at a time, it was possible to reverse the order
of the two bytes making up BX. The high half of BX (what we sometimes call the most
significant byte, or MSB, of BX) was moved into the low half of CX. Then the low half
of BX (what we sometimes call the least significant byte, or LSB, of BX) was moved
into the high half of CX. This is just a sample of the sorts of tricks you can play with the
general-purpose registers.
Just to disabuse you of the notion that the MOV instruction should be used to exchange
the two halves of a 16-bit register, let me suggest that you do the following: before you
exit DEBUG from your previous session, assemble this instruction and execute it using
the T command:
XCHG CL,CH

The XCHG instruction exchanges the values contained in its two operands. What was
interchanged before is interchanged again, and the value in CX will match the values
already in AX and BX. A good idea while writing your first assembly-language programs
is to double check the instruction set periodically to see that what you have cobbled
together with four or five instructions is not possible using a single instruction. The
8086/8088 instruction set is very good at fooling you in that regard!

Memory Data

Immediate data is built right into its own machine instruction, and register data is stored
in one of the CPU's limited collection of internal registers. In contrast, memory data is
stored somewhere in the megabyte vastness of external memory. Specifying that address
is much more complicated than simply reaching into a machine instruction or naming a
register.
You should recall that a memory location must be specified in two parts- a segment
address, which is one of 65,536 locations spaced every 16 bytes in memory; and an offset
address, which is the number of bytes by which the specified byte is offset from the start
of the segment. Within the CPU, the segment address is kept in one of the four segment
registers, while the offset address (generally just called the offset) may be in one of a
select group of general-purpose registers. To pin down a single byte within the
8086/8088's megabyte of memory, you need both the segment and offset components.
We generally write them together, specified with a colon to separate them, as either
literal constants or register names: OBOO:O167, DS:SI or CS:IP.

file:///E|/TEMP/Chapter%206%20new.htm (10 of 30) [9/30/02 08:32:41 PM]

file:///E|/TEMP/Chapter%206%20new.htm

BX's Hidden Agenda

One of the easiest mistakes to make early on is to assume that you can use any of the
general-purpose registers to specify an offset for memory data. Not so! If you try to
specify an offset in AX,CX, or DX, the assembler will flag an error. Register SP is a
special case, and addresses data located on the stack as I'll explain in Chapter 7.)
Only BP, BX, SI, and DI may hold an offset for memory data.
So, in fact, general-purpose registers AX, CX, and DX aren't quite so general after all.
Why was general-purpose register BX singled out for special treatment? Think of it as
the difference between dreams and reality for Intel. In the best of all worlds, every
register could be used for all purposes. Unfortunately, when CPU designers get together
and argue about what their nascent CPU is supposed to do, they are forced to face the
fact that there are only so many transistors on the chip to do the job.
Each chip function is given a "budget" of transistors (sometimes numbering in the tens or
even hundreds of thousands), and if the desired logic cannot be implemented using that
number of transistors, the expectations of the designers have to be brought down a notch,
and some CPU features shaved from the specification.
The 8086 and 8088 are full of such compromises. There were not enough transistors
available at design time to allow all general-purpose registers to do everything, so in
addition to the truly general-purpose ability to hold data, each 8086/8088 register has
what I call a "hidden agenda." Each register has some ability that none of the others
share. I'll describe each register's hidden agenda at some appropriate time in this book,
and I'll call it out as such.
Register BX is the X register chosen to address memory data. None of the other X
registers can be used in this fashion. By convention, and because there simply isn't
enough horsepower in the CPU to allow all registers to do it, addressing memory data is
one element of BX's hidden agenda.

Using Memory Data

With one or two important exceptions (the string instructions, which I cover to an
degree—but not exhaustively—in Chapter 10), only one of an instruction's two operands
may specify a memory location. In other words, you can move an immediate value to
memory, or a memory value to a register, or some other similar combination, but you
can't move a memory value directly to another memory value. This is just an inherent

file:///E|/TEMP/Chapter%206%20new.htm (11 of 30) [9/30/02 08:32:41 PM]

file:///E|/TEMP/Chapter%206%20new.htm

limitation of the CPU, and we have to live with it, inconvenient as it gets at times.
Specifying a memory address as one of an instruction's operands is a little complicated.
The offset address must be resident in one of the general-purpose registers. To specify
that we want the data at the memory location contained in the register rather than the data
in the register itself, we use square brackets around the name of the register. In other
words, to move the word at address DS:BX into register AX, we would use the following
instruction:

MOV AX,[BX]

Similarly, to move a value residing in register DX into the word at address DS:DI, you
would use
this instruction:

MOV [DI],DX

Segment Register Assumptions

The only problem with these examples is: where does it say to use DS as the segment
register?
It doesn't. To keep addressing notation simple, the 8086/8088 makes certain
assumptions about certain instructions in combinations with certain registers. There is
no particular system to these assumptions, and like dates in history or Spanish irregular
verbs, you'll just have to memorize them, or at least know where to look them up. (The
where is in Appendix C in this book.)
One of these assumptions is that the MOV instruction uses the segment address stored in
segment register DS unless you explicitly tell it otherwise. In this case above, we did not
tell the MOV instruction to use some segment register other than DS, so it fell back on
its assumptions and used DS. However, had you specified the offset as residing in
register SP, the MOV instruction would have assumed the use of segment register SS
instead. This assumption involves a memory mechanism known as the stack, which we
won't really address until the next chapter.

Overriding Segment Assumptions for Memory Data

But what if you want to use CS as a segment register with the MOV instruction? It's not
difficult. The instruction set includes what are called segment override prefixes. These

file:///E|/TEMP/Chapter%206%20new.htm (12 of 30) [9/30/02 08:32:41 PM]

file:///E|/TEMP/Chapter%206%20new.htm

are not precisely instructions, but are more like the filters that may be snapped in front of
a camera lens—the filter is not itself a lens, but it alters the way the lens operates.
There is one segment override prefix for each of the four segment registers: (CS, DS, SS,
and ES). In assembly language these prefixes are written as the name of the segment
register followed by a colon:
Override Prefix Usage
CS: Forces usage of code segment register CS
DS: Forces usage of the data segment register DS
SS: Forces usage of the stack segment register SS
ES: Forces usage of the extra segment register ES

In use, the segment override prefix is placed immediate in front of the memory data
reference whose segment register assumption is to be overridden. For example, to force a
MOV instruction to copy a value from the AX register into a location at an offset
(contained in SI) into the CS register, you would use this instruction:
MOV CS:[SI],AX

Without the "CS:", this instruction would move the value of AX into the DS register, at
an address specified as DS:SI.
Prefixes in use are very reminiscent of how an address is written; in fact, understanding
how prefixes work will help you keep in mind that in every reference to memory data
within an instruction, there is a ghostly segment register assumption floating in the air.
You may not see the ghostly "DS:" assumption in your MOV instruction, but if you
forget that it is there the whole concept of memory data will begin to seem arbitrary and
magical.
Every reference to memory data includes either an assumed segment register or a
segment override prefix to specify a segment register other than the assumed segment
register.
At the machine-code level, a segment override prefix is a single binary byte. The prefix
byte is placed in front of rather than within a machine instruction. In other words, if the
binary bytes comprising a MOV AX,[BX] instruction (which we call that instruction's
opcode) are 8BH 07H, adding the ES segment override prefix to the instruction (MOV
AX,ES:[BX]) places a single 26H in front of the opcode bytes, giving us 26H 8BH 07H
as the full binary equivalent.

Memory Data Summary

file:///E|/TEMP/Chapter%206%20new.htm (13 of 30) [9/30/02 08:32:41 PM]

file:///E|/TEMP/Chapter%206%20new.htm

Memory data consists of a single byte or word in memory, addressed by way of a
segment value and an offset value. The register containing the offset address is enclosed
in square brackets to indicate that the contents of memory, rather than the contents of the
register, are being addressed. The segment register used to address memory data is
usually assumed according to a complex set of rules. Optionally, a segment override
prefix may be placed in the instruction to specify some segment register other than the
default segment register.
Figure 6.2 shows what happens during a MOV AX,ES:[BX] instruction. The segment
address component of the full 20-bit memory address is contained inside the CPU in
segment register ES. Ordinarily, the segment address would be in register DS, but the
MOV instruction contains the ES: segment override prefix. The offset address
component is specified to reside in the BX register.

file:///E|/TEMP/Chapter%206%20new.htm (14 of 30) [9/30/02 08:32:41 PM]

file:///E|/TEMP/Chapter%206%20new.htm

The CPU sends out the values in ES and BX to the memory system side by side.
Together, the two values pin down one memory location where MyWord begins.
MyWord is actually two bytes, but that's fine—the 8086 CPU can bring both bytes into
the CPU at once, while the 8088 brings both bytes in separately, one after the other. The
CPU handles details like that and you needn't worry about it. Because AX is a 16-bit
register, two 8-bit bytes can fit into it quite nicely.
The segment address may reside in any of the four segment registers: CS, DS, SS, or ES.
However, the offset address may reside only in registers BX, BP, SP, SI, or DI.
AX, CX, and DX may not be used to contain an offset address during memory
addressing.

Limitations of the MOV Instruction

The MOV instruction can move nearly any register to any other register. For reasons
probably having to do with the limited budget of transistors on the 8086 and 8088 chips,
MOV can't quite do any move you can think of—here is a list of MOV's limitations:
• MOV cannot move memory data to memory data. In other words, an instruction like
MOV [SI],[BX] is illegal. Either of MOV's two operands may be memory data, but both
cannot be at once.
• MOV cannot move one segment register into another. Instructions like MOV CS,SS
are illegal. This usage might have come in handy, but it simply can't be done.

• MOV cannot move immediate data into a segment register. You can't write
 MOV CS,OB800H. Again, it would be handy but you just can't do it.
• MOV cannot move one of the 8-bit register halves into a 16-bit register, nor vise
versa. There are easy ways around any possible difficulties here, and preventing moves
between operands of different sizes can keep you out of numerous kinds of trouble.

file:///E|/TEMP/Chapter%206%20new.htm (15 of 30) [9/30/02 08:32:41 PM]

file:///E|/TEMP/Chapter%206%20new.htm

These limitations are, of course, over and above those situations that simply don't make
sense: moving a register or memory into immediate data, moving immediate data into
immediate data, specifying a general-purpose register as a segment register to contain a
segment, or specifying a segment register to contain an offset address. Figure 6.3 shows
numerous illegal MOV instructions that illustrates these various limitations and nonsense
situations.

6.3 Assembly-Language References

MOV is a good start. Like a medium-sized screwdriver, you'll end up using it for normal
tasks and maybe some abnormal ones, just as I use screwdrivers to pry nails out of
boards, club Black Widow spiders in the garage bathroom, discharge large electrolytic

file:///E|/TEMP/Chapter%206%20new.htm (16 of 30) [9/30/02 08:32:41 PM]

file:///E|/TEMP/Chapter%206%20new.htm

capacitors, and other intriguing things over and above workaday screw-turning. The
8086/8088 instruction set contains dozens of instructions, however, and over the course
of the rest of this book I'll be mixing
in descriptions of various other instructions with further discussions of memory
addressing and program logic and design.
Remembering a host of tiny, tangled details involving dozens of different instructions is
brutal and unnecessary. Even the "Big Guys" don't try to keep it all between their ears at
all times. Most keep a blue card or some other sort of reference document handy to jog
their memories about machine instruction details.

Blue Cards

A blue card is a reference summary printed on a piece of colored card stock. It folds up
like a road map and fits in your pocket. The original blue card may actually have been
blue, but knowing the perversity of programmers in general, it was probably bright
orange. Most assemblers come with a blue card. Guard it with your life.
Blue cards aren't always cards anymore. One of the best is a full sheet of very stiff shiny
plastic, sold by Micro Logic Corp. of Hackensack, NJ*. The blue card sold with
Microsoft's MASM is actually published by Intel, and has grown to a pocket-sized
booklet stapled on the spine.
Blue cards contain very terse summaries of what an instruction does, what operands are
legal, what flags it affects, and how many machine cycles it takes to execute. This
information, while helpful in the extreme, is often so brief that newcomers might not
quite fathom which edge of the card is up.

6.4 An Assembly-Language Reference for
Beginners

In deference to people just starting out in assembly language, I have put together a
beginner's reference to the most common 8086/8088 instructions and called it Appendix
A. It contains at least a page on every instruction I'll be covering in this book, plus a few
additional instructions that everyone ought to know. It does not include descriptions on
every instruction, but only the most common and most useful. Once you've gotten skillful
enough to use the more arcane instructions, you should be able to pick up the blue card
provided with your assembler and run with it.

file:///E|/TEMP/Chapter%206%20new.htm (17 of 30) [9/30/02 08:32:41 PM]

file:///E|/TEMP/Chapter%206%20new.htm

On the next page is a sample entry from Appendix A. Refer to it during the following
discussion
The instruction's mnemonic is at the top of the page, highlighted in a box to make it easy
to spot while flipping quickly through the appendix. To the mnemonic's right is the name
of the instruction, which is a little more descriptive than the naked mnemonic.

*Micro Chart, Micro Logic Corp. P.O. Box 174, Hackensack, NJ 07602

Neg Negate (two's complement; multiply by -1)

Flags affected:
O D I T S Z A P C OF: Overflow flag TF; Trap flag AF; Aux carry
F F F F F F F F F DF: Direction flag SF: Sign flag PF: Parity flag
* * * * * * IF: Interrupt flag ZF: Zero flag CF: Carry flag

Legal forms:
NEG r8
NEG m8
NEG r16
NEG m16
Examples:
NEG AL
NEG CX
NEG BYTE PTR [BX] ; Negates byte quantity at DS:BX
NEG WORD PTR [DI] ; Negates word quantity at DS:BX

Notes:
This is the assembly-language equivalent of multiplying a value by -1. Keep in mind that
negation is not the same as simply inverting each bit in the operand. (Another instruction,
NOT, does that.) The process is also known as generating the two's complement of a
value. The two's complement of a value added to that value yields zero. -1 = $FF; -2 =
$FE; -3 = $FD; etc.
If the operand is 0, CF is cleared and ZF is set; otherwise CF is set and ZF is cleared. If
the operand contains the maximum negative value (-128 for 8-bit or -32768 for 16-bit)
the operand does not change, but OF and CF are set. SF is set if the result is negative, or
cleared if not. PF is set if the low-order 8 bits of the result contain an even number of set

file:///E|/TEMP/Chapter%206%20new.htm (18 of 30) [9/30/02 08:32:41 PM]

file:///E|/TEMP/Chapter%206%20new.htm

(1) bits; otherwise PF is cleared.
NOTE: You must use a type override specifier (BYTE PTR or WORD PTR) with
memory data!

r8 = AL AH BL BH CL CH DL DH r!6 = AX BX CX DX BP SP SI DI
sr - CS DS SS ES
m8 = 8-bit memory data m16 - 16-bit memory data
i8 - 8-bit immediate data i!6 = 16-bit immediate data
d8 = 8 bit signed displacement d16 = 16-bit signed displacement

Flags

Immediately beneath the mnemonic is a minichart of machine flags in the Flags register.
I haven't spoken in detail of flags yet, but the Flags register is a collection of one-bit
values that retain certain essential information about the state of the machine for short
periods of time. Many (but by no means all) 8086/ 8088 instructions change the values of
one or more flags. The flags may then be individually tested by one of the JMP
instructions, which then change the course of the program depending on the state of the
flags.
We'll get into this business of tests and jumps in Chapter 9. For now, simply understand
that each of the flags has a name, and that for each flag is a symbol in the flags minichart.
You'll come to know the flags by their 2-character symbols in time, but until then the full
names of the flags are shown to the right of the minichart. Most of the flags are not used
frequently in beginning assembly-language work. Most of what you'll be paying attention
to, flags-wise, is the Carry flag (CF). It's used, as you might imagine, for keeping track
of binary arithmetic when an arithmetic operation carries out of a single byte or word.
There will be an asterisk (*) beneath the symbol of any flag affected by the instruction.
How the flag is affected depends on what the instruction does— you'll have to divine that
from the Notes section of the reference sheet. When an instruction affects no flags at all,
the word <none> will appear in the minichart.
In the example page, the minichart indicates that the NEG instruction affects the
Overflow flag, the Sign flag, the Zero flag, the Auxiliary carry flag, the Parity flag, and
the Carry flag. The ways that the flags are affected depend on the results of the negation
operation on the operand specified. These ways are summarized in the second paragraph
of the Notes section.

Legal Forms

file:///E|/TEMP/Chapter%206%20new.htm (19 of 30) [9/30/02 08:32:41 PM]

file:///E|/TEMP/Chapter%206%20new.htm

A given mnemonic represents a single 8086/8088 instruction, but each instruction may
include more than one legal form. The form of an instruction varies by the type and order
of the operands passed to it.
What the individual forms actually represent are different binary number opcodes. For
example, beneath the surface the POP AX instruction is the number 58H, whereas the
POP SI instruction is the number 5EH.
Sometimes there will be special cases of an instruction and its operands that are shorter
than the more general cases. For example, the XCHG instruction, which exchanges the
contents of the two operands, has a special case when one of the operands is register AX.
Any XCHG instruction with AX as one of the operands is represented by a single-byte
opcode. The general forms of XCHG (like XCHG r16,r16) are always two bytes long
instead. This implies that there are actually two different opcodes that will do the job for
a given combination of operands (for example, XCHG AX,DX). True enough—and
most assembler programs are "smart" enough to choose the shortest form possible in any
given situation. If you are hand-assembling a sequence of raw opcode bytes, say, for use
in a Turbo Pascal INLINE statement, you need to be aware of the special cases, and all
special cases will be marked as such in the Legal forms section.
When you want to use an instruction with a certain set of operands, make sure you check
the Legal forms section of the reference guide for that instruction to make sure that the
combination is legal. The MOV instruction, for example, cannot move one segment
register directly into another, nor can it move immediate data directly into a segment
register. Neither combination of operands is a legal form of the MOV instruction.
In the example reference page on the NEG instruction, you'll see that a segment register
cannot be an operand to NEG. (If it could, there would be a NEG sr item in the Legal
forms list.) If you want to negate the value in a segment register, you'll first have to use
MOV to move the value from the segment register into one of the general-purpose
registers. Then you can use NEG on the general-purpose register, to move the negated
value back into the segment register.

Operand Symbols

The symbols used to indicate the nature of the operands are included on every page in
Appendix A. They're close to self-explanatory, but I'll take a moment to expand upon
them slightly here:

• r8—An 8-bit register half (AH, AL, BH, BL, CH, CL, DH, or DL).

file:///E|/TEMP/Chapter%206%20new.htm (20 of 30) [9/30/02 08:32:41 PM]

file:///E|/TEMP/Chapter%206%20new.htm

• rl6—A 16-bit general-purpose register (AX, BX, CX, DX, BP, SP, SI or DI).
• sr—One of the four segment registers (CS, DS, SS, or ES).
• m8—An 8-bit byte of memory data.
• ml6—A 16-bit word of memory data.
• i8—An 8-bit byte of immediate data.
• i16—A 16-bit word of immediate data.
• d8—An 8-bit signed displacement.

We haven't covered this operand yet, but a displacement is a distance between the current
location in the code and another place in the code to which we want to jump. It's signed
(negative or positive) because a positive displacement jumps you higher (forward) in
memory, whereas a negative displacement jumps you lower (back) in memory. We'll
examine this notion in detail in Chapter 9.
• d16—A 16-bit signed displacement. Again, for use with jump and call instructions.
See Chapter 9.

Examples
The Legal forms section shows what combinations of operands is legal for a given
instruction, and the Examples section shows examples of the instruction in actual
use—just as it would be coded in an assembly-language program. I've tried to put a good
sampling of examples for each instruction, demonstrating the range of possibilities
available with the instruction. This includes situations that require type override
specifiers (which I'll cover in the next section).

Notes

The Notes section of the reference page briefly describes the instruction's action, and
provides information on how it affects the flags, how it may be limited in use, and any
other detail that needs to be remembered, especially things that beginners would
overlook or misconstrue.

What's Not Here...

Appendix A differs from most detailed assembly-language references in that it does not
have the binary opcode encoding information or the indications of how many machine
cycles are used by each form of the instruction.

file:///E|/TEMP/Chapter%206%20new.htm (21 of 30) [9/30/02 08:32:41 PM]

file:///E|/TEMP/Chapter%206%20new.htm

The binary encoding of an instruction is the actual sequence of binary bytes that the CPU
digests as the machine instruction. What we would call POP AX the machine sees as the
binary number 58H. What we call ADD SI,07733H the machine sees as 81H OC6H
33H 77H. Machine instructions are encoded into anywhere from one to four (rarely
more) binary bytes depending on what instruction they are and what their operands are.
Laying out the system for determining what the encoding will be for any given
instruction is extremely complicated, in that its component bytes must be set up bit by bit
from several large tables. I've decided that this book is not the place for that particular
discussion, and have left encoding information out of Appendix A.
Finally, I've included nothing anywhere in this book that indicates how many machine
cycles are expended by any given machine instruction. A machine cycle is one pulse of
the master clock that makes the PC perform its magic. Each instruction uses some
number of those cycles to do its work, and the number varies all over the map depending
on criteria that I won't be explaining in this book.
Furthermore, as Michael Abrash explains in his book, Zen of Assembly Language,
knowing the cycle requirements for individual instructions is rarely sufficient to allow
even an expert assembly-language programmer to calculate how much time a given
series of instructions will take. He and I both agree that it is no fit subject for beginners,
and I will let him take it up in his far more advanced volume.

6.5 Rally 'Round the Flags, Boys!

We haven't studied the Flags register as a whole. The Flags register is a veritable
junkdrawer of disjointed bits of information, and it's tough (and perhaps misleading) to
just sit down and describe all of them in detail at once. What I'll do is describe the flags
as we encounter them in discussing the various instructions in this and future chapters.
The Flags register as a whole is a single 16-bit register buried inside the CPU. Of those
16 bits, 9 are actually used as flags on the 8088/8086. The remaining seven bits are
undefined and ignored. You can neither set them nor read them. Some of those seven bits
become defined and useful in the more advanced processors like the 286, 386, and 486,
but their uses are fairly arcane and I won't be covering them in this book, even in Chapter
11, which discusses the more advanced processors.
A flag is a single bit of information whose meaning is independent from any other bit. A
bit can be set to 1 or cleared to 0 by the CPU as its needs require. The idea is to tell you,
the programmer, the state of certain conditions inside the CPU, so that your program can
test for and act on the states of those conditions.

file:///E|/TEMP/Chapter%206%20new.htm (22 of 30) [9/30/02 08:32:41 PM]

file:///E|/TEMP/Chapter%206%20new.htm

I often imagine a row of country mailboxes, each with its own little red flag on the side.
Each flag can be up or down, and if the Smith's flag is up, it tells the mailman that the
Smiths have placed mail in their box to be picked up. The mailman looks to see if the
Smith's flag is raised (a test) and if so, opens the Smith's mailbox and picks up the
waiting mail.
Each of the Flags register's nine flags has a two-letter symbol by which most
programmers know them. I'll use those symbols most of the time, and you should
become familiar with them. The flags, their symbols, and brief descriptions of what they
stand for follows:
• OF—The Overflow flag is set when the result of an operation becomes too large to fit
in the operand it originally occupied.
• DF—The Direction flag is an oddball among the flags in that it tells the CPU
something that you want it to know, rather than the other way around. It dictates the
direction that activity moves (up in memory or down in memory) during the execution of
string instructions. When DF is set, string instructions proceed from high memory
toward low memory. When DF is cleared, string instructions proceed from low memory
toward high memory. See Chapter 10.
• IF—The Interrupt enable flag is a two-way flag. The CPU sets it under certain
conditions, and you can set it yourself using the STI and CLI instructions. When IF is
set, interrupts (see Chapter 9) are enabled and may occur when requested. When IF is
cleared, interrupts are ignored by the CPU.
• TF—When set, the Trap flag allows DEBUG's command to execute only a single
instruction before the CPU calls an interrupt routine. This is not an especially useful flag
for ordinary programming and I won't have anything more to say about it.
• SF—The Sign flag is set when the result of an operation forces the operand to become
negative. By "negative," I mean that the highest order bit in the operand (the sign bit)
becomes a 1 during a signed arithmetic operation. Any operation that leaves the sign
positive will clear SF.
• ZF—The Zero flag is set when the result of an operation is zero. If the operand is some
non-zero value, ZF is cleared.
• AF—The Auxiliary carry flag is used only for Binary Coded Decimal (BCD)
arithmetic. BCD arithmetic treats each operand byte as a pair of 4-bit nybbles, and allows
something approximating decimal (base 10) arithmetic to be done directly in the CPU
hardware by using one of the BCD arithmetic instructions. I'll discuss BCD arithmetic
briefly in Chapter 10.
• PF—The Parity flag will seem instantly familiar to anyone who understands serial data

file:///E|/TEMP/Chapter%206%20new.htm (23 of 30) [9/30/02 08:32:41 PM]

file:///E|/TEMP/Chapter%206%20new.htm

communications, and utterly bizarre to anyone who doesn't. PF indicates whether the
number of set bits in the low-order byte of a result is even or odd. For example, if the
result is OF2H PF will be cleared, because OF2H (11110010) contains an odd number
of 1 bits. Similarly, if the result is 3AH (00111100) PF will be set because there is an
even number (4) of 1 bits in the result. This flag is a carryover from the days when all
computer communications were done through a serial port, for which a system of error
detection called "parity checking" depends on knowing whether a count of set bits in a
character byte is even or odd. PF has no other use and I won't be describing it further.
• CF—The Carry flag is by far the most useful flag in the Flags register, and the one you
will have to pay attention to most. If the result of an arithmetic or shift operation "carries
out" a bit from the operand, CF becomes set. Otherwise, if nothing is carried out, CF is
cleared.

Check That Reference Page!

What I call "flag etiquette" is the way a given instruction affects the flags in the Flags
register. You must remember that the descriptions of the flags on the previous pages are
generalizations only, and are subject to specific restrictions and special cases imposed by
individual instructions. Flag etiquette for individual flags varies widely from instruction
to instruction, even though the sense of the flag's use may be the same in every case.
For example, some instructions that cause a 0 to appear in an operand set ZF, while
others do not. Sadly, there's no system to it and no easy way to keep it straight in your
head. When you intend to use the flags in testing by way of conditional jump instructions
(See Chapter 9), you have to check each individual instruction to see how the various
flags are affected.
Flag etiquette is a highly individual matter. Check the reference for each instruction to
see it affects the flags. Assume nothing.
A simple lesson in flag etiquette involves two new instructions, INC and DEC, and yet
another interesting ability of DEBUG.

Adding and Subtracting 1 with INC and DEC

Several instructions come in pairs. Simplest among those are INC and DEC, which
increment and decrement an operand by 1, respectively.
Adding 1 to something or subtracting 1 from something happens a lot in computer
programming. If you're counting the number of times a program is executing a loop, or

file:///E|/TEMP/Chapter%206%20new.htm (24 of 30) [9/30/02 08:32:41 PM]

file:///E|/TEMP/Chapter%206%20new.htm

counting bytes in a table, or doing something that advances or retreats one count at a
time, INC or DEC can be a very quick way to make the actual addition or subtraction
happen.
Both INC and DEC take only one operand. An error will be flagged by DEBUG or your
assembler if you try to use either INC or DEC with two operands, or without any.
Try both by using the Assemble command and the Trace command under DEBUG.
Assemble this short program, display the registers after entering it, and then trace
through it:

MOV AX,FFFF
MOV BX,002F
DEC BX
INC AX

The session should look very much like this:

-A
1980:0100 MOV AX,FFFF
1980:0103 MOV BX,002D
1980:0106 INC AX
1980:0107 DEC BX
1980:0108
-R
AX=0000 BX=0000 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
DS=1980 ES=1980 SS=1980 CS=1980 IP=0100 NV UP EI PL NZ NA PO
NC
1980:0100 B8FFFF MOV AX,FFFF
 T

AX=FFFF BX=0000 CX=0000 DX=0000 SP-FFEE BP=0000 SI=0000 DI-0000
DS=1980 ES=1980 SS=1980 CS=1980 IP=0103 NV UP EI PL NZ NA PO NC
1980:0103 BB2DOO MOV BX,002D
-T

AX=FFFF BX=002D CX=0000 DX=.0000 SP=FFEE BP=0000 SI=0000 DI=0000
DS=1980 ES=1980 SS=1980 CS=1980 IP=0106 NV UP EI PL NZ NA PO NC
1980:0106 40 INC AX
-T

file:///E|/TEMP/Chapter%206%20new.htm (25 of 30) [9/30/02 08:32:41 PM]

file:///E|/TEMP/Chapter%206%20new.htm

AX=0000 BX=002D CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
DS=1980 ES-1980 SS=1980 CS=1980 IP=0107 NV UP EI PL ZR AC PE NC
1980:0107 4B DEC BX
-T

AX-0000 BX=002C CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
DS=1980 ES-1980 SS=1980 CS=1980 IP=0108 NV UP EI PL NZ NA PO NC
1980:0108 OF POP CS

Watch what happens to the registers. Decrementing BX predictably turns the value 2DH
into value 2CH. Incrementing 0FFFFH, on the other hand, "rolls over" the register to 0.
0FFFFH is the largest unsigned value that can be expressed in a 16-bit register. Adding
one to it rolls it over to 0, just as adding 1 to 99 rolls the rightmost two digits to 0 in
creating the number 100. The difference with INC is that there is no carry. The Carry
flag is not affected by INC, so don't try to use it to perform multi-digit arithmetic.

Using DEBUG to Watch the Flags

When INC rolled AX over to 0, the Carry flag was not affected, but the Zero flag (ZF)
became set (equal to 1). The Zero flag works that way: when the result of an operation
becomes 0, ZF is almost always set.
DEC sets the flags in the same way. If you were to execute a DEC DX instruction when
DX contained 1, DX would become 0 and ZF would be set.
Apart from looking at a reference guide, how can you tell what flags are affected by a
given instruction? DEBUG allows you to see the flags as they change, just as it lets you
dump memory and examine the values in the general-purpose and segment registers. The
second line of DEBUG's three-line register display contains eight cryptic symbols at its
right margin. You've been seeing them, I'm sure, without having a clue as to their
meaning.
Eight of the nine 8086/8088 flags are represented here by a two-character symbol. (The
odd flag out is the Trap flag, TF, which is reserved for exclusive use by DEBUG itself,
and cannot be examined while DEBUG has control of the machine.) Unfortunately, the
symbols DEBUG uses are not the same as the standard flag symbols that programmers
call the flags by. The difference is that DEBUG's flag symbols do not represent the flags'
names but rather the flags' values. Each flag can be set or cleared, and DEBUG displays
the state of each flag by having a unique symbol for each state of each flag, for a total of
sixteen distinct symbols in all. The symbols' meanings are summarized in Table 6.1.

file:///E|/TEMP/Chapter%206%20new.htm (26 of 30) [9/30/02 08:32:42 PM]

file:///E|/TEMP/Chapter%206%20new.htm

 Table 6.1. DEBUG's flag state symbols

Flag Set Symbol Clear Symbol
OF—Overflow flag OV NV
DF—Direction flag DN UP
IE—Interrupt enable flag EI DI
SF—Sign flag NG PL
ZF—Zero flag ZR NZ
AF—Auxiliary carry flag AC NA
PF—Parity flag PE PO
CF—Carry flag CY NC

The best I can say for this symbol set is that it's not obviously obscene. It is, however,
nearly impossible to memorize. You'd best keep a reduced copy of this table (perhaps
taped to the back of a business card) near your keyboard if you intend to watch the
waving of the 8086/8088's flags.
When you first run DEBUG, the flags are set to their default values NV, UP, EI, PL,
NZ, NA, PO, and NC.
You'll note that all these symbols are clear symbols except for EI, which must be set to
allow interrupts to happen. Whether you are aware of it or not, interrupts are happening
constantly within your PC. Each keystroke you type on the keyboard triggers an
interrupt. Every 55 milliseconds, the system clock triggers an interrupt to allow the BIOS
software to update the time and date values kept in memory as long as the PC has power.
If you disabled interrupts for any period of time, your real-time clock would stop and
your keyboard would freeze up. Needless to say, EI must be kept set nearly all the time.
Each time you execute an instruction with the T command, the flags display will be
updated. If the instruction that was executed affected any of the flags, the appropriate
symbol will be displayed over the previous symbol.
With Table 6.1 in hand, go back and examine the flags display for the four-instruction
DEBUG trace shown a few pages back. The first display shows the default values for all
the flags, since no instructions have been executed yet. No change appears for the second
and third flags displays, because the MOV instruction affects none of the flags.
But look closely at the flags display after the INC AX instruction has been executed.
Three of the flags have changed state: ZF has gone from NZ (clear) to ZR (set),
indicating that the operand of INC went to 0 as a result of the increment operation; AF
has gone from NA to AC. (Let's just skip past that one; explaining what that means
would be more confusing than helpful.) The Parity flag PF has gone from PO to PE,

file:///E|/TEMP/Chapter%206%20new.htm (27 of 30) [9/30/02 08:32:42 PM]

file:///E|/TEMP/Chapter%206%20new.htm

meaning that as a result of the increment operation, the number of bits present in the low
byte of BX went from odd to even.

Finally, look at the last flags display after the DEC BX instruction has been executed.
Again, ZF, AF, and PF changed: ZF went to NZ, indicating that the DEC instruction
left a nonzero value in its operand; and PF went from PE to PO, indicating that the
number of bits in the low byte of BX was odd after the DEC BX instruction.
One thing to keep in mind is that even when a flag doesn't change state from display to
display, it was still affected by the previously executed instruction. Five out of nine flags
are affected by every INC and DEC instruction that the CPU executes. Not every DEC
instruction decrements its operand down to 0, but every DEC instruction causes some
value to be asserted in ZF. The same holds true for the other four affected flags: even if
the state of an affected flag doesn't change as a result of an instruction, the state is
asserted, even if only reasserted to its existing value.
Thorough understanding of the flags comes with practice and dogged persistence. It's one
of the more chaotic aspects of assembly-language programming, but as we'll see when
we get to conditional branches, flags are what make the CPU truly come alive to do our
work for us.

6.6 Using Type Overrides

Back on the sample reference appendix page, notice the following example uses of the
NEG instruction:

NEG BYTE PTR [BX] ; Negates byte quantity at DS:BX
NEG WORD PTR [DI] ; Negates word quantity at DS:BX

What indeed is a BYTE PTR? Or a WORD PTR? Both are what we call type
overrides, and you literally can't use NEG (or numerous other instructions) on memory
data without one of these type overrides.
The problem is this: the NEG instruction negates its operand. The operand can be either
a byte or a word; NEG works equally well on both. But...how does NEG know whether
to negate a byte or a word? The memory data operand [BX] only specifies an address in
memory, using DS as the assumed segment register. The address DS:BX points to a
byte—but it also points to a word, which is nothing more than two bytes in a row
somewhere in memory. So, does NEG negate the byte located at address DS:BX? Or,
does it negate the two bytes (a word) that start at address

file:///E|/TEMP/Chapter%206%20new.htm (28 of 30) [9/30/02 08:32:42 PM]

file:///E|/TEMP/Chapter%206%20new.htm

DS:BX?
Unless you tell it somehow, NEG has no way to know.
Telling an instruction the size of its operand is what BYTE PTR and WORD PTR do.
Calling them type overrides can be a little misleading sometimes, because NEG has no
default type to override. Several other instructions that work on single operands only
(like EVC, DEC, and NOT) have the same problem.

Types in Assembly Language

So, do type overrides ever override anything? They can, sometimes. The notion of type in
assembly language is almost wholly a question of size. A word is a type, as is a byte, a
double word, a quad word, and so on. The assembler is not concerned with what an
assembly-language variable means. (Keeping track of such things is totally up to you.)
The assembler only worries about how big the variable is. The assembler does not want
to have to try to fit ten pounds of kitty litter in a five pound bag, which is impossible, nor
five pounds of kitty litter in a ten pound bag, which can be confusing.
Register data always has a fixed and obvious type, since a register's size cannot be
changed. BL is 1 byte and BX is 2 bytes. Register types cannot be overridden.
The type of immediate data depends on the magnitude of the immediate value. If the
immediate value is too large to fit in a single byte, that immediate value becomes word
data and you can't load it into an 8-bit register half. An immediate value that can fit in a
single byte may be loaded into either a byte-sized register half or a word-sized register;
its type is thus taken from the context of the instruction in which it exists, and matches
that of the register data operand into which it is to be loaded.
Memory data is something else again. We've spoken of memory data so far in terms of
registers holding offsets, without considering the use of named memory data. I'll be
discussing named memory data in the next chapter, but in brief terms, you can define
named variables in your assembly-language programs using directives like DB and DW.
It looks like this:

Counter DB
MixTag DW

Here, Counter is a variable allocated as a single byte in memory by the Define Byte
(DB) directive. Similarly, MixTag is a variable allocated as a word in memory by the
Define Word (DW) directive.
By using DB, you give variable Counter a type and a size. You must match this type

file:///E|/TEMP/Chapter%206%20new.htm (29 of 30) [9/30/02 08:32:42 PM]

file:///E|/TEMP/Chapter%206%20new.htm

when you use the variable name Counter in an instruction to indicate memory data.
This, for example, will be accepted by the assembler:

MOV BL,Counter

This instruction will take the current value located in memory at the address represented
by the variable name Counter, and will load that variable into register-half BL.
What the assembler will refuse to do is load the variable MixTag (which is word-sized)
into a register-half, like this:

MOV BL,MixTag ; Won't assemble!

By using a type override specifier, however, you can force the assembler to do your
bidding and put half of MixTag into register BL:

MOV BL,BYTE PTR MixTag

The type override specifier BYTE PTR forces the assembler to look upon MixTag as
being 1 byte in size. MixTag is not byte-sized, however, so what actually happens is that
the least significant byte, the lowbyte, of MixTag will be loaded into BL, with the most
significant byte left high and dry.
Is this useful? It can be. Is it dangerous? You bet. It is up to you to decide if overriding
the type of memory data makes sense, and completely your responsibility to ensure that
doing so doesn't sprinkle your code with bugs.
The best use of the type override specifiers is to clear up ambiguous instructions like
EVC [DI], which could specify either a byte or a word as memory data pointed to by a
segment register and DI. The other occasions will be rarer and riskier. Use your
head—and know what you're doing. That's more important in assembly language than
anywhere else in computer programming.

file:///E|/TEMP/Chapter%206%20new.htm (30 of 30) [9/30/02 08:32:42 PM]

file:///E|/TEMP/Chapter%207%20Our%20Object%20All%20Sublime.htm

Our Object All Sublime
Creating Programs That Work
7.1 The Bones of an Assembly-Language Program >• 182
7.2 First In, First Out via the Stack >• 193
7.3 Using DOS Services through INT >• 200
7.4 Summary: EAT.ASM on the Dissection Table >• 209

They don't call it "assembly" for nothing. Facing the task of writing an assembly-
language program brings to mind images of Christmas morning: you've spilled 1,567
small metal parts out of a large box marked Land Shark HyperBike (Some Assembly
Required), and now you have to somehow put them all together with nothing left over. (In
the meantime, the kids seem more than happy playing in the box)
I've actually explained just about all you absolutely must understand to create your first
assembly-language program. Still, there is a non-trivial leap from here to there; you are
faced with many small parts with sharp edges that can fit together in an infinity of
different ways, most wrong, some workable, but only a few that are ideal.
So here's the plan: on the next page I will present you with the completed and operable
Land Shark HyperBike—which I will then tear apart before your eyes. This is the best
way to learn to assemble: by pulling apart programs written by those who know what
they're doing. Over the rest of this book we'll pull a few more programs apart, in the hope
that by the time it's over you'll be able to move in the other direction all by yourself.

7.1 The Bones of an Assembly-Language Program

The listing below is perhaps the simplest correct program that will do anything visible,

file:///E|/TEMP/Chapter%207%20Our%20Object%20All%20Sublime.htm (1 of 38) [9/30/02 08:34:07 PM]

file:///E|/TEMP/Chapter%207%20Our%20Object%20All%20Sublime.htm

and still be comprehensible and expandable. This issue of comprehensibility is utterly
central to quality assembly-language programming. With no other computer language
(not even APL or that old devil FORTH) is there anything even close to the risk of
writing code that looks so much like something scraped off the wall of King Tut's tomb.
The program EAT.ASM displays one (short) line of text:

Eat at Joe's!

For that you have to feed 72 lines of text file to the assembler and linker. Many of those
72 lines are unnecessary in the strict sense, but serve instead as commentary to allow you
to understand what the program is doing (or more important, how it's doing it) six months
or a year from now.
One of the aims of assembly-language coding is to use as few instructions as possible in
getting the job done. This does not mean creating as short a source-code file as possible.
The more comments you put in your file, the better you'll remember how things work
inside the program the next time you pick it up. I think you'll find it amazing how quickly
the logic of a complicated assembly-language file goes cold in your head. After no more
than 48 hours of working on other projects, I've come back to assembler projects and had
to struggle to get back to flank speed on development.

Comments are neither time nor space wasted. IBM used to say, "one line of comments per
line of code." That's good, but should be considered a minimum for assembly-language
work. A better course (that I will in fact follow in the more complicated examples later
on) is to use one short line of commentary to the right of each line of code, along with a
comment block at the start of each sequence of instructions that work together in
accomplishing some discrete task.
Here's the program. Read it carefully:

file:///E|/TEMP/Chapter%207%20Our%20Object%20All%20Sublime.htm (2 of 38) [9/30/02 08:34:07 PM]

file:///E|/TEMP/Chapter%207%20Our%20Object%20All%20Sublime.htm

file:///E|/TEMP/Chapter%207%20Our%20Object%20All%20Sublime.htm (3 of 38) [9/30/02 08:34:07 PM]

file:///E|/TEMP/Chapter%207%20Our%20Object%20All%20Sublime.htm

Three Segments

Useful assembly-language programs must contain at least three segments: one for code,
one for data, and one for the stack. Larger programs may contain more than one code
segment and more than one data segment, but 8086/8088 programs may contain only one
stack segment at a time.
EAT.ASM has those three necessary segments. Each segment has a name: MyStack,
MyData, and MyCode. Note that I've set off the three segments with comment blocks.
This is a good idea when you're starting out, since separating a program's complexity into
three compartments is a good first step in managing that complexity.
The code segment, pretty obviously, contains the machine instructions that do the
program's work. The data segment contains variables, which are storage cubbyholes for

file:///E|/TEMP/Chapter%207%20Our%20Object%20All%20Sublime.htm (4 of 38) [9/30/02 08:34:07 PM]

file:///E|/TEMP/Chapter%207%20Our%20Object%20All%20Sublime.htm

information. Variables can be defined as having some particular value when the program
begins running (as with the Eat1 and CRLF variables defined in EAT.ASM's data
segment), or they may simply be defined as empty boxes that can be filled at any point
after the program begins operation.
 The stack segment contains the program's stack. I haven't explained stacks just yet, and
because you don't really need to understand stacks in order to understand how EAT.ASM
works, I'm going to hold off just a little while longer. In short, a stack is simply an
ordered place to stash things for the short term— and that will have to do until we cover
the concept in depth in Section 7.2.
Labels

A segment is defined in a program by associating a label with the assembler directive
SEGMENT. Labels are just identifiers that name something, like MyStack. The type of a
label refers to the sort of creature the label identifies. For example, in EAT.ASM, the
labels MyStack, MyData, and MyCode are SEGMENT labels. The value of a segment
label is the segment address of the named segment. This is why the instruction MOV
AX,MyData moves the segment address of segment MyData into register AX.
Notice that the label MyData is used twice in defining the data segment we're naming
MyData. The SEGMENT directive begins the segment, and the ENDS directive, (think
end segment) ends the directive. Everything between MyData SEGMENT and MyData
ENDS belongs to the segment named MyData.
A label can be used to mark a location in the code segment. EAT1.ASM has one such
label, Start:

Start: ; This is where program execution begins

Start's value is the offset of its location into the code segment. The way you can spot a
label used to mark a code address is by the colon used after the label. The colon, in a
sense, is the sign reading "you are here" in the code, where "here" has a name given in the
label.
The label Start has a special job: it specifies the point in the program where execution is
to begin when the program starts running. You'll see in the program listing that the label
Start is repeated in the very last line of the file:

END Start

The label following the END directive is the address of the first instruction to be executed

file:///E|/TEMP/Chapter%207%20Our%20Object%20All%20Sublime.htm (5 of 38) [9/30/02 08:34:07 PM]

file:///E|/TEMP/Chapter%207%20Our%20Object%20All%20Sublime.htm

when DOS loads and runs the program. The label used to specify the execution starting
point does not have to be "Start," but there must be some label chosen as the starting
point, and it must follow the END directive for your program to assemble and link
without errors.
Later on, we'll see such labels used as the targets of jump instructions. For example, the
following machine instruction transfers the flow of instruction execution to the location
marked by the label
GoHome:

JNE GoHome

Notice that in both the instructions above, the colon is not used. The colon is only placed
where the label is defined, not where it is referenced. Think of it this way: use the colon
when you are marking a location, not when you are going there.

Variables

The labels Eat1 and CRLF define variables. A variable is defined by associating a label
with a data definition directive. You've seen these used informally earlier in this book,
and there are two in EAT.ASM. Data definition directives look like this:

MyByte DB 07H ; 8 bits in size
MyWord DW 0FFFFH ; 16 bits in size
MyDouble DD OB8000000H ; 32 bits in size
MyString DB "I was born on a pirate ship.","$"
MyData DB ? ; Uninitialized storage
MyQuery DB '?' ; Contains a question mark

Think of the DB directive as "Define Byte." DB sets aside one byte of memory for data
storage. Think of the DW directive as "Define Word." DW sets aside one word of
memory for data storage. Think of the DD directive as "Define Double." DD sets aside a
double word in memory for storage, typically for full 32-bit addresses.
All of the variable definitions shown above except for MyData both set aside memory for
storage and then place some specific value in storage at that location. MyData simply sets
aside storage and leaves the storage undefined, or empty. The undefined storage is
indicated by the presence of a question mark after the directive.
If you really want to leave the defined variable empty, make sure you don't place the

file:///E|/TEMP/Chapter%207%20Our%20Object%20All%20Sublime.htm (6 of 38) [9/30/02 08:34:07 PM]

file:///E|/TEMP/Chapter%207%20Our%20Object%20All%20Sublime.htm

question mark in quotation marks. If you place the question mark in quotation marks, the
assembler will set aside storage and then place a question mark character (ASCII
character 63, or 03FH) in that storage.
You may at some point want to create a variable with a question mark in it, for this
variable you'll need the quotation marks.
I find it useful to put some recognizable value in a variable whenever I can. It helps to be
able to spot a variable in a DEBUG dump of memory rather than have to find it by "dead
reckoning"—that is, by spotting the closest known location to the variable in question and
counting bytes to determine where it is.

String Variables

String variables are an interesting case. A string is just that: a sequence or string of
characters, all in a row in memory. A string is defined in EAT.ASM:

Eat1 DB "Eat at Joe's","$"

Strings are a slight exception to the rule that a data definition directive sets aside a
particular quantity of memory. The DB directive ordinarily sets aside one byte only.
However, a string may be any length you like, as long as it remains on a single line of
your source-code file. Because there is no data directive that sets aside 16 bytes, or 42
bytes, strings are defined simply by associating a label with the place where the string
starts. The Eat1 label and its DB directive specify one byte in memory as the string's
starting point. The number of characters in the string is what tells the assembler how
many bytes of storage to set aside for that string.
You can use either single quotation marks (') or double quotation marks (") to delineate a
string—the choice is up to you—unless you are defining a string value that itself contains
one or more quotation mark characters. Notice in EAT.ASM the string variable Eat1
contains a single quotation mark character used as an apostrophe. Because the string
contains this character, you must delineate it with double quotation marks. The reverse is
also true: if you define a string that contains one or more double quotation mark
characters, you must delineate it with single quotation mark characters:

Yukkh DB "He said, "How disgusting!" and threw up.',"$"

You may combine several separate substrings into a single string variable by separating
the substrings by commas. Both Eat1 and Yukkh do this, indicated by the dollar sign

file:///E|/TEMP/Chapter%207%20Our%20Object%20All%20Sublime.htm (7 of 38) [9/30/02 08:34:07 PM]

file:///E|/TEMP/Chapter%207%20Our%20Object%20All%20Sublime.htm

($) in quotation marks at the end of the main string data. The dollar sign is used to mark
the end of the string for the mechanism that displays the string to the screen. More on that
mechanism and marking string lengths in Section 7.3.

Directives vs. Instruction Mnemonics

 Data definition directives look a little like machine instruction mnemonics, but they are
emphatically not machine instructions. One very common mistake made by beginners is
looking for the binary opcode represented by a directive such as DB or DW. There is no
binary opcode for DW, DB, and the other directives. Machine instructions, as the name
implies, are instructions to the CPU itself. Directives, by contrast, are instructions to the
assembler.
Understanding directives is easier when you understand the nature of the assembler's job.
(Look back to Chapter 3 for a detailed refresher if you've gotten fuzzy on what the
assembler and linker do.) The assembler scans your source-code file, and as it scans this
file it builds an object-code file on disk. It builds this object-code file step by step, one
byte at a time, starting at the beginning of the file and working its way through to the end.
When it encounters a machine instruction mnemonic, it figures out what binary opcode is
represented by that mnemonic and writes that binary opcode (which may be anywhere
from one to six actual bytes) to the object-code file.

When the assembler encounters a directive like DW, it does not write any opcode to the
object-code file. If the DW directive specifies an empty variable, the assembler just
leaves two bytes of space in the next available slot in the data segment and moves on. If
the DW directive specifies an initial value for the variable, the assembler writes the bytes
corresponding to that value in the slot it set aside. The assembler writes the address of the
allocated space into a table, beside the label that names the variable. Then the assembler
moves on, to the next directive (if there are further directives) or on to whatever comes
next in the source-code file.
When you write the following statement in your assembly language program:
MyVidOrg DW 0B800H

What you are really doing is instructing the assembler to set aside two bytes of data
(Define Word, remember) and place the value 0B800H in those two bytes. The assembler
writes the label MyVidOrg and the label's address into a table it builds of labels in the
program for later use by the linker.
This is true for all kinds of directives, not simply data definition directives. An assembler

file:///E|/TEMP/Chapter%207%20Our%20Object%20All%20Sublime.htm (8 of 38) [9/30/02 08:34:07 PM]

file:///E|/TEMP/Chapter%207%20Our%20Object%20All%20Sublime.htm

directive is just that: your walking orders handed to the assembler. There are numerous
assembler directives other than DB, DW, and DD. The SEGMENT and ENDS directives
are instructions to the assembler to consider the definitions they surround as belonging to
a single segment. We'll take up the PROC and ENDP directives in Section 8.1, and the
ASSUME directive shortly.

The Difference Between a Variable's Address and Its Contents

When you use a variable's label in a MOV instruction, you are accessing the value stored
in that variable. Suppose you had defined a variable in the data segment called MyData
this way:
MyData DW 0744H

The label MyData represents some address within the data segment, and at that address
the assembler places the value 0744H. Now, if you want to copy the value contained in
MyData to the AX register, you would use the following MOV instruction:
MOV AX,MyData

After this instruction, AX would contain 0744H.
Now, there are many situations where you need to move the address of a variable into a
register rather than the contents of the variable. In fact, you may find yourself moving the
addresses of variables around more than the contents of the variables, especially if you
make a lot of calls to DOS and BIOS services. (For more on that, see Section 7.4.) The
8086/8088 instruction set contains an instruction for moving the address of a variable into a
register. The instruction is LEA, which stands for Load Effective Address. LEA is used twice
in EAT.ASM. Here's a typical example:
LEA DX,Eat1

All this instruction does is take the offset address of the string variable Eat1in the data
segment and place the offset address into register DX.
If you've used higher-level languages like BASIC and Pascal, this distinction may seem inane.
After all, who would mistake the contents of a variable for its location? Well, that's easy for
you to say—in BASIC and Pascal you rarely, if ever, even think about where a variable is.
The language handles all that rigmarole for you. In assembler, knowing where a variable is
located is essential to perform lots of important things.

The ASSUME Directive

file:///E|/TEMP/Chapter%207%20Our%20Object%20All%20Sublime.htm (9 of 38) [9/30/02 08:34:07 PM]

file:///E|/TEMP/Chapter%207%20Our%20Object%20All%20Sublime.htm

Within the code segment of EAT.ASM, there is another directive, ASSUME:

ASSUME CS:MyProg,DS:MyData

Of all the directives a newcomer is likely to need to make a simple program work, ASSUME
is almost certainly the toughest to understand. ASSUME has to do with labels and the way
labels are used by the 8086/8088 CPU.
Recall that all memory addresses have two components: a segment address and an offset
address. Furthermore, every label in an assembly-language program (with the single
exception of labels used before the SEGMENT directive) represents some offset address
from a segment address.
But which segment address?
Aye, that's the rub. Look at the data segment block named MyData:

; BEGIN DATA SEGMENT
 MyData SEGMENT
Eatl DB "Eat at Joe's!"."$" ; Strings are terminated by
"$" CRLF DB ODH,OAH,'$' ; for printing by DOS
service 9
MyData ENDS
: END DATA SEGMENT

Everything between the two directives SEGMENT and ENDS is the program's data
segment. It says so (as they say) right on the label. But the label (by which I mean the
comment blocks) is for our eyes only. The assembler ignores comments. There is nothing
in this segment definition to tell the assembler that it is a data segment. You can define
variables in the code segment or in the stack segment if you want, even though it's
customary and more correct programming practice to keep variables in the data segment.
Segment MyData could be just as easily considered a code segment, though not a stack
segment. (Stack segments are a special case because, like Tigger, there can only be one.
I'll speak of stacks, the stack segment, and the STACK directive in Section 7.2.)
We have the problem of indicating to the assembler which segment is the data segment.
This might seem like an easy one, but rather than a single problem it is actually two
problems: one is that the assembler needs to know which segment address to put into the
Data Segment (DS) register; and the other problem is which form of memory-addressing
machine instructions to use.
The first problem is easily addressed. Notice these two lines in EAT.ASM:

file:///E|/TEMP/Chapter%207%20Our%20Object%20All%20Sublime.htm (10 of 38) [9/30/02 08:34:07 PM]

file:///E|/TEMP/Chapter%207%20Our%20Object%20All%20Sublime.htm

MOV AX.MyData ; Set up our own data segment address in DS
MOV DS,AX ; Can't load segment reg. directly from memory

MyData, if you recall, contains the segment address of a segment defined using the
SEGMENT and ENDS directives. That address is first loaded into AX, and then from
AX the address is loaded into DS. This roundabout path is necessary because the DS
register cannot be loaded with either immediate data or memory data; it must be loaded
from one of the other registers.
The end result is that the segment address represented by the label MyData is loaded into
DS. This neatly solves the first problem of specifying the address of the data segment. We
simply load the data segment's address into DS. Now Mydata can be considered a real
data segment because its segment address is in the data segment register, DS.
That, however, doesn't solve the second problem. Although we wrote two instructions
that moved the address of our data segment into DS, the assembler doesn't "know" that
this move took place. Never forget that the assembler follows its orders without
understanding them. It doesn't make inferences based on what you do to addresses or the
segment registers. It must be told which segment is to be used as the data segment, the
code segment, and the stack segment. Somewhere inside the assembler program is a little
table where the assembler "remembers" that segment MyData is to be considered the data
segment, and that segment MyCode is to be considered the code segment, and that
segment MyStack is to be considered the stack segment. It can't remember these
relationships, however, unless you first tell the assembler what they are somehow.
 This somehow (for the data, code, and extra segments, at least) is the ASSUME
directive. The ASSUME directive in EAT.ASM tidily specifies that MyData is the data
segment and MyCode is the code segment.
Why is this important? It has to do with the way the assembler creates the binary opcodes
for a given instruction. When you write an instruction that addresses memory data like
this

MOV AX,MyWord

the assembler must put together the series of binary values that will direct the CPU to
perform this action. What that series of binary values turns out to be depends on what
segment the label MyWord resides in. If MyWord is in the data segment, the binary
opcodes will be one thing, but if MyWord resides in the code segment, stack segment, or
extra segment, the binary opcodes will be something else again. The assembler must
know whether any label indicates an address within the data segment, code segment,

file:///E|/TEMP/Chapter%207%20Our%20Object%20All%20Sublime.htm (11 of 38) [9/30/02 08:34:08 PM]

file:///E|/TEMP/Chapter%207%20Our%20Object%20All%20Sublime.htm

stack segment, or extra segment. The assembler knows that MyWord indicates an
address within the segment MyData, but you must tell the assembler that MyData is in
fact the data segment.

This is what ASSUME is for. As I've said before and will say again: knowing where
things are is the greatest part of all your work in assembly language. Understand
addresses and memory addressing (which includes telling the assembler how to find
things, as we've done here with ASSUME), and the rest is easy.

The Main Program as a Procedure

All of the machine instructions in EAT.ASM are found between this pair of assembly-
language statements:

Main PROC Main ENDP

Just as the SEGMENT and ENDS directives frame a segment, the PROC and ENDP
directives frame what we call a procedure. A procedure is just a group of machine
instructions that is given a name. This is almost entirely what a procedure is: a name.
Unlike Pascal or C, there is no necessary structure to a procedure in assembly language.
Making the main program portion of an assembly-language program a procedure is
strictly optional, until you must begin dividing your program up into modules to keep it
manageable. Then every executable component must be a procedure with a name, so that
the linker can properly link the different modules together into the final executable
program. If you're the least bit serious about assembly language, that will happen sooner
than later, so I think it's a good idea to get in the habit of considering your main program
a procedure at the outset.
In the next chapter I will explain the process of cutting a program up into procedures, and
how the procedures work together to comprise a complete assembly-language program.
Until then I won't have a lot more to say about procedures. The Main procedure defined
in EAT.ASM is not germane to understanding the program's operation. Consider it a
gesture to future expansion of the program, as we'll see in Chapter 8.

Choosing a Starting Point

There are no jumps, loops, or subroutines in EAT.ASM. If you've a smattering of
assembly-language smarts you may wonder if the Start: label following the ASSUME

file:///E|/TEMP/Chapter%207%20Our%20Object%20All%20Sublime.htm (12 of 38) [9/30/02 08:34:08 PM]

file:///E|/TEMP/Chapter%207%20Our%20Object%20All%20Sublime.htm

directive is unnecessary except for readability purposes. After all, Start is not referenced
anywhere within the program, so one would think it's an ornament, like MyStack, the
name of the stack segment. On the contrary— EAT.ASM will not assemble without it.
The issue is this: DOS needs to know at what address to begin execution when it loads
and runs the program. You might think DOS could assume that execution would begin at
the start of the code segment, but not so—there may be more than one code segment, and
under most circumstances the programmer does not specify the order of multiple code
segments within a single program. (The linker has its own reasons for arranging them as it
does.) Better to have no doubt about it, and for that reason you the programmer are
required to pick a starting point and tell the assembler what it is.
The starting point may be any label that specifies an address within a code segment. Once
you choose it, you inform the assembler of your choice by putting the chosen label at the
very end of the source-ode file, following the END directive. Note that you must put the
colon after the label when you define its location in its code segment, but you cannot use
the colon when you place the starting point label after END.
END does multiple service for the assembler. Its most obvious job is to tell the assembler,
"That's all, folks—the source-code file is finished—no further machine instructions or
assembler directives will be forthcoming." Any text placed after the END directive will
be ignored by the assembler. You can put comment blocks there if you like, but don't
forget that any instructions or directives you place after END will simply be ignored, and
the assembler will not tell you that it is ignoring them. Best, I think, not to put anything at
all after END.
Why specify the starting point after the END directive? Very simply: the assembler can,
with confidence, assume that the starting point cannot be redefined. There can be more
than one of most everything else in an assembly-language program (including stack
segments—you just can't use more than one at a time) but there must be only one starting
point for execution. Putting the starting label after END ensures that this will be the case.

7.2 First In, First Out via the Stack

One problem with assembly language is that it's tough knowing where to put things.
There are only so many registers to go around. Having variables in a data segment is
helpful, but it isn't the whole story. People who come to assembler from higher-level
languages like Pascal and BASIC find this particularly jarring, since they're used to being
able to create new variables at any time as needed. The 8086/8088 CPU contains the
machinery to create and manage a vital storage area called the stack. The name is

file:///E|/TEMP/Chapter%207%20Our%20Object%20All%20Sublime.htm (13 of 38) [9/30/02 08:34:08 PM]

file:///E|/TEMP/Chapter%207%20Our%20Object%20All%20Sublime.htm

appropriate, and for a usable metaphor I can go back to my high school days, when I was
a dishwasher for Resurrection Hospital on Chicago's Northwest side.

Five Hundred Plates an Hour

What I did most of the time was pull clean plates from a moving conveyor belt of little
prongs that emerged endlessly from the steaming dragon's mouth of a 180° dishwashing
machine. This was hot work, but it was a lot less slimy than stuffing the dirty plates into
the other end of the machine.
When you pull five hundred plates an hour out of a dishwashing machine, you had better
have some place efficient to stash them. Obviously you could simply stack them on a
table, but stacked ceramic plates in any place habituated by rowdy teenage boys is asking
for fragments. What the hospital had instead was an army of little wheeled stainless steel
cabinets equipped with one or more spring-loaded circular plungers accessed from the
top. When you had a handful of plates, you pushed them down into the plunger. The
plunger's spring was adjusted such that the weight of the added plates pushed the whole
stack of plates down just enough to make the new top plate flush with the top of the
cabinet.
Each plunger held about fifty plates. We rolled one up next to the dragon's mouth, filled it
with plates, and then rolled it back into the kitchen where the clean plates were used at the
next meal shift to set patients' trays.
It's instructive to follow the path of the first plate out of the dishwashing machine on a
given shift. That plate got into the plunger first, and was subsequently shoved down into
the bottom of plunger by the remaining 49 plates that the cabinet could hold. After the
cabinet was rolled into the kitchen, the kitchen girls pulled plates out of the cabinet one
by one as they set trays. The first plate out of the cabinet was the last plate in. The last
plate out of the cabinet had been the first plate to go in.
The 8086/8088 stack is like that. We call it a Last In, First Out, or LIFO stack.

An Upside-Down Segment

Two of the 8086/8088 registers team up to create and maintain the stack. Like everything
else in 86 land, the stack must exist within a segment. The Stack Segment (SS) register
holds the segment address of the segment chosen to be the stack segment, and the Stack
Pointer (SP) register points to locations within the stack segment. As with all other
segments, the stack segment can be as much as 65,536 bytes long, although you'll find in

file:///E|/TEMP/Chapter%207%20Our%20Object%20All%20Sublime.htm (14 of 38) [9/30/02 08:34:08 PM]

file:///E|/TEMP/Chapter%207%20Our%20Object%20All%20Sublime.htm

practice that the stack rarely needs to be larger than a thousand bytes or so unless you're
doing some really peculiar things.
The stack segment begins at SS:0, but the truly odd thing about it is that all the stack
action happens at the opposite end of the stack segment. When a stack segment is set up,
the SS register points to the base or beginning of the stack segment, and the SP register is
set to point to the end of the stack segment. To store something in the stack segment
(which we usually call "pushing something on the stack"), we move the SP "down the
stack" (closer to SS) and then copy the item to the memory location pointed to by SS:SP.
This takes some getting used to. Figure 7.1 provides the big picture of the stack segment
and the two pointers that give it life. SS is set to the base of the stack segment by DOS
when the program is loaded and begins running. SP is set to the far end of the stack
segment, again by DOS when your program is loaded.
You can place data onto the stack in numerous ways, but the most straightforward way
involves a pair of related machine instructions; PUSH and PUSHF. The two are identical
except that PUSHF pushes the Flags register onto the stack, while PUSH pushes a
register that is specified by you in your source-code file onto the stack, like so:

PUSHF : Push the Flags register
PUSH AX ; Push the AX register
PUSH [BX] ; Push the word stored in memory at DS:BX
PUSH DI : Push the DI register
PUSH ES ; Push the ES register

Note that PUSHF takes no operands. You'll generate an assembler error if you try to hand
it an operand; PUSHF pushes the Flags register and that's all it is capable of doing.
Both PUSH and PUSHF work this way: first SP is decremented by one word (two bytes)
so that it points to an empty area of the stack segment that is two bytes long. Then
whatever is to be pushed onto the stack is written to memory in the stack segment at the
offset address in SP. Voila! The data is safe on the stack, and SP has crawled two bytes
closer to SS. We call the word of memory pointed to by SP the top of the stack.

file:///E|/TEMP/Chapter%207%20Our%20Object%20All%20Sublime.htm (15 of 38) [9/30/02 08:34:08 PM]

file:///E|/TEMP/Chapter%207%20Our%20Object%20All%20Sublime.htm

All memory between SP's initial position and its current position (the top of the stack)
contains real data that was explicitly pushed on the stack and will presumably be fetched
from the stack (we say popped from the stack) later on. Memory between SS and SP,
however, is considered free and available, and is used to store new data that is to be
pushed onto the stack.
All memory between SS:0 and SS:SP is considered free and available for the use of the
stack.

Don't forget one important fact: the 8086/8088 pushes only word-sized items on the stack.

file:///E|/TEMP/Chapter%207%20Our%20Object%20All%20Sublime.htm (16 of 38) [9/30/02 08:34:08 PM]

file:///E|/TEMP/Chapter%207%20Our%20Object%20All%20Sublime.htm

You can't push AL or BH or any other of the 8-bit registers. Nor can you push immediate
data. Registers and memory are legal for pushing onto the stack, but immediate data will
generate an assembler error. (There is, in fact, a variant of PUSH that will push
immediate data on the stack, but it's only available on the 286, 386, and 486 CPUs. I'll
take up the issue of the more advanced CPUs in Chapter 11.)
Your morbid curiosity may be wondering what happens when SP runs out of room in its
downward crawl and collides with SS. Nothing good, certainly— it depends heavily on
how your program is laid out, but I would lay money on your program crashing hard and
probably taking the system with it. Stack crashes are serious business—in part because
there is only one stack in action at a time in the 8086/8088. It's a little hard to explain
(especially at this stage in our discussion) but this means that the stack you set up for your
own program must be large enough to support the needs of DOS and any interrupt-driven
code (typically in the BIOS) that may be active while your program is running. Even if
you don't fully understand how someone else may be using your program's stack at the
same time you are, give those other guys some extra room—and keep an eye on the
proximity of SS and SP while you trace a program in DEBUG. I'll explain how to
allocate space for your stack a little later in this section.

POP Goes the Opcode

In general, what gets pushed must get popped, or you can end up in any of several
different kinds of trouble. Getting a word of data off the stack is done with another two
instructions, POP and POPF. As you might expect, POP is the general-purpose popper,
while POPF is dedicated to popping the Flags register off of the stack:

POPF ; Pop the top of the stack into Flags
POP SI ; Pop the top of the stack into SI
POP CS ; Pop the top of the stack into CS
POP [BX] ; Pop the top of the stack into memory at DS:BX

As with PUSH, POP only operates on word-sized operands. Don't try to pop data from
the stack into an 8-bit register like AH or CL.

The PUSH and POP stack instructions work only on word-sized operands.

POP works pretty much the way PUSH does, but in reverse: first the word of data at
SS:SP is copied from the stack and placed in POP's operand, whatever you specified that

file:///E|/TEMP/Chapter%207%20Our%20Object%20All%20Sublime.htm (17 of 38) [9/30/02 08:34:08 PM]

file:///E|/TEMP/Chapter%207%20Our%20Object%20All%20Sublime.htm

to be. Then, SP is incremented (rather than decremented) by two bytes, so that in effect it
moves two bytes up the stack, away from SS.
It's significant that SP is decremented before placing a word on the stack at push time, but
incremented after removing a word from the stack at pop time. Certain other CPUs work
in the opposite manner, which is fine—just don't get confused. Unless the stack is empty,
SP points to real data, not empty space.
Ordinarily, you don't have to remember that fact, as PUSH and POP handle it all for you
and you don't have to manually keep track of what SP is pointing to. If you decide to
manipulate the stack pointer directly, it helps to know the sequence of events behind
PUSH and POP.
Figure 7.2 shows the stack's operation in a little more detail. The values of the four "X"
registers at some hypothetical point in a program's execution are shown at the top of the
figure. AX is pushed first on the stack. Its least significant byte is at SS:SP, and its most
significant byte is at SS:SP+1. (Remember that both bytes are pushed onto the stack at
once, as a unit!)
Each time one of the registers is pushed onto the stack, SP is decremented two bytes
down toward SS. The first three columns show AX, BX, and CX being pushed onto the
stack, respectively. But note what happens in the fourth column, when the instruction
POP DX is executed. The stack pointer is incremented by two bytes and moves away
from SS. DX now contains a copy of the contents of CX. In effect, CX was pushed onto
the stack, and then immediately popped off into DX.
That's a roundabout way to copy the value of CX into DX. MOV DX,CX is lots faster
and more straightforward. However, MOV will not operate on the Flags register. If you
want to load a copy of Flags register into another register, you must first push the flags
register onto the stack with PUSHF, then pop the same word off the stack into the
register of your choice. Getting the Flags register into BX is done like this:

PUSHF ; Push the flags register onto the stack..
POP BX ; ..and pop it immediately into BX

Storage for the Short Term

The stack should be considered a place to stash things for the short term. Items stored on
the stack have no names, and in general must be taken off the stack in the reverse order
that they were put on.
One excellent use of the stack allows the all-too-few registers to do multiple duty. If you

file:///E|/TEMP/Chapter%207%20Our%20Object%20All%20Sublime.htm (18 of 38) [9/30/02 08:34:08 PM]

file:///E|/TEMP/Chapter%207%20Our%20Object%20All%20Sublime.htm

need a register to temporarily hold some value to be operated on by the CPU and all the
registers are in use, push one of the "busy" registers onto the stack. Its value will remain
safe on the stack while you use the register for other things. When you're finished using
the register, pop its old value off the stack—and you've gained the advantages of an
additional register without

file:///E|/TEMP/Chapter%207%20Our%20Object%20All%20Sublime.htm (19 of 38) [9/30/02 08:34:08 PM]

file:///E|/TEMP/Chapter%207%20Our%20Object%20All%20Sublime.htm

really having one. (The cost, of course, is the time you spend moving that register's value
onto and off of the stack. It's not something you want to do in the middle of an often-
repeated loop!)

Specifying the Size of the Stack

The size of your program's code segment is dictated by the number of machine
instructions you write into your program. Similarly, the size of your data segment is
dictated by the number and sizes of the variables you define in your data segment. You
might well ask: how do you specify the size of your stack segment when, until the
program begins running, there's nothing in it?
The answer, quite simply, is to define the stack segment as one enormous variable
without a name.
Look back at the EAT.ASM program, which has a stack segment allocated this way. Note
that the stack segment contains a single DB directive with no label associated with it. The
stack segment's DB is a little different from the ones in the data segment. It contains an
additional directive, DUP (for Duplicate), that is the key to the whole mystery. Here's the
DB instruction in its entirety:

DB 64 DUP ('STACK!!!') ; This reserves 512 bytes for the stack

As the comment indicates, this statement somehow allocates 512 bytes for the stack. The
DB directive by itself ordinarily allocates only a single byte within a segment. DB,
however, can also mark the first byte of multi-byte strings and buffers. A buffer is nothing
more than an area of memory set aside for later use with nothing particular inside it. The
stack segment in EAT.ASM is really just a buffer without a name, addressed by SS and
SP.
The "Eat at Joe's!" string (including the "$" at the end) is 14 bytes long, yet is defined by
a DB directive. Really large variables and most buffers, however, must be allocated with
the help of the DUP directive. DUP must be followed by some sort of expression in
parentheses, and preceded by a number indicating how many times that expression is to
be duplicated in memory.
An expression is a collection of values that ultimately "cooks down" (we say evaluates) to
some specific value. In EAT.ASM, the stack segment's DB directive doesn't really
contain an expression—its value is already "cooked down" as far as it will go. Later on
we'll look at some more complex expressions that will need some cooking.
The stack segment's DB takes the short string of characters 'STACK!!!' from within the

file:///E|/TEMP/Chapter%207%20Our%20Object%20All%20Sublime.htm (20 of 38) [9/30/02 08:34:08 PM]

file:///E|/TEMP/Chapter%207%20Our%20Object%20All%20Sublime.htm

parentheses and replicates the string into memory 64 times. The total size of the buffer is
64 multiplied by 8, (which is the length of the string 'STACK!!!' shorn of its quotation
marks), for a total of 512 bytes. By this we accomplish two things: we set aside a buffer
512 bytes in size for the use of the stack, and we mark this buffer unmistakably so that we
can spot it in memory and see how much of the buffer has actually been used by the stack.
The marking is indeed unmistakable. Assemble and link EAT.ASM, and then invoke
DEBUG on EAT.EXE. Do a memory dump at SS:0. You should see this:

-d ss:0
19AA:0000 53 54 41 43 4B 21 21 21-53 54 41 43 4B 21 21 21
STACK!!1STACK!!!
19AA:0010 53 54 41 43 4B 21 21 21-53 54 41 43 4B 21 21 21
STACK!!!STACK!!!
19AA:0020 53 54 41 43 4B 21 21 21-53 54 41 43 4B 21 21 21
STACK!!!STACK!!!
19AA:0030 53 54 41 43 4B 21 21 21-53 54 41 43 4B 21 21 21
STACK!!!STACK!!!
19AA:0040 53 54 41 43 4B 21 21 21-53 54 41 43 4B 21 21 21
STACK!!!STACK!!!
19AA:0050 53 54 41 43 4B 21 21 21-53 54 41 43 4B 21 21 21
STACK!!!STACK!!!
19AA:0060 53 54 41 43 4B 21 21 21-53 54 41 43 4B 21 21 21
STACK!!!STACK!!!
19AA:0070 53 54 41 43 4B 21 21 21-53 54 41 43 4B 21 21 21
STACK!!!STACK!!!

There should be four blocks marked like this, as DEBUG's dump routine displays 128
bytes at a time. If any bytes in any of those four blocks get written over, you'll see it
immediately. Certainly the last few bytes will be written over during the normal course of
the program, but if something else in your program or your machine is clobbering your
stack, this is one way to start the search for the alien menace.
Nothing, of course, requires that you use the STACK!!! string to allocate space in the
stack segment. The simplest way is to use DUP with the undefined space symbol (?):

DB 512 DUP (?)

All this statement does is set aside 512 bytes of memory. Nothing is stored in that
memory initially to mark it as belonging to the stack or anything else. The (?) simply
reserves memory but does not otherwise touch it. Note here that the question mark is not
in quotation marks. Putting it in quotation marks will fill your stack segment with 512

file:///E|/TEMP/Chapter%207%20Our%20Object%20All%20Sublime.htm (21 of 38) [9/30/02 08:34:08 PM]

file:///E|/TEMP/Chapter%207%20Our%20Object%20All%20Sublime.htm

question mark characters, which may be useful but is not the same as undefined space!

7.3 Using DOS Services through INT

I think of EAT.ASM as something of a Tom Sawyer program. It doesn't do much, and it
does what it does in time-honored Tom Sawyer fashion—by getting somebody else to do
all the work. All that EAT does is display two character strings on your screen. One is the
advertising slogan "Eat at Joes!" The other is the EOL marker—the pair of "invisible"
characters that signal the end of a line: carriage return (ODH) followed by line feed
(0AH). (For more on EOL markers and how they interact with text, see Section 3.2.) The
EOL marker does nothing more than return the display cursor to the left margin of the
next screen line, so that any subsequent text displayed will begin at the left margin and
not nipping at the heels of the slogan.
Invisible though it may be, the carriage return-line feed combination is still considered a
text string, and is sent to the display in exactly the same way: through a DOS service.

As I explained in Chapter 3, DOS is both a god and a troll. DOS controls all the most
important elements of the machine in godlike fashion, including the disk drives, the
printer, and (to some extent) the display. At the same time, DOS is like a troll living
under a bridge to all those parts of your machine: you tell the troll what you want done,
and the troll will go out and do it for you.
There is another troll guarding the bridges to other components of your machine called
the BIOS, to which we'll return in a little while. DOS and BIOS both offer services,
which are simple tasks that your programs would have to do themselves if the services
were not provided. Quite apart from saving you, the programmer, a lot of work, having
DOS and BIOS services helps guarantee that certain things will be done in identical
fashion on all machines. This uniformity (especially in terms of disk storage) is a major
reason software written for DOS runs on so many different machines: all the machine-
dependent stuff is done the same way.
One of the services DOS provides is simple (far too simple, actually) access to your
machine's display. For the purposes of EAT.ASM (which is just a lesson in getting your
first assembly-language program written and operating) simple services are enough.
So, how do we use DOS and BIOS services? The way is as easy to use as it is tricky to
understand: through software interrupts.

An Interrupt That Doesn't Interrupt Anything

file:///E|/TEMP/Chapter%207%20Our%20Object%20All%20Sublime.htm (22 of 38) [9/30/02 08:34:08 PM]

file:///E|/TEMP/Chapter%207%20Our%20Object%20All%20Sublime.htm

As one new to the 8086/8088 family of processors, the notion of a software interrupt
drove me nuts. I kept looking and looking for the interrupter and interruptee. Nothing was
getting interrupted.
The name is unfortunate, even though I admit that there was some reason for calling
software interrupts what they are. They are, in fact, courteous interrupts—if you can still
call an interrupt an interrupt when it is so courteous that it does no interrupting at all.
The nature of software interrupts and DOS services is best explained by a real example
illustrated twice in EAT.ASM. As I hinted above, DOS keeps little sequences of machine
instructions tucked away within itself. Each sequence does something useful—read
something from a disk file, display something on the screen, send something to the
printer. DOS uses them to do its own work, and it also makes them available (with its
troll hat on) to you, the programmer, to access from your programs.
Well, there is the critical question: how do you find something tucked away inside of
DOS? All code sequences, of course, have addresses, and Microsoft or IBM could publish
a booklet of addresses indicating where all the code is hidden. There are numerous good
reasons, however, not to pass out the addresses of the code. DOS is evolving and (we
should hope) being repaired on an ongoing basis. Repairing and improving code involves
adding, changing, and removing machine instructions, which changes the size of those
hidden code sequences—and also, in consequence, changes their location. Add a dozen
instructions to one sequence, and all the other sequences up memory from that one
sequence will have to "shove over" to make room. Once they shove over, they'll be at
different addresses, so instantly the booklets are obsolete. Even one byte added to or
removed from a code sequence in DOS could change everything. (Suppose the first code
sequence has a bug that must be repaired.)
The solution is ingenious. At the very start of memory, down at segment 0, offset 0, is a
special table with 256 entries. Each entry is a complete address, including segment and
offset portions, for a total of four bytes per entry. The first 1024 bytes of memory in any
8086/8088 machine are reserved for this table, and no code or data may be placed there.
Each of the addresses in the table is called an interrupt vector. The table as a whole is
called the interrupt vector table. Each vector has a number, from 0 to 255. The vector
occupying bytes 0 through 3 in the table is vector 0. The vector occupying bytes 4
through 7 is vector 1, and so on, as shown in Figure 7.3.
None of the addresses are burned into permanent memory the way BIOS routines are.
When your machine starts up, DOS and BIOS fill many of the slots in the interrupt vector
table with addresses of certain service routines within themselves. Each version of DOS
knows the location of its innermost parts, and when you upgrade to a new version of

file:///E|/TEMP/Chapter%207%20Our%20Object%20All%20Sublime.htm (23 of 38) [9/30/02 08:34:08 PM]

file:///E|/TEMP/Chapter%207%20Our%20Object%20All%20Sublime.htm

DOS, that new version will fill the appropriate slots in the interrupt vector table with
upgraded and accurate addresses.
What doesn 't change with each new version of DOS is the number of the interrupt that
holds a particular address. In other words, since the PC first began, interrupt 21H has
pointed the way into DOS's services dispatcher, a sort of multiple-railway switch with
spurs heading out to the many (over 50) individual DOS service routines. The address of
the dispatcher has changed with every DOS version, but regardless of version, programs
can find the address of the dispatcher in slot 21H of the interrupt vector table.
Furthermore, programs don't have to go snooping the table for the address themselves.
The 8086/8088 CPU includes a machine instruction that makes use of the interrupt vector
table. The INTerrupt (INT) instruction is used by EAT.ASM to request the services of
DOS in displaying two strings on the screen. At two places EAT.ASM has an INT 21H
instruction. When an INT 21H instruction is executed, the CPU goes down to the
Interrupt Vector Table, fetches the address from slot 21H, and then jumps execution to
the address stored in slot 21H. Since the DOS services dispatcher lies at the address in
slot 21H, the dispatcher gets control of the machine and does the work that it knows how
to do.
The process is shown in Figure 7.4. When DOS loads itself at boot time, one of the many
things it does to prepare the machine for use is to put correct addresses in several of the
vectors in the interrupt vector table. One of these addresses is the address of the
dispatcher, which goes into slot 21H.
Later on, when you type the name of your program MYPROG on the DOS command
line, DOS loads MYPROG.EXE into memory and gives it control of the machine.
MYPROG.EXE does not know the address of the DOS dispatcher. MYPROG does
know that the dispatcher's address will always be in slot 21H of the interrupt vector table,
so it executes an INT 21H instruction. The correct address lies in vector 21H, and
MYPROG is content to remain ignorant and simply let the INT 21H instruction and
vector 21H take it where it needs to go.

file:///E|/TEMP/Chapter%207%20Our%20Object%20All%20Sublime.htm (24 of 38) [9/30/02 08:34:08 PM]

file:///E|/TEMP/Chapter%207%20Our%20Object%20All%20Sublime.htm

Back on the Northwest Side of Chicago, where I grew up, there was a bus that ran along

file:///E|/TEMP/Chapter%207%20Our%20Object%20All%20Sublime.htm (25 of 38) [9/30/02 08:34:08 PM]

file:///E|/TEMP/Chapter%207%20Our%20Object%20All%20Sublime.htm

Milwaukee Avenue. All Chicago bus routes had numbers, and the Milwaukee Avenue
route was #56. It started somewhere in the tangled streets just north of Downtown, and
ended up in a forest preserve just inside the city limits. The Forest Preserve district ran a
swimming pool called Whelan Pool in that forest preserve. Kids all along Milwaukee
Avenue could not necessarily have
told you the address of Whelan Pool. But come summer, they'd tell you in a second how
to get there: just hop bus #56 and take it to the end of the line. It's like that with software
interrupts. Find the number of the vector that reliably points to your destination, and ride
that vector to the end of the line, without worrying about the winding route or the address
of your destination.
Note that the INT 21H instruction does something else: it pushes the address of the next
instruction (that is, the instruction immediately following the INT 21H instruction) on the
stack before it follows vector 21H into the depths of DOS. Like Hansel and Gretel, the
INT 21H was pushing some breadcrumbs onto the stack as a way of helping execution
find its way back to MYPROG.EXE after the excursion down into DOS—but more on
that later.
Now, the DOS dispatcher controls access to dozens of individual service routines. How
does it know which one to execute? You have to tell the dispatcher which service you
need, and you do so by placing the service's number in 8-bit register AH. The dispatcher
may require other information as well, and will expect you to provide that information in
the correct place before executing INT 21.
Look at the following three lines of code from EAT.ASM:

lea DX,Eat1 ; Load offset of Eat1 message string into DX
mov AH,09H : Select DOS service 09H: Print String
int 21H ; Call DOS

This sequence of instructions requests that DOS display a string on the screen. The first
line sets up a vital piece of information: the offset address of the string to be displayed on
the screen. Without that, DOS will not have any way to know what it is that we want to
display. The dispatcher expects the offset address to be in DX, and assumes that the
segment address will be in DS. The address of the data segment was loaded into DS
earlier in the program by these two instructions:

mov AX,MyData ; Set up our own data segment address in DS
mov DS,AX ; Can't load segment reg. directly from memory

Once loaded, DS is not disturbed during the full run of the program, so the DOS

file:///E|/TEMP/Chapter%207%20Our%20Object%20All%20Sublime.htm (26 of 38) [9/30/02 08:34:08 PM]

file:///E|/TEMP/Chapter%207%20Our%20Object%20All%20Sublime.htm

dispatcher's assumption is valid even though DS is loaded early in the program and not
each time we want to display a string.
In moving 09H into register AH, we tell the dispatcher which service we want performed.
Service 09H is DOS's Print String service. This is not the fastest nor in other ways the
best way to display a string on the PC's screen, but it is most certainly the easiest.
DOS service 09H has a slightly odd requirement: that the end of the string be marked
with a dollar sign ($). This is the reason for the dollar signs hung incongruously on the
ends of both of EAT.ASM's strings. Given that DOS does not ask us to pass it a value
indicating how long the string is, the end of the string has to be marked somehow, and the
dollar sign is DOS's chosen way. It's a lousy way, unfortunately, because with the dollar
sign acting as a marker, there is no way to display a dollar sign. If you intend to talk
about money on the PC's screen, don't use DOS service O9H! As I said, this is the
easiest, but certainly not the best way to display text on the screen.
With the address of the string in DS:DX and service number 09H in AH, we take a trip to
the dispatcher by executing INT 21H. The INT instruction is all it takes—boom!—and
DOS has control, reading the string at DS:DX and sending it to the screen through
mechanisms it keeps more or less to itself.

Getting Home Again

So much for getting into DOS. How do we get home again? The address in vector 21H
took control into DOS, but how does DOS know where to go to pass execution back into
EAT.EXE? Half of the cleverness of software interrupts is knowing how to get there, and
the other half—just as clever—is knowing how to get back.
To get into DOS, a program looks in a completely reliable place for the address of where
it wants to go: the address stored in vector 21H. This address takes execution deep into
DOS, leaving the program sitting above DOS. To continue execution where it left off
prior to the INT 21 instruction, DOS has to look in a completely reliable place for the
return address, and that completely reliable place is none other than the top of the stack.
I mentioned earlier (without much emphasis) that the INT 21 instruction pushes an
address to the top of the stack before it launches off into the unknown. This address is the
address of the next instruction in line for execution: the instruction immediately following
the INT 21H instruction.
This location is completely reliable because, just as there is only one interrupt vector
table in the machine, there is only one stack in operation at any one time. This means that
there is only one top of the stack—that is, SS:SP—and DOS can always send execution
back to the program that called it by popping the address off the top of the stack and

file:///E|/TEMP/Chapter%207%20Our%20Object%20All%20Sublime.htm (27 of 38) [9/30/02 08:34:08 PM]

file:///E|/TEMP/Chapter%207%20Our%20Object%20All%20Sublime.htm

jumping to that address.
The process is shown in Figure 7.5, which is the continuation of Figure 7.4. Just
as the INT instruction pushes a return address onto the stack and then jumps to the
address stored in a particular vector, there is a "combination" instruction that pops
the return address off the stack and then jumps to the address. The instruction is
Interrupt RETurn (IRET) and it completes this complex but reliable system of
jumping to an address when you really don't know the address. The trick, once
again, is knowing where the address can reliably be found.
 (There's actually a little more to what the software interrupt mechanism pushes
onto and pops from the stack, but it happens transparently enough so that I don't
want to complicate the explanation at this point.)
This should make it clear by now what happens when you execute the INT 21H
instruction. EAT.ASM uses DOS services to save it the trouble of writing its string data
to the screen a byte at a time. The address into DOS is at a known location in the Interrupt
Vector Table, and the return address is at a known location on the stack.
All other software interrupts—and there are many—operate in the same fashion. In the
next chapter, we'll use a few more, and explore some of the many services available
through the BIOS interrupts that control your video display and printer

file:///E|/TEMP/Chapter%207%20Our%20Object%20All%20Sublime.htm (28 of 38) [9/30/02 08:34:08 PM]

file:///E|/TEMP/Chapter%207%20Our%20Object%20All%20Sublime.htm

.

file:///E|/TEMP/Chapter%207%20Our%20Object%20All%20Sublime.htm (29 of 38) [9/30/02 08:34:08 PM]

file:///E|/TEMP/Chapter%207%20Our%20Object%20All%20Sublime.htm

Software Interrupts vs. Hardware Interrupts

Software interrupts evolved from an older mechanism that did involve some genuine

file:///E|/TEMP/Chapter%207%20Our%20Object%20All%20Sublime.htm (30 of 38) [9/30/02 08:34:08 PM]

file:///E|/TEMP/Chapter%207%20Our%20Object%20All%20Sublime.htm

interrupting: hardware interrupts. A hardware interrupt is your CPU's mechanism for
paying attention to the world outside itself.
There is a fairly complex electrical system built into your PC that allows circuit boards to
send signals to the CPU. An actual metal pin on the CPU chip is moved from one voltage
level to another by a circuit board device like a disk drive controller or a serial port board.
Through this pin the CPU is "tapped on the shoulder" by the external device. The CPU
recognizes this tap as a hardware interrupt. Like software interrupts, hardware interrupts
are numbered, and for each interrupt number there is a slot reserved in the interrupt vector
table. In this slot is the address of an interrupt service routine (ISR) that performs some
action relevant to the device that tapped the CPU on the shoulder. For example, if the
interrupt signal came from a serial port board, the CPU would then allow the serial port
board to transfer a character byte from itself into the CPU.
Most properly, any routine that lies at the end of a vector address in the interrupt vector
table is an ISR, but the term is usually reserved for hardware interrupt service routines.
The only difference between hardware and software interrupts is the event that triggers
the trip to the interrupt vector table. With a software interrupt, the triggering event is part
of the software; that is, an INT instruction; with a hardware interrupt, the triggering event
is an electrical signal applied to the CPU chip—without any INT instruction taking a
hand in the process. The CPU itself pushes the return address on the stack when it
recognizes the electrical pulse that triggers the interrupt; however, when the ISR is done,
an IRET instruction sends execution home, just as it does for a software interrupt.
Hardware ISRs can be (and usually are) written in assembly language. It's a difficult
business, because the negotiations between the hardware and software must be done just
so, or the machine may lock up or go berserk. This is no place for beginners, and I would
advise you to develop some skill and obtain some considerable knowledge of your
hardware setup before attempting to write a hardware ISR.

7.4 Summary: EAT.ASM on the Dissection Table

Let's recap our disassembly of EAT.ASM by putting it back together again, with
commentary. I should point out that this is one way to write an assembly-language
program, but it isn't the only way by any means. I'm outlining what I feel is an ideal
organization for short, assembly-language programs containing less than a thousand lines
or so of source code assembled and linked as one piece. The essential structure of this
organization is shown in Figure 7.6. Past that thousand lines, an assembly-language
program must be broken up into modules or the program will collapse into an

file:///E|/TEMP/Chapter%207%20Our%20Object%20All%20Sublime.htm (31 of 38) [9/30/02 08:34:08 PM]

file:///E|/TEMP/Chapter%207%20Our%20Object%20All%20Sublime.htm

undecipherable black hole into which any quantity of effort may be poured without any
improvement in the program. (We'll begin talking about modularizing programs in
Chapter 8.)

Segment Definition and Segment Order

An assembly-language program of any usefulness must consist of at least three segments:
a data segment, for variables used by the program; a stack segment, containing the
program's stack; and a code segment, containing the program's machine instructions.
These segments are defined using the two directives: SEGMENT, which marks the start
of the segment, and ENDS which marks the end of the segment.
Each segment must have a name, and the name must be used twice in the definition of a
segment: once before the SEGMENT directive and again before the ENDS directive. A
segment must be named even though the name may not be referenced anywhere in the
program

file:///E|/TEMP/Chapter%207%20Our%20Object%20All%20Sublime.htm (32 of 38) [9/30/02 08:34:08 PM]

file:///E|/TEMP/Chapter%207%20Our%20Object%20All%20Sublime.htm

. Note that in EAT.ASM, the stack segment is named MyStack even though nothing in
the program ever needs to reference MyStack by name.
The stack segment must be defined with the STACK directive following the SEGMENT
directive. This definition tells DOS which segment address to load into the SS (Stack
Segment) register.
The size of the stack segment is dictated by the definition of some data within the

file:///E|/TEMP/Chapter%207%20Our%20Object%20All%20Sublime.htm (33 of 38) [9/30/02 08:34:09 PM]

file:///E|/TEMP/Chapter%207%20Our%20Object%20All%20Sublime.htm

segment. You must define enough stack space to cover any possible need the program
may have, plus the needs of DOS and any interrupt service routines (including loaded
TSRs) that may be active while your program is running. If you don't define enough
space, you may have a stack crash, which will definitely terminate your program and very
possibly crash the machine as well. Decide how much stack space you may realistically
need, and allocate twice as much. Use the DB and DUP directives to allocate space.
The segments are order independent, that is, you may place the segments in any order
without changing the way the segments work together, nor the way the assembler treats
them. My own custom is to define the stack segment first, followed by the data segment,
followed by the code segment.

Data Definitions for Variables and Stack Space

Variables and space for the stack must be allocated during assembly. The DB, DW, DD
and DUP directives are the most common means to do this. DW allocates word-sized (16-
bit) variables, typically to contain register-sized values. DD allocates double word-sized
(32-bit) variables, typically for full addresses containing both segment and offset.
These definitions have a form like the examples shown below:

MyWord DW 0FFFFH MyAddress DD OB8000000H

The DB directive was designed to allocate byte-sized (8 bit) quantities like characters and
register halves, but it has the special property of being able to allocate strings as well.
Elements of the string may be numbers, characters, or quoted strings, separated by
commas. The following are all legal DB variable definitions:

MyByte DB 042H ; Using hex notation
Counter DB 17 ; Decimal!
Eat1 DB "Eat at Joe's!","$" ; Character string
CRLF DB ODH,OAH,'$' ; Numbers separated by commas

If you need to allocate a variable or a buffer without specifying any initial values, use the
DUP directive with a question mark (?) as the value:

MyBuffer DB 1024 DUP (?)

The question mark value simply sets memory aside but stores nothing in it. Do not put
the question mark in quotation marks, or the assembler will store the question mark

file:///E|/TEMP/Chapter%207%20Our%20Object%20All%20Sublime.htm (34 of 38) [9/30/02 08:34:09 PM]

file:///E|/TEMP/Chapter%207%20Our%20Object%20All%20Sublime.htm

character (ASCII 3FH) into every byte of the buffer.
The DUP directive can also be used to store repeated patterns into larger variables and
buffers. This can make the buffers and variables easy to spot when you perform a hex
dump from DEBUG:
 Marked DB 10 DUP ('Zorro!!!') Table1 DB 5 DUP
(02H,04H.06H,08H) DB 64 DUP ('STACK!!!')

The last example allocates space for the stack segment in EAT.ASM. Although this
statement illustrates the fact that you don't have to name a buffer that simply exists to take
up space (as in allocating space for the stack segment), I recommend that you name all
variables and buffers.

Setting Up the Code Segment

Like any segment, the code segment must have a name, and the name must be given at the
start and end of the segment definition, before the SEGMENT and ENDS directives.
Although the name is unimportant and probably won't be referenced anywhere in the
code, it must be there, or you will receive an assembler error.
An ASSUME directive must be included in the program. Its purpose is to tell the
assembler which of the segments you have defined is to be used for the code segment, and
which segment is to be used for the data segment. Unlike the stack segment, which has
the directive STACK to tell the assembler what sort of segment it is, nothing in the code
or data segments specifies which sort of segment they are. It isn't enough that there are
variables defined in the data segment or machine instructions in the code segment. The
assembler will allow you put variable definitions in the code segment and machine
instructions in the data segment, regardless of whether that makes sense or not. (It may, in
certain extremely advanced techniques.)
In EAT.ASM, the ASSUME directive tells the assembler that the code segment will be
the segment named MyCode, and that the data segment will be named MyData.

EAT.ASM has its machine instructions grouped together in a procedure named Main
with the PROC directive. This is not strictly necessary unless you have broken down
your program into procedures or modules, and EAT.ASM will assemble and run
correctly without the Main PROC and Main ENDP statements. I would advise you to
get in the habit of placing the main program portion of any assembly-language program
into a procedure called Main to help make the program more readable.
What is essential, however, is to provide a label that marks the place where program

file:///E|/TEMP/Chapter%207%20Our%20Object%20All%20Sublime.htm (35 of 38) [9/30/02 08:34:09 PM]

file:///E|/TEMP/Chapter%207%20Our%20Object%20All%20Sublime.htm

execution is to begin. I recommend the label Start: as a convention, but the label can be
any legal identifier. Whatever label you choose, mark the main program's starting point
with the label and a colon. Then, place the same label minus the colon after the END
directive, which marks the end of the source-code file. Placing the "start" label after the
END directive tells the assembler that there is no more source code, and that the label is
the point at which execution is to begin.

What EAT.ASM's Machine Instructions Do

; From the top:
mov AX,MyData ; Set up our own data segment address in DS
mov DS,AX ; Can't load segment reg. directly from
memory

Before your program can access any of its variables in the data segment, it must have the
segment address of the data segment in the DS register. The ASSUME directive tells the
assembler to assemble any instruction referencing an identifier in the MyData segment
under the assumption (hence the name of the directive) that MyData is to be a data
segment. ASSUME, however, does not load the data segment address into DS!
You must do that yourself, which is the purpose of the two instructions shown above.
This seemingly simple operation takes two instructions rather than one because MOV
cannot move memory data directly into a segment register like DS. To load the address of
memory data into a segment register, you must first load the address into one of the
general-purpose registers and then load the general-purpose register into the segment
register:

lea DX , Eat1 ; Load offset of Eat1 message string into DX
mov AH,09H ; Select DOS service 09H: Print String

int 21H ; Call DOS

Here's where the first real work of EAT.ASM gets done. The load effective address
instruction (LEA) puts the offset address of variable Eat1 into the DX register. Keep in
mind that the segment address of Eat1 is already in DS— loaded by the first two
instructions in the program. MOV AH, 09H loads the number of DOS service O9H
(Print String) into register half AH. The term "Print String" is a misnomer inherited from

file:///E|/TEMP/Chapter%207%20Our%20Object%20All%20Sublime.htm (36 of 38) [9/30/02 08:34:09 PM]

file:///E|/TEMP/Chapter%207%20Our%20Object%20All%20Sublime.htm

an ancient age when video terminals were considered exotic, and strings could only be
printed—on (kerchunk-kerchunkity-chunk) Teletype terminals!
Finally, INT 21H transfers control to the DOS services dispatcher by way of software
interrupt 21H. The dispatcher looks in DS:DX for the address of the string variable to be
displayed, and then hands control over to the Print String service routine somewhere deep
within DOS. When the string is displayed, execution returns to the instruction following
the INT 21H instruction, which is possible because the INT 21H instruction pushed the
address of the next instruction onto the stack before it passed execution to the DOS
services dispatcher. The dispatcher simply popped that return address of the stack and
resumed execution at that address. Again, here is an explanation of how interrupts work:
the previous block of instructions were enough to display the string "Eat at Joe's!" on your
video display. DOS leaves the hardware cursor on the character following the last
character of the string, however, and any subsequent display output would follow "Eat at
Joe's!" immediately. You may want this, and you may not—and if you don't, it would be
a good idea to return the cursor to the left margin and bump it down to the next screen
line. This is what's going on here:

lea DX , CRLF ; Load offset of CRLF string into DX
mov AH, 09H ; Select DOS service 09H: Print String
int 21H ; Call DOS

The CRLF variable contains the EOL marker, which includes the ASCII carriage return
characters. EAT.ASM passes the string containing these two "invisible" characters to
DOS in exactly the same way it passed the string "Eat at Joe's!", by loading CRLF's
address into DS:DX and selecting DOS service O9H before handing control to the DOS
services dispatcher through software interrupt 21H.
Finally, the job is done. Joe's has been properly advertised, and it's time to let DOS have
the machine back:

mov AH,4CH ; Terminate process DOS service
mov AL,0 ; Pass this value back to ERRORLEVEL
int 21H ; Control returns to DOS

Another DOS service, 4CH (Terminate Process) handles the mechanics of courteously
disentangling the machine from EAT.ASM's clutches. The Terminate Process service
doesn't need the address of anything, but it will take whatever value it finds in the AL
register and place it in the DOS ERRORLEVEL variable. DOS batch programs can test
the value of the ERRORLEVEL variable and branch on it, as I'll demonstrate in the next

file:///E|/TEMP/Chapter%207%20Our%20Object%20All%20Sublime.htm (37 of 38) [9/30/02 08:34:09 PM]

file:///E|/TEMP/Chapter%207%20Our%20Object%20All%20Sublime.htm

chapter.
EAT.ASM doesn't do anything worth testing in a batch program, but if ERRORLEVEL
will be set anyway, it's a good idea to provide some reliable and harmless value for
ERRORLEVEL to take. This is why 0 is loaded into AL prior to ending it all by the
final INT 21 instruction. If you were to test ERRORLEVEL after running EAT.EXE,
you would find it set to 0 in every case.

file:///E|/TEMP/Chapter%207%20Our%20Object%20All%20Sublime.htm (38 of 38) [9/30/02 08:34:09 PM]

file:///E|/TEMP/Chapter%208%20Dividing%20and%20Conquering.htm

Dividing and Conquering
Using Procedures and Macros to Battle
Complexity
8.1 Programming in Martian >• 216
8.2 Boxes Within Boxes >• 216
8.3 Using BIOS Services >• 224
8.4 Building External Libraries of Procedures >• 235
8.5 Creating and Using Macros >• 248

8.1 Programming in Martian

There is a computer language called APL (an acronym for "A Programming Language,"
how clever) that has more than a little Martian in it. APL was the first computer language
I learned, (on a major IBM mainframe) and when I learned it I learned a little more than
just APL.
APL uses a very compact notation, with dozens of odd little symbols, each of which is
capable of some astonishing power like matrix inversion. You can do more in one line of
APL than you can in one line of anything else I have learned since. The combination of
the strange symbol set and the compact notation make it very hard to read and remember
what a line of code in APL actually does.
So it was in 1977. Having mastered (or so I thought) the whole library of symbols, I set
out to write a text formatter program. The program would justify right and left, center
headers, and do a few other things that we take for granted today, but which were very

file:///E|/TEMP/Chapter%208%20Dividing%20and%20Conquering.htm (1 of 50) [9/30/02 08:35:48 PM]

file:///E|/TEMP/Chapter%208%20Dividing%20and%20Conquering.htm

exotic in the Seventies.
The program grew over a period of a week to about 600 lines of squirmy little APL
symbols. I got it to work, and it worked fine—as long as I didn't try to format a column
that was more than 64 characters wide. Then everything came out scrambled.
Whoops. I printed the whole thing out and sat down to do some serious debugging. Then I
realized with a feeling of sinking horror that, having finished the last part of the program,
/ had no idea how the first part worked.
The APL symbol set was only part of the problem. I soon came to realize that the most
important mistake I had made was writing the whole thing as one 600-line monolithic
block of code lines. There were no functional divisions, nothing to indicate what any 10-
line portion of the code was trying to accomplish.
The Martians had won. I did the only thing possible: I scrapped it. And I settled for
ragged margins in my text.

8.2 Boxes Within Boxes
This sounds like Eastern mysticism, but it's just an observation from life: Within any
action is a host of smaller actions. Look inside your common activities. When you "brush
your teeth," what you're actually doing is:
• Picking up your toothpaste tube
• Unscrewing the cap
• Placing the cap on the sink counter
• Picking up your toothbrush
• Squeezing toothpaste onto the brush from the middle of the tube
• Putting your toothbrush into your mouth
• Working the brush back and forth vigorously

and so on. The original list went the entire page. When you brush your teeth, you perform
every one of those actions. However, when you think about brushing your teeth, you don't
consciously run through each action on the list. You bring to mind the simple concept
"brushing teeth."
Furthermore, when you think about what's behind the action we call "getting up in the
morning," you might assemble a list of activities like this:
• Shut off the clock radio
• Climb out of bed
• Put on your robe
• Let the dogs out

file:///E|/TEMP/Chapter%208%20Dividing%20and%20Conquering.htm (2 of 50) [9/30/02 08:35:48 PM]

file:///E|/TEMP/Chapter%208%20Dividing%20and%20Conquering.htm

• Make breakfast
• Brush your teeth
• Shave
• Get dressed

Brushing your teeth is on the list, but within the "brushing your teeth" activity a whole list
of smaller actions exist. The same can be said for most of the activities collectively called
"getting up in the morning." How many individual actions, for example, does it take to
put a reasonable breakfast together? And yet in one small, if sweeping, phrase, "getting
up in the morning," you embrace that whole host of small and even smaller actions
without having to laboriously trace through each one.
What I'm describing is the "Chinese boxes" method of fighting complexity. Getting up in
the morning involves hundreds of little actions, so we divide the mass up into coherent
chunks and set the chunks into little conceptual boxes. "Making breakfast" is in one box,
"brushing teeth" is in another, and so on. Closer inspection of any box shows that its
contents can also be divided into numerous boxes, and those smaller boxes into even
smaller boxes.
This process doesn't (and can't) go on forever, but it should go on as long as it needs to in
order to satisfy this criterion: the contents of any one box should be understandable with
only a little scrutiny. No single box should contain anything so subtle or large and
involved that it takes hours of hair pulling to figure it out.

Procedures as Boxes for Code

The mistake I made in writing my APL text formatter is that I threw the whole collection
of 600 lines of APL code into one huge box marked "text formatter." While I was writing
it, I should have been keeping my eyes open for sequences of code statements that
worked together at some identifiable task. When I spotted such sequences, I should have
set them off as procedures. Each sequence would then have a name that would provide a
memory-tag for the sequence's function. If it took ten statements to justify a line of text,
those ten statements should have been named JustifyLine, and so on.
Xerox's legendary APL programmer, Jim Dunn, later told me that I shouldn't ever write a
procedure that wouldn't fit on a single 25-line terminal screen "More than 25 lines and
you're doing too much in one procedure. Split it up, " he said. Whenever I worked in APL
after that, I adhered to that rather sage rule of thumb. The Martians still struck from time
to time, but when they did, it was no longer a total loss.
All computer languages have procedures of one sort or another, and assembly language

file:///E|/TEMP/Chapter%208%20Dividing%20and%20Conquering.htm (3 of 50) [9/30/02 08:35:48 PM]

file:///E|/TEMP/Chapter%208%20Dividing%20and%20Conquering.htm

is no exception. You may recall from the previous chapter that the main program is in fact
a procedure, and the only thing setting it apart as the main program is the fact that its
name is specified after the END directive.
Your assembly-language program may have numerous procedures. There's no limit to the
number of procedures, as long as the total number of bytes of code does not exceed
65,536 (one segment). Other complications arise at that point, but nothing that can't be
worked around.
But that's a lot of code. You needn't worry for awhile, and certainly not while you're just
learning assembly language. (I won't be treating the creation of multiple code segments in
this book.) In the meantime, let's take a look at the "Eat at Joe's" program, expanded a
little to include a couple of procedures:

file:///E|/TEMP/Chapter%208%20Dividing%20and%20Conquering.htm (4 of 50) [9/30/02 08:35:48 PM]

file:///E|/TEMP/Chapter%208%20Dividing%20and%20Conquering.htm

file:///E|/TEMP/Chapter%208%20Dividing%20and%20Conquering.htm (5 of 50) [9/30/02 08:35:48 PM]

file:///E|/TEMP/Chapter%208%20Dividing%20and%20Conquering.htm

EAT2.ASM does about the same thing as EAT.ASM. It prints a two-line slogan, and
that's all. The way the two lines of the slogan are displayed, however, bears examination:

lea DX , Eat1
call Writeln

Here's a new instruction: CALL. The label Writeln refers to a procedure. As you might
have gathered, (especially if you've programmed in an older language like BASIC or
FORTRAN) CALL Writeln simply tells the CPU to go off and execute a procedure
named Writeln.
The means by which CALL operates may sound familiar: CALL first pushes the address
of the next instruction after itself onto the stack. Then CALL transfers execution to the
address represented by the name of the procedure. The instructions contained in the
procedure execute. Finally, the procedure is terminated by CALL'S alter ego: RET (for
RETurn.) The RET instruction pops the address off the top of the stack and transfers
execution to that address. Since the address pushed was the address of the first instruction
after the CALL instruction, execution continues as though CALL had not changed the
flow of instruction execution at all.
See Figure 8.1.
This should remind you strongly of how software interrupts work. The main difference is
that the caller does know the exact address of the routine it wishes to call. Apart from
that, it's very close to being the same process. (Also note that RET and IRET are not
interchangeable. CALL works with RET just as INT works with IRET. Don't get those
return instructions confused!)

file:///E|/TEMP/Chapter%208%20Dividing%20and%20Conquering.htm (6 of 50) [9/30/02 08:35:48 PM]

file:///E|/TEMP/Chapter%208%20Dividing%20and%20Conquering.htm

The structure of a procedure is simple and easy to understand. Look at the Write
procedure from EAT2.ASM:

Write PROC

mov AH, 09H ; Select DOS service 9: Print String
int 21H ; Call DOS
ret ; Return to the caller

Write ENDP

The important points are these: a procedure must be bracketed by the PROC/ ENDP
directives, preceded in both cases by the name of the procedure. Also, somewhere within
the procedure, and certainly as the last instruction in the procedure, there must be at least
one RET instruction.
The RET instruction is the only way that execution can get back to the caller of the
procedure. As I mentioned above, there can be more than one RET instruction in a
procedure, although your procedures will be easier to read and understand if there is only
one. Using more than one RET instruction requires the use of JMP (JuMP) instructions,
which I haven't covered yet but will shortly in Chapter 9.

file:///E|/TEMP/Chapter%208%20Dividing%20and%20Conquering.htm (7 of 50) [9/30/02 08:35:48 PM]

file:///E|/TEMP/Chapter%208%20Dividing%20and%20Conquering.htm

Calls Within Calls

file:///E|/TEMP/Chapter%208%20Dividing%20and%20Conquering.htm (8 of 50) [9/30/02 08:35:48 PM]

file:///E|/TEMP/Chapter%208%20Dividing%20and%20Conquering.htm

Within a procedure you can do anything that you can do within the main program. This
includes calling other procedures from within a procedure. Even something as simple as
EAT2.ASM does that. Look at the Writeln procedure:

Writeln PROC

call Write ; Display the string proper through Write
lea DX , CRLF ; Load address of newline string to DS:DX
call Write ; Display the newline string through Write
ret ; Return to the caller

Writeln ENDP

The Writeln procedure displays a string on your screen, and then returns the cursor to the
left margin of the following screen line. This procedure is actually two distinct activities,
and Writeln very economically uses a mechanism that already exists: the Write
procedure. The first thing that Writeln does is call Write to display the string on the
screen. Remember that the caller loaded the address of the string to be displayed into DX
before calling Writeln. Nothing has disturbed DX, so Writeln can immediately call
Write, which will fetch the address from DX and display the string on the screen.
Returning the cursor is done by displaying the newline sequence, which is stored in a
string named CRLF. Writeln again uses Write to display CRLF. Once that is done, the
work is finished, and Writeln executes a RET instruction to return execution to the caller.
Calling procedures from within procedures requires you to pay attention to one thing:
stack space. Remember that each procedure call pushes a return address onto the stack.
This return address is not removed from the stack until the RET instruction for that
procedure executes. If you execute another CALL instruction before returning from a
procedure, the second CALL instruction pushes another return address onto the stack. If
you keep calling procedures from within procedures, one return address will pile up on
the stack for each CALL until you start returning from all those nested procedures.
If you run out of stack space, your program will crash and return to DOS, possibly taking
DOS and the machine with it. This is why you should take care to allocate considerably
more stack space than you think you might ever conceivably need. EAT2.ASM at most
uses four bytes of stack space, because it nests procedure calls two deep—Writeln within
itself calls Write. Nonetheless, I allocated 512 bytes of stack to get you in the habit of not
being stingy with stack space. Obviously you won't always be able to keep a 128-to-l ratio
of "need to have," but consider 512 bytes a minimum for stack space allocation. If you
need more, allocate it. Don't forget that there is only one stack in the system, and while
your program is running, DOS and the BIOS and any active TSRs may well be using the
same stack. If they fill it, you'll go down with the system—so leave room!

file:///E|/TEMP/Chapter%208%20Dividing%20and%20Conquering.htm (9 of 50) [9/30/02 08:35:48 PM]

file:///E|/TEMP/Chapter%208%20Dividing%20and%20Conquering.htm

When to Make Something a Procedure

The single most important purpose of procedures is to manage complexity in your
programs by replacing a sequence of machine instructions with a descriptive name.
While this might seem to be overkill in the case of the Write procedure, which contains
only two instructions apart from the structurally-necessary RET instruction.
True. But—the Writeln procedure hides two separate calls to Write behind itself: one to
display the string, and another to return the cursor to the left margin of the next line.
If you look back to EAT.ASM, you'll see that it took six instructions to display both the
slogan string and the newline string. What took six instructions now takes two, thanks to
Writeln. Furthermore, the name Writeln is more readable and descriptive of what the
sequence of six instructions do than the sequence of six instructions themselves.
Extremely simple procedures like Write don't themselves hide a great deal of complexity.
They do give certain actions descriptive names, which is valuable in itself. They also
provide basic building blocks for the creation of larger and more powerful procedures, as
we'll see later on.
In general, when looking for some action to turn into a procedure, see what actions tend
to happen a lot in a program. Most programs spend a lot of time displaying things on the
screen. Procedures like Write and Writeln become general-purpose tools that may be
used all over your programs. Furthermore, once you've written and tested them, they may
be reused in future programs as well.
 Try to look ahead to your future programming tasks and create procedures of general
usefulness. (Tool-building is a very good way to hone your assembly language skills.) I'll
be showing you more of this type of procedure by way of examples as we continue.
On the other hand, a short sequence (five to ten instructions) that is only called once or
perhaps twice within a middling program (i.e., over hundreds of machine instructions) is a
poor candidate for a procedure.
You may find it useful to define large procedures that are called only once when your
program becomes big enough to require breaking it down into functional chunks. A
thousand-line assembly-language program might split well into a sequence of nine or ten
largish procedures. Each is only called once from the main program, but this allows your
main program to be very indicative of what the program is doing:

Start: call Initialize
call OpenFile
Input: call GetRec

file:///E|/TEMP/Chapter%208%20Dividing%20and%20Conquering.htm (10 of 50) [9/30/02 08:35:48 PM]

file:///E|/TEMP/Chapter%208%20Dividing%20and%20Conquering.htm

call VerifyRec
call WriteRec
loop Input
call CloseFile
call Cleanup
call ReturnToDOS

This is clean and readable, and provides a necessary "view from a height" when you
begin to approach a thousand-line assembly-language program. Remember that the
Martians are always hiding somewhere close by, anxious to turn your program into
unreadable hieroglyphics.
There's no weapon against them with half the power of procedures.

8.3 Using BIOS Services

In the last chapter we looked closely at DOS services, which are accessed through the
DOS services dispatcher. The DOS dispatcher lives at the other end of software interrupt
21H, and offers a tremendous list of services at the disposal of your programs. There's
another provider of services in your machine that lives even deeper than DOS: the ROM
BIOS. ROM (Read-Only Memory), indicates memory chips whose contents are burned
into their silicon and do not vanish when power is turned off. BIOS (Basic Input/Output
System) is a collection of fundamental routines for dealing with your computers input and
output peripherals. These peripherals include disk drives, displays, printers, and the like.
DOS uses BIOS services as part of some of the services that it provides.

Like DOS, BIOS services are accessed through software interrupts. Unlike DOS, which
channels nearly all requests for its services through the single interrupt 21H, BIOS uses
numerous interrupts (about 10) and groups similar categories of services beneath the
control of different interrupts. For example, video display services are accessed through
interrupt 10H, keyboard services are accessed through interrupt 16H, printer services are
accessed through interrupt 17H, and so on.
The overall method for using BIOS services, however, is very similar to that of DOS.
You load a service number and sometimes other initial values into the registers and then
execute an INT <n> instruction, where the n depends on the category of services you're
requesting.
Nothing difficult about that at all. Let's start building some tools.

file:///E|/TEMP/Chapter%208%20Dividing%20and%20Conquering.htm (11 of 50) [9/30/02 08:35:48 PM]

file:///E|/TEMP/Chapter%208%20Dividing%20and%20Conquering.htm

Positioning the Hardware Cursor

So far, in writing to the screen, we've simply let the text fall where it may. In general, this
means one line of text following another, and when the screen fills DOS scrolls the screen
upward to make room on the bottom line for more text. This makes for dull programs,
very similar to programming in the bad old days when everything was done on clunky
mechanical printers called Teletypes. (Indeed, this kind of screen I/O is called glass
teletype I/O, due to its similarity to a printer scrolling paper up one line at a time.)
Let's leave the glass teletypes behind, and take control of the cursor. BIOS service 10H
(often nicknamed VIDEO, in uppercase, for reasons that are obscure) offers a simple
service to position the hardware cursor on the text screen. The service number is loaded
into AH, a common thread through all BIOS services. The value 0 must be placed in BH
unless you intend to tinker with multiple display pages. That's a story for another time;
while you're learning, assume BH should be set to 0 for cursor positioning.
The new position of the cursor must be loaded into the two halves of the DX register.
Cursor positions are given as XY coordinate pairs. The X component of the cursor
position is the number of character columns to the right of the left margin where you want
the cursor to be positioned. The Y component is the number of lines down from the top of
the screen where you want the cursor to be positioned. The X component is loaded into
DL, and the Y component is loaded into DH. The routine itself is nothing more than this:

GotoXY PROC

mov AH ,02H ; Select VIDEO service 2: Position cursor
mov BH ,0 : Stay with display page 0
int 10H ; Call VIDEO
ret : Return to the caller

GotoXY ENDP

 Don't forget that the X and Y value must be loaded into DX by the caller. Using GotoXY
is done this way:

mov DL,35 ; Pass 35 as X coordinate
mov DH,9 ; Pass 9 as Y coordinate call
GotoXY ; Position the cursor

EAT3.ASM uses GotoXY to position the cursor, but it does something else as well: it
clears the display. If you're going to be moving the cursor at will around the screen with
GotoXY, it makes sense to start with a completely clear screen so the remains of earlier

file:///E|/TEMP/Chapter%208%20Dividing%20and%20Conquering.htm (12 of 50) [9/30/02 08:35:48 PM]

file:///E|/TEMP/Chapter%208%20Dividing%20and%20Conquering.htm

programs and DOS commands don't clutter up the view.
There's another VIDEO service that can do the job. VIDEO Service 6 is an interesting
and powerful one: not only does it clear the screen, it can scroll the screen as well, by any
specified number of lines. Furthermore, it can clear or scroll the entire screen, or only a
rectangular portion of the screen, leaving the rest of the screen undisturbed.
If scrolling is unfamiliar to you, just press Enter repeatedly at the DOS prompt and watch
what happens when you reach the bottom line of the screen. The displayed text on the
screen jumps up by one line, and an empty line appears at the bottom of the screen. The
DOS prompt is then redisplayed in the empty line. Scrolling is the process of making the
screen jump up by one or more lines, and inserting one or more blank lines at the bottom
as appropriate.

Using VIDEO Service 6
Understanding VIDEO service 6 involves learning a fair number of values that need to be
passed to the service in registers. The one unchanging item is the service number itself,
passed as 6 in register AH (as with all BIOS services).
Service 6 acts upon a rectangular region of the display. This may be the full screen, or it
may be only part of the screen. You must pass the coordinates of the upper-left and lower-
right corners of the region in registers CX and DX. Because screen coordinates are
always smaller than 255 (which is the largest value that can be expressed in 8 bits) the
register halves of CX and DX are used independently to carry the X and Y values.
The upper-left corner's X coordinate is passed in CL, and the upper-left corner's Y
coordinate is passed in CH. These are 0-based coordinates, meaning that they count from
0 rather than 1. Confusion is possible here, because most high-level languages like Turbo
Pascal number coordinates on the screen from 1. In other words, the upper-left corner of
the screen in Turbo Pascal is given by the coordinates 1,1. To the BIOS, however, that
same corner of the screen is 0,0. The width and height of a typical screen to Turbo Pascal
would be 80 x 25; the BIOS would use 79 x 24.

Similarly, the lower-right corner's X coordinate is passed in DL, and the lower-right
corner's Y coordinate is passed in DH. (Again, counting from 0.)
Service 6 either scrolls or clears the region. It can scroll the screen upward by any
arbitrary number of lines. This number is passed to service 6 in register AL. Clearing the
region is a special case of scrolling it: when you specify that zero lines be scrolled, the
entire region is cleared. The full screen is actually a special case of a rectangular region.
By passing the coordinates of the upper-left and lower-right corners of the screen (0,0 and
79,24) the full screen is cleared.

file:///E|/TEMP/Chapter%208%20Dividing%20and%20Conquering.htm (13 of 50) [9/30/02 08:35:48 PM]

file:///E|/TEMP/Chapter%208%20Dividing%20and%20Conquering.htm

Procedures with Multiple Entry Points

This is a lot of versatility for one service to handle, and it brings up a couple of questions.
First of all, how versatile should a single procedure be? Should there be one procedure to
clear the whole screen, another procedure to clear part of a screen, and a third procedure
to scroll part of the screen?
The answer is that one procedure can do all three, and not duplicate any code at all. The
method involves writing a single procedure that has four different entry points. Each entry
point is a label that is called with a CALL instruction. When a given entry point's label is
called, execution begins at the instruction specified by that label. There is only one RET
instruction, so the procedure is in fact one procedure. It's like a house with three front
doors but only one back door; having three front doors does not make it three separate
houses.
Here's what such a creature might look like:

ClrScr PROC

mov CX,0 ; Upper-left corner of full screen
 mov DX.LRXY ; Load lower-right XY coordinates into DX
ClrWin: mov AL,0 ; 0 specifies clear entire region
ScrlWin: mov BH,07H ; Specify "normal" attribute for blanked
line(s)
VIDEO6: mov AH,06H ; Select VIDEO service 6: Initialize/Scroll

int 10H ; Call VIDEO
ret ; Return to the caller

ClrScr ENDP

There's nothing much to this. What we have here is a collection of MOV instructions
setting up values in registers before calling VIDEO through interrupt 10H. Note that all
of the entry points, except the one (ClrScr) doing double duty as the procedure name,
must be given with colons. The colon, as I pointed out earlier, is necessary after any label
used to mark an address within a code segment.
The multiple entry points exist only to allow you to skip certain portions of the procedure
that set up values that you don't want set. All the registers used by service 6 must be set
up somewhere. However, they can either be set within the procedure or in the caller's
code just before the procedure is called. If the procedure sets them, the # registers have to
be set to some generally useful configuration (say, clearing the entire screen); if the caller

file:///E|/TEMP/Chapter%208%20Dividing%20and%20Conquering.htm (14 of 50) [9/30/02 08:35:48 PM]

file:///E|/TEMP/Chapter%208%20Dividing%20and%20Conquering.htm

sets them, the registers can be set to serve the caller's needs, making service 6 perform
any of its varied combinations.
So it is with the ClrScr procedure. If you enter ClrScr through its main or top entry
point, all of its internal code will be executed: CX and DX will be set to the upper-left
and lower-right corner coordinates of the full screen; AL will be set to 0 to clear the full
screen rather than scroll it, and BH will be loaded with the "normal," (blank, for white
text on a black background) text display attribute. Then service 6 is called.
If you wish to clear only a rectangular area of the screen (a window), you would use the
ClrWin entry point. This entry point starts executing the code after CX and DX are set to
the corners of the full screen. This means that the caller must load CX and DX with the
upper-left and lower-right corners of the screen region to be cleared. Calling ClrWin
without setting CX and DX at all will execute service 6 with whatever leftover garbage
values happen to be in CX and DX. Something will happen, for certain. Whether it's what
you want to happen or not is far less certain.
Keeping in mind that for proper operation, all of service 6's required registers must be set,
calling ClrWin would be done this way:

mov CX,0422H ; Set upper-left corner to X=22H; Y=04H
mov DX,093AH ; Set lower-right corner to X=3AH; Y=09H
call ClrWin ; Call the window-clear procedure

The two MOV instructions are worth a closer look. Rather than use a separate instruction
to load each half of DX and CX, the two halves are loaded together by loading a 16-bit
immediate data value into the full 16-bit register. Thus two MOV instructions can do the
work that a first glance might think would take four MOV instructions. This is a good
example of writing tight, efficient assembler code. The trick is to document it (as I've
done above) to make sure you understand six weeks from now what the magic number
093AH means!
The first instruction at the label ClrWin sets AL to 0, indicating that the region is to be
cleared, not scrolled. If in fact you do want to scroll the region, you need to skip the
MOV instruction that loads 0 into AL. This is the purpose of the entry point labeled
ScrlWin: it gets you into the procedure below the point where you select clearing over
scrolling. This means that you not only have to set the corners of the region to be scrolled,
but also the number of lines to scroll as well.

mov CX , 0422H ; Set upper-left corner to X-22H; Y-04H
mov DX , 093AH ; Set lower-right corner to X-3AH; Y-09H

file:///E|/TEMP/Chapter%208%20Dividing%20and%20Conquering.htm (15 of 50) [9/30/02 08:35:48 PM]

file:///E|/TEMP/Chapter%208%20Dividing%20and%20Conquering.htm

mov AL , l ; Set to scroll by one line
call ScrlWin ; Call the window-scroll procedure

As you can see, more and more of the work is being done by caller and less and less
within the procedure. How you arrange the entry points to the procedure depends on what
operations get done most frequently. In my programs, I tend to clear the whole screen a
lot, clear windows less frequently, and scroll windows less frequently still, and this is
what I had in mind while arranging the code within ClrScr.
Note that there is no entry point to scroll the full screen. To scroll the full screen, you
need to load the coordinates of the corners of the full screen into CX and DX, and then
call ClrWin as though you were clearing just a portion of the screen. If you do a lot of
screen-scrolling, you might define a separate routine for scrolling the full screen. As an
interesting exercise, write such a routine and a program to test it.
As one more entry point, I included a label VIDEO6. This label short-circuits all of the
register setups apart from loading the service number into AH. This allows you to do
something odd and infrequently, like scrolling the entire screen by three lines
.
Memory Data or Immediate Data?

You may have been wondering what the variable identifier LRXY is for and where it is
defined. LRXY is simply used to hold the current X,Y coordinates for the lower-right
corner of the screen. Where LRXY is defined is in the program's data segment, in the
usual way variables are defined, as you'll see if you look ahead to the full listing of
EAT3.ASM.
The more interesting question is why. Most of the time I've been showing you values
loaded into registers from immediate data, which is often useful. The coordinates of the
upper-left corner of the full screen, for example, are always going to be 0,0, and nothing
will change that. The lower-right corner, however, is not necessarily always 79,24.
The original 1981-vintage IBM MDA and CGA graphics adapters are indeed capable of
displaying only an 80 by 25 text screen and no more. However, with an EGA it is
possible to have an 80 by either 25 or 43 text screen, and the VGA, introduced in 1987
with the PS/2 line, can display 25, 43, or 50 line screens, all 80 characters wide. The
newer super VGA video boards are capable even more different text modes, some of them
with more than 80 characters in a visible line. If your program can determine what size
screen is in force when it is invoked, it can modify its displays accordingly.
Avoid dropping immediate values into code (we call this hard-coding) whenever you
can. A better strategy, which I'll be following from now on, uses variables in the data

file:///E|/TEMP/Chapter%208%20Dividing%20and%20Conquering.htm (16 of 50) [9/30/02 08:35:48 PM]

file:///E|/TEMP/Chapter%208%20Dividing%20and%20Conquering.htm

segment initialized with currently correct values when the program begins running.

Use Comment Headers!

As time goes on, you'll find yourself creating dozens or even hundreds of procedures as a
means of not reinventing the same old wheel. The libraries of available procedures that
most high-level language vendors supply with their compilers just don't exist with
assembly language. By and large, you create your own.
Keeping such a list of routines straight is no easy task, when you've written them all
yourself. You must document the essential facts about each individual procedure or you'll
forget them, or, worse yet, remember them incorrectly and act on bad information. (The
resultant bugs are often very hard to find, because you're sure you remember everything
there is to know about that proc! After all, you wrote it!)
I recommend adding a comment header to every procedure you write, no matter how
simple. Such a header should contain the following information:
• The name of the procedure
• The date it was last modified
• What it does
• What data items the caller must pass it to make it work correctly
• What data is returned by the procedure, if any, and where it is returned. (For
example, in register CX.)
• What other procedures, if any, are called by the procedure
• Any "gotchas" that need to be kept in mind while writing code that uses the
procedure

file:///E|/TEMP/Chapter%208%20Dividing%20and%20Conquering.htm (17 of 50) [9/30/02 08:35:48 PM]

file:///E|/TEMP/Chapter%208%20Dividing%20and%20Conquering.htm

;DX: The offset of the string to be displayed
; String must be terminated by "$"
;Action: Displays the string at DS:DX up to the "$"
; marker, then issues a newline. Hardware cursor
; will move to the left margin of the following
; line. If the display is to the bottom screen line,
; the screen will scroll.
;Calls: Write

file:///E|/TEMP/Chapter%208%20Dividing%20and%20Conquering.htm (18 of 50) [9/30/02 08:35:48 PM]

file:///E|/TEMP/Chapter%208%20Dividing%20and%20Conquering.htm

file:///E|/TEMP/Chapter%208%20Dividing%20and%20Conquering.htm (19 of 50) [9/30/02 08:35:48 PM]

file:///E|/TEMP/Chapter%208%20Dividing%20and%20Conquering.htm

file:///E|/TEMP/Chapter%208%20Dividing%20and%20Conquering.htm (20 of 50) [9/30/02 08:35:48 PM]

file:///E|/TEMP/Chapter%208%20Dividing%20and%20Conquering.htm

file:///E|/TEMP/Chapter%208%20Dividing%20and%20Conquering.htm (21 of 50) [9/30/02 08:35:48 PM]

file:///E|/TEMP/Chapter%208%20Dividing%20and%20Conquering.htm

A comment header does not relieve you of the responsibility of commenting the

file:///E|/TEMP/Chapter%208%20Dividing%20and%20Conquering.htm (22 of 50) [9/30/02 08:35:48 PM]

file:///E|/TEMP/Chapter%208%20Dividing%20and%20Conquering.htm

individual lines of code within the procedure. It's a good idea to put a short comment to
the right of every line that contains a machine instruction mnemonic, and also (in longer
procedures) a comment block describing every major functional block within the
procedure.
Examine EAT3.ASM, and notice the various commenting conventions. For a very short
program such as this, such elaborate internal documentation might seem overkill. Once
your programs get serious, however, you'll be very glad you expended the effort.

8.4 Building External Libraries of Procedures

You'll notice that the EAT3.ASM program, listed at the end of the previous section
devoted most of its bulk to procedures. This is as it should be. Notice, however, that the
procedures EAT3.ASM uses are the kind you're likely to use in any and all of your
assembly-language programs. When this is the case, break the utility procedures out into
an external library that you can assemble only once, and then link into every program that
uses its procedures without assembling the library every time you assemble the program.
This is called modular programming, and it is an extremely effective tool for
programming efficiently in any language, assembly language not excluded. (Keeping
cursor movement and screen-clearing routines in source-code form in every single
program you write is a waste of space, and can clutter up the program in a way that makes
it less easy to understand.)
I described this process briefly back in Chapter 3, and showed it pictorially in Figures 3.4
and 3.5. A program might consist of three or four separate .ASM files, each of which is
assembled separately to a separate .OBJ file. To produce the final executable .EXE file,
the linker weaves all of the .OBJ files together, resolving all of the references from one to
the other, finally creating an .EXE file.
Each .ASM file is considered a module, and each module contains one or more
procedures and possibly some data definitions. When all the declarations are done
correctly, all of the modules may freely call one another, and any procedure may refer to
any data definition.
The trick, of course, is to get all the declarations right.

Public and External Declarations

If you reference a label in your program (by, say, including a CALL instruction to that
label) without defining that label anywhere in the program, the assembler will gleefully

file:///E|/TEMP/Chapter%208%20Dividing%20and%20Conquering.htm (23 of 50) [9/30/02 08:35:48 PM]

file:///E|/TEMP/Chapter%208%20Dividing%20and%20Conquering.htm

give you an error message. (You've probably already experienced this if you've begun
writing your own programs in assembler.) In modular programming, you're frequently
going to be calling procedures that don't exist anywhere in your program. How to get past
the assembler's watchdogs?
The answer is to declare a procedure external. This works very much like it sounds: the
assembler is told that a given label will have to be found outside the program somewhere,
in another module. Once told that, that assembler is happy to give you a pass on an
undefined label. You've promised the assembler you'll provide it later, and the assembler
accepts your promise and keeps going without flagging the undefined label.
The promise looks like this:

EXTRN ClrScr : PROC

Here, you've told the assembler that the label ClrScr represents a procedure, and that it
will be found somewhere external to the current module. That's all the assembler needs to
know to withhold its error message.
And having done that, the assembler's part is finished. It leaves in place an empty socket
in your program where the external procedure can later be plugged in. I sometimes think
of it as an eyelet where the external procedure will later hook in.

Over in the other module where procedure ClrScr exists, you not only have to define the
procedure, you must give the eyelet a hook. That is, you have to warn the assembler that
ClrScr will be referenced from outside the module. The assembler needs to forge the
hook that will hook into the eyelet. You forge the hook by declaring the procedure
public, meaning that other modules may freely reference the procedure. Declaring a
procedure public is simplicity itself:
PUBLIC ClrScr

That done, who actually connects the hook and the eyelet? The linker does that during the
link operation. After all, why call it a linker if it doesn't link anything? At link time, the

file:///E|/TEMP/Chapter%208%20Dividing%20and%20Conquering.htm (24 of 50) [9/30/02 08:35:48 PM]

file:///E|/TEMP/Chapter%208%20Dividing%20and%20Conquering.htm

linker takes

the two .OBJ files generated by the assembler, one from your program and the other from
the module containing ClrScr, and combines them into a single .EXE file. When the

file:///E|/TEMP/Chapter%208%20Dividing%20and%20Conquering.htm (25 of 50) [9/30/02 08:35:48 PM]

file:///E|/TEMP/Chapter%208%20Dividing%20and%20Conquering.htm

.EXE file is loaded and run, the program can call ClrScr as cleanly and quickly as though
both had been declared in the same source-code file.
This process is summarized in Figure 8.2.
What works for procedures works for data as well, and it can work in either direction.
Your program can declare a variable as public with the PUBLIC directive, and that
variable can then be used by any module in which the same variable name is declared as
external with the EXTRN directive.
We sometimes say that a program or module containing procedures or variables declared
as public exports those items. Also, we say that a program or module that uses procedures
or variables that are external to it imports those items.

The Mechanics of Publics and Externals

I've described the source-code mechanics of assembly-language programs in detail in the
last few chapters. EAT1.ASM, EAT2.ASM, and EAT3.ASM are good examples.
External modules are similar to programs. There are two major differences, concerning
things that external modules lack:
• External modules have no main program and hence no start address.
That is, no label is given after the END directive that concludes the source-code file.
External modules are not intended to be run by themselves, so a start address is both
unnecessary and (if one were added) a temptation to chaos.
• External modules have no stack segment. This is not an absolute requirement (there
are few such requirements in assembler work), but for simple assembly-language
programming it's true enough. Your stack segment should be defined in your main
program module. External modules should have none—they use the one defined by the
programs that call them.
External modules can have a data segment. If the external module is to define a variable
that is to be shared by the main program or by other externals, it obviously must have a
data segment for that variable to reside in. But less obviously, if the external is to share a
variable with another
external or with the main program, it must still define a data segment, even if that data
segment is empty except for the external declaration.
This is easier to demonstrate than to explain. Take a look at the following external
module, which is a library containing all of the simple display control procedures
introduced in EAT3.ASM.

file:///E|/TEMP/Chapter%208%20Dividing%20and%20Conquering.htm (26 of 50) [9/30/02 08:35:48 PM]

file:///E|/TEMP/Chapter%208%20Dividing%20and%20Conquering.htm

file:///E|/TEMP/Chapter%208%20Dividing%20and%20Conquering.htm (27 of 50) [9/30/02 08:35:48 PM]

file:///E|/TEMP/Chapter%208%20Dividing%20and%20Conquering.htm

 :

file:///E|/TEMP/Chapter%208%20Dividing%20and%20Conquering.htm (28 of 50) [9/30/02 08:35:48 PM]

file:///E|/TEMP/Chapter%208%20Dividing%20and%20Conquering.htm

file:///E|/TEMP/Chapter%208%20Dividing%20and%20Conquering.htm (29 of 50) [9/30/02 08:35:49 PM]

file:///E|/TEMP/Chapter%208%20Dividing%20and%20Conquering.htm

VIDLIB.ASM has both a code segment and a data segment. Note well that both segments
are declared with the PUBLIC keyword. A common mistake made by beginners is to
declare the procedures and variables public, but not the segments that they reside in. Non
obvious it may be, but essential nonetheless: make your module segments public if they
contain any public declarations!
The code segment contains all the procedures. The data segment, on the other hand,
contains only the following statement:

EXTRN CRLF:BYTE,LRXY:WORD

VIDLIB.ASM declares no variables of its own. Instead, it uses two variables declared
within the main program module EAT4.ASM. (EAT4.ASM is identical to EAT3.ASM,
save that it has had its procedures removed and declared as external, and two of its
variables declared public. The program's function is exactly the same as that of
EAT3.ASM.)

The EXTRN statement above indicates that two variables referenced within the module

file:///E|/TEMP/Chapter%208%20Dividing%20and%20Conquering.htm (30 of 50) [9/30/02 08:35:49 PM]

file:///E|/TEMP/Chapter%208%20Dividing%20and%20Conquering.htm

are to be imported from somewhere. You don't have to specify from where. The names of
the variables and their types have to be there. The linker and assembler are not case
sensitive.
The directives following the colons in the EXTRN statement are type specifiers. The
assembler builds hooks into the .OBJ it creates from the external module's source file.
These hooks will then mate with the appropriate hooks in the .OBJ file that exports the
imported variables. To get the hooks right, however, the assembler needs to know what
kind of item is being imported. The name of the variable is just a label and gives no
information about the type or size of data being imported. The type specifier must match
the definition of the variable being imported. Table 8.1 summarizes what commonly used
type specifiers correspond to what data declaration directives.
The most important piece of information contained in the type specifier is the size of the
item being imported. Machine instructions assemble to different binary opcodes
depending on the size of their memory data operands. An opcode that acts on byte-sized
data in memory will be different from an opcode that acts on word-sized data. To get the
hooks right, then, the assembler has to know the size of the imported item at assembly
time.

Table 8.1. Type specifiers for external declarations
Specifier Use with directive Specifies
PROC PROC Procedure
BYTE DB Byte or string
WORD DW Word-sized data
DWORD DD Double word-sized data

Dividing a Segment Across Module Boundaries

Note that the names of the code segment and data segment in the external module are the
same as the names of the code segment and data segment in the main program module.
The data segment is MyData in both, and the code segment is MyCode in both. This is
not an absolute requirement, but it simplifies things greatly and is a good way to set
things up while you're just learning your way around in assembly language. Regardless of
the number of external modules that link with your main program, the program as a whole
contains only one code segment and one data segment. Until your data requirements and
code size get very large, you won't need more than a single code and data segment.
As long as the code and data segments are declared with the PUBLIC directive in all the

file:///E|/TEMP/Chapter%208%20Dividing%20and%20Conquering.htm (31 of 50) [9/30/02 08:35:49 PM]

file:///E|/TEMP/Chapter%208%20Dividing%20and%20Conquering.htm

modules sharing the segments, the linker will consider all to be part of the same code and
data segments.
It is also necessary to have an ASSUME statement in every module sharing segments in
this fashion. Furthermore, it should be the same ASSUME statement as the one in the
main program, with CS associated with your single code segment and DS associated with
your single data segment:

ASSUME CS:MyCode,DS:MyData

This ensures that the assembler does not get confused as it puts together references to the
two segments in the .OBJ files it builds.

Your Main Program Module

Below is our backhanded advertising program, which has been modified for use with an
external display control module:

file:///E|/TEMP/Chapter%208%20Dividing%20and%20Conquering.htm (32 of 50) [9/30/02 08:35:49 PM]

file:///E|/TEMP/Chapter%208%20Dividing%20and%20Conquering.htm

file:///E|/TEMP/Chapter%208%20Dividing%20and%20Conquering.htm (33 of 50) [9/30/02 08:35:49 PM]

file:///E|/TEMP/Chapter%208%20Dividing%20and%20Conquering.htm

file:///E|/TEMP/Chapter%208%20Dividing%20and%20Conquering.htm (34 of 50) [9/30/02 08:35:49 PM]

file:///E|/TEMP/Chapter%208%20Dividing%20and%20Conquering.htm

 This is easy to forget but you must keep it in mind: the segments containing imported or
exported items as well as the imported or exported items themselves must be declared as
public.
Take note of the declaration of two of the variables in the data segment declared as
public:

PUBLIC LRXY,CRLF

The PUBLIC directive allows external modules to use these two variables. The other
variables declared in the main program, Eatl, Eat2. and TextPos, are not declared as
public and are inaccessible from external modules. We would say that those three
variables are private to the main program module EAT4.ASM.
EAT4.ASM contains no procedure declarations of its own. All the procedures it uses are
imported from VIDLIB.ASM, and all are therefore declared as external in the code
segment, using this statement:

EXTRN GotoXY:PROC.Write:PROC.Writeln:PROC,ClrScr:PROC

Something to keep in mind is that while VIDLIB.ASM exports seven procedures (seven
labels, actually, since four are entry points to the ClrScr procedure) EAT4.ASM only
imports four. The ClrWin, ScrlWin, and VIDEO6 entry points to procedure ClrScr are
declared as public in VIDLIB.ASM, but they are not declared as external in EAT4.ASM.
EAT4.ASM only uses the four it imports. The other three are available, but the
EAT4.ASM does not call them and therefore does not bother declaring them as external.
If you were to expand EAT4.ASM to use one of the three other entry points to ClrScr,
you would have to add the entry point to the EXTRN list.
Once all the external and public declaration are in place, your machine instructions may
reference procedures and variables across module boundaries as though they were all
within the same large program. No special qualifiers have to be added to the instructions.
This CALL ClrScr instruction is written the same way, whether ClrScr is declared in the
main program module or in an external module like VIDLIB.ASM.

Linking Multiple Modules

The linker hasn't had to do much linking so far. Once you have multiple modules,
however, the linker begins to earn its keep. To link multiple modules, you must specify
the name of the .OBJ file for each module on the linker command line.

file:///E|/TEMP/Chapter%208%20Dividing%20and%20Conquering.htm (35 of 50) [9/30/02 08:35:49 PM]

file:///E|/TEMP/Chapter%208%20Dividing%20and%20Conquering.htm

Up until now, the linker command line contained only the name of the main program
module:
TLINK EAT3

Now you must add the names of all external modules to the linker command line:

TLINK EAT4 VIDLIB

If you're using JED, display the Commands screen by pressing F4 and edit the linker
command line. For example, to use TASM to link EAT4.OBJ and VIDLIB.OBJ, the
linker command line would be the following:
TLINK ~ VIDLIB
Remember that the tilde character (~) stands for the currently loaded file in JED. Pretty
obviously, if you forget to name an external module on the linker command line, the
linker will not be able to resolve the external references involving the missing .OBJ file,
and you will get linker error messages like this one, one for each unresolved external
reference:

• Undefined symbol 'CLRSCR' in module EAT4.ASM

External Module Summary

Here are some points to keep in mind when you're faced with splitting a single
program up into a main program and one or more external modules:
• Declare the code segments public in all modules, and give them all the same
name.
• Declare the data segments public in all modules, and give them all the same
name.
• Declare all exported procedures, entry points, and variables as Public. Place the
PUBLIC directive inside the segment where the exported items are declared.
• Declare all imported procedures, entry points, and variables as external. Put
the external directive inside the segment where the imported items are to be used.
Data is used in the data segment, code in the code segment.
• Make sure that there is a common ASSUME statement in the code segment of
every module associating the CS register with the shared code segment and the
DS register with the shared data segment.
• Finally, don't forget to add the names of all external modules to the linker

file:///E|/TEMP/Chapter%208%20Dividing%20and%20Conquering.htm (36 of 50) [9/30/02 08:35:49 PM]

file:///E|/TEMP/Chapter%208%20Dividing%20and%20Conquering.htm

command line in the link step.
If this still seems fuzzy to you, follow VIDLIB.ASM and EAT4.ASM as a model. You
will certainly find it useful to beef up VIDLIB.ASM by adding more screen control
procedures.

8.5 Creating and Using Macros

Procedures are the easiest way to split an assembly-language program into more
manageable chunks. The mechanism for calling and returning from procedures is built
right into the CPU, and is independent of any given assembler product.
Today's two major assemblers (Microsoft's MASM and Borland's TASM) provide
another complexity-management tool that works a little differently: macros. They're
hardly a minor feature; their name is built right into Microsoft's product, which after all is
the Microsoft Macro Assembler.
Macros are a different breed of cat entirely. Whereas procedures are implemented by the
use of CALL and RET instructions built right into the instruction set, macros are a trick
of the assembler, and do not depend on any particular instruction or group of instructions.
Most simply put, a macro is a label that stands for some sequence of text lines. This
sequence of text lines can be (but does not have to be) a sequence of instructions. When
the assembler encounters the macro label in a source code file, it replaces the macro label
with the text lines that the macro label represents. This is called expanding the macro,
because the name of the macro (occupying one text line) is replaced by several lines of
text, which are then assembled just as though they had appeared in the source-code file all
along.
Macros bear some resemblance to Include files in high-level languages like Pascal. In
Turbo Pascal, an include command might look like this:
{$1 ENGINE.DEF}

When this include command is encountered, the compiler goes out to disk and finds the
file named ENGINE.DEF. It then opens the file and starts "feeding" the text contained in
that file into the source-code file at the point where the include command was placed. The
compiler then processes those lines as though they had always been in the source-code
file.
You might think of a macro as an include file that's built right into the source-code file.
It's a sequence of text lines that is defined once and given a name. The Macro can then be
dropped into the source code again and again by simply using the name.
This process is shown in Figure 8.3. The source code stored on disk contains a macro

file:///E|/TEMP/Chapter%208%20Dividing%20and%20Conquering.htm (37 of 50) [9/30/02 08:35:49 PM]

file:///E|/TEMP/Chapter%208%20Dividing%20and%20Conquering.htm

definition, bracketed between MACRO and ENDM directives. Later in the file, the
name of the macro,
ClrScr, appears several times. When the assembler processes this file, it copies the macro
definition into a buffer somewhere in memory. As it assembles the text read from disk,
the assembler "drops" the statements contained in the macro into the text wherever the
macro name appears. The disk file is not affected; the expansion of the macros occurs
only in memory.

Macros vs. Procedures: Pro and Con

There are advantages to using macros rather than procedures. One of them is speed. It
takes time4 to execute the CALL and RET instructions that control entry to and exit
from a procedure. In a macro, neither instruction is used. Only the instructions that
perform the actual work of the macro are executed, so the macro's work is performed as
quickly as possible.
There is a cost to this speed, and the cost is in extra memory used, especially if the macro
is invoked a number of times. Notice in Figure 8.3 that

file:///E|/TEMP/Chapter%208%20Dividing%20and%20Conquering.htm (38 of 50) [9/30/02 08:35:49 PM]

file:///E|/TEMP/Chapter%208%20Dividing%20and%20Conquering.htm

three invocations of the macro generate a total of twelve instructions in memory. If the
macro had been set up as a procedure, only the four instructions in the body of the
procedure, plus one RET instructions and three CALL instructions would be required to
do the same work. This would give you a total of eight instructions for the procedure and
twelve for the macro. Each additional time the macro was invoked, the difference would
grow.

file:///E|/TEMP/Chapter%208%20Dividing%20and%20Conquering.htm (39 of 50) [9/30/02 08:35:49 PM]

file:///E|/TEMP/Chapter%208%20Dividing%20and%20Conquering.htm

Every time a macro is invoked, all of its instructions are duplicated in the program again.

In short programs, this may not be a problem, and in situations where the code must be as
fast as possible—as in graphics drivers—macros have a lot going for them.
By and large, think macros for speed and procedures for compactness.

The Mechanics of Macro Definition

A macro definition looks a lot like a procedure definition, with a slightly different pair of
directives: MACRO and ENDM. One other crucial difference is that the name of the
macro cannot be repeated in front of the ENDM directive. I'm not sure why this must be
so, but it confuses the assembler to no end.
Don't put a RET instruction at the end of the macro! Executing a RET without a previous
CALL will corrupt your stack and probably crash your program.
One important shortcoming of macros vis-a-vis procedures is that macros can have only
one entry point. The ClrScr procedure described in the last section cannot be converted
into a macro without splitting it up into four separate invocations of VIDEO interrupt
10H. If the ClrScr function (clearing the full screen to blanks for the normal video
attribute) alone were written as a macro, it would look like this:

ClrScr MACRO

mov CX,0 ; Upper left corner of full screen
mov DX,LRXY ;Load lower-right XY coordinates into DX
mov AL.O ;0 specifies clear entire region
mov BH,07H ;Specify "normal" attribute for blanked line(s)
mov AH,06H ; Select VIDEO service 6: Initialize/Scroll
int 10H ;Call VIDEO

ENDM

You can see that ClrScr has shed its RET instruction and its additional entry points, but
apart from that it's exactly the same sequence of instructions.

Functionally it works the same way, except that every time you clear your screen,
ClrScr's six instructions are dropped into the source code.
Macros are invoked simply by naming them. Don't use the CALL instruction! Just place
the macro name on a line:
ClrScr
The assembler will handle the rest.

file:///E|/TEMP/Chapter%208%20Dividing%20and%20Conquering.htm (40 of 50) [9/30/02 08:35:49 PM]

file:///E|/TEMP/Chapter%208%20Dividing%20and%20Conquering.htm

Defining Macros with Parameters

So far, macros may seem useful but perhaps not especially compelling. What makes
macros really sing is their ability to mimic high-level language subroutines and accept
arguments through parameters. For example, if you were to define a macro named
GotoXY to position the hardware cursor, you could pass it the X and Y values as
arguments:

GotoXY 17,3 ; Move the cursor to the Name field

You'd have to pinch yourself to be sure you weren't working in BASIC, no?
Macro parameters are, again, artifacts of the assembler. They are not pushed on the stack
or set into COMMON or anything like that. The parameters are simply placeholders for
the actual values (called arguments) that you pass to the macro.
I've converted the GotoXY procedure to a macro to show you how this works. Here's the
macro:

GotoXY MACRO NewX,NewY

mov DH.NewY ; The NewY parameter loads into DH
mov DL.NewX ; The NewX parameter loads into DL
mov AH,02H ; Select VIDEO service 2: Position Cursor
mov BH,O ; Stay with display page 0
int 10H ; Call VIDEO
ENDM

The two parameters are NewX and NewY. Parameters are a kind of label, and they may
be referenced anywhere within the macro. Here, the parameters are referenced as
operands to a couple of MOV instructions. The arguments passed to the macro in NewX
and NewY are thus loaded into DL and DH.
Don't confuse the arguments (actual values) with the parameters. If you understand
Pascal, it's exactly like the difference between formal parameters and actual parameters. A
macro's parameters correspond to Pascal's formal parameters, whereas a macro's
arguments correspond to Pascal's actual parameters. The macro's parameters are the
labels following the MACRO directive where the macro is defined. The arguments are the
values specified on the line where the macro is invoked.

file:///E|/TEMP/Chapter%208%20Dividing%20and%20Conquering.htm (41 of 50) [9/30/02 08:35:49 PM]

file:///E|/TEMP/Chapter%208%20Dividing%20and%20Conquering.htm

The Mechanics of Macro Parameters

A macro may have as many parameters as will fit on one line. This is a rather arbitrary
restriction, leaving you no recourse but to use short parameters names if you need lots of
parameters for a single macro.
Arguments are dropped into parameters in order, from left to right. If you pass only two
arguments to a macro with three parameters, you're likely to get an error message from
the assembler, depending on how you've referenced the unfilled parameter. The assembler
builds opcodes based on the types of operands passed as arguments; if you don't pass an
argument for a given parameter, any instructions that reference that parameter won't be
constructable by the assembler, hence the errors.
If you pass more arguments to a macro than there are parameters to receive the
arguments, the extraneous arguments will be ignored.

Local Labels within Macros

I haven't really gone into labels and branches yet, but there's an important problem with
labels used inside macros. Labels in assembly-language programs must be unique, and yet
a macro is essentially duplicated in the source code as many times as it is invoked. This
means there will be error messages flagging duplicate labels...unless you declare a
macro's labels as local.
Local labels are declared with the LOCAL directive. Here's an example; don't worry if
you don't fully understand all of the instructions it uses:

UpCase MACRO Target,Length ;Target is a string: Length its length
 LOCAL Tester,Bump
 mov CX,Length ; CX is acting as length counter for loop
 lea BX,Target ; String will be at DS:BX
Tester: cmp BYTE PTR [BX],'a' ; Is string character below 'a'l
 jb Bump ; If so, leave character alone
 cmp BYTE PTR [BX],'z' ; Is string character above 'z'?
 ja Bump ; If so, leave character alone
 and BYTE PTR [BX],llOlllllb ; Char is 1c alpha,

; so force bit 5 to 0
Bump: inc BX ; Bump BX to point to next char in string

 loop Tester : And go back and do it
again!

 ENDM

file:///E|/TEMP/Chapter%208%20Dividing%20and%20Conquering.htm (42 of 50) [9/30/02 08:35:49 PM]

file:///E|/TEMP/Chapter%208%20Dividing%20and%20Conquering.htm

The important thing to understand is that unless the labels Tester and Bump are declared
local to the macro, there will be multiple instances of a label in the program and the
assembler will generate a duplicate label error.
The only thing to remember about declaring local labels within macros is that the
LOCAL directive must immediately follow the macro header. Don't put anything—not
even a comment line—between the two.

Macro Libraries

Just as procedures can be gathered in libraries external to your program, so can macros be
gathered into macro libraries. A macro library is really nothing but a text file that
contains the source code for the macros in the library. Unlike a procedures module, macro
libraries are not separately assembled. Macro libraries must be passed through the
assembler each time the program is assembled. This is a problem with macros in general,
not only with macros that are gathered into libraries. Programs that manage complexity
by dividing code up into macros will assemble more slowly than programs that have been
divided up into separately assembled modules.
Macro libraries are used by including them into your program's source-code file. The
means to do this is the INCLUDE directive. The INCLUDE directive precedes the name
of the macro library:

INCLUDE MYLIB.MAC

This statement may be anywhere in your source-code file, but you must keep in mind that
all macros must be fully defined before they are invoked. For this reason, it's a good idea
to use the INCLUDE directive near the top of your source-code file, before any possible
invocation of one of the library macros could occur.
The following is a macro library containing macro versions of all the procedures we
discussed in the previous section:

file:///E|/TEMP/Chapter%208%20Dividing%20and%20Conquering.htm (43 of 50) [9/30/02 08:35:49 PM]

file:///E|/TEMP/Chapter%208%20Dividing%20and%20Conquering.htm

file:///E|/TEMP/Chapter%208%20Dividing%20and%20Conquering.htm (44 of 50) [9/30/02 08:35:49 PM]

file:///E|/TEMP/Chapter%208%20Dividing%20and%20Conquering.htm

file:///E|/TEMP/Chapter%208%20Dividing%20and%20Conquering.htm (45 of 50) [9/30/02 08:35:49 PM]

file:///E|/TEMP/Chapter%208%20Dividing%20and%20Conquering.htm

file:///E|/TEMP/Chapter%208%20Dividing%20and%20Conquering.htm (46 of 50) [9/30/02 08:35:49 PM]

file:///E|/TEMP/Chapter%208%20Dividing%20and%20Conquering.htm

file:///E|/TEMP/Chapter%208%20Dividing%20and%20Conquering.htm (47 of 50) [9/30/02 08:35:49 PM]

file:///E|/TEMP/Chapter%208%20Dividing%20and%20Conquering.htm

file:///E|/TEMP/Chapter%208%20Dividing%20and%20Conquering.htm (48 of 50) [9/30/02 08:35:49 PM]

file:///E|/TEMP/Chapter%208%20Dividing%20and%20Conquering.htm

END Start ; The procedure named Start becomes the main program

You'll spot something odd in EAT5.ASM: instead of using ClrScr to clear the screen as I
have been for the last several incarnations of EAT, I've replaced ClrScr with a new
macro called Clear. Clear (defined in VIDLIB.MAC) uses some technology I haven't
explained yet, but will return to in Chapter 10. The lesson is that there are numerous ways
to skin a screen, and we've moved here from having the BIOS do it for us to doing it all
on our own. Take it on faith for now, until I come back to it. More to the point for the
current discussion is the use of the GotoXY and Write and Writeln macros.
Additionally, if you look closely at the main program procedure in EAT5.ASM,

file:///E|/TEMP/Chapter%208%20Dividing%20and%20Conquering.htm (49 of 50) [9/30/02 08:35:49 PM]

file:///E|/TEMP/Chapter%208%20Dividing%20and%20Conquering.htm

something odd may occur to you: It's starting to look like something other than an
assembly-language program. This is true, and it's certainly possible to create so many
macros that your programs will begin to look like some odd high-level language.
The danger there is that unless you name your macros carefully, and document them both
in their macro-library files and on the lines where they are invoked, your programs will
not be any more comprehensible for their presence. Dividing complexity into numerous
compartments is only half the job— labeling the compartments is just as (or more)
important!

file:///E|/TEMP/Chapter%208%20Dividing%20and%20Conquering.htm (50 of 50) [9/30/02 08:35:49 PM]

file:///E|/TEMP/Assembly%20Chap9%20Revised.htm

You don't take off until all your flight checks are made.

file:///E|/TEMP/Assembly%20Chap9%20Revised.htm (1 of 58) [9/30/02 09:07:57 PM]

file:///E|/TEMP/Assembly%20Chap9%20Revised.htm

That's the reason that we haven't done a lot of instruction arranging in this book up until
now, here that we are on the third-to-last chapter. I've found that machine instructions
aren't the most important part of assembly-language programming. What's most
important is understanding your machine and your tools, and how everything fits
together. Higher-level languages like Pascal and Modula-2 hide much of those essential
details from you. In assembler you must see to them yourself. For some reason, authors
of previous "beginner" books on assembly language haven't caught on to this fact.
This fact (in fact) was the major motivation for my writing this book.
If you've digested everything I've said so far, however, you're ready to get in and
understand the remainder of the 8086/8088 instruction set. I won't teach it all in this
book, but the phrase "ready to understand" is germane. You can now find yourself a
reference and learn what instructions I don't cover on your own. The skills you need to
build programming skills are now yours, and if this book has accomplished that much, I'd
say it's accomplished a lot.
So let the fun begin.

9.1 Bits is Bits (and Bytes is Bits)

Assembly language is big on bits.
Bits, after all, are what bytes are made of, and one essential assembly-language skill is
building bytes and taking them apart again. A technique called bit mapping is widely
used in assembly language. Bit mapping assigns special meanings to individual bits
within a byte to save space and squeeze the last little drop of utility out of a given
amount of memory.
There is a family of instructions in the 8086/8088 instruction set that allow you to
manipulate the bits within the bytes by applying Boolean logical operations to the bytes
on a bit-by-bit basis. These bitwise logical instructions are: AND, OR, XOR, and NOT.
Another family of instructions allows you to slide bits back and forth within a single byte
or word. The most commonly used shift/rotate instructions are: ROL, ROR, RCL,
RCR, SHL, and SHR. (There are a few others that I will not be discussing in this book.)

Bit Numbering

Dealing with bits requires that we have a way of specifying which bits we're dealing
with. By convention, bits in assembly language are numbered, starting from 0, at the

file:///E|/TEMP/Assembly%20Chap9%20Revised.htm (2 of 58) [9/30/02 09:07:57 PM]

file:///E|/TEMP/Assembly%20Chap9%20Revised.htm

least significant bit in the byte, word, or other item we're using as a bit map. The least
significant bit is the one with the least value in the binary number system. (Return to
Chapter 1 and reread the material on base 2 if that seems fuzzy to you.) It's also the bit on
the far right, if you write the value down as a binary number.

It works best as a visual metaphor. See Figure 9.1.

 When you count bits, start with the bit on the right, and number them from 0.

"It's the Logical Thing to Do, Jim ..."

Boolean logic sounds arcane and forbidding, but remarkably, it reflects the realities of
ordinary thought and action. The Boolean operator AND, for instance, pops up in many
of the decisions you make every day of your life. For example, to write a check that
doesn't bounce, you must have money in your checking account AND checks in your
checkbook. Neither alone will do the job. ("How can I be overdrawn?" goes the classic
question, "I still have checks in my checkbook!) You can't write a check you don't have,
and a check without money behind it will bounce. People who live out of their
checkbooks (and they always end up ahead of me in the checkout line at Safeway) must
use the AND operator frequently.
When mathematicians speak of Boolean logic, they manipulate abstract values called

file:///E|/TEMP/Assembly%20Chap9%20Revised.htm (3 of 58) [9/30/02 09:07:57 PM]

file:///E|/TEMP/Assembly%20Chap9%20Revised.htm

true and false. The AND operator works like this. Condition l AND Condition 2 will be
considered true if both Condition l and Condition 2 are true. If either condition is false,
the result will be false.
There are in fact four different combinations of the two input values, so logical
operations between two values are usually summarized in a form called a truth table. The
truth table for the AND operator is shown in Table 9.1.
There's nothing mysterious about the truth table. It's just a summary of all possibilities of
the AND operator as applied to two input conditions. The

The AND Instruction
The AND instruction embodies this concept in the 8086/8088 instruction set. The AND
instruction performs the AND logical operation on two bytes or two words (depending
on how you write the instruction) and replaces its first operand with the result of the
operation. (By first, I mean the operand closest to the mnemonic.) In other words, if you
write this instruction

AND AL, BL

the CPU will perform a gang of eight bitwise AND operations on the 8 bits in AL and
BL. Bit 0 of AL is ANDed with bit 0 of BL, bit 1 of AL is ANDed with bit 1 of BL, and

file:///E|/TEMP/Assembly%20Chap9%20Revised.htm (4 of 58) [9/30/02 09:07:57 PM]

file:///E|/TEMP/Assembly%20Chap9%20Revised.htm

so on. Each AND operation generates a result bit, and that bit is placed in the first
operand (here, AL) after all eight AND operations occur. This is a common thread
among machine instructions that perform some operation on two operands and produce a
result: the result replaces the first operand.

Masking Out Bits

A major use of the AND instruction is to isolate one or more bits out of a byte value or a
word value. The term isolate here simply means to set all unwanted bits to a reliable 0
value. As an example, suppose we are interested in testing bits 4 and 5 of a value to see
what those bits are. To do that, we have to be able to ignore the other bits (bits 0 through
3 and 6 through 7) and the only way to safely ignore bits is to set them to 0.
AND is the way to go. We set up a bit mask in which the bit numbers that we want to
inspect and test are set to 1, and the bits we wish to ignore are set to 0. To mask out all
bits but bits 4 and 5, we must set up a mask in which bits 4 and 5 are set to 1, with all
other bits at 0. This mask in binary is 00110000B, or 30H in hex. (To verify it, count the
bits from the right hand end of the binary number, starting with 0.) This bit mask is then
ANDed against the value in question. Figure 9.2 shows this operation in action, with the
30H bit mask just described, and an initial value of 9DH.
The three binary values involved are shown laid out vertically, with the LSB (the right-
hand end) of each value at the top. You should be able to trace each AND operation and
verify it by looking at Table 9.2.
The end result is that all bits except 4 and 5 are guaranteed to be 0 and can thus be safely
ignored. Bits 4 and 5 could be either 0 or 1. (That's why we need to test them; we don't
know what they are.) With the initial value of 9DH, bit 4 turns out to be a 1, and bit 5
turns out to be a 0. If the initial value were something else, bits 4 and 5 could both be 0,
both 1, or some combination of the two.
Don't forget: the result of the AND operation replaces the first operand after the
operation is complete.

file:///E|/TEMP/Assembly%20Chap9%20Revised.htm (5 of 58) [9/30/02 09:07:57 PM]

file:///E|/TEMP/Assembly%20Chap9%20Revised.htm

For an example of the AND instruction in operation isolating bits in a word, look ahead
to the Byte2Str procedure .

The OR Instruction

Closely related to the AND logical operation is OR, which, like the AND logical
operation, has an embodiment with the same name in the 86-family instruction set.
Structurally, the OR instruction works identically to AND. Only its truth table is
different: while AND requires that both its operands be 1 for the result to be 1, OR is
satisfied that at least one operand has a 1 value. The truth table for OR is shown in Table
9.3.
Because it's unsuitable for isolating bits, OR is used much more rarely than AND

file:///E|/TEMP/Assembly%20Chap9%20Revised.htm (6 of 58) [9/30/02 09:07:57 PM]

file:///E|/TEMP/Assembly%20Chap9%20Revised.htm

.

The XOR Instruction

In a class by itself is the exclusive OR operation, embodied in the XOR instruction.
XOR, again, does in broad terms what AND and OR do: it performs a logical operation
on two operands, and the result replaces the first operand. The logical operation,
however, is exclusive or, meaning that the result is 1 only if the two operands are
different. (1 and 0 or 0 and 1.) The truth table for XOR should make this slippery notion
a little clearer (see Table 9.4).

Look this over carefully! In the first and last cases, where the two operands are the same,
the result is 0. In the middle two cases, where the two operands are different, the result is
1.
Some interesting things can be done with XOR, but most of them are a little arcane for a
beginner's book. I will show you one handy XOR trick, however: "XORing" any value
against itself yields 0. Furthermore, putting 0 in a register by XORing the register against
itself is faster than putting a 0 in the register by MOVing in a 0 as immediate data.
That is, both of these instructions accomplish the same thing:

mov AL,0
xor AL,AL

file:///E|/TEMP/Assembly%20Chap9%20Revised.htm (7 of 58) [9/30/02 09:07:57 PM]

file:///E|/TEMP/Assembly%20Chap9%20Revised.htm

However, if you're running an 8086 or 8088 processor, the first instruction uses four
machine cycles, while the second uses only three. That's not a tremendous difference
(though purists will argue that it represents a 25% improvement) but there are times in
assembly language where every machine cycle counts!
How this trick works should be clear from reading the truth table, but to drive it home
I've laid it out in Figure 9.3.
Follow each of the individual XOR operations across the figure to its result value.
Because each bit in AL is XORed against itself, in every case the XOR operations
happen between two operands that are identical. Sometimes both are 1, sometimes both
are 0, but in every case the two are the same. With the XOR operation, when the two
operands are the same, the result is always 0. Voila! 0 in a register in three cycles flat.

The NOT Instruction

Easiest to understand of all the bitwise logical instructions is NOT. The truth table for
the NOT instruction (Table 9.5) is pretty simple because NOT only takes one operand.
And what it does is simple as well: NOT takes the state of each bit in its single operand
and changes it to its opposite state. What was 1 becomes 0 and what was 0 becomes 1.

file:///E|/TEMP/Assembly%20Chap9%20Revised.htm (8 of 58) [9/30/02 09:07:57 PM]

file:///E|/TEMP/Assembly%20Chap9%20Revised.htm

Segment Registers Don't Respond to Logic!

One limitation of the segment registers CS, DS, SS, and ES is that they cannot be used
with any of the bitwise logical instructions. If you try, the assembler will hand you an
"Illegal use of segment register" error. If you need to perform a logical operation on a
segment register, you must first copy the segment register's value into one of the
nonsegment registers (AX, BX, CX, DX, BP, SI, and DI); perform the logical operation
on the new register, and then copy the result back into the segment register.

Table 9.5. The NOT truth table

Bit Operator Result bit
0 XOR 1

file:///E|/TEMP/Assembly%20Chap9%20Revised.htm (9 of 58) [9/30/02 09:07:57 PM]

file:///E|/TEMP/Assembly%20Chap9%20Revised.htm

1 XOR 0

9.2 Shifting Bits

The other way of manipulating bits within a byte is a little more straightforward: you
shift the bits to one side or the other. There are a few wrinkles to the process, but the
simplest shift instructions are pretty obvious: the SHL instruction Shifts its operand
Left, whereas the SHR instruction Shifts its operand Right.
All of the shift instructions (including the slightly more complex ones I'll describe a little
later) have the same general form, illustrated here by the SHL instruction:

SHL <register/memory>,<count>

The first operand is the target of the shift operation; that is, the value that you're going to
be shifting. It can be register data or memory data, but not immediate data. The second
operand specifies the number of bits by which to shift.

Shift by What?

The <count> operand is a little peculiar. It can be one of two things: the literal digit 1, or
else the register CL. (Not CX!) If you specify the count as 1, then the shift will be by one
bit. If you wish to shift by more than one bit at a time, you must load the shift count into
register CL. Counting things is CX's (and hence CL's) hidden agenda; it counts shifts,
loops, string elements, and a few other things. That's why it's sometimes called the count
register ("C" for "count").
Although you can load a number as large as 255 into CL, it really only makes sense to
use count values up to 16. If you shift any bit in a word by 16, you shift it completely out
of the word!
Something to keep in mind: moving an immediate count value into CL takes some time.
Furthermore, executing a shift instruction that takes its count value from CL takes more
time to execute than executing a shift instruction that uses the literal 1 as its count value.
These two facts conspire to make it faster to use successive shift-by-1 instructions unless
you need to shift by 5 or more bits.
As an example, consider the following instruction sequence, which is what must be done
to use CL to shift a word by 3 bits:

file:///E|/TEMP/Assembly%20Chap9%20Revised.htm (10 of 58) [9/30/02 09:07:57 PM]

file:///E|/TEMP/Assembly%20Chap9%20Revised.htm

MOV CL,3
SHL SI,CL

Most remarkably, it is faster to accomplish the same shift this way:

SHL SI,l
SHL SI,l
SHL SI,l

The rule of thumb is this: unless you need to shift by more than 4 bits, use consecutive
shift-by-1 instructions rather than shifting via the CL register.

How Bit Shifting Works

Understanding the shift instructions requires that you think of the numbers being shifted
as binary numbers, and not hexadecimal or decimal numbers. (If you're fuzzy on binary
notation, again, take another slip through Chapter 1.) A simple example would start with
register AX containing a value of OB76FH. Expressed as a binary number (and hence as
a bit pattern) OB76FH is

1011011101101111

Keep in mind that each digit in a binary number is 1 bit. If you execute an SHL AX,1
instruction, what you'd find in AX after the shift is the following:

0110111011011110

A 0 bit has been inserted at the right hand end of the number, and the whole shebang has
been bumped toward the left by one digit. Notice that a 1 bit has been bumped off the left
end of the number into nothingness.

Bumping Bits into the Carry Flag

Well, not exactly nothingness. The last bit shifted out is bumped into a temporary
bucket for bits the Carry flag (CF). The Carry flag is one of those odd bits lumped
together as the Flags register, which I described in Section 6.4. You can test the state of

file:///E|/TEMP/Assembly%20Chap9%20Revised.htm (11 of 58) [9/30/02 09:07:57 PM]

file:///E|/TEMP/Assembly%20Chap9%20Revised.htm

the Carry flag with a branching instruction, as I'll explain in Section 9.3.
Keep in mind when using shift instructions, however, that, in addition to the Shift
instructions, a lot of different instructions, including the bitwise logical instructions and
the arithmetic instructions, use the Carry flag. If you bump a bit into the Carry flag with
the intent of testing that bit to see what it is, test it before you execute another instruction
that affects the Carry flag.
If you shift a bit into the Carry flag and then immediately execute another shift
instruction, the first bit will be bumped off the end of the world and into nothingness.

The Byte2Str Procedure: Converting Numbers to Displayable Strings

As we've seen, DOS has a fairly convenient method for displaying text on your screen.
The problem is that it only displays text—if you want to display a numeric value from a
register as a pair of digits, DOS won't help. You first have to convert the numeric value
into its string representation, and then display the string representation through DOS.
Converting hexadecimal numbers to hexadecimal digits isn't difficult, and the routine to
do the job demonstrates several of the new concepts we're exploring in this chapter. Read
the Byte2Str procedure carefully:

To call Byte2Str you must pass the value to be converted to a string in AL, and the
address of the string into which the string representation is to be stored as DS:SI.
Typically, DS will already contain the segment address of your data segment, so you
most likely will only need to pass the offset of the start of the string in SI.

In addition to the code shown here, Byte2Str requires the presence of a second string in
the data segment. This string, whose name must be Digits, contains all 16 of the digits
used to express hexadecimal numbers. The definition of Digits looks like this:

Digits DB '0123456789ABCDEF'

The important thing to note about Digits is that each digit occupies a position in the
string whose offset from the start of the string is the value it represents. In other words,
'0' is at the start of the string, zero bytes offset from the string's start. The character "7"
lies seven bytes from the start of the string, and so on. Digits is what we call a look up
table and it represents (as I'll explain below) an extremely useful mechanism in assembly
language.

file:///E|/TEMP/Assembly%20Chap9%20Revised.htm (12 of 58) [9/30/02 09:07:57 PM]

file:///E|/TEMP/Assembly%20Chap9%20Revised.htm

Splitting a Byte into Two Nybbles

Displaying the value stored in a byte requires two hexadecimal digits. The bottom four
bits in a byte are represented by one digit (the least significant, or rightmost digit) and the
top four bits in the byte are represented by another digit (the most significant, or leftmost
digit.) Converting the two digits must be done one at a time, which means that we have
to separate the single byte into two four-bit quantities, which are often called nybbles.

file:///E|/TEMP/Assembly%20Chap9%20Revised.htm (13 of 58) [9/30/02 09:07:57 PM]

file:///E|/TEMP/Assembly%20Chap9%20Revised.htm

To split a byte in two, we need to mask out the unwanted half. This is done with an AND
instruction. Note in the Byte2Str procedure that the first instruction, MOV DI,AX,
copies the value to be converted (which is in AL) into DI. You don't need to move AH
into DI here, but there is no instruction to move an 8-bit register-half like AL into a 16-
bit register like DI. AH comes along for the ride, but we really don't need it. The second
instruction masks out the high twelve bits of DI using AND. This eliminates what had
earlier been in free-rider AH, as well as the high four bits of AL. What's left in DI is all
we want: the lower four bits of what was originally passed to the routine in AL.

Using a Lookup Table

The low nybble of the value to be converted is now in DI. The address of Digits is
loaded into BX. Then the appropriate digit character is copied from Digits into AH. The
whole trick of using a lookup table lies in the way the character in the table is addressed:

mov AH,BYTE PTR [BX+DI]

DS:BX points to the start of Digits, so [BX] would address the first character in digits.
To get at the desired digit, we must index into the lookup table by adding the offset into
the table to BX. There is an 8086/8088 addressing mode intended precisely for use with
lookup tables, called base indexed addressing. That sounds more arcane than it is; what it
means is that instead of specifying a memory location at [BX], we add an index to BX,
and address a memory location at [BX+DI].
If you recall, we masked out all of DI except the four lowest bits of the byte we are
converting. These bits will contain some value from 0 through OFH. Digits contains the
hexadecimal digit characters from 0 through F. By using DI as the index, the value in DI
will select its corresponding digit character in Digits. We are using the value in DI to
look up its equivalent hexadecimal digit character in the lookup table (Digits). See
Figure 9.4.
So far, we've read a character from the lookup table into AH. Now, we use yet another
addressing mode to move the character from AX back into the second character of the
destination string, whose address was passed to Byte2Str in DS:SI. This addressing
mode is called indirect addressing, though I question the wisdom of memorizing that
term. The mode is nothing more than indirect addressing (addressing the contents of
memory at [SI]) with the addition of a literal displacement:

mov [SI+1],AH

file:///E|/TEMP/Assembly%20Chap9%20Revised.htm (14 of 58) [9/30/02 09:07:57 PM]

file:///E|/TEMP/Assembly%20Chap9%20Revised.htm

This looks a lot like base indexed addressing (which is why the jargon may not be all that
useful) with the sole exception that what is added to SI is not a register but a literal
constant.
Once this move is done, the first of the two nybbles passed to Byte2Str in AL has been
converted to its character equivalent and stored in the destination string variable at
DS:SI.
Now we have to do it again, this time for the high nybble.

Shifting the High Nybble into the Low Nybble

The high nybble of the value to be converted has been waiting patiently all this time in
AL. We didn't mask out the high nybble until we moved AX into DI, and did our
masking on DI instead of AX. So AL is still just as it was when Byte2Str began.
The first thing to do is clear AH to 0. Byte2Str uses the XOR AH,AH trick I described
in the last section. Then we move AX into DI.
All that remains to be done is to somehow move the high nybble of the low byte of DI
into the position occupied by the low nybble. The fastest way to do this is simply to shift
DI to the right—four times in a row. This is what the four SHR instructions in Byte2Str
do. The low nybble is simply shifted off the edge of DI, into the Carry flag, and then out
into nothingness. After the four shifts, what was the high nybble is now the low nybble,
and once again, DI can be used as an index into the Digits lookup table to move the
appropriate digit into AH.
Finally, there is the matter of storing the digit into the target string at DS:SI. Notice that
this time, there is no +1 in the MOV instruction:

mov [SI],AH
Why not? The high nybble is the digit on the left, so it must be moved into the first byte
in the target string. Earlier, we moved the low nybble into the byte on the right. String
indexing begins at the left and works toward the right, so if the left digit is at index 0 of
the string, the right digit must be at index 0+1.
Byte2Str does a fair amount of data fiddling in only a few lines. Read it over a few times
while following the above discussion through its course until the whole thing makes
sense to you.

FIGURE

file:///E|/TEMP/Assembly%20Chap9%20Revised.htm (15 of 58) [9/30/02 09:07:57 PM]

file:///E|/TEMP/Assembly%20Chap9%20Revised.htm

Converting Words to Their String Form

Having converted a byte-sized value to a string, it's a snap to convert 16-bit words to
their string forms. In fact, it's not much more difficult than calling Byte2Str twice:

The logic here is fairly simple—if you understand how Byte2Str works. Moving AX
into CX simply saves an unmodified copy of the word to be converted in CX. Something
to watch out for here: if Byte2Str were to use CX for something, this saved copy would
be mangled, and you might be caught wondering why things weren't working correctly.
This is a common enough bug for the following reason: you create Byte2Str, and then
create Word2Str to call Byte2Str. The first version of Byte2Str does not make use of
CX, so it's safe to use CX as a storage bucket.

file:///E|/TEMP/Assembly%20Chap9%20Revised.htm (16 of 58) [9/30/02 09:07:57 PM]

file:///E|/TEMP/Assembly%20Chap9%20Revised.htm

However—later on you beef up Byte2Str somehow, and in the process add some
instructions that use CX. You plumb fergot that Word2Str stored a value in CX
whileWord2Str was calling
Byte2Str

. It's pointless arguing whether the bug is that Byte2Str uses CX, or that Word2Str
assumes that no one else is using CX. To make things work again, you would have to
stash the value somewhere other than in CX. Pushing it onto the stack is your best bet if
you run out of registers. (You might hit on the idea of stashing it in an unused segment
register like ES—but I warn against it! Later on, if you try to use these utility routines in
a program that makes use of ES, you'll be in a position to mess over your memory
addressing royally. Let segment registers hold segments. Use the stack instead.)
Virtually everything that Word2Str does involves getting the converted digits into the
proper positions in the target string. A word requires four hexadecimal digits altogether.
In a string representation, the high byte occupies the left two digits, and the low byte
occupies the right two digits. Since strings are indexed from the left to the right, it makes
a certain sense to convert the left end of the string first.
This is the reason for the XCHG instruction. It swaps the high and low bytes of AX, so
that the first time Byte2Str is called, the high byte is actually in AL instead of AH.

file:///E|/TEMP/Assembly%20Chap9%20Revised.htm (17 of 58) [9/30/02 09:07:57 PM]

file:///E|/TEMP/Assembly%20Chap9%20Revised.htm

(Remember that Byte2Str converts the value passed in AL.) Byte2Str does the
conversion and stores the two converted digits in the first two bytes of the string at
DS:SI.
For the second call to Byte2Str, AH and AL are not exchanged. Therefore the low byte
will be the one converted. Notice the following instruction:

add SI,2

This is not heavy-duty math, but it's a good example of how to add a literal constant to a
register in assembly language. The idea is to pass the address of the second two bytes of
the string to Byte2Str as though they were actually the start of the string. This means that
when Byte2Str converts the low byte of AX, it stores the two equivalent digits into the
second two bytes of the string.
For example, if the high byte was 0C7H, the digits C and 7 would be stored in the first
two bytes of the string, counting from the left. Then, if the low byte were 042H, the
digits 4 and 2 would be stored at the third and fourth bytes of the string, respectively. The
whole string would read C742 when the conversion was complete.
As I've said numerous times before: understand memory addressing and you've got the
greater part of assembly language in your hip pocket. Most of the trick of Byte2Str and
Word2Str lies in the different ways they address memory. As you study them, focus on
the machinery behind the lookup table and target string addressing. The logic and shift
instructions are pretty obvious and easy to figure out by comparison.

9.3 Flags, Tests, and Branches

Those assembler-knowledgeable folk who have stuck with me this long may be
wondering why I haven't covered conditional jumps until this late in the book. I mean,
we've explained procedures already, and haven't even gotten to jumps yet.
Indeed. That's the whole point. I explained procedures before jumps because
when people learn those two concepts the other way around, they have a tendency
to use jumps for everything, even when procedures are called for. Unlike some high-level
languages like Pascal and Modula-2, there is no way around jumps—what they so
derisively call "GOTOs"—in assembly language. Sadly, some people then assume that
jumps are "it," and don't bother imposing any structure at all on their assembly-language
programs. By teaching procedures first, I feel that I've at least made possible a more
balanced approach on the part of the learner.

file:///E|/TEMP/Assembly%20Chap9%20Revised.htm (18 of 58) [9/30/02 09:07:57 PM]

file:///E|/TEMP/Assembly%20Chap9%20Revised.htm

Besides, I felt it wise to teach how to manage complexity before teaching the number
one means of creating complexity.

Unconditional Jumps

A jump is just that: an abrupt change in the flow of instruction execution. Ordinarily,
instructions are executed one after the other, in order, moving from low memory toward
high memory. Jump instructions alter the address of the next instruction to be executed.
Execute a jump instruction, and zap!-—all of a sudden you're somewhere else in the code
segment. A jump instruction can move execution forward in memory, or backward. It
can bend execution back into a loop. (And it can tie your program logic in knots)
There are two kinds of jumps: conditional and unconditional. An unconditional jump is
a jump that always happens. It takes this form:

jmp <labe1>

When this instruction executes, the sequence of execution moves to the instruction
located at the label specified by the <label> operand. It's just that simple. The
unconditional JMP instruction is of limited use by itself. It almost always works in
conjunction with the conditional jump instructions that test the state of the various
8086/8088 flags. You'll see how this works in just a little while, once we've gone through
conditional jumps too.

Conditional Jumps

A conditional JMP instruction is one of those fabled tests I introduced in Chapter 0.
When executed, a conditional jump tests something, usually one of the flags in the Flags
register. If the flag being tested happens to be in a particular state, execution may jump to
a label somewhere else in the code segment, or it may simply "fall through" to the next
instruction in sequence.
This either/or nature is important. A conditional jump instruction either jumps, or it falls
through. Jump, or no jump. It can't jump to one of two places, or three. Whether it jumps
or not depends on the current value of one single bit within the CPU.
For example, the Zero flag (ZF) is set to 1 by certain instructions when the result of that
instruction is 0. The decrement (DEC) instruction is one of these instructions.
DEC subtracts 1 from its operand. If by that subtraction the operand becomes 0, ZF is

file:///E|/TEMP/Assembly%20Chap9%20Revised.htm (19 of 58) [9/30/02 09:07:57 PM]

file:///E|/TEMP/Assembly%20Chap9%20Revised.htm

set to 1. One of the conditional jump instructions, Jump if Zero (JZ) tests ZF. If ZF is
found set to 1, a jump occurs, and execution transfers to a label. If ZF is found to be 0,
execution falls through to the next instruction in line.
Here's a simple (and non optimal) example, using instructions you should already
understand:

mov Counter,17 ; We're going to do this 17 times
WorkLoop: call DoWork ; Process the data

dec Counter ; Subtract 1 from the counter
jz AllDone ; If the Counter is 0, we're done!
jmp WorkLoop ; Otherwise, go back and execute the loop again

The label AllDone isn't shown in the example because it's somewhere else in the
program, maybe a long way off. The important thing is that the JZ instruction is a two-
way switch. If ZF is equal to 1, execution moves to the location marked by the label
AllDone. If ZF is equal to 0, execution falls through to the next instruction in sequence.
Here, that would be the unconditional jump instruction JMP WorkLoop.
This simple loop is one way to perform a call to a procedure some set number of times. A
count value is stored in a variable named Counter. The procedure is called. After control
returns from the procedure, Counter is decremented by one. If that drops the counter to
0, the procedure has been called the full number of times, and the loop sends execution
elsewhere. If the counter still has some count in it, execution loops back to the procedure
call and begins the loop again.
Note the use of an unconditional jump instruction to "close the loop."

Beware Endless Loops!

This is a good place to warn you of a common sort of bug that produces the dreaded
endless loop, which locks up your machine and forces you to reboot to get out. Suppose
the code snippet shown above were instead done the following way:

WorkLoop: mov Counter,17 ; We're going to do this 17 times

call DoWork : Process the data
dec Counter : Subtract 1 from the counter
 jz AllDone ; If the counter is 0, we're done!
jmp WorkLoop ; Otherwise, go back and execute the loop again

This becomes a pretty obvious endless loop. (However, you'll be appalled at how

file:///E|/TEMP/Assembly%20Chap9%20Revised.htm (20 of 58) [9/30/02 09:07:57 PM]

file:///E|/TEMP/Assembly%20Chap9%20Revised.htm

often such an obvious bug will dance in your face for hours without being
recognized as such) The key point is that the instruction that loads the initial value to
the counter is inside the loop! Every time the loop happens, the counter is decremented
by one ... and then immediately reloaded with the original count value. The count value
thus never gets smaller than the original value minus 1 and the loop (which is waiting
for the counter to become 0) never ends.
You're unlikely to do something like this deliberately, of course. But it's very easy to type
a label at the wrong place, or (easier still) to type the name of the wrong label, a label
that might be at or before the point where a counter is loaded with its initial value.
Assembly-language programming requires concentration and endless attention to detail.
If you pay attention to what you're doing, you'll make fewer "stupid" errors like the one
above.
But I can promise you that you'll still make a few.

Jumping on the Absence of a Condition

There are a fair number of conditional jump instructions, of which I'll discuss only the
most common in this book. Their number is increased by the fact that every conditional
jump instruction has an alter ego: a jump when the specified condition is not set to 1.
The JZ instruction provides a good example. JZ jumps to a new location in the code
segment if ZF is set to 1. JZ's alter ego is the Jump if Not Zero (JNZ). JNZ jumps to a
label if ZF is 0, and falls through if ZF is 1.
This may be confusing at first, because JNZ jumps when ZF is equal to 0. Keep in mind
that the name of the instruction applies to the condition being tested, and not necessarily
the binary bit value of the flag. In the previous code example, JZ jumped when the DEC
instruction decremented the Counter to 0. The condition being tested is something
connected with an earlier instruction, not simply the state of ZF.
Think of it this way: a condition raises a flag. "Raising a flag" means setting the flag to 1.
When one of numerous instructions forces an operand to a value of 0, (which is the
condition) the Zero flag is raised. The logic of the instruction refers to the condition, not
to the flag.
As an example, let's improve our little loop. I should caution you that its first
implementation, while correct and workable in the strictest sense, is awkward and not
the best way to code that kind of thing. It can be improved in several ways. Here's one:

mov Counter,17 : We're going to do this 17 times

file:///E|/TEMP/Assembly%20Chap9%20Revised.htm (21 of 58) [9/30/02 09:07:57 PM]

file:///E|/TEMP/Assembly%20Chap9%20Revised.htm

WorkLoop: call DoWork ; Process the data
dec Counter ; Subtract 1 from the Counter
jnz WorkLoop ; If the Counter is 0. we're done!
< more code >

The JZ instruction has been replaced with a JNZ instruction. That makes much more
sense, since to close the loop we have to jump, and we only close the loop while the
Counter is greater than 0. The jump back to label WorkLoop will happen only while the
counter is greater than 0.
Once the counter decrements to 0, the loop is considered finished. JNZ falls through, and
the code that follows the loop (which I don't show here) executes. The next instruction
could be a JMP to label AllDone, as shown earlier, or it could be the next bit of work
that the assembly-language program has to do. The point is that if you can position the
program's next task immediately after the JNZ instruction, you don't need to use the
JMP instruction at all. Instruction execution will just flow naturally into the next task
that needs performing. The program will have a more natural and less tangled top-to-
bottom flow, and will be easier to read and understand.

Flags

Back in Section 6.4 I explained the Flags register and briefly described the purposes of
all the flags it contains. Most flags are not terribly useful, especially when you're first
starting out as a programmer. The Carry flag (CF) and the Zero flag (ZF) will be 90% of
your involvement in flags as a beginner, with the Direction flag (DF), Sign flag (SF) and
Overflow flag (OF) together making up an additional 9.998%. It might be a good idea to
reread Section 6.4 now, just in case your grasp of flag etiquette has gotten a little rusty.
As explained a few pages ago, JZ jumps when ZF is 1, whereas JNZ jumps when ZF is
0. Most instructions that perform some operation on an operand (like AND, OR, XOR,
INC, DEC and all arithmetic instructions) set ZF according to the results of the
operation. On the other hand, instructions that simply move data around (such as MOV,
XCHG, PUSH, and POP) do not affect ZF or any of the other flags. (Obviously, POPF
affects the flags by popping the top-of-stack value into them.) One irritating exception is
the NOT instruction, which performs a logical operation on its operand but does not set
any flags— even when it causes its operand to become 0. Before you write code that
depends on flags, check your instruction reference (one is almost certainly provided with
your assembler) to make sure you have the flag etiquette down correctly.

file:///E|/TEMP/Assembly%20Chap9%20Revised.htm (22 of 58) [9/30/02 09:07:58 PM]

file:///E|/TEMP/Assembly%20Chap9%20Revised.htm

Comparisons with CMP

One major use of flags is in controlling loops. Another is in comparisons between two
values. Your programs will often need to know whether a value in a register or memory
is equal to some other value. Further, you may want to know if a value is greater than a
value or less than a value if it is not equal to that value. There is a jump instruction to
satisfy every need, but something has to set the flags for the benefit of the jump
instruction. The compare (CMP) instruction is what sets the flags for comparison tasks.
CMP's use is straightforward and intuitive. The second operand is compared with the
first, and several flags are set accordingly:

cmp <opl>,<op2> ; Sets OF, SF, ZF, AF, PF, and CF

The sense of the comparison can be remembered if you simply recast the comparison in
arithmetic terms:

Result = <op1 > - <op2 >

CMP is a subtraction operation where the result of the subtraction is thrown away, and
only the flags are affected. The second operand is subtracted from the first. Based on the
results of the subtraction, the flags are set to appropriate values.
After a CMP instruction, you can jump based on several arithmetic conditions. People
who have a fair grounding in math, or are FORTRAN or Pascal programmers will
recognize the conditions: equal, not equal, greater than, less than, greater than or equal
to, and less than or equal to. The sense of these operators follows from their names, and
is exactly like the sense of the equivalent operators in most high-level languages.

A Jungle of Jump Instructions

There is a bewildering array of jump instruction mnemonics, but those dealing with
arithmetic relationships sort out well into just six categories, one category for each of the
six conditions listed above. Complication arises out of the fact that there are two
mnemonics for each machine instruction, for example, JLE (Jump if Less than or Equal)
and JNG (Jump if Not Greater than). These two mnemonics are synonyms, in that the
assembler generates the identical binary opcode when it encounters either mnemonic.

file:///E|/TEMP/Assembly%20Chap9%20Revised.htm (23 of 58) [9/30/02 09:07:58 PM]

file:///E|/TEMP/Assembly%20Chap9%20Revised.htm

The synonyms are a convenience to you the programmer, in that they provide two
alternate ways to think about a given jump instruction. In the above example, jump if less
than or equal to is logically identical to jump if not greater than. (Think about it!) If the
importance of the preceding compare was to see if one value is less than or equal to
another, you'd use the JLE mnemonic. On the other hand, if you were testing to be sure
one quantity was not greater than another, you'd use JNG. The choice is yours.
Another complication is that there is a separate set of instructions for signed and
unsigned comparisons. I haven't spoken much about assembly-language math in this
book, and thus haven't said much about the difference between signed and unsigned
quantities. A signed quantity is one in which the high bit of the quantity is considered a
built-in flag that indicates whether or not the quantity is negative. If that bit is 1, the
quantity is considered negative; if that bit is 0, the quantity is considered positive.
Signed arithmetic in assembly language is complex and subtle, and not as useful as
you might immediately think. I won't be covering it in detail in this book, though
most all assembly language books treat it to some extent. All you need know to get a
high-level understanding of signed arithmetic is that in signed arithmetic, negative
quantities are legal. Unsigned arithmetic, on the other hand, does not recognize
negative numbers.

Greater Than vs. Above

To tell the signed jumps apart from the unsigned jumps, the mnemonics use two
different expressions for the relationships between two values:
• Signed values are thought of as being greater than or less than. For
example, to test whether one signed operand is greater than another, you would use
the JG (Jump if Greater) mnemonic after a CMP instruction.
• Unsigned values are thought of as being above or below. For example, to tell
whether one unsigned operand is greater (above) another, you would use the JA
(Jump if Above) mnemonic after a CMP instruction.
Table 9.6 summarizes the arithmetic jump mnemonics and their synonyms. Any
mnemonics containing the words above or below are for unsigned values, while any
mnemonics containing the words greater or less are for signed values. Compare the
mnemonics with their synonyms and see how the two represent opposite viewpoints
from which to look at identical

file:///E|/TEMP/Assembly%20Chap9%20Revised.htm (24 of 58) [9/30/02 09:07:58 PM]

file:///E|/TEMP/Assembly%20Chap9%20Revised.htm

instructions.
Table 9.6 simply served to expand the mnemonics into a more comprehensible form and
associate a mnemonic with its synonym. Table 9.7, on the other hand, sorts the
mnemonics out by logical condition and according to their use with signed and unsigned
values. Also listed in Table 9.7 are the flags whose values are considered in each jump
instruction. Notice that some of the jump instructions require one of two possible flag
values in order to take the jump, while others require both of two flag values.
Several of the signed jumps compare two of the flags against one another. JG, for
example, will jump when either ZF is 0, or when the Sign flag (SF) is equal to the
Overflow flag (OF). I won't spend any further time explaining the nature of the Sign flag
or Overflow flag. As long as you have the sense of each instruction under your belt,
understanding exactly how the instructions test the flags can wait until you've gained
some programming experience.
Some people have trouble understanding how it is that the JE and JZ mnemonics are
synonyms, as are JNE and JNZ. Think again of the way a comparison is done within the
CPU: the second operand is subtracted from the first, and if the result is 0 (indicating that
the two operands were in fact equal), ZF is set to 1. That's why JE and JZ are synonyms:
both are simply testing the state of ZF.

file:///E|/TEMP/Assembly%20Chap9%20Revised.htm (25 of 58) [9/30/02 09:07:58 PM]

file:///E|/TEMP/Assembly%20Chap9%20Revised.htm

 .
Detecting the Installed Display Adapter

A useful example of CMP and the conditional JMP instructions in action involves
detecting the installed display adapter. Five different mainstream IBM display adapters
that can be installed in a PC (from the first generation introduced with the original PC in
1981 to the VGA and MCGA introduced with the PS/2 series in 1987) are currently
available. (I don't consider the PGC and the XGA to be mainstream—although the XGA
will almost certainly get there in time.) Each adapter has certain unique features, and if
you intend to use some of the (rather nifty) hardware assistance offered by the more
advanced video boards like the EGA and VGA, you had better be prepared to tell which
board is in a given machine. Then your program must decide what special features can
and cannot be used.
It isn't quite enough to know which board is installed in a given machine. The way a
certain board operates can change severely depending on whether a monochrome or color
monitor is attached to the board. The most obvious difference (and the one of most
interest to the programmer) is that the memory address of the video display buffer is
different for color and monochrome monitors. This schizophrenic quality of the EGA,
VGA, and MCGA is so pronounced that it makes sense to consider the EGA/color
monitor combination an entirely separate display adapter from the EGA/monochrome

file:///E|/TEMP/Assembly%20Chap9%20Revised.htm (26 of 58) [9/30/02 09:07:58 PM]

file:///E|/TEMP/Assembly%20Chap9%20Revised.htm

monitor combination.
In my method, I use a separate numeric code to represent each legal adapter/monitor
combination. There are nine possibilities in all, summarized in Table 9.8.
The codes are not consecutive; note that there is no code 3, 6 or 9. I didn't make these
codes up arbitrarily. They are in fact the display adapter/monitor combination codes
returned by one of the VGA/MCGA BIOS services.
The DispID procedure given below determines which display adapter is installed in the
machine in which DispID is running. DispID then returns one of the codes listed in
Table 9.8.

Table 9.8. Legal PC display adapter/monitor combinations
Code Adapter/Monitor Segment of Display Buffer
00 None None
01H MDA/Monochrome 0B000H
02H CGA/Color 0B800H
04H EGA/Color 0B800H

05H EGA/Monochrome 0B000H

07H VGA/Monochrome 0B000H
08H VGA/Color 0B800H
0AH MCGA/Color (digital) 0B800H
0BH MCGA/Monochrome 0B000H

0CH MCGA/Color (analog) 0B800H

I recommend that your programs define a byte-sized variable in their data segments
where this code can be stored throughout the program's duration. If you detect the
adapter with DispID immediately on program startup, your program can inspect the code
any time it needs to make a decision as to which video features to use.
Given what I've told you about CMP and conditional jump instructions so far, see if you
can follow the logic in DispID before we go through it blow by blow:

DispID is the most complex piece of code shown so far in this book. The overall strategy
is not obvious and bears some attention.
IBM's standard display boards appeared in three generations. The first generation
consisted of the original Color Graphics Adapter (CGA) and Monochrome Display

file:///E|/TEMP/Assembly%20Chap9%20Revised.htm (27 of 58) [9/30/02 09:07:58 PM]

file:///E|/TEMP/Assembly%20Chap9%20Revised.htm

Adapter (MDA). The second generation consisted of the Enhanced Graphics Adapter
(EGA.) Finally, the third generation came in with the PS/2 in April of 1987 and provided
the Video Graphics Array (VGA) and Multi-Color Graphics Array (MCGA).
The simplest way to find out what display board is installed in a machine is to "ask the
machine" by querying BIOS services. There are BIOS services specific to each
generation of display board, and by some quirk of fate all such services are well behaved,
by which I mean that querying a service that doesn't exist (because an older generation of
video board is installed) will not crash the system. (IBM's BIOS standard is extremely
"downward compatible" in that newer generations all contain everything the older
generations do.) Furthermore, if a BIOS service specific to a generation of boards is
found not to exist, that tells us that the installed board is not a member of that generation
or a newer generation.

Assuming that the target machine could have any of the standard IBM display boards in
it, it makes sense to test for the presence of the newest boards first. Then, through a
process of elimination, we move to the older and older boards.
The first test that DispID makes, then, is for the VGA or MCGA generation. The PS/2
machines contain in their ROM BIOS a service (VIDEO Service 1AH) specifically to
identify the installed display adapter. DispID calls VIDEO service 1AH, having cleared
AL to 0 via XOR. As it happens, if a PS/2 BIOS is present on the bus, the 1AH service
number is returned in register AL. On return from the INT 10H call, we test AL for 1AH
using CMP. If 1AH is not found in AL, we know up front that there is no PS/2 BIOS in
the system, and therefore no VGA or MCGA.

file:///E|/TEMP/Assembly%20Chap9%20Revised.htm (28 of 58) [9/30/02 09:07:58 PM]

file:///E|/TEMP/Assembly%20Chap9%20Revised.htm

After the CMP instruction is the JNE TryEGA conditional branch. If the CMP finds

file:///E|/TEMP/Assembly%20Chap9%20Revised.htm (29 of 58) [9/30/02 09:07:58 PM]

file:///E|/TEMP/Assembly%20Chap9%20Revised.htm

that AL is not equal to 1AH, then control jumps down to the code that tests for the next
older generation of video boards: the EGA. If AL is equal to 1AH, then the PS/2 BIOS
has placed the display adapter code in BL. DispID then copies BL into AL (which is
where DispID returns the display code) and executes a RET instruction to pass control
back to the caller.
Testing for the EGA is done a little differently, but the same general idea holds:
we call an EGA-specific VIDEO service not present in the oldest generation of
boards. The key test, again, is whether a certain register comes back unchanged. There is
a twist, however: if BX comes back with the same value it held when the VIDEO call
was made, (here, 10H) then an EGA BIOS does not exist in the machine. (Isn't the PC
wonderful?) Here, after the CMP BX,10H instruction, we do a JE OldBords and not a
JNE as we did when testing for the PS/2 generation. If BX comes back in an altered
state, we assume an EGA is present, and that BX contains information on the display
configuration.
If an EGA BIOS is found, a value in BH tells us whether the EGA is connected to a
monochrome or color monitor. (Remember, there is a different code for each.) The value
in BH is not the code itself, as it was with the PS/2 BIOS, so we have to do a little more
testing to get the right code into AL. If BH contains 0, then the attached monitor is color.
Any other value in BH indicates a monochrome system. The following sequence of
instructions from DispID takes care of loading the proper EGA-specific code into AL:

cmp BH,0 ;If BH - 0, it's an EGA/color combo

je EGAColor ; otherwise it's EGA/mono
mov AL,5 ; Store code 5 for EGA mono
ret ; and go home!

EGAColor: mov AL,4 ; Store code 4 for EGA color
ret ; and go home!

You'll find yourself writing sequences like this a lot when a single test decides between
one of two courses of action. One course here is to load the value 5 into AL, and the
other course is to load 4 into AL. Notice that after the appropriate MOV instruction is
executed, a RET takes care of passing execution back to the caller. If DispID were not a
procedure, but simple a sequence coded into the main line of instructions, you would
need an unconditional JMP after each MOV to continue on with instruction execution

file:///E|/TEMP/Assembly%20Chap9%20Revised.htm (30 of 58) [9/30/02 09:07:58 PM]

file:///E|/TEMP/Assembly%20Chap9%20Revised.htm

somewhere else in the program. Using RET is much neater—which is yet another reason
to explore small tasks like display adapter identification in a procedure wrapper. Finally,
if neither PS/2 nor EGA are present, DispID realizes that, by default, one of the original
generation of display boards is on the bus. Telling MDA from CGA is not done with a
BIOS call at all, because the first generation BIOS did not know which display board
was present. (That was a feature instituted with the EGA in 1984.) Instead, there is a
separate software interrupt, 11H, that returns machine configuration information.

Testing Bits with TEST

Service 11H returns a word's worth of bits in AX. Singly or in twos or threes, the bits tell
a tale about specific hardware options on the installed PC. These hardware options are
summarized in Figure 9-5.
The bits we need to examine are bits 4 and 5. If both are set to 1, then we know we have
a Monochrome Display Adapter. If the two bits are set to any other combination, the
adapter must be a Color Graphics Adapter; all other alternatives have by this time been
eliminated.
Testing for two 1 bits in a byte is an interesting exercise. The 86-family instruction set
recognizes that assembly-language programmers do a lot of bit testing, and provides
what amounts to a CMP instruction for bits: TEST.

file:///E|/TEMP/Assembly%20Chap9%20Revised.htm (31 of 58) [9/30/02 09:07:58 PM]

file:///E|/TEMP/Assembly%20Chap9%20Revised.htm

The Phantoms of the Opcodes

file:///E|/TEMP/Assembly%20Chap9%20Revised.htm (32 of 58) [9/30/02 09:07:58 PM]

file:///E|/TEMP/Assembly%20Chap9%20Revised.htm

TEST performs an AND logical operation between two operands, and then sets the flags
as AND would, without altering the destination operation, as AND would. Here's the
TEST instruction syntax:
TEST <operand>.<bit mask>

The bit mask operand should contain a 1 bit in each position where a 1-bit is to be sought
in the operand, and 0 bits in all the other bits.
TEST ANDs the operand against the bit mask, and set the flags as AND would. The
operand doesn't change. For example, if you want to determine if bit 3 of AX is set to 1,
you would use this instruction:

TEST AX , 3 ; 3 in binary is 00001000B

AX doesn't change as a result of the operation, but the AND truth table is asserted
between AX and the binary pattern 00001000. If bit 3 in AX is a 1 bit, then ZF is cleared
to 0. If bit 3 in AX is a 0 bit, then ZF is set to 1. Why? If you AND 1 (in the bit mask)
with 0 (in AX) you get 0. (Look it up in the AND truth table.) And if all 8 bitwise AND
operations come up 0, the result is 0, and ZF is raised to 1, indicating that the result is 0.
Key to understanding TEST is thinking of TEST as a sort of "Phantom of the Opcode,"
where the opcode is AND. TEST pretends it is AND, but doesn't follow through with the
results of the operation. It simply sets the flags as though an AND operation had
occurred.
CMP is another "Phantom of the Opcode," and bears the same relation to SUB as TEST
bears to AND. CMP subtracts its second operand from its first, but doesn't follow
through and store the result in the first operand. It just sets the flags as though a
subtraction had occurred.

TEST Pointers

Here's something important to keep in mind: TEST is only useful for finding 1
bits. If you need to identify 0 bits, you must first flip each bit to its opposite state
with the logical NOT instruction, as I explained in Section 9.1. NOT changes all 1 bits to
0 bits, and all 0 bits to 1 bits. Once all 0 bits are flipped to 1 bits, you can test for a 1 bit
where you need to find a 0 bit. (Sometimes it helps to map it out on paper to keep it all
straight.)

file:///E|/TEMP/Assembly%20Chap9%20Revised.htm (33 of 58) [9/30/02 09:07:58 PM]

file:///E|/TEMP/Assembly%20Chap9%20Revised.htm

Also, TEST will not reliably test for two or more 1 bits in the operand at one time.
TEST doesn't check for the presence of a bit pattern; TEST checks for the presence of a
single 1 bit. In other words, if you need to check to make sure that both bits 4 and 5 are
set to 1, TEST won't hack it.
And unfortunately, that's what we have to do in DispID What we're looking for in the
last part of DispID is the monochrome code in bits 4 and 5, which is the value 30 (both
bits 4 and 5 set to 1). Don't make the mistake (as I did once) of assuming that you can use
TEST to spot the two 1 bits in bits 4 and 5:
test AL,30H : If bits 4 & 5 are both = 1, it's an MDA
jnz CGA ; otherwise it's a CGA

This doesn't work! The Zero flag will be set only if both bits are 0. If either bit is 1, ZF
will become 0, and the branch will be taken. However, we only want to take the branch if
both bits are 1.
Here's where your right brain can sometimes save both sides of your butt. TEST only
spots a single 1 bit at a time. We need to detect a condition where two 1 bits are present.
So let's get inspired and flip the state of all bits in the Equipment Identification Byte with
NOT, and then look at the byte with TEST. After using NOT, what we need to find are
two 0 bits, not two 1 bits. And if the two bits in question (4 and 5) are now both 0, the
whole byte is 0, and ZF will be set and ready to test via JNZ:

not AL ; Invert all bits in the equipment ID byte
test AL ,30H : See if either of bits 4 or 5 are 1-bits
jnz CGA ; If both = 0, they originally were both 1's,

 ; and the adapter is a monochrome

Tricky, tricky. But as you get accustomed to the instruction set and its quirks, you'll hit
upon lots of non-obvious solutions to difficult problems of that kind.
So get that right brain working: how would you test for a specific pattern that was a mix
of 0 bits and 1 bits?

9.4 Assembler Odds'n'Ends

Practice is the word.
You can do a lot with what you've learned so far, and certainly, you've learned enough to
be able to figure out the rest with the help of an assembly-language reference and
perhaps a more advanced book on the subject. For the remainder of this chapter we're

file:///E|/TEMP/Assembly%20Chap9%20Revised.htm (34 of 58) [9/30/02 09:07:58 PM]

file:///E|/TEMP/Assembly%20Chap9%20Revised.htm

going to do some practicing, flexing some assembly-language muscles and picking up a
few more instructions in the process.

Yet Another Lookup Table

The DIGITS lookup table (used by Byte2Str and WordZStr in the previous section)
is so obvious that it didn't need much in the line of comments or explanations. Digits
simply converted the table's index into the ASCII character equivalent to the value of the
index. Digits is only 16 bytes long, and its contents pretty much indicate what it's for:

Digits DB '0123456789ABCDEF'

Most of the time, your lookup tables will be a little less obvious. A lookup table does not
have to be one single DB variable definition. You can define it pretty much as you need
to, either with all table elements defined on a single line (as with Digits) or with each
table element on its own line.
Consider the lookup table below:

Here's a table where each table element has its own DW definition statement on its own
line. This table treats a problem connected with the numerous different kinds of display
adapters installable in a PC. There are two different addresses where the video refresh
buffer begins. On boards connected to color or color/greyscale monitors, the address is
B800:0, whereas on monochrome monitors the address is B000:0. (Refer back to Figure
5.4 and the accompanying text if you've forgotten what the video refresh buffer is.)
If you intend to address video memory directly (and doing so is much faster than
working through DOS as we have been) then you have to know at which address
the video refresh buffer lies. Knowing which display adapter is installed is the

file:///E|/TEMP/Assembly%20Chap9%20Revised.htm (35 of 58) [9/30/02 09:07:58 PM]

file:///E|/TEMP/Assembly%20Chap9%20Revised.htm

hardest part—and the DispID procedure described in the previous section answers that
question. Each of the nine codes returned by DispID has a video refresh buffer address
associated with it. But which goes with which? You could use a long and interwoven
series of CMP and JE tests, but that's the hard road, and grossly wasteful of memory and
machine cycles. A lookup table is simpler, faster in execution, and much easier to read.
The routine below returns the segment portion of the video refresh buffer address in AX.
The display adapter code must be passed to VidOrg in AL:

;VidOrg -- Returns origin segment of video buffer
;Last update 3/8/89
;
;1 entry point:
;
;VidOrg:
; Caller must pass:
; AL : Code specifying display adapter type
; VidOrg returns the buffer origin segment in AX

VidOrg PROC

xor AH,AH ; Zero AH
mov DI.AX ; Copy AX (with code in AL) into DI
shl DI.l ; Multiply code by 2 to act as word index
lea BX.OriginTbl ; Load address of origin table into BX
mov AX,[BX+DI] ; Index into table using code as index
ret ; Done; go home!

VidOrg ENDP

This works a lot like the lookup table mechanism in Byte2Str. There's an important
difference, however: each entry in the OriginTbl lookup table is two bytes in size,
whereas each entry in Digits was one byte in size.

Using Shift Instructions to Multiply by Powers of 2

To use the Digits lookup table, we simply used the value to be converted as the index
into the table. Because each element in the table was one byte in size, this worked. When
table elements are more than one byte long, you have to multiply the index by the

file:///E|/TEMP/Assembly%20Chap9%20Revised.htm (36 of 58) [9/30/02 09:07:58 PM]

file:///E|/TEMP/Assembly%20Chap9%20Revised.htm

number of bytes in each table element, or the lookup won't find the correct table element.
OriginTbl is a good working example. Suppose you get a code 2 back from DispID,
indicating that you have a CGA in the system. Adding the 2 code to the starting address
of the table (as we did with Digits) takes us to the start of the second element in the table.
Read across to the comment at the right of that second element and see which code it
applies to: Code 1, the MDA! Not cool.
If you scan down to find the table element associated with the CGA, you'll find that it
starts at an offset of 4 from the start of the table. To index into the table correctly, you
have to add 4, not 2, to the offset address of the start of the table. This is where
multiplication comes in.
There is a general-purpose multiply instruction in the 8086/8088 CPU, but MUL is
outrageously slow as machine instructions go. Even in its fastest case on the 8086/8088
(multiplying an 8-bit register by some value) MUL takes 77 machine cycles to do its
work. Considering that most of the instructions we've discussed complete their jobs in 4
to 10 cycles, that's slow indeed.
There's a better way—in some cases. When you need to multiply a value by some power
of 2 (that is, 2, 4, 8, 16, 32, and so on) you can do it by using the SHL instruction.
Shifting a value to the left by one bit multiplies the value by 2. Shifting a value to the left
by two bits multiplies the value by 4. Shifting a value to the left by three bits multiplies
the value by 8, and so on.
Magic? Not at all. Work it out on paper by expressing a number as a bit pattern (in binary
form), shifting the bit pattern one bit to the right, and then converting the binary form
back to decimal or hex. Like so:

00110101 Binary equivalent of 35H, 53 decimal
<-- by one bit yields
01101010 Binary equivalent of 6AH, 106 decimal

Sharp readers may have guessed that shifting to the right divides by powers of two—and
that's also correct. Shifting right by one bit divides by 2; shifting right by two bits divides
by 4, and so on.
The advantage to multiplying with shift instructions is that it's fast. Shifting a byte-sized
value in a register to the left by one bit takes only 2 machine cycles. 2...as opposed to 77
with MUL.
As we say, no contest.
Once the index is multiplied by 2 using SHL, the index is added to the starting address of
the table, just as with Digits. A word-sized MOV then copies the correct segment

file:///E|/TEMP/Assembly%20Chap9%20Revised.htm (37 of 58) [9/30/02 09:07:58 PM]

file:///E|/TEMP/Assembly%20Chap9%20Revised.htm

address from the table into AX, for return to the caller.
This illustrates how you can realize enormous speed advantages by structuring your
tables properly. Even if it means leaving some wasted space at the end of each element,
do your best to make the length of your table elements equal to some power of 2. That
means making each element 1, 2, 4, 8, 16, 32, or some larger power of two in size, but
not 3, 7, 12, 20, or 25 bytes in size.

Tables Within Tables

Tables are about the handiest means at your disposal for grouping together and
organizing data. Sometimes tables can be as simple as those I've just shown you, which
are simply sequences of single values.

In most cases, you'll need something a little more sophisticated, Sometimes you'll need a
table of tables, and (surprise!) the 8086/8088 has some built-in machinery to handle such
nested tables quickly and easily.
Let's continue on with the issue of video support. In the previous section we looked a
table containing the display buffer addresses for each of the display adapters identified
by DispID. This is good, but not enough: each adapter has a name, a display buffer
address, and a screen size dictated by the size of the current character font. These items
comprise a table of information about a display adapter, and if you wanted to put
together a summary of all that information about all legal display adapters, you'd have to
create such a table of tables.
Below is such a two-level table:

file:///E|/TEMP/Assembly%20Chap9%20Revised.htm (38 of 58) [9/30/02 09:07:58 PM]

file:///E|/TEMP/Assembly%20Chap9%20Revised.htm

file:///E|/TEMP/Assembly%20Chap9%20Revised.htm (39 of 58) [9/30/02 09:07:58 PM]

file:///E|/TEMP/Assembly%20Chap9%20Revised.htm

The table consists of twelve subtables, one for each possible code returned by DispID as
well as a subtable for several undefined codes. Why a subtable for undefined codes?
We're going to follow the same general strategy of indexing into the table based on the
value of the code. In other words, to get the information for code 4, we have to look at
the fifth table (counting from zero) which requires that tables 0 through 4 already exist.
Code 3 is undefined, yet something must hold its place in the table for our indexing
scheme to work.
Each subtable occupies three lines, for clarity's sake. Here's a typical subtable:

DB 'EGA with color monitor ; Code 4
DW OB800H
DB 43,25,25

The first line is a 27-character quoted string containing the name of the display adapter.
The second line is a word-sized address, the segment address of the visible display buffer
corresponding to that name. The third line contains three numeric values. These are
screen sizes, in lines, relating to the font sizes currently in force. The first value is the
number of lines on the screen with the 8-pixel font in force. The second value is the
number of lines on the screen with the 14-pixel font in force. The third value is the
number of lines on the screen with the 16-pixel font in force. The items stored in the

file:///E|/TEMP/Assembly%20Chap9%20Revised.htm (40 of 58) [9/30/02 09:07:58 PM]

file:///E|/TEMP/Assembly%20Chap9%20Revised.htm

subtables give you just about everything you'd really need to know about a given display
adapter to do useful work with it.
When your assembly-language program begins executing, it should inspect such a table
and extract the values pertinent to the currently installed display adapter. These extracted
values should be ordinary variables in the data segment, easily accessible without further
table searching. These variables should be defined together, as a block, with comments
explaining how they are related:

 As the comments indicate, a single procedure named VidChek reads values from the
two-level lookup table VidInfoTbl and loads those values into the variables shown
above.
 VidCheck is an interesting creature, and demonstrates the way of dealing with two-level
tables. Read it over:

file:///E|/TEMP/Assembly%20Chap9%20Revised.htm (41 of 58) [9/30/02 09:07:58 PM]

file:///E|/TEMP/Assembly%20Chap9%20Revised.htm

file:///E|/TEMP/Assembly%20Chap9%20Revised.htm (42 of 58) [9/30/02 09:07:58 PM]

file:///E|/TEMP/Assembly%20Chap9%20Revised.htm

file:///E|/TEMP/Assembly%20Chap9%20Revised.htm (43 of 58) [9/30/02 09:07:58 PM]

file:///E|/TEMP/Assembly%20Chap9%20Revised.htm

file:///E|/TEMP/Assembly%20Chap9%20Revised.htm (44 of 58) [9/30/02 09:07:58 PM]

file:///E|/TEMP/Assembly%20Chap9%20Revised.htm

 The first thing VidCheck does is call DispID to determine the installed display adapter.
Build on your own tools—there's no need to duplicate logic if you can avoid it. The
adapter ID code is stored in the variable DispType.
It's possible to use the table to look up the number of lines on the screen from the current
text font size, but to do that you have to determine the font size. Determining the font
size is a good exercise in the use of the CMP instruction and conditional jumps. Certain
adapters support only one font size. The MCGA has only the 16-pixel font. The CGA has
only the 8-pixel font. The MDA has only the 14-pixel font. A series of compares and
jumps selects a font size based on the display adapter ID code. The trickiness comes in
with the EGA and VGA, versatile gentlemen capable of using more than one font size.
Fortunately, BIOS has a service that reports the size, in pixels, of the text font currently
being used, and this service is used to query the font size. Whatever it turns out to be, the
font size is stored in the FontSize variable in the data segment.

Base-lndexed-Displacement Memory Addressing

So far, we haven't dealt with the VidlnfoTbl table at all. This changes when we want to
look up the string containing the English-language description of the installed display
adapter. There are three general steps to reading any two-level lookup table:

file:///E|/TEMP/Assembly%20Chap9%20Revised.htm (45 of 58) [9/30/02 09:07:58 PM]

file:///E|/TEMP/Assembly%20Chap9%20Revised.htm

• Derive the offset of the subtable from the beginning of the larger table
• Derive the offset of the desired information within the subtable
• Read the information from the subtable.

Each of the subtables is 32 bytes in size. To move from the start of the VidlnfoTbl to a
desired subtable, we multiply the index of the subtable by 32, just as we did in the
previous section, in reading one single value from OriginTbl. The index, here, is the
display adapter ID code. We multiply the index by 32 by loading it into register DI, and
then shirting DI to the left by 5 bits. (Shifting left by 5 bits multiplies the shifted quantity
by 32.) We use the form

mov CL,5 shl DI,CL

because it is shorter and faster to shift by CL than to shift by using five SHL DI,1
instructions in sequence.
Because the display adapter description is the first item in every subtable, no offset into
the subtable is necessary. (The offset, if you must think of an offset, is 0.) The shifted
quantity in DI is added to the address of the larger table, and the sum becomes the 16-bit
address to the display adapter description string. This address is saved in the BordName
variable.
At this point within VidCheck, we have the address of the VidlnfoTbl table itself in BX,
and the offset of the desired subtable in DI. Now we want to fetch the segment address of
the display buffer from the middle of the subtable. The segment address is at some fixed
offset from the start of the subtable. I say "fixed" because it never changes, and will be
the same regardless of which subtable is selected by the adapter ID code. In the case of
the segment address, the offset is 27, since the segment address is 27 bytes from the start
of the subtable.
Expressed as a sum, the segment address is at the following offset from the start of
VidlnfoTbl: DI+27. Since BX contains the offset of VidlnfoTbl from the start of the
data segment, we can pin down the segment address in the data segment with this sum:
BX+DI+27.
Is there a way to address memory using this three-part sum?
There is indeed, and it is the most complex of the numerous 8086/8088 addressing
modes: base-indexed-displacement addressing, a term you probably can't memorize and
shouldn't try. Specifically to serve two-level lookup tables like this one, the CPU
understands MOV statements like the following:

file:///E|/TEMP/Assembly%20Chap9%20Revised.htm (46 of 58) [9/30/02 09:07:59 PM]

file:///E|/TEMP/Assembly%20Chap9%20Revised.htm

mov AX,[BX+DI+27]

Here, the base is the address of the larger table in BX; the index is the offset of the
subtable within the larger table, stored in DI; and the displacement is the fixed distance
between the start of the subtable and the data we wish to address.
You can't just use any registers in building a memory address using based-indexed-
displacement addressing. The base register can be only BP or BX. (Think of general-
purpose register BX's hidden agenda as that of base register, the "B" is your memory
hook.) The index register can be only SI or DI. These registers' names, Source Index and
Destination Index, should provide you with their own memory hooks.
Finally, the displacement can not be a register at all, but only a literal value like 27 or 14
or 3.

Finding the Number of Lines in the Screen

Reading the screen line count from the subtable is the trickiest part of the whole process.
In one sense, the list of three different line count values is a table within a table within a
table, but 8086/8088 addressing only goes down two levels. What we must do is point
BX and DI plus a displacement to the first of the three values, and then add a second
index to DI that selects one of the three line counts.
This second index is placed into AL, which is eventually (as part of AX) added to DI.
The line count is read from the table with the following instruction:

mov AL,[BX+DI+28]

with the second index already built into DI.
The rest of VidCheck fills a few other video-related variables like LRXY, which
bundles the X,Y position of the lower-right corner of the screen into a single 16-bit
quantity. The size of the video buffer in bytes is calculated as the X size of the screen
multiplied by the Y size of the screen multiplied by 2, and stored in VidBufSize.

A Program to Report on the Current Display Adapter

To make VidCheck show its stuff, I've written a short program called INFO.ASM that

file:///E|/TEMP/Assembly%20Chap9%20Revised.htm (47 of 58) [9/30/02 09:07:59 PM]

file:///E|/TEMP/Assembly%20Chap9%20Revised.htm

reports certain facts about the installed display controller.
As a program, INFO.ASM doesn't present anything we haven't used before, except in
one respect: string lengths.
To display a string, you have to tell DOS just how long the string is, in characters.
Counting characters is difficult, and if you get it wrong you'll either display too much
string or not enough.
The solution is simple: let the assembler do the counting. Here's the notation:

VidlDStr DB ' The installed video board is: '
LVidlDStr EQU $-VidIDStr

The first statement is nothing more than a simple string constant definition that we've
been using all along. The second statement is a new kind of statement, an equate, which
looks a lot like a data definition but is not.
A data definition sets aside and optionally initializes an area of memory to some
value. An equate, by contrast, generates a value similar to a simple constant in
languages like Pascal. An equate allocates no memory, but instead generates a value that
is stored in the assembler's symbol table. This value can then be used anywhere a literal
constant of that type can be used.
Here, we're using an equate to generate a value giving us the length of the string defined
immediately before the equate. The expression $-VidIDStr resolves to the difference
between two addresses: one is the address of the first byte of the string variable
VidlDStr, and the other is the current location counter, the assembler's way of keeping
track of the code and data it's generating. (The current location counter bears no relation
to BP, the instruction pointer!) When the assembler is generating information (either
code or data) inside a segment, it begins with a counter set to zero for the start of the
segment. As it works its way through the segment, generating code or allocating data, it
increments this value by one for each byte of generated code or allocated data.
The expression $-VidIDStr is evaluated immediately after the string VidlDStr is
allocated. This means the assembler's current location counter is pointing to the first byte
after VidlDStr. Because the variable name VidlDStr itself resolves to the address of
VidlDStr, and $ resolves to the location counter immediately after VidlDStr is allocated,
$-VidIDStr evaluates to the length of VidlDStr. Even if you add or delete characters to
the contents of VidlDStr, the length count will always come out correct, because the
calculation always subtracts the address of the beginning of the string from the address
just past the end of the string.

file:///E|/TEMP/Assembly%20Chap9%20Revised.htm (48 of 58) [9/30/02 09:07:59 PM]

file:///E|/TEMP/Assembly%20Chap9%20Revised.htm

file:///E|/TEMP/Assembly%20Chap9%20Revised.htm (49 of 58) [9/30/02 09:07:59 PM]

file:///E|/TEMP/Assembly%20Chap9%20Revised.htm

file:///E|/TEMP/Assembly%20Chap9%20Revised.htm (50 of 58) [9/30/02 09:07:59 PM]

file:///E|/TEMP/Assembly%20Chap9%20Revised.htm

file:///E|/TEMP/Assembly%20Chap9%20Revised.htm (51 of 58) [9/30/02 09:07:59 PM]

file:///E|/TEMP/Assembly%20Chap9%20Revised.htm

file:///E|/TEMP/Assembly%20Chap9%20Revised.htm (52 of 58) [9/30/02 09:07:59 PM]

file:///E|/TEMP/Assembly%20Chap9%20Revised.htm

file:///E|/TEMP/Assembly%20Chap9%20Revised.htm (53 of 58) [9/30/02 09:07:59 PM]

file:///E|/TEMP/Assembly%20Chap9%20Revised.htm

file:///E|/TEMP/Assembly%20Chap9%20Revised.htm (54 of 58) [9/30/02 09:07:59 PM]

file:///E|/TEMP/Assembly%20Chap9%20Revised.htm

file:///E|/TEMP/Assembly%20Chap9%20Revised.htm (55 of 58) [9/30/02 09:07:59 PM]

file:///E|/TEMP/Assembly%20Chap9%20Revised.htm

file:///E|/TEMP/Assembly%20Chap9%20Revised.htm (56 of 58) [9/30/02 09:07:59 PM]

file:///E|/TEMP/Assembly%20Chap9%20Revised.htm

file:///E|/TEMP/Assembly%20Chap9%20Revised.htm (57 of 58) [9/30/02 09:07:59 PM]

file:///E|/TEMP/Assembly%20Chap9%20Revised.htm

file:///E|/TEMP/Assembly%20Chap9%20Revised.htm (58 of 58) [9/30/02 09:07:59 PM]

file:///E|/TEMP/Chapter%2010%20Assembly%20Language.htm

file:///E|/TEMP/Chapter%2010%20Assembly%20Language.htm (1 of 33) [9/30/02 09:08:37 PM]

file:///E|/TEMP/Chapter%2010%20Assembly%20Language.htm

Most people, having learned a little assembly language, grumble about the seemingly
huge number of instructions it takes to do anything useful. By and large, this is a
legitimate gripe—and the major reason there are things like Turbo Pascal and Microsoft
BASIC.
The 8086/8088 instruction set, on the other hand, is full of surprises, and the surprise
most likely to make apprentice assembly-language programmers gasp is the instruction
group we call the string instructions.
They alone of all the instructions in the 8086/8088 instruction set have the power to deal
with long sequences of bytes or words at one time. (In assembly language, any
contiguous sequence of bytes or words in memory may be considered a string.) More
amazingly, they deal with these large sequences of bytes or words in an extraordinarily
compact way: by executing an instruction loop entirely inside the CPU! A string
instruction is, in effect, a complete instruction loop baked into a single instruction.
The string instructions are subtle and complicated, and I won't be able to treat them
exhaustively in this book. Much of what they do qualifies as an advanced topic. Still, you
can get a good start on understanding the string instructions by using them to build some
simple tools to add to your video toolkit.
Besides, for my money, the string instructions are easily the single most fascinating
aspect of assembly-language work.

10.1 The Notion of an Assembly-Language String

Words fail us sometimes by picking up meanings as readily as a magnet picks up iron
filings. The word string is a major offender here. It means roughly the same thing in all
computer programming, but there are a multitude of small variations on that single
theme. If you learned about strings in Turbo Pascal, you'll find that what you know isn't
totally applicable when you program in C, or BASIC, or assembly.
So here's the big view: a string is any contiguous group of bytes, of any arbitrary size up
to the size of a segment. The main concept of a string is that its component bytes are
right there in a row, with no interruptions.
That's pretty fundamental. Most higher-level languages build on the string concept, in
several ways.
Turbo Pascal treats strings as a separate data type, limited to 255 characters in length,
with a single byte at the start of the string to indicate how many bytes are in the string. In
C, a string can be longer than 255 bytes, and it has no "length byte" in front of it. Instead,

file:///E|/TEMP/Chapter%2010%20Assembly%20Language.htm (2 of 33) [9/30/02 09:08:37 PM]

file:///E|/TEMP/Chapter%2010%20Assembly%20Language.htm

a C string is said to end when a byte with a binary value of 0 is encountered. In BASIC,
strings are stored in something called string space, which has a lot of built-in code
machinery associated with it.
When you begin working in assembly, you have to give all that high-level
language stuff over. Assembly strings are just contiguous regions of memory.
They start at some specified segment:offset address, go for some number of bytes,
and stop. There is no "length byte" to tell how many bytes are in the string, and no
standard boundary characters like binary 0 to indicate where a string starts or ends.
You can certainly write assembly-language routines that allocate Turbo Pascal-style
strings or C-style strings and manipulate them. To avoid confusion, however, you must
think of the data operated on by your routines to be Pascal or C strings rather than
assembly strings.

Turning Your "String Sense" Inside-Out

As I mentioned above, assembly strings have no boundary values or length indicators.
They can contain any value at all, including binary 0. In fact, you really have to stop
thinking of strings in terms of specific regions in memory. You should instead think of
strings in much the same way you think of segments: in terms of the register values that
define them.
It's slightly inside-out compared to how you think of strings in languages like Pascal, but
it works: you've got a string when you set up a pair of registers to point to one. And once
you point to a string, the length of that string is defined by the value you place in register
CX.
This is key: assembly strings are wholly defined by values you place in registers. There
is a set of assumptions about strings and registers baked into the silicon of the CPU.
When you execute one of the string instructions, (as I'll describe a little later) the CPU
uses those assumptions to determine what area of memory it reads from or writes to.

Source Strings and Destination Strings

There are two kinds of strings in assembly work: source strings are strings that you read
from, and destination strings are strings that you write to. The difference between the
two is only a matter of registers. Source strings and destination strings can overlap; in
fact, the very same region of memory can be both a source string and a destination string,
all at the same time.

file:///E|/TEMP/Chapter%2010%20Assembly%20Language.htm (3 of 33) [9/30/02 09:08:37 PM]

file:///E|/TEMP/Chapter%2010%20Assembly%20Language.htm

Here are the assumptions the CPU makes about strings when it executes a string
instruction:
• A source string is pointed to by DS:SI.
• A destination string is pointed to by ES:DI.
• The length of both kinds of string is the value you place in CX.
• Data coming from a source string or going to a destination string must pass
through register AX.
The CPU can recognize both a source string and a destination string simultaneously,
because DS:SI and ES:DI can hold values independent of one another.

However, because there is only one CX register, the length of source and destination
strings must be identical when they are used simultaneously, as in copying a source
string to a destination string.
One way to remember the difference between source strings and destination strings is by
their offset registers. SI means "source index," and DI means "destination index."

10.2 REP STOSW: The Software Machine Gun

The best way to cement all that string background information in your mind is to see a
string instruction at work. In this section, I'm going to lay out a very useful video display
tool that makes use of the simplest string instruction, STOSW (STOre String by Word).
The discussion involves something called a prefix, which I haven't gone into yet. Bear
with me for now. We'll discuss prefixes in a little while.

Machine Gunning the Video Display Buffer

The ClrScr procedure we discussed earlier relied on BIOS to handle the actual clearing
of the screen. BIOS is very much a black box, and we're not expected to know how it
works. (IBM would rather we didn't, in fact....) The trouble with BIOS is that it only
knows how to clear the screen to blanks. Some programs (such as Turbo Pascal 6.0) give
themselves a stylish, sculpted look by clearing the screen to one of the PC's "halftone"
characters, which are character codes 176-178. BIOS can't do this. If you want the
halftone look, you'll have to do it yourself. It doesn't involve anything more complex
than replicating a single word value (two bytes) into every position in your video refresh
buffer. Such things should always be done in tight loops. The obvious way would be to
put the video refresh buffer segment into the extra segment register ES, the refresh buffer

file:///E|/TEMP/Chapter%2010%20Assembly%20Language.htm (4 of 33) [9/30/02 09:08:37 PM]

file:///E|/TEMP/Chapter%2010%20Assembly%20Language.htm

offset into DI, the number of words in your refresh buffer into CX, the word value to
clear the buffer to into AX, and then code up a tight loop this way:

Clear: MOV ES: [DI] , AX ; Copy AX to ES:DI
INC DI ; Bump DI to next *word* in buffer
INC DI
DEC CX ; Decrement CX by one position
JNZ Clear ; And loop again until CX is 0

This will work. It's even tolerably fast. But all of the above code is equivalent to this one
single instruction:

REP STOSW Really. Really.

 There's two parts to this instruction, actually. As I said, REP is a new type of critter,
called a prefix. We'll get back to it. Right now let's look at STOSW. Like all the string
instructions, STOSW makes certain assumptions about some CPU registers. It works
only on the destination string, so DS and SI are not involved. However, these
assumptions must be respected and dealt with:
• ES must be loaded with the segment address of the destination string.
(That is, the string into which the data will be stored.)
• DI must be loaded with the offset address of the destination string.
• CX (the Count register) must be loaded with the number of times the copy of AX
is to be stored into the string. Note that this does not mean the size of the string in
bytes!
• AX must be loaded with the word value to be stored into the string.

Executing the STOSW Instruction

Once you set up these four registers, you can safely execute a STOSW instruction.
When you do, this is what happens:
• The word value in AX is copied to the word at ES:DI.
• DI is incremented by 2, such that ES:DI now points to the next word in memory
following the one just written to.
Note that we're not machine gunning here. One copy of AX gets copied to one word in
memory. The DI register is adjusted so that it'll be ready for the next time STOSW is
executed.
One important point to remember is that CX is not automatically decremented by

file:///E|/TEMP/Chapter%2010%20Assembly%20Language.htm (5 of 33) [9/30/02 09:08:37 PM]

file:///E|/TEMP/Chapter%2010%20Assembly%20Language.htm

STOSW. CX is decremented automatically only if you put the REP prefix in front of
STOSW. Lacking the REP prefix, you have to do the decrementing yourself, either
explicitly through DEC or through the LOOP instruction, as I'll explain a little later in
this chapter.
So you can't make STOSW run automatically without REP. However, you can if you
like execute other instructions before executing another STOSW. As long as you don't
disturb ES, DI, or CX, you can do whatever you wish. Then when you execute STOSW
again, another copy of AX will go out to the location pointed to by ES:DI, and DI will
be adjusted yet again. (You have to remember to decrement CX somehow.) Note that
you can change AX if you like, but the changed value will be copied into memory. (You
may want to do that—there's no law saying you have to fill a string with only one single
value.)
However, this is like the difference between a semiautomatic weapon (which fires one
round every time you press and release the trigger) and a fully automatic weapon, which
fires rounds continually as long as you hold the trigger down. To make STOSW fully
automatic, just hang the REP prefix ahead of it. What REP does is beautifullv simple- it
sets up the tightest of all tight loops completely inside the CPU, and fires copies of AX
into memory repeatedly (hence its name), incrementing DI by 2 each time and
decrementing CX by 1, until CX is decremented down to 0. Then it stops, and when the
smoke clears you'll see that your whole destination string, however large, has been filled
with copies of AX.
Man, now that's programming!

The following macro sets up and triggers REP STOSW to clear the video refresh buffer.
The Clear macro was designed to be used with the block of video information variables
initialized by the VidCheck procedure I described in Chapter 9- It needs to be passed a
far pointer (which is nothing more than a a full 32-bit address consisting of a segment
and an offset laid end to end) to the video refresh buffer, the word value to be blasted
into the buffer, and the size of the buffer in bytes.

file:///E|/TEMP/Chapter%2010%20Assembly%20Language.htm (6 of 33) [9/30/02 09:08:37 PM]

file:///E|/TEMP/Chapter%2010%20Assembly%20Language.htm

Don't let the notion of a far pointer throw you. It's jargon you're going to hear again and
again, and this was a good point to introduce it. A pointer is an address, quite simply. A
near pointer is an offset address only, used in conjunction with some value in some
segment register that presumably doesn't change. A far pointer is a pointer that consists
of both a segment value and an offset value, both of which can be changed at any time,
working together. The video refresh buffer is not usually part of your data segment, so if
you're going to work with it, you're probably going to have to access it with a far pointer,
as we're doing here.
Note that most of Clear is setup work. The LES instruction loads both ES and DI with
the address of the destination string. The screen atom (display character plus attribute
value) is loaded into AX.
The handling of CX deserves a little explanation. The value in BufLength is the size, in
bytes, of the video refresh buffer. Remember, however, that CX is assumed to contain
the number of times that AX is to be machine gunned into memory. AX is a word, and a
word is two bytes. So each time STOSW fires, two bytes of the video refresh buffer will
be written to. Therefore, in order to tell CX how many times to fire the gun, we have to
divide the size of the refresh buffer (which is given in bytes) by 2, in order to express the
size of the refresh buffer in words.

file:///E|/TEMP/Chapter%2010%20Assembly%20Language.htm (7 of 33) [9/30/02 09:08:37 PM]

file:///E|/TEMP/Chapter%2010%20Assembly%20Language.htm

As I explained in Chapter 9, dividing a value in a register by 2 is easy. All you have to do
is shift the value of the register to the right by one bit. This what the SHR CX,1
instruction does: divides CX by 2.

STOSW and the Direction Flag DF

Note the CLD instruction in the Clear macro. I've avoided mentioning it until now to
avoid confusing you. Most of the time you'll be using STOSW, you'll want to run it
uphill in memory; that is, from a lower memory address to a higher memory address. In
Clear, you put the address of the start of the video refresh buffer into ES and DI, and
then blast character/attribute pairs into memory at successively higher memory
addresses. Each time STOSW fires a word into memory, DI is incremented twice to
point to the next higher word in memory.
This is the logical way to work it, but it doesn't have to be done that way. STOSW can
just as easily begin at a high address and move downward in memory. On each store into
memory, DI can be decremented by two instead.
Which way STOSW fires—uphill toward successively higher addresses, or downhill
toward successively lower addresses, is governed by one of the flags in the Flags
register. This is the Direction flag (DF). DF's sole job in life is to control the direction of
certain instructions that, like STOSW, can move in one of two directions in memory.
Most of these (like STOSW) are string instructions.
The sense of DF is this: when DF is set (that is, when DF has the value 1) STOSW and
its fellow string instructions work downhill, from higher to lower addresses; when DF is
cleared (that is, when DF has the value 0) STOSW and its brothers work uphill from
lower to higher addresses. This in turn is simply the direction in which the DI register is
adjusted: when DF is set, DI is decremented; when DF is cleared, DI is incremented.
The Direction flag defaults to 0 when the CPU is reset. You can change the DF value in
one of two ways: with the CLD instruction, or with the STD instruction. CLD clears DF,
and STD sets DF. (You should keep in mind when debugging that the POPF instruction
can also change DF, by popping an entire new set of flags from the stack into the Flags
register.) It's always a good idea to place either CLD or STD right before a string
instruction to make sure that your machine gun fires in the right direction!
People sometimes get confused and think that DF also governs whether CX is
incremented or decremented by the string instructions. Not so! Nothing in a string
instruction ever increments CX! You place a count in CX and it counts down, period. DF
has nothing to say about it.

file:///E|/TEMP/Chapter%2010%20Assembly%20Language.htm (8 of 33) [9/30/02 09:08:37 PM]

file:///E|/TEMP/Chapter%2010%20Assembly%20Language.htm

The Clear macro is part of the MYLIB.MAC macro library on the listings diskette for
this book. As you build new macro tools, you might place them in MYLIB.MAC as
well.

10.3 The Semiautomatic Weapon: STOSW without
REP

I chose to show you REP STOSW first because it's dramatic in the extreme. But even
more, it's actually simpler to use REP than not to use REP. REP simplifies string
processing from the programmer's perspective, because it brings the instruction loop
inside the CPU. You can also use the STOSW instruction without REP, but it's a little
more work. The work involves setting up the instruction loop outside the CPU, and
making sure it's correct.
Why bother? Simply this: with REP STOSW, you can only store the same value into the
destination string. Whatever you put into AX before executing REP STOSW is the
value that gets fired into memory CX times. STOSW can be used to store different
values into the destination string, by firing it semi-automatically, and changing the value
in AX between each squeeze of the trigger.
Also, by firing each character individually, you can change the value in DI periodically
to break up the data transfer into separated regions of memory instead of one contiguous
area as you must with REP STOSW. This may be hard to picture until you see it in
action. The SHOWCHAR program listing I'll present a little later will give you a
f'rinstance that will make it instantly clear what I mean.
You lose a little time in handling the loop yourself, outside the CPU. This is because
there is a certain amount of time spent in fetching the loop's instruction bytes from
memory. Still, if you keep your loop as tight as you can, you don't lose a lot of speed.

Who Decrements CX?
Early in my experience with assembly language, I recall being massively confused about
where and when the CX register was decremented when using string instructions. It's a
key issue, especially when you don't use the REP prefix.
When you use REP STOSW (or REP with any of the string instructions) CX is
decremented automatically, by 1, for each memory access the instruction makes. And
once CX gets itself decremented down to 0, REP STOSW detects that CX is now 0, and
stops firing into memory. Control then passes down to the next instruction in line. But
take away REP, and the automatic decrementing of CX stops. So, also, does the

file:///E|/TEMP/Chapter%2010%20Assembly%20Language.htm (9 of 33) [9/30/02 09:08:38 PM]

file:///E|/TEMP/Chapter%2010%20Assembly%20Language.htm

automatic detection of when CX has been counted down to 0.
Obviously, something has to decrement CX, since CX governs how many times the
string instruction accesses memory. If STOSW doesn't do it—you guessed it—you have
to do it somewhere else, with another instruction.
The obvious way to decrement CX is to use DEC CX. And the obvious way to
determine if CX has been decremented to 0 is to follow the DEC CX instruction with a
JNZ (Jump if Not Zero) instruction. JNZ tests the zero flag (ZF), and jumps back to the
STOSW instruction until ZF becomes true. And ZF becomes true when a DEC
instruction causes its operand (here, CX) to become 0.

The LOOP Instructions

With all that in mind, consider the following assembly-language instruction loop:

Ignore the block of instructions in the middle for the time being. What they do is what I
suggested could be done a little earlier: change AX in between each store of AX into
memory. I'll explain in detail shortly. Look instead (for now) to see how the loop runs.
STOSW fires, AX is modified, and then CX is decremented. The JNZ instruction tests
to see if the DEC instruction has forced CX to 0. If so, ZF is set, and the loop will
terminate. But until ZF is set, the jump is made to the label DoChar, where STOSW
fires yet again.
There is a simpler way, using a new instruction: LOOP. The LOOP instruction
combines the decrementing of CX with a test and jump based on ZF. It looks like this:

DoChar: STOSW ; Note that there's no REP prefix!

ADD AL.'l' ; Bump the character value in AL up by 1

AAA ; Adjust AX to make this a BCD addition

file:///E|/TEMP/Chapter%2010%20Assembly%20Language.htm (10 of 33) [9/30/02 09:08:38 PM]

file:///E|/TEMP/Chapter%2010%20Assembly%20Language.htm

ADD AL.'O' ; Basically, put binary 3 in AL's high nibble

MOV AH,07 ; Make sure our attribute is still 7

LOOP DoChar ; Go back & do another char until CX goes
to 0

The LOOP instruction first decrements CX by 1. It then checks ZF to see if the
decrement operation forced CX to 0. If so, it falls through to the next instruction. If not
(that is, if ZF remains 0, indicating that CX was still greater than 0) LOOP branches to
the label specified as its operand.
So the loop keeps looping the LOOP until CX counts down to 0. At that point, the loop
is finished, and execution continues with the next instruction following the loop.

Displaying a Ruler on the Screen
As a useful demonstration of when it makes sense to use STOSW without REP (but with
LOOP) let me offer you another item for your video toolkit.
The Ruler macro shown below displays a repeating sequence of ascending digits, from
1, at some selectable location on your screen. In other words, you can display a string of
digits like this at the top of a window:

123456789012345678901234567890123456789012345678901234567890

allowing you to determine where in the horizontal dimension of the window a line begins
or some character falls. The Ruler macro allows you to specify how long the ruler is, in
digits, and where on the screen it will be displayed. A call to Ruler would look like this:

Ruler VidOrigin,20,80.l5,5

This invocation (assuming you had defined VidOrigin to be the address of the start of
the video refresh buffer in your machine) places a 20-character long ruler at position
15,5. The 80 argument indicates to Ruler that your screen is 80 characters wide. If you
had a wider or narrower text screen, you would have to change the argument to reflect
the true width of your screen in text mode.
Don't just read the code inside Ruler! Load it up into a copy of EAT5.ASM, and display
some rulers on the screen. You don't learn half as much by just reading assembly code as
you do by loading and using it!
Over and above the LOOP instruction, there's a fair amount of new assembly technology

file:///E|/TEMP/Chapter%2010%20Assembly%20Language.htm (11 of 33) [9/30/02 09:08:38 PM]

file:///E|/TEMP/Chapter%2010%20Assembly%20Language.htm

at work here that could stand explaining. Let's detour from the string instructions for a bit
and take a closer look.

Simple Multiplies with IMUL

Ruler can put its ruler anywhere on the screen, using the position passed as ScreenX
and ScreenY. It's not using GotoXY, either. It's actually calculating a position in the
video refresh buffer where the ruler characters must be placed— and then uses STOSW
to place them there.
Locations in the video refresh buffer are always expressed as offsets from a single
segment address that is either BOOOH or B800H. The algorithm for determining the
offset in bytes for any given X and Y value looks like this:
Offset = ((Y X width in characters of a screen line) + X) x 2
Pretty obviously, you have to move Y lines down in the screen buffer, and then move X
bytes over from the left margin of the screen to reach your X,Y position.

 ; RULER Displays a "1234567890"-style ruler on screen
 ; Last update 11/25/91
 ;
 ; Caller must pass:
 ; In VidAddress: The address of the start of the video buffer
 ; In Length: The length of the ruler to be displayed

file:///E|/TEMP/Chapter%2010%20Assembly%20Language.htm (12 of 33) [9/30/02 09:08:38 PM]

file:///E|/TEMP/Chapter%2010%20Assembly%20Language.htm

The trickiest part of implementing the algorithm lies in multiplying the Y value by the
screen width. There is an instruction to do the job, IMUL, but it's a little quirky and (as
assembly instructions go) not very fast.
It is, however, fast enough for what we're doing here, which is just positioning the ruler
somewhere on the screen. The positioning only needs to be done once, not many times
within a tight loop. So even if IMUL is slow as instructions go, when you only need to
use it to set something else up, it's certainly fast enough.
IMUL always operates in conjunction with the AX register. In every case, the
destination for the product value is AX, or else AX and DX for products larger than
32,767.
On the 8086/8088 there are basically two variations on IMUL, and the difference
depends on the size of the operands. If you are multiplying two 8-bit quantities, you can
put one in AL and the other in some 8-bit register or memory location. The product will
be placed in AX. If you are multiplying two 16-bit quantities, one can be placed in AX
and one in a 16-bit register or memory location. The product from multiplying two 16-bit

file:///E|/TEMP/Chapter%2010%20Assembly%20Language.htm (13 of 33) [9/30/02 09:08:38 PM]

file:///E|/TEMP/Chapter%2010%20Assembly%20Language.htm

quantities is too large to fit in a single 16-bit register, so the low-order 16 bits are placed
in AX, and the high-order 16 bits are placed in DX. You have no control over the
destination; it's either AX or AX:DX. Also, one of the operands must be in AL (for 8-bit
multiplies) or AX (for 16-bit multiplies.) You have no control over that; it's impossible to
multiply (for example) CX x BX, or DX x DS:[BX].
One very common bug you may commit when using IMUL is simply forgetting that
when given 16-bit operands, IMUL changes the value in DX. The easiest way to avoid
this problem is to use IMUL in its 8-bit mode whenever possible, which is when both
multiplier and multiplicand are less than 256. If either operand is 16 bits in size, DX will
be altered.
Here are some examples of the various legal forms of IMUL:

IMUL BYTE PTR [BX] ; multiplies AL x byte at DS:[BX]
IMUL BH : multiplies AL x BH
IMUL WORD PTR [BX] ; multiplies AX x word at DS:[BX]
IMUL BX : multiplies AX x BX

In the first two lines, the destination for the product is AX. In the second two lines, the
destination for the product is DX:AX
IMUL sets two flags in those cases where the product is larger than the two operands.
The flags involved are the Carry flag (CF) and the Overflow flag (OF). For example, if
you're multiplying two 8-bit operands and the product is larger than 8 bits, both CF and
OF will be set. Otherwise, the two flags will be cleared.
Now, why the final multiplication by 2? Keep in mind that every character position in the
screen buffer is represented by two bytes: One character byte and one attribute byte. So
moving X characters from the left margin actually moves X x 2 bytes into the screen
buffer. You might think of an 80-character line on the screen as being 80 characters long,
but it's actually 160 characters long in the screen buffer, to account for the "invisible"
attribute bytes. Multiplying by 2 is done using the SHL instruction (shift DI to the left
by one bit). As I explained in Chapter 9, this is exactly the same as multiplying DI by 2.

The Limitations of Macro Arguments

There's another problem you will eventually run into if you're like most people. Given
the macro header for Ruler
Ruler MACRO VidAddress,Length,ScreenW,ScreenX,ScreenY

file:///E|/TEMP/Chapter%2010%20Assembly%20Language.htm (14 of 33) [9/30/02 09:08:38 PM]

file:///E|/TEMP/Chapter%2010%20Assembly%20Language.htm

you might be tempted to write something like this:

MOV AL,ScreenY
IMUL ScreenW

No go! The assembler will call you on it, complaining of an illegal immediate. What
went wrong? You can freely use constructions like these:

MOV AL.ScreenY
ADD DI,ScreenX
CMP AL,Length

All of these use arguments from the macro header. So what's that assembler complaining
about? The problem here is that the IMUL instruction cannot work with immediate
operands. And this isn't just a problem with IMUL: all instructions that cannot work
with immediate operands will reject a macro argument under these circumstances.
And "these circumstances" involve the way that the macro is invoked. In the test file
RULER.ASM, you'll see the following line, which invokes the macro to display a ruler:

Ruler VidOrigin,20,80,50,10 ; Draw ruler

Except for the video origin address argument, all of these arguments are numeric literals.
A numeric literal, when used in an assembly-language instruction, is called immediate
data. When the macro is expanded, the argument you pass to the macro is substituted
into the actual instruction that uses a macro argument, just as you passed it to the macro.
In other words, if you pass the value 10 in the ScreenY argument of the instruction
MOV AL,ScreenY, the instruction becomes MOV AL,10 once the macro is expanded
by the macro assembler. Now, MOV AL,10 is a completely legal instruction. But if you
pass the literal value 80 in the ScreenW argument, you cannot use IMUL ScreenW,
because after expansion this becomes IMUL 80, which is not a legal instruction. IMUL
does not operate on immediate data!
The problem is not that you're using macro arguments with IMUL. The problem is that
you're passing a numeric literal in a macro argument to an instruction that doesn't work
with immediate data.
What you have to remember (especially if you're familiar with languages like Pascal) is
that macro arguments are not high-level language procedure parameters passed on the
stack. They are simply text substitutions. If you had defined a variable in memory called

file:///E|/TEMP/Chapter%2010%20Assembly%20Language.htm (15 of 33) [9/30/02 09:08:38 PM]

file:///E|/TEMP/Chapter%2010%20Assembly%20Language.htm

ScreenWidth using DB, stored the value 80 in it, and then passed ScreenWidth to
Ruler as a macro argument, things would be different:

Ruler VidOrigin,20,ScreenWidth,50,10 ; Draw ruler

In this case, you could use the instruction IMUL ScreenW in Ruler, because IMUL
ScreenW would be expanded to IMUL ScreenWidth, which is legal because
ScreenWidth is a memory location.
I wrote Ruler as I did so that you could use numeric literals when invoking Ruler. Using
literals saves memory by making memory variables unnecessary, and if you'd prefer to
define a meaningful name for the screen width rather than hard coding the value 80 in the
source (which is unwise) you can define a symbol called ScreenWidth as an equate.
Equates are a little like miniature macros, and I'll deal with them a little later in this
chapter.

Adding ASCII Digits

Once the correct offset is placed in the buffer for the ruler's beginning is calculated in DI,
(and once we set up initial values for CX and AX) we're ready to start making rulers.
Immediately before the STOSW instruction, we load the ASCII digit T into AL. Note
that the instruction MOV AL,'l' does not move the value 01 into AL! T is an ASCII
character, and the character T (the "one" digit) has a numeric value of 31H, or 49
decimal.
This becomes a problem immediately after we store the digit T into video memory with
STOSW. After digit T we need to display digit '2', and to do that we need to change the
value stored in AL from T to '2'.
Ordinarily, you can't just add T to T and get '2'. Adding 31H and 31H will give you 62H,
which (when seen as an ASCII character) is lowercase letter 'b', not '2'! However, in this
case the 8086/8088 instruction set comes to the rescue, in the form of a somewhat
peculiar instruction called AAA, (Adjust AL after BCD Addition).
What AAA does is allow us, in fact, to "add" ASCII character digits rather than numeric
values. AAA is one of a group of instructions called the BCD instructions, so called
because they support arithmetic with binary coded decimal (BCD) values. BCD is just
another way of expressing a numeric value, somewhere between a pure binary value like
01 and an ASCII digit like T. A BCD value is a 4-bit value, occupying the low nybble of
a byte. It expresses values between 0 and 9 only. It's possible to express values greater
than 9 (from 9 through 15, actually) in four bits, but those additional values are not valid

file:///E|/TEMP/Chapter%2010%20Assembly%20Language.htm (16 of 33) [9/30/02 09:08:38 PM]

file:///E|/TEMP/Chapter%2010%20Assembly%20Language.htm

BCD values. See Figure 10.1.
The value 31H is a valid BCD value, because the low nybble contains 1. Because BCD is
a 4-bit numbering system, the high nybble (which in the case of 31H contains a 3) is
ignored. In fact, all of the ASCII digits from '0' through '9' can be considered legal BCD
values, because in each case the characters' low four bits contain a valid BCD value. The
3 stored in the high four bits of each digit is ignored.

So if there were a way to perform BCD addition on the 86-family CPU, adding ASCII
digits T and T would indeed give us '2' because T and '2' can be manipulated as legal

file:///E|/TEMP/Chapter%2010%20Assembly%20Language.htm (17 of 33) [9/30/02 09:08:38 PM]

file:///E|/TEMP/Chapter%2010%20Assembly%20Language.htm

BCD values.
AAA (and several other instructions I don't have room to discuss here) give us that
ability to perform BCD math. The actual technique may seem a little odd, but it does
work. AAA is a sort of a fudge factor, in that you execute AAA after performing an
addition using the "normal" addition instruction ADD. AAA takes the results of the ADD
instruction and forces them to "come out right" in terms of BCD math.
AAA basically does these two things:
• It forces the value in the low four bits of AL (which could be any value from 0
through F) to a value between 0 and 9 if it was greater than 9.
This is done by adding 6 to AL and then forcing the high nybble of AL to 0. Obviously,
if the low nybble of AL contains a valid BCD digit, the digit in the low nybble is left
alone.
• If the value in AL had to be adjusted, the adjustment indicates that there was a
carry in the addition, and that AH was incremented. Also, the Carry flag (CF) is set
to 1, as is the Auxiliary carry flag (AF). Again, if the low nybble of AL contained a valid
BCD digit when AAA was executed, AH is not incremented, and the two carry flags are
cleared (forced to 0) rather than set.
AAA thus facilitates base 10 (decimal) addition on the low nybble of AL. After AL is
adjusted by AAA, the low nybble contains a valid BCD digit and the high nybble is 0.
(But note well that this will be true only if the addition that preceded AAA was executed
on two valid BCD operands!)
This allows us to add ASCII digits like T and '2' using the ADD instruction. Ruler does
this immediately after the STOSW instruction:

ADD AL,' I ’ ; Bump the character value in AL up by 1
AAA ; Adjust AX to make this a BCD addition

If prior to the addition, the contents of AL's low nybble were 9, adding '1' would make
the value A, which is not a legal BCD value. AAA would then adjust AL by adding 6 to
AL and clearing the high nybble. Adding 6 to OA would give 10, so once the high
nybble is cleared the new value in AL would be 00. Also, AH would have been
incremented by 1.
In Ruler we're not adding multiple columns, but instead are simply "rolling over" a count
in a single column, and displaying the number in that column to the screen. Therefore we
just ignore the incremented value in AH and use AL alone.

 Adjusting AAA's Adjustments

file:///E|/TEMP/Chapter%2010%20Assembly%20Language.htm (18 of 33) [9/30/02 09:08:38 PM]

file:///E|/TEMP/Chapter%2010%20Assembly%20Language.htm

There is one problem: AAA clears the high nybble to 0. This means that adding ASCII
digits T and T doesn't quite equal '2', the displayable digit. Instead, AL becomes 02,
which in ASCII is the dark "smiley face" character. To make AL a displayable ASCII
digit again, we have to add 30H to AL. This is easy to do: Just add '0' to AL. The ASCII
digit '0' has a numeric value of 30H, so adding '0' takes 02H back up to 32H, which is the
numeric equivalent of the ASCII digit '2'. This is the reason for the ADD AL,'0'
instruction that immediately follows AAA.
There's a lot more to BCD math than what I've explained here. When you want to
perform multiple-column BCD math, you have to take carries into account, which
involves the Auxiliary Carry flag (AF). There are also the AAD, AAM, and AAS
instructions for adjusting AL after BCD divides, multiplies, and subtracts, respectively.
The same general idea applies: all the BCD adjustment instructions force the standard
binary arithmetic instructions to "come out right" for BCD operands.
And yet another problem: AAA increments AH whenever it finds a value in the low
nybble of AL greater than 9. In Ruler, AH contains the text attribute we're using to
display our ruler, and if AH is incremented, the attribute will change and we'll end up
displaying parts of the ruler in different colors. This is why we have to do one last
adjustment to AAA's adjustments: we must reassert our desired text attribute in AH, each
time we change the ASCII digit in AL.
An interesting thing to do is comment out the ADD AL,'0' instruction in the Ruler
macro and then run the RULER.ASM test program. Another interesting thing to do
(especially if you work on a color screen) is to comment out the MOV AH,07 instruction
in Ruler and then run RULER.ASM. Details count, big time!

Ruler's Lessons

The Ruler macro is a good example of using STOSW without the REP prefix. We have
to change the value in AX every time we store AX to memory, and thus can't use REP
STOSW. Note that nothing is done to ES:DI or CX while changing the digit to be
displayed, and thus the values stored in those registers are held over for the next
execution of STOSW. Ruler is a good example of how LOOP works with STOSW to
adjust CX downward and return control to the top of the loop. LOOP, in a sense, does
outside the CPU what REP does inside the CPU: adjust CX and close the loop. Try to
keep that straight in your head when using any of the string instructions!

file:///E|/TEMP/Chapter%2010%20Assembly%20Language.htm (19 of 33) [9/30/02 09:08:38 PM]

file:///E|/TEMP/Chapter%2010%20Assembly%20Language.htm

10.4 Storing Data to Discontinuous Strings

Sometimes you have to break the rules. Until now I've been explaining the string
instructions under the assumption that the destination string is always one
continuous sequence of bytes in memory. This isn't necessarily the case. In
addition to changing the value in AX between executions of STOSW, you can change
the destination address as well. The end result is that you can store data to several
different areas of memory within a single very tight loop.

Displaying an ASCII Table in a Big Hurry

I've created a small demo program to show you what I mean. It's not as useful a tool as
the Ruler macro, but it makes its point and is easy to understand. The SHOWCHAR
program clears the screen and shows a table containing all 256 ASCII characters, neatly
displayed in four lines of 64 characters each. The table includes the "undisplayable"
ASCII characters corresponding to the control characters whose values are less than 32.
They are displayable from SHOWCHAR because the program writes them directly into
video memory. Neither DOS nor BIOS are "aware" of the display of the control
characters, so they have no opportunity to interpret or filter out those characters with
special meanings.
SHOWCHAR.ASM introduces a number of new concepts and instructions, all related to
program loops. (String instructions like STOSW and program loops are intimately
related.) Read over the main body of the SHOWCHAR.ASM program carefully. We'll
go over it idea by idea through the next several pages.

file:///E|/TEMP/Chapter%2010%20Assembly%20Language.htm (20 of 33) [9/30/02 09:08:38 PM]

file:///E|/TEMP/Chapter%2010%20Assembly%20Language.htm

file:///E|/TEMP/Chapter%2010%20Assembly%20Language.htm (21 of 33) [9/30/02 09:08:38 PM]

file:///E|/TEMP/Chapter%2010%20Assembly%20Language.htm

file:///E|/TEMP/Chapter%2010%20Assembly%20Language.htm (22 of 33) [9/30/02 09:08:38 PM]

file:///E|/TEMP/Chapter%2010%20Assembly%20Language.htm

file:///E|/TEMP/Chapter%2010%20Assembly%20Language.htm (23 of 33) [9/30/02 09:08:38 PM]

file:///E|/TEMP/Chapter%2010%20Assembly%20Language.htm

The Nature of Equates

You might remember (and it wouldn't hurt to go back and take another look) how we
calculated the offset from the beginning of the video refresh buffer to the memory
location corresponding to an arbitrary X,Y position on the screen. We used the ADD
instruction, along with the SHL instruction to multiply by 2. There is another way to
perform calculations of that general sort in assembly work: let the assembler do them,
while the program is being assembled. Take a look at the line below, lifted from
SHOWCHAR.ASM:

ADD DI ,ScrnWidth*LinesDown*2 ; Start table display down a ways

 This is new indeed. What can we make of this? What sort of an operand is
ScrnWidth*LinesDown*2?

 The answer is that it's a simple integer operand, no different from the value 12, 169, or
15324.
The key is to go back to SHOWCHAR and find out what ScrnWidth and LinesDown
are. You might have thought that these were variables in memory, defined with the DW
directive. Instead, they're something we haven't really discussed in detail until now:
equates. Equates are defined with the EQU operator, and if you find yourself confused
over the differences between EQU and DW, don't despair. It's an easy enough thing to
do.
One road to understanding harkens back to the Pascal language. What is the difference

file:///E|/TEMP/Chapter%2010%20Assembly%20Language.htm (24 of 33) [9/30/02 09:08:38 PM]

file:///E|/TEMP/Chapter%2010%20Assembly%20Language.htm

between a variable and a simple constant? A variable is located at one and only one
particular place in memory. A simple constant, on the other hand, is a value "dropped
into" the program anywhere it is used, and exists at no particular place in memory.
Simple constants are used mostly in expressions calculated by the compiler during
compilation.
It's the same thing here. The DW and DB directives define and set aside areas of memory
for storage of data. A DW exists somewhere at some address, and only exists in one
place. The EQU directive, by contrast, is a symbol you define mostly for the assembler's
use. It sets aside no memory and has no particular address. Consider this line from
SHOWCHAR:

LinesDown EQU 4 ; Number of lines down to start ASCII table

The value defined as LinesDown exists at no single place in the SHOWCHAR program.
It allocates no storage. It's actually a notation in the assembler's symbol table, telling the
assembler to substitute the value 4 for the symbol LinesDown, anywhere it encounters
the symbol LinesDown. The same is true of the equates for ScrnWidth and LineLen.
When the assembler encounters equates in a program, it performs a simple textual
substitution of the values assigned to the symbol defined in the equate. The symbol is
dumped, and the value is dropped in. Then assembly continues, using the substituted
values rather than the symbols. In a very real sense, the assembler is pausing to alter the
source code when it processes an equate, then picks up its assembly task again. This is
exactly what happens when the assembler processes a macro, by the way.
An example may help. Imagine that the assembler is assembling SHOWCHAR.ASM,
when it encounters the following line:

ADD DI,ScrnWidth*LinesDown*2 ; Start table display down a ways

It looks up ScrnWidth and LinesDown in its symbol table, and discovers that they are
equates. It then calls time out from assembling, and processes the two equates by
substituting their values into the line of source code for their text symbols. The line of
source code changes to the following:

ADD 01,80*4*2 ; Start table display down a ways

Assembly-Time Calculations
But in assembling the line shown above, the assembler has to pull another trick out of its
hat. It has to be able to deal with the expression 80*4*2. We've not seen this before in

file:///E|/TEMP/Chapter%2010%20Assembly%20Language.htm (25 of 33) [9/30/02 09:08:38 PM]

file:///E|/TEMP/Chapter%2010%20Assembly%20Language.htm

our discussions, but the assembler happily parses the expression and performs the math
exactly as you would imagine: it cooks 80*4*2 down to the single integer value 640. It
then performs another substitution on the line in question, which finally cooks down to
this:

ADD 01,640 ; Start table display down a ways

At last, the line becomes an utterly ordinary line of assembly-language code, which is
turned to object code in a trice.
 So the assembler can in fact do a little math on its own, quite apart from the arithmetic
instructions supported by the CPU. This is called assembly-time math, and it has some
very important limitations:
• Assembly-time calculations can only be done on values that are fixed
and unambiguous at assembly-time. This most pointedly excludes the contents of
variables. Equates are fine. DBs, DWs, and DDs are not. Variables are empty containers
at assembly time; just buckets into which values will be thrown at runtime. You can't
perform a calculation with an empty bucket!
• Assembly-time calculations are performed once, at assembly-time, and cannot be
recalculated at runtime for a different set of values. This should be obvious, but it's easy
enough to misconstrue the nature of assembly-time math while you're a beginner.

Let me point out an importance consequence of the use of assembly-time math in
SHOWCHAR. In SHOWCHAR, the ASCII table is displayed four lines down from the
top of the screen, at the left margin. Now, what do we need to do to allow the ASCII
table to be moved around the screen at runtime?
Oh, not much, just rewrite the whole thing.
I'm not being trying to be funny. That's the price you pay for the convenience of
assembly-time calculation. We baked the screen position of the ASCII table into the
program at the source code level, and if we wanted to parameterize the position of the
ASCII table we'd have to take a whole different approach, and do what we did with
RULER.ASM: use the IMUL instruction to perform the multiplication that calculates
the offset into the screen buffer, at runtime.
We can change the LinesDown equate in SHOWCHAR.ASM to have a value of 6 or
10—but we then have to reassemble and relink SHOWCHAR for the change to take
effect. The calculation is done only once, at assembly time. Thereafter, as long as we use
the resulting .EXE file, the ASCII table will be the number of lines down the screen that
we defined in the LinesDown equate.

file:///E|/TEMP/Chapter%2010%20Assembly%20Language.htm (26 of 33) [9/30/02 09:08:38 PM]

file:///E|/TEMP/Chapter%2010%20Assembly%20Language.htm

Assembly-time calculations may not seem as useful now, in the light of these restrictions.
However, they serve a purpose that may not be immediately obvious: they make it a little
easier for us to read the sense in our own source code. We could have just skipped the
equates and the assembly-time math, done the math in our heads and written the line of
code like this:

ADD DI.640 ; Start table display down a ways

How obvious is it to you that adding 640 to DI starts the display of the table down the
screen by four lines? Using equates and assembly-time math builds the screen-
positioning algorithm into the source code, right there where it's used.
Equates and assembly-time math cost you nothing in terms of runtime speed or memory
usage. They do slow down the assembly process a little, but the person who uses your
programs never knows that—and it's the user that you want to wow with your assembly-
language brilliance. And anything that makes your own source code easier to read and
modify is well worth the minuscule extra time it takes to assemble.

Nested Instruction Loops

Once all the registers are set up correctly according to the assumptions made by
STOSW, the real work of SHOWCHAR is performed by two instruction loops, one
inside the other. The inner loop displays a line consisting of 64 characters. The outer loop
breaks up the display into four such lines. The inner loop is by far the more interesting of
the two. Here it is:

DoChar: STOSW ; Note that there's no REP prefix!
JCXZ AllDone ; When the full set is printed, quit
INC AL ; Bump the character value in AL up by 1
DEC BL ; Decrement the line counter by one
LOOPNZ DoChar ; Go back & do another char until BL goes
to 0

The work here (putting a character/attribute pair into the video buffer) is again done by
STOSW. Once again, STOSW is working solo, without REP. Without REP to pull the
loop inside the CPU, you have to set the loop up yourself.
Keep in mind what happens each time STOSW fires: the character in AX is copied to
ES:DI, And DI is incremented by 2. At the other end of the loop, the LOOPNZ
instruction decrements CX by 1 and closes the loop.

file:///E|/TEMP/Chapter%2010%20Assembly%20Language.htm (27 of 33) [9/30/02 09:08:38 PM]

file:///E|/TEMP/Chapter%2010%20Assembly%20Language.htm

During register setup, we loaded CX with the number of characters we wanted to
display—in this case, 256. Each time STOSW fires, it places another character on the
screen, and there is one less character left to display. CX acts as the master counter,
keeping track of when we finally display the last remaining character. When CX goes to
0, we've displayed the full ASCII character set and the job is done.

Jumping When CX Goes to 0

Hence the instruction JCXZ. This is a special branching instruction created specifically
to help with loops like this. Back in Chapter 9, I explained how it's possible to branch
using one of the many variations of the JMP instruction, based on the state of one of the
machine flags. Earlier in this chapter, I explained the LOOP instruction, which is a
special purpose sort of a JMP instruction, one combined with an implied DEC CX
instruction. JCXZ is yet another variety of JMP instruction, but one that doesn't watch
any of the flags or decrement any registers. Instead, JCXZ watches the CX register.
When it sees that CX has just gone to 0, it jumps to the specified label. If CX does not
contain an 0 value, execution falls through to the next instruction in line.
In the case of the inner loop shown above, JCXZ branches to the "close up shop" code
when it sees that CX has finally gone to 0. This is how the SHOWCHAR program
terminates.
Most of the other JMP instructions have "partners" that branch when the governing flag
is not true. That is, JC (Jump on Carry) branches when the Carry flag equals 1. Its
partner, JNC (Jump on Not Carry), jumps if the Carry flag is not I.
However, JCXZ is a loner. There is no JCXNZ instruction, so don't go looking for one
in the instruction reference!

Closing the Inner Loop

Assuming that CX has not yet been decremented down to 0 by the STOSW instruction,
(a condition watched for by JCXZ) the loop continues, and AL is again incremented by
1. This is how the next ASCII character in line is selected. The value in AX is sent to the
location at ES:DI by STOSW, and the character code proper is stored in AL. If you
increment the value in AL, you change the displayed character to the next one in line.
For example, if AL contains the value for the character A (65), incrementing AL changes
the A character to a B (66) character. On the next pass through the loop, STOSW will
fire a B at the screen instead of an A.

file:///E|/TEMP/Chapter%2010%20Assembly%20Language.htm (28 of 33) [9/30/02 09:08:38 PM]

file:///E|/TEMP/Chapter%2010%20Assembly%20Language.htm

Why not just increment AX? The AH half of AX contains the attribute byte, and we do
not want to change that. By explicitly incrementing AL instead of AX, we ensure that
AH will never be altered.
After the character code in AL is incremented, BL is decremented. Now, BL is not
directly related to the string instructions. Nothing in any of the assumptions made by the
string instructions involves BL. We're using BL for something else entirely here; BL is
acting as a counter that governs the length of the lines of characters shown on the screen.
BL was loaded earlier with the value represented by LineLen; here, 64. On each pass
through the loop, the DEC BL instruction decrements the value of BL by 1. Then the
LOOPNZ instruction gets its moment in the sun.
LOOPNZ is a little bit different from our friend LOOP that we examined earlier. It's
just different enough to get you into trouble if you don't truly understand how it works.
Both LOOP and LOOPNZ decrement the CX register by 1: LOOP watches the state of
the CX register, and closes the loop until CX goes to 0; LOOPNZ watches both the state
of the CX register and the state of the Zero flag (ZF). (LOOP ignores ZF.) LOOPNZ
will only close the loop if CX <> 0 and ZF = 0. In other words, LOOPNZ closes the
loop only if CX still has something left in it, and if the ZF is not set.

So what exactly is LOOPNZ watching for here? Remember that immediately prior to the
LOOPNZ instruction, we're decrementing BL by 1 through a DEC BL instruction. The
DEC instruction always affects ZF. If DEC's operand goes to 0 as a result of the DEC
instruction, ZF goes to 1 (is set). Otherwise, ZF stays at 0 (remains cleared). So in effect,
LOOPNZ is watching the state of the BL register. Until BL is decremented to 0 (setting
ZF) LOOPNZ closes the loop. After BL goes to 0, the inner loop is finished and
execution falls through LOOPNZ to the next instruction.
What about CX? Well, LOOPNZ is watching CX—but so is JCXZ. JCXZ is actually
the switch that governs when the whole loop—both inner and outer portions—have done
their work and must stop. So while LOOPNZ does watch CX, somebody else is doing
that task, and that somebody else will take action on CX before LOOPNZ can.
LOOPNZ's job is thus to decrement CX, but to watch BL. It governs the inner of the
two loops.

Closing the Outer Loop

But does that mean JCXZ closes the outer loop? No. JCXZ tells us when both loops are
finished. Closing the outer loop is done a little differently from closing the inner loop.

file:///E|/TEMP/Chapter%2010%20Assembly%20Language.htm (29 of 33) [9/30/02 09:08:38 PM]

file:///E|/TEMP/Chapter%2010%20Assembly%20Language.htm

Take another look at the two nested loops:

DoLine: MOV BL,LineLen ;Each line will consist of 64 characters
DoCHar: STOSW ;Note that there's no REP prefix!
 JCXZ AllDone ; When the full set is printed, quit
 INC AL ;Bump the character value in AL up by 1
 DEC BL ;Decrement the line counter by 1
 LOOPNZ DoChar ;Go back & do another char until BL goes to 0

ADD DI, (ScrnWidth -LineLen)*2 ; Move DI to start of next line
JMP DoLine ;Start display of the next line

The inner loop is considered complete when we've displayed one full line of the ASCII
table to the screen. BL governs the length of a line, and when BL goes to 0 (which the
LOOPNZ instruction detects) a line is finished. LOOPNZ then falls through to the
ADD instruction that modifies DI.
We modify DI to jump from the end of a completed line to the start of the next line at the
left margin. This means we have to "wrap" by some number of characters from the end
of the ASCII table line to the end of the visible screen. The number of bytes this requires
is noted by the assembly-time expression (ScrnWidth-LineLen)*2. This expression is
basically the difference between the length of one ASCII table line and the width of the
visible screen. Remember that each character position is actually represented by both a
character and an attribute byte in the video refresh buffer, thus the *2 portion of the
expression. The result of the expression is the number of bytes we must move into the
video refresh buffer to come to the start of the next line at the left screen margin.
But after that "wrap" is accomplished by modifying DI, the outer loop's work is done,
and we close the loop. This time, we do it unconditionally, by way of a simple JMP
instruction. The target of the JMP instruction is the Doline label. No ifs, no arguments.
At the top of the outer loop, (represented by the DoLine label) we load the length of a
line back into the now-empty BL register, and drop back into the inner loop. The inner
loop starts firing characters at the screen again, and will continue to do so until JCXZ
detects that CX has gone to 0.
At that point, both the inner and outer loops are finished, and the full ASCII table has
been displayed. SHOWCHAR's work is done, and it terminates.

file:///E|/TEMP/Chapter%2010%20Assembly%20Language.htm (30 of 33) [9/30/02 09:08:39 PM]

file:///E|/TEMP/Chapter%2010%20Assembly%20Language.htm

SHOWCHAR.ASM Recap

Let's look back at what we've just been through. SHOWCHAR.ASM contains two
nested loops. The inner loop shoots characters at the screen via STOSW. The outer loop
shoots lines of characters at the screen, by repeating the inner loop some number of times
(here, 4).
The inner loop is governed by the value in the BL register, which is initially set up to
take the length of a line of characters (here, 64). The outer loop is not explicitly governed
by the number of lines to be displayed. That is, you don't load the number 4 into a
register and decrement it. Instead, the outer loop continues until the value in CX goes to
0, indicating that the whole job is done.
Both the inner and outer loops modify the registers that STOSW works with. The inner
loop modifies AL after each character is fired at the screen. This makes it possible to
display a different character each time STOSW fires. The outer loop modifies DI (the
destination index register) each time a line of characters is complete. This allows us to
break the destination string up into four separate, non continuous lines.

The Other String Instructions

STOSW is only one of the several string instructions in the 86-family instruction set. I
would have liked to cover the others here, but space won't allow, in this edition, at least.
In particular, the MOVSW instruction (Move String by Word) is useful, because it
allows you to copy entire regions of memory from one place to another, screamingly fast,
and with only a single instruction:

REP MOVSW

You probably understand enough about string instruction etiquette now to pick up
MOVSW yourself from an assembly-language reference. All of the same register
conventions apply, only with MOVSW you're working with both the source and
destination strings at the same time.

I felt it important to discuss not only the string instructions, but their supporting cast of
characters: LOOP, LOOPNZ, and JCXZ. Individual instructions are important, but not
nearly as important as the full context within which they work. Now that you've seen
how STOSW is used in non REP loops, you should be able to apply the same
knowledge to the other string instructions as well.

file:///E|/TEMP/Chapter%2010%20Assembly%20Language.htm (31 of 33) [9/30/02 09:08:39 PM]

file:///E|/TEMP/Chapter%2010%20Assembly%20Language.htm

Further Research: Building Your Assembly-Language Video Toolkit

Video is important—it's the fundamental way your programs communicate with their
users. Fast video is essential, and BIOS-based video fails in that regard. The Clear and
Ruler macros are good examples of just how fast video routines can be made with solid
knowledge of assembly language.
You have the fundamentals of a really good and extremely fast toolkit of video routines
for your assembly-language programs. To get some serious practice in assembly-
language design and implementation, it's up to you to fill that toolkit out.
Here's a list of some of the new routines you should design and perfect for your video
toolkit:

• WriteFast A routine to move a string of characters from your data segment to the
visible display buffer. You can do this easily using instructions we've discussed so far. A
suggestion: use the LOOP instruction for an easy time of it, or research the MOVSW
instruction for a trickier—but much faster—routine.
• WritelnFast Like WriteFast, but moves the hardware cursor to the begin-
ning of the following line after the write. If the write is to the bottom line on the screen,
scroll the screen using INT 10 BIOS calls, or for more speed, MOVSW.
• WriteDown A routine to move a string of characters from the data segment
to the visible display buffer, only vertically. This is useful for displaying boxes for
menus and other screen forms, using the PC's line drawing characters.
SHOWCHAR.ASM gives you a hint as to how to approach this one.
• DrawBox Using WriteFast and WriteDown, create a routine that draws
a box on the screen. Allow the programmer to specify whether it is made of single-line or
double-line line-drawing characters.
• GetString A delimited field-entry routine. Delineate a field, by highlighting
the background or framing a portion of a line with vertical bar characters, and allow the
user to move the cursor and enter characters within the bounds of the field. When the
user presses Enter, return the entered characters to a buffer somewhere in the data
segment. This is ambitious and might require seventy or eighty instructions, but it's likely
to be a lot of fun.

Getting your video tools in order will allow you to move on to other, more involved
subjects like file I/O and interface to the serial and parallel ports. "Real" assembly-
language programs require all these things, and you should strive to create them as small,

file:///E|/TEMP/Chapter%2010%20Assembly%20Language.htm (32 of 33) [9/30/02 09:08:39 PM]

file:///E|/TEMP/Chapter%2010%20Assembly%20Language.htm

easily read and understood toolkit-style procedures and macros. Create them so that they
call one another rather than duplicating function—assembly language is difficult enough
without creating routines that do the same old things over and over again.

file:///E|/TEMP/Chapter%2010%20Assembly%20Language.htm (33 of 33) [9/30/02 09:08:39 PM]

; 1 Entry point:

 ; 1 Entry point:

file:///E|/TEMP/1%20Entry%20point.htm (1 of 2) [9/30/02 09:19:43 PM]

; 1 Entry point:

 ; End Start:

file:///E|/TEMP/1%20Entry%20point.htm (2 of 2) [9/30/02 09:19:43 PM]

file:///E|/TEMP/CHapter%2011%20complete.htm

file:///E|/TEMP/CHapter%2011%20complete.htm (1 of 30) [9/30/02 09:20:31 PM]

file:///E|/TEMP/CHapter%2011%20complete.htm

 I sometimes think back with some wonderment at the fact that I replaced the carburetor of my
first car (a 1968 Chevelle I called "Shakespeare") in front of my mother's house on a freezing,
windy day in January of 1974. All this without shelter of any kind, with marginal tools, and with
no light but the light from the sky. I had never done it before, but it worked right the first time,
and I saved a bundle of money that I didn't have anyway.
One reason that I call my 1984 Plymouth Voyager the "Magic Van" is that, having looked
carefully under the hood, I can only conclude that the damned thing runs by magic. I don't think I
could replace the carburetor on the Magic Van. If pressed, I'm not even sure I could open the
hood and show you where it was. (I'm not, in fact, quite certain that cars even have carburetors
anymore!)
This is one reason that I bought a restorable 1969 Chevelle this past winter. I'm not an auto
mechanic and have no desire to be, but I enjoyed repairing Shakespeare and tuning him up,
because it was simple and straightforward and required no greater skill than I cared to learn.
The point I want to make here is that the game of repairing cars has changed drastically since
1968. What was once a simple matter of aligning a timing mark on a pulley with a scratch on the
engine block has now become a coordinated effort of getting a half dozen embedded
microcontrollers to send signals to complicated electromechanical components at all the correct
times. It would take me years to learn how to do all that, and I'd really rather be programming or
building radios.
Similarly, the game of programming has begun to change drastically since the end of the 1980s.
What I've described in this book so far has been necessary groundwork that everyone should
learn in becoming an effective PC programmer. However, until fairly recently, the situation I
described in this book has been pretty much the whole story. There was the 8088/8086 CPU and
its instruction set, segmented memory, and DOS. If you learned only that (and learned it
completely and well, of course), you could write significant software in assembly that was the
equal of what you could buy on the open market.
Times change. As with my poor Chevelle, the programs I wrote in the middle 1980s now seem
modest to the point of being quaint. Big things have been happening to the PC since 1989 or so,
and those changes are by no means complete. They involve both hardware and software, and
extend to the core of the assumptions we make when we place machine instructions together on
the screen.

This is the final chapter in this book, and I did not want to leave you with a false impression of
having "learned it all." There is more, much more to be done. The topics I'll mention here could
be addressed in whole volumes. At best, I can give you your bearings. Hold on to your

file:///E|/TEMP/CHapter%2011%20complete.htm (2 of 30) [9/30/02 09:20:31 PM]

file:///E|/TEMP/CHapter%2011%20complete.htm

chair—but let's go.

11.1 A Short History of the CPU Wars

 I wrote most of the first edition of this book in 1988, which (as I've suggested above) was a
much simpler time. The 80286 microprocessor was the standard CPU, but almost nobody used
its special features. It was (and is) used almost exclusively as a fast 8088. The 80386 was around
(I jumped in quick and have had one since the end of 1986), but it was still considered a little
exotic and was usually pretty expensive. Like the 286, the 386 sat on most people's desks as an
even faster 8088.
All this changed in 1990. The most signficant event of that year was the appearance of a second
source for Intel's 80386 CPU chip. American Micro Devices (AMD) announced a 386 clone,
under a contract with Intel that allowed them to second source Intel CPUs. Intel claimed the
contract didn't apply to the 386. They sued—and lost. AMD's 386 didn't hit the market in
quantity until early 1991, but its effect on Intel was immediate: they started cutting prices on the
386 to make AMD's clone less profitable.

Free Fall

Suddenly, prices on 386 machines went into free fall. Intel's low-cost 386SX chip appeared in
quantity (it was designed as a "286 killer" to take the profit out of AMD's 286 product line),
accelerating the plunge in prices. CPU speeds, which had initially been stuck at 16 or 20 Mhz,
suddenly started creeping up, first to 25 Mhz, and then to 33 Mhz. RAM prices, which had been
high at the end of the 1980s, started to plunge as well. By the beginning of 1991, the standard
business desktop machine was a 25 Mhz 386 with four megabytes of RAM—often more. The
somewhat slower 386SX machines muscled into the "home and personal use" niche previously
held by the 80286, and the 80286 came to be seen as a "kiddie" machine—probably because
America's dads gave their 286s to Junior when their Taiwan 386SX boxes arrived.
What happened to the 8088s? I'm not sure. I suspect a lot of them are in closets, up there on the
second shelf with a busted VCR atop them, and the ratty guest quilt thrown over the pile until
Uncle Mack pays another visit.
It may be true that you still have one, and are still using one-—but this is getting less likely all
the time. I've found that most people who have the will to try programming have long become
impatient with the 8088 and moved on to something faster—especially now that you can buy a
complete 386SX machine at Price Club for less than $1000.

Meet the New Boss

In late 1990, Intel finally turned loose their long-in-coming 80486 CPU, which was even

file:///E|/TEMP/CHapter%2011%20complete.htm (3 of 30) [9/30/02 09:20:31 PM]

file:///E|/TEMP/CHapter%2011%20complete.htm

faster than a fast 80386—and the newcomer initiated yet another shuffle down in prices
and status. The 486 is now "The Boss" on corporate desktops, and more and more programmers
are picking them up as well. The 386 and the 286 have taken a bump down in status, and the
8088—well, when you're on the bottom, how much farther down can you go? I've seen genuine
IBM PC systems on sale for as little as $200 on the used market. The no-name, 8088-based XT
clones are considered by most used office equipment dealers to have little if any value at all.
How long will the 486 stay on top? That depends on how quickly Intel perfects and releases their
80586 CPU chip. The process will proceed as it has proceeded since the early 1980s—only with
less and less time between cycles.
So where are we today, in the early 1990s? Published figures indicate that there are about
70,000,000 "countable" PC-type machines in the world. By countable they mean manufactured
by firms who are well-known in the industry and release figures on sales. There is, however,
another component to the world PC marketplace: the uncounted and uncountable clone boxes
assembled here in the US and elsewhere by small, often family firms and sold in small shops and
through the mail. Anybody who scopes out the import process can boat in a container lot of
motherboards, clone cabinets, and other parts, and be selling completed and tested systems at the
next neighborhood "computer swap meet."
How many of these are there? Maybe 25,000,000 worldwide. Maybe more. Nobody has any way
to be sure. Those who talk about the battle between the PC and other machines like the
Macintosh or Amiga are thinking most wishfully. The battle is over. The PC won by at least
80,000,000 votes.

11.2 Opening Up the Far Horizon

I've gone through this exercise to point up a fact few people ponder much: the 8088 is now the
minority player in the PC world. Absolutely no more than a third of the world's PCs sport 8088
CPUs, and the proportion is probably closer to 20% or 25%. Again, because of the nature of the
PC business, nobody has any way to be sure. (And the proportion of active 8088 PCs is even
smaller— don't forget what's under the busted VCR on the closet shelf!)

DOS Extenders

Something else that came into its own in 1990 was the DOS extender. DOS extenders are
extremely clever programs that place the "extra" features of the 286, 386, and 486 at the disposal
of DOS programs. By necessity, DOS extenders exclude machines based on the 8086 and 8088.
What the more advanced processors bring to the table is more memory (lots more) and
something called protected mode, which radically alters the programmer's view of the memory
system. It won't be possible for me to explain in detail the mechanics of extended memory or
protected mode in this book. The important thing to understand now is that with DOS extenders,

file:///E|/TEMP/CHapter%2011%20complete.htm (4 of 30) [9/30/02 09:20:31 PM]

file:///E|/TEMP/CHapter%2011%20complete.htm

the 286, 386, and 486 CPUs are no longer just faster 8088s. Once you understand what they have
to offer, you can do some amazing things at an assembly-language level.
Most amazing is release from the tyranny of the 64K segment. A segment in 386 protected mode
can be as large as 4 gigabytes—now that's a far horizon! This greatly simplifies dealing with
really big data items, and also (because all of the code from a substantial program can exist in
single moose of a code segment) simplifies program design and structure.
In short, when a DOS extender is in control of the machine, an application program can be much
larger than the customary 640K of DOS memory, and can manipulate individual data items much
larger than 64K.

Windows 3.0

1990's third and final blow to the past came in the form of Microsoft Windows 3.0 (Windows).
Microsoft finally got both the big picture and the details right, and launched a graphics-oriented
DOS shell that everyone seems to be able to agree on.
Windows is more than just a menuing replacement for the DOS prompt. Windows contains its
own limited DOS extender technology, and programs written to make use of Windows' features
can be much larger than ordinary DOS programs. Windows can also use the hardware
multitasking features of the 386 to allow more than one program to run at once.
In a great many ways, Windows has changed the methodology of PC programming forever.
Windows has an enormous influence over the shape of programs that run under it and use its
services. This is in part because Windows defines literally hundreds of system calls to do all
sorts of things, including graphics drawing, some file I/O, and nearly everything you would want
to do to interface with the underlying machine.
This is good, because on the flipside, Windows demands that you use its services and not just go
out to the hardware and grab whatever you want, whenever you want it. Nor is Windows just
being snotty. Whenever you put two programs in a single machine (somewhat like two tomcats
in a closet) there is the potential for some bloody fights. Two programs cannot write blithely to
the same place in memory at the same time, and Windows, as reluctant referee, demands that
both programs submit to its set of rules for peaceful global coexistence.

Event-Driven Programming

But probably the most significant effect Windows has on the nature of programming is that it
lays out a whole new conceptual model for how a program should work. This new model is
called event-driven programming, and while Windows certainly placed it most brightly in the
spotlight, other programming systems (like Turbo Vision and Smalltalk) have been using it for
some time.
Event-driven programming is a complicated subject, and I'm not going to be able to cover it in

file:///E|/TEMP/CHapter%2011%20complete.htm (5 of 30) [9/30/02 09:20:31 PM]

file:///E|/TEMP/CHapter%2011%20complete.htm

detail in this chapter. I would like to give you a flavor for it so that you can plan your future
explorations as a programmer accordingly.
Event-driven programming is a consequence of our operating system getting smarter. DOS and
Windows are gradually fusing into a new and more powerful operating system with far more
capabilities than DOS's simple list of passive services that you call through a software interrupt.
Most tellingly, Windows is now an active partner rather than a passive helper.
In the old world, your program was in the driver's seat, asking for assistance from DOS when in
need. DOS remained passive but ready, not speaking until spoken to. In the old world, your
program would go out and ask DOS, "Has the user pressed a key yet?" If a key had been pressed,
DOS would meekly hand the key value up to your program and wait for further orders.
Windows, on the other hand, takes a far more active role. Although your program is still
nominally calling the shots, Windows governs a lot more of the system, especially those parts of
the system that interact with the user. Today, what Windows does is tap your program on the
shoulder and say, "Hey boss, the user just pressed a key. What are you going to do about it?"
That press of a key or click of a mouse button is called an event, and the flow of control of the
programs that run under Windows is dictated by the stream of events that the user sends from the
keyboard and mouse to the program. The user has a lot more power under an event-driven
system. No more is the user necessarily confined by a rigid menu structure within a single
program. Now, with a single mouse click, the user can pre-emptively send the current program
into the background and start up another one at will—and still return to the first program
whenever he or she chooses.
In an event-driven program, the program and the platform (which is the new term for an
operating system combined with a particular screen and keyboard management system like
Windows) become nearly equal partners. The program calls on the platform for services, just as
programs have been calling on DOS for years. But the platform also calls on the program to
respond intelligently to things that happen within the platform, things like user-initiated events
and critical errors. Program and platform thus speak back and forth continually, by way of a data-
handling protocol called message passing.
It sounds complicated, and it is. On the other hand, event-driven programming makes things
possible that simply can't be done using older programming models. With Windows acting as an
intelligent proctor, multiple programs can operate at once within the same machine, some in the
foreground, some in the background, freely passing data back and forth among them. Windows
standardizes the protocol for this data transfer, so that the process (while tricky) becomes one
that every program can understand if it was built along the Windows model.

Windows and Assembly Language

Can Windows programs be written in assembly language? Of course. Never forget: assembly
language is the language of the underlying machine, and any program that can execute on the

file:///E|/TEMP/CHapter%2011%20complete.htm (6 of 30) [9/30/02 09:20:31 PM]

file:///E|/TEMP/CHapter%2011%20complete.htm

machine may be written in assembly language. The more important question is how much
trouble that writing will be, and how much time it will take.
And that answer to that question is, a lot, and a long time. Higher-level languages like Pascal,
Smalltalk, and C become a lot more compelling when you have to write complex code like that
which speaks to platforms like Windows. An ambitious program like Word for Windows or
Excel might take years to perfect in assembly language, even with a crack team of programmers
sweating blood day and night over the project. And you just can't take years to write a program
anymore. If you do, by the time your program is complete, the rules that you followed when you
designed the program will no longer be valid when the program is ready to send to market. Your
program will be obsolete before it's even finished.
That's the bad news. The good news is that parts of a Windows program can be written in
assembly language, and the improved speed and compactness of the assembly portions may be
able to give the program as a whole (which might have been written in Pascal or C) a serious
competitive edge.
Windows includes support for a very handy feature called a dynamic link library (DLL), which is
simply a collection of subroutines gathered into a file and loaded whenever they're needed. DLLs
are vaguely similar to the overlays of times past, which were chunks of code left on disk because
the whole program was too large to fit into memory at once. Just as the application would then
load chunks of itself into a common area as it needed them (overwriting chunks in that area that
it no longer needed), Windows loads a DLL into memory when the code inside the DLL is
called. But unlike overlays, DLL code can be used by any Windows program that knows the
standard Windows DLL calling conventions.
DLLs can be written in assembly language much more easily than entire Windows programs,
and if you want to work under Windows but write assembly code, DLLs are a natural place to
begin. Again, I can't explain how to write DLLs in this book (that's a fairly advanced topic), but I
want to point out right now that it's certainly possible, and may be one way to make money
programming in the Windows market. If you write a fast "engine" that accomplishes only one
thing (say, data communications or database management) but accomplishes it very well, other
Windows programmers may license the DLL containing your engine and use it to enhance their
own Windows applications.

I do have some advice about Windows, however: learn to program it first from a higher-level
language like Borland's Turbo Pascal for Windows. Learning assembly language is hard
enough. Windows presents a lot of new concepts that are confusing enough without having to
learn them at the very lowest level. Once you're fluent at creating Windows applications, use
your assembly skills to replace time-critical portions of the code with optimized assembly-
language DLLs.

11.3 Using the "New" Instructions in the 80286

file:///E|/TEMP/CHapter%2011%20complete.htm (7 of 30) [9/30/02 09:20:31 PM]

file:///E|/TEMP/CHapter%2011%20complete.htm

This probably all sounds pretty grim from where you sit now, a novice assembly programmer
with a desire to go further. Don't despair, though. It's not all bad news. Particularly, there are new
registers and instructions in the 286, 386, and 486 that you can learn and use right now, without
even going into protected mode. In the next several sections, I'll describe some of these new
features and explain how you can use them.

Still 16 Bits

The 286 is a 16-bit processor. Inside of itself, it handles data in 16-bit chunks, and all of its
registers are 16 bits wide, just like the 8086 and 8088. Furthermore, it can read and write data
from and to the memory system 16 bits at a time. (To get 32-bit registers and 32-bit data
transfers, you'll need to get a 386 or 486 machine.)
Now, people sometimes get confused about "how many bits" a processor "is." We call this value
the data width of a CPU. Although I took up this issue briefly in Section 2.3, now might not be a
bad time to expand on the question, because it will come up again with regard to the 386 and the
386SX. The answer is ... well, it depends on your point of view.
The 286 is a 16-bit processor, both inside and out. Inside the CPU, data can be processed 16 bits
at a time. This is made possible by virtue of the 286's general-purpose registers, (AX, BX, CX,
and DX) which are all 16 bits wide. You can access the general-purpose registers by 8-bit halves
(that is, by using CL and CH rather than CX), but the most you can put in any one register is 16
bits.
There are people who define the data width of a CPU in terms of its general-purpose registers. In
truth, however, this is a false indicator. What you really need to look for is the width of the data
path that leads from inside the CPU out to the physical memory system.
The original CPU in the IBM PC was the 8088. Its general-purpose registers are all 16 bits wide.
However, the 8088 can only move one byte at a time out to the memory system. The 8086
(which was never much of a player in the PC world) can move 16 bits out to the memory system
in a single operation.

This is a lot more important, functionally. It's a little like building a big boat in your basement.
It's nice to have a big boat, sure—but if you have to dismantle it into several pieces every time
you want to take it out to sail, you'll eventually conclude that its bigness is more of a bother than
an advantage. Sooner or later, you're going to get a canoe and enjoy it a lot more.
Moving memory into and out of the CPU is one of the most time-consuming things the CPU can
do. If at all possible, you want to minimize the number of "fetches" that the CPU must perform.
The best way to do this is to choose a CPU with the greatest available data width. The 8086 is
inherently faster than the 8088 because it can move twice the data into or out of the CPU chip in
one operation.

file:///E|/TEMP/CHapter%2011%20complete.htm (8 of 30) [9/30/02 09:20:31 PM]

file:///E|/TEMP/CHapter%2011%20complete.htm

So why don't the CPU manufacturers just all make 128-bit CPUs (or wider!) and be done with it?
Unfortunately, it's harder to manufacturer a "wide" CPU chip. Each of those bits has to go out to
the outside world on a pin, (along with a great many other signals) and once you're into the 32-
bit world, you're talking a lot of pins. The 8088 fits comfortably on a 40-pin 1C (integrated
circuit) package, but the 80386 has so many pins it looks like a bed of nails—a little ceramic
square whose lower surface is nearly covered by gold pins. Inside the 1C package, each pin has
to be connected to the physical silicon chip by a minuscule gold wire, which is difficult enough
to do once, let alone literally a hundred or more times.
Wide CPUs cost more to make than narrow ones, because they're physically more difficult to
manufacture. There's also more complication on the computer motherboard to support wide CPU
chips, which further adds to the cost of the computer.

386DX vs. 386SX

In the late '80s, Intel released its 80386SX chip. Internally, the 386SX was a genuine 386—it had
all the registers and instructions supported by the original 386 CPU. However, the 386SX moved
data into and out of itself only 16 bits at a time, just like the 8086 and 286. This lowered the cost
of the 386SX, which made it cheaper to incorporate into an actual computer. (Intel then renamed
the "big" 386 the 386DX to make sure no one got them mixed up.)
So while 386-specific software will run perfectly well on the 386SX, it runs more slowly,
because the CPU can only move 16 bits at a time, rather than 32. The 386DX is a 32-bit CPU
that moves 32 bits to or from memory in one crack.
At this writing, Intel has released very little information about its as-yet-unannounced 586 CPU.
Will it be a 64-bit CPU? We don't know yet, but it's unlikely. People whose opinions I respect
believe that 32 bits is the optimum data width for a practical CPU. I suspect they may be
wrong—but we'll know soon enough.

Pushing and Popping All the Registers at Once

The 286 added a pair of new instructions to its repertoire: PUSHA and POPA. These
instructions move all the general-purpose registers to or from the stack in one blistering
operation. The registers affected are AX, CX, DX, BX, SP, BP, SI, and DI.
PUSHA pushes these registers on the stack. You should keep in mind that the registers go onto
the stack in the order listed above.
DI is the last register pushed onto the stack, and therefore will be the first popped off the stack
when you go back to pop what you pushed.
Something else to keep in mind: the value of SP that is pushed onto the stack is the value that SP
held before the PUSHA instruction began pushing everything onto the stack. Don't forget this if
you intend to pop registers from the stack piecemeal after pushing the whole crew with PUSHA.
If you do something like this, you'll be in for a surprise:

file:///E|/TEMP/CHapter%2011%20complete.htm (9 of 30) [9/30/02 09:20:31 PM]

file:///E|/TEMP/CHapter%2011%20complete.htm

POP DI
POP SI
POP BP
POP SP

Why? The last instruction pops the saved value of SP back into SP. That value, remember, was
the value SP had before PUSHA started to work. Once you use an individual POP instruction to
pop the SP value off the stack, you 'II no longer be able to pop AX, BX, CX, and DX. The SP
value pushed onto the stack points above the AX value pushed by PUSHA.
Most of the time, if you use PUSHA to push all the registers onto the stack, you'll use POPA to
pop them off, again as one operation. POPA reverses what PUSHA did, and takes the values off
the stack and plugs them into the registers in reverse order:

DI, SI, BP, SP, BX, DX, CX, AX

POPA does something interesting: it simply pops and discards the value pushed onto the stack
for SP. This prevents the problem I mentioned above with popping registers piecemeal after
using PUSHA. So why push SP at all? In the very peculiar way CPU chips operate internally, it
was probably easier to push SP on the stack and ignore the popped value that might have gone
into SP than to leave SP out of the process entirely. It's just that PUSHA and POPA "step
through" the registers, and it's easier to step through them all than to try and skip one.
So what are PUSHA and POPA good for? You might use them to "frame" a subroutine that
makes heavy use of registers. If you push all the registers on entry to a subroutine, you can use
all of the registers from inside the subroutine, and not worry about trashing something that the
caller will need after you return from the subroutine. By pushing all of the general-purpose
registers, you needn't worry about forgetting to save one or another before using it within that
subroutine. It's only one instruction, so it adds very little bulk to your code, and it's excellent bug
insurance.
PUSHA and POPA are also useful when writing interrupt service routines.

More Versatile Shifts and Rotates

PUSHA and POPA are entirely new instructions, present in the 286 and newer CPUs, but not
present at all in the 8086 and 8088. However, not everything that's new with the 286 is a whole
new instruction. Some of the 286's enhancements are improvements to existing instructions.
For my money, the best of these are enhancements to the shift and rotate instructions. There are
six such instructions: SHL, SHR, ROL, ROR, RCL, RCR. (The instructions SAL and SAR are
just duplicate names for SHL and SHR.) I dealt with the shift instructions in Chapter 9, as they
exist on the 8088 and 8086. If you'll recall from that chapter, you can express the number of bits

file:///E|/TEMP/CHapter%2011%20complete.htm (10 of 30) [9/30/02 09:20:31 PM]

file:///E|/TEMP/CHapter%2011%20complete.htm

by which to shift in one of two ways:

SHL AX.l ; Shift left by 1
SHL AX.CL ; Shift left by number in CL

(The AX register is just for example's sake; obviously, you can replace AX here with any legal
operand. Furthermore, this dicussion applies to any of the six shift/rotate instructions.) To shift
an operand by 1 bit, you specify the literal value 1. To shift by any greater number of bits greater
than 1, you must first load a count value into the CL register, and then use CL as the second
operand. Well, this is how it is on the 8086/8088. Starting with the 286, you can drop the use of
CL and use an immediate value (that is, a digit like 4 or 7) for shift values greater than 1. It
becomes legal to use instructions that look like this:

SHL AX,4
SHL BX,7

It's more than just convenience. Having to load CL with a shift value not only takes time, but it
eats up code space as well (the MOV CL,4 or MOV CL,7 instructions have to go somewhere).

Limiting the Shift Count

The 286 and newer CPUs put another, much subtler twist on the shift and rotate instructions:
they limit the shift count to 31. This will take a little explaining; I recall having trouble with it
when I first encountered the 86-family instruction set.
 When you specify the shift count in CL, the assembler will permit you to use any value that will
physically fit in CL. This means you can theoretically shift an operand by up to 255 bits, since
the largest value you can load into 8-bit CL is 255, Aka 0FFH.
But think about that for a moment. What does it actually mean to shift an operand by 255 bits?
The largest operand you can ever shift with any x86 CPU is only 32 bits wide. If you shift a 32-
bit operand by 32 or more bits in either direction, you're left with nothing but 0's in the operand,
because all significant bits will be shifted completely out of the operand into nothingness. So for
the shift instructions, at least, shifting by more than 31 bits is meaningless.
It's a little trickier for the rotate instructions. The rotate instructions, if you recall, rotate bits off
one end of the operand and then feed them back into the opposite end of the operand, to begin
the trip again. Therefore, you could rotate a bit pattern in an operand by 255 and still have bits in
the operand, because the bits never really leave the operand. They simply go out the front door
and come back in immediately through the back door.
So rotating an operand by 255 could still be meaningful. The question is, is it uniquely

file:///E|/TEMP/CHapter%2011%20complete.htm (11 of 30) [9/30/02 09:20:31 PM]

file:///E|/TEMP/CHapter%2011%20complete.htm

meaningful? Or, is there some smaller rotation count that leaves the same pattern in the operand?
Figure 11.1 may help things become clear. Start with a single 1 bit in the very lowest position of
a 32-bit wide operand. Figure 11.1 shows this operand as EAX, which is a 32-bit register found
in the 386 and 486 CPUs. (I'll return to EAX later in this chapter. I only use it here because it's a
convenient 32 bits wide.) Begin rotating to the left. Rotating the 1 bit 31 times will bring that
single 1-bit to the opposite end of the operand, as shown in the figure. Rotate one more time.
Shazam! Your 1-bit is back where it started, and the operand now contains a pattern identical to
the pattern you had when you began.
In other words, given a 32-bit operand, rotating the operand by 32 bits is the same as not rotating
it at all. Rotating it by 33 bits is the same as rotating it by 1 bit. Rotating it by 34 bits is the same
as rotating it by 2 bits, and so on. So there's really no purpose to rotating an operand by more bits
than the operand itself is wide. Doing so just wastes time inside the CPU. This is why, on the 286
and newer processors, the shift-by count is truncated to 5 bits: the largest value expressible in 5
bits is ... 32!

An Instruction You'll Probably Never Use

Not all of the new goodies introduced with the 286 are likely to be useful to you. One new
instruction in particular has always puzzled me: BOUND.
The BOUND instruction was created to provide a way to test whether or not an array index was
within two legal array bounds, and to do so quickly. The testing process helps prevent software
from accidentally writing outside

file:///E|/TEMP/CHapter%2011%20complete.htm (12 of 30) [9/30/02 09:20:31 PM]

file:///E|/TEMP/CHapter%2011%20complete.htm

the bounds of the area currently being worked on, which is a major problem in advanced
assembly-language work.
The BOUND instruction has a complicated set of operands that I won't try to explain here. I'll
summarize its operation instead: BOUND takes the value given in its first operand and tests to
see whether that operand is within the two values (the array bounds) pointed to by its second
operand. If that first operand is within the bounds, everything is cool and nothing happens. (The
flags are not affected.) However, if the first operand is discovered to be outside the bounds, the
CPU triggers an interrupt 5. Interrupt 5 is hard baked into the silicon of the CPU. It's not
something you can set, say, to interrupt 37 or 79 as needed. If an index fails BOUND'S test, it's
interrupt 5, period.
This means that in order to use BOUND, you have to know how to create and install an interrupt
service routine. That's OK; there's nothing hideously difficult about it once you've studied the
ropes. However....
When IBM designed its original PC, somebody somewhere on the PC development team
wasn't reading the fine print of Intel's documentation for the x86 family of CPUs. From
the start, Intel has "reserved" a certain number of interrupts for the exclusive use of its
CPUs. (Reserved means, "This is ours! Don't use it for something else?') Interrupt 5 was one of
these.

file:///E|/TEMP/CHapter%2011%20complete.htm (13 of 30) [9/30/02 09:20:31 PM]

file:///E|/TEMP/CHapter%2011%20complete.htm

Programmers don't like fine print. So one of IBM's guys needed an interrupt, and picked
interrupt 5. He used it for the Print Screen mechanism in the original PC BIOS. When you press
Shift+PrtSc on the PC keyboard, the BIOS issues an interrupt 5, and the interrupt service routine
for interrupt 5 prints whatever is on the screen to your printer.
The Print Screen mechanism is in ROM, and exists in every PC and PC compatible ever built.
This means that if you try to use BOUND without doing anything with the interrupt vector table,
BOUND will trigger a Print Screen interrupt when a bound test fails. This, of course, is useless.
You can, in fact, jigger things in an interrupt service routine to "share" an interrupt between two
or more interrupting entities. It's entirely possible for both BOUND and the Print Screen
mechanism to coexist in using interrupt 5. It's plenty complicated, but it can be (and has been)
done.
Still, there's one final fly in the tequila. For reasons unclear to me, the BOUND instruction, when
it generates an interrupt 5, pushes its own address on the stack as the interrupt return address,
rather than the address of the next instruction in line.
This is best explained just by describing what happens: BOUND triggers interrupt 5. The
interrupt 5 service routine takes control and does what it must. Then the service routine pops the
return address from the stack...and the BOUND instruction executes again! If neither the array
index nor the bounds were changed by the interrupt service routine, BOUND will fail again, and
trigger another interrupt 5, and so on without end.
Whew. And yes, by being extraordinarily clever, you can get around that as well, by reaching up
onto the stack and goosing the return address a little. I've long since decided, however, that
BOUND simply isn't worth the bother.
But I've told this story for a specific reason. Several times in my 10-year career as a PC
programmer, I've seen my machine go into a peculiar sort of endless loop. The loop consists of
repeated Print Screen operations, as though someone were repeatedly pressing Shift+PrtSc.
And someone was, of course: BOUND. I was accidentally executing a BOUND instruction,
probably by trying to execute data as code, or by jumping into the middle of a multibyte
instruction opcode. By rearranging things, I was always able to stop the problem from occurring,
but it was years before I actually figured out who the culprit was.
Aren't bugs wonderful?

11.4 Moving to 32 Bits with the 386 and 486

The features that the 286 has over the 8088 are few and not outrageously useful. Mostly, the 286
had its day in the sun because (relative to an 8088) it was greased lightning. It obtains much of
that relative speed by being a true 16-bit CPU, but more than that, most of its instructions also
ran more quickly than the same instructions on the 8088. For example, the MOV AX,1
instruction (which moves an immediate value into a register) takes four machine (clock) cycles
to execute on the 8088, but only two clock cycles on the 286. Many of the other instructions are

file:///E|/TEMP/CHapter%2011%20complete.htm (14 of 30) [9/30/02 09:20:31 PM]

file:///E|/TEMP/CHapter%2011%20complete.htm

correspondingly faster as well.
This process of instruction speedup has continued with the advent of the 386 and 486 CPUs. The
MOV AX,1 instruction takes only one clock cycle to execute on the 486! Couple that with a 486
clock speed that starts at 33 Mhz and is now more and more commonly 50 Mhz, and we're
talking some serious speed here. There was also another quantum leap in processor data width,
from 16 bits to 32 bits. Both the 386 and 486 process data internally in 32-bit chunks, and also
move data into and out of the CPU 32 bits at a time.
The 386SX chip, as I mentioned earlier, was sort of a throwback: it is only a 16-bit CPU in terms
of moving data into and out of the CPU. (It does, however, process data internally 32 bits at a
time.) It's cheaper, but the 16-bit data path also slows it down considerably over its big brothers,
the 386 and 486.

The Extended General-Purpose Registers

So we come at last to the question of how the 386 and 486 (including the 386SX) process data
internally in 32-bit chunks. The registers we've discussed in this book so far are only 16 bits
wide. We need some new registers—or at least some wider ones.
And we've got both.
First of all, our seven familiar general-purpose registers and the stack pointer have been doubled
in size, from 16 bits to 32 bits. The older 16-bit registers are still there; in fact, they're the same
registers. But just as AX, BX, CX, and DX each contain a pair of 8-bit registers; so now do
EAX, EBX, ECX, and EDX each contain a pair of 16-bit registers. You can still use the names
AX, BX, CX, or DX, but when you do, you will only be addressing the lower 16 bits of the
larger registers.
Figure 11.2 may make this a little clearer. In the 386 and 486, there are four general-purpose
registers. Each is 32 bits wide. When you specify EAX, you're specifying the full 32-bit
extended form of our familiar AX register. EAX contains AX, just as AX contains both AL and
AH. Don't make the mistake (as some do) of thinking that there is a separate set of 16-bit
registers inside the 386, in addition to the 32-bit registers. It's like a box within a box within a
box, and with the 386/486 we've added an outer layer of box.
One unfortunate thing about the extended registers is that you can't separately manipulate their
high 16 bits. In other words, you can separately access the low 16 bits of EAX by working with
AX, and the high 16 bits of EAX will not be disturbed. You cannot, however, specify only the
high 16 bits of EAX or the other extended registers. There's simply no way to name those high
16 bits as a distinct group.

file:///E|/TEMP/CHapter%2011%20complete.htm (15 of 30) [9/30/02 09:20:31 PM]

file:///E|/TEMP/CHapter%2011%20complete.htm

Similarly, there are extensions to SI, DI, BP, and SP. (See Figure 11.3.) Just as with the general-
purpose registers, the extended index and pointer registers contain their familiar 16-bit
counterparts as their low 16 bits. ESI contains SI, EDI contains DI, and so on. Again, there is no
way to separately specify the high 16 bits of the extended index and pointer registers.

More Segment Registers

The whole issue of memory segments changes drastically when you move from real mode to
protected mode, so drastically that I don't have much hope of explaining it usefully in this book.
This seems all the more surprising, since our

file:///E|/TEMP/CHapter%2011%20complete.htm (16 of 30) [9/30/02 09:20:31 PM]

file:///E|/TEMP/CHapter%2011%20complete.htm

familiar segment registers don't change at all, physically, in the move from the 286 to the 386.
They are still 16 bits wide, and (in real mode at least) they still work exactly the same way.
Not only that, but there are two more of them.
With the 386 comes the FS and GS registers, so named (I suspect) because they follow the ES
register. And, like the ES register, they are extra segment registers, allowing you to set up and
retain more segments at a single time.
I hesitate (a little) at suggesting that an otherwise unused segment register can sometimes be a
lifesaver when you need "just one more place" to put a value to make a fast assembly-language
algorithm happen. In real mode you can do anything you want with the segment registers,
including use them as general-purpose registers. (Keep in mind that the segment registers can't
do everything that the general-purpose registers can do.) The problems begin when you try to run
such code in protected mode, where the CPU is very fussy about what you do with segment
registers. In protected mode, segment registers hold segment values and participate in memory
addressing, and that's it. Do other things with them and you're asking for numerous kinds of
trouble.
Using the new segment registers requires that you use their segment override prefixes, as there
are no "assumed" uses of FS and GS in the 386/486 instruction set. This isn't difficult. If you're
still fuzzy on the notion of segment override prefixes, glance back at Section 6.2. It's simply a

file:///E|/TEMP/CHapter%2011%20complete.htm (17 of 30) [9/30/02 09:20:31 PM]

file:///E|/TEMP/CHapter%2011%20complete.htm

matter of putting FS: or GS: in front of a memory addressing operation:

MOV FS:[SI],AX

This instruction moves the 16-bit word at FS:SI into AX. [Scanner’s note: has he got this
backward?typo?] The GS: prefix works exactly the same way.
In real mode, the FS and GS segment registers have no hidden agendas. They are truly extra
segment registers, and you have to specify their use every time you use them.

Not Just in Protected Mode!

A common misconception is that the new segment registers and the 32-bit features of the 386
and 486 are available only in protected mode. Not so! There are in fact a number of instructions
and special registers that can only be accessed from protected mode, but the 32-bit extended
registers are not among them. EAX, EBX, ECX, EDX, ESI, EDI, and EBP are fully usable
from real mode. ESP is usable, but only the lower 16 bits are meaningful unless you're in
protected mode using segments larger than 64K.

Let Your Assembler Know What You Want

You should keep in mind, however, that you must tell your assembler that you want to use the
extended registers and advanced CPU instructions. Otherwise, if you try to use the register name
EAX, or the PUSHA instruction, the assembler will tell you it doesn't know what you're talking
about.
This is actually a safety feature. Most people choose to program for the least common
demoninator of the entire 80x86 series, which is the fundamental 8086/8088 instruction set that
I've been discussing throughout the earlier portions of this book. Both MASM and TASM
default to that common demoninator instruction and register set, and must be specifically told
that you're "graduating" to the additional features of the 286/386/486.
There are commands you can give to MASM and TASM to tell them what set of advanced
assembler features you wish to use. By including these commands at the top of your assembly-
language source-code files, you can then use the advanced features throughout the remainder of
those files. These commands are summarized in Tables 11.1 and 11.2.
One thing to remember when using these assembler commands is that older versions of both
assemblers may have been released before the 486 was in general use, and thus your version of
MASM or TASM may be too old to understand the 486-specific commands. TASM 2.0, for
example, understands the 386 but not the 486.
The versions of both assemblers current in early 1992 provide full support for the 486-specific
CPU features.

file:///E|/TEMP/CHapter%2011%20complete.htm (18 of 30) [9/30/02 09:20:31 PM]

file:///E|/TEMP/CHapter%2011%20complete.htm

Table 11.1. Using MASM and TASM in MASM mode

Command Use

286 Allows assembly of all real mode 286 instructions
386 Allows assembly of all real mode 286 and 386 instructions, and use of 32-bit register
names
486 Allows assembly of all real mode 286, 386, and 486 instructions, and use of 32-bit
register names

Table 11.2. Using TASM in Ideal mode
Command Use
P286N Allows assembly of all real mode 286 instructions
P386N Allows assembly of all real mode 286 and 386 instructions, and use of 32-bit register
names
P486N Allows assembly of all real mode 286, 386, and 486 instructions, and use of 32-bit
register names
__

11.5 Additional 386/486 Instructions

You may be disappointed if you look for a host of marvelous new instructions in the 386 and 486
instruction set. There are new instructions there, but the most marvelous of them mostly serve
the needs of operating system programming in protected mode.
Some instructions that exist in the earlier processors have been extended, with additional
addressing or counting operands and modes. And there are (a few) valuable new instructions that
I'll present in this section.
But the major change in the 386 and especially the 486 is that Intel has made many of the most-
used instructions faster. Instruction speeds are measured by the number of ticks of the master
system clock that it takes to execute a given instruction. Intel has done extensive studies of the
"opcode mix" in typical applications, and has rearranged the internal structure of the newer
CPUs to enable the most-used instructions to execute more quickly.
On some instructions, the process has reached its ultimate conclusion with the 486: the
instructions execute in only one clock cycle. Most MOV instruction variations execute in one
cycle on the 486, as do TEST, SUB, NOT, INC, ADD, CMP and many other often-used

file:///E|/TEMP/CHapter%2011%20complete.htm (19 of 30) [9/30/02 09:20:31 PM]

file:///E|/TEMP/CHapter%2011%20complete.htm

instructions.
 There's been some backsliding however: some instructions, including DIV, ENTER, LEAVE
(none of which we've discussed in this book), and some others have actually gotten slower on the
486 (they take more machine cycles to execute than they did on the 386). And there are a
significant number of instructions that are slower on the 386 than on the 286, including those
marvelous string instructions we discussed in Chapter 10.
Why would Intel turn progress back and make an instruction slower than it once was? It's a
question of chip "real estate" and a question of priorities. When Intel designs a new CPU, it
decides about how many individual transistors it can successfully create on the die (the fresh,
unaltered silicon chip), and then allocates them to individual instructions and other functions in
order of importance.
In general, it takes more transistors to make an instruction execute quickly than it does to make
an instruction execute slowly. Intel wants to make its CPUs the fastest on the market, and CPU
speed is measured by executing a "mix" of instructions—that is, by executing real programs!
Some instructions appear in the mix more frequently than others, so for overall CPU speed, it
pays to throw transistors at the most frequently used instructions. Ideally, all the instructions
would be made to execute in one cycle, but there aren't enough transistors on the finished chip to
do that. So Intel made some hard decisions, and in some cases took some transistors from a
seldom-used instruction like ENTER and gave them to a more-frequently used instruction like
ADD.
This effect was most pronounced in the move from the 286 to the 386. The 486 gave back some
of the speed to the seldom-used instructions, and there's every reason to expect that the process
will continue until all instructions execute in a single clock cycle.
This, by the way, is the major reason that a 33 Mhz 486 seems faster than a 33 Mhz 386 ... it is!
The individual instructions on the 486 execute more quickly than those of the 386, so even at
identical clock rates, the 486 has a significant performance edge.
Obviously, get a 486 if you can.

Pushing and Popping All 32-Bit Registers

I presented the PUSHA and POPA instructions in the last section, and there are 32-bit
equivalents available on the 386 and 486. PUSHAD pushes all of the 32-bit registers onto the
stack, in this order:

EAX, ECX, EDX, EBX. ESP, EBP, ESI, EDI

Note that the value pushed for ESP is the value the stack pointer had before the first register was
pushed onto the stack. The CPU makes a private copy of ESP before beginning execution of the
instruction, and it is this private copy that is pushed onto the stack.
Similarly, POPAD pops the registers from the stack in reverse order:

file:///E|/TEMP/CHapter%2011%20complete.htm (20 of 30) [9/30/02 09:20:31 PM]

file:///E|/TEMP/CHapter%2011%20complete.htm

 EDI, ESI. EBP, ESP, EBX, EDX. ECX, EAX

The ESP value popped from the stack is not loaded into ESP; it's simply discarded. As I
explained with PUSHA and POPA, these instructions should be used as a pair; that is, what you
push with PUSHAD you should pop with POPAD.

Looking for 0 Bits with BT

Back in Section 9.3, I introduced the TEST instruction, which allows you to determine if any
given bit in a byte or word is set to 1. As I explained, TEST has its limits: it's not cut out for
determining when a bit is set to 0.
The 386 and 486 have an instruction that allows you to test for either 0 bits or 1 bits. The Bit
Test (BT) instruction performs a very simple task: it copies the specified bit into the Carry flag
CF. In other words, if the selected bit is a 1 bit, CF is set. If the selected bit is a 0 bit, CF is
cleared. You can then use any of the conditional jump instructions that examine and act on the
state of CF.
BT is easy to use. It takes two operands: the first one is the value containing the bit in question;
the second operand is the ordinal number of the bit you want to test, starting from 0. The syntax
is shown below:

BT <value containing bit>,<bit number>

Once you execute a BT instruction, you should immediately test the value in CF and branch
based on its value. Here's an example:

BT AX,4 ; Test bit 4 of AX
JNC Quit ; We're all done if bit 4=0

Note that we're branching if CF is not set; that's what JNC (Jump if Not Carry) does.

Use TEST to Test for 1-Bits!

One problem. As thankfully understandable as BT is, you must keep in mind that TEST is
considerably faster than BT. If you're trying to write code that absolutely has to be fast, be aware
that BT can be less than half as fast as TEST—if all you need to execute to test a bit is TEST.
Remember, however, that TEST requires additional code to look for 0 bits, so if you're looking
for a 0 bit, BT is faster. TEST, furthermore, is available on all 80x86 CPUs, so you needn't be
concerned with safe execution.

file:///E|/TEMP/CHapter%2011%20complete.htm (21 of 30) [9/30/02 09:20:32 PM]

file:///E|/TEMP/CHapter%2011%20complete.htm

It's one of those little tradeoffs you'll be faced with time and again as you hone your skills in
assembly.

11.6 Detecting Which CPU Your Code Is Running On

If you think about the notion of using the instructions present in the 286 or 386 but not the
8086/8088, the question very quickly arises: what happens when you try to execute a 386
instruction on an 8088 or a 286?
Simple answer: nothing good. On the 8088 and 8086, the response of the CPU to an undefined
opcode is truly undefined, in that the instruction fetching mechanism simply hands the bogus
opcode to the CPU's microcode circuitry, and then whatever happens, happens. Sometimes
nothing, sometimes something defined but unexpected (like finding that a register is
"magically" incremented or zeroed out), and sometimes the CPU will just hang. The worst of it is
that you can never count on "undocumented instructions" to work consistently from one build of
the CPU chip to another, so the best advice is, don't do it!
Things are both better and worse on the 286, 386, and 486. On these more advanced processors,
the instruction fetching mechanism actually checks each fetched instruction against a valid
opcode matrix to determine if the instruction is defined or not. If the CPU fetches an undefined
opcode, it will generate an interrupt 6, which can be used to signal the error.
That's the good news—a consistent reaction to a bogus opcode. The bad news is that there's no
standard for handing an interrupt 6. The CPU only knows how to generate the interrupt; once
execution jets off to the address stored in the interrupt vector table for interrupt 6, things are out
of the CPU's hands. It's the responsibility of the BIOS or of DOS to install handlers for "system"
interrupts like interrupt 6.
Some do. Some (especially 8088-based, XT-class machines) don't. And of those that do, the
action taken on an interrupt 6 is anything but consistent. Some machines ignore the interrupt and
simply return control without taking action. On machines like that, nothing at all happens when
an undefined opcode is fetched. Other machines may halt execution with a cryptic error message
on the screen. Still other machines may just go nuts.
Again, don't do it. You'll generate bugs aplenty just arranging the multitude of perfectly legal
opcodes in your programs. Don't complicate matters by forcing the target machine to digest and
react to instructions it doesn't have.

Practicing Safe Execution

So, if you're going to use instructions that are defined on some PCs and not on others, you are
going to have to build some machinery into your programs to detect what sort of CPU the
programs are running on, and abort execution if an older machine is detected that can't run the
software.

file:///E|/TEMP/CHapter%2011%20complete.htm (22 of 30) [9/30/02 09:20:32 PM]

file:///E|/TEMP/CHapter%2011%20complete.htm

This sounds harder than it actually is. There are some well-defined differences among the
various CPUs that do not involve defined or undefined instructions, and a very clever program
can look for those differences and safely determine what sort of CPU is executing it. If your
program requires a 386 and determines that it isn't running on one, it can abort back to DOS
before anything untoward happens.
I've written such a routine, and it's given at the end of this section, in the listing
WHATAMI.ASM. Read it through, and then we'll go through it, step by step. It's certainly the
subtlest piece of code I've presented in this book, and if you can understand how it works, you're
well on your way to being a competent journeyman assembly programmer.

The CPU Identifier from a Height

WHATAMI.ASM is a fully executable program that is a shell around the CPU detector
procedure, CPUID. Nothing unusual has to be done to assemble and link it; create the executable
file the same way you've been doing for all the listings in this book. The only caution, again, is to
be sure the version of the assembler you're using is new enough to understand 386 instructions!
CPUID returns a value in AL that indicates what CPU is currently executing the program. A 0
value indicates the presence of either an 8086 or an 8088. (Because those two chips execute the
same identical instruction set, there's very little point in looking further to see which one it
actually is.) A 1 value indicates the presence of an 80286, a 2 value indicates any of the 80386
family, including the 386SX and 386DX, and a 3 value indicates the presence of a 486SX or
486DX.

Looking for an 8086 or 8088

We start at the bottom of the CPU totem pole, and assume that we have an 8088 or 8086. The
first test is to eliminate the possibility of these CPUs. The test turns on a quirk of the 8086/8088
CPUs: the top four bits of the Flags register are forever stuck in the set state; that is, as 1 bits.
Even if you try to force the Flags register to 16 0 bits, the top 4 bits will not change, and if you
read back the Flags register after trying to set all 16 bits to 0, you'll find that the top 4 bits always
come back as 1s.
That's how it is on the 8086 and 8088. However, things are different on the newer CPUs. More
of the bits in the Flags register are meaningful, and therefore the top 4 bits are not left stuck at 1.
So if you push 16 0 bits onto the stack and then read them back, any value other than 0F000H
eliminates the 8086 and 8088 from the running.
There's no instruction that allows you to directly store a value into the Flags register. The only
instruction that can affect the entire Flags register at once is POPF, which pops the word from
the top of the stack into the Flags register.
In the test, we clear DX to 0, push DX onto the stack, and then pop the two 0 bytes from the top

file:///E|/TEMP/CHapter%2011%20complete.htm (23 of 30) [9/30/02 09:20:32 PM]

file:///E|/TEMP/CHapter%2011%20complete.htm

of the stack into the Flags register with POPF. That writes our test value to the Flags register; to
read it back we simply use PUSHF to push the Flags register back onto the stack, and then pop
the top of the stack into AX for inspection.
The test consists of a comparison of the value in AX (which used to be in the Flags register)
against the literal value 0F000H:

CMP AX,0F000H
JE Done

If the value in AX is in fact 0F000H, we're done—because we found that the top four bits of the
flags register are stuck at 1, indicating an 8086 or 8088.
At the Done label, we copy the value in DX to AX and return to the caller. The value in DX is
going to indicate which CPU we've found. Each time we eliminate the next higher CPU, we
increment DX to the next higher code. DX was originally forced to 0, so we pass 0 back to the
caller—indicating an 8086 or 8088.

Looking for a 286

Eliminating the 286 is similarly easy. The same general method is used, because the 286 has a
quirk that is inside out from the 8088s: the top 4 bits of the stack are always forced to 0 bits on
the 286, when the 286 is running in real mode. If the 286 is running in protected mode, bits 12
through 14 of the Flags register are meaningful and can change, but in real mode (which is the
only mode our code will be using in this book) bits 12 through 15 will always be 0. (Bit 15 is
always 0 on the 286, regardless of real or protected mode.) So what we do is try to set the Flags
register to 0F000H—and if the flags come back as something other than 0F000H, we can
eliminate the 286 and know that we have at least a 386.
Before we do anything else, we increment DX to 1, since we now know that we have at least a
286 on the line. And because we know we have at least a 286 on the line, we can use an
instruction introduced with the 286: PUSH <immed>, which can push an immediate value (like
0F000H) onto the stack. This makes it unnecessary to first load 0F000H into a register (as we
did for the 8088 test) and then push the register's value onto the stack. On the 286 and newer
processors, you can push a literal value directly.
Using the same general method we used in testing for the 8088, we push 0F000H onto the stack,
pop it into the Flags register, push the Flags register back into the stack, and pop the value from
the Flags register off the stack into AX. Then we check to see if AX still contains the 0F000H
value we forced into the Flags register. If the value comes back as 0, we know we have a 286, so
we exit to Done with 1 in DX.
Remember that the 286 forces the top 4 bits of the Flags register to 0. If something other than 0
comes back in those top 4 bits, we know we have at least a 386 and possibly a 486. So we
increment DX again, to 2 (2 is the code for the 386).

file:///E|/TEMP/CHapter%2011%20complete.htm (24 of 30) [9/30/02 09:20:32 PM]

file:///E|/TEMP/CHapter%2011%20complete.htm

Is It a 386 or a 486?

We now know we have either a 386 or a 486. Telling them apart isn't quite as easy as telling
them from their less-powerful brothers, but once again, it's a matter of flags. The 486 has a flag
that the 386 doesn't have, and by testing for this flag we can see whether we have a 486 on the
line. If we don't, we know we have a 386 by elimination.
You'll notice in reading the 486 test that we're suddenly working with the extended registers
introduced with the 386: EAX, ESP, and so on. Keep in mind that these are all 32 bits in size.
The 486 extended Flags register (EFLAGS) has a flag called the alignment check (AC) Flag.
The AC Flag is used to detect alignment faults; that is, attempts to access memory from an
address that is not evenly divisible by 4. Why 4? The 386 and 486 access memory 32 bits (4
bytes) at a time, every time they access memory at all. Because of the way that the CPU sends
memory address information out on the memory address pins, memory accesses happen most
quickly when the requested addresses are aligned on a double word boundary, that is, when the
requested address is divisible by 4.
There are some truly arcane reasons why it is vitally important that memory accesses be aligned
on a double word boundary sometimes, but you're unlikely to encounter them in normal work.
(Mostly they come up when more than one processor must share the same address space, which
is mighty unlikely on a PC-compatible machine!) The AC flag was added to the 486 to allow
enforcement of double word alignment. If you set up some of the 486's special control registers
just so, a nonaligned memory access can generate an error interrupt, and the AC flag is part of
this enforcement machinery.
For our purposes, however, it's a handy feature that doesn't exist on the 386—so if we can spot
the Alignment check flag in EFLAGS, we know we have a 486.
The first step in the test is to save the value in ESP into a register, because we're going to have to
ensure that the stack pointer is double word aligned— which might change ESP's value. Having
the old value in a register will allow us to put things back the way they were before we started
testing.

Aligning an Address to a Double Word Boundary

With ESP's original value safely tucked away, we force the stack pointer to be double word
aligned. This is as simple as rounding the value of the stack pointer down to the next lowest
memory address on a double word boundary. The way we do this may puzzle you:

AND ESP,NOT 3

What does NOT 3 mean? NOT is an assembler operator that inverts all the bits of its operand,

file:///E|/TEMP/CHapter%2011%20complete.htm (25 of 30) [9/30/02 09:20:32 PM]

file:///E|/TEMP/CHapter%2011%20complete.htm

which in this case is 3. Because ESP is a 32-bit register, the NOT 3 operand is also 32 bits in
size. The full 32-bit expression of 3 (including all the leading zeroes) is 00000003H. If you
invert the bits in every digit in that number (including those leading zeroes) you get
FFFFFFFCH.
That's a big, ugly hex number, and all those F's really aren't the point. The whole point lies in the
lowest two bits of the last hex digit C, which are 0. When you AND two values bit by bit, any 0
bits in either operand will force those bits in the result to 0.
What we want to do is force the two lowest-order bits in ESP to 0. If we do that, regardless of
what address was previously in ESP, the altered address will be aligned on a double word
boundary. If this isn't immediately clear, think of it this way: every double word aligned address
is four bytes greater than the one before it. Not one byte, or two bytes, or three bytes, but four
bytes greater. You're essentially counting bytes by fours (0,4,8,12,16, etc.), which means that the
bits that carry the "in between" values (5, 6, or 7, for example) must be zeroed out, or you're not
really counting by fours at all.
AND ESP,NOT 3 simply forces the low two bits of ESP to 0, ensuring that ESP is aligned on a
double word boundary. We need to do that because if ESP is not double word aligned and we
attempt to use it, we may inadvertently set AC to 1, which would muddy the waters of the test
we're trying to do.

The Last Test

And the test is this: we push EFLAGS onto the stack, and then save a copy of EFLAGS in both
EAX and EBX by popping the flags value off the stack into EAX and then copying EAX into
EBX. (Note that this use of the ESP could generate a flip in the AC flag if ESP were not double
word aligned.) Then, we take the copy of EFLAGS in EAX, and try to flip the state of the AC
flag. It's done this way:

XOR EAX,00040000H

Remember: XORing a bit against 0 leaves the bit in its current state. XORing a bit against 1
reverses the state of that bit. Only one bit in 00040000H is 1; all the others are 0. That single 1
bit is at the same ordinal position as the AC bit in the EFLAGS register. XORing 00040000H
against EFLAGS will toggle the state of the AC bit.
We can't, of course, XOR against EFLAGS directly. So we do basically what we did in the
previous two tests: manipulate a value in a register, and then push the value to the stack and pop
it back into EFLAGS. We XOR a copy of EFLAGS against 00040000H to toggle the bit at
position 18, then push the altered value from EAX onto the stack and pop it back into EFLAGS.
Having forced an altered value into EFLAGS, we then immediately copy it back for a look.
Remember: the 386 doesn't define the AC bit, and on the 386 the bit at position 18 is stuck at 0.
We attempted to flip the bit at position 18 in EFLAGS. On the 486 it will flip; on the 386 it's

file:///E|/TEMP/CHapter%2011%20complete.htm (26 of 30) [9/30/02 09:20:32 PM]

file:///E|/TEMP/CHapter%2011%20complete.htm

stuck. If we read back EFLAGS and find that bit 18 has changed, we have a 486. If the bit at
position 18 has not changed, we have a 386.
If we find a 486, we increment DX to 3 and return. Otherwise, we simply return, leaving DX at
2, which is the code for the 386.
Many thanks to Robert Hummel of PC Magazine for explaining this algorithm to me

The WHATAMI.ASM Utility

That's all there is to CPUID. WHATAMI.ASM does nothing more than call CPUID to
determine the running CPU, and then use CPUID's return code to index into a table of messages.
The selected message indicates to the user (through DOS function 40H) which CPU is in the
machine.
Only a little review on selecting items in a table: each text message in MsgTbl is exactly 16
bytes long. The first message is for the 8088, and to select it you need an offset into the table of
0. The second message, for the 286, is at an offset of 16 into the table—1 x 16, and the 286 ID
code is 1. The third message, for the 386, is at an offset of 32 into the table—2 x 16, and the 386
ID code is 2.
Getting the idea?
We're basically multiplying the CPU ID code by 16 to create an offset to the correct message in
the table. Multiplying by 16—a power of 2—is easy: you just shift left by four bits. That done,
you add the offset to the starting address of the table, and pass the resulting address for DOS so
that DOS can display the message with its function 40H.
As I've said before, it's a very good rule of thumb: always make items in a table come out to a
length that's an even power of 2—2, 4, 8, 16, 32, or 64 bytes comprise a good assortment of
lengths. Even if you have to pad the ends of data items with Os or space characters, you will save
a lot of fooling around if you can generate an offset by simple power-of-2 multiplies using SHL.

Passing a Value Back to ERRORLEVEL

You can use WHATAMI.EXE from a batch file, and it will pass the CPU ID code back to DOS
for use in the batch ERRORLEVEL feature, allowing your batch files to test the value returned
by WHATAMI and take action accordingly. All you have to do to pass a value back in
ERRORLEVEL is to leave the value in AL when your program calls DOS service 4CH to
return control to DOS. DOS takes care of the rest.

file:///E|/TEMP/CHapter%2011%20complete.htm (27 of 30) [9/30/02 09:20:32 PM]

file:///E|/TEMP/CHapter%2011%20complete.htm

file:///E|/TEMP/CHapter%2011%20complete.htm (28 of 30) [9/30/02 09:20:32 PM]

file:///E|/TEMP/CHapter%2011%20complete.htm

file:///E|/TEMP/CHapter%2011%20complete.htm (29 of 30) [9/30/02 09:20:32 PM]

file:///E|/TEMP/CHapter%2011%20complete.htm

,

file:///E|/TEMP/CHapter%2011%20complete.htm (30 of 30) [9/30/02 09:20:32 PM]

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm

You never really learn assembly language.
You can improve your skills over time, by reading good books on the subject, by reading
good code that others have written, and most of all, by writing lots and lots of code
yourself. But at no point will you be able to stand up and say, I know it.
You shouldn't feel bad about this. In fact, I take some encouragement from occasionally
hearing that Michael Abrash, author of Zen of Assembly Language, has learned
something new about assembly language. Michael has been writing high-performance
assembly code for almost ten years, and has evolved into one of the five or six best
assembly programmers in the Western Hemisphere.
If Michael is still learning, is there hope for the rest of us?

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm (1 of 58) [9/30/02 10:01:48 PM]

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm

Wrong question. Silly question. If Michael is still learning, it means that all of us are
students and will always be students. It means that the journey is the goal, and as long as
we continue to probe and hack and fiddle and try things we never tried before, that over
time we will advance the state of the art, and create programs that would have made the
pioneers in our field catch their breath in 1977.
For the point is not to conquer the subject, but to live with it, and grow with your
knowledge of it. The journey is the goal, and with this book I've tried hard to help those
people who have been frozen with fear at the thought of starting the journey, staring at
the complexity of it all and wondering where the first brick in that "yellow brick road"
might be.
It's here, with nothing more than the conviction that you can do it.
I got out of school in recession year 1974 with a B.A. in English, Summa Cum Laude,
and not much in reliable prospects outside of driving a cab. I finessed my way into a job
with Xerox Corporation, repairing copy machines. Books were fun, but paperwork
makes money—so I picked up a toolbag and had a fine old time for several years, before
finessing my way into a computer-programming position.
But I'll never forget that first awful moment when I looked over the shoulder of an
accomplished technician at a model 660 copier with its panels off. It looked like a
bottomless pit of little cams and gears and drums and sprocket chains, turning and
flipping and knocking switch actuators back and forth. Mesmermized by the complexity,
I forgot to notice that a sheet of paper had been fed through the machine and turned into
a copy of the original document. I was terrified of never learning what all the little cams
did, and missed the comforting simplicity of the Big Picture—that a copy machine makes
copies.
That's Square One—discover the big picture. Ignore the cams and gears for a bit. You
can do it. Find out what's important in holding the big picture together (ask someone if
it's not obvious), and study that before getting down to the cams and gears. Locate the
processes that happen. Divide the Big Picture into sub pictures. See how things flow.
Only then should you focus on something as small and as lost in the mess as an
individual cam or switch.
That's how you conquer complexity, and that's how I've presented assembly language in
this book. Some might say I've shorted the instruction set, but covering the instruction set
was never the real goal here.
The real goal was to conquer your fear of the complexity of the subject, with some
metaphors and some pictures and some funny stories to bleed the tension away.
Did it work? You tell me. I'd really like to know.

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm (2 of 58) [9/30/02 10:01:48 PM]

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm

12.1 Where to Now?

If you've followed me so far, you've probably lost your fear of assembly language,
picked up some skills and a good part of the instruction set, and are ready to move on.
Here are some other good books to pick up:
Mastering Turbo Assembler
by Tom Swan
Howard W. Sams & Co., 1989
ISBN 0-672-48435-8
Tom's intermediate-level assembly volume is a natural next step if you're
working with the Borland tools. There's no similarly good book on Microsoft's
MASM, but much of what Tom discusses in his book applies to MASM as well.
Mastering Turbo Debugger
by Tom Swan
Howard W. Sams & Co, 1990
ISBN 0-672-48454-4
This is the only good book on debugging ever published, and for what I
consider an advanced topic it's remarkably approachable. Again, it focuses on
the Borland tools, but Tom's higher-level strategies for finding and nuking bugs
in your code is absolutely essential reading, no matter what assembler you're
using, now or at any time in the future.
PC Magazine Programmer's Technical Reference.
The Processor and Coprocessor
Robert L. Hummel
Ziff-Davis Press, 1992
ISBN 1-56276-016-5
This is not a tutorial but a reference on all of Intel's x86 processors, and it's by
far the best one ever written or likely to be written for some time. It has the best
discussion of that mysterious protected mode that I've ever seen, and its description of
the individual assembly instructions is wonderfully crafted. I'm tempted to have my own
copy taken apart and rebound as hardcover—if I don't, it's going to fall to pieces any day
now!

PC TECHNIQUES
 7721 E. Gray Road #204
Scottsdale AZ 85260

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm (3 of 58) [9/30/02 10:01:48 PM]

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm

(602) 483-0192

This is the programmers' magazine that I own and publish, and we cover assembly
language in every issue. Tom Swan writes a column on Windows programming, and
Michael Abrash writes about high-performance C and assembly coding. Other industry
powers write on their own areas of expertise, and there is probably something of interest
to you in every issue.
But don't take my word for it. I only work here. Send the card from the back of this book
in right now, and don't miss another issue!

12.2 Stepping Off Square One

OK—with a couple of new books in hand and good night's sleep behind you, strike out
on your own a little. Set yourself a goal, and try to achieve it: something tough, say, an
assembly-language utility that locates all files anywhere on a hard disk drive with a
given ambiguous filename. That's ambitious, and will take some research and study and
(perhaps) a few false starts. But you can do it, and once you do it you'll be a real
journeyman assembly-language programmer.
Becoming a master takes work, and time. Michael Abrash's massive Zen of Assembly
Language (now out of print but to be republished soon) is a compilation of the "secret"
knowledge of a programming master. It's not easy reading, but it will give you a good
idea where your mind has to be to consider yourself an expert assembly-language
programmer.
Keep programming. Michael can show you things that would have taken you years to
discover on your own, but they won't stick in your mind unless you use them. Set
yourself a real challenge, something that has to be both correct and fast: rotate graphics
objects in 3-D, transfer data through a serial port at 19,200 bits per second, things like
that.
You can do it.
Coming to believe the truth in that statement is the essence of stepping away from Square
One.

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm (4 of 58) [9/30/02 10:01:48 PM]

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm (5 of 58) [9/30/02 10:01:48 PM]

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm

Instruction Reference page Text page
MOV..397...155
NEG...399...169
NOP...400..
NOT...401 ...178
OR...402...266
POP...403...196
POPA...404...348
POPF...405...196
PUSH...406...194
PUSHF..407...194
PUSHA..408...348
RET...409...220
ROL...410...-—
ROR...411 ...—
SBB...412...-----
SHL..413...269
SHR...414...269
STC...415..
STD...416...317
STOS...417...314
SUB...418...289
XCHG..419...161
XOR., ...420.. ...266

Notes on the Instruction Set Reference

Instruction operands
When an instruction takes two operands, the destination operand is the one on the left,
and the source operand is the one on the right. In general, when a result is produced by
an instruction, the result replaces the destination operand. For example, in this
instruction:

ADD BX,SI

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm (6 of 58) [9/30/02 10:01:48 PM]

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm

the BX register is added to the SI register, and the sum is then placed in the BX register,
overwriting whatever was in BX before the addition.

Flag results

Each instruction contains a flag summary that looks like this (the asterisks will vary from
instruction to instruction):

O D I T S Z A P C OF: Overflow flag TF: Trap flag AF: Aux carry
F F F F F F F F F DF: Direction flag SF: Sign flag PF: Parity flag
* * * * * * IF. interrupt flag ZF: Zero flag CF: Carry flag

The nine flags are all represented here. An asterisk indicates that the instruction on that
page affects that flag. If a flag is affected at all (that is, if it has an asterisk beneath it) it
will be affected according to these rules:
OF: Set if the result is too large to fit in the destination operand.
DF: Set by the STD instruction; cleared by CLD.
IF: Set by the STI instruction; cleared by CLI.
TF: For debuggers; not used in normal programming and may be ignored.
SF: Set when the sign of the result forces the destination operand to become negative.
ZF: Set if the result of an operation is zero. If the result is non-zero, ZF is cleared.
AF: "Auxiliary carry" used for 4-bit BCD math. Set when an operation causes a carry out
of a 4-bit BCD quantity.
PF: Set if the number of 1 bits in the low byte of the result is even; cleared if the number
of 1 bits in the low byte of the result is odd. Used in data communications applications
but little else.
CF: Set if the result of an add or shift operation "carries out" a bit beyond the destination
operand; otherwise cleared. May be manually set by STC and manually cleared by CLC
when CF must be in a known state before an operation begins.
Some instructions force certain flags to become undefined. When this is the case, it will
be noted under "Notes." "Undefined" means don't count on it being in any particular
state.

AAA Adjust AL after BCD addition

Flags affected:
ODITSZAPC OF: Overflow flag TF: Trap flag AF: Aux carry

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm (7 of 58) [9/30/02 10:01:48 PM]

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm

FFFFFFFFF DF: Direction flag SF: Sign flag PF: Parity flag
 * * IF: Interrupt flag ZF: Zero flag CF: Carry flag

Legal forms:
AAA

Examples:
AAA

Notes:
AAA makes an addition "come out right" in AL when what you're adding are BCD
values rather than ordinary binary values. Note well that AAA does not perform the
arithmetic itself, but is a "postprocessor" after ADD or ADC. AL is an implied operand
and may not be explicitly stated—so make sure that the preceding ADD or ADC
instruction leaves its results in AL!
A BCD digit is a byte with the high 4 bits set to 0, and the low 4 bits containing a digit
from 0 to 9. AAA will yield garbage results if the preceding ADD or ADC acted upon
one or both operands with values greater than 09.
After the addition of two legal BCD values, AAA will adjust a non-BCD result (that is, a
result greater than 09 in AL) to a value between 0 and 9. This is called a decimal carry,
since it is the carry of a BCD digit and not simply the carry of a binary bit.
For example, if ADD added 08 and 04 (both legal BCD values) to produce OC in AL,
AAA will take the OC and adjust it to 02. The decimal carry goes to AH, not to the upper
4 bits of AL, which are always cleared to 0 by AAA.
If the preceding ADD or ADC resulted in a decimal carry, (as in the example above) both
CF and AF are set to 1 and AH is incremented by 1. Otherwise, AH is not incremented
and CF and AF are cleared to 0.
This instruction is subtle. See the detailed discussion in Section 10.3.

r8 - AL AH BL BH CL CH DL DH r16 = AX BX CX DX BP SP SI DI
sr - CS DS SS ES
m8 - 8-bit memory data m16 - 16-bit memory data
18 - 8-bit immediate data i16 - 16-bit immediate data
d8 - 8-bit signed displacement d16 - 16-bit signed displacement

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm (8 of 58) [9/30/02 10:01:48 PM]

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm

Notes:

ADC adds the source operand and the carry flag to the destination operand, and after the
operation the result replaces the destination operand. The add is an arithmetic add, and
the carry allows multiple-precision additions across several registers or memory
locations. (To add without taking the carry flag into account, use the ADD instruction.)
All affected flags are set according to the operation. Most importantly, if the result does
not fit into the destination operand, the carry flag is set to 1.

r8 = AL AH BL BH CL CH DL DH r16 = AX BX CX DX BP SP SI DI
sr = CS DS SS ES
m8 = 8-bit memory data m16 = 16-bit memory data

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm (9 of 58) [9/30/02 10:01:48 PM]

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm

18 = 8-bit immediate data 116 = 16-bit immediate data
d8 = 8-bit signed displacement d16 =16-bit signed displacement

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm (10 of 58) [9/30/02 10:01:48 PM]

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm (11 of 58) [9/30/02 10:01:48 PM]

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm (12 of 58) [9/30/02 10:01:49 PM]

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm (13 of 58) [9/30/02 10:01:49 PM]

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm (14 of 58) [9/30/02 10:01:49 PM]

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm (15 of 58) [9/30/02 10:01:49 PM]

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm (16 of 58) [9/30/02 10:01:49 PM]

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm (17 of 58) [9/30/02 10:01:49 PM]

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm (18 of 58) [9/30/02 10:01:49 PM]

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm (19 of 58) [9/30/02 10:01:49 PM]

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm (20 of 58) [9/30/02 10:01:49 PM]

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm (21 of 58) [9/30/02 10:01:49 PM]

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm

J? JUMP ON CONDITION

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm (22 of 58) [9/30/02 10:01:49 PM]

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm (23 of 58) [9/30/02 10:01:49 PM]

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm (24 of 58) [9/30/02 10:01:49 PM]

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm (25 of 58) [9/30/02 10:01:49 PM]

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm (26 of 58) [9/30/02 10:01:49 PM]

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm (27 of 58) [9/30/02 10:01:49 PM]

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm (28 of 58) [9/30/02 10:01:49 PM]

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm (29 of 58) [9/30/02 10:01:49 PM]

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm (30 of 58) [9/30/02 10:01:49 PM]

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm (31 of 58) [9/30/02 10:01:49 PM]

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm (32 of 58) [9/30/02 10:01:49 PM]

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm (33 of 58) [9/30/02 10:01:49 PM]

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm (34 of 58) [9/30/02 10:01:49 PM]

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm (35 of 58) [9/30/02 10:01:49 PM]

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm (36 of 58) [9/30/02 10:01:49 PM]

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm (37 of 58) [9/30/02 10:01:49 PM]

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm (38 of 58) [9/30/02 10:01:49 PM]

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm (39 of 58) [9/30/02 10:01:49 PM]

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm (40 of 58) [9/30/02 10:01:49 PM]

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm (41 of 58) [9/30/02 10:01:49 PM]

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm (42 of 58) [9/30/02 10:01:49 PM]

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm (43 of 58) [9/30/02 10:01:49 PM]

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm (44 of 58) [9/30/02 10:01:49 PM]

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm (45 of 58) [9/30/02 10:01:49 PM]

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm (46 of 58) [9/30/02 10:01:49 PM]

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm (47 of 58) [9/30/02 10:01:49 PM]

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm (48 of 58) [9/30/02 10:01:49 PM]

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm (49 of 58) [9/30/02 10:01:49 PM]

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm (50 of 58) [9/30/02 10:01:49 PM]

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm (51 of 58) [9/30/02 10:01:49 PM]

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm (52 of 58) [9/30/02 10:01:49 PM]

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm (53 of 58) [9/30/02 10:01:49 PM]

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm (54 of 58) [9/30/02 10:01:49 PM]

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm (55 of 58) [9/30/02 10:01:49 PM]

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm (56 of 58) [9/30/02 10:01:49 PM]

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm

Scanner’s note: It’s been my pleasure scanning this and picking Jeff D’s wit and ASM

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm (57 of 58) [9/30/02 10:01:49 PM]

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm

knowledge. He mentions in his latest version that one of the main reasons he wrote this is
that so many Assembly tutorials out there are in some language, but it’s not English. I
don’t know, maybe it’s fooby, but I agree that a lot of the assembly tutes are so technical
and decentralized it’s impossible for a newby to gain anything from it.
 I’ve learned a lot about scanning as well as a good bit of beginning Assembly. I found a
few of his typo’s, and likely my OCR program left a few in. caveat downloader.
 This version is out of print, and I want to stress the point: I would not scan his present
version of this book and I hope no one else does either- let’s face it, Jeff’s likely not
going to get big movie rights bucks from his book, so he needs the dough.
 If you can learn enough ASM from this free scanned book to get your feet wet and want
to further your learning, I strongly suggest you buy his latest version of Assembly
Language Step-by-Step. That way you’ve gotten interested in and learned Assembly for
only $55, and you’ve helped a good programmer do what he’s trying to do- make a living
at it.

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm (58 of 58) [9/30/02 10:01:49 PM]

	Assembly Language: Step-by-Step
	Introduction & Contents
	Chap 1 - Alien Bases
	Chap 2 - Lifting the Hood
	Chap 3 - The Right to Assemble
	Chap 4 - Learning and Using Jed
	Chap 5 - An Uneasy Alliance
	Chap 6 - Following Your Instructions
	Chap 7 - Our Object All Sublime
	Chap 8 - Dividing and Conquering

	Cont'd
	Chap 9 - Bits, Flags, Branches, and Tables
	Chap 10 - Stringing Them Up

	Cont'd
	Ch10 - Prog.Code
	Chap 11 - O Brave New World!

	Cont'd
	Chap 12 - Conclusion

