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Introduction:
Agony in the Key of AX
 
What astonishes me about learning how to program is not that it's so hard, but that it's so 
easy. Am I nuts? Hardly. It's just that my curse is the curse of a perfect memory, and I 
remember piano lessons. My poor mother paid $600 in 1962 for a beautiful cherrywood 
spinet, and every week for two years I trucked off to Wilkins School of Music for a five 
dollar lesson. It wasn't that I was a reluctant student; I love music and I genuinely wanted 
to master the damned thing. But after two years, the best I could do was play "Camelot" 
well enough to keep the dog from howling. I can honestly say that nothing I ever tried 
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and failed to achieve after that (including engineering school and sailboarding) was 
anything close to that difficult.
That's why I say: if you can play the piano, you can learn to program in assembly 
language. Even if you can't play the piano, I hold that you can learn to program in 
assembly language, if:
• You've ever done your own long-form taxes
• You've earned a degree in medicine, law, or engineering
• You've ever put together your kid's swing set
• You've ever cooked a five-course dinner for eight and gotten everything to the table, 
hot, at all the right times
Still, playing the piano is the acid test. There are a lot more similarities than there are 
differences. To wit:
In both cases, you sit down in front of a big expensive machine with a keyboard. You try 
to memorize a system of notation that seems to have originated on Mars. You press the 
keys according to incomprehensible instructions in stacks of books. Ultimately, you sit 
there and grit your teeth while making so many mistakes your self-confidence dribbles 
out of your pores and disappears into the carpet padding. In many cases, it gets so bad 
that you hurl the books against the wall and stomp off to play Yahtzee with your little 
brother.
The differences are fewer: mistakes committed while learning assembly language won't 
make the dog howl. And, more crucially, what takes years of agony in front of a piano 
can be done in a couple of months in front of your average PC.
Furthermore, I'll do my best to help.
That's what this book is for: to get you started as an assembly-language programmer from 
a dead stop. I'll assume that you know how to run your machine. That is, I won't go 
through all that nonsense about flipping the big red switch and inserting a disk in a drive 
and holding down the Ctrl key while pressing the C key. Van Wolverton can teach you all 
that stuff.
On the other hand, I won't assume that you know anything about programming, nor very 
much about what happens inside the box itself. That means the first few sections will be 
the kind of necessary groundwork that will start you nodding off if you've been through it 
already. There's no helping that. Skip to Section 3 or so if you get bored.
I also have to come clean here and admit that this book is not intended to be a complete 
tutorial on assembly language, or even close to it. What I want to do is get you familiar 
enough with the jargon and the assumptions of assembly language so that you can pick up 
your typical "introduction" to assembly language and not get lost by page 6. I specifically 
recommend Tom Swan's excellent book, Mastering Turbo Assembler, which will take 
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you the rest of the way if you use Borland's assembler. A comparable book devoted to 
Microsoft's MASM has not yet been written, but even if you use MASM, Tom's book will 
still be valuable and you'll learn a lot from it. Mastering Turbo Assembler can 
occasionally be found in bookstores, or you can order it by mail through PC 
TECHNIQUES Bookstream.
Assembly language is almost certainly the most difficult kind of computer programming, 
but keep in mind that we're speaking in relative terms here. Five pushups are harder to do 
than five jumping jacks—but compared to running the Marathon, both amount to almost 
nothing. Assembly language is more difficult to learn than Pascal, but compared to 
raising your average American child from birth to five years, it's a cakewalk.
So don't let the mystique get you. Assembly-language programmers feel pretty smug 
about what they've learned to do, but in our workaday lives we are forced to learn and do 
things that put even assembly language to shame. If you're willing to set aside a couple 
months' worth of loose moments, you can pick it up too. Give it a shot. Your neighbors 
will thank you.
And so will the dog.
—-Jeff Duntemann Scottsdale, AZ March 1992 
 
 
 
 
 

A Note to People Who
Have Never Programmed 
Before
More than anyone else, this book was written for you. Starting with assembly language 
would not be most people's first choice in a computer language, but it's been done; it can 
be done, and it can be done with less agony than you might think. Still, it's a novel aim 
for a computer book, and I'd like you to do a little quality control for me and tell me how 
I'm doing.
While you're going through this book, ask yourself once in a while: is it working? And if 
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not, why not?
If I lose you somewhere in the discussion, jot a note in the margin. Tell me where I lost 
you. If possible, tell me why. (And saying, "I just don't get it" is perfectly acceptable, as 
long as you tell me where in the book you were when you started not to get it.)
As with all my books, I hope to keep this one in print well into the 21st century, revising 
it as need be to hone my technique and follow the technology. Telling me how the book 
works or doesn't work will, in time, help me make a better book.
Write to me at:
Jeff Duntemann PC TECHNIQUES Magazine 
7721 E. Gray Road #204 
Scottsdale, A2 85260
 
I can't reply individually to all letters, (not if I ever intend to get another book written!) 
but you'll have my eternal gratitude nonetheless.

 

 
 

How to Get the Most 
from this Book
By design, this is a serial-access book. I wrote it to be read like one of those 
bad/wonderful novels, starting at page one and moving right along to the end. Virtually 
all of the chapters depend on the chapters that came before them, and if you read a 
chapter here and a chapter there, there's some danger that the whole thing won't gel.
If you're already familiar with programming, you could conceivably skip Chapters 0,1, 
and 2. But why not assume there's a hole or two in parts of your experience and a little 
rust on the rest? Skill is not simply knowledge, but the resonance that comes of seeing 
how different facets of knowledge reinforce one another.

Do it all. Get the big picture. (Keep in mind that I've hidden some funny stories in 
there as bait!)
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0.1 It's All in the Plan
 
Quick, get the kids up, it's past 7. Nicky's got Little League at 9 and Dione's got ballet at 
10. Mike, give Max his heartworm pill! (We're out of them, ma, remember?) Your father 
picked a great weekend to go fishing.. .here, let me give you ten bucks and go get more 
pills at the vet's...my God, that's right, Hank needed gas money and left me broke. There's 
a teller machine over by K-Mart, and I if I go there I can take that stupid toilet seat back 
and get the right one.
I guess I'd better make a list.
It's another Pleasant Valley Saturday, and thirty-odd million suburban home-makers sit 
down with a pencil and pad at the kitchen table to try and make sense of a morning that 
would kill and pickle any lesser being. In her mind, she thinks of the dependencies and 
traces the route:
Drop Nicky at Rand Park, go back to Dempster and it's about ten minutes to Golf Mill 
Mall. Do I have gas? I'd better check first—if not, stop at Del's Shell or I won't make it to 
Milwaukee Avenue. Bleed the teller machine at Golf Mill, then cross the parking lot to K-
Mart to return the toilet seat that Hank bought last weekend without checking what shape 
it was. Gotta remember to throw the toilet seat in back of the van—write that at the top of 
the list.
By then it'll be half past, maybe later. Ballet is all the way down Greenwood in Park 
Ridge. No left turn from Milwaukee—but there's the sneak path around behind the Mall. I 
have to remember not to turn right onto Milwaukee like I always do—jot that down. 
While I'm in Park Ridge I can check and see if Hank's new glasses are in—should call but 
they won't even be open until 9:30. Oh, and groceries—can do that while Dione dances. 
On the way back I can cut over to Oakton and get the dog's pills.
In about ninety seconds flat the list is complete:
• Throw toilet seat in van
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• Check gas—if empty, stop at Del's Shell
• Drop Nicky at Rand Park
• Stop at Golf Mill teller machine
• Return toilet seat at K-Mart
• Drop Dione at ballet (remember back path to Greenwood)
• See if Hank's glasses are at Pearle Vision—if they are, make double sure they 
remembered the extra scratch coating
• Get groceries at Jewel
• Pick up Dione
• Stop at vet's for heartworm pills
• Drop off groceries at home
 
• If it's time, pick up Nicky. If not, collapse for a few minutes, then pick up Nicky.
• Collapse!
In what we often call a "laundry list" (whether it involves laundry or not) is the perfect 
metaphor for a computer program. Without realizing it, our intrepid homemaker has 
written herself a computer program, and then set out (acting as the computer) to execute it 
completely before noon.
Computer programming is nothing more than this: You the programmer write a list of 
steps and tests. The computer then performs each step and test in sequence. When the list 
of steps has been executed, the computer stops.
A computer program is a list of steps and tests, nothing more.
 
Steps and Tests
 
Think for a moment about what I call a "test" in the laundry list shown above. A test is 
the sort of either/or decision we make dozens or hundreds of times on even the most 
placid of days, sometimes nearly without thinking about it.
Our homemaker performed a test when she jumped into the van to get started on her 
adventure. She looked at the gas gauge. The gas gauge would tell her one of two things: 
1) She has enough gas, or 2) no, she doesn't. If she has enough gas, she takes a right and 
heads for Rand Park. If she doesn't have enough gas, she takes a left down to the corner 
and fills the tank at Del's Shell. (Del takes credit cards.) Then, with a full tank, she 
continues the program by taking a U-turn and heading for Rand Park.
In the abstract, a test consists of those two parts:
•  First you take a look at something that can go one of two ways.
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• Then you do one of two things, depending on what you saw when you took a look.
Toward the end of the program, our homemaker got home, took the groceries out of the 
van, and took a look at the clock. If it wasn't time to get Nicky back from Little League, 
she has a moment to collapse on the couch in a nearly empty house. If it is time to get 
Nicky, there's no rest for the ragged: She sprints for the van and heads back to Rand Park. 
(Any guesses as to whether she really gets to collapse when the program is complete?)
 
More than Two Ways?
 
You might object that many or most tests involve more than two alternatives.
Except for totally impulsive behavior, every human decision comes down to the choice of 
one of two alternatives.
What you have to do is look a little more closely at what goes through your mind when 
you make decisions. The next time you buzz down to Moo Foo Goo for fast Chinese, 
observe yourself while you're poring over the menu. The choice might seem, at first, to be 
of one item out of 26 Cantonese main courses. Not so—the choice, in fact, is between 
choosing one item and not choosing that one item. Your eyes rest on Cashew Chicken. 
Naw, too bland. That was a test. You slide down to the next item. Chicken with Black 
Mushroom. Hmmm, no, had that last week. That was another test. Next item: Kung Pao 
Chicken. Yeah, that's it! That was a third test.
The choice was not among Cashew Chicken, Chicken with Black Mushrooms, or Kung 
Pao Chicken. Each dish had its moment, poised before the critical eye of your mind, and 
you turned thumbs up or thumbs down on it, individually. Eventually, one dish won, but 
it won in that same game of "To eat or Not to eat."
Many of life's most complicated decisions come about because 99% of us are not nudists. 
You've been there-. You're standing in the clothes closet in your underwear, flipping 
through your rack of pants. The tests come thick and fast. This one? No. This one? No. 
This one? No. This one? Yeah. You pick a pair of blue pants, say. (It's a Monday, after 
all, and blue would seem an appropriate color.) Then you stumble over to your sock 
drawer and take a look. Whoops, no blue socks. That was a test. So you stumble back to 
the clothes closet, hang your blue pants back on the pants rack, and start over. This one? 
No. This one? No. This one? Yeah. This time it's brown pants, and you toss them over 
your arm and head back to the sock drawer to take another look. Nertz, out of brown 
socks, too. So it's back to the clothes closet....
What you might consider a single decision, or perhaps two decisions inextricably tangled 
(like picking pants and socks of the same color, given stock on hand) is actually a series 
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of small decisions, always binary in nature: Pick 'em or don't pick'em. Find 'em or don't 
find 'em. The Monday morning episode in the clothes closet is a good analog of a 
programming structure called a loop. You keep doing a series of things until you get it 
right, and then you stop. (Assuming you're not the kind of guy who wears blue socks with 
brown pants.) But whether you get everything right always comes down to a sequence of 
simple, either/or decisions.
 
Computers Think Like Us
I can almost hear what you're thinking: "Sure, it's a computer book, and he's trying to get 
me to think like a computer." Not at all. Computers think like us.
 
We designed them; how else could they think? No, what I'm trying to do is get you to 
take a long hard look at how you think. We run on automatic for so much of our lives that 
we literally do most of our thinking without really thinking about it.
The very best model for the logic of a computer program is the very same logic we use to 
plan and manage our daily affairs. No matter what we do, it comes down to a matter of 
confronting two alternatives and picking one. What we might think of as a single large 
and complicated decision is nothing more than a messy tangle of many smaller decisions. 
The skill of looking at a complex decision and seeing all the little decisions in its tummy 
will serve you well in learning how to program. Observe yourself the next time you have 
to decide something. Count up the little decisions that make up the big one. You'll be 
surprised. 
And, surprise! You'll be a programmer.
 
0.2 Had This Been the Real Thing...
 
Do not be alarmed. What you have just experienced was a metaphor. It was not the real 
thing. (The real thing comes later.)
I'll be using metaphors a lot in this book. A metaphor is a loose comparison drawn 
between something familiar (like a Saturday morning laundry list) and something 
unfamiliar (like a computer program.) The idea is to anchor the unfamiliar in the terms of 
the familiar, so that when I begin tossing facts at you you'll have someplace comfortable 
to lay them down. The facts don't start until Chapter 1. (That's why I call this Chapter 0: 
Metaphors only, please.)
The most important thing for you to do right now is keep an open mind. If you know a 
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little bit about computers or programming, don't pick nits. Yes, there are important 
differences between a homemaker following a scribbled laundry list and a computer 
executing a program. I'll mention those differences all in good time.
For now, it's still Chapter 0. Take these initial metaphors on their own terms. Later on, 
they'll help a lot.
 
0.3 Do Not Pass GO
 
"There's a reason bored and board are homonyms," said my best friend Art one evening, 
as we sat (two super-sophisticated twelve-year-olds) playing some game in his basement. 
(He may have been unhappy because he was losing.) Was it Mille Bornes? Or Stratego? 
Or Monopoly? Or something else entirely? I confess I don't remember. I simply recall 
hopping some little piece of plastic shaped like a pregnant bowling pin up and down a 
series of colored squares that told me to do dumb things like go back two spaces or put $100 
in the pot or nuke Outer Mongolia.
 
Outer Mongolia notwithstanding, there are strong parallels to be drawn between that 
peculiar American obsession, the board game, and assembly-language programming. 
First of all, everything we said before still holds: Board games, by and large, consist of a 
progression of steps and tests. In some games, like Trivial Pursuit, every step on the board 
is a test: To see if you can answer, or not answer, a question on a card. In other board 
games, each little square on the board contains some sort of instruction: Lose One Turn; 
Go Back Two Squares; Take a Card from Community Chest; and, of course, Go to Jail.
Certain board games made for some lively arguments between Art and me (it was that or 
be bored, as it were) concerning what it meant to Go Forward or Backward Five Steps. It 
seemed to me that you should count the square you were already on. Art, traditionalist 
always, thought you should start counting with the first step in the direction you had to 
go. This made a difference in the game, of course. (I conveniently forgot to press my 
point when doing so would land me on something like Park Place with fifteen of Art's 
hotels on it...)
 
The Game of Big Bux
 
To avoid getting in serious trouble, I have invented my own board game to continue with 
this particular metaphor. In the sense that art mirrors life, the Game of Big Bux mirrors 
life in Silicon Valley, where money seems to be spontaneously created (generally in 
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somebody else's pocket) and the three big Money Black Holes are fast cars, California 
real estate, and messy divorces.
A portion of the Big Bux game board is shown on the following page. The line of 
rectangles on the left side of the page continues all the way around the board. In the 
middle of the board are cubbyholes to store your play money and game pieces; stacks of 
cards to be read occasionally; and short "detours" with names like Messy Divorce and 
Start a Business, which are brief sequences of the same sort of action rectangles as those 
forming the path around the edge of the board.
Unlike many board games, you don't throw dice to determine how many steps around the 
board you take. Big Bux requires that you move one step forward on each turn, unless the 
square you land on instructs you to move forward or backward or go somewhere else, like 
through a detour. This makes for a considerably less random game. In fact, Big Bux is a 
pretty deterministic game, meaning that whether you win or lose is far less important than 
just going through the ringer and coming out the other side. (Again, this mirrors Silicon 
Valley, where you come out either bankrupt or ready to flee to Peoria and open a 
hardware store. That other kind of hardware.)
There is some math involved. You start out with one house, a cheap car, and $50,000 in 
cash. You can buy CDs at a given interest rate, payable each time you make it once 
around the board. You can invest in stocks and other securities whose value is determined 
by a changeable index in economic indicators, which fluctuates based on cards chosen 
from the stack called  
Fickle Finger of Fate. You can sell cars on a secondary market, buy and sell houses, and 
wheel and deal with the other players. Each time you make it once around the board you 
have to recalculate your net worth. All of this involves some addition, subtraction, 
multiplication, and division, but there's no math more complex than compound interest. 
Most of Big Bux involves nothing more than taking a step and following the instructions 
at each step. Is this starting to sound familiar?
 
Playing Big Bux
 
At one corner of the Big Bux board is the legend Move In, since that's how people start 
life in California—no one is actually born there. Once you're moved in, you begin 
working your way around the board, square by square, following the instructions in the 
squares.
Some of the squares simply tell you to do something, like Buy condo in Palo Alto for 5% 
down. Many of the squares involve a test of some kind. For example, one square reads: Is 
your job boring? (Prosperity Index 0.3 but less than 4.0) If not, jump ahead 3 squares. 
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The test is actually to see if the Prosperity Index has a value between 0.3 and 4.0. Any 
value outside those bounds (i.e., runaway prosperity or Four Horsemen class recession) 
are defined as Interesting Times, and cause a jump ahead by three squares.
You always move one step forward at each turn, unless the square you land on directs you 
to do something else, like jump forward three squares or jump back five squares.
The notion of taking a detour is an interesting one. Two detours are shown in the portion 
of the board I've provided. Taking a detour means leaving the main run around the edge 
of the game board and stepping through a series of squares elsewhere on the board. The 
detours involve some specific process; i.e., starting a business or getting divorced.
You can work through a detour, step by step, until you hit the bottom. At that point you 
simply pick up your journey around the board right where you left it. You may also find 
that one of the squares in the detour instructs you to go back to where you came from. 
Depending on the logic of the game (and your luck and finances) you may completely run 
through a detour, or get thrown out somewhere in the middle.
Also note that you can take a detour from within a detour. If you detour through Start a 
Business and your business goes bankrupt, you leave Start a Business temporarily and 
detour through Messy Divorce. Once you leave Messy Divorce you return to where you 
left Start a Business. Ultimately, you also leave Start a Business and return to wherever it 
was you were when you took the detour.
The same detour (for example, Start a Business) can be taken from any of several 
different places along the game board.
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Assembly Language Programming as a Board Game
 
Now that you're thinking in terms of board games, take a look at Figure 0.2. What I've 
drawn is actually a fair approximation of assembly language as it was used on some of 
our simpler microprocessors about ten or twelve years ago. The PROGRAM 
INSTRUCTIONS column is the main path around the edge of the board, of which only a 
portion can be shown here. This is the assembly language computer program, the actual 
series of steps and tests that, when executed, causes the computer to do something useful. 
Setting up this series of program instructions is what programming in assembly language 
actually is.
Everything else is odds and ends in the middle of the board that serve the game in 
progress. You're probably noticing (perhaps with sagging spirits) that there are a lot of 
numbers involved. (They're weird numbers, too—what, for example, does "004B" mean? 

file:///E|/TEMP/Assembly%20LanguageChapt%200.htm (19 of 23) [9/30/02 08:15:27 PM]



file:///E|/TEMP/Assembly%20LanguageChapt%200.htm

I'll deal with that issue in Chapter 2: Alien Bases) I'm sorry, but that's simply the way the 
game is played. Assembly language, at the innermost level, is nothing but numbers, and if 
you hate numbers the way most people hate anchovies, you're going to have a rough time 
of it.
I should caution you that the Game of Assembly Language represents no real computer 
processor like the 8088. Also, I've made the names of instructions more clearly 
understandable than the names of the instructions in 86 assembly language. In the real 
world, instruction names are typically things like STOSB, DAA, BVC, SBB, and other 
crypticisms that cannot be understood without considerable explanation. We're easing 
into this stuff sidewise, and in this chapter I have to sugar-coat certain things a little to 
draw the metaphors clearly.
 
Code and Data
 
Like most board games (including Big Bux), the assembly language board game consists 
of two broad categories of elements: Game steps and places to store things. The "game 
steps" are the steps and tests I've been speaking of all along. The places to store things are 
just that: The cubbyholes into which you can place numbers, with the confidence that 
those numbers will remain where you put them until you take them out or change them 
somehow.
In programming terms, the game steps are called code, and the numbers in their 
cubbyholes (as distinct from the cubbyholes themselves) are called data. The cubbyholes 
themselves are usually called storage.
The Game of Big Bux works the same way. Look back to Figure 0.1 and note that in the 
Start a Business detour, there is an instruction that reads Add $850,000 to checking 
account. The checking account is one of several different kinds of storage in this game, 
and money values are a type of data. It's no different conceptually from an instruction in 
the Game of Assembly Language that reads AJDLJ 5 to Register A. An ADD 
instruction in the code alters a data value stored in a cubbyhole named Register A.
 Code and data are two very different kinds of critters, but they interact in ways that make 
the game interesting. The code includes steps that place data into storage (MOVE 
instructions) and steps that alter data that is already in storage (INCREMENT and 
DECREMENT instructions.) Most of the time you'll think of code as being the master of 
data, in that the code writes data values into storage. Data does influence code as well, 
however. Among the tests that the code makes are tests that examine data in storage 
(COMPARE instructions). If a given data value exists in storage, the code may do one 
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thing; if that value does not exist in storage, the code will do something else, as in the 
JUMP BACK and JUMP AHEAD instructions.
The short block of instructions marked PROCEDURE is a detour off the main stream of 
instructions. At any point in the program you can duck out into the procedure, perform its 
steps and tests, and then return to the very place from which you left. This allows a 
sequence of steps and tests that is generally useful and used frequently to exist in only 
one place rather than exist as a separate copy everywhere it is needed.
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Addresses
 
Another critical concept lies in the funny numbers at the left side of the program step 
locations and data locations. Each number is unique, in that a location tagged with that 
number appears only once inside the computer. This location is called an address. Data is 
stored and retrieved by specifying the data's address in the machine. Procedures are called 
by specifying the address at which they begin.
The little box (which is also a storage location) marked PROGRAM COUNTER keeps 
the address of the next instruction to be performed. The number inside the program 
counter is increased by one (we say, "incremented") each time an instruction is performed 
unless the instruction tells the program counter to do something else.
Notice the JUMP BACK 7 instruction at address 0049. When this instruction is 
performed, the program counter will back up by seven counts. This is analogous to the 
"go back three spaces" concept in most board games.
 
Metaphor Check!
 
That's about as much explanation of the Game of Assembly Language as I'm going to 
offer for now. This is still Chapter 0, and we're still in metaphor territory. People who 
have had some exposure to computers will recognize and understand more of what Figure 
0.2 is doing. (There's a real, traceable program going on in there—I dare you to figure out 
what it does—and how!) People with no exposure to computer innards at all shouldn’t 
feel left behind for being utterly lost. I created the Game of Assembly Language solely to 
put across the following points:
•  The individual steps are very simple. One single instruction rarely does more than move 
a single byte from one storage cubbyhole to another, or compare the value contained in 
one storage cubbyhole to a value contained in another. This is good news, because it 
allows you to concentrate on the simple task accomplished by a single instruction without 
being overwhelmed by complexity. The bad news, however, is that...
•  It takes a lot of steps to do anything useful. You can often write a useful program in 
Pascal or BASIC in five or six lines. A useful assembly language program cannot be 
implemented in fewer than about fifty lines, and anything challenging takes hundreds or 
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thousands of lines. The skill of assembly language programming lies in structuring these 
hundreds or thousands of instructions so that the program can be read and understood. 
And finally,
•  The key to assembly language is understanding memory addresses. In languages like 
Pascal and BASIC, the compiler takes care of where something is located—you simply 
have to give that something a name, and call it by that name when you want it. In 
assembly language, you must always be cognizant of where things are in your 
computer's memory. So in working through this book, pay special attention to the concept 
of addressing, which is nothing more than the art of specifying where something is. The 
Game of Assembly Language is peppered with addresses and instructions that work with 
addresses. (Such as MOVE data at B to C, which means move the data stored at the 
address specified by register B to the address specified by register C.) Addressing is by 
far the trickiest part of assembly language, but master it and you've got the whole thing in 
your hip pocket.
Everything I've said so far has been orientation. I've tried to give you a taste of the big 
picture of assembly language and how its fundamental principles relate to the life you've 
been living all along. Life is a sequence of steps and tests, and so are board games—and 
so is assembly language. Keep those metaphors in mind as we proceed to "get real" by 
confronting the nature of computer numbers.
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1.1     The Return of the New Math Monster
 
1966. Perhaps you were there. New Math burst upon the grade school curricula of the 
nation, and homework became a turmoil of number lines, sets, and alternate bases. Middle-
class fathers scratched their heads with their children over questions like, "What is 17 in 
base 5?" and "Which sets does the Null Set belong to?" In very short order (I recall a 
period of about two months) the whole thing was tossed in the trash as quickly as it had 
been concocted by addle-brained educrats with too little to do.
This was a pity, actually. What nobody seemed to realize at the time was that, granted, we 
were learning New Math—except that Old Math had never been taught at the grade school 
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level either. We kept wondering of what possible use it was to know what the intersection 
of the set of squirrels and the set of mammals was. The truth, of course, was that it was no 
use at all. Mathematics in America has always been taught as applied mathematics— 
arithmetic—heavy on the word problems. If it won't help you balance your checkbook or 
proportion a recipe, it ain't real math, man. Little or nothing of the logic of mathematics 
has ever made it into the elementary classroom, in part because elementary school in 
America has historically been a sort of trade school for everyday life. Getting the little 
beasts fundamentally literate is difficult enough. Trying to get them to appreciate the 
beauty of alternate number systems simply went over the line for practical middle-class 
America.
I was one of the few who enjoyed fussing with math in the New Age style back in 1966, 
but I gladly laid it aside when the whole thing blew over. I didn't have to pick it up again 
until 1976, when, after working like a maniac with a wire-wrap gun for several weeks, I 
fed power to my COSMAC ELF computer, and was greeted by an LED display of a pair 
of numbers in base 16!
Mon dieu, New Math redux...
This chapter exists because at the assembly-language level, your computer does not 
understand numbers in our familiar base 10. Computers, in a slightly schizoid fashion, 
work in base 2 and base 16—all at the same time. If you're willing to confine yourself to 
BASIC or Pascal, you can ignore these alien bases altogether, or perhaps treat them as an 
advanced topic once you get the rest of the language down pat. Not here. Everything in 
assembly language depends on your thorough understanding of these two number bases. 
So before we do anything else, we're going to learn how to count all over again—in 
Martian.
 
1.2 Counting in Martian
 
There is intelligent life on Mars.
That is, the Martians are intelligent enough to know from watching our TV programs these 
past forty years that a thriving tourist industry would not be to their advantage. So they've 
remained in hiding, emerging only briefly to carve big rocks into the shape of Elvis's face 
to help the National Enquirer ensure that no one will ever take Mars seriously again. The 
Martians do occasionally communicate with us science fiction writers, knowing full well 
that nobody has ever taken us seriously. Hence the information in this section, which 
involves the way Martians count.
Martians have three fingers on one hand, and only one finger on the other. Male Martians 
have their three fingers on the left hand, while females have their three fingers on the right 

file:///E|/TEMP/Chapter1%20Revised.htm (2 of 30) [9/30/02 08:19:10 PM]



file:///E|/TEMP/Chapter1%20Revised.htm

hand. This makes waltzing and certain other things easier.

Like human beings and any other intelligent race, Martians started counting by using their 
fingers. Just as we used our ten fingers to set things off in groups and powers of ten, the 
Martians used their four fingers to set things off in groups and powers of four. Over time, 
our civilization standardized on a set of ten digits to serve our number system. The 
Martians, similarly, standardized on a set of four digits for their number system. The four 
digits follow, along with the names of the digits as the Martians pronounce them:  Θ (Xip) 
, ⌠ (Foo) , ∩  (Bar), ≡  (Bas).
Like our zero, xip is a placeholder representing no items, and while Martians sometimes 
count from xip, they usually start with foo, representing a single item. So they start 
counting: Foo, bar, bas...
Now what? What comes after bas? Table 1.1 demonstrates how the Martians count to 
what we would call twenty-five.
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The Essence of a Number Base
 
Since tourist trips to Mars are unlikely to begin any time soon, of what Earthly use is 
knowing the Martian numbering system? Just this: it's an excellent way to see the sense in 
a number base without getting distracted by familiar digits and our universal base 10.
In a columnar system of numeric notation like both ours and the Martians', the base of the 
number system is the magnitude by which each column of a number exceeds the 
magnitude of the column to its right. In our base 10 system, each column represents a 
value ten multiplied by the column to its right. In a base fooby system, each column 
represents a value fooby multiplied by that of the column to its right. (In case you haven't 
already caught on, the Martians are actually using base 4—but I wanted you to see it from 
the Martians' own perspective.) Each has a set of digit symbols, the number of which is 
equal to the base. In our base 10, we have ten symbols, from 0 through 9. In base 4, there 
are four digits from 0 through 3. In any given number base, the base itself can never be 
expressed in a single digit!

file:///E|/TEMP/Chapter1%20Revised.htm (6 of 30) [9/30/02 08:19:10 PM]



file:///E|/TEMP/Chapter1%20Revised.htm

 
1 .3 Octal: How the Grinch Stole 8 and 9
 
Farewell to Mars. Aside from lots of iron oxide and some terrific a capella groups, they 
haven't much to offer us ten-fingered folk. There are some similarly odd number bases in 
use here, and I'd like to take a quick detour through one that occupies a separate world 
right here on Earth: The world of Digital Equipment Corporation, better known as DEC.
Back in the '60s, DEC invented the minicomputer as a challenger to the massive 
mainframes pioneered by IBM. To ensure that no software could possibly be moved from 
an IBM mainframe to a DEC minicomputer, DEC designed its machines to understand 
only numbers expressed in base 8.
Let's think about that for a moment, given our experience with the Martians. In base 8, 
there must be eight digits. DEC was considerate enough not to invent their own digits, so 
what they used were the traditional digits from 0 through 7. There is no digit 8 in base 8! 
That always takes a little getting used to, but it's part of the definition of a number base. 
DEC gave a name to its base 8 system: octal.
A columnar number in octal follows the rule we encountered in thinking about the Martian 
system: Each column has a value 8 multiplied by that of the column to its right.
 
Who Stole 8 and 9?
 
Counting in octal starts out in a very familiar fashion: One, two, three, four, five, six, 
seven...ten.
This is where the trouble starts. In octal, ten comes after seven. What happened to eight 
and nine? Did the Grinch steal them? (Or the Martians?) Hardly. They're still there—but 
they have different names. In octal, when you say "ten" you mean "eight." Worse, when 
you say "eleven" you mean "nine."
Unfortunately, what DEC did not do was invent clever names for the column values. The 
first column is, of course, the units column. The next column to the left of the units 
column is the tens column, just as it is in our own decimal system. But here's the rub, and 
the reason I dragged Mars into this: Octal's "tens" column actually has a value of 8.
A counting table will help. Table 1.3 counts up to thirty octal, which has a value of 24 
decimal. I dislike the use of the terms eleven, twelve, and so on in bases other than ten, but 
the convention in octal has always been to pronounce the numbers as we would in 
decimal, only with the word "octal" after them.
Remember, each column in a given number base has a value base multiplied by the 
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column to its right, so the tens column in octal is actually the eights column. (They call it 
the tens column because it is written 10, and pronounced "ten.") Similarly, the column to 
the left of the tens column is the hundreds  
 
Table 1.3. 
Counting 

in octal, base 8  

Octal Numerals Pronunciation Decimal Equivalent 
0 Zero 0 
1 One 1 
2 Two 2 
3 Three 3 
4 Four 4 
5 Five 5 
6 Six 6 
7 Seven 7 
10 Ten 8 
11 Eleven 9 
12 Twelve 10 
13 Thirteen 11 
14 Fourteen 12 
15 Fifteen 13 
16 Sixteen 14 
17 Seventeen 15 
20 Twenty 16 
21 Twenty-one 17 
22 Twenty-two 18 
23 Twenty-three 19 
24 Twenty-four 20 
25 Twenty-five 21 
26 Twenty-six 22 
27 Twenty-seven 23 
30 Thirty 24 
 
column (because it is written 100) but the hundreds column actually has a value of 8 
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multiplied by 8, or 64. The next column over has a value of 64 multiplied by 8, or 512, 
and the column left of that has a value of 512 multiplied by 8, or 4096.
This is why if someone talks about a value of "ten octal" they mean 8; "one hundred octal" 
they mean 64, and so on. Table 1.4 summarizes the octal column values and their decimal 
equivalents.
A digit in the first column (the units, or 1's column) tells how many units are contained in 
the octal number. A digit in the next column to the left, the tens column, tells how many 
8's are contained in the octal number. A digit in the third column, the hundreds column, 
tells how many 64's are in the number, and so on. For example, 400 octal means that the 
number contains 4 64's; that is, 256 in decimal.
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It works the same way it does in Martian, or decimal, or any other number base. In 
general: Each column has a value consisting of the number base raised to the power 
represented by the ordinal position of the column minus one. That is, the value of the first 
column is the number base raised to the 1-1, or 0, power. Since any number raised to the 
zero power is one, the first column in any number base always has the value of one and is 
called the units column. The second column has the value of the number based raised to 
the 2—1, or 1st power, which is the value of the number base itself. In octal this is 8; in 
decimal, 10; in Martian base fooby, fooby. The third column has a value consisting of the 
number base raised to the 3-1, or 2nd power, and so on.
Within each column, the digit holding that column tells how many instances of that 
column's value is contained in the number as a whole. Here, the 6 in 76225 octal tells us 
that there are six instances of its column's value in the total value 76225 octal. The six 
occupies the fourth column, which has a value of 84-1, which is 83, or 512. This tells us 
that six 512 values are in the number as a whole.
You can convert the value of a number in any base to decimal (our base 10) by 
determining the value of each column in the alien base, then multiplying the value of each 
column by the digit contained in that column, (to create the decimal equivalent of each 
digit) and then finally taking the sum of the decimal equivalent of each column. This is 
done in Figure 1.2, and the octal number and its decimal equivalent are both shown.
Now that we've looked at columnar notation from both a Martian and an octal perspective, 
make sure you understand how columnar notation works in any arbitrary base before we 
go on.
 
Log in Please
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You may use an octal number every day. You may, in fact, have it memorized. This 
number is your ID number on the CompuServe timesharing system. CompuServe runs on 
a (large) bank of DEC computers, and their user IDs are all in octal. Notice, if you use 
CompuServe, that nowhere in any of the ID numbers attached to the messages you read 
will you find either the digit 8 or the digit 9.
 
1.4 Hexadecimal: Solving the Digit Shortage
 
Octal is unlikely to be of use to you unless you choose to become a minicomputer 
programmer, which is about as exciting as blowing packing peanuts into boxes on 
somebody else's shipping dock. As I mentioned earlier, the real numbering system to 
reckon with in the microcomputer world is base 16, which we call hexadecimal, or (more 
affectionately) simply hex.
Hexadecimal shares the essential characteristics of any number base, including both 
Martian and octal: It is a columnar notation, in which each column has a value sixteen 
times the value of the column to its right. It has sixteen digits, running from 0 to...what?
We have a shortage of digits here. From zero through nine we're in fine shape. Ten, 
eleven, twelve, thirteen, fourteen, and fifteen, however, need to be expressed in single 
digits. Without any additional numeric digits, the people who developed hexadecimal 
notation in the early 1950s borrowed the first six letters of the alphabet to act as the 
needed digits.
Counting in hexadecimal, then, goes like this: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F, 
10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 1A, IB, 1C and so on. Table 1.5 restates this in a 
more organized fashion, with the decimal equivalents up to 32.
 
Table 1.5. Counting in hexadecimal, base 16 
Hexadecimal Pronunciation Decimal 
Numerals (follow with "hex") Equivalent 
0 Zero 0 
1 One 1 
2 Two 2 
3 Three 3 
4 Four 4 
5 Five 5 
6 Six 6 
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7 Seven 7 
8 Eight 8 
9 Nine 9 
A A 10 
B B 11 
C C 12 
D D 13 
E E 14 
F F 15 
10 Ten (or, One-oh) 16 
11 One-one 17 
   
12 One-two 18 
13 One-three 19 
14 One-four 20 
15 One-five 21 
16 One-six 22 
17 One-seven 23 
18 One-eight 24 
 
 
Table 1.5. Counting in hexadecimal, base 16 (continued)
Hexadecimal            Pronunciation                    Decimal
Numerals           (follow with "hex")                  Equivalent
 
19                      One-nine                                 25 
1A                    One-A                                    26 
IB                    One-B                                     27 
1C                    One-C                                     28
ID                    One-D                                     29 
IE                    One-E                                     30 
IF                    One-F                                      31
20                     Twenty (or, Two-oh)                32
 
One of the conventions in hexadecimal that I favor is the dropping of words like "eleven" 
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and "twelve" that are too tied to our decimal system and only promote gross confusion. 
Confronted by the number 11 in hexadecimal (usually written 11H to let us know what 
base we're speaking) we would say, "one-one hex." Don't forget to say "hex" after a 
hexadecimal number, again to avoid gross confusion. This is unnecessary with the digits 0 
through 9, which represent the exact same values in both decimal and hexadecimal.
Some people still say things like "twelve hex", which is valid, and means 18 decimal. But 
I don't care for it, and advise against it. This business of alien bases is confusing enough 
without giving the aliens Charlie Chaplin masks.
Each column in the hexadecimal system has a value 16 multiplied by that of the column to 
its right. (The rightmost column, as in any number base, is the units column and has a 
value of 1.) As you might imagine, the values of the individual columns goes up 
frighteningly fast as move from right to left. Table 1.6 shows the values of the first seven 
columns in hexadecimal. For comparison's sake, note that the seventh column in decimal 
notation has a value of 1,000,000, while the seventh column in hexadecimal has a value of 
16,777,216.
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To help you understand how hexadecimal numbers are constructed, I've dissected a typical 
hex number in Figure 1.3, in the same fashion that I dissected numbers earlier in both 
Martian base fooby, and in octal. Just as in octal, zero holds a place in a column without 
adding any value to the number as a whole. Note in Figure 1.3 that no 256 values are 
present in the number 3COA9H.
As in Figure 1.2, the decimal values of each column are shown beneath the column, and 
the sum of all columns is shown in both decimal and hex.
 
From Hex to Decimal and From Decimal to Hex
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Most of the manipulation of hex numbers you'll be performing will be simple conversions 
between hex and decimal, in both directions. The easiest way to perform such conversions 
is by way of a hex calculator, either a "real" calculator like the venerable TI Programmer 
(which I still have, wretched battery-eater that it is) or a TSR software calculator like 
Sidekick. This demands nothing of your grey matter, of course, and won't help you 
understand the hexadecimal number system any better. So while you're a green student, 
lay off anything that understands hex, hardware, software, or human associates.
In fact, the best tool is a simple four-function memory calculator. The conversion methods 
I'll describe here all make use of such a calculator, since what I'm trying to teach you is 
number base conversion, not decimal addition or long division.
 
 
From Hex to Decimal
 
As you'll come to understand, converting hex numbers to decimal is a good deal easier 
than going the other way. The general method is to do what we've been doing all along in 
the dissection figures: Derive the value represented by each individual column in the hex 
number, and then add up the total of all the column values in decimal.
Let's try an easy one. The hex number is 7A2. Start at the right column. This is the units 
column in any number system. You have 2 units, so enter 2 into your calculator. Now 
store that 2 into memory. (Or press the SUM button, if you have one.)
So much for units. Keep in mind that you're keeping a running tally of the values of the 
columns in the hex number. Move to the next column to the left. Remember that each 
column represents a value 16 times the value of the column to its right. So the second 
column from the right is the 16s column. (Refer to Table 1.6 if you lose track of the 
column values.) The 16s column has an A in it. A in hex is decimal 10. The total value of 
that column, therefore, is 16 X 10, or 160. Perform that multiplication on your calculator, 
and add the product to the 2 that you stored in memory. (Again, the SUM button is a 
handy way to do this if your calculator has one.)
Remember what you're doing: Evaluating each column in decimal and keeping a running 
total. Now, move to the third column from the right. This one contains a 7. The value of 
the third column is 16 x 16, or 256. Multiply 256 by 7 on your calculator, and add the 
product to your running total.
You're done. Retrieve the running total from your calculator memory. The
total should be 1954, which is the decimal equivalent of 7A2 hex.
Let's try it again, with a little less natter and a much larger number: C6FODB.
Evaluate the units column. B X 1 = ll X l = ll. Start your running total.
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Evaluate the l6s column. D X 16 = 13 X 16 = 208. Add 208 to your running
total.
Evaluate the 256s column. 0 x 256 = 0. Move on.
Evaluate the 4096s column. F X 4096 = 15 x 2096 = 61,440. Add it to your
running total. 
Evaluate the 65536s column. 6 X 65536 = 393,216. Add it to the running
total.
Evaluate the 1048576s column. C S 1048576 = 12 S 1048576 = 12,582,912.
Add it to your total.
The running total should be 13037787.
Finally, do it yourself, using the hex number 1A55BE.
 
From Decimal to Hex
 
The lights should be coming on about now. This is good, because going in the other 
direction, from our decimal base 10 to hex, is much harder, and involves more math. What 
we have to do is find the hex column values within a decimal number—and that involves 
some considerable use of that fifth-grade boogeyman, long division.
But let's get to it; again, starting with a fairly easy number: 449. The calculator will be 
handy, in spades. Tap in the number 449 and store it in the calculator's memory.
What we need to do first is find the largest hex column value that is contained in 449 at 
least once. Remember grade-school "gazintas"? (12 gazinta 855 how many times?) It's 
something like that. Looking back at Table 1.6, we can see that 256 is the largest power of 
16, and hence the largest hex column value, that is present in 449 at least once. (The next 
largest power of 16, 512, is obviously too large to be present in 449.)
So we start with 256, and determine how many times 256 gazinta 449. 449 •/• 256 = 
1.7539- At least once, but not quite twice. So 449 contains only one 256. Write down a 1 
on paper. Don't enter it into your calculator. We're not keeping a running total here; if 
anything, we could say we're keeping a running remainder. The 1 is the leftmost hex digit 
of the hex value equivalent to decimal 449.
We know that there is only one 256 contained in 449. What we must do now is subtract 
that 256 from the original number, now that we've counted it by writing a 1 down on 
paper. Subtract 256 from 449. Store the difference, 193, into memory.
The 256 column has been removed from the number we're converting. Now we move to 
the next column to the right, the l6s. How many 16s are contained in 193? 193 + 16 = 
12.0625. This means the 16s column in the hex equivalent of 449 contains a... 12? 
Hmmmm.. .remember the digit shortage, and the fact that in hex, the value we call 12 is 
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represented by the letter C. From a hex perspective, we have found that the original 
number contains C in the 16s column. Write a C down to the right of your 1: 1C. So far so 
good.
We've got the 16s column, so just as with the 256s, we have to remove the 16s from what's 
left of the original number. The total value of the 16s column is C x 16 = 12 x 16 = 192. 
Bring the 193 value out of your calculator's memory, and subtract 192 from it A lonelv 
little 1 is all that's left 
So we're down to the units column. There is one unit in one, obviously. Write that 1 down 
to the right of the C in our hexadecimal number: 1C1. Decimal 449 is equivalent to hex 
1C1.
Now perhaps you'll begin to understand why Sidekick is so popular.
Let's glance back at the big picture of the decimal-to-hex conversion. We're looking for 
the hexadecimal columns "hidden" in the decimal value. We find the largest column 
contained in the decimal number, find that column's value, and subtract that value from 
the decimal number. Then we look for the next smallest hex column, and the next 
smallest, and so on, removing the value of each column from the decimal number as we 
go. In a sense, we're dividing the number by consecutively smaller powers of 16, and 
keeping a running remainder by removing each column as we tally it.
Let's try it again. The secret number is 988,664.
The largest column contained in 988,664 from Table 1.6 is 65536. Divide
988,664 by 65536 = 15 and change. Ignore the change. 15 = F in hex. Write
down the F.
Subtract the sum of F x 65536 from 988,664. Store the remainder (5624).
Move to the next smallest column. 5624 • /• 4096 = 1 and change. Write down
the 1.
Remove 1 X 4096 from the remainder: 5624 - 4096 = 1528. Store the new remainder: 
1528.
Move to the next smallest column. 1528 •/• 256 = 5 and change. Write down the 5.
Remove 5 x 256 from the stored remainder, 1528. Store 248 as the new remainder.
Move to the next smallest column. 248 •/•16 = 15 and change. 15 = F in hex.
Write down the F.
Remove F x 16 from stored remainder, 248. The remainder, 8, is the number of units in 
the final column. Write down the 8.
There you have it. 988,664 decimal = F15F8H.
Again, note the presence of the H at the end of the hex number. From now on, every hex 
number in the text of this book will have that H affixed to its hindparts. It's important, 
because not every hex number contains letter digits. There is a 157H as surely as a 157 
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decimal, and the two are not the same number. Don't forget to include the H when writing 
your assembler programs, as I'll be reminding you later on.
 
Practice. Practice! PRACTICE!
 
The best (actually, the only) way to get a gut feel for hex notation is to use it lots. Convert 
each of the following hex numbers to decimal. Lay each number out on the dissection 
table and identify how many 1’s, how many 16’s, how many 256s, how many 4096’s, and 
so on, are present in the number, and then add them up in decimal.
CCH
157H
D8H
BB29H
7AH
8177H
A011H
99H
2B36H
FACEH
8DB3H
9H
  
  That done, now turn it inside out, and convert each of the following decimal numbers to 
hex. Remember the general method: From Table 1.6, choose the largest power of 16 that 
is less than the decimal number to be converted. Find out how many times that power of 
16 is present in the decimal number, and write it down as the leftmost converted hex digit. 
Then subtract the total value represented by that hex digit from the decimal number. Then 
repeat the process, using the next smallest power of 16 until you've subtracted the decimal 
number down to nothing.
39
413
22
67.349
6.992
41
1,117
44,919
12,331
124,217
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91.198
307
112,374,777
(Extra credit for that last one...) If you need more practice, choose some decimal numbers 
and convert them to hex, and then convert them back.
 
: 1.6 Arithmetic in Hex
 
As you become more skilled in assembly language, you'll be doing more arithmetic in 
base 16. You may even (good grief) come to do it in your head. (I tend to do most of mine 
on my memory resident hex calculator.) Still, it takes some practice.
Addition and subtraction are no different than what we know in decimal,
with a few extra digits tossed in for flavor. The trick  is  nothing more  than knowing your 
addition tables to OFH. This is best done not by thinking to yourself, "Now, if C is 12 and 
F is fifteen, then C + F is twelve plus fifteen, which is 27 decimal but 1BH." Instead, you 
should simply say inside your head, "C + F are 1BH."
Yes, that's asking a lot. But I ask you now, as I will ask you again on this journey, Do you 
wanna hack DOS...or do you just wanna fool around? It takes practice to learn the piano, 
and it takes practice to get really greased up on the foundation concepts of assembly 
language programming.
So let me sound like an old schoolmarm and tell you to memorize the following. 
Make flash cards if you must:
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  If nothing else, this exercise should make you glad computers don’t work in base 64.
 
 
Columns and Carries
 
With all of the single-column additions committed (more or less) to memory, you can 
tackle multicolumn addition. It works pretty much the same way it does with decimal. 
Add each column starting from the right, and carry into next column anytime a single 
column's sum exceeds OFH. For example:
     1                    1
    2   F 3  1  A DH
 +9  6 B  A  0  7H
______________
   C  5  E B  B 4H
 
Work this one through, column by column. The sum of the first column (the rightmost) is 
14H, which cannot fit in a single column, so we must carry the one into the next column to 
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the left. Even with the additional 1, however, the sum of the second column is OBH, 
which fits in a single column and no carry is required.
Keep on adding moving left. The second-to-last column will again overflow, and you will 
need to carry the one into the last column. As long as you have your single-digit sums 
memorized, it s a snap. Well, more or less. 
Now, here's something you should take note of:
  The most you can ever carry out of a single-column addition of two numbers is 1.
It doesn't matter what base: 16, 10, fooby, or 2. You will either carry a 1 out of a column, 
or carry nothing at all. This is important when you add numbers on paper or within the 
silicon of your CPU, as we'll learn a few chapters on.
 
Subtraction and Borrows
 
If you have your single-column sums memorized, you can usually grim your way through 
subtraction with a shift into a sort of mental reverse: if E + 6 equals 14H, then 14H - E 
must equal 6. The alternative is memorizing an even larger number of tables, and since I 
haven't memorized them, I won't ask you to.
But over time, that's what tends to happen. In hex subtraction, you should be able to dope 
out any given single-column subtraction by turning a familiar hexadecimal sum inside-out. 
And just as with base 10, multicolumn subtractions are done one column at a time:
   F76CH
- A05BH
   5711H
During your inspection of each column, you should be asking yourself, "What number 
added to the bottom number yields the top number?" Here, you should know from your 
tables that B + 1 = C, so the difference between B and C is 1. The leftmost column is 
actually more challenging: what number added to A gives you F? Chin up; even I have to 
think about it on an off day.
The problems show up, of course, when the top number in a column is smaller than its 
corresponding bottom number. Then (like the federal government on a bomber binge) 
you have no recourse but to borrow.
Borrowing is one of those grade-school rote-learned processes that very few people really 
understand. (To understand it is tacit admittance that something of New Math actually 
stuck. Horrors!) From a height, what happens in a borrow is that one count is taken from a 
column and applied to the column on its right. I say "applied" rather than "added to" 
because in moving from one column to the column on its right, that single count is 
multiplied by 10, where "ten" represents the number base. (Remember that "ten" in octal 
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has a value of 8, while "ten" in hexadecimal has a value of 16.)
It sounds worse than it is. Let's look at a borrow in action, and you'll get the idea.

92H
     -4FH
Here the subtraction in the rightmost column can't happen as-is, because F is larger than 2. 
So we borrow from the next column to the left.
Nearly thirty years out of the past, I can still hear old Sister Marie Bernard toughing it out 
on the blackboard, albeit in base 10: "Cross out the 9; make it an 8 Make the 2 a 12. And 
12 minus F is what, class?" 3, Sister. And that's how borrowing works. (I hope the poor 
dear will forgive me for putting hex bytes in her mouth...)
Think about what happened there, functionally. We subtracted I from the 9 and added 10H 
to the 2. One obvious mistake is to subtract 1 from the 9 and add 1 to the 2, which (need I 
say) won't work. Think of it this way: We're moving part of one column's surplus value 
over to its right, where some extra value is needed. The overall value of the upper number 
doesn't change (which is why we call it "borrowing" and not "stealing") but the recipient 
of the loan is increased by 10, not 1.
After the borrow, what we have looks something like this:
   81 2H
-  4  FH
And of course, once we're here the columnar subtractions all work out, and we discover 
that the difference is 43H.
People sometimes ask if you ever have to borrow more than 1. The answer, plainly, is no. 
If you borrow 2, for example, you would add 20 to the recipient column, and 20 minus any 
single digit remains a 2-digit number. That is, the difference won't fit into a single 
column. Subtraction contains an important symmetry with addition:
The most you ever need to borrow in any single-column subtraction of two numbers is 1.
 
Borrowing Across Multiple Columns
 
Understanding that much about borrowing gets you most of the way there. But, life is 
wont, you will frequently come across a subtraction similar to this:
 
  F 0 0 OH
–3 B 6 CH
Column 1 needs to borrow, but neither column 2 nor column 3 have anything to lend. 
Back in grade school, Sister Marie Bernard would have rattled out with machine-gun 
efficiency: "Cross out the F, make it an E. Make the 0 a 10;
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cross it out, make it an F. Make the next 0 a 10; cross it out, make it an F. Then make the 
last 0 a 10.” Got that?
What happens is that the middle two 0’s act as loan brokers between the F and the 
rightmost 0, keeping a commission in the form of enough value to allow for subtraction in 
their own columns. Each column to the right of the last column borrows 10 from its 
neighbor to the left, and loans 1 to the neighbor on its right. After all the borrows trickle 
through the upper number, what we have looks like this (minus all those cross-outs):
 E   F   F1  OH
-   3  B  6  CH
At this point, each columnar subtraction can take place, and the difference is B494H.
In remembering your grade-school machinations, don't fall into the old rut of thinking, 
"cross out the 10, make it a 9." In the world of hexadecimal, 10H -1 = F. Cross out the 10, 
make it an F.
 
What's the Point?
 
Even if you have a hex calculator or a hex-capable screen calculator to do your figuring 
for you, the point I'm getting at is practice. Hexadecimal is the lingua franca of 
assemblers, to multiply-mangle a metaphor. The more you burn a gut-level understanding 
of hex into your reflexes, the easier assembly language will be. Furthermore, 
understanding the internal structure of the machine itself will be much easier if you have 
that intuitive grasp of hex values. We're laying important groundwork here. Take it 
seriously now and you'll lose less hair later on.
 
1.7 Binary
 
Hexadecimal is excellent practice for taking on the strangest number base of all: Binary. 
Binary is base 2. Given what we've learned about number bases so far, we can surmise the 
following about base 2.
• Each column has a value two times the column to its right.
• There are only two digits (0 and 1) in the base.
Counting is a little strange in binary, as you might imagine. It goes like this: 
0,1,10,11,100,101,110,111,1000... Because it sounds absurd to say, "Zero, one, ten, 
eleven, one hundred...," in binary, you simply enunciate the digits, followed by the word 
"binary." For example, most people say "one zero one one one zero one binary" instead of 
"one million, eleven thousand, one hundred one binary" when pronouncing the number 
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1011101—which sounds enormous until you consider that its value in decimal is only 93-
Odd as it may seem, binary follows all of the same rules regarding number bases that 
we've discussed in this chapter. Converting between binary and decimal is done using the 
same methods described for hexadecimal in Section 1.5.
Because counting in binary is as much a matter of counting columns as counting digits 
(since there are only two digits) it makes sense to take a long, 
close look at Table 1.7, which shows the values of the binary number columns out to 32 
places.
One look at that imposing pyramid implies that it's even hopeless to think of pronouncing 
the larger columns as strings of digits: "One zero zero zero zero zero zero zero..." and so 
on. There's a crying need for a shorthand notation here, so I'll provide you with one in a 
little while (and its identity will surprise you).
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You might think that such large numbers as the bottommost in the table aren't likely to be 
encountered in ordinary programming. Sorry, but a 32-bit microprocessor like the 80386 
can swallow numbers like that in one electrical gulp, and eat billions of them for lunch. 
You must become accustomed to thinking in terms of numbers like 232, which, after all, is 
only a trifling four billion in decimal. You can't even run NASA on numbers like that, and 
it's the poor orphan at the Federal trough.
Just as with hexadecimal, there can be identity problems when using binary. The number 
101 in binary is not the same as 101 in hex, or 101 in decimal. For this reason, always 
append the letter B to your binary values to make sure people reading your programs 
(including you, six weeks after the fact) know what base you're working from.
 
Values in Binary
 
Converting a value in binary to a value in decimal is done the same way it's done in 
hex—more simply in fact. You no longer have to count how many times a value is present 
in its corresponding column. That is, in hex, you have to see how many 16s are present in 
the 16s column, and so on. In binary, a column's value is either present (1 time) or not 
present (0 times.)
Running through a simple example should make this clear. The binary number 1101101 
OB is a relatively typical binary value in small-time computer work. (On the small side, 
actually—many common binary numbers are twice this size.) Converting 11011010B to 
decimal comes down to scanning it from right to left with the help of Table 1.7, and 
keeping a tally of each column's value when that column contains a 1. Ignore any column 
containing a 0.
Clear your calculator and let's get started:
Column 0 contains a 0; skip it.
Column 1 contains a 1. That means its value, 2, is present in the value of the
number. So we punch 2 into the calculator.
Column 2 contains a 0; skip it.
Column 3 contains a 1. This column's value is 23, or 8; add 8 to the tally.
Column 4 also contains a 1. This columns value is 24 or 16; Add 16 to the tally.
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Column 5 contains a 0; skip it.
Column 6 contains a 1. This column's value is 64; add 64 to the tally.
Column 7 contains a 1. This column's value is 27, or 128; add 128 to the
tally. What do we have? 218. It's as easy as that.
Converting from decimal to binary, while more difficult, is done exactly the same way as 
converting from decimal to hex. Go back and read that section again, searching for the 
general method used. (You can also see section 1.8 for more information.) In other words, 
see what was done and separate the essential principles from any references to a specific 
base like hex.
I'll bet by now you can figure it out without much trouble.
As a brief aside, perhaps you noticed that I started counting columns from 0 rather than 1. 
A peculiarity of the computer field is that we always begin counting things from 0. 
Actually, that's unfair; the computer's method is the reasonable one, because 0 is a 
perfectly good number and should not be discriminated against. The rift occurred because 
in our world, counting things tells us how many things are there, while in the computer 
world counting things is more generally done to name them. That is, we need to deal with 
bit 0, and then bit 1, and so on, far more than we need to know how many bits there are.
This is not a quibble, by the way. The issue will come up again and again in connection 
with memory addresses, which as I have said and will say again, are the key to 
understanding assembly language.
In programming circles, always begin counting from 0!
This is a good point to get some practice in converting numbers from binary to decimal 
and back. Sharpen your teeth on these:
110 10001
11111011
101
1100010111010010
11000
1011

 
When that's done, convert these decimal values to binary:
 
77
42
106
255
18
6309
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121
58
18,446
 
Why Binary?
 
If it takes eight whole digits (11011010) to represent an ordinary three-digit number like 
218, binary as a number base would seem to be a bad intellectual investment. Certainly for 
us it would be a waste of mental bandwidth, and even aliens with only two fingers would 
probably have come up with a better system.
 
The problem is, lights are either on or they're off.
This is just another way of saying (as I'll discuss in detail in the next chapter) that at the 
bottom of it, computers are electrical devices. In an electrical device, voltage is either 
present or it isn't; current either flows or it doesn't. Very early in the game, computer 
scientists decided that the presence of a voltage in a computer circuit would indicate a 1 
digit, while lack of a voltage at that same point in the circuit would indicate a 0 digit This 
is the only reason we use binary, but it's a pretty compelling one, and we're stuck with it. 
However, you will not necessarily drown in 1s and 0s, because I've already taught you a 
form of shorthand.
 
1.8 Hexadecimal as Shorthand for Binary
 
The number 218 expressed in binary is 11011010B. Expressed in hex, however, the same 
value is quite compact: DAH. The two hex digits comprising DAH merit a closer look.
AH (or OAH as your assembler will require it for reasons I'll explain later) represents 10 
decimal. Converting any number to binary simply involves detecting the powers of 2 
within it. The largest power of 2 within 10 decimal is 8. Jot down 1 and subtract 8 from 
10. What's left is 2. Even though 4 is a power of two, no 4's are hiding within 2. Write a 0 
to the right of the 1. The next smallest power of 2 is 2, and there is a 2 in 2. Jot down 
another 1 to the right of the 0. Subtract 2 from 2 and you get 0, so there are no 1s left in 
the number. Jot down a final 0 to the right of the rest of the numbers to represent the 1s 
column. What you have is this:
1010
Look back at the binary equivalent of 218: 11011010. The last four digits are 1010. 1010 
is the binary equivalent of OAH.
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The same will work for the upper half of DAH. ODH, if you work out the binary 
equivalence as we just did (and it would be good mental exercise), is 1101. Look at the 
binary equivalent of 218 this way:

218                 decimal 
1101 1010 binary 
D      A  hex

 
It should be dawning on you that you can convert long strings of binary 1s and 0s into 
more compact hex format by converting every four binary digits (starting from the right, 
not from the left) into a single hex digit.
As an example, here is a 32-bit binary number that is not the least bit remarkable:
 
11110000000000001111101001101110
 
This is a pretty obnoxious collection of bits to remember or manipulate, so let's split it up 
into groups of four from the right:
 
1111 0000 0000 0000 1111 1010 0110 1110
 
Each of these groups of four binary digits can be represented by a single hexadecimal 
digit. Do the conversion now. What you should get is the following:
 
1111 0000 0000 0000 1111 1010 0110 1110
 
F         0         0         0         F         A         6         E 
 
In other words, the hex equivalent of that mouthful is FOOOFA6E
In use, of course, you would append an H on the end, and also put a 0 at the beginning, so 
the number would actually be written OFOOOFA6EH.
This is still a good-sized number, but such 32-bit addresses are the largest quantities you 
will typically encounter in journeyman-level, assembly language-programming. Most 
hexadecimal numbers you will encounter are either four or two hex digits long instead. 
Furthermore, the PC's CPU likes to deal with 32-bit addresses 16 bits at a time, so most of 
the time you will look upon enormous hex numbers like OFOOFA6EH as the pair 
OFOOH and OFA6EH.
Suddenly, this business starts looking a little more graspable.
Hexadecimal is the programmer's shorthand for the computer's binary numbers.
This is why I said earlier that computers use base 2 (binary) and base 16 (hexadecimal) 

file:///E|/TEMP/Chapter1%20Revised.htm (29 of 30) [9/30/02 08:19:12 PM]



file:///E|/TEMP/Chapter1%20Revised.htm

both at the same time in a rather schizoid fashion. What I didn't say is that the computer 
isn't really the schizoid one; you are. At their very heart (as I'll explain in the next chapter) 
computers use only binary. Hex is a means by which you and I make dealing with the 
computer easier. Fortunately, every four binary digits may be represented by a hex digit, 
so the correspondence is clean and comprehensible.
 
Prepare to Compute
 
Everything up to this point has been necessary groundwork. I've explained conceptually 
what computers do and given you the tools to understand the slightly alien numbers they 
use. But I've said nothing so far about what computers actually are, and it's well past 
time. We'll return to hexadecimal numbers again and again in this book; I've said nothing 
about hex multiplication or bit-banging. The reason is plain: Before you can bang a bit, 
you must know where the bits live. So let's lift the hood and see if we can catch a few in 
action.
 

file:///E|/TEMP/Chapter1%20Revised.htm (30 of 30) [9/30/02 08:19:12 PM]



file:///E|/TEMP/Chapter%202%20Lifting%20The%20Hood.htm

 

Lifting The Hood
Discovering What Computers Actually Are
 
2.1 RAXie, We Hardly Knew Ye... >• 42
2.2 Switches, Transistors, and Memory >• 43
2.3 The Shop Foreman and the Assembly Line >• 53
2.4 The Box that Follows a Plan >• 58
 
2.1 RAXie, We Hardly Knew Ye...
 
In 1970, I was a senior in high school, and the Chicago Public Schools had installed a 
computer somewhere. A truckful of these fancy typewriter gimcracks was delivered to 
Lane Tech, and a bewildered math teacher was drafted into teaching computer science 
(they had the nerve to call it) to a high school full of rowdy males.
I figured it out fairly quickly. You pounded out a deck of these goofy computer cards on 
the card punch, dropped them into the hopper of one of the typewriter gimcracks, and 
watched in awe as the typewriter danced its little golfball over the greenbar paper, 
printing out your inevitable list of error messages. It was fun. I got straight As. I even 
kept the first program I ever wrote that did something useful: a little deck of cards that 
generated a table of parabolic correction factors for hand-figuring telescope mirrors.
The question that kept gnawing at me was exactly what sort of beast RAX (the computer's 
wonderfully appropriate name) actually was. What we had were ram-charged typewriters 
that RAX controlled over phone lines. But what was RAX?
I asked the instructor. In brief, the conversation went something like this:
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ME: "Umm, sir, what exactly is RAX?"
HE: "Eh? Um, a computer. An electronic computer."
ME: "That's what it says on the course notes. But I want to know what RAX is made of 
and how it works."
HE: "Well, I'm sure RAX is all solid-state."
ME: "You mean, there's no levers and gears inside."
HE: "Oh, there may be a few. But no radio tubes."
ME: "I wasn't worried about tubes. I suppose it has a calculator in it somewhere. But 
what makes it remember that A comes before B? How does it know what FORMAT 
means? How does it tell time? What does it have to do to dial the phone?"
HE: "Now, come on, that's why computers are so great! They put it all together so that we 
don't have to worry about that sort of thing! Who cares what RAX is? RAX knows 
FORTRAN, and will execute any correct FORTRAN program. That's what matters, isn't 
it?"
He was starting to sweat. So was I. End of conversation.
That June, I graduated with three inches of debugged and working FORTRAN punch 
cards in my bookbag, and still had absolutely no clue as to what RAX was.
It has bothered me to this day.
 
Gus to the Rescue
 
I was thinking about RAX six years later, while on the Devon Avenue bus heading for 
work, with the latest copy of Popular Electronics in my lap. The lead story involved a 
little thing called the COSMAC ELF, which consisted of a piece of perfboard full of 
integrated circuit chips, all wired together, plus some toggle switches and a pair of LED 
numeric displays.
It was a computer. (Said so right on the label.) The article told us how to put it together, 
and that was about all. What did those chips do? What did the whole thing do? It was 
driving me nuts.
As usual, my friend Gus Flassig got on the bus at Ashland Avenue and sat down beside 
me. I asked him what the damned thing did. He was the first human being to make the 
concept hang together for me:
"These are memory chips. You load numbers into the memory chips by flipping these 
switches in different code patterns. Each number means something to the CPU chip. One 
number makes it add; another number makes it subtract; another makes it write different 
numbers into memory, and lots of other things. A program consists of a bunch of these 
instruction numbers in a row in memory. The computer reads the first number, does what 
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the number instructs it to do, and then reads the second one, does what that number says 
to do, and so on until it runs out of numbers."
If you don't find that utterly clear; don't worry. I had the advantage of being an electronics 
hobbyist (so I knew what some of the chips did) and had already written some programs 
in RAX's FORTRAN. But for me, my God, everything suddenly hit critical mass and 
exploded in my head until the steam started pouring out of my ears.
No matter what RAX was, I knew that he had to be something like the COSMAC ELF on 
a larger scale. I built an ELF. It was quite an education, and allowed me to understand the 
nature of computers at a very deep level. I don't recommend that anybody but total crazies 
wirewrap their own machines out of loose chips anymore, although it was a common 
enough thing to do in the mid-to late Seventies. In this chapter, I'll try and provide you 
with some of the insights that I obtained while assembling my own machine the hard way. 
(You wonder where the "hard" in "hardware" comes from? Not from the sound it makes 
when you bang it on the table, promise...)
 
2.2 Switches, Transistors, and Memory
 
Switches remember.
Think about it. You flip the switch by the door, and the light in the middle the ceiling 
comes on. It stays on. When you leave the room, you flip the switch down again, and the 
light goes out. It stays out. Poltergeists notwithstanding, the switch will remain in the 
position you last left it until you (or someone else) come back and flip it to its other 
position.
In a sense, it remembers what its last command was until you change it, and "overwrite" 
that command with a new one. In this sense, a light switch represents a sort of 
rudimentary memory element.
Light switches are more mechanical than electrical, which does not prevent them from 
acting as memory; in fact, the very first computer (Babbage's 19th-century difference 
engine) was entirely mechanical. In fact, the far larger version he designed but never 
finished was to have been steam powered. Babbage's machine had lots of little cams that 
could be flipped by other cams from one position to another. Numbers were encoded and 
remembered as patterns of cam positions.
 
One if by Land
 
Whether a switch is mechanical, electrical, hydraulic, or something else is irrelevant. 
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What counts is that a switch contains a pattern: On or off; up or down, flow or no flow. 
To that pattern can be assigned a meaning. Paul Revere told his buddy to set up a code in 
the Old North Church: "One if by land, two if by sea." Once lit, the lamps in the steeple 
remained lit (and thus remembered that very important code) long enough for Paul to call 
out the militia and whup the British.
In general then, what we call "memory" is an aggregate of switches that will retain a 
pattern long enough for that pattern to be read and understood by a person or a 
mechanism. For our purposes, those switches will be electrical, but keep in mind that both 
mechanical and hydraulic computers have been proposed and built with varying degrees 
of success.
Memory consists of containers for alterable patterns that retain an entered pattern until 
someone or something alters the pattern.
 
Transistor Switches
 
One problem with building a computer memory system of light switches is that light 
switches are pretty specialized: they require fingers to set them, and their "output" is a 
current path for electricity. Ideally, a computer memory switch should be operated by the 
same force it controls to allow the patterns in memory locations to be passed on to other 
memory locations. In the gross electromechanical world, such a switch is called a "relay."
A relay is a switch that is operated by electricity, and also controls electricity. You "flip" 
a relay by feeding it a pulse of electricity, which powers a little hammer that whaps a 
lever to one side or another. This lever then opens or closes a set of electrical contacts, 
just as your garden-variety light switch does. Computers have been made out of relays, 
although as you might imagine (with a typical relay being about the size of an ice-cube) 
they weren’t especially powerful computers. 
 Fully electronic computers are made out of transistor switches. Transistors are tiny 
crystals of silicon that use the peculiar electrical properties of silicon to act as switches. I 
won’t try to explain what these properties are, since that explanation would take an entire 
(fat) book unto itself. Let’s consider a transistor switch a sort of electrical ‘black box’ and 
describe it in terms of inputs and outputs. 
 Figure 2.1 shows a transistor switch. When an electrical current is fed through pin 1, 
current  ceases to flow  between pins 2 and 3.
 In real life, a tiny handful of other components (typically diodes and capacitors) are 
necessary to make things work smoothly in a computer memory context. These 
components are not necessarily little gizmos connected by wires to the outside of the 
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transistor (although in early transistorized computers they were), but are now cut from the 
same silicon crystal the transistor itself is cut from, and occupy almost no space at all. 
Taken together, the transistor switch and its support components are called a memory cell. 
I've hidden the electrical complexity of the memory cell within an appropriate black-box 
symbol in Figure 2.1.
A memory cell keeps current flow through it to a minimum, because electrical current 
flow produces heat, and heat is the enemy of electrical components. The memory cell's 
circuit is arranged so that if you put a tiny voltage on its input pin and a similar voltage on 
its select pin, a voltage will appear and remain on its output pin. That output voltage will 
remain in its set state until you take away the voltage from the cell as a whole, or remove 
the voltage from the input pin while putting a voltage on the select pin.
 

 
The "on" voltage being applied to all of these pins is kept at a consistent level. (Except, of 
course, when it is removed entirely.) In other words, you don't put 12 volts on the input 
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pin and then change that to 6 volts or 17 volts. The computer designers pick a voltage and 
stick with it. (Most memory cells operate at a constant 5 volts, although many operate at 
12 volts.) The pattern is binary in nature: you either put a voltage on the input pin or you 
take away the voltage entirely. Likewise, the output pin either holds a fixed voltage or no 
voltage at all.
We apply a code to that state of affairs: the presence of voltage indicates a binary 1, and 
the lack of voltage indicates a binary 0. This code is arbitrary. We could as well have said 
that the lack of voltage indicates a binary 1 and vise versa (and computers have been built 
this way for obscure reasons) but the choice is up to us. Having the presence of something 
indicate a binary 1 is more natural, and that is the way things have evolved in the 
computing mainstream.
A single computer memory cell, such as the transistor-based one we're speaking of here, 
holds one binary digit, either a 1 or a 0. This is called a bit. A bit is the indivisible atom of 
information. There is no half-a-bit, and no bit-and-a-half. (This has been tried. It works 
badly. But that didn't stop it from being tried.)
A bit is a single binary digit, either 1 or 0.
 
The Incredible Shrinking Bit
 
One bit doesn't tell us much. To be useful, we need to bring a lot of memory cells 
together. Transistors started out small (the originals from the Fifties looked a lot like 
stove-pipe hats for tin soldiers) and went down from there. The first transistors were 
created from little chips of silicon crystal about an eighth of an inch square. The size of 
the crystal chip hasn't changed outrageously since then, but the transistors have shrunk 
incredibly.
In the beginning, one chip held one transistor. In time, the designers crisscrossed the chip 
into four equal areas, making each area an independent transistor. From there it was an 
easy jump to adding the other minuscule components needed to turn a transistor into a 
computer memory cell.
The silicon chip was a tiny and fragile thing, and was encased in an oblong molded plastic 
housing, like a stick of Dentyne gum with metal legs for the electrical connections.
What we had now was a sort of electrical egg carton: four little cubbyholes, each of which 
could contain a single binary bit. Then the shrinking process began: first 8 bits, then 16 
bits, then multiples of 8 and 16, all on the same tiny silicon chip. By the late Sixties, 256 
memory cells could be made on one chip of silicon, usually in an array of 8 cells by 32. In 
1976, my COSMAC ELF computer contained two memory chips. On each chip was an 
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array of memory cells 4 wide and 256 long. (Picture a real long egg carton.) Each chip 
could thus hold 1024 bits.
This was a pretty typical memory chip capacity at that time. We called them 1K RAM 
chips, because they held roughly 1000 bits of random access memory (RAM). The "K" 
comes from "kilobit," that is, one thousand bits. We'll get back to the notion of what 
"random access" means shortly.
Toward the mid-seventies, the great memory shrinking act was kicking into high gear. 1K 
chips were further divided into 4K chips containing 4096 bits of memory. The 4K chips 
were almost immediately divided into 16K chips (16,384 bits of memory). These 16K 
chips were the standard when the IBM PC appeared in 1981. By 1982 the chips had been 
divided once again, and 16K became 64K, with 65,536 bits inside that same little 
gumstick. Keep in mind that we're talking more than 65,000 transistors (plus other odd 
components) formed on a square of silicon about a quarter-inch on a side.
Come 1985 and the 64K chip had been pushed aside by its drawn-and-quartered child, the 
256K chip (262,144 bits). Chips always increase in capacity by a factor of 4 simply 
because the current-generation chip is divided into four equal areas, onto each of which is 
then placed the same number of transistors that the previous generation of chip had held 
over the whole silicon chip.
Today, in late 1992, that 256K chip is history. It was subdivided into four areas in the mid- 
to late Eighties, (producing a chip containing 1,048,576 bits) and again in 1990. Now, for 
our mainstream memory container we have the 4M chip. The "M" stands for "mega," 
which is Greek for million, and the critter has a grand total of 4,194,304 bits in its tummy, 
still no larger than that stick of Dentyne gum.
Will it stop here? Ha. The Japanese, patrons of all things small, have begun making 
quantities of chips containing 16,777,216 bits. Some physicists think that even the 
Japanese will have trouble dividing that little wafer one more time, since the transistors 
are now so small that it gets hard pushing more than one electron at a time through them. 
At that point some truly ugly limitations of life called quantum mechanics begin to get in 
the way. More than likely, the next generation of chips will be stacked vertically for 
greater capacity. Many people are off in the labs looking for other tricks, and don't make 
the oft-made mistake of assuming that they won't find any.
 
Random Access
 
These chips are called RAM chips, because they contain random access memory. 
Newcomers sometimes find this a perplexing and disturbing word, because random often 
connotes chaos or unpredictability. What the word really means is at random, meaning 
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you can reach into a megabit memory chip and pick out any of those million-plus bits 
without disturbing any of the others, just as you might select one book at random from a 
library's many shelves of thousands of books without sifting through them in order.
Memory didn't always work this way. Before memory was placed on silicon chips, it was 
stored on magnetic gadgets of some kind, usually rotating drums or disks distantly related 
to the hard drives we use today. Rotating memory sends a circular collection of bits 
beneath a magnetic sensor. The bits pass beneath the sensor one at a time, and if you miss 
the one you want, like a Chicago bus in January, you simply have to wait for it to come 
by again. These are serial access devices. They present their bits to you, in a fixed order, 
one at a time, and you have to wait for the one you want to come up in its order.
No need remembering that; we've long since abandoned serial-access devices for main 
computer memory. We still use such systems for mass storage, as I'll describe a few 
pages down the road.
Random access works like this: Inside the chip, each bit is stored in its own memory cell, 
identical to the memory cell diagrammed in Figure 2.1. Each of the however-many 
memory cells has a unique number. This number is a cell's (and hence a bit's) address. It's 
like the addresses on a street: The bit on the corner is #0 Silicon Alley, and the bit next 
door is #1, and so on. You don't have to knock on the door of Bit #0 and ask which bit it 
is, then go to the next door and ask there too, until you find the bit you want. If you have 
the address, you can zip right down the street and park square in front of the bit you 
intend to visit.
Each chip has a number of pins coming out of it. (This is the computer room's equivalent 
of the Killer Rake: don't step on one in the dark!) The bulk of these pins are called 
address pins. One pin is called a data pin. (See Figure 2.2.) The address pins are electrical 
leads that carry a binary address code. Your address is a binary number, expressed in 1s 
and 0s only. You apply this address to the address pins by encoding a binary 1 as five 
volts and a binary 0 as zero volts. Special circuits inside the RAM chip decode this 
address to one of the select inputs of the numerous memory cells inside the chip. For any 
given address applied to the address pins, only one select input will be raised to five volts, 
thereby selecting that cell.
Depending on whether you intend to read a bit or write a bit, the data pin is switched 
between the memory cells' input or output, as shown in Figure 2.2.
But that's all done internally to the chip. As far as you on the outside are concerned, once 
you've applied the address to the address pins, voila! The data pin will contain a voltage 
representing the value of the bit you requested. If that bit contained a binary 1, the data 
pin will contain a 5 volt signal; otherwise, the binary 0 bit will be represented by 0 volts.
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Memory Access Time
 
Chips are graded by how long it takes for the data to appear on the data pin after you've 
applied the address to the address pins. Obviously, the faster the better, but some chips 
(for electrical reasons that again are difficult to explain) are faster than others.
The times seem so small as to be insignificant: 100 nanoseconds is a typical memory chip 
access time. A nanosecond is a billionth of a second, so 100 nanoseconds is one ten-
millionth of a second. Great stuff—but to accomplish anything useful, a computer needs 
to access memory hundreds of thousands or millions of times. It adds up. If you become 
an expert assembly language programmer, you will jump through hoops to shave the 
number of memory accesses your program needs to perform, because memory access is 
the ultimate limiting factor in a computer's performance. Michael Abrash, in fact, has 
published a whole book on doing exactly that: Zen of Assembly Language, which can be 
(badly) summarized in just these few words: Stay out of memory whenever you can! 
(You'll discover just how difficult this is soon enough.)
 
Bytes, Words, and Double Words
 
The days are long gone when a serious computer can exist on only one memory chip. My 
poor 1976 COSMAC ELF even needed at least two chips. Today's computers need 
dozens, or even hundreds of chips, regardless of the fact that today's chips hold megabits 
rather than the ELF's paltry 2,048 bits. Understanding how a computer gathers its 
memory chips together into a coherent memory system is critical when you wish to write 
efficient assembly-language programs. Whereas an infinity of ways exist to hook memory 
chips together, the system I'll describe here is that of the IBM PC type of computer, which 
includes the PC, XT, AT, PS/2, and a veritable plethora of clones.
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Our memory system must store our information. How we organize a memory system out 
of a hatful of memory chips will be dictated largely by how we organize our information.
The answer begins with this thing called a byte. The fact that the grandaddy of all 
computer magazines took this word for its title indicates its importance in the computer 
scheme of things. From a functional perspective, memory is measured in bytes. A byte is 
eight bits. Two bytes side-by-side are called a word, and two words side-by-side are 
called a double word. There are other terms like nybble and quad word, but you can do 
quite well with bits, bytes, words, and double words.
A bit is a single binary digit, 0 or 1.
A byte is eight bits side-by-side.
A word is two bytes side-by-side.
A double word is two words side-by-side.
Computers were designed to store and manipulate human information. The basic elements 
of human discourse are built from a set of symbols consisting of letters of the alphabet 
(two of each for upper- and lowercase), numbers, and symbols like commas, colons, 
periods, and exclamation marks. Add to these the various international variations on 
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letters like a and 6 plus the more arcane mathematical symbols, and you'll find that human 
information requires a symbol set of well over 200 symbols. (The symbol set used in all 
PC-style computers is given in Appendix A.)
Bytes are central to the scheme because one symbol out of that symbol set can be neatly 
expressed in one byte. A byte is eight bits, and 28 is 256. This means that a binary number 
eight bits in size can be one of 256 different values, numbered from 0 to 255. Because we 
use these symbols, most of what we do in computer programs is done in byte-sized 
chunks. In fact, except for the very odd and specialized kind of computers we are now 
building into intelligent food processors, no computer processes information in chunks 
smaller than one byte. Most computers today, in fact, process information either a word or 
a double word at a time.
 
Pretty Chips All in a Row
 
One of the more perplexing things for beginners to understand is that today's standard 1 
megabit RAM chip does not even contain one byte...just 1,048,576 bits. Remember that 
today's RAM chips have only one data pin. To store a byte you would have to store eight 
bits in sequence at eight consecutive addresses, and to retrieve that byte you would have 
to retrieve eight bits in sequence. Since it takes 80 nanoseconds at very least to store a bit 
in one of those chips, storing a byte would take at least 640 nanoseconds, and in practical 
terms, close to a microsecond, which (believe it!) is far, far too slow to be useful.
What is actually done is to distribute a single stored byte across eight separate RAM 
chips, with one bit from the stored byte in each chip, at the same address across all chips. 
This way, when a single address is applied to the address pins of all eight chips, all eight 
bits appear simultaneously on the eight output pins, and we can retrieve a full byte in 80 
nanoseconds instead of 640 nanoseconds. See Figure 2.3.
We call this row of eight chips a bank of memory, and how much memory is contained in 
a bank depends on the type of chips incorporated in the bank. A row of eight 64K chips 
contains 64K bytes—8 x 64K or 512K bits. (Remember, computers deal with information 
a minimum of 8 bits at a time.) A row of eight 256K chips contains 256K bytes, and so 
on.
This is the system used in the IBM PC, the XT, and their clones. The IBM AT and its 
clones process information a word at a time, so their memory systems use a row of 16 
memory chips to store and retrieve a full 16-bit word at once, Furthermore, the newest 
generation of IBM-compatible machines using the 0386 and 80486 processors handles 
memory a double word at a time, so those machines access a row of 32 memory chips at a 
time. (A double word consists of 4 bytes, or 32 bits.)
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 Actual computers combine various combinations of memory banks in various ways to 
produce different amounts of memory. I'll take up the subject again when we begin 
talking specifically about the PC in Chapter 6.
 
2.3 The Shop Foreman and the Assembly Line
 
The gist of the previous section was only this: electrically, your computer's memory 
consists of one or more rows of memory chips, each chip containing a large number of 
memory cells consisting of transistors and other minuscule electrical components. Most 
of the time, it's just as useful to forget about the transistors and even the rows of chips to 
avoid confusion. (My high school computer science teacher was not entirely wrong...but 
he was right for the wrong reasons.)
It's better in most cases to envision a very long row of byte-sized containers, each with 
its own address. Don't assume that, in computers that process information a word at a 
time, only words have addresses; it is a convention with the PC architecture that every 
byte has its own address regardless of how many bytes are pulled from memory at one 
time. 
Every byte of memory in the computer has its own unique address, even in computers that 
process two bytes, or even four bytes, of information at a time.
If this seems counterintuitive, yet another metaphor will help. When you go to the library 
to take out the three volumes of Tolkien's massive fantasy The Lord of the Rings, you'll 
find that each of the three volumes has its own card catalog number (essentially that 
volume's address in the library) but that you take all three down at once and process them 
as a single entity. If you really want to, you can take only one of the books out at a time, 
but to do so will require yet another trip to the library to get the next volume, which is 
wasteful of your time and effort.
So it is with 16-bit or 32-bit computers. Every byte has its own address, but when a 16-bit 
computer accesses a byte, it actually reads two bytes starting at the address of the 
requested byte. You can use the second byte or ignore it if you don't need it—but if you 
later decide you do need the second byte you'll have to access memory again to get it. 
Best to save time and get it all at one swoop.
(There is an additional complication here involving whether addresses are odd or even or 
divisible by 4 or 16.. .but we'll cover that in detail later on.)
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The Honcho Chip
 
All of this talk about reading things from memory and writing things to memory has thus 
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far carefully skirted the question of who is doing the reading and writing. The who is 
almost always a single chip, and a remarkable chip it is, too: the central processing unit, 
or CPU. If you are the president and CEO of your personal computer, the CPU is your 
shop foreman. The foreman sees that your orders are carried out down in the chips where 
the work gets done.
Some would say that the CPU is what actually does the work, but that's an 
oversimplification. Plenty of real work is done in the memory system, and especially in 
what are called peripherals, like video display boards, serial and parallel ports, and 
modems. So while the CPU does do a good deal of the work, it parcels out quite a bit to 
other components within the computer. I think its role of foreman outweighs its role as 
assembly-line grunt.
The CPU chips used in IBM-compatible computers all come from a company called 
Intel, which pretty much invented the single-chip CPU back in the early seventies. Intel's 
first bang-up success was the 8080 chip, which helped trigger the personal computer 
revolution after it was chosen for the seminal MITS Altair 8800 computer introduced in 
Popular Electronics, in December of 1974. The 8080 was an eight-bit computer because 
it accessed memory eight bits (one byte) at a time. The 8080 is now pretty well extinct, 
but it gave birth to a pair of next-generation CPU chips called the 8086 and the 8088. 
These two chips are nearly identical except that the 8088 is an 8-bit CPU, while the 8086 
is a 16-bit CPU, and accesses memory a word (two bytes) at a time. IBM chose the 8088 
for its original 1981 IBM PC and later the XT, but the 8086 never made it into a true IBM 
computer until the somewhat forgettable PS/2 models 25 and 30 appeared in 1987.
Intel produced yet another generation of CPU chip in 1983, and by 1984 the 80286 
became the beating heart of the enormously successful PC/AT. The 80286 is a more 
powerful 16-bit CPU, capable of everything the 8086 can do, plus numerous additional 
things. Early 1986 brought Intel's 80386 CPU chip to market. The 80386 upped the ante 
by being a 32-bit machine, which can read and write memory a double word (four bytes) 
at a time. The 80386 is enormously more powerful than the 80286, and a great deal 
faster. The newest Intel chip, the 80486, is more powerful and faster still. (I'll tell the 
story of the CPU wars in more detail in Chapter 11, once we've covered some more 
essential background.)
Many experts think that 32 bits is an ideal format for CPU memory access, and that 
increasing memory access beyond 32 bits at a time would begin to slow things down.
And in this business, you do not want to slow things down.
 
Talking to Memory
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All the assorted Intel CPUs operate at varying speeds with various features, but they are 
conceptually identical, and this discussion will apply to all of them.
The CPU chip's most important job is to communicate with the computer's memory 
system. Like a memory chip, a CPU chip is a small square of silicon onto which a great 
many transistors have been placed. The fragile silicon chip is encased in a plastic or 
ceramic housing with a large number of pins protruding from it. Like the pins of memory 
chips, the CPU's pins transfer information encoded as voltage levels. Five volts indicate a 
binary 1, and zero volts indicate a binary 0.
Like the memory chips, the CPU chip has a number of pins devoted to memory addresses, 
and these pins are connected directly to the computer's banks of memory chips. When the 
CPU desires to read a byte (or a word or double word) from memory, it places the 
memory address of the byte to be read on its address pins, encoded as a binary number. 
About 100 nanoseconds later, the byte appears (also as a binary number) on the data pins 
of the memory chips. The CPU chip also has data pins, and it slurps up the byte presented 
by the memory chips through its own data pins. See Figure 2.4.
The process, of course, also works in reverse: to write a byte into memory, the CPU first 
places the memory address where it wants to write onto its address pins. Nanoseconds 
later, it places the byte it wishes to write into memory on its data pins. The memory chips 
obediently store the byte inside themselves at the requested address.
 
Riding the Bus
 
This give-and-take between the CPU and the memory system represents the bulk of what 
happens inside your computer. Information flows from memory into the CPU and back 
again. Information flows in other paths as well. Your computer contains additional 
devices called peripherals that are either sources or destinations (or both) for information.
Video display boards, disk drives, printer ports, and modems are the most common 
peripherals in PC-type computers. Like the CPU and memory, they are all ultimately 
electrical devices. Most modern peripherals consist of one or two large chips and several 
smaller chips that support the larger chips. Like both the CPU and memory chips, these 
peripheral devices have both address pins and data pins. Some, video boards in particular, 
have their own memory chips.
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Peripherals "talk" to the CPU (i.e., pass the CPU data or take data from the CPU) and 
sometimes to one another. These conversations take place across the electrical 
connections, linking the address pins and data pins that all devices in the computer have 
in common. These electrical lines are called a data bus, and form a sort of party line 
linking the CPU with all other parts of the computer. There is an elaborate system of 
electrical arbitration that determines when and in what order the different devices can use 
this party line to talk with one another. But it happens the same way: an address is placed 
on the bus, followed by a byte (or word or double word) of data. Special signals go out on 
the bus with the address to indicate whether the address is of a location in memory, or of 
one of the peripherals attached to the data bus. The address of a peripheral is called an I/O 
address to differentiate between it and a memory address such as we've been discussing 
all along.
The data bus is the major element in the expansion slots present in most PC-type 
computers, and most peripherals are boards that plug into these slots. The peripherals talk 
to the CPU and to memory through the data bus connections brought out as electrical pins 
in the expansion slots.
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The Foreman's Pockets
 
Every CPU contains very few data storage cubbyholes called registers. These registers 
are at once the foreman's pockets and the foreman's workbench. When the CPU needs a 
place to tuck something away for awhile, an empty register is just the place. The CPU 
could always store the data out in memory, but that takes a lot of time. Because the 
registers are actually inside the CPU, placing data in a register or reading it back again is 
fast.
But more important, registers are the foreman's workbench. When the CPU needs to add 
two numbers, the easiest and fastest way is to place the numbers in two registers and add 
the two registers together. The sum (in usual CPU practice) replaces one of the two 
original numbers that were added, but after that, the sum could then be placed in yet 
another register, or added to another number in another register, or stored out in memory, 
or any of a multitude of other operations.
The CPU's immediate work-in-progress is held in temporary storage containers called 
registers.
Work involving registers is always fast, because the registers are within the CPU and very 
little movement of data is necessary.
Like memory cells and, indeed, like the entire CPU, registers are made out of transistors. 
But rather than having numeric addresses, registers have names like AX or DI. To make 
matters even more complicated, while all CPU registers have certain common properties, 
most registers have unique special powers not shared by other registers. Understanding 
the ways and the limitations of CPU registers is something like following the Watergate 
hearings: there are partnerships, alliances, and a bewildering array of secret agendas that 
each register follows. I'll be devoting most of a chapter to registers later in this book.
Most peripherals also have registers, and peripheral registers are even more limited in 
scope than CPU registers. Their agendas are quite explicit and in no way secret. This does 
not prevent them from being confusing, as anyone who has tried programming the EGA 
video board at a register level will attest.
 
The Assembly Line
 
If the CPU is the shop foreman, then the peripherals are the assembly line workers, and 
the data bus is the assembly line itself. (Unlike most assembly lines, however, the 
foreman works the line as hard or harder than the rest of his crew!)
As an example: information enters the computer through a modem peripheral, which 
assembles bits received from the telephone line into bytes of data representing characters 
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and numbers. The modem then places the assembled byte onto the bus, from which the 
CPU picks it up, tallies it, and then places it back on the data bus. The video board then 
retrieves the byte from the bus and writes it into video memory so that you can see it on 
your screen.
Obviously, lots is going on inside the box. Continuous, furious communication along the 
data bus between CPU, memory, and peripherals is what accomplishes the work that the 
computer does. The question then arises: who tells the foreman and crew what to do? You 
do. How do you do that? You write a program. Where is the program? It's in memory, 
along with all the rest of the data stored in memory. In fact, the program is data, and that 
is the heart of the whole idea of programming as we know it.
 
2.4 The Box that Follows a Plan
 
Finally we come to the essence of computing: the nature of programs and how they direct 
the CPU to control the computer.
We've seen how memory can be used to store bytes of information. These bytes are all 
binary codes, patterns of 1s and 0s stored as minute electrical voltage levels and making 
up binary numbers. We've also spoken of symbols, and how certain binary codes may be 
interpreted as meaning something to us human beings, things like letters, digits, 
punctuation, and so on.
Just as the table in Appendix A contains a set of codes and symbols that mean something 
to us, there is a set of codes that mean something to the CPU. These codes are called 
machine instructions, and their name is evocative of what they actually are, instructions to 
the CPU.
Let's take an example or two from the venerable 8088 CPU. The binary code 01000000 
(40H) means something to the 8088 chip. It is an order: add one to register AX. That's 
about as simple as they get. Most machine instructions occupy more than a single byte. 
The binary codes 11010110 01110011 (OB6H 73H) comprise another order: load the 
value 73H into register DH. On the other end of the spectrum, the binary codes 11110011 
10100100 (OF3H OA4H) direct the CPU to do the following (take a deep breath): Begin 
moving the number of bytes specified in register CX from the 32-bit address stored in 
registers DS and SI to the 32-bit address stored in registers ES and DI, updating the 
address in both SI and DI after moving each byte, and also decreasing CX by one each 
time, stopping when CX becomes 0.
The rest of the several hundred instructions understood by the Intel CPUs fall in and 
among those three in terms of complication and power. There are instructions that 
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perform arithmetic operations (addition, subtraction, multiplication, and division) and 
logical operations (AND, OR, etc.), and instructions that move information around 
memory or exchange information with peripherals.
 
Fetch and Execute
 
A computer program is nothing more than a table of these machine instructions stored in 
memory. There's nothing special about the table nor where it is positioned in memory; it 
could be anywhere, and the bytes in the table are nothing more than binary numbers.
The binary numbers comprising a computer program are special only in the way that the 
CPU treats them. When the CPU is started running, it fetches a byte from an agreed-upon 
address in memory. This byte is read from memory and loaded into the CPU. The CPU 
examines the byte, and then begins performing the task that the fetched machine 
instruction directs it to do. In many cases, this means fetching another byte (or another 
two or three) from memory to complete the machine instruction before the real work 
begins.
For example, if it fetches the binary code 40H (as mentioned above), it immediately adds 
one to the value stored in register AX. But if it fetches the binary code OB6H, it knows it 
must go back out to memory and fetch an additional byte to complete the instruction. 
When both bytes are in the CPU, then the CPU takes the required action, which is to load 
the second byte into register DH.
As soon as it finishes executing an instruction, the CPU goes out to memory and fetches 
the next byte in sequence. Inside the CPU is a register called the instruction pointer that 
quite literally contains the address of the next instruction to be executed. Each time an 
instruction is completed, the instruction pointer is updated to point to the next instruction 
in memory.
So the process goes: fetch and execute; fetch and execute. The CPU works its way 
through memory, with the instruction pointer register leading the way. As it goes it 
works, moving data around in memory, moving values around in registers, passing data to 
peripherals, and "crunching" data in arithmetic or logical operations.
Computer programs are lists of binary machine instructions stored in memory. They are 
no different from any other list of data bytes stored in memory except in how they are 
treated when fetched by the CPU.
 
The Foreman's Innards
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I made the point earlier that machine instructions are binary codes. This is something we 
often gloss over, yet to understand the true nature of the CPU, we have to step away from 
the persistent image of machine instructions as numbers. They are not numbers. They are 
binary patterns designed to throw electrical switches.
Inside the CPU are a very large number of transistors. Some small number of those 
transistors go into making the foreman's pockets—machine registers for holding 
information. The vast bulk of those transistors (which now number over a million in 
CPUs like the 80386) are switches connected to other switches, which are connected to 
still more switches in a mind-numbing complex network.
 
The machine instruction 01000000 (40H) directs the CPU to add 1 to the value stored in 
register AX. It's very instructive of the true nature of computers to think about the 
execution of machine instruction 01000000 in this way: the CPU fetches a byte 
containing the code 01000000 from memory. Once the byte is fully within the CPU, the 
CPU in essence lets the machine instruction byte push eight transistor switches. The lone 
1 digit pushes its switch "up" electrically; the rest of the digits, all 0s, push their switches 
"down."
In a chain reaction, those eight switches flip the states of first dozens, then hundreds, then 
thousands, and finally tens of thousands of tiny transistor switches within the CPU. It isn't 
random—this furious moment of electrical activity within the CPU operates utterly 
according to patterns etched into the silicon of the CPU by Intel's teams of engineers. 
Ultimately—perhaps after hundreds of thousands of individual switch throws—the value 
contained in register AX is suddenly one greater than it was before.
How this happens is difficult to explain, but you must remember that any number within 
the CPU can also be looked at as a binary code, including numbers stored in registers. 
Also, most switches within the CPU contain more than one "handle." These switches are 
called gates and work according to the rules of logic. Perhaps two, or three, or even more 
"up" switch throws have to simultaneously arrive at a particular gate in order for one 
"down" switch throw to pass through that gate.
These gates are used to build complex internal machinery within the CPU. Collections of 
gates can add two numbers in a device called an adder, which again is nothing more than 
a crew of dozens of little switches working together first as gates and then as gates 
working together to form an adder.
As part of the cavalcade of switch throws kicked off by the binary code 01000000, the 
value in register AX was dumped trap-door style into an adder, while at the same time the 
number 1 was fed into the other end of the adder. Finally, rising on a wave of switch 
throws, the new sum emerges from the adder and ascends back into register AX—and the 
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job is done.
The foreman of your computer, then, is made of switches—just like all the other parts of 
the computer. The chap contains a mind-boggling number of such switches, 
interconnected in even more mind-boggling ways. But the important thing is that whether 
you are boggled or (like me on off days) merely jaded by it all, the CPU, and ultimately 
the computer, does what we tell it to. We set up a list of machine instructions as a table in 
memory, and then, by God, that mute iron brick comes alive and starts earning its keep.
 
Changing Course
 
The first piece of genuine magic in the nature of computers is that a string of binary codes 
in memory tells the computer what to do, step by step. The second piece of that magic is 
really the jewel in the crown. There are machine instructions that change the order in 
which machine instructions are fetched and executed.
In other words, once the CPU has executed a machine instruction that does something 
useful, the next machine instruction may tell the CPU to go back and play it again—and 
again, and again, as many times as necessary. The CPU can keep count of the number of 
times that it has executed that particular instruction or list of instructions, and keep 
repeating them until a prearranged count has been met.
Or the CPU can arrange to skip certain sequences of machine instructions entirely if they 
don't need to be executed at all.
What this means is that the list of machine instructions in memory does not necessarily 
begin at the top and run without deviation to the bottom. The CPU can execute the first 
fifty or a hundred or a thousand instructions, then jump to the end of the program—or 
jump back to the start and begin again. It can skip and bounce up and down the list like a 
stone tossed over a calm pond. It can execute a few instructions up here, then zip down 
somewhere else and execute a few more instructions, then zip back and pick up where it 
left off, all without missing a beat or even wasting too much time.
How is this done? Recall that the CPU contains a register that always contains the address 
of the next instruction to be executed. This register, the instruction pointer, is not 
essentially different from any of the other registers in the CPU. Just as a machine 
instruction can add one to register AX, another machine instruction can add (or subtract) 
some number from the address stored in the instruction pointer. Add one hundred to the 
instruction pointer, and the CPU will instantly skip one hundred bytes down the list of 
machine instructions before it continues. Subtract one hundred from the address stored in 
the instruction pointer, and the CPU will instantly jump back one hundred bytes up the 
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machine instruction list.
And finally, the third whammy: the CPU can change its course of execution based on the 
work it has been doing. The CPU can "decide" whether or not to execute a given 
instruction or group of instructions, based on values stored in memory, or based on the 
state of special one-bit CPU registers called flags. The CPU can count up how many 
times it needs to do something, and then do that something that number of times.
So not only can you tell the CPU what to do, you can tell it where to go. Better, you can 
sometimes let the CPU, like a faithful bloodhound, sniff out the best course forward in the 
interest of getting the work done the quickest possible way.
Back in Chapter 0, I spoke of a computer program being a sequence of steps and tests. 
Most of the machine instructions understood by the CPU are steps, but others are tests. 
The tests are always two-way tests, and in fact, the choice of what to do is always the 
same: jump or don't jump. That's all. You can test for any of numerous different 
conditions, but the choice is always one jumping to another place in the program, or just 
keep truckin' along.
 
The Plan
 
I can sum it all up by borrowing one of the most potent metaphors for computing ever 
uttered: the computer is a box that follows apian. These are the words of Ted Nelson, 
author of the uncanny book ComputerLib/Dream Machines, and one of those very rare 
people who have the infuriating habit of being right most of the time.
You write the plan. The computer follows it by passing the instructions, byte by byte, to 
the CPU. At the bottom of it, the process is a hellishly involved electrical chain reaction 
involving tens of thousands of switches composed of hundreds of thousands or even 
millions of transistors.
This plan, this list of machine instructions in memory, is your assembly-language 
program. The whole point of this book is to teach you to correctly arrange machine 
instructions in memory for the use of the CPU.
With any luck at all, by now you'll have a reasonable conceptual understanding of both 
what computers do and what they are. It's time to start looking more closely at the nature 
of the operations that machine instructions force the CPU to do.
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3.1 Nude with Bruises and Other Perplexities
 
Years ago (back in the Sixties; had to be!), I recall reading about a comely female artist 
who produced her oil paintings by the intriguing process of rolling naked on a tarp 
splattered with multicolored oil paint, and then throwing herself against a canvas taped to 
the studio wall. (I can see the headline now: 'NUDE WITH BRUISES DRAWS RECORD 
PRICE AT NY AUCTION...)
I've seen people write programs this way. The BASIC language makes it easy: you roll in 
an intoxicating collection of wild and powerful program statements, and then smear them 
around on the screen until something works. And something invariably does work, no 
matter how little thought goes into the program's design. BASIC is like that. It's "moron-
friendly," and will stoop to whatever level of carelessness goes into a program's 
preparation.
The programs that result, while workable in that they don't crash the machine, can take 
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seven seconds to paint a screen, or an hour and a half to sort a database with 150 check 
records in it.
You can't paint Nude with Bruises in assembly language. Trust me.
 
The Sears Catalog Fallacy
 
But there are other perfectly proper programming paradigms that won't work with 
assembly language, either. One of these models is commonly used with my own beloved 
Turbo Pascal: decide what you want to do, sketch out a design based on a reasonable 
amount of forethought, and then go hunting through a veritable Sears catalog of toolbox 
products looking for stock procedures like:
 
SearchDataFlleForFirstRecordBeginningWithStringAndDisplayInRed
 
Basically, this method glues together other people's canned procedures into programs 
that aren't exactly canned, but are more or less polybagged. Which is OK — I do it all the 
time. I also eat at Burger King a couple of times a week, because it's quick and cheap — 
and because I get hungry no matter how hard I try not to. When I need a software tool in 
a bad way and just can't get around not having it, I look for the quickest possible way of 
producing it.
(As an interesting side note, I once produced a necessary utility — my JRead utility — 
by starting with Borland's FirstEd example editor from their Editor Toolbox, and cutting 
things out of it until the program did what I needed. I ended up writing only about 20 
lines of new code, all tolled. It was programming in reverse — you can't do it all the 
time, but this time it allowed me to make a solid, useful tool in about an hour and a half. 
Keep your eyes open for opportunities like that.)
There is an occasional toolbox of assembly language routines, but hardly enough to 
avoid having to think too much about the task at hand — which is what many people 
think by way of the Sears catalog fallacy.
I started this chapter this way as a warning: you can't write assembly-language programs 
by trial and error, nor can you do it by letting other people do your thinking for you. It is 
a complicated and tricky process compared to either BASIC or we-do-it-all-for-you 
languages like Turbo Pascal. You have to pay close attention. You have to read the sheet 
music. And, most of all, you have to practice.
 
3.2 DOS and DOS Files
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In the previous chapter, I defined what a computer program is, from the computer's 
perspective. It is, metaphorically, a long journey in very small steps. A long list of binary 
codes direct the CPU to do what it must to accomplish the job at hand. These codes are, 
even in their hexadecimal shorthand form, gobbledegook to us here in the land of the 
living. Here is a perfect example:
 
FE  FF A2 37 4C  OA 29 00 91  CB 60 61  E8  E3 20 00 A8 00 B8 29  IF  FF 69  55 7B
F4   F8  5B  31
 
Is this a real program or isn't it? You'd probably have to ask the CPU, unless you were a 
machine-code maniac of the kind that hasn't been seen since 1977. (It isn't.)
But the CPU has no trouble with programs presented in this form. In fact, the CPU can't 
handle programs any other way. The CPU simply isn't equipped to understand a string of 
characters like
 
LET  X = 42
or even something we out here would call assembly language:
 
MOV  AX,42
To the CPU, it's binary only, and hold the text, please, ma'am.
So while it is possible to write computer programs in pure binary (I have done it, but not 
since 1977) it's unpleasant work, and will take you until the next Ice Age to accomplish 
anything useful.
The process of developing assembly-language programs is a path that runs from what we 
call source code that you can read, to something called machine code that the CPU can 
execute. In the middle is a resting-point called object code that we'll take up a little later.
The process of creating true machine-code programs is one of translation.
You must start with something that you and the rest of us can read and
understand, and then somehow convert that to something the CPU can understand and 
execute. Before examining either end of that road, however, we need to understand a 
little more about the land on which the road is built.
 
The God Above, the Troll Below
 
Most of all, we need to understand DOS. Some people look upon DOS as a god; others 
as a kind of troll. In fact, DOS is a little of both. Mostly what you must put behind you is 
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the common notion that DOS is a part of the machine itself and somehow resides in the 
same sort of silicon as the CPU. Not so! DOS is a computer program of an only slightly 
special nature, called an operating system.
In part, an operating system is a collection of routines that do nothing but serve the 
components of the computer itself. By components I mean things like disk drives, 
printers, and so on. DOS acts something like a troll living under the bridge to your disk 
drive. You tell the troll what you want to do with the disk drive, and the troll does it, bis 
way, and at some cost (in machine cycles) to you.
You could write a program to handle every little aspect of disk operation itself (many 
game programs do exactly that) but it would be more trouble than it's worth, because 
every program that runs on a computer needs to access the disk drives. And regardless of 
how grumpy the troll is, he does get the job done, and (assuming your disk drives aren't 
falling-down damaged) does it right every time. Can you guarantee that you know all 
there is to know about running a disk drive? Forgive me if I have my doubts. That is, in 
my opinion, what trolls are for.
The other (and more interesting thing) that operating systems do is run programs. It is 
here that DOS seems more godlike than troll-like. When you want to run a program on 
your computer, you type its name at the DOS command line. DOS goes out and searches 
one or more disk drives for the named program, loads it into memory at a convenient 
spot, sets the instruction pointer to the start of the program, and boots the CPU in the rear 
to get it going.
DOS then patiently waits for the program to run its course and stop. When the program 
stops, it hands the CPU obediently back to DOS, which again tilts a hand to its ear and 
listens for your next command from the command line.
So as programmers, we use DOS two ways: one is as a sort of toolkit; an army of trolls, 
each of which can perform some service for your program, saving your program that 
effort. The other is as a means of loading a program into memory and getting it going, 
and then catching the machine gracefully on the rebound when your program is through.
I'll be mentioning DOS again and again in this book. Everywhere you look in assembly 
language, you're going to see the old troll's face. Get used to it.
 
DOS Files: Magnetic Memory
 
Very simply, DOS files are memory banks stored on a magnetic coating rather than 
inside silicon chips. A DOS file contains some number of bytes, stored in a specific 
order. One difference from RAM memory is that DOS files stored on disk are sequential-
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access memory banks.
A disk (floppy or hard) is a circular platform coated with magnetic plastic of some sort. 
In a floppy disk drive, the platform is a flexible disk of tough plastic; in a hard disk the 
platform is a rigid platter of aluminum metal. Data is stored as little magnetic 
disturbances on the plastic coating in a fashion similar to that used in audio cassettes and 
VCRs. A sensor called a read/write head sits very close beside the rotating platform, and 
waits for the data to pass by.
A simplified illustration of a rotating disk device is shown in Figure 3.1. The area of the 
disk is divided into concentric circles called tracks. The tracks are further divided 
radially into sectors. A sector (typically containing 512 bytes) is the smallest unit of 
storage that can be read from or written to at one time. A DOS disk file consists of one or 
more sectors containing the file's data.
The read/write head is mounted on a sliding shaft that is controlled by a solenoid 
mechanism. The solenoid can move the head horizontally to position the head over a 
specific track. (In Figure 3.1, the head is positioned over track 2—counting from 0, 
remember!) However, once the head is over a particular track, it has to count sectors until 
the sector it needs passes beneath it. The tracks can be accessed at random, just like bytes 
in the computer's memory banks, but the sectors within a track must be accessed 
sequentially.
Perhaps the single most valuable service DOS provides is handling the headaches of 
distributing data onto empty sectors on a disk. Programs can hand sectors of data to 
DOS,
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one at a time, and let DOS worry about where on the disk they can be placed. Each sector 
has a number, and DOS keeps track of what sectors belong together as a file. The first 
sector in a file might be stored on track 3, sector 9; the second sector might be stored on 
track 0, sector 4, and so on. You don't have to worry about that. When you ask for sector 
0 of your file, DOS looks up its location in its private tables, goes directly to track 3, 
sector 9 and brings the sector's data back to you.
 
Binary Files
 
The data that is stored in a file is just binary bytes and can be anything at all. Files like 
this, where there are no restrictions on the contents of a file, are called binary files, 
because they can legally contain any binary code. Like all files, a binary file consists of 
some whole number of sectors, with each sector (typically) containing 512 bytes. The 
least space any file can occupy on your disk is 512 bytes; when you see the DOS DIR 
command tell you that a file has 17 bytes it in, that's the count of how many bytes are 
stored in that file. But like a walk-in closet with only one pair of shoes in it, the rest of 
the sector is still there, empty but occupying space on the disk.
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A binary file has no structure, but is simply a long series of binary codes divided into 
numbered groups of 512 and stored out on disk in a scheme that is best left to DOS to 
understand.
 
Text Files
 
If you've ever tried to use the TYPE command to display a binary file (like an .EXE or 
.COM file) to the screen, you've seen some odd things indeed. There's no reason for such 
files to be intelligible on the screen; they're intended for other "eyes," typically the 
CPU's.
There is a separate class of files that is specifically restricted to containing human-
readable information. These files are called text files because they contain the letters, 
digits, and symbols of which printed human information (text) is composed.
Unlike binary files, text files have a certain structure to them. The characters in text files 
are divided into lines. A line in a text file is defined not so much by what it contains as 
by how it ends. Two invisible characters called an end-of-line (or EOL) marker (or 
EOL) tag the end of a line. The EOL marker is not one character but two: the carriage 
return character (called CR by those who know and love it) followed by the linefeed 
character (similarly called LF). You don't see these characters on the screen as separate 
symbols, but you see what they do: they end the line. Anywhere a line ends in an 
ordinary DOS text file, you'll find a mostly invisible partnership of one CR character and 
one LF character hanging out. The first line in a text file runs from the first byte in the 
file to the first EOL marker; the second line starts immediately after the first EOL 
marker and runs to the second EOL marker, and so on. The text characters falling 
between two sequential EOL markers is considered a single line.
Why two characters to end a line? Long ago, there was (and still is at hamfests, lordy) an 
incredible mechanical nightmare called a teletype machine. These were invented during 
World War II as robot typewriters that could send written messages over long distances 
through electrical signals that could pass over wires. Returning the typing carriage to the 
left margin of the paper (carriage return) and feeding the paper up one line to expose the 
next clean line of paper to the typing carriage (line feed) are separate mechanical 
operations. A separate electrical signal was required to do each of these operations. 
Although I don't know why separate signals were necessary, it has carried over into the 
solid-state autumn of the 20th century in the form of those two characters, CR and LF. 
Not only is this a case of the tail wagging the dog; it is a case of the tail walking around 
twenty years after the poor dog rolled over and died.
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Figure 3.2 shows how CR and LF divide what might otherwise be a single meaningless 
string of characters into a structured sequence of lines. It's important to understand the 
structure of  a text file because that structure dictates how some important software tools 
operate, as I'll explain a little later.
The CR character is actually character 13 in the ASCII character set summarized in 
Appendix A. The LF character is character 10. They are two of a set of several invisible 
characters called whitespace, indicating their role in positioning text characters within 
the white space of a text page. The other whitespace characters include the space 
character (character 32) the tab character (character 9) and the form feed character 
(character 12), which can further divide a text file into pages.
Another character, the bell character (BEL) falls in between binary and text characters. 
When either displayed or printed, it signals that a tone should be sounded. Back in the 
old teletype days, the BEL character caused the teletype machine to ring its bell. BEL 
characters are allowed in text files, but are generally considered sloppy practice.
One more invisible character plays an important role in the structure of a text file: The 
end-of-file (EOF) marker character. Unlike EOL, EOF is a single character, ASCII 
character 26, sometimes written as Ctrl+Z because you generate the EOF character by 
holding down the Ctrl key then pressing the Z key.
By convention, the EOF marker is considered the last significant character in a text file, 
and DOS will ignore any characters following it, even if the file goes on for thousands of 
additional bytes. Those additional bytes will be ignored by the assembler and by most 
text editors.
An EOF marker can be mistakenly placed in the middle of a text file by some utilities. 
The most frequent source of false EOF markers comes from saving a text file to disk in a 
word processor program's "native" mode, which may write EOF characters and many 
other unprintable characters into a text file. Such native mode document files are not 
actually text files, but are binary files intended to be read only by that particular word 
processor.
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.
Text Editors
 
Manipulating a text file is done with a program called a text editor. A text editor is a 
word processor for program source code files. In its simplest form, a text editor works 
like this: you type characters at the keyboard and they appear on the screen. When you 
press the Enter key, an EOL marker is placed at the end of a line, and the cursor moves 
down to the next line.
A text editor also allows you to move the cursor into existing text to change, or edit, it. 
You can delete words and whole lines and, if necessary, replace them with new text.
Ultimately, when you are finished, you press a key like F2 or a key combination like 
Ctrl+KD, and the text editor saves the text you entered from the keyboard as a text file. 
This text file is the source code file you'll later present to the assembler for processing. 
Later on, you can load that same text file back into the editor to make repairs on faulty 
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lines that cause errors during assembly or bugs during execution.
A great many people still use their word processors as program text editors. WordStar, 
WordPerfect, and most of the others make acceptable text editors, as long as you 
remember to write your text file to disk in "non-document mode" or "ASCII text mode". 
Most true word processors embed countless strange little codes in their text files, to 
control things like margin settings, font selections, headers and footers, and soft page and 
line breaks. These codes are not recognized ASCII characters but binary values, and 
actually change the document file from a text file to a binary file. The codes will give 
the assembler fits. If you write a program source code file to disk as a document file, it 
will not assemble. See the word processor documentation for details on how to export a 
document file as a pure ASCII text file.
There are numerous text editor products on the market specifically for use by assembly-
language programmers. Two of the best are called Brief and Epsilon. A very good editor, 
Point, is often sold as an accessory with the Logitech Mouse. The Sidekick notepad 
editor makes a perfectly reasonable text editor for assembly-language work, as do the 
editors built into Microsoft's Quick language compilers and Borland's Turbo language 
compilers.
If you have no other editor, I have put one together and given it to various user groups 
around the country. If you can't find my JED editor anywhere, you can order it directly 
from me through the address on the flyleaf. JED works very much like the editor in the 
Turbo language products, because I produced it with the Turbo Pascal Editor Toolbox 
and Turbo Pascal 5.0.
Because there are so many different text editors in use among programmers, I'll be using 
JED as the example editor in this book. When you see a command line incorporating the 
name JED, keep in mind that you will have to substitute the name and command suite 
for whatever editor you may be using if you're not using JED.
Chapter 4 describes JED in detail. JED has the advantage (over editors like Brief and 
Epsilon) of being simple. I designed it for beginning assembly-language programmers, 
and if you've ever used any of the Turbo language products, JED will feel just like home.
 
3.3 Compilers and Assemblers
 
With that understanding of DOS files under your belt, you can come to understand the 
nature of two important kinds of programs: compilers and assemblers. Both fall into a 
category of programs we call translators.
A translator is a program that accepts human-readable source code files and generates 
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some kind of binary file. The binary file could be an executable program file that the 
CPU can understand, or it could be a font file, or a Compressed binary data file, or any of 
a hundred other types of binary file. 
Program translators are translators that generate machine instructions that the CPU can 
understand. A program translator reads a source code file line by line, and writes a binary 
file of machine instructions to accomplish the actions that the source code file describes. 
This binary file is called an object code file.
A compiler is a program translator that reads in source code files written in higher-level 
languages like C and Pascal and outputs object code files.
An assembler is a special type of compiler. It, too, is a program translator that reads 
source code files and outputs object code files for the CPU. However, an assembler is a 
translator designed specifically to translate what we call assembly language into object 
code. In the same sense that a language compiler for Pascal or C compiles a source code 
file to an object code file, we say that an assembler assembles an assembly language 
source code file to an object code file. The process, one of translation, is similar in both 
cases. An assembler, however, has an overwhelmingly important characteristic that sets 
it apart from other compilers: total control over the object code.
 
Assembly Language
 
Some people define assembly language as a language in which one line of source code 
generates one machine instruction. This has never been literally true, since some lines in 
an assembly-language source code file are instructions to the translator program and do 
not generate machine instructions. My own definition follows:
Assembly language is a language that allows total control over every individual machine 
instruction generated by the translator program.
Pascal or C compilers, on the other hand, make a multitude of invisible and inalterable 
decisions about how a given language statement will be translated into machine 
instructions. For example, the following single Pascal instruction assigns a value of 42 to 
a numeric variable called I:
I : = 42:
When a Pascal compiler reads this line, it outputs a series of four or five machine 
instructions that take the value 42 and store it in memory at a location encoded by the 
name I. Normally, you the programmer have no idea what these four or five instructions 
actually are, and you have utterly no way of changing them, even if you know a sequence 
of machine instructions that is faster and more efficient than the sequence the compiler 
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uses. The Pascal compiler has its own way of generating machine instructions, and you 
have no choice but to accept what it writes to disk to accomplish the Pascal statements in 
the source code file.
An assembler, however, has at least one line in the source code file for every machine 
instruction it generates. It has more lines than that to handle numerous other things, but 
every machine instruction in the final object code file is controlled by a corresponding 
line in the source code file.
Each of the CPU's many machine instructions has a corresponding mnemonic in 
assembly language. As the word suggests, these mnemonics began as devices to help 
programmers remember a particular machine instruction. For example, the mnemonic for 
machine instruction 9CH, which pushes the flags register onto the stack, is 
PUSHF—which is a country mile easier to remember than 9CH.
When you write your source code file in assembly language, you will arrange series of 
mnemonics, typically one mnemonic to a source code file text line. A portion of a source 
code file might look like this:
MOV        AH.12H                    :   12H  is Motor  Information Service
MOV        AL.03H                    :   03H  is  Return Current Speed function
XOR         BH.BH                    ;   Zero BH for  safety's  sake
INT           71H                         ;   Call   Motor Services  Interrupt
 
Here, the words MOV, XOR, and INT are the mnemonics. The numbers and other items 
to the immediate right of each mnemonic are that mnemonics's operands. There are 
various kinds of operands for various machine instructions, and some instructions (like 
PUSHF mentioned above) have no operands at all. We'll thoroughly describe each 
instruction's operands when we cover that specific instruction.
Taken together, a mnemonic and its operands are called an instruction. This is the word 
we'll be using most of the time in this book to indicate the human-readable proxy of one 
of the CPU's pure binary machine code instructions. To talk about the binary code 
specifically, we'll always refer to a machine instruction.
The assembler's most important job is to read lines from the source code file and write 
machine instructions to an object code file. See Figure 3.3.
 
Comments
 
To the right of each instruction is some information starting with a semicolon.
This information is called a comment, and its purpose should be plain: to cast
some light on what the associated assembly language instruction is for. The instruction 
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MOV AH,12H places the value 12H in register AH—but why? The comment provides 
the why.
Far more than in any other programming language, comments are critical to success of 
your assembly language programs. My own recommendation is every instruction in your 
source code files have a comment to its right.
  Structurally, a comment starts with the first semicolon on a line, and continues to the 
EOL marker at the end of that line. This is one instance where understanding how a text 
file

is structured is very important—because in assembly language, comments end at the ends 
of lines. In most other languages, comments are placed between pairs of comment 
delimeters like (* and *), and EOL markers at line ends are ignored.
.
Comments begin at semicolons, and end at an EOL marker
 
Beware "Write-Only" Source Code!
 
This is as good a time as any to point out a serious problem with assembly language. The 
instructions themselves are almost vanishingly brief, and while each instructions states 
what it does, there is nothing to indicate the context in which that instruction operates. 
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With some skill and discipline, you can build that context into your Pascal or BASIC 
code but in assembly language you can add context only through comments.
Without context, assembly language starts to turn into what we call "write-only" code. It 
can happen like this: on November 1, in the heat of creation, you crank out about 300 
instructions in a short utility program that does something important. You go back on 
January 1 to add a feature to the program and discover that you no longer remember how 
it works. The individual instructions are all correct, but knowledge of how it all came 
together and how it works from a height have vanished under Christmas memories and 
eight weeks of doing other things. In other words, you wrote it, but you can no longer 
read it, or change it. Voila! Write-only code.
Comment like crazy. Each individual line should have a comment, and every so often in 
a sizable source code file, take a few lines out and make entire lines into comments, 
explaining what the code is up to at this point in its execution.
While comments do take room in your source code disk files, they are not copied into 
your object code files, and a program with loads of comments runs exactly as fast as the 
same program with no comments at all.
You will be investing a considerable amount of time and energy into writing your 
assembly-language programs. It's more difficult than just about any other way of writing 
programs, and if you don't comment you may end up having to simply toss out hundreds 
of lines of inexplicable code and write it again, from scratch.
Work smart. Comment till you drop.
 
Object Code and Linkers
 
There's no reason at all why an assembler could not read a source-code file and write out 
a finished, executable program file as its object-code file. Most assemblers don't work 
this way, however. Object-code files produced by the major assemblers are a sort of 
intermediate step between source code and executable program. This intermediate step is 
a type of binary file called a relocatable object module, or (more simply) an .OBJ file, 
which is the file extension used by the assembler when it creates the file. For example, a 
source-code file called FOO.ASM would be assembled into an object file called 
FOO.OBJ. (The "relocatable" portion of the concept is crucial, but a little advanced for 
this chapter. More on it later.)
Because .OBJ files cannot be run as programs, an additional step, called linking, is 
necessary to turn these files into executable program files.
The reason for using .OBJ files as intermediate steps is that a single, large source-code 
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file may be divided, (using your text editor) into numerous smaller source-code files to 
keep them manageable in size and complexity. The assembler assembles the various 
component fragments separately, and the several resulting .OBJ files are woven together 
into a single, executable program file. This process is shown in Figure 3.4.
When you're first starting out, it's unlikely that you will be writing large programs spread 
out across several source-code files. Even if you only have a small source-code file that 
produces a single .OBJ file, you must still use the linker to change the single .OBJ file 
into an executable program file, as I'll explain a little later.
The larger your programs become, however, the more time can be saved by cutting them 
up into components. There are two reasons for this:

1.  You can move tested, proven routines into separate libraries and link them into any 
program you write that might need them. This way, you can reuse code over and 
over again and not build the same old wheels every time you begin a new 
programming project in assembly language.

2. Once portions of a program are tested and found to be correct, there's no need to 
waste time assembling them over and over again along with newer, untested 
portions of a program. Once a major program gets into the tens of thousands of 
lines of code (and you'll get there sooner than you might think), you can save an 
enormous amount of time by only assembling the portion of a program that you are 
currently working on, and linking the finished portions into the final program 
without reassembling the whole thing every time.

 
Executable Program Files
 
The linker program may be seen as a kind of translator program, but its major role is in 
combining multiple object code files into a single executable program file. This 
executable file is sometimes called an .EXE file from the file extension that the linker 
appends to the file's name. For example, a source code file named FOO.ASM would be 
assembled to an object code file named FOO.OBJ, which would then be processed by 
the linker to an executable program file called FOO.EXE.
The executable file can be run by typing its name (without the .EXE extension) at the 
DOS prompt (for example, C:\>FOO) and then pressing Enter.
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Real Assembler Products: MASM and TASM
 
For quite a few years there was only one assembler product in general use for the PC: 
Microsoft's Macro Assembler, better known as MASM. MASM is still an enormously 
popular program, and has established a standard for assembler operation on the PC. The 
source code in this book is all designed to be assembled by MASM.
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MASM is by no means perfect, however, and in 1988 Borland International released 
their answer to MASM in the form of Turbo Assembler, which was quickly christened 
TASM by syllable-conserving programmers. TASM is a great deal faster than MASM, 
and has numerous advanced features that I won't be able to utilize in this book. However, 
at the level we're describing in this book, MASM and TASM are totally compatible in 
that they will assemble identical source code files identically. MASM and TASM are the 
two most popular assemblers for Intel's 86-family of CPUs, and the information in this 
book can be applied to either assembler.
  I won't, however, attempt to describe the two assemblers' operation in detail. There are 
many differences in the ways the two assemblers function, and you'll have to delve into 
the manuals to get the full story. Very fortunately, when you're first starting out, there 
isn't a whole lot to using either TASM or MASM, and I'll describe the simple commands 
for invoking each assembler where appropriate.
The most recent releases of MASM now come with their own text editor, but for years 
MASM was "editor less" and you had to supply your own editor. Currently, TASM does 
not come with a text editor, so if you're a TASM user, you'll have to come up with a text 
editor on your own. I recommend using something simple, like my JED editor described 
in Chapter 4.
Both MASM and TASM come with their own special debugging tools, called debuggers. 
MASM's debugger is called CodeView, and TASM's debugger is called Turbo Debugger. 
Both are enormously sophisticated programs, and I won't be discussing either in this 
book, due in part to their complexity but mostly because there is a debugger shipped with 
every copy of PC DOS. This debugger, simply named DEBUG, is more than enough 
debugger to cut your teeth on, and will get you familiar enough with debugger theory to 
move up to CodeView or Turbo Debugger later on.
I'll be describing DEBUG much more fully in Section 3.5.
 
Setting Up a Working Subdirectory
 
The process of creating and perfecting assembly-language programs involves a lot of 
different kinds of DOS files and numerous separate software tools. Unlike the tidy, fully-
integrated environments offered by the Turbo and Quick languages, assembly language 
development conies in a great many pieces with some assembly required.
I recommend setting up a development subdirectory on your hard disk and putting all of 
the various pieces in that subdirectory. Create, then change to a subdirectory called ASM 
by using these DOS commands:
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MD ASM 
CD ASM
 
Then, from within the ASM subdirectory, copy the following files or groups of files into 
the subdirectory:
•  Your text editor. If you're using JED (see Chapter 4), you need only copy the file 
JED.EXE. If you're using a memory-resident editor like Sidekick's notepad, you may not 
need to copy any editor program into your development subdirectory, because it will be 
memory resident when you boot. For other editors like Brief, you'll need to consult the 
documentation.

 
•  Your assembler. Again, consult the documentation to see what files are necessary to 
assembler a source code file. Usually, there is a single executable file like MASM.EXE 
or TASM.EXE and perhaps some help files or configuration files. The older versions of 
MASM stood alone as MASM.EXE and needed nothing else in the subdirectory to 
operate. Similarly, the first release of TASM allows the file TASM.EXE to work alone.
 
•  Your linker. Both MASM and TASM include their own linkers. MASM's linker 
program is LINK.EXE. TASM's linker is TLINK.EXE. Copy the appropriate file. Both 
linkers stand alone and do not require any support files.
 
•   DEBUG. On your DOS distribution disk (or in your DOS subdirectory, if you have a 
DOS subdirectory) there should be a file called DEBUG.COM. Files with a .COM 
extension are, like .EXE files, executable programs. .COM programs are slightly old-
fashioned and not much used anymore since Turbo Pascal 3.0 was supplanted by version 
4.0 in 1987. Copy DEBUG.COM into your development subdirectory.
•  Odds and ends. A source code listing program, while not essential, can be very 
helpful—such programs print out neatly formatted listings on your printer. (I have 
written a useful one called JLIST10 that I have placed on the listings diskette for this 
book—but it only operates with the LaserJet laser printers.) Add anything else that may 
be helpful, keeping in mind that a lot of files are generated during assembly language 
development, and you should strive to keep unnecessary clutter to a minimum.
 
3.4 The Assembly-Language Development Process
 
As you can see, there are a lot of different file types and a fair number of programs 
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involved in the cycle of writing, assembling, and testing an assembly-language program. 
The cycle itself sounds more complex than it is. I've drawn you a map to help you keep 
your bearings during the discussions in this chapter. Figure 3.5 shows the assembly-
language development process in a "view from a height." At first glance it may look like 
a map of the L.A. freeway system, but in reality the flow is fairly straightforward. Follow 
along on a quick tour.
 
Assembling the Source-Code File
 
You use the text editor to first create a new text file and then to edit that same text file, as 
you perfect your assembly language program. As a convention, most assembly language 
source code files are given a file extension of .ASM. In other words, for the program 
named FOO, the assembly language source code file would be named FOO.ASM.
It is possible to use file extensions other than .ASM, but I feel that using the .ASM 
extension can eliminate some confusion by allowing you to tell at a glance what a file is 
for—just by looking at its name. All tolled, about nine different kinds of files can be 
involved during assembly language development.
We're only going to speak of four or five in this book.) Each type of file will have its 
own standard file extension. Anything that will help you keep all that complexity in line 
will be worth the (admittedly) rigid confines of a standard naming convention.
 
As you can see from the flow in Figure 3.5, the editor produces a source code text file, 
which we show as having the .ASM extension. This file is then passed to the assembler 
program itself, for translation to a relocatable object module file with an extension of 
.OBJ.
Invoking the assembler is very simple. For small standalone assembly-language 
programs in Turbo Assembler, it's nothing more than the name of the assembler followed 
by the name of the program to be assembled (for example, C:\ASM>TASM FOO).
 For Microsoft's MASM, you need to put a semicolon on the end of the command. This 
tells MASM that no further prompts are necessary (for example C:\ASM>MASM 
FOO). If you omit the semicolon, nothing bad will happen, but MASM will ask you for 
the names of several other files, and you will have to press Enter several times to select 
the defaults.
DOS will load the assembler from disk and run it. The assembler will open the source 
code file you named after the name of the assembler, and begin processing the file. 
Almost immediately afterward, it will create an object file with the same name as the 
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source file, but with the .OBJ extension.
As the assembler reads lines from the source code file, it will examine them, construct 
the binary machine instructions the source code lines represent, and then write those 
machine instructions to the object code file.
When the assembler detects the EOF marker signaling the end of the source code file, it 
will close both source code file and object code file and return control to DOS
 

.
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Assembler Errors
 
The previous three paragraphs describe what happens if the .ASM file is correct. By 
correct, I mean the file is completely comprehensible to the assembler, and can be 
translated into machine instructions without the assembler getting confused. If the 
assembler encounters something it doesn't understand when it reads a line from the 
source code file, we call the misunderstood text an error, and the assembler displays an 
error message.
For example, the following line of assembly language will confuse the assembler and 
summon an error message:
 
MOV AX.VX
 
The reason is simple: there's no such thing as a "VX." What came out as "VX" was 
actually intended to be "BX," which is the name of a register. (The V key is right next to 
the B key and can be struck by mistake without your fingers necessarily knowing that 
they done wrong.)
Typos are by far the easiest kind of error to spot. Others that take some study to find 
usually involve transgressions of the assembler's rules. Take for example the line:
 
MOV   ES,OFFOOH
 
This looks like it should be correct, since ES is a real register and 0F000H is a real, 16-bit 
quantity that will fit into ES. However, among the multitude of rules in the fine print of the 
86-family of assemblers is that you cannot directly move an immediate value (any number 
like 0FF00H) directly into a segment register like ES,DS;SS, or CS. It simply isn't part of 
the CPU's machinery to do that.  
  Instead, you must first move the immediate value into a register like AX, and then move 
AX into ES.
You don't have to remember the details here; we'll go into the rules later on. For now, 
simply understand that some things that look reasonable are simply "against the rules" 
and are considered an error.
There are much, much more difficult errors that involve inconsistencies between two 
otherwise legitimate lines of source code. I won't offer any examples here, but I wanted 
to point out that errors can be truly ugly, hidden things that can take a lot of study and 
torn hair to find. Toto, we are definitely not in BASIC anymore...
The error messages vary from assembler to assembler, but they may not always be as 

file:///E|/TEMP/Chapter%203%20The%20Right%20To%20Assemble.htm (21 of 39) [9/30/02 08:29:47 PM]



file:///E|/TEMP/Chapter%203%20The%20Right%20To%20Assemble.htm

helpful as you might hope. The error TASM displays upon encountering the VX typo 
follows:
 
Turbo Assembler Version  1.0    Copyright  (c)  1988 by Borland  International
Assembling file:       FOO.ASM
**Error**  FOO.ASMC74)  Undefined  symbol:   VX
Error messages:         1
Warning messages:     None
Remaining memory:    395k
 
This is pretty plain, assuming you know what a "symbol" is. The error message TASM 
will present when you try to load an immediate value into ES is less helpful:
 
Turbo Assembler Version  1.0    Copyright  (c)  1988 by Borland  International
Assembling file:       IBYTECPY.ASM
**Error**  IBYTECPY.ASMC74)   Illegal   use of segment  register
Error messages:         1
Warning messages:     None
Remaining memory:    395k
 
It'll let you know you're guilty of performing illegal acts with a segment register, but 
that's it. You have to know what's legal and what's illegal to really understand what you 
did wrong. As in running a stop sign, ignorance of the law is no excuse.
Assembler error messages do not absolve you from understanding the CPU's or the 
assembler's rules.
I hope I don't frighten you too terribly by warning you that for more complex errors, the 
error messages may be almost no help at all.
You may make (or will make; let's get real) more than one error in writing your source 
code files. The assembler will display more than one error message in such cases, but it 
may not necessarily display an error for every error present in the source code file. At 
some point, multiple errors confuse the assembler so thoroughly that it cannot necessarily 
tell right from wrong anymore. While it's true that the assembler reads and translates 
source code files line by line, there is a cumulative picture of the final assembly language 
program that is built up over the course of the whole assembly process. If this picture is 
shot too full of errors, in time the whole picture collapses.
The assembler will stop and return to DOS, having printed numerous error messages. 
Start at the first one and keep going. If the following errors don't make sense, fix the first 
one or two and assemble again.
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Back to the Editor
 
The way to fix errors is to load the .ASM file back into your text editor and start hunting 
up the error. This "loopback" is shown in Figure 3.5.
The error message will almost always contain a line number. Move the cursor to that line 
number and start looking for the false and the fanciful. If you find the error immediately, 
fix it and start looking for the next.
Here's a little logistical snag: how do you make a list of the error messages on paper so 
that you don't have to memorize them or scribble them down on paper with a pencil? 
You may or may not be aware that you can redirect the assembler's error message 
displays to a DOS text file on disk.
It works like this: you invoke the assembler just as you normally would, but add the 
redirection operator > and the name of the text file to which you want the error 
messages sent. If you were assembling FOO.ASM with TASM and wanted your error 
messages written out to a disk file named ERRORS.TXT, you would invoke TASM by 
entering C:\ASM>TASM FOO > ERRORS.TXT.
Here, error messages will be sent to ERRORS.TXT in the current DOS directory 
C:\ASM. When you use redirection, the output does not display on the screen. The 
stream of text from TASM that you would ordinarily see is quite literally steered in its 
entirety to another place, the file ERRORS.TXT.
Once the assembly process is done, the DOS prompt will appear again. You can then 
print the ERRORS.TXT file on your printer and have a handy summary of all that the 
assembler discovered was wrong with your source code file.
 
Assembler Warnings
 
As taciturn a creature as an assembler may appear to be, it genuinely tries to help you 
any way it can. One way it tries to help is by displaying warning messages during the 
assembly process. These warning messages are a monumental puzzle to beginning 
assembly language programmers: are they errors or aren't they? Can I ignore them or 
should I fool with the source code until thev go away?
There is no clean answer. Sorry about that.
Warnings are the assembler acting as experienced consultant, and hinting that something 
in your source code is a little dicey. Now, in the nature of assembly language, you may 
fully intend that the source code be dicey. In an 86-family CPU, dicey code may be the 

file:///E|/TEMP/Chapter%203%20The%20Right%20To%20Assemble.htm (23 of 39) [9/30/02 08:29:47 PM]



file:///E|/TEMP/Chapter%203%20The%20Right%20To%20Assemble.htm

only way to do something fast enough or just to do it at all. The critical factor is that you 
had better know what you're doing.
The most common generator of warning messages is doing something that goes against 
the assembler's default conditions and assumptions. If you're a beginner doing ordinary, 
100%-by-the-book sorts of things, you should crack your assembler reference manual 
and figure out why the assembler is tut-tutting you. Ignoring a warning may cause 
peculiar bugs to occur later on during program testing. Or, ignoring a warning message 
may have no undesirable consequences at all. I feel, however, that it's always better to 
know what's going on. Follow this rule:
Ignore a warning message only if you know exactly what it means.
In other words, until you understand why you're getting a warning message, treat it as 
though it were an error message. Only when you fully understand why it's there and what 
it means should you try to make the decision whether or not to ignore the message.
In summary, the first part of the assembly language development process (as shown in 
Figure 3.5) is a loop. You must edit your source code file, assemble it, and return to the 
editor to fix errors until the assembler spots no further errors. You cannot continue until 
the assembler gives your source code file a clean bill of health.
When no further errors are found, the assembler will write an .OBJ file to disk, and you 
will be ready to go on to the next step.
 
Linking
 
Theoretically, an assembler could generate an .EXE (executable) program file directly 
from your source code .ASM file. Some obscure assemblers have been able to do this, 
but it's not a common assembler feature.
What actually happens is that the assembler writes an intermediate object code file with 
an .OBJ extension to disk. You can't run this .OBJ file, even though it contains all the 
machine instructions that your assembly language source code file specified. The .OBJ 
file needs to be processed by another translator program, the linker.
The linker performs a number of operations on the ,OBJ file, most of which would be 
meaningless to you at this point. The most obvious task the linker does is to weave 
several .OBJ files into a single .EXE program file. Creating an assembly language 
program from multiple .ASM files is called modular assembly.
Why create multiple .OBJ files when writing a single executable program? One of two 
major reasons is size. A middling assembly-language application might be 50,000 lines 
long. Cutting that single monolithic .ASM file up into multiple 8,000 line .ASM files 
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would make the individual .ASM files smaller and much easier to understand.
The other reason is to avoid assembling completed portions of the program every time 
any part of the program is assembled. One thing you'll be doing is writing assembly 
language procedures, small detours from the main run of steps and tests that can be taken 
from anywhere within the assembly language program. Once you write and perfect a 
procedure, you can tuck it away in an .ASM file with other completed procedures, 
assemble it, and then simply link the resulting .OBJ file into the "working" .ASM file. 
The alternative is to waste time by reassembling perfected source code over and over 
again every time you assemble the main portion of the program.
Notice that in the upper-right corner of Figure 3.5 is a row of .OBJ files. These .OBJ 
files were assembled earlier from correct .ASM files, yielding binary disk files 
containing ready-to-go machine instructions. When the linker links the .OBJ file 
produced from your in-progress .ASM file, it adds in the previously assembled .OBJ 
files, which are called modules. The single .EXE file that the linker writes to disk 
contains the machine instructions from all of the .OBJ files handed to the linker when 
then linker is invoked.
Once the in-progress .ASM file is completed and made correct, its .OBJ module can be 
put up on the rack with the others, and added to the next in-progress .ASM source code 
file. Little by little you construct your application program out of the modules you build 
one at a time.
A very important bonus is that some of the procedures in an .OBJ module may be used 
in a future assembly language program that hasn't even been begun yet. Creating such 
libraries of toolkit procedures can be an extraordinarily effective way to save time by 
reusing code over and over again, without even passing it through the assembler again!
Something to keep in mind is that the linker must be used even when you have only one 
.OBJ file. Connecting multiple modules is only one of many essential things the linker 
does. To produce an .EXE file, you must invoke the linker, even if your program is a 
little thing contained in only one .ASM and hence one .OBJ file.
Invoking the linker is again done from the DOS command line. Each assembler typically 
has its own linker. MASM's linker is called LINK, and TASM's is called TLINK. Like 
the assembler, the linker understands a suite of commands and directives that I can't 
describe exhaustively here. Read your assembler manuals carefully.
For single-module programs, however, there's nothing complex to be do Linking our 
hypothetical FOO.OBJ object file into an .EXE file using TLINK ' done by entering 
C:\ASM>TLINK FOO at the DOS prompt.
If you're using MASM, using LINK is done much the same way. Again, as with MASM, 
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you need to place a semicolon at the end of the command to avoid a series of questions 
about various linker defaults (for example, C:\ASM>LINK FOO;)
Linking multiple files involves naming each file on the command line. With TLINK, you 
simply name each .OBJ file on the command line after the word TLINK, with a space 
between each filename. You do not have to include the .OBJ extension—TLINK 
assumes that all modules to be linked end in .OBJ:
 
C:\ASM>TLINK FOO BAR BAS
 
Under MASM, you do the same thing, except that you place a plus sign (+) between each 
of the .OBJ filenames:
 
C:\ASM>LINK FOO+BAR+BAS
 
In both cases, the name of the .EXE file produced will be the name of the first .OBJ file 
named, with the .EXE extension replacing the .OBJ extension.
 
Linker Errors
 
As with the assembler, the linker may discover problems as it weaves multiple .OBJ files 
together into a single .EXE file. Linker errors are subtler than assembler errors and are 
usually harder to find. Fortunately, they are rarer and not as easy to make.
As with assembler errors, when you are presented with a linker error you have to return 
to the editor and figure out what the problem is. Once you've identified the problem (or 
think you have) and changed something in the source code file to fix the problem, you 
must reassemble and relink the program to see if the linker error went away. Until it 
does, you have to loop back to the editor, try something else, and assemble/link once 
more.
If possible, avoid doing this by trial and error. Read your assembler and linker manuals. 
Understand what you're doing. The more you understand about what's going on within 
the assembler and the linker, the easier it will to determine who or what is giving the 
linker fits.
 
Testing the .EXE File
 
If you receive no linker errors, the linker will create and fill a single .EXE file with the 
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machine instructions present in all of the .OBJ files named on the linker command line. 
The .EXE file is your executable program. You can run it by simply naming it on the 
DOS command line and pressing Enter:
 
C:\ASM>FOO
 
When you invoke your program in this way, one of two things will happen: the program 
will work as you intended it to, or you'll be confronted with the effects of one or more 
program bugs. A bug is anything in a program that doesn't work the way you want it to. 
This makes a bug somewhat more subjective than an error. One person might think red 
characters displayed on a blue background is a bug, while another might consider it a 
clever New Age feature and be quite pleased. Settling bug vs. feature conflicts like this is 
up to you. Consensus is called for here, with fistfights only as a last resort.
There are bugs and there are bugs. When working in assembly language, it's quite 
common for a bug to completely "blow the machine away," which is less violent than 
some think. A system crash is what you call it when the machine sits there mutely, and 
will not respond to the keyboard. You may have to press Ctrl+Alt+Delete to reboot the 
system, or (worse) have to press the reset button, or even power down and then power up 
again. Be ready for this—it will happen to you, sooner and oftener than you will care for.
Figure 3.5 announces the exit of the assembly language development process as 
happening when your program works perfectly. A very serious question is this: How do 
you know when it works perfectly? Simple programs assembled while learning the 
language may be easy enough to test in a minute or two. But any program that 
accomplishes anything useful will take hours of testing at minimum. A serious and 
ambitious application could take weeks—or months—to test thoroughly. A program that 
takes various kinds of input values and produces various kinds of output should be tested 
with as many different combinations of input values as possible, and you should examine 
every possible output every time.
Even so, finding every last bug is considered by some to be an impossible ideal. 
Perhaps—but you should strive to come as close as possible, in as efficient a fashion as 
you can manage. I'll have a lot more to say about bugs and debugging throughout the rest 
of this book.
 
Errors Versus Bugs
 
In the interest of keeping the Babel-effect at bay, I think it's important to carefully draw 
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the distinction between errors and bugs. An error is something wrong with your source 
code file that either the assembler or the linker kick out as unacceptable. An error 
prevents the assembly or link process from going to completion, and will thus prevent a 
final .EXE file from being produced.
A bug, by contrast, is a problem discovered during execution of a program Under DOS. 
Bugs are not deferred by either the assembler or the linker can be benign, such as a 
misspelled word in a screen message or a line positioned on the wrong screen row; or a 
bug can make your DOS session run off into the bushes and not come back.
Both errors and bugs require that you go back to the text editor and change something in 
your source code file. The difference here is that most errors are reported with a line 
number telling you where to go in your source code file to fix the problem. Bugs, on the 
other hand, are left as an exercise for the student. You have to hunt them down, and 
neither the assembler nor the linker will give you much in the line of clues.
 
Debuggers and Debugging
 
The final, and almost certainly the most painful part of the assembly language 
development process is debugging. Debugging is simply the systematic process by which 
bugs are located and corrected. A debugger is a utility program designed specifically to 
help you locate and identify bugs.
Debugger programs are among the most mysterious and difficult to understand of all 
programs. Debuggers are part X-ray machine and part magnifying glass. A debugger 
loads into memory with your program and remains in memory, side by side with your 
program. The debugger then puts tendrils down into both DOS and into your program, 
and enables some truly peculiar things to be done.
One of the problems with debugging computer programs is that they operate so quickly. 
Thousands of machine instructions can be executed in a single second, and if one of 
those instructions isn't quite right, it's long gone before you can identify which one it is 
by staring at the screen. A debugger allows you to execute the machine instructions in a 
program one at a time, allowing you to pause indefinitely between each one to examine 
the effects of the last instruction on the screen. The debugger also lets you look at the 
contents of any location in memory, and the values stored in any register, during that 
pause between instructions.
As mentioned previously, both MASM and TASM are packaged with their own 
advanced debuggers. MASM's CodeView and TASM's Turbo Debugger are brutally 
powerful (and hellishly complicated) creatures that require manuals considerably thicker 
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than this book. For this reason, I won't try to explain how to use either CodeView or 
Turbo Debugger.
Very fortunately, every copy of DOS is shipped with a more limited but perfectly good 
debugger called DEBUG. DEBUG can do nearly anything that a beginner would want 
from a debugger, and in this book we'll do our debugging with DEBUG.
 
3.5 DEBUG and How to Use It
 
The assembler and the linker are rather single-minded programs. As translators, they do 
only one thing: translate. This involves reading data from one file and writing a 
translation of that data into another file.
That's all a translator needs to do. The job isn't necessarily an easy thing for the translator 
to do, but it's easy to describe and understand. Debuggers, by contrast, are like the 
electrician's little bag of tools—they do lots of different things in a great many different 
ways, and take plenty of explanation and considerable practice to master.
In this chapter I'll introduce you to DEBUG, a program that will allow you to single step 
your assembly language programs and examine their and the machine's innards between 
each and every machine instruction. This section is only an introduction—DEBUG is 
learned best by doing, and you'll be both using and learning DEBUG's numerous powers 
all through the rest of this book. By providing you with an overview of what DEBUG 
does here, you'll be more capable of integrating its features into your general 
understanding of assembly language development process as we examine it through the 
rest of the book.
 
DEBUG's Bag of Tricks
 
It's well worth taking a page or so simply to describe what sorts of things DEBUG can 
do before actually showing you how they're done. It's actually quite a list:
•  Display or change memory and files. Your programs will both exist in and affect 
memory, and DEBUG can show you any part of memory—which implies that it can 
show you any part of any program or binary file as well. DEBUG displays memory as a 
series of hexadecimal values, with a corresponding display of any printable ASCII 
characters to the right of the values. We'll show you some examples a little later on. In 
addition to seeing the contents of memory, you can change those contents as well. And, 
if the contents of memory represent a file, you can write the changed file back out to 
disk.
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•   Display or change the contents of all CPU registers. CPU registers allow you to 
work very quickly, and you should use them as much as you can. You need to see what's 
going on in the registers while you use them, and with one command, DEBUG can 
display the contents of all machine registers and flags at one time. If you want to change 
the contents of a register while stepping through a program's machine instructions, you 
can do that as well.
•   Fill a region of memory with a single value. If you have an area of memory that you 
want "blanked out," DEBUG will allow you to fill that area of memory with any 
character or binary value.
•   Search memory for sequences of binary values. You can search any area of memory 
for a specific sequence of characters or binary value, including names stored in memory 
or sequences of machine instructions. You can then examine or change something that 
you know exists somewhere in memory but not where.
•  Assemble new machine instructions into memory. DEBUG contains a simple 
assembler that does much of what MASM and TASM can do—one machine instruction 
at a time. If you want to replace a machine instruction somewhere within your program, 
you can type MOV AX,BX rather than having to look up and type 8BH OC3H.
•   "Un-assemble" binary machine instructions into their mnemonics and operands. 
The flipside of the last feature is also possible: DEBUG can take the two hexadecimal 
values 8BH and OC3H and tell you that they represent the assembly language mnemonic 
MOV AX,BX. This feature is utterly essential when you need to trace a program in 
operation and understand what is happening when the next two bytes in memory are read 
into the CPU and executed. If you don't know what machine instruction those two bytes 
represent, you'll be totally lost.
•   Single step a program under test. Finally, DEBUG's most valuable skill is to run a 
program one machine instruction at a time, pausing between each instruction. During this 
pause you can look at or change memory, look at or change registers, search for things in 
memory, "patch" the program by replacing existing machine instructions with new ones, 
and so on. This is what you'll do most of the time with DEBUG.
 
Taking DEBUG for a Spin
 
DEBUG can be a pretty forbidding character, terse to the point of being mute. You'll be 
spending a lot of time standing on DEBUG's shoulders and looking around, however, so 
you'd best get used to him now.
The easiest way to start is to use DEBUG to load a file into memory and examine it. On 
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the listings disk associated with this book is a file called SAM.TXT. It's an ordinary 
DOS text file. (Its contents were used to demonstrate the line structuring of text files with 
CR and LF in Figure 3.1.) If you don't have the listings disk, you can simply load your 
text editor and enter the following lines:
Sam
 was
a
man.
 
Make sure you press Enter after the period at the end of "man." Then save the file to disk 
as SAM.TXT.
Let's lay SAM out on DEBUG's dissection table and take a look at his innards. DEBUG 
will load itself and the file of your choice into memory at the same time, with only one 
command. Type DEBUG followed by the name of the file you want to load, as in the 
following example:
 
C:\ASM>DEBUG SAM.TXT
 
Make sure you use the full filename. Some programs like MASM and TASM will allow 
you to use only the first part of the filename and assume a file extension like .ASM, but 
DEBUG requires the full filename.
Like old Cal Coolidge, DEBUG doesn't say much, and never more than he has to. Unless 
DEBUG can't find SAM.TXT, all it will respond with is a single dash character (-) as its 
prompt, indicating that all is well and that DEBUG is awaiting a command.
 
Looking at a Hex Dump
 
Looking at SAM.TXT's interior is easy. Just type a D at the dash prompt. (Think dump.) 
DEBUG will obediently display a hex dump of the first 128 bytes of memory containing 
the contents of SAM.TXT read from disk. The hexadecimal numbers will probably look 
bewilderingly mysterious, but to their right you'll see the comforting words "Sam was a 
man" in a separate area of the screen. To help a little, I've taken the hex dump of 
SAM.TXT as you'll see it on your screen and annotated it in Figure 3.6.
This is a hex dump. It has three parts: the leftmost part on the screen is the address of the 
start of each line of the dump. Each line contains 16 bytes. An address has two parts, and 
you'll notice that the left part of the address does not change while the right part is 16 
greater at the start of each succeeding line. The 86-family CPU's two-part addresses are a 
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source of considerable confusion and aggravation, and I'll take them up in detail in 
Chapter 5. For now, ignore the unchanging part of the address and consider the part that 
changes to be a count of the bytes on display, starting with 100H.
The part to the right of the address is the hexadecimal representation of the 128 bytes of 
memory being displayed. The part to the right of the hexadecimal values are those same 
128 bytes of memory displayed as ASCII characters. Now, not all binary values have 
corresponding printable ASCII characters. Any invisible or unprintable characters are 
shown as period (.) characters.
This can be confusing. The last displayable character in SAM.TXT is a period, and is 
actually the very first character on the second line of the hex dump. The ASCII side 
shows four identical periods in a row. To find out what's a period and what's simply a 
nondisplayable character, you must look back to the hexadecimal side and recognize the 
ASCII code for a period, which is 2EH.
Here is a good place to point out that an ASCII table of characters and their codes is an 
utterly essential thing to have. Borland's Sidekick product includes a very good table, and 
it's always waiting in memory only a keystroke away. If you don't have Sidekick, I'd 
advise you to take a photocopy of the ASCII table provided in Appendix B and keep it 
close at hand.
 
Memory "Garbage"
 
Take a long, close look at the hexadecimal equivalents of the characters in SAM.TXT. 
Notice that SAM.TXT is a very short file (20 bytes), but that 128 bytes are displayed. 
Look for the EOF (end of file) marker on the second line.
Character 1AH is always considered the last byte of any text file. All the other bytes after 
the EOF marker are called "garbage," and that's pretty much what they are: random bytes 
that existed in memory before SAM.TXT rode in from disk. DEBUG works only from 
memory, and displays hex dumps of memory in 128-byte chunks by default. (You can 
direct DEBUG to display more bytes at a time by using some additional commands, 
which I won't go into here.) Only the first 20 bytes of SAM.TXT are significant 
information, but DEBUG obligingly shows you what's in memory well beyond the end 
of SAM's data.
The bytes are probably not entirely random, but instead may be part of the code or data 
left over from the last program to be loaded and executed in that area of memory. 
Because the garbage bytes fall after the EOF marker, you can safely ignore them, but 
should know just what they are and why they appear in your hex dump. You might 
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occasionally see recognizable data strings from other programs in memory garbage and 
wonder how they got into your current program. 

They didn't get into your current program. They were just there, and now show through 
beyond the end of the file you last loaded under DEBUG. Knowing where legitimate 
information ends and where garbage begins is always important, and not usually as clear-
cut as it is here.
 
Changing Memory with DEBUG
 
DEBUG can easily change bytes in memory, whether they are part of a file loaded from 
disk or not. The DEBUG command to change bytes is the E command. (Think enter new 
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data.) You can use the E command to change some of the data in SAM.TXT. Part of this 
process is shown in Figure 3.6. Notice the following command line:
-e 010e
 
To taciturn Mr. Debug, this means, "Begin accepting entered bytes at address 010EH." I 
show the lower case e's used in the command to put across the point that DEBUG is not 
case sensitive, even for letters used as hexadecimal digits. In other words, there is 
nothing sacred about using uppercase A through E for hex digits. They can be lowercase 
or uppercase as you choose, and you don't even have to be consistent about it.
What DEBUG does in response to the E command shown in Figure 3-6 is display the 
following prompt:
 
38E3:010E    61.
The cursor waits after the period for your input. What DEBUG has done is shown you 
what value is already at address 010EH, so that you can decide whether you want to 
change it. If not, just press Enter, and the dash prompt will return.
 
Otherwise, enter a hexadecimal value to take the place of value 6lH. In Figure 3.6 I 
entered 6FH. Once you enter a replacement value, you have the choice of completing 
your change by pressing Enter and returning to the dash prompt; or changing the byte at 
the next address. If a change is your choice press the spacebar instead of pressing Enter. 
DEBUG will display the byte at the next highest address and wait for your replacement 
value, just as it did the first time.
This is shown in Figure 3.6. In fact, Figure 3.6 shows four successive replacements of 
bytes starting at address 010EH. Notice the lonely hex byte 0A followed by a period. 
What happened there is that I pressed Enter without typing a replacement byte, ending 
the E command and returning to the dash prompt.
You'll also note that the next command typed at the dash prompt was "q", for Quit. 
Typing Q at the dash prompt will return you immediately to DOS.
 
The Dangers of Modifying Files
 
Keep in mind that what I've just demonstrated was not changing a file, but simply 
changing the contents of a file loaded into memory. A file loaded into memory through 
DEBUG as we did with SAM.TXT is called a memory image of that file. Only the 
memory image of the file was changed. SAM.TXT remains on disk, unchanged and 
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unaware of what was happening to its doppelganger in memory.
You can save the altered memory image of SAM.TXT back to disk with a simple 
command: type W and then press Enter. (Think write.) DEBUG remembers how many 
bytes it read in from disk, and it writes those bytes back out again. It provides a tally as it 
writes:
Writing 0014 bytes
 
The figure is given in hex, even though DEBUG does not do us the courtesy of 
displaying an H after the number. 14H is 20 decimal, and there are exactly 20 bytes in 
SAM.TXT, counting the EOF marker. DEBUG writes out only the significant 
information in the file. It does not write out anything that it didn't load in, unless you 
explicitly command DEBUG to write out additional bytes beyond the end of what was 
originally read.
If you haven't already figured out what was done to poor SAM.TXT, you can dump it 
again and take a look. If you simply press D for another dump, however, you're in for a 
surprise: the new dump does not contain any trace of SAM.TXT at all. (Try it!) If you're 
sharp you'll notice that the address of the first line is not what it was originally, but 
instead is this:
38E3:0180
 
(The first four digits will be different on your system, but that's all right—look at the 
second four digits instead during this discussion.) If you know your hex, you'll see that 
this is the address of the next eight lines of dumped memory, starting immediately after 
where the first dump left off.
The D command works that way. Each time you press D, you get the next 128 bytes of 
memory, starting with 0100H. To see SAM.TXT again, you need to specify the starting 
address of the dump, which was 0100H:
-d  0100
 
Enter that command, and you'll see the following dump with the altered memory image 
of SAM.TXT:
 
38E3:0100    53 61 6D 00 OA 77 61   73-OD OA 61 OD OA 6D 6F 6F      Sam..was. .a. .moo
38E3:0110    73 65 OA 1A C4 76 04  26-F7 24 5D C2 04 00 55 8B      se...v.&.$].. .U.
38E3:0120    EC 83 EC 12 FF 76 06   FF-76 04 9A 66 17 7D 30 89       .....v..v..f.}0.
38E3:0130    46 FE 83 7E 10 00 75  OF-C4 76 08 26 8B 34 F7 DE      F..-..u..V.&.4..
38E3:0140    C4 5E OC 03 DE EB 03  C4-5E OC 89 5E F6 8C 46 F8      .A......A..A..F.
38E3:0150    C4 76 08 26 8B 1C C4  7E-F6 26 8D 01 8C C2 89 46       .v.&...-.&.....F
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38E3:0160    F2 89 56 F4 2B C9 51  06-57 FF 76 OA FF 76 08 OE       ..V. + .Q.W.v.. v..
38E3:0170    E8 83 06 50 FF 76 06   FF-76 04 9A 4B 05 EF 32 FF      ... P. v..v.. K. .2.
 
Sam, as you can see, is now something else again entirely.
Now, something went a little bit wrong when you changed Sam from a man to a moose. 
Look closely at memory starting at address 0111H. After the "e" (65H) is half of an EOL 
marker. The carriage return character (ODH) is gone, because you wrote an "e" over it. 
Only the line feed character (OAH) remains.
This isn't fatal, but it isn't right. A lonely line feed can cause trouble or not, depending on 
what you try to do with it. If you load the altered SAM.TXT into the JED editor, you'll 
see a ghostly "J" after the word "moose." This is how JED indicates certain invisible 
characters that are not EOL or EOF markers, as I'll explain in the next chapter, which 
describes JED in detail. The J tells you an LF character is present at that point in the 
file.
The lesson here is that DEBUG is a gun without a safety catch. There are no safeguards. 
You can change anything inside a file with it, whether it makes sense or not, or whether 
it's dangerous or not. All safety considerations are up to you. You must be aware of 
whether or not you're overwriting important parts of the file.
This is a theme that will occur again and again in assembly language: safety is up to you. 
Unlike BASIC, which wraps a protective cocoon around you and keeps you from 
banging yourself up too badly, assembly language lets you hang yourself without a 
whimper of protest.
Keep this in mind as we continue.
 
Examining and Changing Registers
 
If you saved SAM.TXT back out to disk in its altered state, you created a damaged file. 
Fixing SAM.TXT requires reconstructing the last EOL marker by inserting the CR 
character that you overwrote using the E command. Unfortunately, this means you'll be 
making SAM.TXT larger than it was when DEBUG read it into memory. To save the 
corrected file back out to disk, we need to somehow tell DEBUG that it needs to save 
more than 14H bytes out to disk. To do this we need to look at and change a value in one 
of the CPU registers.
Registers, if you recall, are special-purpose memory cubbyholes that exist inside the 
CPU chip itself, rather than in memory chips outside the CPU. DEBUG has a command 
that allows us to examine and change register values as easily as we examined and 
changed memory.
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At the dash prompt, type R. (Think registers.) You'll see a display like this:
-r
AX-0000 BX-0000     CX-0014 DX=0000 SP=FFEE BP-0000 SI=0000 DI=0000
DS-1980 ES-1980     SS=1980 CS=1980 IP=0100  NV UP El PL 
NZ NA PO NC 1980:0100 53         PUSH BX
 
The bulk of the display consists of register names followed by equal signs, followed by 
the current values of the registers. The cryptic characters NV UP El PL NZ NA PO NC 
are the names of flags, and we'll discuss them later in the book.
The line beneath the register and flag summaries is a disassembly of the byte at the 
address contained by the instruction pointer. (The instruction pointer is a register which 
is displayed by the DEBUG R command, under the shorter name IP. Find IP's value in 
the register display above—it should be 0100H, which is also the address of the "S" in 
"Sam".) This line will be useful when you are actually examining an executable program 
file in memory. In the case of SAM.TXT the disassembly line is misleading, because 
SAM is not an executable program and contains nothing we intend to be used as machine 
instructions.
The hexadecimal value 53H, however, is a legal machine instruction as well as the 
ASCII code for uppercase "S". DEBUG doesn't know what kind of file SAM.TXT is. 
SAM could as well be a program file as a text file; DEBUG makes no assumptions based 
on the file's contents or its file extension. DEBUG examines memory at the current 
address and displays it as though it were a machine instruction. If memory contains data 
instead of machine instructions, the disassembly line should be ignored.
This is once again an example of the problems you can have in assembly language if you 
don't know exactly what you're doing. Code and data look the same in memory. They are 
only different in how you interpret them. In SAM.TXT, the hex value 53H is the letter 
"S"; in an executable program file 53H would be the instruction PUSH BX. We'll be 
making good use of the disassembly line later on in the book, when we get down to 
examining real assembly language programs. For now, just ignore it.
When DEBUG loads a file from disk, it places the number of bytes in the file in the CX 
register. CX is a general-purpose register, but it is often used to contain such count 
values, and is therefore sometimes called the count register.
Notice that the value of CX is 14H—just the number DEBUG reported when it wrote the 
altered SAM.TXT out to disk in response to the W command. If we change the value in 
CX, we change the number of bytes DEBUG will write to disk.
So let's fix SAM.TXT. In changing the word "man" to "moose" we wrote over two 
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characters: the period at the end of the sentence and the CR character portion of the last 
line's EOL marker. We could start at address 0112H and enter a period character 
(2EH—use your ASCII table!) followed by a CR character (ODH). In doing so, 
however, we would overwrite the LF character and the EOF marker character, which is 
just as bad or worse.
Unlike a text editor, DEBUG will not just "shove over" the values to the right of the 
point where you wish to insert new values. DEBUG has no insert mode. You have to 
enter all four characters: the period, the CR, the LF, and the EOF.
Use the E command to enter them, and then display a dump of the file again:
 
-e 0112
1980:0112 OD.2e  OA.Od  lA.0a  OD.la
-d 0100
38E3:0100    53 61 60 OD OA 77 61   73-OD OA 61 OD OA 6D 6F 6F      Sam..was. .a. .moo
38E3:0110    73 65 2E OD OA 1A 04  26-F7 24 5D C2 04 00 55 88      se.....&.$]...U.
38E3:0120    EC 83 EC 12 FF 76 06  FF-76 04 9A 66 17 7D 30 89       .....v..v..f.}0.
38E3:0130    46 FE 83 7E 10 00 75  OF-C4 76 08 26 8B 34 F7 DE      F..-.. u..V.&.4..
38E3:0140    C4 5E OC 03 DE EB 03  C4-5E OC 89 5E F6 8C 46 F8      .A......A..A..F.
38E3:0150    C4 76 08 26 88 1C C4  7E-F6 26 8D 01 8C C2 89 46       .v.&...-.&.....F
38E3:0160    F2 89 56 F4 28 C9 51  06-57 FF 76 OA FF 76 08 OE       ..V. + .Q.W.v..v. .
38E3:0170    E8 83 06 50 FF 76 06   FF-76 04 9A 4B 05 EF 32 FF      ...P.v..v.. K. .2.
 
Now the file is repaired, and we can write it back to disk. Except—SAM.TXT in 
memory is now two bytes longer than SAM.TXT on disk. We need to tell DEBUG that 
it needs to write two additional bytes to disk when it writes SAM.TXT back out.
DEBUG keeps its count of SAM's length in the BX and CX registers. The count is 
actually a 32-bit number split between the two 16-bit registers BX and CX, with BX 
containing the high half of the 32-bit number. This allows us to load very large files into 
DEBUG, with byte counts that cannot fit into a single 16-bit register like CX. 16-bit 
registers can only contain values up to 65,535. If we wanted to use DEBUG on an 
80,000 byte file (which is not all that big, as files go) we'd be out of luck if DEBUG only 
kept a 16-bit count of the file size in a single register.
But for small changes to files, or for working with small files, we only have to be aware 
of and work with the count in CX. Adding 2 to the byte count only changes the low half 
of the number, contained in CX. Changing the value of CX is done with the R command, 
by specifying CX after R:
-r ex
 
DEBUG responds by displaying the name "CX," its current value, and a colon prompt on 
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the next line:
CX 0014
:
To add 2 to the value of CX, enter 0016 at the prompt, then press Enter. DEBUG simply 
returns the dash prompt—remember, it's a utility of few words.
Now, however, when you enter a W command to write SAM.TXT back to disk, 
DEBUG displays this message:
Writing 0016 bytes
 
The new, longer SAM.TXT has been written to disk in its entirety. Problem solved.
One final note on saving files back out to disk from DEBUG: if you change the values in 
either BX or CX to reflect something other than the true length of the file, and then 
execute a W command to write the file to disk, DEBUG will write as many bytes to disk 
as are specified in BX and CX. This could be 20,000 bytes more than the file contains, or 
it could be 0 bytes, leaving you with an empty file. You can destroy a file this way. 
Either leave BX and CX alone while you're examining and "patching" a file with 
DEBUG, or write the initial values in BX and CX down, and enter them back into BX 
and CX just before issuing the W command. 
 
The Hacker's Best Friend
 
There is a great deal more to be said about DEBUG, but most of it involves concepts we 
haven't yet covered. DEBUG is the single most useful tool you have as an assembly-
language programmer, and I'll be teaching you more of its features as we get deeper and 
deeper into the programming process itself.
The next chapter describes JED, a simple program editor and development environment 
I created for people who have not purchased a commercial editor product like Brief or 
Epsilon. If you do not intend to use JED, you can skip Chapter 4 and meet us on the 
other side in Chapter 5, where we begin our long trek through the 86-family instruction 
set.
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Learning and Using Jed
A Programming Environment for Assembly 
Language
4.1 A Place to Stand with Access to Tools >• 100
4.2 JED's Place to Stand >• 101
4.3 Using JED's Tools >• 104
4.4 JED's Editor in Detail •> 116
 
4.1 A Place to stand with Access to Tools
 
"Give me a lever long enough, and a place to stand, and I will move the Earth."
Archimedes was speaking literally about the power of the lever, but behind his words 
there is a larger truth about work in general: To get something done, you need a place to 
work, with access to tools. My radio bench in the garage is set up that way: A large, flat 
space to lay ailing transmitters down, and a shelf above where my oscilloscope, VTVM, 
frequency counter, signal generator, and dip meter are within easy reach.
Much of the astonishing early success of Turbo Pascal was grounded in that truth. For 
the first time, a compiler vendor gathered up the most important tools of software 
development and put them together in an intuitive fashion so that the various tasks 
involved in creating software flowed easily from one step to the next. From a menu that 
was your place to stand, you pressed one key, and your Pascal program was compiled. 
You pressed another one, and the program was run. It was simple, fast, and easy to learn. 
Turbo Pascal literally took Pascal from a backwater language favored by academics to 
the most popular compiled language in history, BASIC not excluded.
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What Borland so boldly introduced in 1983 was adopted (reluctantly at times) by their 
major competitor, Microsoft. Today, Turbo Pascal, Turbo C, Turbo BASIC, Turbo 
Prolog, Quick C, and Quick BASIC are what we call integrated development 
environments. They provide well-designed menus to give you that place to stand, and a 
multitude of tools that are only one or two keystrokes away.
A little remarkably, there is no true equivalent to Turbo Pascal in the assembly-language 
field. Neither MASM nor Borland's own Turbo Assembler have that same comfortable 
place to stand. The reasons for this may seem peculiar to you, the beginner: seasoned 
assembly-language programmers either create their own development environments 
(they are, after all, the programming elite) or they simply work from the naked DOS 
prompt. The appeal of a Turbo Pascal-type environment is not so strong to them as it is 
to you. An integrated development environment for MASM and TASM may happen in 
time, but you must understand that both Microsoft and Borland are catering to their most 
important audience, the established assembly-language programmer.
That doesn't do much good for you. One glance back at Figure 3.5 can give you the 
screaming willies. Assembly-language development not a simple process, and grabbing 
all the tools from the DOS prompt is complicated and error prone; rather like standing on 
a ball-bearing bar stool to get the shot glasses down from the high shelf over the bar.
So, to make things a little easier for you, I've created a program called JED. JED is a 
beginner's development environment for either MASM or TASM. It's nowhere near as 
powerful as the environments provided with the Turbo or Quick languages, but it's 
powerful enough to get you started on the long road toward assembly-language 
proficiency.
 
Laying Hands on JED
 
JED.EXE is written in Turbo Pascal 5.0. You can get a copy from many of the larger 
user groups around the country. Perhaps your friends have a copy; ask around. I've 
allowed people to copy it freely in the hopes that it will be widely used. If you can't find 
it anywhere, you can order the listings diskette from me through the coupon on the 
flyleaf. Both source code and .EXE versions of JED are included on the listings diskette. 
You don't need Turbo Pascal to run JED.EXE. It's fully compiled and ready to run.
I must emphasize that not quite all of the source code for JED is on the listings diskette. 
JED contains a powerful text editor provided with Borland's Turbo Pascal Editor 
Toolbox. You can get JED's source code from the listings diskette, but keep in mind that 
it's not all there; you must buy the Turbo Pascal Editor Toolbox and own Turbo Pascal 
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5.0 in order to compile or modify JED.
I need to emphasize right now that you don't need to have JED to work with assembly 
language, or to use this book. JED smoothes access to your tools like TASM and 
TLINK, and provides a very good text editor to boot, but you can work very well from 
the DOS prompt using some other text editor. I'll be referencing JED as I discuss the 
assembly language process in this book; there are a multitude of ways to work with 
assembly language and I have to settle on something. But the information on assembly 
language itself is independent of the text editor and programming environment you may 
choose to use.
 
4.2 JED's Place to Stand
 
Like Turbo Pascal and the other integrated development environments from both Borland 
and Microsoft, JED's most visible part is a text editor. If you'll look back once again to 
Figure 3.5, you'll see that all roads seem to lead back to the text editor in good time. In 
general, you do most of your thinking while staring at the text editor screen, so it seems a 
logical location to put your place to stand. Running JED is easy. The first time you want 
to work on a particular source code file, you type the name JED followed by the name of 
the source code file:
C:\ASM>JED   EAT2.ASM
 
(Here, EAT2.ASM is the name of a source code file described a little later in this book.) 
DOS will load and run JED, and then JED will load the text file EAT2.ASM into its 
editor workspace. You'll get a view like that shown in Figure 4.1.
 
The Status Line
 
Apart from the very top line, everything on the edit screen is a display of your text file. 
This top line, the status line, contains several important items of information about the 
file that p is displaying in the edit screen, which is called the current file. The first two 
items tell you the position of the cursor in terms of line number and column number. In 
case you're unfamiliar with such things, the line numbers run from top to bottom with 
line 1 at the top, and column numbers run from left to right, with column 1 at the left 
margin. As you move the cursor around the file using the cursor-control keys (see 
Section 4.4) the cursor position will be updated in the status line.
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The word Insert will display in the status line if JED's editor is in insert mode. Insert 
mode indicates that characters typed at the keyboard will be inserted at the cursor 
position, pushing ahead the characters to the right of the cursor position. When the word 
Insert is not present, JED's editor is in overwrite mode. Overwrite mode indicates that 
characters typed at the cursor position will replace or overwrite characters that already 
exist on the screen, and that those underlying characters will be lost. I'll say more on this 
item later in this chapter.
Similarly, the word Indent indicates that the editor is in indent mode. In indent mode, 
indenting one line by spacing over from the left margin will cause subsequent lines to 
automatically indent to the same number of spaces from the margin. Again, more on this 
later in this chapter.
The name of the current file also displays in the status line. Finally, the current time 
according to DOS's clock, is shown in the upper-right hand corner of the screen.
 
The Prompt Bar
 
At the bottom of the screen, highlighted in blue (if you have a color monitor) is a single 
line bar that summarizes most of JED's important commands. This bar is called the 
prompt bar. It provides always-visible reminders as to which tools are available while 
you are standing at JED's Edit screen. Each tool is invoked by pressing one of the PC's 
ten function keys.
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Eight of the ten function keys are summarized in the prompt bar. The two that are not 
present, F7 and F8, are actually text editing commands, and will be discussed along with 
all of the other editing commands in Section 4.4.
 
JED's Help Screen
 
Perhaps the single most important command to remember while you're still a beginner is 
the Help command, Fl. Pressing Fl instantly brings up a 24-line help display of all its 
commands and most of the text editing commands. If you ever forget a command or are 
unsure of what one of the prompt bar reminders means (like F4:Cmds, which is 
something less than obvious) simply press Fl and read the available information. JED's 
Help screen is shown in Figure 4.2.
Once the Help screen is displayed, you can put it away and return to the Edit screen by 
pressing any non-shift key. (That is, any key but the Shift, Ctrl, or Alt keys.)
 
Figure 4.2. JED's Help screen
 

Version l.0 — Released 1/8/89 — ALT-X EXITS!
(c) 1988, 1989 Jeff Duntemann — ALL RIGHTS RESERVED
 
                           COMMAND SET
Fl:     Display this screen
F2:     Save current source code file
F3:     Invoke DEBUG on current .EXE file
F4:     Update assemble/link command lines
F5:     Shell out to DOS
F6:     Show last assemble/link screen
F7:     Mark beginning of block
F8:     Mark end of block
F9:     Assemble only
F10:   Assemble/link (if needed) and Go!
 
*KD>:   Quit and save file
AKQ:   Quit without saving
AKU:  Write marked block to disk
AKR:   Read a file to cursor position
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AKH:   Hide/unhide the marked block
AKY:   Delete marked block
AKU:   Move marked block
AKC:   Copy marked block
AQL:   Undo changes to line
Alt-F: Change current source code file

 
QR:   Move to start of file      AY: Delete line  AT: Delete word
 AQ¥: Del. to EOL

^QC:   Move to end of file           AQF: Find  AQA: Find/Replace
 AL: Find/repl. again
: A    Move 1 word left                 Options: N: Without asking U: Whole words 
only ^F Move 1 word right                                  G: Global U: Ignore case B: 
Backwards

 
«REMEMBER!!» If your .ASM file is not a standalone program, but a device 
driver or a library of procedures, pressing F10 may lock up your system!!
 

 
4.3 Using JED's Tools
 
The very best way to explain JED's commands and how they are used is to run through a 
simple JED session with a real assembly language program and explain what happens as 
we go. The program we'll use is EAT2.ASM, which is shown in chapter 7. EAT2.ASM 
is not much of a program, but gets you started in understanding the internal mechanisms 
of a real, working assembly-language program. When you run EAT2.EXE from the 
DOS prompt, this simple message displays on your screen:
 
Eat at Joe's...
...ten million flies  can't ALL be wrong!
 
After it displays those two lines, this program ends and returns control to DOS.
EAT2.ASM is the source-code file from which the executable program file EAT2.EXE 
is assembled and linked. EAT2.ASM is present on the disk with JED. If you have 
somehow obtained JED without the rest of the example files from this book, you can 
type EAT2.ASM into JED after running JED.
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If you, as I suggested earlier, created a subdirectory on your hard disk called ASM, copy 
all of the files on the  JED disk into subdirectory ASM. In order for JED to operate 
correctly, the following files must be present in the subdirectory with JED:
• Your assembler. This can be any command-line oriented assembler, but will typically 
be either MASM.EXE or TASM.EXE.
• Your assembler's linker. Assemblers are usually shipped with their own linker. This is 
certainly true of MASM and TASM. Some assemblers may not use their own linker, but 
will use the DOS linker, LINK.EXE, instead.
• The DOS debugger, DEBUG.COM. Some versions of DOS are no longer shipped 
with DEBUG, which is offered as part of an additional utilities disk. Prior to DOS  3.2,  
all versions have DEBUG.COM.  If you don't have DEBUG.COM, you will find it slow 
going, since nearly all of the debugging skills I'll be teaching in this book center on 
DEBUG.COM.
Of course, other files can be present without any hindrance to your work.
 
Invoking JED
 
Make the current directory your working assembly-language subdirectory, which I have 
suggested you call ASM. From the DOS prompt, invoke JED and load EAT2.ASM
 
C:\ASM>JED EAT2
 
Notice that you don't have to type the .ASM extension at the end of the filename. JED 
has a default file extension of .ASM. In other words, if you don't enter a file extension, 
JED will append the file extension .ASM on the end of the name you enter on the 
command line. (You can also enter the full filename including extension.) In either case, 
JED will consider the name of the current file to be EAT2.ASM.
Now, either EAT2.ASM exists on your disk or it doesn't. JED won't mind if the file 
doesn't exist—new files have to start somewhere! If JED can't find the file you entered 
on the command line, it will display the words "New file" in the upper-left corner of the 
Edit screen and create an empty text file on your hard disk. When you type text into the 
Edit screen, JED will save the text into that new file.
The file may well exist on disk, and if it does, JED will load the file into the editor 
screen and display it for you. Assuming you entered the name EAT2, the screen should 
look almost identical to that shown in Figure 4.1.
You might wonder what will happen if you simply type JED at the DOS command line 
without specifying filename. One of two things will happen:
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•   JED will load the file that you last worked on from within JED. JED keeps a record 
of this file in a small file named JED.CFG. If it can find JED.CFG, and if the file 
named in JED.CFG is in current subdirectory, JED will load that file. JED updates 
JED.CFG automatically.
• If there is no JED.CFG on your disk, JED will create a file imaginatively named 
NONAME.ASM and store your text into a new file with that name. NONAME.ASM is 
a pretty rank name for any assembly-language program, so you might as well think of a 
better name and enter that when invoking JED.
JED's ability to remember the name of the last file you worked on makes it unnecessary 
for you to remember what project you were in the middle of when you pulled the plug 
and went to bed. Furthermore, JED also remembers the cursor position when you saved 
your file and exited from JED.
 
Moving around the Edit Screen
 
Your place to stand is JED's text editor, and when nothing else is going on (like 
assembling, linking, debugging, or running your program) you'll be in the text editor.
When you're in the text editor, any characters you type will be inserted into the current 
file and displayed on the Edit screen. You can move the cursor around the current file by 
using any of a number of cursor control keys.
The easiest to remember are the PC's keypad keys. The four arrow keys will
move the cursor one character position in the direction the arrow points. The
PgUp key will move the cursor one page up the size of your screen; typically 25,
43, or 50 lines, whereas PgDn will move the cursor one page down. The Home key will 
move the cursor immediately to the left screen margin, and the End key will move the 
cursor immediately to the end of the current line (End of the line is defined as the 
character after the rightmost non blank character in the line.)
There are numerous other cursor control keys that you can use within JED. I'll describe 
them all in detail in Section 4.4.
Take a few moments scooting around inside EAT2 until you feel comfortable with it.
 
Making Changes to the File
 
The simplest way to change the file is to enter something from the keyboard. All 
characters you type will appear at the cursor position. The cursor will move one position 
to the right as you enter each character.
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You can insert a new line beneath the current line by pressing Enter.
Getting rid of unwanted text is as important as adding new text. You can delete one 
character at a time by moving the cursor to the immediate right of the offending 
character, and pressing Backspace to back the cursor over it. The character will 
disappear.
You can delete an entire line by placing the cursor on the line and pressing Ctrl+Y. Be 
careful when using Ctrl+Y! You don't want to accidentally lose a line that you may or 
may not have in your head or written down on paper.
JED contains numerous other ways to delete text, all of which will be described in 
Section 4.4. For the sake of the current guided tour through JED, move the cursor to the 
blank line immediately beneath EAT2's comment header (line 9 in the file) and type the 
word "FOO". That done, press Enter and add a new line beneath it.
 
Saving Changes to a File
 
As they say in Chicago, that grand old (and cold) town where I grew up, "Vote early and 
often." The same philosophy applies to saving the changes you make to your current file 
under JED. Every so often, perhaps when you kick back in your chair to think for a bit, 
save your work. It's easy: one keystroke, the function key F2. JED will display the word 
"Saving..." in the status line at the top of the screen while it saves your file to disk. If you 
have a fast hard disk this will rarely take more than a second. If you're still working on 
diskettes, the process may take a few seconds more, especially if the current file is a 
good size.
Get in the habit of pressing F2 once in a while. Keep in mind that if you save your work 
every five minutes, you will never lose more than five minutes of work!
 
JED keeps an eye on things and does its level best to keep you from losing any of your 
work. If you try to exit JED without saving your file to disk, JED will remind you with 
the following prompt:
 
File modified.     Save it?  (Y/N)
If you press "Y", JED will save your work to disk. Pressing "N" will allow you to exit 
JED without saving your work. All other keys but Y and N will be ignored. JED also 
automatically saves your work every time you go out to use the assembler, linker, or 
debugger, or when you run the program you're developing, as I'll explain a little later.
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Changing the Current File
 
If you want to change the current file while you're in JED, simply press Alt+F. (Think 
File.) A window will appear in the center of the screen displaying the name of the current 
file above a field where you can enter the name of the new file.
The name of the current file will be in the field. You can do one of two things to the 
name:
• Begin typing a new name. The old name will vanish as soon as you press a printable 
character key.
• Backspace over some portion of the old name. This allows you to change the name of 
the current file from EAT2.ASM to EAT3.ASM without typing the whole name.
When you press Enter, JED will attempt to load the specified file. If the file does not 
exist, or if you left the name field blank, JED will create a new file according to the rules 
summarized in the previous section.
 
Checking and Changing the Assemble and Link Commands
 
The whole point of JED is to help you do your work in assembly language, and the 
central task in assembly-language work is processing a correct file through an assembler. 
JED can execute your assembler program and assemble your current file with only one 
keystroke on your part. That keystroke is function key F9, as you'll see from the prompt 
bar at the bottom of the screen. Before you press F9 on our tour, however, we'd better 
make sure JED has your assembler and linker commands straight.
As programs go, JED is pretty clever, but it doesn't read minds. It can make use of any 
assembler that operates from the DOS command line, but you have to tell JED how to 
invoke the assembler you've chosen. MASM and TASM are invoked in different ways, 
and JED must know which assembler you're using to invoke the assembler program from 
disk and make use of it.
Pressing function key F4 displays a whole new screen that allows you to specify your 
assembler. See Figure 4.3. The screen contains two command lines, one that invokes 
your assembler, and another that invokes your linker. I've set JED up to assume the use 
of Borland's Turbo Assembler TASM, which is faster and in many ways more 
sophisticated than Microsoft's MASM. If you are using TASM, you needn't change 
JED's built-in default command lines. Figure 4.3 shows the default command lines for 
TASM.
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To use MASM or some other assembler, however, you'll need to change both command 
lines. This will require some knowledge of how your assembler and linker operate. I'll 
provide you with some basic information about MASM and TASM; for other assemblers 
(or for using specialized features of MASM and TASM) you're on your own.
The line beneath the prompt "Assemble command" is the line JED will use to invoke 
your assembler. The default is
TASM ~
 
which will invoke Borland's Turbo Assembler with all default conditions in force. The 
tilde character ~ is used to indicate where in the line JED is to substitute the name of the 
current file. In other words, when JED goes out to DOS to execute TASM on the file 
EAT2.ASM, it will substitute EAT2.ASM for the tilde, using the following line for invoking 
TASM:
TASM  EAT2.ASM
 
If you're using MASM instead, you must change the Assemble command. Invoking 
MASM with all defaults in force (using the tilde to indicate the position of the filename) 
requires this command line:
MASM ~;
 
Again, in our example JED would automatically expand the line to read:
MASM  EAT2.ASM;
 
The semicolon is very important, and prevents MASM from going into interactive 
mode. If you omit the semicolon, MASM will stop and begin asking questions from the 
keyboard. JED is not equipped to answer these questions, and while you yourself could 
answer MASM's questions from the keyboard, there's no point to it if all we want to do is 
use MASM's defaults. If you're using MASM, make sure you enter that semicolon!
Modifying a command line isn't difficult. You can backspace over the existing command 
line and replace it with a new one, or zap the whole line at once by pressing Ctrl+X, and 
then typing in your new command line.
When the changes are the way you want them, press Enter to retain the changes and 
record them in JED.CFG. If somehow you change your mind after zapping or otherwise 
altering the existing command line, you can abandon your changes and leave the original 
command line untouched by simply pressing Esc.
You'll notice that while you're editing a command line, a line of periods runs from the 
end of the command line to the right margin. These periods indicate how large the 
command line can be. You can type as far as the periods allow. If you try to type further, 
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JED will quite literally say "uh-uh." Try it and see!
Changing the link command line is done the same way. TASM's link command line is 
this:
TLINK ~
 
MASM's link command line, on the other hand, requires a semicolon, and for the same 
reasons mentioned before:
LINK ~;
 
These are the absolute simplest command lines possible, and will suffice for simple 
learning programs like EAT2.ASM. For more advanced work you may need to use 
assembler or linker options, which are additional commands that provide special 
information to the assembler or linker about the job at hand.
 
 
Figure 4.3. Changing JED's assembler and link commands
 
\\JED\\ Assenble/link command edit screen
 
Assemble connand:
 
************************************************
 
Link connand:
 
 TLINK ~
 
Line editing commands:
 
CR:            Accepts changes and continues
ESC:          Abandons changes and continues
Ctrl-X:   Clears entire field to empty string
BS:            Destructive backspace
 

For example, under MASM you can specify that the assembler write the program's 
segments to disk in alphabetical order (don't mind for now if you don't know what that 
means) by using the /A option. This requires that you enter the /A option as part of the 
assemble command line:
MASM  /A ~;
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Both TASM and MASM have numerous options of this type. You won't need any of 
them while working your way through this book. Later on, when you graduate to larger, 
more sophisticated assembly-language work, you will need to understand and use these 
options. If you continue to use JED at that stage, you'll have to add the desired options to 
the assemble and link command lines.
 
Assembling the Current File
 
If you're satisfied that the assemble and link command lines are correct, it's time to 
assemble EAT2. Press F9, and the following things happen:
• JED saves the current file to disk. Any time JED transfers control outside of itself 
(by executing the program under development or by executing one of the utilities) it 
saves the current file.
• The screen clears, and JED invokes your assembler using the assemble command 
line described in the previous subsection. The assembler displays its copyright notice 
and certain other information on the screen. (Precisely what information displays 
depends on the assembler you're using.) This information will include error messages, if 
your source code file contains any errors.
• When the assembler is finished, JED saves the contents of the screen.
You can recall the information (typically error messages) back for examination later on. 
Saving the screen's contents happens invisibly and takes almost no time.
• A prompt reading "Press any key to return to JED" appears in the center of the bottom 
line of the screen. JED then waits for a keystroke, which allows you to take time to read 
the displayed error messages. When you're ready to resume work, press a key and the 
Editor screen will reappear. An example of the screen at this point is shown in Figure 
4.4.
If you recall, you made a change to EAT2.ASM a little earlier, by typing the word 
"FOO" on line 9. This word at this location in the file means nothing, and it will generate 
an assembler error message. You can see this error message as
 
Figure 4.4. A TASM error message
 
***************************************************************
Turbo Assembler    Version 2.0    Copyright (c)  1988,   1990 Borland  International
Assembling file:       EAT2.ASM
**Error** EAT2.ASM(9)   Illegal   instruction
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Error messages:        1
Warning Messages:     None
Passes:                     1
Remaining Memory:  93k
Press any key to return to JED...
**************************************************************
 
TASM presents it, along with TASM's copyright notice and other information, in Figure 
4.4. TASM calls the word "FOO" an illegal instruction because no FOO instruction 
exists in the 86-family instruction set. If you misspelled a genuine instruction (say, by 
fumble-fingering MOV into MVO) you would most likely see the same error message.
Both MASM and TASM are helpful in that they identify the line where they first noticed 
an error. (This line is not always where the error actually is, but we'll return to that matter 
later in the book.) This time, the error is a pretty obvious one and no assembler should 
have any trouble telling you that the problem exists in line 9 of the source code file. Once 
you press a key and return to JED's Edit screen, move to line 9 and delete the offending 
line. Just press Ctrl+Y and the line will vanish. Save the repaired file by pressing F2. 
Finally, invoke the assembler again by pressing F9. This time you won't see any error 
messages.
 
"Make"ing and Running an Executable File
 
What, exactly, does running the assembler actually accomplish? By itself, not much. 
Invoking the assembler alone is useful to determine if there are any errors in your source 
code file. If the file contains no errors, you still don't have an executable program file 
after the assembler has done its job. What you do have is a relocatable object file, with 
the same name as the current file but with an .OBJ file extension. In our example here, 
the assembler read in the current file, EAT2.ASM, and produced a new file, EAT2.OBJ.
You can't run EAT2.OBJ, and you can't read it or print it. You can't do much of anything 
with it, in fact, except link it. As I explained in the previous chapter linking is a process 
by which one or more .OBJ files are translated into an executable program file with an 
.EXE extension. It's called linking because more than one .OBJ file can be combined into 
a single .EXE file through the linking process. However, even if you only have one .OBJ 
file (as we do here with EAT2) you must still perform the link step on that file to create 
an executable program file.
JED can perform the link step very easily. It does not, however, perform the link step all 
by itself. Running the assembler alone is useful to identify errors, but running the linker 
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alone is pretty pointless unless you intend to run the executable program file produced by 
the link step. JED combines the link step with the step of actually running your new 
assembly language program to see what it does. Furthermore, it performs the assemble 
step again, so that you can do it all in one keystroke: assemble, link, and away you go!
When you press F10, JED will do basically the same things it did when you pressed F9, 
and then some:
• JED saves the current file to disk. The first time you run any new assembly-language 
program, you had better prepare to reboot your machine. It happens to the best of us 
now and then, and it will happen to you with dismaying frequency. Because we humans 
sometimes forget to save the source code file before running the .EXE file, JED never 
forgets.
• JED executes the assembler. If there are no errors in the file JED produces an .OBJ 
version of the current file. If errors are detected, no .OBJ file is generated and JED 
immediately takes control back from the assembler without performing the link and "go" 
(that is, execute) steps. JED will wait for a keystroke so that you can stare at the error 
messages for awhile.
• If there were no assembler errors, JED executes the linker The .OBJ file is 
translated into a .EXE file. Again, there is the possibility that linker errors will occur, 
although they are much less common than assembler errors. If errors are detected, JED 
takes control back directly from the linker and the .EXE file will not be run. In the event 
of an error, JED waits for a keystroke so that you can examine the wreckage before 
pressing a key and going on.
• The .EXE file is executed. Your fledgling program runs, and when it finishes JED will 
once again wait for a keystroke as you examine your program's output. In our test case of 
EAT2, this output consists of those two lines of text shown earlier about eating at Joe's.
At this point, I have a confession to make.
 
What I just told you was the truth, but not the whole truth. The F10 command is a little 
more complicated than just those four steps. Suppose, for example, that you use the F10 
command to create and run an .EXE file as we just did. Then suppose that you wanted to 
see it work again almost immediately, without making any further changes to the 
program. You press F10, expecting to have to wait through the assemble and link step 
again.
But no...
The second time you press F10, the .EXE file executes immediately, with neither the 
assembler nor the linker doing their thing.
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What gives?
JED is pretty clever after all. Since you didn't make any further changes to the source 
code file, there was no need for JED to reassemble and relink to recreate an .EXE file 
no different from the one created a few seconds earlier. JED simply executed the .EXE 
file as it did the first time, without making you wait through a needless assemble step and 
link step.
Here's what happens: when you press F10, JED looks at two files on disk. The first one 
is the .EXE file. If no .EXE file exists on disk, obviously, JED has to create one by 
executing both the assembler and the linker. But if the .EXE file does exist, JED looks at 
the file's time stamp and stores a copy of the time stamp.
A time stamp is DOS's way of knowing when a file was last changed. Every file created 
under DOS has both a time and a date attached to it. When you execute a DIR command 
from the DOS command line, the files listed tell you when they were last changed by 
displaying their time stamps as date and time values:
 
Volume in drive C  is  DISK1_VOL1 Directory of    C:\TURBO\JED OED               
BAK        27659      1-08-89      4:39p
JED               PAS         27633       1-08-89      4:39p
JED               EXE        31920       1-08-89      4:39p
JED             CFG             326       1-08-89       5:25p
4  File(s)     10803200 bytes  free
 
The two rightmost columns are the date and time portions of each file's time stamp.
Once it stores a copy of the .EXE file's time stamp, JED examines the current source 
code .ASM file, and stores a copy of its time stamp. Once JED has both time stamps, it 
compares them.
If the .ASM file's time stamp shows a time more recent than the .EXE file's time stamp, 
JED re-creates the .EXE file by invoking both the assembler and the linker. If the .ASM 
file's time stamp says the .ASM file is older than the .EXE file, JED simply runs the 
.EXE file without re-creating it.
 
Think about that for a moment until it makes perfect sense. (It's important!) If the .ASM 
file is older than the .EXE file, there is no possibility that changes made to the .ASM file 
have not been reflected in the .EXE file. However, if the .ASM file is newer than the 
.EXE file, it might mean that changes were made to the .ASM file that have not yet been 
reflected in the .EXE file. JED therefore updates the .EXE file so that it is guaranteed to 
reflect all possible changes made in the source code .ASM file.
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This process is a common one among software development tools. The name of the 
process is "make," meaning that when necessary, JED will choose to "make" the .EXE 
file from the .ASM file by invoking the assembler and the linker. The make process is 
efficient because it only happens when it has to. If the .EXE file is found to be up-to-
date, the  assemble and link steps are skipped.
As I've hinted before, running a brand new assembly-language program is dangerous 
business, especially for new assembly-language programmers. High-level languages like 
Pascal and C protect you to a considerable extent from your own ignorance. Assembly 
language offers almost no such protection. Until you really really know what you're 
doing, your assembly-language programs will crash your machine hard more often than 
they let it live. (This is why most assembly-language programmers choose machines with 
hard-reset buttons on the front panel. Pushing RESET is much gentler on the machine 
than turning it off and on again.)
So don't get discouraged when you crash. As that old Desiderata poem on your day-glo 
sixties psychedelic posters takes pains to point out, "No doubt the universe is unfolding 
as it should." Crashing is part of the process. What is stupid is crashing again and again 
without knowing why. Figuring out why you're crashing is one of the most difficult and 
rewarding facets of assembly-language programming, as we'll see by and by.
 
Taking Another Look at Your Error Messages
 
The assembler won't give you a lot of clues as to where you went wrong when it detects 
an error, so you have to make the most of what clues you get. The assembler displays 
error messages during the assemble step. It would be handy to keep those error messages 
around and refer to them when you're back in JED's Edit screen, staring at your errant 
source code.
JED can do it. Before JED clears the assembler's error messages from the screen and 
returns you to the text editor, it saves the screen information in memory. Later on, you 
can redisplay the screen as it was immediately after the assemble step by pressing F6.
The only time this system fails a little bit is if you have so many errors in the source code 
file that they begin to scroll off the top of the screen. This means, first of all, that you 
have some wholesale error hunting to do. But there is a way to avoid losing the first few 
error messages of a multi error assemble step. As  soon as the first few error messages 
appear, halt the assemble step by pressing Ctrl+C. It's wise to treat the first error 
messages first, because error messages sometimes breed other error messages, and 
getting rid of the first one might well purge five or fifteen others further down the file.
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If you try to recall an error message screen before running the assembler, JED will clear 
the screen and explain the situation.
You should also keep in mind that if an assemble step occurs without errors, you will still 
be able to recall the assembler's copyright notice and status information by pressing F6. 
JED is not particular; whether errors occur or not, it saves the screen from the last time 
the assembler was run.
 
Running DEBUG
 
An important part of developing assembly language programs is using the DEBUG 
utility. , JED can run DEBUG for you with a single keystroke. Once you've produced a 
working EAT2.EXE file, press F3. JED will invoke DEBUG.COM, using the current 
.EXE file as its command-line parameter. DEBUG will execute and in turn load your 
.EXE file into memory. The screen will clear, and you'll see DEBUG's terse little dash 
prompt.
Press D, and DEBUG will dump the first 128 bytes of EAT2.EXE as it was loaded into 
memory. Press R, and DEBUG will show you the current state of the registers. You can 
actually run EAT2.EXE by pressing G (for Go) at DEBUG's prompt. Finally, you can 
quit DEBUG by pressing Q. JED will take back control and wait for one final keystroke 
so you can grab a last look at what DEBUG has displayed.
One additional feature is that the last screenful of information displayed by DEBUG is 
saved in memory by JED, and can be recalled by pressing F6, just as with assembler 
error screens. This is handy when you need to refer back to a hex dump of a region of 
memory while examining a berserk source code file in the Edit screen.
 
"Ducking Out" to DOS
 
For all that it does do, JED is a modest program and doesn't try to do everything. I was 
tempted to build printer support into it so that you could create a printed listing of the 
current file by pressing a single key, but decided against it. There are a multitude of 
different kinds of printers out there, each with its own font sizes and setup strings and 
control sequences. Rather than try to cover all the printer bases, I decided to build a 
quick trap door into JED so that you can quickly duck out to DOS and run your own 
listing program, or do anything else that can be done from DOS.
To exit to DOS, press F5. JED will (to be safe) save the current file to disk, clear the 
screen, and take you back out to the DOS command prompt. It looks very much like JED 
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has terminated and returned control to DOS, but not so: JED is very much alive in 
memory, waiting patiently for you to finish your business with DOS and come back 
home.
From DOS you can do things like search the directory for a lost file, make room on your 
disk by erasing some clutter, or even (in a pinch) run another major program like Turbo 
Pascal. The only caution here is that JED and your program take up a certain amount of 
memory, memory that is therefore not available to other programs like Turbo Pascal. 
Very large programs like Ventura Publisher or Paradox may not execute at all if you try 
to execute them from "beneath" JED, not because you've done anything wrong but only 
because such large programs barely run at all even in 640K of RAM, and need the 
memory JED is taking up.
By actual examination using the CHKDSK utility, I've found that JED and its 
workspace take up about 180K of RAM. That's a lot of RAM, and you have to take its 
loss into account when you try to do things with JED waiting in memory.
Getting back into JED is easy. Just type the command EXIT at the DOS command 
prompt. JED will instantly take you back with open arms, and you can continue work as 
though you had never taken a DOS break at all.
One interesting thing to do: create and run a .EXE file by pressing F10, then duck out to 
DOS by pressing F5, and delete the .EXE file. Return to JED, and press F10 again. Even 
though you made no additional changes to the source code file, JED will search for the 
.EXE file before attempting to run it. Since no .EXE file exists, JED has no choice but 
to remake it.
 
4.4 JED's Editor in Detail
 
As JED's beating heart, the text editor deserves a little space all to itself. JED's editor is 
the Borland Binary Editor, essentially the same editor as used in the Turbo languages and 
Sidekick. Borland disengaged the editor module from its other products and made it 
available in linkable form (essentially one of those .OBJ files I described a while back) 
and placed it in the Turbo Pascal Editor Toolbox. If you own the Turbo Pascal Editor 
Toolbox, you can read up on the Binary Editor's many commands in the Editor Toolbox 
documentation. I'll describe them all briefly in this section.
 
Loading Files into the Editor
 
When you invoke JED and it begins running, it loads either the file you named on the 
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command line or the last file it worked on, as recorded in JED.CFG. The file is loaded 
into an area of memory called the editor workspace. The editor workspace is limited to 
64K in size, and any file to be loaded must fit into memory in its entirety. If the file is too 
large to fit in available memory, you will see this message:
Insufficient text buffer size
 
JED will then have no choice but to throw up its hands and return to DOS. You'll have to 
cut the monster file up into smaller files (which is a good idea anyway) and invoke JED 
again on only a portion of the oversized file.
Also keep in mind that individual lines within an edit file are limited to 248 characters. 
Loading a file with longer lines will cause the editor to insert hyphens at the 248-
character point.
 
Moving the Cursor
 
Apart from the keypad keys and F7 and F8 function keys (used for marking text blocks, 
as I'll explain below) all editor commands are control keystrokes. That is, you must hold 
the Ctrl key down while pressing another key or two keys. All of the keys that control 
cursor movement are grouped together for you in a cluster toward the left hand side of 
the keyboard:
   W   E    R
A    S     D    F
   Z    X    C
This arrangement of cursor control keys will be familiar to anyone who has worked with 
the WordStar word processor.
 
One Character at a Time
 
Moving the cursor one character at a time can be done in all four directions: pressing 
Ctrl+E or Up Arrow moves the cursor Up one character; pressing Ctrl+X or Down 
Arrow moves the cursor Down one character; pressing Ctrl+S or Left Arrow moves the 
cursor Left one character; and pressing Ctrl+D or Right Arrow moves the cursor Right 
one character.
The position of these four keys (E, X, S, and D) provide a hint as to which way they 
move the cursor. Look at how they are arranged on the keyboard:
  E
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S    D
  X
Until the directions become automatic to your fingers (as they will, if you do enough 
editing!) thinking of the magic diamond will remind you which way the cursor will move 
for which keypress.
When you move the cursor to the bottom of the screen and press Ctrl+X one more time, 
the screen will scroll. All the lines on the screen will jump up by one, and the top line 
will disappear. As long as the cursor is on the bottom line of the screen and you continue 
to press Ctrl+X, the screen will scroll upward. If use Ctrl+E to move the cursor back in 
the opposite direction (upward) until it hits the top of the screen, continually pressing 
Ctrl+E will scroll the screen downward one line per Ctrl+E.
 
One Word at a Time
 
JED will also move the cursor left or right one word at a time: pressing Ctrl+A or 
Ctrl+Left Arrow moves the cursor Left one word; while pressing Ctrl+F or Ctrl+Right 
Arrow moves the cursor Right one word.
More hints are given here, since the A key is on the left side of the magic diamond, and 
the F key is on the right side of the magic diamond.
 
One Screen at a Time
 
It is also possible to move the cursor upward or downward through the file one entire 
screen at a time. "Upward" in this sense means toward the beginning of the file; 
"downward" means toward the end of the file: pressing Ctrl+R or PgUp moves the cursor 
Up one screen; while pressing Ctrl+C or PgDn moves the cursor down one screen.
A screen is the height of your CRT display (25, 43, or 50 lines, depending on what 
display adapter is installed and what font is currently loaded) minus two lines for the 
editor status line at the top of the screen and the prompt bar at the bottom of the screen.
 
Moving the Cursor by Scrolling the Screen
 
I have described how the screen will scroll when you use the one-character-at-a-time 
commands to move upward (Ctrl+E) from the top line of the screen or downward 
(Ctrl+X) from the bottom line of the screen. You can scroll the screen upward or 
downward no matter where the cursor happens to be by using the scrolling commands: 
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pressing Ctrl+W scrolls the screen Down one line; while pressing Ctrl+Z scrolls the 
screen Up one line.
When you scroll the screen with these commands, the cursor "rides" with the screen as it 
scrolls upward or downward, until the cursor hits the top or bottom of the screen. Then 
further scrolling will make the screen slip past the cursor. The cursor will always remain 
visible.
These are all of the cursor control commands that can be accomplished in one Ctrl 
keystroke. There are a few more that are accomplished by holding theCtrl key down and 
pressing two keys in succession. You must hold the Ctrl key down through both 
keypresses!
 
Moving to the End of a Line
 
No matter where your cursor is on the screen, it is always within a line, even if that line 
happens to be empty of characters. The editor provides two commands to move the 
cursor either to the beginning (left end) of the line (screen column 1) or to the end of the 
line, (the position following the last visible character on the line): pressing Ctrl+Q/S or 
Home sends the cursor to the Beginning of the line; while pressing Ctrl+Q/D or End 
sends the cursor to the End of the line.
 
Moving to the End of a File
 
The last set of cursor control commands I'll describe takes the cursor to the beginning of 
the file or to the end of the file. If the file you are editing is more than a few screens long, 
the following commands can save you a great deal of pounding on the keyboard: 
pressing Ctrl+Q/R or Ctrl+PgUp sends the cursor to the Beginning of the file; while 
pressing Ctrl+Q/C or Ctrl+PgDn sends the cursor to the End of the file.
Because all of the current file is in memory all of the time, moving between the ends of 
the file can be done very quickly.
 
The Status Line
 
At the very top of JED's Edit screen is the status line, which provides you with some 
important information while you are editing. A typical instance of the status line looks 
like this:
Line  1    Col   1     Insert  Indent         C:EAT2.ASM                  09:04:45
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While you were moving the cursor around, the line and column numbers were 
continually changing to reflect where the cursor was in the file. The column number 
reflects the position of the cursor within its line; the line number indicates which line in 
the file contains the cursor, counting from the beginning of the file, not from the top of 
the screen. At the other end of the status line is the name of the current file.
Insert and Indent, described earlier in this chapter, are the names of two toggles. A toggle 
is a condition that exists in one of two different states. A toggle is like a switch 
controlling the lights in a room; the switch is either on or off.
Insert determines how newly typed characters are added to your work file. When Insert is 
on (that is, when the word Insert appears in the status line) characters you type are 
inserted into the file. The characters appear over the cursor and immediately push the 
cursor and the rest of the line to the left to make room for themselves. The line becomes 
one character longer for each character that you type. If you press Enter, the cursor 
moves down one line carrying with it the part of the line lying to its right.
When Insert is off (i.e., if the word Insert is not displayed in the status line) characters 
you type will overwrite characters that already exist in the file. No new characters are 
added to the file unless you move the cursor to the end of the line or the end of the file 
and keep typing. If you press Enter, the cursor will move down to the first character of 
the next line down, but nothing else will change. A line will only be added to the file if 
you press Enter with the cursor on the last line of the file.
Turning Insert on and off is done by pressing Ctrl+V.
 
Indent is also a toggle, which indicates whether JED's auto-indent feature is on or off. 
When Indent is on, the cursor will automatically move beneath the first visible character 
on a new line when you press Enter. In other words (assuming that Indent is on), given 
this little bit of text on your screen
Adjust:
MOV AX,  [BP] + 6
SUB AX, Increment_ <-Before pressing Enter
_
^
I After pressing Enter
 
the cursor is at the end of the last line of text. When you press Enter, the cursor will 
move down one line, but it will also space over automatically until it is beneath the "S" in 
"SUB". This allows you to begin typing the next line of code without having to space the 
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cursor over so that it is beneath the start of the previous line.
Like Insert, Indent can be toggled on and off; however, it takes a double control 
keystroke to do it: press Ctrl+Q/I to toggle Indent on and off. Indent is on when the word 
Indent appears in the status line.
 
Tab Mode
 
The status line also displays the current tab mode. Tabbing is the automatic spacing to 
the right when the Tab key is pressed. On the PC's keyboard, there is no key labeled 
"Tab"; instead, the key is imprinted with two arrows pointing in opposite directions, with 
a vertical bar at the head of each arrow:
Some clone keyboards do label the Tab key. The Tab key is usually positioned directly 
over the Ctrl key. There are two kinds of tabs in JED's editor. The default tabs are not 
tabs as most people knew them prior to the onset of Borland's Turbo Pascal. These 
smart" tabs move the cursor to the position beneath the start of the next word on the 
previous line. That is, using the following line as our example, if the cursor was 
positioned beneath this line, the caret marks show where the cursor would pause at each 
successive press of the Tab key:
 
Think of it as evolution  in action...
          ^  ^  ^   ^                ^  ^                 
This tabbing is done by inserting spaces, not by inserting the ASCII Tab (Ctrl+I) 
character.
Smart tabs, as described above, are the default tab mode in the editor. Pressing Ctrl+O/T 
toggles to the opposite tab mode, which supports true, eight-character fixed tabs that 
insert Ctrl+I characters at each press of the Tab key. If fixed tabs are in effect, the word 
Tab will be shown on the status line between the word Indent and the filename:
Line 1    Col   1     Insert  Indent Tab C:EAT2.ASM                   09:45:07
 
In summary on tab mode, pressing Ctrl+O/T toggles between smart tabs and fixed tabs.
 
Inserts and Deletes
 
We've already seen how to insert characters into a text file: you make sure Insert is on, 
then type away. Each typed character will be inserted into the file at the cursor position.
It is also possible to insert entire blank lines. One way, of course, is to move the cursor to 
the beginning of a line and press Enter. (Remember, Insert must be on.) A new blank line 
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will be inserted above the line with the cursor, and the rest of the file will be pushed 
downward. The cursor will ride down with the text pushed downward.
Another way to insert a line independent of the insert mode is to move the cursor to the 
beginning of a line and press Ctrl+N. A new line will appear, pushing the rest of the file 
downward, but the cursor will not move down with the other text. That is, pressing 
Ctrl+N inserts a new line at the cursor position.
There are also a number of different ways to delete text as well. The simplest is to use the 
Del (Delete) key. Pressing Ctrl+G performs exactly the same delete function: pressing 
Del deletes one Character to the Right of the cursor, and pressing Ctrl+G deletes one 
Character to the Right of the cursor.
The cursor does not move. It "swallows" the character to its right, and the rest of the line 
to its right moves over to fill in the position left by the deleted character. 
The Backspace key is used to delete characters to the left of the cursor; with this method 
the cursor rides to the left on each deletion.
You can think of backspace as "eating" one character to the left as it moves the cursor 
leftward.
You can also (to save a few keystrokes) delete one word to the right of the cursor by 
pressing Ctrl+T.
When you press Ctrl+T, all characters from the cursor position rightward to the end of 
the current word will be deleted. If the cursor happens to be on a space (or group of 
spaces) between words, that space (or spaces) will be deleted up to the beginning of the 
next word.
You can also delete from the cursor position to the end of the current line by pressing 
Ctrl+Q/Y.
And finally, you can delete the entire line with a single control keystroke by pressing 
Ctrl+Y.
The line beneath the cursor moves up to take the place of the deleted line, pulling up the 
rest of the file behind it.
A warning here for those of you with thick fingers: the T and Y characters are right next 
to one another on the keyboard. In a late night frenzy at the keyboard you may find 
yourself reaching for Ctrl+T to delete a word and hit Ctrl+Y instead, losing the entire 
line irretrievably. I've done this often enough that I simply broke myself of the habit of 
using Ctrl+T at all.
 
Undoing Changes to a Line
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JED's editor keeps a "backup" copy of each line while you're working on it, and retains 
that copy as long as the cursor remains within the line. Therefore, if you delete a word or 
some other portion of the line, or add something to a line by mistake, you can undo those 
changes to the line as long as you haven't yet left the line. Once you leave the line, even 
momentarily, the editor throws away the backup copy, and "undoing" is no longer 
possible. You can restore a line to its previous condition by pressing Ctrl+Q/L.
One drawback is that the undo feature will not restore a line deleted entirely with the 
Ctrl+Y command. Once a line is deleted, the cursor (by necessity) leaves the line, and so 
the editor does not retain the backup copy of the line. Be careful how you use Ctrl+Y!
 
Markers and Blocks
 
JED's editor supports two different kinds of markers; that is, positions in the file that 
have a name or number and can be moved around as needed by the programmer. These 
are place markers and block markers.
 
Place Markers
 
There is no such thing as a page number in an editor file. You can move the cursor to the 
beginning or end of the file with a single command, but to move to a specific place in the 
file is harder. The best way is to remember a distinctive title, procedure name, or 
something like that and search for it. (See below.) You might also make use the editor's 
place marker feature.
The editor supports four place markers, numbered 0 through 3. These can be placed at 
any position in a text file with a single command: pressing Ctrl+K<n> sets marker <n> 
within a file, when <n> is 0,1,2, or 3.
For example, to set marker 2, you would press Ctrl+K2.
Once a place marker has been set, you can move the cursor to it with a single command: 
pressing Ctrl+Q<n> moves the cursor to marker <n>.
For example, to move to marker 2 you would press Ctrl+Q2. If you have two or three 
"construction zones" within a largish source file, you might drop one of the place 
markers at the start of each zone, so you can shuttle between the zones with a single 
command.
The markers are invisible, and if you forget where they are, about all you can do is move 
the cursor to them with the Ctrl+Q<n> command.
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Block Markers
 
Block markers are used to specify the beginning and end of text blocks. There are only 
two of these markers, B and K, and in consequence only one block may be marked 
within a file at any given time.
The block markers are invisible and do not appear on your screen in any way. If both are 
present in a file, however, all the text between them (the currently marked block) is 
shown as highlighted text.
Placing each block marker is a two-character control keystroke: pressing Ctrl+K/B places 
the B marker; the shortcut is F7. Pressing Ctrl+K/K places the K marker; the shortcut is 
F8.
Note the two function key shortcuts, which are extremely convenient and fast.
A marker is placed at the cursor position and remains there until you move it elsewhere. 
You cannot delete or remove a marker once placed, although you can "hide" the block of 
text that lies between the markers, which effectively gets the markers out of the picture. 
(See below for more on hiding marked blocks.)
 
Moving the Cursor to a Block Marker
 
There are also commands to move the cursor to the block markers: pressing Ctrl+Q/B 
moves the cursor to the B marker; while pressing Ctrl+Q/K moves the cursor to the K 
marker.
 
Hiding and Unhiding Blocks of Text
 
The major use of markers, however, is to define a block of text. There are a number of 
commands available in JED's editor that manipulate the text that lies between the B and 
K markers.
You probably noticed while experimenting with setting markers that as soon as you 
positioned both the B and K markers in a file, the text between them became highlighted. 
The highlighted text is a marked text block. As we mentioned before, there is no way to 
remove a marker completely from a file once it has been set. You can, however, suppress 
the highlighting of text between the two markers. This is called hiding a block: pressing 
Ctrl+K/H will hide a block of text.
Remember that the markers are still there. Ctrl+K/H is a toggle. You invoke it once to 
hide a block, and you can invoke it a second time to unhide the block and bring out the 
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highlighting again on the text between the two blocks.
Something else to keep in mind: the other block commands we'll be looking at below 
work only on highlighted blocks. Once a block is hidden, it is hidden from the block 
commands as well as from your eyes.
 
Marking a Word as a Block
 
Ordinarily, to mark a word as a block, you'd have to move the cursor to the beginning of 
the word, press F7, then move to the end of the word and press F8. The editor, however, 
includes a short form of this command sequence: move the cursor to any position within 
a word and press Ctrl+K/T.
 
Block Commands
 
The simplest block command to understand is delete block. Getting rid of big chunks of 
text that are no longer needed is easy: mark the text as a block using the B and K 
markers, then press Ctrl+K/Y.
The markers themselves are not deleted with the block of text. They close up and occupy 
the same single cursor position, but they are still there, and you can move the cursor to 
them with the Ctrl+Q/B or Ctrl+Q/K commands.
Copy block is useful when you have some standard text construction (a standard 
boilerplate comment header for procedures, perhaps) that you need to use several times 
within the same text file. Rather than retyping the block each time, you type it once, 
mark it as a block, and then place a copy of the original into each position where you 
need it. Simply position the cursor where the first character of the copied text must go, 
then press Ctrl+K/C.
Moving a block of text is similar to copying a block of text. The difference, of course, is 
that the original block of text that you marked vanishes from its original position and 
reappears at the cursor position. To move a block of text you must first mark the text, 
then position the cursor where you wish the marked text to go, and then press Ctrl+K/C.
The last two block commands allow you to write a block of text to disk, or to read (place 
a copy of) a text file from disk into the current file. To write a block to disk, you begin 
by marking the block you want saved as a separate text file, then you press Ctrl+K/W.
The editor needs to know the name of the disk file into which you want to write the 
marked block of text. It prompts you for the filename with a dialog box entitled "Write 
Block To File." You must type the name of the file, with full path if you intend the block 
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to be written outside of the current directory, and then press Enter. The block is written 
to disk and remains highlighted in the editor. Note that the cursor does not move.
Reading a text file from disk into your work file is also easy. You position the cursor 
where the first character of the text from the file should go, and then press Ctrl+K/R.
Just as with the write block command, the editor will prompt you for the name of the file 
you want to read from disk with a dialog box entitled "Read Block From File."
There is one small "gotcha" that you must be aware of in connection with filenames. If 
you enter a filename without a period or file extension (that is, a filename like FOO 
rather than FOO.ASM) JED's editor will first look for a file named FOO. If it does not 
find one, it will then look for a file named FOO.ASM. If it still cannot find the file, it 
will issue this error message within an alarming red (if you have a color monitor) box:
Unable to open  FOO.ASM.     Press  <ESC>
 
Pressing Esc cancels the command entirely. To enter the name correctly you will need to 
issue the Ctrl+K/R command again.
When JED finds the text file, it will insert the file as a marked block into your work file 
at the cursor position. You will have to issue the hide block command to remove the 
highlighting. Remember also that reading a block of text from disk will effectively move 
your two block markers from elsewhere in your file and place them around the text that 
was read in.
The editor is not especially picky about the type of files you read from disk. Text files 
need not have been generated by JED's editor. In fact, files need not be text files at all, 
but remember, reading raw binary data into a text file can cause the file to appear 
foreshortened—the first binary 26 (Ctrl+Z) encountered in a text file is assumed to signal 
the end of the file. Data after that first Ctrl+Z may or may not be accessible. 
Furthermore, the editor will attempt to display the binary characters as is, and loading 
(for example) an .EXE file will fill the screen with some pretty lively garbage.
 
Finding and Replacing
 
Much of the power of electronic text editing lies in the ability to search for a particular 
character pattern in a text file. Furthermore, once found, it is a logical extension of the 
search concept to replace the found text string with a different text string. For example, if 
you decide to change the name of a variable to something else to avoid conflict with 
another identifier in a program, you might wish to have the text editor locate every 
instance of the old variable name in a program and replace each one with the new 
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variable name.
JED's editor can perform both Find and Find/Replace operations with great ease. Being 
able to locate a given text string in a program is often better than having page numbers 
(which JED's editor does not) in a file. If you wish to work on the part of a program that 
contains a particular procedure, all you need do is search for that procedure's name by 
pressing Ctrl+Q/F and JED will move the cursor right to the spot you want.
When you issue the Find command, the editor prompts you with a single word:
 
Find:
You must then type the text string you want found, and then press Enter. The editor then 
prompts you for command options:
 
Options:
There are several command options that you can use with both the Find and 
Find/Replace commands. These options are single letters (or numbers) that can be 
grouped together in any order without spaces in between:
 
Options:   BWU
We'll be discussing each option in detail shortly. When you press Enter after keying in 
the options (if any) the editor executes the command. For the Find command, the cursor 
will move to the first character of the found text string. If the editor cannot find any 
instance of the requested text string in the work file, it displays this message:
Search string not found. Press <ESC>
 
You must then press Esc to continue editing.
 
Find/Replace
 
The Find/Replace command goes that extra step for you. Once the search text is found, it 
will replace the search text with a replacement text. The options mean everything here: 
you can replace only the first instance of the search text; you can replace all instances of 
the search text; and you can have the editor ask permission before replacing, or simply 
go ahead and do the deed to as many instances of the search text as it finds. (This last 
operation is especially beloved of programmers, who call it a "search and destroy".)
As with Find, the editor prompts for the search text and options. It must also (for 
Find/Replace) prompt for the replacement string:
Replace with:

file:///E|/TEMP/Chapter%204%20Learning%20and%20Using%20Jed.htm (30 of 33) [9/30/02 08:30:49 PM]



file:///E|/TEMP/Chapter%204%20Learning%20and%20Using%20Jed.htm

If you have not specified any options, the editor will locate the first instance of the search 
string, place the cursor beneath it, and give you the permission prompt:
Replace  (Y/N):
If you type a Y here (no Enter required) the editor will perform the replacement. If you 
type an N, nothing will change.
 
Find/Replace Options
 
The editor's find/replace options allow you to "fine-tune" a Find or Find/ Replace 
command to cater to specific needs. For example, without any options the Find command 
is case sensitive. In other words, "FOO", "foo", and "Foo" are three distinct text strings, 
and searching for "FOO" will not discover instances of "foo." With the U option in 
force, however, "FOO", "foo", and "Foo" are considered identical and searching for any 
of the three forms will turn up instances of any of the three that are present. There are 
several such options to choose from within the editor. In general they are the same 
Find/Replace options used by WordStar:
• B is the Search Backwards option. Ordinarily, a search will proceed from the cursor 
position toward the end of the file. If the object of the search is closer to the beginning of 
the file than the cursor, the search will not find it. With the B option in force, the search 
proceeds backwards through the file, toward the beginning.
• G is the Global Search option. As mentioned above, searches normally begin at the 
cursor position and proceed toward one end of the file or the other, depending on 
whether or not the B option is in force. With the G option in force, searches begin at the 
beginning of the file and proceed to the end, ignoring the cursor position. The G option 
overrides the B option.
• N is the Replace Without Asking option. Without this option, the editor (during a 
Find/Replace) will prompt you for a yes/no response each time it locates an instance of 
the search text. With N in force, it simply does the replacement. Combining the G and N 
options means that the editor will search the entire file and replace every instance of the 
search text with the replacement text, without asking. Make sure you set it up right, or 
you can cause wholesale damage to your work file. In general, don't use G and N 
together without W. (See below for details on the W option.)
• U is the Ignore Case option. Without this option, searches are case sensitive. "FOO" 
and "foo" are considered distinct and searching for one will not find the other. With the 
U option in force, corresponding upper- and lowercase characters are considered 
identical. "FOO" and "foo" will both be found on a search for either.

file:///E|/TEMP/Chapter%204%20Learning%20and%20Using%20Jed.htm (31 of 33) [9/30/02 08:30:49 PM]



file:///E|/TEMP/Chapter%204%20Learning%20and%20Using%20Jed.htm

• W is the Whole Words option. Without this option, the search text will be found even 
when it is embedded in a larger word. For example, searching for "LOCK" will find both 
"BLOCK" and "CLOCK." With W in force, the search text must be bounded by spaces to 
be found. This option is especially important for global Find/Replace commands, when 
(if you omit W) replacing all instances of "LOCK" with "SECURE" will change all 
instances of "BLOCK" to "BSECURE" and all instances of "CLOCK" to "CSECURE."
You may also give a number as one of the options. For the Find command, this tells the 
editor to find the nth instance of the search text. For Find/Replace, a number tells the 
editor to find and replace text n times.
 
Find or Find/Replace Again
 
The editor remembers the last Find or Find/Replace command—search text, replacement 
text, options, and all. You can execute that last Find or Find/Replace command again 
simply by issuing the Find or Find/Replace again command: pressing Ctrl+L will 
perform the last Find or Find/Replace command again.
Ctrl+L can save you some considerable keystroking. Suppose, for example, you wanted 
to examine the header line of every procedure in a large (perhaps 1000 line) program 
with thirty or forty procedures. The way to do it is to search for the string "PROC" with 
the G, U, and W options in force. The first time you execute this command, the editor 
will find the first procedure in your program file. To find the next one, simply press 
Ctrl+L. You need not reenter the search text or the options. Each time you press Ctrl+L, 
the editor will find the next instance of the reserved word "PROC" until it runs out of 
file, or until you issue a new and different Find or Find/Replace command.
 
Saving Your Work
 
It is very important to keep in mind what is happening while you edit text files with the 
editor. You are editing entirely within memory. Nothing goes out to  disk while you are 
actually doing the edit. You can work on a file for hours, and one power failure will 
throw it all away. You must develop the discipline of saving your work every so often.
The easiest way to execute a Save command from within the editor is with the Save 
shortcut, F2. The "longcut" to saving the file from within the editor is Ctrl+K/S, (useful 
if you have WordStar burned into your synapses) but F2 is easier to type and remember.
 
Exiting the Editor
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There is more than one way to get out of JED once you're finished with the job at hand. 
You can get out with any of these commands:
Ctrl+K/D saves the current file and exits to DOS. Ctrl+K/Q ends the edit without saving 
and exits to DOS. Alt+X saves the current file if necessary and exits to DOS.
The differences between them are subtle. Ctrl+K/D always saves the current file and 
exits to DOS, whether the file has been modified or not. If the current file is very large, 
this can mean a delay of several seconds while the file is written out to disk (especially if 
you're working from diskettes).
Ctrl+K/Q, on the other hand, may be used to exit from JED without saving the current 
file, even if the current file has been modified since it was last saved. JED, always the 
one for safety, will ask you if you want to abandon the changes you've made. You can 
answer only Y or N; Y will indeed exit to DOS without saving the current file. N, on the 
other hand, indicates a change of heart on your part and JED will save the current file to 
disk before exiting.
Finally, Alt+X is the smart way out. If you made changes to the current file since the last 
time it was saved to disk, JED will save the file to disk. If no changes were made, JED 
will not waste your time with an unnecessary save, but will drop you out to DOS 
immediately.
No matter how you exit to DOS, JED considerately restores the DOS screen that existed 
just before you invoked it.
One important use of Ctrl+K/Q is to "undo" a disastrous search-and-destroy operation 
that went bad using Ctrl+Q/A. If you've changed every one of 677 instances of MOV to 
MUV by accident, and haven't yet saved the damaged file to disk using F2, your only 
course of action is to exit to DOS without saving the damaged file to disk. That done, 
you can invoke JED again and load the last, undamaged version of the current file.
So be careful, huh?
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An Uneasy Alliance
The 8086/8088 CPU and Its Segmented 
Memory System
5.1 Through a Glass, with Blinders >• 132
5.2 "They're Diggin' It up in Choonks!" >• 135
5.3 Registers and Memory Addresses >• 141
 
 
As comedian Bill Cosby once said, "I told you that story so I could tell you this one...." 
We're pretty close to half finished with this book, and I haven't eve begun describing the 
principal element in PC assembly language: The 8086/ 8088 CPU. Most books on 
assembly language, even those targeted at beginners assume that the CPU is as good a 
place as any to start their story, without considering the mass of groundwork without 
which most beginning programmers get totally lost and give up.
That's why I began at the real beginning, taking half a book to get to where the other 
guys start.
Keep in mind that this book was created to supply that essential groundwork. It is not a 
complete course in PC assembly language. Once you run off the end of this book, you'll 
have one leg up on any of the multitude of "beginner" books on assembly language from 
other publishers.
And it's high time we got right to the heart of things, and met the foreman of the PC 
himself.
 
5.1 Through a Glass, with Blinders
But having worked my way up to the good stuff, I find myself faced with a tricky 
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conundrum. Programming involves two major components of the PC: the CPU and 
memory. Most books begin by choosing one or the other and describing it. My own 
opinion is that you can't really describe memory and memory addressing without 
describing the CPU, and you can't really describe the CPU without going into memory 
and memory addressing. So let's do both at once.
 
The Nature of a Megabyte
The 8086 and 8088 CPUs are identical in most respects, which is why we often refer to 
them and their cousins as the "86 family." The 8088 is used in IBM's original PC and XT 
and their ubiquitous clones. The 8086 is used in two of IBM's newer machines, the PS/2 
models 25 and 30. Both machines can contain and use up to a megabyte of directly 
addressable memory. This memory is also called real memory or DOS memory. There is 
another kind of memory that you may have heard of, called expanded memory, that 
follows the Lotus-Intel-Microsoft (LIM) expanded memory specification (EMS). We're 
not speaking of expanded memory at all in this book; I consider it an advanced topic.
As I discussed briefly in Chapter 2, a megabyte of memory is actually not 1,000,000 
bytes of memory, but 1,048,576 bytes. It doesn't come out even in our base 10 because 
computers insist on base 2. 1,048,576 bytes expressed in base 2 is 
100000000000000000000B bytes. (We don't use commas in base 2—that's yet another 
way to differentiate binary notation from decimal, apart from the suffixed "B".) That's 
220, a fact that we'll return to shortly. The number100000000000000000000B is so bulky 
that it's better to express it in the compatible (and much more compact) base 16, which 
we call hexadecimal. 220 is equivalent to 165, and may be written in hexadecimal as 
100000H. (If the notion of number bases still confounds you, I'd recommend another trip 
through Chapter 1, if you haven't been through it already. Or, perhaps, even if you have.)
Now, here's a tricky and absolutely critical question: in a memory bank containing 
100000H bytes, what's the address of the very last byte in the bank? The answer is not 
100000H. The clue is the flipside to that question: what's the address of the first byte in 
the memory bank? That answer, you might recall, is 0. Computers always begin counting 
from 0. It's a dichotomy that will occur again and again in computer programming. The 
last in a row of four items is item 3, because the first item in a row of four is item 0. 
Count: 0,1,2,3.
The address of a byte in a memory bank is just the number of that byte starting from 
zero. This means that the last, or highest address in a memory bank containing one 
megabyte is 100000H minus one, or 0FFFFFH. (The initial zero, while not 
mathematically necessary, is there for the convenience of your assembler. Get in the 
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habit of using an initial zero on any hex number beginning with the hex digits A through 
F.)
The addresses in a megabyte of memory, then, run from 00000H to 0FFFFFH. In binary 
notation, that is equivalent to the range of 000000000000000000000B to 
11111111111111111111B. That's a lot of bits—20, to be exact. If you'll look back to 
Figure 2.3 in Chapter 2, you'll see that a megabyte memory bank has 20 address lines. 
One of those 20 bits is routed to each of those 20 address lines, so that any address 
expressed as 20 bits will identify one and only one of the 1,048,576 bytes contained in 
the memory bank.
That's what a megabyte of memory is: some arrangement of memory chips within the 
computer, connected by an address bus of 20 lines. A 20-bit address is fed to those 20 
address lines to identify one byte out of the megabyte.
 
16-Bit Blinders
 
The 8088 and 8086 can "see" a full megabyte. That is, the CPU chips have 20 address 
pins, and can pass a full 20-bit address to the memory system. From that perspective, it 
seems pretty simple and straightforward. However...the bulk of all the trouble you're ever 
likely to have in understanding the 86-family CPUs stems from this fact: although the 
CPUs can see a full megabyte of memory, they are constrained to look at that megabyte 
through 16-bit blinders.
You may call this peculiar. (Later on, you'll probably call it much worse.) But you must 
understand it, and understand it thoroughly.
The blinders metaphor is closer to literal than you might think. Look at Figure 5.1. The 
long rectangle represents the megabyte of memory that the 8088 can address. The CPU is 
off to the right. In the middle is a piece of metaphorical cardboard with a slot cut in it. 
The slot is one byte wide and 65,536 bytes long. The CPU can slide that piece of 
cardboard up and down the full length of its memory system. However, at any one time, 
it can only access 65,536 bytes.
The CPU's view of memory is peculiar. It is constrained to look at memory in chunks, 
where no chunk can be larger than 65,536 bytes in length.
The number 64K is important, just as 1Mb is. (We call 65,536 64K for the same reason 
that we call 1,048,576 "1Mb"—it's just shorthand for what is actually a binary number 
that "comes out even.") In fact, 64K is more important in assembly language 
programming than 1Mb; This is the number that circumscribes almost everything that an 
assembly-language programmer needs to do with the 86-family CPUs. It is, for one 
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thing, the largest single number that the CPU can actually count and remember as an 
integral whole. You'll encounter it again and again and again.
Remember: 65,536 in binary is 10000000000000000B; in hex it's 10000H. The important 
characteristic of 64K is that the number can be expressed in 16 bits. As a multiple of one 
byte, 16 bits carries with it some of the magic quality of the byte as data atom in our 
computer universe. The 8088 and 8086 are often called 16-bit computers, because they 
typically and most efficiently process 16 bits at once crunch. As we begin to discuss 
CPU registers, you'll come to fully understand just why the magical number 65,536 is as 
important and all-pervasive as it is.
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5.2 "They're Diggin' It up in Choonks!"
 
That's what Ray Walston shouted jubilantly in the marvelous film version of Paint Your 
Wagon. He was referring to gold being mined somewhere else (of course), but the 
metaphor to 86-family memory manipulation is apt. As we pointed out in the last section, 
the 8088 and its brothers only dig memory in chunks—that's how they're made. 
Furthermore, it may not be as bad an idea as most programmers think.
To cement my point, let's talk about another type of nugget: native copper. The better 
part of a mile under the Mesabe range in upper Michigan is an enormous nugget of 
native copper the size of a freight locomotive. It may even be larger; the mining 
company that discovered it isn't entirely sure how large it is. This super nugget was 
discovered before World War II and is still down there at the end of a long tunnel, 
basically forgotten.
Why leave a fortune in copper sitting where it was found, you ask? OK, wise guy—how 
do you get it out? Pure copper is a notoriously intractable metal. While not horribly hard, 
it is tough in ways that make cutting tools become dull and cause them to get stuck in 
their holes. The truth is that cutting the giant nugget up into manageable pieces would 
literally cost more than the copper would be worth at today's prices. Hauling out easily-
crushed copper ore in fist-sized chunks is enormously easier on men and equipment so 
supernugget remains in its hole, a curiosity and nothing more.
The lesson here is twofold: first of all, just as most mining companies do not encounter 
locomotive-sized nuggets every day (or even every century) most jobs a computer has to 
do not involve enormous quantities of memory at one time. Second, even on computers 
that don't have a set of 64K blinders playing with a megabyte all at once is hard work, 
and costly in machine performance.

file:///E|/TEMP/Chapter%205%20new.htm (5 of 23) [9/30/02 08:31:40 PM]



file:///E|/TEMP/Chapter%205%20new.htm

It may be that the 86-family's blinders enable it to work more quickly and efficiently 
within its megabyte of memory. Whether true or not, this notion of seeing memory as a 
number of chunks, called segments, is key to understanding the 86-family CPUs as well.
 
The Nature of Segments
 
In 86-parlance, a segment is a region of memory that begins on a paragraph boundary 
and extends for some number of bytes less than or equal to 64K (65,536). We've spoken 
of the number 64K before. But paragraphs?
Time out for a lesson in 86-family trivia. A paragraph is a measure of memory equal to 
16 bytes. It is one of numerous technical terms used to describe various quantities of 
memory. We've spoken of some of them before, and all of them are even multiples of 
one byte. Bytes are data atoms, remember; loose memory bits never exist in the absence 
of a byte of memory to contain them. Table 5.1 lists the terms you should be aware of.
Table 5.1 lists two names for each term. One is the technical term that you and I and all 
the rest of the humans use in speaking. However, the assembler has its own names for 
these terms, which you will have to use when writing assembly-language programs. 
Some of these terms, like ten byte, occur very rarely, and others, like page, occur almost 
never. The term paragraph is almost never used, except in connection with the places 
where segments may begin.
 
Table 5. 1 . Collective terms for memory 
NAME   SIZE 
Technical Assembler Decimal Hex 
Byte BYTE 1 01H 
Word WORD 2 02H 
Double word DWORD 4 04H 
Quad word QWORD 8 08H 
Ten byte TBYTE 10 OAH 
Paragraph PARA 16 10H 
Page PAGE 256 100H 
Segment SEGMENT 65,536 10000H 
 
Any memory address evenly divisible by 16 is called a paragraph boundary. The first 
paragraph boundary is address 0. The second is address 10H; the third address 20H, and 
so on. (Remember that 10H is equal to decimal 16.) Any paragraph boundary may be 
considered the start of a segment.
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This doesn't mean that a segment actually starts every 16 bytes up and down throughout 
that megabyte of memory. A segment is like a shelf in one of those modern adjustable 
bookcases. On the back face of the bookcase are a great many little slots spaced one-half 
inch apart. A shelf bracket can be inserted into any of the little slots. However, there 
aren't hundreds of shelves, but only four or five. Most of the slots are empty. They exist 
so that a much smaller number of shelves may be adjusted up and down the height of the 
bookcase as needed.
In a very similar manner, paragraph boundaries are little slots at which a segment may 
start. An assembly-language program may make use of only four or five segments, but 
each of those segments may begin at any of the 65,536 paragraph boundaries existing in 
the 8088's megabyte of memory.
There's that number again: 65,536; our beloved 64K. There are 64K different paragraph 
boundaries where a segment may begin. Each paragraph boundary has a number. As 
always, the numbers begin from 0, and go to 64K minus one; in decimal 65,535, or in 
hex 0FFFFH. Because a segment may begin at any paragraph boundary, the number of 
the paragraph boundary at which a segment begins is called the segment address of that 
particular segment. We rarely, in fact, speak of paragraphs or paragraph boundaries at all. 
When you see the term "segment address," keep in mind that each segment address is 16 
bytes (one paragraph) farther along in memory than the segment address before it. See 
Figure 5.2.
In short, segments may begin at any segment address. There are 65,536 segment 
addresses evenly distributed across the 8088's full megabyte of memory, 16 bytes apart. 
A segment address is more a permission than a compulsion; for all the 64K possible 
segment addresses, only five or six are ever actually used to begin segments at any one 
time. Think of segment addresses as slots where segments may be placed.
So much for segment addresses; now, what of segments themselves? A segment may be 
up to 64K bytes in size, but it doesn't have to be. A segment may be only 1 byte long, or 
256 bytes long, or 21,378 bytes long, or any length at all short of 64K bytes.
 
A Horizon, Not a Place
 
You define a segment primarily by stating where it begins. What, then, defines
how long a segment is? Nothing, really—and we get into some really tricky
semantics here. A segment is more a horizon than a place. Once you define
where a segment begins. that segment can encompass any location in memory
between that starting place and the horizon, which is 65,536 bytes down the line.
Nothing says, of course, that a segment must use all of that memory. In most cases, when 
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you define a segment to exist at some segment address, you only end up considering the 
next few hundred bytes as part of that segment, until you get into some truly world-class 
programs. Most beginners read about segments and think of them as some kind of 
memory allocation, a protected region of memory with walls on both sides, reserved for 
some specific use.

This is about as far from true as you can get. Nothing is protected within a segment, and 
segments are not reserved for any specific register or access method. Segments can 
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overlap. Segments don't really exist, in a very real sense, except as horizons beyond 
which a certain type of reference cannot go. It comes back to that set of 64K blinders the 
CPU wears, as I drew in Figure 5.1. I think of it this way. a segment is the location in 
memory at which the CPU's 64K blinders are positioned. In looking at memory through 
the blinders, you can see bytes starting at the segment address, and going on until the 
blinders cut you off, 64K bytes down the way.
The key to understanding this admittedly metaphysical definition of a segment is 
knowing how segments are used. And coming to understand that finally brings us to the 
subject of registers.
 
Making 20-Bit Addresses out of 16-Bit Registers
 
The 8088 and 8086 are often called 16-bit CPUs because their internal registers are 
almost all 16 bits in size. A register, as I've hinted before, is a memory location inside 
the CPU chip rather than outside in a memory bank. The 86 family has a fair number of 
registers, and they are an interesting crew indeed.
Registers do many jobs, but one of their more important jobs is holding addresses of 
important locations in memory. If you'll recall, the 8088 has 20 address pins, and its 
megabyte of memory requires addresses 20 bits in size.
How do you put a 20-bit memory address in a 16-bit register?
Easy. You don't.
You put a 20-bit address in two 16-bit registers.
What happens is this: all locations within the 8088's megabyte of memory have not one 
address but two. Every byte in memory is assumed to reside in a segment. A byte's 
complete address, then, consists of the address of its segment, along with the distance of 
the byte from the start of that segment. The address of the segment is (as we said before) 
the byte's segment address. The byte's distance from the start of the segment is the byte's 
offset address. Both addresses must be specified to completely describe any single byte's 
location within the full megabyte of memory. When written, the segment address comes 
first, followed by the offset address. The two are separated with a colon. Segment:offset 
addresses are always written in hexadecimal. Make sure the colon is there so that people 
know you're specifying an address and not just a couple of numbers!
I've drawn Figure 5.3 to help make this a little clearer. A byte of data we'll call 
"MyByte" exists in memory at the location marked. Its address is given as 0001:001D. 
This means that MyByte falls within segment 0001H, and is located  001DH bytes from 
the start of that segment. Note that when two numbers are used to specify an address with 
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a colon between them, you do not end each of the two numbers with the hexadecimal 
suffix.
You can omit leading zeroes if you like; however, remember the assembly-language 
policy of never allowing a hex number to begin with the hex digits A through F. For 
example, the address 00B2:0004 could be written 0B2:4. As a good rule of thumb, 
however, I recommend using all four hex digits in both components of the address except 
when all four digits are zero. In other words, you can abbreviate 0000:0061 to 0:0061 or 
0B00:0000 to 0B00:0.
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The universe is perverse, however, and clever eyes will perceive that MyByte can have 
two other perfectly legal addresses: 0:002D and 0002:000D. How so? Keep in mind that 
a segment may start every 16 bytes throughout the full megabyte of real memory. A 
segment, once begun, embraces all bytes from its origin to 65,535 bytes further up in 
memory. There's nothing wrong with segments overlapping, and in Figure 5.3 we have 
three overlapping segments. MyByte is 2DH bytes into the first segment, which begins 
at segment address 0000H. MyByte is IDH bytes into the second segment, which begins 
at segment address 0001H. It's not that MyByte is in two or three places at once. It's in 
only one place, but that one place may be described in any of three ways.
It's a little like Chicago's street number system. Howard Street is 76 blocks from 
Chicago's "origin," Madison Street. Howard Street is, however, only 4 blocks from 
Touhy Avenue. You can describe Howard Street's location relative to either Madison 
Street or Touhy Avenue, depending on what you want to do.
An arbitrary byte somewhere in the middle of the 8086's megabyte of memory may fall 
within literally tens of thousands of different segments. Which segment the byte is 
actually in is strictly a matter of convention.
This problem appears in real life to confront programmers of the IBM PC. The PC keeps 
its time and date information in a series of memory bytes that starts at address 
0040:006C. There is also a series of memory bytes containing PC timer information 
located at 0000:046C. You guessed it—we're talking about exactly the same starting 
byte. Different writers speaking of that same byte may give its address in either of those 
two ways, and they'll all be completely correct.
The way, then, to express a 20-bit address in two 16-bit registers is to put the segment 
address into one 16-bit register, and the offset address into another 16-bit register. The 
two registers taken together identify one byte among all 1,048,576 bytes in a megabyte.
 
5.3 Registers and Memory Addresses
 
Think of the segment address as the starting position of the 8086/8088's 64K blinders. 
Typically, you'll move the blinders to encompass the location where you wish to work, 
and then leave the blinders in one place while moving around within their 64K limits.
This is exactly how registers tend to be used in 8086/8088 assembly language. The 
8088, 8086, and 80286 have exactly four segment registers specifically designated as 
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holders of segment addresses. (The 386 and 486 have two more—but we'll return to that 
in Chapter 11.) Each segment register is a 16-bit memory location existing within the 
CPU chip itself. No matter what the CPU is doing, if it's addressing some location in 
memory, the segment address of that location is present in one of the four segment 
registers. 
The segment registers have names that reflect their general functions: CS DS, SS, and 
ES.
• CS stands for Code Segment. Machine instructions exist at some offset into a code 
segment. The segment address of the code segment of the currently executing instruction 
is contained in CS.
• DS stands for Data Segment. Variables and other data exist at some offset into a 
data segment. There may be many data segments, but the CPU may only use one at a 
time, by placing the segment address of that segment in register DS.
• SS stands for Stack Segment. The stack is a very important component of the CPU 
used for temporary storage of data and addresses. I'll explain how the stack works a little 
later; for now simply understand that, like everything else within the 8086/8088's 
megabyte of memory, the stack has a segment address, which is contained in SS.
• ES stands for Extra Segment. The extra segment is exactly that: a spare segment 
that may be used for specifying a location in memory.
 
General-Purpose Registers
 
The segment registers exist only to hold segment addresses. They can be forced to do a 
few other things, but by and large segment registers should be considered specialists in 
"segment address containing." The 8086/8088 CPU has a crew of generalist registers to 
do the rest of the work of assembly-language computing. Among many other things, 
these general-purpose registers are used to hold the offset addresses that must be paired 
with segment addresses to pin down a single location in memory.
Like the segment registers, the general-purpose registers are memory locations existing 
inside the CPU chip itself. They all have names rather than numeric addresses: AX, BX, 
CX, DX, SP, BP, SI, and DI. The general-purpose registers really are generalists in that 
all of them share a large suite of capabilities. However, each of the general-purpose 
registers also has what I call its "hidden agenda": a task or set of tasks that only it can 
perform.
I'll explain all these hidden agendas as I go. For now, we'll concentrate on the role of the 
general-purpose registers in addressing memory.
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Several of the general-purpose registers (BX, BP, SP, SI, and DI) may contain an offset 
address. This offset address may be used in combination with any of the segment 
registers to pinpoint any one of the 1,048,576 bytes in the megabyte address space of the 
8086/8088. All you need to do is specify which two registers are to be used together, 
with the segment register first and the general-purpose register second. For example:
 
SS   :   SP
SS   :   BP
ES   :   DI
DS   :   SI
CS   :   BX
 

Register Halves
 
General-purpose registers AX, BX, CX, and DX have an important property: they can be 
cut in half. Actually, assemblers recognize special names for the two halves of these four 
registers. The A, B, C, and D are retained, but instead of the X, a half is specified with an 
"H" for "High half or an "L" for "Low half." Each register half is one byte (eight bits) in 
size, allowing the entire register to be 16 bits in size, or one word.
Thus, making up the 16-bit register AX you have byte-sized register halves AH and AL; 
within BX there is BH and BL, and so on. One nice thing about this arrangement is that 
you can read and change one half of a 16-bit number without disturbing the other half. 
This means that if you place the 16-bit hexadecimal value 76E9H into register AX, you 
can read the byte-sized value 76H from register AH, and OE9H from register AL. Better 
still, if you then store the value OAH into register AL and then read back register AX, 
you'll find that the original value of 76E9H has been changed to 760AH.
Being able to treat the AX, BX, CX, and DX  registers as 8-bit halves can be extremely 
handy in situations where you're manipulating a lot of 8-bit quantities. Each register half 
can be considered a separate register, leaving you twice the number of places to put 
things while your program works. As you'll see later on, finding a place to stick a value 
in a pinch is one of the great challenges facing assembly-language programmers.
Keep in mind that this dual nature involves only general-purpose registers AX, BX, CX, 
and DX. The other general-purpose registers SP, BP, SI, and DI, are not similarly 
equipped. There are no SIH and SIL 8-bit registers, for example, as convenient as that 
would sometimes be.
 

The Instruction Pointer
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Yet another type of register lives inside the 8086/8088 CPU. The instruction pointer 
(usually called IP) is in a class by itself. IP is far more of a specialist than are any of the 
segment registers. IP can do only one thing: it contains the offset address of the next 
machine instruction to be executed.
While executing a program, the CPU uses IP to keep track of where it is. Each time an 
instruction is executed, IP is incremented by some number of bytes. The number of 
bytes is the size of the instruction just executed. The net result is to bump IP further into 
memory, so that it points to the start of the next instruction to be executed. Instructions 
come in different sizes, ranging typically from one to six bytes. (Some of the more 
arcane forms of the more arcane instructions may be even larger.) The CPU is careful to 
increment IP by just the right number of bytes, so that it does in fact end up pointing to 
the start of the next instruction, and not merely into the middle of the last instruction.
If IP contains the offset address of the next machine instruction, where is the segment 
address? The segment address is kept in the code segment register CS. Together, CS and 
IP contain the full 20-bit address of the next machine instruction to be executed.
The full 20-bit address of the next machine instruction to be executed is kept CS:IP.
A code segment is an area of memory where machine instructions are stored. The steps 
and tests of which a program is made are contained in code segments. There may be 
many code segments in a program, but small programs like the ones in this book will 
most likely have only one. The current code segment is that code segment whose 
segment address is currently stored in code segment register CS. At any given time, the 
machine instruction currently being executed exists within the current code segment.
Typically, large programs are divided up into chunks, with each chunk considered to be 
part of a separate code segment. Switching from one code segment to another is done 
with a class of instructions called branching instructions, which I'll be covering in 
Chapter 9.
IP is notable in being the only register that can neither be read nor written to directly. It's 
possible to obtain the current value of IP, but the method involves some trickery that will 
have to wait until we discuss branching instructions in Chapter 9.
 
The Flags Register
 
There is one additional type of register inside the CPU: the Flags register. The Flags 
register is 16 bits in size, and most of those 16 bits are single-bit registers called flags. 
Each of these individual flags has a name, like CF, DF, OF, and so on.
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When your program performs a test, what it tests is one or another of the single-bit flags 
in the Flags register. Since a single bit may contain one of only two values, 1 or 0, a test 
in assembly language is truly a two-way affair: either a flag is set to 1 or it isn't. If the 
flag is set to 1, the program takes one action; if the flag is set to 0, the program takes a 
different action.
We're concentrating on memory addressing at the moment, so for now I'll simply 
promise to go into flag lore in more detail at more appropriate moments later in the book.
 
Reading and Changing Registers with DEBUG
 
The DOS DEBUG utility provides a handy window into the CPU's hidden world of 
registers. How DEBUG does this is the blackest of all black arts and I can't begin to 
explain it in an introductory text. For now, just consider DEBUG a magic box.
Looking at the registers from DEBUG doesn't even require that you load a program into 
DEBUG. Simply run DEBUG, and at the dash prompt, type R. The display will look 
something very close to this:
 
-r
 
AX=0000 BX=0000 CX=0000 DX=0000 SP=FFEE     BP=0000 SI=0000 DI=0000
DS=1980 ES=1980 SS=1980 CS=1980  IP=0100       NV UP El PL NZ NA PO NC
1980:0100 389A5409     CMP [BP+SI+0954],BL                                            
SS:0954=8A
 
I say "something very close" because details of the display will vary depending on what 
resident programs you have loaded in memory, which version of DOS you're using, and 
so on. What will vary will be the values listed as present in the various registers, and the 
machine instruction shown in the third line of the display (Here, CMP [BP+SI+0954], 
BL).
What will not vary is the fact that every CPU register has its place in the display, along 
with its current value shown to the right of an equal sign. The series of characters NV UP 
El PL NZ NA PO NC are a summary of the current values of the flags in the flags 
register.
The display shown above is that of the registers when no program has been loaded. All of 
the general-purpose registers except for SP have been set to 0, and all of the segment 
registers have been set to the value 1980H. These are the default conditions set up by 
DEBUG in the CPU when no program has been loaded. (The 1980H value will probably 
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be different for you—it represents the first available segment in memory above DOS, 
and where that segment falls depends on what else exists in memory both above and 
below DOS.)
Changing a register is done very simply, again using DEBUG's R command. To change 
the value of AX, type R AX
 
-R AX
 
AX:0000 
 
:OA7B

 
DEBUG will respond by displaying the current value of AX, and then, on the following 
line, a colon prompt. DEBUG will then wait for you to either enter a new numeric value 
for AX or press Enter. If you press Enter, the current value of the register will not be 
changed. In the example shown above, I typed OA7B (you needn't type the H indicating 
hex) and then pressed Enter.
 
Once you do enter a new value and then press Enter, DEBUG does nothing to verify the 
change. To see the change to register AX, you must display all the registers again using 
the R command:
 
-r
AX=OA7B BX=0000 CX=0000 DX=0000 SP=FFEE     BP=0000 SI=0000 01=0000
DS-1980 ES=1980 SS=1980 CS=1980 IP=0100       NV UP EI PL NZ NA PO NC
1980:0100 389A5409     CMP [BP+SI+0954],BL                                            SS:0954=8A
 
Take a few minutes to practice entering new values for the general-purpose registers, 
then display the registers as a group to verify that the changes were made. While 
exploring you might find that the IP register can be changed, even though I said earlier 
that it can't be changed directly. The key word is directly-, DEBUG knows all the dirty 
tricks.
 
Inspecting the Video Refresh Buffer with DEBUG
 
One good way to help your knowledge of memory addressing sink in is to use DEBUG 
to take a look at some interesting places in the PC's memory space.
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One easy thing to do is look at the PC's video display adapter's refresh buffer. A video 
refresh buffer is a region of memory with a difference: any characters written to buffer 
memory are instantly displayed on the computer screen. This screen refresh feature is 
accomplished electrically through special use of the information that comes out of the 
memory data pins. Precisely how it is done is outside the scope of this book. For now, 
simply understand that writing a character to your display screen can be done by writing 
the ASCII code for that character into the correct address in the video refresh buffer 
portion of memory.
As with any memory location anywhere within the PC, the video refresh buffer has a 
segment address. What that segment address is depends on the kind of display installed 
in the PC. There are two possibilities: if your PC has a color screen, the segment address 
of the video refresh buffer is 0B800H; if your PC has a monochrome screen, the segment 
address is 0B000H.
It takes two bytes in the buffer to display a character. The first of the two (that is, first in 
memory) is the ASCII code of the character itself. For example, an "A" would require the 
ASCII code 41H; a "B" would require the ASCII code 42H, and so on. (The full ASCII 
code set is shown in Appendix B.) The second of the two bytes is the character's 
attribute. Think of it this way: the ASCII code says what character to display and the 
attribute says how to display it. The attribute dictates the color of a character and its 
background cell on a color screen. On a monochrome screen, the attribute specifies if a 
character is underlined or displayed in reverse video. (Reverse video is a character 
display mode that shows dark characters on a light background, rather than the traditional 
light character on a dark or black background.) Every character byte has an attribute byte 
and every attribute byte has its character byte; neither can exist alone.
The very first character/attribute pair in the video refresh buffer corresponds to the 
character you see in the upper-left corner of the screen. The next character/attribute pair 
in the buffer is the character at the second position on the top line of the screen, and so 
on. I've drawn a diagram of the relationship between characters on the screen and byte 
values in the video refresh buffer, in Figure 5.4.
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In Figure 5.4, the three letters "ABC" are displayed in the upper-left corner of the screen. 
Notice that the "C" is underlined. The screen shown in Figure5.4 is monochrome. The 
video refresh buffer therefore begins at 0B000:0. The byte located at address 0B000:0 is 
ASCII code 41H, corresponding to the letter "A." The byte at address 0B00:0001 is the 
corresponding attribute value of 07H. The value 07H as an attribute dictates normal text 
in both color and monochrome displays, where normal means white characters on a black 
background.
The byte at 0B000:0005 is also an attribute byte, but its value is 01H. On a monochrome 
display, 01H makes the corresponding character underlined. On a color display, 01H 
makes the character blue on a black background.
There is nothing about the video refresh buffer to divide it into the lines you see on the 
display. The first 160 characters (80 ASCII codes plus their 80 attribute bytes) are shown 
as the first line, and the next set of 160 characters is shown on the next line down, and so 
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on.
You might rightfully ask what ASCII code is in the video refresh buffer for locations on 
the screen that show no character at all. The answer, of course, is that there is a character 
in every "empty" space: the space character, whose ASCII code is 20H.
You can inspect the memory within the video refresh buffer directly through DEBUG, 
by following these steps:
1.  Clear the screen by entering CLS at the DOS prompt and then pressing Enter.
2.  Invoke DEBUG.
3.  Enter the segment address of your video refresh buffer into the ES register by using 
the R command. Remember: Color screens use the 0B800H segment address, while 
monochrome screens use the 0B000H segment address. Note that 0B800H must be 
entered into DEBUG as "B800," without the leading zero. TASM and MASM must have 
that leading zero, and DEBUG cannot have it. Sadly, no one ever said that all parts of 
this business had to make perfect sense.
4.  Enter D ES:0 to dump the first 128 bytes of the video refresh buffer.
5.  Enter the D command (by itself) a second time to dump the next 128 bytes of the 
video refresh buffer.
What you'll see should look a lot like the session dump shown below:
 
C:\ASM>debug -r es ES 1980 :b800 -d es:0
B800:0000 20 07 20 07 20 07 20 07-20 07 20 07 20 07 20 07   ........
B800:0010 20 07 20 07 20 07 20 07-20 07 20 07 20 07 20 07   ........
B800:0020 20 07 20 07 20 07 20 07-20 07 20 07 20 07 20 07   ........
B800:0030 20 07 20 07 20 07 20 07-20 07 20 07 20 07 20 07   ........
B800:0040 20 07 20 07 20 07 20 07-20 07 20 07 20 07 20 07   ........
B800:0050 20 07 20 07 20 07 20 07-20 07 20 07 20 07 20 07
 
B800:0060     20 07 20 07 20 07 20 07-20 07 20  07   20  07   20  07   ........
B800:0070     20 07 20 07 20 07 20 07-20 07 20  07   20  07   20  07   ........
 
-d
 
B800:0080     20 07 20 07 20 07 20 07-20 07 20  07   20  07   20  07   ........
B800:0090     20 07 20 07 20 07 20 07-20 07 20  07   20  07   20  07   ........
B800:00A0     43 07 3A 07 5C 07 41 07-53 07 4D  07  3E  07   64  07     C.:.\A.S.M.>.d.
B800:00B0     65 07 62 07 75 07 67 07-20 07 20  07  20  07  20  07    
e.b.u.g.....
B800:0000     20 07 20 07 20 07 20 07-20 07 20  07   20  07   20  07   ........
B800:0000     20 07 20 07 20 07 20 07-20 07 20  07   20  07   20  07   ........
B800:OOEO     20 07 20 07 20 07 20 07-20 07 20   07   20  07   20  07   ........
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8800:OOFO     20 07 20 07 20 07 20 07-20 07 20   07   20  07   20  07   ........
 
The first 80 character/attribute pairs are the same: 20H/07H, which display as plain 
ordinary blank space. When you execute the CLS command on most machines, the 
screen is cleared, and the DOS prompt reappears on the second line from the top of the 
screen, not the top line. The top line is typically left blank, as is the case here.
You'll see in the second block of 128 dumped bytes the DOS prompt and the invocation 
of DEBUG in lowercase. Keep in mind when reading DEBUG hex dumps that any 
character not readily displayed as one of the standard ASCII letters, numbers, or 
punctuation marks is represented as a period character. This is why the 07H attribute 
character on the right portion of DEBUG's display is shown as a period character, since 
the ASCII code 07H has no displayable equivalent.
You can keep dumping further into the video refresh buffer by pressing DEBUG's D 
command repeatedly.
 

Reading the BIOS Revision Date
 

Another interesting item that's easy to locate in your PC is the revision date in the ROM 
BIOS. Read-only memory (ROM) chips are special memory chips that retain their 
contents when power to the PC is turned off. The BIOS (Basic Input/ Output System) is a 
collection of assembly-language routines that perform basic services for the PC: disk 
handling, video handling, printer handling, etc. The BIOS is kept in ROM at the very top 
of the PC's megabyte of address space.
The BIOS contains a date, indicating when it was declared finished by its authors. This 
date is always at the same address, and can be easily displayed using DEBUG's D 
command. The address of the date is 0FFFF:0005. The DEBUG session is shown 
below. Note again that the hex number 0FFFFH must be entered without its leading 
zero:
 
-d ffff:0005
FFFF:0000                                      30 34 2F-33 30 2F  38 37 00 FC BB  04/30/87...
FFFF:0010 00 00 00 00 00 00 00 00-00 00 00  00 00 00 00 00     .....
FFFF:0020 00 00 00 00 00 00 00-00 00 00  00 00 00 00 00 00     .....  
FFFF:0030 00 00 00 00 00 00 00-00 00 00  00 00 00 00 00 00     .....
 
FFFF:0040    00 00 00 00 00 00  00 00-00 00 00 00 00 00  00 00
FFFF:0050    00 00 00 00 00 00  00 00-00 00 00 00 00 00  00 00
FFFF:0060    00 00 00 00 00 00  00 00-00 00 00 00 00 00  00 00
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FFFF:0070    00 00 00 00 00 00  00 00-00 00 00 00 00 00  00 00
FFFF:0080     00 00 00 00 00
 

One peculiarity of DEBUG illustrated here is that when you begin a hex dump of 
memory at an address that is not evenly divisible by 16, DEBUG spaces the first byte of 
the dump over to the right so that paragraph boundaries still fall at the left margin.
Another rather peculiar thing to keep in mind while looking at the dump shown above is 
that only the first line of memory shown in the dump really exists. The segment 0FFFFH 
begins only sixteen bytes before the end of the 8086/8088's megabyte of memory space. 
(See Figure 5.2 for a good illustration of this.) The byte at 0FFFF:000F is the last byte 
in memory. Addresses from 0FFFF:00l0 to 0FFFF:0FFFF would require more than 20 
address bits to express, so they simply don't exist. DEBUG won't tell you that, it'll just 
give you endless pages of zeroes for memory beyond the 8086/8088 megabyte pale. 
(Several readers have told me that certain versions of DEBUG take a different approach: 
DEBUG "wraps" their display around to the bottom of memory instead, and begins 
displaying bytes at 0000:0000 once it runs out of high memory. It's something to watch 
out for, and if memory "beyond" the FFFF:000F point are not zeroes, you're in fact 
seeing such a wrap to low memory.)
 

Transferring Control to Machine Instructions in ROM
 
So far we've looked at locations in memory as containers for data. All well and 
good—but memory contains machine instructions as well. A very effective illustration of 
a machine instruction at a particular address is also provided by the ROM BIOS—and 
right next door to the BIOS revision date, at that.
The machine instruction in question is located at address 0FFFF:0. Recall that, by 
convention, the next machine instruction to be executed is the one whose address is 
stored in CS:IP. Run DEBUG. Load the value 0FFFFH into code segment register CS, 
and 0 into instruction pointer IP. Then dump memory at 0FFFF:0:
 
-r cs
 
CS 1980
:ffff
-r ip
IP 0100
:0
-r
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AX=0000 BX=0000 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 01=0000
DS=1980  ES=1980 SS=1980 CS=FFFF  IP=0000  NV UP El PL NZ NA PO NC
FFFFr0000   EA5BE000F0         JMP F000:E05B
-d  cs:0
FFFF:0000    EA 5B EO 00 FO 30 34 2F-33  30 2F 38 37  00 FC B8      .[...04/30/87...
FFFF:0010    00 00 00 00 00 00 00 00-00  00 00 00 00  00 00 00                ................
FFFF:0020    00 00 00 00 00 00 00 00-00  00 00 00 00  00 00 00               ................
FFFF:0030    00 00 00 00 00 00 00 00-00  00 00 00 00  00 00 00               ................
FFFF:0040    00 00 00 00 00 00 00 00-00  00 00 00 00  00 00 00               ................
FFFF:0050    00 00 00 00 00 00 00 00-00  00 00 00 00  00 00 00               ................
FFFF:0060    00 00 00 00 00 00 00 00-00  00 00 00 00  00 00 00               ................
FFFF:0070    00 00 00 00 00 00 00 00-00  00 00 00 00  00 00 00               ................
 
Look at the third line of the register display, which we've been ignoring up until now. To 
the right of the address display is this series of five bytes: EA5BE000F0.
These five bytes make up the machine instruction we want. Notice that the first line of 
the memory dump begins with the same address, and, sure enough, shows us the same 
five bytes.
Trying to remember what machine instruction EA5BE000F0 is would try anyone's 
intellect, so DEBUG is a good sport and translates the five bytes into a more readable 
representation of the machine instruction. We call this process of translating binary 
machine codes back into human-readable, assembly-language mnemonics unassembly 
or, more commonly, disassembly.
 
JMP  F000:E05B.
 
What this instruction does, quite simply, is tell the CPU to "jump" to the address 
0F000:0E05B and begin executing the machine instructions located there. If we execute 
the machine instruction at CS:IP, that's what will happen: the CPU will jump to the 
address 0F000:OE05B and begin executing whatever machine instructions it finds there.
All PC's have a JMP instruction at address 0FFFF:0. The address to which that JMP 
instruction jumps will be different for different makes and models of PC. This is why on 
your machine you won't necessarily see the exact five bytes EA5BE000F0, but whatever 
five bytes you find at 0FFFF:0, they will always begin with 0EAH. The 0EAH byte 
specifies that this instruction will be a JMP instruction. The remainder of the machine 
instruction is the address to which the CPU must jump. If that address as given in the 
machine instruction looks a little scrambled, well, it is.. but that's the way the 86-family 
of CPUs do things. We'll return to the issue of funny-looking addresses a little later.
DEBUG has a command, G (for Go) that begins execution at the address stored in 
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CS:IP. If you enter the G command and press Enter, the CPU will jump to the address 
built into the JMP instruction and begin executing machine instructions. What happens 
then?
Your machine will go into a cold boot, just as it would if you powered down and 
powered up again. (So make sure you're ready for a reboot before you try it!)
 
This may seem odd. But consider this: the CPU chip has to begin execution somewhere. 
When the CPU wakes up after being off all night with the power removed, it must get a 
first machine instruction from somewhere and start executing. Built into the silicon of the 
8086/8088 CPU chips is the assumption that a legal machine instruction will exist at 
address 0FFFF:0. When power is applied to the CPU chip, the first thing it does is place 
0FFFH in CS, and 0 in IP. Then it starts fetching instructions from the address in CS:IP 
and executing them, one at a time, in the manner that CPUs must.
This is why all PC's have a JMP instruction at 0FFFF:0, and why this JMP instruction 
always jumps to the routines that bring the PC up from stone cold dead to fully 
operational.
So go ahead: load 0FFFFH into CS and 0 into IP, and press G. Feel good?
It's what we call the feeling of power.
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Machine instructions, those atoms of action that are the steps a program rnust take to get 
its work done, are the most visible part of any assembly-language program. The 
collection of instructions supported by a given CPU is that CPU's instruction set. The 
8086 and 8088 CPUs share the same instruction set, which is why most people consider 
them the same CPU.
This cannot be said for the 80286 and 80386, both of which offer additional instructions 
not found in the 8086/8088. By and large, I'll only be introducing instructions in this 
book that the 8086/8088 understand. (I'll show you a few more from the more advanced 
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CPUs in Chapter 11, but there are fewer truly useful new instructions than you might 
have hoped for.) Furthermore, I can't cover all machine instructions in this book, even 
limiting myself to the 8086/ 8088. Those that I will describe are the most common and 
most useful.
Nor will I abandon my discussion of memory addressing begun in Chapter 5. As I've said 
before, understanding how the CPU and its instructions address memory is more difficult 
but probably more important than understanding the instructions themselves. In and 
around the descriptions of the machine instructions I'll present from this point on there 
will be discussions and elaborations on memory addressing. Pay attention! If you don't 
learn the concepts of memory addressing, memorizing the entire instruction set will do 
you no good at all.
 
6.1 Assembling and Executing Machine Instructions with 
DEBUG
 
The most obvious way to experiment with machine instructions is to build a short 
program out of them and watch it go. This can easily be done (and we'll be doing it a lot 
in later chapters) but it's far from the fastest way to do things. Editing, assembling, and 
linking all take time, and when you only want to look at one machine instruction in 
action (rather than a crew of them working together) the full development cycle is 
overkill.
Once more, we turn to DEBUG.
At the close of the last chapter we got a taste of a DEBUG feature called unassembly, 
which is a peculiar way of saying what most of us call disassembly. This is the reverse of 
the assembly process we looked at in detail in Chapter 3-Disassembly is the process of 
taking a binary machine instruction like 42H and converting it into its more readable 
assembly-language equivalent, 
INC DX.
In addition to all its other tools, DEBUG also contains a simple assembler, suitable for 
taking assembly-language mnemonics like INC DX and converting them to their binary 
machine code form. Later on we'll use a standalone assembler like TASM or MASM to 
assemble complete assembly-language programs. For the time being, we can use 
DEBUG to do things one or two instructions at a time. 
 
Assembling a MOV Instruction
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The single most common activity in assembly-language work is getting data from here to 
there. There are several specialized ways to do this, but only one truly general way: the 
MOV instruction. MOV can move a byte or word of data from one register to another, 
from a register into memory, or from memory into a register. What MOV cannot do is 
move data directly from one address in memory to a different address in memory.
The name MOV is a bit of a misnomer, since what is actually happening is that data is 
copied from a source to a destination. Once copied to the destination, however, the data 
does not vanish from the source, but continues to exist in both places. This process 
conflicts a little with our intuitive notion of moving, which usually means that something 
disappears from a source and reappears at a destination.
Because MOV is so general and obvious in its action, it's a good place to start in working 
with DEBUG's assembler.
Invoke DEBUG and use the R command to display the current state of the registers. You 
should see something like this:
 
-r
AX-0000     BX=0000     CX=0000     DX=0000     SP=FFEE     BP=0000     SI-0000     DI-0000
DS=1980     ES=1980     SS=1980     CS=1980     IP=0100       NV  UP  El   PL  NZ  NA  PO  NC 
1980:0100  701D                      JO   011F
 
We ignored the third line of the register display before. Now let's think a little bit more 
about what it means.
When DEBUG is loaded without a specific file to debug, it simply takes the empty 
region of memory where a file would have been loaded (had a file been loaded when 
DEBUG was invoked) and treats it as though a program file were really there. The 
registers all get default values, most of which are zero. IP, however, starts out with a 
value of 0100H, and the code segment register CS gets the segment address of DEBUG's 
workspace, which is theoretically empty.
Memory is never really "empty." A byte of memory always contains some value, 
whether true garbage that happened to reside in memory at power-up time, or a leftover 
value remaining from the last time that byte of memory was used. In the above register 
dump, memory at CS:IP contains a JO (jump on overflow) instruction. This rather 
obscure instruction was not placed there
deliberately, but is simply DEBUG's interpretation of the two bytes 701DH that happen 
to reside at CS:IP. Most likely, the 701D value was part of some data belonging to the 
last program to use that area of memory. It could have been part of a word-processor file, 
a spreadsheet, or anything else. Just don't that some program necessarily put a JO 
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instruction in memory. Machine
instructions are just numbers, after all, and what numbers do in memory depends 
completely on how you interpret them—and what utility program you feed them to.
DEBUG's internal assembler assembles directly into memory, and places instructions 
one at a time—as you enter them at the keyboard—into memory CS:IP. Each time you 
enter an instruction, IP is incremented to the next free location in memory. So by 
continuing to enter instructions, you can actually type an assembly-language program 
directly into memory.
Try it. Type the A (assemble) command and press Enter. DEBUG responds by 
displaying the current value of CS:IP, and then waits for you to enter an assembly-
language instruction. Type MOV AX,1 and press Enter. DEBUG again displays CS:IP 
and waits for a second instruction. It will continue waiting for instructions until you press 
Enter without typing anything. Then you'll see DEBUG's dash prompt again.
Now, use the R command again to display the registers. You should see something like 
this:
-r
AX=0000 BX=0000     CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
DS=1980  ES=1980     SS=1980 CS=1980 IP=0100  NV UP EI PL NZ NA PO NC 
1980:0100 B80100       MOV AX,0001
 
The registers haven't changed—but now the third line shows that the JO instruction is 
gone, and that the MOV instruction you entered has taken its place. Notice once again 
that CS contains 1980H, and IP contains 0100H. The address of the MOV instruction is 
shown as 1980:0100; in other words, at CS:IP.
 
Executing a MOV Instruction with the Trace Command
 
Note that you haven't executed anything. You've simply used DEBUG's command to 
write a machine instruction into a location in memory.
There are two ways to execute machine instructions from within DEBUG. One way is to 
execute a program in memory, starting at CS:IP. This means that DEBUG will simply 
start the CPU executing whatever sequence of instructions begins at CS:IP. We looked 
at the G command very briefly at the end of the last chapter, when we found the JMP 
instruction that reboots your PC on power up, and used G to execute that instruction. The 
command is quite evocative: Go. But don't type G just yet....
You haven't entered a program. You've entered one instruction, and one instruction does 
not a program make. The instruction after your MOV instruction could be anything at 
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all, recalling that DEBUG is simply interpreting garbage values in memory as random 
machine instructions. A series of random machine instructions could easily go berserk, 
locking your system into an endless loop or writing zeroes over an entire segment of 
memory that r contain part of DOS or of DEBUG itself. We'll use DEBUG's G 
command a little later, once we've constructed a complete program in memory.
 
For now, consider the mechanism DEBUG has for executing one machine instruction at 
a time. It's called Trace, and you invoke it by typing T. The T command will execute the 
machine instruction at CS:IP, then give control of the machine back to DEBUG. Trace 
is generally used to "single-step" a machine-code program one instruction at a time, in 
order to watch what it's up to every step of the way. For now, it's a fine way to execute a 
single instruction and examine that instruction's effects.
DEBUG's G command executes programs in memory starting at CS:IP; DEBUG's T 
command executes the single instruction at CS:IP.
So type T. DEBUG will execute the MOV instruction you entered at CS:IP, and then 
immediately display the registers before returning to the dash prompt. You'll see this:
 
-r
AX-0001  BX=0000     CX-0000 DX=0000 SP-FFEE BP=0000 SI-0000 DI-0000
DS=1980 ES=1980     SS=1980 CS-1980  IP=0103  NV UP EI PL NZ NA PO NC
1980:0103 6E                  DB 6E
 
Look at the first line. DEBUG says AX is now equal to 0001. It held the default value 
0000 before; obviously, your MOV instruction worked.
And there's something else to look at here: the third line shows an instruction called DB 
at CS:IP. Not quite true—DB is not a machine instruction, but an assembly-language 
directive that means define byte. (We'll return to DB later on, in Chapter 7.) It's 
DEBUG's way of saying that the number 6EH does not correspond to any machine 
instruction. It is truly a garbage byte sitting in memory, doing nothing. Executing a 6EH 
byte as though it were an instruction, however, could cause your machine to do 
unpredictably peculiar things, up to and including locking up hard.
 
 
6.2 Machine Instructions and Their Operands
 
As we said earlier, MOV copies data from a source to a destination. MOV is an 
extremely versatile instruction, and understanding its versatility demands a little study of 
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this notion of source and a destination.
 
Source and Destination Operands
 
Many machine instructions, MOV included, have one or more operands. In the machine 
instruction MOV AX,1 there are two operands. The first is AX, and the second is "1."
By convention in assembly language, the first operand belonging to a machine 
instruction is the destination operand. The second operand is the source operand.
With the MOV instruction the sense of the two operands is pretty literal: The source 
operand is copied to the destination operand. In MOV AX,1, the source operand 1 is 
copied into the destination operand AX. The sense of source and destination is not nearly 
so literal in other instructions, but a rule of thumb is this: whenever a machine instruction 
causes a new value to be generated, that new value is placed in the destination operand.
There are three different flavors of data that may be used as operands: memory data, 
register data, and immediate data. I've blown some example MOV instructions up to 
larger-than-life size in Figure 6.1, to give you a flavor for how the different types of data 
are specified as operands to the MOV instruction.
Immediate data is the easiest to understand. We'll look at it first.
 
Immediate Data
 
The MOV AX,1 machine instruction that you entered into DEBUG was a good example 
of what we call immediate data which is accessed through an addressing mode called 
immediate addressing. Immediate addressing gets its name from the fact that the item 
being addressed is immediate data built right into the machine instruction. The CPU 
does not have to go anywhere to find immediate data. It's not in a register, or stored in a 
data segment somewhere out in memory.Immediate data is always right inside the 
instruction being fetched and executed—in this case, the source operand, 1.
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Immediate data must be of an appropriate size for the operand. In other words, you can't 
move a 16-bit immediate value into an 8-bit register half like AH or DL. Neither 
DEBUG nor the standalone assemblers will allow you to assemble an instruction like 
this:
MOV   CL.67EFH
 
Because it's built right into a machine instruction, you might think immediate data 
would be quick to access. This is true only to a point: fetching anything from memory 
takes more time than fetching anything from a register, and instructions are, after all, 
stored in memory.
So, while addressing immediate data is somewhat quicker than addressing ordinary data 
stored in memory, neither is anywhere near as quick as simply pulling a value from a 
CPU register.
Also keep in mind that only the source operand may be immediate data. The destination 
operand is the place where data goes, not where it comes from. Since immediate data 
consists of literal constants (numbers like 1, 0, or 7F2BH) trying to copy something into 
immediate data rather than from immediate data simply has no meaning.
 
Register Data
 
Data stored inside a CPU register is known as register data, and is accessed directly 
through an addressing mode called register addressing. Register addressing is done by 
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simply naming the register you want to work with. Here are some examples of register 
data and register addressing:
 
MOV AX,BX
MOV BP,SP 
MOV BL.CH 
MOV ES.DX 
ADD DI.AX 
AND DX.SI
 
The last two examples point up the fact that we're not speaking only of the MOV 
instruction here. Register addressing happens any time data in a register is acted on 
directly.
The assembler keeps track of certain things that don't make sense, and one such situation 
is having a 16-bit register and an 8-bit register half within the same instruction. Such 
operations are not legal—after all, what would it mean to move a two-byte source into a 
one-byte destination? And while moving a one-byte source into a two-byte destination 
might seem more reasonable, the CPU does not support it and it cannot be done.
Playing with register addressing is easy using DEBUG. Bring up debug and assemble the 
following series of instructions:
.
MOV AX,67FE 
MOV BX,AX 
MOV CL,BH 
MOV CH,BL
 
Now, reset the value of IP to 0100 using the R command. Then execute each of the 
machine instructions, one by one, using the T command. The session under DEBUG 
should look like this:
 
-A
333F:0100 MOV AX.67FE
333F:0103 MOV BX,AX
333F:0105 MOV CL,BH
333F:0107 MOV CH,BL
333F:0109
-R IP
IP 0100
:0100
-R
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AX=0000 BX=0000 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
DS=333F ES=333F SS=333F CS=333F IP=0100  NV UP EI PL NZ NA PO NC
333F:0100  B8FE67                  MOV AX,67FE
-T
 
AX=67FE BX=0000     CX=0000 DX=0000 SP-FFEE BP=0000 SI=0000 DI=0000
DS-333F ES-333F     SS-333F CS=333F IP=0103  NV UP EI PL NZ NA PO NC 
333F:0103 89C3        MOV BX,AX 
-T
 
AX=67FE BX=67FE     CX=0000 OX=0000 SP=FFEE BP=0000 SI=0000 01=0000
DS=333F ES=333F     SS=333F CS=333F  IP=0105  NV UP EI PL NZ NA PO NC 
333F:0105 88F9        MOV CL,BH 
-T
 
AX=67FE BX=67FE     CX=0067  DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
DS=333F ES=333F     SS=333F CS=333F  IP=0107  NV UP EI PL NZ NA PO NC 
333F:0107 88DD        MOV CH,BL 
-T
 
AX=67FE BX=67FE CX=FE67  DX=0000 SP=FFEE BP=0000 SI=0000  01=0000 
DS=333F ES=333F SS=333F CS=333F  IP=0109  NV UP EI PL NZ NA PO NC 
333F:0109 1401        ADCAL,01
 
 
Keep in mind that the T command executes the instruction displayed in the third line of 
the most recent R command display. The ADC instruction in the last register display is 
yet another garbage instruction, and although executing it would not cause any harm, I 
recommend against executing random instructions just to see what happens. Executing 
certain jump or interrupt instructions could wipe out sectors on your hard disk or, worse, 
cause internal damage to DOS that would not show up until later on.
Let's recap what these four instructions accomplished. The first instruction is an example 
of immediate addressing—the hexadecimal value 067FEH was moved into the AX 
register. The second instruction used register addressing to move register data from AX 
into BX. (Keep in mind that the way the operands are arranged is slightly contrary to the 
common-sense view of things. The destination operand comes first. Moving something 
from AX to BX is done by executing MOV BX,AX. Assembly language is just like that 
sometimes.)
The third instruction and fourth instruction both move data between register halves 
rather than full, 16-bit registers. These two instructions accomplish something 
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interesting. Look at the last register display, and compare the value of BX and CX. By 
moving the value from BX into CX a byte at a time, it was possible to reverse the order 
of the two bytes making up BX. The high half of BX (what we sometimes call the most 
significant byte, or MSB, of BX) was moved into the low half of CX. Then the low half 
of BX (what we sometimes call the least significant byte, or LSB, of BX) was moved 
into the high half of CX. This is just a sample of the sorts of tricks you can play with the 
general-purpose registers.
Just to disabuse you of the notion that the MOV instruction should be used to exchange 
the two halves of a 16-bit register, let me suggest that you do the following: before you 
exit DEBUG from your previous session, assemble this instruction and execute it using 
the T command:
XCHG CL,CH
 
The XCHG instruction exchanges the values contained in its two operands. What was 
interchanged before is interchanged again, and the value in CX will match the values 
already in AX and BX. A good idea while writing your first assembly-language programs 
is to double check the instruction set periodically to see that what you have cobbled 
together with four or five instructions is not possible using a single instruction. The 
8086/8088 instruction set is very good at fooling you in that regard!
 
Memory Data
 
Immediate data is built right into its own machine instruction, and register data is stored 
in one of the CPU's limited collection of internal registers. In contrast, memory data is 
stored somewhere in the megabyte vastness of external memory. Specifying that address 
is much more complicated than simply reaching into a machine instruction or naming a 
register.
You should recall that a memory location must be specified in two parts- a segment 
address, which is one of 65,536 locations spaced every 16 bytes in memory; and an offset 
address, which is the number of bytes by which the specified byte is offset from the start 
of the segment. Within the CPU, the segment address is kept in one of the four segment 
registers, while the offset address (generally just called the offset) may be in one of a 
select group of general-purpose registers. To pin down a single byte within the 
8086/8088's megabyte of memory, you need both the segment and offset components. 
We generally write them together, specified with a colon to separate them, as either 
literal constants or register names: OBOO:O167, DS:SI or CS:IP.
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BX's Hidden Agenda
 
One of the easiest mistakes to make early on is to assume that you can use any of the 
general-purpose registers to specify an offset for memory data. Not so! If you try to 
specify an offset in AX,CX, or DX, the assembler will flag an error. Register SP is a 
special case, and addresses data located on the stack as I'll explain in Chapter 7.)
Only BP, BX, SI, and DI may hold an offset for memory data.
So, in fact, general-purpose registers AX, CX, and DX aren't quite so general after all. 
Why was general-purpose register BX singled out for special treatment? Think of it as 
the difference between dreams and reality for Intel. In the best of all worlds, every 
register could be used for all purposes. Unfortunately, when CPU designers get together 
and argue about what their nascent CPU is supposed to do, they are forced to face the 
fact that there are only so many transistors on the chip to do the job.
Each chip function is given a "budget" of transistors (sometimes numbering in the tens or 
even hundreds of thousands), and if the desired logic cannot be implemented using that 
number of transistors, the expectations of the designers have to be brought down a notch, 
and some CPU features shaved from the specification.
The 8086 and 8088 are full of such compromises. There were not enough transistors 
available at design time to allow all general-purpose registers to do everything, so in 
addition to the truly general-purpose ability to hold data, each 8086/8088 register has 
what I call a "hidden agenda." Each register has some ability that none of the others 
share. I'll describe each register's hidden agenda at some appropriate time in this book, 
and I'll call it out as such.
Register BX is the X register chosen to address memory data. None of the other X 
registers can be used in this fashion. By convention, and because there simply isn't 
enough horsepower in the CPU to allow all registers to do it, addressing memory data is 
one element of BX's hidden agenda.
 
Using Memory Data
 
With one or two important exceptions (the string instructions, which I cover to an 
degree—but not exhaustively—in Chapter 10), only one of an instruction's two operands 
may specify a memory location. In other words, you can move an immediate value to 
memory, or a memory value to a register, or some other similar combination, but you 
can't move a memory value directly to another memory value. This is just an inherent 
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limitation of the CPU, and we have to live with it, inconvenient as it gets at times.
Specifying a memory address as one of an instruction's operands is a little complicated. 
The offset address must be resident in one of the general-purpose registers. To specify 
that we want the data at the memory location contained in the register rather than the data 
in the register itself, we use square brackets around the name of the register. In other 
words, to move the word at address DS:BX into register AX, we would use the following 
instruction:
 
MOV  AX,[BX]
 
Similarly, to move a value residing in register DX into the word at address DS:DI, you 
would use 
this instruction:
 
MOV   [DI],DX
 
Segment Register Assumptions
 
The only problem with these examples is: where does it say to use DS as the segment 
register?
It doesn't. To keep addressing notation simple, the 8086/8088 makes certain 
assumptions about certain instructions in combinations with certain registers. There is 
no particular system to these assumptions, and like dates in history or Spanish irregular 
verbs, you'll just have to memorize them, or at least know where to look them up. (The 
where is in Appendix C in this book.)
One of these assumptions is that the MOV instruction uses the segment address stored in 
segment register DS unless you explicitly tell it otherwise. In this case above, we did not 
tell the MOV instruction to use some segment register other than DS, so it fell back on 
its assumptions and used DS. However, had you specified the offset as residing in 
register SP, the MOV instruction would have assumed the use of segment register SS 
instead. This assumption involves a memory mechanism known as the stack, which we 
won't really address until the next chapter.
 
Overriding Segment Assumptions for Memory Data
 
But what if you want to use CS as a segment register with the MOV instruction? It's not 
difficult. The instruction set includes what are called segment override prefixes. These 
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are not precisely instructions, but are more like the filters that may be snapped in front of 
a camera lens—the filter is not itself a lens, but it alters the way the lens operates.
There is one segment override prefix for each of the four segment registers: (CS, DS, SS, 
and ES). In assembly language these prefixes are written as the name of the segment 
register followed by a colon:
Override Prefix       Usage
CS:                              Forces usage of code segment register CS
DS:                              Forces usage of the data segment register DS
SS:                               Forces usage of the stack segment register SS
ES:                              Forces usage of the extra segment register ES
 
In use, the segment override prefix is placed immediate in front of the memory data 
reference whose segment register assumption is to be overridden. For example, to force a 
MOV instruction to copy a value from the AX register into a location at an offset 
(contained in SI) into the CS register, you would use this instruction:
MOV CS:[SI],AX

 
Without the "CS:", this instruction would move the value of AX into the DS register, at 
an address specified as DS:SI.
Prefixes in use are very reminiscent of how an address is written; in fact, understanding 
how prefixes work will help you keep in mind that in every reference to memory data 
within an instruction, there is a ghostly segment register assumption floating in the air. 
You may not see the ghostly "DS:" assumption in your MOV instruction, but if you 
forget that it is there the whole concept of memory data will begin to seem arbitrary and 
magical.
Every reference to memory data includes either an assumed segment register or a 
segment override prefix to specify a segment register other than the assumed segment 
register.
At the machine-code level, a segment override prefix is a single binary byte. The prefix 
byte is placed in front of rather than within a machine instruction. In other words, if the 
binary bytes comprising a MOV AX,[BX] instruction (which we call that instruction's 
opcode) are 8BH 07H, adding the ES segment override prefix to the instruction (MOV 
AX,ES:[BX]) places a single 26H in front of the opcode bytes, giving us 26H 8BH 07H 
as the full binary equivalent.
 
Memory Data Summary
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Memory data consists of a single byte or word in memory, addressed by way of a 
segment value and an offset value. The register containing the offset address is enclosed 
in square brackets to indicate that the contents of memory, rather than the contents of the 
register, are being addressed. The segment register used to address memory data is 
usually assumed according to a complex set of rules. Optionally, a segment override 
prefix may be placed in the instruction to specify some segment register other than the 
default segment register.
Figure 6.2 shows what happens during a MOV AX,ES:[BX] instruction. The segment 
address component of the full 20-bit memory address is contained inside the CPU in 
segment register ES. Ordinarily, the segment address would be in register DS, but the 
MOV instruction contains the ES: segment override prefix. The offset address 
component is specified to reside in the BX register.
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The CPU sends out the values in ES and BX to the memory system side by side. 
Together, the two values pin down one memory location where MyWord begins. 
MyWord is actually two bytes, but that's fine—the 8086 CPU can bring both bytes into 
the CPU at once, while the 8088 brings both bytes in separately, one after the other. The 
CPU handles details like that and you needn't worry about it. Because AX is a 16-bit 
register, two 8-bit bytes can fit into it quite nicely.
The segment address may reside in any of the four segment registers: CS, DS, SS, or ES. 
However, the offset address may reside only in registers BX, BP, SP, SI, or DI. 
AX, CX, and DX may not be used to contain an offset address during memory 
addressing.
 
Limitations of the MOV Instruction
 
The MOV instruction can move nearly any register to any other register. For reasons 
probably having to do with the limited budget of transistors on the 8086 and 8088 chips, 
MOV can't quite do any move you can think of—here is a list of MOV's limitations:
• MOV cannot move memory data to memory data. In other words, an instruction like 
MOV [SI],[BX] is illegal. Either of MOV's two operands may be memory data, but both 
cannot be at once.
• MOV cannot move one segment register into another. Instructions like MOV CS,SS 
are illegal. This usage might have come in handy, but it simply can't be done.
 
• MOV cannot move immediate data into a segment register. You can't write
 MOV CS,OB800H. Again, it would be handy but you just can't do it.
• MOV cannot move one of the 8-bit register halves into a 16-bit register, nor vise 
versa. There are easy ways around any possible difficulties here, and preventing moves 
between operands of different sizes can keep you out of numerous kinds of trouble.
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These limitations are, of course, over and above those situations that simply don't make 
sense: moving a register or memory into immediate data, moving immediate data into 
immediate data, specifying a general-purpose register as a segment register to contain a 
segment, or specifying a segment register to contain an offset address. Figure 6.3 shows 
numerous illegal MOV instructions that illustrates these various limitations and nonsense 
situations.
 
6.3 Assembly-Language References
 
MOV is a good start. Like a medium-sized screwdriver, you'll end up using it for normal 
tasks and maybe some abnormal ones, just as I use screwdrivers to pry nails out of 
boards, club Black Widow spiders in the garage bathroom, discharge large electrolytic 
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capacitors, and other intriguing things over and above workaday screw-turning. The 
8086/8088 instruction set contains dozens of instructions, however, and over the course 
of the rest of this book I'll be mixing
in descriptions of various other instructions with further discussions of memory 
addressing and program logic and design.
Remembering a host of tiny, tangled details involving dozens of different instructions is 
brutal and unnecessary. Even the "Big Guys" don't try to keep it all between their ears at 
all times. Most keep a blue card or some other sort of reference document handy to jog 
their memories about machine instruction details.
 
Blue Cards
 
A blue card is a reference summary printed on a piece of colored card stock. It folds up 
like a road map and fits in your pocket. The original blue card may actually have been 
blue, but knowing the perversity of programmers in general, it was probably bright 
orange. Most assemblers come with a blue card. Guard it with your life.
Blue cards aren't always cards anymore. One of the best is a full sheet of very stiff shiny 
plastic, sold by Micro Logic Corp. of Hackensack, NJ*. The blue card sold with 
Microsoft's MASM is actually published by Intel, and has grown to a pocket-sized 
booklet stapled on the spine.
Blue cards contain very terse summaries of what an instruction does, what operands are 
legal, what flags it affects, and how many machine cycles it takes to execute. This 
information, while helpful in the extreme, is often so brief that newcomers might not 
quite fathom which edge of the card is up.
 

6.4 An Assembly-Language Reference for 
Beginners
 
In deference to people just starting out in assembly language, I have put together a 
beginner's reference to the most common 8086/8088 instructions and called it Appendix 
A. It contains at least a page on every instruction I'll be covering in this book, plus a few 
additional instructions that everyone ought to know. It does not include descriptions on 
every instruction, but only the most common and most useful. Once you've gotten skillful 
enough to use the more arcane instructions, you should be able to pick up the blue card 
provided with your assembler and run with it.
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On the next page is a sample entry from Appendix A. Refer to it during the following 
discussion
The instruction's mnemonic is at the top of the page, highlighted in a box to make it easy 
to spot while flipping quickly through the appendix. To the mnemonic's right is the name 
of the instruction, which is a little more descriptive than the naked mnemonic.
 
*Micro Chart, Micro Logic Corp. P.O. Box 174, Hackensack, NJ 07602 
 
Neg  Negate (two's complement; multiply by -1)
 
Flags affected:
O D I T S Z A P C OF: Overflow flag     TF;  Trap flag   AF;   Aux carry
F F F F F F F F F DF: Direction flag     SF:  Sign flag   PF:   Parity flag
*    * * * * *    IF: Interrupt flag     ZF:  Zero flag    CF:   Carry flag
 
Legal forms:
NEG r8 
NEG m8 
NEG r16 
NEG m16
Examples:
NEG   AL
NEG   CX
NEG   BYTE  PTR  [BX]        ;  Negates byte quantity at DS:BX
NEG   WORD  PTR  [DI]     ;  Negates word quantity at DS:BX
 
 
 
Notes:
This is the assembly-language equivalent of multiplying a value by -1. Keep in mind that 
negation is not the same as simply inverting each bit in the operand. (Another instruction, 
NOT, does that.) The process is also known as generating the two's complement of a 
value. The two's complement of a value added to that value yields zero. -1 = $FF; -2 = 
$FE; -3 = $FD; etc.
If the operand is 0, CF is cleared and ZF is set; otherwise CF is set and ZF is cleared. If 
the operand contains the maximum negative value (-128 for 8-bit or -32768 for 16-bit) 
the operand does not change, but OF and CF are set. SF is set if the result is negative, or 
cleared if not. PF is set if the low-order 8 bits of the result contain an even number of set 
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(1) bits; otherwise PF is cleared.
NOTE: You must use a type override specifier (BYTE PTR or WORD PTR) with 
memory data!
 
r8 = AL AH BL BH CL CH DL DH  r!6 = AX BX CX DX BP SP SI DI
sr - CS DS SS ES
m8 = 8-bit memory data m16 - 16-bit memory data
i8 - 8-bit immediate data  i!6 = 16-bit immediate data
d8 = 8 bit signed displacement  d16 = 16-bit signed displacement
 
Flags
 
Immediately beneath the mnemonic is a minichart of machine flags in the Flags register. 
I haven't spoken in detail of flags yet, but the Flags register is a collection of one-bit 
values that retain certain essential information about the state of the machine for short 
periods of time. Many (but by no means all) 8086/ 8088 instructions change the values of 
one or more flags. The flags may then be individually tested by one of the JMP 
instructions, which then change the course of the program depending on the state of the 
flags.
We'll get into this business of tests and jumps in Chapter 9. For now, simply understand 
that each of the flags has a name, and that for each flag is a symbol in the flags minichart. 
You'll come to know the flags by their 2-character symbols in time, but until then the full 
names of the flags are shown to the right of the minichart. Most of the flags are not used 
frequently in beginning assembly-language work. Most of what you'll be paying attention 
to, flags-wise, is the Carry flag (CF). It's used, as you might imagine, for keeping track 
of binary arithmetic when an arithmetic operation carries out of a single byte or word.
There will be an asterisk (*) beneath the symbol of any flag affected by the instruction. 
How the flag is affected depends on what the instruction does— you'll have to divine that 
from the Notes section of the reference sheet. When an instruction affects no flags at all, 
the word <none> will appear in the minichart.
In the example page, the minichart indicates that the NEG instruction affects the 
Overflow flag, the Sign flag, the Zero flag, the Auxiliary carry flag, the Parity flag, and 
the Carry flag. The ways that the flags are affected depend on the results of the negation 
operation on the operand specified. These ways are summarized in the second paragraph 
of the Notes section.
 
Legal Forms
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A given mnemonic represents a single 8086/8088 instruction, but each instruction may 
include more than one legal form. The form of an instruction varies by the type and order 
of the operands passed to it.
What the individual forms actually represent are different binary number opcodes. For 
example, beneath the surface the POP AX instruction is the number 58H, whereas the 
POP SI instruction is the number 5EH.
Sometimes there will be special cases of an instruction and its operands that are shorter 
than the more general cases. For example, the XCHG instruction, which exchanges the 
contents of the two operands, has a special case when one of the operands is register AX. 
Any XCHG instruction with AX as one of the operands is represented by a single-byte 
opcode. The general forms of XCHG (like XCHG r16,r16) are always two bytes long 
instead. This implies that there are actually two different opcodes that will do the job for 
a given combination of operands (for example, XCHG AX,DX). True enough—and 
most assembler programs are "smart" enough to choose the shortest form possible in any 
given situation. If you are hand-assembling a sequence of raw opcode bytes, say, for use 
in a Turbo Pascal INLINE statement, you need to be aware of the special cases, and all 
special cases will be marked as such in the Legal forms section.
When you want to use an instruction with a certain set of operands, make sure you check 
the Legal forms section of the reference guide for that instruction to make sure that the 
combination is legal. The MOV instruction, for example, cannot move one segment 
register directly into another, nor can it move immediate data directly into a segment 
register. Neither combination of operands is a legal form of the MOV instruction.
In the example reference page on the NEG instruction, you'll see that a segment register 
cannot be an operand to NEG. (If it could, there would be a NEG sr item in the Legal 
forms list.) If you want to negate the value in a segment register, you'll first have to use 
MOV to move the value from the segment register into one of the general-purpose 
registers. Then you can use NEG on the general-purpose register, to move the negated 
value back into the segment register.
 
Operand Symbols
 
The symbols used to indicate the nature of the operands are included on every page in 
Appendix A. They're close to self-explanatory, but I'll take a moment to expand upon 
them slightly here:
 
• r8—An 8-bit register half ( AH, AL, BH, BL, CH, CL, DH, or DL).
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• rl6—A 16-bit general-purpose register (AX, BX, CX, DX, BP, SP, SI or DI).
• sr—One of the four segment registers (CS, DS, SS, or ES).
• m8—An 8-bit byte of memory data.
• ml6—A 16-bit word of memory data.
•  i8—An 8-bit byte of immediate data.
• i16—A 16-bit word of immediate data.
• d8—An 8-bit signed displacement.
 
We haven't covered this operand yet, but a displacement is a distance between the current 
location in the code and another place in the code to which we want to jump. It's signed 
(negative or positive) because a positive displacement jumps you higher (forward) in 
memory, whereas a negative displacement jumps you lower (back) in memory. We'll 
examine this notion in detail in Chapter 9.
• d16—A 16-bit signed displacement. Again, for use with jump and call instructions. 
See Chapter 9.
 
Examples
The Legal forms section shows what combinations of operands is legal for a given 
instruction, and the Examples section shows examples of the instruction in actual 
use—just as it would be coded in an assembly-language program. I've tried to put a good 
sampling of examples for each instruction, demonstrating the range of possibilities 
available with the instruction. This includes situations that require type override 
specifiers (which I'll cover in the next section).
 
Notes
 
The Notes section of the reference page briefly describes the instruction's action, and 
provides information on how it affects the flags, how it may be limited in use, and any 
other detail that needs to be remembered, especially things that beginners would 
overlook or misconstrue.
 
What's Not Here...
 
Appendix A differs from most detailed assembly-language references in that it does not 
have the binary opcode encoding information or the indications of how many machine 
cycles are used by each form of the instruction.
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The binary encoding of an instruction is the actual sequence of binary bytes that the CPU 
digests as the machine instruction. What we would call POP AX the machine sees as the 
binary number 58H. What we call ADD SI,07733H the machine sees as 81H OC6H 
33H 77H. Machine instructions are encoded into anywhere from one to four (rarely 
more) binary bytes depending on what instruction they are and what their operands are. 
Laying out the system for determining what the encoding will be for any given 
instruction is extremely complicated, in that its component bytes must be set up bit by bit 
from several large tables. I've decided that this book is not the place for that particular 
discussion, and have left encoding information out of Appendix A.
Finally, I've included nothing anywhere in this book that indicates how many machine 
cycles are expended by any given machine instruction. A machine cycle is one pulse of 
the master clock that makes the PC perform its magic. Each instruction uses some 
number of those cycles to do its work, and the number varies all over the map depending 
on criteria that I won't be explaining in this book.
Furthermore, as Michael Abrash explains in his book, Zen of Assembly Language, 
knowing the cycle requirements for individual instructions is rarely sufficient to allow 
even an expert assembly-language programmer to calculate how much time a given 
series of instructions will take. He and I both agree that it is no fit subject for beginners, 
and I will let him take it up in his far more advanced volume.
 
6.5 Rally 'Round the Flags, Boys!
 
We haven't studied the Flags register as a whole. The Flags register is a veritable 
junkdrawer of disjointed bits of information, and it's tough (and perhaps misleading) to 
just sit down and describe all of them in detail at once. What I'll do is describe the flags 
as we encounter them in discussing the various instructions in this and future chapters.
The Flags register as a whole is a single 16-bit register buried inside the CPU. Of those 
16 bits, 9 are actually used as flags on the 8088/8086. The remaining seven bits are 
undefined and ignored. You can neither set them nor read them. Some of those seven bits 
become defined and useful in the more advanced processors like the 286, 386, and 486, 
but their uses are fairly arcane and I won't be covering them in this book, even in Chapter 
11, which discusses the more advanced processors.
A flag is a single bit of information whose meaning is independent from any other bit. A 
bit can be set to 1 or cleared to 0 by the CPU as its needs require. The idea is to tell you, 
the programmer, the state of certain conditions inside the CPU, so that your program can 
test for and act on the states of those conditions.
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I often imagine a row of country mailboxes, each with its own little red flag on the side. 
Each flag can be up or down, and if the Smith's flag is up, it tells the mailman that the 
Smiths have placed mail in their box to be picked up. The mailman looks to see if the 
Smith's flag is raised (a test) and if so, opens the Smith's mailbox and picks up the 
waiting mail.
Each of the Flags register's nine flags has a two-letter symbol by which most 
programmers know them. I'll use those symbols most of the time, and you should 
become familiar with them. The flags, their symbols, and brief descriptions of what they 
stand for follows:
• OF—The Overflow flag is set when the result of an operation becomes too large to fit 
in the operand it originally occupied.
• DF—The Direction flag is an oddball among the flags in that it tells the CPU 
something that you want it to know, rather than the other way around. It dictates the 
direction that activity moves (up in memory or down in memory) during the execution of 
string instructions. When DF is set, string instructions proceed from high memory 
toward low memory. When DF is cleared, string instructions proceed from low memory 
toward high memory. See Chapter 10.
• IF—The Interrupt enable flag is a two-way flag. The CPU sets it under certain 
conditions, and you can set it yourself using the STI and CLI instructions. When IF is 
set, interrupts (see Chapter 9) are enabled and may occur when requested. When IF is 
cleared, interrupts are ignored by the CPU.
• TF—When set, the Trap flag allows DEBUG's command to execute only a single 
instruction before the CPU calls an interrupt routine. This is not an especially useful flag 
for ordinary programming and I won't have anything more to say about it.
•  SF—The Sign flag is set when the result of an operation forces the operand to become 
negative. By "negative," I mean that the highest order bit in the operand (the sign bit) 
becomes a 1 during a signed arithmetic operation. Any operation that leaves the sign 
positive will clear SF.
• ZF—The Zero flag is set when the result of an operation is zero. If the operand is some 
non-zero value, ZF is cleared.
• AF—The Auxiliary carry flag is used only for Binary Coded Decimal (BCD) 
arithmetic. BCD arithmetic treats each operand byte as a pair of 4-bit nybbles, and allows 
something approximating decimal (base 10) arithmetic to be done directly in the CPU 
hardware by using one of the BCD arithmetic instructions. I'll discuss BCD arithmetic 
briefly in Chapter 10.
• PF—The Parity flag will seem instantly familiar to anyone who understands serial data 
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communications, and utterly bizarre to anyone who doesn't. PF indicates whether the 
number of set bits in the low-order byte of a result is even or odd. For example, if the 
result is OF2H PF will be cleared, because OF2H (11110010) contains an odd number 
of 1 bits. Similarly, if the result is 3AH (00111100) PF will be set because there is an 
even number (4) of 1 bits in the result. This flag is a carryover from the days when all 
computer communications were done through a serial port, for which a system of error 
detection called "parity checking" depends on knowing whether a count of set bits in a 
character byte is even or odd. PF has no other use and I won't be describing it further.
• CF—The Carry flag is by far the most useful flag in the Flags register, and the one you 
will have to pay attention to most. If the result of an arithmetic or shift operation "carries 
out" a bit from the operand, CF becomes set. Otherwise, if nothing is carried out, CF is 
cleared.
 
Check That Reference Page!
 
What I call "flag etiquette" is the way a given instruction affects the flags in the Flags 
register. You must remember that the descriptions of the flags on the previous pages are 
generalizations only, and are subject to specific restrictions and special cases imposed by 
individual instructions. Flag etiquette for individual flags varies widely from instruction 
to instruction, even though the sense of the flag's use may be the same in every case.
For example, some instructions that cause a 0 to appear in an operand set ZF, while 
others do not. Sadly, there's no system to it and no easy way to keep it straight in your 
head. When you intend to use the flags in testing by way of conditional jump instructions 
(See Chapter 9), you have to check each individual instruction to see how the various 
flags are affected.
Flag etiquette is a highly individual matter. Check the reference for each instruction to 
see it affects the flags. Assume nothing.
A simple lesson in flag etiquette involves two new instructions, INC and DEC, and yet 
another interesting ability of DEBUG.
 
Adding and Subtracting 1 with INC and DEC
 
Several instructions come in pairs. Simplest among those are INC and DEC, which 
increment and decrement an operand by 1, respectively.
Adding 1 to something or subtracting 1 from something happens a lot in computer 
programming. If you're counting the number of times a program is executing a loop, or 
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counting bytes in a table, or doing something that advances or retreats one count at a 
time, INC or DEC can be a very quick way to make the actual addition or subtraction 
happen.
Both INC and DEC take only one operand. An error will be flagged by DEBUG or your 
assembler if you try to use either INC or DEC with two operands, or without any.
Try both by using the Assemble command and the Trace command under DEBUG. 
Assemble this short program, display the registers after entering it, and then trace 
through it:
 
MOV AX,FFFF 
MOV BX,002F 
DEC BX 
INC AX
 
The session should look very much like this:
 
-A
1980:0100 MOV AX,FFFF
1980:0103 MOV BX,002D
1980:0106 INC AX
1980:0107 DEC BX
1980:0108
-R
AX=0000 BX=0000 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
DS=1980  ES=1980 SS=1980 CS=1980  IP=0100  NV UP EI PL NZ NA PO 
NC
1980:0100 B8FFFF       MOV AX,FFFF
 T
 
AX=FFFF BX=0000     CX=0000 DX=0000 SP-FFEE BP=0000 SI=0000 DI-0000
DS=1980 ES=1980     SS=1980 CS=1980 IP=0103  NV UP EI PL NZ NA PO NC 
1980:0103 BB2DOO       MOV BX,002D 
-T
 
 
AX=FFFF BX=002D     CX=0000 DX=.0000 SP=FFEE BP=0000 SI=0000 DI=0000
DS=1980  ES=1980     SS=1980 CS=1980  IP=0106  NV UP EI PL NZ NA PO NC 
1980:0106 40                           INC AX
-T
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AX=0000  BX=002D      CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
DS=1980  ES-1980     SS=1980 CS=1980  IP=0107  NV UP EI PL ZR AC PE NC 
1980:0107 4B                           DEC BX
-T
 
AX-0000 BX=002C CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000 
DS=1980  ES-1980 SS=1980 CS=1980  IP=0108  NV UP EI PL NZ NA PO NC 
1980:0108 OF         POP CS
 
Watch what happens to the registers. Decrementing BX predictably turns the value 2DH 
into value 2CH. Incrementing 0FFFFH, on the other hand, "rolls over" the register to 0. 
0FFFFH is the largest unsigned value that can be expressed in a 16-bit register. Adding 
one to it rolls it over to 0, just as adding 1 to 99 rolls the rightmost two digits to 0 in 
creating the number 100. The difference with INC is that there is no carry. The Carry 
flag is not affected by INC, so don't try to use it to perform multi-digit arithmetic. 
 

Using DEBUG to Watch the Flags
 

When INC rolled AX over to 0, the Carry flag was not affected, but the Zero flag (ZF) 
became set (equal to 1). The Zero flag works that way: when the result of an operation 
becomes 0, ZF is almost always set.
DEC sets the flags in the same way. If you were to execute a DEC DX instruction when 
DX contained 1, DX would become 0 and ZF would be set.
Apart from looking at a reference guide, how can you tell what flags are affected by a 
given instruction? DEBUG allows you to see the flags as they change, just as it lets you 
dump memory and examine the values in the general-purpose and segment registers. The 
second line of DEBUG's three-line register display contains eight cryptic symbols at its 
right margin. You've been seeing them, I'm sure, without having a clue as to their 
meaning.
Eight of the nine 8086/8088 flags are represented here by a two-character symbol. (The 
odd flag out is the Trap flag, TF, which is reserved for exclusive use by DEBUG itself, 
and cannot be examined while DEBUG has control of the machine.) Unfortunately, the 
symbols DEBUG uses are not the same as the standard flag symbols that programmers 
call the flags by. The difference is that DEBUG's flag symbols do not represent the flags' 
names but rather the flags' values. Each flag can be set or cleared, and DEBUG displays 
the state of each flag by having a unique symbol for each state of each flag, for a total of 
sixteen distinct symbols in all. The symbols' meanings are summarized in Table 6.1.
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 Table 6.1. DEBUG's flag state symbols
 
Flag                                            Set Symbol           Clear Symbol
OF—Overflow flag                          OV                           NV
DF—Direction flag                           DN                          UP
IE—Interrupt enable flag                 EI                           DI
SF—Sign flag                                   NG                          PL
ZF—Zero flag                                  ZR                          NZ
AF—Auxiliary carry flag                 AC                          NA
PF—Parity flag                                PE                          PO
CF—Carry flag                               CY                          NC
 
The best I can say for this symbol set is that it's not obviously obscene. It is, however, 
nearly impossible to memorize. You'd best keep a reduced copy of this table (perhaps 
taped to the back of a business card) near your keyboard if you intend to watch the 
waving of the 8086/8088's flags.
When you first run DEBUG, the flags are set to their default values NV, UP, EI, PL, 
NZ, NA, PO, and NC.
You'll note that all these symbols are clear symbols except for EI, which must be set to 
allow interrupts to happen. Whether you are aware of it or not, interrupts are happening 
constantly within your PC. Each keystroke you type on the keyboard triggers an 
interrupt. Every 55 milliseconds, the system clock triggers an interrupt to allow the BIOS 
software to update the time and date values kept in memory as long as the PC has power. 
If you disabled interrupts for any period of time, your real-time clock would stop and 
your keyboard would freeze up. Needless to say, EI must be kept set nearly all the time.
Each time you execute an instruction with the T command, the flags display will be 
updated. If the instruction that was executed affected any of the flags, the appropriate 
symbol will be displayed over the previous symbol.
With Table 6.1 in hand, go back and examine the flags display for the four-instruction 
DEBUG trace shown a few pages back. The first display shows the default values for all 
the flags, since no instructions have been executed yet. No change appears for the second 
and third flags displays, because the MOV instruction affects none of the flags.
But look closely at the flags display after the INC AX instruction has been executed. 
Three of the flags have changed state: ZF has gone from NZ (clear) to ZR (set), 
indicating that the operand of INC went to 0 as a result of the increment operation; AF 
has gone from NA to AC. (Let's just skip past that one; explaining what that means 
would be more confusing than helpful.) The Parity flag PF has gone from PO to PE, 
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meaning that as a result of the increment operation, the number of bits present in the low 
byte of BX went from odd to even.
 
Finally, look at the last flags display after the DEC BX instruction has been executed. 
Again, ZF, AF, and PF changed: ZF went to NZ, indicating that the DEC instruction 
left a nonzero value in its operand; and PF went from PE to PO, indicating that the 
number of bits in the low byte of BX was odd after the DEC BX instruction.
One thing to keep in mind is that even when a flag doesn't change state from display to 
display, it was still affected by the previously executed instruction. Five out of nine flags 
are affected by every INC and DEC instruction that the CPU executes. Not every DEC 
instruction decrements its operand down to 0, but every DEC instruction causes some 
value to be asserted in ZF. The same holds true for the other four affected flags: even if 
the state of an affected flag doesn't change as a result of an instruction, the state is 
asserted, even if only reasserted to its existing value.
Thorough understanding of the flags comes with practice and dogged persistence. It's one 
of the more chaotic aspects of assembly-language programming, but as we'll see when 
we get to conditional branches, flags are what make the CPU truly come alive to do our 
work for us.
 
6.6 Using Type Overrides
 
Back on the sample reference appendix page, notice the following example uses of the 
NEG instruction:
 
NEG BYTE  PTR  [BX]     ;   Negates  byte quantity  at  DS:BX 
NEG WORD PTR  [DI]     ;   Negates word quantity  at  DS:BX
 
What indeed is a BYTE PTR? Or a WORD PTR? Both are what we call type 
overrides, and you literally can't use NEG (or numerous other instructions) on memory 
data without one of these type overrides.
The problem is this: the NEG instruction negates its operand. The operand can be either 
a byte or a word; NEG works equally well on both. But...how does NEG know whether 
to negate a byte or a word? The memory data operand [BX] only specifies an address in 
memory, using DS as the assumed segment register. The address DS:BX points to a 
byte—but it also points to a word, which is nothing more than two bytes in a row 
somewhere in memory. So, does NEG negate the byte located at address DS:BX? Or, 
does it negate the two bytes (a word) that start at address 
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DS:BX?
Unless you tell it somehow, NEG has no way to know.
Telling an instruction the size of its operand is what BYTE PTR and WORD PTR do. 
Calling them type overrides can be a little misleading sometimes, because NEG has no 
default type to override. Several other instructions that work on single operands only 
(like EVC, DEC, and NOT) have the same problem.
 
Types in Assembly Language
 
So, do type overrides ever override anything? They can, sometimes. The notion of type in 
assembly language is almost wholly a question of size. A word is a type, as is a byte, a 
double word, a quad word, and so on. The assembler is not concerned with what an 
assembly-language variable means. (Keeping track of such things is totally up to you.) 
The assembler only worries about how big the variable is. The assembler does not want 
to have to try to fit ten pounds of kitty litter in a five pound bag, which is impossible, nor 
five pounds of kitty litter in a ten pound bag, which can be confusing.
Register data always has a fixed and obvious type, since a register's size cannot be 
changed. BL is 1 byte and BX is 2 bytes. Register types cannot be overridden.
The type of immediate data depends on the magnitude of the immediate value. If the 
immediate value is too large to fit in a single byte, that immediate value becomes word 
data and you can't load it into an 8-bit register half. An immediate value that can fit in a 
single byte may be loaded into either a byte-sized register half or a word-sized register; 
its type is thus taken from the context of the instruction in which it exists, and matches 
that of the register data operand into which it is to be loaded.
Memory data is something else again. We've spoken of memory data so far in terms of 
registers holding offsets, without considering the use of named memory data. I'll be 
discussing named memory data in the next chapter, but in brief terms, you can define 
named variables in your assembly-language programs using directives like DB and DW. 
It looks like this:
 
Counter DB 
MixTag   DW
 
Here, Counter is a variable allocated as a single byte in memory by the Define Byte 
(DB) directive. Similarly, MixTag is a variable allocated as a word in memory by the 
Define Word (DW) directive.
By using DB, you give variable Counter a type and a size. You must match this type 
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when you use the variable name Counter in an instruction to indicate memory data. 
This, for example, will be accepted by the assembler:
 
MOV  BL,Counter
 
This instruction will take the current value located in memory at the address represented 
by the variable name Counter, and will load that variable into register-half BL.
What the assembler will refuse to do is load the variable MixTag (which is word-sized) 
into a register-half, like this:
 
MOV BL,MixTag     ; Won't assemble!

 
 
By using a type override specifier, however, you can force the assembler to do your 
bidding and put half of MixTag into register BL:
 
MOV BL,BYTE PTR MixTag

 
The type override specifier BYTE PTR forces the assembler to look upon MixTag as 
being 1 byte in size. MixTag is not byte-sized, however, so what actually happens is that 
the least significant byte, the lowbyte, of MixTag will be loaded into BL, with the most 
significant byte left high and dry.
Is this useful? It can be. Is it dangerous? You bet. It is up to you to decide if overriding 
the type of memory data makes sense, and completely your responsibility to ensure that 
doing so doesn't sprinkle your code with bugs.
The best use of the type override specifiers is to clear up ambiguous instructions like 
EVC [DI], which could specify either a byte or a word as memory data pointed to by a 
segment register and DI. The other occasions will be rarer and riskier. Use your 
head—and know what you're doing. That's more important in assembly language than 
anywhere else in computer programming.
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Our Object All Sublime
Creating Programs That Work
7.1 The Bones of an Assembly-Language Program >• 182
7.2 First In, First Out via the Stack >• 193
7.3 Using DOS Services through INT >• 200
7.4 Summary: EAT.ASM on the Dissection Table >• 209
 
They don't call it "assembly" for nothing. Facing the task of writing an assembly-
language program brings to mind images of Christmas morning: you've spilled 1,567 
small metal parts out of a large box marked Land Shark HyperBike (Some Assembly 
Required), and now you have to somehow put them all together with nothing left over. (In 
the meantime, the kids seem more than happy playing in the box ....)
I've actually explained just about all you absolutely must understand to create your first 
assembly-language program. Still, there is a non-trivial leap from here to there; you are 
faced with many small parts with sharp edges that can fit together in an infinity of 
different ways, most wrong, some workable, but only a few that are ideal.
So here's the plan: on the next page I will present you with the completed and operable 
Land Shark HyperBike—which I will then tear apart before your eyes. This is the best 
way to learn to assemble: by pulling apart programs written by those who know what 
they're doing. Over the rest of this book we'll pull a few more programs apart, in the hope 
that by the time it's over you'll be able to move in the other direction all by yourself.
 
7.1 The Bones of an Assembly-Language Program
 
The listing below is perhaps the simplest correct program that will do anything visible, 
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and still be comprehensible and expandable. This issue of comprehensibility is utterly 
central to quality assembly-language programming. With no other computer language 
(not even APL or that old devil FORTH) is there anything even close to the risk of 
writing code that looks so much like something scraped off the wall of King Tut's tomb.
The program EAT.ASM displays one (short) line of text:
 
Eat at Joe's!
 
For that you have to feed 72 lines of text file to the assembler and linker. Many of those 
72 lines are unnecessary in the strict sense, but serve instead as commentary to allow you 
to understand what the program is doing (or more important, how it's doing it) six months 
or a year from now.
One of the aims of assembly-language coding is to use as few instructions as possible in 
getting the job done. This does not mean creating as short a source-code file as possible. 
The more comments you put in your file, the better you'll remember how things work 
inside the program the next time you pick it up. I think you'll find it amazing how quickly 
the logic of a complicated assembly-language file goes cold in your head. After no more 
than 48 hours of working on other projects, I've come back to assembler projects and had 
to struggle to get back to flank speed on development.
 
Comments are neither time nor space wasted. IBM used to say, "one line of comments per 
line of code." That's good, but should be considered a minimum for assembly-language 
work. A better course (that I will in fact follow in the more complicated examples later 
on) is to use one short line of commentary to the right of each line of code, along with a 
comment block at the start of each sequence of instructions that work together in 
accomplishing some discrete task.
Here's the program. Read it carefully:
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Three Segments
 
Useful assembly-language programs must contain at least three segments: one for code, 
one for data, and one for the stack. Larger programs may contain more than one code 
segment and more than one data segment, but 8086/8088 programs may contain only one 
stack segment at a time.
EAT.ASM has those three necessary segments. Each segment has a name: MyStack, 
MyData, and MyCode. Note that I've set off the three segments with comment blocks. 
This is a good idea when you're starting out, since separating a program's complexity into 
three compartments is a good first step in managing that complexity.
The code segment, pretty obviously, contains the machine instructions that do the 
program's work. The data segment contains variables, which are storage cubbyholes for 
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information. Variables can be defined as having some particular value when the program 
begins running (as with the Eat1 and CRLF variables defined in EAT.ASM's data 
segment), or they may simply be defined as empty boxes that can be filled at any point 
after the program begins operation.
 The stack segment contains the program's stack. I haven't explained stacks just yet, and 
because you don't really need to understand stacks in order to understand how EAT.ASM 
works, I'm going to hold off just a little while longer. In short, a stack is simply an 
ordered place to stash things for the short term— and that will have to do until we cover 
the concept in depth in Section 7.2.
Labels
 
A segment is defined in a program by associating a label with the assembler directive 
SEGMENT. Labels are just identifiers that name something, like MyStack. The type of a 
label refers to the sort of creature the label identifies. For example, in EAT.ASM, the 
labels MyStack, MyData, and MyCode are SEGMENT labels. The value of a segment 
label is the segment address of the named segment. This is why the instruction MOV 
AX,MyData moves the segment address of segment MyData into register AX.
Notice that the label MyData is used twice in defining the data segment we're naming 
MyData. The SEGMENT directive begins the segment, and the ENDS directive, (think 
end segment) ends the directive. Everything between MyData SEGMENT and MyData 
ENDS belongs to the segment named MyData.
A label can be used to mark a location in the code segment. EAT1.ASM has one such 
label, Start:
 
Start:         ;  This  is where program execution begins
 
Start's value is the offset of its location into the code segment. The way you can spot a 
label used to mark a code address is by the colon used after the label. The colon, in a 
sense, is the sign reading "you are here" in the code, where "here" has a name given in the 
label.
The label Start has a special job: it specifies the point in the program where execution is 
to begin when the program starts running. You'll see in the program listing that the label 
Start is repeated in the very last line of the file:
 
END Start
 
The label following the END directive is the address of the first instruction to be executed 
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when DOS loads and runs the program. The label used to specify the execution starting 
point does not have to be "Start," but there must be some label chosen as the starting 
point, and it must follow the END directive for your program to assemble and link 
without errors.
Later on, we'll see such labels used as the targets of jump instructions. For example, the 
following machine instruction transfers the flow of instruction execution to the location 
marked by the label 
GoHome:
 
JNE GoHome
 
Notice that in both the instructions above, the colon is not used. The colon is only placed 
where the label is defined, not where it is referenced. Think of it this way: use the colon 
when you are marking a location, not when you are going there.
 
Variables
 
The labels Eat1 and CRLF define variables. A variable is defined by associating a label 
with a data definition directive. You've seen these used informally earlier in this book, 
and there are two in EAT.ASM. Data definition directives look like this:
 
MyByte         DB 07H                                       ; 8 bits in size
MyWord          DW 0FFFFH                ; 16 bits in size
MyDouble     DD OB8000000H             ; 32 bits in size
MyString     DB "I was born on a pirate ship.","$"
MyData          DB ?                                          ; Uninitialized storage
MyQuery       DB '?'                                       ; Contains a question mark
 
Think of the DB directive as "Define Byte." DB sets aside one byte of memory for data 
storage. Think of the DW directive as "Define Word." DW sets aside one word of 
memory for data storage. Think of the DD directive as "Define Double." DD sets aside a 
double word in memory for storage, typically for full 32-bit addresses.
All of the variable definitions shown above except for MyData both set aside memory for 
storage and then place some specific value in storage at that location. MyData simply sets 
aside storage and leaves the storage undefined, or empty. The undefined storage is 
indicated by the presence of a question mark after the directive.
If you really want to leave the defined variable empty, make sure you don't place the 
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question mark in quotation marks. If you place the question mark in quotation marks, the 
assembler will set aside storage and then place a question mark character (ASCII 
character 63, or 03FH) in that storage.
You may at some point want to create a variable with a question mark in it, for this 
variable you'll need the quotation marks.
I find it useful to put some recognizable value in a variable whenever I can. It helps to be 
able to spot a variable in a DEBUG dump of memory rather than have to find it by "dead 
reckoning"—that is, by spotting the closest known location to the variable in question and 
counting bytes to determine where it is.
 
String Variables
 
String variables are an interesting case. A string is just that: a sequence or string of 
characters, all in a row in memory. A string is defined in EAT.ASM:
 
Eat1         DB "Eat    at   Joe's","$"                                
 
Strings are a slight exception to the rule that a data definition directive sets aside a 
particular quantity of memory. The DB directive ordinarily sets aside one byte only. 
However, a string may be any length you like, as long as it remains on a single line of 
your source-code file. Because there is no data directive that sets aside 16 bytes, or 42 
bytes, strings are defined simply by associating a label with the place where the string 
starts. The Eat1 label and its DB directive specify one byte in memory as the string's 
starting point. The number of characters in the string is what tells the assembler how 
many bytes of storage to set aside for that string.
You can use either single quotation marks (') or double quotation marks (") to delineate a 
string—the choice is up to you—unless you are defining a string value that itself contains 
one or more quotation mark characters. Notice in EAT.ASM the string variable Eat1 
contains a single quotation mark character used as an apostrophe. Because the string 
contains this character, you must delineate it with double quotation marks. The reverse is 
also true: if you define a string that contains one or more double quotation mark 
characters, you must delineate it with single quotation mark characters:
 
Yukkh     DB "He said,  "How disgusting!" and threw up.',"$"
 
You may combine several separate substrings into a single string variable by separating 
the substrings by commas. Both Eat1 and Yukkh do this, indicated by the dollar sign 
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($) in quotation marks at the end of the main string data. The dollar sign is used to mark 
the end of the string for the mechanism that displays the string to the screen. More on that 
mechanism and marking string lengths in Section 7.3.
 
Directives vs. Instruction Mnemonics
 
 Data definition directives look a little like machine instruction mnemonics, but they are 
emphatically not machine instructions. One very common mistake made by beginners is 
looking for the binary opcode represented by a directive such as DB or DW. There is no 
binary opcode for DW, DB, and the other directives. Machine instructions, as the name 
implies, are instructions to the CPU itself. Directives, by contrast, are instructions to the 
assembler.
Understanding directives is easier when you understand the nature of the assembler's job. 
(Look back to Chapter 3 for a detailed refresher if you've gotten fuzzy on what the 
assembler and linker do.) The assembler scans your source-code file, and as it scans this 
file it builds an object-code file on disk. It builds this object-code file step by step, one 
byte at a time, starting at the beginning of the file and working its way through to the end. 
When it encounters a machine instruction mnemonic, it figures out what binary opcode is 
represented by that mnemonic and writes that binary opcode (which may be  anywhere 
from one to six actual bytes) to the object-code file.
               
When the assembler encounters a directive like DW, it does not write any opcode to the 
object-code file. If the DW directive specifies an empty variable, the assembler just 
leaves two bytes of space in the next available slot in the data segment and moves on. If 
the DW directive specifies an initial value for the variable, the assembler writes the bytes 
corresponding to that value in the slot it set aside. The assembler writes the address of the 
allocated space into a table, beside the label that names the variable. Then the assembler 
moves on, to the next directive (if there are further directives) or on to whatever comes 
next in the source-code file.
When you write the following statement in your assembly language program:
MyVidOrg    DW 0B800H
 
What you are really doing is instructing the assembler to set aside two bytes of data 
(Define Word, remember) and place the value 0B800H in those two bytes. The assembler 
writes the label MyVidOrg and the label's address into a table it builds of labels in the 
program for later use by the linker.
This is true for all kinds of directives, not simply data definition directives. An assembler 
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directive is just that: your walking orders handed to the assembler. There are numerous 
assembler directives other than DB, DW, and DD. The SEGMENT and ENDS directives 
are instructions to the assembler to consider the definitions they surround as belonging to 
a single segment. We'll take up the PROC and ENDP directives in Section 8.1, and the 
ASSUME directive shortly.
 
The Difference Between a Variable's Address and Its Contents
 
When you use a variable's label in a MOV instruction, you are accessing the value stored 
in that variable. Suppose you had defined a variable in the data segment called MyData 
this way:
MyData   DW 0744H
 
The label MyData represents some address within the data segment, and at that address 
the assembler places the value 0744H. Now, if you want to copy the value contained in 
MyData to the AX register, you would use the following MOV instruction:
MOV         AX,MyData
 
After this instruction, AX would contain 0744H.
Now, there are many situations where you need to move the address of a variable into a 
register rather than the contents of the variable. In fact, you may find yourself moving the 
addresses of variables around more than the contents of the variables, especially if you 
make a lot of calls to DOS and BIOS services. (For more on that, see Section 7.4.) The 
8086/8088 instruction set contains an instruction for moving the address of a variable into a 
register. The instruction is LEA, which stands for Load Effective Address. LEA is used twice 
in EAT.ASM. Here's a typical example:
LEA          DX,Eat1
 
All this instruction does is take the offset address of the string variable Eat1in the data 
segment and place the offset address into register DX.
If you've used higher-level languages like BASIC and Pascal, this distinction may seem inane. 
After all, who would mistake the contents of a variable for its location? Well, that's easy for 
you to say—in BASIC and Pascal you rarely, if ever, even think about where a variable is. 
The language handles all that rigmarole for you. In assembler, knowing where a variable is 
located is essential to perform lots of important things.
 
The ASSUME Directive
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Within the code segment of EAT.ASM, there is another directive, ASSUME:
 
ASSUME CS:MyProg,DS:MyData
 
Of all the directives a newcomer is likely to need to make a simple program work, ASSUME 
is almost certainly the toughest to understand. ASSUME has to do with labels and the way 
labels are used by the 8086/8088 CPU.
Recall that all memory addresses have two components: a segment address and an offset 
address. Furthermore, every label in an assembly-language program (with the single 
exception of labels used before the SEGMENT directive) represents some offset address 
from a segment address.
But which segment address?
Aye, that's the rub. Look at the data segment block named MyData:
 
;    BEGIN DATA SEGMENT
 MyData    SEGMENT
Eatl     DB    "Eat at Joe's!"."$"  ; Strings are terminated by 
"$" CRLF     DB     ODH,OAH,'$'         ; for printing by DOS 
service 9
MyData    ENDS
:              END DATA SEGMENT
 
Everything between the two directives SEGMENT and ENDS is the program's data 
segment. It says so (as they say) right on the label. But the label (by which I mean the 
comment blocks) is for our eyes only. The assembler ignores comments. There is nothing 
in this segment definition to tell the assembler that it is a data segment. You can define 
variables in the code segment or in the stack segment if you want, even though it's 
customary and more correct programming practice to keep variables in the data segment. 
Segment MyData could be just as easily considered a code segment, though not a stack 
segment. (Stack segments are a special case because, like Tigger, there can only be one. 
I'll speak of stacks, the stack segment, and the STACK directive in Section 7.2.)
We have the problem of indicating to the assembler which segment is the data segment. 
This might seem like an easy one, but rather than a single problem it is actually two 
problems: one is that the assembler needs to know which segment address to put into the 
Data Segment (DS) register; and the other problem is which form of memory-addressing 
machine instructions to use.
The first problem is easily addressed. Notice these two lines in EAT.ASM:
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MOV AX.MyData     ; Set up our own data segment address in DS 
MOV DS,AX        ; Can't load segment reg. directly from memory
 
MyData, if you recall, contains the segment address of a segment defined using the 
SEGMENT and ENDS directives. That address is first loaded into AX, and then from 
AX the address is loaded into DS. This roundabout path is necessary because the DS 
register cannot be loaded with either immediate data or memory data; it must be loaded 
from one of the other registers.
The end result is that the segment address represented by the label MyData is loaded into 
DS. This neatly solves the first problem of specifying the address of the data segment. We 
simply load the data segment's address into DS. Now Mydata can be considered a real 
data segment because its segment address is in the data segment register, DS.
That, however, doesn't solve the second problem. Although we wrote two instructions 
that moved the address of our data segment into DS, the assembler doesn't "know" that 
this move took place. Never forget that the assembler follows its orders without 
understanding them. It doesn't make inferences based on what you do to addresses or the 
segment registers. It must be told which segment is to be used as the data segment, the 
code segment, and the stack segment. Somewhere inside the assembler program is a little 
table where the assembler "remembers" that segment MyData is to be considered the data 
segment, and that segment MyCode is to be considered the code segment, and that 
segment MyStack is to be considered the stack segment. It can't remember these 
relationships, however, unless you first tell the assembler what they are somehow. 
 This somehow (for the data, code, and extra segments, at least) is the ASSUME 
directive. The ASSUME directive in EAT.ASM tidily specifies that MyData is the data 
segment and MyCode is the code segment.
Why is this important? It has to do with the way the assembler creates the binary opcodes 
for a given instruction. When you write an instruction that addresses memory data like 
this
 
MOV         AX,MyWord
 
the assembler must put together the series of binary values that will direct the CPU to 
perform this action. What that series of binary values turns out to be depends on what 
segment the label MyWord resides in. If MyWord is in the data segment, the binary 
opcodes will be one thing, but if MyWord resides in the code segment, stack segment, or 
extra segment, the binary opcodes will be something else again. The assembler must 
know whether any label indicates an address within the data segment, code segment, 
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stack segment, or extra segment. The assembler knows that MyWord indicates an 
address within the segment MyData, but you must tell the assembler that MyData is in 
fact the data segment.
 
This is what ASSUME is for. As I've said before and will say again: knowing where 
things are is the greatest part of all your work in assembly language. Understand 
addresses and memory addressing (which includes telling the assembler how to find 
things, as we've done here with ASSUME), and the rest is easy.
 
The Main Program as a Procedure
 
All of the machine instructions in EAT.ASM are found between this pair of assembly-
language statements:
 
Main  PROC Main  ENDP
 
Just as the SEGMENT and ENDS directives frame a segment, the PROC and ENDP 
directives frame what we call a procedure. A procedure is just a group of machine 
instructions that is given a name. This is almost entirely what a procedure is: a name. 
Unlike Pascal or C, there is no necessary structure to a procedure in assembly language.
Making the main program portion of an assembly-language program a procedure is 
strictly optional, until you must begin dividing your program up into modules to keep it 
manageable. Then every executable component must be a procedure with a name, so that 
the linker can properly link the different modules together into the final executable 
program. If you're the least bit serious about assembly language,  that will happen sooner 
than later, so I think it's a good idea to get in the habit of considering your main program 
a procedure at the outset.
In the next chapter I will explain the process of cutting a program up into procedures, and 
how the procedures work together to comprise a complete assembly-language program. 
Until then I won't have a lot more to say about procedures. The Main procedure defined 
in EAT.ASM is not germane to understanding the program's operation. Consider it a 
gesture to future expansion of the program, as we'll see in Chapter 8.
 
Choosing a Starting Point
 
There are no jumps, loops, or subroutines in EAT.ASM. If you've a smattering of 
assembly-language smarts you may wonder if the Start: label following the ASSUME 
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directive is unnecessary except for readability purposes. After all, Start is not referenced 
anywhere within the program, so one would think it's an ornament, like MyStack, the 
name of the stack segment. On the contrary— EAT.ASM will not assemble without it.
The issue is this: DOS needs to know at what address to begin execution when it loads 
and runs the program. You might think DOS could assume that execution would begin at 
the start of the code segment, but not so—there may be more than one code segment, and 
under most circumstances the programmer does not specify the order of multiple code 
segments within a single program. (The linker has its own reasons for arranging them as it 
does.) Better to have no doubt about it, and for that reason you the programmer are 
required to pick a starting point and tell the assembler what it is.
The starting point may be any label that specifies an address within a code segment. Once 
you choose it, you inform the assembler of your choice by putting the chosen label at the 
very end of the source-ode file, following the END directive. Note that you must put the 
colon after the label when you define its location in its code segment, but you cannot use 
the colon when you place the starting point label after END.
END does multiple service for the assembler. Its most obvious job is to tell the assembler, 
"That's all, folks—the source-code file is finished—no further machine instructions or 
assembler directives will be forthcoming." Any text placed after the END directive will 
be ignored by the assembler. You can put comment blocks there if you like, but don't 
forget that any instructions or directives you place after END will simply be ignored, and 
the assembler will not tell you that it is ignoring them. Best, I think, not to put anything at 
all after END.
Why specify the starting point after the END directive? Very simply: the assembler can, 
with confidence, assume that the starting point cannot be redefined. There can be more 
than one of most everything else in an assembly-language program (including stack 
segments—you just can't use more than one at a time) but there must be only one starting 
point for execution. Putting the starting label after END ensures that this will be the case.
 
7.2 First In, First Out via the Stack
 
One problem with assembly language is that it's tough knowing where to put things. 
There are only so many registers to go around. Having variables in a data segment is 
helpful, but it isn't the whole story. People who come to assembler from higher-level 
languages like Pascal and BASIC find this particularly jarring, since they're used to being 
able to create new variables at any time as needed. The 8086/8088 CPU contains the 
machinery to create and manage a vital storage area called the stack. The name is 
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appropriate, and for a usable metaphor I can go back to my high school days, when I was 
a dishwasher for Resurrection Hospital on Chicago's Northwest side.
 
Five Hundred Plates an Hour
 
What I did most of the time was pull clean plates from a moving conveyor belt of little 
prongs that emerged endlessly from the steaming dragon's mouth of a 180° dishwashing 
machine. This was hot work, but it was a lot less slimy than stuffing the dirty plates into 
the other end of the machine.
When you pull five hundred plates an hour out of a dishwashing machine, you had better 
have some place efficient to stash them. Obviously you could simply stack them on a 
table, but stacked ceramic plates in any place habituated by rowdy teenage boys is asking 
for fragments. What the hospital had instead was an army of little wheeled stainless steel 
cabinets equipped with one or more spring-loaded circular plungers accessed from the 
top. When you had a handful of plates, you pushed them down into the plunger. The 
plunger's spring was adjusted such that the weight of the added plates pushed the whole 
stack of plates down just enough to make the new top plate flush with the top of the 
cabinet.
Each plunger held about fifty plates. We rolled one up next to the dragon's mouth, filled it 
with plates, and then rolled it back into the kitchen where the clean plates were used at the 
next meal shift to set patients' trays.
It's instructive to follow the path of the first plate out of the dishwashing machine on a 
given shift. That plate got into the plunger first, and was subsequently shoved down into 
the bottom of plunger by the remaining 49 plates that the cabinet could hold. After the 
cabinet was rolled into the kitchen, the kitchen girls pulled plates out of the cabinet one 
by one as they set trays. The first plate out of the cabinet was the last plate in. The last 
plate out of the cabinet had been the first plate to go in.
The 8086/8088 stack is like that. We call it a Last In, First Out, or LIFO stack.
 
An Upside-Down Segment
 
Two of the 8086/8088 registers team up to create and maintain the stack. Like everything 
else in 86 land, the stack must exist within a segment. The Stack Segment (SS) register 
holds the segment address of the segment chosen to be the stack segment, and the Stack 
Pointer (SP) register points to locations within the stack segment. As with all other 
segments, the stack segment can be as much as 65,536 bytes long, although you'll find in 
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practice that the stack rarely needs to be larger than a thousand bytes or so unless you're 
doing some really peculiar things.
The stack segment begins at SS:0, but the truly odd thing about it is that all the stack 
action happens at the opposite end of the stack segment. When a stack segment is set up, 
the SS register points to the base or beginning of the stack segment, and the SP register is 
set to point to the end of the stack segment. To store something in the stack segment 
(which we usually call "pushing something on the stack"), we move the SP "down the 
stack" (closer to SS) and then copy the item to the memory location pointed to by SS:SP.
This takes some getting used to. Figure 7.1 provides the big picture of the stack segment 
and the two pointers that give it life. SS is set to the base of the stack segment by DOS 
when the program is loaded and begins running. SP is set to the far end of the stack 
segment, again by DOS when your program is loaded.
You can place data onto the stack in numerous ways, but the most straightforward way 
involves a pair of related machine instructions; PUSH and PUSHF. The two are identical 
except that PUSHF pushes the Flags register onto the stack, while PUSH pushes a 
register that is specified by you in your source-code file onto the stack, like so:
 
PUSHF                           :   Push the  Flags  register
PUSH AX                      ;   Push   the  AX  register
PUSH  [BX]                  ;   Push   the  word  stored  in memory at  DS:BX
PUSH DI                    :   Push  the  DI   register
PUSH ES                      ;   Push   the   ES  register
 
Note that PUSHF takes no operands. You'll generate an assembler error if you try to hand 
it an operand; PUSHF pushes the Flags register and that's all it is capable of doing.
Both PUSH and PUSHF work this way: first SP is decremented by one word (two bytes) 
so that it points to an empty area of the stack segment that is two bytes long. Then 
whatever is to be pushed onto the stack is written to memory in the stack segment at the 
offset address in SP. Voila! The data is safe on the stack, and SP has crawled two bytes 
closer to SS. We call the word of memory pointed to by SP the top of the stack.
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All memory between SP's initial position and its current position (the top of the stack) 
contains real data that was explicitly pushed on the stack and will presumably be fetched 
from the stack (we say popped from the stack) later on. Memory between SS and SP, 
however, is considered free and available, and is used to store new data that is to be 
pushed onto the stack.
All memory between SS:0 and SS:SP is considered free and available for the use of the 
stack.
 
Don't forget one important fact: the 8086/8088 pushes only word-sized items on the stack. 
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You can't push AL or BH or any other of the 8-bit registers. Nor can you push immediate 
data. Registers and memory are legal for pushing onto the stack, but immediate data will 
generate an assembler error. (There is, in fact, a variant of PUSH that will push 
immediate data on the stack, but it's only available on the 286, 386, and 486 CPUs. I'll 
take up the issue of the more advanced CPUs in Chapter 11.)
Your morbid curiosity may be wondering what happens when SP runs out of room in its 
downward crawl and collides with SS. Nothing good, certainly— it depends heavily on 
how your program is laid out, but I would lay money on your program crashing hard and 
probably taking the system with it. Stack crashes are serious business—in part because 
there is only one stack in action at a time in the 8086/8088. It's a little hard to explain 
(especially at this stage in our discussion) but this means that the stack you set up for your 
own program must be large enough to support the needs of DOS and any interrupt-driven 
code (typically in the BIOS) that may be active while your program is running. Even if 
you don't fully understand how someone else may be using your program's stack at the 
same time you are, give those other guys some extra room—and keep an eye on the 
proximity of SS and SP while you trace a program in DEBUG. I'll explain how to 
allocate space for your stack a little later in this section.
 
POP Goes the Opcode
 
In general, what gets pushed must get popped, or you can end up in any of several 
different kinds of trouble. Getting a word of data off the stack is done with another two 
instructions, POP and POPF. As you might expect, POP is the general-purpose popper, 
while POPF is dedicated to popping the Flags register off of the stack:
 
POPF                             ;   Pop the top of the  stack into  Flags
POP SI                         ;   Pop the top of the stack into SI
POP CS                         ;   Pop the top of the  stack into CS
POP  [BX]                     ;   Pop the top of the stack into memory at DS:BX
 
As with PUSH, POP only operates on word-sized operands. Don't try to pop data from 
the stack into an 8-bit register like AH or CL.
 
The PUSH and POP stack instructions work only on word-sized operands.
 
POP works pretty much the way PUSH does, but in reverse: first the word of data at 
SS:SP is copied from the stack and placed in POP's operand, whatever you specified that 
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to be. Then, SP is incremented (rather than decremented) by two bytes, so that in effect it 
moves two bytes up the stack, away from SS.
It's significant that SP is decremented before placing a word on the stack at push time, but 
incremented after removing a word from the stack at pop time. Certain other CPUs work 
in the opposite manner, which is fine—just don't get confused. Unless the stack is empty, 
SP points to real data, not empty space.
Ordinarily, you don't have to remember that fact, as PUSH and POP handle it all for you 
and you don't have to manually keep track of what SP is pointing to. If you decide to 
manipulate the stack pointer directly, it helps to know the sequence of events behind 
PUSH and POP.
Figure 7.2 shows the stack's operation in a little more detail. The values of the four "X" 
registers at some hypothetical point in a program's execution are shown at the top of the 
figure. AX is pushed first on the stack. Its least significant byte is at SS:SP, and its most 
significant byte is at SS:SP+1. (Remember that both bytes are pushed onto the stack at 
once, as a unit!)
Each time one of the registers is pushed onto the stack, SP is decremented two bytes 
down toward SS. The first three columns show AX, BX, and CX being pushed onto the 
stack, respectively. But note what happens in the fourth column, when the instruction 
POP DX is executed. The stack pointer is incremented by two bytes and moves away 
from SS. DX now contains a copy of the contents of CX. In effect, CX was pushed onto 
the stack, and then immediately popped off into DX.
That's a roundabout way to copy the value of CX into DX. MOV DX,CX is lots faster 
and more straightforward. However, MOV will not operate on the Flags register. If you 
want to load a copy of Flags register into another register, you must first push the flags 
register onto the stack with PUSHF, then pop the same word off the stack into the 
register of your choice. Getting the Flags register into BX is done like this:
 
PUSHF                           ;   Push  the flags  register onto the stack..
POP BX                         ;   ..and pop it  immediately into BX
 
 
Storage for the Short Term
 
The stack should be considered a place to stash things for the short term. Items stored on 
the stack have no names, and in general must be taken off the stack in the reverse order 
that they were put on.
One excellent use of the stack allows the all-too-few registers to do multiple duty. If you 
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need a register to temporarily hold some value to be operated on by the CPU and all the 
registers are in use, push one of the "busy" registers onto the stack. Its value will remain 
safe on the stack while you use the register for other things. When you're finished using 
the register, pop its old value off the stack—and you've gained the advantages of an 
additional register without
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really having one. (The cost, of course, is the time you spend moving that register's value 
onto and off of the stack. It's not something you want to do in the middle of an often-
repeated loop!)
 
Specifying the Size of the Stack
 
The size of your program's code segment is dictated by the number of machine 
instructions you write into your program. Similarly, the size of your data segment is 
dictated by the number and sizes of the variables you define in your data segment. You 
might well ask: how do you specify the size of your stack segment when, until the 
program begins running, there's nothing in it?
The answer, quite simply, is to define the stack segment as one enormous variable 
without a name.
Look back at the EAT.ASM program, which has a stack segment allocated this way. Note 
that the stack segment contains a single DB directive with no label associated with it. The 
stack segment's DB is a little different from the ones in the data segment. It contains an 
additional directive, DUP (for Duplicate), that is the key to the whole mystery. Here's the 
DB instruction in its entirety:
 
DB 64  DUP  ('STACK!!!')     ;   This   reserves  512  bytes  for  the stack
 
As the comment indicates, this statement somehow allocates 512 bytes for the stack. The 
DB directive by itself ordinarily allocates only a single byte within a segment. DB, 
however, can also mark the first byte of multi-byte strings and buffers. A buffer is nothing 
more than an area of memory set aside for later use with nothing particular inside it. The 
stack segment in EAT.ASM is really just a buffer without a name, addressed by SS and 
SP.
The "Eat at Joe's!" string (including the "$" at the end) is 14 bytes long, yet is defined by 
a DB directive. Really large variables and most buffers, however, must be allocated with 
the help of the DUP directive. DUP must be followed by some sort of expression in 
parentheses, and preceded by a number indicating how many times that expression is to 
be duplicated in memory.
An expression is a collection of values that ultimately "cooks down" (we say evaluates) to 
some specific value. In EAT.ASM, the stack segment's DB directive doesn't really 
contain an expression—its value is already "cooked down" as far as it will go. Later on 
we'll look at some more complex expressions that will need some cooking.
The stack segment's DB takes the short string of characters 'STACK!!!' from within the 
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parentheses and replicates the string into memory 64 times. The total size of the buffer is 
64 multiplied by 8, (which is the length of the string 'STACK!!!' shorn of its quotation 
marks), for a total of 512 bytes. By this we accomplish two things: we set aside a buffer 
512 bytes in size for the use of the stack, and we mark this buffer unmistakably so that we 
can spot it in memory and see how much of the buffer has actually been used by the stack.
The marking is indeed unmistakable. Assemble and link EAT.ASM, and then invoke 
DEBUG on EAT.EXE. Do a memory dump at SS:0. You should see this:
 
-d ss:0
19AA:0000    53 54 41 43 4B 21  21 21-53 54 41 43 4B 21  21 21      
STACK!!1STACK!!!
19AA:0010    53 54 41 43 4B 21  21 21-53 54 41 43 4B 21  21 21      
STACK!!!STACK!!!
19AA:0020    53 54 41 43 4B 21  21 21-53 54 41 43 4B 21  21 21      
STACK!!!STACK!!!
19AA:0030    53 54 41 43 4B 21  21 21-53 54 41 43 4B 21  21 21      
STACK!!!STACK!!!
19AA:0040    53 54 41 43 4B 21  21 21-53 54 41 43 4B 21  21 21      
STACK!!!STACK!!!
19AA:0050    53 54 41 43 4B 21  21 21-53 54 41 43 4B 21  21 21      
STACK!!!STACK!!!
19AA:0060    53 54 41 43 4B 21   21 21-53 54 41 43 4B 21  21 21      
STACK!!!STACK!!!
19AA:0070    53 54 41 43 4B 21  21 21-53 54 41 43 4B 21  21 21      
STACK!!!STACK!!!
 

There should be four blocks marked like this, as DEBUG's dump routine displays 128 
bytes at a time. If any bytes in any of those four blocks get written over, you'll see it 
immediately. Certainly the last few bytes will be written over during the normal course of 
the program, but if something else in your program or your machine is clobbering your 
stack, this is one way to start the search for the alien menace.
Nothing, of course, requires that you use the STACK!!! string to allocate space in the 
stack segment. The simplest way is to use DUP with the undefined space symbol (?):
 
DB 512  DUP   (?)
 
All this statement does is set aside 512 bytes of memory. Nothing is stored in that 
memory initially to mark it as belonging to the stack or anything else. The (?) simply 
reserves memory but does not otherwise touch it. Note here that the question mark is not 
in quotation marks. Putting it in quotation marks will fill your stack segment with 512 
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question mark characters, which may be useful but is not the same as undefined space!
 

7.3 Using DOS Services through INT
 
I think of EAT.ASM as something of a Tom Sawyer program. It doesn't do much, and it 
does what it does in time-honored Tom Sawyer fashion—by getting somebody else to do 
all the work. All that EAT does is display two character strings on your screen. One is the 
advertising slogan "Eat at Joes!" The other is the EOL marker—the pair of "invisible" 
characters that signal the end of a line: carriage return (ODH) followed by line feed 
(0AH). (For more on EOL markers and how they interact with text, see Section 3.2.) The 
EOL marker does nothing more than return the display cursor to the left margin of the 
next screen line, so that any subsequent text displayed will begin at the left margin and 
not nipping at the heels of the slogan.
Invisible though it may be, the carriage return-line feed combination is still considered a 
text string, and is sent to the display in exactly the same way: through a DOS service.
 
As I explained in Chapter 3, DOS is both a god and a troll. DOS controls all the most 
important elements of the machine in godlike fashion, including the disk drives, the 
printer, and (to some extent) the display. At the same time, DOS is like a troll living 
under a bridge to all those parts of your machine: you tell the troll what you want done, 
and the troll will go out and do it for you.
There is another troll guarding the bridges to other components of your machine called 
the BIOS, to which we'll return in a little while. DOS and BIOS both offer services, 
which are simple tasks that your programs would have to do themselves if the services 
were not provided. Quite apart from saving you, the programmer, a lot of work, having 
DOS and BIOS services helps guarantee that certain things will be done in identical 
fashion on all machines. This uniformity (especially in terms of disk storage) is a major 
reason software written for DOS runs on so many different machines: all the machine-
dependent stuff is done the same way.
One of the services DOS provides is simple (far too simple, actually) access to your 
machine's display. For the purposes of EAT.ASM (which is just a lesson in getting your 
first assembly-language program written and operating) simple services are enough.
So, how do we use DOS and BIOS services? The way is as easy to use as it is tricky to 
understand: through software interrupts.
 
An Interrupt That Doesn't Interrupt Anything
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As one new to the 8086/8088 family of processors, the notion of a software interrupt 
drove me nuts. I kept looking and looking for the interrupter and interruptee. Nothing was 
getting interrupted.
The name is unfortunate, even though I admit that there was some reason for calling 
software interrupts what they are. They are, in fact, courteous interrupts—if you can still 
call an interrupt an interrupt when it is so courteous that it does no interrupting at all.
The nature of software interrupts and DOS services is best explained by a real example 
illustrated twice in EAT.ASM. As I hinted above, DOS keeps little sequences of machine 
instructions tucked away within itself. Each sequence does something useful—read 
something from a disk file, display something on the screen, send something to the 
printer. DOS uses them to do its own work, and it also makes them available (with its 
troll hat on) to you, the programmer, to access from your programs.
Well, there is the critical question: how do you find something tucked away inside of 
DOS? All code sequences, of course, have addresses, and Microsoft or IBM could publish 
a booklet of addresses indicating where all the code is hidden. There are numerous good 
reasons, however, not to pass out the addresses of the code. DOS is evolving and (we 
should hope) being repaired on an ongoing basis. Repairing and improving code involves 
adding, changing, and removing machine instructions, which changes the size of those 
hidden code sequences—and also, in consequence, changes their location. Add a dozen 
instructions to one sequence, and all the other sequences up memory from that one 
sequence will have to "shove over" to make room. Once they shove over, they'll be at 
different addresses, so instantly the booklets are obsolete. Even one byte added to or 
removed from a code sequence in DOS could change everything. (Suppose the first code 
sequence has a bug that must be repaired.)
The solution is ingenious. At the very start of memory, down at segment 0, offset 0, is a 
special table with 256 entries. Each entry is a complete address, including segment and 
offset portions, for a total of four bytes per entry. The first 1024 bytes of memory in any 
8086/8088 machine are reserved for this table, and no code or data may be placed there.
Each of the addresses in the table is called an interrupt vector. The table as a whole is 
called the interrupt vector table. Each vector has a number, from 0 to 255. The vector 
occupying bytes 0 through 3 in the table is vector 0. The vector occupying bytes 4 
through 7 is vector 1, and so on, as shown in Figure 7.3.
None of the addresses are burned into permanent memory the way BIOS routines are. 
When your machine starts up, DOS and BIOS fill many of the slots in the interrupt vector 
table with addresses of certain service routines within themselves. Each version of DOS 
knows the location of its innermost parts, and when you upgrade to a new version of 
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DOS, that new version will fill the appropriate slots in the interrupt vector table with 
upgraded and accurate addresses.
What doesn 't change with each new version of DOS is the number of the interrupt that 
holds a particular address. In other words, since the PC first began, interrupt 21H has 
pointed the way into DOS's services dispatcher, a sort of multiple-railway switch with 
spurs heading out to the many (over 50) individual DOS service routines. The address of 
the dispatcher has changed with every DOS version, but regardless of version, programs 
can find the address of the dispatcher in slot 21H of the interrupt vector table.
Furthermore, programs don't have to go snooping the table for the address themselves. 
The 8086/8088 CPU includes a machine instruction that makes use of the interrupt vector 
table. The INTerrupt (INT) instruction is used by EAT.ASM to request the services of 
DOS in displaying two strings on the screen. At two places EAT.ASM has an INT 21H 
instruction. When an INT 21H instruction is executed, the CPU goes down to the 
Interrupt Vector Table, fetches the address from slot 21H, and then jumps execution to 
the address stored in slot 21H. Since the DOS services dispatcher lies at the address in 
slot 21H, the dispatcher gets control of the machine and does the work that it knows how 
to do.
The process is shown in Figure 7.4. When DOS loads itself at boot time, one of the many 
things it does to prepare the machine for use is to put correct addresses in several of the 
vectors in the interrupt vector table. One of these addresses is the address of the 
dispatcher, which goes into slot 21H.
Later on, when you type the name of your program MYPROG on the DOS command 
line, DOS loads MYPROG.EXE into memory and gives it control of the machine. 
MYPROG.EXE does not know the address of the DOS dispatcher. MYPROG does 
know that the dispatcher's address will always be in slot 21H of the interrupt vector table, 
so it executes an INT 21H instruction. The correct address lies in vector 21H, and 
MYPROG is content to remain ignorant and simply let the INT 21H instruction and 
vector 21H take it where it needs to go.
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Back on the Northwest Side of Chicago, where I grew up, there was a bus that ran along 
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Milwaukee Avenue. All Chicago bus routes had numbers, and the Milwaukee Avenue 
route was #56. It started somewhere in the tangled streets just north of Downtown, and 
ended up in a forest preserve just inside the city limits. The Forest Preserve district ran a 
swimming pool called Whelan Pool in that forest preserve. Kids all along Milwaukee 
Avenue could not necessarily have
told you the address of Whelan Pool. But come summer, they'd tell you in a second how 
to get there: just hop bus #56 and take it to the end of the line. It's like that with software 
interrupts. Find the number of the vector that reliably points to your destination, and ride 
that vector to the end of the line, without worrying about the winding route or the address 
of your destination.
Note that the INT 21H instruction does something else: it pushes the address of the next 
instruction (that is, the instruction immediately following the INT 21H instruction) on the 
stack before it follows vector 21H into the depths of DOS. Like Hansel and Gretel, the 
INT 21H was pushing some breadcrumbs onto the stack as a way of helping execution 
find its way back to MYPROG.EXE after the excursion down into DOS—but more on 
that later.
Now, the DOS dispatcher controls access to dozens of individual service routines. How 
does it know which one to execute? You have to tell the dispatcher which service you 
need, and you do so by placing the service's number in 8-bit register AH. The dispatcher 
may require other information as well, and will expect you to provide that information in 
the correct place before executing INT 21.
Look at the following three lines of code from EAT.ASM:
 
lea  DX,Eat1              ;   Load offset of Eat1 message string into DX
mov   AH,09H              : Select DOS service 09H: Print String
int  21H                     ;   Call   DOS
 
This sequence of instructions requests that DOS display a string on the screen. The first 
line sets up a vital piece of information: the offset address of the string to be displayed on 
the screen. Without that, DOS will not have any way to know what it is that we want to 
display. The dispatcher expects the offset address to be in DX, and assumes that the 
segment address will be in DS. The address of the data segment was loaded into DS 
earlier in the program by these two instructions:
 
mov AX,MyData               ;  Set up our own data  segment address  in  DS
mov DS,AX                       ;   Can't load segment  reg.  directly from memory
 
Once loaded, DS is not disturbed during the full run of the program, so the DOS 
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dispatcher's assumption is valid even though DS is loaded early in the program and not 
each time we want to display a string.
In moving 09H into register AH, we tell the dispatcher which service we want performed. 
Service 09H is DOS's Print String service. This is not the fastest nor in other ways the 
best way to display a string on the PC's screen, but it is most certainly the easiest.
DOS service 09H has a slightly odd requirement: that the end of the string be marked 
with a dollar sign ($). This is the reason for the dollar signs hung incongruously on the 
ends of both of EAT.ASM's strings. Given that DOS does not ask us to pass it a value 
indicating how long the string is, the end of the string has to be marked somehow, and the 
dollar sign is DOS's chosen way. It's a lousy way, unfortunately, because with the dollar 
sign acting as a marker, there is no way to display a dollar sign. If you intend to talk 
about money on the PC's screen, don't use DOS service O9H! As I said, this is the 
easiest, but certainly not the best way to display text on the screen.
With the address of the string in DS:DX and service number 09H in AH, we take a trip to 
the dispatcher by executing INT 21H. The INT instruction is all it takes—boom!—and 
DOS has control, reading the string at DS:DX and sending it to the screen through 
mechanisms it keeps more or less to itself.
 
Getting Home Again
 
So much for getting into DOS. How do we get home again? The address in vector 21H 
took control into DOS, but how does DOS know where to go to pass execution back into 
EAT.EXE? Half of the cleverness of software interrupts is knowing how to get there, and 
the other half—just as clever—is knowing how to get back.
To get into DOS, a program looks in a completely reliable place for the address of where 
it wants to go: the address stored in vector 21H. This address takes execution deep into 
DOS, leaving the program sitting above DOS. To continue execution where it left off 
prior to the INT 21 instruction, DOS has to look in a completely reliable place for the 
return address, and that completely reliable place is none other than the top of the stack.
I mentioned earlier (without much emphasis) that the INT 21 instruction pushes an 
address to the top of the stack before it launches off into the unknown. This address is the 
address of the next instruction in line for execution: the instruction immediately following 
the INT 21H instruction.
This location is completely reliable because, just as there is only one interrupt vector 
table in the machine, there is only one stack in operation at any one time. This means that 
there is only one top of the stack—that is, SS:SP—and DOS can always send execution 
back to the program that called it by popping the address off the top of the stack and 
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jumping to that address.
The process is shown in Figure 7.5, which is the continuation of Figure 7.4. Just 
as the INT instruction pushes a return address onto the stack and then jumps to the 
address stored in a particular vector, there is a "combination" instruction that pops 
the return address off the stack and then jumps to the address. The instruction is 
Interrupt RETurn (IRET) and it completes this complex but reliable system of 
jumping to an address when you really don't know the address. The trick, once 
again, is knowing where the address can reliably be found.
 (There's actually a little more to what the software interrupt mechanism pushes 
onto and pops from the stack, but it happens transparently enough so that I don't 
want to complicate the explanation at this point.)
This should make it clear by now what happens when you execute the INT 21H 
instruction. EAT.ASM uses DOS services to save it the trouble of writing its string data 
to the screen a byte at a time. The address into DOS is at a known location in the Interrupt 
Vector Table, and the return address is at a known location on the stack.
All other software interrupts—and there are many—operate in the same fashion. In the 
next chapter, we'll use a few more, and explore some of the many services available 
through the BIOS interrupts that control your video display and printer
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Software Interrupts vs. Hardware Interrupts
 
Software interrupts evolved from an older mechanism that did involve some genuine 
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interrupting: hardware interrupts. A hardware interrupt is your CPU's mechanism for 
paying attention to the world outside itself.
There is a fairly complex electrical system built into your PC that allows circuit boards to 
send signals to the CPU. An actual metal pin on the CPU chip is moved from one voltage 
level to another by a circuit board device like a disk drive controller or a serial port board. 
Through this pin the CPU is "tapped on the shoulder" by the external device. The CPU 
recognizes this tap as a hardware interrupt. Like software interrupts, hardware interrupts 
are numbered, and for each interrupt number there is a slot reserved in the interrupt vector 
table. In this slot is the address of an interrupt service routine (ISR) that performs some 
action relevant to the device that tapped the CPU on the shoulder. For example, if the 
interrupt signal came from a serial port board, the CPU would then allow the serial port 
board to transfer a character byte from itself into the CPU.
Most properly, any routine that lies at the end of a vector address in the interrupt vector 
table is an ISR, but the term is usually reserved for hardware interrupt service routines.
The only difference between hardware and software interrupts is the event that triggers 
the trip to the interrupt vector table. With a software interrupt, the triggering event is part 
of the software; that is, an INT instruction; with a hardware interrupt, the triggering event 
is an electrical signal applied to the CPU chip—without any INT instruction taking a 
hand in the process. The CPU itself pushes the return address on the stack when it 
recognizes the electrical pulse that triggers the interrupt; however, when the ISR is done, 
an IRET instruction sends execution home, just as it does for a software interrupt.
Hardware ISRs can be (and usually are) written in assembly language. It's a difficult 
business, because the negotiations between the hardware and software must be done just 
so, or the machine may lock up or go berserk. This is no place for beginners, and I would 
advise you to develop some skill and obtain some considerable knowledge of your 
hardware setup before attempting to write a hardware ISR.
 
7.4 Summary: EAT.ASM on the Dissection Table
 
Let's recap our disassembly of EAT.ASM by putting it back together again, with 
commentary. I should point out that this is one way to write an assembly-language 
program, but it isn't the only way by any means. I'm outlining what I feel is an ideal 
organization for short, assembly-language programs containing less than a thousand lines 
or so of source code assembled and linked as one piece. The essential structure of this 
organization is shown in Figure 7.6. Past that thousand lines, an assembly-language 
program must be broken up into modules or the program will collapse into an 
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undecipherable black hole into which any quantity of effort may be poured without any 
improvement in the program. (We'll begin talking about modularizing programs in 
Chapter 8.)
 
Segment Definition and Segment Order
 
An assembly-language program of any usefulness must consist of at least three segments: 
a data segment, for variables used by the program; a stack segment, containing the 
program's stack; and a code segment, containing the program's machine instructions. 
These segments are defined using the two directives: SEGMENT, which marks the start 
of the segment, and ENDS which marks the end of the segment.
Each segment must have a name, and the name must be used twice in the definition of a 
segment: once before the SEGMENT directive and again before the ENDS directive. A 
segment must be named even though the name may not be referenced anywhere in the 
program
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. Note that in EAT.ASM, the stack segment is named MyStack even though nothing in 
the program ever needs to reference MyStack by name.
The stack segment must be defined with the STACK directive following the SEGMENT 
directive. This definition tells DOS which segment address to load into the SS (Stack 
Segment) register.
The size of the stack segment is dictated by the definition of some data within the 
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segment. You must define enough stack space to cover any possible need the program 
may have, plus the needs of DOS and any interrupt service routines (including loaded 
TSRs) that may be active while your program is running. If you don't define enough 
space, you may have a stack crash, which will definitely terminate your program and very 
possibly crash the machine as well. Decide how much stack space you may realistically 
need, and allocate twice as much. Use the DB and DUP directives to allocate space.
The segments are order independent, that is, you may place the segments in any order 
without changing the way the segments work together, nor the way the assembler treats 
them. My own custom is to define the stack segment first, followed by the data segment, 
followed by the code segment.
 
 

Data Definitions for Variables and Stack Space
 
Variables and space for the stack must be allocated during assembly. The DB, DW, DD 
and DUP directives are the most common means to do this. DW allocates word-sized (16-
bit) variables, typically to contain register-sized values. DD allocates double word-sized 
(32-bit) variables, typically for full addresses containing both segment and offset.
These definitions have a form like the examples shown below:
 
MyWord   DW 0FFFFH MyAddress DD OB8000000H
 
The DB directive was designed to allocate byte-sized (8 bit) quantities like characters and 
register halves, but it has the special property of being able to allocate strings as well. 
Elements of the string may be numbers, characters, or quoted strings, separated by 
commas. The following are all legal DB variable definitions:
 
MyByte         DB       042H                                      ;  Using hex notation
Counter      DB      17                                                       ;   Decimal!
Eat1          DB     "Eat at Joe's!","$"                      ;  Character string
CRLF                DB        ODH,OAH,'$'                    ;   Numbers  separated by commas
 
If you need to allocate a variable or a buffer without specifying any initial values, use the 
DUP directive with a question mark (?) as the value:
 
MyBuffer DB  1024 DUP (?)
 
The question mark value simply sets memory aside but stores nothing in it. Do not put 
the question mark in quotation marks, or the assembler will store the question mark 
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character (ASCII 3FH) into every byte of the buffer.
The DUP directive can also be used to store repeated patterns into larger variables and 
buffers. This can make the buffers and variables easy to spot when you perform a hex 
dump from DEBUG:
 Marked   DB 10 DUP ('Zorro!!!') Table1   DB 5 DUP 
(02H,04H.06H,08H) DB 64 DUP ('STACK!!!')
 
The last example allocates space for the stack segment in EAT.ASM. Although this 
statement illustrates the fact that you don't have to name a buffer that simply exists to take 
up space (as in allocating space for the stack segment), I recommend that you name all 
variables and buffers.
 

Setting Up the Code Segment
 
Like any segment, the code segment must have a name, and the name must be given at the 
start and end of the segment definition, before the SEGMENT and ENDS directives. 
Although the name is unimportant and probably won't be referenced anywhere in the 
code, it must be there, or you will receive an assembler error.
An ASSUME directive must be included in the program. Its purpose is to tell the 
assembler which of the segments you have defined is to be used for the code segment, and 
which segment is to be used for the data segment. Unlike the stack segment, which has 
the directive STACK to tell the assembler what sort of segment it is, nothing in the code 
or data segments specifies which sort of segment they are. It isn't enough that there are 
variables defined in the data segment or machine instructions in the code segment. The 
assembler will allow you put variable definitions in the code segment and machine 
instructions in the data segment, regardless of whether that makes sense or not. (It may, in 
certain extremely advanced techniques.)
In EAT.ASM, the ASSUME directive tells the assembler that the code segment will be 
the segment named MyCode, and that the data segment will be named MyData.
 

EAT.ASM has its machine instructions grouped together in a procedure named Main 
with the PROC directive. This is not strictly necessary unless you have broken down 
your program into procedures or modules, and EAT.ASM will assemble and run 
correctly without the Main PROC and Main ENDP statements. I would advise you to 
get in the habit of placing the main program portion of any assembly-language program 
into a procedure called Main to help make the program more readable.
What is essential, however, is to provide a label that marks the place where program 

file:///E|/TEMP/Chapter%207%20Our%20Object%20All%20Sublime.htm (35 of 38) [9/30/02 08:34:09 PM]



file:///E|/TEMP/Chapter%207%20Our%20Object%20All%20Sublime.htm

execution is to begin. I recommend the label Start: as a convention, but the label can be 
any legal identifier. Whatever label you choose, mark the main program's starting point 
with the label and a colon. Then, place the same label minus the colon after the END 
directive, which marks the end of the source-code file. Placing the "start" label after the 
END directive tells the assembler that there is no more source code, and that the label is 
the point at which execution is to begin.
 
What EAT.ASM's Machine Instructions Do
 
; From the top:
mov AX,MyData    ; Set up our own data segment address in DS 
mov DS,AX            ; Can't load segment reg. directly from 
memory
 
Before your program can access any of its variables in the data segment, it must have the 
segment address of the data segment in the DS register. The ASSUME directive tells the 
assembler to assemble any instruction referencing an identifier in the MyData segment 
under the assumption (hence the name of the directive) that MyData is to be a data 
segment. ASSUME, however, does not load the data segment address into DS!
You must do that yourself, which is the purpose of the two instructions shown above. 
This seemingly simple operation takes two instructions rather than one because MOV 
cannot move memory data directly into a segment register like DS. To load the address of 
memory data into a segment register, you must first load the address into one of the 
general-purpose registers and then load the general-purpose register into the segment 
register:
 
 
lea  DX , Eat1                 ;   Load offset of Eat1 message string into DX
mov AH,09H                   ;   Select  DOS  service 09H:   Print  String
 
int  21H                         ;   Call   DOS
 
Here's where the first real work of EAT.ASM gets done. The load effective address 
instruction (LEA) puts the offset address of variable Eat1 into the DX register. Keep in 
mind that the segment address of Eat1 is already in DS— loaded by the first two 
instructions in the program. MOV AH, 09H loads the number of DOS service O9H 
(Print String) into register half AH. The term "Print String" is a misnomer inherited from 
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an ancient age when video terminals were considered exotic, and strings could only be 
printed—on (kerchunk-kerchunkity-chunk) Teletype terminals!
Finally, INT 21H transfers control to the DOS services dispatcher by way of software 
interrupt 21H. The dispatcher looks in DS:DX for the address of the string variable to be 
displayed, and then hands control over to the Print String service routine somewhere deep 
within DOS. When the string is displayed, execution returns to the instruction following 
the INT 21H instruction, which is possible because the INT 21H instruction pushed the 
address of the next instruction onto the stack before it passed execution to the DOS 
services dispatcher. The dispatcher simply popped that return address of the stack and 
resumed execution at that address. Again, here is an explanation of how interrupts work: 
the previous block of instructions were enough to display the string "Eat at Joe's!" on your 
video display. DOS leaves the hardware cursor on the character following the last 
character of the string, however, and any subsequent display output would follow "Eat at 
Joe's!" immediately. You may want this, and you may not—and if you don't, it would be 
a good idea to return the cursor to the left margin and bump it down to the next screen 
line. This is what's going on here:
 
lea  DX , CRLF                  ;   Load  offset of CRLF string into DX
mov AH, 09H                    ;   Select  DOS service 09H:   Print  String
int  21H                             ;   Call   DOS
 
The CRLF variable contains the EOL marker, which includes the ASCII carriage return 
characters. EAT.ASM passes the string containing these two "invisible" characters to 
DOS in exactly the same way it passed the string "Eat at Joe's!", by loading CRLF's 
address into DS:DX and selecting DOS service O9H before handing control to the DOS 
services dispatcher through software interrupt 21H.
Finally, the job is done. Joe's has been properly advertised, and it's time to let DOS have 
the machine back:
 
mov AH,4CH       ; Terminate process DOS service
mov AL,0        ; Pass this value back to ERRORLEVEL
int 21H         ; Control returns to DOS
 
Another DOS service, 4CH (Terminate Process) handles the mechanics of courteously 
disentangling the machine from EAT.ASM's clutches. The Terminate Process service 
doesn't need the address of anything, but it will take whatever value it finds in the AL 
register and place it in the DOS ERRORLEVEL variable. DOS batch programs can test 
the value of the ERRORLEVEL variable and branch on it, as I'll demonstrate in the next 
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chapter.
EAT.ASM doesn't do anything worth testing in a batch program, but if ERRORLEVEL 
will be set anyway, it's a good idea to provide some reliable and harmless value for 
ERRORLEVEL to take. This is why 0 is loaded into AL prior to ending it all by the 
final INT 21 instruction. If you were to test ERRORLEVEL after running EAT.EXE, 
you would find it set to 0 in every case.
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Dividing and Conquering
Using Procedures and Macros to Battle 
Complexity
8.1 Programming in Martian >• 216
8.2 Boxes Within Boxes >• 216
8.3 Using BIOS Services >• 224
8.4 Building External Libraries of Procedures >• 235
8.5 Creating and Using Macros >• 248
 
 
8.1  Programming in Martian
 
There is a computer language called APL (an acronym for "A Programming Language," 
how clever) that has more than a little Martian in it. APL was the first computer language 
I learned, (on a major IBM mainframe) and when I learned it I learned a little more than 
just APL.
APL uses a very compact notation, with dozens of odd little symbols, each of which is 
capable of some astonishing power like matrix inversion. You can do more in one line of 
APL than you can in one line of anything else I have learned since. The combination of 
the strange symbol set and the compact notation make it very hard to read and remember 
what a line of code in APL actually does.
So it was in 1977. Having mastered (or so I thought) the whole library of symbols, I set 
out to write a text formatter program. The program would justify right and left, center 
headers, and do a few other things that we take for granted today, but which were very 
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exotic in the Seventies.
The program grew over a period of a week to about 600 lines of squirmy little APL 
symbols. I got it to work, and it worked fine—as long as I didn't try to format a column 
that was more than 64 characters wide. Then everything came out scrambled.
Whoops. I printed the whole thing out and sat down to do some serious debugging. Then I 
realized with a feeling of sinking horror that, having finished the last part of the program, 
/ had no idea how the first part worked.
The APL symbol set was only part of the problem. I soon came to realize that the most 
important mistake I had made was writing the whole thing as one 600-line monolithic 
block of code lines. There were no functional divisions, nothing to indicate what any 10-
line portion of the code was trying to accomplish.
The Martians had won. I did the only thing possible: I scrapped it. And I settled for 
ragged margins in my text.
 
8.2 Boxes Within Boxes
This sounds like Eastern mysticism, but it's just an observation from life: Within any 
action is a host of smaller actions. Look inside your common activities. When you "brush 
your teeth," what you're actually doing is:
• Picking up your toothpaste tube
• Unscrewing the cap
• Placing the cap on the sink counter
• Picking up your toothbrush
• Squeezing toothpaste onto the brush from the middle of the tube
• Putting your toothbrush into your mouth
• Working the brush back and forth vigorously
 
and so on. The original list went the entire page. When you brush your teeth, you perform 
every one of those actions. However, when you think about brushing your teeth, you don't 
consciously run through each action on the list. You bring to mind the simple concept 
"brushing teeth."
Furthermore, when you think about what's behind the action we call "getting up in the 
morning," you might assemble a list of activities like this:
•  Shut off the clock radio
• Climb out of bed
• Put on your robe
• Let the dogs out
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• Make breakfast
• Brush your teeth
•  Shave
•  Get dressed
 
Brushing your teeth is on the list, but within the "brushing your teeth" activity a whole list 
of smaller actions exist. The same can be said for most of the activities collectively called 
"getting up in the morning." How many individual actions, for example, does it take to 
put a reasonable breakfast together? And yet in one small, if sweeping, phrase, "getting 
up in the morning," you embrace that whole host of small and even smaller actions 
without having to laboriously trace through each one.
What I'm describing is the "Chinese boxes" method of fighting complexity. Getting up in 
the morning involves hundreds of little actions, so we divide the mass up into coherent 
chunks and set the chunks into little conceptual boxes. "Making breakfast" is in one box, 
"brushing teeth" is in another, and so on. Closer inspection of any box shows that its 
contents can also be divided into numerous boxes, and those smaller boxes into even 
smaller boxes.
This process doesn't (and can't) go on forever, but it should go on as long as it needs to in 
order to satisfy this criterion: the contents of any one box should be understandable with 
only a little scrutiny. No single box should contain anything so subtle or large and 
involved that it takes hours of hair pulling to figure it out.
 
Procedures as Boxes for Code
 
The mistake I made in writing my APL text formatter is that I threw the whole collection 
of 600 lines of APL code into one huge box marked "text formatter." While I was writing 
it, I should have been keeping my eyes open for sequences of code statements that 
worked together at some identifiable task. When I spotted such sequences, I should have 
set them off as procedures. Each sequence would then have a name that would provide a 
memory-tag for the sequence's function. If it took ten statements to justify a line of text, 
those ten statements should have been named JustifyLine, and so on.
Xerox's legendary APL programmer, Jim Dunn, later told me that I shouldn't ever write a 
procedure that wouldn't fit on a single 25-line terminal screen "More than 25 lines and 
you're doing too much in one procedure. Split it up, " he said. Whenever I worked in APL 
after that, I adhered to that rather sage rule of thumb. The Martians still struck from time 
to time, but when they did, it was no longer a total loss.
All computer languages have procedures of one sort or another, and assembly language 
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is no exception. You may recall from the previous chapter that the main program is in fact 
a procedure, and the only thing setting it apart as the main program is the fact that its 
name is specified after the END directive.
Your assembly-language program may have numerous procedures. There's no limit to the 
number of procedures, as long as the total number of bytes of code does not exceed 
65,536 (one segment). Other complications arise at that point, but nothing that can't be 
worked around.
But that's a lot of code. You needn't worry for awhile, and certainly not while you're just 
learning assembly language. (I won't be treating the creation of multiple code segments in 
this book.) In the meantime, let's take a look at the "Eat at Joe's" program, expanded a 
little to include a couple of procedures:
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EAT2.ASM does about the same thing as EAT.ASM. It prints a two-line slogan, and 
that's all. The way the two lines of the slogan are displayed, however, bears examination:
 
lea  DX , Eat1 
call   Writeln
 
Here's a new instruction: CALL. The label Writeln refers to a procedure. As you might 
have gathered, (especially if you've programmed in an older language like BASIC or 
FORTRAN) CALL Writeln simply tells the CPU to go off and execute a procedure 
named Writeln.
The means by which CALL operates may sound familiar: CALL first pushes the address 
of the next instruction after itself onto the stack. Then CALL transfers execution to the 
address represented by the name of the procedure. The instructions contained in the 
procedure execute. Finally, the procedure is terminated by CALL'S alter ego: RET (for 
RETurn.) The RET instruction pops the address off the top of the stack and transfers 
execution to that address. Since the address pushed was the address of the first instruction 
after the CALL instruction, execution continues as though CALL had not changed the 
flow of instruction execution at all. 
See Figure 8.1.
This should remind you strongly of how software interrupts work. The main difference is 
that the caller does know the exact address of the routine it wishes to call. Apart from 
that, it's very close to being the same process. (Also note that RET and IRET are not 
interchangeable. CALL works with RET just as INT works with IRET. Don't get those 
return instructions confused!)
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The structure of a procedure is simple and easy to understand. Look at the Write 
procedure from EAT2.ASM:
 
Write                      PROC

mov AH, 09H                 ;   Select  DOS  service 9:   Print String
int 21H                           ;   Call   DOS
ret                                  ;   Return to the caller

Write                       ENDP
 
The important points are these: a procedure must be bracketed by the PROC/ ENDP 
directives, preceded in both cases by the name of the procedure. Also, somewhere within 
the procedure, and certainly as the last instruction in the procedure, there must be at least 
one RET instruction.
The RET instruction is the only way that execution can get back to the caller of the 
procedure. As I mentioned above, there can be more than one RET instruction in a 
procedure, although your procedures will be easier to read and understand if there is only 
one. Using more than one RET instruction requires the use of JMP (JuMP) instructions, 
which I haven't covered yet but will shortly in Chapter 9.
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Calls Within Calls
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Within a procedure you can do anything that you can do within the main program. This 
includes calling other procedures from within a procedure. Even something as simple as 
EAT2.ASM does that. Look at the Writeln procedure:
 
Writeln                   PROC

call  Write               ;   Display the string proper through Write
lea  DX , CRLF        ;   Load address of newline string to DS:DX
call   Write              ;   Display the newline string through Write
ret                            ;   Return to the caller

Writeln                  ENDP
 
The Writeln procedure displays a string on your screen, and then returns the cursor to the 
left margin of the following screen line. This procedure is actually two distinct activities, 
and Writeln very economically uses a mechanism that already exists: the Write 
procedure. The first thing that Writeln does is call Write to display the string on the 
screen. Remember that the caller loaded the address of the string to be displayed into DX 
before calling Writeln. Nothing has disturbed DX, so Writeln can immediately call 
Write, which will fetch the address from DX and display the string on the screen.
Returning the cursor is done by displaying the newline sequence, which is stored in a 
string named CRLF. Writeln again uses Write to display CRLF. Once that is done, the 
work is finished, and Writeln executes a RET instruction to return execution to the caller.
Calling procedures from within procedures requires you to pay attention to one thing: 
stack space. Remember that each procedure call pushes a return address onto the stack. 
This return address is not removed from the stack until the RET instruction for that 
procedure executes. If you execute another CALL instruction before returning from a 
procedure, the second CALL instruction pushes another return address onto the stack. If 
you keep calling procedures from within procedures, one return address will pile up on 
the stack for each CALL until you start returning from all those nested procedures.
If you run out of stack space, your program will crash and return to DOS, possibly taking 
DOS and the machine with it. This is why you should take care to allocate considerably 
more stack space than you think you might ever conceivably need. EAT2.ASM at most 
uses four bytes of stack space, because it nests procedure calls two deep—Writeln within 
itself calls Write. Nonetheless, I allocated 512 bytes of stack to get you in the habit of not 
being stingy with stack space. Obviously you won't always be able to keep a 128-to-l ratio 
of "need to have," but consider 512 bytes a minimum for stack space allocation. If you 
need more, allocate it. Don't forget that there is only one stack in the system, and while 
your program is running, DOS and the BIOS and any active TSRs may well be using the 
same stack. If they fill it, you'll go down with the system—so leave room!
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When to Make Something a Procedure
 
The single most important purpose of procedures is to manage complexity in your 
programs by replacing a sequence of machine instructions with a descriptive name. 
While this might seem to be overkill in the case of the Write procedure, which contains 
only two instructions apart from the structurally-necessary RET instruction.
True. But—the Writeln procedure hides two separate calls to Write behind itself: one to 
display the string, and another to return the cursor to the left margin of the next line.
If you look back to EAT.ASM, you'll see that it took six instructions to display both the 
slogan string and the newline string. What took six instructions now takes two, thanks to 
Writeln. Furthermore, the name Writeln is more readable and descriptive of what the 
sequence of six instructions do than the sequence of six instructions themselves.
Extremely simple procedures like Write don't themselves hide a great deal of complexity. 
They do give certain actions descriptive names, which is valuable in itself. They also 
provide basic building blocks for the creation of larger and more powerful procedures, as 
we'll see later on.
In general, when looking for some action to turn into a procedure, see what actions tend 
to happen a lot in a program. Most programs spend a lot of time displaying things on the 
screen. Procedures like Write and Writeln become general-purpose tools that may be 
used all over your programs. Furthermore, once you've written and tested them, they may 
be reused in future programs as well.
 Try to look ahead to your future programming tasks and create procedures of general 
usefulness. (Tool-building is a very good way to hone your assembly language skills.) I'll 
be showing you more of this type of procedure by way of examples as we continue.
On the other hand, a short sequence (five to ten instructions) that is only called once or 
perhaps twice within a middling program (i.e., over hundreds of machine instructions) is a 
poor candidate for a procedure.
You may find it useful to define large procedures that are called only once when your 
program becomes big enough to require breaking it down into functional chunks. A 
thousand-line assembly-language program might split well into a sequence of nine or ten 
largish procedures. Each is only called once from the main program, but this allows your 
main program to be very indicative of what the program is doing:
 
Start:    call   Initialize
call  OpenFile 
Input:    call   GetRec
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call   VerifyRec
call  WriteRec
loop  Input
call   CloseFile
call   Cleanup
call   ReturnToDOS
 
This is clean and readable, and provides a necessary "view from a height" when you 
begin to approach a thousand-line assembly-language program. Remember that the 
Martians are always hiding somewhere close by, anxious to turn your program into 
unreadable hieroglyphics.
There's no weapon against them with half the power of procedures.
 
8.3 Using BIOS Services
 
In the last chapter we looked closely at DOS services, which are accessed through the 
DOS services dispatcher. The DOS dispatcher lives at the other end of software interrupt 
21H, and offers a tremendous list of services at the disposal of your programs. There's 
another provider of services in your machine that lives even deeper than DOS: the ROM 
BIOS. ROM (Read-Only Memory), indicates memory chips whose contents are burned 
into their silicon and do not vanish when power is turned off. BIOS (Basic Input/Output 
System) is a collection of fundamental routines for dealing with your computers input and 
output peripherals. These peripherals include disk drives, displays, printers, and the like. 
DOS uses BIOS services as part of some of the services that it provides.
 
Like DOS, BIOS services are accessed through software interrupts. Unlike DOS, which 
channels nearly all requests for its services through the single interrupt 21H, BIOS uses 
numerous interrupts (about 10) and groups similar categories of services beneath the 
control of different interrupts. For example, video display services are accessed through 
interrupt 10H, keyboard services are accessed through interrupt 16H, printer services are 
accessed through interrupt 17H, and so on.
The overall method for using BIOS services, however, is very similar to that of DOS. 
You load a service number and sometimes other initial values into the registers and then 
execute an INT <n> instruction, where the n depends on the category of services you're 
requesting.
Nothing difficult about that at all. Let's start building some tools.
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Positioning the Hardware Cursor
 
So far, in writing to the screen, we've simply let the text fall where it may. In general, this 
means one line of text following another, and when the screen fills DOS scrolls the screen 
upward to make room on the bottom line for more text. This makes for dull programs, 
very similar to programming in the bad old days when everything was done on clunky 
mechanical printers called Teletypes. (Indeed, this kind of screen I/O is called glass 
teletype I/O, due to its similarity to a printer scrolling paper up one line at a time.)
Let's leave the glass teletypes behind, and take control of the cursor. BIOS service 10H 
(often nicknamed VIDEO, in uppercase, for reasons that are obscure) offers a simple 
service to position the hardware cursor on the text screen. The service number is loaded 
into AH, a common thread through all BIOS services. The value 0 must be placed in BH 
unless you intend to tinker with multiple display pages. That's a story for another time; 
while you're learning, assume BH should be set to 0 for cursor positioning.
The new position of the cursor must be loaded into the two halves of the DX register. 
Cursor positions are given as XY coordinate pairs. The X component of the cursor 
position is the number of character columns to the right of the left margin where you want 
the cursor to be positioned. The Y component is the number of lines down from the top of 
the screen where you want the cursor to be positioned. The X component is loaded into 
DL, and the Y component is loaded into DH. The routine itself is nothing more than this:
 
GotoXY                   PROC

mov AH ,02H                   ;   Select VIDEO service 2: Position cursor
mov BH ,0                       :   Stay with display page 0
int 10H                           ;   Call VIDEO
ret                                    :   Return to the caller 

GotoXY       ENDP
 

 Don't forget that the X and Y value must be loaded into DX by the caller. Using GotoXY 
is done this way:
 
mov DL,35       ; Pass 35 as X coordinate 
mov DH,9        ; Pass 9 as Y coordinate call 
GotoXY          ; Position the cursor
 
EAT3.ASM uses GotoXY to position the cursor, but it does something else as well: it 
clears the display. If you're going to be moving the cursor at will around the screen with 
GotoXY, it makes sense to start with a completely clear screen so the remains of earlier 
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programs and DOS commands don't clutter up the view.
There's another VIDEO service that can do the job. VIDEO Service 6 is an interesting 
and powerful one: not only does it clear the screen, it can scroll the screen as well, by any 
specified number of lines. Furthermore, it can clear or scroll the entire screen, or only a 
rectangular portion of the screen, leaving the rest of the screen undisturbed.
If scrolling is unfamiliar to you, just press Enter repeatedly at the DOS prompt and watch 
what happens when you reach the bottom line of the screen. The displayed text on the 
screen jumps up by one line, and an empty line appears at the bottom of the screen. The 
DOS prompt is then redisplayed in the empty line. Scrolling is the process of making the 
screen jump up by one or more lines, and inserting one or more blank lines at the bottom 
as appropriate.
 
Using VIDEO Service 6
Understanding VIDEO service 6 involves learning a fair number of values that need to be 
passed to the service in registers. The one unchanging item is the service number itself, 
passed as 6 in register AH (as with all BIOS services).
Service 6 acts upon a rectangular region of the display. This may be the full screen, or it 
may be only part of the screen. You must pass the coordinates of the upper-left and lower-
right corners of the region in registers CX and DX. Because screen coordinates are 
always smaller than 255 (which is the largest value that can be expressed in 8 bits) the 
register halves of CX and DX are used independently to carry the X and Y values.
The upper-left corner's X coordinate is passed in CL, and the upper-left corner's Y 
coordinate is passed in CH. These are 0-based coordinates, meaning that they count from 
0 rather than 1. Confusion is possible here, because most high-level languages like Turbo 
Pascal number coordinates on the screen from 1. In other words, the upper-left corner of 
the screen in Turbo Pascal is given by the coordinates 1,1. To the BIOS, however, that 
same corner of the screen is 0,0. The width and height of a typical screen to Turbo Pascal 
would be 80 x 25; the BIOS would use 79 x 24.
 
Similarly, the lower-right corner's X coordinate is passed in DL, and the lower-right 
corner's Y coordinate is passed in DH. (Again, counting from 0.)
Service 6 either scrolls or clears the region. It can scroll the screen upward by any 
arbitrary number of lines. This number is passed to service 6 in register AL. Clearing the 
region is a special case of scrolling it: when you specify that zero lines be scrolled, the 
entire region is cleared. The full screen is actually a special case of a rectangular region. 
By passing the coordinates of the upper-left and lower-right corners of the screen (0,0 and 
79,24) the full screen is cleared.
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Procedures with Multiple Entry Points
 
This is a lot of versatility for one service to handle, and it brings up a couple of questions. 
First of all, how versatile should a single procedure be? Should there be one procedure to 
clear the whole screen, another procedure to clear part of a screen, and a third procedure 
to scroll part of the screen?
The answer is that one procedure can do all three, and not duplicate any code at all. The 
method involves writing a single procedure that has four different entry points. Each entry 
point is a label that is called with a CALL instruction. When a given entry point's label is 
called, execution begins at the instruction specified by that label. There is only one RET 
instruction, so the procedure is in fact one procedure. It's like a house with three front 
doors but only one back door; having three front doors does not make it three separate 
houses.
Here's what such a creature might look like:
 
ClrScr              PROC

mov CX,0    ; Upper-left corner of full screen
            mov DX.LRXY  ; Load lower-right XY coordinates into DX
ClrWin:     mov AL,0     ; 0 specifies clear entire region
ScrlWin:    mov BH,07H   ; Specify "normal" attribute for blanked 
line(s)
VIDEO6:     mov AH,06H   ; Select VIDEO service 6: Initialize/Scroll

int 10H     ; Call VIDEO
ret         ; Return to the caller
   

ClrScr       ENDP
 
 
There's nothing much to this. What we have here is a collection of MOV instructions 
setting up values in registers before calling VIDEO through interrupt 10H. Note that all 
of the entry points, except the one (ClrScr) doing double duty as the procedure name, 
must be given with colons. The colon, as I pointed out earlier, is necessary after any label 
used to mark an address within a code segment.
The multiple entry points exist only to allow you to skip certain portions of the procedure 
that set up values that you don't want set. All the registers used by service 6 must be set 
up somewhere. However, they can either be set within the procedure or in the caller's 
code just before the procedure is called. If the procedure sets them, the # registers have to 
be set to some generally useful configuration (say, clearing the entire screen); if the caller 
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sets them, the registers can be set to serve the caller's needs, making service 6 perform 
any of its varied combinations.
So it is with the ClrScr procedure. If you enter ClrScr through its main or top entry 
point, all of its internal code will be executed: CX and DX will be set to the upper-left 
and lower-right corner coordinates of the full screen; AL will be set to 0 to clear the full 
screen rather than scroll it, and BH will be loaded with the "normal," (blank, for white 
text on a black background) text display attribute. Then service 6 is called.
If you wish to clear only a rectangular area of the screen (a window), you would use the 
ClrWin entry point. This entry point starts executing the code after CX and DX are set to 
the corners of the full screen. This means that the caller must load CX and DX with the 
upper-left and lower-right corners of the screen region to be cleared. Calling ClrWin 
without setting CX and DX at all will execute service 6 with whatever leftover garbage 
values happen to be in CX and DX. Something will happen, for certain. Whether it's what 
you want to happen or not is far less certain.
Keeping in mind that for proper operation, all of service 6's required registers must be set, 
calling ClrWin would be done this way:
 
mov CX,0422H ; Set upper-left corner to X=22H; Y=04H 
mov DX,093AH ; Set lower-right corner to X=3AH; Y=09H 
call ClrWin ; Call the window-clear procedure
 
The two MOV instructions are worth a closer look. Rather than use a separate instruction 
to load each half of DX and CX, the two halves are loaded together by loading a 16-bit 
immediate data value into the full 16-bit register. Thus two MOV instructions can do the 
work that a first glance might think would take four MOV instructions. This is a good 
example of writing tight, efficient assembler code. The trick is to document it (as I've 
done above) to make sure you understand six weeks from now what the magic number 
093AH means!
The first instruction at the label ClrWin sets AL to 0, indicating that the region is to be 
cleared, not scrolled. If in fact you do want to scroll the region, you need to skip the 
MOV instruction that loads 0 into AL. This is the purpose of the entry point labeled 
ScrlWin: it gets you into the procedure below the point where you select clearing over 
scrolling. This means that you not only have to set the corners of the region to be scrolled, 
but also the number of lines to scroll as well.
 
mov     CX , 0422H     ;   Set  upper-left  corner  to    X-22H;   Y-04H
mov     DX , 093AH     ;   Set  lower-right  corner to X-3AH;   Y-09H
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mov    AL , l                ;   Set to scroll   by one  line
call   ScrlWin              ;  Call   the window-scroll   procedure
 
As you can see, more and more of the work is being done by caller and less and less 
within the procedure. How you arrange the entry points to the procedure depends on what 
operations get done most frequently. In my programs, I tend to clear the whole screen a 
lot, clear windows less frequently, and scroll windows less frequently still, and this is 
what I had in mind while arranging the code within ClrScr.
Note that there is no entry point to scroll the full screen. To scroll the full screen, you 
need to load the coordinates of the corners of the full screen into CX and DX, and then 
call ClrWin as though you were clearing just a portion of the screen. If you do a lot of 
screen-scrolling, you might define a separate routine for scrolling the full screen. As an 
interesting exercise, write such a routine and a program to test it.
As one more entry point, I included a label VIDEO6. This label short-circuits all of the 
register setups apart from loading the service number into AH. This allows you to do 
something odd and infrequently, like scrolling the entire screen by three lines
.
Memory Data or Immediate Data?
 
You may have been wondering what the variable identifier LRXY is for and where it is 
defined. LRXY is simply used to hold the current X,Y coordinates for the lower-right 
corner of the screen. Where LRXY is defined is in the program's data segment, in the 
usual way variables are defined, as you'll see if you look ahead to the full listing of 
EAT3.ASM.
The more interesting question is why. Most of the time I've been showing you values 
loaded into registers from immediate data, which is often useful. The coordinates of the 
upper-left corner of the full screen, for example, are always going to be 0,0, and nothing 
will change that. The lower-right corner, however, is not necessarily always 79,24.
The original 1981-vintage IBM MDA and CGA graphics adapters are indeed capable of 
displaying only an 80 by 25 text screen and no more. However, with an EGA it is 
possible to have an 80 by either 25 or 43 text screen, and the VGA, introduced in 1987 
with the PS/2 line, can display 25, 43, or 50 line screens, all 80 characters wide. The 
newer super VGA video boards are capable even more different text modes, some of them 
with more than 80 characters in a visible line. If your program can determine what size 
screen is in force when it is invoked, it can modify its displays accordingly.
Avoid dropping immediate values into code (we call this hard-coding) whenever you 
can. A better strategy, which I'll be following from now on, uses variables in the data 
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segment initialized with currently correct values when the program begins running.
 
Use Comment Headers!
 
As time goes on, you'll find yourself creating dozens or even hundreds of procedures as a 
means of not reinventing the same old wheel. The libraries of available procedures that 
most high-level language vendors supply with their compilers just don't exist with 
assembly language. By and large, you create your own.
Keeping such a list of routines straight is no easy task, when you've written them all 
yourself. You must document the essential facts about each individual procedure or you'll 
forget them, or, worse yet, remember them incorrectly and act on bad information. (The 
resultant bugs are often very hard to find, because you're sure you remember everything 
there is to know about that proc! After all, you wrote it!)
I recommend adding a comment header to every procedure you write, no matter how 
simple. Such a header should contain the following information:
• The name of the procedure
• The date it was last modified
• What it does
• What data items the caller must pass it to make it work correctly
• What data is returned by the procedure, if any, and where it is returned. (For 
example, in register CX.)
• What other procedures, if any, are called by the procedure
• Any "gotchas" that need to be kept in mind while writing code that uses the 
procedure
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;DX: The offset of the string to be displayed 
;     String must be terminated by "$"
;Action: Displays the string at DS:DX up to the "$"
;     marker, then issues a newline. Hardware cursor 
;     will move to the left margin of the following 
;     line.  If the display is to the bottom screen line, 
;     the screen will scroll.
;Calls: Write
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A comment header does not relieve you of the responsibility of commenting the 
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individual lines of code within the procedure. It's a good idea to put a short comment to 
the right of every line that contains a machine instruction mnemonic, and also (in longer 
procedures) a comment block describing every major functional block within the 
procedure.
Examine EAT3.ASM, and notice the various commenting conventions. For a very short 
program such as this, such elaborate internal documentation might seem overkill. Once 
your programs get serious, however, you'll be very glad you expended the effort.
 
8.4 Building External Libraries of Procedures
 
You'll notice that the EAT3.ASM program, listed at the end of the previous section 
devoted most of its bulk to procedures. This is as it should be. Notice, however, that the 
procedures EAT3.ASM uses are the kind you're likely to use in any and all of your 
assembly-language programs. When this is the case, break the utility procedures out into 
an external library that you can assemble only once, and then link into every program that 
uses its procedures without assembling the library every time you assemble the program. 
This is called modular programming, and it is an extremely effective tool for 
programming efficiently in any language, assembly language not excluded. (Keeping 
cursor movement and screen-clearing routines in source-code form in every single 
program you write is a waste of space, and can clutter up the program in a way that makes 
it less easy to understand.)
I described this process briefly back in Chapter 3, and showed it pictorially in Figures 3.4 
and 3.5. A program might consist of three or four separate .ASM files, each of which is 
assembled separately to a separate .OBJ file. To produce the final executable .EXE file, 
the linker weaves all of the .OBJ files together, resolving all of the references from one to 
the other, finally creating an .EXE file.
Each .ASM file is considered a module, and each module contains one or more 
procedures and possibly some data definitions. When all the declarations are done 
correctly, all of the modules may freely call one another, and any procedure may refer to 
any data definition.
The trick, of course, is to get all the declarations right.
 
Public and External Declarations
 
If you reference a label in your program (by, say, including a CALL instruction to that 
label) without defining that label anywhere in the program, the assembler will gleefully 
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give you an error message. (You've probably already experienced this if you've begun 
writing your own programs in assembler.) In modular programming, you're frequently 
going to be calling procedures that don't exist anywhere in your program. How to get past 
the assembler's watchdogs?
The answer is to declare a procedure external. This works very much like it sounds: the 
assembler is told that a given label will have to be found outside the program somewhere, 
in another module. Once told that, that assembler is happy to give you a pass on an 
undefined label. You've promised the assembler you'll provide it later, and the assembler 
accepts your promise and keeps going without flagging the undefined label.
The promise looks like this:
 
EXTRN ClrScr   :   PROC
 
Here, you've told the assembler that the label ClrScr represents a procedure, and that it 
will be found somewhere external to the current module. That's all the assembler needs to 
know to withhold its error message.
And having done that, the assembler's part is finished. It leaves in place an empty socket 
in your program where the external procedure can later be plugged in. I sometimes think 
of it as an eyelet where the external procedure will later hook in.
 
Over in the other module where procedure ClrScr exists, you not only have to define the 
procedure, you must give the eyelet a hook. That is, you have to warn the assembler that 
ClrScr will be referenced from outside the module. The assembler needs to forge the 
hook that will hook into the eyelet. You forge the hook by declaring the procedure 
public, meaning that other modules may freely reference the procedure. Declaring a 
procedure public is simplicity itself:
PUBLIC ClrScr
 
That done, who actually connects the hook and the eyelet? The linker does that during the 
link operation. After all, why call it a linker if it doesn't link anything? At link time, the 
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linker takes 
 
the two .OBJ files generated by the assembler, one from your program and the other from 
the module containing ClrScr, and combines them into a single .EXE file. When the 
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.EXE file is loaded and run, the program can call ClrScr as cleanly and quickly as though 
both had been declared in the same source-code file.
This process is summarized in Figure 8.2.
What works for procedures works for data as well, and it can work in either direction. 
Your program can declare a variable as public with the PUBLIC directive, and that 
variable can then be used by any module in which the same variable name is declared as 
external with the EXTRN directive.
We sometimes say that a program or module containing procedures or variables declared 
as public exports those items. Also, we say that a program or module that uses procedures 
or variables that are external to it imports those items.
 
The Mechanics of Publics and Externals
 
I've described the source-code mechanics of assembly-language programs in detail in the 
last few chapters. EAT1.ASM, EAT2.ASM, and EAT3.ASM are good examples. 
External modules are similar to programs. There are two major differences, concerning 
things that external modules lack:
• External modules have no main program and hence no start address.
That is, no label is given after the END directive that concludes the source-code file. 
External modules are not intended to be run by themselves, so a start address is both 
unnecessary and (if  one were added) a temptation to chaos.  
• External modules have no stack segment. This is not an absolute requirement (there 
are few such requirements in assembler work), but for simple assembly-language 
programming it's true enough. Your stack segment should be defined in your main 
program module. External modules should have none—they use the one defined by the 
programs that call them.
External modules can have a data segment. If the external module is to define a variable 
that is to be shared by the main program or by other externals, it obviously must have a 
data segment for that variable to reside in. But less obviously, if the external is to share a 
variable with another 
external or with the main program, it must still define a data segment, even if that data 
segment is empty except for the external declaration.
This is easier to demonstrate than to explain. Take a look at the following external 
module, which is a library containing all of the simple display control procedures 
introduced in EAT3.ASM.
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VIDLIB.ASM has both a code segment and a data segment. Note well that both segments 
are declared with the PUBLIC keyword. A common mistake made by beginners is to 
declare the procedures and variables public, but not the segments that they reside in. Non 
obvious it may be, but essential nonetheless: make your module segments public if they 
contain any public declarations!
The code segment contains all the procedures. The data segment, on the other hand, 
contains only the following statement:
 
EXTRN CRLF:BYTE,LRXY:WORD

 
VIDLIB.ASM declares no variables of its own. Instead, it uses two variables declared 
within the main program module EAT4.ASM. (EAT4.ASM is identical to EAT3.ASM, 
save that it has had its procedures removed and declared as external, and two of its 
variables declared public. The program's function is exactly the same as that of 
EAT3.ASM.)
 
The EXTRN statement above indicates that two variables referenced within the module 
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are to be imported from somewhere. You don't have to specify from where. The names of 
the variables and their types have to be there. The linker and assembler are not case 
sensitive.
The directives following the colons in the EXTRN statement are type specifiers. The 
assembler builds hooks into the .OBJ it creates from the external module's source file. 
These hooks will then mate with the appropriate hooks in the .OBJ file that exports the 
imported variables. To get the hooks right, however, the assembler needs to know what 
kind of item is being imported. The name of the variable is just a label and gives no 
information about the type or size of data being imported. The type specifier must match 
the definition of the variable being imported. Table 8.1 summarizes what commonly used 
type specifiers correspond to what data declaration directives.
The most important piece of information contained in the type specifier is the size of the 
item being imported. Machine instructions assemble to different binary opcodes 
depending on the size of their memory data operands. An opcode that acts on byte-sized 
data in memory will be different from an opcode that acts on word-sized data. To get the 
hooks right, then, the assembler has to know the size of the imported item at assembly 
time.
 
 
Table 8.1. Type specifiers for external declarations
Specifier             Use with directive           Specifies
PROC                    PROC                                 Procedure
BYTE                    DB                                      Byte or string
WORD                  DW                                     Word-sized data
DWORD               DD                                      Double word-sized data
 
Dividing a Segment Across Module Boundaries
 
Note that the names of the code segment and data segment in the external module are the 
same as the names of the code segment and data segment in the main program module. 
The data segment is MyData in both, and the code segment is MyCode in both. This is 
not an absolute requirement, but it simplifies things greatly and is a good way to set 
things up while you're just learning your way around in assembly language. Regardless of 
the number of external modules that link with your main program, the program as a whole 
contains only one code segment and one data segment. Until your data requirements and 
code size get very large, you won't need more than a single code and data segment.
As long as the code and data segments are declared with the PUBLIC directive in all the 

file:///E|/TEMP/Chapter%208%20Dividing%20and%20Conquering.htm (31 of 50) [9/30/02 08:35:49 PM]



file:///E|/TEMP/Chapter%208%20Dividing%20and%20Conquering.htm

modules sharing the segments, the linker will consider all to be part of the same code and 
data segments.
It is also necessary to have an ASSUME statement in every module sharing segments in 
this fashion. Furthermore, it should be the same ASSUME statement as the one in the 
main program, with CS associated with your single code segment and DS associated with 
your single data segment:
 
ASSUME CS:MyCode,DS:MyData
 
This ensures that the assembler does not get confused as it puts together references to the 
two segments in the .OBJ files it builds.
 
Your Main Program Module
 
Below is our backhanded advertising program, which has been modified for use with an 
external display control module:
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 This is easy to forget but you must keep it in mind: the segments containing imported or 
exported items as well as the imported or exported items themselves must be declared as 
public.
Take note of the declaration of two of the variables in the data segment declared as 
public:
 
PUBLIC LRXY,CRLF
 
The PUBLIC directive allows external modules to use these two variables. The other 
variables declared in the main program, Eatl, Eat2. and TextPos, are not declared as 
public and are inaccessible from external modules. We would say that those three 
variables are private to the main program module EAT4.ASM.
EAT4.ASM contains no procedure declarations of its own. All the procedures it uses are 
imported from VIDLIB.ASM, and all are therefore declared as external in the code 
segment, using this statement:
 
EXTRN GotoXY:PROC.Write:PROC.Writeln:PROC,ClrScr:PROC
 
Something to keep in mind is that while VIDLIB.ASM exports seven procedures (seven 
labels, actually, since four are entry points to the ClrScr procedure) EAT4.ASM only 
imports four. The ClrWin, ScrlWin, and VIDEO6 entry points to procedure ClrScr are 
declared as public in VIDLIB.ASM, but they are not declared as external in EAT4.ASM. 
EAT4.ASM only uses the four it imports. The other three are available, but the 
EAT4.ASM does not call them and therefore does not bother declaring them as external. 
If you were to expand EAT4.ASM to use one of the three other entry points to ClrScr, 
you would have to add the entry point to the EXTRN list.
Once all the external and public declaration are in place, your machine instructions may 
reference procedures and variables across module boundaries as though they were all 
within the same large program. No special qualifiers have to be added to the instructions. 
This CALL ClrScr instruction is written the same way, whether ClrScr is declared in the 
main program module or in an external module like VIDLIB.ASM.
 
Linking Multiple Modules
 
The linker hasn't had to do much linking so far. Once you have multiple modules, 
however, the linker begins to earn its keep. To link multiple modules, you must specify 
the name of the .OBJ file for each module on the linker command line.
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Up until now, the linker command line contained only the name of the main program 
module:
TLINK EAT3
 
Now you must add the names of all external modules to the linker command line:
 
TLINK EAT4 VIDLIB
 
If you're using JED, display the Commands screen by pressing F4 and edit the linker 
command line. For example, to use TASM to link EAT4.OBJ and VIDLIB.OBJ, the 
linker command line would be the following:
TLINK ~ VIDLIB
Remember that the tilde character (~) stands for the currently loaded file in JED. Pretty 
obviously, if you forget to name an external module on the linker command line, the 
linker will not be able to resolve the external references involving the missing .OBJ file, 
and you will get linker error messages like this one, one for each unresolved external 
reference:
 
• Undefined symbol   'CLRSCR'   in module EAT4.ASM
 
External Module Summary
 
Here are some points to keep in mind when you're faced with splitting a single 
program up into a main program and one or more external modules:
• Declare the code segments public in all modules, and give them all the same 
name.
• Declare the data segments public in all modules, and give them all the same 
name.
• Declare all exported procedures, entry points, and variables as Public. Place the 
PUBLIC directive inside the segment where the exported items are declared.
• Declare all imported procedures, entry points, and variables as external. Put 
the external directive inside the segment where the imported items are to be used. 
Data is used in the data segment, code in the code segment.
• Make sure that there is a common ASSUME statement in the code segment of 
every module associating the CS register with the shared code segment and the 
DS register with the shared data segment.
• Finally, don't forget to add the names of all external modules to the linker 
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command line in the link step.
If this still seems fuzzy to you, follow VIDLIB.ASM and EAT4.ASM as a model. You 
will certainly find it useful to beef up VIDLIB.ASM by adding more screen control 
procedures.
 
8.5 Creating and Using Macros
 
Procedures are the easiest way to split an assembly-language program into more 
manageable chunks. The mechanism for calling and returning from procedures is built 
right into the CPU, and is independent of any given assembler product.
Today's two major assemblers (Microsoft's MASM and Borland's TASM) provide 
another complexity-management tool that works a little differently: macros. They're 
hardly a minor feature; their name is built right into Microsoft's product, which after all is 
the Microsoft Macro Assembler.
Macros are a different breed of cat entirely. Whereas procedures are implemented by the 
use of CALL and RET instructions built right into the instruction set, macros are a trick 
of the assembler, and do not depend on any particular instruction or group of instructions.
Most simply put, a macro is a label that stands for some sequence of text lines. This 
sequence of text lines can be (but does not have to be) a sequence of instructions. When 
the assembler encounters the macro label in a source code file, it replaces the macro label 
with the text lines that the macro label represents. This is called expanding the macro, 
because the name of the macro (occupying one text line) is replaced by several lines of 
text, which are then assembled just as though they had appeared in the source-code file all 
along.
Macros bear some resemblance to Include files in high-level languages like Pascal. In 
Turbo Pascal, an include command might look like this:
{$1 ENGINE.DEF}
 
When this include command is encountered, the compiler goes out to disk and finds the 
file named ENGINE.DEF. It then opens the file and starts "feeding" the text contained in 
that file into the source-code file at the point where the include command was placed. The 
compiler then processes those lines as though they had always been in the source-code 
file.
You might think of a macro as an include file that's built right into the source-code file. 
It's a sequence of text lines that is defined once and given a name. The Macro can then be 
dropped into the source code again and again by simply using the name.
This process is shown in Figure 8.3. The source code stored on disk contains a macro 
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definition, bracketed between MACRO and ENDM directives. Later in the file, the 
name of the macro, 
ClrScr, appears several times. When the assembler processes this file, it copies the macro 
definition into a buffer somewhere in memory. As it assembles the text read from disk, 
the assembler "drops" the statements contained in the macro into the text wherever the 
macro name appears. The disk file is not affected; the expansion of the macros occurs 
only in memory.
 
Macros vs. Procedures: Pro and Con
 
There are advantages to using macros rather than procedures. One of them is speed. It 
takes time4 to execute the CALL and RET instructions that control entry to and exit 
from a procedure. In a macro, neither instruction is used. Only the instructions that 
perform the actual work of the macro are executed, so the macro's work is performed as 
quickly as possible.
There is a cost to this speed, and the cost is in extra memory used, especially if the macro 
is invoked a number of times. Notice in Figure 8.3 that
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three invocations of the macro generate a total of twelve instructions in memory. If the 
macro had been set up as a procedure, only the four instructions in the body of the 
procedure, plus one RET instructions and three CALL instructions would be required to 
do the same work. This would give you a total of eight instructions for the procedure and 
twelve for the macro. Each additional time the macro was invoked, the difference would 
grow.
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Every time a macro is invoked, all of its instructions are duplicated in the program again.
 
In short programs, this may not be a problem, and in situations where the code must be as 
fast as possible—as in graphics drivers—macros have a lot going for them.
By and large, think macros for speed and procedures for compactness.
 
The Mechanics of Macro Definition
 
A macro definition looks a lot like a procedure definition, with a slightly different pair of 
directives: MACRO and ENDM. One other crucial difference is that the name of the 
macro cannot be repeated in front of the ENDM directive. I'm not sure why this must be 
so, but it confuses the assembler to no end.
Don't put a RET instruction at the end of the macro! Executing a RET without a previous 
CALL will corrupt your stack and probably crash your program.
One important shortcoming of macros vis-a-vis procedures is that macros can have only 
one entry point. The ClrScr procedure described in the last section cannot be converted 
into a macro without splitting it up into four separate invocations of VIDEO interrupt 
10H. If the ClrScr function (clearing the full screen to blanks for the normal video 
attribute) alone were written as a macro, it would look like this:
 
ClrScr        MACRO

mov CX,0            ; Upper left corner of full screen
mov DX,LRXY          ;Load lower-right XY coordinates into DX
mov AL.O             ;0 specifies clear entire region
mov BH,07H           ;Specify "normal" attribute for blanked line(s)
mov AH,06H           ; Select VIDEO service 6: Initialize/Scroll
int 10H              ;Call VIDEO

ENDM
 
You can see that ClrScr has shed its RET instruction and its additional entry points, but 
apart from that it's exactly the same sequence of instructions.
 
Functionally it works the same way, except that every time you clear your screen, 
ClrScr's six instructions are dropped into the source code.
Macros are invoked simply by naming them. Don't use the CALL instruction! Just place 
the macro name on a line:
ClrScr
The assembler will handle the rest.
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Defining Macros with Parameters
 
So far, macros may seem useful but perhaps not especially compelling. What makes 
macros really sing is their ability to mimic high-level language subroutines and accept 
arguments through parameters. For example, if you were to define a macro named 
GotoXY to position the hardware cursor, you could pass it the X and Y values as 
arguments:
 
GotoXY  17,3             ;  Move the cursor to the Name field
 
You'd have to pinch yourself to be sure you weren't working in BASIC, no?
Macro parameters are, again, artifacts of the assembler. They are not pushed on the stack 
or set into COMMON or anything like that. The parameters are simply placeholders for 
the actual values (called arguments) that you pass to the macro.
I've converted the GotoXY procedure to a macro to show you how this works. Here's the 
macro:
 
GotoXY      MACRO NewX,NewY

mov DH.NewY               ;   The NewY parameter loads into DH
mov DL.NewX               ;   The NewX parameter loads into DL
mov AH,02H                 ;   Select VIDEO service 2: Position Cursor
mov BH,O                      ;   Stay with display page 0
int 10H                        ;   Call VIDEO
ENDM

 
The two parameters are NewX and NewY. Parameters are a kind of label, and they may 
be referenced anywhere within the macro. Here, the parameters are referenced as 
operands to a couple of MOV instructions. The arguments passed to the macro in NewX 
and NewY are thus loaded into DL and DH.
Don't confuse the arguments (actual values) with the parameters. If you understand 
Pascal, it's exactly like the difference between formal parameters and actual parameters. A 
macro's parameters correspond to Pascal's formal parameters, whereas a macro's 
arguments correspond to Pascal's actual parameters. The macro's parameters are the 
labels following the MACRO directive where the macro is defined. The arguments are the 
values specified on the line where the macro is invoked.
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The Mechanics of Macro Parameters
 
A macro may have as many parameters as will fit on one line. This is a rather arbitrary 
restriction, leaving you no recourse but to use short parameters names if you need lots of 
parameters for a single macro.
Arguments are dropped into parameters in order, from left to right. If you pass only two 
arguments to a macro with three parameters, you're likely to get an error message from 
the assembler, depending on how you've referenced the unfilled parameter. The assembler 
builds opcodes based on the types of operands passed as arguments; if you don't pass an 
argument for a given parameter, any instructions that reference that parameter won't be 
constructable by the assembler, hence the errors.
If you pass more arguments to a macro than there are parameters to receive the 
arguments, the extraneous arguments will be ignored.
 
Local Labels within Macros
 
I haven't really gone into labels and branches yet, but there's an important problem with 
labels used inside macros. Labels in assembly-language programs must be unique, and yet 
a macro is essentially duplicated in the source code as many times as it is invoked. This 
means there will be error messages flagging duplicate labels...unless you declare a 
macro's labels as local.
Local labels are declared with the LOCAL directive. Here's an example; don't worry if 
you don't fully understand all of the instructions it uses:
 
UpCase    MACRO Target,Length        ;Target is a string: Length its length
                LOCAL Tester,Bump    
                mov CX,Length                    ; CX is acting as length counter for loop        
                lea BX,Target                      ; String will be at DS:BX
Tester: cmp BYTE PTR [BX],'a'             ; Is string character below 'a'l 
   jb Bump                                ; If so, leave character alone
   cmp BYTE PTR [BX],'z'          ; Is string character above 'z'?
   ja Bump                                ; If so, leave character alone
   and BYTE PTR [BX],llOlllllb   ; Char is 1c alpha,

; so force bit 5 to 0
Bump:       inc BX                                 ; Bump BX to point to next char in string

   loop Tester                   :  And go back and do it 
again!

   ENDM
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The important thing to understand is that unless the labels Tester and Bump are declared 
local to the macro, there will be multiple instances of a label in the program and the 
assembler will generate a duplicate label error.
The only thing to remember about declaring local labels within macros is that the 
LOCAL directive must immediately follow the macro header. Don't put anything—not 
even a comment line—between the two.
 
Macro Libraries
 
Just as procedures can be gathered in libraries external to your program, so can macros be 
gathered into macro libraries. A macro library is really nothing but a text file that 
contains the source code for the macros in the library. Unlike a procedures module, macro 
libraries are not separately assembled. Macro libraries must be passed through the 
assembler each time the program is assembled. This is a problem with macros in general, 
not only with macros that are gathered into libraries. Programs that manage complexity 
by dividing code up into macros will assemble more slowly than programs that have been 
divided up into separately assembled modules.
Macro libraries are used by including them into your program's source-code file. The 
means to do this is the INCLUDE directive. The INCLUDE directive precedes the name 
of the macro library:
 
INCLUDE MYLIB.MAC
 
This statement may be anywhere in your source-code file, but you must keep in mind that 
all macros must be fully defined before they are invoked. For this reason, it's a good idea 
to use the INCLUDE directive near the top of your source-code file, before any possible 
invocation of one of the library macros could occur.
The following is a macro library containing macro versions of all the procedures we 
discussed in the previous section:
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END Start               ;  The procedure named Start becomes the main program

 
 
You'll spot something odd in EAT5.ASM: instead of using ClrScr to clear the screen as I 
have been for the last several incarnations of EAT, I've replaced ClrScr with a new 
macro called Clear. Clear (defined in VIDLIB.MAC) uses some technology I haven't 
explained yet, but will return to in Chapter 10. The lesson is that there are numerous ways 
to skin a screen, and we've moved here from having the BIOS do it for us to doing it all 
on our own. Take it on faith for now, until I come back to it. More to the point for the 
current discussion is the use of the GotoXY and Write and Writeln macros.
Additionally, if you look closely at the main program procedure in EAT5.ASM, 
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something odd may occur to you: It's starting to look like something other than an 
assembly-language program. This is true, and it's certainly possible to create so many 
macros that your programs will begin to look like some odd high-level language.
The danger there is that unless you name your macros carefully, and document them both 
in their macro-library files and on the lines where they are invoked, your programs will 
not be any more comprehensible for their presence. Dividing complexity into numerous 
compartments is only half the job— labeling the compartments is just as (or more) 
important!
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You don't take off until all your flight checks are made.

file:///E|/TEMP/Assembly%20Chap9%20Revised.htm (1 of 58) [9/30/02 09:07:57 PM]



file:///E|/TEMP/Assembly%20Chap9%20Revised.htm

That's the reason that we haven't done a lot of instruction arranging in this book up until 
now, here that we are on the third-to-last chapter. I've found that machine instructions 
aren't the most important part of assembly-language programming. What's most 
important  is understanding your machine and your tools, and how everything fits 
together. Higher-level languages like Pascal and Modula-2 hide much of those essential 
details from you. In assembler you must see to them yourself. For some reason, authors 
of previous "beginner" books on assembly language haven't caught on to this fact.
This fact (in fact) was the major motivation for my writing this book.
If you've digested everything I've said so far, however, you're ready to get in and 
understand the remainder of the 8086/8088 instruction set. I won't teach it all in this 
book, but the phrase "ready to understand" is germane. You can now find yourself a 
reference and learn what instructions I don't cover on your own. The skills you need to 
build programming skills are now yours, and if this book has accomplished that much, I'd 
say it's accomplished a lot.
So let the fun begin.
 
9.1 Bits is Bits (and Bytes is Bits)
 
Assembly language is big on bits.
Bits, after all, are what bytes are made of, and one essential assembly-language skill is 
building bytes and taking them apart again. A technique called bit mapping is widely 
used in assembly language. Bit mapping assigns special meanings to individual bits 
within a byte to save space and squeeze the last little drop of utility out of a given 
amount of memory.
There is a family of instructions in the 8086/8088 instruction set that allow you to 
manipulate the bits within the bytes by applying Boolean logical operations to the bytes 
on a bit-by-bit basis. These bitwise logical instructions are: AND, OR, XOR, and NOT. 
Another family of instructions allows you to slide bits back and forth within a single byte 
or word. The most commonly used shift/rotate instructions are: ROL, ROR, RCL, 
RCR, SHL, and SHR. (There are a few others that I will not be discussing in this book.)
 
Bit Numbering
 
Dealing with bits requires that we have a way of specifying which bits we're dealing 
with. By convention, bits in assembly language are numbered, starting from 0, at the 
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least significant bit in the byte, word, or other item we're using as a bit map. The least 
significant bit is the one with the least value in the binary number system. (Return to 
Chapter 1 and reread the material on base 2 if that seems fuzzy to you.) It's also the bit on 
the far right, if you write the value down as a binary number.
 

 
 
It works best as a visual metaphor. See Figure 9.1.
 
 When you count bits, start with the bit on the right, and number them from 0.
 
"It's the Logical Thing to Do, Jim ..."
 
Boolean logic sounds arcane and forbidding, but remarkably, it reflects the realities of 
ordinary thought and action. The Boolean operator AND, for instance, pops up in many 
of the decisions you make every day of your life. For example, to write a check that 
doesn't bounce, you must have money in your checking account AND checks in your 
checkbook. Neither alone will do the job. ("How can I be overdrawn?" goes the classic 
question, "I still have checks in my checkbook!) You can't write a check you don't have, 
and a check without money behind it will bounce. People who live out of their 
checkbooks (and they always end up ahead of me in the checkout line at Safeway) must 
use the AND operator frequently.
When mathematicians speak of Boolean logic, they manipulate abstract values called 
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true and false. The AND operator works like this. Condition l AND Condition 2 will be 
considered true if both Condition l and Condition 2 are true. If either condition is false, 
the result will be false.
There are in fact four different combinations of the two input values, so logical 
operations between two values are usually summarized in a form called a truth table. The 
truth table for the AND operator is shown in Table 9.1.
There's nothing mysterious about the truth table. It's just a summary of all possibilities of 
the AND operator as applied to two input conditions. The
 

The AND Instruction
The AND instruction embodies this concept in the 8086/8088 instruction set. The AND 
instruction performs the AND logical operation on two bytes or two words (depending 
on how you write the instruction) and replaces its first operand with the result of the 
operation. (By first, I mean the operand closest to the mnemonic.) In other words, if you 
write this instruction
 
AND AL, BL
 
the CPU will perform a gang of eight bitwise AND operations on the 8 bits in AL and 
BL. Bit 0 of AL is ANDed with bit 0 of BL, bit 1 of AL is ANDed with bit 1 of BL, and 
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so on. Each AND operation generates a result bit, and that bit is placed in the first 
operand (here, AL) after all eight AND operations occur. This is a common thread 
among machine instructions that perform some operation on two operands and produce a 
result: the result replaces the first operand.

 
Masking Out Bits
 
A major use of the AND instruction is to isolate one or more bits out of a byte value or a 
word value. The term isolate here simply means to set all unwanted bits to a reliable 0 
value. As an example, suppose we are interested in testing bits 4 and 5 of a value to see 
what those bits are. To do that, we have to be able to ignore the other bits (bits 0 through 
3 and 6 through 7) and the only way to safely ignore bits is to set them to 0.
AND is the way to go. We set up a bit mask in which the bit numbers that we want to 
inspect and test are set to 1, and the bits we wish to ignore are set to 0. To mask out all 
bits but bits 4 and 5, we must set up a mask in which bits 4 and 5 are set to 1, with all 
other bits at 0. This mask in binary is 00110000B, or 30H in hex. (To verify it, count the 
bits from the right hand end of the binary number, starting with 0.) This bit mask is then 
ANDed against the value in question. Figure 9.2 shows this operation in action, with the 
30H bit mask just described, and an initial value of 9DH.
The three binary values involved are shown laid out vertically, with the LSB (the right-
hand end) of each value at the top. You should be able to trace each AND operation and 
verify it by looking at Table 9.2.
The end result is that all bits except 4 and 5 are guaranteed to be 0 and can thus be safely 
ignored. Bits 4 and 5 could be either 0 or 1. (That's why we need to test them; we don't 
know what they are.) With the initial value of 9DH, bit 4 turns out to be a 1, and bit 5 
turns out to be a 0. If the initial value were something else, bits 4 and 5 could both be 0, 
both 1, or some combination of the two.
Don't forget: the result of the AND operation replaces the first operand after the 
operation is complete.
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For an example of the AND instruction in operation isolating bits in a word, look ahead 
to the Byte2Str procedure .
 
The OR Instruction
 
Closely related to the AND logical operation is OR, which, like the AND logical 
operation, has an embodiment with the same name in the 86-family instruction set. 
Structurally, the OR instruction works identically to AND. Only its truth table is 
different: while AND requires that both its operands be 1 for the result to be 1, OR is 
satisfied that at least one operand has a 1 value. The truth table for OR is shown in Table 
9.3.
Because it's unsuitable for isolating bits, OR is used much more rarely than AND
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.
 
The XOR Instruction
 
In a class by itself is the exclusive OR operation, embodied in the XOR instruction. 
XOR, again, does in broad terms what AND and OR do: it performs a logical operation 
on two operands, and the result replaces the first operand. The logical operation, 
however, is exclusive or, meaning that the result is 1 only if the two operands are 
different. (1 and 0 or 0 and 1.) The truth table for XOR should make this slippery notion 
a little clearer (see Table 9.4).

Look this over carefully! In the first and last cases, where the two operands are the same, 
the result is 0. In the middle two cases, where the two operands are different, the result is 
1.
Some interesting things can be done with XOR, but most of them are a little arcane for a 
beginner's book. I will show you one handy XOR trick, however: "XORing" any value 
against itself yields 0. Furthermore, putting 0 in a register by XORing the register against 
itself is faster than putting a 0 in the register by MOVing in a 0 as immediate data.
That is, both of these instructions accomplish the same thing:
 
mov AL,0
xor AL,AL
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However, if you're running an 8086 or 8088 processor, the first instruction uses four 
machine cycles, while the second uses only three. That's not a tremendous difference 
(though purists will argue that it represents a 25% improvement) but there are times in 
assembly language where every machine cycle counts!
How this trick works should be clear from reading the truth table, but to drive it home 
I've laid it out in Figure 9.3.
Follow each of the individual XOR operations across the figure to its result value. 
Because each bit in AL is XORed against itself, in every case the XOR operations 
happen between two operands that are identical. Sometimes both are 1, sometimes both 
are 0, but in every case the two are the same. With the XOR operation, when the two 
operands are the same, the result is always 0. Voila! 0 in a register in three cycles flat.
 
The NOT Instruction
 
Easiest to understand of all the  bitwise  logical instructions is NOT. The truth table for 
the NOT instruction (Table 9.5) is pretty simple because NOT only takes one operand. 
And what it does is simple as well: NOT takes the state of each bit in its single operand 
and changes it to its opposite state. What was 1 becomes 0 and what was 0 becomes 1.
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Segment Registers Don't Respond to Logic!
 
One limitation of the segment registers CS, DS, SS, and ES is that they cannot be used 
with any of the bitwise logical instructions. If you try, the assembler will hand you an 
"Illegal use of segment register" error. If you need to perform a logical operation on a 
segment register, you must first copy the segment register's value into one of the 
nonsegment registers (AX, BX, CX, DX, BP, SI, and DI); perform the logical operation 
on the new register, and then copy the result back into the segment register.
 
Table 9.5. The NOT truth table
 
Bit      Operator    Result bit
0           XOR            1
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1           XOR            0
 
9.2 Shifting Bits
 
The other way of manipulating bits within a byte is a little more straightforward: you 
shift the bits to one side or the other. There are a few wrinkles to the process, but the 
simplest shift instructions are pretty obvious: the SHL instruction Shifts its operand 
Left, whereas the SHR instruction Shifts its operand Right.
All of the shift instructions (including the slightly more complex ones I'll describe a little 
later) have the same general form, illustrated here by the SHL instruction:
 
SHL <register/memory>,<count>
 
The first operand is the target of the shift operation; that is, the value that you're going to 
be shifting. It can be register data or memory data, but not immediate data. The second 
operand specifies the number of bits by which to shift.
 
Shift by What?
 
The <count> operand is a little peculiar. It can be one of two things: the literal digit 1, or 
else the register CL. (Not CX!) If you specify the count as 1, then the shift will be by one 
bit. If you wish to shift by more than one bit at a time, you must load the shift count into 
register CL. Counting things is CX's (and hence CL's) hidden agenda; it counts shifts, 
loops, string elements, and a few other things. That's why it's sometimes called the count 
register ("C" for "count").
Although you can load a number as large as 255 into CL, it really only makes sense to 
use count values up to 16. If you shift any bit in a word by 16, you shift it completely out 
of the word!
Something to keep in mind: moving an immediate count value into CL takes some time. 
Furthermore, executing a shift instruction that takes its count value from CL takes more 
time to execute than executing a shift instruction that uses the literal 1 as its count value. 
These two facts conspire to make it faster to use successive shift-by-1 instructions unless 
you need to shift by 5 or more bits.
As an example, consider the following instruction sequence, which is what must be done 
to use CL to shift a word by 3 bits:
 

file:///E|/TEMP/Assembly%20Chap9%20Revised.htm (10 of 58) [9/30/02 09:07:57 PM]



file:///E|/TEMP/Assembly%20Chap9%20Revised.htm

MOV CL,3 
SHL SI,CL
 
Most remarkably, it is faster to accomplish the same shift this way:
 
SHL SI,l 
SHL SI,l 
SHL SI,l
 
The rule of thumb is this: unless you need to shift by more than 4 bits, use consecutive 
shift-by-1 instructions rather than shifting via the CL register.
 
How Bit Shifting Works
 
Understanding the shift instructions requires that you think of the numbers being shifted 
as binary numbers, and not hexadecimal or decimal numbers. (If you're fuzzy on binary 
notation, again, take another slip through Chapter 1.) A simple example would start with 
register AX containing a value of OB76FH. Expressed as a binary number (and hence as 
a bit pattern) OB76FH is
 
1011011101101111
 
Keep in mind that each digit in a binary number is 1 bit. If you execute an SHL AX,1 
instruction, what you'd find in AX after the shift is the following:
 
0110111011011110
 
A 0 bit has been inserted at the right hand end of the number, and the whole shebang has 
been bumped toward the left by one digit. Notice that a 1 bit has been bumped off the left 
end of the number into nothingness.
 
Bumping Bits into the Carry Flag
 
Well, not exactly nothingness. The last bit shifted out is bumped into a temporary 
bucket for bits the Carry flag (CF). The Carry flag is one of those odd bits lumped 
together as the Flags register, which I described in Section 6.4. You can test the state of 

file:///E|/TEMP/Assembly%20Chap9%20Revised.htm (11 of 58) [9/30/02 09:07:57 PM]



file:///E|/TEMP/Assembly%20Chap9%20Revised.htm

the Carry flag with a branching instruction, as I'll explain in Section 9.3.
Keep in mind when using shift instructions, however, that, in addition to the Shift 
instructions, a lot of different instructions, including the bitwise logical instructions and 
the arithmetic instructions, use the Carry flag. If you bump a bit into the Carry flag with 
the intent of testing that bit to see what it is, test it before you execute another instruction 
that affects the Carry flag.
If you shift a bit into the Carry flag and then immediately execute another shift 
instruction, the first bit will be bumped off the end of the world and into nothingness.
 
The Byte2Str Procedure: Converting Numbers to Displayable Strings
 
As we've seen, DOS has a fairly convenient method for displaying text on your screen. 
The problem is that it only displays text—if you want to display a numeric value from a 
register as a pair of digits, DOS won't help. You first have to convert the numeric value 
into its string representation, and then display the string representation through DOS.
Converting hexadecimal numbers to hexadecimal digits isn't difficult, and the routine to 
do the job demonstrates several of the new concepts we're exploring in this chapter. Read 
the Byte2Str procedure carefully:
 
To call Byte2Str you must pass the value to be converted to a string in AL, and the 
address of the string into which the string representation is to be stored as DS:SI. 
Typically, DS will already contain the segment address of your data segment, so you 
most likely will only need to pass the offset of the start of the string in SI.
 
In addition to the code shown here, Byte2Str requires the presence of a second string in 
the data segment. This string, whose name must be Digits, contains all 16 of the digits 
used to express hexadecimal numbers. The definition of Digits looks like this:
 
Digits DB '0123456789ABCDEF'
 
The important thing to note about Digits is that each digit occupies a position in the 
string whose offset from the start of the string is the value it represents. In other words, 
'0' is at the start of the string, zero bytes offset from the string's start. The character "7" 
lies seven bytes from the start of the string, and so on. Digits is what we call a look up 
table and it represents (as I'll explain below) an extremely useful mechanism in assembly 
language.
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Splitting a Byte into Two Nybbles
 
Displaying the value stored in a byte requires two hexadecimal digits. The bottom four 
bits in a byte are represented by one digit (the least significant, or rightmost digit) and the 
top four bits in the byte are represented by another digit (the most significant, or leftmost 
digit.) Converting the two digits must be done one at a time, which means that we have 
to separate the single byte into two four-bit quantities, which are often called nybbles.
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To split a byte in two, we need to mask out the unwanted half. This is done with an AND 
instruction. Note in the Byte2Str procedure that the first instruction, MOV DI,AX, 
copies the value to be converted (which is in AL) into DI. You don't need to move AH 
into DI here, but there is no instruction to move an 8-bit register-half like AL into a 16-
bit register like DI. AH comes along for the ride, but we really don't need it. The second 
instruction masks out the high twelve bits of DI using AND. This eliminates what had 
earlier been in free-rider AH, as well as the high four bits of AL. What's left in DI is all 
we want: the lower four bits of what was originally passed to the routine in AL.
 
Using a Lookup Table
 
The low nybble of the value to be converted is now in DI. The address of Digits is 
loaded into BX. Then the appropriate digit character is copied from Digits into AH. The 
whole trick of using a lookup table lies in the way the character in the table is addressed:
 
mov AH,BYTE PTR [BX+DI]
 
DS:BX points to the start of Digits, so [BX] would address the first character in digits. 
To get at the desired digit, we must index into the lookup table by adding the offset into 
the table to BX. There is an 8086/8088 addressing mode intended precisely for use with 
lookup tables, called base indexed addressing. That sounds more arcane than it is; what it 
means is that instead of specifying a memory location at [BX], we add an index to BX, 
and address a memory location at [BX+DI].
If you recall, we masked out all of DI except the four lowest bits of the byte we are 
converting. These bits will contain some value from 0 through OFH. Digits contains the 
hexadecimal digit characters from 0 through F. By using DI as the index, the value in DI 
will select its corresponding digit character in Digits. We are using the value in DI to 
look up its equivalent hexadecimal digit character in the lookup table (Digits). See 
Figure 9.4.
So far, we've read a character from the lookup table into AH. Now, we use yet another 
addressing mode to move the character from AX back into the second character of the 
destination string, whose address was passed to Byte2Str in DS:SI. This addressing 
mode is called indirect addressing, though I question the wisdom of memorizing that 
term. The mode is nothing more than indirect addressing (addressing the contents of 
memory at [SI]) with the addition of a literal displacement:
 
mov [SI+1],AH
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This looks a lot like base indexed addressing (which is why the jargon may not be all that 
useful) with the sole exception that what is added to SI is not a register but a literal 
constant.
Once this move is done, the first of the two nybbles passed to Byte2Str in AL has been 
converted to its character equivalent and stored in the destination string variable at 
DS:SI.
Now we have to do it again, this time for the high nybble.
 
Shifting the High Nybble into the Low Nybble
 
The high nybble of the value to be converted has been waiting patiently all this time in 
AL. We didn't mask out the high nybble until we moved AX into DI, and did our 
masking on DI instead of AX. So AL is still just as it was when Byte2Str began.
The first thing to do is clear AH to 0. Byte2Str uses the XOR AH,AH trick I described 
in the last section. Then we move AX into DI.
All that remains to be done is to somehow move the high nybble of the low byte of DI 
into the position occupied by the low nybble. The fastest way to do this is simply to shift 
DI to the right—four times in a row. This is what the four SHR instructions in Byte2Str 
do. The low nybble is simply shifted off the edge of DI, into the Carry flag, and then out 
into nothingness. After the four shifts, what was the high nybble is now the low nybble, 
and once again, DI can be used as an index into the Digits lookup table to move the 
appropriate digit into AH.
Finally, there is the matter of storing the digit into the target string at DS:SI. Notice that 
this time, there is no +1 in the MOV instruction:
 
mov [SI],AH
Why not? The high nybble is the digit on the left, so it must be moved into the first byte 
in the target string. Earlier, we moved the low nybble into the byte on the right. String 
indexing begins at the left and works toward the right, so if the left digit is at index 0 of 
the string, the right digit must be at index 0+1.
Byte2Str does a fair amount of data fiddling in only a few lines. Read it over a few times 
while following the above discussion through its course until the whole thing makes 
sense to you.
 
FIGURE
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Converting Words to Their String Form
 
Having converted a byte-sized value to a string, it's a snap to convert 16-bit words to 
their string forms. In fact, it's not much more difficult than calling Byte2Str twice:
 
The logic here is fairly simple—if you understand how Byte2Str works. Moving AX 
into CX simply saves an unmodified copy of the word to be converted in CX. Something 
to watch out for here: if Byte2Str were to use CX for something, this saved copy would 
be mangled, and you might be caught wondering why things weren't working correctly. 
This is a common enough bug for the following reason: you create Byte2Str, and then 
create Word2Str to call Byte2Str. The first version of Byte2Str does not make use of 
CX, so it's safe to use CX as a storage bucket.
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However—later on you beef up Byte2Str somehow, and in the process add some 
instructions that use CX. You plumb fergot that Word2Str stored a value in CX 
whileWord2Str was calling 
Byte2Str

 

. It's pointless arguing whether the bug is that Byte2Str uses CX, or that Word2Str 
assumes that no one else is using CX. To make things work again, you would have to 
stash the value somewhere other than in CX. Pushing it onto the stack is your best bet if 
you run out of registers. (You might hit on the idea of stashing it in an unused segment 
register like ES—but I warn against it! Later on, if you try to use these utility routines in 
a program that makes use of ES, you'll be in a position to mess over your memory 
addressing royally. Let segment registers hold segments. Use the stack instead.)
Virtually everything that Word2Str does involves getting the converted digits into the 
proper positions in the target string. A word requires four hexadecimal digits altogether. 
In a string representation, the high byte occupies the left two digits, and the low byte 
occupies the right two digits. Since strings are indexed from the left to the right, it makes 
a certain sense to convert the left end of the string first.
This is the reason for the XCHG instruction. It swaps the high and low bytes of AX, so 
that the first time Byte2Str is called, the high byte is actually in AL instead of AH. 
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(Remember that Byte2Str converts the value passed in AL.) Byte2Str does the 
conversion and stores the two converted digits in the first two bytes of the string at 
DS:SI.
For the second call to Byte2Str, AH and AL are not exchanged. Therefore the low byte 
will be the one converted. Notice the following instruction:
 
add SI,2
 
This is not heavy-duty math, but it's a good example of how to add a literal constant to a 
register in assembly language. The idea is to pass the address of the second two bytes of 
the string to Byte2Str as though they were actually the start of the string. This means that 
when Byte2Str converts the low byte of AX, it stores the two equivalent digits into the 
second two bytes of the string.
For example, if the high byte was 0C7H, the digits C and 7 would be stored in the first 
two bytes of the string, counting from the left. Then, if the low byte were 042H, the 
digits 4 and 2 would be stored at the third and fourth bytes of the string, respectively. The 
whole string would read C742 when the conversion was complete.
As I've said numerous times before: understand memory addressing and you've got the 
greater part of assembly language in your hip pocket. Most of the trick of Byte2Str and 
Word2Str lies in the different ways they address memory. As you study them, focus on 
the machinery behind the lookup table and target string addressing. The logic and shift 
instructions are pretty obvious and easy to figure out by comparison.
 
9.3 Flags, Tests, and Branches
 
Those assembler-knowledgeable folk who have stuck with me this long may be 
wondering why I haven't covered conditional jumps until this late in the book. I mean, 
we've explained procedures already, and haven't even gotten to jumps yet.
Indeed. That's the whole point. I explained procedures before jumps because 
when people learn those two concepts the other way around, they have a tendency 
to use jumps for everything, even when procedures are called for. Unlike some high-level 
languages like Pascal and Modula-2, there is no way around jumps—what they so 
derisively call "GOTOs"—in assembly language. Sadly, some people then assume that 
jumps are "it," and don't bother imposing any structure at all on their assembly-language 
programs. By teaching procedures first, I feel that I've at least made possible a more 
balanced approach on the part of the learner.
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Besides, I felt it wise to teach how to manage complexity before teaching the number 
one means of creating complexity.
 
Unconditional Jumps
 
A jump is just that: an abrupt change in the flow of instruction execution. Ordinarily, 
instructions are executed one after the other, in order, moving from low memory toward 
high memory. Jump instructions alter the address of the next instruction to be executed. 
Execute a jump instruction, and zap!-—all of a sudden you're somewhere else in the code 
segment. A jump instruction can move execution forward in memory, or backward. It 
can bend execution back into a loop. (And it can tie your program logic in knots ....)
There are two kinds of jumps: conditional and unconditional. An unconditional jump is 
a jump that always happens. It takes this form:
 
jmp <labe1>
 
When this instruction executes, the sequence of execution moves to the instruction 
located at the label specified by the <label> operand. It's just that simple. The 
unconditional JMP instruction is of limited use by itself. It almost always works in 
conjunction with the conditional jump instructions that test the state of the various 
8086/8088 flags. You'll see how this works in just a little while, once we've gone through 
conditional jumps too.
 
Conditional Jumps
 
A conditional JMP instruction is one of those fabled tests I introduced in Chapter 0. 
When executed, a conditional jump tests something, usually one of the flags in the Flags 
register. If the flag being tested happens to be in a particular state, execution may jump to 
a label somewhere else in the code segment, or it may simply "fall through" to the next 
instruction in sequence.
This either/or nature is important. A conditional jump instruction either jumps, or it falls 
through. Jump, or no jump. It can't jump to one of two places, or three. Whether it jumps 
or not depends on the current value of one single bit within the CPU.
For example, the Zero flag (ZF) is set to 1 by certain instructions when the result of that 
instruction is 0. The decrement (DEC) instruction is one of these instructions. 
DEC subtracts 1 from its operand. If by that subtraction the operand becomes 0, ZF is 
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set to 1. One of the conditional jump instructions, Jump if Zero (JZ) tests ZF. If ZF is 
found set to 1, a jump occurs, and execution transfers to a label. If ZF is found to be 0, 
execution falls through to the next instruction in line.
Here's a simple (and non optimal) example, using instructions you should already 
understand:
 

mov     Counter,17    ;   We're going to do this 17 times
WorkLoop:    call   DoWork             ;   Process the data

dec     Counter          ;   Subtract 1 from the counter
jz       AllDone          ;   If the Counter is 0, we're done!
jmp     WorkLoop        ;   Otherwise, go back and execute the loop again

 
The label AllDone isn't shown in the example because it's somewhere else in the 
program, maybe a long way off. The important thing is that the JZ instruction is a two-
way switch. If ZF is equal to 1, execution moves to the location marked by the label 
AllDone. If ZF is equal to 0, execution falls through to the next instruction in sequence. 
Here, that would be the unconditional jump instruction JMP WorkLoop.
This simple loop is one way to perform a call to a procedure some set number of times. A 
count value is stored in a variable named Counter. The procedure is called. After control 
returns from the procedure, Counter is decremented by one. If that drops the counter to 
0, the procedure has been called the full number of times, and the loop sends execution 
elsewhere. If the counter still has some count in it, execution loops back to the procedure 
call and begins the loop again.
Note the use of an unconditional jump instruction to "close the loop."
 
Beware Endless Loops!
 
This is a good place to warn you of a common sort of bug that produces the dreaded 
endless loop, which locks up your machine and forces you to reboot to get out. Suppose 
the code snippet shown above were instead done the following way:
 
WorkLoop:  mov    Counter,17                 ;   We're going to do this  17 times

call   DoWork              :   Process the data
dec     Counter            :   Subtract 1  from the counter
   jz      AllDone           ;   If the counter is 0,  we're done!
jmp    WorkLoop        ;   Otherwise,  go back and execute the loop again

 
This becomes a pretty obvious endless loop. (However, you'll be appalled at how 
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often such an obvious bug will dance in your face for hours without being 
recognized as such ....) The key point is that the instruction that loads the initial value to 
the counter is inside the loop! Every time the loop happens, the counter is decremented 
by one ... and then immediately reloaded with the original count value. The count value 
thus never gets smaller than the original value minus  1 and the loop (which is waiting 
for the counter to become 0) never ends.
You're unlikely to do something like this deliberately, of course. But it's very easy to type 
a label at the wrong place, or (easier still) to type the name of the wrong label, a label 
that might be at or before the point where a counter is loaded with its initial value.
Assembly-language programming requires concentration and endless attention to detail. 
If you pay attention to what you're doing, you'll make fewer "stupid" errors like the one 
above.
But I can promise you that you'll still make a few.
 
Jumping on the Absence of a Condition
 
There are a fair number of conditional jump instructions, of which I'll discuss only the 
most common in this book. Their number is increased by the fact that every conditional 
jump instruction has an alter ego: a jump when the specified condition is not set to 1.
The JZ instruction provides a good example. JZ jumps to a new location in the code 
segment if ZF is set to 1. JZ's alter ego is the Jump if Not Zero (JNZ). JNZ jumps to a 
label if ZF is 0, and falls through if ZF is 1.
This may be confusing at first, because JNZ jumps when ZF is equal to 0. Keep in mind 
that the name of the instruction applies to the condition being tested, and not necessarily 
the binary bit value of the flag. In the previous code example, JZ jumped when the DEC 
instruction decremented the Counter to 0. The condition being tested is something 
connected with an earlier instruction, not simply the state of  ZF.
Think of it this way: a condition raises a flag. "Raising a flag" means setting the flag to 1. 
When one of numerous instructions forces an operand to a value of 0, (which is the 
condition) the Zero flag is raised. The logic of the instruction refers to the condition, not 
to the flag.
As an example, let's improve our little loop. I should caution you that its first 
implementation, while correct and workable in the strictest sense, is awkward and not 
the best way to code that kind of thing. It can be improved in several ways. Here's one:
 

mov Counter,17      :   We're going to do this 17 times
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WorkLoop: call DoWork               ;   Process the data
dec Counter            ;   Subtract 1 from the Counter
jnz WorkLoop          ;   If the Counter is 0. we're done!
< more code >       

 
The JZ instruction has been replaced with a JNZ instruction. That makes much more 
sense, since to close the loop we have to jump, and we only close the loop while the 
Counter is greater than 0. The jump back to label WorkLoop will happen only while the 
counter is greater than 0.
Once the counter decrements to 0, the loop is considered finished. JNZ falls through, and 
the code that follows the loop (which I don't show here) executes. The next instruction 
could be a JMP to label AllDone, as shown earlier, or it could be the next bit of work 
that the assembly-language program has to do. The point is that if you can position the 
program's next task immediately after the JNZ instruction, you don't need to use the 
JMP instruction at all. Instruction execution will just flow naturally into the next task 
that needs performing. The program will have a more natural and less tangled top-to-
bottom flow, and will be easier to read and understand.
 
Flags
 
Back in Section 6.4 I explained the Flags register and briefly described the purposes of 
all the flags it contains. Most flags are not terribly useful, especially when you're first 
starting out as a programmer. The Carry flag (CF) and the Zero flag (ZF) will be 90% of 
your involvement in flags as a beginner, with the Direction flag (DF), Sign flag (SF) and 
Overflow flag (OF) together making up an additional 9.998%. It might be a good idea to 
reread Section 6.4 now, just in case your grasp of flag etiquette has gotten a little rusty.
As explained a few pages ago, JZ jumps when ZF is 1, whereas JNZ jumps when ZF is 
0. Most instructions that perform some operation on an operand (like AND, OR, XOR, 
INC, DEC and all arithmetic instructions) set ZF according to the results of the 
operation. On the other hand, instructions that simply move data around (such as MOV, 
XCHG, PUSH, and POP) do not affect ZF or any of the other flags. (Obviously, POPF 
affects the flags by popping the top-of-stack value into them.) One irritating exception is 
the NOT instruction, which performs a logical operation on its operand but does not set 
any flags— even when it causes its operand to become 0. Before you write code that 
depends on flags, check your instruction reference (one is almost certainly provided with 
your assembler) to make sure you have the flag etiquette down correctly.
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Comparisons with CMP
 
One major use of flags is in controlling loops. Another is in comparisons between two 
values. Your programs will often need to know whether a value in a register or memory 
is equal to some other value. Further, you may want to know if a value is greater than a 
value or less than a value if it is not equal to that value. There is a jump instruction to 
satisfy every need, but something has to set the flags for the benefit of the jump 
instruction. The compare (CMP) instruction is what sets the flags for comparison tasks.
CMP's use is straightforward and intuitive. The second operand is compared with the 
first, and several flags are set accordingly:
 
cmp <opl>,<op2>  ; Sets OF, SF, ZF, AF, PF, and CF
 
The sense of the comparison can be remembered if you simply recast the comparison in 
arithmetic terms:
 
Result = <op1 > -  <op2 >
 
CMP is a subtraction operation where the result of the subtraction is thrown away, and 
only the flags are affected. The second operand is subtracted from the first. Based on the 
results of the subtraction, the flags are set to appropriate values.
After a CMP instruction, you can jump based on several arithmetic conditions. People 
who have a fair grounding in math, or are FORTRAN or Pascal programmers will 
recognize the conditions: equal, not equal, greater than, less than, greater than or equal 
to, and less than or equal to. The sense of these operators follows from their names, and 
is exactly like the sense of the equivalent operators in most high-level languages.
 
A Jungle of Jump Instructions
 
There is a bewildering array of jump instruction mnemonics, but those dealing with 
arithmetic relationships sort out well into just six categories, one category for each of the 
six conditions listed above. Complication arises out of the fact that there are two 
mnemonics for each machine instruction, for example, JLE (Jump if Less than or Equal) 
and JNG (Jump if Not Greater than). These two mnemonics are synonyms, in that the 
assembler generates the identical binary opcode when it encounters either mnemonic. 
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The synonyms are a convenience to you the programmer, in that they provide two 
alternate ways to think about a given jump instruction. In the above example, jump if less 
than or equal to is logically identical to jump if not greater than. (Think about it!) If the 
importance of the preceding compare was to see if one value is less than or equal to 
another, you'd use the JLE mnemonic. On the other hand, if you were testing to be sure 
one quantity was not greater than another, you'd use JNG. The choice is yours.
Another complication is that there is a separate set of instructions for signed and 
unsigned comparisons. I haven't spoken much about assembly-language math in this 
book, and thus haven't said much about the difference between signed and unsigned 
quantities. A signed quantity is one in which the high bit of the quantity is considered a 
built-in flag that indicates whether or not the quantity is negative. If that bit is 1, the 
quantity is considered negative; if that bit is 0, the quantity is considered positive.
Signed arithmetic in assembly language is complex and subtle, and not as useful as 
you might immediately think. I won't be covering it in detail in this book, though 
most all assembly language books treat it to some extent. All you need know to get a 
high-level understanding of signed arithmetic is that in signed arithmetic, negative 
quantities are legal. Unsigned arithmetic, on the other hand, does not recognize 
negative numbers.
 
Greater Than vs. Above
 
To tell the signed jumps apart from the unsigned jumps, the mnemonics use two 
different expressions for the relationships between two values:
• Signed values are thought of as being greater than or less than. For
example, to test whether one signed operand is greater than another, you would use 
the JG (Jump if Greater) mnemonic after a CMP instruction.
• Unsigned values are thought of as being above or below. For example, to tell 
whether one unsigned operand is greater (above) another, you would use the JA 
(Jump if Above) mnemonic after a CMP instruction.
Table 9.6 summarizes the arithmetic jump mnemonics and their synonyms. Any 
mnemonics containing the words above or below are for unsigned values, while any 
mnemonics containing the words greater or less are for signed values. Compare the 
mnemonics with their synonyms and see how the two represent opposite viewpoints 
from which to look at identical 
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instructions.
Table 9.6 simply served to expand the mnemonics into a more comprehensible form and 
associate a mnemonic with its synonym. Table 9.7, on the other hand, sorts the 
mnemonics out by logical condition and according to their use with signed and unsigned 
values. Also listed in Table 9.7 are the flags whose values are considered in each jump 
instruction. Notice that some of the jump instructions require one of two possible flag 
values in order to take the jump, while others require both of two flag values.
Several of the signed jumps compare two of the flags against one another. JG, for 
example, will jump when either ZF is 0, or when the Sign flag (SF) is equal to the 
Overflow flag (OF). I won't spend any further time explaining the nature of the Sign flag 
or Overflow flag. As long as you have the sense of each instruction under your belt, 
understanding exactly how the instructions test the flags can wait until you've gained 
some programming experience.
Some people have trouble understanding how it is that the JE and JZ mnemonics are 
synonyms, as are JNE and JNZ. Think again of the way a comparison is done within the 
CPU: the second operand is subtracted from the first, and if the result is 0 (indicating that 
the two operands were in fact equal), ZF is set to 1. That's why JE and JZ are synonyms: 
both are simply testing the state of ZF.
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 .
Detecting the Installed Display Adapter
 
A useful example of CMP and the conditional JMP instructions in action involves 
detecting the installed display adapter. Five different mainstream IBM display adapters 
that can be installed in a PC (from the first generation introduced with the original PC in 
1981 to the VGA and MCGA introduced with the PS/2 series in 1987) are currently 
available. (I don't consider the PGC and the XGA to be mainstream—although the XGA 
will almost certainly get there in time.) Each adapter has certain unique features, and if 
you intend to use some of the (rather nifty) hardware assistance offered by the more 
advanced video boards like the EGA and VGA, you had better be prepared to tell which 
board is in a given machine. Then your program must decide what special features can 
and cannot be used.
It isn't quite enough to know which board is installed in a given machine. The way a 
certain board operates can change severely depending on whether a monochrome or color 
monitor is attached to the board. The most obvious difference (and the one of most 
interest to the programmer) is that the memory address of the video display buffer is 
different for color and monochrome monitors. This schizophrenic quality of the EGA, 
VGA, and MCGA is so pronounced that it makes sense to consider the EGA/color 
monitor combination an entirely separate display adapter from the EGA/monochrome 
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monitor combination.
In my method, I use a separate numeric code to represent each legal adapter/monitor 
combination. There are nine possibilities in all, summarized in Table 9.8.
The codes are not consecutive; note that there is no code 3, 6 or 9. I didn't make these 
codes up arbitrarily. They are in fact the display adapter/monitor combination codes 
returned by one of the VGA/MCGA BIOS services.
The DispID procedure given below determines which display adapter is installed in the 
machine in which DispID is running. DispID then returns one of the codes listed in 
Table 9.8.
 
Table 9.8. Legal PC display adapter/monitor combinations 
Code Adapter/Monitor Segment of Display Buffer 
00 None None  
01H MDA/Monochrome 0B000H  
02H CGA/Color 0B800H  
04H EGA/Color 0B800H  
    
05H EGA/Monochrome 0B000H  
    
07H VGA/Monochrome 0B000H  
08H VGA/Color 0B800H  
0AH MCGA/Color (digital) 0B800H  
0BH MCGA/Monochrome 0B000H  
    
0CH MCGA/Color (analog) 0B800H  
 
I recommend that your programs define a byte-sized variable in their data segments 
where this code can be stored throughout the program's duration. If you detect the 
adapter with DispID immediately on program startup, your program can inspect the code 
any time it needs to make a decision as to which video features to use.
Given what I've told you about CMP and conditional jump instructions so far, see if you 
can follow the logic in DispID before we go through it blow by blow:
 
DispID is the most complex piece of code shown so far in this book. The overall strategy 
is not obvious and bears some attention.
IBM's standard display boards appeared in three generations. The first generation 
consisted of the original Color Graphics Adapter (CGA) and Monochrome Display 
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Adapter (MDA). The second generation consisted of the Enhanced Graphics Adapter 
(EGA.) Finally, the third generation came in with the PS/2 in April of 1987 and provided 
the Video Graphics Array (VGA) and Multi-Color Graphics Array (MCGA).
The simplest way to find out what display board is installed in a machine is to "ask the 
machine" by querying BIOS services. There are BIOS services specific to each 
generation of display board, and by some quirk of fate all such services are well behaved, 
by which I mean that querying a service that doesn't exist (because an older generation of 
video board is installed) will not crash the system. (IBM's BIOS standard is extremely 
"downward compatible" in that newer generations all contain everything the older 
generations do.) Furthermore, if a BIOS service specific to a generation of boards is 
found not to exist, that tells us that the installed board is not a member of that generation 
or a newer generation.
 
Assuming that the target machine could have any of the standard IBM display boards in 
it, it makes sense to test for the presence of the newest boards first. Then, through a 
process of elimination, we move to the older and older boards.
The first test that DispID makes, then, is for the VGA or MCGA generation. The PS/2 
machines contain in their ROM BIOS a service (VIDEO Service 1AH) specifically to 
identify the installed display adapter. DispID calls VIDEO service 1AH, having cleared 
AL to 0 via XOR. As it happens, if a PS/2 BIOS is present on the bus, the 1AH service 
number is returned in register AL. On return from the INT 10H call, we test AL for 1AH 
using CMP. If 1AH is not found in AL, we know up front that there is no PS/2 BIOS in 
the system, and therefore no VGA or MCGA.
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After the CMP instruction is the JNE TryEGA conditional branch. If the CMP finds 
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that AL is not equal to 1AH, then control jumps down to the code that tests for the next 
older generation of video boards: the EGA. If AL is equal to 1AH, then the PS/2 BIOS 
has placed the display adapter code in BL. DispID then copies BL into AL (which is 
where DispID returns the display code) and executes a RET instruction to pass control 
back to the caller.
Testing for the EGA is done a little differently, but the same general idea holds: 
we call an EGA-specific VIDEO service not present in the oldest generation of 
boards. The key test, again, is whether a certain register comes back unchanged. There is 
a twist, however: if BX comes back with the same value it held when the VIDEO call 
was made, (here, 10H) then an EGA BIOS does not exist in the machine. (Isn't the PC 
wonderful?) Here, after the CMP BX,10H instruction, we do a JE OldBords and not a 
JNE as we did when testing for the PS/2 generation. If BX comes back in an altered 
state, we assume an EGA is present, and that BX contains information on the display 
configuration.
If an EGA BIOS is found, a value in BH tells us whether the EGA is connected to a 
monochrome or color monitor. (Remember, there is a different code for each.) The value 
in BH is not the code itself, as it was with the PS/2 BIOS, so we have to do a little more 
testing to get the right code into AL. If BH contains 0, then the attached monitor is color. 
Any other value in BH indicates a monochrome system. The following sequence of 
instructions from DispID takes care of loading the proper EGA-specific code into AL:
 
 

cmp BH,0    ;If BH - 0, it's an EGA/color combo

je EGAColor       ; otherwise it's EGA/mono
mov AL,5            ; Store code 5 for EGA mono
ret         ; and go home!

EGAColor:   mov AL,4    ; Store code 4 for EGA color 
ret         ; and go home!
 

 
 
You'll find yourself writing sequences like this a lot when a single test decides between 
one of two courses of action. One course here is to load the value 5 into AL, and the 
other course is to load 4 into AL. Notice that after the appropriate MOV instruction is 
executed, a RET takes care of passing execution back to the caller. If DispID were not a 
procedure, but simple a sequence coded into the main line of instructions, you would 
need an unconditional JMP after each MOV to continue on with instruction execution 
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somewhere else in the program. Using RET is much neater—which is yet another reason 
to explore small tasks like display adapter identification in a procedure wrapper. Finally, 
if neither PS/2 nor EGA are present, DispID realizes that, by default, one of the original 
generation of display boards is on the bus. Telling MDA from CGA is not done with a 
BIOS call at all, because the first generation BIOS did not know which display board 
was present. (That was a feature instituted with the EGA in 1984.) Instead, there is a 
separate software interrupt, 11H, that returns machine configuration information.
 
Testing Bits with TEST
 
Service 11H returns a word's worth of bits in AX. Singly or in twos or threes, the bits tell 
a tale about specific hardware options on the installed PC. These hardware options are 
summarized in Figure 9-5.
The bits we need to examine are bits 4 and 5. If both are set to 1, then we know we have 
a Monochrome Display Adapter. If the two bits are set to any other combination, the 
adapter must be a Color Graphics Adapter; all other alternatives have by this time been 
eliminated.
Testing for two 1 bits in a byte is an interesting exercise. The 86-family instruction set 
recognizes that assembly-language programmers do a lot of bit testing, and provides 
what amounts to a CMP instruction for bits: TEST.
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The Phantoms of the Opcodes
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TEST performs an AND logical operation between two operands, and then sets the flags 
as AND would, without altering the destination operation, as AND would. Here's the 
TEST instruction syntax:
TEST <operand>.<bit mask>
 
The bit mask operand should contain a 1 bit in each position where a 1-bit is to be sought 
in the operand, and 0 bits in all the other bits.
TEST ANDs the operand against the bit mask, and set the flags as AND would. The 
operand doesn't change. For example, if you want to determine if bit 3 of AX is set to 1, 
you would use this instruction:
 
TEST AX , 3        ;  3  in  binary  is  00001000B
 
AX doesn't change as a result of the operation, but the AND truth table is asserted 
between AX and the binary pattern 00001000. If bit 3 in AX is a 1 bit, then ZF is cleared 
to 0. If bit 3 in AX is a 0 bit, then ZF is set to 1. Why? If you AND 1 (in the bit mask) 
with 0 (in AX) you get 0. (Look it up in the AND truth table.) And if all 8 bitwise AND 
operations come up 0, the result is 0, and ZF is raised to 1, indicating that the result is 0.
Key to understanding TEST is thinking of TEST as a sort of "Phantom of the Opcode," 
where the opcode is AND. TEST pretends it is AND, but doesn't follow through with the 
results of the operation. It simply sets the flags as though an AND operation had 
occurred.
CMP is another "Phantom of the Opcode," and bears the same relation to SUB as TEST 
bears to AND. CMP subtracts its second operand from its first, but doesn't follow 
through and store the result in the first operand. It just sets the flags as though a 
subtraction had occurred.
 
TEST Pointers
 
Here's something important to keep in mind: TEST is only useful for finding 1 
bits. If you need to identify 0 bits, you must first flip each bit to its opposite state 
with the logical NOT instruction, as I explained in Section 9.1. NOT changes all 1 bits to 
0 bits, and all 0 bits to 1 bits. Once all 0 bits are flipped to 1 bits, you can test for a 1 bit 
where you need to find a 0 bit. (Sometimes it helps to map it out on paper to keep it all 
straight.)
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Also, TEST will not reliably test for two or more 1 bits in the operand at one time. 
TEST doesn't check for the presence of a bit pattern; TEST checks for the presence of a 
single 1 bit. In other words, if you need to check to make sure that both bits 4 and 5 are 
set to 1, TEST won't hack it.
And unfortunately, that's what we have to do in DispID What we're looking for in the 
last part of DispID is the monochrome code in bits 4 and 5, which is the value 30 (both 
bits 4 and 5 set to 1). Don't make the mistake (as I did once) of assuming that you can use 
TEST to spot the two 1 bits in bits 4 and 5:
test AL,30H     : If bits 4 & 5 are both = 1, it's an MDA 
jnz CGA         ;  otherwise it's a CGA
 
This doesn't work! The Zero flag will be set only if both bits are 0. If either bit is 1, ZF 
will become 0, and the branch will be taken. However, we only want to take the branch if 
both bits are  1.
Here's where your right brain can sometimes save both sides of your butt. TEST only 
spots a single 1 bit at a time. We need to detect a condition where two 1 bits are present. 
So let's get inspired and flip the state of all bits in the Equipment Identification Byte with 
NOT, and then look at the byte with TEST. After using NOT, what we need to find are 
two 0 bits, not two 1 bits. And if the two bits in question (4 and 5) are now both 0, the 
whole byte is 0, and ZF will be set and ready to test via JNZ:
 
not AL         ; Invert all bits in the equipment ID byte 
test AL ,30H   : See if either of bits 4 or 5 are 1-bits 
jnz CGA        ; If both = 0, they originally were both 1's, 

   ; and the adapter is a monochrome
 
Tricky, tricky. But as you get accustomed to the instruction set and its quirks, you'll hit 
upon lots of non-obvious solutions to difficult problems of that kind.
So get that right brain working: how would you test for a specific pattern that was a mix 
of 0 bits and 1 bits?
 
9.4 Assembler Odds'n'Ends
 
Practice is the word.
You can do a lot with what you've learned so far, and certainly, you've learned enough to 
be able to figure out the rest with the help of an assembly-language reference and 
perhaps a more advanced book on the subject. For the remainder of this chapter we're 
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going to do some practicing, flexing some assembly-language muscles and picking up a 
few more instructions in the process.
 
Yet Another Lookup Table
 
The DIGITS lookup table (used by Byte2Str and WordZStr in the previous section) 
is so obvious that it didn't need much in the line of comments or explanations. Digits 
simply converted the table's index into the ASCII character equivalent to the value of the 
index. Digits is only 16 bytes long, and its contents pretty much indicate what it's for:
 
Digits      DB  '0123456789ABCDEF'

 
Most of the time, your lookup tables will be a little less obvious. A lookup table does not 
have to be one single DB variable definition. You can define it pretty much as you need 
to, either with all table elements defined on a single line (as with Digits) or with each 
table element on its own line.
Consider the lookup table below:

 

Here's a table where each table element has its own DW definition statement on its own 
line. This table treats a problem connected with the numerous different kinds of display 
adapters installable in a PC. There are two different addresses where the video refresh 
buffer begins. On boards connected to color or color/greyscale monitors, the address is 
B800:0, whereas on monochrome monitors the address is B000:0. (Refer back to Figure 
5.4 and the accompanying text if you've forgotten what the video refresh buffer is.)
If you intend to address video memory directly (and doing so is much faster than 
working through DOS as we have been) then you have to know at which address 
the video refresh buffer lies. Knowing which display adapter is installed is the 
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hardest part—and the DispID procedure described in the previous section answers that 
question. Each of the nine codes returned by DispID has a video refresh buffer address 
associated with it. But which goes with which? You could use a long and interwoven 
series of CMP and JE tests, but that's the hard road, and grossly wasteful of memory and 
machine cycles. A lookup table is simpler, faster in execution, and much easier to read.
The routine below returns the segment portion of the video refresh buffer address in AX. 
The display adapter code must be passed to VidOrg in AL:
 
 
;VidOrg -- Returns origin segment of video buffer 
;Last update 3/8/89
;
;1 entry point:
;
;VidOrg:
;     Caller must pass:
;     AL : Code specifying display adapter type
;     VidOrg returns the buffer origin segment in AX
 
VidOrg    PROC

xor     AH,AH        ; Zero AH
mov     DI.AX        ; Copy AX (with code in AL) into DI
shl      DI.l        ; Multiply code by 2 to act as word index
lea         BX.OriginTbl           ; Load address of origin table into BX
mov     AX,[BX+DI]   ; Index into table using code as index
ret               ; Done; go home!

VidOrg     ENDP
 
This works a lot like the lookup table mechanism in Byte2Str. There's an important 
difference, however: each entry in the OriginTbl lookup table is two bytes in size, 
whereas each entry in Digits was one byte in size.
 
Using Shift Instructions to Multiply by Powers of 2
 
To use the Digits lookup table, we simply used the value to be converted as the index 
into the table. Because each element in the table was one byte in size, this worked. When 
table elements are more than one byte long, you have to multiply the index by the 
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number of bytes in each table element, or the lookup won't find the correct table element.
OriginTbl is a good working example. Suppose you get a code 2 back from DispID, 
indicating that you have a CGA in the system. Adding the 2 code to the starting address 
of the table (as we did with Digits) takes us to the start of the second element in the table. 
Read across to the comment at the right of that second element and see which code it 
applies to: Code 1, the MDA! Not cool.
If you scan down to find the table element associated with the CGA, you'll find that it 
starts at an offset of 4 from the start of the table. To index into the table correctly, you 
have to add 4, not 2, to the offset address of the start of the table. This is where 
multiplication comes in.
There is a general-purpose multiply instruction in the 8086/8088 CPU, but MUL is 
outrageously slow as machine instructions go. Even in its fastest case on the 8086/8088 
(multiplying an 8-bit register by some value) MUL takes 77 machine cycles to do its 
work. Considering that most of the instructions we've discussed complete their jobs in 4 
to 10 cycles, that's slow indeed.
There's a better way—in some cases. When you need to multiply a value by some power 
of 2 (that is, 2, 4, 8, 16, 32, and so on) you can do it by using the SHL instruction. 
Shifting a value to the left by one bit multiplies the value by 2. Shifting a value to the left 
by two bits multiplies the value by 4. Shifting a value to the left by three bits multiplies 
the value by 8, and so on.
Magic? Not at all. Work it out on paper by expressing a number as a bit pattern (in binary 
form), shifting the bit pattern one bit to the right, and then converting the binary form 
back to decimal or hex. Like so:
 
00110101 Binary equivalent of 35H, 53 decimal
<--  by one bit yields
01101010    Binary equivalent of 6AH,   106 decimal
 
Sharp readers may have guessed that shifting to the right divides by powers of two—and 
that's also correct. Shifting right by one bit divides by 2; shifting right by two bits divides 
by 4, and so on.
The advantage to multiplying with shift instructions is that it's fast. Shifting a byte-sized 
value in a register to the left by one bit takes only 2 machine cycles. 2...as opposed to 77 
with MUL.
As we say, no contest.
Once the index is multiplied by 2 using SHL, the index is added to the starting address of 
the table, just as with Digits. A word-sized MOV then copies the correct segment 
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address from the table into AX, for return to the caller.
This illustrates how you can realize enormous speed advantages by structuring your 
tables properly. Even if it means leaving some wasted space at the end of each element, 
do your best to make the length of your table elements equal to some power of 2. That 
means making each element 1, 2, 4, 8, 16, 32, or some larger power of two in size, but 
not 3, 7, 12, 20, or 25 bytes in size.
 
Tables Within Tables
 
Tables are about the handiest means at your disposal for grouping together and 
organizing data. Sometimes tables can be as simple as those I've just shown you, which 
are simply sequences of single values.
 
In most cases, you'll need something a little more sophisticated, Sometimes you'll need a 
table of tables, and (surprise!) the 8086/8088 has some built-in machinery to handle such 
nested tables quickly and easily.
Let's continue on with the issue of video support. In the previous section we looked a 
table containing the display buffer addresses for each of the display adapters identified 
by DispID. This is good, but not enough: each adapter has a name, a display buffer 
address, and a screen size dictated by the size of the current character font. These items 
comprise a table of information about a display adapter, and if you wanted to put 
together a summary of all that information about all legal display adapters, you'd have to 
create such a table of tables.
Below is such a two-level table:
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The table consists of twelve subtables, one for each possible code returned by DispID as 
well as a subtable for several undefined codes. Why a subtable for undefined codes? 
We're going to follow the same general strategy of indexing into the table based on the 
value of the code. In other words, to get the information for code 4, we have to look at 
the fifth table (counting from zero) which requires that tables 0 through 4 already exist. 
Code 3 is undefined, yet something must hold its place in the table for our indexing 
scheme to work.
Each subtable occupies three lines, for clarity's sake. Here's a typical subtable:
 
DB    'EGA with color monitor        ; Code 4 
DW     OB800H 
DB     43,25,25
 
The first line is a 27-character quoted string containing the name of the display adapter. 
The second line is a word-sized address, the segment address of the visible display buffer 
corresponding to that name. The third line contains three numeric values. These are 
screen sizes, in lines, relating to the font sizes currently in force. The first value is the 
number of lines on the screen with the 8-pixel font in force. The second value is the 
number of lines on the screen with the 14-pixel font in force. The third value is the 
number of lines on the screen with the 16-pixel font in force. The items stored in the 
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subtables give you just about everything you'd really need to know about a given display 
adapter to do useful work with it.
When your assembly-language program begins executing, it should inspect such a table 
and extract the values pertinent to the currently installed display adapter. These extracted 
values should be ordinary variables in the data segment, easily accessible without further 
table searching. These variables should be defined together, as a block, with comments 
explaining how they are related:

 
 
 
 
  As the comments indicate, a single procedure named VidChek reads values from the 
two-level lookup table VidInfoTbl and loads those values into the variables shown 
above.
 VidCheck is an interesting creature, and demonstrates the way of dealing with two-level 
tables. Read it over:
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  The first thing VidCheck does is call DispID to determine the installed display adapter. 
Build on your own tools—there's no need to duplicate logic if you can avoid it. The 
adapter ID code is stored in the variable DispType.
It's possible to use the table to look up the number of lines on the screen from the current 
text font size, but to do that you have to determine the font size. Determining the font 
size is a good exercise in the use of the CMP instruction and conditional jumps. Certain 
adapters support only one font size. The MCGA has only the 16-pixel font. The CGA has 
only the 8-pixel font. The MDA has only the 14-pixel font. A series of compares and 
jumps selects a font size based on the display adapter ID code. The trickiness comes in 
with the EGA and VGA, versatile gentlemen capable of using more than one font size. 
Fortunately, BIOS has a service that reports the size, in pixels, of the text font currently 
being used, and this service is used to query the font size. Whatever it turns out to be, the 
font size is stored in the FontSize variable in the data segment.
 
Base-lndexed-Displacement Memory Addressing
 
So far, we haven't dealt with the VidlnfoTbl table at all. This changes when we want to 
look up the string containing the English-language description of the installed display 
adapter. There are three general steps to reading any two-level lookup table:
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• Derive the offset of the subtable from the beginning of the larger table
• Derive the offset of the desired information within the subtable
• Read the information from the subtable.
 
Each of the subtables is 32 bytes in size. To move from the start of the VidlnfoTbl to a 
desired subtable, we multiply the index of the subtable by 32, just as we did in the 
previous section, in reading one single value from OriginTbl. The index, here, is the 
display adapter ID code. We multiply the index by 32 by loading it into register DI, and 
then shirting DI to the left by 5 bits. (Shifting left by 5 bits multiplies the shifted quantity 
by 32.) We use the form
 
mov CL,5 shl   DI,CL
 
because it is shorter and faster to shift by CL than to shift by using five SHL DI,1 
instructions in sequence.
Because the display adapter description is the first item in every subtable, no offset into 
the subtable is necessary. (The offset, if you must think of an offset, is 0.) The shifted 
quantity in DI is added to the address of the larger table, and the sum becomes the 16-bit 
address to the display adapter description string. This address is saved in the BordName 
variable.
At this point within VidCheck, we have the address of the VidlnfoTbl table itself in BX, 
and the offset of the desired subtable in DI. Now we want to fetch the segment address of 
the display buffer from the middle of the subtable. The segment address is at some fixed 
offset from the start of the subtable. I say "fixed" because it never changes, and will be 
the same regardless of which subtable is selected by the adapter ID code. In the case of 
the segment address, the offset is 27, since the segment address is 27 bytes from the start 
of the subtable.
Expressed as a sum, the segment address is at the following offset from the start of 
VidlnfoTbl: DI+27. Since BX contains the offset of VidlnfoTbl from the start of the 
data segment, we can pin down the segment address in the data segment with this sum: 
BX+DI+27.
Is there a way to address memory using this three-part sum?
There is indeed, and it is the most complex of the numerous 8086/8088 addressing 
modes: base-indexed-displacement addressing, a term you probably can't memorize and 
shouldn't try. Specifically to serve two-level lookup tables like this one, the CPU 
understands MOV statements like the following:
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mov AX,[BX+DI+27]
 
Here, the base is the address of the larger table in BX; the index is the offset of the 
subtable within the larger table, stored in DI; and the displacement is the fixed distance 
between the start of the subtable and the data we wish to address.
You can't just use any registers in building a memory address using based-indexed-
displacement addressing. The base register can be only BP or BX. (Think of general-
purpose register BX's hidden agenda as that of base register, the "B" is your memory 
hook.) The index register can be only SI or DI. These registers' names, Source Index and 
Destination Index, should provide you with their own memory hooks.
Finally, the displacement can not be a register at all, but only a literal value like 27 or 14 
or 3.
 
 
 
 
Finding the Number of Lines in the Screen
 
Reading the screen line count from the subtable is the trickiest part of the whole process. 
In one sense, the list of three different line count values is a table within a table within a 
table, but 8086/8088 addressing only goes down two levels. What we must do is point 
BX and DI plus a displacement to the first of the three values, and then add a second 
index to DI that selects one of the three line counts.
This second index is placed into AL, which is eventually (as part of AX) added to DI. 
The line count is read from the table with the following instruction:
 
mov AL,[BX+DI+28]
 
with the second index already built into DI.
The rest of VidCheck fills a few other video-related variables like LRXY, which 
bundles the X,Y position of the lower-right corner of the screen into a single 16-bit 
quantity. The size of the video buffer in bytes is calculated as the X size of the screen 
multiplied by the Y size of the screen multiplied by 2, and stored in VidBufSize.
 
A Program to Report on the Current Display Adapter
 
To make VidCheck show its stuff, I've written a short program called INFO.ASM that 
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reports certain facts about the installed display controller.
As a program, INFO.ASM doesn't present anything we haven't used before, except in 
one respect: string lengths.
To display a string, you have to tell DOS just how long the string is, in characters. 
Counting characters is difficult, and if you get it wrong you'll either display too much 
string or not enough.
The solution is simple: let the assembler do the counting. Here's the notation:
 
VidlDStr    DB '    The installed video board is:   ' 
LVidlDStr  EQU    $-VidIDStr
 
The first statement is nothing more than a simple string constant definition that we've 
been using all along. The second statement is a new kind of statement, an equate, which 
looks a lot like a data definition but is not.
A data definition sets aside and optionally initializes an area of memory to some 
value. An equate, by contrast, generates a value similar to a simple constant in 
languages like Pascal. An equate allocates no memory, but instead generates a value that 
is stored in the assembler's symbol table. This value can then be used anywhere a literal 
constant of that type can be used.
Here, we're using an equate to generate a value giving us the length of the string defined 
immediately before the equate. The expression $-VidIDStr resolves to the difference 
between two addresses: one is the address of the first byte of the string variable 
VidlDStr, and the other is the current location counter, the assembler's way of keeping 
track of the code and data it's generating. (The current location counter bears no relation 
to BP, the instruction pointer!) When the assembler is generating information (either 
code or data) inside a segment, it begins with a counter set to zero for the start of the 
segment. As it works its way through the segment, generating code or allocating data, it 
increments this value by one for each byte of generated code or allocated data.
The expression $-VidIDStr is evaluated immediately after the string VidlDStr is 
allocated. This means the assembler's current location counter is pointing to the first byte 
after VidlDStr. Because the variable name VidlDStr itself resolves to the address of 
VidlDStr, and $ resolves to the location counter immediately after VidlDStr is allocated, 
$-VidIDStr evaluates to the length of VidlDStr. Even if you add or delete characters to 
the contents of VidlDStr, the length count will always come out correct, because the 
calculation always subtracts the address of the beginning of the string from the address 
just past the end of the string.
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Most people, having learned a little assembly language, grumble about the seemingly 
huge number of instructions it takes to do anything useful. By and large, this is a 
legitimate gripe—and the major reason there are things like Turbo Pascal and Microsoft 
BASIC.
The 8086/8088 instruction set, on the other hand, is full of surprises, and the surprise 
most likely to make apprentice assembly-language programmers gasp is the instruction 
group we call the string instructions.
They alone of all the instructions in the 8086/8088 instruction set have the power to deal 
with long sequences of bytes or words at one time. (In assembly language, any 
contiguous sequence of bytes or words in memory may be considered a string.) More 
amazingly, they deal with these large sequences of bytes or words in an extraordinarily 
compact way: by executing an instruction loop entirely inside the CPU! A string 
instruction is, in effect, a complete instruction loop baked into a single instruction.
The string instructions are subtle and complicated, and I won't be able to treat them 
exhaustively in this book. Much of what they do qualifies as an advanced topic. Still, you 
can get a good start on understanding the string instructions by using them to build some 
simple tools to add to your video toolkit.
Besides, for my money, the string instructions are easily the single most fascinating 
aspect of assembly-language work.
 

10.1 The Notion of an Assembly-Language String
 
Words fail us sometimes by picking up meanings as readily as a magnet picks up iron 
filings. The word string is a major offender here. It means roughly the same thing in all 
computer programming, but there are a multitude of small variations on that single 
theme. If you learned about strings in Turbo Pascal, you'll find that what you know isn't 
totally applicable when you program in C, or BASIC, or assembly.
So here's the big view: a string is any contiguous group of bytes, of any arbitrary size up 
to the size of a segment. The main concept of a string is that its component bytes are 
right there in a row, with no interruptions.
That's pretty fundamental. Most higher-level languages build on the string concept, in 
several ways.
Turbo Pascal treats strings as a separate data type, limited to 255 characters in length, 
with a single byte at the start of the string to indicate how many bytes are in the string. In 
C, a string can be longer than 255 bytes, and it has no "length byte" in front of it. Instead, 
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a C string is said to end when a byte with a binary value of 0 is encountered. In BASIC, 
strings are stored in something called string space, which has a lot of built-in code 
machinery associated with it.
When you begin working in assembly, you have to give all that high-level 
language stuff over. Assembly strings are just contiguous regions of memory. 
They start at some specified segment:offset address, go for some number of bytes, 
and stop. There is no "length byte" to tell how many bytes are in the string, and no 
standard boundary characters like binary 0 to indicate where a string starts or ends.
You can certainly write assembly-language routines that allocate Turbo Pascal-style 
strings or C-style strings and manipulate them. To avoid confusion, however, you must 
think of the data operated on by your routines to be Pascal or C strings rather than 
assembly strings.
 
Turning Your "String Sense" Inside-Out
 
As I mentioned above, assembly strings have no boundary values or length indicators. 
They can contain any value at all, including binary 0. In fact, you really have to stop 
thinking of strings in terms of specific regions in memory. You should instead think of 
strings in much the same way you think of segments: in terms of the register values that 
define them.
It's slightly inside-out compared to how you think of strings in languages like Pascal, but 
it works: you've got a string when you set up a pair of registers to point to one. And once 
you point to a string, the length of that string is defined by the value you place in register 
CX.
This is key: assembly strings are wholly defined by values you place in registers. There 
is a set of assumptions about strings and registers baked into the silicon of the CPU. 
When you execute one of the string instructions, (as I'll describe a little later) the CPU 
uses those assumptions to determine what area of memory it reads from or writes to.
 
Source Strings and Destination Strings
 
There are two kinds of strings in assembly work: source strings are strings that you read 
from, and destination strings are strings that you write to. The difference between the 
two is only a matter of registers. Source strings and destination strings can overlap; in 
fact, the very same region of memory can be both a source string and a destination string, 
all at the same time.
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Here are the assumptions the CPU makes about strings when it executes a string 
instruction:
• A source string is pointed to by DS:SI.
• A destination string is pointed to by ES:DI.
• The length of both kinds of string is the value you place in CX.
• Data coming from a source string or going to a destination string must pass 
through register AX.
The CPU can recognize both a source string and a destination string simultaneously, 
because DS:SI and ES:DI can hold values independent of one another.
 
However, because there is only one CX register, the length of source and destination 
strings must be identical when they are used simultaneously, as in copying a source 
string to a destination string.
One way to remember the difference between source strings and destination strings is by 
their offset registers. SI means "source index," and DI means "destination index."
 
10.2 REP STOSW: The Software Machine Gun
 
The best way to cement all that string background information in your mind is to see a 
string instruction at work. In this section, I'm going to lay out a very useful video display 
tool that makes use of the simplest string instruction, STOSW (STOre String by Word). 
The discussion involves something called a prefix, which I haven't gone into yet. Bear 
with me for now. We'll discuss prefixes in a little while.
 
Machine Gunning the Video Display Buffer
 
The ClrScr procedure we discussed earlier relied on BIOS to handle the actual clearing 
of the screen. BIOS is very much a black box, and we're not expected to know how it 
works. (IBM would rather we didn't, in fact....) The trouble with BIOS is that it only 
knows how to clear the screen to blanks. Some programs (such as Turbo Pascal 6.0) give 
themselves a stylish, sculpted look by clearing the screen to one of the PC's "halftone" 
characters, which are character codes 176-178. BIOS can't do this. If you want the 
halftone look, you'll have to do it yourself. It doesn't involve anything more complex 
than replicating a single word value (two bytes) into every position in your video refresh 
buffer. Such things should always be done in tight loops. The obvious way would be to 
put the video refresh buffer segment into the extra segment register ES, the refresh buffer 
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offset into DI, the number of words in your refresh buffer into CX, the word value to 
clear the buffer to into AX, and then code up a tight loop this way:
 
Clear:       MOV     ES: [DI] , AX          ;   Copy AX  to  ES:DI
INC     DI                                                     ;   Bump DI  to next *word* in  buffer
INC     DI
DEC     CX                                  ;   Decrement CX by one position
JNZ     Clear                                              ;   And loop again  until   CX is 0
 
This will work. It's even tolerably fast. But all of the above code is equivalent to this one 
single instruction:
 
REP STOSW      Really.       Really.
 
 There's two parts to this instruction, actually. As I said, REP is a new type of critter, 
called a prefix. We'll get back to it. Right now let's look at STOSW. Like all the string 
instructions, STOSW makes certain assumptions about some CPU registers. It works 
only on the destination string, so DS and SI are not involved. However, these 
assumptions must be respected and dealt with:
• ES must be loaded with the segment address of the destination string.
(That is, the string into which the data will be stored.)
• DI must be loaded with the offset address of the destination string.
• CX (the Count register) must be loaded with the number of times the copy of AX 
is to be stored into the string. Note that this does not mean the size of the string in 
bytes!
• AX must be loaded with the word value to be stored into the string.
 
Executing the STOSW Instruction
 
Once you set up these four registers, you can safely execute a STOSW instruction. 
When you do, this is what happens:
• The word value in AX is copied to the word at ES:DI.
• DI is incremented by 2, such that ES:DI now points to the next word in memory 
following the one just written to.
Note that we're not machine gunning here. One copy of AX gets copied to one word in 
memory. The DI register is adjusted so that it'll be ready for the next time STOSW is 
executed.
One important point to remember is that CX is not automatically decremented by 
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STOSW. CX is decremented automatically only if you put the REP prefix in front of 
STOSW. Lacking the REP prefix, you have to do the decrementing yourself, either 
explicitly through DEC or through the LOOP instruction, as I'll explain a little later in 
this chapter.
So you can't make STOSW run automatically without REP. However, you can if you 
like execute other instructions before executing another STOSW. As long as you don't 
disturb ES, DI, or CX, you can do whatever you wish. Then when you execute STOSW 
again, another copy of AX will go out to the location pointed to by ES:DI, and DI will 
be adjusted yet again. (You have to remember to decrement CX somehow.) Note that 
you can change AX if you like, but the changed value will be copied into memory. (You 
may want to do that—there's no law saying you have to fill a string with only one single 
value.)
However, this is like the difference between a semiautomatic weapon (which fires one 
round every time you press and release the trigger) and a fully automatic weapon, which 
fires rounds continually as long as you hold the trigger down. To make STOSW fully 
automatic, just hang the REP prefix ahead of it. What REP does is beautifullv simple- it  
sets up the tightest of all tight loops completely inside the CPU, and fires copies of AX 
into memory repeatedly (hence its name), incrementing DI by 2 each time and 
decrementing CX by 1, until CX is decremented down to 0. Then it stops, and when the 
smoke clears you'll see that your whole destination string, however large, has been filled 
with copies of AX.
Man, now that's programming!
 
The following macro sets up and triggers REP STOSW to clear the video refresh buffer. 
The Clear macro was designed to be used with the block of video information variables 
initialized by the VidCheck procedure I described in Chapter 9- It needs to be passed a 
far pointer (which is nothing more than a a full 32-bit address consisting of a segment 
and an offset laid end to end) to the video refresh buffer, the word value to be blasted 
into the buffer, and the size of the buffer in bytes.
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Don't let the notion of a far pointer throw you. It's jargon you're going to hear again and 
again, and this was a good point to introduce it. A pointer is an address, quite simply. A 
near pointer is an offset address only, used in conjunction with some value in some 
segment register that presumably doesn't change. A far pointer is a pointer that consists 
of both a segment value and an offset value, both of which can be changed at any time, 
working together. The video refresh buffer is not usually part of your data segment, so if 
you're going to work with it, you're probably going to have to access it with a far pointer, 
as we're doing here.
Note that most of Clear is setup work. The LES instruction loads both ES and DI with 
the address of the destination string. The screen atom (display character plus attribute 
value) is loaded into AX.
The handling of CX deserves a little explanation. The value in BufLength is the size, in 
bytes, of the video refresh buffer. Remember, however, that CX is assumed to contain 
the number of times that AX is to be machine gunned into memory. AX is a word, and a 
word is two bytes. So each time STOSW fires, two bytes of the video refresh buffer will 
be written to. Therefore, in order to tell CX how many times to fire the gun, we have to 
divide the size of the refresh buffer (which is given in bytes) by 2, in order to express the 
size of the refresh buffer in words.
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As I explained in Chapter 9, dividing a value in a register by 2 is easy. All you have to do 
is shift the value of the register to the right by one bit. This what the SHR CX,1 
instruction does: divides CX by 2.
 
STOSW and the Direction Flag DF
 
Note the CLD instruction in the Clear macro. I've avoided mentioning it until now to 
avoid confusing you. Most of the time you'll be using STOSW, you'll want to run it 
uphill in memory; that is, from a lower memory address to a higher memory address. In 
Clear, you put the address of the start of the video refresh buffer into ES and DI, and 
then blast character/attribute pairs into memory at successively higher memory 
addresses. Each time STOSW fires a word into memory, DI is incremented twice to 
point to the next higher word in memory.
This is the logical way to work it, but it doesn't have to be done that way. STOSW can 
just as easily begin at a high address and move downward in memory. On each store into 
memory, DI can be decremented by two instead.
Which way STOSW fires—uphill toward successively higher addresses, or downhill 
toward successively lower addresses, is governed by one of the flags in the Flags 
register. This is the Direction flag (DF). DF's sole job in life is to control the direction of 
certain instructions that, like STOSW, can move in one of two directions in memory. 
Most of these (like STOSW) are string instructions.
The sense of DF is this: when DF is set (that is, when DF has the value 1) STOSW and 
its fellow string instructions work downhill, from higher to lower addresses; when DF is 
cleared (that is, when DF has the value 0) STOSW and its brothers work uphill from 
lower to higher addresses. This in turn is simply the direction in which the DI register is 
adjusted: when DF is set, DI is decremented; when DF is cleared, DI is incremented.
The Direction flag defaults to 0 when the CPU is reset. You can change the DF value in 
one of two ways: with the CLD instruction, or with the STD instruction. CLD clears DF, 
and STD sets DF. (You should keep in mind when debugging that the POPF instruction 
can also change DF, by popping an entire new set of flags from the stack into the Flags 
register.) It's always a good idea to place either CLD or STD right before a string 
instruction to make sure that your machine gun fires in the right direction!
People sometimes get confused and think that DF also governs whether CX is 
incremented or decremented by the string instructions. Not so! Nothing in a string 
instruction ever increments CX! You place a count in CX and it counts down, period. DF 
has nothing to say about it.
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The Clear macro is part of the MYLIB.MAC macro library on the listings diskette for 
this book. As you build new macro tools, you might place them in MYLIB.MAC as 
well.
 

10.3 The Semiautomatic Weapon: STOSW without 
REP
 
I chose to show you REP STOSW first because it's dramatic in the extreme. But even 
more, it's actually simpler to use REP than not to use REP. REP simplifies string 
processing from the programmer's perspective, because it brings the instruction loop 
inside the CPU. You can also use the STOSW instruction without REP, but it's a little 
more work. The work involves setting up the instruction loop outside the CPU, and 
making sure it's correct.
Why bother? Simply this: with REP STOSW, you can only store the same value into the 
destination string. Whatever you put into AX before executing REP STOSW is the 
value that gets fired into memory CX times. STOSW can be used to store different 
values into the destination string, by firing it semi-automatically, and changing the value 
in AX between each squeeze of the trigger.
Also, by firing each character individually, you can change the value in DI periodically 
to break up the data transfer into separated regions of memory instead of one contiguous 
area as you must with REP STOSW. This may be hard to picture until you see it in 
action. The SHOWCHAR program listing I'll present a little later will give you a 
f'rinstance that will make it instantly clear what I mean.
You lose a little time in handling the loop yourself, outside the CPU. This is because 
there is a certain amount of time spent in fetching the loop's instruction bytes from 
memory. Still, if you keep your loop as tight as you can, you don't lose a lot of speed.
 
Who Decrements CX?
Early in my experience with assembly language, I recall being massively confused about 
where and when the CX register was decremented when using string instructions. It's a 
key issue, especially when you don't use the REP prefix.
When you use REP STOSW (or REP with any of the string instructions) CX is 
decremented automatically, by 1, for each memory access the instruction makes. And 
once CX gets itself decremented down to 0, REP STOSW detects that CX is now 0, and 
stops firing into memory. Control then passes down to the next instruction in line. But 
take away REP, and the automatic decrementing of CX stops. So, also, does the 
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automatic detection of when CX has been counted down to 0.
Obviously, something has to decrement CX, since CX governs how many times the 
string instruction accesses memory. If STOSW doesn't do it—you guessed it—you have 
to do it somewhere else, with another instruction.
The obvious way to decrement CX is to use DEC CX. And the obvious way to 
determine if CX has been decremented to 0 is to follow the DEC CX instruction with a 
JNZ (Jump if Not Zero) instruction. JNZ tests the zero flag (ZF), and jumps back to the 
STOSW instruction until ZF becomes true. And ZF becomes true when a DEC 
instruction causes its operand (here, CX) to become 0.
 
The LOOP Instructions
 
With all that in mind, consider the following assembly-language instruction loop:

 
Ignore the block of instructions in the middle for the time being. What they do is what I 
suggested could be done a little earlier: change AX in between each store of AX into 
memory. I'll explain in detail shortly. Look instead (for now) to see how the loop runs. 
STOSW fires, AX is modified, and then CX is decremented. The JNZ instruction tests 
to see if the DEC instruction has forced CX to 0. If so, ZF is set, and the loop will 
terminate. But until ZF is set, the jump is made to the label DoChar, where STOSW 
fires yet again.
There is a simpler way, using a new instruction: LOOP. The LOOP instruction 
combines the decrementing of CX with a test and jump based on ZF. It looks like this:
 
DoChar:      STOSW                                                             ;   Note that there's  no REP prefix!
 
ADD         AL.'l'                                                       ;  Bump the character value in AL up by 1
 
AAA                                                                         ;  Adjust AX to make this a BCD addition
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ADD         AL.'O'                                                     ;  Basically,   put binary 3 in AL's  high nibble
 
MOV         AH,07                                                    ;  Make sure our attribute  is still  7
 
LOOP       DoChar                                                 ;  Go back & do another char until   CX goes 
to 0
 
The LOOP instruction first decrements CX by 1. It then checks ZF to see if the 
decrement operation forced CX to 0. If so, it falls through to the next instruction. If not 
(that is, if ZF remains 0, indicating that CX was still greater than 0) LOOP branches to 
the label specified as its operand.
So the loop keeps looping the LOOP until CX counts down to 0. At that point, the loop 
is finished, and execution continues with the next instruction following the loop.
 
Displaying a Ruler on the Screen
As a useful demonstration of when it makes sense to use STOSW without REP (but with 
LOOP) let me offer you another item for your video toolkit.
The Ruler macro shown below displays a repeating sequence of ascending digits, from 
1, at some selectable location on your screen. In other words, you can display a string of 
digits like this at the top of a window:
 
123456789012345678901234567890123456789012345678901234567890
 
allowing you to determine where in the horizontal dimension of the window a line begins 
or some character falls. The Ruler macro allows you to specify how long the ruler is, in 
digits, and where on the screen it will be displayed. A call to Ruler would look like this:
 
Ruler VidOrigin,20,80.l5,5
 
This invocation (assuming you had defined VidOrigin to be the address of the start of 
the video refresh buffer in your machine) places a 20-character long ruler at position 
15,5. The 80 argument indicates to Ruler that your screen is 80 characters wide. If you 
had a wider or narrower text screen, you would have to change the argument to reflect 
the true width of your screen in text mode.
Don't just read the code inside Ruler! Load it up into a copy of EAT5.ASM, and display 
some rulers on the screen. You don't learn half as much by just reading assembly code as 
you do by loading and using it!
Over and above the LOOP instruction, there's a fair amount of new assembly technology 
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at work here that could stand explaining. Let's detour from the string instructions for a bit 
and take a closer look.
 

Simple Multiplies with IMUL
 
Ruler can put its ruler anywhere on the screen, using the position passed as ScreenX 
and ScreenY. It's not using GotoXY, either. It's actually calculating a position in the 
video refresh buffer where the ruler characters must be placed— and then uses STOSW 
to place them there.
Locations in the video refresh buffer are always expressed as offsets from a single 
segment address that is either BOOOH or B800H. The algorithm for determining the 
offset in bytes for any given X and Y value looks like this:
Offset = ((Y X width in characters of a screen line) + X) x 2
Pretty obviously, you have to move Y lines down in the screen buffer, and then move X 
bytes over from the left margin of the screen to reach your X,Y position.
 
 
 
 
 
 
 
 
 
 
 
 
 ;          RULER                  Displays  a  "1234567890"-style ruler on  screen
 ;          Last update 11/25/91
 ;                      
 ;          Caller must pass:
 ;              In VidAddress:  The address of the start of the video buffer
 ;              In  Length:    The length of the ruler to be displayed
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The trickiest part of implementing the algorithm lies in multiplying the Y value by the 
screen width. There is an instruction to do the job, IMUL, but it's a little quirky and (as 
assembly instructions go) not very fast.
It is, however, fast enough for what we're doing here, which is just positioning the ruler 
somewhere on the screen. The positioning only needs to be done once, not many times 
within a tight loop. So even if IMUL is slow as instructions go, when you only need to 
use it to set something else up, it's certainly fast enough.
IMUL always operates in conjunction with the AX register. In every case, the 
destination for the product value is AX, or else AX and DX for products larger than 
32,767.
On the 8086/8088 there are basically two variations on IMUL, and the difference 
depends on the size of the operands. If you are multiplying two 8-bit quantities, you can 
put one in AL and the other in some 8-bit register or memory location. The product will 
be placed in AX. If you are multiplying two 16-bit quantities, one can be placed in AX 
and one in a 16-bit register or memory location. The product from multiplying two 16-bit 
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quantities is too large to fit in a single 16-bit register, so the low-order 16 bits are placed 
in AX, and the high-order 16 bits are placed in DX. You have no control over the 
destination; it's either AX or AX:DX. Also, one of the operands must be in AL (for 8-bit 
multiplies) or AX (for 16-bit multiplies.) You have no control over that; it's impossible to 
multiply (for example) CX x BX, or DX x DS:[BX].
One very common bug you may commit when using IMUL is simply forgetting that 
when given 16-bit operands, IMUL changes the value in DX. The easiest way to avoid 
this problem is to use IMUL in its 8-bit mode whenever possible, which is when both 
multiplier and multiplicand are less than 256. If either operand is 16 bits in size, DX will 
be altered.
Here are some examples of the various legal forms of IMUL:
 
IMUL      BYTE  PTR  [BX]     ;  multiplies AL x byte  at  DS:[BX] 
IMUL      BH                            :  multiplies AL x BH
IMUL      WORD  PTR [BX]     ;  multiplies  AX  x word  at  DS:[BX] 
IMUL      BX                             :  multiplies AX x BX
 
In the first two lines, the destination for the product is AX. In the second two lines, the 
destination for the product is DX:AX
IMUL sets two flags in those cases where the product is larger than the two operands. 
The flags involved are the Carry flag (CF) and the Overflow flag (OF). For example, if 
you're multiplying two 8-bit operands and the product is larger than 8 bits, both CF and 
OF will be set. Otherwise, the two flags will be cleared.
Now, why the final multiplication by 2? Keep in mind that every character position in the 
screen buffer is represented by two bytes: One character byte and one attribute byte. So 
moving X characters from the left margin actually moves X x 2 bytes into the screen 
buffer. You might think of an 80-character line on the screen as being 80 characters long, 
but it's actually 160 characters long in the screen buffer, to account for the "invisible" 
attribute bytes. Multiplying by 2 is done using the SHL instruction (shift DI to the left 
by one bit). As I explained in Chapter 9, this is exactly the same as multiplying DI by 2.
 
The Limitations of Macro Arguments
 
There's another problem you will eventually run into if you're like most people. Given 
the macro header for Ruler
Ruler            MACRO VidAddress,Length,ScreenW,ScreenX,ScreenY
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you might be tempted to write something like this:
 
MOV   AL,ScreenY 
IMUL  ScreenW
 
No go! The assembler will call you on it, complaining of an illegal immediate. What 
went wrong? You can freely use constructions like these:
 
MOV AL.ScreenY 
ADD DI,ScreenX 
CMP AL,Length
 
All of these use arguments from the macro header. So what's that assembler complaining 
about? The problem here is that the IMUL instruction cannot work with immediate 
operands. And this isn't just a problem with IMUL: all instructions that cannot work 
with immediate operands will reject a macro argument under these circumstances.
And "these circumstances" involve the way that the macro is invoked. In the test file 
RULER.ASM, you'll see the following line, which invokes the macro to display a ruler:
 
Ruler    VidOrigin,20,80,50,10    ;   Draw ruler
 
Except for the video origin address argument, all of these arguments are numeric literals. 
A numeric literal, when used in an assembly-language instruction, is called immediate 
data. When the macro is expanded, the argument you pass to the macro is substituted 
into the actual instruction that uses a macro argument, just as you passed it to the macro.
In other words, if you pass the value 10 in the ScreenY argument of the instruction 
MOV AL,ScreenY, the instruction becomes MOV AL,10 once the macro is expanded 
by the macro assembler. Now, MOV AL,10 is a completely legal instruction. But if you 
pass the literal value 80 in the ScreenW argument, you cannot use IMUL ScreenW, 
because after expansion this becomes IMUL 80, which is not a legal instruction. IMUL 
does not operate on immediate data!
The problem is not that you're using macro arguments with IMUL. The problem is that 
you're passing a numeric literal in a macro argument to an instruction that doesn't work 
with immediate data.
What you have to remember (especially if you're familiar with languages like Pascal) is 
that macro arguments are not high-level language procedure parameters passed on the 
stack. They are simply text substitutions. If you had defined a variable in memory called 
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ScreenWidth using DB, stored the value 80 in it, and then passed ScreenWidth to 
Ruler as a macro argument, things would be different:
 
Ruler    VidOrigin,20,ScreenWidth,50,10     ;   Draw ruler
 
In this case, you could use the instruction IMUL ScreenW in Ruler, because IMUL 
ScreenW would be expanded to IMUL ScreenWidth, which is legal because 
ScreenWidth is a memory location.
I wrote Ruler as I did so that you could use numeric literals when invoking Ruler. Using 
literals saves memory by making memory variables unnecessary, and if you'd prefer to 
define a meaningful name for the screen width rather than hard coding the value 80 in the 
source (which is unwise) you can define a symbol called ScreenWidth as an equate. 
Equates are a little like miniature macros, and I'll deal with them a little later in this 
chapter.
 
Adding ASCII Digits
 
Once the correct offset is placed in the buffer for the ruler's beginning is calculated in DI, 
(and once we set up initial values for CX and AX) we're ready to start making rulers.
Immediately before the STOSW instruction, we load the ASCII digit T into AL. Note 
that the instruction MOV AL,'l' does not move the value 01 into AL! T is an ASCII 
character, and the character T (the "one" digit) has a numeric value of 31H, or 49 
decimal.
This becomes a problem immediately after we store the digit T into video memory with 
STOSW. After digit T we need to display digit '2', and to do that we need to change the 
value stored in AL from T to '2'.
Ordinarily, you can't just add T to T and get '2'. Adding 31H and 31H will give you 62H, 
which (when seen as an ASCII character) is lowercase letter 'b', not '2'! However, in this 
case the 8086/8088 instruction set comes to the rescue, in the form of a somewhat 
peculiar instruction called AAA, (Adjust AL after BCD Addition).
What AAA does is allow us, in fact, to "add" ASCII character digits rather than numeric 
values. AAA is one of a group of instructions called the BCD instructions, so called 
because they support arithmetic with binary coded decimal (BCD) values. BCD is just 
another way of expressing a numeric value, somewhere between a pure binary value like 
01 and an ASCII digit like T. A BCD value is a 4-bit value, occupying the low nybble of 
a byte. It expresses values between 0 and 9 only. It's possible to express values greater 
than 9 (from 9 through 15, actually) in four bits, but those additional values are not valid 
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BCD values. See Figure 10.1.
The value 31H is a valid BCD value, because the low nybble contains 1. Because BCD is 
a 4-bit numbering system, the high nybble (which in the case of 31H contains a 3) is 
ignored. In fact, all of the ASCII digits from '0' through '9' can be considered legal BCD 
values, because in each case the characters' low four bits contain a valid BCD value. The 
3 stored in the high four bits of each digit is ignored.
 

 
So if there were a way to perform BCD addition on the 86-family CPU, adding ASCII 
digits T and T would indeed give us '2' because T and '2' can be manipulated as legal 
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BCD values.
AAA (and several other instructions I don't have room to discuss here) give us that 
ability to perform BCD math. The actual technique may seem a little odd, but it does 
work. AAA is a sort of a fudge factor, in that you execute AAA after performing an 
addition using the "normal" addition instruction ADD. AAA takes the results of the ADD 
instruction and forces them to "come out right" in terms of BCD math.
AAA basically does these two things:
• It forces the value in the low four bits of AL (which could be any value from 0 
through F) to a value between 0 and 9 if it was greater than 9.
This is done by adding 6 to AL and then forcing the high nybble of AL to 0. Obviously, 
if the low nybble of AL contains a valid BCD digit, the digit in the low nybble is left 
alone.
• If the value in AL had to be adjusted, the adjustment indicates that there was a 
carry in the addition, and that AH was incremented. Also, the Carry flag (CF) is set 
to 1, as is the Auxiliary carry flag (AF). Again, if the low nybble of AL contained a valid 
BCD digit when AAA was executed, AH is not incremented, and the two carry flags are 
cleared (forced to 0) rather than set.
AAA thus facilitates base 10 (decimal) addition on the low nybble of AL. After AL is 
adjusted by AAA, the low nybble contains a valid BCD digit and the high nybble is 0. 
(But note well that this will be true only if the addition that preceded AAA was executed 
on two valid BCD operands!)
This allows us to add ASCII digits like T and '2' using the ADD instruction. Ruler does 
this immediately after the STOSW instruction:
 
ADD        AL,' I ’                     ;   Bump the character  value  in  AL up  by  1
AAA                                      ;  Adjust AX to make this a BCD addition
 
If prior to the addition, the contents of AL's low nybble were 9, adding '1' would make 
the value A, which is not a legal BCD value. AAA would then adjust AL by adding 6 to 
AL and clearing the high nybble. Adding 6 to OA would give 10, so once the high 
nybble is cleared the new value in AL would be 00. Also, AH would have been 
incremented by 1.
In Ruler we're not adding multiple columns, but instead are simply "rolling over" a count 
in a single column, and displaying the number in that column to the screen. Therefore we 
just ignore the incremented value in AH and use AL alone.
 
  Adjusting AAA's Adjustments
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There is one problem: AAA clears the high nybble to 0. This means that adding ASCII 
digits T and T doesn't quite equal '2', the displayable digit. Instead, AL becomes 02, 
which in ASCII is the dark "smiley face" character. To make AL a displayable ASCII 
digit again, we have to add 30H to AL. This is easy to do: Just add '0' to AL. The ASCII 
digit '0' has a numeric value of 30H, so adding '0' takes 02H back up to 32H, which is the 
numeric equivalent of the ASCII digit '2'. This is the reason for the ADD AL,'0' 
instruction that immediately follows AAA.
There's a lot more to BCD math than what I've explained here. When you want to 
perform multiple-column BCD math, you have to take carries into account, which 
involves the Auxiliary Carry flag (AF). There are also the AAD, AAM, and AAS 
instructions for adjusting AL after BCD divides, multiplies, and subtracts, respectively. 
The same general idea applies: all the BCD adjustment instructions force the standard 
binary arithmetic instructions to "come out right" for BCD operands.
And yet another problem: AAA increments AH whenever it finds a value in the low 
nybble of AL greater than 9. In Ruler, AH contains the text attribute we're using to 
display our ruler, and if AH is incremented, the attribute will change and we'll end up 
displaying parts of the ruler in different colors. This is why we have to do one last 
adjustment to AAA's adjustments: we must reassert our desired text attribute in AH, each 
time we change the ASCII digit in AL.
An interesting thing to do is comment out the ADD AL,'0' instruction in the Ruler 
macro and then run the RULER.ASM test program. Another interesting thing to do 
(especially if you work on a color screen) is to comment out the MOV AH,07 instruction 
in Ruler and then run RULER.ASM. Details count, big time!
 
Ruler's Lessons
 
The Ruler macro is a good example of using STOSW without the REP prefix. We have 
to change the value in AX every time we store AX to memory, and thus can't use REP 
STOSW. Note that nothing is done to ES:DI or CX while changing the digit to be 
displayed, and thus the values stored in those registers are held over for the next 
execution of STOSW. Ruler is a good example of how LOOP works with STOSW to 
adjust CX downward and return control to the top of the loop. LOOP, in a sense, does 
outside the CPU what REP does inside the CPU: adjust CX and close the loop. Try to 
keep that straight in your head when using any of the string instructions!
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10.4 Storing Data to Discontinuous Strings
 
Sometimes you have to break the rules. Until now I've been explaining the string 
instructions under the assumption that the destination string is always one 
continuous sequence of bytes in memory. This isn't necessarily the case. In 
addition to changing the value in AX between executions of STOSW, you can change 
the destination address as well. The end result is that you can store data to several 
different areas of memory within a single very tight loop.
 
Displaying an ASCII Table in a Big Hurry
 
I've created a small demo program to show you what I mean. It's not as useful a tool as 
the Ruler macro, but it makes its point and is easy to understand. The SHOWCHAR 
program clears the screen and shows a table containing all 256 ASCII characters, neatly 
displayed in four lines of 64 characters each. The table includes the "undisplayable" 
ASCII characters corresponding to the control characters whose values are less than 32. 
They are displayable from SHOWCHAR because the program writes them directly into 
video memory. Neither DOS nor BIOS are "aware" of the display of the control 
characters, so they have no opportunity to interpret or filter out those characters with 
special meanings.
SHOWCHAR.ASM introduces a number of new concepts and instructions, all related to 
program loops. (String instructions like STOSW and program loops are intimately 
related.) Read over the main body of the SHOWCHAR.ASM program carefully. We'll 
go over it idea by idea through the next several pages.
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The Nature of Equates
 
You might remember (and it wouldn't hurt to go back and take another look) how we 
calculated the offset from the beginning of the video refresh buffer to the memory 
location corresponding to an arbitrary X,Y position on the screen. We used the ADD 
instruction, along with the SHL instruction to multiply by 2. There is another way to 
perform calculations of that general sort in assembly work: let the assembler do them, 
while the program is being assembled. Take a look at the line below, lifted from 
SHOWCHAR.ASM:
 
ADD        DI ,ScrnWidth*LinesDown*2   ;  Start table display down  a ways
 
  This is new indeed. What can we make of this? What sort of an operand is 
ScrnWidth*LinesDown*2?
 
 The answer is that it's a simple integer operand, no different from the value 12, 169, or 
15324.
The key is to go back to SHOWCHAR and find out what ScrnWidth and LinesDown 
are. You might have thought that these were variables in memory, defined with the DW 
directive. Instead, they're something we haven't really discussed in detail until now: 
equates. Equates are defined with the EQU operator, and if you find yourself confused 
over the differences between EQU and DW, don't despair. It's an easy enough thing to 
do.
One road to understanding harkens back to the Pascal language. What is the difference 
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between a variable and a simple constant? A variable is located at one and only one 
particular place in memory. A simple constant, on the other hand, is a value "dropped 
into" the program anywhere it is used, and exists at no particular place in memory. 
Simple constants are used mostly in expressions calculated by the compiler during 
compilation.
It's the same thing here. The DW and DB directives define and set aside areas of memory 
for storage of data. A DW exists somewhere at some address, and only exists in one 
place. The EQU directive, by contrast, is a symbol you define mostly for the assembler's 
use. It sets aside no memory and has no particular address. Consider this line from 
SHOWCHAR:
 
LinesDown     EQU       4         ;   Number of  lines  down  to start ASCII  table
 
The value defined as LinesDown exists at no single place in the SHOWCHAR program. 
It allocates no storage. It's actually a notation in the assembler's symbol table, telling the 
assembler to substitute the value 4 for the symbol LinesDown, anywhere it encounters 
the symbol LinesDown. The same is true of the equates for ScrnWidth and LineLen.
When the assembler encounters equates in a program, it performs a simple textual 
substitution of the values assigned to the symbol defined in the equate. The symbol is 
dumped, and the value is dropped in. Then assembly continues, using the substituted 
values rather than the symbols. In a very real sense, the assembler is pausing to alter the 
source code when it processes an equate, then picks up its assembly task again. This is 
exactly what happens when the assembler processes a macro, by the way.
An example may help. Imagine that the assembler is assembling SHOWCHAR.ASM, 
when it encounters the following line:
 
ADD        DI,ScrnWidth*LinesDown*2   ;   Start table display down a ways
 
It looks up ScrnWidth and LinesDown in its symbol table, and discovers that they are 
equates. It then calls time out from assembling, and processes the two equates by 
substituting their values into the line of source code for their text symbols. The line of 
source code changes to the following:
 
ADD        01,80*4*2                                ;   Start table display down a ways
 
Assembly-Time Calculations
But in assembling the line shown above, the assembler has to pull another trick out of its 
hat. It has to be able to deal with the expression 80*4*2. We've not seen this before in 
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our discussions, but the assembler happily parses the expression and performs the math 
exactly as you would imagine: it cooks 80*4*2 down to the single integer value 640. It 
then performs another substitution on the line in question, which finally cooks down to 
this:
 
ADD         01,640         ;   Start table display down  a ways
 
At last, the line becomes an utterly ordinary line of assembly-language code, which is 
turned to object code in a trice.
    So the assembler can in fact do a little math on its own, quite apart from the arithmetic 
instructions supported by the CPU. This is called assembly-time math, and it has some 
very important limitations:
• Assembly-time calculations can only be done on values that are fixed
and unambiguous at assembly-time. This most pointedly excludes the contents of 
variables. Equates are fine. DBs, DWs, and DDs are not. Variables are empty containers 
at assembly time; just buckets into which values will be thrown at runtime. You can't 
perform a calculation with an empty bucket!
• Assembly-time calculations are performed once, at assembly-time, and cannot be 
recalculated at runtime for a different set of values. This should be obvious, but it's easy 
enough to misconstrue the nature of assembly-time math while you're a beginner.
 
Let me point out an importance consequence of the use of assembly-time math in 
SHOWCHAR. In SHOWCHAR, the ASCII table is displayed four lines down from the 
top of the screen, at the left margin. Now, what do we need to do to allow the ASCII 
table to be moved around the screen at runtime?
Oh, not much, just rewrite the whole thing.
I'm not being trying to be funny. That's the price you pay for the convenience of 
assembly-time calculation. We baked the screen position of the ASCII table into the 
program at the source code level, and if we wanted to parameterize the position of the 
ASCII table we'd have to take a whole different approach, and do what we did with 
RULER.ASM: use the IMUL instruction to perform the multiplication that calculates 
the offset into the screen buffer, at runtime.
We can change the LinesDown equate in SHOWCHAR.ASM to have a value of 6 or 
10—but we then have to reassemble and relink SHOWCHAR for the change to take 
effect. The calculation is done only once, at assembly time. Thereafter, as long as we use 
the resulting .EXE file, the ASCII table will be the number of lines down the screen that 
we defined in the LinesDown equate.
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Assembly-time calculations may not seem as useful now, in the light of these restrictions. 
However, they serve a purpose that may not be immediately obvious: they make it a little 
easier for us to read the sense in our own source code. We could have just skipped the 
equates and the assembly-time math, done the math in our heads and written the line of 
code like this:
 
ADD        DI.640          ;   Start table display down a ways
 
How obvious is it to you that adding 640 to DI starts the display of the table down the 
screen by four lines? Using equates and assembly-time math builds the screen-
positioning algorithm into the source code, right there where it's used.
Equates and assembly-time math cost you nothing in terms of runtime speed or memory 
usage. They do slow down the assembly process a little, but the person who uses your 
programs never knows that—and it's the user that you want to wow with your assembly-
language brilliance. And anything that makes your own source code easier to read and 
modify is well worth the minuscule extra time it takes to assemble.
 
Nested Instruction Loops
 
Once all the registers are set up correctly according to the assumptions made by 
STOSW, the real work of SHOWCHAR is performed by two instruction loops, one 
inside the other. The inner loop displays a line consisting of 64 characters. The outer loop 
breaks up the display into four such lines. The inner loop is by far the more interesting of 
the two. Here it is:
 
DoChar:       STOSW                           ;   Note that there's no REP prefix!
JCXZ        AllDone                                                ;   When the full   set  is  printed,  quit
INC          AL                                                           ;   Bump the character value in AL up by 1
DEC           BL                                                        ;   Decrement the line counter by one
LOOPNZ    DoChar                                              ;   Go back & do another char until   BL goes 
to 0
 
The work here (putting a character/attribute pair into the video buffer) is again done by 
STOSW. Once again, STOSW is working solo, without REP. Without REP to pull the 
loop inside the CPU, you have to set the loop up yourself.
Keep in mind what happens each time STOSW fires: the character in AX is copied to 
ES:DI, And DI is incremented by 2. At the other end of the loop, the LOOPNZ 
instruction decrements CX by 1 and closes the loop.
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During register setup, we loaded CX with the number of characters we wanted to 
display—in this case, 256. Each time STOSW fires, it places another character on the 
screen, and there is one less character left to display. CX acts as the master counter, 
keeping track of when we finally display the last remaining character. When CX goes to 
0, we've displayed the full ASCII character set and the job is done.
 
Jumping When CX Goes to 0
 
Hence the instruction JCXZ. This is a special branching instruction created specifically 
to help with loops like this. Back in Chapter 9, I explained how it's possible to branch 
using one of the many variations of the JMP instruction, based on the state of one of the 
machine flags. Earlier in this chapter, I explained the LOOP instruction, which is a 
special purpose sort of a JMP instruction, one combined with an implied DEC CX 
instruction. JCXZ is yet another variety of JMP instruction, but one that doesn't watch 
any of the flags or decrement any registers. Instead, JCXZ watches the CX register. 
When it sees that CX has just gone to 0, it jumps to the specified label. If CX does not 
contain an 0 value, execution falls through to the next instruction in line.
In the case of the inner loop shown above, JCXZ branches to the "close up shop" code 
when it sees that CX has finally gone to 0. This is how the SHOWCHAR program 
terminates.
Most of the other JMP instructions have "partners" that branch when the governing flag 
is not true. That is, JC (Jump on Carry) branches when the Carry flag equals 1. Its 
partner, JNC (Jump on Not Carry), jumps if the Carry flag is not I.
However, JCXZ is a loner. There is no JCXNZ instruction, so don't go looking for one 
in the instruction reference!
 
Closing the Inner Loop
 
Assuming that CX has not yet been decremented down to 0 by the STOSW instruction, 
(a condition watched for by JCXZ) the loop continues, and AL is again incremented by 
1. This is how the next ASCII character in line is selected. The value in AX is sent to the 
location at ES:DI by STOSW, and the character code proper is stored in AL. If you 
increment the value in AL, you change the displayed character to the next one in line. 
For example, if AL contains the value for the character A (65), incrementing AL changes 
the A character to a B (66) character. On the next pass through the loop, STOSW will 
fire a B at the screen instead of an A.
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Why not just increment AX? The AH half of AX contains the attribute byte, and we do 
not want to change that. By explicitly incrementing AL instead of AX, we ensure that 
AH will never be altered.
After the character code in AL is incremented, BL is decremented. Now, BL is not 
directly related to the string instructions. Nothing in any of the assumptions made by the 
string instructions involves BL. We're using BL for something else entirely here; BL is 
acting as a counter that governs the length of the lines of characters shown on the screen. 
BL was loaded earlier with the value represented by LineLen; here, 64. On each pass 
through the loop, the DEC BL instruction decrements the value of BL by 1. Then the 
LOOPNZ instruction gets its moment in the sun.
LOOPNZ is a little bit different from our friend LOOP that we examined earlier. It's 
just different enough to get you into trouble if you don't truly understand how it works. 
Both LOOP and LOOPNZ decrement the CX register by 1: LOOP watches the state of 
the CX register, and closes the loop until CX goes to 0; LOOPNZ watches both the state 
of the CX register and the state of the Zero flag (ZF). (LOOP ignores ZF.) LOOPNZ 
will only close the loop if CX <> 0 and ZF = 0. In other words, LOOPNZ closes the 
loop only if CX still has something left in it, and if the ZF is not set.
 
So what exactly is LOOPNZ watching for here? Remember that immediately prior to the 
LOOPNZ instruction, we're decrementing BL by 1 through a DEC BL instruction. The 
DEC instruction always affects ZF. If DEC's operand goes to 0 as a result of the DEC 
instruction, ZF goes to 1 (is set). Otherwise, ZF stays at 0 (remains cleared). So in effect, 
LOOPNZ is watching the state of the BL register. Until BL is decremented to 0 (setting 
ZF) LOOPNZ closes the loop. After BL goes to 0, the inner loop is finished and 
execution falls through LOOPNZ to the next instruction.
What about CX? Well, LOOPNZ is watching CX—but so is JCXZ. JCXZ is actually 
the switch that governs when the whole loop—both inner and outer portions—have done 
their work and must stop. So while LOOPNZ does watch CX, somebody else is doing 
that task, and that somebody else will take action on CX before LOOPNZ can. 
LOOPNZ's job is thus to decrement CX, but to watch BL. It governs the inner of the 
two loops.
 
Closing the Outer Loop
 
But does that mean JCXZ closes the outer loop? No. JCXZ tells us when both loops are 
finished. Closing the outer loop is done a little differently from closing the inner loop. 
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Take another look at the two nested loops:
 
 
 
 
DoLine:   MOV    BL,LineLen   ;Each  line will   consist of 64 characters
DoCHar:       STOSW                            ;Note that there's no REP prefix!
        JCXZ        AllDone                        ; When the full   set is  printed,  quit 
        INC           AL                    ;Bump the character value  in AL up by  1 
       DEC           BL                    ;Decrement the line counter by 1 
       LOOPNZ     DoChar                       ;Go back & do another char until  BL goes to 0 

ADD           DI, (ScrnWidth -LineLen)*2      ; Move DI to start of next line 
JMP           DoLine             ;Start display of the next  line

 
 
The inner loop is considered complete when we've displayed one full line of the ASCII 
table to the screen. BL governs the length of a line, and when BL goes to 0 (which the 
LOOPNZ instruction detects) a line is finished. LOOPNZ then falls through to the 
ADD instruction that modifies DI.
We modify DI to jump from the end of a completed line to the start of the next line at the 
left margin. This means we have to "wrap" by some number of characters from the end 
of the ASCII table line to the end of the visible screen. The number of bytes this requires 
is noted by the assembly-time expression (ScrnWidth-LineLen)*2. This expression is 
basically the difference between the length of one ASCII table line and the width of the 
visible screen. Remember that each character position is actually represented by both a 
character and an attribute byte in the video refresh buffer, thus the *2 portion of the 
expression. The result of the expression is the number of bytes we must move into the 
video refresh buffer to come to the start of the next line at the left screen margin.
But after that "wrap" is accomplished by modifying DI, the outer loop's work is done, 
and we close the loop. This time, we do it unconditionally, by way of a simple JMP 
instruction. The target of the JMP instruction is the Doline label. No ifs, no arguments. 
At the top of the outer loop, (represented by the DoLine label) we load the length of a 
line back into the now-empty BL register, and drop back into the inner loop. The inner 
loop starts firing characters at the screen again, and will continue to do so until JCXZ 
detects that CX has gone to 0.
At that point, both the inner and outer loops are finished, and the full ASCII table has 
been displayed. SHOWCHAR's work is done, and it terminates.
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SHOWCHAR.ASM Recap
 
Let's look back at what we've just been through. SHOWCHAR.ASM contains two 
nested loops. The inner loop shoots characters at the screen via STOSW. The outer loop 
shoots lines of characters at the screen, by repeating the inner loop some number of times 
(here, 4).
The inner loop is governed by the value in the BL register, which is initially set up to 
take the length of a line of characters (here, 64). The outer loop is not explicitly governed 
by the number of lines to be displayed. That is, you don't load the number 4 into a 
register and decrement it. Instead, the outer loop continues until the value in CX goes to 
0, indicating that the whole job is done.
Both the inner and outer loops modify the registers that STOSW works with. The inner 
loop modifies AL after each character is fired at the screen. This makes it possible to 
display a different character each time STOSW fires. The outer loop modifies DI (the 
destination index register) each time a line of characters is complete. This allows us to 
break the destination string up into four separate, non continuous lines.
 
The Other String Instructions
 
STOSW is only one of the several string instructions in the 86-family instruction set. I 
would have liked to cover the others here, but space won't allow, in this edition, at least. 
In particular, the MOVSW instruction (Move String by Word) is useful, because it 
allows you to copy entire regions of memory from one place to another, screamingly fast, 
and with only a single instruction:
 
REP  MOVSW
 
You probably understand enough about string instruction etiquette now to pick up 
MOVSW yourself from an assembly-language reference. All of the same register 
conventions apply, only with MOVSW you're working with both the source and 
destination strings at the same time.
 
I felt it important to discuss not only the string instructions, but their supporting cast of 
characters: LOOP, LOOPNZ, and JCXZ. Individual instructions are important, but not 
nearly as important as the full context within which they work. Now that you've seen 
how STOSW is used in non REP loops, you should be able to apply the same 
knowledge to the other string instructions as well.
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Further Research: Building Your Assembly-Language Video Toolkit
 
Video is important—it's the fundamental way your programs communicate with their 
users. Fast video is essential, and BIOS-based video fails in that regard. The Clear and 
Ruler macros are good examples of just how fast video routines can be made with solid 
knowledge of assembly language.
You have the fundamentals of a really good and extremely fast toolkit of video routines 
for your assembly-language programs. To get some serious practice in assembly-
language design and implementation, it's up to you to fill that toolkit out.
Here's a list of some of the new routines you should design and perfect for your video 
toolkit:
 
• WriteFast        A routine to move a string of characters from your data segment to the 
visible display buffer. You can do this easily using instructions we've discussed so far. A 
suggestion: use the LOOP instruction for an easy time of it, or research the MOVSW 
instruction for a trickier—but much faster—routine.
• WritelnFast    Like WriteFast, but moves the hardware cursor to the begin-
ning of the following line after the write. If the write is to the bottom line on the screen, 
scroll the screen using INT 10 BIOS calls, or for more speed, MOVSW.
• WriteDown    A routine to move a string of characters from the data segment
to the visible display buffer, only vertically. This is useful for displaying boxes for 
menus and other screen forms, using the PC's line drawing characters. 
SHOWCHAR.ASM gives you a hint as to how to approach this one.
• DrawBox        Using WriteFast and WriteDown, create a routine that draws
a box on the screen. Allow the programmer to specify whether it is made of single-line or 
double-line line-drawing characters.
• GetString        A delimited field-entry routine. Delineate a field, by highlighting
the background or framing a portion of a line with vertical bar characters, and allow the 
user to move the cursor and enter characters within the bounds of the field. When the 
user presses Enter, return the entered characters to a buffer somewhere in the data 
segment. This is ambitious and might require seventy or eighty instructions, but it's likely 
to be a lot of fun.
 
Getting your video tools in order will allow you to move on to other, more involved 
subjects like file I/O and interface to the serial and parallel ports. "Real" assembly-
language programs require all these things, and you should strive to create them as small, 

file:///E|/TEMP/Chapter%2010%20Assembly%20Language.htm (32 of 33) [9/30/02 09:08:39 PM]



file:///E|/TEMP/Chapter%2010%20Assembly%20Language.htm

easily read and understood toolkit-style procedures and macros. Create them so that they 
call one another rather than duplicating function—assembly language is difficult enough 
without creating routines that do the same old things over and over again.
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  I sometimes think back with some wonderment at the fact that I replaced the carburetor of my 
first car (a 1968 Chevelle I called "Shakespeare") in front of my mother's house on a freezing, 
windy day in January of 1974. All this without shelter of any kind, with marginal tools, and with 
no light but the light from the sky. I had never done it before, but it worked right the first time, 
and I saved a bundle of money that I didn't have anyway.
One reason that I call my 1984 Plymouth Voyager the "Magic Van" is that, having looked 
carefully under the hood, I can only conclude that the damned thing runs by magic. I don't think I 
could replace the carburetor on the Magic Van. If pressed, I'm not even sure I could open the 
hood and show you where it was. (I'm not, in fact, quite certain that cars even have carburetors 
anymore!)
This is one reason that I bought a restorable 1969 Chevelle this past winter. I'm not an auto 
mechanic and have no desire to be, but I enjoyed repairing Shakespeare and tuning him up, 
because it was simple and straightforward and required no greater skill than I cared to learn.
The point I want to make here is that the game of repairing cars has changed drastically since 
1968. What was once a simple matter of aligning a timing mark on a pulley with a scratch on the 
engine block has now become a coordinated effort of getting a half dozen embedded 
microcontrollers to send signals to complicated electromechanical components at all the correct 
times. It would take me years to learn how to do all that, and I'd really rather be programming or 
building radios.
Similarly, the game of programming has begun to change drastically since the end of the 1980s. 
What I've described in this book so far has been necessary groundwork that everyone should 
learn in becoming an effective PC programmer. However, until fairly recently, the situation I 
described in this book has been pretty much the whole story. There was the 8088/8086 CPU and 
its instruction set, segmented memory, and DOS. If you learned only that (and learned it 
completely and well, of course), you could write significant software in assembly that was the 
equal of what you could buy on the open market.
Times change. As with my poor Chevelle, the programs I wrote in the middle 1980s now seem 
modest to the point of being quaint. Big things have been happening to the PC since 1989 or so, 
and those changes are by no means complete. They involve both hardware and software, and 
extend to the core of the assumptions we make when we place machine instructions together on 
the screen.

This is the final chapter in this book, and I did not want to leave you with a false impression of 
having "learned it all." There is more, much more to be done. The topics I'll mention here could 
be addressed in whole volumes. At best, I can give you your bearings. Hold on to your 
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chair—but let's go.

11.1 A Short History of the CPU Wars
 
 I wrote most of the first edition of this book in 1988, which (as I've suggested above) was a 
much simpler time. The 80286 microprocessor was the standard CPU, but almost nobody used 
its special features. It was (and is) used almost exclusively as a fast 8088. The 80386 was around 
(I jumped in quick and have had one since the end of 1986), but it was still considered a little 
exotic and was usually pretty expensive. Like the 286, the 386 sat on most people's desks as an 
even faster 8088.
All this changed in 1990. The most signficant event of that year was the appearance of a second 
source for Intel's 80386 CPU chip. American Micro Devices (AMD) announced a 386 clone, 
under a contract with Intel that allowed them to second source Intel CPUs. Intel claimed the 
contract didn't apply to the 386. They sued—and lost. AMD's 386 didn't hit the market in 
quantity until early 1991, but its effect on Intel was immediate: they started cutting prices on the 
386 to make AMD's clone less profitable.
 
Free Fall
 
Suddenly, prices on 386 machines went into free fall. Intel's low-cost 386SX chip appeared in 
quantity (it was designed as a "286 killer" to take the profit out of AMD's 286 product line), 
accelerating the plunge in prices. CPU speeds, which had initially been stuck at 16 or 20 Mhz, 
suddenly started creeping up, first to 25 Mhz, and then to 33 Mhz. RAM prices, which had been 
high at the end of the 1980s, started to plunge as well. By the beginning of 1991, the standard 
business desktop machine was a 25 Mhz 386 with four megabytes of RAM—often more. The 
somewhat slower 386SX machines muscled into the "home and personal use" niche previously 
held by the 80286, and the 80286 came to be seen as a "kiddie" machine—probably because 
America's dads gave their 286s to Junior when their Taiwan 386SX boxes arrived.
What happened to the 8088s? I'm not sure. I suspect a lot of them are in closets, up there on the 
second shelf with a busted VCR atop them, and the ratty guest quilt thrown over the pile until 
Uncle Mack pays another visit.
It may be true that you still have one, and are still using one-—but this is getting less likely all 
the time. I've found that most people who have the will to try programming have long become 
impatient with the 8088 and moved on to something faster—especially now that you can buy a 
complete 386SX machine at Price Club for less than $1000.
 
Meet the New Boss
 
In late 1990, Intel finally turned loose their long-in-coming 80486 CPU, which was even 

file:///E|/TEMP/CHapter%2011%20complete.htm (3 of 30) [9/30/02 09:20:31 PM]



file:///E|/TEMP/CHapter%2011%20complete.htm

faster than a fast 80386—and the newcomer initiated yet another shuffle down in prices 
and status. The 486 is now "The Boss" on corporate desktops, and more and more programmers 
are picking them up as well. The 386 and the 286 have taken a bump down in status, and the 
8088—well, when you're on the bottom, how much farther down can you go? I've seen genuine 
IBM PC systems on sale for as little as $200 on the used market. The no-name, 8088-based XT 
clones are considered by most used office equipment dealers to have little if any value at all.
How long will the 486 stay on top? That depends on how quickly Intel perfects and releases their 
80586 CPU chip. The process will proceed as it has proceeded since the early 1980s—only with 
less and less time between cycles.
So where are we today, in the early 1990s? Published figures indicate that there are about 
70,000,000 "countable" PC-type machines in the world. By countable they mean manufactured 
by firms who are well-known in the industry and release figures on sales. There is, however, 
another component to the world PC marketplace: the uncounted and uncountable clone boxes 
assembled here in the US and elsewhere by small, often family firms and sold in small shops and 
through the mail. Anybody who scopes out the import process can boat in a container lot of 
motherboards, clone cabinets, and other parts, and be selling completed and tested systems at the 
next neighborhood "computer swap meet."
How many of these are there? Maybe 25,000,000 worldwide. Maybe more. Nobody has any way 
to be sure. Those who talk about the battle between the PC and other machines like the 
Macintosh or Amiga are thinking most wishfully. The battle is over. The PC won by at least 
80,000,000 votes.
 
11.2 Opening Up the Far Horizon
 
I've gone through this exercise to point up a fact few people ponder much: the 8088 is now the 
minority player in the PC world. Absolutely no more than a third of the world's PCs sport 8088 
CPUs, and the proportion is probably closer to 20% or 25%. Again, because of the nature of the 
PC business, nobody has any way to be sure. (And the proportion of active 8088 PCs is even 
smaller— don't forget what's under the busted VCR on the closet shelf!)
 
DOS Extenders
 
Something else that came into its own in 1990 was the DOS extender. DOS extenders are 
extremely clever programs that place the "extra" features of the 286, 386, and 486 at the disposal 
of DOS programs. By necessity, DOS extenders exclude machines based on the 8086 and 8088.
What the more advanced processors bring to the table is more memory (lots more) and 
something called protected mode, which radically alters the programmer's view of the memory 
system. It won't be possible for me to explain in detail the mechanics of extended memory or 
protected mode in this book. The important thing to understand now is that with DOS extenders, 
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the 286, 386, and 486 CPUs are no longer just faster 8088s. Once you understand what they have 
to offer, you can do some amazing things at an assembly-language level.
Most amazing is release from the tyranny of the 64K segment. A segment in 386 protected mode 
can be as large as 4 gigabytes—now that's a far horizon! This greatly simplifies dealing with 
really big data items, and also (because all of the code from a substantial program can exist in 
single moose of a code segment) simplifies program design and structure.
In short, when a DOS extender is in control of the machine, an application program can be much 
larger than the customary 640K of DOS memory, and can manipulate individual data items much 
larger than 64K.
 
Windows 3.0
 
1990's third and final blow to the past came in the form of Microsoft Windows 3.0 (Windows). 
Microsoft finally got both the big picture and the details right, and launched a graphics-oriented 
DOS shell that everyone seems to be able to agree on.
Windows is more than just a menuing replacement for the DOS prompt. Windows contains its 
own limited DOS extender technology, and programs written to make use of Windows' features 
can be much larger than ordinary DOS programs. Windows can also use the hardware 
multitasking features of the 386 to allow more than one program to run at once.
In a great many ways, Windows has changed the methodology of PC programming forever. 
Windows has an enormous influence over the shape of programs that run under it and use its 
services. This is in part because Windows defines literally hundreds of system calls to do all 
sorts of things, including graphics drawing, some file I/O, and nearly everything you would want 
to do to interface with the underlying machine.
This is good, because on the flipside, Windows demands that you use its services and not just go 
out to the hardware and grab whatever you want, whenever you want it. Nor is Windows just 
being snotty. Whenever you put two programs in a single machine (somewhat like two tomcats 
in a closet) there is the potential for some bloody fights. Two programs cannot write blithely to 
the same place in memory at the same time, and Windows, as reluctant referee, demands that 
both programs submit to its set of rules for peaceful global coexistence.
 
Event-Driven Programming
 
But probably the most significant effect Windows has on the nature of programming is that it 
lays out a whole new conceptual model for how a program should work. This new model is 
called event-driven programming, and while Windows certainly placed it most brightly in the 
spotlight, other programming systems (like Turbo Vision and Smalltalk) have been using it for 
some time.
Event-driven programming is a complicated subject, and I'm not going to be able to cover it in 
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detail in this chapter. I would like to give you a flavor for it so that you can plan your future 
explorations as a programmer accordingly.
Event-driven programming is a consequence of our operating system getting smarter. DOS and 
Windows are gradually fusing into a new and more powerful operating system with far more 
capabilities than DOS's simple list of passive services that you call through a software interrupt. 
Most tellingly, Windows is now an active partner rather than a passive helper.
In the old world, your program was in the driver's seat, asking for assistance from DOS when in 
need. DOS remained passive but ready, not speaking until spoken to. In the old world, your 
program would go out and ask DOS, "Has the user pressed a key yet?" If a key had been pressed, 
DOS would meekly hand the key value up to your program and wait for further orders.
Windows, on the other hand, takes a far more active role. Although your program is still 
nominally calling the shots, Windows governs a lot more of the system, especially those parts of 
the system that interact with the user. Today, what Windows does is tap your program on the 
shoulder and say, "Hey boss, the user just pressed a key. What are you going to do about it?"
That press of a key or click of a mouse button is called an event, and the flow of control of the 
programs that run under Windows is dictated by the stream of events that the user sends from the 
keyboard and mouse to the program. The user has a lot more power under an event-driven 
system. No more is the user necessarily confined by a rigid menu structure within a single 
program. Now, with a single mouse click, the user can pre-emptively send the current program 
into the background and start up another one at will—and still return to the first program 
whenever he or she chooses.
In an event-driven program, the program and the platform (which is the new term for an 
operating system combined with a particular screen and keyboard management system like 
Windows) become nearly equal partners. The program calls on the platform for services, just as 
programs have been calling on DOS for years. But the platform also calls on the program to 
respond intelligently to things that happen within the platform, things like user-initiated events 
and critical errors. Program and platform thus speak back and forth continually, by way of a data-
handling protocol called message passing.
It sounds complicated, and it is. On the other hand, event-driven programming makes things 
possible that simply can't be done using older programming models. With Windows acting as an 
intelligent proctor, multiple programs can operate at once within the same machine, some in the 
foreground, some in the background, freely passing data back and forth among them. Windows 
standardizes the protocol for this data transfer, so that the process (while tricky) becomes one 
that every program can understand if it was built along the Windows model.
 
Windows and Assembly Language
 
Can Windows programs be written in assembly language? Of course. Never forget: assembly 
language is the language of the underlying machine, and any program that can execute on the 
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machine may be written in assembly language. The more important question is how much 
trouble that writing will be, and how much time it will take.
And that answer to that question is, a lot, and a long time. Higher-level languages like Pascal, 
Smalltalk, and C become a lot more compelling when you have to write complex code like that 
which speaks to platforms like Windows. An ambitious program like Word for Windows or 
Excel might take years to perfect in assembly language, even with a crack team of programmers 
sweating blood day and night over the project. And you just can't take years to write a program 
anymore. If you do, by the time your program is complete, the rules that you followed when you 
designed the program will no longer be valid when the program is ready to send to market. Your 
program will be obsolete before it's even finished.
That's the bad news. The good news is that parts of a Windows program can be written in 
assembly language, and the improved speed and compactness of the assembly portions may be 
able to give the program as a whole (which might have been written in Pascal or C) a serious 
competitive edge.
Windows includes support for a very handy feature called a dynamic link library (DLL), which is 
simply a collection of subroutines gathered into a file and loaded whenever they're needed. DLLs 
are vaguely similar to the overlays of times past, which were chunks of code left on disk because 
the whole program was too large to fit into memory at once. Just as the application would then 
load chunks of itself into a common area as it needed them (overwriting chunks in that area that 
it no longer needed), Windows loads a DLL into memory when the code inside the DLL is 
called. But unlike overlays, DLL code can be used by any Windows program that knows the 
standard Windows DLL calling conventions.
DLLs can be written in assembly language much more easily than entire Windows programs, 
and if you want to work under Windows but write assembly code, DLLs are a natural place to 
begin. Again, I can't explain how to write DLLs in this book (that's a fairly advanced topic), but I 
want to point out right now that it's certainly possible, and may be one way to make money 
programming in the Windows market. If you write a fast "engine" that accomplishes only one 
thing (say, data communications or database management) but accomplishes it very well, other 
Windows programmers may license the DLL containing your engine and use it to enhance their 
own Windows applications.
 
I do have some advice about Windows, however: learn to program it first from a higher-level 
language like Borland's Turbo Pascal for Windows. Learning assembly language is hard 
enough. Windows presents a lot of new concepts that are confusing enough without having to 
learn them at the very lowest level. Once you're fluent at creating Windows applications, use 
your assembly skills to replace time-critical portions of the code with optimized assembly-
language DLLs.
 
11.3 Using the "New" Instructions in the 80286
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This probably all sounds pretty grim from where you sit now, a novice assembly programmer 
with a desire to go further. Don't despair, though. It's not all bad news. Particularly, there are new 
registers and instructions in the 286, 386, and 486 that you can learn and use right now, without 
even going into protected mode. In the next several sections, I'll describe some of these new 
features and explain how you can use them.
 
Still 16 Bits
 
The 286 is a 16-bit processor. Inside of itself, it handles data in 16-bit chunks, and all of its 
registers are 16 bits wide, just like the 8086 and 8088. Furthermore, it can read and write data 
from and to the memory system 16 bits at a time. (To get 32-bit registers and 32-bit data 
transfers, you'll need to get a 386 or 486 machine.)
Now, people sometimes get confused about "how many bits" a processor "is." We call this value 
the data width of a CPU. Although I took up this issue briefly in Section 2.3, now might not be a 
bad time to expand on the question, because it will come up again with regard to the 386 and the 
386SX. The answer is ... well, it depends on your point of view.
The 286 is a 16-bit processor, both inside and out. Inside the CPU, data can be processed 16 bits 
at a time. This is made possible by virtue of the 286's general-purpose registers, (AX, BX, CX, 
and DX) which are all 16 bits wide. You can access the general-purpose registers by 8-bit halves 
(that is, by using CL and CH rather than CX), but the most you can put in any one register is 16 
bits.
There are people who define the data width of a CPU in terms of its general-purpose registers. In 
truth, however, this is a false indicator. What you really need to look for is the width of the data 
path that leads from inside the CPU out to the physical memory system.
The original CPU in the IBM PC was the 8088. Its general-purpose registers are all 16 bits wide. 
However, the 8088 can only move one byte at a time out to the memory system. The 8086 
(which was never much of a player in the PC world) can move 16 bits out to the memory system 
in a single operation.
 
This is a lot more important, functionally. It's a little like building a big boat in your basement. 
It's nice to have a big boat, sure—but if you have to dismantle it into several pieces every time 
you want to take it out to sail, you'll eventually conclude that its bigness is more of a bother than 
an advantage. Sooner or later, you're going to get a canoe and enjoy it a lot more.
Moving memory into and out of the CPU is one of the most time-consuming things the CPU can 
do. If at all possible, you want to minimize the number of "fetches" that the CPU must perform. 
The best way to do this is to choose a CPU with the greatest available data width. The 8086 is 
inherently faster than the 8088 because it can move twice the data into or out of the CPU chip in 
one operation.
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So why don't the CPU manufacturers just all make 128-bit CPUs (or wider!) and be done with it? 
Unfortunately, it's harder to manufacturer a "wide" CPU chip. Each of those bits has to go out to 
the outside world on a pin, (along with a great many other signals) and once you're into the 32-
bit world, you're talking a lot of pins. The 8088 fits comfortably on a 40-pin 1C (integrated 
circuit) package, but the 80386 has so many pins it looks like a bed of nails—a little ceramic 
square whose lower surface is nearly covered by gold pins. Inside the 1C package, each pin has 
to be connected to the physical silicon chip by a minuscule gold wire, which is difficult enough 
to do once, let alone literally a hundred or more times.
Wide CPUs cost more to make than narrow ones, because they're physically more difficult to 
manufacture. There's also more complication on the computer motherboard to support wide CPU 
chips, which further adds to the cost of the computer.
 
386DX vs. 386SX
 
In the late '80s, Intel released its 80386SX chip. Internally, the 386SX was a genuine 386—it had 
all the registers and instructions supported by the original 386 CPU. However, the 386SX moved 
data into and out of itself only 16 bits at a time, just like the 8086 and 286. This lowered the cost 
of the 386SX, which made it cheaper to incorporate into an actual computer. (Intel then renamed 
the "big" 386 the 386DX to make sure no one got them mixed up.)
So while 386-specific software will run perfectly well on the 386SX, it runs more slowly, 
because the CPU can only move 16 bits at a time, rather than 32. The 386DX is a 32-bit CPU 
that moves 32 bits to or from memory in one crack.
At this writing, Intel has released very little information about its as-yet-unannounced 586 CPU. 
Will it be a 64-bit CPU? We don't know yet, but it's unlikely. People whose opinions I respect 
believe that 32 bits is the optimum data width for a practical CPU. I suspect they may be 
wrong—but we'll know soon enough.
 
Pushing and Popping All the Registers at Once
 
The 286 added a pair of new instructions to its repertoire: PUSHA and POPA. These 
instructions move all the general-purpose registers to or from the stack in one blistering 
operation. The registers affected are AX, CX, DX, BX, SP, BP, SI, and DI.
PUSHA pushes these registers on the stack. You should keep in mind that the registers go onto 
the stack in the order listed above.
DI is the last register pushed onto the stack, and therefore will be the first popped off the stack 
when you go back to pop what you pushed.
Something else to keep in mind: the value of SP that is pushed onto the stack is the value that SP 
held before the PUSHA instruction began pushing everything onto the stack. Don't forget this if 
you intend to pop registers from the stack piecemeal after pushing the whole crew with PUSHA. 
If you do something like this, you'll be in for a surprise:
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POP DI 
POP SI 
POP BP 
POP SP
 
Why? The last instruction pops the saved value of SP back into SP. That value, remember, was 
the value SP had before PUSHA started to work. Once you use an individual POP instruction to 
pop the SP value off the stack, you 'II no longer be able to pop AX, BX, CX, and DX. The SP 
value pushed onto the stack points above the AX value pushed by PUSHA.
Most of the time, if you use PUSHA to push all the registers onto the stack, you'll use POPA to 
pop them off, again as one operation. POPA reverses what PUSHA did, and takes the values off 
the stack and plugs them into the registers in reverse order:
 
DI,   SI,   BP,   SP,   BX,   DX,   CX,   AX
 
POPA does something interesting: it simply pops and discards the value pushed onto the stack 
for SP. This prevents the problem I mentioned above with popping registers piecemeal after 
using PUSHA. So why push SP at all? In the very peculiar way CPU chips operate internally, it 
was probably easier to push SP on the stack and ignore the popped value that might have gone 
into SP than to leave SP out of the process entirely. It's just that PUSHA and POPA "step 
through" the registers, and it's easier to step through them all than to try and skip one.
So what are PUSHA and POPA good for? You might use them to "frame" a subroutine that 
makes heavy use of registers. If you push all the registers on entry to a subroutine, you can use 
all of the registers from inside the subroutine, and not worry about trashing something that the 
caller will need after you return from the subroutine. By pushing all of the general-purpose 
registers, you needn't worry about forgetting to save one or another before using it within that 
subroutine. It's only one instruction, so it adds very little bulk to your code, and it's excellent bug 
insurance.
PUSHA and POPA are also useful when writing interrupt service routines.
 
More Versatile Shifts and Rotates
 
PUSHA and POPA are entirely new instructions, present in the 286 and newer CPUs, but not 
present at all in the 8086 and 8088. However, not everything that's new with the 286 is a whole 
new instruction. Some of the 286's enhancements are improvements to existing instructions.
For my money, the best of these are enhancements to the shift and rotate instructions. There are 
six such instructions: SHL, SHR, ROL, ROR, RCL, RCR. (The instructions SAL and SAR are 
just duplicate names for SHL and SHR.) I dealt with the shift instructions in Chapter 9, as they 
exist on the 8088 and 8086. If you'll recall from that chapter, you can express the number of bits 
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by which to shift in one of two ways:
 
 
 
SHL AX.l       ;   Shift left  by  1
SHL AX.CL    ;  Shift left by number in CL
 
(The AX register is just for example's sake; obviously, you can replace AX here with any legal 
operand. Furthermore, this dicussion applies to any of the six shift/rotate instructions.) To shift 
an operand by 1 bit, you specify the literal value 1. To shift by any greater number of bits greater 
than 1, you must first load a count value into the CL register, and then use CL as the second 
operand. Well, this is how it is on the 8086/8088. Starting with the 286, you can drop the use of 
CL and use an immediate value (that is, a digit like 4 or 7) for shift values greater than 1. It 
becomes legal to use instructions that look like this:
 
SHL AX,4 
SHL BX,7
 
It's more than just convenience. Having to load CL with a shift value not only takes time, but it 
eats up code space as well (the MOV CL,4 or MOV CL,7 instructions have to go somewhere).
 
Limiting the Shift Count
 
The 286 and newer CPUs put another, much subtler twist on the shift and rotate instructions: 
they limit the shift count to 31. This will take a little explaining; I recall having trouble with it 
when I first encountered the 86-family instruction set.
 When you specify the shift count in CL, the assembler will permit you to use any value that will 
physically fit in CL. This means you can theoretically shift an operand by up to 255 bits, since 
the largest value you can load into 8-bit CL is 255, Aka 0FFH.
But think about that for a moment. What does it actually mean to shift an operand by 255 bits? 
The largest operand you can ever shift with any x86 CPU is only 32 bits wide. If you shift a 32-
bit operand by 32 or more bits in either direction, you're left with nothing but 0's in the operand, 
because all significant bits will be shifted completely out of the operand into nothingness. So for 
the shift instructions, at least, shifting by more than 31 bits is meaningless.
It's a little trickier for the rotate instructions. The rotate instructions, if you recall, rotate bits off 
one end of the operand and then feed them back into the opposite end of the operand, to begin 
the trip again. Therefore, you could rotate a bit pattern in an operand by 255 and still have bits in 
the operand, because the bits never really leave the operand. They simply go out the front door 
and come back in immediately through the back door.
So rotating an operand by 255 could still be meaningful. The question is, is it uniquely 
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meaningful? Or, is there some smaller rotation count that leaves the same pattern in the operand?
Figure 11.1 may help things become clear. Start with a single 1 bit in the very lowest position of 
a 32-bit wide operand. Figure 11.1 shows this operand as EAX, which is a 32-bit register found 
in the 386 and 486 CPUs. (I'll return to EAX later in this chapter. I only use it here because it's a 
convenient 32 bits wide.) Begin rotating to the left. Rotating the 1 bit 31 times will bring that 
single 1-bit to the opposite end of the operand, as shown in the figure. Rotate one more time. 
Shazam! Your 1-bit is back where it started, and the operand now contains a pattern identical to 
the pattern you had when you began.
In other words, given a 32-bit operand, rotating the operand by 32 bits is the same as not rotating 
it at all. Rotating it by 33 bits is the same as rotating it by 1 bit. Rotating it by 34 bits is the same 
as rotating it by 2 bits, and so on. So there's really no purpose to rotating an operand by more bits 
than the operand itself is wide. Doing so just wastes time inside the CPU. This is why, on the 286 
and newer processors, the shift-by count is truncated to 5 bits: the largest value expressible in 5 
bits is ... 32!
 
An Instruction You'll Probably Never Use
 
Not all of the new goodies introduced with the 286 are likely to be useful to you. One new 
instruction in particular has always puzzled me: BOUND.
The BOUND instruction was created to provide a way to test whether or not an array index was 
within two legal array bounds, and to do so quickly. The testing process helps prevent software 
from accidentally writing outside
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the bounds of the area currently being worked on, which is a major problem in advanced 
assembly-language work.
The BOUND instruction has a complicated set of operands that I won't try to explain here. I'll 
summarize its operation instead: BOUND takes the value given in its first operand and tests to 
see whether that operand is within the two values (the array bounds) pointed to by its second 
operand. If that first operand is within the bounds, everything is cool and nothing happens. (The 
flags are not affected.) However, if the first operand is discovered to be outside the bounds, the 
CPU triggers an interrupt 5. Interrupt 5 is hard baked into the silicon of the CPU. It's not 
something you can set, say, to interrupt 37 or 79 as needed. If an index fails BOUND'S test, it's 
interrupt 5, period.
This means that in order to use BOUND, you have to know how to create and install an interrupt 
service routine. That's OK; there's nothing hideously difficult about it once you've studied the 
ropes. However....
When IBM designed its original PC, somebody somewhere on the PC development team 
wasn't reading the fine print of Intel's documentation for the x86 family of CPUs. From 
the start, Intel has "reserved" a certain number of interrupts for the exclusive use of its 
CPUs. (Reserved means, "This is ours! Don't use it for something else?') Interrupt 5 was one of 
these.
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Programmers don't like fine print. So one of IBM's guys needed an interrupt, and picked 
interrupt 5. He used it for the Print Screen mechanism in the original PC BIOS. When you press 
Shift+PrtSc on the PC keyboard, the BIOS issues an interrupt 5, and the interrupt service routine 
for interrupt 5 prints whatever is on the screen to your printer.
The Print Screen mechanism is in ROM, and exists in every PC and PC compatible ever built. 
This means that if you try to use BOUND without doing anything with the interrupt vector table, 
BOUND will trigger a Print Screen interrupt when a bound test fails. This, of course, is useless.
You can, in fact, jigger things in an interrupt service routine to "share" an interrupt between two 
or more interrupting entities. It's entirely possible for both BOUND and the Print Screen 
mechanism to coexist in using interrupt 5. It's plenty complicated, but it can be (and has been) 
done.
Still, there's one final fly in the tequila. For reasons unclear to me, the BOUND instruction, when 
it generates an interrupt 5, pushes its own address on the stack as the interrupt return address, 
rather than the address of the next instruction in line.
This is best explained just by describing what happens: BOUND triggers interrupt 5. The 
interrupt 5 service routine takes control and does what it must. Then the service routine pops the 
return address from the stack...and the BOUND instruction executes again! If neither the array 
index nor the bounds were changed by the interrupt service routine, BOUND will fail again, and 
trigger another interrupt 5, and so on without end.
Whew. And yes, by being extraordinarily clever, you can get around that as well, by reaching up 
onto the stack and goosing the return address a little. I've long since decided, however, that 
BOUND simply isn't worth the bother.
But I've told this story for a specific reason. Several times in my 10-year career as a PC 
programmer, I've seen my machine go into a peculiar sort of endless loop. The loop consists of 
repeated Print Screen operations, as though someone were repeatedly pressing Shift+PrtSc.
And someone was, of course: BOUND. I was accidentally executing a BOUND instruction, 
probably by trying to execute data as code, or by jumping into the middle of a multibyte 
instruction opcode. By rearranging things, I was always able to stop the problem from occurring, 
but it was years before I actually figured out who the culprit was.
Aren't bugs wonderful?
 
11.4 Moving to 32 Bits with the 386 and 486
 
The features that the 286 has over the 8088 are few and not outrageously useful. Mostly, the 286 
had its day in the sun because (relative to an 8088) it was greased lightning. It obtains much of 
that relative speed by being a true 16-bit CPU, but more than that, most of its instructions also 
ran more quickly than the same instructions on the 8088. For example, the MOV AX,1 
instruction (which moves an immediate value into a register) takes four machine (clock) cycles 
to execute on the 8088, but only two clock cycles on the 286. Many of the other instructions are 
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correspondingly faster as well.
This process of instruction speedup has continued with the advent of the 386 and 486 CPUs. The 
MOV AX,1 instruction takes only one clock cycle to execute on the 486! Couple that with a 486 
clock speed that starts at 33 Mhz and is now more and more commonly 50 Mhz, and we're 
talking some serious speed here. There was also another quantum leap in processor data width, 
from 16 bits to 32 bits. Both the 386 and 486 process data internally in 32-bit chunks, and also 
move data into and out of the CPU 32 bits at a time.
The 386SX chip, as I mentioned earlier, was sort of a throwback: it is only a 16-bit CPU in terms 
of moving data into and out of the CPU. (It does, however, process data internally 32 bits at a 
time.) It's cheaper, but the 16-bit data path also slows it down considerably over its big brothers, 
the 386 and 486.
 
The Extended General-Purpose Registers
 
So we come at last to the question of how the 386 and 486 (including the 386SX) process data 
internally in 32-bit chunks. The registers we've discussed in this book so far are only 16 bits 
wide. We need some new registers—or at least some wider ones.
And we've got both.
First of all, our seven familiar general-purpose registers and the stack pointer have been doubled 
in size, from 16 bits to 32 bits. The older 16-bit registers are still there; in fact, they're the same 
registers. But just as AX, BX, CX, and DX each contain a pair of 8-bit registers; so now do 
EAX, EBX, ECX, and EDX each contain a pair of 16-bit registers. You can still use the names 
AX, BX, CX, or DX, but when you do, you will only be addressing the lower 16 bits of the 
larger registers.
Figure 11.2 may make this a little clearer. In the 386 and 486, there are four general-purpose 
registers. Each is 32 bits wide. When you specify EAX, you're specifying the full 32-bit 
extended form of our familiar AX register. EAX contains AX, just as AX contains both AL and 
AH. Don't make the mistake (as some do) of thinking that there is a separate set of 16-bit 
registers inside the 386, in addition to the 32-bit registers. It's like a box within a box within a 
box, and with the 386/486 we've added an outer layer of box.
One unfortunate thing about the extended registers is that you can't separately manipulate their 
high 16 bits. In other words, you can separately access the low 16 bits of EAX by working with 
AX, and the high 16 bits of EAX will not be disturbed. You cannot, however, specify only the 
high 16 bits of EAX or the other extended registers. There's simply no way to name those high 
16 bits as a distinct group.
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Similarly, there are extensions to SI, DI, BP, and SP. (See Figure 11.3.) Just as with the general-
purpose registers, the extended index and pointer registers contain their familiar 16-bit 
counterparts as their low 16 bits. ESI contains SI, EDI contains DI, and so on. Again, there is no 
way to separately specify the high 16 bits of the extended index and pointer registers.
 
More Segment Registers
 
The whole issue of memory segments changes drastically when you move from real mode to 
protected mode, so drastically that I don't have much hope of explaining it usefully in this book. 
This seems all the more surprising, since our
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familiar segment registers don't change at all, physically, in the move from the 286 to the 386. 
They are still 16 bits wide, and (in real mode at least) they still work exactly the same way.
Not only that, but there are two more of them.
With the 386 comes the FS and GS registers, so named (I suspect) because they follow the ES 
register. And, like the ES register, they are extra segment registers, allowing you to set up and 
retain more segments at a single time.
I hesitate (a little) at suggesting that an otherwise unused segment register can sometimes be a 
lifesaver when you need "just one more place" to put a value to make a fast assembly-language 
algorithm happen. In real mode you can do anything you want with the segment registers, 
including use them as general-purpose registers. (Keep in mind that the segment registers can't 
do everything that the general-purpose registers can do.) The problems begin when you try to run 
such code in protected mode, where the CPU is very fussy about what you do with segment 
registers. In protected mode, segment registers hold segment values and participate in memory 
addressing, and that's it. Do other things with them and you're asking for numerous kinds of 
trouble.
Using the new segment registers requires that you use their segment override prefixes, as there 
are no "assumed" uses of FS and GS in the 386/486 instruction set. This isn't difficult. If you're 
still fuzzy on the notion of segment override prefixes, glance back at Section 6.2. It's simply a 
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matter of putting FS: or GS: in front of a memory addressing operation:
 
MOV   FS:[SI],AX
 
This instruction moves the 16-bit word at FS:SI into AX. [Scanner’s note: has he got this 
backward?typo?]  The GS: prefix works exactly the same way.
In real mode, the FS and GS segment registers have no hidden agendas. They are truly extra 
segment registers, and you have to specify their use every time you use them.
 
Not Just in Protected Mode!
 
A common misconception is that the new segment registers and the 32-bit features of the 386 
and 486 are available only in protected mode. Not so! There are in fact a number of instructions 
and special registers that can only be accessed from protected mode, but the 32-bit extended 
registers are not among them. EAX, EBX, ECX, EDX, ESI, EDI, and EBP are fully usable 
from real mode. ESP is usable, but only the lower 16 bits are meaningful unless you're in 
protected mode using segments larger than 64K.
 
Let Your Assembler Know What You Want
 
You should keep in mind, however, that you must tell your assembler that you want to use the 
extended registers and advanced CPU instructions. Otherwise, if you try to use the register name 
EAX, or the PUSHA instruction, the assembler will tell you it doesn't know what you're talking 
about.
This is actually a safety feature. Most people choose to program for the least common 
demoninator of the entire 80x86 series, which is the fundamental 8086/8088 instruction set that 
I've been discussing throughout the earlier portions of this book. Both MASM and TASM 
default to that common demoninator instruction and register set, and must be specifically told 
that you're "graduating" to the additional features of the 286/386/486.
There are commands you can give to MASM and TASM to tell them what set of advanced 
assembler features you wish to use. By including these commands at the top of your assembly-
language source-code files, you can then use the advanced features throughout the remainder of 
those files. These commands are summarized in Tables 11.1 and 11.2.
One thing to remember when using these assembler commands is that older versions of both 
assemblers may have been released before the 486 was in general use, and thus your version of 
MASM or TASM may be too old to understand the 486-specific commands. TASM 2.0, for 
example, understands the 386 but not the 486.
The versions of both assemblers current in early 1992 provide full support for the 486-specific 
CPU features.
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___________________________________________________________________________________
 
Table 11.1. Using MASM and TASM in MASM mode
 
Command  Use
 
286         Allows assembly of all real mode 286 instructions
386       Allows assembly of all real mode 286 and 386 instructions, and use of 32-bit register 
names
486       Allows assembly of all real mode 286, 386, and 486 instructions, and use of 32-bit 
register names
 
 
Table 11.2. Using TASM in Ideal mode
Command  Use
P286N   Allows assembly of all real mode 286 instructions
P386N   Allows assembly of all real mode 286 and 386 instructions, and use of 32-bit register 
names
P486N   Allows assembly of all real mode 286, 386, and 486 instructions, and use of 32-bit 
register names
______________________________________________________________________________
 
 
11.5 Additional 386/486 Instructions
 
You may be disappointed if you look for a host of marvelous new instructions in the 386 and 486 
instruction set. There are new instructions there, but the most marvelous of them mostly serve 
the needs of operating system programming in protected mode.
Some instructions that exist in the earlier processors have been extended, with additional 
addressing or counting operands and modes. And there are (a few) valuable new instructions that 
I'll present in this section.
But the major change in the 386 and especially the 486 is that Intel has made many of the most-
used instructions faster. Instruction speeds are measured by the number of ticks of the master 
system clock that it takes to execute a given instruction. Intel has done extensive studies of the 
"opcode mix" in typical applications, and has rearranged the internal structure of the newer 
CPUs to enable the most-used instructions to execute more quickly.
On some instructions, the process has reached its ultimate conclusion with the 486: the 
instructions execute in only one clock cycle. Most MOV instruction variations execute in one 
cycle on the 486, as do TEST, SUB, NOT, INC, ADD, CMP and many other often-used 
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instructions.
  There's been some backsliding however: some instructions, including DIV, ENTER, LEAVE 
(none of which we've discussed in this book), and some others have actually gotten slower on the 
486 (they take more machine cycles to execute than they did on the 386). And there are a 
significant number of instructions that are slower on the 386 than on the 286, including those 
marvelous string instructions we discussed in Chapter 10.
Why would Intel turn progress back and make an instruction slower than it once was? It's a 
question of chip "real estate" and a question of priorities. When Intel designs a new CPU, it 
decides about how many individual transistors it can successfully create on the die (the fresh, 
unaltered silicon chip), and then allocates them to individual instructions and other functions in 
order of importance.
In general, it takes more transistors to make an instruction execute quickly than it does to make 
an instruction execute slowly. Intel wants to make its CPUs the fastest on the market, and CPU 
speed is measured by executing a "mix" of instructions—that is, by executing real programs! 
Some instructions appear in the mix more frequently than others, so for overall CPU speed, it 
pays to throw transistors at the most frequently used instructions. Ideally, all the instructions 
would be made to execute in one cycle, but there aren't enough transistors on the finished chip to 
do that. So Intel made some hard decisions, and in some cases took some transistors from a 
seldom-used instruction like ENTER and gave them to a more-frequently used instruction like 
ADD.
This effect was most pronounced in the move from the 286 to the 386. The 486 gave back some 
of the speed to the seldom-used instructions, and there's every reason to expect that the process 
will continue until all instructions execute in a single clock cycle.
This, by the way, is the major reason that a 33 Mhz 486 seems faster than a 33 Mhz 386 ... it is! 
The individual instructions on the 486 execute more quickly than those of the 386, so even at 
identical clock rates, the 486 has a significant performance edge.
Obviously, get a 486 if you can.
 
Pushing and Popping All 32-Bit Registers
 
I presented the PUSHA and POPA instructions in the last section, and there are 32-bit 
equivalents available on the 386 and 486. PUSHAD pushes all of the 32-bit registers onto the 
stack, in this order:
 
EAX,   ECX,   EDX,   EBX.   ESP,   EBP,   ESI,   EDI
 
Note that the value pushed for ESP is the value the stack pointer had before the first register was 
pushed onto the stack. The CPU makes a private copy of ESP before beginning execution of the 
instruction, and it is this private copy that is pushed onto the stack.
Similarly, POPAD pops the registers from the stack in reverse order:
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 EDI,   ESI.   EBP,   ESP,   EBX,   EDX.   ECX,   EAX
 
The ESP value popped from the stack is not loaded into ESP; it's simply discarded. As I 
explained with PUSHA and POPA, these instructions should be used as a pair; that is, what you 
push with PUSHAD you should pop with POPAD.
 
Looking for 0 Bits with BT
 
Back in Section 9.3, I introduced the TEST instruction, which allows you to determine if any 
given bit in a byte or word is set to 1. As I explained, TEST has its limits: it's not cut out for 
determining when a bit is set to 0.
The 386 and 486 have an instruction that allows you to test for either 0 bits or 1 bits. The Bit 
Test (BT) instruction performs a very simple task: it copies the specified bit into the Carry flag 
CF. In other words, if the selected bit is a 1 bit, CF is set. If the selected bit is a 0 bit, CF is 
cleared. You can then use any of the conditional jump instructions that examine and act on the 
state of CF.
BT is easy to use. It takes two operands: the first one is the value containing the bit in question; 
the second operand is the ordinal number of the bit you want to test, starting from 0. The syntax 
is shown below:
 
BT <value containing bit>,<bit number>
 
Once you execute a BT instruction, you should immediately test the value in CF and branch 
based on its value. Here's an example:
 
BT    AX,4   ;   Test  bit 4 of AX
JNC Quit          ;    We're all done if bit 4=0
 
Note that we're branching if CF is not set; that's what JNC (Jump if Not Carry) does.
 
Use TEST to Test for 1-Bits!
 
One problem. As thankfully understandable as BT is, you must keep in mind that TEST is 
considerably faster than BT. If you're trying to write code that absolutely has to be fast, be aware 
that BT can be less than half as fast as TEST—if all you need to execute to test a bit is TEST.
Remember, however, that TEST requires additional code to look for 0 bits, so if you're looking 
for a 0 bit, BT is faster. TEST, furthermore, is available on all 80x86 CPUs, so you needn't be 
concerned with safe execution.
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It's one of those little tradeoffs you'll be faced with time and again as you hone your skills in 
assembly.
 
11.6 Detecting Which CPU Your Code Is Running On
 
If you think about the notion of using the instructions present in the 286 or 386 but not the 
8086/8088, the question very quickly arises: what happens when you try to execute a 386 
instruction on an 8088 or a 286?
Simple answer: nothing good. On the 8088 and 8086, the response of the CPU to an undefined 
opcode is truly undefined, in that the instruction fetching mechanism simply hands the bogus 
opcode to the CPU's microcode circuitry, and then whatever happens, happens. Sometimes 
nothing, sometimes something defined but unexpected (like finding that a register is 
"magically" incremented or zeroed out), and sometimes the CPU will just hang. The worst of it is 
that you can never count on "undocumented instructions" to work consistently from one build of 
the CPU chip to another, so the best advice is, don't do it!
Things are both better and worse on the 286, 386, and 486. On these more advanced processors, 
the instruction fetching mechanism actually checks each fetched instruction against a valid 
opcode matrix to determine if the instruction is defined or not. If the CPU fetches an undefined 
opcode, it will generate an interrupt 6, which can be used to signal the error.
That's the good news—a consistent reaction to a bogus opcode. The bad news is that there's no 
standard for handing an interrupt 6. The CPU only knows how to generate the interrupt; once 
execution jets off to the address stored in the interrupt vector table for interrupt 6, things are out 
of the CPU's hands. It's the responsibility of the BIOS or of DOS to install handlers for "system" 
interrupts like interrupt 6.
Some do. Some (especially 8088-based, XT-class machines) don't. And of those that do, the 
action taken on an interrupt 6 is anything but consistent. Some machines ignore the interrupt and 
simply return control without taking action. On machines like that, nothing at all happens when 
an undefined opcode is fetched. Other machines may halt execution with a cryptic error message 
on the screen. Still other machines may just go nuts.
Again, don't do it. You'll generate bugs aplenty just arranging the multitude of perfectly legal 
opcodes in your programs. Don't complicate matters by forcing the target machine to digest and 
react to instructions it doesn't have.
 
Practicing Safe Execution
 
So, if you're going to use instructions that are defined on some PCs and not on others, you are 
going to have to build some machinery into your programs to detect what sort of CPU the 
programs are running on, and abort execution if an older machine is detected that can't run the 
software.
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This sounds harder than it actually is. There are some well-defined differences among the 
various CPUs that do not involve defined or undefined instructions, and a very clever program 
can look for those differences and safely determine what sort of CPU is executing it. If your 
program requires a 386 and determines that it isn't running on one, it can abort back to DOS 
before anything untoward happens.
I've written such a routine, and it's given at the end of this section, in the listing 
WHATAMI.ASM. Read it through, and then we'll go through it, step by step. It's certainly the 
subtlest piece of code I've presented in this book, and if you can understand how it works, you're 
well on your way to being a competent journeyman assembly programmer.
 
The CPU Identifier from a Height
 
WHATAMI.ASM is a fully executable program that is a shell around the CPU detector 
procedure, CPUID. Nothing unusual has to be done to assemble and link it; create the executable 
file the same way you've been doing for all the listings in this book. The only caution, again, is to 
be sure the version of the assembler you're using is new enough to understand 386 instructions!
CPUID returns a value in AL that indicates what CPU is currently executing the program. A 0 
value indicates the presence of either an 8086 or an 8088. (Because those two chips execute the 
same identical instruction set, there's very little point in looking further to see which one it 
actually is.) A 1 value indicates the presence of an 80286, a 2 value indicates any of the 80386 
family, including the 386SX and 386DX, and a 3 value indicates the presence of a 486SX or 
486DX.
 
Looking for an 8086 or 8088
 
We start at the bottom of the CPU totem pole, and assume that we have an 8088 or 8086. The 
first test is to eliminate the possibility of these CPUs. The test turns on a quirk of the 8086/8088 
CPUs: the top four bits of the Flags register are forever stuck in the set state; that is, as 1 bits. 
Even if you try to force the Flags register to 16 0 bits, the top 4 bits will not change, and if you 
read back the Flags register after trying to set all 16 bits to 0, you'll find that the top 4 bits always 
come back as 1s.
That's how it is on the 8086 and 8088. However, things are different on the newer CPUs. More 
of the bits in the Flags register are meaningful, and therefore the top 4 bits are not left stuck at 1. 
So if you push 16 0 bits onto the stack and then read them back, any value other than 0F000H 
eliminates the 8086 and 8088 from the running.
There's no instruction that allows you to directly store a value into the Flags register. The only 
instruction that can affect the entire Flags register at once is POPF, which pops the word from 
the top of the stack into the Flags register.
In the test, we clear DX to 0, push DX onto the stack, and then pop the two 0 bytes from the top 
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of the stack into the Flags register with POPF. That writes our test value to the Flags register; to 
read it back we simply use PUSHF to push the Flags register back onto the stack, and then pop 
the top of the stack into AX for inspection.
The test consists of a comparison of the value in AX (which used to be in the Flags register) 
against the literal value 0F000H:
 
CMP AX,0F000H 
JE Done
 
If the value in AX is in fact 0F000H, we're done—because we found that the top four bits of the 
flags register are stuck at 1, indicating an 8086 or 8088.
At the Done label, we copy the value in DX to AX and return to the caller. The value in DX is 
going to indicate which CPU we've found. Each time we eliminate the next higher CPU, we 
increment DX to the next higher code. DX was originally forced to 0, so we pass 0 back to the 
caller—indicating an 8086 or 8088.
 
Looking for a 286
 
Eliminating the 286 is similarly easy. The same general method is used, because the 286 has a 
quirk that is inside out from the 8088s: the top 4 bits of the stack are always forced to 0 bits on 
the 286, when the 286 is running in real mode. If the 286 is running in protected mode, bits 12 
through 14 of the Flags register are meaningful and can change, but in real mode (which is the 
only mode our code will be using in this book) bits 12 through 15 will always be 0. (Bit 15 is 
always 0 on the 286, regardless of real or protected mode.) So what we do is try to set the Flags 
register to 0F000H—and if the flags come back as something other than 0F000H, we can 
eliminate the 286 and know that we have at least a 386.
Before we do anything else, we increment DX to 1, since we now know that we have at least a 
286 on the line. And because we know we have at least a 286 on the line, we can use an 
instruction introduced with the 286: PUSH <immed>, which can push an immediate value (like 
0F000H) onto the stack. This makes it unnecessary to first load 0F000H into a register (as we 
did for the 8088 test) and then push the register's value onto the stack. On the 286 and newer 
processors, you can push a literal value directly.
Using the same general method we used in testing for the 8088, we push 0F000H onto the stack, 
pop it into the Flags register, push the Flags register back into the stack, and pop the value from 
the Flags register off the stack into AX. Then we check to see if AX still contains the 0F000H 
value we forced into the Flags register. If the value comes back as 0, we know we have a 286, so 
we exit to Done with 1 in DX.
Remember that the 286 forces the top 4 bits of the Flags register to 0. If something other than 0 
comes back in those top 4 bits, we know we have at least a 386 and possibly a 486. So we 
increment DX again, to 2 (2 is the code for the 386).
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Is It a 386 or a 486?
 
We now know we have either a 386 or a 486. Telling them apart isn't quite as easy as telling 
them from their less-powerful brothers, but once again, it's a matter of flags. The 486 has a flag 
that the 386 doesn't have, and by testing for this flag we can see whether we have a 486 on the 
line. If we don't, we know we have a 386 by elimination.
You'll notice in reading the 486 test that we're suddenly working with the extended registers 
introduced with the 386: EAX, ESP, and so on. Keep in mind that these are all 32 bits in size.
The 486 extended Flags register (EFLAGS) has a flag called the alignment check (AC) Flag. 
The AC Flag is used to detect alignment faults; that is, attempts to access memory from an 
address that is not evenly divisible by 4. Why 4? The 386 and 486 access memory 32 bits (4 
bytes) at a time, every time they access memory at all. Because of the way that the CPU sends 
memory address information out on the memory address pins, memory accesses happen most 
quickly when the requested addresses are aligned on a double word boundary, that is, when the 
requested address is divisible by 4.
There are some truly arcane reasons why it is vitally important that memory accesses be aligned 
on a double word boundary sometimes, but you're unlikely to encounter them in normal work. 
(Mostly they come up when more than one processor must share the same address space, which 
is mighty unlikely on a PC-compatible machine!) The AC flag was added to the 486 to allow 
enforcement of double word alignment. If you set up some of the 486's special control registers 
just so, a nonaligned memory access can generate an error interrupt, and the AC flag is part of 
this enforcement machinery.
For our purposes, however, it's a handy feature that doesn't exist on the 386—so if we can spot 
the Alignment check flag in EFLAGS, we know we have a 486.
The first step in the test is to save the value in ESP into a register, because we're going to have to 
ensure that the stack pointer is double word aligned— which might change ESP's value. Having 
the old value in a register will allow us to put things back the way they were before we started 
testing.
 
Aligning an Address to a Double Word Boundary
 
With ESP's original value safely tucked away, we force the stack pointer to be double word 
aligned. This is as simple as rounding the value of the stack pointer down to the next lowest 
memory address on a double word boundary. The way we do this may puzzle you:
 
AND   ESP,NOT 3
 
What does NOT 3 mean? NOT is an assembler operator that inverts all the bits of its operand, 
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which in this case is 3. Because ESP is a 32-bit register, the NOT 3 operand is also 32 bits in 
size. The full 32-bit expression of 3 (including all the leading zeroes) is 00000003H. If you 
invert the bits in every digit in that number (including those leading zeroes) you get 
FFFFFFFCH.
That's a big, ugly hex number, and all those F's really aren't the point. The whole point lies in the 
lowest two bits of the last hex digit C, which are 0. When you AND two values bit by bit, any 0 
bits in either operand will force those bits in the result to 0.
What we want to do is force the two lowest-order bits in ESP to 0. If we do that, regardless of 
what address was previously in ESP, the altered address will be aligned on a double word 
boundary. If this isn't immediately clear, think of it this way: every double word aligned address 
is four bytes greater than the one before it. Not one byte, or two bytes, or three bytes, but four 
bytes greater. You're essentially counting bytes by fours (0,4,8,12,16, etc.), which means that the 
bits that carry the "in between" values (5, 6, or 7, for example) must be zeroed out, or you're not 
really counting by fours at all.
AND ESP,NOT 3 simply forces the low two bits of ESP to 0, ensuring that ESP is aligned on a 
double word boundary. We need to do that because if ESP is not double word aligned and we 
attempt to use it, we may inadvertently set AC to 1, which would muddy the waters of the test 
we're trying to do.
 
The Last Test
 
And the test is this: we push EFLAGS onto the stack, and then save a copy of EFLAGS in both 
EAX and EBX by popping the flags value off the stack into EAX and then copying EAX into 
EBX. (Note that this use of the ESP could generate a flip in the AC flag if ESP were not double 
word aligned.) Then, we take the copy of EFLAGS in EAX, and try to flip the state of the AC 
flag. It's done this way:
 
XOR EAX,00040000H
 
Remember: XORing a bit against 0 leaves the bit in its current state. XORing a bit against 1 
reverses the state of that bit. Only one bit in 00040000H is 1; all the others are 0. That single 1 
bit is at the same ordinal position as the AC bit in the EFLAGS register. XORing 00040000H 
against EFLAGS will toggle the state of the AC bit.
We can't, of course, XOR against EFLAGS directly. So we do basically what we did in the 
previous two tests: manipulate a value in a register, and then push the value to the stack and pop 
it back into EFLAGS. We XOR a copy of EFLAGS against 00040000H to toggle the bit at 
position 18, then push the altered value from EAX onto the stack and pop it back into EFLAGS.
Having forced an altered value into EFLAGS, we then immediately copy it back for a look. 
Remember: the 386 doesn't define the AC bit, and on the 386 the bit at position 18 is stuck at 0. 
We attempted to flip the bit at position 18 in EFLAGS. On the 486 it will flip; on the 386 it's 
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stuck. If we read back EFLAGS and find that bit 18 has changed, we have a 486. If the bit at 
position 18 has not changed, we have a 386.
If we find a 486, we increment DX to 3 and return. Otherwise, we simply return, leaving DX at 
2, which is the code for the 386.
Many thanks to Robert Hummel of PC Magazine for explaining this algorithm to me
 
The WHATAMI.ASM Utility
 
That's all there is to CPUID. WHATAMI.ASM does nothing more than call CPUID to 
determine the running CPU, and then use CPUID's return code to index into a table of messages. 
The selected message indicates to the user (through DOS function 40H) which CPU is in the 
machine.
Only a little review on selecting items in a table: each text message in MsgTbl is exactly 16 
bytes long. The first message is for the 8088, and to select it you need an offset into the table of 
0. The second message, for the 286, is at an offset of 16 into the table—1 x 16, and the 286 ID 
code is 1. The third message, for the 386, is at an offset of 32 into the table—2 x 16, and the 386 
ID code is 2.
Getting the idea?
We're basically multiplying the CPU ID code by 16 to create an offset to the correct message in 
the table. Multiplying by 16—a power of 2—is easy: you just shift left by four bits. That done, 
you add the offset to the starting address of the table, and pass the resulting address for DOS so 
that DOS can display the message with its function 40H.
As I've said before, it's a very good rule of thumb: always make items in a table come out to a 
length that's an even power of 2—2, 4, 8, 16, 32, or 64 bytes comprise a good assortment of 
lengths. Even if you have to pad the ends of data items with Os or space characters, you will save 
a lot of fooling around if you can generate an offset by simple power-of-2 multiplies using SHL.
 
Passing a Value Back to ERRORLEVEL
 
You can use WHATAMI.EXE from a batch file, and it will pass the CPU ID code back to DOS 
for use in the batch ERRORLEVEL feature, allowing your batch files to test the value returned 
by WHATAMI and take action accordingly. All you have to do to pass a value back in 
ERRORLEVEL is to leave the value in AL when your program calls DOS service 4CH to 
return control to DOS. DOS takes care of the rest.
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You never really learn assembly language.
You can improve your skills over time, by reading good books on the subject, by reading 
good code that others have written, and most of all, by writing lots and lots of code 
yourself. But at no point will you be able to stand up and say, I know it.
You shouldn't feel bad about this. In fact, I take some encouragement from occasionally 
hearing that Michael Abrash, author of Zen of Assembly Language, has learned 
something new about assembly language. Michael has been writing high-performance 
assembly code for almost ten years, and has evolved into one of the five or six best 
assembly programmers in the Western Hemisphere.
If Michael is still learning, is there hope for the rest of us?
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Wrong question. Silly question. If Michael is still learning, it means that all of us are 
students and will always be students. It means that the journey is the goal, and as long as 
we continue to probe and hack and fiddle and try things we never tried before, that over 
time we will advance the state of the art, and create programs that would have made the 
pioneers in our field catch their breath in 1977.
For the point is not to conquer the subject, but to live with it, and grow with your 
knowledge of it. The journey is the goal, and with this book I've tried hard to help those 
people who have been frozen with fear at the thought of starting the journey, staring at 
the complexity of it all and wondering where the first brick in that "yellow brick road" 
might be.
It's here, with nothing more than the conviction that you can do it.
I got out of school in recession year 1974 with a B.A. in English, Summa Cum Laude, 
and not much in reliable prospects outside of driving a cab. I finessed my way into a job 
with Xerox Corporation, repairing copy machines. Books were fun, but paperwork 
makes money—so I picked up a toolbag and had a fine old time for several years, before 
finessing my way into a computer-programming position.
But I'll never forget that first awful moment when I looked over the shoulder of an 
accomplished technician at a model 660 copier with its panels off. It looked like a 
bottomless pit of little cams and gears and drums and sprocket chains, turning and 
flipping and knocking switch actuators back and forth. Mesmermized by the complexity, 
I forgot to notice that a sheet of paper had been fed through the machine and turned into 
a copy of the original document. I was terrified of never learning what all the little cams 
did, and missed the comforting simplicity of the Big Picture—that a copy machine makes 
copies.
That's Square One—discover the big picture. Ignore the cams and gears for a bit. You 
can do it. Find out what's important in holding the big picture together (ask someone if 
it's not obvious), and study that before getting down to the cams and gears. Locate the 
processes that happen. Divide the Big Picture into sub pictures. See how things flow. 
Only then should you focus on something as small and as lost in the mess as an 
individual cam or switch.
That's how you conquer complexity, and that's how I've presented assembly language in 
this book. Some might say I've shorted the instruction set, but covering the instruction set 
was never the real goal here.
The real goal was to conquer your fear of the complexity of the subject, with some 
metaphors and some pictures and some funny stories to bleed the tension away.
Did it work? You tell me. I'd really like to know.
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12.1 Where to Now?
 
If you've followed me so far, you've probably lost your fear of assembly language, 
picked up some skills and a good part of the instruction set, and are ready to move on. 
Here are some other good books to pick up:
Mastering Turbo Assembler
by Tom Swan
Howard W. Sams & Co., 1989
ISBN 0-672-48435-8
Tom's intermediate-level assembly volume is a natural next step if you're
working with the Borland tools. There's no similarly good book on Microsoft's
MASM, but much of what Tom discusses in his book applies to MASM as well.
Mastering Turbo Debugger
by Tom Swan
Howard W. Sams & Co, 1990
ISBN 0-672-48454-4
This is the only good book on debugging ever published, and for what I
consider an advanced topic it's remarkably approachable. Again, it focuses on
the Borland tools, but Tom's higher-level strategies for finding and nuking bugs
in your code is absolutely essential reading, no matter what assembler you're
using, now or at any time in the future.
PC Magazine Programmer's Technical Reference.
The Processor and Coprocessor
Robert L. Hummel
Ziff-Davis Press, 1992
ISBN 1-56276-016-5
This is not a tutorial but a reference on all of Intel's x86 processors, and it's by
far the best one ever written or likely to be written for some time. It has the best
discussion of that mysterious protected mode that I've ever seen, and its description of 
the individual assembly instructions is wonderfully crafted. I'm tempted to have my own 
copy taken apart and rebound as hardcover—if I don't, it's going to fall to pieces any day 
now!
 
PC TECHNIQUES
 7721 E. Gray Road #204 
Scottsdale AZ 85260 
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(602) 483-0192
 
This is the programmers' magazine that I own and publish, and we cover assembly 
language in every issue. Tom Swan writes a column on Windows programming, and 
Michael Abrash writes about high-performance C and assembly coding. Other industry 
powers write on their own areas of expertise, and there is probably something of interest 
to you in every issue.
But don't take my word for it. I only work here. Send the card from the back of this book 
in right now, and don't miss another issue!
 
12.2 Stepping Off Square One
 
OK—with a couple of new books in hand and good night's sleep behind you, strike out 
on your own a little. Set yourself a goal, and try to achieve it: something tough, say, an 
assembly-language utility that locates all files anywhere on a hard disk drive with a 
given ambiguous filename. That's ambitious, and will take some research and study and 
(perhaps) a few false starts. But you can do it, and once you do it you'll be a real 
journeyman assembly-language programmer.
Becoming a master takes work, and time. Michael Abrash's massive Zen of Assembly 
Language (now out of print but to be republished soon) is a compilation of the "secret" 
knowledge of a programming master. It's not easy reading, but it will give you a good 
idea where your mind has to be to consider yourself an expert assembly-language 
programmer.
Keep programming. Michael can show you things that would have taken you years to 
discover on your own, but they won't stick in your mind unless you use them. Set 
yourself a real challenge, something that has to be both correct and fast: rotate graphics 
objects in 3-D, transfer data through a serial port at 19,200 bits per second, things like 
that.
You can do it.
Coming to believe the truth in that statement is the essence of stepping away from Square 
One.
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Instruction                            Reference page                       Text page
MOV................................................397.........................................155
NEG.................................................399.........................................169
NOP.................................................400..............................................
NOT.................................................401 .........................................178
OR...................................................402.........................................266
POP.................................................403.........................................196
POPA...............................................404.........................................348
POPF...............................................405.........................................196
PUSH...............................................406.........................................194
PUSHF............................................407.........................................194
PUSHA............................................408.........................................348
RET.................................................409.........................................220
ROL.................................................410.........................................-—
ROR.................................................411 .........................................—
SBB.................................................412.........................................-----
SHL..................................................413.........................................269
SHR.................................................414.........................................269
STC.................................................415..............................................
STD.................................................416.........................................317
STOS...............................................417.........................................314
SUB.................................................418.........................................289
XCHG..............................................419.........................................161
XOR.,                                              ...420..                                       ...266
 
Notes on the Instruction Set Reference
 
Instruction operands
When an instruction takes two operands, the destination operand is the one on the left, 
and the source operand is the one on the right. In general, when a result is produced by 
an instruction, the result replaces the destination operand. For example, in this 
instruction:
 
ADD BX,SI
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the BX register is added to the SI register, and the sum is then placed in the BX register, 
overwriting whatever was in BX before the addition.
 
Flag results
 
Each instruction contains a flag summary that looks like this (the asterisks will vary from 
instruction to instruction):
 
O D I T S Z A P C         OF:   Overflow flag      TF:   Trap flag    AF:   Aux carry
F F F F F F F F F         DF:   Direction  flag    SF:   Sign  flag    PF:   Parity flag
*              * * * * *            IF.   interrupt flag       ZF:   Zero flag    CF:   Carry flag
 
The nine flags are all represented here. An asterisk indicates that the instruction on that 
page affects that flag. If a flag is affected at all (that is, if it has an asterisk beneath it) it 
will be affected according to these rules:
OF: Set if the result is too large to fit in the destination operand.
DF: Set by the STD instruction; cleared by CLD.
IF:   Set by the STI instruction; cleared by CLI.
TF:  For debuggers; not used in normal programming and may be ignored.
SF: Set when the sign of the result forces the destination operand to become negative.
ZF:  Set if the result of an operation is zero. If the result is non-zero, ZF is cleared.
AF: "Auxiliary carry" used for 4-bit BCD math. Set when an operation causes a carry out 
of a 4-bit BCD quantity.
PF: Set if the number of 1 bits in the low byte of the result is even; cleared if the number 
of 1 bits in the low byte of the result is odd. Used in data communications applications 
but little else.
CF: Set if the result of an add or shift operation "carries out" a bit beyond the destination 
operand; otherwise cleared. May be manually set by STC and manually cleared by CLC 
when CF must be in a known state before an operation begins.
Some instructions force certain flags to become undefined. When this is the case, it will 
be noted under "Notes." "Undefined" means don't count on it being in any particular 
state.
 
AAA Adjust AL after BCD addition
 
Flags affected:
ODITSZAPC      OF:  Overflow flag       TF: Trap flag    AF:  Aux carry
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FFFFFFFFF      DF:   Direction  flag      SF: Sign flag    PF:   Parity flag
            *  *        IF:   Interrupt flag         ZF: Zero flag    CF:   Carry flag
 
 
Legal forms:
AAA
 
Examples:
AAA
 
Notes:
AAA makes an addition "come out right" in AL when what you're adding are BCD 
values rather than ordinary binary values. Note well that AAA does not perform the 
arithmetic itself, but is a "postprocessor" after ADD or ADC. AL is an implied operand 
and may not be explicitly stated—so make sure that the preceding ADD or ADC 
instruction leaves its results in AL!
A BCD digit is a byte with the high 4 bits set to 0, and the low 4 bits containing a digit 
from 0 to 9. AAA will yield garbage results if the preceding ADD or ADC acted upon 
one or both operands with values greater than 09.
After the addition of two legal BCD values, AAA will adjust a non-BCD result (that is, a 
result greater than 09 in AL) to a value between 0 and 9. This is called a decimal carry, 
since it is the carry of a BCD digit and not simply the carry of a binary bit.
For example, if ADD added 08 and 04 (both legal BCD values) to produce OC in AL, 
AAA will take the OC and adjust it to 02. The decimal carry goes to AH, not to the upper 
4 bits of AL, which are always cleared to 0 by AAA.
If the preceding ADD or ADC resulted in a decimal carry, (as in the example above) both 
CF and AF are set to 1 and AH is incremented by 1. Otherwise, AH is not incremented 
and CF and AF are cleared to 0.
This instruction is subtle. See the detailed discussion in Section 10.3.
 
r8 - AL AH BL BH CL CH DL DH        r16   = AX BX CX DX BP SP SI DI
sr - CS DS SS ES
m8 - 8-bit memory data              m16   - 16-bit memory data
18 - 8-bit immediate data           i16   - 16-bit immediate data
d8 - 8-bit signed displacement                         d16  - 16-bit signed displacement
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Notes:
 
ADC adds the source operand and the carry flag to the destination operand, and after the 
operation the result replaces the destination operand. The add is an arithmetic add, and 
the carry allows multiple-precision additions across several registers or memory 
locations. (To add without taking the carry flag into account, use the ADD instruction.) 
All affected flags are set according to the operation. Most importantly, if the result does 
not fit into the destination operand, the carry flag is set to 1.
 
r8 = AL AH BL BH CL CH DL DH             r16   = AX BX CX DX BP SP SI DI
sr = CS DS SS ES
m8 = 8-bit memory data                       m16  = 16-bit memory data
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18 = 8-bit immediate data                116  = 16-bit immediate data
d8  = 8-bit signed displacement                 d16  =16-bit signed displacement

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm (10 of 58) [9/30/02 10:01:48 PM]



file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm (11 of 58) [9/30/02 10:01:48 PM]



file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm (12 of 58) [9/30/02 10:01:49 PM]



file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm (13 of 58) [9/30/02 10:01:49 PM]



file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm (14 of 58) [9/30/02 10:01:49 PM]



file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm (15 of 58) [9/30/02 10:01:49 PM]



file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm

 
 
 

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm (16 of 58) [9/30/02 10:01:49 PM]



file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm (17 of 58) [9/30/02 10:01:49 PM]



file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm (18 of 58) [9/30/02 10:01:49 PM]



file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm

 
 
 
 
 
 

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm (19 of 58) [9/30/02 10:01:49 PM]



file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm (20 of 58) [9/30/02 10:01:49 PM]



file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm (21 of 58) [9/30/02 10:01:49 PM]



file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
J?    JUMP ON CONDITION
 

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm (22 of 58) [9/30/02 10:01:49 PM]



file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm (23 of 58) [9/30/02 10:01:49 PM]



file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm

 
 

 

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm (24 of 58) [9/30/02 10:01:49 PM]



file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm (25 of 58) [9/30/02 10:01:49 PM]



file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm (26 of 58) [9/30/02 10:01:49 PM]



file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm (27 of 58) [9/30/02 10:01:49 PM]



file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm (28 of 58) [9/30/02 10:01:49 PM]



file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm (29 of 58) [9/30/02 10:01:49 PM]



file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm (30 of 58) [9/30/02 10:01:49 PM]



file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm (31 of 58) [9/30/02 10:01:49 PM]



file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm (32 of 58) [9/30/02 10:01:49 PM]



file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm (33 of 58) [9/30/02 10:01:49 PM]



file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm (34 of 58) [9/30/02 10:01:49 PM]



file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm (35 of 58) [9/30/02 10:01:49 PM]



file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm (36 of 58) [9/30/02 10:01:49 PM]



file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm (37 of 58) [9/30/02 10:01:49 PM]



file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm (38 of 58) [9/30/02 10:01:49 PM]



file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm (39 of 58) [9/30/02 10:01:49 PM]



file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm (40 of 58) [9/30/02 10:01:49 PM]



file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm (41 of 58) [9/30/02 10:01:49 PM]



file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm (42 of 58) [9/30/02 10:01:49 PM]



file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm (43 of 58) [9/30/02 10:01:49 PM]



file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm (44 of 58) [9/30/02 10:01:49 PM]



file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm (45 of 58) [9/30/02 10:01:49 PM]



file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm (46 of 58) [9/30/02 10:01:49 PM]



file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm (47 of 58) [9/30/02 10:01:49 PM]



file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm (48 of 58) [9/30/02 10:01:49 PM]



file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm (49 of 58) [9/30/02 10:01:49 PM]



file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm (50 of 58) [9/30/02 10:01:49 PM]



file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm (51 of 58) [9/30/02 10:01:49 PM]



file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm (52 of 58) [9/30/02 10:01:49 PM]



file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm (53 of 58) [9/30/02 10:01:49 PM]



file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm (54 of 58) [9/30/02 10:01:49 PM]



file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm (55 of 58) [9/30/02 10:01:49 PM]



file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm (56 of 58) [9/30/02 10:01:49 PM]



file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm

 
Scanner’s note: It’s been my pleasure scanning this and picking Jeff D’s wit and ASM 

file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm (57 of 58) [9/30/02 10:01:49 PM]



file:///E|/TEMP/Assembly%20Chapter%2012%20etc%20final.htm

knowledge. He mentions in his latest version that one of the main reasons he wrote this is 
that so many Assembly tutorials out there are in some language, but it’s not English. I 
don’t know, maybe it’s fooby, but I agree that a lot of the assembly tutes are so technical 
and decentralized it’s impossible for a newby to gain anything from it.
 I’ve learned a lot about scanning as well as a good bit of beginning Assembly. I found a 
few of his typo’s, and likely my OCR program left a few in. caveat downloader.
 This version is out of print, and I want to stress the point: I would not scan his present 
version of this book and I hope no one else does either- let’s face it, Jeff’s likely not 
going to get big movie rights bucks from his book, so he needs the dough. 
 If you can learn enough ASM from this free scanned book to get your feet wet and want 
to further your learning, I strongly suggest you buy his latest version of Assembly 
Language Step-by-Step. That way you’ve gotten interested in and learned Assembly for 
only $55, and you’ve helped a good programmer do what he’s trying to do- make a living 
at it.
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