
Algorithms and Data
Structures

Alfred Strohmeier

alfred.strohmeier@epfl.ch
http://lglwww.epfl.ch

March 2000

Swiss Federal Institute of Technology in Lausanne
Department of Computer Science
Software Engineering Laboratory
Algorithms and Data Structures 1
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Table of Contents
I Resources
II Sorting
III Data Structures
IV Trees
V Graphs
VI Analysis of Algorithms
Algorithms and Data Structures 2
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

I. Resources
Presentation Sequence
Bibliography
Algorithms and Data Structures 3
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Bibliography
Aho A.V.; Hopcroft J.E.; Ullman J.D.; The
Design and Analysis of Computer Algorithms;
Addison-Wesley, 1974.

Aho A.V.; Hopcroft J.E.; Ullman J.D.; Data
Structures and Algorithms; Addison-
Wesley, 1983.

Booch G.; Software Components with Ada;
Benjamin/Cummings, 1987.

Cormen T.H.; Leiserson C.E.; Riverst R.L.;
Introduction to Algorithms; The MIT Press,
1991.

Feldman M.B.; Data Structures with Ada;
Prentice-Hall, 1985.

Garey M.R.; Johnson D.S.; Computers and
Intractability: A guide to NP-Completeness;
W.H.Freeman, 1979.
Algorithms and Data Structures 4
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Bibliography
Gonnet G.H.; Handbook of Algorithms and
Data Structures; Addison-Wesley, 1984.

Gonnet G.H.; Baeza-Yates R.; Handbook of
algorithms and data structures: in Pascal and
C (2nd ed.); Addison-Wesley, 1991.

Horowitz E.; Sahni S.; Fundamentals of Data
Structures in Pascal; Computer Science
Press, 3rd ed., 1990.

Kernighan B.W.; Plauger P.J.; Software
Tools in Pascal; Addison-Wesley, 1981.

Kingston J.H.; Algorithms and Data
Structures; Addison-Wesley, 1990.
Algorithms and Data Structures 5
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Bibliography
Knuth D.E; The Art of Computer
Programming;
 Vol.1: Fundamental Algorithms; 1973 (2nd
edition);

Vol.2: Seminumerical Algorithms; 1981
(2nd edition);

Vol.3: Sorting and Searching; 1975 (2nd
printing);
Addison-Wesley.

Kruse R.L.; Data Structures and Program
Design; Prentice Hall, 1987 (2nd edition).

Mehlhorn K.; Data Structures and Algorithms;
Vol.1: Sorting and Searching;
Vol.2: Graph algorithms and NP-
completeness;
Vol.3: Multi -dimensional Searching and
computational geometry;

Springer; 1984.
Algorithms and Data Structures 6
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Bibliography
Moret B.M.E.; Shapiro H.D.; Algorithms from
P to NP;

Vol.1: Design and Efficiency; 1991;
Vol.2: Heuristics and Complexity;

Benjamin/Cummings.

Reingold E.M.; Nievergelt J.; Deo N.;
Combinatorial Algorithms: Theory and
Practice; Prentice-Hall, 1977.

Riley J.H.; Advanced Programming and Data
Structures Using Pascal; PWS-Kent
Publishing Co., Boston, 1990.

Sedgewick R.; Algorithms; Addison-
Wesley, 1988 (2nd edition).

Stubbs D.F.; Webre N.W.; Data Structures
with Abstract Data Types and Pascal;
Brooks/Cole, 1985.
Algorithms and Data Structures 7
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Bibliography
Tarjan R.E.; Data Structures and Network
Algorithms; SIAM, 1983.

Tenenbaum A.M.; Augenstein M.J.; Data
Structures using Pascal; Prentice-Hall,
1981.

Uhl J.; Schmid H.A.; A Systematic Catalogue
of Reusable Abstract Data Types; Springer,
1990.

Wilf H.S.; Algorithms and Complexity,
Prentice-Hall, 1986.

Wirth N.; Algorithms and Data Structures;
Prentice-Hall,1986.

Wirth N.; Algorithms + Data Structures =
Programs; Prentice-Hall, 1976.

Main references used for the classes are
in bold.

Algorithms and Data Structures 8
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

II. Sorting

List of main sorting techniques
Performance comparison
Specification of a generic sort procedure
Use of the generic sort procedure
Selection sort
Insertion sort
Bubble sort
Quick sort
Algorithms and Data Structures 9
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Sorting Techniques
Selection Sort

Straight Selection Sort
Quadratic Selection Sort

Insertion Sort
Straight (Linear) Insertion Sort
Binary Insertion Sort
Shell Sort

Exchange Sort
Straight Exchange Sort (Bubble Sort)
Shaker Sort
Quick Sort
Radix Sort

Tree Sort
Binary Tree Sort
Heap Sort

Merge Sort

External Sorting
Sort-Merge
Polyphase Merge
Algorithms and Data Structures 10
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Table of Comparison of
Performance of Sorting

Techniques
(see additional file)
Algorithms and Data Structures 11
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Specification of
Generic Sort

generic

type Element_Type is private;

with function "<"
(Left, Right: Element_Type)
return Boolean;

type Index_Type is (<>);

type Table_Type is array
(Index_Type range <>)
of Element_Type;

procedure Sort_G
(Table: in out Table_Type);

-- Sort in increasing order of "<".
Algorithms and Data Structures 12
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Use of Generic Sort
with Sort_G, Ada.Text_IO;
procedure Sort_Demo is

procedure Sort_String is new Sort_G
(Element_Type => Character,
"<" => "<",
Index_Type => Positive,
Table_Type => String);

My_String: String (1..6) := "BFCAED";

begin -- Sort_Demo
Ada.Text_IO. Put_Line

("Before Sorting: " & My_String);
Sort_String (My_String);
Ada.Text_IO. Put_Line

("After Sorting: "& My_String);
end Sort_Demo;
Algorithms and Data Structures 13
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Selection Sort
Principle

Basic operation: Find the smallest element in
a sequence, and place this element at the
start of the sequence.

Basic Idea:
• Find the index Small;
• Exchange the values located at Start and

Small;
• Advance Start.

Sorting Table (Start .. End):
• Find Small in Start .. End;
• Exchange Table (Start) and Table (Small);
• Sort Table (Start + 1 .. End);

Start Small End

sorted part
Algorithms and Data Structures 14
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Selection Sort
Example

390 205 182 45 235

45 205 182 390 235

45 182 205 390 235

45 182 205 390 235

45 182 205 235 390

Table 1: Selection Sort
Algorithms and Data Structures 15
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Selection Sort
procedure Sort_G (Table: in out Table_Type) is

Small: Index_Type;
begin

if Table'Length <= 1 then
return;

end if;
for I in Table'First..Index_Type'Pred (Table'Last) loop

Small := I;
for J in Index_Type'Succ (I)..Table'Last loop

if Table (J) < Table (Small) then
Small := J;

end if;
end loop;
Swap (Table (I), Table (Small));

end loop;
end Sort_G;
Algorithms and Data Structures 16
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Selection Sort
Complexity

We will neglect the index operations. We will
therefore count only operations on the
elements of the sequence.

n is the length of the sequence.

The number of executions of the interior loop
is:

(n-1) + (n-2) +... + 1 = (1/2)*n*(n-1)
The interior loop contains one comparison.
The exterior loop is executed n-1 times.
The exterior loop contains one exchange.
Number de comparisons: (1/2)*n*(n-1)
Number of exchanges: n-1
Algorithms and Data Structures 17
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Selection Sort
Assessment

The effort is independent from the initial
arrangement.

Negative: O(n2) comparisons are needed,
independently of the initial order, even if the
elements are already sorted.

Positive: Never more than O(n) moves are
needed.

Conclusion: It’s a good technique for
elements heavy to move, but easy to
compare.
Algorithms and Data Structures 18
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Insertion Sort
Principle

Basic operation: Insert an element in a sorted
sequence keeping the sequence sorted.

Array

Linked List

sorted part

sorted part

...

...
Algorithms and Data Structures 19
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Insertion Sort
Example: Exterior Loop

205 45 390 235 182

45 205 390 235 182

45 205 390 235 182

45 205 235 390 182

45 182 205 235 390

Table 2: Insertion Sort, Exterior Loop
Algorithms and Data Structures 20
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Insertion Sort
Example: Interior Loop,

moving the last element (I=5, Temp=182)

45 205 235 390 182

45 205 235 390 182

45 205 235 390 390

45 205 235 235 390

45 205 205 235 390

45 182 205 235 390

Table 3: Insertion Sort, Interior Loop
Algorithms and Data Structures 21
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Insertion Sort

procedure Sort_G (Table : in out Table_Type) is
Temp : Element_Type;
J : Index_Type;

begin -- Sort_G
if Table'Length <= 1 then

return;
end if;
for I in Index_Type'Succ (Table'First) ..Table'Last loop

Temp := Table (I);
J := I;
while Temp < Table (Index_Type'Pred (J)) loop

Table (J) := Table (Index_Type'Pred (J));
J := Index_Type'Pred (J);
exit when J = Table'First;

end loop;
Table (J) := Temp;

end loop;
end Sort_G;
Algorithms and Data Structures 22
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Insertion Sort
Complexity

n is the length of the sequence
The exterior loop is executed n-1 times.

Interior loop:
Best case: 0
Worst case: 1+2+...+(n-1) = (1/2)*n*(n-1)
On average: One must walk through half of
the list before finding the location where to
insert the element: (1/4)*n*(n-1)

Comparisons Exchanges

Best Case n-1 2*(n-1)

Average (1/4)*n*(n-1) (1/4)*n*(n-1) + 2*(n-1)

Worst Case (1/2)*n*(n-1) (1/2)*n*(n-1) + 2*(n-1)

Table 4: Performance of Insertion Sort
Algorithms and Data Structures 23
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Bubble Sort,
or Straight Exchange Sort

Principle
Basic Operation: Walk through the sequence
and exchange adjacent elements if not in
order.

Basic idea:
• walk through the unsorted part from the

end;
• exchange adjacent elements if not in

order;
• increase the sorted part, decrease the

unsorted part by one element.

JJ+1

sorted part
Algorithms and Data Structures 24
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Bubble Sort
Example: First Pass

390 205 182 45 235

390 205 182 45 235

390 205 45 182 235

390 45 205 182 235

45 390 205 182 235

Table 5: Bubble Sort
Algorithms and Data Structures 25
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Bubble Sort
Example: Second Pass

45 390 205 182 235

45 390 205 182 235

45 390 182 205 235

45 182 390 205 235

Table 6: Bubble Sort
Algorithms and Data Structures 26
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Bubble Sort
Example: Third Pass

Example: Fourth Pass

45 182 390 205 235

45 182 390 205 235

45 182 205 390 235

Table 7: Bubble Sort

45 182 205 390 235

45 182 205 235 390

Table 8: Bubble Sort
Algorithms and Data Structures 27
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Bubble Sort
No Sentinel

procedure Sort_G (Table: in out Table_Type) is
begin

if Table'Length <= 1 then
return;

end if;

for I in Table'First..Index_Type'Pred (Table'Last) loop

for J in reverse Index_Type'Succ (I)..Table'Last loop
if Table (J) < Table (Index_Type'Pred (J)) then

Swap (Table (J), Table (Index_Type'Pred (J));
end if;

end loop;

end loop;

end Sort_G;
Algorithms and Data Structures 28
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Bubble Sort
With Sentinel

procedure Sort_G (Table: in out Table_Type) is
Sorted: Boolean;

begin

if Table'Length <= 1 then
return;

end if;

for I in Table'First..Index_Type'Pred (Table'Last) loop
Sorted := True;

for J in reverse Index_Type'Succ (I)..Table'Last loop
if Table (J) < Table (Index_Type'Pred (J)) then

Sorted := False;
Swap (Table (J), Table (Index_Type'Pred (J));

end if;
end loop;

exit when Sorted;
end loop;

end Sort_G;
Algorithms and Data Structures 29
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Bubble Sort
Complexity

n is the length of the sequence.
k (1£ k £ n-1)is the number of executions of the exterior loop
(it is equal to the number of elements not in order plus one).

The number of executions of the body of the interior loop is:
• (n-1) + (n-2) +... + (n-k) = (1/2)*(2n-k-1)*k

The body of the interior loop contains:
• one comparison,
• sometimes an exchange.

Best case (ordered sequence):
• Number of comparisons: n-1
• Number of exchanges: 0
Worst case (inversely ordered sequence)

• Number of comparisons: (1/2)*n*(n-1)
• Number of exchanges: (1/2)*n*(n-1)

Average:
• Same magnitude as Worst Case.
Algorithms and Data Structures 30
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Quick Sort
Principle

The Algorithm is recursive.

One step rearranges the sequence:
a1 a2.........an

in such a way that for some aj, all elements
with a smaller index than j are smaller than aj,
and all elements with a larger index are larger
than aj:

a1 £ aj a2 £ aj ... aj-1£ aj

aj £ aj+1 aj £ aj+2 ... aj £ an

aj is called the pivot.

Sorting Table (Start..End):
• Partition Table (Start..End), and call J the

location of partitioning;
• Sort Table (Start..J-1);
• Sort Table (J+1..End).
Algorithms and Data Structures 31
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Quick Sort

Starting on each end of the table, we move
two pointers towards the centre of the table.
Whenever the element in the lower part is
larger than the pivot and the element in the
upper part is smaller, we exchange them.
When the pointers cross, we move the pivot
at that position.

40 15 30 25 60 10 75 45 65 35 50 20 70

40 15 30 25 20 10 75 45 65 35 50 60 70

40 15 30 25 20 10 35 45 65 75 50 60 70

35 15 30 25 20 10 40 45 65 75 50 60 70

Table 9: Partitioning
Algorithms and Data Structures 32
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Quick Sort: Sort_G (1)

procedure Sort_G (Table: in out Table_Type) is

Pivot_Index: Index_Type;

function "<=" (Left, Right: Element_Type)
return Boolean is

begin
return not (Right < Left);

end "<=";

procedure Swap (X, Y: in out Element_Type) is
T: constant Element_Type := X;

begin
X := Y; Y := T;

end Swap;

procedure Partition
(Table: in out Table_Type;
Pivot_Index: out Index_Type) is separate;
Algorithms and Data Structures 33
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Quick Sort: Sort_G (2)

begin -- Sort_G
if Table'First < Table'Last then

-- Split the table separated by value at Pivot_Index
Partition (Table, Pivot_Index);

-- Sort left and right parts:
Sort_G (Table

(Table'First..Index_Type'Pred (Pivot_Index)));
Sort_G (Table

(Index_Type'Succ (Pivot_Index)..Table'Last));

end if;
end Sort_G;
Algorithms and Data Structures 34
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Quick Sort: Partition (1)
separate (Sort_G)
procedure Partition

(Table: in out Table_Type;
Pivot_Index: out Index_Type) is

Up: Index_Type := Table'First;
Down: Index_Type := Table'Last;
Pivot: Table (Table'First);

begin
loop

-- Move Up to the next value larger than Pivot:
while (Up < Table'Last)

and then (Table (Up) <= Pivot) loop
Up := Index_Type'Succ (Up);

end loop;
-- Assertion: (Up = Table'Last) or

(Pivot < Table (Up))

-- Move Down to the next value less than or
equal to Pivot:

while Pivot < Table (Down) loop
Down := Index_Type'Pred (Down);

end loop;
-- Assertion: Table (Down) <= Pivot.
Algorithms and Data Structures 35
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Quick Sort: Partition (2)

-- Exchange out of order values:
if Up < Down then

Swap (Table (Up), Table (Down));
end if;
exit when Up >= Down;

end loop;
-- Assertion: Table'First <= I <= Down =>

Table (I) <= Pivot.
-- Assertion: Down < I <= Down => Pivot < Table (I)

-- Put pivot value where it has to be and
define Pivot_Index:

Swap (Table (Table'First), Table (Down));
Pivot_Index := Down;

end Partition;
Algorithms and Data Structures 36
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Quick Sort
Complexity

Worst case: The sequence is already
ordered.
Consequence: The partition is always
degenerated.

Storage space:
The procedure calls itself n-1 times, and the
requirement for storage is therefore
proportional to n. This is unacceptable.
Solution: Choose for the pivot the median of
the first, last and middle element in the table.
Place the median value at the first position of
the table and use the algorithm as shown
(Median-of-Three Partitioning).

Execution time:
The execution of Partition for a sequence of
length k needs k comparisons. Execution
time is therefore proportional to n2.
Algorithms and Data Structures 37
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Quick Sort
Complexity

Best case: The sequence is always divided
exactly at its mid-position.

Suppose n = 2m

Quicksort for a sequence of size 2m calls itself
twice with a sequence of size 2m-1.

Storage space:
S2m = S2m-1 + 1
(the maximum for a recursive descent)
therefore:
S2m » m and hence Sn = O(logn)

Time behavior:
C2m = 2C2m-1 + 2m

(The 2m elements must be compared
with the pivot)
therefore:
C2m » 2m(m+1) and hence Cn = O(nlogn)
Algorithms and Data Structures 38
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Quick Sort
Complexity

Average case: Same result as for the best
case.

Idea about how to proceed for estimating the
number of comparisons:
We consider a randomly selected
permutation of n elements. The element at
position k has a probability of 1/n to be the
pivot. n-1 comparisons are needed for
comparing the pivot with all the other
elements. The recurrent relation is therefore:

c0 1=

cn n 1– 1
n
--- ck 1– cn k–+()

k 1=

n
å×+=
Algorithms and Data Structures 39
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Quick Sort
Remarks

Parameter passing:
Beware of passing the Table parameter of
Sort_G by copy!

Solution in Ada:
Write local procedures which use the index
bounds of the table as parameters, and
therefore work on the global variable Table.

Problem with recursion:
For "small tables" (between 5 and 25
elements), use an insertion sort.

Quick Sort is not stable!
Algorithms and Data Structures 40
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

III. Data Structures

List of the main data structures
Logical structure versus representation
Example: Subset
Various kinds of lists
Representations by lists
Abstract Data Type
Algorithms and Data Structures 41
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Data Structures

Stack (Pile)
Queue (Queue, File d'attente)

Deque (Double-Entry Queue,
Queue à double entrée)

Priority Queue (Queue de priorité)
Set (Ensemble)
Bag (Multiset, Multi-ensemble)
Vector (Vecteur)
Matrix (Matrice)
String (Chaîne)
(Linked) List (Liste chaînée)

Linear List (Liste linéaire)
Circular List (Liste circulaire)
Doubly-linked List (Liste doublement

chaînée)
Ring (Anneau)
Algorithms and Data Structures 42
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Data Structures

Tree (Arbre)
Ordered Tree (Arbre ordonné)

(children are ordered)
2-Tree (Arbre d'ordre 2)

(every node has 0 or 2 children)
Trie (from retrieval)

(also called "Lexicographic Search
Tree")

(a trie of order m is empty or is a
sequence of m tries)

Binary Tree (Arbre binaire)
Binary Search Tree (Arbre de recherche)
AVL-Tree (Arbre équilibré)
Heap (Tas)

Multiway Search Tree
B-Tree
Algorithms and Data Structures 43
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Data Structures

Graph (Graphe)
Directed Graph (Graphe orienté)
Undirected Graph (Graphe non orienté)
Weighted Graph (Graphe valué)
DAG (Directed Acyclic Graph, Graphe

orienté acyclique)
Map (Mappe, Table associative)

Hash Table (Table de hachage)
File (Fichier)

Sequential File (Fichier sequentiel)
Direct Access File (Fichier à accès direct)
Indexed File (Fichier indexé, fichier en

 accès par clé)
Indexed-Sequential File (ISAM) (Fichier

indexé trié)
Algorithms and Data Structures 44
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Representation of a
Data Structure

It is important to distinguish between:
The data structure with its logical properties
(ADT, abstract data type, type de données
abstrait);
The representation of this data structure, or
its implementation.

The representation of a data structure is
usually also a data structure, but at a lower
level of abstraction.

Logical Structure

Representation Structure

uses for its implementation
Algorithms and Data Structures 45
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Subset
Representation

A subset E of a finite discrete set A can be
represented by:

a) A characteristic function or a vector of
booleans:

Membership: A ¾® {True, False}
e Î E iff Membership(e)

b) A contiguous sequence that enumerates
the elements belonging to the subset:

(V(i), i Î [1, size(E)], V(i) Î A)
e Î E iff $ i Î [1, size(E)] such that e = V(i)
Algorithms and Data Structures 46
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Subset
Representation

c) A linked list comprising the elements
belonging to E:

d) A binary search tree, the elements of A
being ordered:

c nullab

nullnullcnullnulla

b

Algorithms and Data Structures 47
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Subset
Logic Properties

The logic properties of a subset are about the
following ones:
1. It is possible to insert an element in a
subset.
2. It is possible to suppress an element from
a subset.
3. It is possible to know if an element
belongs or not to a subset.
4. It is possible to know if a subset is empty.
5. It is possible to perform set operations on
subsets: complement, union, intersection,
difference and symmetric difference.
6. Some axioms must hold:

Insert (x, E) => x Î E
Suppress (x, E) => x Ï E
Algorithms and Data Structures 48
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Logical Structure or
Representation

There are many sorts of lists: linear list,
circular list, doubly-linked list, linear or
circular, etc.

All kinds of data structures, like stacks and
queues, can be implemented by lists.

A list can therefore be a logical data structure
(of low-level), or a representation structure.
Algorithms and Data Structures 49
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Different Kinds of Lists
Linear list

Circular list

Doubly-linked list

List with header

null

? ?

null

start end
size
Algorithms and Data Structures 50
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Representations by Lists
Stack

• Insertion and suppression in time O(1).

Queue with linear list

• Insertion in time O(1) and suppression in time O(n), or
the contrary.

Queue with headed list

• One suppresses at the start, and inserts at the end. Both
operations are therefore performed in time O(1).

null

top

null

start

null

start end
size
Algorithms and Data Structures 51
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Abstract Data Type
Definition

The representation of the data structure is
hidden.

The only means for modifying the data
structure or retrieving information about it is
to call one of the operations associated with
the abstract data type.
Algorithms and Data Structures 52
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Abstract Data Type
Interface and Implementation

Abstract Data Type
=

Interface
+

Implementation

The interface defines the logical properties of
the ADT, and especially the profiles or
signatures of its operations.

The implementation defines the
representation of the data structure and the
algorithms that implement the operations.
Algorithms and Data Structures 53
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Abstract Data Type
Realization in Ada

An ADT is realized by a package, most of the
time a generic package.

The specification of the package is the
interface of the ADT. The data structure is
declared as a private type, or a limited private
type. The subprograms having at least one
parameter of the type are the operations of
the ADT.

The private part of the specification and the
body of the package provide the
implementation of the ADT. The contain also
the representation of the data structure.

A constant or variable of the ADT is called an
object.
Algorithms and Data Structures 54
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Abstract Data Type
Kinds of Operations

Constructors:
• Create, build, and initialize an object.

Selectors:
• Retrieve information about the state of an

object.

Modifiers:
• Alter the state of an object.

Destructors:
• Destroy an object.

Iterators (parcoureurs, itérateurs):
• Access all parts of a composite object, and

apply some action to each of these parts.
Algorithms and Data Structures 55
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Abstract Data Type
Example: Set of Elements

Add (Set, Element) -- constructor
Remove (Set, Element) -- constructor
Iterate (Set, Action) -- iterator
Is_A_Member (Set, Element) -- selector
Make_Empty (Set) -- constructor
Size (Set) -- selector
Algorithms and Data Structures 56
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Abstract Data Type
Example: Stack

A stack is a "LIFO" list (last in, first out).

Push (38) ... Pop ...

8 38 Top
7 4927
6 11
5 315
4 5
3 2352
2 11
1 325
Algorithms and Data Structures 57
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Abstract Data Type
Formal Definition of a Stack

E: is a set.
P: the set of stacks whose elements belong
to E.
The empty set Æ is a stack.

Operations
Push: P x E ® P
Pop: P - {Æ} ® P (without access)
Top: P - {Æ} ® E (without removing)

Axioms
" p Î P, " e Î E:

Pop (Push (p, e)) = p
Top (Push (p, e)) = e

" p ¹ Æ:
Push (Pop (p), Top (p)) = p

Note: The axioms are necessary, because
e.g. the operations on FIFO queues have
exactly the same signatures!
Algorithms and Data Structures 58
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Abstract Data Type
Primitive Operation

Note: Don’t confuse with a primitive operation as defined by
the Ada programming language.

First Definition
An operation is said to be primitive if it cannot
be decomposed.

Example

• procedure Pop
(S: in out Stack; E: out Element);

can be decomposed into:

• procedure Pop (S: in out Stack);
• function Top (S: Stack) return Element;
Algorithms and Data Structures 59
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Abstract Data Type
Primitive Operation

Second Definition
An operation is said to be primitive if it cannot
be implemented efficiently without access to
the internal representation of the data
structure.

Example
It is possible to compute the size of a stack by
popping off all its element and then
reconstructing it. Such an approach is highly
inefficient.
Algorithms and Data Structures 60
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Abstract Data Type
Sufficient Set of Operations

Definition
A set of primitive operations is sufficient if it
covers the usual usages of the data structure.

Example
A stack with a Push operation but lacking a
Pop operation is of limited value.
Is a stack without an iterator usable?
Algorithms and Data Structures 61
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Abstract Data Type
Complete Set of Operations

Definition
A complete set of operations is a set of
primitive operations including a sufficient set
of operations and covering all possible
usages of the data structure; otherwise
stated, a complete set is a "reasonable"
extension of a sufficient set of operations.

Example
Push, Pop, Top, Size and Iterate form a
complete set of operations for a stack.

It would be possible to add Assign, "=", "/="
and Destroy.
Algorithms and Data Structures 62
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Abstract Data Type
Stack: Specification in Ada

generic
Max: Natural := 100;
type Item_Type is private;

package Stack_Class_G is
type Stack_Type is limited private;
procedure Push (Stack: in out Stack_Type;

 Item: in Item_Type);
procedure Pop (Stack: in out Stack_Type);
function Top (Stack: Stack_Type)

return Item_Type;
generic

with procedure Action
(Item: in out Item_Type);

procedure Iterate (Stack: in Stack_Type);
Empty_Error: exception;
-- raised when an item is accessed or popped from an empty stack.

Full_Error: exception;
-- raised when an item is pushed on a full stack.
Algorithms and Data Structures 63
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Abstract Data Type
Stack: Specification in Ada

private
type Table_Type is array (1..Max)

of Item_Type;
type Stack_Type is record

Table: Table_Type;
Top: Integer range 0..Max := 0;

end record
end Stack_Class_G;
Algorithms and Data Structures 64
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Abstract Data Type
Stack: Specification in Ada

Unfortunately, the interface does not show
only logical properties. The implementation
slightly shows through, by the generic
parameter Max and the exception Full_Error,
for instance.

The exception Empty_Error is added in order
to extend the domains (of definition/validity)
of the operations Pop and Top.
Algorithms and Data Structures 65
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

IV. Trees

Kinds of trees
Binary tree
Traversal of a binary tree
Search tree
Expression tree
Polish forms
Strictly binary tree
Almost complete binary tree
Heap
Algorithms and Data Structures 66
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Kinds of Trees
Tree (Arbre)

Ordered Tree (Arbre ordonné)
(children are ordered)

2-Tree (Arbre d'ordre 2)
(every node has 0 or 2 children)

Trie (from retrieval)
(also called "Lexicographic Search

Tree")
(a trie of order m is empty or is a

sequence of m tries)
Binary Tree (Arbre binaire)

Binary Search Tree (Arbre de recherche)
AVL-Tree (Arbre équilibré)
Heap (Tas)

Multiway Search Tree
B-Tree
Algorithms and Data Structures 67
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Binary Tree

A binary tree is a finite set E, that is empty, or
contains an element r and whose other
elements are partitioned in two binary trees,
called left and right subtrees.

r is called the root (racine) of the tree. The
elements are called the nodes of the tree.

A node without a successor (a tree whose left
and right subtrees are empty) is called a leaf.
Algorithms and Data Structures 68
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Binary Tree

E is a finite set

(i) E is empty

or

(ii) $ r Î E, $ Eg, $ Ed,
r Ï Eg, r Ï Ed,
Eg Ç Ed = Æ, E = {r} È Eg È Ed
Algorithms and Data Structures 69
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Binary Tree

The two examples at the bottom are distinct
binary trees, but identical trees.

B C

E F

G

D

H I

A

A

B B

A

Algorithms and Data Structures 70
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Traversal of a Binary Tree
1. Preorder or depth-first order

(préordre ou en profondeur d’abord)
(i) visit the root
(ii)traverse the left subtree
(iii)traverse the right subtree

2. Inorder or symmetric order
(inordre ou ordre symétrique)
(i) traverse the left subtree
(ii)visit the root
(iii)traverse the right subtree

3. Postorder
(postordre)
(i) traverse the left subtree
(ii)traverse the right subtree
(iii)visit the root

4. Level-order or breadth-first order
(par niveau)
Visit all the nodes at the same level,
 starting with level 0
Algorithms and Data Structures 71
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Traversal of a Binary Tree

Preorder: A B D G C E H I F
Inorder: D G B A H E I C F
Postorder: G D B H I E F C A
By level: A B C D E F G H I

A

B C

E F

G

D

H I
Algorithms and Data Structures 72
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Traversal of a Binary Tree

Preorder:
Inorder:
Postorder:
By level:

A

B

C

E F G

D

H

I J LK
Algorithms and Data Structures 73
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Search Tree

A search tree is a special case of a binary
tree.

Each node contains a key and the following
relationship is satisfied for each node:

"n, "n1 Î Eg (n), " n2 Î Ed (n)
key (n1) £ key (n) £ key (n2)
Algorithms and Data Structures 74
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Search Tree

Inorder: 3 4 5 7 9 14 15 16 17 18 20

Application: Sorting
Input: 14, 15, 4, 9, 7, 18, 3, 5, 16, 20, 17
Processing: Build the tree
Result: Traverse in inorder

Application: Searching

14

4

3 9

17

15

18

5

7 2016
Algorithms and Data Structures 75
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Expression Tree
An expression tree is a binary tree whose
leaves contain values (numbers, letters,
variables, etc.) and the other nodes contain
operation symbols (operations to be
performed on such values).

(i) a+b*c (ii) (a+b)*c

(iii) log x (iv) n!

+

a *

cb

*

c+

a b

log

x

!

n

Algorithms and Data Structures 76
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Expression Tree

+

a *

c

­

*

+

b ba

c

Algorithms and Data Structures 77
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Polish Forms
(Notations polonaises)

(i) Prefix form (Notation préfixée)
The operator is written before
the operands
® preorder
­ + a * b c * + a b c

(ii)Infix form (Notation infixée ou symétrique)
The operator is written between
the operands
® inorder
a + b * c ­ (a + b) * c

(iii)Postfix form (Notation postfixée)
The operator is written after the operands
® postorder
a b c * + a b + c * ­
Algorithms and Data Structures 78
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Expression Tree

+

-

*

:=

/

b

2 a

c

0.5

4 a

­

x

-

­

b

*

*2
Algorithms and Data Structures 79
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Other Trees
Strictly Binary Tree

(Arbre strictement binaire)
Any node that is not a leaf has non empty left
and right subtrees.

Almost Complete Binary Tree
(Arbre binaire presque complet)

(i) Each leaf of the tree is at the level k or
k+1;
(ii) If a node in the tree has a right
descendant at the level k+1, then all its left
descendants that are leaves are also at the
level k+1.

Heap (Tas)
(i) A heap is an almost complete binary
tree.
(ii) The contents of a node is always
smaller or equal to that of the parent node.
Algorithms and Data Structures 80
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

V. Graphs

Definitions
Oriented Graph (example and definitions)
Undirected Graph (example and definitions)
Representations

Adjacency Matrix
Adjacency Sets
Linked Lists
Contiguous Lists (matrices)
"Combination"

Abstract Data Type
List of Algorithms
Traversal
Shortest path
Representation of a weighted graph
Dijkstra’s Algorithm
Principle of dynamic programming
Algorithms and Data Structures 81
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Graphs
Definitions

1. Directed graph, digraph (graphe orienté):
• G = (V, E)
• V finite set of vertices (sommet)
• E Ì V x V set of arcs (arc)
This definition prohibits multiple parallel arcs,
but self-loops (v, v) are allowed.

2. Undirected graph, graph (graphe non
orienté)
• G = (V, E)
• V finite set of nodes (noeud)
• E a set of two-element subsets of V,

{{y, z}| x, y, z Î V}, set of edges (arête).
This definition prohibits self loops like {v}.
Algorithms and Data Structures 82
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Graphs
Definitions

3. Weighted (directed) graph (graphe valué)
A value is associated with each arc or edge,
often an integral number, sometimes the
value is composite, i.e. is a tuple.

4. A network (réseau) is a weighted directed
graph.
The values might represent distances,
transportation capacities, bandwidth,
throughput, etc.

The complexity of graph algorithms are
usually measured as functions of the number
of vertices and arcs (nodes and edges).

Sometimes the terms "node" and "edge" are
also used for digraphs. Sometimes "vertex" is
used instead of edge for undirected graphs.
Algorithms and Data Structures 83
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Directed Graphs
Example

V = {a, b, c, d}
E = {(a, a), (a, c), (c, d), (d, c)}
• (a, a) is a self-loop (boucle)
• multiple parallel arcs are prohibited (E is a

set!)

b

c

d

a

Algorithms and Data Structures 84
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Directed Graphs
Example

1.1. a is a predecessor (prédecesseur) of c
and c is a successor (successeur) of a.
1.2. The indegrees (degrés incidents à
l'intérieur) are:
0 for b, 1 for a, 2 for c, 1 for d.
The outdegrees (degrés incidents à
l'extérieur) are:
0 for b, 2 for a, 1 for c, 1 for d.
1.3. (a, c, d, c) is a path (chemin).
1.4. (c, d, c, d, c) is a cycle (circuit).
1.5. (a, c, d) is a simple path (chemin simple).
(c, d, c) et (d, c, d) are simple cycles (circuits
simples).

b

c

d

a

Algorithms and Data Structures 85
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Directed Graphs
Example

1.6. c and d are strongly connected
(fortement connexes).
The digraph itself is not strongly connected.
1.7. ({a, c, d}, {(a, c), (c, d), (d, c)}) is a
subgraph (sous-graphe (partiel)).
1.8. and 1.9.
The digraph does not have a spanning tree
(arbre de sustension).
The subgraph:
({a, c, d}, {(a, a), (a, c), (c, d), (d, c)})
has as a spanning tree:
({a, c, d}, {(a, c), (c, d)})

b

c

d

a

Algorithms and Data Structures 86
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Directed Graphs
Definitions

1.1. If (v, w) Î E then v is a predecessor
(prédécesseur) of w, and w is a successor
(successeur) of v.

1.2 The outdegree ((demi-)degré incident
vers l'extérieur) of a vertex is its number of
successors.
The indegree ((demi-)degré incident vers
l'intérieur) of a vertex is its number of
predecessors.

1.3. An (oriented) path (chemin (orienté)) is a
sequence (v1, v2,...,vk) of V such that
(vi, vi+1) Î E for 1£ i £ k-1.

1.4. A path (v1, v2,...,vk) such that v1 = vk is a
cycle (circuit).

1.5. If the vertices of a path are all distinct,
expect the first and last one, then the path is
said to be simple (chemin simple).
Algorithms and Data Structures 87
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Directed Graphs
Definitions

1.6. Two vertices are strongly connected
(fortement connexes) if there are paths
connecting each one to the other.
A digraph is strongly connected if all its
vertices are strongly connected.

1.7. A subgraph (sous-graphe (partiel)) is a
digraph (V', E') such that V' Ì V and E' Ì E.

1.8. A (rooted) tree (arbre) is a digraph
having a vertex, called its root (racine),
having the property: For each vertex of the
graph there is exactly one path from the root
to the vertex.

1.9. A spanning tree (arbre de sustension)
of a digraph (V, E) is a subgraph T = (V', E')
that is a tree and such that V = V'.
Algorithms and Data Structures 88
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Undirected Graphs
Example

V = {a, b, c, d, e}
E = {{a, c}, {a, d}, {c, d}, {d, e}}
• self-loops (boucle) are prohibited.
• multiple parallel edges are prohibited (E is

a set!).

a
b

d
c

e

Algorithms and Data Structures 89
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Undirected Graphs
Definitions

1.1. If (v, w) Î E, then the nodes v and w are
said to be adjacent (voisins, adjacents).

1.2. The degree (degré) of a node is the
number of its adjacent nodes.

1.3. A sequence of nodes (v1, v2,...,vk) of V
such that {vi, vi+1} Î E for 1£ i £ k-1 is a path
(chaîne).

1.4. A path (v1, v2,...,vk) such that v1= vk is a
cycle (cycle).

1.5. If all nodes are distinct, the path or cycle
is said to be simple (chaîne simple, cycle
simple).
Algorithms and Data Structures 90
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Undirected Graphs
Definitions

1.6 Two nodes are connected (connexe) if
there is a path going from one to the other.
The graph is said to be connected if all its
nodes are connected.

1.7 A subgraph (sous-graphe (partiel)) is a
graph (V', E') such that V' Ì V and E' Ì E.

1.8 A a tree or free tree (arborescence) is a
graph where there is exactly one simple path
between every pair of nodes.

1.9. A spanning tree (arbre de sustension)
of a graph (V, E) is a subgraph T = (V', E')
that is a tree and such that V = V'.
Algorithms and Data Structures 91
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Graphs
Representations

• Adjacency matrix
• Adjacency sets (or lists)
• Linked lists
• Contiguous lists (matrices)
• "Combinations"

1 2

34
Algorithms and Data Structures 92
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Adjacency Matrix

T stands for true, i.e. there is an arc.
Empty cells have value F.

1 2 3 4
1 T T a (i, j) = T
2 T T <=>
3 (i, j) is an arc
4 T T T

1 2

34
Algorithms and Data Structures 93
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Adjacency Matrix

subtype Nb_of_Vertices is Natural range 0..Max;
subtype Vertex_Type is Positive range 1..Max;

type Matrix_Type is
array (Vertex_Type range <>,

Vertex_Type range <>) of Boolean;

type Graph_Type (Size: Nb_of_Vertices := 0) is record
Adjaceny_Matrix: Matrix_Type (1..Size, 1..Size);

end record;
Algorithms and Data Structures 94
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Adjacency Sets

{(1, {2, 3}), (2, {3, 4}), (3, Æ), (4, {1, 2, 3})}

1 2, 3
2 3, 4
3
4 1, 2, 3

1 2

34
Algorithms and Data Structures 95
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Adjacency Sets

subtype Nb_of_Vertices is Natural range 0..Max;
subtype Vertex_Type is Positive range 1..Max;

package Set is new Set_G (Element_Type => Vertex_Type);
type Set_of_Vertices is new Set.Set_Type;

type Adjacency_Set:Type is
array (Vertex_Type range <>)

of Set_of_Vertices;

type Graph_Type (Size: Nb_of_Vertices := 0) is record
Adjacency_Sets: Adjacency_Set_Type (1..Size);

end record;
Algorithms and Data Structures 96
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Linked Lists

It would be possible to add additional links:
• from each arc to its starting vertex;
• from each vertex, link together all the arcs

of which it is the final vertex.

arc (1, 2)

vertex 1

arc (4, 1) arc (4, 2) arc (4, 3)

arc (2, 3) arc (2, 4)

arc (1, 3)graph

vertex 2

vertex 3

vertex 4
null

null

null

null

null
Algorithms and Data Structures 97
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Linked Lists

type Vertex_Type;
type Edge_Type;
type Vertex_Access_Type is

access Vertex_Type;
type Edge_Access_Type is

access Edge_Type;

type Vertex_Type is record
First_Edge: Edge_Access_Type;
Next_Vertex: Vertex_Access_Type;

end record;

type Edge_Type is record
End_Vertex: Vertex_Access_Type;
Next_Edge: Edge_Access_Type;

end record;

type Graph_Type is
new Vertex_Access_Type;
Algorithms and Data Structures 98
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Contiguous Lists (Matrices)

For each vertex, the vertices it is connected
to by an arc are listed. The number of such
vertices equals at most the number of
vertices, and an n x n matrix is hence
sufficient.

Vertex Number List
1 2 2 3 - - - - -
2 2 3 4 - - - - -
3 0 - - - - - - -
4 3 1 2 3 - - - -
5 - - - - - - - -
6 - - - - - - - -

max = 7 - - - - - - - -
Algorithms and Data Structures 99
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

v

v

v

v

"Combination"

Because the "vector" of vertices has length 7
in the example, at most 7 vertices are
possible.

ertex 1

vertex 2

ertex 6

ertex 3 null

ertex 4

vertex 5

2

3

null1 2 3

null

null3

4

vertex 7

null

null

null
Algorithms and Data Structures 100
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Graphs
Abstract Data Type

generic
type Vertex_Value_Type is private;
type Edge_Value_Type is private;

package Graph_G is
type Graph_Type is limited private;
type Vertex_Type is private;
type Edge_Type is private;

-- operations to set and consult the values of vertices and edges.

procedure Set
(Vertex: in out Vertex_Type;
Value: in Vertex_Value_Type);

function Value
(Vertex: Vertex_Type)
return Vertex_Value_Type;

-- similar for edges

...
Algorithms and Data Structures 101
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Graphs
Abstract Data Type

procedure Add
(Vertex: in out Vertex_Type;
Graph: in out Graph_Type);

procedure Remove
(Vertex: in out Vertex_Type;
Graph: in out Graph_Type);

procedure Add
(Edge: in out Edge_Type;
Graph: in out Graph_Type;
Source,
Destination: in Vertex_Type);

procedure Remove
(Edge: in out Edge_Type;
Graph: in out Graph_Type);
Algorithms and Data Structures 102
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Graphs
Abstract Data Type

function Is_Empty
(Graph: Graph_Type)
return Boolean;

function Number_of_Vertices
(Graph: Graph_Type)
return Natural;

function Source
(Edge: Edge_Type)
return Vertex_Type;

function Destination
(Edge: Edge_Type)
return Vertex_Type;
Algorithms and Data Structures 103
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Graphs
Abstract Data Type

generic
with procedure Process

(Vertex: in Vertex_Type;
Continue: in out Boolean);

procedure Visit_Vertices
(Graph: in Graph_Type);

generic
with procedure Process

(Edge: in Edge_Type;
Continue: in out Boolean);

procedure Visit_Edges
(Graph: in Graph_Type);
Algorithms and Data Structures 104
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Graphs
Abstract Data Type

generic
with procedure Process

(Edge: in Edge_Type;
Continue: in out Boolean);

procedure Visit_Adj_Edges
(Vertex: in Vertex_Type
[; Graph: in Graph_Type]);

...
end Graph_G;
Algorithms and Data Structures 105
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Graph Algorithms

Depth-first search
Breadth-first search
Connectivity problems
Minimum Spanning Trees
Path-finding problems
Shortest path
Topological sorting
Transitive Closure
The Newtwork Flow problem

(Ford-Fulkerson)
Matching

Stable marriage problem
Travelling Salesperson problem
Planarity problem
Graph isomorphism problem
Algorithms and Data Structures 106
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Graph Traversal

B C D

A

F

G H

I

E

Algorithms and Data Structures 107
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Depth-First Search

B C D

A

F

G H

I

E

1

2

3

4

5 9

6

7

8

(A, B, E, G, C, F, H, I, D)
Algorithms and Data Structures 108
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Breadth-First Search

B C D

A

F

G H

I

E

1

2 3 4

5

9

6

7 8

(A, B, C, D, E, F, G, H, I)
Algorithms and Data Structures 109
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Depth-First Search

For each vertex v in the graph:
1. visit the vertex v;
2. determine the vertices adjacent to v:

w1, w2,...wk;
3. for i varying from 1 to k: traverse starting
from vertex wk.

Don’t forget to mark the vertices already
visited.
Algorithms and Data Structures 110
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Depth-First Search

-- pseudo-Ada

generic
with procedure Visit (Vertex: in Vertex_Type);

procedure Depth_First (Graph: in Graph_Type);

procedure Depth_First (Graph: in Graph_Type) is
Visited: array (Graph.Vertex_Set) of Boolean;
procedure Traverse (Vertex: Vertex_Type) is separate;

begin
for all Vertex in Graph.Vertex_Set loop

Visited (Vertex) := False;
end loop;
for all Vertex in Graph.Vertex_Set loop

if not Visited (Vertex) then
Traverse (Vertex);

end if;
end loop;

end Depth_First;
Algorithms and Data Structures 111
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Depth-First Search

separate (Depth_First)
procedure Traverse (Vertex: in Vertex_Type) is
begin

Visited (Vertex) := True;
Visit (Vertex);
for all W adjacent to Vertex loop

if not Visited (W) then
Traverse (W);

end if;
end loop;

end Traverse;
Algorithms and Data Structures 112
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Breadth-First Search

For each vertex v in the graph:
1. visit the vertex v;
2. visit the vertices adjacent to v:

w1, w2,...wk;
3. then visit the vertices adjacent to w1, then
those adjacent to w2, etc.

Don’t forget to mark the vertices already
visited.
Algorithms and Data Structures 113
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Breadth-First Search

package Queue is
new Queue_G

(Element_Type => Vertex_Type);

type Queue_of_Vertices is
new Queue.Queue_Type;

generic
with procedure Visit

(Vertex: in Vertex_Type);
procedure Breadth_First

(Graph: in Graph_Type);
Algorithms and Data Structures 114
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Breadth-First Search
procedure Breadth_First (Graph: in Graph_Type) is

Visited: array (Graph.Vertex_Set) of Boolean
:= (others => False);

Waiting: Queue_of_Vertices;
Next: Vertex_Type;

begin
for all Vertex in Graph.Vertex_Set loop

if not Visited (Vertex) then
Insert (Waiting, Vertex);
while not Is_Empty (Waiting) loop

Remove (Waiting, Next);
Visited (Next) := True;
Visit (Next);
for all W adjacent to Next loop

if not Visited (W) then
Insert (Waiting, W);

end if;
end loop;

end loop;
end if;

end loop;
end Breadth_First;
Algorithms and Data Structures 115
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Shortest Path
The graph is weighted: a positive numeric
value is associated with each arc.

Statement 1:
Given a vertex Start and a vertex Target, find
the shortest path from Start to Target.

Statement 2:
Given a vertex Start, find the shortest paths
from Start to all other vertices.

• Dijkstra’s Algorithm (especially when
adjacency lists are used for the
representation)

• Floyd’s Algorithm (especially when an
adjacency matrix is used for the
representation)
Algorithms and Data Structures 116
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Representation of a
Weighted Graph

The function Weight is defined for all couples
of vertices:

Weight (V, V) = 0
Weight (V, W) =

µ (infinity) if there is no arc from V to W;
the value of the arc, if there is one;

Weight can be implemented by a matrix or
another representation, e.g. a map or
dictionary.
Algorithms and Data Structures 117
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Dijkstra’s Algorithm
Principle

Start: starting vertex

S: Set of vertices for which the length of the
shortest path is known.

Q: Set of vertices adjacent to S.

d (V): Distance between Start and V, for
VÎSÈQ, with the meaning:
• If VÎS, it is the length of the shortest path;
• If VÎQ, it is the length of the shortest path

via S (all vertices on the path are in S,
except V itself).
Algorithms and Data Structures 118
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Dijkstra’s Algorithm
Principle

1. Initialization
Q := {Start} d(Start) := 0;
S := Ø

2. Loop
2.1. Extract from Q the vertex C having the
smallest distance:

d (C) = min (d (V); V ÎQ)
2.2. Add C to S (see Justification)
2.3. Add the vertices adjacent to C to Q, and
update their distances:
For every W adjacent to C:
• if WÏQ: d(w) := d(C) + weight (C, W)
• if WÎQ: d(w) :=

min (d(W),d(C) + weight (C, W))

3. Stop condition
• Q is empty
Algorithms and Data Structures 119
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Dijkstra’s Algorithm
Example

BC

D

A EStart
4 7 1

7 2

13
Algorithms and Data Structures 120
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Dijkstra’s Algorithm
Example

Initialization
Q := {A}, S := Æ, d (A) := 0

First Loop (process A)
S := {A}, Q := {B, C, D}
d (B) := 13, d (C) := 4, d (D) := 7

Second Loop (process C)
S := {A, C}, Q := {B, D, E}
d (B) = 13, d(D) = 7, d (E) := 11
because d (E) := d (C) + weight (C, E)

Third Loop (process D)
S := {A, C, D}, Q := {B, E}
d (B) = 13, d (E) := 9, because
d (E) :=
min (previous value,d(D) + weight (D, E))

Fourth Loop (process E)
S := {A, C, D, E}, Q := {B}
d (B) := 10

Fifth and Last Loop (process B)
S := {A, B, C, D, E}, Q := Æ
Algorithms and Data Structures 121
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Other Example

B

CD

A

E

Start

4

2

6
6

21
10

3
52
Algorithms and Data Structures 122
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Dijkstra’s Algorithm
Justification

Suppose there is a shorter path P going to C.
Then P necessarily goes through a vertex not
belonging to S. Let X be the first vertex on P
which is not in S:

Since X is adjacent to S, X belongs to Q and
d (X) is the length of the shortest path via S.
But by the very choice of C: d (X) ³ d (C) and
the length of P is necessarily greater or equal
to d (X).

Start

S
C

X
P

Algorithms and Data Structures 123
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Dijkstra’s Algorithm
Implementation using a Priority Queue

Precondition:
Weight (V, W) = µ if there is no arc from V to W.

Q: Priority_Queue_Type;
C: Vertex_Type;

Distance := (others => µ);
Insert (Q, Start);
Distance (Start) := 0;

while not Is_Empty (Q) loop
Remove (Q, C);
for all W adjacent to C loop

if Distance (C) + Weight (C, W) < Distance (W) then
Distance (W) := Distance (C) + Weight (C, W);
Insert (Q, W);

end if;
end loop;

end loop;
Algorithms and Data Structures 124
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Dijkstra’s Algorithm
Implementation with a Set

Precondition:
Weight (V, W) = µ if there is no arc between
V and W; and Weight (V, W) = 0 if V = W.

S: Set_of_Vertices;
Start, C: Vertex_Type;
Min_Dist: Weight_Type;
Found: Boolean;

Insert (S, Start);
for all V in Graph.Vertex_Set loop

Distance (V) := Weight (Start, V);
end loop;
Algorithms and Data Structures 125
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Dijkstra’s Algorithm
Implementation with a Set

Found := True;
while Found loop

-- at each pass, en element is added to S
Found := False;
Min_Dist = µ;
-- Find the element to be added to S
for all V in Graph.Vertex_Set loop

if V not in S then
if Distance (V) < Min_Dist then

Found := True;
Min_Dist := Distance (V);
C := V;

end if;
end if;

end loop;
if Found then

Insert (S, C);
for all W adjacent to C loop

if Min_Dist + Weight(C,W) < Distance(W) then
Distance(W) := Min_Dist + Weight(C,W);

end if;
end loop;

end if;
end loop;
Algorithms and Data Structures 126
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Find the paths rather than
their lengths

Representation of a path
• For each vertex on the path, store its

predecessor (on the path).

Finding the shortest path:
• Whenever the distance of a vertex

(supposed to be the shortest one) is
modified, the predecessor vertex is stored.
Algorithms and Data Structures 127
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

 Dynamic Programming
Principle

Any subpath of a shortest path is necessarily
a shortest path.

Proof: Otherwise it would be possible to build
a shorter path by substituting the shorter
subpath.

Start EndI1 I2
Algorithms and Data Structures 128
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

VI. Analysis of Algorithms
 (Algorithmique)

Classification of algorithms
Selection criteria
Complexity
Big O notation
Fundamental recurrence relations
Design of algorithms
Incremental algorithms
Greedy algorithms
Divide and conquer algorithms
Dynamic programming
Knapsack problem
Computability and complexity
Undecidable problems
Exponential time problems
Polynomial time problems
NP-complete problems
Satisfiability problem
Algorithms and Data Structures 129
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Algorithms
Sorting ®

Searching
Sequential Searching, Binary Search,
Tree Search, Hashing, Radix Searching

String Processing
String Searching

Knuth-Morris-Pratt, Boyer-Moore,
Robin-Karp

Pattern Matching
Parsing (Top-Down, Bottom-Up,

Compilers)
Compression

Huffman Code
Cryptology

Image Processing
Algorithms and Data Structures 130
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Algorithms
Geometric Algorithms

Intersections
Convexity
Jordan Sorting
Closest-Point Problems
Curve Fitting

Mathematical Algorithms
Random Numbers
Polynomial Arithmetic
Matrix Arithmetic
Gaussian Elimination
Integration
Fast Fourier Transform
Linear Programming

Graph Algorithms ®
Algorithms and Data Structures 131
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Selection Criteria
How to choose an algorithm and/or a data
structure representation?

1. Effort for implementing the algorithm:
1.1. searching the literature
1.2. programming
1.3. testing
1.4. maintenance

2. Resources used for running the algorithm:
2.1. time (of computation)
2.2. space (in memory)
2.3. energy (number of processors)

3. Frequency of use of the algorithm
Algorithms and Data Structures 132
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Complexity
The complexity measure the quantity of
resources used by an algorithms as a
function of the problem size.

One is especially interested in the trend of the
complexity when the problem size becomes
large, tends towards infinity.

Worst-case analysis:
complexity for problems the algorithm is in

trouble dealing with.

Average-case analysis:
complexity for "average" problems.
Algorithms and Data Structures 133
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Big O Notation
Definition

The big O notation defines equivalence
classes of real functions defined on the
natural numbers.

f, g: N+ ® R+

f belongs to O(g) iff
$ noÎ N, $ c Î R, such that
" n ³ no , f(n) £ cg(n)
Algorithms and Data Structures 134
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Big O Notation
Calculus

1. Transitivity (transitivité)
If f is O(g) and g is O(h), then f is O(h).

2. Scaling (changement d'échelle)
If f is O(g), then for all k > 0, f is O(k·g).

3. Sum (somme)
If f1 is O(g1) and f2 is O(g2),
then f1 + f2 is O(max (f1, f2)), where
max (f1, f2) (x) = max (f1 (x), f2 (x)); " x

4. Product (produit)
If f1 is O(g1) and f2 is O(g2),
then f1·f2 is O(g1·g2).
Algorithms and Data Structures 135
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Big O Notation
Example

Show that 2n3 + 5n2 + 3 is O(n3).

Sum
O(2n3 + 5n2 + 3) = O(max (2n3, 5n2 + 3))

= O(2n3)

Scaling:
O(2n3) = O(n3)

Transitivity:
O(2n3 + 5n2 + 3) = O(2n3)
and
O(2n3) = O(n3)
therefore
O(2n3 + 5n2 + 3) = O(n3)
Algorithms and Data Structures 136
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Big O Notation
Typical Cases

O(1) constant complexity
O(logn) logarithmic complexity
O(n) linear complexity
O(nlogn)"nlogn" complexity
O(n2) quadratic complexity
O(n3) cubic complexity
O(nm) polynomial complexity
O(2n) exponential complexity

An algorithm is said to be exponential, or
having an exponential performance, if there is
no m such that it is of the class O(nm), i.e. it is
not polynomial.
Algorithms and Data Structures 137
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Fundamental Recurrence
Relations

1. Loop over the data structure processing
each element in turn, then suppress one
element from the data structure. Continue
until there are no elements left.

C1 = 1
Cn = Cn-1 + n, for n >= 2
therefore
Cn = Cn-2 + (n-1) + n

...
= 1 + 2 +... + n
= (1/2)*n*(n+1)

The complexity is therefore of magnitude n2.

Example: Selection sort.
Algorithms and Data Structures 138
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Fundamental Recurrence
Relations

2. Process one element, then divide the data
structure in two equal parts without
examining the individual elements. Resume
on one of the two parts.

C1= 0
Cn= Cn/2 + 1 n ³ 2

Approximation with n = 2m

C2m = C2m-1 + 1
 = C2m-2 + 2
...
 = C2o + m
 = m

n = 2m, hence m = lgn, hence
Cn » lgn (or logn)

Example: Binary search.
Algorithms and Data Structures 139
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Fundamental Recurrence
Relations

3. Loop over the data structure processing
each element in turn, and dividing on the way
the data structure in two equal parts. Resume
on one of the two parts.

C1 = 1
Cn = Cn/2 + n n ³ 2

Approximation with n = 2m

C2m = C2m-1 + 2m

 = C2m-2 + 2m-1 + 2m

 = 1 + 21 + 22 +... + 2m

 = 2m+1 - 1

hence
 Cn = 2n - 1

Example: ??
Algorithms and Data Structures 140
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Fundamental Recurrence
Relations

4. Loop over the data structure processing
each element in turn, and dividing on the way
the data structure in two parts. Resume on
the two parts (divide-and-conquer).
C1 = 1
Cn = 2Cn/2 + n

­ ­

½ ½ traverse n elements
½ Cn/2 + Cn/2 : each half

Approximation: n = 2m

hence:

Example: Quick sort

C
2m 2 C

2m 1– 2m+�=

C
2m

2m

C
2m 1–

2m 1–
-------------------------- 1+ m 1+= =

C
2m 2m m 1+()�=

Cn n nlog×@
Algorithms and Data Structures 141
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Algorithm Design
(Conception d’algorithmes)

Know the problems impossible to solve on a
computer.

Know the problems hard to compute.

Know the classic algorithms.

Search the literature.

Know how to apply design strategies.
Algorithms and Data Structures 142
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Design Strategies
• Incremental algorithms

(incremental algorithms)
Insertion sort, linear search.

• Greedy algorithms
(algorithmes gloutons)
Selection sort, shortest path by Dijkstra.

• Divide-and-conquer algorithms
(algorithmes "diviser pour régner")
Quick sort, binary search, convex hull.

• Dynamic programing
(programmation dynamique)

• Search with backtracking (recherche avec
rebroussement)

• Pruning (élagage)
• "Branch and bound"
• Approximation
• Heuristics (algorithmes heuristiques)
Algorithms and Data Structures 143
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Incremental Algorithms
procedure Solve (P: in [out] Problem;

 R: out Result) is

begin
R := some evident value;
while P ¹ empty loop

Select X in P;
Delete X in P;
Modify R based on X;

end loop;
end Solve;
Algorithms and Data Structures 144
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Incremental Algorithms
of the First Kind

The selected X is the first one, the most
accessible, etc.

The invariant of the loop is of the form:
R is a complete solution of the subproblem
defined by the deleted elements.

Example: Insertion sort
• X is the next element to be processed in

the remaining sequence.
• The result is the sorted sequence of the

elements already processed.
Algorithms and Data Structures 145
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Greedy Algorithms or
Incremental Algorithms of

the Second Kind
The element X is more carefully selected.
The invariant of the loop is of the form:
R is a part of the complete solution; R will not
be changed, but elements will be added to it.

Example: Selection sort.

In order to produce the sequence
(1, 5, 6, 9, 12),

one produces step-by-step the following
sequences:
(), (1), (1, 5), (1, 5, 6), (1, 5, 6, 9), and
(1, 5, 6, 9, 12).
Algorithms and Data Structures 146
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Divide-and-Conquer
Algorithms

procedure Solve (P: in [out] Problem;
R: out Result) is

P1, P2: Problem; R1, R2: Result;
begin

if Size (P) < = 1 then
R := straightforward value;
return;

end if;
Divide P into P1 and P2;
Solve (P1, R1);
Solve (P2, R2);
Combine (R1, R2, R);

end Solve;

Sometimes the problem is divided into many
subproblems.
The algorithm is especially efficient if the
division is into two equally-sized halves.
Algorithms and Data Structures 147
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Divide-and-Conquer
Algorithms

The difficulty consists in finding the
operations Divide and Combine. The easiest
way of Dividing will not always allow to
Combine the partial solutions into a global
solution.

Example: Quick sort
All the effort is put into the Divide operation.
The Combine operation is reduced to
nothing.
Algorithms and Data Structures 148
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Convex Hull
(Enveloppe convexe)

Combine: Seems hard!

Divide randomly the points into red and blue ones

Solve the two subproblems

Red + Blue = ??
Algorithms and Data Structures 149
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Convex Hull
(Enveloppe convexe)

Divide:
• Find the points with the largest and

smallest Y coordinates, called A and B.
• Allocate points to L or R depending on

which side of the line joining A and B, left
or right, they are.

A

B

L
R

max

min
Algorithms and Data Structures 150
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Convex Hull
(Enveloppe convexe)

Solve L and R

A

B

L
R

max

min
Algorithms and Data Structures 151
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Convex Hull
(Enveloppe convexe)

Combine:
• Connect both A and B to the "right"

vertices of the convex hulls of L and R.

A

B

L
R

max

min
Algorithms and Data Structures 152
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Dynamic Programming

Principle of divide-and-conquer:
In order to solve a large problem, it is divided
into smaller problems which can be solved
independently one from each other.

Dynamic programming
When one does not know exactly which
subproblems to solve, one solves them all,
and one stores the results for using them
later on for solving larger problems.

This principle can be used if:
A decision taken for finding the best solution
of a subproblem remains a good solution for
solving the complete problem.
Algorithms and Data Structures 153
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Problem of the Knapsack
Capacity of the knapsack: M

List of goods:

Problem
Pack goods of the highest total value in the
knapsack, up to its capacity.

Idea of dynamic programming:
Find all optimal solutions for all capacities
from 1 to M.

Start with the case where there is only the
product A, then the products A and B, etc.

Name A B C D E
Size 3 4 7 8 9
Value 4 5 10 11 13
Algorithms and Data Structures 154
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Problem of the Knapsack

k 1 2 3 4 5 6 7 8 9 10 11 12

Obj 0 0 4 4 4 8 8 8 12 12 12 16
Best A A A A A A A A A A

Obj 0 0 4 5 5 8 9 10 12 13 14 16
Best A B B A B B A B B A

Obj 0 0 4 5 5 8 10 10 12 14 15 16
Best A B B A C B A C C A

Obj 0 0 4 5 5 8 10 11 12 14 15 16
Best A B B A C D A C C A

Obj 0 0 4 5 5 8 10 11 13 14 15 17
Best A B B A C D E C C E
Algorithms and Data Structures 155
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Problem of the Knapsack

type Good is (A, B, C, D, E);
type Table_of_Values is

array (Good) of Integer;
Size: constant Table_of_Values

:= (3, 4, 7, 8, 9);
Value: constant Table_of_Values

:= (4, 5, 10, 11, 13);
Objective: array (1..M) of Integer

:= (others => 0);
Best: array (1..M) of Good;
Algorithms and Data Structures 156
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Problem of the Knapsack

for P in Good loop
for Cap in 1..M loop

if Cap-Size(P) > = 0 then
if Objective (Cap)

< Objective (Cap-Size (P)) + Value (P) then
Objectif (Cap) :=

Objective (Cap-Taille(P)) + Value (P);
Best (Cap) := P;

end if;
end if;

end loop;
end loop;

Argument: If P is chosen, the best value is
Value (P) plus Value (Cap - Size (P)), which
corresponds to the value of the remaining
capacity.
Algorithms and Data Structures 157
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Map of Computability and
Complexity

Computability:
Whether or not it is possible to solve a
problem on a machine.

Machine:
• Turing Machine

Polynomial-
Time

Intractable

NP-Complete

Computable
Undecidable/
Unsolvable

where?
Algorithms and Data Structures 158
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Undecidable Problems,
Unsolvable Problems

It is impossible to solve the problem by an
algorithm.

Examples:
• Halting problem
• Trisect an arbitrary angle with a compass

and a straight edge.

Intractable Problems

There is an algorithm to solve the problem.
Any algorithm requires at least exponential
time.
Algorithms and Data Structures 159
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Polynomial-Time Problems
Size N of a problem:
• Number of bits used to encode the input,

using a "reasonable" encoding scheme.

Efficiency of an algorithm:
• Is a function of the problem size.

Deterministic algorithm/machine:
• At any time, whatever the algorithm/

machine is doing, there is only one thing
that it could do next.

P:
• The set of problems that can be solved by

deterministic algorithms in polynomial
time.
Algorithms and Data Structures 160
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Non-Deterministic
Polynomial-Time Problems

Non-determinism:
• When an algorithm is faced with a choice

of several options, it has the power to
"guess" the right one.

Non-deterministic algorithm/machine:
• To solve the problem, "guess" the solution,

then verify that the solution is correct.

NP:
• The set of problems that can be solved by

non-deterministic algorithms in polynomial
time.
Algorithms and Data Structures 161
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Non-Deterministic
Polynomial-Time Problems

P Ì NP

To show that a problem is in NP, we need
only to find a polynomial-time algorithm to
check that a given solution (the guessed
solution) is valid.

Non-determinism is such a powerful
operation that it seems almost absurd to
consider it seriously.

Nevertheless we do not know whether or not:
P = NP ?? (rather no!)
Algorithms and Data Structures 162
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

NP-Complete Problems
A problem is said to be NP-complete:
• if it is NP, and
• it is likely that the problem is not P,

and hence
• it is likely that the problem is intractable.

Otherwise stated:
• There is no known polynomial-time

algorithm.
• It has not been proven that the problem is

intractable.
• It is easy to check that a given solution is

valid.

It can be shown that:
• ALL NP-COMPLETE PROBLEMS ARE

EQUIVALENT.
(i.e. they may be transformed in
polynomial-time each one to another one.)
Algorithms and Data Structures 163
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

Satisfiability Problem
Given a logical formula of the form:
(x1 + x3 + x5) * (x1 + Øx2 + x4) * (Øx3 + x4 + x5)

where the xi's represent Boolean variables,
the satisfiability problem is to determine
whether or not there is an assignment of truth
values to variables that makes the formula
true ("satisfies" it).

• It is easy to check that a given solution
satisfies the formula.

• NP-completeness shown by Cook (1971).
Algorithms and Data Structures 164
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

NP-Complete Problems
Satisfiability
• Is a Boolean expression satisfiable?

Hamilton circuit
• Does a (un)directed graph have a

Hamilton circuit (cycle), i.e. a circuit (cycle)
containing every vertex.

Traveling Salesperson problem

Colorability
Is an undirected graph k-colorable? (no two
adjacent vertices are assigned the same
color)

Graph Isomorphism problem
Rename the vertices so that the graphs are
identical.

Longest path (without cycles)
Algorithms and Data Structures 165
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

NP-Complete Problems
Knapsack problem
• Fill a knapsack with goodies of best value.
• Given integers i1, i2,..., in and k, is there a

subsequence that sums exactly k?

Integer linear programming

Multiprocessor scheduling
• Given a deadline and a set of tasks of

varying length to be performed on two
identical processors, can the tasks be
arranged so that the deadline is met?
Algorithms and Data Structures 166
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

How to Solve Intractable
Problems

1. Polynomial-time may be larger than
exponential-time for any reasonable problem
size:
• nlglglgn is less than n2 for n < 216 = 65536
• nlglglgn is less than n3 for n < 2256 » 1077

2. Rely on "average-time" performance. The
algorithm finds the solution in some cases,
but does not necessarily work in all cases.

3. "Approximation"
The problem is changed. The algorithm does
not find the best solution, but a solution
guaranteed to be close to the best (e.g. value
³ 95% of best value)
Algorithms and Data Structures 167
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00

	Table of Contents
	I. Resources
	Bibliography
	Bibliography
	Bibliography
	Bibliography
	Bibliography
	II. Sorting
	Sorting Techniques
	Table of Comparison of Performance of Sorting Techniques
	Specification of Generic Sort
	Use of Generic Sort
	Selection Sort
	Selection Sort
	Selection Sort
	Selection Sort
	Selection Sort
	Insertion Sort
	Insertion Sort
	Insertion Sort
	Insertion Sort
	Insertion Sort
	Bubble Sort, or Straight Exchange Sort
	Bubble Sort
	Bubble Sort
	Bubble Sort
	Bubble Sort
	Bubble Sort
	Bubble Sort
	Quick Sort
	Quick Sort
	Quick Sort: Sort_G (1)
	Quick Sort: Sort_G (2)
	Quick Sort: Partition (1)
	Quick Sort: Partition (2)
	Quick Sort
	Quick Sort
	Quick Sort
	Quick Sort
	III. Data Structures
	Data Structures
	Data Structures
	Data Structures
	Representation of a Data Structure
	Subset
	Subset
	Subset
	Logical Structure or Representation
	Different Kinds of Lists
	Representations by Lists
	Abstract Data Type
	Abstract Data Type
	Abstract Data Type
	Abstract Data Type
	Abstract Data Type
	Abstract Data Type
	Abstract Data Type
	Abstract Data Type
	Abstract Data Type
	Abstract Data Type
	Abstract Data Type
	Abstract Data Type
	Abstract Data Type
	Abstract Data Type
	IV. Trees
	Kinds of Trees
	Binary Tree
	Binary Tree
	Binary Tree
	Traversal of a Binary Tree
	Traversal of a Binary Tree
	Traversal of a Binary Tree
	Search Tree
	Search Tree
	Expression Tree
	Expression Tree
	Polish Forms (Notations polonaises)
	Expression Tree
	Other Trees
	V. Graphs
	Graphs
	Graphs
	Directed Graphs
	Directed Graphs
	Directed Graphs
	Directed Graphs
	Directed Graphs
	Undirected Graphs
	Undirected Graphs
	Undirected Graphs
	Graphs
	Adjacency Matrix
	Adjacency Matrix
	Adjacency Sets
	Adjacency Sets
	Linked Lists
	Linked Lists
	Contiguous Lists (Matrices)
	"Combination"
	Graphs
	Graphs
	Graphs
	Graphs
	Graphs
	Graph Algorithms
	Graph Traversal
	Depth-First Search
	Breadth-First Search
	Depth-First Search
	Depth-First Search
	Depth-First Search
	Breadth-First Search
	Breadth-First Search
	Breadth-First Search
	Shortest Path
	Representation of a Weighted Graph
	Dijkstra’s Algorithm
	Dijkstra’s Algorithm
	Dijkstra’s Algorithm
	Dijkstra’s Algorithm
	Other Example
	Dijkstra’s Algorithm
	Dijkstra’s Algorithm
	Dijkstra’s Algorithm
	Dijkstra’s Algorithm
	Find the paths rather than their lengths
	Dynamic Programming
	VI. Analysis of Algorithms (Algorithmique)
	Algorithms
	Algorithms
	Selection Criteria
	Complexity
	Big O Notation
	Big O Notation
	Big O Notation
	Big O Notation
	Fundamental Recurrence Relations
	Fundamental Recurrence Relations
	Fundamental Recurrence Relations
	Fundamental Recurrence Relations
	Algorithm Design (Conception d’algorithmes)
	Design Strategies
	Incremental Algorithms
	Incremental Algorithms of the First Kind
	Greedy Algorithms or Incremental Algorithms of the Second Kind
	Divide-and-Conquer Algorithms
	Divide-and-Conquer Algorithms
	Convex Hull (Enveloppe convexe)
	Convex Hull (Enveloppe convexe)
	Convex Hull (Enveloppe convexe)
	Convex Hull (Enveloppe convexe)
	Dynamic Programming
	Problem of the Knapsack
	Problem of the Knapsack
	Problem of the Knapsack
	Problem of the Knapsack
	Map of Computability and Complexity
	Undecidable Problems, Unsolvable Problems
	Intractable Problems
	Polynomial-Time Problems
	Non-Deterministic Polynomial-Time Problems
	Non-Deterministic Polynomial-Time Problems
	NP-Complete Problems
	Satisfiability Problem
	NP-Complete Problems
	NP-Complete Problems
	How to Solve Intractable Problems

