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Presentation Sequence
Bibliography
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II.  Sorting

List of main sorting techniques
Performance comparison
Specification of a generic sort procedure
Use of the generic sort procedure
Selection sort
Insertion sort
Bubble sort
Quick sort
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Sorting Techniques
Selection Sort

Straight Selection Sort
Quadratic Selection Sort

Insertion Sort
Straight (Linear) Insertion Sort
Binary Insertion Sort
Shell Sort

Exchange Sort
Straight Exchange Sort (Bubble Sort)
Shaker Sort
Quick Sort
Radix Sort

Tree Sort
Binary Tree Sort
Heap Sort

Merge Sort

External Sorting
Sort-Merge
Polyphase Merge
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Table of Comparison of 
Performance of Sorting 

Techniques
(see additional file)
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Specification of 
Generic Sort

generic

type Element_Type is private;

with function "<" 
(Left, Right: Element_Type)
return Boolean;

type Index_Type is (<>);

type Table_Type is array
(Index_Type range <>)
of Element_Type;

procedure Sort_G
(Table: in out Table_Type);

-- Sort in increasing order of "<".
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Use of Generic Sort
with Sort_G, Ada.Text_IO;
procedure Sort_Demo is

procedure Sort_String is new Sort_G 
(Element_Type => Character,
"<" => "<",
Index_Type => Positive,
Table_Type => String);

My_String: String (1..6) := "BFCAED";

begin -- Sort_Demo
Ada.Text_IO. Put_Line

("Before Sorting: " & My_String);
Sort_String (My_String);
Ada.Text_IO. Put_Line

("After Sorting: "& My_String);
end Sort_Demo;
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Selection Sort
Principle

Basic operation: Find the smallest element in 
a sequence, and place this element at the 
start of the sequence.

Basic Idea:
• Find the index Small;
• Exchange the values located at Start and 

Small;
• Advance Start.

Sorting Table (Start .. End):
• Find Small in Start .. End;
• Exchange Table (Start) and Table (Small);
• Sort Table (Start + 1 .. End);

Start Small End

sorted part
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Selection Sort
Example

390 205 182 45 235

45 205 182 390 235

45 182 205 390 235

45 182 205 390 235

45 182 205 235 390

Table 1: Selection Sort
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Selection Sort
procedure Sort_G (Table: in out Table_Type) is

Small: Index_Type;
begin

if Table'Length <= 1 then
return;

end if;
for I in Table'First..Index_Type'Pred (Table'Last) loop

Small := I;
for J in Index_Type'Succ (I)..Table'Last loop

if Table (J) < Table (Small) then
Small := J;

end if;
end loop;
Swap (Table (I), Table (Small));

end loop;
end Sort_G;
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Selection Sort
Complexity

We will neglect the index operations. We will 
therefore count only operations on the 
elements of the sequence.

n is the length of the sequence.

The number of executions of the interior loop 
is:

(n-1) + (n-2) +... + 1 = (1/2)*n*(n-1)
The interior loop contains one comparison.
The exterior loop is executed n-1 times.
The exterior loop contains one exchange.
Number de comparisons: (1/2)*n*(n-1)
Number of exchanges: n-1
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Selection Sort
Assessment

The effort is independent from the initial 
arrangement.

Negative: O(n2) comparisons are needed, 
independently of the initial order, even if the 
elements are already sorted.

Positive: Never more than O(n) moves are 
needed.

Conclusion: It’s a good technique for 
elements heavy to move, but easy to 
compare.
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Insertion Sort
Principle

Basic operation: Insert an element in a sorted 
sequence keeping the sequence sorted.

Array

Linked List

sorted part

sorted part

...

...
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Insertion Sort
Example: Exterior Loop

205 45 390 235 182

45 205 390 235 182

45 205 390 235 182

45 205 235 390 182

45 182 205 235 390

Table 2: Insertion Sort, Exterior Loop
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Insertion Sort
Example: Interior Loop, 

moving the last element (I=5, Temp=182)

45 205 235 390 182

45 205 235 390 182

45 205 235 390 390

45 205 235 235 390

45 205 205 235 390

45 182 205 235 390

Table 3: Insertion Sort, Interior Loop
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Insertion Sort

procedure Sort_G (Table : in out Table_Type) is
Temp : Element_Type;
J : Index_Type;

begin -- Sort_G
if Table'Length <= 1 then

return;
end if;
for I in Index_Type'Succ (Table'First) ..Table'Last loop

Temp := Table (I);
J := I;
while Temp < Table (Index_Type'Pred (J)) loop

Table (J) := Table (Index_Type'Pred (J));
J := Index_Type'Pred (J);
exit when J = Table'First;

end loop;
Table (J) := Temp;

end loop;
end Sort_G;
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Insertion Sort
Complexity

n is the length of the sequence
The exterior loop is executed n-1 times.

Interior loop:
Best case: 0
Worst case: 1+2+...+(n-1) = (1/2)*n*(n-1)
On average: One must walk through half of 
the list before finding the location where to 
insert the element: (1/4)*n*(n-1)

Comparisons Exchanges

Best Case n-1 2*(n-1)

Average (1/4)*n*(n-1) (1/4)*n*(n-1) + 2*(n-1)

Worst Case (1/2)*n*(n-1) (1/2)*n*(n-1) + 2*(n-1)

Table 4: Performance of Insertion Sort
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Bubble Sort, 
or Straight Exchange Sort

Principle
Basic Operation: Walk through the sequence 
and exchange adjacent elements if not in 
order.

Basic idea:
• walk through the unsorted part from the 

end;
• exchange adjacent elements if not in 

order;
• increase the sorted part, decrease the 

unsorted part by one element.

JJ+1

sorted part
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Bubble Sort
Example: First Pass

390 205 182 45 235

390 205 182 45 235

390 205 45 182 235

390 45 205 182 235

45 390 205 182 235

Table 5: Bubble Sort
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Bubble Sort
Example: Second Pass

45 390 205 182 235

45 390 205 182 235

45 390 182 205 235

45 182 390 205 235

Table 6: Bubble Sort
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Bubble Sort
Example: Third Pass

Example: Fourth Pass

45 182 390 205 235

45 182 390 205 235

45 182 205 390 235

Table 7: Bubble Sort

45 182 205 390 235

45 182 205 235 390

Table 8: Bubble Sort
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Bubble Sort
No Sentinel

procedure Sort_G (Table: in out Table_Type) is
begin

if Table'Length <= 1 then
return;

end if;

for I in Table'First..Index_Type'Pred (Table'Last) loop

for J in reverse Index_Type'Succ (I)..Table'Last loop
if Table (J) < Table (Index_Type'Pred (J)) then

Swap (Table (J), Table (Index_Type'Pred (J));
end if;

end loop;

end loop;

end Sort_G;
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Bubble Sort
With Sentinel

procedure Sort_G (Table: in out Table_Type) is
Sorted: Boolean;

begin

if Table'Length <= 1 then
return;

end if;

for I in Table'First..Index_Type'Pred (Table'Last) loop
Sorted := True;

for J in reverse Index_Type'Succ (I)..Table'Last loop
if Table (J) < Table (Index_Type'Pred (J)) then

Sorted := False;
Swap (Table (J), Table (Index_Type'Pred (J));

end if;
end loop;

exit when Sorted;
end loop;

end Sort_G;
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Bubble Sort
Complexity

n is the length of the sequence.
k (1£ k £ n-1)is the number of executions of the exterior loop 
(it is equal to the number of elements not in order plus one).

The number of executions of the body of the interior loop is:
• (n-1) + (n-2) +... + (n-k) = (1/2)*(2n-k-1)*k

The body of the interior loop contains:
• one comparison,
• sometimes an exchange.

Best case (ordered sequence):
• Number of comparisons: n-1
• Number of exchanges: 0
Worst case (inversely ordered sequence)

• Number of comparisons: (1/2)*n*(n-1)
• Number of exchanges: (1/2)*n*(n-1)

Average:
• Same magnitude as Worst Case.
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Quick Sort
Principle

The Algorithm is recursive.

One step rearranges the sequence:
a1 a2.........an

in such a way that for some aj, all elements 
with a smaller index than j are smaller than aj, 
and all elements with a larger index are larger 
than aj:

a1 £ aj a2 £ aj ... aj-1£ aj

aj £ aj+1 aj £ aj+2 ... aj  £ an

aj is called the pivot.

Sorting Table (Start..End):
• Partition Table (Start..End), and call J the 

location of partitioning;
• Sort Table (Start..J-1);
• Sort Table (J+1..End).
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Quick Sort

Starting on each end of the table, we move 
two pointers towards the centre of the table. 
Whenever the element in the lower part is 
larger than the pivot and the element in the 
upper part is smaller, we exchange them. 
When the pointers cross, we move the pivot 
at that position.

40 15 30 25 60 10 75 45 65 35 50 20 70

40 15 30 25 20 10 75 45 65 35 50 60 70

40 15 30 25 20 10 35 45 65 75 50 60 70

35 15 30 25 20 10 40 45 65 75 50 60 70

Table 9: Partitioning
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Quick Sort: Sort_G (1)

procedure Sort_G (Table: in out Table_Type) is

Pivot_Index: Index_Type;

function "<=" (Left, Right: Element_Type) 
return Boolean is

begin
return not (Right < Left);

end "<=";

procedure Swap (X, Y: in out Element_Type) is
T: constant Element_Type := X;

begin
X := Y; Y := T;

end Swap;

procedure Partition
(Table: in out Table_Type;
Pivot_Index: out Index_Type) is separate;
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Quick Sort: Sort_G (2)

begin -- Sort_G
if Table'First < Table'Last then

-- Split the table separated by value at Pivot_Index
Partition (Table, Pivot_Index);

-- Sort left and right parts:
Sort_G (Table

(Table'First..Index_Type'Pred (Pivot_Index)));
Sort_G (Table

(Index_Type'Succ (Pivot_Index)..Table'Last));

end if;
end Sort_G;
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Quick Sort: Partition (1)
separate (Sort_G)
procedure Partition

(Table: in out Table_Type;
Pivot_Index: out Index_Type) is

Up: Index_Type := Table'First;
Down: Index_Type := Table'Last;
Pivot: Table (Table'First);

begin
loop

-- Move Up to the next value larger than Pivot:
while (Up < Table'Last)

and then (Table (Up) <= Pivot) loop
Up := Index_Type'Succ (Up);

end loop;
-- Assertion: (Up = Table'Last) or 

(Pivot < Table (Up))

-- Move Down to the next value less than or 
equal to Pivot:

while Pivot < Table (Down) loop
Down := Index_Type'Pred (Down);

end loop;
-- Assertion: Table (Down) <= Pivot.
Algorithms and Data Structures  35
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00



Quick Sort: Partition (2)

-- Exchange out of order values:
if Up < Down then

Swap (Table (Up), Table (Down));
end if;
exit when Up >= Down;

end loop;
-- Assertion: Table'First <= I <= Down => 

Table (I) <= Pivot.
-- Assertion: Down < I <= Down => Pivot < Table (I)

-- Put pivot value where it has to be and 
define Pivot_Index:

Swap (Table (Table'First), Table (Down));
Pivot_Index  := Down;

end Partition;
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Quick Sort
Complexity

Worst case: The sequence is already 
ordered.
Consequence: The partition is always 
degenerated.

Storage space:
The procedure calls itself n-1 times, and the 
requirement for storage is therefore 
proportional to n. This is unacceptable.
Solution: Choose for the pivot the median of 
the first, last and middle element in the table. 
Place the median value at the first position of 
the table and use the algorithm as shown 
(Median-of-Three Partitioning).

Execution time:
The execution of Partition for a sequence of 
length k needs k comparisons. Execution 
time is therefore proportional to n2.
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Quick Sort
Complexity

Best case: The sequence is always divided 
exactly at its mid-position.

Suppose n = 2m

Quicksort for a sequence of size 2m calls itself 
twice with a sequence of size 2m-1.

Storage space:
S2m = S2m-1 + 1
(the maximum for a recursive descent)
therefore:
S2m » m and hence Sn  = O(logn)

Time behavior:
C2m = 2C2m-1 + 2m

(The 2m elements must be compared 
with the pivot)
therefore:
C2m » 2m(m+1) and hence Cn = O(nlogn)
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Quick Sort
Complexity

Average case: Same result as for the best 
case.

Idea about how to proceed for estimating the 
number of comparisons:
We consider a randomly selected 
permutation of n elements. The element at 
position k has a probability of 1/n to be the 
pivot. n-1 comparisons are needed for 
comparing the pivot with all the other 
elements. The recurrent relation is therefore:

c0 1=

cn n 1– 1
n
--- ck 1– cn k–+( )

k 1=

n
å×+=
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Quick Sort
Remarks

Parameter passing:
Beware of passing the Table parameter of 
Sort_G by copy!

Solution in Ada:
Write local procedures which use the index 
bounds of the table as parameters, and 
therefore work on the global variable Table.

Problem with recursion:
For "small tables" (between 5 and 25 
elements), use an insertion sort.

Quick Sort is not stable!
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III. Data Structures

List of the main data structures
Logical structure versus representation
Example: Subset
Various kinds of lists
Representations by lists
Abstract Data Type
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Data Structures

Stack (Pile)
Queue (Queue, File d'attente)

Deque (Double-Entry Queue,
Queue à double entrée)

Priority Queue (Queue de priorité)
Set (Ensemble)
Bag (Multiset, Multi-ensemble)
Vector (Vecteur)
Matrix (Matrice)
String (Chaîne)
(Linked) List (Liste chaînée)

Linear List (Liste linéaire)
Circular List (Liste circulaire)
Doubly-linked List (Liste doublement 

chaînée)
Ring (Anneau)
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Data Structures

Tree (Arbre)
Ordered Tree (Arbre ordonné)

(children are ordered)
2-Tree (Arbre d'ordre 2)

(every node has 0 or 2 children)
Trie (from retrieval)

(also called "Lexicographic Search 
Tree")

(a trie of order m is empty or is a 
sequence of m tries)

Binary Tree (Arbre binaire)
Binary Search Tree (Arbre de recherche)
AVL-Tree (Arbre équilibré)
Heap (Tas)

Multiway Search Tree
B-Tree
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Data Structures

Graph (Graphe)
Directed Graph (Graphe orienté)
Undirected Graph (Graphe non orienté)
Weighted Graph (Graphe valué)
DAG (Directed Acyclic Graph, Graphe

orienté acyclique)
Map (Mappe, Table associative)

Hash Table (Table de hachage)
File (Fichier)

Sequential File (Fichier sequentiel)
Direct Access File (Fichier à accès direct)
Indexed File (Fichier indexé, fichier en

 accès par clé)
Indexed-Sequential File (ISAM) (Fichier

indexé trié)
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Representation of a 
Data Structure

It is important to distinguish between:
The data structure with its logical properties 
(ADT, abstract data type, type de données 
abstrait);
The representation of this data structure, or 
its implementation.

The representation of a data structure is 
usually also a data structure, but at a lower 
level of abstraction.

Logical Structure

Representation Structure

uses for its implementation
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Subset
Representation

A subset E of a finite discrete set A can be 
represented by:

a) A characteristic function or a vector of 
booleans:

Membership: A  ¾®  {True, False}
e Î E iff Membership(e)

b) A contiguous sequence that enumerates 
the elements belonging to the subset:

(V(i), i Î [1, size(E)], V(i) Î A)
e Î E iff $ i Î [1, size(E)] such that e = V(i)
Algorithms and Data Structures  46
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00



Subset
Representation

c) A linked list comprising the elements 
belonging to E:

d) A binary search tree, the elements of A 
being ordered:

c nullab

nullnullcnullnulla

b
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Subset
Logic Properties

The logic properties of a subset are about the 
following ones:
1. It is possible to insert an element in a 
subset.
2. It is possible to suppress an element from 
a subset.
3. It is possible to know if an element 
belongs or not to a subset.
4. It is possible to know if a subset is empty.
5. It is possible to perform set operations on 
subsets: complement, union, intersection, 
difference and symmetric difference.
6. Some axioms must hold:

Insert (x, E) => x Î E
Suppress (x, E) => x Ï E
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Logical Structure or 
Representation

There are many sorts of lists: linear list, 
circular list, doubly-linked list, linear or 
circular, etc.

All kinds of data structures, like stacks and 
queues, can be implemented by lists.

A list can therefore be a logical data structure 
(of low-level), or a representation structure.
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Different Kinds of Lists
Linear list

Circular list

Doubly-linked list

List with header

null

? ?

null

start end
size
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Representations by Lists
Stack

• Insertion and suppression in time O(1).

Queue with linear list

• Insertion in time O(1) and suppression in time O(n), or 
the contrary.

Queue with headed list

• One suppresses at the start, and inserts at the end. Both 
operations are therefore performed in time O(1).

null

top

null

start

null

start end
size
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Abstract Data Type
Definition

The representation of the data structure is 
hidden.

The only means for modifying the data 
structure or retrieving information about it is 
to call one of the operations associated with 
the abstract data type.
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Abstract Data Type
Interface and Implementation

Abstract Data Type
=

Interface
+

Implementation

The interface defines the logical properties of 
the ADT, and especially the profiles or 
signatures of its operations.

The implementation defines the 
representation of the data structure and the 
algorithms that implement the operations.
Algorithms and Data Structures  53
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00



Abstract Data Type
Realization in Ada

An ADT is realized by a package, most of the 
time a generic package.

The specification of the package is the 
interface of the ADT. The data structure is 
declared as a private type, or a limited private 
type. The subprograms having at least one 
parameter of the type are the operations of 
the ADT.

The private part of the specification and the 
body of the package provide the 
implementation of the ADT. The contain also 
the representation of the data structure.

A constant or variable of the ADT is called an 
object.
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Abstract Data Type
Kinds of Operations

Constructors:
• Create, build, and initialize an object.

Selectors:
• Retrieve information about the state of an 

object.

Modifiers:
• Alter the state of an object.

Destructors:
• Destroy an object.

Iterators (parcoureurs, itérateurs):
• Access all parts of a composite object, and 

apply some action to each of these parts.
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Abstract Data Type
Example: Set of Elements

Add (Set, Element) -- constructor
Remove (Set, Element) -- constructor
Iterate (Set, Action) -- iterator
Is_A_Member (Set, Element) -- selector
Make_Empty (Set) -- constructor
Size (Set) -- selector
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Abstract Data Type
Example: Stack

A stack is a "LIFO" list (last in, first out).

Push (38) ... Pop ...

8 38         Top
7 4927
6 11
5 315
4 5
3 2352
2 11
1 325
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Abstract Data Type
Formal Definition of a Stack

E: is a set. 
P: the set of stacks whose elements belong 
to E.
The empty set Æ is a stack.

Operations
Push: P x E ® P
Pop: P - {Æ} ® P (without access)
Top: P - {Æ} ® E (without removing)

Axioms
" p Î P, " e Î E:

Pop (Push (p, e)) = p
Top (Push (p, e)) = e

" p ¹ Æ:
Push (Pop (p), Top (p)) = p

Note: The axioms are necessary, because 
e.g. the operations on FIFO queues have 
exactly the same signatures!
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Abstract Data Type
Primitive Operation

Note: Don’t confuse with a primitive operation as defined by 
the Ada programming language.

First Definition
An operation is said to be primitive if it cannot 
be decomposed.

Example

• procedure Pop 
(S: in out Stack; E: out Element);

can be decomposed into:

• procedure Pop (S: in out Stack);
• function Top (S: Stack) return Element;
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Abstract Data Type
Primitive Operation

Second Definition
An operation is said to be primitive if it cannot 
be implemented efficiently without access to 
the internal representation of the data 
structure.

Example
It is possible to compute the size of a stack by 
popping off all its element and then 
reconstructing it. Such an approach is highly 
inefficient.
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Abstract Data Type
Sufficient Set of Operations

Definition
A set of primitive operations is sufficient if it 
covers the usual usages of the data structure.

Example
A stack with a Push operation but lacking a 
Pop operation is of limited value.
Is a stack without an iterator usable?
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Abstract Data Type
Complete Set of Operations

Definition
A complete set of operations is a set of 
primitive operations including a sufficient set 
of operations and covering all possible 
usages of the data structure; otherwise 
stated, a complete set is a "reasonable" 
extension of a sufficient set of operations.

Example
Push, Pop, Top, Size and Iterate form a 
complete set of operations for a stack.

It would be possible to add Assign, "=", "/=" 
and Destroy.
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Abstract Data Type
Stack: Specification in Ada

generic
Max: Natural := 100;
type Item_Type is private;

package Stack_Class_G is
type Stack_Type is limited private;
procedure Push (Stack: in out Stack_Type;

     Item: in Item_Type);
procedure Pop (Stack: in out Stack_Type);
function Top (Stack: Stack_Type) 

return Item_Type;
generic

with procedure Action 
(Item: in out Item_Type);

procedure Iterate (Stack: in Stack_Type);
Empty_Error: exception;
-- raised when an item is accessed or popped from an empty stack.

Full_Error: exception;
-- raised when an item is pushed on a full stack.
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Abstract Data Type
Stack: Specification in Ada

private
type Table_Type is array (1..Max)

of Item_Type;
type Stack_Type is record

Table: Table_Type;
Top: Integer range 0..Max := 0;

end record
end Stack_Class_G;
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Abstract Data Type
Stack: Specification in Ada

Unfortunately, the interface does not show 
only logical properties. The implementation 
slightly shows through, by the generic 
parameter Max and the exception Full_Error, 
for instance.

The exception Empty_Error is added in order 
to extend the domains (of definition/validity) 
of the operations Pop and Top.
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IV. Trees

Kinds of trees
Binary tree
Traversal of a binary tree
Search tree
Expression tree
Polish forms
Strictly binary tree
Almost complete binary tree
Heap
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Kinds of Trees
Tree (Arbre)

Ordered Tree (Arbre ordonné)
(children are ordered)

2-Tree (Arbre d'ordre 2)
(every node has 0 or 2 children)

Trie (from retrieval)
(also called "Lexicographic Search 

Tree")
(a trie of order m is empty or is a 

sequence of m tries)
Binary Tree (Arbre binaire)

Binary Search Tree (Arbre de recherche)
AVL-Tree (Arbre équilibré)
Heap (Tas)

Multiway Search Tree
B-Tree
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Binary Tree

A binary tree is a finite set E, that is empty, or 
contains an element r and whose other 
elements are partitioned in two binary trees, 
called left and right subtrees.

r is called the root (racine) of the tree. The 
elements are called the nodes of the tree. 

A node without a successor (a tree whose left 
and right subtrees are empty) is called a leaf.
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Binary Tree

E is a finite set

(i) E is empty

or

(ii) $ r Î E, $ Eg, $ Ed,
r Ï Eg, r Ï Ed,
Eg Ç Ed = Æ, E = {r} È Eg È Ed
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Binary Tree

The two examples at the bottom are distinct 
binary trees, but identical trees.

B C

E F

G

D

H I

A

A

B B

A

Algorithms and Data Structures  70
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00



Traversal of a Binary Tree
1. Preorder or depth-first order

(préordre ou en profondeur d’abord)
(i) visit the root
(ii)traverse the left subtree
(iii)traverse the right subtree

2. Inorder or symmetric order
(inordre ou ordre symétrique)
(i) traverse the left subtree
(ii)visit the root
(iii)traverse the right subtree

3. Postorder 
(postordre)
(i) traverse the left subtree
(ii)traverse the right subtree
(iii)visit the root

4. Level-order or breadth-first order
(par niveau)
Visit all the nodes at the same level,
 starting with level 0
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Traversal of a Binary Tree

Preorder: A B D G C E H I F
Inorder: D G B A H E I C F
Postorder: G D B H I E F C A
By level: A B C D E F G H I

A

B C

E F

G

D

H I
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Traversal of a Binary Tree

Preorder:
Inorder:
Postorder:
By level:

A

B

C

E F G

D

H

I J LK
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Search Tree

A search tree is a special case of a binary 
tree.

Each node contains a key and the following 
relationship is satisfied for each node:

"n, "n1 Î Eg (n), " n2 Î Ed (n)
key (n1) £ key (n) £ key (n2)
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Search Tree

Inorder: 3 4 5 7 9 14 15 16 17 18 20

Application: Sorting
Input: 14, 15, 4, 9, 7, 18, 3, 5, 16, 20, 17
Processing: Build the tree
Result: Traverse in inorder

Application: Searching

14

4

3 9

17

15

18

5

7 2016
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Expression Tree
An expression tree is a binary tree whose 
leaves contain values (numbers, letters, 
variables, etc.) and the other nodes contain 
operation symbols (operations to be 
performed on such values).

(i) a+b*c (ii) (a+b)*c

(iii) log x (iv) n!

+

a *

cb

*

c+

a b

log

x

!

n
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Expression Tree

+

a *

c

­

*

+

b ba

c
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Polish Forms
(Notations polonaises)

(i) Prefix form (Notation préfixée)
The operator is written before 
the operands
® preorder
­ + a * b c * + a b c

(ii)Infix form (Notation infixée ou symétrique)
The operator is written between 
the operands
® inorder
a + b * c ­ (a + b) * c

(iii)Postfix form (Notation postfixée)
The operator is written after the operands
® postorder
a b c * + a b + c * ­
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Expression Tree

+

-

*

:=

/

b

2 a

c

0.5

4 a

­

x

-

­

b

*

*2
Algorithms and Data Structures  79
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00



Other Trees
Strictly Binary Tree

(Arbre strictement binaire)
Any node that is not a leaf has non empty left 
and right subtrees.

Almost Complete Binary Tree 
(Arbre binaire presque complet)

(i) Each leaf of the tree is at the level k or 
k+1;
(ii) If a node in the tree has a right 
descendant at the level k+1, then all its left 
descendants that are leaves are also at the 
level k+1.

Heap (Tas)
(i) A heap is an almost complete binary 
tree.
(ii) The contents of a node is always 
smaller or equal to that of the parent node.
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V. Graphs

Definitions
Oriented Graph (example and definitions)
Undirected Graph (example and definitions)
Representations

Adjacency Matrix
Adjacency Sets
Linked Lists
Contiguous Lists (matrices)
"Combination"

Abstract Data Type
List of Algorithms
Traversal
Shortest path
Representation of a weighted graph
Dijkstra’s Algorithm
Principle of dynamic programming
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Graphs
Definitions

1. Directed graph, digraph (graphe orienté):
• G = (V, E)
• V finite set of vertices (sommet)
• E Ì V x V set of arcs (arc)
This definition prohibits multiple parallel arcs, 
but self-loops (v, v) are allowed.

2. Undirected graph, graph (graphe non 
orienté)
• G = (V, E)
• V finite set of nodes (noeud)
• E a set of two-element subsets of V, 

{{y, z}| x, y, z Î V}, set of edges (arête).
This definition prohibits self loops like {v}. 
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Graphs
Definitions

3. Weighted (directed) graph (graphe valué)
A value is associated with each arc or edge, 
often an integral number, sometimes the 
value is composite, i.e. is a tuple.

4. A network (réseau) is a weighted directed 
graph.
The values might represent distances, 
transportation capacities, bandwidth, 
throughput, etc.

The complexity of graph algorithms are 
usually measured as functions of the number 
of vertices and arcs (nodes and edges).

Sometimes the terms "node" and "edge" are 
also used for digraphs. Sometimes "vertex" is 
used instead of edge for undirected graphs.
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Directed Graphs
Example

V = {a, b, c, d}
E = {(a, a), (a, c), (c, d), (d, c)}
• (a, a) is a self-loop (boucle)
• multiple parallel arcs are prohibited (E is a 

set!)

b

c

d

a
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Directed Graphs
Example

1.1. a is a predecessor (prédecesseur) of c 
and c is a successor (successeur) of a.
1.2. The indegrees (degrés incidents à 
l'intérieur) are:
0 for b, 1 for a, 2 for c, 1 for d.
The outdegrees (degrés incidents à 
l'extérieur) are:
0 for b, 2 for a, 1 for c, 1 for d.
1.3. (a, c, d, c) is a path (chemin).
1.4. (c, d, c, d, c) is a cycle (circuit).
1.5. (a, c, d) is a simple path (chemin simple).
(c, d, c) et (d, c, d) are simple cycles (circuits 
simples).

b

c

d

a
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Directed Graphs
Example

1.6. c and d are strongly connected 
(fortement connexes).
The digraph itself is not strongly connected.
1.7. ({a, c, d}, {(a, c), (c, d), (d, c)}) is a 
subgraph (sous-graphe (partiel)).
1.8. and 1.9.
The digraph does not have a spanning tree 
(arbre de sustension). 
The subgraph:
({a, c, d}, {(a, a), (a, c), (c, d), (d, c)})
has as a spanning tree:
({a, c, d}, {(a, c), (c, d)})

b

c

d

a
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Directed Graphs
Definitions

1.1. If (v, w) Î E then v is a predecessor 
(prédécesseur) of w, and w is a successor 
(successeur) of v.

1.2 The outdegree ((demi-)degré incident 
vers l'extérieur) of a vertex is its number of 
successors.
The indegree  ((demi-)degré incident vers 
l'intérieur) of a vertex is its number of 
predecessors.

1.3. An (oriented) path (chemin (orienté)) is a 
sequence (v1, v2,...,vk) of V such that 
(vi, vi+1) Î E for 1£ i £ k-1.

1.4. A path (v1, v2,...,vk) such that v1 = vk is a 
cycle (circuit).

1.5. If the vertices of a path are all distinct, 
expect the first and last one, then the path is 
said to be simple (chemin simple).
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Directed Graphs
Definitions

1.6. Two vertices are strongly connected 
(fortement connexes) if there are paths 
connecting each one to the other.
A digraph is strongly connected if all its 
vertices are strongly connected.

1.7. A subgraph (sous-graphe (partiel)) is a 
digraph (V', E') such that V' Ì V and E' Ì E.

1.8. A (rooted) tree (arbre) is a digraph 
having a vertex, called its root (racine), 
having the property: For each vertex of the 
graph there is exactly one path from the root 
to the vertex.

1.9. A spanning tree (arbre de sustension) 
of a digraph (V, E) is a subgraph T = (V', E') 
that is a tree and such that V = V'.
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Undirected Graphs
Example

V = {a, b, c, d, e}
E = {{a, c}, {a, d}, {c, d}, {d, e}}
• self-loops (boucle) are prohibited.
• multiple parallel edges are prohibited (E is 

a set!).

a
b

d
c

e
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Undirected Graphs
Definitions

1.1. If (v, w) Î E, then the nodes v and w are 
said to be adjacent (voisins, adjacents).

1.2. The degree (degré) of a node is the 
number of its adjacent nodes.

1.3. A sequence of nodes (v1, v2,...,vk) of V 
such that {vi, vi+1} Î E for 1£ i £ k-1 is a path 
(chaîne).

1.4. A path (v1, v2,...,vk) such that v1= vk is a 
cycle (cycle).

1.5. If all nodes are distinct, the path or cycle 
is said to be simple (chaîne simple, cycle 
simple).
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Undirected Graphs
Definitions

1.6 Two nodes are connected (connexe) if 
there is a path going from one to the other. 
The graph is said to be connected if all its 
nodes are connected.

1.7 A subgraph (sous-graphe (partiel)) is a 
graph (V', E') such that V' Ì V and E' Ì E.

1.8 A a tree or free tree (arborescence) is a 
graph where there is exactly one simple path 
between every pair of nodes.

1.9. A spanning tree (arbre de sustension) 
of a graph (V, E) is a subgraph T = (V', E') 
that is a tree and such that V = V'.
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Graphs 
Representations

• Adjacency matrix
• Adjacency sets (or lists)
• Linked lists
• Contiguous lists (matrices)
• "Combinations"

1 2

34
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Adjacency Matrix

T stands for true, i.e. there is an arc.
Empty cells have value F.

1 2 3 4
1 T T a (i, j) = T
2 T T <=>
3 (i, j) is an arc
4 T T T

1 2

34
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Adjacency Matrix

subtype Nb_of_Vertices is Natural range 0..Max;
subtype Vertex_Type is Positive range 1..Max;

type Matrix_Type is
array (Vertex_Type range <>,

Vertex_Type range <>) of Boolean;

type Graph_Type (Size: Nb_of_Vertices := 0) is record
Adjaceny_Matrix: Matrix_Type (1..Size, 1..Size);

end record;
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Adjacency Sets

{(1, {2, 3}), (2, {3, 4}), (3, Æ), (4, {1, 2, 3})}

1 2, 3
2 3, 4
3
4 1, 2, 3

1 2

34
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Adjacency Sets

subtype Nb_of_Vertices is Natural range 0..Max;
subtype Vertex_Type is Positive range 1..Max;

package Set is new Set_G (Element_Type => Vertex_Type);
type Set_of_Vertices is new Set.Set_Type;

type Adjacency_Set:Type is
array (Vertex_Type range <>)

of Set_of_Vertices;

type Graph_Type (Size: Nb_of_Vertices := 0) is record
Adjacency_Sets: Adjacency_Set_Type (1..Size);

end record;
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Linked Lists

It would be possible to add additional links:
• from each arc to its starting vertex;
• from each vertex, link together all the arcs 

of which it is the final vertex.

arc (1, 2)

vertex 1

arc (4, 1) arc (4, 2) arc (4, 3)

arc (2, 3) arc (2, 4)

arc (1, 3)graph

vertex 2

vertex 3

vertex 4
null

null

null

null

null
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Linked Lists

type Vertex_Type;
type Edge_Type;
type Vertex_Access_Type is

access Vertex_Type;
type Edge_Access_Type is 

access Edge_Type;

type Vertex_Type is record
First_Edge: Edge_Access_Type;
Next_Vertex: Vertex_Access_Type;

end record;

type Edge_Type is record
End_Vertex: Vertex_Access_Type;
Next_Edge: Edge_Access_Type;

end record;

type Graph_Type is 
new Vertex_Access_Type;
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Contiguous Lists (Matrices)

For each vertex, the vertices it is connected 
to by an arc are listed. The number of such 
vertices equals at most the number of 
vertices, and an n x n matrix is hence 
sufficient.

Vertex Number List
1 2 2 3 - - - - -
2 2 3 4 - - - - -
3 0 - - - - - - -
4 3 1 2 3 - - - -
5 - - - - - - - -
6 - - - - - - - -

max = 7 - - - - - - - -
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v

v

v

v

"Combination"

Because the "vector" of vertices has length 7 
in the example, at most 7 vertices are 
possible.

ertex 1

vertex 2

ertex 6

ertex 3 null

ertex 4

vertex 5

2

3

null1 2 3

null

null3

4

vertex 7

null

null

null
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Graphs
Abstract Data Type

generic
type Vertex_Value_Type is private;
type Edge_Value_Type is private;

package Graph_G is
type Graph_Type is limited private;
type Vertex_Type is private;
type Edge_Type is private;

-- operations to set and consult the values of vertices and edges.

procedure Set
(Vertex: in out Vertex_Type;
Value: in Vertex_Value_Type);

function Value
(Vertex: Vertex_Type)
return Vertex_Value_Type;

-- similar for edges

...
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Graphs 
Abstract Data Type

procedure Add
(Vertex: in out Vertex_Type;
Graph: in out Graph_Type);

procedure Remove
(Vertex: in out Vertex_Type;
Graph: in out Graph_Type);

procedure Add
(Edge: in out Edge_Type;
Graph: in out Graph_Type;
Source,
Destination: in Vertex_Type);

procedure Remove
(Edge: in out Edge_Type;
Graph: in out Graph_Type);
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Graphs 
Abstract Data Type

function Is_Empty
(Graph: Graph_Type)
return Boolean;

function Number_of_Vertices
(Graph: Graph_Type)
return Natural;

function Source
(Edge: Edge_Type)
return Vertex_Type;

function Destination
(Edge: Edge_Type) 
return Vertex_Type;
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Graphs 
Abstract Data Type

generic
with procedure Process

(Vertex: in Vertex_Type;
Continue: in out Boolean);

procedure Visit_Vertices
(Graph: in Graph_Type);

generic
with procedure Process

(Edge: in Edge_Type;
Continue: in out Boolean);

procedure Visit_Edges 
(Graph: in Graph_Type);
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Graphs 
Abstract Data Type

generic
with procedure Process

(Edge: in Edge_Type;
Continue: in out Boolean);

procedure Visit_Adj_Edges
(Vertex: in Vertex_Type
[; Graph: in Graph_Type]);

...
end Graph_G;
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Graph Algorithms

Depth-first search
Breadth-first search
Connectivity problems
Minimum Spanning Trees
Path-finding problems
Shortest path
Topological sorting
Transitive Closure
The Newtwork Flow problem

(Ford-Fulkerson)
Matching

Stable marriage problem
Travelling Salesperson problem
Planarity problem
Graph isomorphism problem
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Graph Traversal

B C D

A

F

G H

I

E
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Depth-First Search

B C D

A

F

G H

I

E

1

2

3

4

5 9

6

7

8

(A, B, E, G, C, F, H, I, D)
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Breadth-First Search

B C D

A

F

G H

I

E

1

2 3 4

5

9

6

7 8

(A, B, C, D, E, F, G, H, I)
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Depth-First Search

For each vertex v in the graph:
1. visit the vertex v;
2. determine the vertices adjacent to v: 

w1, w2,...wk;
3. for i varying from 1 to k: traverse starting 
from vertex wk.

Don’t forget to mark the vertices already 
visited.
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Depth-First Search

-- pseudo-Ada

generic
with procedure Visit (Vertex: in Vertex_Type);

procedure Depth_First (Graph: in Graph_Type);

procedure Depth_First (Graph: in Graph_Type) is
Visited: array (Graph.Vertex_Set) of Boolean;
procedure Traverse (Vertex: Vertex_Type) is separate;

begin
for all Vertex in Graph.Vertex_Set loop

Visited (Vertex) := False;
end loop;
for all Vertex in Graph.Vertex_Set loop

if not Visited (Vertex) then
Traverse (Vertex);

end if;
end loop;

end Depth_First;
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Depth-First Search

separate (Depth_First)
procedure Traverse (Vertex: in Vertex_Type) is
begin

Visited (Vertex) := True;
Visit (Vertex);
for all W adjacent to Vertex loop

if not Visited (W) then
Traverse (W);

end if;
end loop;

end Traverse;
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Breadth-First Search

For each vertex v in the graph:
1. visit the vertex v;
2. visit the vertices adjacent to v: 

w1, w2,...wk;
3. then visit the vertices adjacent to w1, then 
those adjacent to w2, etc.

Don’t forget to mark the vertices already 
visited.
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Breadth-First Search

package Queue is
new Queue_G

(Element_Type => Vertex_Type);

type Queue_of_Vertices is
new Queue.Queue_Type;

generic
with procedure Visit

(Vertex: in Vertex_Type);
procedure Breadth_First

(Graph: in Graph_Type);
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Breadth-First Search
procedure Breadth_First (Graph: in Graph_Type) is

Visited: array (Graph.Vertex_Set) of Boolean
:= (others => False);

Waiting: Queue_of_Vertices;
Next: Vertex_Type;

begin
for all Vertex in Graph.Vertex_Set loop

if not Visited (Vertex) then
Insert (Waiting, Vertex);
while not Is_Empty (Waiting) loop

Remove (Waiting, Next);
Visited (Next) := True;
Visit (Next);
for all W adjacent to Next loop

if not Visited (W) then
Insert (Waiting, W);

end if;
end loop;

end loop;
end if;

end loop;
end Breadth_First;
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Shortest Path
The graph is weighted: a positive numeric 
value is associated with each arc.

Statement 1:
Given a vertex Start and a vertex Target, find 
the shortest path from Start to Target.

Statement 2:
Given a vertex Start, find the shortest paths 
from Start to all other vertices.

• Dijkstra’s Algorithm (especially when 
adjacency lists are used for the 
representation)

• Floyd’s Algorithm (especially when an 
adjacency matrix is used for the 
representation)
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Representation of a 
Weighted Graph

The function Weight is defined for all couples 
of vertices:

Weight (V, V) = 0
Weight (V, W) =

µ (infinity) if there is no arc from V to W;
the value of the arc, if there is one;

Weight can be implemented by a matrix or 
another representation, e.g. a map or 
dictionary.
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Dijkstra’s Algorithm
Principle

Start: starting vertex

S: Set of vertices for which the length of the 
shortest path is known.

Q: Set of vertices adjacent to S.

d (V): Distance between Start and V, for 
VÎSÈQ, with the meaning:
• If VÎS, it is the length of the shortest path;
• If VÎQ, it is the length of the shortest path 

via S (all vertices on the path are in S, 
except V itself).
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Dijkstra’s Algorithm
Principle

1. Initialization
Q := {Start} d(Start) := 0;
S := Ø

2. Loop
2.1. Extract from Q the vertex C having the 
smallest distance:

d (C) = min (d (V); V ÎQ)
2.2. Add C to S (see Justification)
2.3. Add the vertices adjacent to C to Q, and 
update their distances:
For every W adjacent to C:
• if WÏQ: d(w) := d(C) + weight (C, W)
• if WÎQ: d(w) := 

min (d(W),d(C) + weight (C, W))

3. Stop condition
• Q is empty
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Dijkstra’s Algorithm
Example

BC

D

A EStart
4 7 1

7 2

13
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Dijkstra’s Algorithm
Example

Initialization
Q := {A}, S := Æ, d (A) := 0

First Loop (process A)
S := {A}, Q := {B, C, D}
d (B) := 13, d (C) := 4, d (D) := 7

Second Loop (process C)
S := {A, C}, Q := {B, D, E}
d (B) = 13, d(D) = 7, d (E) := 11
because d (E) := d (C) + weight (C, E)

Third Loop (process D)
S := {A, C, D}, Q := {B, E}
d (B) = 13, d (E) := 9, because 
d (E) := 
min (previous value,d(D) + weight (D, E))

Fourth Loop (process E)
S := {A, C, D, E}, Q := {B}
d (B) := 10

Fifth and Last Loop (process B)
S := {A, B, C, D, E}, Q := Æ
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Other Example

B

CD

A

E

Start

4

2

6
6

21
10

3
52
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Dijkstra’s Algorithm
Justification

Suppose there is a shorter path P going to C.
Then P necessarily goes through a vertex not 
belonging to S. Let X be the first vertex on P 
which is not in S:

Since X is adjacent to S, X belongs to Q and 
d (X) is the length of the shortest path via S.
But by the very choice of C: d (X) ³ d (C) and 
the length of P is necessarily greater or equal 
to d (X).

Start

S
C

X
P
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Dijkstra’s Algorithm
Implementation using a Priority Queue

Precondition:
Weight (V, W) = µ if there is no arc from V to W.

Q: Priority_Queue_Type;
C: Vertex_Type;

Distance := (others => µ);
Insert (Q, Start);
Distance (Start) := 0;

while not Is_Empty (Q) loop
Remove (Q, C);
for all W adjacent to C loop

if Distance (C) + Weight (C, W) < Distance (W) then
Distance (W) := Distance (C) + Weight (C, W);
Insert (Q, W);

end if;
end loop;

end loop;
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Dijkstra’s Algorithm
Implementation with a Set

Precondition:
Weight (V, W) = µ if there is no arc between 
V and W; and Weight (V, W) = 0 if V = W.

S: Set_of_Vertices;
Start, C: Vertex_Type;
Min_Dist: Weight_Type;
Found: Boolean;

Insert (S, Start);
for all V in Graph.Vertex_Set loop

Distance (V) := Weight (Start, V);
end loop;
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Dijkstra’s Algorithm
Implementation with a Set

Found := True;
while Found loop

-- at each pass, en element is added to S
Found := False;
Min_Dist = µ;
-- Find the element to be added to S
for all V in Graph.Vertex_Set loop

if V not in S then
if Distance (V) < Min_Dist then

Found := True;
Min_Dist := Distance (V);
C := V;

end if;
end if;

end loop;
if Found then

Insert (S, C);
for all W adjacent to C loop

if Min_Dist + Weight(C,W) < Distance(W) then
Distance(W) := Min_Dist + Weight(C,W);

end if;
end loop;

end if;
end loop;
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Find the paths rather than 
their lengths

Representation of a path
• For each vertex on the path, store its 

predecessor (on the path).

Finding the shortest path:
• Whenever the distance of a vertex 

(supposed to be the shortest one) is 
modified, the predecessor vertex is stored.
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     Dynamic Programming
Principle

Any subpath of a shortest path is necessarily 
a shortest path.

Proof: Otherwise it would be possible to build 
a shorter path by substituting the shorter 
subpath.

Start EndI1 I2
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VI. Analysis of Algorithms
 (Algorithmique)

Classification of algorithms
Selection criteria
Complexity
Big O notation
Fundamental recurrence relations
Design of algorithms
Incremental algorithms
Greedy algorithms
Divide and conquer algorithms 
Dynamic programming
Knapsack problem
Computability and complexity
Undecidable problems
Exponential time problems
Polynomial time problems
NP-complete problems
Satisfiability problem
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Algorithms
Sorting ®

Searching
Sequential Searching, Binary Search, 
Tree Search, Hashing, Radix Searching

String Processing
String Searching

Knuth-Morris-Pratt, Boyer-Moore, 
Robin-Karp

Pattern Matching
Parsing (Top-Down, Bottom-Up,

Compilers)
Compression

Huffman Code
Cryptology

Image Processing
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Algorithms
Geometric Algorithms

Intersections
Convexity
Jordan Sorting
Closest-Point Problems
Curve Fitting

Mathematical Algorithms
Random Numbers
Polynomial Arithmetic
Matrix Arithmetic
Gaussian Elimination
Integration
Fast Fourier Transform
Linear Programming

Graph Algorithms ®
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Selection Criteria
How to choose an algorithm and/or a data 
structure representation?

1. Effort for implementing the algorithm:
1.1. searching the literature
1.2. programming
1.3. testing
1.4. maintenance

2. Resources used for running the algorithm:
2.1. time (of computation)
2.2. space (in memory)
2.3. energy (number of processors)

3. Frequency of use of the algorithm
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Complexity
The complexity measure the quantity of 
resources used by an algorithms as a 
function of the problem size.

One is especially interested in the trend of the 
complexity when the problem size becomes 
large, tends towards infinity.

Worst-case analysis:
complexity for problems the algorithm is in 

trouble dealing with.

Average-case analysis:
complexity for "average" problems.
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Big O Notation
Definition

The big O notation defines equivalence 
classes of real functions defined on the 
natural numbers.

f, g: N+ ® R+

f belongs to O(g) iff
$ noÎ N, $ c Î R, such that
" n ³ no , f(n) £ cg(n)
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Big O Notation
Calculus

1. Transitivity (transitivité)
If f is O(g) and g is O(h), then f is O(h).

2. Scaling (changement d'échelle)
If f is O(g), then for all k > 0, f is O(k·g).

3. Sum (somme)
If f1 is O(g1) and f2 is O(g2),
then f1 + f2 is O(max (f1, f2)), where
max (f1, f2) (x) = max (f1 (x), f2 (x)); " x

4. Product (produit)
If f1 is O(g1) and f2 is O(g2),
then f1·f2 is O(g1·g2).
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Big O Notation
Example

Show that 2n3 + 5n2 + 3 is O(n3).

Sum
O(2n3 + 5n2 + 3) = O(max (2n3, 5n2 + 3))

= O(2n3)

Scaling:
O(2n3) = O(n3)

Transitivity:
O(2n3 + 5n2 + 3) = O(2n3)
and
O(2n3) = O(n3)
therefore
O(2n3 + 5n2 + 3) = O(n3)
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Big O Notation
Typical Cases

O(1) constant complexity
O(logn) logarithmic complexity
O(n) linear complexity
O(nlogn)"nlogn" complexity
O(n2) quadratic complexity
O(n3) cubic complexity
O(nm) polynomial complexity
O(2n) exponential complexity

An algorithm is said to be exponential, or 
having an exponential performance, if there is 
no m such that it is of the class O(nm), i.e. it is 
not polynomial.
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Fundamental Recurrence 
Relations

1. Loop over the data structure processing 
each element in turn, then suppress one 
element from the data structure. Continue 
until there are no elements left.

C1 = 1
Cn = Cn-1 + n, for n >= 2
therefore
Cn = Cn-2 + (n-1) + n

...
= 1 + 2 +... + n
= (1/2)*n*(n+1)

The complexity is therefore of magnitude n2.

Example: Selection sort.
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Fundamental Recurrence 
Relations

2. Process one element, then divide the data 
structure in two equal parts without 
examining the individual elements. Resume 
on one of the two parts.

C1= 0
Cn= Cn/2 + 1   n ³ 2

Approximation with n = 2m

C2m = C2m-1 + 1
 = C2m-2 + 2
...
 = C2o + m
 = m

n = 2m, hence m = lgn, hence
Cn » lgn (or logn)

Example: Binary search.
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Fundamental Recurrence 
Relations

3. Loop over the data structure processing 
each element in turn, and dividing on the way 
the data structure in two equal parts. Resume 
on one of the two parts.

C1 = 1
Cn = Cn/2 + n   n ³ 2

Approximation with n = 2m

C2m = C2m-1 + 2m

 = C2m-2 + 2m-1 + 2m

 = 1 + 21 + 22 +... + 2m

 = 2m+1 - 1

hence
 Cn = 2n - 1

Example: ??
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Fundamental Recurrence 
Relations

4. Loop over the data structure processing 
each element in turn, and dividing on the way 
the data structure in two parts. Resume on 
the two parts (divide-and-conquer).
C1 = 1
Cn = 2Cn/2 + n

­    ­

½    ½  traverse n elements
½ Cn/2 + Cn/2 : each half

Approximation: n = 2m

hence:

Example: Quick sort

C
2m 2 C

2m 1– 2m+�=

C
2m

2m
-----------------

C
2m 1–

2m 1–
-------------------------- 1+ m 1+= =

C
2m 2m m 1+( )�=

Cn n nlog×@
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Algorithm Design
(Conception d’algorithmes)

Know the problems impossible to solve on a 
computer.

Know the problems hard to compute.

Know the classic algorithms.

Search the literature.

Know how to apply design strategies.
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Design Strategies
• Incremental algorithms 

(incremental algorithms)
Insertion sort, linear search.

• Greedy algorithms
(algorithmes gloutons) 
Selection sort, shortest path by Dijkstra.

• Divide-and-conquer algorithms
(algorithmes "diviser pour régner") 
Quick sort, binary search, convex hull.

• Dynamic programing
(programmation dynamique) 

• Search with backtracking (recherche avec 
rebroussement)

• Pruning (élagage)
• "Branch and bound"
• Approximation
• Heuristics (algorithmes heuristiques)
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Incremental Algorithms 
procedure Solve (P: in [out] Problem;

     R: out Result) is

begin
R := some evident value;
while P ¹ empty loop

Select X in P;
Delete X in P;
Modify R based on X;

end loop;
end Solve;
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Incremental Algorithms 
of the First Kind

The selected X is the first one, the most 
accessible, etc.

The invariant of the loop is of the form:
R is a complete solution of the subproblem 
defined by the deleted elements.

Example: Insertion sort
• X is the next element to be processed in 

the remaining sequence.
• The result is the sorted sequence of the 

elements already processed.
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Greedy Algorithms or 
Incremental Algorithms of 

the Second Kind
The element X is more carefully selected.
The invariant of the loop is of the form:
R is a part of the complete solution; R will not 
be changed, but elements will be added to it.

Example: Selection sort.

In order to produce the sequence 
(1, 5, 6, 9, 12),

one produces step-by-step the following 
sequences:
( ), (1), (1, 5), (1, 5, 6), (1, 5, 6, 9), and 
(1, 5, 6, 9, 12).
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Divide-and-Conquer 
Algorithms

procedure Solve (P: in [out] Problem;
R: out Result) is

P1, P2: Problem; R1, R2: Result;
begin

if Size (P) < = 1 then
R := straightforward value;
return;

end if;
Divide P into P1 and P2;
Solve (P1, R1);
Solve (P2, R2);
Combine (R1, R2, R);

end Solve;

Sometimes the problem is divided into many 
subproblems.
The algorithm is especially efficient if the 
division is into two equally-sized halves.
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Divide-and-Conquer 
Algorithms

The difficulty consists in finding the 
operations Divide and Combine. The easiest 
way of Dividing will not always allow to 
Combine the partial solutions into a global 
solution.

Example: Quick sort
All the effort is put into the Divide operation. 
The Combine operation is reduced to 
nothing.
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Convex Hull
(Enveloppe convexe)

Combine: Seems hard!

Divide randomly the points into red and blue ones

Solve the two subproblems

Red + Blue = ??
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Convex Hull
(Enveloppe convexe)

Divide:
• Find the points with the largest and 

smallest Y coordinates, called A and B.
• Allocate points to L or R depending on 

which side of the line joining A and B, left 
or right, they are.

A

B

L
R

max

min
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Convex Hull
(Enveloppe convexe)

Solve L and R

A

B

L
R

max

min
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Convex Hull
(Enveloppe convexe)

Combine:
• Connect both A and B to the "right" 

vertices of the convex hulls of L and R.

A

B

L
R

max

min
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Dynamic Programming

Principle of divide-and-conquer:
In order to solve a large problem, it is divided 
into smaller problems which can be solved 
independently one from each other.

Dynamic programming
When one does not know exactly which 
subproblems to solve, one solves them all, 
and one stores the results for using them 
later on for solving larger problems.

This principle can be used if:
A decision taken for finding the best solution 
of a subproblem remains a good solution for 
solving the complete problem.
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Problem of the Knapsack
Capacity of the knapsack: M

List of goods:

Problem
Pack goods of the highest total value in the 
knapsack, up to its capacity.

Idea of dynamic programming:
Find all optimal solutions for all capacities 
from 1 to M.

Start with the case where there is only the 
product A, then the products A and B, etc.

Name A B C D E
Size 3 4 7 8 9
Value 4 5 10 11 13
Algorithms and Data Structures  154
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00



Problem of the Knapsack

k 1 2 3 4 5 6 7 8 9 10 11 12

Obj 0 0 4 4 4 8 8 8 12 12 12 16
Best A A A A A A A A A A

Obj 0 0 4 5 5 8 9 10 12 13 14 16
Best A B B A B B A B B A

Obj 0 0 4 5 5 8 10 10 12 14 15 16
Best A B B A C B A C C A

Obj 0 0 4 5 5 8 10 11 12 14 15 16
Best A B B A C D A C C A

Obj 0 0 4 5 5 8 10 11 13 14 15 17
Best A B B A C D E C C E
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Problem of the Knapsack

type Good is (A, B, C, D, E);
type Table_of_Values is

array (Good) of Integer;
Size: constant Table_of_Values

:= (3, 4, 7, 8, 9);
Value: constant Table_of_Values

:= (4, 5, 10, 11, 13);
Objective: array (1..M) of Integer

:= (others => 0);
Best: array (1..M) of Good;
Algorithms and Data Structures  156
© 1995-2000 Alfred Strohmeier, EPFL 31/3/00



Problem of the Knapsack

for P in Good loop
for Cap in 1..M loop

if Cap-Size(P) > = 0 then
if Objective (Cap)

< Objective (Cap-Size (P)) + Value (P) then
Objectif (Cap) :=

Objective (Cap-Taille(P)) + Value (P); 
Best (Cap) := P;

end if;
end if;

end loop;
end loop;

Argument: If P is chosen, the best value is 
Value (P) plus Value (Cap - Size (P)), which 
corresponds to the value of the remaining 
capacity.
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Map of Computability and 
Complexity

Computability:
Whether or not it is possible to solve a 
problem on a machine.

Machine:
• Turing Machine

Polynomial-
Time

Intractable

NP-Complete

Computable
Undecidable/
Unsolvable

where?
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Undecidable Problems,
Unsolvable Problems

It is impossible to solve the problem by an 
algorithm.

Examples:
• Halting problem
• Trisect an arbitrary angle with a compass 

and a straight edge.

Intractable Problems

There is an algorithm to solve the problem. 
Any algorithm requires at least exponential 
time.
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Polynomial-Time Problems
Size N of a problem:
• Number of bits used to encode the input, 

using a "reasonable" encoding scheme.

Efficiency of an algorithm:
• Is a function of the problem size.

Deterministic algorithm/machine:
• At any time, whatever the algorithm/

machine is doing, there is only one thing 
that it could do next.

P:
• The set of problems that can be solved by 

deterministic algorithms in polynomial 
time.
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Non-Deterministic 
Polynomial-Time Problems

Non-determinism:
• When an algorithm is faced with a choice 

of several options, it has the power to 
"guess" the right one.

Non-deterministic algorithm/machine:
• To solve the problem, "guess" the solution, 

then verify that the solution is correct.

NP:
• The set of problems that can be solved by 

non-deterministic algorithms in polynomial 
time.
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Non-Deterministic 
Polynomial-Time Problems

P Ì NP

To show that a problem is in NP, we need 
only to find a polynomial-time algorithm to 
check that a given solution (the guessed 
solution) is valid.

Non-determinism is such a powerful 
operation that it seems almost absurd to 
consider it seriously.

Nevertheless we do not know whether or not:
P = NP ?? (rather no!)
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NP-Complete Problems
A problem is said to be NP-complete: 
• if it is NP, and
• it is likely that the problem is not P, 

and hence
• it is likely that the problem is intractable.

Otherwise stated:
• There is no known polynomial-time 

algorithm.
• It has not been proven that the problem is 

intractable.
• It is easy to check that a given solution is 

valid.

It can be shown that:
• ALL NP-COMPLETE PROBLEMS ARE 

EQUIVALENT.
(i.e. they may be transformed in 
polynomial-time each one to another one.)
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Satisfiability Problem
Given a logical formula of the form:
(x1 + x3 + x5) * (x1 + Øx2 + x4) * (Øx3 + x4 + x5)

where the xi's represent Boolean variables, 
the satisfiability problem is to determine 
whether or not there is an assignment of truth 
values to variables that makes the formula 
true ("satisfies" it).

• It is easy to check that a given solution 
satisfies the formula.

• NP-completeness shown by Cook (1971).
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NP-Complete Problems
Satisfiability
• Is a Boolean expression satisfiable?

Hamilton circuit
• Does a (un)directed graph have a 

Hamilton circuit (cycle), i.e. a circuit (cycle) 
containing every vertex.

Traveling Salesperson problem

Colorability
Is an undirected graph k-colorable? (no two 
adjacent vertices are assigned the same 
color)

Graph Isomorphism problem
Rename the vertices so that the graphs are 
identical.

Longest path (without cycles)
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NP-Complete Problems
Knapsack problem
• Fill a knapsack with goodies of best value.
• Given integers i1, i2,..., in and k, is there a 

subsequence that sums exactly k?

Integer linear programming

Multiprocessor scheduling
• Given a deadline and a set of tasks of 

varying length to be performed on two 
identical processors, can the tasks be 
arranged so that the deadline is met?
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How to Solve Intractable 
Problems

1. Polynomial-time may be larger than 
exponential-time for any reasonable problem 
size:
• nlglglgn is less than n2 for n < 216 = 65536
• nlglglgn is less than n3 for n < 2256 » 1077

2. Rely on "average-time" performance. The 
algorithm finds the solution in some cases, 
but does not necessarily work in all cases.

3. "Approximation"
The problem is changed. The algorithm does 
not find the best solution, but a solution 
guaranteed to be close to the best (e.g. value 
³ 95% of best value)
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