
Windows�Programming
DCAP509

www.lpude.in

DIRECTORATE OF DISTANCE EDUCATION

WINDOWS PROGRAMMING

Copyright © 2012 Vikas Jain
All rights reserved

Produced & Printed by
EXCEL BOOKS PRIVATE LIMITED

A-45, Naraina, Phase-I,
New Delhi-110028

for
Directorate of Distance Education

Lovely Professional University
Phagwara

Directorate of Distance Education

LPU is reaching out to the masses by providing an intellectual learning environment that is academically rich with the most
affordable fee structure. Supported by the largest University1 in the country, LPU, the Directorate of Distance Education (DDE)
is bridging the gap between education and the education seekers at a fast pace, through the usage of technology which
significantly extends the reach and quality of education. DDE aims at making Distance Education a credible and valued mode
of learning by providing education without a compromise.

DDE is a young and dynamic wing of the University, filled with energy, enthusiasm, compassion and concern. Its team strives
hard to meet the demands of the industry, to ensure quality in curriculum, teaching methodology, examination and evaluation
system, and to provide the best of student services to its students. DDE is proud of its values, by virtue of which, it ensures to
make an impact on the education system and its learners.

Through affordable education, online resources and a network of Study Centres, DDE intends to reach the unreached.

1 in terms of no. of students in a single campus

SYLLABUS

Windows Programming
Objectives: To Impart the skills needed to develop windows applications using Visual C. Student will learn how to design
windows and various components of windows, keyboard events, graphics and text, file handling. Student will also learn
memory management techniques.

Sr. No. Description

1. Windows Programming Basics: The Advantages of Windows, How Windows Programs Work, Running
Several Programs Simultaneously, Messages, An Analogy, Structure of a Windows Program, Code and
Resources, Program Instances, Compiling Windows Program, Windows Memory Management.

2. Windows Programming: The Windows.H, The WinMain() Function and Its Parameters, Creating the
Programs Window, Messages and Adding a Message Loop, Creating a New Window Class, Message
Processing Function WndProc(), Adding Custom Resource Data, Compiling the Resource Data.

3. Windows Controls: Window, Types of Controls, The CreateWindow() function, Static Controls, Sending
Message to a Control, C language Casts, Button Controls, Processing Button Control Messages, Button
Notification Codes, List Boxes, Combo Boxes, Scroll Bars, Edit Controls.

4. Memory Management: Local vs Global Memory, Local Memory Blocks, Using Fixed Memory Blocks,
Changing the size of a Memory Block, Using LocalReAlloc(), Discardable Memory Blocks, Global Memory
Allocation, What windows is actually doing with Memory, System Memory and System Resources.

5. Character Sets, Fonts, and the Keyboard: The ANSI Character Set, Trying the Character Functions,
Keyboard Message Processing, The WM_CHAR Message, System Key Messages and Dead Characters,
Implementing a Simple Keyboard Interface, Selecting a Stock Font, Using Logical Fonts, Text Metric, Putting
Fonts to Work, Keyboard Accelerators.

6. File I/O: How Windows Programs Access Disk Files (Opening, Reading, Writing and Closing), Creating a
File Selection Dialogue Box, Creating a Text Editor.

7. Child and Pop Up Windows: Creating a Child Window, Sending Messages to Child Window, Fixed Child
Windows, PopUp Windows.

8. Menus: Creating Menus, Menus Defined as Resource Data, Creating a Menu Using the Borland Resource
Workshop, Complex Menu, Creating a Menu as the Program Operates, Creating Menu Containing Bitmaps,
The System Menu.

9. Dialog Boxes: What is a dialogue box, How a Dialogue Box Work, Designing a Dialogue Box, Using a
Dialogue Box, Exchanging Data with a Dialogue Box-Global Variable Method, Problems with using Global
Variables, Exchanging Data with a Dialogue Box-Pointer Method, Modal, Modeless and System Modal
Dialogue Boxes, Creating Modeless Dialogue Box.

10. Text & Graphics Output: Character Mode vs Graphics Mode, The Device Context, Windows GDI, Text
output, The WM_PAINT Message, Changing the Device Context, Device Context Settings, Graphics Output,
Animated Graphics, The Peek Message() Loop.

CONTENTS

Unit 1: Windows Programming Basics 1

Unit 2: Windows Memory Management 22

Unit 3: Windows Programming 31

Unit 4: Windows Controls 43

Unit 5: Memory Management (I) 79

Unit 6: Memory Management (II) 92

Unit 7: Character Sets, Fonts and the Keyboard 102

Unit 8: File I/O 125

Unit 9: Child and Pop Up Windows 140

Unit 10: Menus 160

Unit 11: Dialog Boxes (I) 181

Unit 12: Dialog Boxes (II) 192

Unit 13: Windows GDI 208

Unit 14: Text and Graphics Output 217

LOVELY PROFESSIONAL UNIVERSITY 1

Unit 1: Windows Programming Basics

NotesUnit 1: Windows Programming Basics

CONTENTS

Objectives

Introduction

1.1 The Advantages of Windows

1.1.1 Space Savings

1.1.2 Greater Accessibility and Protection for Your Data

1.1.3 Simplified Administration

1.1.4 Remote Management and Problem Analysis

1.1.5 xSeries Server Directly-attached with an Integrated xSeries Adapter (IXA)

1.1.6 Multiple Servers

1.2 How Windows Program Work

1.3 Running Several Programs Simultaneously

1.4 Messages

1.5 An Analogy

1.6 The Structure of a Windows Program

1.7 Code and Resources

1.7.1 Accessing Resources from Code

1.7.2 Creating Resources with Code

1.7.3 Different Data Types used in Resource File

1.8 Program Instances

1.9 Compiling Windows Program

1.10 Summary

1.11 Keywords

1.12 Review Questions

1.13 Further Readings

Objectives

After studying this unit, you will be able to:

 Understand the concepts of windows programming basics

 Discuss advantages of windows

 Recognize how window programs work

 Discuss running several programs simultaneously

 Understand the structure of a windows program

 Explain code and resources

 Discuss program instances and compiling windows program

2 LOVELY PROFESSIONAL UNIVERSITY

Windows Programming

Notes Introduction

Microsoft Windows is a multi-tasking operating system that permits numerous applications,
pointed to here on out as processes. Every process in Windows is specified some amount of time,
known as a time slice, where the application is specified the right to control the system without
being interrupted by the other processes. The runtime precedence and the amount of time
assigned to a process are identified by the scheduler. The scheduler is considered as the manager
of this multi-tasking operating system, making sure that each process is specified the time and
the priority it requires relying on the existing state of the system. Windows is what is known as
an event-driven operating system. This indicates that each process is implemented depending
on the events they obtain from the operating system. For instance, an application may sit at
inactive and wait for the user to press a key. When that key is pressed Windows will record an
event to the application that the key is down.

1.1 The Advantages of Windows

Windows environment provides most of the abilities of executing Microsoft Windows on a PC-
based server and offers the following advantages over other computer systems.

1.1.1 Space Savings

There are some portions of hardware to handle requiring less physical space.

1.1.2 Greater Accessibility and Protection for Your Data

 An integrated Windows server utilizes disk storage, which is usually more dependable
than PC server hard disks.

 You have access to quicker tape drives for incorporated server backups.

 Integrated servers absolutely take advantage of advanced data protection schemes which
occurs in OS/400 like RAID or drive mirroring.

 You can add additional storage to incorporated servers without varying the server off.

 It is probable to achieve access to DB2® UDB for data during an improved Open Database
Connectivity (ODBC) device driver by means of Access. This device driver facilitates
server-to-server applications among integrated servers and OS/400.

 You have the aptitude to use an incorporated server as a second tier in a three-tier client/
server application.

 Virtual networking does not entail LAN hardware and offers communications among
iSeries logical partitions, Integrated Servers , and Integrated Adapters.

1.1.3 Simplified Administration

 User parameters, like passwords, are simpler to manage from OS/400. You can generate
users and groups and register them from OS/400 to incorporated servers. This makes
updating passwords and other user information from OS/400 simple.

 Your computer system is less complex, thanks to the incorporation of user administration
function, security, server management, and backup and recovery plans among the OS/400
and Microsoft Windows environments. You can save your incorporated server data on the

LOVELY PROFESSIONAL UNIVERSITY 3

Unit 1: Windows Programming Basics

Notessimilar media as other OS/400 data and reinstate individual files in addition to OS/400
objects.

1.1.4 Remote Management and Problem Analysis

 You can sign-on to OS/400 from a distant location and shut down or restart your
incorporated server.

 As you can mirror incorporated server event log information to OS/400 you can distantly
examine Microsoft Windows errors.

1.1.5 xSeries Server directly-attached with an Integrated xSeries
 Adapter (IXA)

 You have significantly more suppleness in configuring a full size xSeries than you have in
configuring an IXS, an xSeries on a card. The full size xSeries can then be directly linked to
the iSeries with an IXA.

 Full size xSeries models are released more frequently, meaning that you can obtain the
most up-to-date processors and other hardware.

 More PCI trait cards are obtainable for full size xSeries than for IXSs.

1.1.6 Multiple Servers

 Cluster service permits you to attach multiple servers into server clusters. Server clusters
give high-availability and simple manageability of data and programs running inside the
cluster.

 By not using LAN hardware, servers and logical partitions running on the similar iSeries
have high-performance, protected virtual networking communications.

 You can execute numerous integrated servers on a single iSeries. Not only suitable and
efficient, this also provides you the aptitude to easily switch to another up-and-running
server if the hardware fails.

 If you have numerous integrated servers installed on your iSeries, you can describe their
Windows domain roles in a manner that will abridge user enrollment and access.

Example: You would like to set up one of these servers as a domain controller. Then you
only have to register users to the domain controller and users can log on from any Microsoft
Windows machine on that domain.

 An iSeries’s optical and tape drives can be shared with incorporated servers executing on
the iSeries.

Self Assessment

Fill in the blanks:

1. is a multi-tasking operating system that permits numerous applications,
pointed to here on out as processes.

2. An integrated Windows server utilizes disk storage, which is usually more dependable
than PC server

4 LOVELY PROFESSIONAL UNIVERSITY

Windows Programming

Notes 1.2 How Windows Program Work

To generate a basic application, you will initially require a compiler that executes on a Microsoft
Windows operating system. Even though you can apply Win32 on numerous languages involving
Pascal (namely Borland Delphi), we will utilize only one language. Actually the Win32 library
is written in C, which is also the main language of the Microsoft Windows operating systems.

Generating a Win32 Program

All Win32 programs chiefly appear the same and act the same but, just like C++ programs, there
are small differences in terms of forming a program, relying on the compiler you are utilizing.
Here we will be testing our programs on Borland C++ Builder, Microsoft Visual C++, and
Microsoft Visual C++.NET.

For a fundamental Win32 program, the contents of a Win32 program are similar. You will feel
a dissimilarity only when you begin adding some objects known as resources. To create a Win32
program by means of Borland C++ Builder, you must generate a console application by means
of the Console Wizard. You must confirm you don’t choose any alternative from the Console
Wizard dialog box. After clicking OK, you are presented with a semi-empty file that contains
only the inclusion of the windows.h library and the WinMain() function declaration. From there,
you are prepared. From most surroundings used, Borland C++ builder is the only one that offers
the simplest, but also unluckily the emptiest template to generate a Win32 application. It doesn’t
offer any real template nor any aid on what to do with the specified file. In protection of the
Borland C++ Builder, as you will observe with Microsoft Visual C++ and the other environments
may fill your file with statements you don’t require, you don’t like, or you don’t want.

Notes Borland C++ Builder offers the empty file so you can liberally decide how you want
to generate you program and what you want to comprise in your program. This signifies
that we agree with Borland C++ Builder offering an empty file since at least the syntax of
the WinMain() function is provided to you.

Practical Learning: Windows Programming

1. Begin Borland C++ Builder

2. On the main menu, click File-> New... or File -> New -> Other...

3. In the New Items dialog box, click Console Wizard and click OK

LOVELY PROFESSIONAL UNIVERSITY 5

Unit 1: Windows Programming Basics

Notes4. In the Console Wizard, confirm that only the C++ radio button is chosen:

5. Click OK. You are offered with a file as below:

//—————————————————————————————————————

#include <windows.h> #pragma hdrstop

//—————————————————————————————————————

#pragma args n used

WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance, LPSTR

lpCmdLine, int nCmdShow)

{return 0;

}

//——————————————————————-———————————————

6. Save the application in a new folder named Win32A.

7. Save the first file as Main.cpp and save the project as SimpleWindow.

Using Microsoft Visual C++

To create a Win32 application by means of Microsoft Visual C++, exhibit the New (5 and 6
versions) or New Project (.Net version) dialog box and choose Win32 application (5 and 6) or
Win32 Project (.Net) item. Microsoft Visual C++ offers the fastest and quite most complete
means of creating a Win32 application.

Example: It offers a skeleton application with all of the code a fundamental application
would need. Since we are learning Win32, we will go the hard manner, which includes creating
an application from scratch.

Actually, this permits to give approximately (but not exactly) the similar instructions as Borland
C++ Builder.

1. Start the Microsoft Development Environment.

2. On the main menu, click File -> New... or File -> New -> Project...

3. In the New or New Project dialog box, click either Win32 Application or click Visual C++
Projects and Win32Project:

6 LOVELY PROFESSIONAL UNIVERSITY

Windows Programming

Notes

4. In the location, type the path where the application should be amassed, like
C:\Programs\MSVC.

5. In the Name edit box, type the name of the application as Win32A and click OK.

6. In the next dialog box of the wizard, if you are using MSVC 5 or 6, click the An Empty
Project radio button:

If you are using MSVC.Net, click Application Settings, then click the Console Application
radio button, then click the Empty Project check box:

LOVELY PROFESSIONAL UNIVERSITY 7

Unit 1: Windows Programming Basics

Notes7. Click Finish. If you are using MSVC 6, you will be offered with another dialog box; in this
case click OK.

8. To create the first required file of the program, if you are using MSVC 5 or 6, on the main
menu, click File -> New. If you are using MSVC.Net, on the main menu, click Project ->
Add New Item...

9. If you are using MSVC.Net, confirm that Visual C++ is chosen in the Categories tree view.
In both cases click either C++ Source File or C++ File (.cpp)

Self Assessment

Fill in the blanks:

3. To generate a basic application, you will initially require a that executes on
a Microsoft Windows operating system.

4. For a fundamental Win32 program, the contents of a Win32 program are

1.3 Running Several Programs Simultaneously

If you function with numerous programs simultaneously you know how tedious is to run and
launch them one by one! Actually you require to find them between the other applications you
have installed on your Window, click their icons and linger for them to open. This operation is
quite unbearable. That’s why you require a particular shortcut (batch file) which is able to start
all of them in one click! This trick will let you attain a great, time saving result. Opening several
applications in a matter of a couple seconds! Stop browsing your computer folders, stop looking
for the right icon. Handle everything from the same place.

1. Click Start.

2. Click All Programs.

3. Click Accessories.

4. Click Notepad to open it.

5. Now write the following code:

Start “” (confirm to leave a space before and after “”) followed by the absolute path of the
program you desire to open in quote.

Example: Start “”

“C:\Users\YourName\AppData\Local\Google\Chrome\Application\chrome.exe”

6. Right after that press Enter and write another line like the one above so as to open a new
application.

7. Ensure to write each Start “” command on a new line so that a line will enclose a Start “”
command only, or else the batch file won’t work and you won’t be able to open numerous
programs!

8. Now save the file with any name you desire and confirm to save it as .bat extension (and
not as .txt).

8 LOVELY PROFESSIONAL UNIVERSITY

Windows Programming

Notes

!
Caution If you do not recognize the absolute path of an application on your computer, right click
its icon positioned on the desktop – Properties – copy the path situated in the Destination field.

Task Write the steps for Running Several Programs Simultaneously.

Self Assessment

Fill in the blank:

5. If you do not recognize the absolute path of an application on your computer, right click
its icon positioned on the desktop copy the path situated in the Destination
field.

1.4 Messages

A computer application is prepared with Windows controls that permit the user to interrelate
with the computer. Each control generates messages and sends them to the operating system. To
supervise these messages, they are managed by a function pointer known as a Windows
procedure. This function can emerge as follows:

This function utilizes a switch control to list all essential messages and process each one in turn.
This processes just the messages that you ask it to. If you have available messages, and you will
always have unrefined messages, you can call the DefWindowProc() function at the end to take
over.

The most essential message you can process is to ensure a user can close a window after using it.
This can be completed with a function known as PostQuitMessage(). Its syntax is:

This function comprises one argument which is the value of the LPARAM argument. To close a
window, you can pass the argument as WM_QUIT.

Depending on this, a simple Windows procedure can be defined as below:

LOVELY PROFESSIONAL UNIVERSITY 9

Unit 1: Windows Programming Basics

Notes

Task Illustrate the use of PostQuitMessage().

Self Assessment

Fill in the blanks:

6. Each window control generates and sends them to the operating system.

7. If you have available messages, and you will always have unrefined messages, you can
call the function at the end to take over.

1.5 An Analogy

Windows programming is complicated. Windows class libraries make Windows programming
simpler. True or false?

Sincerely, if you want to write programs that are precisely like the inventors of MFC or OWL
figured out you would, and you don’t care regarding the overhead, then by means of class
libraries and application wizards is the method to go. But any time you desire to step outside of
this path, you’ll find yourself in profound problem.

Let us provide you an analogy. Visualize that you’re purchasing a set of Lego blocks. You can
obtain a general purpose set, or you can purchase a particular set for structuring a pirate ship. If
you want to do to build a pirate ship, the second option is superior. But if you attempt to make
a Lego car, you’ll have to conquer a few troubles. Finally you’ll come up with something that
looks like a car, but it will have a humorous steering wheel, utilize an anchor for breaking, and
the driver will have a stick leg and a black patch over his eye.

After functioning with this Pirate Lego set for a while, you will turn out to be a specialist in
constructing approximately anything that could be built with a common purpose set. You’ll
learn all the tricks — like how to remove the patch from the pirate’s eye, how to paint over the
skull and crossbones, etc. Eventually you’ll arrive at a point when the amount of information
you’ve assimilated regarding the Pirate set will be much more than the fundamental engineering
principles you’d have to learn so as to use general purpose Lego. From that point on, you’ll be
throwing good money after bad money, investing in growingly complicated (and complicated)
Pirate sets.

10 LOVELY PROFESSIONAL UNIVERSITY

Windows Programming

Notes Self Assessment

Fill in the blanks:

8. To write programs that are precisely like the inventors of MFC or OWL figured out you
would, and you don’t care regarding the overhead, then using class libraries and
........................ is the method to go.

9. A function is called by Windows to process messages for the application.

1.6 The Structure of a Windows Program

For a negligible Windows program that just utilizes the Windows API, you will write two
functions. These are a WinMain() function, where execution of the program starts and basic
program initialization is performed, and a WindowProc() function that is called by Windows to
process messages for the application. The WindowProc() part of a Windows program is typically
the larger portion since this is where most of the application-specific code is, reacting to messages
caused by user input of one type or another.

Notes Even though these two functions make up an absolute program, they are not directly
associated. WinMain() does not call WindowProc(), Windows does. Actually, Windows
also calls WinMain().

LOVELY PROFESSIONAL UNIVERSITY 11

Unit 1: Windows Programming Basics

Notes

12 LOVELY PROFESSIONAL UNIVERSITY

Windows Programming

Notes

//The Message Processing Function

Called by Windows to manage all the messages for a specified window that aren’t queued,
which involves those initiated in the message loop in WinMain().

Did u know? The queued messages are mostly those caused by user input from either the
mouse or the keyboard.

The non-queued messages for which Windows calls your WindowProc() function directly, are
either messages that your program formed, usually as a result of getting a message from the
queue and then dispatching it, or messages that are related with window management—like
managing menus and scrollbars, or resizing the window.//

LOVELY PROFESSIONAL UNIVERSITY 13

Unit 1: Windows Programming Basics

Notes

Self Assessment

Fill in the blanks:

10. In function, execution of the program starts and basic program initialization
is performed.

11. A function is called by Windows to process messages for the application.

1.7 Code and Resources

Resources are defined as the data that you can include to the applications executable file resources
can be:

 standard: icon, cursor, menu, dialog box, bitmap, enhanced metafile, font, accelerator
table, message-table entry, string-table entry, or version.

 custom: any sort of data that doesn’t fall into the preceding category (for instance a mp3
file or a dictionary database).

Add two new files to your project. Name them resource.h and resource.rc.

!
Caution Resource.rc will enclose the resource definitions and resource.h will define
constants.

This overview focuses on how Windows Presentation Foundation (WPF) resources can be accessed
or created by means of code instead of Extensible Application Markup Language (XAML) syntax.

1.7.1 Accessing Resources from Code

The keys that recognize resources if they are defined during XAML are also used to recover
particular resources if you demand the resource in code. The simplest manner to recover a
resource from code is to call either the FindResource or the TryFindResource method from
framework-level objects in your application. The behavioral dissimilarity between these methods
is what occurs if the needed key is not found. FindResource elevates an exception; TryFindResource
will not raise an exception but returns null.

14 LOVELY PROFESSIONAL UNIVERSITY

Windows Programming

Notes

Did u know? Each method takes the resource key as an input parameter, and returns a
loosely typed object.

Typically, a resource key is a string, but there are infrequent non-string usages; see the Using
Objects as Keys section for details. Usually you would cast the returned object to the type
required by the property that you are setting when requesting the resource.

!
Caution The lookup logic for code resource resolution is the similar as the dynamic resource
reference XAML case.

The hunt for resources starts from the calling element, then persists to successive parent elements
in the logical tree. The lookup continues onwards into application resources, themes, and system
resources if essential. A code demand for a resource will properly account for runtime modifies
in resource dictionaries that might have been made succeeding to that resource dictionary being
loaded from XAML, and also for real-time system resource m.

Example: The following is a concise code example that locates a resource by key and
utilizes the returned value to put a property, executed as a Click event handler.

1.7.2 Creating Resources with Code

If you want to generate a whole WPF application in code, you might also desire to create any
resources in that application in code. To attain this, create a new Resource Dictionary instance,
and then add all the resources to the dictionary by means of successive calls to Resource
Dictionary.Add. Then, use the Resource Dictionary thus generated to set the Resources property
on an element that is present in a page scope, or the Application.Resources. You could also
preserve the Resource Dictionary as a separate object without adding it to an element. On the
other hand, if you do this, you must access the resources within it by item key, as if it were a
generic dictionary. A Resource Dictionary that is not associated to an element Resources property
would not occur as part of the element tree and has no scope in a lookup sequence that can be
used by Find Resource and associated methods.

1.7.3 Different Data Types used in Resource File

Microsoft Windows applications often depend on files that contain non-executable data, such as
Extensible Application Markup Language (XAML), images, video, and audio. Windows
Presentation Foundation (WPF) offers special support for configuring, identifying, and using
these types of data files, which are called application data files. This support revolves around a
specific set of application data file types, including:

LOVELY PROFESSIONAL UNIVERSITY 15

Unit 1: Windows Programming Basics

Notes Resource Files: Data files that are compiled into either an executable or library WPF
assembly.

 Content Files: Standalone data files that have an explicit association with an executable
WPF assembly.

 Site of Origin Files: Standalone data files that have no association with an executable WPF
assembly.

One important distinction to make between these three types of files is that resource files and
content files are known at build time; an assembly has explicit knowledge of them. For site of
origin files, however, an assembly may have no knowledge of them at all, or implicit knowledge
through a pack uniform resource identifier (URI) reference; the case of the latter, there is no
guarantee that the referenced site of origin file actually exists.

Resource Files

If an application data file must always be available to an application, the only way to guarantee
availability is to compile it into an application's main executable assembly or one of its referenced
assemblies. This type of application data file is known as a resource file.

You should use resource files when:

 You don't need to update the resource file's content after it is compiled into an assembly.

 You want to simplify application distribution complexity by reducing the number of file
dependencies.

 Your application data file needs to be localizable (see WPF Globalization and Localization
Overview).

Configuring Resource Files

In WPF, a resource file is a file that is included in a Microsoft build engine (MSBuild) project as
a Resource item.

Notes In Microsoft Visual Studio, you create a resource file by adding a file to a project and
setting its Build Action to Resource.

When the project is built, MSBuild compiles the resource into the assembly.

16 LOVELY PROFESSIONAL UNIVERSITY

Windows Programming

Notes Using Resource Files

To load a resource file, you can call the GetResourceStream method of the Application class,
passing a pack URI that identifies the desired resource file.GetResourceStream returns a
StreamResourceInfo object, which exposes the resource file as a Stream and describes its content
type.

As an example, the following code shows how to use GetResourceStream to load a Page resource
file and set it as the content of a Frame (pageFrame):

While calling GetResourceStream gives you access to the Stream, you need to perform the
additional work of converting it to the type of the property that you'll be setting it with. Instead,
you can let WPF take care of opening and converting the Stream by loading a resource file
directly into the property of a type using code.

Self Assessment

Fill in the blanks:

12. are defined as the data that you can include to the applications executable
file.

13. The simplest manner to recover a resource from code is to call either the or
the TryFindResource method from framework-level objects in your application.

1.8 Program Instances

A window is considered as parent when it can be used to host, hold, or take other windows. For
instance, when the computer begins, it draws its main screen, also known as the desktop, which
covers the widest area that the monitor screen can propose. This primary window turns out to be
the host of all other window that will exhibit as long as the computer is own. This desktop is also
a complete window in its own right. As declared already, to get its handle, you can call the
GetDesktopWindow() function.

After the desktop has been generated, a window of yours can display if the user begins your
application. This signifies that an application must have been generated for the user to use it.
When the user opens an application, we also say that the application has been instantiated or an
instance of the application has been generated. Depending on this, any time you generate an
application, you must offer an instance of it. This permits the operating system to handle your
application with respect to its communication with the user and also its relationship with other
resources. Thus, you must always generate an instance for your application. This is taken care of
by the first argument of the WinMain() function.

LOVELY PROFESSIONAL UNIVERSITY 17

Unit 1: Windows Programming Basics

NotesIf an application has already been formed, to obtain its instance, you can call the
GetWindowLong() function. Its syntax is:

Even though this function is used for many other reasons, it can also aid you get the instance of
an application. To perform this, pass the first argument as the handle to a window of the
application you are probing and pass the second argument as GWL_HINSTANCE.

Self Assessment

Fill in the blank:

14. If an application has already been formed, to obtain its instance, you can call the
........................ function.

1.9 Compiling Windows Program

Click the Run button (displayed below with the arrow) and wait a few seconds. This compiles
the program to an EXE file and runs it:

When the program runs, you will observe the dialog on the screen. It appears like this:

You have effectively written a Windows program that could execute under any version of
Windows. The window above is portion of the EXE file, and it can outside the Developer
Environment if required. Press the “Close me” button to finish the program. The Close button
triggers the Command event, which unloads the dialog. The program will then end since it has
no windows left.

The resource data is stored in separate file in windows programs, compiling a DOS program is
not more involved then the process of putting together a complete Windows program. Figure
1.1 shows that how a C program is run under DOS, how it is being compiled and linked to create
a finished program. Under DOS, the C compiler converts the source code file into an objective
file. A linker converts the objective file into the finished executable program. In this way a
source code can be converted to the finished program with the help of compiler and linker.

18 LOVELY PROFESSIONAL UNIVERSITY

Windows Programming

Notes Figure 1.1: Steps in Creating a DOS Program

Source Code
(Example .C)

Objective file
(Example .OBJ)

C Compiler

Linker

Finished Program
(Example .EXE)

Figure 1.2 shows a flow diagram for the creation of a Windows programs. In this figure the
source code file gets converts to objective file from the compilers same as in the DOS. In windows
programs the linker gets a few additional information from a small file called the "module
definition file" with the file name extension ".DEF". This file tells the linker how to assemble the
program. The linker combines the module definition file information and the object file to
make an unfinished .EXE file. The unfinished .EXE file lacks the resource data.

The main difference between Windows programs and DOS programs is in the compilation of
the resource data file with the extension of ".RES". In DOS programs there is no resource data but
in windows program the resource data is added to the unfinished.EXE file to create the finished
executable program. The resource data is basically stuck onto the end of the program's code and
becomes part of the programs file. In addition to adding the resource data the resource compiler
writes the Windows version number into the program file.

LOVELY PROFESSIONAL UNIVERSITY 19

Unit 1: Windows Programming Basics

NotesFigure 1.2: Steps in Creating a Windows Program

Finished
program

(EXAMPLE.EXE)

Source code
(EXAMPLE.C)

Module definition
File (EXAMPLE.DEF)

Resource file
(EXAMPLE.RC)

C Compiler Resource
compiler

Resource data
(EXAMPLE.RES)

Objective file
(EXAMPLE.OBJ)

Linker

Unfinished.EXE
(EXAMPLE.EXE)

Resource
compiler

Self Assessment

Fill in the blank:

15. The button triggers the Command event, which unloads the dialog.

1.10 Summary

 Microsoft Windows is a multi-tasking operating system that permits numerous
applications, pointed to here on out as processes.

 An integrated Windows server utilizes disk storage, which is usually more dependable
than PC server hard disks.

 All Win32 programs chiefly appear the same and act the same but, just like C++ programs,
there are small differences in terms of forming a program, relying on the compiler you
are utilizing.

 A computer application is prepared with Windows controls that permit the user to
interrelate with the computer. Each control generates messages and sends them to the
operating system.

 To supervise the messages, they are managed by a function pointer known as a Windows
procedure.

20 LOVELY PROFESSIONAL UNIVERSITY

Windows Programming

Notes  In WinMain() function, execution of the program starts and basic program initialization is
performed.

 A WindowProc() function is called by Windows to process messages for the application.

 Resources are defined as the data that you can include to the applications executable file.

1.11 Keywords

Resources: Resources are defined as the data that you can include to the applications executable
file.

WindowProc(): A WindowProc() function is called by Windows to process messages for the
application.

Windows: Microsoft Windows is a multi-tasking operating system that permits numerous
applications, pointed to here on out as processes.

WinMain() Function: In WinMain() function, execution of the program starts and basic program
initialization is performed.

1.12 Review Questions

1. What are Microsoft windows? Illustrate the advantages of windows.

2. Explain how windows program works.

3. Elucidate the working of Windows Program by using visual c++.

4. Illustrate how you will handle running several programs simultaneously.

5. What are windows messages? Illustrate.

6. Write the syntax of PostQuitMessage(). Also discuss parameters.

7. Discuss the Structure of a Windows Program with example.

8. Illustrate the process of accessing Resources from Code

9. After the desktop has been generated, a window of yours can display if the user begins
your application. Comment.

10. Illustrate the steps for Compiling Windows Program.

Answers: Self Assessment

1. Microsoft Windows 2. Hard Disks

3. Compiler 4. Similar

5. Properties 6. Messages

7. DefWindowProc() 8. Application Wizards

9. WindowProc() 10. WinMain()

11. WindowProc() 12. Resources

13. FindResource 14. GetWindowLong()

15. Close

LOVELY PROFESSIONAL UNIVERSITY 21

Unit 1: Windows Programming Basics

Notes1.13 Further Readings

Books Brent E. Rector, Win32 Programming, Addison-Wesley

Charles Petzold, Programming Windows, Charles Petzold

Roger Mayne, Windows and Graphics Programming with Visual C++.NET, World
Scientific

Online link www.apitalk.com/windows-Programming

22 LOVELY PROFESSIONAL UNIVERSITY

Windows Programming

Notes Unit 2: Windows Memory Management

CONTENTS

Objectives

Introduction

2.1 Windows Memory Management

2.2 Paging in x86 Processor

2.2.1 Windows Page Table Management

2.3 Memory Protection

2.4 Windows Logical Memory Layout

2.5 Summary

2.6 Keywords

2.7 Review Questions

2.8 Further Readings

Objectives

After studying this unit, you will be able to:

 Understand the concept of Windows Memory Management

 Discuss Paging in x86 Processor

 Illustrate memory protection

Introduction

Memory management in Windows operating systems has developed into an affluent and classy
architecture, competent of scaling from the minute embedded platforms (where Windows
implements from ROM) all the way up to the multi-terabyte NUMA configurations, taking full
benefit of all capabilities of obtainable and upcoming hardware designs.

With every release of Windows, memory management assists many new traits and capabilities.
Advances in algorithms and techniques capitulate a affluent and classy code base, which is
sustained as a single code base for all platforms and SKUs.

2.1 Windows Memory Management

Windows on 32 bit x86 systems can utilize up to 4GB of physical memory. This is because of the
fact that the processor’s address bus which is 32 lines or 32 bits can only utilize address range
from 0x00000000 to 0xFFFFFFFF which is 4GB. Windows also permits every process to have its
own 4GB logical address space. The lower 2GB of this address space is available for the user
mode process and upper 2GB is set aside for Windows Kernel mode code. How does Windows
provide 4GB address space each to numerous processes when the total memory it can utilize is
also restricted to 4GB. To attain this Windows uses a feature of x86 processor (386 and above)
called paging.

LOVELY PROFESSIONAL UNIVERSITY 23

Unit 2: Windows Memory Management

Notes

Did u know? Paging permits the software to use a diverse memory address (called logical
address) than the physical memory address.

The Processor’s paging unit converts this logical address to the physical address transparently.
This permits every process in the system to have its own 4GB logical address space. To recognize
this in more details, let us first have a look at how the paging in x86 functions.

Self Assessment

Fill in the blanks:

1. Windows on 32 bit x86 systems can utilize up to of physical memory.

2. Windows permits every process to have its own 4GB address space.

3. Paging permits the software to use a diverse memory address (called logical address) than
the memory address.

4. The Processor’s unit converts this logical address to the physical address
transparently.

2.2 Paging in x86 Processor

The x86 processor separates the physical address space (or physical memory) in 4 KB pages.
Therefore to address 4GB of memory, we will require 1 Mega (1024x1024) 4KB pages. The
processor utilizes a two level structure to refer to these 1 Mega pages. You can consider of it as
a two dimensional matrix of 1024x1024 elements. The first dimension is called Page Directory
and second dimension is called Page Table. So we can generate 1 Page directory with 1024
entries, each of which refers to a Page Table. This will permit us to have 1024 page tables. Each
page table in turn can have 1024 entries, each of which points to a 4 KB page. Graphically it
appears something like:

Every Page Directory Entry (or PDE) is 4 bytes in size and refers to a Page Table. Likewise each
Page Table Entry (or PTE) is 4 bytes and points to a physical address of a 4KB page. To store 1024
PDE each containing 1024 PTE, we will need a total memory of 4 x 1024 x 1024 bytes i.e. 4MB.
Thus to divide the whole 4GB address space into 4 KB pages, we need 4 MB of memory.

24 LOVELY PROFESSIONAL UNIVERSITY

Windows Programming

Notes As discussed above, the whole address space is divided in 4KB pages. So when a PDE or PTE is
used, its upper 20 bits gives a 4KB page aligned address and lower 12 bits are utilized to store the
page defense information and some other housekeeping information needed by an OS for
proper functioning.

Notes The upper 20 bits which shows the actual physical address are called Page Frame
Number (or PFN). Details on defense bits and other bits in the lower 12 bits can be located
in here.

Task Make distinction between page directory and page table.

2.2.1 Windows Page Table Management

In windows every process has its own Page Directory and Page Tables. Therefore windows
assign 4 MB of this space per process. When a process is formed, every entry in Page Directory
includes physical address of a Page Table. The entries in the page table are either valid or
invalid. Valid entries enclose physical address of 4KB page assigned to the process. An invalid
entry includes some particular bits to mark it invalid and these entries are called Invalid PTEs.
As the memory assigned by the process, these entries in Page Table are filled with the physical
address of the assigned pages. You should keep in mind one thing here that a process doesn’t
recognize anything regarding physical memory and it only utilizes logical addresses. The details
of which logical address corresponds to which physical address is handled evidently by Windows
Memory manager and the processor. The address at which the page directory of a process is
positioned in physical memory is pointed to as Page Directory Base address. This Page Directory
Base address is amassed in a special CPU register called CR3 (on x86). On context switch, Windows
loads the new value of CR3 to point to the new process’s Page Directory Base. This manner every
process gets its own division of the whole 4GB physical address space. Certainly the total
memory assigned at one time to all the process’s in a system cannot go beyond the total amount
of RAM + page file size but the method discussed above permits windows to give every process
its own 4GB logical (or Virtual) address space. We call it Virtual Address space since although
the process has the whole 4GB address range obtainable to it, it can only use the memory which
is assigned to it. Compilers can generate a program that depends on the code being at an accurate
location in memory, every time it is executed.

Example: With virtual memory, the process considers, it is at 0x080482a0, but in fact it
could be at physical memory position 0x1000000.

If a process attempts to access an unallocated address, it will obtain an access violation since the
PTE subsequent to that address refers to an invalid value. Also the process can’t assign more
memory than what is obtainable in the system. This way of separating logical memory from
physical memory has many benefits. A process gets a linear 4GB address space so application
programmers don’t have to concern regarding segments and all unlike in old DOS days. It also
permits windows to run multiple processes and let them employ physical memory on a machine
without worrying about them stomping on each other’s address space. A logical address in one
process will never refer to the physical memory assigned to another process (unless they are
utilizing some sort of shared memory). Therefore, one process can never read from or write to
another process’s memory.

LOVELY PROFESSIONAL UNIVERSITY 25

Unit 2: Windows Memory Management

NotesThe translation from logical to physical address is performed by the processor. A 32 bit logical
address is separated into three parts as displayed below. The processor loads the physical address
of the page directory base amassed in CR3. It then utilizes the upper 10 bits from the logical
address as an index in the Page directory. This provides the processor a page directory entry
(PDE) which refers to a Page Table. The next 10 bits are used as an index in the page table. By
means of these 10 bits, it obtains a page table entry (or PTE) which points to a 4KB physical page.

Did u know? The lowest 12 bits are utilized to address the individual bytes on a page.

Self Assessment

Fill in the blanks:

5. The separates the physical address space (or physical memory) in 4 KB
pages.

6. The first dimension of X86 processor is called and second dimension is
called Page Table.

7. We can generate 1 Page directory with 1024 entries, each of which refers to a

8. Every is 4 bytes in size and refers to a Page Table.

9. When a process is formed, every entry in Page Directory includes of a Page
Table.

10. entries enclose physical address of 4KB page assigned to the process.

11. An entry includes some particular bits to mark it invalid and these entries
are called Invalid PTEs.

2.3 Memory Protection

Windows offers memory protection by means of the virtual memory hardware. The
accomplishment of this protection differs with the processor.

Example: Code pages in the address space of a process can be marked read-only and
protected from alteration by user-mode threads.

Windows give memory protection to all the processes in order that one process can’t utilize
other process’s memory. This makes sure smooth operation of multiple processes concurrently.
Windows make sure this protection by doing following:

 It only puts the physical address of assigned memory in PTE for a process. This makes sure
that the process’s obtains an access violation if it attempts to access an address which is not
allocated.

 A rouge process may attempt to adjust its page tables so that it can access the physical
memory belonging to another process. Windows defend this sort of attacks by accumulating
page tables in kernel address space. Remember from our previous discussion that out of
the 4GB logical address space specified to a process, 2GB is given to user mode and 2GB is
reserved for windows kernel.

26 LOVELY PROFESSIONAL UNIVERSITY

Windows Programming

Notes So a user mode application can not directly access or alter the page tables. Certainly if a kernel
mode driver wants to do that, it can do it since once you are in kernel mode, you almost own the
whole system. To recognize this in more details, study the next section on Windows Logical
memory layout.

Self Assessment

Fill in the blanks:

12. Windows give memory to all the processes in order that one process can’t
utilize other process’s memory.

13. application can not directly access or alter the page tables.

2.4 Windows Logical Memory Layout

Windows provides lower 2GB (or 3GB relying upon boot.ini switch) logical address space of a
process to user mode and upper 2GB (or 1GB relying upon boot.ini switch) to Windows kernel.
Out of the total kernel address space, it reserves addresses from 0xC0000000 to 0xC03FFFFF for
Page Tables and Page Directory. Each process has its Page Tables positioned at the logical
address 0xC0000000 and page directory situated at logical address 0xC0300000. This logical
memory arrangement is displayed below:

You can utilize Windows kernel debugger kd or windbg to verify this (point to !pte and !vtop
debugger extensions). The physical address to this page directory is amassed in CR3. The 1024
addresses beginning from 0xC0300000 displays Page Directory Entry (PDE). Each PDE includes
a 4 byte physical address which refers to a Page Table. Each Page Table has 1024 entries which
either includes a physical address referring to a physical page of 4KB or includes an invalid
entry. This was also discussed above in the processor’s paging and Windows page table
management section but repeated here for clearness sake. So why does Windows utilize logical
address 0xC000000000 to amass the Page Tables and address 0xC0300000 to amass page directory?
The prerequisite for storing the page tables in memory is that a rouge consumer mode application

LOVELY PROFESSIONAL UNIVERSITY 27

Unit 2: Windows Memory Management

Notesshould not be able to influence the page tables. Hence page tables should be in the kernel logical
address space. Windows typically provides lower 2GB space to processes and reserves upper
2GB to kernel. But with a particular boot.ini switch /3GB, it permits user mode process to access
lower 3GB memory. 0xC0000000 is the next address after 3GB and so I guess that is why it is
selected for storing page directory and page tables. There are some other significant aspects to
page tables and page directory layout in memory. To appreciate that, let us gaze at how page
tables and page directory is laid out. To make it simple to appreciate, I have drawn page tables
for a fake process with pertinent entries highlighted.

!
Caution Remember that every index entry is 4 bytes in size.

P_PT displays the physical address of a Page Table.

PDB displays the physical address of page directory base of the subsequent process i.e. it shows
the physical address subsequent to logical address 0xC0300000 for that process. This value is also
accumulated in CR3.

Notes Windows can only make use of logical address to access any memory location
counting page directory, thus to access page directory and page tables, it is essential to put
some self referencing entry in page directory.

The physical address entries exposed above will be dissimilar for each process but each process
will have its PDB entry stored at index 0x300 of Page directory.

We will execute logical to physical address translation on 4 dissimilar addresses to observe the
significance of PDB entry, Page tables layout and how precisely the address translation works.
The addresses which we will transform are 0x2034AC54, 0xC0000000, 0xC0300000, 0xC0300000
[0x300] i.e. 0xC030C00. First address is a usual user mode logical address for a process, the
second address is the first logical address of first page table in logical address space, third
address is logical address of page directory base and fourth address is logical address of a special
entry as you will observe throughout translation. Assume CR3 refers to a physical address

28 LOVELY PROFESSIONAL UNIVERSITY

Windows Programming

Notes 0x13453###. As pointed previously, lower 12 bits are used to accumulate page protection
information and other information required by an OS. These are out of the scope of our current
discussion so I have shown them as ###. The upper 20 bits displays the Page Frame Number or
PFN which is the physical address of a 4KB aligned page. The actual physical address
corresponding to the PFN will be 0x13453000. Let us now perform the translation:

0x2034AC54

 0x2034AC54 can be displayed as 0010000000 1101001010 110001010100

 The upper 10 bits which are 0010000000 provides the index into page directory.
Transforming to hexadecimal, the upper 10 bits give a value of 0x080

 From CR3, we know the Page Directory is situated at physical address 0x13453000 and
from discussion above we also know that Page Directory is situated at logical address

 0xC0300000

 So 0xC0300000 [0x080] will give the address of page table which is P_PT. From the table
above, we can observe that this address is displayed by page table at logical address
0xC00001000 (or physical address 0x45045000). Now we utilize next 10 bits i.e. 1101001010
(or 0x34A) to index into the page table.

 The address 0xC00001000 [0x34A] will provide us the physical address of a 4KB page
which is 0x34005000 from the table above.

 The number displayed by lower 12 bits, which is 110001010100 (or 0xC54), is used to point
to the actual byte on the 4KB page located at 0x34005000. The final physical address
corresponding to 0x2034AC54 comes out to be 0x34005C54

I will leave the address translation of other 3 addresses as an exercise to the reader. Once you do
that translation, you will appreciate why the PDB entry is stored at index 0x300 in the table
above and it causes processor to consider page directory as a page table during address translation.
Also this translation will provide you more information on why this specific layout was selected
by windows designers.

Task Make distinction between logical address and physical address.

Self Assessment

Fill in the blanks:

14. Windows provides lower 2GB (or 3GB relying upon boot.ini switch) logical address space
of a process to user mode and upper 2GB (or 1GB relying upon boot.ini switch) to Windows
........................ .

15. The prerequisite for storing the page tables in is that a rouge consumer
mode application should not be able to influence the page tables.

2.5 Summary

 Memory management in Windows operating systems has developed into a affluent and
classy architecture, competent of scaling from the minute embedded platforms all the way

LOVELY PROFESSIONAL UNIVERSITY 29

Unit 2: Windows Memory Management

Notesup to the multi-terabyte NUMA configurations, taking full benefit of all capabilities of
obtainable and upcoming hardware designs.

 Windows on 32 bit x86 systems can utilize up to 4GB of physical memory.

 The x86 processor separates the physical address space (or physical memory) in 4 KB
pages.

 Every Page Directory Entry (or PDE) is 4 bytes in size and refers to a Page Table.

 In windows every process has its own Page Directory and Page Tables. Therefore windows
assign 4 MB of this space per process.

 Windows give memory protection to all the processes in order that one process can’t
utilize other process’s memory.

 Windows provides lower 2GB (or 3GB relying upon boot.ini switch) logical address space
of a process to user mode and upper 2GB (or 1GB relying upon boot.ini switch) to Windows
kernel.

 Each Page Table has 1024 entries which either includes a physical address referring to a
physical page of 4KB or includes an invalid entry.

2.6 Keywords

Page Directory: The first dimension of X86 processor is called Page Directory.

Page Table: The second dimension of X86 processor is called Page Table

X86 processor: The X86 processor separates the physical address space (or physical memory) in
4 KB pages

2.7 Review Questions

1. What is Memory management in Windows operating systems? Explain.

2. Make distinction between logical memory address and physical address.

3. Illustrate the concept of Paging in X86 Processor.

4. Elucidate the two dimensional structure of X86 Processor.

5. What is page table? Illustrate the concept of page table with example.

6. Enlighten the concept of Windows Page Table Management.

7. How is the translation from logical to physical address performed? Discuss.

8. Illustrate how memory protection is performed.

9. How to execute logical to physical address translation on 4 dissimilar addresses? Illustrate.

10. The prerequisite for storing the page tables in memory is that a rouge consumer mode
application should not be able to influence the page tables. Comment.

Answers: Self Assessment

1. 4GB 2. Logical

3. Physical 4. Paging

5. X86 Processor 6. Page Directory

30 LOVELY PROFESSIONAL UNIVERSITY

Windows Programming

Notes 7. Page Table 8. Page Directory Entry

9. Physical Address 10. Valid

11. Invalid 12. Protection

13. User Mode 14. Kernel

15. Memory

2.8 Further Readings

Books Brent E. Rector, Win32 Programming, Addison-Wesley

Charles Petzold, Programming Windows, Charles Petzold

Roger Mayne, Windows and Graphics Programming with Visual C++.NET, World
Scientific

Online link www.tenouk.com/visualcplusmfc/visualcplusmfc20.html

LOVELY PROFESSIONAL UNIVERSITY 31

Unit 3: Windows Programming

NotesUnit 3: Windows Programming

CONTENTS

Objectives

Introduction

3.1 The Windows.h

3.2 WINMAIN Function

3.3 Creating the Programs Window

3.4 Messages and Adding a Message Loop

3.5 Creating a New Window Class

3.6 Message Processing Function WndProc()

3.7 Adding Custom Resource Data

3.7.1 Compiling the Resource Data

3.8 Summary

3.9 Keywords

3.10 Review Questions

3.11 Further Readings

Objectives

After studying this unit, you will be able to:

 Understand windows.h

 Discuss WINMAIN function

 Recognize Creating the Programs Window

 Illustrate Messages and adding a message loop

 Discuss Creating a New Window Class

 Understand Message Processing Function WndProc()

 Discuss Adding and compiling custom resource data

Introduction

In this unit, you will understand the concepts of windows.h and WINMAIN function. You will
study various concepts of windows programming such as Creating the Programs Window,
Messages and adding a message loop, Creating a New Window Class, Message Processing
Function WndProc(), etc.

3.1 The Windows.h

The Windows.h is a Windows-specific header file for the C programming language which
comprises declarations for all of the functions in the Windows API, all the general macros used

32 LOVELY PROFESSIONAL UNIVERSITY

Windows Programming

Notes by Windows programmers, and all the data types utilized by the different functions and
subsystems. It defines a very huge number of Windows particular functions that can be utilized
in C. The Win32 API can be added to a C programming project by comprising the <windows.h>
header file and connecting to the appropriate libraries.

!
Caution To utilize functions in xxxx.dll, the program must be connected to xxxx.lib (or
libxxxx.dll.a in MinGW).

Did u know? Some headers are not connected with a .dll but with a static library (e.g.
scrnsave.h needs scrnsave.lib).

Self Assessment

Fill in the blanks:

1. The is a Windows-specific header file for the C programming language
which comprises declarations for all of the functions in the Windows API.

2. The Win32 API can be added to a C programming project by comprising the <windows.h>
header file and connecting to the appropriate

3.2 WINMAIN Function

WINMAIN (also written as MAIN) is a user-defined function called by Windows to start execution
of an application.

Syntax

FUNCTION {WINMAIN | MAIN} (_

 BYVAL hInstance AS DWORD, _

 BYVAL hPrevInst AS DWORD, _

 BYVAL lpszCmdLine AS WSTRINGZ PTR, _

 BYVAL nCmdShow AS LONG) AS LONG

The WINMAIN function is called by Windows when an executable application primarily loads
and bstarts to run. It is frequently pointed to as the “entry point” for the application. When the
execution of WINMAIN is accomplished, the application is estimated to be completed, and
Windows releases the application memory back to the heap. WINMAIN obtains the following
parameters:

1. hInstance: The executable’s (EXE) instance handle. Each instance of a Windows application
has an exclusive handle. It is used as a parameter to a number of Windows API functions
which may want to differentiate among multiple instances of an application.

2. hPrevInst: It is not used by 32-bit Windows. It is there merely for compatibility with
current 16-bit code, and always returns zero in 32-bit applications.

3. lpszCmdLine: A pointer to an nul-terminated string that comprises a command-line.

LOVELY PROFESSIONAL UNIVERSITY 33

Unit 3: Windows Programming

Notes

Notes Observe that the string passed in lpszCmdLine is not the similar as the string returned
by the GetCommandLine API call. The string in lpszCmdLine comprises the command-line
arguments only (like COMMAND$), but GetCommandLine returns the program name
(counting path) followed by the arguments.

4. nCmdShow: It shows how to exhibit the application’s main window.

Example: The calling application can identify %SW_NORMAL or %SW_MINIMIZE, etc.
It is up to the programmer to respect this parameter, and to do so is suggested.

Return: The return value allocated to WINMAIN is optional, but by convention, the return value
is derived from the wParam& parameter of a %WM_QUIT message.

Usually, a GUI-based application utilizes the WINMAIN function to generate the initial GUI
application window, and then enters a message loop. This loop should end when a %WM_QUIT
message is obtained, and the wParam& parameter of that message should be passed on as the
return value for WINMAIN. If WINMAIN terminates before entering the message loop,
WINMAIN should return zero.

Console applications may utilize the return value to situate an error level that can be passed
back to the calling application, in the range 0 to 255 inclusive. Batch files may perform on the
result through the IF [NOT] ERRORLEVEL batch command.

If the parameters passed to WINMAIN are not needed by the application itself, the PBMAIN
function may be used in position of WINMAIN.

Restrictions: Pointers may not be passed BYREF, so the lpszCmdLine parameter of WINMAIN
must be affirmed to be passed BYVAL.

Example:

#COMPILE EXE

FUNCTION WINMAIN(BYVAL hInst???, BYVAL hPrevInst???, BYVAL pCmdLine AS

WSTRINGZ PTR, BYVAL nCmdShow&) AS LONG

 ‘ more code here

 FUNCTION = 1

END FUNCTION

Task Illustrate the parameters hPrevInst and lpszCmdLine..

Self Assessment

Fill in the blanks:

3. is a user-defined function called by Windows to start execution of an
application.

4. The value allocated to WINMAIN is optional, but by convention, the return
value is derived from the wParam& parameter of a %WM_QUIT message.

34 LOVELY PROFESSIONAL UNIVERSITY

Windows Programming

Notes 3.3 Creating the Programs Window

There are two chief things you must perform in order to generate even the simplest window:
you must create the middle point of the program, and you must tell the operating system how
to react when the user does what.

Just like a C++ program always contains a main() function, a Win32 program requires a central
function call WinMain. The syntax of that function is:

INT WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,

 LPSTR lpCmdLine, int nCmdShow);

Dissimilar to the C++ main() function, the arguments of the WinMain() function are not optional.
Your program will require them to converse with the operating system.

The first argument, hInstance, is a handle to the instance of the program you are writing.

The second argument, hPrevInstance, is used if your program had any earlier instance. If not, this
argument can be unnoticed, which will always be the case.

The third argument, lpCmdLine, is a string that displays all items used on the command line to
compile the application.

The last argument, nCmdShow, handles how the window you are building will be displayed.

An object that represents on your screen is known as a window. Since there can be different types
of windows in your programs, your first accountability is to manage them, know where they
are, what they are doing, why and when. The first control you must exercise on these dissimilar
windows is to host them so that all windows of your program belong to an entity known as the
main window. This main window is created by means of an object that can be called a class
(strictly, a structure).

The Win32 library offers two classes for generating the main window and you can use any one
of them. They are WNDCLASS and WNDCLASSEX. The second adds only a slight trait to the
first. Thus, we will mostly use the WNDCLASSEX structure.

The WNDCLASS and the WNDCLASSEX classes are defined as below:

 typedef struct _WNDCLASS {

 UINT style;

 WNDPROC lpfnWndProc;

 int cbClsExtra;

 int cbWndExtra;

 HINSTANCE hInstance;

 HICON hIcon;

 HCURSOR hCursor;

 HBRUSH hbrBackground;

 LPCTSTR lpszMenuName;

 LPCTSTR lpszClassName;

} WNDCLASS, *PW

typedef struct _WNDCLASSEX {

 UINT cbSize;

 UINT style;

 WNDPROC lpfnWndProc;

 int cbClsExtra;

 int cbWndExtra;

 HINSTANCE hInstance;

 HICON hIcon;

 HCURSOR hCursor;

 HBRUSH hbrBackground;

 LPCTSTR lpszMenuName;

 LPCTSTR lpszClassName;

 HICON hIconSm;

} WNDCLASSEX, *PWNDCLASSEX;

!
Caution To create a window, you must “fill out” this class, which means you must supply
a value for each of its members so the operating system would identify what your program
is anticipated to do.

LOVELY PROFESSIONAL UNIVERSITY 35

Unit 3: Windows Programming

NotesThe first thing you must do so as to create an application is to state a variable of either WNDCLASS
or WNDCLASSEX type.

Example: Here is an example of a WNDCLASSEX variable:

INT WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,

 LPSTR lpCmdLine, int nCmdShow)

{

 WNDCLASSEX WndClsEx;

 return 0;

}

Self Assessment

Fill in the blanks:

5. The argument, , is used if your program had any earlier instance.

6. The argument, , handles how the window you are building will be displayed.

3.4 Messages and Adding a Message Loop

Message loop is utilized to catch messages and pass them onto our WndProc function.

First we are required to state a MSG variable. This is used to hold the message that has been
caught by the window.

MSG msg;

To discover out what the last message obtained was, we can use the GetMessage function. The
parameters for the function are specified below.

LPMSG lpMsg - After the function call, the parameter passed onto here will enclose the message
that was obtained.

HWND hwnd - This is used to state what window the message must be recovered for. If a NULL
is passed, a message for any window will be retrieved.

UINT wMsgFilterMin & UINT wMsgFilterMax - This declares the range of messages to obtain.
Each message has an integer value so you can identify exactly what messages you want to
receive. If you pass 0 for both parameters, all messages are obtained.

Notes The return value is 0 if a WM_QUIT message has been obtained. If the return value
is less than 0, some error has appeared. We only want to carry on if there was no error and
if there is no quit message. Keep in mind that we caused a quit message to be sent if the
window was closed.

When the GetMessage function is called, the function halts until a message is obtained. If you do
not want this, you can make use of the PeekMessage function which doesn’t stop, even if there
was no message. This is typically used if you are busy computing something else. If you go in
the course of the OpenGL or DirectX , you will use this.

36 LOVELY PROFESSIONAL UNIVERSITY

Windows Programming

Notes while (GetMessage(&msg, NULL, 0, 0) > 0)

{

Functions are requisite to send the message onto the WndProc function.

First we make use of the TranslateMessage function. The translate message function translates
virtual-key messages into character messages which is required. This function takes one
parameter, being the MSG variable containing the message obtained.

TranslateMessage(&msg);

The next function we are required to use is the DispatchMessage function. This sends the message
via the window procedure (WndProc). It also takes one MSGparameter.

DispatchMessage(&msg);

}

Thus we used the PostQuitMessage function and passed the value of 0. This could have been a
dissimilar value we had passed so we cannot just return 0 as normal. We return the msg.wParam
value which is the return code passed onto the PostQuitMessage function.

return (int)msg.wParam;

You should now be able to develop simple windows messages. If you execute the program, you
will observe that the window will stay on the screen until you close the window. This will
demolish the window and shut the program competently.

Task Make distinction between LPMSG lpMsg and HWND hwnd.

Self Assessment

Fill in the blanks:

7. Message loop is utilized to catch messages and pass them onto our function.

8. is used to state what window the message must be recovered for.

9. When the function is called, the function halts until a message is obtained.

3.5 Creating a New Window Class

The WNDLCLASS and the WNDCLASSEX classes are utilized to initialize the application
window class. To exhibit a window, that is, to provide the user an object to work with, you must
generate a window object. This window is the object the user utilizes to interrelate with the
computer.

To create a window, you can call either the CreateWindow() or the CreateWindowEx()function.

You can just call this function and state its arguments after you have registered the window class.

Example: Here is an example:

INT WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,

 LPSTR lpCmdLine, int nCmdShow)

{

LOVELY PROFESSIONAL UNIVERSITY 37

Unit 3: Windows Programming

NotesWNDCLASSEX WndCls;

. . .

RegisterClassEx(&WndClsEx);

CreateWindow(. . .);

}

If you are preparing to use the window further in your application, you should recover the
result of the CreateWindow() or the CreateWindowEx() function, which is a handle to the
window that is being generated. To perform this, you can state an HWND variable and initialize
it with the create function. This can be completed as follows:

INT WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,

 LPSTR lpCmdLine, int nCmdShow)

{

HWND hWnd;

WNDCLASSEX WndClsEx;

. . .

RegisterClassEx(&WndClsEx);

hWnd = CreateWindow(. . .);

}

Self Assessment

Fill in the blanks:

10. The WNDLCLASS and the classes are utilized to initialize the application
window class.

11. To create a window, you can call either the CreateWindow() or the function.

3.6 Message Processing Function WndProc()

An application-defined function that processes messages sent to a window. The WNDPROC
type defines a pointer to this callback function.

WindowProc is a placeholder for the application-defined function name.

Syntax

LRESULT CALLBACK WindowProc(

 __in HWND hwnd,

 __in UINT uMsg,

38 LOVELY PROFESSIONAL UNIVERSITY

Windows Programming

Notes __in WPARAM wParam,

 __in LPARAM lParam

);

Parameters

hwnd [in]

Type: HWND

A handle to the window.

uMsg [in]

Type: UINT

The message.

For lists of the system-provided messages, see System-Defined Messages.

wParam [in]

Type: WPARAM

Additional message information. The contents of this parameter depend on the value of
the uMsg parameter.

lParam [in]

Type: LPARAM

Additional message information. The contents of this parameter depend on the value of
the uMsg parameter.

Return value

Type: LRESULT

The return value is the result of the message processing and depends on the message sent.

If your application runs on a 32-bit version of Windows operating system, uncaught exceptions
from the callback will be passed onto higher-level exception handlers of your application when
available. The system then calls the unhandled exception filter to handle the exception prior to
terminating the process. If the PCA is enabled, it will offer to fix the problem the next time you
run the application.

However, if your application runs on a 64-bit version of Windows operating system or WOW64,
you should be aware that a 64-bit operating system handles uncaught exceptions differently
based on its 64-bit processor architecture, exception architecture, and calling convention. The
following table summarizes all possible ways that a 64-bit Windows operating system or WOW64
handles uncaught exceptions.

Behavior type How the system handles uncaught exceptions

1 The system suppresses any uncaught exceptions.

2 The system first terminates the process, and then the Program Compatibility
Assistant (PCA) offers to fix it the next time you run the application. You can disable
the PCA mitigation by adding a Compatibility section to the application manifest.

3 The system calls the exception filters but suppresses any uncaught exceptions when
it leaves the callback scope, without invoking the associated handlers.

LOVELY PROFESSIONAL UNIVERSITY 39

Unit 3: Windows Programming

NotesThe following table shows how a 64-bit version of Windows operating system or WOW64
handles uncaught exceptions. Notice that behavior type 2 only applies to the 64-bit version of
the Windows 7 operating system.

Operating System WOW64 64-bit Windows

Windows XP 3 1

Windows Server 2003 3 1

Windows Vista 3 1

Windows Vista SP1 1 1

Windows 7 1 2

Notes On Windows 7 with SP1 (32-bit, 64-bit or WOW64), the system calls the unhandled
exception filter to handle the exception prior to terminating the process. If the PCA is
enabled, it will offer to fix the problem the next time you run the application.

If you need to handle exceptions in your application, you can use structured exception handling
to do so. For more information on how to use structured exception handling, see Structured
Exception Handling.

Requirements

Minimum supported client Windows 2000 Professional

Minimum supported server Windows 2000 Server

Header Winuser.h (include Windows.h)

To permit Windows to converse with your application, we’ll generate a great little function
known as a Windows procedure. This most general name for this function is WndProc. This
function MUST be formed and used to find out how your application will reaction to different
events. The Windows procedure may also be called the event handler since it responds to
Windows events! So let’s have a speedy look at the prototype:

LRESULT CALLBACK WndProc(HWND hwnd, UINT message, WPARAM wParam, LPARAM

lParam);

This function is stated with a return type of LRESULT CALLBACK.

Did u know? The LRESULT type is used by Windows to state a long integer, and CALLBACK
is a calling convention used with functions that are called by Windows.

The Windows Procedure is a function pointer, which permits you to call it whatever you want
since the function’s address will be allocated as a function pointer upon creation of the window
class.

hwnd – It is significant only if you have numerous windows of the similar class open at one
time. This is used to find out which window hwnd pointed to before deciding on an action.

Message - The actual message identifier that WndProc will be managing.

wParam and lParam – These are the Extensions of the message parameter. Used to provide
more information and states that message cannot on its own.

40 LOVELY PROFESSIONAL UNIVERSITY

Windows Programming

Notes Self Assessment

Fill in the blanks:

12. The Windows procedure may also be called the since it responds to Windows
events.

13. The Windows Procedure is a pointer, which permits you to call it whatever
you want since the function’s address will be allocated as a function pointer upon creation
of the window class.

14. is a calling convention used with functions that are called by Windows.

3.7 Adding Custom Resource Data

You can generate a new custom or data resource by positioning the resource in a separate file
using normal resource script (.rc) file syntax, and then involving that file by right-clicking your
project in Solution Explorer and clicking Resource Includes on the shortcut menu.

To add a new custom or data resource:

1. Create a .rc file that comprises the custom or data resource. You can type custom data in a
.rc file as null-terminated quoted strings, or as integers in decimal, hexadecimal, or octal
format.

2. In Solution Explorer, right-click your project’s .rc file, then click Resource Includes on the
shortcut menu.

3. Then perform the process of compilation

4. Click OK to record your modifications.

3.7.1 Compiling the Resource Data

In the Compile-Time Directives box, type a #include statement that provides the name of the
file including your custom resource.

Example: #include mydata.rc

Confirm that the syntax and spelling of what you type are accurate. The contents of the Compile-
Time Directives box are inserted into the resource script file precisely as you typed them.

Another method to produce a custom resource is to import an external file as the custom resource.

Self Assessment

Fill in the blank:

15. In the Compile-Time Directives box, type a statement that provides the
name of the file including your custom resource.

3.8 Summary

 The Windows.h is a Windows-specific header file for the C programming language which
comprises declarations for all of the functions in the Windows API, all the general macros

LOVELY PROFESSIONAL UNIVERSITY 41

Unit 3: Windows Programming

Notesused by Windows programmers, and all the data types utilized by the different functions
and subsystems.

 WINMAIN (also written as MAIN) is a user-defined function called by Windows to start
execution of an application.

 The return value allocated to WINMAIN is optional, but by convention, the return value
is derived from the wParam& parameter of a %WM_QUIT message.

 There are two chief things you must perform in order to generate even the simplest
window: you must create the middle point of the program, and you must tell the operating
system how to react when the user does what.

 The Win32 library offers two classes for generating the main window and you can use any
one of them. They are WNDCLASS and WNDCLASSEX.

 Message loop is utilized to catch messages and pass them onto our WndProc function.

 To discover out what the last message obtained was, we can use the GetMessage function.

 The WNDLCLASS and the WNDCLASSEX classes are utilized to initialize the application
window class.

 To permit Windows to converse with your application, we’ll generate a great little function
known as a Windows procedure.

3.9 Keywords

Return: The return value allocated to WINMAIN is optional, but by convention, the return value
is derived from the wParam& parameter of a %WM_QUIT message.

Windows Procedure: To permit Windows to converse with your application, we’ll generate a
great little function known as a Windows procedure.

Windows.h: The Windows.h is a Windows-specific header file for the C programming language
which comprises declarations for all of the functions in the Windows API.

WINMAIN: WINMAIN (also written as MAIN) is a user-defined function called by Windows to
start execution of an application.

3.10 Review Questions

1. Illustrate the function of Windows.h.

2. What is WINMAIN? Write its syntax and illustrate the parameters.

3. Explain the use of return value allocated to WINMAIN.

4. Explain the process of creating the Programs Window.

5. Define the classes used in WNDCLASS and the WNDCLASSEX.

6. Illustrate the concept of WNDCLASSEX variable with example.

7. What are the parameters of GetMessage function? Illustrate.

8. How to create a new window class? Illustrate with example.

9. What is Message Processing Function WndProc()? Illustrate its parameters.

10. Describe the steps for adding and compiling custom resource data.

42 LOVELY PROFESSIONAL UNIVERSITY

Windows Programming

Notes Answers: Self Assessment

1. Windows.h 2. Libraries

3. WINMAIN 4. Return

5. HPrevInstance 6. nCmdShow

7. WndProc 8. HWND Hwnd

9. GetMessage 10. WNDCLASSEX

11. CreateWindowEx() 12. Event Handler

13. Function 14. CALLBACK

15. #include

3.11 Further Readings

Books Brent E. Rector, Win32 Programming, Addison-Wesley

Charles Petzold, Programming Windows, Charles Petzold

Roger Mayne, Windows and Graphics Programming with Visual C++.NET, World
Scientific

Online link www.flipcode.com/.../Introduction_To_Windows_Programming.sht.

LOVELY PROFESSIONAL UNIVERSITY 43

Unit 4: Windows Controls

NotesUnit 4: Windows Controls

CONTENTS

Objectives

Introduction

4.1 Window

4.1.1 Types of Window Controls

4.2 The Create Windows() Function

4.3 Static Controls

4.4 C language Casts

4.5 Button Controls

4.5.1 Creating a Push Button

4.5.2 Characteristics of a Command Button

4.5.3 Enabling or Disabling a Button

4.5.4 The OK and Cancel Buttons

4.5.5 Processing

4.5.6 Button Notification Codes

4.6 List Boxes

4.6.1 Adding Items

4.6.2 Getting Data from the ListBox

4.7 Combo Boxes

4.7.1 Creating a Combo Box

4.7.2 Characteristics of a Combo Box

4.8 Scroll Bars

4.8.1 Types of Scroll Bars

4.8.2 Automatic Scroll Bars

4.8.3 Control-based Scroll Bars

4.9 Edit Controls

4.9.1 Edits with Numbers

4.10 Summary

4.11 Keywords

4.12 Review Questions

4.13 Further Readings

44 LOVELY PROFESSIONAL UNIVERSITY

Windows Programming

Notes Objectives

After studying this unit, you will be able to:

 Understand types of controls

 Discuss the Create Windows() function

 Illustrate Static Controls and sending message to a Control

 Illustrate Button Controls and processing button control messages

 Understand List boxes, Combo boxes, Scroll bars, and Edit controls

Introduction

A control is considered as a child window that an application utilizes in combination with
another window to allow user communication. Controls are most frequently used inside dialog
boxes, but they can also be utilized in other windows. Controls inside dialog boxes offer the
user with a way to type text, select options, and start actions. Controls in other windows offer a
variety of services, like allowing the user select commands, view status, and view and edit text.
This unit illustrates the controls offered by Windows and the programming elements utilized to
create and influence them.

4.1 Window

Windows is a computer operating system from Microsoft that, in addition with some generally
used business applications like Microsoft Word and Excel, has turn out to be a effective “standard”
for individual users in most corporations and in most homes.

With the arrival of the Internet, Microsoft has relocated Windows as a type of “window to the
world,” and its attempts to take the lead in Web browsers have made Explorer the most well-
liked browser. Microsoft’s .NET initiative displays an effort to develop into industry-dominant
in furnishing products and services that aid the use of remote application services on the Web.

4.1.1 Types of Window Controls

We will illustrate different types of windows controls in this unit such as:

 Static Control

 Button Controls

 List Boxes

 Combo Boxes

 Scroll Bars

 Edit Controls

Self Assessment

Fill in the blank:

1. A is considered as a child window that an application utilizes in
combination with another window to allow user communication.

LOVELY PROFESSIONAL UNIVERSITY 45

Unit 4: Windows Controls

Notes4.2 The Create Windows() Function

Window controls are considered as predefined window classes i.e. you are not required to call
the Register Class() function to generate a window class before the control.

Windows are usually generated using the “CreateWindow” function, even though there are a
few other functions that are functional as well. Once a WNDCLASS has been registered, you can
inform the system to make a window from that class by passing the class name (keep in mind
that global string we defined?) to the CreateWindow function.

HWND CreateWindow(

 LPCTSTR lpClassName,

 LPCTSTR lpWindowName,

 DWORD dwStyle,

 int x,

 int y,

 int nWidth,

 int nHeight,

 HWND hWndParent,

 HMENU hMenu,

 HINSTANCE hInstance,

 LPVOID lpParam

);

The first parameter, “lpClassName” is the string connected with our window class. The
“lpWindowName” parameter is the title that will be exhibited in the title bar of our window (if
the window has a title bar).

“dwStyle” is a field that includes a number of bit-wise OR’d flags, that will control window
creation.

Self Assessment

Fill in the blank:

2. Window controls are considered as predefined window classes i.e. you are not required to
call the function to generate a window class before the control.

4.3 Static Controls

We will illustrate here regarding the text static control. A text static control is like an edit
control, but it does not obtain typed input from the user. A static control cannot be chosen and
cannot obtain the keyboard focus. A static control is usually used as a label for other controls.

Example: If you have an edit control, you would usually use a static control on the left or
above the edit control. This static control is a label and would have text that signifies the reason
of the edit control.

The static control is of the system window class, STATIC.

46 LOVELY PROFESSIONAL UNIVERSITY

Windows Programming

Notes The static control is considered as a child window. The following code exhibits a static control
above an edit control:

#include

using namespace std;

LRESULT CALLBACK MainWndProc(HWND hwnd, UINT uMsg, WPARAM wParam, LPARAM

lParam)

{

 switch (uMsg)

 {

 default:

 return DefWindowProc(hwnd, uMsg, wParam, lParam);

 }

 return 0;

}

int WINAPI WinMain(HINSTANCE hinstance, HINSTANCE hPrevInstance, LPSTR

lpCmdLine, int nCmdShow)

{

 WNDCLASSEX wcx;

 wcx.cbSize = sizeof(wcx);

 wcx.style = CS_HREDRAW | CS_VREDRAW;

 wcx.lpfnWndProc = MainWndProc;

 wcx.cbClsExtra = 0;

 wcx.cbWndExtra = 0;

 wcx.hInstance = hinstance;

 wcx.hIcon = NULL;

 wcx.hCursor = LoadCursor(NULL, IDC_ARROW);

 wcx.hbrBackground = (HBRUSH)(COLOR_BACKGROUND+1);

 wcx.lpszMenuName = NULL;

 wcx.lpszClassName = "MainWClass";

 wcx.hIconSm = NULL;

 RegisterClassEx(&wcx);

 HWND hwndMain;

 hwndMain = CreateWindowEx(0, "MainWClass", "Main Window",

WS_OVERLAPPEDWINDOW, CW_USEDEFAULT, CW_USEDEFAULT, CW_USEDEFAULT,

CW_USEDEFAULT, NULL, NULL, hinstance, NULL);

LOVELY PROFESSIONAL UNIVERSITY 47

Unit 4: Windows Controls

Notes if (!hwndMain)

 return FALSE;

 ShowWindow(hwndMain, SW_SHOW);

 UpdateWindow(hwndMain);

 HWND hwndSt;

 hwndSt = CreateWindowEx(0, "STATIC", "First Name", WS_CHILD, 100, 100,

100, 20, hwndMain, (HMENU)1, hinstance, NULL);

 ShowWindow(hwndSt, SW_SHOW);

 UpdateWindow(hwndSt);

 HWND hwndEd = CreateWindowEx(0, "EDIT", NULL, WS_CHILD, 100, 122, 100,

20, hwndMain, (HMENU)2, hinstance, NULL);

 ShowWindow(hwndEd, SW_SHOW);

 UpdateWindow(hwndEd);

 MSG msg;

 BOOL bRet;

 while((bRet = GetMessage(&msg, hwndMain, 0, 0)) != 0)

 {

 if (bRet == -1)

 {

 // handle the error and possibly exit the application

 }

 else

 {

 TranslateMessage(&msg);

 DispatchMessage(&msg);

 }

 }

 return msg.wParam;

}

You can utilize the following command at the command prompt to compile the code:

g++ winst.cpp -mwindows -o winst.exe

There are two controls in the code. Let us see at the static one. The class is, STATIC; this is the
second argument of the CreateWindowEx function. The name of the static control is, “First
Name”; this is the third argument of the function; this name occurs as the content display of the
static control. You have the WS_CHILD style signifying that it is a child window. The rest of the
arguments to the CreateWindowEx function are like those for the EDIT control. Keep in mind,

48 LOVELY PROFESSIONAL UNIVERSITY

Windows Programming

Notes each control must have an exclusive integer identifier (at the tenth argument of the
CreateWindowEx function).

If you open the application, winst.exe, by double-clicking on it, you would observe the 2 controls
with the static control above the edit control. The static control contains the text “First Name”
signifying that the user should type his first name in the edit control.

That is it for this part of the series. We stop here and carry on in the next part.

To turn up at any of the parts, just type the corresponding title below in the Search Box of this
page and click Search

A Window Button Function and Macro

Windows Static Control

Static Control Styles

Sending Messages to a Control

All static controls are generated with the CreateWindowEx API function by changing the
window styles. The API function CreateWindow can also be utilized. A new API function
- SendMessage - is introduced. This function is utilized to converse with windows and controls.

Self Assessment

Fill in the blanks:

3. A control is like an edit control, but it does not obtain typed input from
the user.

4. All static controls are generated with the API function by changing the
window styles.

4.4 C Language Casts

The controls at the top of the Cast window are the similar in both the List and Thumbnail views.
Use the controls to modify the cast that occurs in the Cast window, the cast member selection, or
the name of a cast member. You can also utilize them to shift cast members and to open a cast
member’s Script window or the Property inspector.

Cast Window Controls

A.

Cast

B.

Cast View Style

C.

Previous/Next Cast Member

LOVELY PROFESSIONAL UNIVERSITY 49

Unit 4: Windows Controls

NotesD.

Drag Cast Member

E.

Cast Member Name

F.

Cast Member Script

G.

Cast Member Properties

H.

Cast Member Number

Change the Cast Displayed in the Current Cast Window

Do one of the following:

 Click the Cast button and select a cast from the menu.

 Click a tabbed panel to make it active.

 Press Control+Alt (Windows) or Command+Option (Mac) followed by the Right Arrow
key or Left Arrow key to move from tab to tab.

Open a cast in a New Cast Window

Click the Cast button and select a cast from the context menu.

Select the Previous or Next Cast Member

Click the Previous Cast Member or Next Cast Member button.

Move a selected Cast Member to a New Position in the Cast Window (Thumbnail
view) or to the Stage

Drag the Drag Cast Member button to the desired position in the Cast window or to the Stage.
This procedure is useful when the selected cast member has scrolled out of view.

Enter a Cast Member Name

Select a cast member and enter the name in the Cast Member Name text box.

Edit a Cast Member Script

Select a cast member and click the Cast Member Script button.

View Cast Member Properties

1. Select a cast member.

50 LOVELY PROFESSIONAL UNIVERSITY

Windows Programming

Notes 2. Do one of the following:

 Click the Cast Member Properties button.

 Right-click (Windows) or Control-click (Mac), and select Cast Member Properties
from the context menu.

 Select Window > Property Inspector. The Property inspector displays only those
properties associated with the selected cast member.

View the Cast Member Number

See the Cast Member Number field in the upper-right corner of the Cast window.

Self Assessment

Fill in the blank:

5. The controls at the top of the Cast window are the similar in both the List and
................................. views.

4.5 Button Controls

A Button is a Windows control utilized to initiate an action. From the user’s point of view, a
button is functional when clicked, in which case the user places the mouse on it and presses one
of the mouse’s buttons.

There are numerous types of buttons. The most general and regularly utilized is a rectangular
object that the user can simply identify. In some programming surroundings, this classic type is
known as a command button. There are other controls that can serve as click controls and initiate
the similar behavior as if a button were clicked.

From the programmer’s point of view, a button requires a host, like a dialog box.

4.5.1 Creating a Push Button

To diagrammatically add a button to a dialog box, in the Toolbox, click Button and click the
required location on the dialog box. By default, when you visually generate a dialog box,
Microsoft Visual C++ adds two buttons: OK and Cancel. If you don’t require these buttons, click
one and press Delete.

The most accepted button utilized in Windows applications is a rectangular control that exhibits
a word or a short sentence that directs the consumer to access, dismiss, or initiate an action or
suite of actions. In Microsoft Visual C++ applications, this control is executed by means of the
Button control from the Toolbox window.

In the MFC, a button depends on the CButton class, which is obtained from CWnd. Thus, to
programmatically obtain a button, you can create a pointer to CButton and initialize it by
means of the new operator.

4.5.2 Characteristics of a Command Button

Similar to every Windows control, a button is identified by its IDentifier. Since a button is a
control, by convention, its identifier’s name begins with IDC (the C stands for Control).

LOVELY PROFESSIONAL UNIVERSITY 51

Unit 4: Windows Controls

NotesIf you are required to programmatically access the properties of a control without using a
connected variable, you may have to call the CWnd::GetDlgItem() member function. It occurs
in two versions as follows:

CWnd* GetDlgItem(int nID) const;

void CWnd::GetDlgItem(int nID, HWND* phWnd) const;

When calling this member function, the first version permits you to allocate a CWnd (or derived
class) to it. The second version returns a handle to the window passed as pointer.

!
Caution In both cases, you must pass the identifier of the control that you would like to
access.

When using the first version, if the control is not a CWnd object, you must cast it to its local class.
Then you can influence the property (or properties) of your option.

Example: Here is an example that accesses a button and modifies its caption:

BOOL CDialog5Dlg::OnInitDialog()

{

 CDialog::OnInitDialog();

 SetIcon(m_hIcon, TRUE); // Set big icon

 SetIcon(m_hIcon, FALSE); // Set small icon

 // TODO: Add extra initialization here

 CButton *btnWhatElse = reinterpret_cast<CButton

*>(GetDlgItem(IDC_BUTTON3));

 return TRUE; // return TRUE unless you set the focus to a control

}

The second version needs a pointer to a child window that you would like to access.

4.5.3 Enabling or Disabling a Button

For the user to be capable to utilize a control like clicking a button, the control must permit it.
This trait of Windows objects is handled by the CWnd::EnableWindow() member function. Its
syntax is:

BOOL EnableWindow(BOOL bEnable = TRUE);

This member function is utilized to enable or disable a control.

Did u know? The default value of the argument bEnable is set to TRUE, which would exhibit
a control.

To disable a control, set the argument to FALSE.

52 LOVELY PROFESSIONAL UNIVERSITY

Windows Programming

Notes
Example: Here is an example:

void CDialog5Dlg::OnLetItBe()

{

 // TODO: Add your control notification handler code here

 m_Submit.EnableWindow(FALSE);

}

4.5.4 The OK and Cancel Buttons

The most well-liked button captions in dialog boxes are OK and Cancel. The OK caption is set for
a dialog box that notifies the user of an error, a mediator situation, or an acknowledgement of
an action that was accomplished on the dialog that hosts the button. Microsoft Visual C++ makes
it simple to add an OK button since in Windows applications, the OK object has a particular
meaning.

To use an OK button, add a button to a form and, from the ID combo box, choose the
IDOKidentifier:

What makes this constant unique is that the MFC library identifies that, when the user clicks it,
if the dialog box is modal, the user is recognizing the situation. If this dialog box was called from
another window by means of the DoModal() member function, you can locate out if the user had
clicked OK and then you can take further action. Thus when the user clicks OK, the dialog box
calls the OnOK() member function. Its syntax is:

virtual void OnOK();

Even though it appears like a simple member function (and it is), the OnOK() member function
carries the constant value IDOK that you can utilize as a return value of the DoModal()member
function. Thus, in one step, you can utilize the DoModal() member function to exhibit a modal
dialog box and discover whether the user clicked OK.

When a dialog box is prepared with an OK button, you should permit the user to press Enter and
execute the OK clicking. This is taken care of by setting the Default Button property to True or
checked.

LOVELY PROFESSIONAL UNIVERSITY 53

Unit 4: Windows Controls

NotesThe Cancel caption is functional on a button whose parent (the dialog box) would ask a question
or request a follow-up action from the user. A Cancel button is also simple to make by just
adding a button to a dialog box and choosing IDCANCEL as its identifier in the ID combo box.
Setting a button’s identifier to IDCANCEL also permits the user to press Esc to dismiss the
dialog box.

The scenarios illustrated for the OK and the Cancel buttons are made probable only if the
compiler is able to make sure or validate the changes completed on a dialog box. To make this
validation probable, in your class, you must overload the CWnd::DoDataExchange() member
function. Its syntax is:

virtual void DoDataExchange(CDataExchange* pDX);

This member function is utilized internally by the application (the framework) to discover if
data on a dialog box has been changed as the object was displayed. This member function does
two things: It makes sure the exchange of data among controls and it authenticates the values of
those controls. In realism, it does not intrinsically perform data validation, meaning it would
not permit or disallow value on a control. Rather, the compiler uses it to generate a table of the
controls on the dialog box, their variables and values, permitting other controls to refer to it for
data exchange and validation. If you want to discover the data a user would have typed or
chosen in a control, you would have to write the essential code.

4.5.5 Processing

Button Control Messages

The most usual action users carry out on a button is to click it. When a user does this, the button
sends a BN_CLICKED message. In some but rare situations, you may also ask the user to
double-click a button. In general, you will take care of most message handling when the user
clicks a button. There are other messages that you can manage through a button.

To close a dialog box, you can utilize the Win32 API’s PostQuitMessage() function. Its syntax is:

VOID PostQuitMessage(int nExitCode);

This function takes one argument, which is an integer. The argument could be set to approximately
any integer value even though it should be WM_QUIT.

Example: Here is an example:

void CDialog5Dlg::OnBtnClose()

{

 // TODO: Add your control notification handler code here

 PostQuitMessage(125);

}

Even though the MFC library offers enough messages related with the various controls, in some
situation you will need use a message that is not necessarily connected with the control. In such
a case, you can call the CWnd::SendMessage() member function. Its syntax is:

LRESULT SendMessage(UINT message, WPARAM wParam = 0, LPARAM lParam = 0);

The first argument of this member function can be a Win32 message or constant.

54 LOVELY PROFESSIONAL UNIVERSITY

Windows Programming

Notes
Example: Examples would be WM_CLOSE or WM_ACTIVATE.

The wParam and lParam arguments can be supplementary (Win32) messages.

The WinExec() function is used to execute an application. Its syntax is:

UINT WinExec(LPCSTR lpCmdLine, UINT uCmdShow);

The lpCmdLine argument states the name or path of the application you want to exhibit. The
uCmdShow states how the application should be exhibited. It utilizes the same values as the
CWnd::ShowWindow() member function.

Practical Learning: Using Buttons

1. To generate a new application, on the main menu, click File -> New Project...

2. Click MFC Application and set the name to AppLauncher1

3. Click OK

4. In the first page of the MFC Application Wizard, click Next

5. In the second page, click Dialog Based

6. Click Next

7. In the third page, set the Title Name to Application Launcher

8. Click Next

9. Click Finish

10. On the dialog, click the TODO line and press Delete

11. As the OK button is selected, press Delete

12. As the Cancel button is selected, press Delete

13. In the Toolbox, click the Button control and click the lower section of the dialog box

LOVELY PROFESSIONAL UNIVERSITY 55

Unit 4: Windows Controls

Notes14. In the Properties window, click ID and type IDC_CLOSE_BTN

15. On the dialog box, right-click the button and click Add Variable...

16. In the Access combo box, select private

17. In the Variable Name, type m_BtnClose

18. Click Finish

19. In the Class View, enlarge the project. In the upper part of the Class View, click
CAppLauncher1

20. In the lower part of the Class View, double-click OnInitDialog()

21. Set the caption of the button to “Close” as below:

BOOL CAppLauncher1Dlg::OnInitDialog()

{

CDialogEx::OnInitDialog();

 // Add “About...” menu item to system menu.

 // IDM_ABOUTBOX must be in the system command range.

 ASSERT((IDM_ABOUTBOX & 0xFFF0) == IDM_ABOUTBOX);

 ASSERT(IDM_ABOUTBOX < 0xF000);

 CMenu* pSysMenu = GetSystemMenu(FALSE);

 if (pSysMenu != NULL)

56 LOVELY PROFESSIONAL UNIVERSITY

Windows Programming

Notes {

BOOL bNameValid;

CString strAboutMenu;

bNameValid = strAboutMenu.LoadString(IDS_ABOUTBOX);

ASSERT(bNameValid);

if (!strAboutMenu.IsEmpty())

{

pSysMenu->AppendMenu(MF_SEPARATOR);

pSysMenu->AppendMenu(MF_STRING, IDM_ABOUTBOX, strAboutMenu);

}

 }

 // Set the icon for this dialog. The framework does this

automatically

 // when the application’s main window is not a dialog

 SetIcon(m_hIcon, TRUE); // Set big icon

 SetIcon(m_hIcon, FALSE); // Set small icon

 // TODO: Add extra initialization here

 m_BtnClose.SetWindowText(L”Close”);

 return TRUE; // return TRUE unless you set the focus to a control

}

22. To execute the application, press F5

23. To close the dialog box, click its System Close button , , or

24. Display the dialog box

25. Right-click the button and click Add Event Handler

26. In the Event Handler Wizard, make sure the Message Type is set to BN_CLICKED
Ensure the Class List is set to CAppLauncher1Dlg. Click the Add And Edit button

27. Execute the OnClick event as follows:

void CAppLauncher1Dlg::OnBnClickedCloseBtn()

{

// TODO: Add your control notification handler code here

PostQuitMessage(WM_QUIT);

}

28. To execute the application, press F5

29. To close the dialog box, click the Close button and return to your programming environment

LOVELY PROFESSIONAL UNIVERSITY 57

Unit 4: Windows Controls

Notes4.5.6 Button Notification Codes

Notifications

Topic Contents

BCN_DROPDOWN Sent when the user clicks a drop down arrow on a button. The
parent window of the control obtains this notification code in the
form of a WM_NOTIFY message.

BCN_HOTITEMCHANGE Informs the button control owner that the mouse is entering or
leaving the client area of the button control. The button control
sends this notification code in the form of a WM_NOTIFY message.

BN_CLICKED Sent when the user clicks a button. The parent window of the button
obtains the BN_CLICKED notification code through the
WM_COMMANDmessage.

BN_DBLCLK Sent when the user double-clicks a button. This notification code is
sent automatically for BS_USERBUTTON,BS_RADIOBUTTON,
and BS_OWNERDRAW buttons. Other button types send
BN_DBLCLK only if they have the BS_NOTIFY style. The parent
window of the button obtains the BN_DBLCLK notification code
via the WM_COMMAND message.

BN_DISABLE Sent when a button is disabled. This notification code is offered only
for compatibility with 16-bit versions of Windows earlier than
version 3.0. Applications should use the BS_OWNERDRAW
button style and the DRAWITEMSTRUCT structure for this task.
The parent window of the button obtains the BN_DISABLE
notification code via the WM_COMMANDmessage.

BN_DOUBLECLICKED Sent when the user double-clicks a button. This notification code is
sent automatically for BS_USERBUTTON,BS_RADIOBUTTON,
and BS_OWNERDRAW buttons. Other button types send
BN_DOUBLECLICKED only if they have the BS_NOTIFY style.
The parent window of the button obtains the BN_DOUBLECLICKED
notification code via the WM_COMMAND message.

BN_HILITE Sent when the user selects a button. This notification code is offered
only for compatibility with 16-bit versions of Windows earlier than
version 3.0. Applications should use the BS_OWNERDRAW
button style and the DRAWITEMSTRUCT structure for this task.
The parent window of the button obtains the BN_HILITE
notification code via the WM_COMMAND message.

BN_KILLFOCUS Sent when a button loses the keyboard focus. The button must have
the BS_NOTIFY style to send this notification code. The parent
window of the button receives the BN_KILLFOCUS notification
code via the WM_COMMANDmessage.

BN_PAINT Sent when a button should be painted. This notification code is
offered only for compatibility with 16-bit versions of Windows
earlier than version 3.0. Applications should use the
BS_OWNERDRAW button style and the DRAWITEMSTRUCT
structure for this task. The parent window of the button obtains the
BN_PAINT notification code through the WM_COMMAND
message.

BN_PUSHED Sent when the push state of a button is set to pushed. This
notification code is offered only for compatibility with 16-bit
versions of Windows earlier than version 3.0. Applications should

Contd...

58 LOVELY PROFESSIONAL UNIVERSITY

Windows Programming

Notes use the BS_OWNERDRAW button style and the
DRAWITEMSTRUCT structure for this task. The parent window of
the button obtains the BN_PUSHED notification code through the
WM_COMMANDmessage.

BN_SETFOCUS Sent when a button obtains the keyboard focus. The button must
have the BS_NOTIFY style to send this notification code. The parent
window of the button obtains the BN_SETFOCUS notification code
through the WM_COMMAND message.

BN_UNHILITE Sent when the highlight should be removed from a button. This
notification code is provided only for compatibility with 16-bit
versions of Windows earlier than version 3.0. Applications should
utilize the BS_OWNERDRAW button style and the
DRAWITEMSTRUCT structure for this task. The parent window of
the button obtains the BN_UNHILITE notification code via the
WM_COMMAND message.

BN_UNPUSHED Sent when the push state of a button is set to unpushed. This
notification code is provided only for compatibility with 16-bit
versions of Windows earlier than version 3.0. Applications should
use the BS_OWNERDRAW button style and the
DRAWITEMSTRUCT structure for this task. The parent window of
the button obtains the BN_UNPUSHED notification code via the
WM_COMMAND message.

NM_CUSTOMDRAW (button) Informs the parent window of a button control regarding custom
draw operations on the button. The button control sends this
notification code in the form of a WM_NOTIFY message.

WM_CTLCOLORBTN The WM_CTLCOLORBTN message is sent to the parent window of
a button before drawing the button. The parent window can modify
the button’s text and background colors. However, only
owner-drawn buttons react to the parent window processing this
message.

Task Make distinction between BN_CLICKED and BN_DOUBLECLICKED.

Self Assessment

Fill in the blanks:

6. From the user’s point of view, a is functional when clicked, in which
case the user places the mouse on it and presses one of the mouse’s buttons.

7. To close a dialog box, you can utilize the Win32 API’s function.

8. A notification code is send when the button is disabled.

4.6 List Boxes

List box is the last standard control which is considered as a handy tool.

4.6.1 Adding Items

The first thing you’ll desire to do with a listbox is add items to it.

int index = SendDlgItemMessage(hwnd, IDC_LIST, LB_ADDSTRING, 0, (LPARAM)”Hi

there!”);

LOVELY PROFESSIONAL UNIVERSITY 59

Unit 4: Windows Controls

Notes

Notes As you can observe, this is a quite simple task. If the listbox has the LBS_SORT style,
the new item will be added in alphabetical order, or else it will just be added to the end of
the list.

This message returns the index of the new item either manner and we can utilize this to perform
other tasks on the item, like relating some data with it. Generally this will be things like a
pointer to a struct including more information, or maybe an ID that you will use to identify the
item, it’s up to you.

 SendDlgItemMessage(hwnd, IDC_LIST, LB_SETITEMDATA, (WPARAM)index,

(LPARAM)nTimes);

4.6.2 Getting Data from the ListBox

Now that we recognize the selection has changed, or at the request of the user, we require to
obtain the selection from the listbox and do something functional with it.

Example: In this example I’ve used a multi-selection list box, so obtaining the list of
chosen items is a little trickier. If it were a single selection listbox, than you could just send
LB_GETCURSEL to retrieve the item index.

First we require to obtain the number of selected items, so that we can assign a buffer to save the
indexes in.

 HWND hList = GetDlgItem(hwnd, IDC_LIST);

 int count = SendMessage(hList, LB_GETSELCOUNT, 0, 0);

Then we allocate a buffer based on the number of items, and send LB_GETSELITEMS to fill in the
array.

 int *buf = GlobalAlloc(GPTR, sizeof(int) * count);

 SendMessage(hList, LB_GETSELITEMS, (WPARAM)count, (LPARAM)buf);

 // ... Do stuff with indexes

 GlobalFree(buf);

In this example, buf[0] is the first index, and so on up to buf[count - 1].

One of the things you would likely want to do with this list of indexes, is recover the data
connected with each item, and perform some processing with it. This is just as uncomplicated as
setting the data was originally, we just send another message.

 int data = SendMessage(hList, LB_GETITEMDATA, (WPARAM)index, 0);

If the data was some other type of value (anything that is 32-bits) you could just cast to the
suitable type.

Example: For example if you accumulated HBITMAPs instead of ints...

 HBITMAP hData = (HBITMAP)SendMessage(hList, LB_GETITEMDATA, (WPARAM)index, 0);

60 LOVELY PROFESSIONAL UNIVERSITY

Windows Programming

Notes Self Assessment

Fill in the blank:

9. If the data was some other type of value (anything that is 32-bits) you could just
to the suitable type.

4.7 Combo Boxes

A combo box is a Windows control prepared of two sections. There are two major types of
combo boxes: drop down and simple. Each is prepared of two sections.

The most generally used combo box is called drop down. On the left side, it is prepared of an edit
box. On the right side, it is equipped with a down-pointing arrow:

To utilize it, the user must click the arrow. This opens a list:

After finding the desired item in the list, the user can click it. The item clicked turns out to be the
new one exhibiting in the edit part of the control. If the user doesn’t locate the desired item in the
list, he or she can click the down-pointing arrow or press Esc. This hides the list and the control
displays as before. The user can also exhibit the list by providing focus to the control and then
pressing Alt + down arrow key.

The second general type of combo box is pointed to as simple. This type is also made of two
sections but, rather than a down-pointing arrow used to exhibit the list, it displays its list all the
time:

LOVELY PROFESSIONAL UNIVERSITY 61

Unit 4: Windows Controls

NotesThis time, to choose an item, the user can just locate it in the list and click it.

In both types of combo boxes, if the list is too long for the assigned space, when it exhibits, the
list part is equipped with a vertical scroll bar. This permits the user to navigate up and down in
the list to locate the desired item:

4.7.1 Creating a Combo Box

Three are two main manners in which you can create a combo box. You can write code or utilize
a script. To create a combo box with code, you can first create a Windows class that defines an
HWND handle and executes the allocations of a combo box.

62 LOVELY PROFESSIONAL UNIVERSITY

Windows Programming

Notes The simplest manner to create a combo box is via a resource script. The syntax utilized to create
the control in a script is:

COMBOBOX id, x, y, width, height [, style [, extended-style]]

!
Caution You must state COMBOBOX as the class of this control.

The id is the number used to recognize the control in a resource header file

The x measure is its horizontal location with respect to the control’s origin, which is located in
the top left corner of the window that is hosting the combo box

The y factor is the distance from control’s origin, which is located in the top left corner of the
window that is hosting the combo box, to the top-left side of the combo box

The width and the height specify the dimensions of the combo box

The optional style and the extended-style factors are used to configure and organize the behavior
of the combo box.

To create a combo box follow the steps as below:

1. To create an identifier for the combo box, open the resource header file and modify it as
follows:

#define IDD_CONTROLSDLG 101

#define IDD_SIZE_CBO 102

2. To create the combo box, open the resource script and modify it as follows:

#include “resource.h”

IDD_CONTROLSDLG DIALOG 260, 200, 180, 120

STYLE DS_MODALFRAME | WS_POPUP | WS_CAPTION | WS_SYSMENU

CAPTION “Windows Controls”

FONT 8, “MS Shell Dlg”

BEGIN

 DEFPUSHBUTTON “Close”, IDCANCEL, 120, 100, 50, 14

 COMBOBOX IDD_SIZE_CBO, 40, 8, 90, 80

 END

3. Test the application

4. Click Close to dismiss the dialog box.

LOVELY PROFESSIONAL UNIVERSITY 63

Unit 4: Windows Controls

Notes4.7.2 Characteristics of a Combo Box

Windows Styles of a Combo Box

Similar to all the other windows, to generate a combo box programmatically, you can call the
CreateWindow() or the CreateWindowEx() function. The syntax used is:

HWND CreateWindow("COMBOBOX",

 "Default String",

 style,

 x,

 y,

 width,

 height,

 parent,

 menu,

 instance,

 Optional arameter);

HWND CreateWindowEx(Extended Style,

 "COMBOBOX",

 "Default String",

 style,

 x,

 y,

 width,

 height,

 parent,

 menu,

 instance,

 Optional Parameter);

The first argument of the CreateWindow() or the second argument of the CreateWindowEx()
functions must be COMBOBOX passed as a string.

The second argument of the CreateWindow() or the third argument of the CreateWindowEx()
functions states a string that would display in the edit part of the combo box when the control
occurs. If the control is generated with certain styles we will review here, this string would not
come out even if you state it. You can also omit it and pass the argument as NULL or “” since
there are other ways you can set the default string.

Similar to every other Windows control, a combo box appearance and behavior are managed by
a set of properties called styles.

Did u know? The main properties of a combo box are those handled by the operating
system and shared by all controls.

You can utilize them to set the visibility, availability, and parenthood, etc., of the combo box. If
you create a combo box by means of a resource script, since you would contain it in a DIALOG
section of the script, the dialog box is automatically made its parent. Or else, to specify that the
combo box is hosted by another control, get the handle of the host and pass it as the parent
parameter. You must also set or add the WS_CHILD bit value to the style parameter. If you want
the combo box to occur when its parent comes up, add the WS_VISIBLE style using the bitwise
| operator.

If you want the combo box to obtain focus as a result of the user pressing the Tab key, add the
WS_TABSTOP style.

The location of a combo box is stated by the x and y parameters whose values are d on the origin,
located in the top-left corner or the dialog box or the window that is hosting the combo box.

Programmatically Creating a Combo Box

1. To programmatically create a combo box, alter the Exercise.cpp file as follows:

#include <windows.h>

64 LOVELY PROFESSIONAL UNIVERSITY

Windows Programming

Notes #ifdef __BORLANDC__

#pragma argsused

#endif

#include “resource.h”

//—————————————————————————————————————

HWND hWnd;

HWND hWndComboBox;

HINSTANCE hInst;

LRESULT CALLBACK DlgProc(HWND hWnd, UINT Msg, WPARAM wParam, LPARAM

lParam);

//—————————————————————————————————————

int APIENTRY WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,

LPSTR lpCmdLine, int nCmdShow)

{

hInst = hInstance;

DialogBox(hInstance, MAKEINTRESOURCE(IDD_CONTROLSDLG),

hWnd, reinterpret_cast<DLGPROC>(DlgProc));

return 0;

}

//—————————————————————————————————————

LRESULT CALLBACK DlgProc(HWND hWndDlg, UINT Msg, WPARAM wParam, LPARAM

lParam)

{

switch(Msg)

 {

case WM_INITDIALOG:

hWndComboBox = CreateWindow(“COMBOBOX”,

 NULL,

 WS_CHILD | WS_VISIBLE | WS_TABSTOP,

60, 62, 136, 60,

 hWndDlg,

 NULL,

 hInst,

 NULL);

LOVELY PROFESSIONAL UNIVERSITY 65

Unit 4: Windows Controls

Notesif(!hWndComboBox)

 {

 MessageBox(hWndDlg,

“Could not create the combo box”,

“Failed Control Creation”,

 MB_OK);

 return FALSE;

 }

return TRUE;

 case WM_COMMAND:

switch(wParam)

 {

 case IDCANCEL:

 EndDialog(hWndDlg, 0);

 }

break;

 }

 return FALSE;

}

//—————————————————————————————————————

2. Test the application

3. Click the Close button to dismiss it

Self Assessment

Fill in the blanks:

10. If the user doesn’t locate the desired item in the list, he or she can click the
arrow or press Esc.

11. The first argument of the CreateWindow() or the second argument of the
functions must be COMBOBOX passed as a string.

4.8 Scroll Bars

A scroll bar is an object that permits the user to navigate either left and right or up and down,
either on a document or on a section of the window. A scroll bar occurs as a long bar with a
(small) button at each end. Among these buttons, there is a moveable bar known as a thumb. To
scroll, the user can click one of the buttons or grab the thumb and drag it:

66 LOVELY PROFESSIONAL UNIVERSITY

Windows Programming

Notes

4.8.1 Types of Scroll Bars

There are two types of scroll bars: vertical or horizontal. A vertical scroll bar permits the user to
navigate up and down on a document or a section of a window. A horizontal scroll bar permits
the user to navigate left and right on a document or a section of a window.

As far as Microsoft Windows is considered, there are two groups of scroll bars: automatic and
control-based.

To create scroll bars, follow the steps as below:

1. Since Borland C++BuilderX is free, we are going to utilize it. Begin Borland C++ Builder X
and, on the main menu, click File -> New...

2. In the Object Gallery dialog box, click New GUI Application and click OK

3. In the New GUI Application Project Wizard - Step 1 of 3, in the Directory edit box of the
Project Settings section, type the path you desire. Or else, type C:\Programs\Win32
Programming

LOVELY PROFESSIONAL UNIVERSITY 67

Unit 4: Windows Controls

Notes4. In the Name edit box, type ScrollBars

5. Click Next

6. In the New GUI Application Project Wizard - Step 2 of 3, accept the defaults and click Next

7. In the New GUI Application Project Wizard - Step 3 of 3, click the check box under Create

8. Choose Untitled under the Name column header. Type Exercise to swap the name and
press Tab

68 LOVELY PROFESSIONAL UNIVERSITY

Windows Programming

Notes 9. Click Finish

10. In the left frame, double-click Exercise.cpp and modify the file to the following:

#include <windows.h>

#ifdef __BORLANDC__

#pragma argsused

#endif

const char *ClsName = “CtrlExos”;

const char *WndName = “Controls Examples”;

HINSTANCE hInst;

LRESULT CALLBACK WndProcedure(HWND hWnd, UINT uMsg,

 WPARAM wParam, LPARAM lParam);

int APIENTRY WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,

 LPSTR lpCmdLine, int nCmdShow)

{

 MSG Msg;

 HWND hWnd;

 WNDCLASSEX WndClsEx;

 hInst = hInstance;

 // Create the application window

 WndClsEx.cbSize = sizeof(WNDCLASSEX);

 WndClsEx.style = CS_HREDRAW | CS_VREDRAW;

 WndClsEx.lpfnWndProc = WndProcedure;

 WndClsEx.cbClsExtra = 0;

 WndClsEx.cbWndExtra = 0;

 WndClsEx.hIcon = LoadIcon(NULL, IDI_APPLICATION);

 WndClsEx.hCursor = LoadCursor(NULL, IDC_ARROW);

 WndClsEx.hbrBackground = (HBRUSH)GetStockObject(WHITE_BRUSH);

 WndClsEx.lpszMenuName = NULL;

 WndClsEx.lpszClassName = ClsName;

 WndClsEx.hInstance = hInst;

 WndClsEx.hIconSm = LoadIcon(NULL, IDI_APPLICATION);

LOVELY PROFESSIONAL UNIVERSITY 69

Unit 4: Windows Controls

Notes // Register the application

 RegisterClassEx(&WndClsEx);

 // Create the window object

 hWnd = CreateWindow(ClsName,

 WndName,

 WS_OVERLAPPEDWINDOW,

 CW_USEDEFAULT,

 CW_USEDEFAULT,

 CW_USEDEFAULT,

 CW_USEDEFAULT,

 NULL,

 NULL,

 hInst,

 NULL);

 // Find out if the window was created successfully

 if(!hWnd) // If the window was not created,

 return 0; // stop the application

 // Display the window to the user

 ShowWindow(hWnd, SW_SHOWNORMAL);

 UpdateWindow(hWnd);

 // Decode and treat the messages

 // as long as the application is running

 while(GetMessage(&Msg, NULL, 0, 0))

 {

 TranslateMessage(&Msg);

 DispatchMessage(&Msg);

 }

 return Msg.wParam;

}

LRESULT CALLBACK WndProcedure(HWND hWnd, UINT Msg,

 WPARAM wParam, LPARAM lParam)

{

70 LOVELY PROFESSIONAL UNIVERSITY

Windows Programming

Notes switch(Msg)

 {

 case WM_CREATE:

 // There is nothing significant to do at this time

 return 0;

 case WM_DESTROY:

 // If the user has finished, then close the window

 PostQuitMessage(WM_QUIT);

 break;

 default:

 // Process the left-over messages

 return DefWindowProc(hWnd, Msg, wParam, lParam);

 }

 // If something was not done, let it go

 return 0;

}

11. Press F9 to test the application

Task Make distinction between vertical scroll bar and horizontal scroll bar.

4.8.2 Automatic Scroll Bars

Some controls require a scroll bar to competently implement their functionality. The main
example is the edit control, which is used to exhibit text. On that control, when the text is too
long, the user is required to be able to scroll down and up to access the document fully. In the
similar manner, if the text is too wide, the user is required to be able to scroll left and right to
view the whole document.

When creating a text-based document or window, you can simply ask that one or both scroll
bars be added. Certainly, an edit control must be able to handle multiple lines of text. This is
taken care of by adding the ES_MULTILINE flag to its styles. Then:

 To add a vertical scroll bar to the window, add the WS_VSCROLL flag to the Style argument
of the CreateWindow() or the CreateWindowEx() function.

 To add a horizontal scroll bar to the window, add the WS_HSCROLL flag to the Style
argument of the CreateWindow() or the CreateWindowEx() function.

 To make the vertical scroll bar appear when necessary, that is, when the document is too
long, add the ES_AUTOVSCROLL style.

 To make the horizontal scroll bar appear as soon as at least one line of the document is too
wide, add the ES_AUTOVSCROLL style.

Obviously, you can use only one, two, three or all four styles.

LOVELY PROFESSIONAL UNIVERSITY 71

Unit 4: Windows Controls

NotesAutomatically Handling Scroll Bars

1. To create a small editor with its scroll bars, modify the procedure as follows:

LRESULT CALLBACK WndProcedure(HWND hWnd, UINT Msg,

 WPARAM wParam, LPARAM lParam)

{

 static HWND hWndEdit;

 switch(Msg)

 {

 case WM_CREATE:

 hWndEdit = CreateWindow(“EDIT”, // We are creating an Edit

control

 NULL, // Leave the control empty

 WS_CHILD | WS_VISIBLE | WS_HSCROLL |

 WS_VSCROLL | ES_LEFT |

ES_MULTILINE |

 ES_AUTOHSCROLL | ES_AUTOVSCROLL,

 0, 0, 0, 0, // Let the WM_SIZE

message below take care of the size

 hWnd,

 0,

 hInst,

 NULL);

 return 0;

 case WM_SETFOCUS:

 SetFocus(hWndEdit);

 return 0;

 case WM_SIZE:

 MoveWindow(hWndEdit, 0, 0, LOWORD(lParam), HIWORD(lParam),

TRUE);

 return 0;

 case WM_DESTROY:

 // If the user has finished, then close the window

72 LOVELY PROFESSIONAL UNIVERSITY

Windows Programming

Notes PostQuitMessage(WM_QUIT);

 break;

 default:

 // Process the left-over messages

 return DefWindowProc(hWnd, Msg, wParam, lParam);

 }

 // If something was not done, let it go

 return 0;

}

2. Test the application

4.8.3 Control-based Scroll Bars

Microsoft Windows offers another type of scroll bar. Treated as its own control, a scroll bar is
created like any other window and can be positioned anywhere on its host.

To create a scroll bar as a Windows control, call the CreateWindow() or the CreateWindowEx()
functions and specify the class name as SCROLLBAR.

Using Scroll Bar Controls

1. Begin a new GUI Application and name it CtrlScrollBars

2. Create its accompanying file as Exercise.cpp

3. To create a resource header file, on the main menu, click File -> New File...

4. In the Create New File dialog box, in the Name, type resource

5. In the Type combo box, select h

6. Click OK

7. In the file, type:

8. #define IDD_CONTROLS_DLG 101

#define IDC_CLOSE_BTN 1000

9. To create a resource script, on the main menu, click File -> New File...

LOVELY PROFESSIONAL UNIVERSITY 73

Unit 4: Windows Controls

Notes10. In the Create New File dialog box, in the Name, type CtrlScrollBars

11. In the Type combo box, select rc

12. Click OK

13. In the file, type:

#include “resource.h”

IDD_CONTROLS_DLG DIALOG DISCARDABLE 200, 150, 235, 151

STYLE DS_MODALFRAME | WS_POPUP | WS_CAPTION | WS_SYSMENU

CAPTION “Windows Controls”

FONT 8, “MS Sans Serif”

BEGIN

 PUSHBUTTON

 “&Close”,IDC_CLOSE_BTN,178,7,50,14

END

14. Display the Exercise.cpp file and change it as follows:

#include <windows.h>

#ifdef __BORLANDC__

 #pragma argsused

#endif

#include “resource.h”

//—————————————————————————————————————

HWND hWnd;

HINSTANCE hInst;

LRESULT CALLBACK DlgProc(HWND hWnd, UINT Msg, WPARAM wParam, LPARAM lParam);

//—————————————————————————————————————

int APIENTRY WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPSTR

lpCmdLine, int nCmdShow)

{

 hInst = hInstance;

74 LOVELY PROFESSIONAL UNIVERSITY

Windows Programming

Notes DialogBox(hInst, MAKEINTRESOURCE(IDD_CONTROLS_DLG),

 hWnd, reinterpret_cast<DLGPROC>(DlgProc));

 return 0;

}

//—————————————————————————————————————

LRESULT CALLBACK DlgProc(HWND hWndDlg, UINT Msg,

 WPARAM wParam, LPARAM lParam)

{

 switch(Msg)

 {

 case WM_INITDIALOG:

 return TRUE;

 case WM_COMMAND:

 switch(wParam)

 {

 case IDC_CLOSE_BTN:

 EndDialog(hWndDlg, 0);

 return TRUE;

 }

 break;

 case WM_CLOSE:

 PostQuitMessage(WM_QUIT);

 break;

 }

 return FALSE;

}

//—————————————————————————————————————

15. Test the application

Self Assessment

Fill in the blanks:

12. A is an object that permits the user to navigate either left and right or up
and down, either on a document or on a section of the window.

13. To a scroll bar as a Windows control, call the CreateWindow() or the
CreateWindowEx() functions and specify the class name as SCROLLBAR.

LOVELY PROFESSIONAL UNIVERSITY 75

Unit 4: Windows Controls

Notes4.9 Edit Controls

One of the most generally used controls in the windows environment, the EDIT control, is used
to permit the user to enter, modify, copy, etc... text. Windows Notepad is little more than a plain
old window with a big edit control inside it.

Example: Here is the code used to interface with the edit control in this example:

 SetDlgItemText(hwnd, IDC_TEXT, “This is a string”);

That’s all it takes to modify the text included in the control (this can be used for pretty much any
control that has a text value connected with it, STATICs, BUTTONs and so on).

Retrieving the text from the control is simple as well, though a little more work than setting it...

 int len = GetWindowTextLength(GetDlgItem(hwnd, IDC_TEXT));

 if(len > 0)

 {

 int i;

 char* buf;

 buf = (char*)GlobalAlloc(GPTR, len + 1);

 GetDlgItemText(hwnd, IDC_TEXT, buf, len + 1);

 //... do stuff with text ...

 GlobalFree((HANDLE)buf);

 }

Initially, we need to assign some memory to store the string in, it won’t just return us a pointer
to the string previously in memory. So as to do this, we first require to know how much
memory to assign. There isn’t a GetDlgItemTextLength(), but there is a GetWindowTextLength(),
so all we require to do is obtain the handle to the control by means of GetDlgItem().

Now that we have the length, we can assign some memory. Here I’ve added a verify to observe
if there is any text to start with, as most likely you don’t want to be working with an empty
string... at times you might, but that’s up to you. Presuming that there is something there to
function with, we call GlobalAlloc() to assign some memory. GlobalAlloc() as I’ve used it here
is equivalent to calloc(), if you’re used to DOS/UNIX coding. It assigns some memory, initializes
it’s contents to 0 and returns a pointer to that memory. There are dissimilar flags you can pass as
the first parameter to make it behave differently for different purposes, but this is the only
manner we will be using it.

Notes Observe that we added 1 to the length in two positions, what’s up with that? Well,
GetWindowTextLength() returns the number of characters of text the control includes
NOT INCLUDING the null terminator. This signifies that if we were to assign a string

Contd...

76 LOVELY PROFESSIONAL UNIVERSITY

Windows Programming

Notes without adding 1, the text would fit, but the null terminator would overflow the memory
block, perhaps corrupting other data, causing an access violation, or any number of other
bad things. You must be careful when dealing with string sizes in windows, some APIs
and messages expect text lengths to comprise the null and others don’t, always read the
docs comprehensively.

Lastly we can call GetDlgItemText() to retrieve the contents of the control into the memory
buffer that we’ve just assigned. This call expects the size of the buffer INCLUDING the null
terminator. The return value, which we unnoticed here, is the number of characters copied, NOT
involving the null terminator.... fun eh? :)

After we’re all done by means of the text (which we’ll get to in a moment), we are required to
free up the memory that we assigned so that it doesn’t leak out and drip down onto the CPU and
short circuit your computer. To achieve this, we simply call GlobalFree() and pass in our pointer.

You may be or become conscious of a second set of APIs named LocalAlloc(), LocalFree(), etc...
which are legacy APIs from 16-bit windows. In Win32, the Local* and Global* memory functions
are identical.

4.9.1 Edits with Numbers

Entering text is all well and okay, but what if you would like the user to enter in a number? This
is a pretty general task, and luckily there is an API to make this easier, which takes care of all the
memory allocation, in addition to converting the string to an integer value.

 BOOL bSuccess;

 int nTimes = GetDlgItemInt(hwnd, IDC_NUMBER, &bSuccess, FALSE);

GetDlgItemInt() functions much like GetDlgItemText(), except that instead of copying the string
to a buffer, it transforms it internally into an integer and returns the value to you. The third
parameter is optional, and takes a pointer to a BOOL. As the function returns 0 on failure, there
is no way to tell just from that whether or not the function failed or the user just entered 0. If you
are fine with a value of 0 in the event of an error, then feel free to disregard this parameter.

Another functional trait is the ES_NUMBER style for edit controls, which permits only the
characters 0 through 9 to be entered. This is very handy if you only want positive integers,
otherwise it’s not much good, as you can’t enter any other characters, involving - (minus) .
(decimal) or , (comma).

Self Assessment

Fill in the blanks:

14. The control is used to permit the user to enter, modify, copy, etc... text.

15. Initially, we need to assign some memory to store the in, it won’t just
return us a pointer to the string previously in memory.

4.10 Summary

 Window controls are considered as predefined window classes i.e. you are not required to
call the RegisterClass() function to generate a window class before the control.

 A text static control is like an edit control, but it does not obtain typed input from the user.

LOVELY PROFESSIONAL UNIVERSITY 77

Unit 4: Windows Controls

Notes From the user’s point of view, a button is functional when clicked, in which case the user
places the mouse on it and presses one of the mouse’s buttons.

 The most usual action users carry out on a button is to click it. When a user does this, the
button sends a BN_CLICKED message.

 The most generally used combo box is called drop down. On the left side, it is prepared of
an edit box. On the right side, it is equipped with a down-pointing arrow:

 A scroll bar is an object that permits the user to navigate either left and right or up and
down, either on a document or on a section of the window.

 To create a scroll bar as a Windows control, call the CreateWindow() or the
CreateWindowEx() functions and specify the class name as SCROLLBAR.

 One of the most generally used controls in the windows environment, the EDIT control, is
used to permit the user to enter, modify, copy, etc... text.

4.11 Keywords

BN_CLICKED: The most usual action users carry out on a button is to click it. When a user does
this, the button sends a BN_CLICKED message.

Scroll Bar: A scroll bar is an object that permits the user to navigate either left and right or up
and down, either on a document or on a section of the window.

Static Control: A static control is like an edit control, but it does not obtain typed input from the
user.

4.12 Review Questions

1. Illustrate the function that is used for creating windows.

2. What is static control? Discuss the process of sending Messages to a control.

3. What are button controls? Illustrate the steps for creating a push button.

4. Explain the concept of processing button control messages. Illustrate with example.

5. What are different types of Button Notification Codes? Explain.

6. How to add items and obtain data from the list box?

7. What is a combo box? Illustrate the steps for creating a combo box. Also illustrate it
programmatically.

8. What is a scroll bar? Make distinction between Automatic Scroll Bars and control-based
scroll bar.

9. Illustrate step by step the process of using Scroll Bar Controls.

10. Illustrate the concept of edit controls with example.

Answers: Self Assessment

1. control 2. Register Class ()

3. text static 4. CreateWindowEx

78 LOVELY PROFESSIONAL UNIVERSITY

Windows Programming

Notes 5. Thumbnail 6. button

7. PostQuitMessage() 8. BN_DISABLE

9. cast 10. down-pointing

11. CreateWindowEx() 12. scroll bar

13. create 14. EDIT

15. string

4.13 Further Readings

Books Brent E. Rector, Win32 Programming, Addison-Wesley

Charles Petzold, Programming Windows, Charles Petzold

Roger Mayne, Windows and Graphics Programming with Visual C++.NET, World
Scientific

Online link www.winprog.org/tutorial/controls.html

LOVELY PROFESSIONAL UNIVERSITY 79

Unit 5: Memory Management (I)

NotesUnit 5: Memory Management (I)

CONTENTS

Objectives

Introduction

5.1 Local vs Global Memory

5.1.1 Global Memory

5.1.2 Local Memory

5.2 Local Memory Blocks

5.3 Using Fixed Memory Blocks

5.3.1 Fixed Size Memory Management Configuration

5.4 Changing the Size of a Memory Block

5.5 Using LocalReAlloc()

5.5.1 Parameters

5.5.2 Return Values

5.6 Discardable Memory Blocks

5.7 Summary

5.8 Keywords

5.9 Review Questions

5.10 Further Readings

Objectives

After studying this unit, you will be able to:

 Understand local vs global memory

 Discuss local memory blocks

 Understand using fixed memory blocks

 Discuss changing the size of the memory block

 Illustrate using LocalReAlloc()

 Discuss discardable memory blocks

Introduction

Memory management under Win32 from the application’s standpoint is pretty simple and
uncomplicated. Each process possesses a 4 GB memory address space. The memory model used
is known as a flat memory model. In this model, all segment registers (or selectors) point to the
similar beginning address and the offset is 32-bit so an application can use memory at any point
in its own address space without the requirement to modify the value of selectors. This shortens
memory management a lot. There’s no “near” or “far” pointer any longer.

80 LOVELY PROFESSIONAL UNIVERSITY

Windows Programming

Notes 5.1 Local vs Global Memory

5.1.1 Global Memory

Global memory exists in device memory and device memory is used through 32-, 64-, or 128-
byte memory transactions. These memory transactions must be normally aligned: Only the 32,
64-, or 128-byte segments of device memory that are aligned to their size (i.e. whose first address
is a multiple of their size) can be read or written by memory communications. When a warp
implements an instruction that uses global memory, it coalesces the memory accesses of the
threads inside the warp into one or more of these memory transactions relying on the size of the
word accessed by every thread and the distribution of the memory addresses across the threads.
Usually, the more transactions are essential, the more unused words are relocated as well as the
words accessed by the threads, decreasing the instruction throughput therefore.

Example: If a 32-byte memory transaction is produced for each thread’s 4-byte access,
throughput is divided by 8. How many transactions are essential and how throughput is
eventually affected differs with the compute potential of the device?

For devices of compute capability 1.0 and 1.1, the necessities on the distribution of the addresses
across the threads to obtain any coalescing at all are very severe. They are much more comfortable
for devices of superior compute capabilities. For devices of compute capability 2.0, the memory
communications are cached, so data locality is exploited to decrease impact on throughput. To
make the most of global memory throughput, it is thus significant to maximize coalescing by:

 Following the most optimal access patterns.

 Using data types that fulfill the size and alignment prerequisite as illustrated below.

 Padding data in some cases, for instance, when accessing a two-dimensional array as
illustrated below.

Size and Alignment Requirement

Global memory instructions assist reading or writing words of size equal to 1, 2, 4, 8, or 16 bytes.
Any access (through a variable or a pointer) to data existing in global memory compiles to a
single global memory instruction if and only if the size of the data type is 1, 2, 4, 8, or 16 bytes
and the data is logically allocated (i.e. its address is multiple of that size). If this size and
alignment prerequisite is not fulfilled, the access compiles to various instructions with interleaved
access patterns that stop these instructions from completely coalescing. It is as a result suggested
to use types that fulfill this prerequisite for data that exists in global memory.

Did u know? The allocation prerequisite is automatically fulfilled for built-in types.

For structures, the size and alignment necessities can be enforced by the compiler using the
alignment specifiers

__attribute__ ((aligned(8)))

or

__attribute__ ((aligned(16))) , such as

struct{floata;floatb;}__attribute__((aligned(8)));

LOVELY PROFESSIONAL UNIVERSITY 81

Unit 5: Memory Management (I)

Notesor

struct{floata;floatb;floatc;}__attribute__((aligned(16)));

Any address of a variable existing in global memory or returned by one of the memory allotment
routines from the driver or runtime API is always allocated to at least 256 bytes. Reading non-
naturally aligned 8-byte or 16-byte words generates incorrect results (off by a few words).

!
Caution Special care must be taken to preserve alignment of the beginning address of any
value or array of values of these types.

A classic case where this might be easily unnoticed is when using some tradition global memory
allocation scheme, whereby the allocations of numerous arrays

(with multiple calls to

cudaMalloc()

or

cuMemAlloc()

) is substituted by the allocation of a single large block of memory partitioned into multiple
arrays, in which case the starting address of every array is offset from the block’s starting
address.

Two-Dimensional Arrays

A general global memory access pattern is when every thread of index (tx,ty) accesses the
following address to access one element of a 2D array of width ,situated at address BaseAddress
of type type*:

BaseAddress + width * ty + tx

For these accesses to be completely coalesced, both the breadth of the thread block and the
breadth of the array must be a numerous of the warp size (or only half the warp size for devices
of compute capability 1.x). Particularly, this signifies that an array whose width is not a multiple
of this size will be accessed much more competently if it is actually assigned with a width
rounded up to the closest multiple of this size and its rows padded consequently.

5.1.2 Local Memory

Local memory accesses only happen for some automatic variables. Automatic variables that the
compiler is probable to position in local memory are Arrays for which it cannot find out that
they are indexed with constant quantities,

 Large structures or arrays that would use too much register space,

 Any variable if the kernel utilizes more registers than obtainable (this is also called
register spilling).

Notes Observe that some mathematical functions have completion paths that might access
local memory. The local memory space exists in device memory, so local memory accesses
have similar high latency and low bandwidth as global memory accesses and are subject
to the similar necessities for memory coalescing.

82 LOVELY PROFESSIONAL UNIVERSITY

Windows Programming

Notes Local memory is however managed such that consecutive 32-bit words are used by consecutive
thread IDs. Accesses are as a result fully coalesced as long as all threads in a warp access the
similar relative address (e.g. similar index in an array variable, similar member in a structure
variable). On devices of compute capability 2.0, local memory accesses are at all times cached in
L1 and L2 in the similar manner as global memory accesses

Self Assessment

Fill in the blanks:

1. memory exists in device memory and device memory is used through 32,
64–, or 128-byte memory transactions.

2. For structures, the size and alignment necessities can be enforced by the compiler using
the alignment

3. memory accesses only happen for some automatic variables.

5.2 Local Memory Blocks

Under Win16, there are two major groups of memory API functions: Global and Local. Global-
type API calls deal with memory assigned in other segments therefore they’re “far” memory
functions. Local-type API calls deal with the local heap of the process so they’re “near” memory
functions. Under Win32, these two types are indistinguishable. Whether you call GlobalAlloc or
LocalAlloc, you get the similar result.

Steps in assigning and using memory are as below:

1. Assign a block of memory by calling LocalAlloc. This function returns a handle to the
requested memory block.

2. “Lock” the memory block by calling LocalLock. This function accepts a handle to the
memory block and returns a pointer to the memory block.

3. You can utilize the pointer to read or write memory.

4. “Unlock” the memory block by calling LocalUnlock . This function cancels the pointer to
the memory block.

5. Free the memory block by calling LocalFree. This function accepts the handle to the
memory block.

You can also replace “Local” by “Global” like GloballAlloc, GlobalLock, etc.

The above method can be further simplified by means of a flag in GlobalAlloc call,
GMEM_FIXED. If you use this flag, the return value from Global/LocalAlloc will be the pointer
to the assigned memory block, not the memory block handle. You don’t have to call Global/
LocalLock and you can pass the pointer to Global/LocalFree without calling Global/LocalUnlock
first.

Self Assessment

Fill in the blanks:

4. Local-type API calls deal with the local of the process so they’re “near” memory
functions.

5. function returns a handle to the requested memory block.

LOVELY PROFESSIONAL UNIVERSITY 83

Unit 5: Memory Management (I)

Notes5.3 Using Fixed Memory Blocks

Fixed size memory blocks allocation algorithm has been established to permit technique of
memory allocation in static time, separately to number of allocated blocks. This method is
extensively used in real-time applications.

First plan that should be executed is to arrange the memory by means of stFixedMemInit
function. Just after it can be utilized stFixedMemAlloc to assign memory blocks and
stFixedMemFree to release assigned memory blocks in a provided memory.

All of the allocated blocks have a fixed size, defined throughout memory initialization. The size
is allocated to value stated in AR_MEMORY_ALIGNMENT constant, defined in architecture
specific files. Block addresses are always allocated not relatively to the NULL but to address
specified throughout memory initialization.

Functions do not sets the previous error code on breakdown. Access to the fixed size memory is
never harmonized. If it is compulsory it should be implemented.

If the fixed size memory management module will not be utilized, it can be expelled from
compilation by setting ST_USE_FIXMEM for 0.

Now we illustrate some examples of using fixed size memory management module.

Example: Fixed size memory pool initialization

The example below displays how to initialize memory pool for fixed size memory blocks
allocation.

#include <stdio.h>

#include “ST_API.h”

UINT8 MemoryPool[1024];

int main(void)

{

 PVOID Block;

 /* Initialization */

 arInit();

 stInit();

 /* Initialize memory pool for fixed-size memory blocks allocation.

 Size of the memory block is set to 16 bytes */

 if(!stFixedMemInit(MemoryPool, sizeof(MemoryPool), 16))

 {

 printf(“Failure during memory pool initialization.\n”);

 return 0;

 }

84 LOVELY PROFESSIONAL UNIVERSITY

Windows Programming

Notes /* Allocate single block */

 Block = stFixedMemAlloc(MemoryPool);

 if(!Block)

 {

 printf(“Failure during memory block allocation.\n”);

 return 0;

 }

 /* ... */

 /* Free memory block */

 stFixedMemFree(MemoryPool, Block);

 /* ... */

 /* Deinitialization */

 arDeinit();

 return 0;

}

5.3.1 Fixed Size Memory Management Configuration

ST_USE_FIXMEM definition

The ST_USE_FIXMEM constant comprises information whether functions for fixed size
memory blocks allocation are incorporated or expelled from compilation. Functions will be
compiled if the constant value is fixed for 1 and will not be compiled if the constant value is fixed
for 0.

When this constant value is not defined, the value will be 1, by default. It will cause the addition
of functions into output code. If the fixed size memory management functions are not
utilized, it can be expelled from compilation by setting ST_USE_FIXMEM for 0 to decrease
output code.

Functions

stFixedMemAlloc function

Declaration:

PVOID stFixedMemAlloc(

 PVOID MemoryPool

);

Parameters:

MemoryPool

LOVELY PROFESSIONAL UNIVERSITY 85

Unit 5: Memory Management (I)

NotesIt defines the address of the memory pool.

Return value:

It indicates the pointer to newly assigned memory block or NULL on failure.

Description:

Function assigns a memory block in stated memory pool. Block size is stated during
memory pool initialization. Allocated addresses are always allocated to value stated in
AR_MEMORY_ALIGNMENT, comparatively to start of the memory pool. If function successes,
it return pointer to newly assigned memory block. On failure, it returns a NULL. Function do
not sets the previous error code on failure. Access to the fixed memory is never synchronized. If
it is compulsory it should be executed.

Function will be expelled from compilation when functions accountable for fixed size memory
management are disabled, by setting ST_USE_FIXMEM for 0.

stFixedMemFree function

Declaration:

BOOL stFixedMemFree(

 PVOID MemoryPool,

 PVOID Address

);

Parameters:

MemoryPool

It defines the address of memory pool.

Address

It indicates the address of the block to release.

Return value:

TRUE on success or FALSE on failure.

Description:

Function releases memory block assigned by stFixedMemAlloc function. It does not set the last
error code on failure. Access to the fixed memory is never coordinated. If it is compulsory that
it should be implemented.

Function will be expelled from compilation when functions accountable for memory management
are disabled, by setting ST_USE_FIXMEM for 0.

stFixedMemInit function

Declaration:

BOOL stFixedMemInit(

 PVOID MemoryPool,

 SIZE MemorySize,

86 LOVELY PROFESSIONAL UNIVERSITY

Windows Programming

Notes SIZE BlockSize

);

Parameters:

MemoryPool

It defines the address of memory pool to be initialized.

MemorySize

It indicates the total size of the memory.

BlockSize

It indicates the size of the memory block that will be allocated.

Return value:

TRUE on success or FALSE on failure.

Description:

Function initializes memory pool, for particular memory address. The memory address must
be passed to stFixedMemAlloc and stFixedMemFree functions to assign memory blocks in this
memory. Size of the every allocated block is at all times fixed. This function does not set the last
error code on failure. Access to the fixed memory is never coordinated. If it is mandatory it
should be implemented.

Function will be not compiled when functions accountable for memory management are disabled,
by setting ST_USE_FIXMEM for 0.

Task Make distinction between stFixedMemFree function and stFixedMemInit function.

Self Assessment

Fill in the blanks:

6. blocks allocation algorithm has been established to permit technique of memory
allocation in static time, separately to number of allocated blocks.

7. The constant comprises information whether functions for fixed size memory
blocks allocation are incorporated or expelled from compilation.

5.4 Changing the Size of a Memory Block

Frequently you do not know for certain how large a block you will eventually need at the time
you must start to use the block.

Example: The block might be a buffer that you use to hold a line being read from a file;
regardless of how long you make the buffer originally, you may encounter a line that is longer.

You can make the block longer by calling realloc. This function is affirmed in ‘stdlib.h’.

Function: void * realloc (void *ptr, size_t newsize)

The realloc function modifies the size of the block whose address is ptr to be newsize.

LOVELY PROFESSIONAL UNIVERSITY 87

Unit 5: Memory Management (I)

NotesAs the space after the end of the block may be in use, realloc may find it essential to copy the
block to a new address where more free space is obtainable. The value of realloc is the new
address of the block. If the block is required to be moved, realloc copies the old contents.

If you pass a null pointer for ptr, realloc behaves just like ‘malloc (newsize)’. This can be expedient,
but be cautious that older implementations (before ANSI C) may not sustain this behavior, and
will perhaps crash when realloc is passed a null pointer.

Similar to malloc, realloc may return a null pointer if no memory space is obtainable to make
the block bigger. When this occurs the original block is untouched; it has not been customized
or relocated.

In many cases it makes no distinction what happens to the original block when realloc fails,
since the application program cannot continue when it is out of memory, and the only thing to
do is to provide a fatal error message. Over and over again it is suitable to write and use a
subroutine, conventionally known as xrealloc, that takes care of the error message as xmalloc
does for malloc:

void *

xrealloc (void *ptr, size_t size)

{

 register void *value = realloc (ptr, size);

 if (value == 0)

 fatal (“Virtual memory exhausted”);

 return value;

}

You can also utilize realloc to make a block smaller. The reason you would do this is to evade
tying up a lot of memory space when only a little is required. Making a block smaller at times
necessitates copying it, so it can fail if no other space is obtainable.

Did u know? If the new size you state is the similar as the old size, realloc is assured to
modify nothing and return the similar address that you gave.

Self Assessment

Fill in the blanks:

8. The function modifies the size of the block whose address is ptr to be newsize.

9. If you pass a null pointer for ptr, realloc behaves just like ‘.................... ‘.

10. Similar to malloc, realloc may return a pointer if no memory space is obtainable
to make the block bigger.

5.5 Using LocalReAlloc()

The LocalReAlloc function modifies the size or the attributes of a stated local memory object.
The size can increase or decrease.

HLOCAL LocalReAlloc(

 HLOCAL hMem, // handle of local memory object

88 LOVELY PROFESSIONAL UNIVERSITY

Windows Programming

Notes UINT uBytes, // new size of block

 UINT uFlags // how to reallocate object

);

5.5.1 Parameters

hMem

It determines the local memory object to be reallocated. This handle is returned by either the
LocalAlloc or LocalReAlloc function.

UBytes

It states the new size, in bytes, of the memory block. If this parameter is zero and the uFlags
parameter states the LMEM_MOVEABLE flag, the function returns a handle to a memory object
that is marked as discarded. If uFlagsspecifies the LMEM_MODIFY flag, this parameter is ignored.

uFlags

It specifies how to reallocate the local memory object. If the LMEM_MODIFY flag is specified,
this parameter modifies the attributes of the memory object, and the uBytes parameter is
unobserved. Or else, this parameter handles the reallocation of the memory object.

The LMEM_MODIFY flag can be united with either or both of the following flags:

Flag Meaning

LMEM_DISCARDABLE Assigns discardable memory if the LMEM_MODIFY flag is also specified.
This flag is overlooked, unless the object was previously allocated as
movable or the LMEM_MOVEABLE flag is also specified.

LMEM_MOVEABLE You cannot merge LMEM_MOVEABLE with LMEM_MODIFY to change
a fixed memory object into a movable one. The function returns an error if
an application attempts this.

If uFlags does not state LMEM_MODIFY, this parameter can be any mixture of the following
flags:

Flag Meaning

LMEM_MOVEABLE If uBytes is zero, discards a formerly movable and discardable memory
block. If the objects lock count is not zero or the block is not movable and
discardable, the function fails.

 If uBytes is nonzero, enables the system to move the reallocated block to a
new location without modifying the movable or fixed attribute of the
memory object. If the object is fixed, the handle returned may be dissimilar
from the handle stated in the hMem parameter. If the object is movable, the
block can be moved without invalidating the handle, even if the object is
currently locked by a previous call to the LocalLockfunction. To obtain the
new address of the memory block, use LocalLock.

LMEM_NOCOMPACT Avoids memory from being compacted or discarded to satisfy the allocation
request.

LMEM_ZEROINIT Causes the supplementary memory contents to be initialized to zero if the
memory object is growing in size.

LOVELY PROFESSIONAL UNIVERSITY 89

Unit 5: Memory Management (I)

Notes

Task Make distinction between uBytes and uFlags.

5.5.2 Return Values

If the function succeeds, the return value is the handle of the reallocated memory object.

If the function fails, the return value is NULL. To obtain extended error information, call
GetLastError.

Notes If LocalReAlloc reallocates a movable object, the return value is the handle of the
memory object. To translate the handle to a pointer, make use of the LocalLock function.
If LocalReAlloc reallocates a fixed object, the value of the handle returned is the address of
the first byte of the memory block. To access the memory, a process can just cast the return
value to a pointer.

Self Assessment

Fill in the blanks:

11. The function modifies the size or the attributes of a stated local memory
object.

12. determines the local memory object to be reallocated.

13. specifies how to reallocate the local memory object.

5.6 Discardable Memory Blocks

Windows can reallocate a discardable memory block to a 0 length when it requires space to
gratify another allotment request. Performing this destroys all data enclosed in the memory
block. You usually use a discardable memory block to hold information that is suitable to keep
in memory but that can simply be recreated when required.

You cannot obtain a discardable memory block by means of malloc or HeapAlloc.

!
Caution You must either use GlobalAlloc with the GMEM_MOVEABLE and
GMEM_DISCARDABLE flags.

When you assign a discardable memory block, Windows returns a handle to the block. When
you lock the block, Windows returns the address of the block. The handle returned when allocating
a discardable memory block remains suitable even after the block is discarded; this can happen
at any time the block is unlocked.

The function call in this case turns out to be

HANDLE hMem;

hMem=GlobalAlloc(GMEM_MOVEABLE|GMEM_DISCARDABLE,10);

90 LOVELY PROFESSIONAL UNIVERSITY

Windows Programming

Notes The function call for GlobalLock remains as in portable memory blocks.

A discardable resource can be substituted by reloading the resource form the resource segment
of the module. This occurs transparently. Specifically, if you call a resource loading function and
the obtainable copy of the resource has been discarded, a new copy will be loaded.

Self Assessment

Fill in the blanks:

14. Windows can reallocate a memory block to a 0 length when it requires space
to gratify another allotment request.

15. A discardable resource can be substituted by the resource form the resource
segment of the module.

5.7 Summary

 Global memory exists in device memory and device memory is used through 32-, 64-, or
128-byte memory transactions.

 Global memory instructions assist reading or writing words of size equal to 1, 2, 4, 8, or 16
bytes.

 Local memory accesses only happen for some automatic variables.

 On devices of compute capability 2.0, local memory accesses are at all times cached in L1
and L2 in the similar manner as global memory accesses

 Fixed size memory blocks allocation algorithm has been established to permit technique
of memory allocation in static time, separately to number of allocated blocks.

 All of the allocated blocks have a fixed size, defined throughout memory initialization.

 The ST_USE_FIXMEM constant comprises information whether functions for fixed size
memory blocks allocation are incorporated or expelled from compilation.

 The realloc function modifies the size of the block whose address is ptr to be newsize.

 The LocalReAlloc function modifies the size or the attributes of a stated local memory
object.

 Windows can reallocate a discardable memory block to a 0 length when it requires space
to gratify another allotment request.

5.8 Keywords

Discardable memory block: Windows can reallocate a discardable memory block to a 0 length
when it requires space to gratify another allotment request.

LocalReAlloc: The LocalReAlloc function modifies the size or the attributes of a stated local
memory object.

realloc: The realloc function modifies the size of the block whose address is ptr to be newsize.

ST_USE_FIXMEM: The ST_USE_FIXMEM constant comprises information whether functions
for fixed size memory blocks allocation are incorporated or expelled from compilation.

LOVELY PROFESSIONAL UNIVERSITY 91

Unit 5: Memory Management (I)

Notes5.9 Review Questions

1. Make distinction between local memory and global memory.

2. Illustrate the Size and Alignment Requirement in global memory.

3. What are local memory bocks? Illustrate their functions.

4. What are the steps used in assigning and using memory?

5. Explain the concept of using Fixed Memory Blocks with examples.

6. What is stFixedMemAlloc function? Define its parameters and return values.

7. Illustrate how to declare the function stFixedMemInit function. Also discuss its parameters
and return values.

8. Explain the function used for changing the size of a memory block.

9. What are the various parameters used in LocalReAlloc()? Illustrate.

10. Windows can reallocate a discardable memory block to a 0 length when it requires space
to gratify another allotment request. Comment.

Answers: Self Assessment

1. Global 2. specifiers

3. Local 4. heap

5. LocalAlloc 6. Fixed size memory

7. ST_USE_FIXMEM 8. realloc

9. malloc (newsize) 10. null

11. LocalReAlloc 12. hMem

13. uFlags 14. discardable

15. reloading

5.10 Further Readings

Books Brent E. Rector, Win32 Programming, Addison-Wesley

Charles Petzold, Programming Windows, Charles Petzold

Roger Mayne, Windows and Graphics Programming with Visual C++.NET, World
Scientific

Online link ldp.org/LDP/tlk/mm/memory.html

92 LOVELY PROFESSIONAL UNIVERSITY

Windows Programming

Notes Unit 6: Memory Management (II)

CONTENTS

Objectives

Introduction

6.1 Global Memory Allocation

6.2 What Windows is actually Doing with Memory?

6.3 System Memory and System Resources

6.3.1 What are System Resources?

6.3.2 Resource Comparison

6.4 Summary

6.5 Keywords

6.6 Review Questions

6.7 Further Readings

Objectives

After studying this unit, you will be able to:

 Understand the concept of global memory allocation

 Discuss what windows is actually doing with memory

 Understand system memory and system resources

Introduction

Memory allocation and de-allocation takes place at several times in database. Here you will
recognize the process of assigning global memory. The term System Resources basically includes
two major areas of Windows memory that are reserved for and used by particular Windows
components. You will also discuss in this unit the concept of system memory and system resource.

6.1 Global Memory Allocation

Memory may be assigned to a specific memory area when a stated event happens, like when an
application connects, or it may be reallocated depending on a alteration in a configuration
parameter setting.

The Figure 6.1 displays the dissimilar areas of memory that the database manager assigns for
numerous uses and the configuration parameters that permit you to manage the size of this
memory.

Notes In an Enterprise Server Edition environment that includes numerous logical database
partitions, every database partition contains its own Database Manager Shared Memory set.

LOVELY PROFESSIONAL UNIVERSITY 93

Unit 6: Memory Management (II)

Notes
Figure 6.1: Types of Memory Utilized by the Database Manager

Memory is assigned for every instance of the database manager when the following events take
place:

 When the database manager is started: Database manager global shared memory is assigned
and remains assigned until the database manager is stopped. This area includes information
that the database manager utilizes to handle activity across all database connections.
Instance shared memory can be handled by the instance_memory configuration parameter.
By default, this parameter is fixed to automatic in order that DB2 computes the amount of
memory assigned for the instance.

 When a database is activated or linked to for the first time: Database global memory is
assigned. Database global memory is utilized across all applications that attach to the
database. The size of the database global memory is stated by the database_memory
configuration parameter. By default, this parameter is fixed to automatic in order that DB2
computes the quantity of memory assigned for the database. You can fix database_memory
to assign more memory than is required originally so that the additional memory can be
dynamically distributed afterwards.

 Even though the total quantity of database global memory cannot be increased or
decreased while the database is active, memory for areas enclosed in database global
memory can be accustomed.

Example: The following memory areas can be dynamically accustomed to decrease
memory allocated to one area and augment memory in another area.

 Buffer pools (using the ALTER BUFFERPOOL DDL statement)

 Database heap (including log buffers)

 Utility heap

 Package cache

 Catalog cache

 Lock list

In the surroundings in which the database manager intra-partition parallelism configuration
parameter (intra_parallel) is enabled, or in the surroundings in which the connection concentrator
is enabled, the shared sort heap is also assigned as piece of the database global memory.

94 LOVELY PROFESSIONAL UNIVERSITY

Windows Programming

Notes  When an application connects to a database: In a partitioned database surroundings, in a
non-partitioned database with the database manager intra-partition parallelism
configuration parameter (intra_parallel) enabled, or in the surroundings in which the
connection concentrator is enabled, multiple applications can be assigned to application
groups to share memory. Every application group has its own allotment of shared memory.
In the application-group shared memory, each application contains its own application
control heap but utilizes the shared heap of the application group which enhances the
competence of cache and memory usage.

The following three database configuration parameters find out the size of the application
group memory:

 The appgroup_mem_sz parameter, which states the size of the shared memory for the
application group

 The groupheap_ratio parameter, which states the percent of the application-group
shared memory permitted for the shared heap

 The app_ctl_heap_sz parameter, which states the size of the control heap for every
application in the group.

The database manager configuration parameter max_connections fixes an upper limit on
the number of applications that can attach to a database. As each application that attaches
to a database includes the allocation of some memory, permitting a larger number of
concurrent applications will potentially make use of more memory.

To some extent, the maximum number of applications is also administered by the database
manager configuration parameter maxagents or max_coordagents for partitioned database
surroundings. The maxagents parameter fixes an upper limit to the total number of database
manager agents in a database partition. These database manager agents comprise active
coordinator agents, subagents, inactive agents, and idle agents.

If you are encountering memory errors when attempting to connect to a database, try
making the following configuration amendments:

 In a non-partitioned database environment with no intra-query parallelism enabled,
enlarge the value of the maxagents database configuration parameter.

 In a partitioned database environment or an environment where intra-query
parallelism is enabled, augment the larger of maxagents or max_coordagents.

 In surroundings where max_connections has been configured to a value that is
greater than max_coordagents, you can also augment max_connections to resolve
the error.

 When an agent is created: Agent private memory is assigned for an agent when the agent
is allocated as the consequence of a connect request or a new SQL request in a parallel
environment. Agent private memory is assigned for the agent and comprises memory
that is used only by this particular agent, like the sort heap and the application heap.

!
Caution When a database is already in use by one application, only agent private memory
and application global shared memory is assigned for consequent connecting applications.

The figure also states the following configuration parameter settings, which limit the amount of
memory that is assigned for every type of memory area. Observe that in a partitioned database
environment, this memory is assigned on each database partition.

LOVELY PROFESSIONAL UNIVERSITY 95

Unit 6: Memory Management (II)

Notes instance_memory: This parameter states how much memory is assigned for instance
management.

 numdb: This parameter states the maximum number of simultaneous active databases that
dissimilar applications can use. Since each database has its own global memory area, the
quantity of memory that might be assigned increases if you increase the value of this
parameter.

 maxappls: This parameter states the maximum number of applications that can concurrently
connect to a single database. It affects the amount of memory that might be assigned for
agent private memory and application global memory for that database.

Did u know? This parameter can be set in a different way for every database.

 maxagents and max_coordagents for parallel processing: These parameters limit the
number of database manager agents that can subsist concurrently across all active databases
in an instance. Together with maxappls, these parameters limit the amount of memory
assigned for agent private memory and application global memory.

The memory tracker, invoked by the db2mtrk command, permits you to observe the current
assignment of memory inside the instance, involving the following types of information for
every memory pool:

 Current size

 Maximum size (hard limit)

 Largest size (high water mark)

On Unix and Linux, even though the ipcs command can be utilized to list all the shared memory
segments, it does not precisely reflect the amount of resources taken. You can use the db2mtrk
command as an substitute to ipcs.

Task Make distinction between Numdb and maxappls parameters.

Self Assessment

Fill in the blanks:

1. Memory may be assigned to a specific memory area when a statedhappens.

2. In an Enterprise Server Edition environment that includes numerous logical database
partitions, every database contains its own Database Manager Shared Memory
set.

3. The parameter states the size of the shared memory for the application group

4. An parameter states how much memory is assigned for instance management.

5.parameter states the maximum number of applications that can concurrently
connect to a single database.

6. The database manager configuration parameter fixes an upper limit on the
number of applications that can attach to a database.

96 LOVELY PROFESSIONAL UNIVERSITY

Windows Programming

Notes 7. The size of the database global memory is stated by the configuration
parameter.

8. You can fix to assign more memory than is required originally so that the
additional memory can be dynamically distributed afterwards.

9. The...................... parameter fixes an upper limit to the total number of database manager
agents in a database partition.

6.2 What Windows is actually Doing with Memory?

The first version of the Windows operating system established a technique of managing dynamic
memory relying on a single global heap, which all applications and the system share, and several,
private local heaps, one for every application. Local and global memory management functions
were also offered, providing extended traits for this new memory management system. More
lately, the Microsoft C run-time (CRT) libraries were customized to comprise capabilities for
administrating these heaps in Windows by means of native CRT functions like malloc and free.
Accordingly, developers are now left with an option—study the new application programming
interface (API) offered as part of Windows or stick to the transportable, and usually familiar,
CRT functions for managing memory in applications written for Windows.

Did u know? Window provides three groups of functions for managing memory in
applications: memory-mapped file functions, heap memory functions, and virtual-memory
functions.

Figure 6.2: The Windows API offers different Levels of Memory Management
for Adaptability in Application Programming

Altogether, six sets of memory management functions subsist in Windows, as displayed in
Figure 6.2, all of which were intended to be used separately of one another. So which set of
functions should you utilize The answer to this question relies deeply on two things: the type of
memory management you desire and how the functions pertinent to it are executed in the
operating system. Alternatively, are you constructing a large database application where you
plan to influence subsets of a large memory structure? Or maybe you’re arranging some simple
dynamic memory structures, like linked lists or binary trees? In both cases, you are required to

LOVELY PROFESSIONAL UNIVERSITY 97

Unit 6: Memory Management (II)

Notesknow which functions suggest the traits best matched to your intention and precisely how much
of a resource hit appears when using every function.

Self Assessment

Fill in the blanks:

10. The first version of the Windows operating system established a technique of managing
dynamic memory relying on a single heap, which all applications and the
system share, and several, private local heaps, one for every application.

11. The Windows API offers different levels of management for adaptability in
application programming.

6.3 System Memory and System Resources

Consider that you’ve got 4GHz Pentium IV with 1Gb of RAM and Windows 98. Still, applications
appear to be running out of memory. They run sluggishly, or you may obtain the dreaded
“Unable to create control” message, or poorer yet the whole operating system freezes up. What
is basically the problem?

The short respond resources. You’ve got gigabyte of RAM! The short respond: that makes no
dissimilarity. You add another 512Mb of RAM. Now you contain 1.5Gb of RAM. Still you have
the similar problem. The depressing truth is, the amount of physical memory has completely no
impact on system resources. When your system runs short on system resources awful things,
such as the foregoing, occur.

Notes While it appears to be picking on Windows98 here, the memory model is
fundamentally the similar in Windows95, Windows98 and Windows Me. Afterwards,
we’ll talk regarding WindowsNT and its successors Windows 2000 and WindowsXP, which
share a considerably dissimilar memory model.

6.3.1 What are System Resources?

The term System Resources essentially comprises two major areas of Windows memory that are
reserved for and used by particular Windows components. They are known as User and GDI.
User resources points to the input manager user32.dll. It manages input from your mouse,
keyboard, and other sources, like communication ports, file handles, etc. GDI symbolizes Graphics
Device Interface and is in accuse of the noticeable components of Windows. It accumulates fonts,
brushes, bitmaps, and other graphics stuff, in addition to lends support to other graphic output
devices like printers. On Windows 9x/Me systems, you can observe resources by means of the
resource monitor. It returns the amount of free resources as a percentage.

Under Windows 3.x, these two areas of memory were restricted to 64K. All running applications
shared that 64K for User resources and 64K for GDI. Unnecessary to say, that formed a huge
bottleneck.

With the foreword of Windows95 and enduring through Windows98 and WindowsMe, that 64K
was augmented dramatically and each of the two areas was further subdivided as follows:

 The 16-bit User heap (64K).

98 LOVELY PROFESSIONAL UNIVERSITY

Windows Programming

Notes  The 32-bit User window heap (2MB).

 The 32-bit User menu heap (2MB).

 The 16-bit GDI heap (64K).

 The 32-bit GDI heap (2MB).

However, each one of these five memory segments is still fixed in size because of the Windows
9x/Me architecture, and cannot be increased, irrespective of the amount of physical memory
(RAM) installed on the machine. Modern applications stipulate more and more of the system.
The more controls an application generates and the more files it opens, the more stress is
positioned on the operating system.

Now, we have this difficulty regarding resources, but wait; it gets worse. When you first install
the operating system and start the computer, you perhaps have somewhere in the neighborhood
of 96%-98% free system resources. Over time, you install applications and utilities. Now, when
you first start the computer you may only have 70%-80% free resources. This is because many
applications install minute programs that are started when the system starts. Each of these
utilizes resources.

As you run a variety of applications, each application further reduces these system resources.
Hypothetically, when an application concludes, the resources it used should be returned to the
operating system to utilize for other applications. In the actual world, this doesn’t always take
place. In some cases, it is normal. Some shared resources are not loaded until an application
requests them. Those are not usually released when the application terminates. They are kept
loaded in memory to permit the next application quicker access to them.

Some applications, though, do not behave properly. They may not free all the resources they
assign. This is known as resource leakage. Here, a block of memory is marked by the operating
system as being in use and it cannot be utilized by the operating system, or any other application.
When this takes place, the only means to recover that area of memory is to reboot the computer.

The fact is, if you are a home user who runs a word processor, a spreadsheet, an Internet browser
and an e-mail client program, the solution is that it is not that huge problem. Those programs
are usually not horribly resource intensive and, if you reboot the computer frequently, you’ll
probably never have a trouble. If you obtain the dreaded “Unable to create control” error,
rebooting the machine will usually free resources that have been lost by misbehaving applications
and permit your computer to function usually.

Just keep in mind that applications are sharing memory here. If you encounter a system error,
such as a General Protection Fault, there is a high probability that system memory has been
tainted. You should straight away put aside any open documents and reboot the computer if you
want the system to remain stable. The computer may emerge to function generally after such an
error, but it is undependable and may cause an apparently unconnected error later on.

!
Caution If you obtain a system error, you should reboot the computer.

If, alternatively, you want to run some more resource rigorous applications, the Windows 95/
98/Me memory model will be a steady source of problems for you.

Example: A high-end graphics editor, or a program or web development
environment, etc.

If you have a comparatively new, clean install of the operating system and you haven’t installed
a lot of other programs and you don’t have a lot of fonts installed and you don’t run too many

LOVELY PROFESSIONAL UNIVERSITY 99

Unit 6: Memory Management (II)

Notesapplications simultaneously, etc., you may get away with it. Sooner or later, though, it will
become a problem.

Now we’ve defined the problem. What is the solution? If you build up software, web sites , or
graphics (by means of high end software), the answer, even though you may not like it, is to
advance the operating system. The WindowsNT memory model is the answer. WindowsNT,
Windows2000 and WindowsXP share a hugely different memory model. Under this NT based
memory management system, resources are not restricted. As long as you have sufficient physical
memory (RAM) or virtual memory (disk space) your applications will not run out of resources.
The WindowsNT memory system assigns resources dynamically. As long as the memory is
obtainable, your application can have it.

Even better, every application obtains its own virtual copy of the operating system. That means
that, applications are isolated and, if an error appears, system memory is not corrupted. When
an application terminates, all the memory assigned to it is released back to the operating
system. That means that resource, or memory leakage is also almost nonexistent. It is likely for
an application to incessantly demand more and more memory and the system will provide it,
until memory turns out to be short, but closing the application releases all that memory without
the requirement to reboot the machine.

The following chart displays the memory assigned for each particular purpose by the various
operating systems:

6.3.2 Resource Comparison

Window/Menu Handles about 200 32KB (each) Unlimited

Timers 32 Unlimited Unlimited

COM/LPT ports 4 each Unlimited Unlimited

Listbox items (per listbox) 8KB 32KB Unlimited

Listbox data (per listbox) 64KB Unlimited Unlimited

Edit control data (per control) 64KB Unlimited Unlimited

Regions All in 64KB segment Unlimited Unlimited

Logical pens, brushes All in 64KB segment 64KB segment Unlimited

Physical pens, brushes All in 64KB segment Unlimited Unlimited

Logical fonts All in 64KB segment 750-800 Unlimited

Installed fonts 250-300 (best case) 1000 Unlimited

Device Contexts 200 (best case) 16KB Unlimited

While Windows95, Windows98 and WindowsMe operating systems enhanced memory
management enormously over Windows 3.1, they were still intended for the home user. They
were never proposed to be a severe development platform. Coming across errors is a part of
software development. An operating system that is not fault tolerant has no place in the software
development environment. If you develop software, or web sites by means of a serious
development tool, you should be using WindowsNT, Windows2000, or WindowsXP.

Task Illustrate the function of User resources.

100 LOVELY PROFESSIONAL UNIVERSITY

Windows Programming

Notes Self Assessment

Fill in the blanks:

12. The termessentially comprises two major areas of Windows memory that are
reserved for and used by particular Windows components.

13. resources points to the input manager user32.dll.

14.symbolizes Graphics Device Interface and is in accuse of the noticeable
components of Windows.

15. An operating system that is not tolerant has no place in the software
development environment.

6.4 Summary

 Memory may be assigned to a specific memory area when a stated event happens, like
when an application connects, or it may be re-allocated depending on a alteration in a
configuration parameter setting.

 When the database manager is started, database manager global shared memory is assigned
and remains assigned until the database manager is stopped.

 In the surroundings in which the database manager intra-partition parallelism
configuration parameter (intra_parallel) is enabled, or in the surroundings in which the
connection concentrator is enabled, the shared sort heap is also assigned as piece of the
database global memory.

 Numdb parameter states the maximum number of simultaneous active databases that
dissimilar applications can use.

 The memory tracker, invoked by the db2mtrk command, permits you to observe the
current assignment of memory inside the instance.

 The first version of the Windows operating system established a technique of managing
dynamic memory relying on a single global heap, which all applications and the system
share, and several, private local heaps, one for every application.

 The term System Resources essentially comprises two major areas of Windows memory
that are reserved for and used by particular Windows components. They are known as
User and GDI.

 As you run a variety of applications, each application further reduces these system
resources.

6.5 Keywords

Maxappl: This parameter states the maximum number of applications that can concurrently
connect to a single database.

Numdb: This parameter states the maximum number of simultaneous active databases that
dissimilar applications can use.

System Resources: The term System Resources essentially comprises two major areas of Windows
memory that are reserved for and used by particular Windows components.

LOVELY PROFESSIONAL UNIVERSITY 101

Unit 6: Memory Management (II)

Notes6.6 Review Questions

1. Elucidate the concept of global memory allocation.

2. Illustrate various events that take place when memory is assigned for every instance of
the database manager.

3. What are the different database configuration parameters that find out the size of the
application group memory?

4. What configurations adjustments are to be made if encountering memory errors while
attempting to connect to a database? Discuss.

5. Explain the concept of managing memory in Windows operating system.

6. Illustrate the concept of system resources and system memory.

7. What are the two areas of memory that are restricted to 64K? Illustrate.

8. Generate a chart that displays the memory assigned for each particular purpose by the
various operating systems.

9. Make distinction between user and GDI.

10. As you run a variety of applications, each application further reduces these system resources.
Comment.

Answers: Self Assessment

1. event 2. partition

3. appgroup_mem_sz 4. instance_memory

5. Maxappls 6. max_connections

7. database_memory 8. database_memory

9. maxagents 10. global

11. memory 12. System Resources

13. User 14. GDI

15. fault

6.7 Further Readings

Books Brent E. Rector, Win32 Programming, Addison-Wesley

Charles Petzold, Programming Windows, Charles Petzold

Roger Mayne, Windows and Graphics Programming with Visual C++.NET, World
Scientific

Online link ldp.org/LDP/tlk/mm/memory.html

102 LOVELY PROFESSIONAL UNIVERSITY

Windows Programming

Notes Unit 7: Character Sets, Fonts and the Keyboard

CONTENTS

Objectives

Introduction

7.1 The ANSI Character Set

7.2 Trying the Character Functions

7.2.1 Case Conversion Functions

7.2.2 Character Manipulation Functions

7.3 Keyboard Message Processing

7.4 WM_CHAR Message

7.4.1 Parameters

7.4.2 Return Value

7.5 System Key Messages and Dead Characters

7.6 Implementing a Simple Keyboard Interface

7.7 Selecting a Stock Font

7.8 Using Logical Fonts

7.9 Text Metric

7.9.1 Members

7.10 Putting Fonts to Work

7.10.1 Installing OpenType or TrueType Fonts in Windows

7.10.2 Installing PostScript Type 1 Fonts in WindowsXP or 2000

7.11 Keyboard Accelerators

7.11.1 Accelerator Tables

7.11.2 Accelerator Table Creation

7.11.3 Accelerator Keystroke Assignments

7.11.4 Accelerators and Menus

7.11.5 UI State

7.12 Summary

7.13 Keywords

7.14 Review Questions

7.15 Further Readings

Objectives

After studying this unit, you will be able to:

 Understand the concept of the ANSI Character Font and trying character functions

 Discuss keyboard message processing

 Illustrate WM_CHAR message

LOVELY PROFESSIONAL UNIVERSITY 103

Unit 7: Character Sets, Fonts and the Keyboard

Notes Discuss System key messages and Dead Characters

 Understand implementing a simple keyboard interface

 Discuss stock font, logical fonts, text metric, and putting fonts to work

 Understand keyboard accelerators

Introduction

A character set is a conventionalized relationship among letters and character positions. Most
fonts utilize one of numerous standard character sets, but there are also fonts (generally symbol
fonts) with random mappings. A font is a set of graphic elements known as glyphs (letters or
symbols) mapped onto a set of character positions (numbers). Keyboard layout is a
conventionalized relationship among keyboard keys and character positions. In this unit, we
will discuss various concepts related to Character Sets, Fonts, and the Keyboard.

7.1 The ANSI Character Set

ANSI symbolizes American National Standards Institute. The ANSI character set involves the
standard ASCII character set (values 0 to 127), in addition to extended character set (values 128 to
255).

ANSI character set is defined list of characters identified by the computer hardware and software.
Every character is represented by a number.

Example: The ASCII character set utilizes the numbers 0 through 127 to symbolize all
English characters in addition to special control characters.

European ISO character sets are alike to ASCII, but they enclose supplementary characters for
European languages.

The ANSI character set defines 224 characters (32 to 255 Decimal, 20 to FF Hexadecimal). Characters
32 to 127 are shared with the ASCII Character Set and characters 128 to 255 are shared with the
ISO Latin-1 character set utilized by Web browsers.

ANSI Character Set

HEX 00 10 20 30 40 50 60 70 80 90 A0 B0 C0 D0 E0 F0
HEX DEC 0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240

0 0 space 0 @ P ` p € � nbsp ° À Ð à ð
1 1 ! 1 A Q a q � ‘ ¡ ± Á Ñ á ñ
2 2 " 2 B R b r ‚ ’ ¢ ² Â Ò â ò
3 3 # 3 C S c s ƒ “ £ ³ Ã Ó ã ó
4 4 $ 4 D T d t „ ” ¤ ´ Ä Ô ä ô
5 5 % 5 E U e u … • ¥ µ Å Õ å õ
6 6 & 6 F V f v † – ¦ ¶ Æ Ö æ ö
7 7 ' 7 G W g w ‡ — § · Ç × ç ÷
8 8 (8 H X h x ˆ ˜ ¨ ¸ È Ø è ø
9 9 TAB) 9 I Y i y ‰ ™ © ¹ É Ù é ù
A 10 LF * : J Z j z Š š ª º Ê Ú ê ú
B 11 + ; K [k { ‹ › « » Ë Û ë û
C 12 , < L \ l | Œ œ ¬ ¼ Ì Ü ì ü
D 13 CR - = M] m } � � ½ Í Ý í ý
E 14 . > N ^ n ~ Ž ž ® ¾ Î Þ î þ
F 15 / ? O _ o � � Ÿ ¯ ¿ Ï ß ï ÿ

104 LOVELY PROFESSIONAL UNIVERSITY

Windows Programming

Notes

Notes On many systems the characters 127 to 160 are regarded as control characters and
that these do not map straightforwardly to a UNICODE (UTF-8) character as does the
remaining characters.

Self Assessment

Fill in the blank:

1. is defined list of characters identified by the computer hardware and software.

7.2 Trying the Character Functions

Character functions function on values of character class datatype such as Char, Varchar2, Varchar,
etc. These functions can return either character class datatype or number class datatype depending
on the operation accomplished on the input data. Length of a value returned by these functions
is restricted up to 4000 bytes for varchar2 datatype and 2000 bytes for char datatype. If a function
returns value that surpasses the length limit, Oracle routinely trim the value before returning
the consequence. Some of the SQL incorporated character functions are specified in the following
table.

Figure 7.1: Single-row Character Functions

CHR CONCAT INITCAP SUBSTR

RTRIM LTRIM TRIM REPLACE

LPAD RPAD UPPER LOWER

TRANSLATE ASCII INSTR LENGTH

7.2.1 Case Conversion Functions

The three case conversion functions are LOWER, UPPER, and INITCAP.

 Lower: It converts mixed case or uppercase character string lo lowercase

 Upper: It converts mixed case or lowercase character string to uppercase

 Initcap: It converts first letter of each word to uppercase and other letters to lowercase.

LOVELY PROFESSIONAL UNIVERSITY 105

Unit 7: Character Sets, Fonts and the Keyboard

Notes
Example: Show the employee number, name, and department number for employee

John

SELECT empno, ename, deptno

FROM emp

WHERE ename = ‘john’;

no rows selected

The WHERE clause of the first SQL statement specifies the employee name as ‘john’. As all the
data in the EMP table is amassed in uppercase. The name ‘john’ does not locate a match in the
EMP table and as a consequence no rows are chosen.

SELECT empno, ename, deptno

FROM emp

WHERE LOWER(ename) = ‘blake’ ;

EMPNO ENAME DEPTNO

7698 JOHN 30

The WHERE clause of the second SQL statement specifies that the employee name in the EMP
table be converted to lowercase and then be compared to ‘john‘. Since both the names are in
lowercase now, a match is located and one row is chosen.

Task Make distinction between LOWER function and UPPER function.

7.2.2 Character Manipulation Functions

Function Result

CONCAT(‘Good' , 'String')
SUBSTR('String' , 1,3)
LENGTH('String')
INSTR(' String’, ‘r ’)
LPAD(sal,10 , '*')

GoodString
Str
6
3
******5000

 CONCAT. SUBSTR, LENGTH, INSTR, and LPAD are the five character manipulation functions
discussed here.

Concat: It unite values together (You are restricted to using two parameters with CONCAT.)

Substr: It takes out a string of determined length

Length: It exhibits the length of a string as a numeric value

Instr: It locates numeric position of a named character

Lpad: It Pads the character value right-justified

Did u know? RPAD character manipulation function pads the character value left-justified.

106 LOVELY PROFESSIONAL UNIVERSITY

Windows Programming

Notes
Example: Ernployee name and job joined together, length of the employee name, and

the numeric position of the letter A in the employee name, for all employees who are in sales.

SELECT ename, CONCAT(ename, job),

LENGTH(ename),

INSTR(ename, ‘A’)

FROM emp

WHERE SUBSTR(job, 1, 5) = ‘SALES’ ;

Ename Concat(ename,job) Length(ename) Instr(ename,'a')

Allen Allensalesman 5 1

Ward Wardsalesman 4 2

Martin Martinsalesman 6 2

Turner Turnersalesman 6 0

Self Assessment

Fill in the blanks:

2. function converts mixed case or uppercase character string lo lowercase.

3. function locates numeric position of a named character.

7.3 Keyboard Message Processing

A window obtains keyboard input as keystroke messages and character messages. Keystroke
messages handle window behavior and character messages verify the text that is exhibited in a
window.

Windows Embedded CE produces a WM_KEYDOWN or a WM_SYSKEYDOWN message when
the user presses a key. If the user holds a key down long enough to begin automatic repeat
functionality, the system produces repeated WM_KEYDOWN or WM_SYSKEYDOWN messages.
When the user releases a key, the system produces a WM_KEYUP or a WM_SYSKEYUP message.

The system creates a dissimilarity between system keystrokes and nonsystem keystrokes. System
keystrokes generate system keystroke messages, like WM_SYSKEYDOWN and WM_SYSKEYUP.
Nonsystem keystrokes generate nonsystem keystroke messages, like WM_KEYDOWN and
WM_KEYUP.

A system keystroke message is produced when the user types a key in amalgamation with the
ALT key or when the user types a key and the focus is NULL. If the focus is NULL, the keyboard
event is transported to the active window. A system keystroke message has the WM_SYS prefix
in the message name. A system keystroke message is used chiefly by the system rather than by
an application. The system uses such a message to offer its incorporated keyboard interface to
menus and to allow the user to manage which window is active. If a window procedure processes
a system keyboard message, the window procedure should pass the message to the
DefWindowProc function. Or else, all system operations that include the ALT key are disabled
whenever that window has the keyboard focus.

The window procedure of the window that has the keyboard focus obtains all keystroke messages.
Though, an application that reacts to keyboard input usually processes WM_KEYDOWN messages
only.

LOVELY PROFESSIONAL UNIVERSITY 107

Unit 7: Character Sets, Fonts and the Keyboard

NotesWhen the window procedure obtains the WM_KEYDOWN message, it should inspect the virtual-
key code that accompanies the message to find out how to process the keystroke. The virtual-
key code is included in the wParamparameter of the message.

The lParam parameter of a keystroke message includes additional data regarding the keystroke
that produced the message. The following table displays the additional keystroke data that is
needed by the lParam parameter.

Data Description

Context code The value is 1 if the ALT key was pressed or 0 if the pressed key was released.

Previous key state The value is 1 if the pressed key was down before or 0 if the pressed key was
up before. The value is 1 for WM_KEYDOWN and WM_SYSKEYDOWN
keystroke messages that were produced by automatic repeat functionality.

Repeat count States the number of times that the keystroke was repeated as a result of the
user holding down the key.

Scan code Provides the hardware-dependent key scan code.

Transition state The value is 1 if the key was released or if the key was pressed.

Usually, an application processes only the keystrokes that are produced by noncharacter keys.

Example: The following code example displays the window procedure framework that
a usual application uses to obtain and process keystroke messages.

case WM_KEYDOWN:

 switch (wParam)

 {

 case VK_HOME:

 // Insert code here to process the HOME key

 // ...

 break;

 case VK_END:

 // Insert code here to process the END key

 // ...

 break;

 case VK_INSERT:

 // Insert code here to process the INS key

 // ...

 break;

 case VK_F2:

 // Insert code here to process the F2 key

 // ...

 break;

108 LOVELY PROFESSIONAL UNIVERSITY

Windows Programming

Notes case VK_LEFT:

 // Insert code here to process the LEFT ARROW key

 // ...

 break;

 case VK_RIGHT:

 // Insert code here to process the RIGHT ARROW key

 // ...

 break;

 case VK_UP:

 // Insert code here to process the UP ARROW key

 // ...

 break;

 case VK_DOWN:

 // Insert code here to process the DOWN ARROW key

 // ...

 break;

 case VK_DELETE:

 // Insert code here to process the DELETE key

 // ...

 break;

 default:

 // Insert code here to process other noncharacter keystrokes

 // ...

 break;

 }

Task Make distinction between WM_KEYDOWN and WM_KEYUP messages.

Self Assessment

Fill in the blank:

4. A system keystroke message is produced when the user types a key in amalgamation with
the ALT key or when the user types a key and the focus is

LOVELY PROFESSIONAL UNIVERSITY 109

Unit 7: Character Sets, Fonts and the Keyboard

Notes7.4 WM_CHAR Message

WM_CHAR message is posted to the window with the keyboard focus when a WM_KEYDOWN
message is converted by the Translate Message function.

The WM_CHAR message includes the character code of the key that was pressed.

#define WM_CHAR 0x0102

7.4.1 Parameters

wParam: It is the character code of the key.

lParam: The repeat count, scan code, extended-key flag, context code, previous key-state flag,
and transition-state flag, as displayed in the following table.

Bits Meaning

0-15 The repeat count for the existing message. The value is the number of times the keystroke
is auto repeated as a consequence of the user holding down the key. If the keystroke is
held long enough, numerous messages are sent. However, the repeat count is not
cumulative.

16-23 The scan code. The value relies on the OEM.

24 Signifies whether the key is an extended key, like the right-hand ALT and CTRL keys that
appear on an enhanced 101- or 102-key keyboard. The value is 1 if it is an extended key; or
else, it is 0.

25-28 Reserved; do not use.

29 The context code. The value is 1 if the ALT key is held down while the key is pressed; or
else, the value is 0.

30 The previous key state. The value is 1 if the key is down before the message is sent, or it is
0 if the key is up.

31 The transition state. The value is 1 if the key is being released, or it is 0 if the key is being
pressed.

7.4.2 Return Value

An application should return zero if it processes this message.

Remarks

The WM_CHAR message utilizes Unicode Transformation Format (UTF)-16.

Since there is not necessarily a one-to-one correspondence among keys pressed and character
messages produced, the information in the high-order word of the lParam parameter is usually
not useful to applications. The information in the high-order word applies only to the most
recent WM_KEYDOWN message that precedes the posting of the WM_CHAR message.

For improved 101- and 102-key keyboards, extensive keys are the right ALT and the right CTRL
keys on the chief section of the keyboard; the INS, DEL, HOME, END, PAGE UP, PAGE DOWN
and arrow keys in the clusters to the left of the numeric keypad; and the divide (/) and ENTER
keys in the numeric keypad. Some other keyboards may sustain the extended-key bit in the
lParam parameter.

The WM_UNICHAR message is the similar as WM_CHAR, except it utilizes UTF-32. It is
intended to send or post Unicode characters to ANSI windows, and it can manage Unicode
additional Plane characters.

110 LOVELY PROFESSIONAL UNIVERSITY

Windows Programming

Notes Self Assessment

Fill in the blanks:

5. message is posted to the window with the keyboard focus when a
WM_KEYDOWN message is converted by the Translate Message function.

6. is the character code of the key.

7.5 System Key Messages and Dead Characters

Some non-English keyboards enclose character keys that are not predictable to generate characters
by themselves. Rather, they are used to add a diacritic to the character generated by the consequent
keystroke. These keys are known as dead keys.

Example: The circumflex key on a German keyboard is an example of a dead key.

To enter the character including an “o” with a circumflex, a German user would type the circumflex
key followed by the “o” key. The window with the keyboard focus would obtain the following
series of messages:

WM_KEYDOWN

WM_DEADCHAR

WM_KEYUP

WM_KEYDOWN

WM_CHAR

WM_KEYUP

TranslateMessage produces the WM_DEADCHAR message when it processes the
WM_KEYDOWN message from a dead key. Even though the wParam parameter of the
WM_DEADCHAR message includes the character code of the diacritic for the dead key, an
application usually overlooks the message. Rather, it processes the WM_CHAR message
produced by the subsequent keystroke. The wParam parameter of the WM_CHAR message
comprises the character code of the letter with the diacritic. If the subsequent keystroke produces
a character that cannot be combined with a diacritic, Windows produces two WM_CHAR
messages. The wParam parameter of the first comprises the character code of the diacritic; the
wParamparameter of the second includes the character code of the subsequent character key.

The TranslateMessage function produces the WM_SYSDEADCHAR message when it processes
the WM_SYSKEYDOWN message from a system dead key (a dead key that is pressed in
amalgamation with the ALT key).

Did u know? An application in general overlooks the WM_SYSDEADCHAR message.

Self Assessment

Fill in the blank:

7. TranslateMessage produces the WM_DEADCHAR message when it processes the
WM_KEYDOWN message from a key.

LOVELY PROFESSIONAL UNIVERSITY 111

Unit 7: Character Sets, Fonts and the Keyboard

Notes7.6 Implementing a Simple Keyboard Interface

The .NET Framework Windows Form client is a huge platform for providing a rich, interactive
and receptive user interface. The rich interface of a WinForm client, correctly constructed, can
propose productivity advantages to the information worker far and above other standard
architectures. There are many reasons for augmented productivity but one reason occurs from
how simple it is to influence the keyboard in a WinForm client.

The Microsoft .NET Framework occurs packaged with all the building blocks to execute a
keyboard interface in a WinForm application.

Remember that constancy is critical when implementing any interface, particularly a keyboard
interface. Just as simple as it is to augment productivity with the keyboard, it is even simpler to
reduce productivity by implementing a badly thought out and conflicting keyboard interface.

Example: If the F1 key pulls up a search box in one form of the application, and removes
records in another form it can be harmful to the application all together. This is why the approaches
discussed will concentrate on keeping the keyboard interface reliable while at the same time
make the job of implementing the interface painless and competent for the .NET developer.

At the fundamental level capturing and taking action off of a keyboard command is easy and
uncomplicated. By managing one of a few keyboard events (KeyDown, KeyUp, or KeyPress) on
almost any WinForm .NET Control, keystrokes can be captured and suitable action taken. The
severe problem with this is that the keyboard event would have to be managed individually for
every control on the form to confirm that keyboard commands were always captured. It means
that if a form had 5 buttons, 5 events would have to be managed and coded. This is neither
practical nor competent for the .NET Developer and so causes the requirement to handle the
keyboard events at the form level, in spite of what control has focus. The following discusses
how to implement an event handler on the form that captures keystrokes.

Open Microsoft Visual Studio and generate a new Windows Form Application. Position 2 textbox
controls and 2 button controls on the form. Open up the properties panel for the default form
and rename the form to “MainForm”. There is then a property on the form to set to true that is
by default, false. The ‘KeyPreview’ property on the form causes keyboard events fired on controls
on the form to be recorded with the form first. By managing the events at the form level it
removes the requirement to handle them independently at the control level. Once the
‘KeyPreview’ property is set to true the subsequent step is to create the event handler on
MainForm to manage the KeyDown event. Double-clicking the KeyDown event in the Properties
window of MainForm will produce the event handler in code. Use the code block below to
inhabit the KeyDown method.

private void MainForm_KeyDown(object sender, KeyEventArgs e)

{

if (e.KeyCode == Keys.Escape)

MessageBox.Show(“Escape Key”, “Keyboard Command”);

else if (e.KeyCode == Keys.F1)

112 LOVELY PROFESSIONAL UNIVERSITY

Windows Programming

Notes MessageBox.Show(“F1 Key”, “Keyboard Command”);

else if (e.KeyCode == Keys.Enter)

MessageBox.Show(“Enter Key”, “Keyboard Command”);

}

The above code exhibits a message box with a message when the Escape, F1 or Enter key is
pressed. Run the application and observe that regardless of what control has focus on the form,
the KeyDown event on the form manages the keyboard command.

Figure 7.2

The KeyEventArgs utilized in the KeyDown event can also be used identify when modifiers are
used (a grouping of keys, such as ‘Ctrl+Alt’) and even control if the keyboard command is
passed down to the primary control.

The problem by means of this approach on each individual form is efficiency for the .NET
Developer. By means of this approach in larger applications with many forms is not only
incompetent but prone to bring in constancy issues. An application with number of forms will
need the .NET Developer to individually setup and configure the keyboard events at a quantifiable
impact to time and cost. This is where implementing an approach to expand .NET Controls and
customizing events occurs in. By merging customized .NET Controls and inheritance the needed
work on the Developer can be decreased while increasing the constancy in the way the keyboard
interface is implemented.

There is another approach to capturing all keystrokes at the main form level. It includes
implementing an IMessageFilter interface on the form level. While this is more effectual in
some cases to capture all keystrokes it does have the potential of degrading performance as
message filters are being added to the message pump for the application.

Self Assessment

Fill in the blank:

8. The ‘.........................’ property on the form causes keyboard events fired on controls on the
form to be recorded with the form first.

LOVELY PROFESSIONAL UNIVERSITY 113

Unit 7: Character Sets, Fonts and the Keyboard

Notes7.7 Selecting a Stock Font

Windows comprises six stock fonts that are always obtainable. The fg_fontload() function states
which stock font fg_print() uses for showing strings. The stock font identifiers and their numeric
equivalents are:

OEM_FIXED_FONT (10)

ANSI_FIXED_FONT (11)

ANSI_VAR_FONT (12)

SYSTEM_FONT (13)

DEVICE_DEFAULT_FONT (14)

SYSTEM_FIXED_FONT (16)

Passing one of these identifiers or its numeric equivalent to fg_fontload() makes that font the
existing font, meaning fg_print() will use it for exhibiting strings.

To select the system font, for example, call fg_fontload(13) or fg_fontload(SYSTEM_FONT). By
default, fg_print() utilizes the OEM_FIXED_FONT because this font most closely looks like the
BIOS font used Fastgraph for DOS. We’ll show an example program that uses fg_fontload() in the
next section.

Self Assessment

Fill in the blank:

9. The function states which stock font fg_print() uses for showing strings.

7.8 Using Logical Fonts

Windows allows you to create additional fonts relying on the stock fonts, or from character
definitions in an external font file. Such fonts are known as logical fonts, and programs frequently
use logical fonts to offer additional typefaces and dissimilar character sizes. The Windows API
functions CreateFont() or CreateFontIndirect() generate logical fonts, and the fg_logfont()
function allows you to use logical fonts in a Fastgraph program.

Example: Logical Fonts

Generating a logical font first includes defining the fields in a LOGFONT structure. In the
Fontdemo example, we perform this at the end of the WM_CREATE handler, filling the LOGFONT
structure with values to generate a 24x12 script font from one of the stock fonts. The WM_CREATE
handler then passes this structure to the Windows API function CreateFontIndirect(), which
returns a handle of type HFONT to the new logical font. We can then pass this font handle to
fg_logfont() to turn on the font for fg_print() in the WM_PAINT handler.

Apart from showing how to create a logical font, the Fontdemo example displays how to use
stock fonts and logical fonts in Fastgraph programs. Its WM_PAINT handler consecutively
activates each of the six stock fonts and calls fg_print() to exhibit the font name by means of each
font (strings are output directly to the client area). It then activates the logical font and again
calls fg_print() to exhibit the text “script font” by means of the logical font. The result appears
like this:

114 LOVELY PROFESSIONAL UNIVERSITY

Windows Programming

Notes

Notes We use fg_fontload() to activate a stock font, but we utilize fg_logfont() to turn on
a logical font.

As displayed in the Fontdemo program’s WM_DESTROY message handler, you should use the
Windows API function DeleteObject() to remove any logical fonts you create. It is not essential
to erase stock fonts.

Self Assessment

Fill in the blanks:

10. The Windows API functions CreateFont() or CreateFontIndirect() generate
fonts.

11. We use fg_fontload() to activate a stock font, but we utilize to turn on a
logical font.

7.9 Text Metric

Text Metric is a font structure contains basic information about a physical font.

typedef struct tagTEXTMETRIC {

 LONG tmHeight;

 LONG tmAscent;

 LONG tmDescent;

 LONG tmInternalLeading;

 LONG tmExternalLeading;

 LONG tmAveCharWidth;

 LONG tmMaxCharWidth;

 LONG tmWeight;

 LONG tmOverhang;

 LONG tmDigitizedAspectX;

LOVELY PROFESSIONAL UNIVERSITY 115

Unit 7: Character Sets, Fonts and the Keyboard

Notes LONG tmDigitizedAspectY;

 char tmFirstChar;

 char tmLastChar;

 char tmDefaultChar;

 char tmBreakChar;

 BYTE tmItalic;

 BYTE tmUnderlined;

 BYTE tmStruckOut;

 BYTE tmPitchAndFamily;

 BYTE tmCharSet;

} TEXTMETRIC;

7.9.1 Members

tmHeight

States the height (ascent descent) of characters.

tmAscent

States the ascent (units above the base line) of characters.

tmDescent

States the descent (units below the base line) of characters.

tmInternalLeading

States the amount of leading (space) inside the bounds set by the tmHeight member. Accent
marks and other diacritical characters may happen in this area. The designer may set this member
to zero.

tmExternalLeading

States the amount of extra leading (space) that the application adds among rows. Since this area
is outside the font, it includes no marks and is not altered by text output calls in either OPAQUE
or TRANSPARENT mode. The designer may set this member to zero.

tmAveCharWidth

States the average width of characters in the font (generally defined as the width of the letter x).
This value does not comprise the overhang needed for bold or italic characters.

tmMaxCharWidth

States the width of the widest character in the font.

tmWeight

Specifies the weight of the font.

tmOverhang

Specifies the extra width per string that may be added to some synthesized fonts. When
synthesizing some attributes, such as bold or italic, graphics device interface (GDI) or a device
may have to add width to a string on both a per-character and per-string basis.

116 LOVELY PROFESSIONAL UNIVERSITY

Windows Programming

Notes
Example: GDI makes a string bold by expanding the spacing of each character and

overstriking by an offset value; it italicizes a font by shearing the string. In either case, there is
an overhang past the basic string. For bold strings, the overhang is the distance by which the
overstrike is offset. For italic strings, the overhang is the amount the top of the font is sheared
past the bottom of the font.

The tmOverhang member enables the application to determine how much of the character
width returned by a GetTextExtentPoint32 function call on a single character is the actual character
width and how much is the per-string extra width. The actual width is the extent minus the
overhang.

tmDigitizedAspectX

Specifies the horizontal aspect of the device for which the font was designed.

tmDigitizedAspectY

Specifies the vertical aspect of the device for which the font was designed. The ratio of the
tmDigitizedAspectX and tmDigitizedAspectY members is the aspect ratio of the device for
which the font was designed.

tmFirstChar

Specifies the value of the first character defined in the font.

tmLastChar

Specifies the value of the last character defined in the font.

tmDefaultChar

Specifies the value of the character to be substituted for characters not in the font.

tmBreakChar

Specifies the value of the character that will be used to define word breaks for text justification.

tmItalic

Specifies an italic font if it is nonzero.

tmUnderlined

Specifies an underlined font if it is nonzero.

tmStruckOut

Specifies a strikeout font if it is nonzero.

tmPitchAndFamily

Specifies information about the pitch, the technology, and the family of a physical font.

Value Description

TMPF_FIXED_PITCH If this bit is set the font is a variable pitch font. If this bit is clear the
font is a fixed pitch font. Observe that those meanings are the
opposite of what the constant name implies.

TMPF_VECTOR If this bit is set, the font is a vector font.

TMPF_TRUETYPE If this bit is set, the font is a TrueType font.

TMPF_DEVICE If this bit is set, the font is a device font.

LOVELY PROFESSIONAL UNIVERSITY 117

Unit 7: Character Sets, Fonts and the Keyboard

NotesThe four low-order bits of this member state information regarding the pitch and the technology
of the font. A constant is defined for each of the four bits.

An application should cautiously test for qualities encoded in these low-order bits, making no
arbitrary assumptions.

Example: Apart from having their own bits set, TrueType and PostScript fonts set the
TMPF_VECTOR bit. A monospace bitmap font has all of these low-order bits clear; a proportional
bitmap font sets the TMPF_FIXED_PITCH bit. A Postscript printer device font sets the
TMPF_DEVICE, TMPF_VECTOR, and TMPF_FIXED_PITCH bits.

The four high-order bits of tmPitchAndFamily assign the font’s font family. An application can
utilize the value 0xF0 and the bitwise AND operator to mask out the four low-order bits of
tmPitchAndFamily, therefore receiving a value that can be directly compared with font family
names to locate an identical match.

tmCharSet

States the character set of the font. The character set is one of the following values:

ANSI_CHARSET DEFAULT_CHARSET

SYMBOL_CHARSET SHIFTJIS_CHARSET

HANGUL_CHARSET GB2312_CHARSET

CHINESEBIG5_CHARSET OEM_CHARSET

JOHAB_CHARSET HEBREW_CHARSET

ARABIC_CHARSET GREEK_CHARSET

TURKISH_CHARSET VIETNAMESE_CHARSET

THAI_CHARSET EASTEUROPE_CHARSET

RUSSIAN_CHARSET MAC_CHARSET

BALTIC_CHARSET

Self Assessment

Fill in the blanks:

12. is a font structure contains basic information about a physical font.

13. states an underlined font if it is nonzero.

7.10 Putting Fonts to Work

7.10.1 Installing OpenType or TrueType Fonts in Windows

We suggest installing only one format — OpenType, TrueType, or PostScript — of a font.
Installing two or more formats of the similar font may cause troubles when you attempt to use,
view, or print the font.

1. Select Start > Settings > Control Panel

Notes In Windows XP, select Start > Control Panel.

118 LOVELY PROFESSIONAL UNIVERSITY

Windows Programming

Notes 2. Double-click the Fonts folder.

3. Select File > Install New Font.

4. Position the fonts you want to install.

 In the Drives list, choose the drive and the folder containing the fonts you want to
install.

 In the Folders list, choose a folder that contains the fonts you want to install. (Ensure
you have unzipped them first.) The fonts in the folder occur under List of Fonts

5. Choose the fonts to install. To choose more than one font, hold down the CTRL key and
click each font.

6. To copy the fonts to the Fonts folder, ensure the Copy fonts to the Fonts folder check box
is selected.

!
Caution If installing fonts from a floppy disk or a CD-ROM, you should ensure this check
box is chosen. Or else, to use the fonts in your applications, you always keep the disk in the
disk drive.

7. Click OK to install the fonts.

7.10.2 Installing PostScript Type 1 Fonts in WindowsXP or 2000

PostScript Type 1 support is built into Windows XP and Windows 2000.

We suggest installing only one format — OpenType, TrueType, or PostScript — of a font.
Installing two or more formats of the similar font may cause troubles when you attempt to use,
view, or print the font.

1. Select Start > Settings > Control Panel

Notes In Windows XP, choose Start > Control Panel

2. Double-click the Fonts folder.

3. Select File > Install New Font.

4. Locate the fonts you want to install.

 In the Drives list, choose the drive and the folder containing the fonts you want to
install.

 In the Folders list, select a folder that contains the fonts you want to install. (Ensure
you have unzipped them first.) The fonts in the folder occur under List of Fonts.

 Choose the fonts to install. To select more than one font, hold down the CTRL key
and click each font.

 To copy the fonts to the Fonts folder, ensure the Copy fonts to the Fonts folder check
box is selected.

LOVELY PROFESSIONAL UNIVERSITY 119

Unit 7: Character Sets, Fonts and the Keyboard

NotesIf installing fonts from a floppy disk or a CD-ROM, you should ensure this check box
is selected. Or else, to use the fonts in your applications, you must always keep the
disk in the disk drive.

 Click OK to install the fonts.

Self Assessment

Fill in the blank:

14. To the fonts to the Fonts folder, ensure the Copy fonts to the Fonts folder
check box is selected.

7.11 Keyboard Accelerators

Accelerators are intimately associated to menus — both offer the user with access to an
application’s command set. Usually, users depend on an application’s menus to study the
command set and then switch over to using accelerators as they turn out to be more capable with
the application. Accelerators offer faster, more direct access to commands than menus do. At a
minimum, an application should supply accelerators for the more frequently used commands.
Eve though accelerators usually generate commands that appear as menu items, they can also
produce commands that have no corresponding menu items.

7.11.1 Accelerator Tables

An accelerator table includes an array of ACCEL structures, each defining an individual
accelerator. Each ACCEL structure involves the following information:

 The accelerator’s keystroke combination.

 The accelerator’s identifier.

 Various flags. This comprises one that states whether the system is to offer visual feedback
by stressing the corresponding menu item, if any, when the accelerator is used.

!
Caution To process accelerator keystrokes for a provided thread, the developer must call
the TranslateAccelerator function in the message loop connected with the thread’s message
queue.

The TranslateAccelerator function monitors keyboard input to the message queue, verifying for
key combinations that match an entry in the accelerator table. When TranslateAccelerator locates
a match, it converts the keyboard input (that is, the WM_KEYUP and WM_KEYDOWN messages)
into a WM_COMMAND or WM_SYSCOMMAND message and then sends the message to the
window procedure of the particular window. The following illustration displays how
accelerators are processed.

The WM_COMMAND message comprises the identifier of the accelerator that caused
TranslateAccelerator to produce the message. The window procedure inspects the identifier to
find out the source of the message and then processes the message consequently.

Accelerator tables survive at two different levels. The system sustains a single, system-wide
accelerator table that applies to all applications. An application cannot amend the system
accelerator table.

120 LOVELY PROFESSIONAL UNIVERSITY

Windows Programming

Notes Figure 7.3

The system also sustains accelerator tables for each application. An application can define any
number of accelerator tables for utilization with its own windows. A unique 32-bit handle
(HACCEL) identifies each table. Though, only one accelerator table can be active at a time for a
particular thread. The handle to the accelerator table passed to the TranslateAccelerator function
identifies which accelerator table is active for a thread. The active accelerator table can be altered
at any time by passing a dissimilar accelerator-table handle to TranslateAccelerator.

7.11.2 Accelerator Table Creation

Several steps are required to create an accelerator table for an application. First, a resource
compiler is used to create accelerator-table resources and to add them to the application's
executable file. At run time, the LoadAccelerators function is used to load the accelerator table
into memory and retrieve the handle to the accelerator table. This handle is passed to the
TranslateAccelerator function to activate the accelerator table.

An accelerator table can also be created for an application at run time by passing an array of
ACCEL structures to the CreateAcceleratorTable function. This method supports user-defined
accelerators in the application. Like the LoadAccelerators function, CreateAcceleratorTable returns
an accelerator-table handle that can be passed to TranslateAccelerator to activate the accelerator
table.

The system automatically destroys accelerator tables loaded by LoadAccelerators or created by
CreateAcceleratorTable. However, an application can free resources while it is running by
destroying accelerator tables no longer needed by calling the DestroyAcceleratorTable function.

An existing accelerator table can be copied and modified. The existing accelerator table is copied
by using the CopyAcceleratorTable function. After the copy is modified, a handle to the new
accelerator table is retrieved by calling CreateAcceleratorTable. Finally, the handle is passed to
TranslateAccelerator to activate the new table.

7.11.3 Accelerator Keystroke Assignments

An ASCII character code or a virtual-key code can be used to define the accelerator. An ASCII
character code makes the accelerator case sensitive. Thus, using the ASCII "C" character defines
the accelerator as ALT+C rather than ALT+c. However, case-sensitive accelerators can be confusing
to use. For example, the ALT+C accelerator will be generated if the CAPS LOCK key is down or
if the SHIFT key is down, but not if both are down.

Typically, accelerators don't need to be case sensitive, so most applications use virtual-key
codes for accelerators rather than ASCII character codes.

LOVELY PROFESSIONAL UNIVERSITY 121

Unit 7: Character Sets, Fonts and the Keyboard

NotesAvoid accelerators that conflict with an application's menu mnemonics, because the accelerator
overrides the mnemonic, which can confuse the user. For more information about menu
mnemonics, see Menus.

If an application defines an accelerator that is also defined in the system accelerator table, the
application-defined accelerator overrides the system accelerator, but only within the context of
the application. Avoid this practice, however, because it prevents the system accelerator from
performing its standard role in the user interface. The system-wide accelerators are described in
the following list:

ALT+ESC Switches to the next application.

ALT+F4 Closes an application or a window.

ALT+HYPHEN Opens the Window menu for a document window.

ALT+PRINT SCREEN Copies an image in the active window onto the clipboard.

ALT+SPACEBAR Opens the Window menu for the application's main window.

ALT+TAB Switches to the next application.

CTRL+ESC Switches to the Start menu.

CTRL+F4 Closes the active group or document window.

F1 Starts the application's help file, if one exists.

PRINT SCREEN Copies an image on the screen onto the clipboard.

SHIFT+ALT+TAB Switches to the previous application. The user must press and hold down
ALT+SHIFT while pressing TAB.

7.11.4 Accelerators and Menus

Using an accelerator is the same as choosing a menu item: Both actions cause the system to send
a WM_COMMAND or WM_SYSCOMMAND message to the corresponding window procedure.
The WM_COMMAND message includes an identifier that the window procedure examines to
determine the source of the message. If an accelerator generated the WM_COMMAND message,
the identifier is that of the accelerator. Similarly, if a menu item generated the WM_COMMAND
message, the identifier is that of the menu item. Because an accelerator provides a shortcut for
choosing a command from a menu, an application usually assigns the same identifier to the
accelerator and the corresponding menu item.

An application processes an accelerator WM_COMMAND message in exactly the same way as
the corresponding menu item WM_COMMAND message. However, the WM_COMMAND
message contains a flag that specifies whether the message originated from an accelerator or a
menu item, in case accelerators must be processed differently from their corresponding menu
items. The WM_SYSCOMMAND message does not contain this flag.

The identifier determines whether an accelerator generates a WM_COMMAND or
WM_SYSCOMMAND message. If the identifier has the same value as a menu item in the System
menu, the accelerator generates a WM_SYSCOMMAND message. Otherwise, the accelerator
generates a WM_COMMAND message.

If an accelerator has the same identifier as a menu item and the menu item is grayed or disabled,
the accelerator is disabled and does not generate a WM_COMMAND or WM_SYSCOMMAND
message. Also, an accelerator does not generate a command message if the corresponding
window is minimized.

122 LOVELY PROFESSIONAL UNIVERSITY

Windows Programming

Notes When the user uses an accelerator that corresponds to a menu item, the window procedure
receives the WM_INITMENU and WM_INITMENUPOPUP messages as though the user had
selected the menu item. For information about how to process these messages, see Menus.

An accelerator that corresponds to a menu item should be included in the text of the menu item.

7.11.5 UI State

Windows enables applications to hide or show various features in its UI. These settings are
known as the UI state. The UI state includes the following settings:

 focus indicators (such as focus rectangles on buttons)

 keyboard accelerators (indicated by underlines in control labels)

A window can send messages to request a change in the UI state, can query the UI state, or
enforce a certain state for its child windows. These messages are as follows.

MessageDescription

WM_CHANGEUISTATE Indicates that the UI state should change.

WM_QUERYUISTATE Retrieves the UI state for a window.

WM_UPDATEUISTATE Changes the UI state.

By default, all child windows of a top-level window are created with the same UI state as their
parent.

The system handles the UI state for controls in dialog boxes. At dialog box creation, the system
initializes the UI state accordingly. All child controls inherit this state. After the dialog box is
created, the system monitors the user's keystrokes. If the UI state settings are hidden and the
user navigates using the keyboard, the system updates the UI state. For example, if the user
presses the Tab key to move the focus to the next control, the system calls WM_CHANGEUISTATE
to make the focus indicators visible. If the user presses the Alt key, the system calls
WM_CHANGEUISTATE to make the keyboard accelerators visible.

If a control supports navigation between the UI elements it contains, it can update its own UI
state. The control can call WM_QUERYUISTATE to retrieve and cache the initial UI state. Whenever
the control receives an WM_UPDATEUISTATE message, it can update its UI state and send a
WM_CHANGEUISTATE message to its parent. Each window will continue to send the message
to its parent until it reaches the top-level window. The top-level window sends the
WM_UPDATEUISTATE message to the windows in the window tree. If a window does not pass
on the WM_CHANGEUISTATE message, it will not reach the top-level window and the UI state
will not be updated.

Self Assessment

Fill in the blanks:

15. An table includes an array of ACCEL structures, each defining an individual
accelerator.

16. The WM_COMMAND message comprises the identifier of the accelerator that caused
......................... to produce the message.

LOVELY PROFESSIONAL UNIVERSITY 123

Unit 7: Character Sets, Fonts and the Keyboard

Notes7.12 Summary

 ANSI Character set is defined list of characters identified by the computer hardware and
software.

 The three case conversion functions are LOWER, UPPER, and INITCAP and the five
character manipulation functions are CONCAT. SUBSTR, LENGTH, INSTR, and LPAD.

 Keystroke messages handle window behavior and character messages verify the text that
is exhibited in a window.

 The lParam parameter of a keystroke message includes additional data regarding the
keystroke that produced the message.

 WM_CHAR message is posted to the window with the keyboard focus when a
WM_KEYDOWN message is converted by the Translate Message function.

 TranslateMessage produces the WM_DEADCHAR message when it processes the
WM_KEYDOWN message from a dead key.

 The fg_fontload() function states which stock font fg_print() uses for showing strings.

 Windows allows you to create additional fonts relying on the stock fonts, or from character
definitions in an external font file. Such fonts are known as logical fonts, and programs
frequently use logical fonts to offer additional typefaces and dissimilar character sizes.

 Text Metric is a font structure contains basic information about a physical font.

 The TranslateAccelerator function monitors keyboard input to the message queue,
verifying for key combinations that match an entry in the accelerator table.

7.13 Keywords

ANSI Character Set: ANSI Character set is defined list of characters identified by the computer
hardware and software.

Lparam: The lParam parameter of a keystroke message includes additional data regarding the
keystroke that produced the message.

Text Metric: Text Metric is a font structure contains basic information about a physical font.

TranslateAccelerator: The TranslateAccelerator function monitors keyboard input to the message
queue, verifying for key combinations that match an entry in the accelerator table.

TranslateMessage: TranslateMessage produces the WM_DEADCHAR message when it processes
the WM_KEYDOWN message from a dead key.

WM_CHAR: WM_CHAR message is posted to the window with the keyboard focus when a
WM_KEYDOWN message is converted by the Translate Message function.

7.14 Review Questions

1. What is ANSI Character Set? Also represent the ANSI Character Set table.

2. What are the different types of character functions? Illustrate.

3. Make distinction between CONCAT and INSTR function with example.

4. Explain the concept of processing keyboard messages.

124 LOVELY PROFESSIONAL UNIVERSITY

Windows Programming

Notes 5. Illustrate the function of WM_CHAR message. Also discuss the parameters.

6. TranslateMessage produces the WM_DEADCHAR message when it processes the
WM_KEYDOWN message from a dead key. Comment.

7. Explain how to implement a Simple Keyboard Interface.

8. What are stock fonts? Also discuss using logical fonts with example.

9. Define text metric. Also illustrate the various members used in this structure.

10. Explain the concept of Keyboard Accelerators. Also illustrate the use of TranslateAccelerator
function.

Answers: Self Assessment

1. ANSI Character set 2. LOWER

3. INSTR 4. INSTR

5. WM_CHAR 6. wParam

7. dead 8. KeyPreview

9. fg_fontload() 10. logical

11. fg_logfont() 12. Text Metric

13. tmUnderlined 14. copy

15. accelerator 16. TranslateAccelerator

7.15 Further Readings

Books Brent E. Rector, Win32 Programming, Addison-Wesley

Charles Petzold, Programming Windows, Charles Petzold

Roger Mayne, Windows and Graphics Programming with Visual C++.NET, World
Scientific

Online link unicode.org/faq/font_keyboard.html

LOVELY PROFESSIONAL UNIVERSITY 125

Unit 8: File I/O

NotesUnit 8: File I/O

CONTENTS

Objectives

Introduction

8.1 How Window Programs access Disk Files?

8.1.1 Opening

8.1.2 Reading, Writing, Closing: Disk Files

8.1.3 Read Disk File into Buffer

8.2 Creating File Selection Dialog Box

8.3 Creating a Text Editor

8.4 Summary

8.5 Keywords

8.6 Review Questions

8.7 Further Readings

Objectives

After studying this unit, you will be able to:

 Scan how windows programs access disk files

 Describe file selection dialog box

 Demonstrate text editor

Introduction

Now that you’ve added several programming statements to your Visual Basic language
repertoire, you can learn about additional controls to add new features to your applications and
to take advantage of some of the more powerful commands you now know. As you learn about
new controls, your programming ability grows by leaps and bounds because your programs
become richer in functionality and user interaction.

Almost every application in Microsoft Windows displays files, directories, and drives to the
user in some fashion. In Visual Basic, files are displayed in a file list box, directories in a
directory list box, and available drives in a drive list box. These controls will increase the
magnitude of your application.

8.1 How Window Programs access Disk Files?

8.1.1 Opening

Sometimes installing new software in Windows can overwrite the file associations for other
software. Graphics programs are notorious for this bad behavior. Fortunately, when it happens,

126 LOVELY PROFESSIONAL UNIVERSITY

Windows Programming

Notes you can follow these steps to change the default file association so that double-clicking a file will
open the program you choose instead of the last program you installed.

1. In Windows Explorer, navigate to a file of the type you want to associate (GIF, JPEG, etc.).

2. Click on its icon once to select it.

3. While holding the shift key down, right click on the icon. (Note: Holding the Shift key
down is not necessary in Windows 2000 and Windows XP.)

4. In the pop-up menu, choose Open With... A box will open asking you to choose a program
to open that file type. If you have a lot of software installed it could take a few moments
for this box to appear.

5. Pick a program from the list.

6. If the program you need isn’t in the list, choose [other] to navigate to another EXE file on
your hard drive.

7. If you always want that program to open these types of files, put a checkmark in the box
that says: Always use this program to open files of this type.

Notes

1. Make sure the program to which you associate a file type is capable of opening that
type of file. Images must be opened in an image editor or viewer, text documents
must be opened in a text editor or word processor, and so on.

2. You can also change file associations in Windows Explorer by going to View >
Folder Options > File Types.

8.1.2 Reading, Writing, Closing: Disk Files

Writing and reading to disk files is accomplished in much the same way as reading and writing
to the screen. The approach taken in C is to associate a stream with the file using fopen, and then
use fprintf and fscanf for reading and writing. These behave exactly like printf and scanf except
that they allow you to specify which stream they operate on (printf always uses stdout, while
scanf uses stdin). When you have finished using the stream you should close it with fclose.

fopen

fopen opens a file and associates a stream with it. (Declared in stdio.h.)

FILE *fopen(char *path, char *mode);

path is a string specifying the name of the file, while mode is a string indicating how the file is
to be opened, typically either “r” to read from the file or “w” to write to it. If the file cannot be
opened for some reason, fopen returns NULL.

FILE *my_file;

/* .. */

my_file = fopen(“datafile.txt”, “r”); /* open datafile.txt for reading */

if (my_file == NULL) {

 fprintf(stderr, “Can’t open datafile.txt for reading”);

LOVELY PROFESSIONAL UNIVERSITY 127

Unit 8: File I/O

Notes exit(1);

}

The stream may be access via fprintf or fscanf, and should be subsequently closed with fclose. (In
windows programs, HaltCL should be used instead of exit.)

fclose

fclose closes a stream previously opened with fopen. (Declared in stdio.h.)

int fclose(FILE *stream);

A simple use of fclose might look like

FILE *my_file;

/* .. */

my_file = fopen(“datafile.txt”, “r”);

/* .. */

fclose(my_file);

fprintf

fprintf is the analogue of printf for use with arbitrary streams. (Declared

in stdio.h.)

int fprintf(FILE *stream, const char *format, ...);

Example: To open a disk-file and write some text to it:

FILE *my_file;

int i;

/* .. */

my_file=fopen(“datafile.txt”,”w”);

fprintf(my_file, “i=%d”, i);

/* .. */

fclose(my_file);

The meaning of the second and subsequent arguments to fprintf are described in printf.

fscanf

fscanf is the analogue of scanf for use with arbitrary streams. (Declared

in stdio.h.)

int fscanf(FILE *stream, const char *format, ...);

Example: To open a disk-file and read some text from it:

FILE *my_file;

int i;

/* .. */

my_file=fopen(“datafile.txt”,”r”);

fscanf(my_file, “%d”, &i); /* read an integer from the file into i */

/* .. */

fclose(my_file);

128 LOVELY PROFESSIONAL UNIVERSITY

Windows Programming

Notes 8.1.3 Read Disk File into Buffer

This command provides you with a variety of options for loading a binary, Intel Hex or Motorola
S-record file into the buffer for viewing, editing or programming.

Command Options and File Load Summary

1. Normal (load at buffer base): This option is provided as a simple method for loading any
file into the buffer. You need only provide a filename and the system will automatically
determine the file type and load it into the buffer. Intel Hex and Motorola S-Record files
are automatically loaded at the addresses specified in the file address records.

2. User defined load address: This option allows you to specify where in the buffer a binary
file will be loaded. You may use this option to load multiple files into the buffer for
editing or programming.

3. User defined base address: This option allows you to specify the base address used by the
buffer. In essence this option allows you to redefine buffer address 0 to be any address
within a 4 gigabyte address space (0-FFFFFFFF). With the buffer base redefined, you may
load hex files with address records located anywhere within a 32 bit physical address
range.

4. 16/32 bit data path: This option allows you to load data for odd/even devices (16 bit data
path) or 0, 1, 2, 3 devices (32 bit data path). This is also called byte split and shuffle. This
option functions for both binary and hex type files.

5. Load sequential hex string: This option allows you to load a sequential string of hex
characters into the buffer. This option originated from requests by users who needed to
enter straight ASCII hex information without load addresses. Files of this type are usually
created by a word processor or text editor.

6. File type: This option allows you to override the automatic file type setting normally used
by the system and force processing of a specific file type (binary, Intel hex or S-record).
This option is only used if the file format is too corrupt or altered for the system to
automatically determine its format.

7. Recall buffer/file data summary: This option will redisplay the file load summary described
at the top of this page.

Notes The command provides a load summary after a file has been processed. The load
summary displays the number of bytes loaded and where in the buffer they were placed.
If a hex file has been processed, the summary will display not only where the data was
loaded, but also where hex data was encountered. If you attempt to load a hex file with
addresses outside the buffer range, the system will show where the hex data was
encountered even though no bytes will be loaded. This is extremely helpful as it tells you
where the data actually needs to be placed. With the information from the summary, you
may use Option 3 to redefine the buffer base address to allow your hex file to actually be
loaded.

LOVELY PROFESSIONAL UNIVERSITY 129

Unit 8: File I/O

NotesSelf Assessment

Fill in the blanks:

1. fopen opens a file and associates a ………………… with it.

2. Path is a string specifying the name of the file, while ………………….. is a string indicating
how the file is to be opened.

3. fscanf is the analogue of scanf for use with ……………………. streams.

4. ………………………… option is provided as a simple method for loading any file into the
buffer.

5. Load sequential hex string option allows you to load a sequential string of hex characters
into the……………………..

8.2 Creating File Selection Dialog Box

In this section, we’ll write code so that your menu items actually do something other than
displaying message boxes. In other words, the Edit > Cut menu will really cut text, and the Edit
> Paste menu will really paste text.

So open up the project you completed for the previous section. Comment out or delete any
message box code.

We’ll start with the File > Open menu.

The Open File Dialogue Box

In most programmes, if you click the File menu, and select the Open item, a dialogue box is
displayed. From the dialogue box, you can click on a file to select it, then click the Open button.
The file you clicked on is then opened up. We’ll see how to do that from our menu.

!
Caution Except, the file won’t open yet - only the dialogue box will display, and then name
of the chosen file.

First, place two textboxes on your form. In the properties box, locate the MultiLine property.
Type some default text for the Text Property of textbox1. Change the Font size to 14 points.

Your form should now look something like this one:

130 LOVELY PROFESSIONAL UNIVERSITY

Windows Programming

Notes

Did u know? What is the use of Open file dialog box?

Use this dialog box to open an existing file from disk. You can also use this dialog box to
open an already opened file using different language encoding options.

We’ll work with these textboxes when we do the Edit menu. So let’s leave them for now.

When we click on File > Open from our menu, we want the Open dialogue box to appear. This
is fairly straightforward in VB.NET. In fact there is even a control for it!

Open up your toolbox, and locate the control called “OpenFileDialog”. You might have to scroll
down to see it. But you’re looking for this:

Double click the control to add one to your project.

Notes But notice that the control doesn’t get added to your form.

It gets added to the area at the bottom, next to your menu control:

The shaded area surrounding the control means that it is selected. If you look on your right,
you’ll see the properties that you can use with the control.

Click on the Name property and change the name to openFD. When you change the name in the
properties box, the name of the control at the bottom will change:

LOVELY PROFESSIONAL UNIVERSITY 131

Unit 8: File I/O

NotesWe’ll now write some code to manipulate the properties of our new control. So do the following:

 Access the code for your File > Open menu item. (To do this quickly, you can simply
double click the Open item on your menu bar. Or, press F7 to access the Code View.)

 Click the name of your menu item from the left drop down box at the top of the code

 Then select the Click event from the drop down box to the right

 Your empty code should be this (the code below has underscore characters added, so that
it can fit on this page):

Private Sub mnuOpen_Click(ByVal sender As Object, _

ByVal e As System.EventArgs) _

Handles mnuOpen.Click

End Sub

With you cursor flashing between the two lines of your code, add the following:

openFD.ShowDialog()

When you typed a full stop after the openFD, you probably saw a list box appear. You can just
double click the ShowDialog() item to add it to your code.

Task To access this dialog box, select Open from the File menu and then choose File.
Analyze.

But this method of the OpenFileDialog control does what you’d expect it to do: Shows the
dialogue box. You can even test it out right now. Press F5 to run your program. Then click the
Open item on your File menu. You should see an Open dialogue box display.

Return to the design environment, and we’ll explore some more things you can do with this
Dialogue box control.

The Initial Directory

You can set which directory the dialogue box should display when it appears. Instead of it
displaying the contents of the “My Documents” folder, for example, you can have it display the
contents of any folder. This done with the Initial Directory property. Amend your code to this:

openFD.InitialDirectory = “C:\”

openFD.ShowDialog()

Run your program again, and see the results in action. You should see the contents of the “C”
folder on your hard drive (if you root folder is called something else, change the code above).

The Title Property

By default, the dialogue box will display the word “Open” as a caption at the top of your
dialogue box. You can change this with the Title property. Add the line in Bold to your code:

openFD.InitialDirectory = “C:\”

openFD.Title = “Open a Text File”

openFD.ShowDialog()

132 LOVELY PROFESSIONAL UNIVERSITY

Windows Programming

Notes Run your code again, and Click File > Open from your menu. You should see this at the top of the
Open dialogue box:

Self Assessment

Fill in the blanks:

6. From the dialogue box, you can click on a file to select it, then click …………………….
button.

7. When we click on File > Open from our menu, we want the …………………… box to
appear.

8.3 Creating a Text Editor

Despite initial appearances, writing a text editor is not a trivial task. Creating text editors takes
programming experience and a firm basis in theory. The internet is littered with hundreds of
unfinished or poorly working text editors. While this topic does not tell you everything you
need to know to write your own text editor, you will learn how to add syntax highlighting and
gain a sense of the overall complexity of undertaking such a project.

Did u know? What you will need for creating text editor?

If you haven’t done so already, download the syntax highlighting package and the
ProgrammerEditorDemo.java that comes with it. If you would like you may browse the
source code for the demo.

Running the Demo

The demo is a very simple text editor:

The demo supports cut, copy, paste, and syntax highlighting, but little else. It doesn’t even open
and save files.

LOVELY PROFESSIONAL UNIVERSITY 133

Unit 8: File I/O

NotesThe Basics

Syntax Highlighting works like this: you give the text to the lexer, it goes through it and gives
it back to you piece by piece and tells you what color to make each piece.

Streams and Readers

The syntax lexers accept your document through Streams and Readers. Fortunately it is very
easy to turn just about anything into a Stream or a Reader. Java comes with many prebuilt
classes for this purpose. A FileReader or a StringReader could be used. The demo uses a custom
DocumentReader.

Tokens

The lexer returns Tokens. Tokens don’t tell you the actual color that the text should be, but they
do give you enough information to figure it out. The token contains such useful information as
the type of text, a description of the text, and the position of the text in the file.

Example: Basic Example

JavaLexer syntaxLexer = new JavaLexer(new StringReader(myDocumentText));

Token t;

while ((t = syntaxLexer.getNextToken()) != null){

 // color the part of the document

 // to which the token refers here.

}

The Demo uses a look-up hashtable to get the color of the text based on the description from the
token.

SimpleAttributeSet style;

style = new SimpleAttributeSet();

StyleConstants.setFontFamily(style, “Monospaced”);

StyleConstants.setFontSize(style, 12);

StyleConstants.setBackground(style, Color.white);

StyleConstants.setForeground(style, Color.black);

StyleConstants.setBold(style, false);

StyleConstants.setItalic(style, false);

styles.put(“body”, style);

style = new SimpleAttributeSet();

StyleConstants.setFontFamily(style, “Monospaced”);

StyleConstants.setFontSize(style, 12);

StyleConstants.setBackground(style, Color.white);

StyleConstants.setForeground(style, Color.blue);

134 LOVELY PROFESSIONAL UNIVERSITY

Windows Programming

Notes StyleConstants.setBold(style, true);

StyleConstants.setItalic(style, false);

styles.put(“tag”, style);

...

The section of text in the document is then colored according to the style retrieved from the
look-up table.

document.setCharacterAttributes(

 t.getCharBegin(),

 t.getCharEnd()-t.getCharBegin(),

 getStyle(t.getDescription()),

 true

);

Coloring Parts of the Document

The entire document is colored and it looks good in the editor. You might think that this is the
end of the story. Sadly, its not. Editors are meant to edit documents. The documents change. The
obvious approach is to re-color the document when the text changes. This may work for small
documents, but as the document size gets larger it will quickly become unwieldy. For a 1000 line
document, it could take as much as a few seconds to color the entire document. Waiting a few
seconds each time a character is typed does not make for a good text editor.

Notes The trick is that not all of the document needs to be re-colored when something
changes. But how much really needs to be re-colored? Not many editors do this part right.
We have seen editors that re-color the previous three lines and the next three lines. That
approach works most of the time, but it is pretty easy to fool.

Initial State

Every so often the syntax lexer returns to what are known as the initial state. At these times, the
lexer returns a token and continues lexing as if it were at the beginning of the document again.
Since the lexer acts as if it were at the beginning of the document from an initial state, the lexer
could be restarted from this point without effecting the coloring of what comes afterwards. It
can be determined from the last token returned if the lexer is in the initial state after returning
that token.

So that solves half the problem. Just re-color the document from the last initial state. If the user
is only going to append to the end of the document, this solves the problem. We can just keep
track of the last initial state and re-color from there to the end of the document. But what if
something in the middle of the document changes? We really need to keep track of all initial
states so that we can restart the lexer from near anywhere in the document. Then we won’t need
to color the entire rest of the document either. If the lexer returns to an initial state at the same
point that it returned to an initial state the last time, the rest of the document is already colored
correctly.

LOVELY PROFESSIONAL UNIVERSITY 135

Unit 8: File I/O

Notes
Example: The demo keeps the list of initial states in a balanced tree. If desired the

list could be included with the meta data of the document or stored in some other fashion.
Care must be taken when looking at initial positions after start position. If text has been
added or removed from the document, the positions after the addition/removal will have
changed.

Only what is Visible

The initial coloring time for a document may become an issue. One way around this would be
to only color what is visible on the screen. If the user scrolls, then more of the document will
have to be colored as the user scrolls.

Another approach that is used by the demo is to start a separate thread to do the coloring. In this
case, the document coloring happens in the background and the user may modify the document
while that happens.

Self Assessment

Fill in the blanks:

8. The syntax lexers accept your document through Streams and …………………...

9. If the lexer returns to an initial state at the same point that it returned to an initial state the
last time, the rest of the document is already ……………….. correctly.

10. The internet is littered with hundreds of unfinished or poorly working …………………….


Caselet Television anywhere, anytime…

What is the future of television? How is the structure of television programming
going to change? Will people be watching TV rather than Internet TV? How
will TV-on-demand affect the industry?

Listing a series of such questions, Bill Roedy, the former head of MTV Networks
International, confesses that he does not know the answer to these common posers. He
hastens to caution that if anyone tells you they know, you should not believe them.
“Nobody knows for sure. The architecture of the business is changing and every media
company is grappling with it. This kind of earthquake can destroy great companies but it
also provides tremendous opportunities. There are huge shifts in the wind and the goal is
to catch that wind and go with it,” writes Roedy in ‘What Makes Business Rock: Building
the world’s largest global networks’ (www.wiley.com).

Delivery Systems have Changed

Looking back, the author notes that the basic concept behind all of the media world has
not changed – viz. the ability to send pictures and sound through the air so countless
people can see and hear them at precisely the same time. However, what has changed, and
is continuing to change, are the delivery systems, the way content is distributed and the
ability of a viewer to choose what and when they want to see, he adds.

Contd...

136 LOVELY PROFESSIONAL UNIVERSITY

Windows Programming

Notes

Contd...

An apt quote cited in the book is of Judy McGrath, the former MTV CEO, that everybody
who is making TV content now is thinking about Twitter, Facebook, and some sort of
social media connection. The biggest question, according to her, is what kind of content
would be successful on the widest variety of platforms. And the answer, as she sees it, is to
either aim for the stars or aim for the cool, influential fringe. “The big things are getting
bigger, the small things need to be cool and influential, and the middle, the average
programming, that’s over.”

The World in your Pocket

Going forward the buzzword is mobile, avers Roedy. Reminding that the television
industry used to brag that it could bring the world into your living room, which by itself
was quite extraordinary, he says that now the industry can put the world in your pocket,
by delivering content to a BlackBerry, iPod, iPad, and eventually every mobile device,
sticking to the pervasive theme of television anywhere, anytime.

An example mentioned in the book is smart TV, that is, a television capable of accessing
the Internet. “In the past TVs were sold as cable-ready, but in 2010, 21 per cent of the TVs
sold to consumers were Internet-enabled. The technology is evolving and there are still
difficulties to be resolved like ease of navigation and eliminating the keyboard, but in the
past technology has been able to overcome every hurdle.”

Foreseeing that gradually all TVs will evolve into a combination of television and computer,
Roedy explains that in such a scenario Internet services and websites like Twitter, Netflix,
Google TV, Apple TV, and Amazon’s streaming service are all going to be available on the
living room television, as well as on smartphones and tablets.

Insatiable Need for Content

On the challenge of distribution faced by content providers, the author observes that the
traditional business model of providing content to the cable system operators and the
direct-to-home operators has become complicated owing to the proliferation of distribution
platforms, the only thing common being the insatiable need for content. Reminisces
Roedy that only a few years ago many people were writing off content, believing that the
ability of people to upload material to the Internet would result in a world of user-
generated content. “That was the original appeal of YouTube. User-generated content is
available now and some of it is very good.”

Suggesting, for instance, that if you would like to find someone who sings like a young
Beyoncé or a newer Beyoncé, there are sites that will lead you to her, the author underlines
that the vast majority of the audience wants Beyoncé – not a younger or newer version, but
the real thing. The lesson that he draws is that professionally produced storytelling remains
by far the most popular programming across the entire spectrum of platforms, from cable
TV to mobile phones. “The most-often viewed videos on YouTube, for example, are
highly produced materials that either are pirated or licensed, a trend that I believe will
continue.”

Choice of Viewing Windows

In the author’s opinion, the most serious challenge facing content providers is figuring
out which distribution services in what form produce the best revenue stream. “The
equation is what screens among all the possible distribution methods to license with how

LOVELY PROFESSIONAL UNIVERSITY 137

Unit 8: File I/O

Notes

Contd...

much content, and under what terms and conditions. On top of all that, you have to
determine what kind of viewing windows will allow you to best protect the basic product,
the channel.”

Instructive is the example given in the book of the 2011 deal between Viacom and Hulu, a
website that runs TV content for free to viewers after it has aired and profits from advertising,
and Hulu Plus, which offers a greater variety of programming and charges subscription
fees. “A key point in that deal was a 21-day window. Unique in that agreement was the
provision that Hulu Plus would wait 21 days after Viacom’s most popular shows, Jersey
Shore for example, are initially broadcast before making them available online. Nobody
yet knows if 21 days is the correct model, but it’s just another step in this evolutionary
process.”

With too many unknowns in the uncharted territory of newer platforms, mistakes can
happen by moving forward too quickly or by waiting too long, warns Roedy. A case he
cites is of Starz, a collection of pay TV channels, which licensed its programming to Netflix
in 2008 for three years for a total of $25 million, essentially giving it away. “In contrast, in
2010 the Viacom-led partnership with MGM and Lionsgate, Epix, licensed its 3,000-plus
movie titles to Netflix for five years for almost a billion dollars.”

Sustainability of Subscriber Base

What can be ominous to the cable TV industry is the threat posed by alternative delivery
systems to the sustainability of subscriber base. The industry loses business when the
consumer cancels his/her cable subscription to receive content through the Internet. Called
‘cord cutting,’ the impact of this phenomenon is evident from these numbers, from the US
market: “It’s not unusual for an American to be paying as much as $150 a month to the
cable company for the media triple play, cable TV, a broadband connection, and a phone
service. But by subscribing to Netflix for less than $10 monthly, paying separately for
broadband for less than $50, and using an Internet phone operator, that same consumer
can cut his or her costs by about half.”

Estimates given in the book speak of 14 per cent of televisions connected to the Internet in
2010; and of the percentage rising to 38 by 2014. “In the second quarter of 2010 the cable
industry lost 216,000 subscribers. They just went away. In the third quarter an additional
120,000 left.”

It may be heartening to the cable industry that the price advantage enjoyed by the
competition may eventually erode. “For example, Netflix’ $25 million deal with Starz
expires in 2012 – and renewing it will be very expensive, so Netflix’ cost of content is
going to rise rapidly, costs it will have to pass along to its customers. It’s possible that
Netflix one day will be as expensive as cable TV… But certainly, with advertising and
subscription revenues of $150 billion the cable TV industry will do everything possible to
protect its revenue stream.”

Three Priorities

And the cable industry has not been complacent, one learns, what with the series of
capability upgrades that have happened in the mature geographies, in the form of HD,
TVR, wireless, and VoD. “In addition, cable operators are increasingly broadband
connection providers: by the beginning of 2011, 54 per cent of Internet connections were
provided by those companies.”

138 LOVELY PROFESSIONAL UNIVERSITY

Windows Programming

Notes The book has a snatch of insight from Mike Fries, the president and CEO of John Malone’s
Liberty Global, the largest cable company outside the US, that 99 per cent of all television
is still viewed on the living room TV set and that half the revenue of the industry today
comes from IP services that did not exist a decade ago.

To take the pace of innovations to the next level, and to keep subscribers from cutting the
cord, Fries prescribes three things: “Connect our content to other devices, including PCs,
tablets, and smartphones; bring third-party online content and apps to the TV; and
revolutionise the user interface and experience.”

Educative read that can add whole new perspectives to your otherwise routine TV viewing.

8.4 Summary

 Sometimes installing new software in Windows can overwrite the file associations for
other software. Graphics programs are notorious for this bad behavior.

 Fortunately, when it happens, you can follow these steps to change the default file
association so that double-clicking a file will open the program you choose instead of the
last program you installed.

 In this section, we’ll write code so that your menu items actually do something other than
displaying message boxes.

 In other words, the Edit > Cut menu will really cut text, and the Edit > Paste menu will
really paste text.

 So open up the project you completed for the previous section. Comment out or delete any
message box code.

 Despite initial appearances, writing a text editor is not a trivial task. Creating text editors
takes programming experience and a firm basis in theory.

 The internet is littered with hundreds of unfinished or poorly working text editors.

8.5 Keywords

FTP: File Transfer Protocol

Tokens: The token contains such useful information as the type of text, a description of the text,
and the position of the text in the file.

8.6 Review Questions

1. Sometimes installing new software in Windows can overwrite the file associations for
other software. Explain.

2. The stream may be access via fprintf or fscanf, and should be subsequently closed with
fclose. Discuss.

3. Intel Hex and Motorola S-Record files are automatically loaded at the addresses specified
in the file address records. Examine.

4. In most programmes, if you click the File menu, and select the Open item, a dialogue box
is displayed. Give Reasons.

5. The name of this location (“Personal” or “My Documents”) depends on your operating
system version. Discuss.

LOVELY PROFESSIONAL UNIVERSITY 139

Unit 8: File I/O

Notes6. If you select multiple files, File Name displays each selected file within quotation marks.
Comment.

7. The lexer returns a token and continues lexing as if it were at the beginning of the document
again. Explain.

8. Tokens don’t tell you the actual color that the text should be, but they do give you enough
information to figure it out. Explain with examples.

Answers: Self Assessment

Fill in the blanks:

1. Stream 2. Mode

3. Arbitrary 4. Normal (load at buffer base)

5. Buffer 6. TheOpen

7. Open dialogue 8. Readers

9. Colored 10. Text editors

8.7 Further Readings

Books Charles Petzold, Programming Windows, Microsoft Press

Feng Yuan, Windows Graphics Programming: Win32 GDI and DirectDraw, Prentice
Hall Professional

Herbert Schildt, Windows Programming: Annotated Archives, Osborne/McGraw-
Hill

William H. Murray, Chris H. Pappas, Windows 3.1 Programming, Osborne McGraw-
Hill

Online links http://en.wikipedia.org/wiki/Text_editor

http://en.wikipedia.org/wiki/Dialog_box

140 LOVELY PROFESSIONAL UNIVERSITY

Windows Programming

Notes Unit 9: Child and Pop Up Windows

CONTENTS

Objectives

Introduction

9.1 Creating a Child Window

9.2 Sending Messages to Child Windows

9.2.1 Child Windows

9.2.2 Relationship to Parent Window

9.2.3 Messages

9.3 Fixed Child Windows

9.4 Pop Up Windows

9.5 Summary

9.6 Keywords

9.7 Review Questions

9.8 Further Readings

Objectives

After studying this unit, you will be able to:

 Understand creating a child window

 Discuss sending messages to child window

 Discuss fixed child windows

 Understand pop up windows

Introduction

xWindow helps to maintain child (popup) windows, especially when you need multiple child
windows and each window needs different features. You can then have different sets of links
which will open in their own customized windows.

The window is opened the first time you call the object’s load() method. When you call the
object’s load() method you pass it a URL. If the window is not open it is opened with the
parameters you initially preset when creating the xWindow object and the page at the URL is
then loaded into the window. If the window is already open then the page at the URL is loaded
into the window. The window is then focused (brought to the top).

xWindow will work in almost any Javascript-enabled browser including NN4. xWindow is part
of the X library.

9.1 Creating a Child Window

How to create a ChildWindow Login Popup for Windows Phone 7?

LOVELY PROFESSIONAL UNIVERSITY 141

Unit 9: Child and Pop Up Windows

NotesAfter struggling with a navigation issue in my app of when to show/go to/return from the
Settings page that captured the user name and password, I decided to pop up a window on any
page where and when credentials were necessary but not currently known. Since I knew I was
going to add more credential-requiring pages in my app, using a popup allowed me to reduce
my dependency on navigation silliness between the pages, and have a more encapsulated design.

This will show you how to pop up a ChildWindow on the app page to grab the user’s login
credentials. The control allows the old username and password to be passed into the control so
that previous values can appear. The tab order/enter key switches from textbox to textbox to
button.

The sample application included in this post just displays the results on the calling page.

Childwindow Control Reference

The LoginChildWindow inherits from System.Windows.Controls.ChildWindow so you must
add that as a reference.

Loginchildwindow.xaml

<tk:ChildWindow x:Class= “LoginChildWindow.LoginChildWindow”

xmlns=“http://schemas.microsoft.com/winfx/2006/xaml/presentation”

xmlns:x=“http://schemas.microsoft.com/winfx/2006/xaml”

xmlns:d=“http://schemas.microsoft.com/expression/blend/2008”

142 LOVELY PROFESSIONAL UNIVERSITY

Windows Programming

Notes xmlns:mc=“http://schemas.openxmlformats.org/markup-compatibility/2006”

xmlns:tk=“clr

namespace:System.Windows.Controls;assembly=System.Windows.Controls”

mc:Ignorable=“d”

VerticalAlignment=“Top”

HorizontalAlignment=“Left”

Title=“Login”

BorderBrush=“Black”

BorderThickness=“2”

FontFamily=“{StaticResource PhoneFontFamilyNormal}”

FontSize=“{StaticResource PhoneFontSizeNormal}”

Foreground=“{StaticResource PhoneAccentBrush}”

d:DesignHeight=“256” d:DesignWidth=“480”

HasCloseButton=“false”>

<Grid x:Name=“LayoutRoot” Height=“202" Background=”{StaticResource

PhoneBackgroundBrush}”>

<TextBlock HorizontalAlignment=“Left” TextWrapping=“Wrap” Text=”User:

“VerticalAlignment=“Top” Margin=“20,43,0,0"/>

<TextBlock HorizontalAlignment=“Left” TextWrapping=“Wrap” Text=“Password:”

VerticalAlignment=“Top” Margin=“20,104,0,0”/>

<TextBox x:Name=“txtUserId” VerticalAlignment=“Top” Margin=“117,23,8,0”

Height=“62” FontSize=“18.667” TabIndex=“1” KeyUp=“txtUserId_KeyUp”/>

<PasswordBox x:Name=“txtPassword” VerticalAlignment=“Top”

Margin=“117,85,8,0” Height=“62” FontSize=“18.667” TabIndex=“2”

KeyUp=“txtPassword_KeyUp” MouseLeftButtonUp=“txtPassword_MouseLeftButtonUp”/

>

<Button x:Name=“btnLogin” Content=“Login” Margin=“117,132,214,0”

d:LayoutOverrides=“Width” Click=“btnLogin_Click” FontSize=“18.667”

BorderBrush=“{StaticResource PhoneAccentBrush}” BorderThickness=“1”

Foreground=“{StaticResource PhoneForegroundBrush}”

Background=“{StaticResource PhoneInactiveBrush}” Height=“58”

VerticalAlignment=“Top” FontFamily=“Tahoma” TabIndex=“3” />

<!—<Button x:Name=“btnCancel” Content=“Cancel” HorizontalAlignment=“Left”

Margin=“232,132,0,0” VerticalAlignment=“Top” FontSize=“18.667”

BorderBrush=“{StaticResource PhoneAccentBrush}” BorderThickness=“1”

Foreground=“{StaticResource PhoneForegroundBrush}”

Background=“{StaticResource PhoneInactiveBrush}” Height=“58”

FontFamily=“Tahoma” Click=“btnCancel_Click” />—>

</Grid>

</tk:ChildWindow>

VerticalAlignment and HorizontalAlignment are set so that the window appears at the top of
the screen. Without them, on my HD7, the on-screen keyboard overlays the child window and
the user plays a game of tapping the control then the keyboard to get to the right place. I used
system fonts so that the control will work with the phone’s current settings. If your app uses
custom settings, you will need to change these. The cancel button, which is usually next to the
login button, has been commented out on purpose.

LOVELY PROFESSIONAL UNIVERSITY 143

Unit 9: Child and Pop Up Windows

Notes

Notes In my app, the login credentials are vital and canceling makes no sense. The user
can always back button or start button away from the app, if they choose. The child
window’s upper right corner cancel (icon of small x) is also removed via
HasCloseButton=”false” for the same reason.

Loginchildwindow.xaml.cs

 using System;

 using System.Collections.Generic;

 using System.Linq;

 using System.Net;

 using System.Windows;

 using System.Windows.Controls;

 using System.Windows.Documents;

 using System.Windows.Input;

 using System.Windows.Media;

 using System.Windows.Media.Animation;

 using System.Windows.Shapes;

 namespace LoginChildWindow

 {

 public partial class LoginChildWindow : ChildWindow

 {

 public string Login { get; set; }

 public string Password { get; set; }

 public LoginChildWindow()

 {

 InitializeComponent();

 }

 protected override void OnOpened()

 {

 base.OnOpened();

 this.txtUserId.Text = this.Login;

 }

 private void btnLogin_Click(object sender, RoutedEventArgs e)

 {

 // test values

144 LOVELY PROFESSIONAL UNIVERSITY

Windows Programming

Notes if ((txtUserId.Text == null) || (txtPassword.Password ==

null))

 {

 MessageBox.Show(“WP7: Username & Password must be filled

 in before logging on.”);

 //this.DialogResult = false;

 }

 if ((txtUserId.Text.Trim() == string.Empty) ||

 (txtPassword.Password.Trim() == string.Empty))

 {

 MessageBox.Show(“WP7: Username & Password must be filled

 in before logging on.”);

 //this.DialogResult = false;

 }

 else if (txtUserId.Text.Trim().Length < 2)

 {

 MessageBox.Show(“WP7: Invalid username or password. Be

sure to use the WAZUp website login, not the Windows

Azure login.”);

 //this.DialogResult = false;

 }

 else

 {

 // values are good so close this childwindow

 this.Login = this.txtUserId.Text.Trim();

 this.Password = this.txtPassword.Password.Trim();

 this.DialogResult = true;

 }

 }

 //private void btnCancel_Click(object sender, RoutedEventArgse)

 //{

 // this.DialogResult = false;

 //}

 private void txtUserId_KeyUp(object sender, KeyEventArgs e)

 {

 if (e.Key == Key.Enter)

 {

 if (txtPassword.Password.Length == 0)

 {

 txtPassword.Focus();

 }

 else

 {

LOVELY PROFESSIONAL UNIVERSITY 145

Unit 9: Child and Pop Up Windows

Notes btnLogin_Click(sender, e);

 }

 }

 }

 private void txtPassword_KeyUp(object sender, KeyEventArgs e)

 {

 if (e.Key == Key.Enter)

 {

 btnLogin_Click(sender, e);

 }

 }

 private void txtPassword_MouseLeftButtonUp(object sender,

 MouseButtonEventArgs e)

 {

 btnLogin_Click(sender, e);

 }

 }

 }

The validation routines are shallow. Please use them as a starting point for your own app
requirements. The KeyUp and Mouse events are to make sure the enter button moves the cursor
to the next logical place in the child window. It just saves the customer a step.

Main Page’s Calling Code

 using System;

 using System.Net;

 using System.Windows;

 using System.Windows.Input;

 using Microsoft.Phone.Controls;

 namespace LoginChildWindow

 {

 public partial class MainPage : PhoneApplicationPage

 {

 public string Username { get; set; }

 public string Password { get; set; }

 // Constructor

 public MainPage()

 {

146 LOVELY PROFESSIONAL UNIVERSITY

Windows Programming

Notes Username = “OldUserName”;

 InitializeComponent();

 this.txtBlockUsername.Text = Username;

 }

 private void button1_Click(object sender, RoutedEventArgs e)

 {

 LoginChildWindow loginWindow = new LoginChildWindow();

 loginWindow.Login = Username;

 loginWindow.Closed += new EventHandler(OnLoginChildWindowShow);

 loginWindow.Show();

 }

 private void OnLoginChildWindowShow(object sender, EventArgs e)

 {

 LoginChildWindow loginChildWindow = sender as LoginChildWindow;

 if (loginChildWindow.DialogResult == true)

 {

 this.txtBlockUsername.Text = loginChildWindow.Login;

 this.txtBlockPassword.Text = loginChildWindow.Password;

 //;

 }

 }

 }

 }

While I have included my version of System.Windows.Controls.dll in the app download, please
use your own. I’ve grabbed several in the last six months from various locations and I don’t
know if mine is the right one.

Example:

LOVELY PROFESSIONAL UNIVERSITY 147

Unit 9: Child and Pop Up Windows

NotesThis is an example of creating and attaching a child window, like a toolbox, to the main frame of
an application.

Resource Header

#define IDD_TOOLBOX_DLG 101

#define IDR_MAIN_MENU 102

#define IDM_FILE_EXIT 40001

#define IDM_VIEW_TOOLBOX 40002

Resource Script

#include “resource.h”

///

////

//

// Dialog

//

IDD_TOOLBOX_DLG DIALOG DISCARDABLE 0, 0, 86, 249

STYLE DS_MODALFRAME | WS_CHILD

FONT 8, “MS Sans Serif”

BEGIN

END

///

////

//

// Menu

//

IDR_MAIN_MENU MENU DISCARDABLE

BEGIN

 POPUP “&File”

 BEGIN

 MENUITEM “E&xit”, IDM_FILE_EXIT

 END

 POPUP “&View”

 BEGIN

 MENUITEM “&Toolbox”, IDM_VIEW_TOOLBOX, CHECKED

 END

148 LOVELY PROFESSIONAL UNIVERSITY

Windows Programming

Notes END

///

////

//

// String Table

//

STRINGTABLE DISCARDABLE

BEGIN

 IDM_FILE_EXIT “Closes the application”

 IDM_VIEW_TOOLBOX “Toggles the presence and disappearance of the

toolbox\nShow/Hide Toolbox”

END

#endif // English (U.S.) resources

///

////

Source Code

#include <windows.h>

#include “resource.h”

HINSTANCE hInst;

LPTSTR strAppName = “WndFrame”;

LPTSTR WndName = “Attaching a child window to an application’s frame”;

LPTSTR strToolbox = “WndFloater”;

HWND hWndMainFrame, hWndToolbox;

LRESULT CALLBACK MainWndProc(HWND hWnd, UINT Msg, WPARAM wParam, LPARAM

lParam);

LRESULT CALLBACK ToolboxProc(HWND hWnd, UINT Msg, WPARAM wParam, LPARAM

lParam);

//—————————————————————————————————————

int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,

 LPSTR lpCmdLine, int nCmdShow)

{

 MSG msg;

 RECT rect;

WNDCLASSEX WndClsEx;

LOVELY PROFESSIONAL UNIVERSITY 149

Unit 9: Child and Pop Up Windows

NotesWndClsEx.cbSize = sizeof(WNDCLASSEX);

WndClsEx.style = CS_HREDRAW | CS_VREDRAW;

WndClsEx.lpfnWndProc = MainWndProc;

WndClsEx.cbClsExtra = 0;

WndClsEx.cbWndExtra = 0;

WndClsEx.hIcon = LoadIcon(NULL, IDI_APPLICATION);

WndClsEx.hCursor = LoadCursor(NULL, IDC_ARROW);

WndClsEx.hbrBackground =

static_cast<HBRUSH>(GetStockObject(WHITE_BRUSH));

WndClsEx.lpszMenuName = MAKEINTRESOURCE(IDR_MAIN_MENU);

WndClsEx.lpszClassName = strAppName;

WndClsEx.hInstance = hInstance;

WndClsEx.hIconSm = LoadIcon(NULL, IDI_APPLICATION);

if (!RegisterClassEx(&WndClsEx))

return (FALSE);

 hInst = hInstance;

 hWndMainFrame = CreateWindow(strAppName,

 WndName,

 WS_OVERLAPPEDWINDOW,

 CW_USEDEFAULT,

 CW_USEDEFAULT,

 CW_USEDEFAULT,

 CW_USEDEFAULT,

 NULL,

 NULL,

 hInstance,

 NULL);

 if(!hWndMainFrame)

return (FALSE);

 // Create a child window based on the available dialog box

 hWndToolbox = CreateDialog(hInst,

 MAKEINTRESOURCE(IDD_TOOLBOX_DLG),

 hWndMainFrame,

 (DLGPROC)ToolboxProc);

150 LOVELY PROFESSIONAL UNIVERSITY

Windows Programming

Notes ShowWindow (hWndToolbox, SW_SHOW);

 ShowWindow(hWndMainFrame, nCmdShow);

 while (GetMessage(&msg,NULL, 0,0))

 {

 TranslateMessage(&msg);

 DispatchMessage(&msg);

 }

 return 0;

}

//—————————————————————————————————————

LRESULT CALLBACK ToolboxProc(HWND hWndDlg, UINT Msg, WPARAM wParam, LPARAM

lParam)

{

switch(Msg)

{

case WM_INITDIALOG:

return TRUE;

}

return FALSE;

}

//—————————————————————————————————————

LRESULT CALLBACK MainWndProc(HWND hWnd, UINT Msg,

 WPARAM wParam, LPARAM lParam)

{

HMENU hMenu;

RECT rctMainWnd, rctToolbox;

UINT ToolboxMenuState;

switch(Msg)

{

case WM_COMMAND:

switch(LOWORD(wParam))

{

case IDM_VIEW_TOOLBOX:

hMenu = GetMenu(hWndMainFrame);

ToolboxMenuState = GetMenuState(hMenu,

IDM_VIEW_TOOLBOX, MF_BYCOMMAND);

LOVELY PROFESSIONAL UNIVERSITY 151

Unit 9: Child and Pop Up Windows

Notesif(LOBYTE(ToolboxMenuState) & MF_CHECKED)

{

CheckMenuItem(hMenu, IDM_VIEW_TOOLBOX,

MF_BYCOMMAND | MF_UNCHECKED);

ShowWindow(hWndToolbox, SW_HIDE);

}

else

{

CheckMenuItem(hMenu, IDM_VIEW_TOOLBOX,

MF_BYCOMMAND | MF_CHECKED);

ShowWindow(hWndToolbox, SW_SHOW);

}

break;

case IDM_FILE_EXIT:

PostQuitMessage(WM_QUIT);

return 0;

};

break;

case WM_SIZE:

GetClientRect(hWndMainFrame, &rctMainWnd);

GetWindowRect(hWndToolbox, &rctToolbox);

SetWindowPos(hWndToolbox,

 HWND_TOP,

 rctMainWnd.left,

 rctMainWnd.top,

 rctToolbox.right - rctToolbox.left,

 rctMainWnd.bottom,

 SWP_NOACTIVATE | SWP_NOOWNERZORDER);

break;

case WM_DESTROY:

PostQuitMessage(WM_QUIT);

break;

default:

return DefWindowProc(hWnd, Msg, wParam, lParam);

}

152 LOVELY PROFESSIONAL UNIVERSITY

Windows Programming

Notes
return 0;

}

//—————————————————————————————————————-

Self Assessment

Fill in the blanks:

1. helps to maintain child (popup) windows, especially when you need multiple
child windows and each window needs different features.

2. When you call the object’s load() method you pass it a

3. The inherits from System.Windows.Controls.ChildWindow so you must
add that as a reference

9.2 Sending Messages to Child Windows

9.2.1 Child Windows

A child window has the WS_CHILD style and is confined to the client area of its parent window.
An application typically uses child windows to divide the client area of a parent window into
functional areas. You create a child window by specifying the WS_CHILD style in the
CreateWindowEx function.

A child window must have a parent window. The parent window can be an overlapped window,
a pop-up window, or even another child window. You specify the parent window when you call
CreateWindowEx.

Did u know? If you specify the WS_CHILD style in CreateWindowEx but do not specify a
parent window, the system does not create the window.

9.2.2 Relationship to Parent Window

An application can change the parent window of an existing child window by calling the SetParent
function. In this case, the system removes the child window from the client area of the old parent
window and moves it to the client area of the new parent window. If SetParent specifies a NULL
handle, the desktop window becomes the new parent window. In this case, the child window is
drawn on the desktop, outside the borders of any other window. The GetParent function retrieves
a handle to a child window’s parent window.

The parent window relinquishes a portion of its client area to a child window, and the child
window receives all input from this area. The window class need not be the same for each of the
child windows of the parent window. This means that an application can fill a parent window
with child windows that look different and carry out different tasks.

Example: A dialog box can contain many types of controls, each one a child window that
accepts different types of data from the user.

LOVELY PROFESSIONAL UNIVERSITY 153

Unit 9: Child and Pop Up Windows

Notes

Task Make distinction between child window and parent window.

9.2.3 Messages

The system passes a child window’s input messages directly to the child window; the messages
are not passed through the parent window. The only exception is if the child window has been
disabled by the EnableWindow function. In this case, the system passes any input messages that
would have gone to the child window to the parent window instead. This permits the parent
window to examine the input messages and enable the child window, if necessary.

A child window can have a unique integer identifier. Child window identifiers are important
when working with control windows. An application directs a control’s activity by sending it
messages. The application uses the control’s child window identifier to direct the messages to
the control. In addition, a control sends notification messages to its parent window. A notification
message includes the control’s child window identifier, which the parent uses to identify which
control sent the message.

Notes An application specifies the child-window identifier for other types of child windows
by setting the hMenu parameter of the CreateWindowEx function to a value rather than a
menu handle.

Layered Windows

Using a layered window can significantly improve performance and visual effects for a window
that has a complex shape, animates its shape, or wishes to use alpha blending effects. The system
automatically composes and repaints layered windows and the windows of underlying
applications. As a result, layered windows are rendered smoothly, without the flickering typical
of complex window regions. In addition, layered windows can be partially translucent, that is,
alpha-blended.

To create a layered window, specify the WS_EX_LAYERED extended window style when calling
the CreateWindowEx function, or call the SetWindowLong function to set WS_EX_LAYERED
after the window has been created. After the CreateWindowEx call, the layered window will not
become visible until the SetLayeredWindowAttributes or UpdateLayeredWindow function has
been called for this window.

!
Caution WS_EX_LAYERED cannot be used for child windows.

To set the opacity level or the transparency color key for a given layered window, call
SetLayeredWindowAttributes. After the call, the system may still ask the window to paint when
the window is shown or resized. However, because the system stores the image of a layered
window, the system will not ask the window to paint if parts of it are revealed as a result of
relative window moves on the desktop. Legacy applications do not need to restructure their
painting code if they want to add translucency or transparency effects for a window, because the

154 LOVELY PROFESSIONAL UNIVERSITY

Windows Programming

Notes system redirects the painting of windows that called SetLayeredWindowAttributes into off-
screen memory and recomposes it to achieve the desired effect. For faster and more efficient
animation or if per-pixel alpha is needed, call UpdateLayeredWindow. UpdateLayeredWindow
should be used primarily when the application must directly supply the shape and content of a
layered window, without using the redirection mechanism the system provides through
SetLayeredWindowAttributes. In addition, using UpdateLayeredWindow directly uses memory
more efficiently, because the system does not need the additional memory required for storing
the image of the redirected window. For maximum efficiency in animating windows, call
UpdateLayeredWindow to change the position and the size of a layered window.

!
Caution After SetLayeredWindow Attributes has been called, subsequent
UpdateLayeredWindow calls will fail until the layering style bit is cleared and set again.

Hit testing of a layered window is based on the shape and transparency of the window. This
means that the areas of the window that are color-keyed or whose alpha value is zero will let the
mouse messages through. However, if the layered window has the WS_EX_TRANSPARENT
extended window style, the shape of the layered window will be ignored and the mouse events
will be passed to other windows underneath the layered window.

Message-Only Windows

A message-only window enables you to send and receive messages. It is not visible, has no z-
order, cannot be enumerated, and does not receive broadcast messages. The window simply
dispatches messages.

To create a message-only window, specify the HWND_MESSAGE constant or a handle to an
existing message-only window in the hWndParentparameter of the CreateWindowEx function.
You can also change an existing window to a message-only window by specifying
HWND_MESSAGE in the hWndNewParent parameter of the SetParent function.

To find message-only windows, specify HWND_MESSAGE in the hwndParent parameter of the
FindWindowEx function. In addition, FindWindowEx searches message-only windows as well
as top-level windows if both the hwndParent and hwndChildAfter parameters are NULL.

Task Illustrate the function of message-only window.

Self Assessment

Fill in the blanks:

4. A child window has the style and is confined to the client area of its parent
window.

5. An application can change the parent window of an existing child window by calling the
......................... function.

6. An application directs a control’s activity by sending it

7. A message includes the control’s child window identifier, which the parent
uses to identify which control sent the message.

LOVELY PROFESSIONAL UNIVERSITY 155

Unit 9: Child and Pop Up Windows

Notes8. Using a window can significantly improve performance and visual effects
for a window that has a complex shape, animates its shape, or wishes to use alpha blending
effects.

9. To set the opacity level or the transparency color key for a given layered window, call
......................... Attributes.

10. A window enables you to send and receive messages. It is not visible, has
no z-order, cannot be enumerated, and does not receive broadcast messages.

11. To find message-only windows, specify in the hwndParent parameter of
the FindWindowEx function.

9.3 Fixed Child Windows

[FIXED] Window that opens child Window - Menu displayed behind child

If you have a main Window which opens a child Window and that child Window has a Component
which displays a menu, the menu will appear behind the child Window the first time it is
displayed.

To test, run the code below, click the button, then click the date field trigger. Do not move the
child window in between steps as this will probably alter the child window z-index.

Code:

public static void testPopupBug()

 {

 final Window w = new Window();

 w.setSize(100, 100);

 // On button click, display a new window with a simple date field

 Button b = new Button(“Open new Window with date field”);

 b.addSelectionListener(new SelectionListener<ButtonEvent>() {

 public void componentSelected(ButtonEvent ce)

 {

 final Window popup = new Window();

 popup.setSize(150, 150);

 final LayoutContainer c = new LayoutContainer();

 c.add(new DateField());

 popup.add(c);

 popup.show();

 }

 });

 w.add(b);

156 LOVELY PROFESSIONAL UNIVERSITY

Windows Programming

Notes // Display the main window after a short while

 new Timer()

 {

 @Override

 public void run()

 {

 w.show();

 }

 }.schedule(500);

 }

Self Assessment

Fill in the blank:

12. Window opens child Window - Menu displayed behind child.

9.4 Pop Up Windows

A window that suddenly appears (pops up) when you select an option with a mouse or press a
special function key. Usually, the pop-up window contains a menu of commands and stays on
the screen only until you select one of the commands. It then disappears.

A special kind of pop-up window is a pull-down menu, which appears just below the item you
selected, as if you had pulled it down.

A popup window is a web browser window that is smaller than standard windows and without
some of the standard features such as tool bars or status bars. For instance, this link opens a
medium-sized popup window.

Did u know? Popup windows (aka popups) are popular for small sidebar-style pages that
are digressions from the main page.

Popups are one of the trickiest effects in web development. More than one web developer has
been reduced to tears trying to get popups to work correctly. Furthermore, some irresponsible
popup techniques have made many web pages handicapped and search engine inaccessible.

This topic will walk you step-by-step through creating popup windows, including giving you a
complete set of copy-and-paste JavaScript code. We’ll start with a basic example, showing the
main pieces to a popup. Then we’ll show the techniques for targeting a link inside the popup
back to the main page. Finally we’ll work through the many parameters for the open() command
that adds features to your popups.

Example: Use the Dreamweaver behaviors panel to create small pop-up windows for
ads or news!

This behavior helps to create pop-up ads, small browser windows etc. If you don’t have
Dreamweaver we have provided the code that you can cut ‘n’ paste and use in your web page.

LOVELY PROFESSIONAL UNIVERSITY 157

Unit 9: Child and Pop Up Windows

Notes‘Open Browser Window’ Behavior

This behavior allows you to open a browser window in any size you specify. E.g. Click here to
see a sample.

Code for the Function: Cut ‘n’ Paste Code

<script language=”JavaScript”>

<!—

function MM_openBrWindow(theURL,winName,features) { //v2.0

window.open(theURL,winName,features);

}

//—>

</script>

Code for the Links: Cut ‘n’ Paste Code

<a href=”javascript:;” onClick=”MM_openBrWindow(‘/website_templates/business1/
preview.htm’,’template’,’width=780,height=550')”>Click Here

The above code is taken from Macromedia Dreamweaver 4.0

Learn how to Open a New browser Window in Dreamweaver

1. Open the behaviors panel by clicking on Windows/Behaviors.

2. Select the text that you would like to link to the new browser window.

3. Click on the ‘+’ symbol in the behaviors panel.

4. Click on ‘Open Browser Window’

5. In the ‘Open browser Window’ pop-up-window select the URL and specify the width and
the height of the window. You can also choose if you want a status bar or a scroll bar etc.

6. Click on OK

7. In the behaviors panel under the Events Column you can choose onClick if you want the
browser window to open only when the link is clicked.

Self Assessment

Fill in the blanks:

13. A window that suddenly appears (pops up) when you select an option with a mouse or
press a special function key is called a window.

14. A special kind of pop-up window is a menu, which appears just below the
item you selected, as if you had pulled it down.

15. A popup window is a window that is smaller than standard windows and
without some of the standard features such as tool bars or status bars.

9.5 Summary

 xWindow helps to maintain child (popup) windows, especially when you need multiple
child windows and each window needs different features.

158 LOVELY PROFESSIONAL UNIVERSITY

Windows Programming

Notes  The LoginChildWindow inherits from System.Windows.Controls.ChildWindow so you
must add that as a reference

 A child window has the WS_CHILD style and is confined to the client area of its parent
window.

 An application can change the parent window of an existing child window by calling the
SetParent function.

 The system passes a child window’s input messages directly to the child window; the
messages are not passed through the parent window.

 A notification message includes the control’s child window identifier, which the parent
uses to identify which control sent the message.

 Using a layered window can significantly improve performance and visual effects for a
window that has a complex shape, animates its shape, or wishes to use alpha blending
effects.

 A window that suddenly appears (pops up) when you select an option with a mouse or
press a special function key is called a pop-up window.

9.6 Keywords

Child Window: A child window has the WS_CHILD style and is confined to the client area of its
parent window.

Notification Message: A notification message includes the control’s child window identifier,
which the parent uses to identify which control sent the message.

Pop-up Window: A window that suddenly appears (pops up) when you select an option with a
mouse or press a special function key is called a pop-up window.

XWindow: xWindow helps to maintain child (popup) windows, especially when you need
multiple child windows and each window needs different features.

9.7 Review Questions

1. What do you mean by ‘Child windows’? Illustrate its uses.

2. Can a child window be visible out of the parent’s client area? Enlighten.

3. What will happen to the child Windows, if their parent is destroyed?

4. Illustrate the concept of fixed child windows.

5. What do you mean by Popup Window? Explain.

6. Which window style is used to create a popup window? Illustrate.

7. Where should the message be passed if it is not processed by the message processing logic
in a message function for a child or a popup window?

8. What do you know about WM_USER message?

9. Why we use the Get Parent () function? Explain.

10. Illustrate the steps to create a child window with example.

LOVELY PROFESSIONAL UNIVERSITY 159

Unit 9: Child and Pop Up Windows

NotesAnswers: Self Assessment

1. xWindow 2. url

3. LoginChildWindow 4. WS_CHILD

5. SetParent 6. messages

7. notification 8. layered

9. SetLayeredWindow 10. message-only

11. HWND_MESSAGE 12. [FIXED]

13. pop up 14. pull-down

15. web browser

9.8 Further Readings

Books Brent E. Rector, Win32 Programming, Addison-Wesley

Charles Petzold, Programming Windows, Charles Petzold

Roger Mayne, Windows and Graphics Programming with Visual C++.NET, World
Scientific

Online link cross-browser.com/x/examples/xwindow.php

160 LOVELY PROFESSIONAL UNIVERSITY

Windows Programming

Notes Unit 10: Menus

CONTENTS

Objectives

Introduction

10.1 Creating Menus

10.2 Menu defined as Resource Data

10.3 Creating a Menu using the Borland Resource Workshop

10.4 Complex Menu

10.4.1 Standard Functionality of Shortcut Keys

10.5 Creating a Menu as a Program Operates

10.6 Creating Menu Containing Bitmaps and the System Menu

10.6.1 Creating Menu Containing Bitmaps

10.6.2 The System Menu

10.7 Summary

10.8 Keywords

10.9 Review Questions

10.10 Further Readings

Objectives

After studying this unit, you will be able to:

 Understand the concept of creating menus

 Illustrate Menu defined as resource data

 Discuss creating a menu using the borland resource workshop

 Understand the concept of complex menu

 Recognize how to creating menu containing bitmaps

 Discuss system menu

Introduction

Menus are a very important element of GUIs. We see menus and we use them in practically
every application, whether MS-Word or MS-Excel or Photoshop or even VB. In this unit, we will
focus on creating menus using VB.

10.1 Creating Menus

For getting started with menus, we get going with the Menu Editor. This tool helps us to
effortlessly create a menu interface for our applications, that too in no time. To invoke the menu
editor, we either:

LOVELY PROFESSIONAL UNIVERSITY 161

Unit 10: Menus

Notes1. Click on the toolbar icon for the menu editor

editor

 Or

On

Menu
Editor

Or

2. On the menu bar, click on ‘Tools’

Menu Editor

Editor

Or

Click

here

Or

3. Press ‘Ctrl + E’ (the short-cut for the menu editor).

Whichever option we choose, we get the Menu Editor, shown here:

:

T
This is how we use the Menu Editor:

 In the topmost textbox ‘Caption’ of the figure, we type the ‘Caption’ of the menu, as
the user will be seeing it.

 In the next textbox ‘Name’ of the figure, we type the ‘Name’ of the menu, as the
computer will be seeing it.

 ‘Caption’ and ‘Name’ mean the same as we know; ‘Caption’ is the visible portion,
‘Name’ is for coding of the application.

 The ‘Index’ specifies the index (or subscript) for the menu. This is required if we are
creating a menu array (an array of menus).

162 LOVELY PROFESSIONAL UNIVERSITY

Windows Programming

Notes  The ‘Enabled’ and ‘Visible’ checkboxes are ‘checked’ by default, which means that
the menu will be both visible and enabled at the time of creation.

 The ‘Shortcut’ option gives us a drop-down list for assigning shortcut keys to our
menus (more on this a little later).

Suppose we want to create a menu for helping the user change the backcolor of the form
to either red or blue or green. For this, we create a menu like this:

 Type 1st caption as ‘Red’, 1st name as ‘mnured’. Click on ‘Next’ button.

 Type 2nd caption as ‘Blue’, 2nd name as ‘mnublu’. Click on ‘Next’ button.

 Type 3rd caption as ‘Green’, 3rd name as ‘mnugre’.

We should be seeing the menu editor, along with the menus as follows:

:

Click

4. Click on the ‘OK’ button. The menu editor closes, and the form reappears, giving an
appearance as shown below. Observe the menu that appears just below the title bar of the
form:

:

C

Coding for Menus

The user interface for the menus is ready. Now we will code them to carry out the desired tasks
when the user clicks on it. Click on a menu in the design window to open the code window. Now
code for the menus click event:

Code Listing menu.1

PRIVATE SUB mnured_CLICK ()

form1.BACKCOLOR = VBRED

END SUB

LOVELY PROFESSIONAL UNIVERSITY 163

Unit 10: Menus

NotesPRIVATE SUB mnublu_CLICK ()

form1.BACKCOLOR = VBBLUE

END SUB

PRIVATE SUB mnugre_CLICK ()

form1.BACKCOLOR = VBGREEN

END SUB

Coding for the menus is the same as coding for command buttons — coding for the ‘click’ event.
Now run the project and test the menus by clicking on them. We will see the backcolor changing
as we click on the menus.

Self Assessment

Fill in the blanks:

1. tool helps us to effortlessly create a menu interface for our applications,
that too in no time.

2. Index is required if we are creating a menu

3. The ‘Enabled’ and ‘Visible’ checkboxes are ‘.........................’ by default, which means that
the menu will be both visible and enabled at the time of creation.

4. Coding for the menus is the same as coding for buttons.

5. ‘Caption’ and ‘Name’ mean the same as we know; ‘Caption’ is the visible portion, ‘Name’
is for of the application.

6. The ‘.........................’ option gives us a drop-down list for assigning shortcut keys to our
menus.

10.2 Menu defined as Resource Data

"A resource is any non-executable data that is logically deployed with an application."

The easiest way to manage resource files in your project is to selecting the resources tab in the
project properties. You can bring this up by double-clicking My Project in Solution Explorer or
your project Properties under the Project menu item.

The resource types that are supported in the Resource Editor are:

 Strings

 Images (PNG, BMP, GIF, JPEG, and TIFF are supported!)

 Icons

 Audio

 Files

 Other

Using resource files adds another advantage: better globalization. (Microsoft has clearly heard
the jingling clink of rupees, lira, yen, and krona in .NET.) Resources are normally included into
your main assembly, but .NET also lets you package resources into satellite assemblies. This lets
you accomplish better globalization because you can include just those satellite assemblies

164 LOVELY PROFESSIONAL UNIVERSITY

Windows Programming

Notes when they're needed. Microsoft has given each language dialect a code. For example, the American
dialect of English is indicated by the string "en-US", and the Swiss dialect of French is indicated
by "fr-CH". These codes identify the satellite assemblies that contain culture specific resource
files, for example: "en-AU.resx" for Australian English. When an application runs, Windows will
automatically use the resources contained in the satellite assembly with the culture determined
from Windows settings.

Since resources are a property of the solution in VB.NET, you access them just like other properties:
by name, using the My.Resourcesobject. To make this more clear, let's build an application to
display icons for Aristotle's four elements: Air, Earth, Fire and Water.

Step 1 is to add the icons. Select the Resources tab from your project Properties. You can add
icons by either choosing Add Existing File... from the Add Resources drop down menu, or just
drag and drop from a Windows Explorer window.

After a resource has been added, the new code looks like this:

Private Sub RadioButton1_CheckedChanged(...

Handles MyBase.Load

Button1.Image = My.Resources.EARTH.ToBitmap

Button1.Text = "Earth"

End Sub

Although I do my best to keep these articles at a level where VB.NET Express can always be used,
there is another way to use resources that isn't supported in Express. But if you're using Visual
Studio, you can embed them directly in your project assembly. These steps will add an image
directly into to your project.

 Right-click the project in the Solution Explorer, click Add, then click Add Existing Item.

 Browse to your image file and click Open.

 Display the properties for the image that was just added.

 Set the Build Action property to Embedded Resource.

You can then use the bitmap directly in code like this (the bitmap was the third one - index
number 2 - in the assembly).

Dim res() As String = GetType(Form1).Assembly.GetManifestResourceNames()

PictureBox1.Image = New System.Drawing.Bitmap(_

 GetType(Form1).Assembly.GetManifestResourceStream(res(2)))

Although these resources are embedded as binary data directly in the main assembly (or in
satellite assembly files) when you Build your project, in Visual Studio, they're referenced by an
XML-based file format that use the extension .resx. For example, here's a snippet from the .resx
file we just created:

<assembly alias="System.Windows.Forms" name="System.Windows.Forms,

Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089" />

 <data name="AIR"

 type="System.Resources.ResXFileRef,

 System.Windows.Forms">

 <value>..\Resources\CLOUD.ICO;System.Drawing.Icon,

LOVELY PROFESSIONAL UNIVERSITY 165

Unit 10: Menus

Notes System.Drawing, Version=2.0.0.0,

 Culture=neutral,

 PublicKeyToken=b03f5f7f11d50a3a</value>

 </data>

You can write directly to these files at run time using the ResXResourceWriter object in the
System.Resources namespace, even adding the actual binary information in a value XML element.

<value>

 AAEAAAD/////AQAAAAAAAAAMAgAAADtTeX…

</value>

ResXResourceReader, in turn, will read .resx files.

Because they're just text XML files, a .resx file can't be used directly by a .NET Framework
application. It has to be converted to a binary ".resources" file adding it to your application. This
job is accomplished by a utility program named Resgen.exe. You might want to do this to create
the satellite assemblies for the globalization mentioned earlier. It can also convert binary
.resources files back into XML .resx files but only string resources get converted correctly.

And DOS will never die! You have to run resgen.exe from a Command Prompt.

VB6 supports

A string table editor

(“Edit String Tables...”)

Custom cursors - “CUR” files

(“Add Cursor...”)

Custom icons - “ICO” files

(“Add Icon...”)

Custom bitmaps - “BMP” files

(“Add Bitmap...”)

Programmer defined resources

(“Add Custom Resource...”)

VB 6 provides a simple editor for strings but you have to have a file created in another tool for
all of the other choices.

Example: You could create a BMP file using the simple Windows Paint program.

Each resource in the resource file is identified to VB 6 by an Id and a name in the Resource Editor.
To make a resource available to your program, you add them in the Resource Editor then use the
Id and the resource “Type” to point to them in your program. Let’s add four icons to the resource
file and use them in the program. When you add a resource, the actual file itself is copied into
your project. Visual Studio 6 provides a whole collection of icons in the folder ...

C:\Program Files\Microsoft Visual Studio\Common\Graphics\Icons

To go with tradition, we’ll select the Greek philosopher Aristotle’s four “elements” - Earth,
Water, Air, and Fire - from the Elements subdirectory. When you add them, the Id is assigned by
Visual Studio (101, 102, 103, and 104) automatically.

166 LOVELY PROFESSIONAL UNIVERSITY

Windows Programming

Notes

Did u know? To use the icons in a program, we use a VB 6 “Load Resource” function.

There are several of “Load Resource” functions to choose from:

 LoadResPicture(index, format) for bitmaps, icons, and cursors

Use the VB predefined constants vbResBitmap for bitmaps, vbResIcon for icons, and vbResCursor
for cursors for the “format” parameter. This function returns a picture that you can use directly.
LoadResData (explained below) returns a string containing the actual bits in the file. We’ll see
how to use that after we demonstrate icons.

 LoadResString(index) for strings

 LoadResData(index, format) for anything up to 64K

!
Caution This function returns a string with the actual bits in the resource.

These are the values that can be used for format parameter here:

1. Cursor resource

2. Bitmap resource

3. Icon resource

4. Menu resource

5. Dialog box

6. String resource

7. Font directory resource

8. Font resource

9. Accelerator table

10. User-defined resource

11. Group cursor

12. Group icon

Since we have four icons in our About VB.RES resource file, let’s use LoadResPicture(index,
format) to assign these to the Picture property of a CommandButton in VB 6.

I created an application with four OptionButton components labeled Earth, Water, Air and Fire
and four Click events - one for each option. Then I added a CommandButton and changed the Style
property to “1 – Graphical”. This is necessary to be able to add a custom icon to the CommandButton.
The code for each OptionButton (and the Form Load event — to initialize it) looks like this (with
the Id and Caption changed accordingly for the other OptionButton Click events):

 Private Sub Option1_Click()

 Command1.Picture = _

 LoadResPicture(101, vbResIcon)

 Command1.Caption = _

 “Earth”

 End Sub

LOVELY PROFESSIONAL UNIVERSITY 167

Unit 10: Menus

Notes

Task Illustrate the use of LoadResData function.

Self Assessment

Fill in the blanks:

7. Each resource in the resource file is identified to VB 6 by an Id and a name in the
..........................

8. Use the VB predefined constants vbResBitmap for bitmaps, vbResIcon for icons, and
vbResCursor for cursors for the “.........................” parameter.

9. To make a resource available to your program, you add them in the Resource Editor then
use the Id and the resource “.........................” to point to them in your program.

10. When you add a resource, the actual file itself is into your project.

10.3 Creating a Menu using the Borland Resource Workshop

Traditional Windows development suggests that you add version information to your compiled
.EXE files. Microsoft provides two tools with Microsoft Visual C++ that allow Visual C++
programmers to add version information to compiled applications.

 The Microsoft Resource Compiler (RC.EXE).

 The Microsoft App Studio, a resource editor.

Unfortunately, at this time, Visual Basic programmers cannot add version information to Visual
Basic generated .EXE files. Visual Basic does not have the ability to add resource information to
its .EXE files. Nor can you use either the Microsoft Resource Compiler or the App Studio to add
resource information to .EXE files generated by Visual Basic.

Notes There are however other third party Resource Compilers/Editors that will work
with Visual Basic compiled .EXE files. One such tool is the “Resource Workshop” by
Borland. You can contact Borland at 1-800-336-6464x8708.

Below is a step by step example illustrating how to add version information to a Visual Basic
compiled EXE using Borland’s “Resource Workshop.”

Example: Example of Adding Version Information to a VB Application

1. Start Resource Workshop.

2. From the Resource Menu, choose New (ALT+R N).

3. Select VERSIONINFO as the resource type, and click OK.

4. Resource Workshop displays a default script for version information. Delete this, and
type in something similar to the following:

 1 VERSIONINFO LOADONCALL MOVEABLE FILEVERSION 1, 0, 0,

 5 PRODUCTVERSION 1, 0, 0, 10 FILEOS VOS__WINDOWS16 FILETYPE

168 LOVELY PROFESSIONAL UNIVERSITY

Windows Programming

Notes VFT_APP BEGIN

 BLOCK “StringFileInfo”

 BEGIN

 BLOCK “040904E4”

 BEGIN

 VALUE “CompanyName”, “Some Company\000”

 VALUE “FileDescription”, “What it is\000”

 VALUE “FileVersion”, “03.00.0005\000”

 VALUE “InternalName”, “XYZ.EXE\000”

 VALUE “LegalCopyright”, “Copyright) abcdefg”

 VALUE “LegalTrademarks”, “Whatever you want\000”

 VALUE “ProductName”, “asdfg\000”

 VALUE “ProductVersion”, “see above”

 VALUE “Comments”, “Some comments”

 END

 END

 END

5. Double-click the control box to close the current window. Click Yes when Resource
Workshop asks you if you wish to save changes.

6. Your Application now contains version information. Choose Exit from the File menu to
exit Resource Workshop (ALT+F X). Click Yes when Resource Workshop asks you to
verify that you want to update your EXE.

Self Assessment

Fill in the blank:

11. Visual Basic does not have the ability to add resource information to its
files.

10.4 Complex Menu

Now that you have an overview of how to use the Menu Editor to make a menu, the following
example creates a menu system for a simple text editor.

The Amazing Text Editor, the code for which can do the following tasks:

 Create a new file

 Open an existing file

 Save a file

 Reverse the editor’s font and background color setting

 Provide copyright notification

 Exit the program

 Undo the preceding action

LOVELY PROFESSIONAL UNIVERSITY 169

Unit 10: Menus

Notes Cut, copy, and paste text

 Select all text

Before you start coding, take some time to review the program’s features to make a properly
designed and categorized menu system. As mentioned earlier in the section “Understanding the
Windows Standard Menus,” most menu bars begin with a File menu and are followed by an Edit
menu.

The following is a viable menu categorization for the feature set of the Amazing Text Editor.

File Menu Edit Menu

New Undo
Open Cut
Save Copy
Settings Paste
About Select All
Exit

Now that you have a categorized menu system, you can implement it in the Menu Editor. Table
10.1 shows the menu hierarchy and Name and Caption properties, as well as accelerator and
shortcut keys for each menu object.

10.4.1 Standard Functionality of Shortcut Keys

The shortcut keys used in Table 10.1 adhere to the established convention that Windows
programmers use for menu items with the demonstrated functionality.

Table 10.1: Menu Objects for the Amazing Text Editor Application

Name Caption Level Shortcut
mnuFile &File 0 None
itmNew &New 1 None
itmOpen &Open 1 None
itmSave &Save 1 None
sepOne - (a hyphen) 1 None
itmSettings Se&ttings 1 None
itmBlackOnWhite Black On White 2 None
itmWhiteOnBlack White On Black 2 None
itmAbout &About 1 None
sepTwo - 1 None
itmExit E&xit 1 Ctrl+X
mnuEdit &Edit 0 None
itmUndo &Undo 1 Ctrl+Z
sepThree - 1 None
itmCut Cu&t 1 Ctrl+X
itmCopy &Copy 1 Ctrl+C
itmPaste &Paste 1 Ctrl+V
sepFour - 1 None
itmSelectAll Select &All 1 Ctrl+A

170 LOVELY PROFESSIONAL UNIVERSITY

Windows Programming

Notes By default, Flyout Menus are positioned with the top-left corner being 2 pixels to the right and
2 pixels above the top-right corner of the image defined with the same tag name as the menu.
Variables can be set to move the menu to the left of the image, or to change the number of pixels
away from the image. For most uses, these variables offer menu position options which are
quite flexible.

However, there may be occasions when menus must be positioned taking more images into
account on the page.

Did u know? The Flyout Menus allow you set up a series of positioning rules for more
complex positioning behavior.

There is quite a bit of complexity when it comes to using this positioning code, so it may take
several tries before the menus appear correctly positioned.

Notes Due to the way its object model and styles are implemented, Internet Explorer for
the Macintosh is very slow at using the complex menu positioning. The explanation for
why this browser is different is in the annotated source.

Complex Positioning Example

As an example, the menus below are set so that they will never cover up the text in the logo
image (overwriting the box is fine), and attempt to not go below the picture image. In either
case, they will try to get as close as possible to having the menu centered vertically with its
arrow image. The exception to these positioning rules is that the menu will always attempt to
not appear off the page, so it will move to prevent that from happening. Keeping the menu
on the page takes precedence over all other rules, and cannot be overridden. If the menu is too
tall to fit at all on the page, it will be positioned so as much of the top-left part is visible as
possible.

This is the source of the menu code which includes the positioning rules:

var newDefs = new Object;

newDefs.overimg = “redarrow.gif”;

newDefs.useclass = “menutext”;

newDefs.position = “IMG|m=m;picture|b>b;logo|b<t”;

flyDefs (newDefs);

makeLayer (“arrow1”, “”,

“This is menu 1”, “It should be positioned”, “so the top edge is

right”,

“under the logo.”

);

makeLayer (“arrow2”, “”,

“This is menu 2”, “It should be centered”, “relative to the arrow”

);

makeLayer (“arrow3”, “”,

LOVELY PROFESSIONAL UNIVERSITY 171

Unit 10: Menus

Notes“This is menu 3”, “It is quite a long menu”, “so it should also be”,

“positioned so the top”, “edge is right under the”, “logo, but the

bottom”,

“edge may come close to”, “the bottom of the picture,”, “or may even

go below it.”,

“If you size and scroll the”, “window to try to force the”, “bottom

of the menu off below”,

“the bottom of the screen,”, “it will reposition itself”, “by

obscuring the logo.”

);

makeLayer (“arrow4”, “”,

“This is menu 4”, “It should be long enough”, “to be aligned with

the”,

“bottom of the picture, but”, “probably won’t reach the”, “logo.”

);

This looks like the menu definitions in the Customizing Flyout Menus section, except for the
line which defines a new position default. Let’s first look at the logic of what the line is doing,
and then describe the syntax.

1. The Flyouts will use the default positioning rules to put the top-left corner of the menu
near the top-right corner of the arrow image.

2. The IMG|m=m rule tells the Flyout code to compute the vertical middle of both the arrow
image and the menu, and position the menu so they are the same.

3. The picture|b>b rule says to compute the bottom of the image named picture and of the
menus, and make sure the bottom of the picture is positioned lower than (has a larger
number, representing the Y position) the bottom of the menu. If not, then move the menu
up so they align.

4. The logo|b-6<t rule will compute 6 pixels above the bottom of the image named logo and
the top of the menu, and make sure 6 pixels above the bottom of the logo is positioned
higher than (has a smaller number, again representing the Y position) the top of the menu.
If not, move the menu down so they align.

5. Make sure the menu is on the screen. First check horizontally, moving first to the left if it’s
off the right of the window, then to the right to make sure the left of the menu is visible.
Do the same vertically, first checking the bottom, then the top.

The way these rules are ordered means that the preference is for the menus to be aligned with
the middle of the arrow, the next preference is that they not go below the picture, but the
greatest preference is they not cover up the logo.

Task Discuss how Flyout Menus are positioned?

Self Assessment

Fill in the blanks:

12. Before you start coding, take some time to review the program’s features to make a
properly designed and categorized

172 LOVELY PROFESSIONAL UNIVERSITY

Windows Programming

Notes 13. The Menus allow you set up a series of positioning rules for more complex
positioning behavior.

10.5 Creating a Menu as a Program Operates

This code shows you how to add a menu to another program. The only thing is that nothing will
happen when you click on the items. To make something happen when you click on an item you
have to subclass the menu (I’d help with that but I don’t have any subclassing controls, or at least
not right now). Put this in your *.bas file:

Public Declare Function AppendMenu Lib “user32” Alias “AppendMenuA” (ByVal

hMenu As Long, ByVal wFlags As Long, ByVal wIDNewItem As Long, ByVal

lpNewItem As Any) As Long

Public Declare Function CreatePopupMenu Lib “user32” () As Long

Public Declare Function DrawMenuBar Lib “user32” (ByVal hwnd As Long) As

Long

Public Declare Function FindWindow Lib “user32” Alias “FindWindowA” (ByVal

lpClassName As String, ByVal lpWindowName As String) As Long

Public Declare Function GetMenu Lib “user32” (ByVal hwnd As Long) As

Long

Public Declare Function GetMenuItemID Lib “user32” (ByVal hMenu As Long,

ByVal nPos As Long) As Long

Public Declare Function GetMenuItemCount Lib “user32” (ByVal hMenu As Long)

As Long

Public Declare Function GetMenuString Lib “user32” Alias “GetMenuStringA”

(ByVal hMenu As Long, ByVal wIDItem As Long, ByVal lpString As String, ByVal

nMaxCount As Long, ByVal wFlag As Long) As Long

Public Declare Function GetSubMenu Lib “user32” (ByVal hMenu As Long, ByVal

nPos As Long) As Long

Public Declare Function SendMessage Lib “user32” Alias “SendMessageA”

(ByVal hwnd As Long, ByVal wMsg As Long, ByVal wParam As Long, lParam As

Any) As Long

Public Const MF_ENABLED = &H0&

Public Const MF_POPUP = &H10&

Public Const MF_STRING = &H0&

Public Const WM_NCPAINT = &H85

Then put something like this in a button:

Dim newMenu As Long

newMenu = CreatePopupMenu

Call AppendMenu(newMenu, MF_ENABLED Or MF_STRING, 0, “Item One”)

Call AppendMenu(newMenu, MF_ENABLED Or MF_STRING, 1, “Item Two”)

Call AppendMenu(newMenu, MF_ENABLED Or MF_STRING, 2, “Item Three”)

Call AppendMenu(newMenu, MF_ENABLED Or MF_STRING, 3, “Item Four”)

Call AppendMenu(newMenu, MF_ENABLED Or MF_STRING, 4, “Item Five”)

‘ Find the notepad application window

LOVELY PROFESSIONAL UNIVERSITY 173

Unit 10: Menus

NotesDim notepad As Long

notepad = FindWindow(“notepad”, vbNullString)

‘ Add our menu to the window we found above

Dim notepadMenu As Long

notepadMenu = GetMenu(notepad)

Call AppendMenu(notepadMenu, MF_POPUP, newMenu, “Item List”)

‘ Ensure that the user sees the new menu immediately

Call SendMessage(notepad, WM_NCPAINT, 0&, 0&)

Self Assessment

Fill in the blank:

14. To make something happen when you click on an item you have to the
menu.

10.6 Creating Menu Containing Bitmaps and the System Menu

10.6.1 Creating Menu Containing Bitmaps

Create Menu Bitmaps With VB6 API

To create Menu Bitmaps With VB6 API, open the ‘create menu bitmap’ folder.

From file, click new to create menu.

’ VB6 API Source Code Option Explicit

Private Const Color_Green = vbGreen

Private Declare Function GetMenu Lib “user32” (ByVal hwnd As Long) As

Long

Private Declare Function GetSubMenu Lib “user32” (ByVal hMenu As Long,

ByVal nPos As Long) As Long

Private Declare Function SetMenuItemBitmaps Lib “user32” (ByVal hMenu As

Long, _

ByVal nPosition As Long, ByVal wFlags As Long, ByVal hBitmapUnchecked As

Long, _

174 LOVELY PROFESSIONAL UNIVERSITY

Windows Programming

Notes ByVal hBitmapChecked As Long) As Long

Private Declare Function GetMenuItemID Lib “user32” (ByVal hMenu As Long,

ByVal nPos As Long) As Long

Private Sub Form_Load()

Dim hMenu As Variant

Dim hSubMenu As Variant

Dim MenuID As Variant

Dim lX As Variant

VB6_API_frmCreateMenuBitmaps.BorderStyle = vbSizableToolWindow

VB6_API_frmCreateMenuBitmaps.Caption = “ Create Menu Bitmaps ”

VB6_API_frmCreateMenuBitmaps.BackColor = Color_Green

hMenu = GetMenu(VB6_API_frmCreateMenuBitmaps.hwnd)

hSubMenu = GetSubMenu(hMenu, 0)

MenuID = GetMenuItemID(hSubMenu, 0)

lX = SetMenuItemBitmaps(hMenu, MenuID, &H4, _

ImgLst.ListImages(1).Picture, ImgLst.ListImages(1).Picture)

MenuID = GetMenuItemID(hSubMenu, 1)

lX = SetMenuItemBitmaps(hMenu, MenuID, &H4, _

ImgLst.ListImages(2).Picture, ImgLst.ListImages(2).Picture)

MenuID = GetMenuItemID(hSubMenu, 2)

lX = SetMenuItemBitmaps(hMenu, MenuID, &H4, _

ImgLst.ListImages(3).Picture, ImgLst.ListImages(3).Picture)

End Sub

Private Sub mnuExit_Click()

Dim MsgResult As VbMsgBoxResult

MsgResult = MsgBox(“ You Choose Menu “ & mnuExit.Caption & “ Do you want to

exit form ? “, vbQuestion + vbYesNo, “ Create Menu Bitmaps With VB6 API ”)

If MsgResult = vbYes Then

End

End If

End Sub

Private Sub mnuNew_Click()

MsgBox “ You Choose Menu ” & mnuNew.Caption, vbOKOnly, “ Create Menu Bitmaps

With VB6 API ”

End Sub

Private Sub mnuOpen_Click()

MsgBox “ You Choose Menu ” & mnuOpen.Caption, vbOKOnly, “ Create Menu

Bitmaps With VB6 API ”

End Sub

LOVELY PROFESSIONAL UNIVERSITY 175

Unit 10: Menus

Notes10.6.2 The System Menu

This example adds an About... item to the forms System Menu (shown by clicking the forms
icon, or right clicking on its button on the taskbar)

!
Caution This uses subclassing, so DO NOT use the Stop button on the VB toolbar, or
attempt to debug the WindowProc procedure (unless you like VB crashing!).

First, add the following code to a form

‘// form_load event. Catch all those messages!

Private Sub Form_Load()

Dim lhSysMenu As Long, lRet As Long

On Error Resume Next

‘// add about menu

lhSysMenu = GetSystemMenu(hWnd, 0&)

lRet = AppendMenu(lhSysMenu, MF_SEPARATOR, 0&, vbNullString)

lRet = AppendMenu(lhSysMenu, MF_STRING, IDM_ABOUT, “About...”)

Show

‘// saves the previous window message handler. Always restore this value

‘// Address Of command sends the address of the WindowProc procedure

‘// to windows

ProcOld = SetWindowLong(hWnd, GWL_WNDPROC, Address Of WindowProc)

End Sub

’// form_queryunload event. Return control to windows/vb

Private Sub Form_Unload(Cancel As Integer)

‘// give message processing control back to VB

‘// if you don’t do this you WILL crash!!!

Call SetWindowLong(hWnd, GWL_WNDPROC, ProcOld)

End Sub

Then, add the code below to a module

’// variable that stores the previous message handler

Public ProcOld As Long

’// Windows API Call for catching messages

Public Declare Function SetWindowLong Lib “user32” Alias “SetWindowLongA”

(ByVal hWnd

As Long, ByVal nIndex As Long, ByVal dwNewLong As Long) As Long

’// Windows API call for calling window procedures

Public Declare Function CallWindowProc Lib “user32” Alias “CallWindowProcA”

(ByVal lpPrevWndFunc As Long, ByVal hWnd As Long, ByVal Msg As Long, ByVal

wParam As Long,

176 LOVELY PROFESSIONAL UNIVERSITY

Windows Programming

Notes ByVal lParam As Long) As Long

’// menu windows api

Declare Function AppendMenu Lib “user32” Alias “AppendMenuA” (ByVal hMenu

As Long,

ByVal wFlags As Long, ByVal wIDNewItem As Long, ByVal lpNewItem As String)

As Long

Declare Function GetSystemMenu Lib “user32” (ByVal hWnd As Long, ByVal

bRevert As Long)

As Long

’// windows api constants

Public Const WM_SYSCOMMAND = &H112

Public Const MF_SEPARATOR = &H800&

Public Const MF_STRING = &H0&

Public Const GWL_WNDPROC = (-4)

Public Const IDM_ABOUT As Long = 1010

Public Function WindowProc(ByVal hWnd As Long, ByVal iMsg As Long, _

ByVal wParam As Long, ByVal lParam As Long) As Long

 ‘// ——WARNING——

 ‘// do not attempt to debug this procedure!!

 ‘// ——WARNING——

 ‘// this is our implementation of the message handling routine

 ‘// determine which message was received

 Select Case iMsg

 Case WM_SYSCOMMAND

 If wParam = IDM_ABOUT Then

 MsgBox “VB Web Append to System Menu Example”, vbInformation,

“About”

 Exit Function

 End If

 End Select

 ‘// pass all messages on to VB and then return the value to windows

 WindowProc = CallWindowProc(ProcOld, hWnd, iMsg, wParam, lParam)

End Function

Add New Menu To System Menu

using System;

using System.Drawing;

using System.Collections;

using System.ComponentModel;

LOVELY PROFESSIONAL UNIVERSITY 177

Unit 10: Menus

Notesusing System.Windows.Forms;

using System.Data;

using System.Runtime.InteropServices;

.........

#region API Declarations

// return the handle for the system menu

[DllImport (“user32.dll”)]

public static extern int GetSystemMenu(int hwnd, bool bRevert);

// append a menu item to the menu

[DllImport (“user32.dll”, EntryPoint=“AppendMenuA”)]

public static extern long AppendMenu(int hMenu, int

wFlags, int wIDNewItem, string lpNewItem);

// remove a menu item from the menu

[DllImport (“user32.dll”)]

public static extern long RemoveMenu(int hMenu, int

nPosition, int wFlags);

#endregion // API Declarations

// constants

private const int MF_BYPOSITION = 1024;

private const int MF_SEPERATOR = 2048;

private const int MF_REMOVE = 4096;

private const int WM_SYSCOMMAND = 274;

#region System Menu API

/// <summary>

/// Returns the handle for the System Menu with the

 associate form

/// </summary>

/// <param name=”frmHandle”>The handle to the form to retrieve

the menu handle</param>

public int GetSysMenuHandle(int frmHandle)

{

return GetSystemMenu(frmHandle, false);

}

/// <summary>

/// Removes a system menu

/// </summary>

/// <param name=”mnuHandle”>Then handle to the system menu.

Use GetSysMenuHandle</param>

/// <param name=”mnuPosition”>Zero based position of the

menu item to delete</param>

/// <returns>returns nonzero on success, returns 0 on fail</

returns>

public long RemoveSysMenu(int mnuHandle, int mnuPosition)

178 LOVELY PROFESSIONAL UNIVERSITY

Windows Programming

Notes {

return RemoveMenu(mnuHandle, mnuPosition, MF_REMOVE);

}

/// <summary>

/// Appends a menu item to the end of the system menu list

/// </summary>

/// <param name=”mnuHandle”>Handle to the system menu to

 append to</param>

/// <param name=”MenuID”>A unique ID sent by the calling

 function to track events for the menu</param>

/// <param name=”mnuText”>The display text of the menu</

 param>

/// <returns>Returns nonzero on success, 0 on fail.</returns>

public long AppendSysMenu(int mnuHandle, int MenuID,

string mnuText)

{

return AppendMenu(mnuHandle, 0, MenuID, mnuText);

}

/// <summary>

/// Appends a separator bar at the end of the system menu

/// </summary>

/// <param name=”mnuHandle”>Handle to the system menu</param>

/// <returns>Returns nonzero on success, 0 on fail</returns>

public long AppendSeparator(int mnuHandle)

{

return AppendMenu(mnuHandle, MF_SEPARATOR, 0, null);

}

// THIS IS IMPORTANT. The WndProc function has to be

 overridden so

// we can capture the events from a menu item being selected.

// In the future, we could add OwnerDraw features here,

 and process

// that here, too

/// <param name=”messg”>The messages sent to WndProc</param>

protected override void WndProc(ref Message messg)

{

int i = 1; // for EXAMPLE purposes only

// see if this is a menu message to monitor

if (messg.Msg == WM_SYSCOMMAND)

{

// decide how to handle the command

switch (messg.WParam.ToInt32())

{

LOVELY PROFESSIONAL UNIVERSITY 179

Unit 10: Menus

Notescase x:

// TODO: this is for example only, replace

 x with

// whatever values you gave for the

 MenuID

// then process the menu event here by

 calling

// whatever function necessary

}

}

// return the message so other wndprocs can process

them

base.WndProc(ref messg);

}

#endregion // System Menu API

Self Assessment

Fill in the blank:

15. System Menu uses subclassing, so DO NOT use the Stop button on the VB toolbar, or
attempt to debug the procedure.

10.7 Summary

 For getting started with menus, we use Menu Editor Tool that helps us to effortlessly
create a menu interface for our applications, that too in no time.

 Coding for the menus is the same as coding for command buttons - coding for the ‘click’
event.

 VB 6 provides a simple editor for strings but you have to have a file created in another tool
for all of the other choices.

 To use the icons in a program, we use a VB 6 “Load Resource” function.

 Variables can be set to move the menu to the left of the image, or to change the number of
pixels away from the image.

 Microsoft provides two tools with Microsoft Visual C++ that allow Visual C++
programmers to add version information to compiled applications i.e., the Microsoft
Resource Compiler (RC.EXE) and the Microsoft App Studio, a resource editor.

 The Flyout Menus allow you set up a series of positioning rules for more complex
positioning behavior.

 The Flyouts will use the default positioning rules to put the top-left corner of the menu
near the top-right corner of the arrow image.

10.8 Keywords

Flyout Menus: The Flyout Menus allow you set up a series of positioning rules for more complex
positioning behavior.

180 LOVELY PROFESSIONAL UNIVERSITY

Windows Programming

Notes 10.9 Review Questions

1. Illustrate the steps for creating menus.

2. Explain how to use the menu editor tool.

3. Write the code for the menus click event.

4. Enlighten the various types of “Load Resource” functions.

5. What are the VB predefined constants used for bitmaps, icons, and cursors? Illustrate.

6. How to Create a menu using the Borland Resource Workshop? Illustrate with example.

7. What are the two tools used with Microsoft Visual C++ that allow Visual C++ programmers
to add version information to compiled applications? Discuss.

8. Illustrate the concept of complex menu with example.

9. Enlighten the steps used to create a menu containing Bitmaps.

10. Write a code for adding new Menu to System Menu.

Answers: Self Assessment

1. Menu Editor 2. array

3. checked 4. command

5. coding 6. Shortcut

7. Resource Editor 8. format

9. Type 10. copied

11. .EXE 12. menu system

13. Flyout 14. subclass

15. WindowProc

10.10 Further Readings

Books Brent E. Rector, Win32 Programming, Addison-Wesley

Charles Petzold, Programming Windows, Charles Petzold

Roger Mayne, Windows and Graphics Programming with Visual C++.NET, World
Scientific

Online link www.reddit.com/.../programming/.../toplevel_windows_and_menus

LOVELY PROFESSIONAL UNIVERSITY 181

Unit 11: Dialog Boxes (I)

NotesUnit 11: Dialog Boxes (I)

CONTENTS

Objectives

Introduction

11.1 What is a Dialog Box?

11.2 How a Dialog Box Works?

11.3 Designing a Dialog Box

11.3.1 Create the Dialog Box

11.3.2 Adding the Controls

11.4 Using a Dialog Box

11.5 Summary

11.6 Keywords

11.7 Review Question

11.8 Further Readings

Objectives

After studying this unit, you will be able to:

 Understand the concept of dialog boxes

 Discuss the working of dialog box

 Recognize designing a dialog box and using a dialog box

Introduction

All the GUI applications keep prompting and conversing to the users, by means of dialog boxes.
Dialog boxes have been the only interface by which an application can converse to its users, and
it will be till the Speech Oriented Software become practicable. This unit covers the concept of
designing dialog boxes and using dialog boxes.

11.1 What is a Dialog Box?

A dialog box is defined as a rectangular window whose major role is to hold other Windows
controls. For this cause, a dialog box is pointed to as a container. It is the chief interface of user
communication with the computer. By itself, a dialog box means nothing. The controls it holds
achieve the role of dialog among the user and the machine.

A dialog box has the following traits:

 It is equipped with the system Close button . As the only system button, this button
permits the user to release the dialog and overlook whatever the user would have done on
the dialog box.

 It cannot be minimized, maximized, or restored. A dialog box does not have any other
system button but Close.

182 LOVELY PROFESSIONAL UNIVERSITY

Windows Programming

Notes  It is typically modal. The user is typically not permitted to carry on any other operation
until the dialog box is dismissed.

Self Assessment

Fill in the blanks:

1. A is defined as a rectangular window whose major role is to hold other
Windows controls.

2. A dialog box is the chief interface of user with the computer.

11.2 How a Dialog Box Works?

A dialog box is a secondary window that allows users to perform a command, asks users a
question, or provides users with information or progress feedback.

A Typical Dialog Box

Dialog boxes consist of a title bar (to identify the command, feature, or program where a dialog
box came from), an optional main instruction (to explain the user’s objective with the dialog
box), various controls in the content area (to present options), and commit buttons (to indicate
how the user wants to commit to the task).

Dialog boxes have two fundamental types:

1. Modal dialog boxes require users to complete and close before continuing with the owner
window. These dialog boxes are best used for critical or infrequent, one-off tasks that
require completion before continuing.

2. Modeless dialog boxes allow users to switch between the dialog box and the owner window
as desired. These dialog boxes are best used for frequent, repetitive, ongoing tasks.

A task dialog is a dialog box implemented using the task dialog application programming interface
(API). They consist of the following parts, which can be assembled in a variety of combinations:

 A title bar to identify the application or system feature where the dialog box came from.

 A main instruction, with an optional icon, to identify the user’s objective with the dialog.

 A content area for descriptive information and controls.

 A command area for commit buttons, including a Cancel button, and optional More
options and Don’t show this <item> again controls.

 A footnote area for optional additional explanations and help, typically targeted at less
experienced users.

LOVELY PROFESSIONAL UNIVERSITY 183

Unit 11: Dialog Boxes (I)

NotesA Typical Task Dialog

Did u know? Task dialogs are recommended whenever appropriate because they are easy
to create and they achieve a consistent look.

!
Caution Task dialogs do require Windows Vista® or later, so they aren’t suitable for
earlier versions of Microsoft® Windows®.

A task pane is like a dialog box, except that it is presented within a window pane instead of a
separate window. As a result, task panes have a more direct, contextual feel than dialog boxes.
Property windows are a specialized type of dialog box used to view and change properties for
an object, collection of objects, or a program. Additionally, property windows typically support
several tasks, whereas dialog boxes typically support a single task or step in a task.

Notes Dialog boxes can have tabs, and if so they are called tabbed dialog boxes. Property
windows are determined by their presentation of properties, not by the use of tabs.

Task What is task dialog? Illustrate.

Self Assessment

Fill in the blanks:

3. A dialog box is a window that allows users to perform a command, asks users
a question, or provides users with information or progress feedback.

4. A is a dialog box implemented using the task dialog application
programming interface (API).

5. A is used for descriptive information and controls.

6. A is used for optional additional explanations and help, typically targeted
at less experienced users.

184 LOVELY PROFESSIONAL UNIVERSITY

Windows Programming

Notes 7. A is used to identify the application or system feature where the dialog box
came from.

8. A is like a dialog box, except that it is presented within a window pane
instead of a separate window.

9. windows typically support several tasks, whereas dialog boxes typically
support a single task or step in a task.

10. Dialog boxes can have tabs, and if so they are called

11. Property windows are a specialized type of dialog box used to view and change
......................... for an object, collection of objects, or a program.

11.3 Designing a Dialog Box

The Visual C++ environment offers a dialog resource editor for designing dialog boxes. This
editor exhibits the Controls toolbar, which displays the obtainable controls (like radio buttons,
check boxes, and pushbuttons). You choose controls from the Controls toolbar and place them
on your dialog box.

Notes You can move and resize the controls directly by means of the mouse.

!
Caution You utilize the property page for every control to state its caption and ID.

Designing a dialog box follow the steps below.

1. Creating a new dialog box and editing its caption and ID.

2. Adding the controls and editing their captions and IDs.

11.3.1 Create the Dialog Box

Now you’ll create a simple dialog box by beginning with the default dialog box that the
development environment offers.

Let us consider a dialog box to be created named as Box1.

To create the Box1 dialog box

1. With your project open, click Resource from the Insert menu,

2. In the Insert Resource dialog box, choose Dialog from the list of resource types and click
OK. ResourceView pane opens and the dialog editor window occurs, showing a default
dialog box that includes two buttons labeled OK and Cancel. The Controls toolbar also
occurs.

3. If the property page is not shown, right-click the dialog box, then click Properties on the
menu. Click the pushpin on the property page to keep it open.

4. In the ID box, type IDD_Box1. This is not a predefined ID, so you can’t choose it from the
drop-down list.

LOVELY PROFESSIONAL UNIVERSITY 185

Unit 11: Dialog Boxes (I)

Notes5. In the caption box, modify the caption to Pen Widths. Observe that the title bar of the
dialog box reflects the new caption.

6. Save your work.

11.3.2 Adding the Controls

To add controls to the dialog box:

1. From the Controls toolbar, add two edit box controls to the Box1 dialog box.

 Choose the first edit box to exhibit its property page. Change its ID to
IDC_THIN_Box1.

 Choose the second edit box, and in the property page alter its ID to IDC_THICK_Box1

2. From the Controls toolbar, add two static text controls to enclose the descriptions for the
two edit controls.

3. Choose the first text box to exhibit its property page. Modify the caption to Thin Pen Width:.

4. Choose the second text box, and in the property page change its caption to Thick Box1:.

5. From the Controls toolbar, add a third button to the two already present.

6. Choose the third button to exhibit its property page. Transform its ID to
IDC_DEFAULT_Box1 and its caption to Default.

Did u know? The handler for this button will reset the thick and thin Box1 to their default
widths.

Self Assessment

Fill in the blanks:

12. The Visual C++ environment offers a editor for designing dialog boxes.

13. You utilize the for every control to state its caption and ID.

11.4 Using a Dialog Box

Dialog boxes have several usage patterns:

Question dialogs (using buttons) Ask users a single question, and provide simple responses in
horizontally arranged command buttons.

186 LOVELY PROFESSIONAL UNIVERSITY

Windows Programming

Notes
Example: Windows® Internet Explorer® asks if the user wants to open or save a file.

Type: Modal.

Main instruction: The question being asked (could be phrased as an instruction).

Icon: Program, feature, object, warning icon (if potential loss of data or system access), security
warning, or none.

Commit buttons: One of the following sets of concise commands: Yes/No, Yes/No/Cancel, [Do
it]/Cancel, [Do it]/[Don’t do it], [Do it]/[Don’t do it]/Cancel, where [Do it] and [Don’t do it] are
specific responses to the main instruction.

Other controls: There may be supplemental explanations to help users make informed decisions,
a chevron control to show more information, and a Don’t show this <item> again option if the
question can be suppressed in the future.

Annoyance factor: High, if default response can be safely assumed, there really isn’t a choice, or
the differences among the choices aren’t clear.

Question dialogs (using command links): Ask users a single question or to select a task to
perform, and provide detailed responses in vertically arranged command links.

Example: Windows asks the user to install a device. Using command links instead of
command buttons allows for more complete responses. In contrast to the version with command
buttons, these dialogs may have several responses or responses that require more text to describe.

Type: Modal.

Main instruction: The question being asked (could be phrased as an instruction).

LOVELY PROFESSIONAL UNIVERSITY 187

Unit 11: Dialog Boxes (I)

NotesIcon: Program, feature, object, warning icon (if potential loss of data or system access), security
warning, or none.

Command links: Two or more complete, specific responses to the main instruction.

Commit buttons: Cancel.

Other controls: There may be supplemental explanations to help users make informed decisions,
and a chevron to show more information.

Annoyance factor: High, if default response can be safely assumed, there really isn’t a choice, or
the differences among the choices aren’t clear.

Choice dialogs Presents users with a set of choices, usually to specify a command more completely.
Unlike question dialogs, choice dialogs can ask multiple questions.

Example: Microsoft Word presents options to specify the Insert Break command in a
modal dialog box. In this example, Word presents options to specify the Find and Replace
command in a modeless dialog box.

188 LOVELY PROFESSIONAL UNIVERSITY

Windows Programming

Notes
Example: Microsoft Outlook® presents options to specify the Find command in a task

pane. By not using a separate window, the command feels more direct and contextual.

Type: Modal, modeless, and task pane.

Main instruction: An optional imperative instruction that tells users what to do.

Icon: None.

Commit buttons: One of the following:

 Modal dialogs: OK/Cancel or [Do it]/Cancel, where [Do it] is a specific response to the
main instruction.

 Modeless dialogs: Close button on dialog box and title bar.

 Task pane: Close button on title bar.

Other controls: There may be supplemental explanations to help users make choices, and a
chevron to show infrequently used options.

Annoyance factor: Normally low, because user initiated and needs a response, but could be high
if users rarely change default values.

Progress dialogs: Presents users with progress feedback during a lengthy operation (longer than
five seconds), along with a command to cancel or stop the operation.

If the operation is a long-running task (over 30 seconds) and can be performed in the background,
use a modeless progress dialog so that users can continue to use your program while waiting.

Example: A modeless progress dialog box is used provide feedback while users continue
to use the program.

Type: Modal and modeless.

Main instruction: A gerund phrase briefly explaining the operation in progress, ending with an
ellipsis. Example: Downloading...

Icon: None (but may have an animation).

Commit buttons: Use Cancel if returns the environment to its previous state (leaving no side
effect); otherwise, use Stop.

LOVELY PROFESSIONAL UNIVERSITY 189

Unit 11: Dialog Boxes (I)

NotesAnnoyance factor: Low, if user needs to know when operation is complete, but high if
unnecessarily modal or operation isn’t significant.

Informational dialogs Display information requested by the user.

Example: Word uses a modal dialog box to display word count information.

Type: Modal.

Main instruction: A sentence that describes the information.

Icon: None.

Commit buttons: Close

Other controls: There may be a chevron to show more information.

Annoyance factor: Low, if information is relevant and requested by the user.

Self Assessment

Fill in the blanks:

14. Question dialogs (using buttons) ask users a single question, and provide simple responses
in horizontally arranged buttons.

15. dialogs are used to display information requested by the user.

11.5 Summary

 All the GUI applications keep prompting and talking to the users, using dialog boxes.

 A dialog box is defined as a rectangular window whose major role is to hold other Windows
controls.

 The controls that a dialog box holds achieve the role of dialog among the user and the
machine.

 A dialog box is a secondary window that allows users to perform a command, asks users a
question, or provides users with information or progress feedback.

190 LOVELY PROFESSIONAL UNIVERSITY

Windows Programming

Notes  A task dialog is a dialog box implemented using the task dialog Application Programming
interface (API).

 A task pane is like a dialog box, except that it is presented within a window pane instead of
a separate window.

 Dialog boxes can have tabs, and if so they are called tabbed dialog boxes.

 Property windows typically support several tasks, whereas dialog boxes typically support
a single task or step in a task.

11.6 Keywords

Caption: This is the name of the menu that will appear on the menu bar.

Dialog Box: A dialog box is defined as a rectangular window whose major role is to hold other
Windows controls.

Task Dialog: A task dialog is a dialog box implemented using the task dialog Application
Programming Interface (API).

Task Pane: A task pane is like a dialog box, except that it is presented within a window pane
instead of a separate window.

11.7 Review Questions

1. What is a dialog box? Illustrate the characteristics of dialog box.

2. Show how a dialog box work.

3. Illustrate the process of implementing task dialog.

4. What is a task pane? Explain why task panes have a more direct, contextual feel than
dialog boxes.

5. Illustrate the use of tabbed dialog boxes.

6. What are the steps needed in designing a Dialog Box? Discuss.

7. Illustrate the steps required in creating a dialog box with example.

8. Depict the several usage patterns defined by dialog box.

9. Discuss the various parts of task dialog, which can be assembled in a variety of combinations.

10. Illustrate the steps used in adding the controls to the dialog box.

Answers: Self Assessment

1. dialog box 2. communication

3. secondary 4. task dialog

5. content area 6. footnote area

7. title bar 8. task pane

9. Property 10. tabbed dialog boxes.

11. properties 12. dialog resource

LOVELY PROFESSIONAL UNIVERSITY 191

Unit 11: Dialog Boxes (I)

Notes13. property page 14. command

15. Informational

11.8 Further Readings

Books Brent E. Rector, Win32 Programming, Addison-Wesley

Charles Petzold, Programming Windows, Charles Petzold

Roger Mayne, Windows and Graphics Programming with Visual C++.NET, World
Scientific

Online link www.functionx.com/win32/Lesson04.htm

192 LOVELY PROFESSIONAL UNIVERSITY

Windows Programming

Notes Unit 12: Dialog Boxes (II)

CONTENTS

Objectives

Introduction

12.1 Exchanging Data with a Dialogue Box – Global Variable Method
and Pointer Method

12.2 Problems in Global Variables

12.2.1 Why Global Variables should be avoided when Unnecessary?

12.2.2 Why the Convenience of Global Variables sometimes Outweighs the
Potential Problems?

12.3 Exchanging Data with a Dialog Box – Pointer Method

12.4 Modal, Modeless and System Modal Dialog Boxes

12.4.1 Modal Dialog Box

12.4.2 Modeless Dialog Box

12.4.3 System Modal Dialog Box

12.5 Creating a Modeless Dialog Box

12.6 Summary

12.7 Keywords

12.8 Review Questions

12.9 Further Readings

Objectives

After studying this unit, you will be able to:

 Understand the concept of exchanging data with a dialog box using global variable method
and pointer method

 Discuss problems in global variables

 Understand modal, modeless, and system modal dialog boxes

 Illustrate creating modeless dialog box

Introduction

In this unit you will understand the process of exchanging data with a dialog box by means of
Global Variable Method and Pointer Method. Also you will recognize various types of dialog
boxes such as modal dialog box, modeless dialog box, and system modal dialog box. Creating
a modeless dialog box is also discussed in this unit.

LOVELY PROFESSIONAL UNIVERSITY 193

Unit 12: Dialog Boxes (II)

Notes12.1 Exchanging Data with a Dialogue Box – Global Variable

Method and Pointer Method

This topic lists the DDX_OC functions used to exchange data between a property of an OLE
control in a dialog box, form view, or control view object and a data member of the dialog box,
form view, or control view object.

DDX_OC Functions

DDX_OCBool Manages the transfer of BOOL data between a property of an OLE control and
a BOOL data member.

DDX_OCBoolRO Manages the transfer of BOOL data between a read-only property of an OLE
control and a BOOL data member.

DDX_OCColor Manages the transfer of OLE_COLOR data between a property of an OLE
control and an OLE_COLOR data member.

DDX_OCColorRO Manages the transfer of OLE_COLOR data between a read-only property of an
OLE control and an OLE_COLOR data member.

DDX_OCFloat Manages the transfer of float (or double) data between a property of an OLE
control and a float (or double) data member.

DDX_OCFloatRO Manages the transfer of float (or double) data between a read-only property of
an OLE control and a float (or double) data member.

DDX_OCInt Manages the transfer of int (or long) data between a property of an OLE control
and an int (or long) data member.

DDX_OCIntRO Manages the transfer of int (or long) data between a read-only property of an
OLE control and an int (or long) data member.

DDX_OCShort Manages the transfer of short data between a property of an OLE control and
a short data member.

DDX_OCShortRO Manages the transfer of short data between a read-only property of an OLE
control and a short data member.

DDX_OCText Manages the transfer of CString data between a property of an OLE control
and a CString data member.

DDX_OCTextRO Manages the transfer of CString data between a read-only property of an OLE
control and a CString data member.

If you’re new to Microsoft Foundation Class (MFC) programming, or C++ programming in
general, then there are probably many areas you find confusing or hard to understand. Even (or
should I say “especially”?) veteran programmers have questions from time to time. If I had to
pick one area where I receive the most inquiries, it would have to be Dialog Data Exchange
(DDX) and Dialog Data Verification (DDV). Collectively, these mechanisms provide you a
means to transfer information from your main application to and from a dialog box you wish to
display. And although they may seem cryptic at first, spending the time to learn to use them will
save you pain and agony in the long run!

First, how would we build a dialog in the days of ‘C’ and the Windows SDK? Well, we’d most
likely insert a command into a menu, which would trigger a call to DialogBox(), or a derivative,
in our command message handling code. One of the parameters passed to DialogBox() is a
pointer to a subroutine we created to actually bring up the dialog box. If this dialog box required
initialization, such as filling in default text in an edit box, we’d (probably) either hard-code the
text into our WM_INITDIALOG handler or use a global variable as a text container. If the user
modified the text, we’d have to write the new string back to the global variable or find some
other viable means of retrieving the string prior to the dismissal of the dialog box.

194 LOVELY PROFESSIONAL UNIVERSITY

Windows Programming

Notes

Did u know? Because once the dialog box has been dismissed, all of its local variables are
destroyed and no longer accessible

Ooh, there were some ugly words in that last paragraph. “Global variables”? Well, we did what
we had to do to get our applications out the door on time. But today’s Windows programmer can
use the power of C++ and the MFC. Let’s now think in terms of C++, then add some MFC
concepts as they relate to a dialog box. In C++, when you instantiate an object from a class, the
object exists until you specifically destroy it, either manually or by leaving your own current
scope. So unlike a typical ‘C’ subroutine, our C++ class may have as many member functions
(subroutines) and member variables (“global” to that class) as we like. Best of all, we can keep
the object derived from the class around for as long as we need it. Now, suppose that for a
minute we developed a class using MFC designed to display a dialog box. We could tell the
object derived from the class to display itself, and when the user dismissed the dialog box, the
C++ object would still exist, as we have not taken action to destroy it.

Notes MFC classes “contain” windows, or window handles, as if the class were a bottle…the
class “holds” the window handle but is not the window itself.

So far, then, we know we can create a class to display a dialog box. Any class we create may
contain member variables which we are free to initialize (assuming they are created as public).
So, we build this dialog class, add some public member variables, and go to town. Right? Well,
not quite yet. The problem we have is the dialog box, as a window, contains controls such as edit
boxes, static text, radio buttons, etc. The class we instantiated merely holds a window handle,
and even that is invalid until the dialog box itself is created. So how do we fill the controls inside
the dialog box before it’s created? We do so by using DDX.

Our first task on the road to using DDX is to create a main application, then create a new dialog
box class. Assuming you’ve built your basic application (another topic, another day), you first
“lay out” your dialog box using the dialog box editor (or resource editor, if you prefer) in Visual
C++.

Example: Let’s insert a new dialog box, IDD_MYDIALOG. Then, include a text edit box
we’ll call IDC_EDITBOX and a check box we’ll call IDC_CHECKBOX (for the check box text, use
“Check Me!”). Feel free to arrange these controls and give the dialog box any style or
ornamentation you wish.

Now, activate the Class Wizard by selecting it under the “View” menu. We’ll use the “Add
Class” button under the “Message Map” tab—press this button and select “New”. This will
activate another dialog box, where we’ll call our new class “DemoDialog” (under “Name”) and
give it a base class of CDialog (under “Base Class”). You should see the dialog identifier
IDD_MYDIALOG “Dialog ID”.

!
Caution To be sure Class Wizard saves your work to date, click OK twice. This will exit
Class Wizard and store some new files for you…these are your dialog box class files.

Again activate Class Wizard, only this time select the “Member Variables” tab. Do you see your
control identifiers, IDC_EDITBOXand IDC_CHECKBOX? You should. IDC_CHECKBOX will be

LOVELY PROFESSIONAL UNIVERSITY 195

Unit 12: Dialog Boxes (II)

Noteshighlighted in the list box, so just press “Add Variable” and type in the variable name
m_bIsChecked and press “OK”.

Notes Class Wizard gave you a default variable type of boolean. To create a variable
forIDC_EDITBOX, press “Add Variable” again and type the variable name m_strText.
Class Wizard gave this variable a default class of CString.

In our main application, we need to modify our menu and/or toolbar to add a command to
activate our dialog box. Assuming we’ve added a command to “Demo the Dialog” (again,
another topic, another time), we’ll add a message handler (in Class Wizard) to handle the user
command to display the dialog box. Assuming the message handler is named
“OnViewDemodialog”, we would edit the handler to look like this:

void CMainFrame::OnViewDemodialog()

{

// Let’s set a CMainFrame boolean variable to use for our UI command

// handling.

m_bDemoDlgActive = TRUE;

// Here, we create our dialog box class and initialize the

// member variables.

CString strResult;

CDemoDialog MyDialog;

MyDialog.m_strText = “Edit Me!”; // fill in edit box

MyDialog.m_bIsChecked = FALSE; // set up check box

if (MyDialog.DoModal() == IDOK) {

// If the user pressed “OK”, we’ll stuff the results onto the

// control bar.

strResult.Format(“(Returned: ‘%s’,’%s’)”,MyDialog.m_strText,

(MyDialog.m_bIsChecked ? “checked” : “unchecked”));

} // if

else {

// User pressed “Cancel”, so write to control bar.

strResult = “(Canceled)”;

} // else

// Update status bar

m_wndStatusBar.SetWindowText(strResult); // always use for pane

0...

196 LOVELY PROFESSIONAL UNIVERSITY

Windows Programming

Notes // Reset our boolean.

m_bDemoDlgActive = FALSE;

}

If you successfully compiled this and ran the resulting program, you could bring up the
demonstration dialog box, modify the edit control, check the check box, and press “OK”. What
you would see would be the text you entered and the status of the check box displayed on the
status bar (at the bottom of the window). The MFC DDX mechanism did all of the work for you!
To you, working with your dialog box was as easy as working with another C++ class’ member
variables. Class Wizard is really something!

Task Illustrate the use of DDX_OCFloat.

Self Assessment

Fill in the blanks:

1. function is used to manage the transfer of BOOL data between a read-only
property of an OLE control and a BOOL data member.

2. function is used to manage the transfer of CString data between a read-only
property of an OLE control and a CString data member.

3. function manages the transfer of short data between a property of an OLE
control and a short data member.

4. One of the parameters passed to DialogBox() is a to a subroutine we created
to actually bring up the dialog box.

5. If the user modified the text, we’d have to write the new string back to the
variable or find some other viable means of retrieving the string prior to the dismissal of
the dialog box.

12.2 Problems in Global Variables

As with all Heuristic Rules, this is not a rule that applies 100% of the time. Code is generally
clearer and easier to maintain when it does not use globals, but there are exceptions. It is similar
in spirit to GotoConsideredHarmful, although use of global variables is less likely to get you
branded as an inveterate hacker.

12.2.1 Why Global Variables Should be Avoided when Unnecessary?

 Non-locality: Source code is easiest to understand when the scope of its individual elements
are limited. Global variables can be read or modified by any part of the program, making
it difficult to remember or reason about every possible use.

 No Access Control or Constraint Checking: A global variable can be get or set by any part
of the program, and any rules regarding its use can be easily broken or forgotten. (In other
words, get/set accessors are generally preferable over direct data access, and this is even
more so for global data.) By extension, the lack of access control greatly hinders achieving
security in situations where you may wish to run untrusted code (such as working with
3rd party plugins).

LOVELY PROFESSIONAL UNIVERSITY 197

Unit 12: Dialog Boxes (II)

Notes Implicit coupling: A program with many global variables often has tight couplings between
some of those variables, and couplings between variables and functions.

Did u know? Grouping coupled items into cohesive units usually leads to better programs.

 Concurrency issues: If globals can be accessed by multiple threads of execution,
synchronization is necessary (and too-often neglected). When dynamically linking modules
with globals, the composed system might not be thread-safe even if the two independent
modules tested in dozens of different contexts were safe.

 Namespace pollution: Global names are available everywhere. You may unknowingly
end up using a global when you think you are using a local (by misspelling or forgetting
to declare the local) or vice versa. Also, if you ever have to link together modules that
have the same global variable names, if you are lucky, you will get linking errors. If you
are unlucky, the linker will simply treat all uses of the same name as the same object.

 Memory allocation issues: Some environments have memory allocation schemes that
make allocation of globals tricky. This is especially true in languages where “constructors”
have side-effects other than allocation (because, in that case, you can express unsafe
situations where two globals mutually depend on one another). Also, when dynamically
linking modules, it can be unclear whether different libraries have their own instances of
globals or whether the globals are shared.

 Testing and Confinement: Source that utilizes globals is somewhat more difficult to test
because one cannot readily set up a ‘clean’ environment between runs. More generally,
source that utilizes global services of any sort (e.g. reading and writing files or databases)
that aren’t explicitly provided to that source is difficult to test for the same reason. For
communicating systems, the ability to test system invariants may require running more
than one ‘copy’ of a system simultaneously, which is greatly hindered by any use of
shared services – including global memory – that are not provided for sharing as part of
the test.

12.2.2 Why the Convenience of Global Variables sometimes Outweighs
the Potential Problems?

 In a very small or one-off programs, especially of the ‘plugin’ sort where you’re essentially
writing a single object or short script for a larger system, using globals can be the simplest
thing that works.

 When global variables represent facilities that truly are available throughout the program,
their use simplifies the code.

 Some programming languages provide no support or minimal support for non-global
variables.

 Some people jump through very complicated hoops to avoid using globals. Many uses of
the Singleton Pattern are just thinly veiled globals. If something really should be a global,
make it a global. Don’t do something complicated because you might need it someday. If
a global variable exists, I would assume that it is used. If it is used, there are methods
associated with it. Even in the above cases, it’s wise to consider using one of the Alternatives
to Global Variables to control access to this facility. While this does help future-proof the
code.

198 LOVELY PROFESSIONAL UNIVERSITY

Windows Programming

Notes
Example: When your ‘small’ program grows into a very large one, it can also simplify

more immediate problems such as testing the code or making it work correctly in a concurrent
environment.

Self Assessment

Fill in the blanks:

6. A global variable can be get or set by any part of the program, and any
regarding its use can be easily broken or forgotten.

7. If globals can be accessed by multiple threads of execution, is necessary
(and too-often neglected).

8. When dynamically linking modules, it can be unclear whether different libraries have
their own of globals or whether the globals are shared.

12.3 Exchanging Data with a Dialog Box – Pointer Method

Dialog Box Data Exchange and Validation

The controls in a dialog box are specialized windows that store their own copy of the data that
the user enters or changes. In the lifetime of a dialog box, you'll normally want to initialize
these controls with data from your program, and then save that data back into those variables.

You'll probably also want to validate the values stored in the controls to ensure that they are
within acceptable ranges when the user attempts to click OK to exit the dialog box.

Obviously, the first task in this process is to add new member variables to the dialog box
handler class that correspond to the controls.

Mapping Member Variables to Controls

You can use ClassWizard to add member variables and provide the mapping for most of the
dialog box controls via ClassWizard's Member Variables tab (see Figure 12.1).

Figure 12.1: The ClassWizard Member Variables Tab

LOVELY PROFESSIONAL UNIVERSITY 199

Unit 12: Dialog Boxes (II)

NotesThe Member Variables tab lists the control IDs of the various controls. You can select an ID and
click the Add Variable button to display the Add Member Variable dialog box (see Figure 12.2).

Figure 12.2: The Add Member Variable Dialog Box

You'll notice that the Add Member Variable dialog box lets you set a category that can be a value
or a control, as well as a variable type. The variable types available change depending on your
selection in the Category combo box.

If you set the Category combo box to indicate value mapping, the Variable Type combo box lists
member variable types that can be used with the type of control being mapped. These values are
great for quick and easy value-oriented transfer, but often you'll need to map a control class to
the control so that you can manipulate the control's more advanced features.

You can map a number of variables to the same control so that you can perform easy value
transfer and allow control handler class mapping concurrently.

After you add the member variable map, you'll notice that the new member variable is inserted
into your dialog box handler class definition between the ClassWizard AFX_DATA-generated
comments.

The new variable also initializes your dialog box class's constructor function like this:

//{{AFX_DATA_INIT(CCustomDlg)

m_strCustomEdit = _T("");

//}}AFX_DATA_INIT

You'll see a new entry placed in the DoDataExchange() function like this:

void CCustomDlg::DoDataExchange(CDataExchange* pDX)

{

 CDialog::DoDataExchange(pDX);

 //{{AFX_DATA_MAP(CCustomDlg)

 DDX_Text(pDX, IDC_CUSTOM_EDIT, m_strCustomEdit);

 //}}AFX_DATA_MAP

}

200 LOVELY PROFESSIONAL UNIVERSITY

Windows Programming

Notes The new DDX_Text macro entry automates data transfer between the control identified by
IDC_CUSTOM_EDIT and your m_strCustomEditmember variable.

If you were to add a control map for the edit control, you'd see a CEdit member variable entry
added to the class definition, and a corresponding DDX_Control macro to map it to the control
ID. Consider this example:

DDX_Control(pDX, IDC_CUSTOM_EDIT, m_editCustom);

If you insert other variable types, you'll see different DDX_ macros used to map the various
types of controls to various data types. Table 12.1 lists some of these controls.

Table 12.1: Some Common Controls and Their Mapping Classes/Variables

Control Mapping Class Allowable Mapped Data Types

Static CStatic CString

Edit CEdit CString, DWORD, UINT, int, long

 double, float, BOOL, short

 COleDateTime & ColeCurrency

Button CButton None

CheckBox CButton BOOL

3-State CheckBox CButton int

Radio CButton int

ListBox CListBox CString, int

ComboBox CComboBox CString, int

Extended Combo CComboBoxEx CString, int

ScrollBar CScrollBar int

Spin CSpinButtonCtrl None

Progress Bar CProgressCtrl None

Slider Control CSliderCtrl int

List Control CListCtrl None

Tree Control CTreeCtrl None

Date Time Picker CDateTimeCtrl CTime, COleDateTime

Month Calendar CMonthCalCtrl CTime, COleDateTime

You can add some simple validation maps to certain controls, such as Edit controls. Depending
on the variable type mapped, the lower section of the Member Variables tab displays a section
that lets you specify validation information.

If you map a CString to an Edit control, for example, you can set the validation rules to limit the
maximum number of characters allowed in the Edit control. If you map an integer to the Edit
control, you can set upper and lower ranges for the entered value.

If you set any of these validation rules, ClassWizard adds DDV_ routines to the DoDataExchange()
function to perform validation, like this:

DDV_MaxChars(pDX, m_strCustomEdit, 10);

Several different DDV_ routines exist for the various types of validation rules, member variables,
and control types.

LOVELY PROFESSIONAL UNIVERSITY 201

Unit 12: Dialog Boxes (II)

NotesThe Data Exchange and Validation Mechanism

The DoDataExchange() function is called several times during the lifetime of a dialog box and
performs a variety of tasks. When the dialog box is initialized, this function subclasses any
mapped controls through the DDX_Control routine (discussed in more detail later in the section,
"Initializing the Dialog Box Controls"). Then it transfers the data held in the member variables
to the controls using the DDX_ routines. Finally, after the user clicks OK, the data from the
controls is validated using DDV_ routines and then transferred back into the member variables
using the DDX_ routines again.

You'll notice that the DoDataExchange() function is passed a pointer to a CDataExchange object.
This object holds the details that let the DDX routines know whether they should be transferring
data to or from the controls. The DDX_ routines then implement the Windows message required
to set or retrieve data from the control associated with the given control ID.

When the m_bSaveAndValidate member is set to TRUE, the data exchange should transfer data
from the controls to the member variables and perform validation. It is set to FALSE when data
from the member variables should be loaded into the controls. You can add your own custom
code to DoDataExchange() to transfer data to or from the controls and check the
m_bSaveAndValidatemember of the CDataExchange object to see whether you should be
transferring the data to or from the control.

12.4 Modal, Modeless and System Modal Dialog boxes

Dialog boxes are specifically used for accepting input from the user or displaying a message to
the user. Windows operating system comes with default dialog boxes like Font dialog box,
Printer dialog box, Color dialog box etc. Most of the applications specially those vendored by
Microsoft borrow these dialog boxes from Windows whenever they need. There are three kinds
of dialog boxes.

1. Modal Dialog Box (Application Modal Dialog Box)

2. Modeless Dialog Box

3. System Modal Dialog Box

12.4.1 Modal Dialog Box

Modal dialog boxes can be also called as Application Modal dialog box. These dialog boxes
insist you to respond to them before continuing in the same application. A Modal dialog box
while in action, stops running your code until it is closed or hidden. Although, you can call
default Dialog box as a Modal dialog box, but you can also create of your own. The Show method
of form uses VbModal style to load the form as a Modal dialog box. The general syntax you
follow will be :FormName.Show VbModal

12.4.2 Modeless Dialog Box

Modeless dialog boxes do not need to be closed to loose their focus. They are just like any other
form in your application and loose their focus as soon as you click some other Window outside
the application.

Example: A Find and Replace dialog box, Document Windows in Word application are
few examples of Modeless dialog boxes.

202 LOVELY PROFESSIONAL UNIVERSITY

Windows Programming

Notes A Form is by default loaded in this state if no arguments are supplied with Show method.

12.4.3 System Modal Dialog Box

A System Modal dialog box restricts the user from continuing work on the system unless it gets
unloaded.

Example: Screen Saver with passwords is the pretty example of a Modal dialog box.
Creating such a dialog box is a bit tricky, however you can have a default message box in System
Modal mode.

The show method of forms does not give you such style. In order to call a default message box
in a system Modal style, use the following syntax:

MsgBox “Message String”, VbOKonly + VbSystemModal, “Title”

Self Assessment

Fill in the blanks:

9. Dialog boxes are specifically used for accepting from the user or displaying
a message to the user.

10. Modal dialog boxes can be also called as

11. The method of form uses VbModal style to load the form as a Modal dialog
box.

12. dialog boxes are just like any other form in your application and loose their
focus as soon as you click some other Window outside the application.

13. A dialog box restricts the user from continuing work on the system unless
it gets unloaded.

12.5 Creating a Modeless Dialog Box

You create a modeless dialog box by means of the CreateDialog function, mentioning the
identifier or name of a dialog box template resource and a pointer to the dialog box procedure.
CreateDialog loads the template, creates the dialog box, and optionally exhibits it.

!
Caution Your application is accountable for taking and transmitting user input messages
to the dialog box procedure.

Example: In the following example, the application exhibits a modeless dialog box — if
it is not already shown — when the user clicks Go To from an application menu. The dialog box
includes an edit control, a check box, and OK and Cancel buttons. The dialog box template is a
resource in the application’s executable file and has the resource identifier DLG_GOTO. The user
enters a line number in the edit control and verifies the check box to state that the line number
is relative to the current line. The control identifiers are ID_LINE, ID_ABSREL, IDOK, and
IDCANCEL.

The statements in the first part of the example create the modeless dialog box. These statements,
in the window procedure for the application’s main window, create the dialog box when the

LOVELY PROFESSIONAL UNIVERSITY 203

Unit 12: Dialog Boxes (II)

Noteswindow procedure obtains a WM_COMMAND message having the IDM_GOTO menu identifier,
but only if the global variable does not already enclose a valid handle. The second part of the
example is the application’s main message loop. The loop involves the IsDialogMessage function
to make sure that the user can utilize the dialog box keyboard interface in this modeless dialog
box. The third part of the the dialog box procedure. The procedure obtains the contents of the
edit control and check box when the user clicks the OK button. The procedure demolishes the
dialog box when the user clicks the Cancel button.

HWND hwndGoto = NULL; // Window handle of dialog box

...

case WM_COMMAND:

 switch (LOWORD(wParam))

 {

 case IDM_GOTO:

 if (!IsWindow(hwndGoto))

 {

 hwndGoto = CreateDialog(hinst,

 MAKEINTRESOURCE(DLG_GOTO),

 hwnd,

 (DLGPROC)GoToProc);

 ShowWindow(hwndGoto, SW_SHOW);

 }

 break;

 }

 return 0L;

In the former statements, CreateDialog is called only if hwndGoto does not enclose a valid
window handle. This makes sure that the application does not exhibit two dialog boxes at the
same time. To support this method of checking, the dialog procedure must set to NULL when it
demolishes the dialog box.

The message loop for an application includes the following statements:

BOOL bRet;

while ((bRet = GetMessage(&msg, NULL, 0, 0)) != 0)

{

 if (bRet == -1)

 {

 // Handle the error and possibly exit

 }

 else if (!IsWindow(hwndGoto) || !IsDialogMessage(hwndGoto, &msg))

 {

204 LOVELY PROFESSIONAL UNIVERSITY

Windows Programming

Notes TranslateMessage(&msg);

 DispatchMessage(&msg);

 }

}

The loop verifies the validity of the window handle to the dialog box and only calls the
IsDialogMessage function if the handle is valid. IsDialogMessage only processes the message if
it relates to the dialog box. Or else, it returns FALSE and the loop transmits the message to the
suitable window.

The following statements identify the dialog box procedure.

int iLine; // Receives line number.

BOOL fRelative; // Receives check box status.

BOOL CALLBACK GoToProc(HWND hwndDlg, UINT message, WPARAM wParam, LPARAM

lParam)

{

 BOOL fError;

 switch (message)

 {

 case WM_INITDIALOG:

 CheckDlgButton(hwndDlg, ID_ABSREL, fRelative);

 return TRUE;

 case WM_COMMAND:

 switch (LOWORD(wParam))

 {

 case IDOK:

 fRelative = IsDlgButtonChecked(hwndDlg, ID_ABSREL);

 iLine = GetDlgItemInt(hwndDlg, ID_LINE, &fError,

 fRelative);

 if (fError)

 {

 MessageBox(hwndDlg, SZINVALIDNUMBER, SZGOTOERR,

 MB_OK);

 SendDlgItemMessage(hwndDlg, ID_LINE, EM_SETSEL, 0,

 -1L);

 }

 else

 // Notify the owner window to carry out the task.

 return TRUE;

LOVELY PROFESSIONAL UNIVERSITY 205

Unit 12: Dialog Boxes (II)

Notes case IDCANCEL:

 DestroyWindow(hwndDlg);

 hwndGoto = NULL;

 return TRUE;

 }

 }

 return FALSE;

}

In the former statements, the procedure processes the WM_INITDIALOG and WM_COMMAND
messages.

Task What is the job of IsDialogMessage function? Discuss.

Self Assessment

Fill in the blanks:

14. loads the template, creates the dialog box, and optionally exhibits it.

15. The procedure demolishes the dialog box when the user clicks the button.

12.6 Summary

 There are various DDX_OC functions used to exchange data between a property of an OLE
control in a dialog box, form view, or control view object and a data member of the dialog
box, form view, or control view object.

 When we insert a command into a menu, it would trigger a call to DialogBox(), or a
derivative, in our command message handling code.

 In our main application, we need to modify our menu and/or toolbar to add a command
to activate our dialog box.

 Global variables can be read or modified by any part of the program, making it difficult
to remember or reason about every possible use.

 Modal dialog boxes (also called as Application Modal dialog box) insist you to respond to
them before continuing in the same application.

 Modeless dialog boxes are just like any other form in your application and loose their
focus as soon as you click some other Window outside the application.

 A System Modal dialog box restricts the user from continuing work on the system unless
it gets unloaded.

 You create a modeless dialog box by means of the CreateDialog function, mentioning the
identifier or name of a dialog box template resource and a pointer to the dialog box
procedure.

206 LOVELY PROFESSIONAL UNIVERSITY

Windows Programming

Notes 12.7 Keywords

CreateDialog: CreateDialog loads the template, creates the dialog box, and optionally exhibits
it.

Modal Dialog Boxes: Modal dialog boxes (also called as Application Modal dialog box) insist
you to respond to them before continuing in the same application.

Modeless Dialog Boxes: Modeless dialog boxes are just like any other form in your application
and loose their focus as soon as you click some other Window outside the application.

System Modal Dialog Box: A System Modal dialog box restricts the user from continuing work
on the system unless it gets unloaded.

12.8 Review Questions

1. Explain the process of exchanging data with a dialogue box using Global Variable Method
and Pointer Method.

2. Illustrate various DDX_OC functions used to exchange data.

3. How DDX is used to create a new dialog box class? Explicate.

4. What are the problems that appear while using global variables? Discuss.

5. Why the convenience of global variables sometimes outweighs the potential problems?

6. Illustrate the function of Application Modal Dialog Box.

7. What is system modal dialog box? Also write the syntax used in system modal dialog box.

8. Make distinction between modal and modal dialog boxes. Explain with appropriate
examples.

9. Elucidate how to create a Modeless Dialog Box a Modeless Dialog Box.

10. What are the memory allocation issues related with global variables? Illustrate.

Answers: Self Assessment

1. DDX_OCBoolRO 2. DDX_OCTextRO

3. DDX_OCShort 4. pointer

5. global 6. rules

7. synchronization 8. instances

9. input 10. Application Modal dialog box

11. Show 12. Modeless

13. System Modal 14. CreateDialog

15. Cancel

LOVELY PROFESSIONAL UNIVERSITY 207

Unit 12: Dialog Boxes (II)

Notes12.9 Further Readings

Books Brent E. Rector, Win32 Programming, Addison-Wesley

Charles Petzold, Programming Windows, Charles Petzold

Roger Mayne, Windows and Graphics Programming with Visual C++.NET, World
Scientific

Online link www.functionx.com/win32/Lesson04.htm

208 LOVELY PROFESSIONAL UNIVERSITY

Windows Programming

Notes Unit 13: Windows GDI

CONTENTS

Objectives

Introduction

13.1 Windows GDI

13.1.1 Displaying Text

13.1.2 Displaying Pixels

13.1.3 Drawing Lines

13.1.4 Drawing Filled Shapes

13.1.5 Pens and Brushes

13.1.6 Window Size

13.1.7 Forcing a Redraw

13.2 Summary

13.3 Keywords

13.4 Review Questions

13.5 Further Readings

Objectives

After studying this unit, you will be able to:

 Explain Windows GDI

 Discuss the Windows GDI capabilities

Introduction

The Microsoft Windows graphics device interface (GDI) enables applications to use graphics and
formatted text on both the video display and the printer. Windows-based applications do not
access the graphics hardware directly. Instead, GDI interacts with device drivers on behalf of
applications.

 Where applicable: GDI can be used in all Windows-based applications.

 Developer audience: This API is designed for use by C/C++ programmers. Familiarity
with the Windows graphical user interface and message-driven architecture is required.

 Run-time requirements: For information, on which operating systems are required to use
a particular function.

13.1 Windows GDI

GDI stands for Graphics Device Interface. It provides many functions for displaying graphics in
your Windows application.

LOVELY PROFESSIONAL UNIVERSITY 209

Unit 13: Windows GDI

Notes

Notes In GDI calls screen position 0,0 is the top left of the window. If you need to work out
the window width and height follow this link here: Window size

An example application showing these GDI functions can be downloaded here: WinGDIdemo.exe.
In addition the source code for this demo can also be downloaded: WinGDIDemoCode.zip

The different GDI capabilities:

 Displaying Text

 Displaying Pixels

 Drawing Lines

 Drawing Filled Shapes

 Pens & Brushes

 Window size

 Forcing a redraw

13.1.1 Displaying Text

To display some text you can use the TextOut function. In order to use this you need to obtain a
handle to the device, an HDC and release it after use.

To obtain the handle you call: BeginPaint, it takes your window handle and a pointer to a
PAINTSTRUCT that you have declared. This structure is just used by windows so you don't need
to do anything apart from pass it on to functions.

The definition of the TextOut function is:

BOOL TextOut(HDC hdc, int x, int y, LPCSTR lpString, int cbString);

It takes the handle you were returned from BeginPaint, the x, y position on screen, a pointer to
some text and the number of characters you want to display.

After displaying your text you must call EndPaint to release the handle.

For example, to display 'Hello World' at screen position 10,10 you could do this:

PAINTSTRUCT ps;

HDC hdc = BeginPaint(hWnd, &ps);

TextOut(hdc,10,10,"Hello World",11);

EndPaint(hWnd, &ps);

Did u know? What is GDI +?

Windows GDI+ is a class-based API for C/C++ programmers. It enables applications to
use graphics and formatted text on both the video display and the printer.

210 LOVELY PROFESSIONAL UNIVERSITY

Windows Programming

Notes 13.1.2 Displaying Pixels

You can drawn single pixels to the screen using the following function:

SetPixel(HDC hdc, int X, int Y, COLORREF crColor);

Again it requires a handle to a device context (HDC) and a screen position. Additionally the
colour you want to set the pixel to can be provided. This needs to be given in a Win32 type
COLORREF. Fortunately, we can use a macro (RGB) to convert from three Red, Green and Blue
values to a COLORREF type. Each colour component can range from 0 to 255.

To display a red pixel at screen co-ordinates 100,100 we would write:

SetPixel(hdc, 100, 100, RGB(255,0,0));

Task In a group of four analyze why GDI can be used in all Windows-based applications.

13.1.3 Drawing Lines

There are a number of functions for drawing lines using GDI. You can use MoveTo and LineTo
to position a pen on the screen and draw a line to another position. You can also use PolyLine,
PolyPolyLine, Arc, etc. To explore which ones are available look in the MSDN help. We will
describe here the use of PolyLine.

PolyLine draws lines between points defined in an array you pass to the function. The function
definition is:

Polyline(HDC hdc, CONST POINT *lppt, int cPoints);

This takes the device handle, an array of points and how many points there are in the array. It
draws lines between each point. POINT is a structure with member variables x and y.

To draw a simple diagonal line we could do this:

POINT pntArray[2];

pntArray[0].x=10;

pntArray[0].y=10;

pntArray[1].x=100;

pntArray[1].y=100;

Polyline(hdc, pntArray, 2);

!
Caution The color and style of the line can be changed by using pens.

13.1.4 Drawing Filled Shapes

You can draw filled rectangles using FillRect and filled ellipses using Ellipse. Also, not covered
here, you can draw filled polygons, pies, rounded rectangles etc. Again look in the MSDN help
for details.

LOVELY PROFESSIONAL UNIVERSITY 211

Unit 13: Windows GDI

NotesTo draw a filled ellipse we can use:

BOOL Ellipse(HDC hdc, int nLeftRect, int nTopRect, int nRightRect, int nBottomRect);

This function takes the device context and the screen positions of a rectangle that represents the
bounding rectangle for the ellipse. The ellipse will be drawn to fit in this rectangle.

To draw a filled rectangle we can use:

Example: FillRect(HDC hDC, CONST RECT *lprc, HBRUSH hbr);

This function takes the device context, a rectangle structure and a brush. The RECT structure
contains member variables left, right, top and bottom. Brushes are described in the next section:
Pens and Brushes.

13.1.5 Pens and Brushes

GDI uses the concept of Pens and Brushes. A Pen defines the style and colour that pixels will be
drawn in while a brush determines the fill colour of shapes. A number of the GDI drawing
functions can be effected by the pen or brush chosen.

Pens

To create a pen we need to obtain a handle to one. This handle is named HPEN, we can keep hold
of this handle during the lifetime of our program but must remember to delete it before exiting.

To create a pen we use the function:

HPEN CreatePen(int fnPenStyle, int nWidth, COLORREF crColor);

This function takes a style, a pen width and a colour. The style must be one of the predefined
styles. The main ones are shown below:

PS_SOLID - Pen is solid.

PS_DASH - Pen is dashed.

PS_DOT - Pen is dotted.

PS_DASHDOT - Pen has alternating dashes and dots.

PS_DASHDOTDOT - Pen has alternating dashes and double dots.

PS_NULL - Pen is invisible.

So to create a solid green pen of 1 pixel width we would write:

HPEN greenPen=CreatePen(PS_SOLID, 1, RGB(0,255,0));

It is a good idea to create our pens (and brushes) in advance of drawing and then apply them as
required. To apply a pen so future drawing commands use it we must select it. This is known as
selecting it into the device context and is achieved by using SelectObject. One thing we must be
aware of is that when we no longer want to use our pen we need to re-select the old pen. Luckily
SelectObject returns the old pen. So to use our green pen to draw a line we may do this:

// Select our green pen into the device context and remember previous pen

HGDIOBJ oldPen=SelectObject(hdc,greenPen);

// Draw our line

212 LOVELY PROFESSIONAL UNIVERSITY

Windows Programming

Notes Polyline(hdc, pntArray, 2);

// Select the old pen back into the device context

SelectObject(hdc,oldPen);

Brushes

Creating and using Brushes is very similar to pens. We can use CreateSolidBrush to create a
solid coloured brush or CreateBrushIndirect to create a brush with specific styles (like hatched)
or even using a loaded bitmap. You can use a bitmap as a repeating pattern for your brush using
CreatePatternBrush. Here we will describe CreateSolidBrush for the others please look int he
MSDN help file.

HBRUSH CreateSolidBrush(COLORREF crColor)

This is a very simple function that takes the required colour and returns a handle to a brush. We
can use it in much the same way as the pen. To create a blue brush we would write:

HBRUSH blueBrush=CreateSolidBrush(RGB(0,255,0));

To use it to fill a rectangle:

RECT rct;

rct.left=10;

rct.right=100;

rct.top=10;

rct.bottom=200;

FillRect(hdc, &rct, blueBrush);

13.1.6 Window Size

When you create a window you can specify its size. However the size of the window does not
always relate to the drawing area as there are menu bars and borders that also take up room.
Additionally the user can simply alter the size of your window at any time. So we need a way of
determining the current drawing area. We do this using the GetClientRect call. This returns a
rectangle defining the area of the window your program (the client) can draw into. You must
pass in the handle to your window and the address of a rectangle that will be filled by the
function.

Example: RECT clientRect;

GetClientRect(hWnd,&clientRect);

13.1.7 Forcing a Redraw

As we have mentioned previously you can only draw your window when Windows tells you to
via a WM_PAINT message. Sometimes you would like to update your window whenever you
want. To do this you have to tell Windows that your window is dirty and needs a redraw. You
can do this by using InvalidateRect. This tells Windows your window is dirty and needs
redrawing. Windows then sends you a WM_PAINT message telling you to draw. InvalidateRect
takes three parameters, the handle to your window, the rectangular area of your window that

LOVELY PROFESSIONAL UNIVERSITY 213

Unit 13: Windows GDI

Notesneeds to be redrawn (or NULL for the whole window) and a Boolean indicating if you wish the
window to be cleared first. So the standard call for clearing the whole window is:

InvalidateRect(hWnd,NULL,TRUE);

Self Assessment

Fill in the blanks:

1. To display some text you can use the …………………… function.

2. To obtain the handle you call: BeginPaint, it takes your window handle and a pointer to a
……………………………….. that you have declared.

3. We can use a macro (RGB) to convert from three Red, Green and Blue values to a
…………………………….. type.

4. Additionally the colour you want to set the …………………….. to can be provided.

5. You can use ……………………. and LineTo to position a pen on the screen and draw a line
to another position.

6. …………………… draws lines between points defined in an array you pass to the function.

7. Additionally the user can simply alter the ………………. of your window at any time.

8. You can use a bitmap as a repeating pattern for your brush using ………………………….

9. A ………………….. defines the style and colour that pixels will be drawn in while a brush
determines the fill colour of shapes.

10. The ………………….. structure contains member variables left, right, top and bottom.


Caselet Banking on BlackBerry

There's this old joke about two campers who spy a grizzly coming towards them
from afar. One of them immediately takes off his shoes and substitutes them for
runners. "Why are you doing that? You can't outrun that bear even with running

shoes," said his friend, to which he replied, "Who cares about the grizzly? All I have to do
is outrun you."

Employ this logic in the real world, and you see a similar situation with mobile
manufacturers who are busy trying to woo users, and have to keep developers on their
side. Because if you can't attract developers, you won't get any great apps, and without
apps, your smartphone isn't worth the pixels on its screen.

Rise of the Underdog?

In this game, BlackBerry is at a slight disadvantage because it is not perceived to be a big
player, and so has to strive a little harder to keep up.

Pointing this out, Anil Pai, Mobile Security Analyst, TCS, says, "Android and iPhone are
the market leaders, followed by Windows. BlackBerry is in the fourth spot and may pick
up in future." Pai says that the launch of the QNX operating system for BlackBerry in a few

Contd...

214 LOVELY PROFESSIONAL UNIVERSITY

Windows Programming

Notes months, coupled with the security features the manufacturer offers, will make it a viable
alternative to the other three. And while TCS is currently not working on anything for
BlackBerry platform from the security standpoint, he said that the company plans to do
this in the near future. Getting a big software player like TCS to work on its platform is a
big plus for BlackBerry.

This is because the stakes are huge. According to an IDC report released in January 2012,
the world's mobile worker population will reach 1.3 billion by 2015, representing 37.2 per
cent of the total workforce. Asia Pacific (excluding Japan) will see the maximum growth
from around 601.7 million mobile workers in 2010 to 838.7 million in 2015, spurred
primarily by India and China.

Many of them will be carrying smartphones and being the number fourth in this list, one
expects BlackBerry to try that much harder to woo developers because apps hold the key
to smartphone adoption.

Ironing Out the Creases

One of the things that might help BlackBerry could be its native functionality, said Sunil
Mishra, Senior Software Engineer, Creative Commons, who has been developing apps on
both Android and BlackBerry.

"Both are good, but BlackBerry has a richer user interface." Mishra said that he would
continue to develop apps for BlackBerry in spite of his knowledge of Android because, as
he put it, "Android is easy to learn but difficult to debug."

Such news will be music to RIM's ears, which will no doubt want to increase its market
share in India – a tough thing to do if you are not a major player because the market for
smartphones is rather limited in India as of now. In November last year, Gartner said that
while Indian mobile handset sales would reach 231 million units in 2012, an increase of 8.5
per cent over 2011 sales of 213 million units, very few would be smartphones. In fact, in the
first three quarters of the calendar year 2011, smartphone sales in India made up 6 per cent
of total device sales, and this is expected to increase only to 8 per cent in 2012. View this
statistic in a different light, and this translates to about 18.48 million smartphones being
shipped in India in calendar year 2012, with BlackBerry taking a relatively smaller
percentage of sales.

Another big problem with BlackBerry is the total number of apps available. According to
Annie Mathew, Head of Alliances and Developer Relations, India, Research in Motion,
there are about 50,000 apps on BlackBerry's App World, which is a very small number
when compared to Apple, which has at least 5 lakh apps on its App Store. But BlackBerry
is trying to turn around its smaller base by offering a customised service to developers,
she says. Citing an example, she says that when Dhingana, which was launched on the App
Store two years ago, first came to BlackBerry, they had a lot of issues, but BlackBerry's
team helped them to resolve them. "It is important for developers that they should find it
easy to develop apps," she said.

And some developers are finding this to be true. Vineeth Karunakaran, Senior Software
Engineer, USD Global, who has been developing apps for BlackBerry for three years (he
also develops J2ME apps for Nokia and other platforms, besides writing apps for Symbian)
says that he shifted to developing for BlackBerry because of the satisfaction he gets from
the platform. "We are able to do everything we want. It is better than offerings from
competitors," he said.

Contd...

LOVELY PROFESSIONAL UNIVERSITY 215

Unit 13: Windows GDI

NotesLanguage Barriers

Of course, there is also another issue – programming languages. Once a developer learns
a programming language, he is not always eager to jump from what he knows to what he
doesn't because this involves relearning a language. Karunakaran, who is well-versed
with Java, says that he can't move to iOS because he is required to program it in Objective
C, a language that he is not familiar with. He also has no desire to move to Android, a
platform that he says he doesn't like. "Android has a lot of bugs even with basic features
like phone calls and SMS. I have an Android phone and these bugs are making it difficult
for me to use the phone," he said.

So, is the BlackBerry developer market filled with people who don't like other platforms,
or can't move away for various reasons? Mathew disagrees. "Apple is not the most popular
brand in India. That is why developers want to get on to BlackBerry." Highlighting Indian
players like MakeMyTrip, Naukri and Shaadi, she said, "They first made an appearance on
BlackBerry and only then did they get on other platforms. For developers in India, it is
BlackBerry, Android and iOS, in that order."

13.2 Summary

 GDI stands for Graphics Device Interface. It provides many functions for displaying graphics
in your Windows application.

 GDI uses the concept of Pens and Brushes. A Pen defines the style and colour that pixels
will be drawn in while a brush determines the fill colour of shapes.

 We can use CreateSolidBrush to create a solid coloured brush or CreateBrushIndirect to
create a brush with specific styles (like hatched) or even using a loaded bitmap.

 Sometimes you would like to update your window whenever you want. To do this you
have to tell Windows that your window is dirty and needs a redraw. You can do this by
using InvalidateRect.

13.3 Keywords

GDI: Graphics Device Interface

HDC: Handle to a Device Context

13.4 Review Questions

1. Windows-based applications do not access the graphics hardware directly. Explain.

2. To obtain the handle you call: BeginPaint, it takes your window handle and a pointer to a
PAINTSTRUCT that you have declared. Discuss.

3. You can also use PolyLine, PolyPolyLine, Arc etc. To explore which ones are available
look in the MSDN help. Analyze.

4. A number of the GDI drawing functions can be effected by the pen or brush chosen.
Elaborate.

5. When you create a window you can specify its size. Explain with an example.

216 LOVELY PROFESSIONAL UNIVERSITY

Windows Programming

Notes Answers: Self Assessment

1. TextOut 2. PAINTSTRUCT

3. COLORREF 4. pixel

5. MoveTo 6. PolyLine

7. size 8. CreatePatternBrush

9. Pen 10. RECT

13.5 Further Readings

Books Beginning C: From Novice to Professional, Fourth Edition by Ivor Horton.

C# Programming Language, The (2nd Edition) (Microsoft .NET Development
Series) (Hardcover) by Anders Hejlsberg, Scott Wiltamuth, Peter Golde, Publisher:
Addison-Wesley Professional; 2 edition (June 9, 2006)

CLR via C#, Second Edition (Paperback) by Jeffrey Richter, Publisher: Microsoft
Press; 2nd edition (February 22, 2006)

Essential C# 2.0 (Microsoft .NET Development Series) (Paperback) by Mark
Michaelis, Publisher: Addison-Wesley Professional (July 13, 2006)

Expert C# 2005 Business Objects, Second Edition by Rockford Lhotka.

Pro C# 2005 and the .NET 2.0 Platform, Third Edition by Andrew Troelsen.

Programming in the Key of C# (Paperback) by Charles Petzold, Publisher:
Microsoft Press; 1 edition (July 30, 2003)

Online links http://msdn.microsoft.com/en-us/library/dd145203(v=vs.85).aspx

http://en.wikipedia.org/wiki/Graphics_Device_Interface

LOVELY PROFESSIONAL UNIVERSITY 217

Unit 14: Text and Graphics Output

NotesUnit 14: Text and Graphics Output

CONTENTS

Objectives

Introduction

14.1 Character Mode vs Graphic Mode

14.1.1 Character Mode

14.1.2 Graphic Mode

14.2 The Device Context

14.3 Text Output

14.4 WM_PAINT Message

14.5 Changing the Device Context

14.6 Device Context Settings

14.6.1 Setting and Retrieving the Device Context Brush Color Value

14.6.2 Setting the Pen or Brush Color

14.7 Graphics Output

14.7.1 Line and Shape Controls

14.7.2 The Image Box and the Picture Box

14.8 Animated Graphics

14.9 The Peek Message [] Loop

14.9.1 The GetMessage()

14.9.2 A New Function, PeekMessage()

14.10 Summary

14.11 Keywords

14.12 Review Questions

14.13 Further Readings

Objectives

After studying this unit, you will be able to:

 Understand Character mode vs. Graphic Mode

 Discuss the concept of Device Context

 Discuss Text output and WM_PAINT message

 Understand Graphics Output

 Illustrate the concept of changing the device context

218 LOVELY PROFESSIONAL UNIVERSITY

Windows Programming

Notes  Discuss Animated Graphics

 Understand the function of Peek Message [] Loop

Introduction

In this unit, you will understand various concepts related to text and graphics output such as
Character mode vs. Graphic Mode, Device Context, Text output, WM_PAINT message, Graphics
Output, Animated Graphics, etc.

14.1 Character Mode vs. Graphic Mode

14.1.1 Character Mode

Many video adapters support several different modes of resolution. All such modes are divided
into two general categories: character mode (also called text mode) and graphics mode. In character
mode, the display screen is treated as an array of blocks, each of which can hold one ASCII
character. Of the two modes, character mode is much simpler. Programs that run in character
mode generally run much faster than those that run in graphics mode, but they are limited in the
variety of fonts and shapes they can display. Programs that run entirely in character mode are
called character-based programs.

14.1.2 Graphic Mode

In graphics mode, the display screen is treated as an array of pixels, with characters and other
shapes formed by turning on combinations of pixels. Of the two modes, graphics mode is the
more sophisticated. Programs that run in graphics mode can display an unlimited variety of
shapes and fonts, whereas programs running in character mode are severely limited. Programs
that run entirely in graphics mode are called graphics-based programs.

Self Assessment

Fill in the blanks:

1. Programs that run entirely in character mode are called programs.

2. In graphics mode, the display screen is treated as an array of

14.2 The Device Context

A device context is a Windows data structure containing information about the drawing attributes
of a device such as a display or a printer. All drawing calls are made through a device-context
object, which encapsulates the Windows APIs for drawing lines, shapes, and text. Device contexts
allow device-independent drawing in Windows. Device contexts can be used to draw to the
screen, to the printer, or to a metafile.

CPaintDC objects encapsulate the common idiom of Windows, calling the BeginPaint function,
then drawing in the device context, then calling the EndPaint function. The CPaintDC constructor
calls BeginPaint for you, and the destructor calls EndPaint. The simplified process is to create
the CDC object, draw, and destroy the CDC object. In the framework, much of even this process
is automated. In particular, your OnDraw function is passed a CPaintDC already prepared
(via OnPrepareDC), and you simply draw into it. It is destroyed by the framework and the

LOVELY PROFESSIONAL UNIVERSITY 219

Unit 14: Text and Graphics Output

Notesunderlying device context is released to Windows upon return from the call to your OnDraw
function.

CClientDC objects encapsulate working with a device context that represents only the client
area of a window. The CClientDC constructor calls the GetDC function, and the destructor calls
the ReleaseDC function. CWindowDC objects encapsulate a device context that represents the
whole window, including its frame.

Did u know? CMetaFileDC objects encapsulate drawing into a Windows metafile.

!
Caution In contrast to the CPaintDC passed to OnDraw, you must in this case call
OnPrepareDC yourself.

Task Illustrate the function of CClientDC objects.

Self Assessment

Fill in the blanks:

3. A is a Windows data structure containing information about the drawing
attributes of a device such as a display or a printer.

4. The constructor calls BeginPaint for you, and the destructor calls EndPaint.

5. CWindowDC objects encapsulate a device context that represents the whole window,
including its frame.

14.3 Text Output

Text Output

create_interactive_index In a Textflow define some terms to be indexed and create a
sorted index from the indexed terms.

vertical_alignment_in_fitbox Control the vertical alignment of text in the fitbox.

keep_lines_together Control the lines kept together on the page.

drop_caps Create an initial drop cap at the beginning of some text.

distance_between_paragraphs Control the distance between adjacent paragraphs.

avoid_linebreaking Create a Textflow and define various options for line breaking.

bulleted_list Output numbered and bulleted lists.

continue_note_after_text Insert a dot sequence automatically at the end of a textflow
fitbox after the last word which can be showed together with
the dots completely inside the fitbox.

current_text_position Demonstrate how the current text position can be used to
output simple text, text lines, or Textflows next to one another.

dot_leaders_with_tabs Use leaders to fill the space defined by tabs between left-
aligned and right-aligned text, such as in a table of contents.

footnotes_in_text Create footnotes (superscript text) in a Textflow provided with
links to jump to the footnote text.

image_as_text_fill_color Create outline text and fill the interior of the glyphs with an
image.

invisible_text Output invisible text on top of an image.

leaders_in_textline Use dot leaders to fill the space between text and a page
number such as in a table of contents.

numbered_list Output numbered lists with the numbers left- or right-aligned.

process_utf8 Read text in the UTF-8 format and output it.

rotated_text Create text output which does not run horizontally, but at
some angle.

shadowed_text Create a shadowed text line with the shadow option of
fit_textline.

simple_stamp Create a stamp across the page which runs diagonally from one
edge to the other.

starter_textflow Create multi-column text output which may span multiple
pages.

starter_textline Demonstrate various options for placing a text line.

tabstops_in_text Create a simple multi-column layout using tab stops.

text_as_clipping_path Output text filled with an image.

text on a path Create text on a path.

text_on_color Place a text line and a Textflow on a colored background.

text_with_image_clipping_path Use the clipping path from a TIFF or JPEG image to shape text
output.

transparent_part_of_text Use gstate in Textflow, e.g. for transparency/opacity

transparent_text Create some transparent text.

underlined_text Create underlined text.

weblink_in_text Create a Textflow and integrate colorized Web links in the text.

wrap_text_around_images Place images within a Textflow.

wrap_text_around_polygons Use arbitrary polygons as wrapping shapes for text to wrap
around.

Contd...

220 LOVELY PROFESSIONAL UNIVERSITY

Windows Programming

Notes

Text Output

create_interactive_index In a Textflow define some terms to be indexed and create a
sorted index from the indexed terms.

vertical_alignment_in_fitbox Control the vertical alignment of text in the fitbox.

keep_lines_together Control the lines kept together on the page.

drop_caps Create an initial drop cap at the beginning of some text.

distance_between_paragraphs Control the distance between adjacent paragraphs.

avoid_linebreaking Create a Textflow and define various options for line breaking.

bulleted_list Output numbered and bulleted lists.

continue_note_after_text Insert a dot sequence automatically at the end of a textflow
fitbox after the last word which can be showed together with
the dots completely inside the fitbox.

current_text_position Demonstrate how the current text position can be used to
output simple text, text lines, or Textflows next to one another.

dot_leaders_with_tabs Use leaders to fill the space defined by tabs between left-
aligned and right-aligned text, such as in a table of contents.

footnotes_in_text Create footnotes (superscript text) in a Textflow provided with
links to jump to the footnote text.

image_as_text_fill_color Create outline text and fill the interior of the glyphs with an
image.

invisible_text Output invisible text on top of an image.

leaders_in_textline Use dot leaders to fill the space between text and a page
number such as in a table of contents.

numbered_list Output numbered lists with the numbers left- or right-aligned.

process_utf8 Read text in the UTF-8 format and output it.

rotated_text Create text output which does not run horizontally, but at
some angle.

shadowed_text Create a shadowed text line with the shadow option of
fit_textline.

simple_stamp Create a stamp across the page which runs diagonally from one
edge to the other.

starter_textflow Create multi-column text output which may span multiple
pages.

starter_textline Demonstrate various options for placing a text line.

tabstops_in_text Create a simple multi-column layout using tab stops.

text_as_clipping_path Output text filled with an image.

text on a path Create text on a path.

text_on_color Place a text line and a Textflow on a colored background.

text_with_image_clipping_path Use the clipping path from a TIFF or JPEG image to shape text
output.

transparent_part_of_text Use gstate in Textflow, e.g. for transparency/opacity

transparent_text Create some transparent text.

underlined_text Create underlined text.

weblink_in_text Create a Textflow and integrate colorized Web links in the text.

wrap_text_around_images Place images within a Textflow.

wrap_text_around_polygons Use arbitrary polygons as wrapping shapes for text to wrap
around.

 These text outputs are used in Windows GDI which is explained in Unit 13.

Self Assessment

Fill in the blank:

6. is used to create an initial drop cap at the beginning of some text.

14.4 WM_PAINT Message

The WM_PAINT message is sent when the system or another application makes a request to
paint a portion of an application’s window. The message is sent when the UpdateWindow or
RedrawWindow function is called, or by the DispatchMessage function when the application
obtains a WM_PAINT message by using the GetMessage or PeekMessage function.

A window receives this message through its WindowProc function.

LRESULT CALLBACK WindowProc(

 HWND hwnd,

 UINT uMsg,

LOVELY PROFESSIONAL UNIVERSITY 221

Unit 14: Text and Graphics Output

Notes WPARAM wParam,

 LPARAM lParam

);

Parameters

wParam: This parameter is not used.

lParam: This parameter is not used.

Return Value

An application returns zero if it processes this message.

The WM_PAINT message is generated by the system and should not be sent by an application.
To force a window to draw into a specific device context, use the WM_PRINT or
WM_PRINTCLIENT message. Most common controls support the WM_PRINTCLIENT
message.

!
Caution This requires the target window to support the WM_PRINTCLIENT message.

The DefWindowProc function validates the update region. The function may also send the
WM_NCPAINT message to the window procedure if the window frame must be painted and
send the WM_ERASEBKGND message if the window background must be erased.

The system sends this message when there are no other messages in the application’s message
queue. DispatchMessage determines where to send the message; GetMessage determines which
message to dispatch. GetMessage returns the WM_PAINT message when there are no other
messages in the application’s message queue, and DispatchMessage sends the message to the
appropriate window procedure.

Notes A window may receive internal paint messages as a result of calling RedrawWindow
with the RDW_INTERNALPAINT flag set. In this case, the window may not have an
update region. An application should call the GetUpdateRectfunction to determine whether
the window has an update region. If GetUpdateRect returns zero, the application should
not call the BeginPaint and EndPaint functions.

Task What does dispatchMessage signify?

Self Assessment

Fill in the blanks:

7. The message is sent when the system or another application makes a request
to paint a portion of an application’s window.

8. determines where to send the message.

222 LOVELY PROFESSIONAL UNIVERSITY

Windows Programming

Notes 14.5 Changing the Device Context

The following functions are used with device contexts.

Function Description

CancelDC Cancels any pending operation on the specified device context.

ChangeDisplaySettings Changes the settings of the default display device to the specified
graphics mode.

ChangeDisplaySettingsEx Changes the settings of the specified display device to the specified
graphics mode.

CreateCompatibleDC Creates a memory device context compatible with the specified
device.

CreateDC Creates a device context for a device using the specified name.

CreateIC Creates an information context for the specified device.

DeleteDC Deletes the specified device context.

DeleteObject Deletes a logical pen, brush, font, bitmap, region, or palette, freeing
all system resources associated with the object.

DeviceCapabilities Retrieves the capabilities of a printer device driver.

DrawEscape Provides drawing capabilities of the specified video display that are
not directly available through the graphics device interface.

EnumDisplayDevices Retrieves information about the display devices in a system.

EnumDisplaySettings Retrieves information about one of the graphics modes for a display
device.

EnumDisplaySettingsEx Retrieves information about one of the graphics modes for a display
device.

EnumObjects Enumerates the pens or brushes available for the specified device
context.

EnumObjectsProc An application-defined callback function used with
the EnumObjects function.

GetCurrentObject Retrieves a handle to an object of the specified type that has been
selected into the specified device context.

GetDC Retrieves a handle to a display device context for the client area of a
specified window or for the entire screen.

GetDCBrushColor Retrieves the current brush color for the specified device context.

GetObject Retrieves information for the specified graphics object.

GetObjectType Retrieves the type of the specified object.

GetStockObject Retrieves a handle to one of the stock pens, brushes, fonts, or
palettes.

ReleaseDC Releases a device context, freeing it for use by other applications.

ResetDC Updates the specified printer or plotter device context using the
specified information.

SelectObject Selects an object into the specified device context.

SetDCBrushColor Sets the current device context brush color to the specified color
value.

SetDCPenColor Sets the current device context pen color to the specified color value.

SetLayout Sets the layout for a device context.

LOVELY PROFESSIONAL UNIVERSITY 223

Unit 14: Text and Graphics Output

NotesSelf Assessment

Fill in the blank:

9. changes the settings of the default display device to the specified graphics
mode.

14.6 Device Context Settings

14.6.1 Setting and Retrieving the Device Context Brush Color Value

The following example shows how an application can retrieve the current DC brush color by
using the SetDCBrushColor and the GetDCBrushColor functions

Example:

SelectObject(hdc,GetStockObject(DC_BRUSH));

SetDCBrushColor(hdc, RGB(00,0xff;00);

PatBlt(0,0,200,200,PATCOPY)

SetDCBrushColor(hdc,RGB(00,00,0xff);

PatBlt(0,0,200,200,PATCOPY);

14.6.2 Setting the Pen or Brush Color

The following example shows how an application can change the DC pen color by using the
GetStockObject function or SetDCPenColor and the SetDCBrushColorfunctions.

Example:

LRESULT CALLBACK WndProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM

lParam)

{

 int wmId, wmEvent;

 PAINTSTRUCT ps;

 HDC hdc;

 switch (message)

 {

 case WM_COMMAND:

 wmId = LOWORD(wParam);

 wmEvent = HIWORD(wParam);

 // Parse the menu selections:

 switch (wmId)

 {

 case IDM_ABOUT:

 DialogBox(hInst, MAKEINTRESOURCE(IDD_ABOUTBOX), hWnd, About);

224 LOVELY PROFESSIONAL UNIVERSITY

Windows Programming

Notes break;

 case IDM_EXIT:

 DestroyWindow(hWnd);

 break;

 default:

 return DefWindowProc(hWnd, message, wParam, lParam);

 }

 break;

 case WM_PAINT:

 {

 hdc = BeginPaint(hWnd, &ps);

 // Initializing original object

 HGDIOBJ original = NULL;

 // Saving the original object

 original = SelectObject(hdc,GetStockObject(DC_PEN));

 // Rectangle function is defined as...

 // BOOL Rectangle(hdc, xLeft, yTop, yRight, yBottom);

 // Drawing a rectangle with just a black pen

 // The black pen object is selected and sent to the current

device context

 // The default brush is WHITE_BRUSH

 SelectObject(hdc, GetStockObject(BLACK_PEN));

 Rectangle(hdc,0,0,200,200);

 // Select DC_PEN so you can change the color of the pen with

 // COLORREF SetDCPenColor(HDC hdc, COLORREF color)

 SelectObject(hdc, GetStockObject(DC_PEN));

 // Select DC_BRUSH so you can change the brush color from the

 // default WHITE_BRUSH to any other color

 SelectObject(hdc, GetStockObject(DC_BRUSH));

 // Set the DC Brush to Red

 // The RGB macro is declared in “Windowsx.h”

 SetDCBrushColor(hdc, RGB(255,0,0));

 // Set the Pen to Blue

LOVELY PROFESSIONAL UNIVERSITY 225

Unit 14: Text and Graphics Output

Notes SetDCPenColor(hdc, RGB(0,0,255));

 // Drawing a rectangle with the current Device Context

 Rectangle(hdc,100,300,200,400);

 // Changing the color of the brush to Green

 SetDCBrushColor(hdc, RGB(0,255,0));

 Rectangle(hdc,300,150,500,300);

 // Restoring the original object

 SelectObject(hdc,original);

 // It is not necessary to call DeleteObject to delete stock

objects.

 }

 break;

 case WM_DESTROY:

 PostQuitMessage(0);

 break;

 default:

 return DefWindowProc(hWnd, message, wParam, lParam);

 }

 return 0;

}

Self Assessment

Fill in the blank:

10. An application can retrieve the current DC brush color by using the SetDCBrushColor
and the functions.

14.7 Graphics Output

Graphics is a very important part of visual basic programming as an attractive interface will be
appealing to the users. In the old BASIC, drawing and designing graphics are considered as
difficult jobs, as they have to be programmed line by line in a text-based environment. However,
in Visual Basic, these jobs have been made easy. There are four basic controls in VB that you can
use to draw graphics on your form: the line control, the shape control, the image box and the
picture box

14.7.1 Line and Shape Controls

To draw a straight line, just click on the line control and then use your mouse to draw the line on
the form. After drawing the line, you can then change its color, width and style using the

226 LOVELY PROFESSIONAL UNIVERSITY

Windows Programming

Notes BorderColor, BorderWidth and BorderStyle properties. Similarly, to draw a shape, just click on
the shape control and draw the shape on the form.

Did u know? The default shape is a rectangle, with the shape property set at 0.

You can change the shape to square, oval, circle and rounded rectangle by changing the shape
property’s value to 1, 2, 3 4, and 5 respectively. In addition, you can change its background color
using the BackColor property, its border style using the BorderStyle property, its border color
using the BorderColor property as well its border width using the BorderWidth property.

14.7.2 The Image Box and the Picture Box

Using the line and shape controls to draw graphics will only enable you to create a simple
design. In order to improve the look of the interface, you need to put in images and pictures of
your own. Fortunately, there are two very powerful graphics tools you can use in Visual Basic
which are the image box and the picture box.

To load a picture or image into an image box or a picture box, you can click on the picture
property in the properties window and a dialog box will appear which will prompt the user to
select a certain picture file. You can also load a picture at runtime by using the LoadPicture ()
method. The syntax is

Image1.Picture= LoadPicture(“C:\path name\picture file name”) or

picture1.Picture= LoadPicture(“C:\path name\picture name”)

Example: The following statement will load the grape.gif picture into the image box.

Image1.Picture= LoadPicture(“C:\My Folder\VB program\Images\grape.gif”)

Example: In this example, each time you click on the ‘change pictures’ button as shown
in Figure below, you will be able to see three images loaded into the image boxes. This program
uses the Rnd function to generate random integers and then uses the LoadPicture method to load
different pictures into the image boxes using the If…Then…Statements based on the random
numbers generated. The output is shown in Figure below

LOVELY PROFESSIONAL UNIVERSITY 227

Unit 14: Text and Graphics Output

NotesDim a, b, c As Integer

Private Sub Command1_Click ()

Randomize Timer

a = 3 + Int(Rnd * 3)

b = 3 + Int(Rnd * 3)

c = 3 + Int(Rnd * 3)

If a = 3 Then

Image1(0).Picture = LoadPicture(“C:\My Folder\VB program\Images\grape.gif”)

End If

If a = 4 Then

Image1(0).Picture = LoadPicture(“C:\My Folder\VB program\Images\cherry.gif”)

End If

If a = 5 Then

Image1(0).Picture = LoadPicture(“C:\My Folder\VB program\Images\orange.gif”)

End If

If b = 3 Then

Image1(1).Picture = LoadPicture(“C:\My Folder\VB program\Images\grape.gif”)

End If

If b = 4 Then

Image1(1).Picture = LoadPicture(“C:\My Folder\VB program\Images\cherry.gif”)

End If

If b = 5 Then

Image1(1).Picture = LoadPicture(“C:\My Folder\VB program\Images\orange.gif”)

End If

If c = 3 Then

Image1(2).Picture = LoadPicture(“C:\My Folder\VB program\Images\grape.gif”)

End If

If c = 4 Then

Image1(2).Picture = LoadPicture(“C:\My Folder\VB program\Images\cherry.gif”)

End If

If c = 5 Then

Image1(2).Picture = LoadPicture(“C:\My Folder\VB program\Images\orange.gif”)

End If

End Sub

228 LOVELY PROFESSIONAL UNIVERSITY

Windows Programming

Notes Self Assessment

Fill in the blanks:

11. To draw a straight line, just click on the control and then use your mouse to
draw the line on the form.

12. The default shape is a rectangle, with the shape property set at

14.8 Animated Graphics

An animated GIF (Graphics Interchange Format) file is defined as a graphic image on a Web
page that moves – for instance, a twirling icon or a banner with a hand that waves or letters that
magically get bigger. Particularly, an animated GIF is a file in the Graphics Interchange Format
mentioned as GIF89a that includes inside the single file a set of images that are exhibited in a
particular order. An animated GIF can loop continuously (and it occurs as though your document
never completes arriving) or it can exhibit one or a few sequences and then discontinue the
animation. Animated GIFs are often utilized in Web ad banners.

One of the most exciting, fast-growing parts of the graphics world is animated graphics. With
the growth of the Internet, computer-animated feature films and other new media, the animated
graphics field has grown by leaps and bounds. Animated graphics are created with animation
software. Much of the animated graphics on the Internet are created with Adobe Flash. Computer
"3-D" animated feature films are created using high-end animation programs such as Autodesk
Maya.

Adobe Flash

Adobe Flash has become the near-standard program for Web animation and is used as well for
television and movie animation. The current version (as of 2009) of the program is called Adobe
Flash CS4 Professional. It is useful for much more than animation, including many types of
interactive Internet programming to create rich Internet experiences. It is possible to download
Flash on a trial basis for free for a limited time. The program includes lessons and tutorials to
help in learning.

Autodesk Maya

Autodesk Maya is a 3-D animation program allowing users to execute 3-D modeling, visual
effects, animation and rendering. It is the industry standard for 3-D animators working in
television, design, computer games and feature films. Like Flash, Maya is available in a trial
version as a free download. There are several third-party plug-in applications available to
enhance its productivity. It should also be noted that there are several other notable 3-D animation
software products on the market, such as Kinetix 3D Studio Max.

Adobe After Effects

Another Adobe program in heavy use for animated graphics is Adobe After Effects. It is used to
create special visual effects and animated graphics. Adobe After Effects is often used with other
Adobe programs, such as Photoshop and Flash, as a postproduction tool to add special animation
effects. Like other Adobe programs, it is available as a download on a free trial basis for a
limited trial period.

LOVELY PROFESSIONAL UNIVERSITY 229

Unit 14: Text and Graphics Output

NotesAdobe Illustrator and Adobe Photoshop

Many animators use image editing programs such as Adobe Photoshop or vector-based programs
such as Adobe Illustrator for drawing and coloring images for later use in animation software.
Oliver Simonson of What Comics Entertainment uses both Photoshop and Illustrator for art and
design work, then imports the images into Autodesk Maya for 3-D animation.

Careers in Animated Graphics

There are many specialized jobs in the animated graphics industry, such as modeler, animator,
programmer, character designer, character animator, storyboarder and technical director, to
name a few. While a general knowledge is useful, it is helpful to direct your training and
education toward a specific job in the animated graphics industry. Many colleges and universities
have created academic paths to study the field, but it is possible to self-train with animation
software and find employment in the field. There are jobs at big companies like Pixar and
Industrial Light and Magic, but the animated graphics industry is large and diversified into
many areas beyond feature film effects, including advertising and Web animation.

Notes Java, Flash, and other tools can be utilized to attain the similar effects as an animated
GIF. However, animated GIFs are usually simpler to create than comparable images with
Java or Flash and generally slighter in size and therefore faster to display.

Self Assessment

Fill in the blank:

13. An GIF (Graphics Interchange Format) file is defined as a graphic image on
a Web page that moves.

14.9 The Peek Message [] Loop

To understand peek message(), firstly we will discuss GetMessage().

14.9.1 The GetMessage()

We use GetMessage() to create a loop that handled all the Windows message sent. However,
there was a catch we didn’t talk about at the time. Once we create the window, we get into the
event loop, where we see the function GetMessage(). GetMessage() then waits for a message and,
upon receiving one, sends it to the next step, TranslateMessage(). This is perfectly logical for
Windows programming, because generally speaking Windows applications, Word for example,
tend to sit and do nothing until you make a move.

However, this doesn’t work well for us. While all this waiting is going on, we need to be
creating thirty to sixty fully-rendered 3D images per second and putting them on the screen
without any delay at all. And so we are presented with a rather interesting problem, because
Windows, if it sends any messages, will most definitely not be sending thirty of them per
second.

230 LOVELY PROFESSIONAL UNIVERSITY

Windows Programming

Notes 14.9.2 A New Function, PeekMessage()

What we will do to solve this dilemma is replace our current GetMessage() function with a new
function, PeekMessage(). This function does essentially the same thing, but with one important
difference: it doesn’t wait for anything. PeekMessage() just looks into the message queue and
checks to see if any messages are waiting. If not, the program will continue on, allowing us to do
what we need.

Figure 14.1: The Structure of a PeekMessage() Loop

Create the Window

Handle DirectX StuffNo
While(TRUE)

TranslateMessage() DispatchMessage()

Yes

Message To
WindowProc()

PeekMessage()
Is there a message?

Before we go any further, let’s take a good look at PeekMessage(). Here is it’s prototype.

BOOL PeekMessage(LPMSG lpMsg,

HWND hWnd,

UINT wMsgFilterMin,

UINT wMsgFilterMax,

UINT wRemoveMsg);

The first four parameters should be familiar to you. They are identical to the four parameters of
GetMessage(). However, the fifth one, wRemoveMsg, is new.

What it does is indicate whether or not the message retrieved from the event queue should stay
on the event queue or come off. We can put either PM_REMOVE or PM_NOREMOVE. The first
one takes the messages off the queue when they are read, while the second one leaves the
messages there for later retrieval. We will use the PM_REMOVE value here, and keep things
simple.

So how do we implement this into our program? Following is the main loop from the last
program we made, modified to use PeekMessage().

// Enter the infinite message loop

while(TRUE)

{

 // Check to see if any messages are waiting in the queue

 while(PeekMessage(&msg, NULL, 0, 0, PM_REMOVE))

LOVELY PROFESSIONAL UNIVERSITY 231

Unit 14: Text and Graphics Output

Notes {

 // Translate the message and dispatch it to WindowProc()

 TranslateMessage(&msg);

 DispatchMessage(&msg);

 }

 // If the message is WM_QUIT, exit the while loop

 if(msg.message == WM_QUIT)

 break;

 // Run game code here

 // ...

 // ...

}

Now our program can handle things as timely as we please, without having to worry about
Windows and its tedious messages.

Self Assessment

Fill in the blanks:

14. We use to create a loop that handled all the Windows message sent.

15. looks into the message queue and checks to see if any messages are waiting.

14.10 Summary

 In character mode, the display screen is treated as an array of blocks, each of which can
hold one ASCII character.

 In graphics mode, the display screen is treated as an array of pixels, with characters and
other shapes formed by turning on combinations of pixels.

 A device context is a Windows data structure containing information about the drawing
attributes of a device such as a display or a printer.

 The WM_PAINT message is sent when the system or another application makes a request
to paint a portion of an application’s window.

 Graphics is a very important part of visual basic programming as an attractive interface
will be appealing to the users.

 To draw a straight line, just click on the line control and then use your mouse to draw the
line on the form.

 Similarly, to draw a shape, just click on the shape control and draw the shape on the form.

 An animated GIF (Graphics Interchange Format) file is defined as a graphic image on a
Web page that moves.

 We use GetMessage() to create a loop that handled all the Windows message sent.

 PeekMessage() looks into the message queue and checks to see if any messages are waiting.

232 LOVELY PROFESSIONAL UNIVERSITY

Windows Programming

Notes 14.11 Keywords

Character Mode: In character mode, the display screen is treated as an array of blocks, each of
which can hold one ASCII character.

Device Context: A device context is a Windows data structure containing information about the
drawing attributes of a device such as a display or a printer.

Graphics mode: In graphics mode, the display screen is treated as an array of pixels, with
characters and other shapes formed by turning on combinations of pixels.

PeekMessage(): PeekMessage() looks into the message queue and checks to see if any messages
are waiting.

WM_PAINT: The WM_PAINT message is sent when the system or another application makes a
request to paint a portion of an application’s window.

14.12 Review Questions

1. Make distinction between character mode and graphic mode.

2. What is a device context? Illustrate the functions of device context.

3. Illustrate the use of WM_PAINT message.

4. Discuss the functions that are used for changing device contexts.

5. Illustrate with example the concept of Setting the Pen or Brush Color.

6. What is graphics output? Elucidate the basic controls in VB that you can use to draw
graphics on your form.

7. Make distinction between GetMessage() and PeekMessage().

8. Explicate the Structure of a PeekMessage() Loop.

9. Elucidate the use of CPaintDC objects and CClientDC objects.

10. You can load a picture at runtime by using the LoadPicture () method. Comment.

Answers: Self Assessment

1. character-based 2. pixels

3. device context 4. CPaintDC

5. drop_caps 6. drop_caps

7. WM_PAINT 8. DispatchMessage

9. ChangeDisplaySettings 10. GetDCBrushColor

11. line 12. 0

13. animated 14. GetMessage()

15. PeekMessage()

LOVELY PROFESSIONAL UNIVERSITY 233

Unit 14: Text and Graphics Output

Notes14.13 Further Readings

Books Brent E. Rector, Win32 Programming, Addison-Wesley

Charles Petzold, Programming Windows, Charles Petzold

Roger Mayne, Windows and Graphics Programming with Visual C++.NET, World
Scientific

Online link www.stat.auckland.ac.nz/~paul/RGraphics/chapter1.pdf

DIRECTORATE OF DISTANCE EDUCATION

	00.pdf
	1.pdf
	2.pdf
	3.pdf
	4.pdf
	5.pdf
	6.pdf
	7.pdf
	8.pdf
	9.pdf
	10.pdf
	11.pdf
	12.pdf
	13.pdf
	14.pdf

