
[1]

www.allitebooks.com

http://www.allitebooks.org

Learning Image Processing
with OpenCV

Exploit the amazing features of OpenCV to create
powerful image processing applications through
easy-to-follow examples

Gloria Bueno García

Oscar Deniz Suarez

José Luis Espinosa Aranda

Jesus Salido Tercero

Ismael Serrano Gracia

Noelia Vállez Enano

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Learning Image Processing with OpenCV

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: March 2015

Production reference: 1230315

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78328-765-9

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Authors
Gloria Bueno García

Oscar Deniz Suarez

José Luis Espinosa Aranda

Jesus Salido Tercero

Ismael Serrano Gracia

Noelia Vállez Enano

Reviewers
Walter Lucetti

André de Souza Moreira

Marvin Smith

Commissioning Editor
Julian Ursell

Acquisition Editor
Sam Wood

Content Development Editor
Kirti Patil

Technical Editor
Faisal Siddiqui

Copy Editor
Stuti Srivastava

Project Coordinator
Nidhi Joshi

Proofreaders
Martin Diver

Maria Gould

Samantha Lyon

Indexer
Tejal Soni

Graphics
Abhinash Sahu

Production Coordinator
Conidon Miranda

Cover Work
Conidon Miranda

www.allitebooks.com

http://www.allitebooks.org

About the Authors

Gloria Bueno García holds a PhD in machine vision from Coventry University,
UK. She has experience working as the principal researcher in several research
centers, such as UMR 7005 research unit CNRS/ Louis Pasteur Univ. Strasbourg
(France), Gilbert Gilkes & Gordon Technology (UK), and CEIT San Sebastian (Spain).
She is the author of two patents, one registered type of software, and more than 100
refereed papers. Her interests are in 2D/3D multimodality image processing and
artificial intelligence. She leads the VISILAB research group at the University of
Castilla-La Mancha. She has coauthored a book on OpenCV programming for mobile
devices: OpenCV essentials, Packt Publishing.

This is dedicated to our sons for the time we have not been able to
play with them and our parents for their unconditional support
during our lifetime. Thanks from Gloria and Oscar.

Oscar Deniz Suarez's research interests are mainly focused on computer
vision and pattern recognition. He is the author of more than 50 refereed papers
in journals and conferences. He received the runner-up award for the best PhD
work on computer vision and pattern recognition by AERFAI and the Image File
and Reformatting Software Challenge Award by Innocentive Inc. He has been a
national finalist for the 2009 Cor Baayen award. His work is used by cutting-edge
companies, such as Existor, Gliif, Tapmedia, E-Twenty, and others, and has also been
added to OpenCV. Currently, he works as an associate professor at the University of
Castilla-La Mancha and contributes to VISILAB. He is a senior member of IEEE and
is affiliated with AAAI, SIANI, CEA-IFAC, AEPIA, and AERFAI-IAPR. He serves
as an academic editor of the PLoS ONE journal. He has been a visiting researcher at
Carnegie Mellon University, Imperial College London, and Leica Biosystems. He has
coauthored two books on OpenCV previously.

www.allitebooks.com

http://www.allitebooks.org

José Luis Espinosa Aranda holds a PhD in computer science from the University
of Castilla-La Mancha. He has been a finalist for Certamen Universitario Arquímedes
de Introducción a la Investigación científica in 2009 for his final degree project in
Spain. His research interests involve computer vision, heuristic algorithms, and
operational research. He is currently working at the VISILAB group as an assistant
researcher and developer in computer vision topics.

This is dedicated to my parents and my brothers.

Jesus Salido Tercero gained his electrical engineering degree and PhD (1996)
from Universidad Politécnica de Madrid (Spain). He then spent 2 years (1997 and
1998) as a visiting scholar at the Robotics Institute (Carnegie Mellon University,
Pittsburgh, USA), working on cooperative multirobot systems. Since his return to
the Spanish University of Castilla-La Mancha, he spends his time teaching courses
on robotics and industrial informatics, along with research on vision and intelligent
systems. Over the last 3 years, his efforts have been directed to develop vision
applications on mobile devices. He has coauthored a book on OpenCV programming
for mobile devices.

This is dedicated to those to whom I owe all I am: my parents,
Sagrario and Maria.

Ismael Serrano Gracia received his degree in computer science in 2012 from
the University of Castilla-La Mancha. He got the highest marks for his final degree
project on person detection. This application uses depth cameras with OpenCV
libraries. Currently, he is a PhD candidate at the same university, holding a research
grant from the Spanish Ministry of Science and Research. He is also working at
the VISILAB group as an assistant researcher and developer on different computer
vision topics.

This is dedicated to my parents, who have given me the opportunity
of education and have supported me throughout my life. It is also
dedicated to my supervisor, Dr. Oscar Deniz, who has been a friend,
guide, and helper. Finally, it is dedicated to my friends and my
girlfriend, who have always helped me and believed that I could
do this.

www.allitebooks.com

http://www.allitebooks.org

Noelia Vállez Enano has liked computers since her childhood, though she didn't
have one before her mid-teens. In 2009, she finished her studies in computer science
at the University of Castilla-La Mancha, where she graduated with top honors. She
started working at the VISILAB group through a project on mammography CAD
systems and electronic health records. Since then, she has obtained a master's degree
in physics and mathematics and has enrolled for a PhD degree. Her work involves
using image processing and pattern recognition methods. She also likes teaching and
working in other areas of artificial intelligence.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Walter Lucetti, known on the Internet as Myzhar, is an Italian computer engineer
with a specialization in robotics and robotics perception. He received the laurea
degree in 2005 while studying at Research Center "E.Piaggio" in Pisa (Italy), where
he wrote a thesis about 3D mapping of the real world using a 2D laser tilted with
a servo motor, fusing 3D with RGB data. While writing the thesis, he encountered
OpenCV for the first time—it was early 2004 and OpenCV was at its larval stage.

After the laurea, he started working as software developer for low-level embedded
systems and high-level desktop systems. He greatly improved his knowledge
of computer vision and machine learning as a researcher at Gustavo Stefanini
Advanced Robotics Center in La Spezia (Italy), a spinoff of PERCRO Laboratory
of Scuola Superiore Sant'Anna of Pisa (Italy).

Currently, he is working in the software industry, writing firmware for embedded
ARM systems, software for desktop systems based on the Qt framework, and
intelligent algorithms for video surveillance systems based on OpenCV and CUDA.

He is also working on a personal robotic project: MyzharBot. MyzharBot is a
tracked ground mobile robot that uses computer vision to detect obstacles and to
analyze and explore the environment. The robot is guided by algorithms based on
ROS, CUDA, and OpenCV. You can follow the project on this website: http://
myzharbot.robot-home.it.

www.allitebooks.com

http://myzharbot.robot-home.it
http://myzharbot.robot-home.it
http://www.allitebooks.org

André de Souza Moreira has a master's degree in computer science, with
emphasis on computer graphics from the Pontifical Catholic University of Rio de
Janeiro (Brazil).

He graduated with a bachelor of computer science degree from Universidade Federal
do Maranhão (UFMA) in Brazil. During his undergraduate degree, he was a member
of Labmint's research team and worked with medical imaging, specifically, breast
cancer detection and diagnosis using image processing.

Currently, he works as a researcher and system analyst at Instituto Tecgraf, one of
the major research and development labs in computer graphics in Brazil. He has
been working extensively with PHP, HTML, and CSS since 2007, and nowadays, he
develops projects in C ++ 11 / C ++ 14, along with SQLite, Qt, Boost, and OpenGL.
More information about him can be acquired on his personal website at www.
andredsm.com.

Marvin Smith is currently a software engineer in the defense industry, specializing
in photogrammetry and remote sensing. He received his BS degree in computer
science from the University of Nevada Reno. His technical interests include high
performance computing, distributed image processing, and multispectral imagery
exploitation. Prior to working in defense, Marvin held internships with the
Intelligent Robotics Group at the NASA Ames Research Center and the Nevada
Automotive Test Center.

www.allitebooks.com

www.andredsm.com
www.andredsm.com
http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers,
and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and
as a print book customer, you are entitled to a discount on the eBook copy. Get in touch
with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.allitebooks.org

[i]

Table of Contents
Preface	 v
Chapter 1: Handling Image and Video Files	 1

An introduction to OpenCV	 1
Downloading and installing OpenCV	 2

Getting a compiler and setting CMake	 4
Configuring OpenCV with CMake	 4
Compiling and installing the library	 7

The structure of OpenCV	 8
Creating user projects with OpenCV	 10

General usage of the library	 10
Tools to develop new projects	 11
Creating an OpenCV C++ program with Qt Creator	 13

Reading and writing image files	 14
The basic API concepts	 14
Image file-supported formats	 17
The example code	 18

Reading image files	 19
Event handling into the intrinsic loop	 21
Writing image files	 22

Reading and writing video files	 22
The example code	 22

User-interactions tools	 24
Trackbars	 27
Mouse interaction	 28
Buttons	 29
Drawing and displaying text	 30

Summary	 32

Table of Contents

[ii]

Chapter 2: Establishing Image Processing Tools	 33
Basic data types	 33
Pixel-level access	 36
Measuring the time	 37
Common operations with images	 37
Arithmetic operations	 38
Data persistence	 43
Histograms	 45

The example code	 47
The example code	 51

Summary	 55
Chapter 3: Correcting and Enhancing Images	 57

Image filtering	 58
Smoothing	 58

The example code	 60
Sharpening	 61

The example code	 63
Working with image pyramids	 65

Gaussian pyramids	 65
Laplacian pyramids	 66
The example code	 66

Morphological operations	 69
The example code	 71

LUTs	 72
The example code	 73

Geometrical transformations	 74
Affine transformation	 75

Scaling	 76
Translation	 77
Image rotation	 79
Skewing	 81
Reflection	 83

Perspective transformation	 86
Inpainting	 88

The example code	 89
Denoising	 94

The example code	 95
Summary	 97

Table of Contents

[iii]

Chapter 4: Processing Color	 99
Color spaces	 99

Conversion between color spaces (cvtColor)	 100
RGB	 100
Grayscale	 103
CIE XYZ	 105
YCrCb	 108
HSV	 110
HLS	 114
CIE L*a*b*	 116
CIE L*u*v*	 118
Bayer	 120

Color-space-based segmentation	 122
HSV segmentation	 123
YCrCb segmentation	 125

Color transfer	 126
The example code	 127

Summary	 129
Chapter 5: Image Processing for Video	 131

Video stabilization	 132
Superresolution	 141
Stitching	 149
Summary	 164

Chapter 6: Computational Photography	 165
High-dynamic-range images	 165

Creating HDR images	 168
Example	 169

Tone mapping	 172
Alignment	 174
Exposure fusion	 174

Seamless cloning	 175
Decolorization	 178
Non-photorealistic rendering	 180
Summary	 182

Chapter 7: Accelerating Image Processing	 183
OpenCV with the OpenCL installation	 185

A quick recipe to install OpenCV with OpenCL	 189
Check the GPU usage	 190

Table of Contents

[iv]

Accelerating your own functions	 191
Checking your OpenCL	 191

The code explanation	 192
Your first GPU-based program	 193

The code explanation	 195
Going real time	 196

The code explanation	 199
The performance	 201

Summary	 201
Index	 203

[v]

Preface
OpenCV, arguably the most widely used computer vision library, includes hundreds
of ready-to-use imaging and vision functions and is used in both academia and
industry. As cameras get cheaper and imaging features grow in demand, the range
of applications using OpenCV increases significantly, both for desktop and mobile
platforms.

This book provides an example-based tour of OpenCV's main image processing
algorithms. While other OpenCV books try to explain the underlying theory or
provide large examples of nearly complete applications, This book is aimed at people
who want to have an easy-to-understand working example as soon as possible, and
possibly develop additional features on top of that.

The book starts with an introductory chapter in which the library installation is
explained, the structure of the library is described, and basic image and video
reading and writing examples are given. From this, the following functionalities are
covered: handling of images and videos, basic image processing tools, correcting and
enhancing images, color, video processing, and computational photography. Last but
not least, advanced features such as GPU-based accelerations are also considered in
the final chapter. New functions and techniques in the latest major release, OpenCV 3,
are explained throughout.

What this book covers
Chapter 1, Handling Image and Video Files, shows you how to read image and video
files. It also shows basic user-interaction tools, which are very useful in image
processing to change a parameter value, select regions of interest, and so on.

Chapter 2, Establishing Image Processing Tools, describes the main data structures
and basic procedures needed in subsequent chapters.

Preface

[vi]

Chapter 3, Correcting and Enhancing Images, deals with transformations typically used
to correct image defects. This chapter covers filtering, point transformations using
Look Up Tables, geometrical transformations, and algorithms for inpainting and
denoising images.

Chapter 4, Processing Color, deals with color topics in image processing. This chapter
explains how to use different color spaces and perform color transfers between two
images.

Chapter 5, Image Processing for Video, covers techniques that use a video or a sequence
of images. This chapter is focused on algorithms' implementation for video
stabilization, superresolution, and stitching.

Chapter 6, Computational Photography, explains how to read HDR images and perform
tone mapping on them.

Chapter 7, Accelerating Image Processing, covers an important topic in image
processing: speed. Modern GPUs are the best available technology to accelerate
time-consuming image processing tasks.

What you need for this book
The purpose of this book is to teach you OpenCV image processing by taking you
through a number of practical image processing projects. The latest version, Version
3.0 of OpenCV, will be used.

Each chapter provides several ready-to-use examples to illustrate the concepts covered
in it. The book is, therefore, focused on providing you with a working example as soon
as possible so that they can develop additional features on top of that.

To use this book, only free software is needed. All the examples have been developed
and tested with the freely available Qt Creator IDE and GNU/GCC compiler. The
CMake tool is also used to configure the build process of the OpenCV library on the
target platform. Moreover, the freely available OpenCL SDK is required for the GPU
acceleration examples shown in Chapter 7, Accelerating Image Processing.

Who this book is for
This book is intended for readers who already know C++ programming and want
to learn how to do image processing using OpenCV. You are expected to have a
minimal background in the theory of image processing. The book does not cover
topics that are more related to computer vision, such as feature and object detection,
tracking, or machine learning.

Preface

[vii]

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, folder names, filenames, file extensions, pathnames, system
variables, URLs, and user input are shown as follows: "Each module has an
associated header file (for example core.hpp)."

A block of code is set as follows:

#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
using namespace std;
using namespace cv;

int main(int argc, char *argv[])
{
 Mat frame; // Container for each frame

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <iostream>

using namespace std;
using namespace cv;

int main(int argc, char *argv[])
{

Any command-line input or output is written as follows:

C:\opencv-buildQt\install

Preface

[viii]

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "Clicking
the Next button moves you to the next screen."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support

Preface

[ix]

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the
changes in the output. You can download this file from: https://www.packtpub.
com/sites/default/files/downloads/ImageProcessingwithOpenCV_Graphics.
pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

www.allitebooks.com

https://www.packtpub.com/sites/default/files/downloads/ImageProcessingwithOpenCV_Graphics.pdf
https://www.packtpub.com/sites/default/files/downloads/ImageProcessingwithOpenCV_Graphics.pdf
https://www.packtpub.com/sites/default/files/downloads/ImageProcessingwithOpenCV_Graphics.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
http://www.allitebooks.org

[1]

Handling Image and
Video Files

This chapter is intended as a first contact with OpenCV, its installation, and first
basic programs. We will cover the following topics:

•	 A brief introduction to OpenCV for the novice, followed by an easy
step-by-step guide to the installation of the library

•	 A quick tour of OpenCV's structure after the installation in the user's
local disk

•	 Quick recipes to create projects using the library with some common
programming frameworks

•	 How to use the functions to read and write images and videos
•	 Finally, we describe the library functions to add rich user interfaces to

the software projects, including mouse interaction, drawing primitives,
and Qt support

An introduction to OpenCV
Initially developed by Intel, OpenCV (Open Source Computer Vision) is a free
cross-platform library for real-time image processing that has become a de facto
standard tool for all things related to Computer Vision. The first version was released
in 2000 under BSD license and since then, its functionality has been very much
enriched by the scientific community. In 2012, the nonprofit foundation OpenCV.org
took on the task of maintaining a support site for developers and users.

Handling Image and Video Files

[2]

At the time of writing this book, a new major version of OpenCV
(Version 3.0) is available, still on beta status. Throughout the book,
we will present the most relevant changes brought with this new
version.

OpenCV is available for the most popular operating systems, such as GNU/
Linux, OS X, Windows, Android, iOS, and some more. The first implementation
was in the C programming language; however, its popularity grew with its C++
implementation as of Version 2.0. New functions are programmed with C++.
However, nowadays, the library has a full interface for other programming
languages, such as Java, Python, and MATLAB/Octave. Also, wrappers for other
languages (such as C#, Ruby, and Perl) have been developed to encourage adoption
by programmers.

In an attempt to maximize the performance of computing intensive vision tasks,
OpenCV includes support for the following:

•	 Multithreading on multicore computers using Threading Building Blocks
(TBB)—a template library developed by Intel.

•	 A subset of Integrated Performance Primitives (IPP) on Intel processors to
boost performance. Thanks to Intel, these primitives are freely available as of
Version 3.0 beta.

•	 Interfaces for processing on Graphic Processing Unit (GPU) using Compute
Unified Device Architecture (CUDA) and Open Computing Language
(OpenCL).

The applications for OpenCV cover areas such as segmentation and recognition,
2D and 3D feature toolkits, object identification, facial recognition, motion tracking,
gesture recognition, image stitching, high dynamic range (HDR) imaging,
augmented reality, and so on. Moreover, to support some of the previous application
areas, a module with statistical machine learning functions is included.

Downloading and installing OpenCV
OpenCV is freely available for download at http://opencv.org. This site provides
the last version for distribution (currently, 3.0 beta) and older versions.

Special care should be taken with possible errors when the downloaded
version is a nonstable release, for example, the current 3.0 beta version.

http://opencv.org

Chapter 1

[3]

On http://opencv.org/downloads.html, suitable versions of OpenCV for each
platform can be found. The code and information of the library can be obtained from
different repositories depending on the final purpose:

•	 The main repository (at http://sourceforge.net/projects/
opencvlibrary), devoted to final users. It contains binary versions of the
library and ready-to‑compile sources for the target platform.

•	 The test data repository (at https://github.com/itseez/opencv_extra)
with sets of data to test purposes of some library modules.

•	 The contributions repository (at http://github.com/itseez/opencv_
contrib) with the source code corresponding to extra and cutting-edge
features supplied by contributors. This code is more error-prone and less
tested than the main trunk.

With the last version, OpenCV 3.0 beta, the extra contributed modules
are not included in the main package. They should be downloaded
separately and explicitly included in the compilation process
through the proper options. Be cautious if you include some of those
contributed modules, because some of them have dependencies on
third‑party software not included with OpenCV.

•	 The documentation site (at http://docs.opencv.org/master/) for each of
the modules, including the contributed ones.

•	 The development repository (at https://github.com/Itseez/opencv) with
the current development version of the library. It is intended for developers
of the main features of the library and the "impatient" user who wishes to use
the last update even before it is released.

Rather than GNU/Linux and OS X, where OpenCV is distributed as source code
only, in the Windows distribution, one can find precompiled (with Microsoft Visual
C++ v10, v11, and v12) versions of the library. Each precompiled version is ready to
be used with Microsoft compilers. However, if the primary intention is to develop
projects with a different compiler framework, we need to compile the library for that
specific compiler (for example, GNU GCC).

http://opencv.org/downloads.html
http://sourceforge.net/projects/opencvlibrary
http://sourceforge.net/projects/opencvlibrary
https://github.com/itseez/opencv_extra
http://github.com/itseez/opencv_contrib
http://github.com/itseez/opencv_contrib
http://docs.opencv.org/master/
https://github.com/Itseez/opencv

Handling Image and Video Files

[4]

The fastest route to working with OpenCV is to use one of the
precompiled versions included with the distribution. Then, a better
choice is to build a fine-tuned version of the library with the best settings
for the local platform used for software development. This chapter
provides the information to build and install OpenCV on Windows.
Further information to set the library on Linux can be found at http://
docs.opencv.org/doc/tutorials/introduction/linux_
install and https://help.ubuntu.com/community/OpenCV.

Getting a compiler and setting CMake
A good choice for cross‑platform development with OpenCV is to use the GNU toolkit
(including gmake, g++, and gdb). The GNU toolkit can be easily obtained for the most
popular operating systems. Our preferred choice for a development environment
consists of the GNU toolkit and the cross‑platform Qt framework, which includes the
Qt library and the Qt Creator Integrated Development Environment (IDE). The Qt
framework is freely available at http://qt-project.org/.

After installing the compiler on Windows, remember to properly set
the Path environment variable, adding the path for the compiler's
executable, for example, C:\Qt\Qt5.2.1\5.2.1\mingw48_32\bin
for the GNU/compilers included with the Qt framework. On Windows,
the free Rapid Environment Editor tool (available at http://www.
rapidee.com) provides a convenient way to change Path and other
environment variables.

To manage the build process for the OpenCV library in a compiler-independent way,
CMake is the recommended tool. CMake is a free and open source cross‑platform
tool available at http://www.cmake.org/.

Configuring OpenCV with CMake
Once the sources of the library have been downloaded into the local disk, it is
required that you configure the makefiles for the compilation process of the library.
CMake is the key tool for an easy configuration of OpenCV's installation process.
It can be used from the command line or in a more user‑friendly way with its
Graphical User Interface (GUI) version.

http://docs.opencv.org/doc/tutorials/introduction/linux_install
http://docs.opencv.org/doc/tutorials/introduction/linux_install
http://docs.opencv.org/doc/tutorials/introduction/linux_install
https://help.ubuntu.com/community/OpenCV
http://qt-project.org/
http://www.rapidee.com
http://www.rapidee.com
http://www.cmake.org/

Chapter 1

[5]

The steps to configure OpenCV with CMake can be summarized as follows:

1.	 Choose the source (let's call it OPENCV_SRC in what follows) and target
(OPENCV_BUILD) directories. The target directory is where the compiled
binaries will be located.

2.	 Mark the Grouped and Advanced checkboxes and click on the Configure
button.

3.	 Choose the desired compiler (for example, GNU default compilers, MSVC,
and so on).

4.	 Set the preferred options and unset those not desired.
5.	 Click on the Configure button and repeat steps 4 and 5 until no errors are

obtained.
6.	 Click on the Generate button and close CMake.

The following screenshot shows you the main window of CMake with the source
and target directories and the checkboxes to group all the available options:

The main window of CMake after the preconfiguration step

Handling Image and Video Files

[6]

For brevity, we use OPENCV_BUILD and OPENCV_SRC in this text to
denote the target and source directories of the OpenCV local setup,
respectively. Keep in mind that all directories should match your
current local configuration.

During the preconfiguration process, CMake detects the compilers present and many
other local properties to set the build process of OpenCV. The previous screenshot
displays the main CMake window after the preconfiguration process, showing the
grouped options in red.

It is possible to leave the default options unchanged and continue the configuration
process. However, some convenient options can be set:

•	 BUILD_EXAMPLES: This is set to build some examples using OpenCV.
•	 BUILD_opencv_<module_name>: This is set to include the module (module_

name) in the build process.
•	 OPENCV_EXTRA_MODULES_PATH: This is used when you need some extra

contributed module; set the path for the source code of the extra modules
here (for example, C:/opencv_contrib-master/modules).

•	 WITH_QT: This is turned on to include the Qt functionality into the library.
•	 WITH_IPP: This option is turned on by default. The current OpenCV 3.0

version includes a subset of the Intel Integrated Performance Primitives
(IPP) that speed up the execution time of the library.

If you compile the new OpenCV 3.0 (beta), be cautious because some
unexpected errors have been reported related to the IPP inclusion (that
is, with the default value of this option). We recommend that you unset
the WITH_IPP option.

If the configuration steps with CMake (loop through steps 4 and 5) don't produce
any further errors, it is possible to generate the final makefiles for the build process.
The following screenshot shows you the main window of CMake after a generation
step without errors:

Chapter 1

[7]

Compiling and installing the library
The next step after the generation process of makefiles with CMake is the
compilation with the proper make tool. This tool is usually executed on the command
line (the console) from the target directory (the one set at the CMake configuration
step). For example, in Windows, the compilation should be launched from the
command line as follows:

OPENCV_BUILD>mingw32-make

This command launches a build process using the makefiles generated by CMake.
The whole compilation typically takes several minutes. If the compilation ends
without errors, the installation continues with the execution of the following
command:

OPENCV_BUILD>mingw32-make install

This command copies the OpenCV binaries to the OPENCV_BUILD\install directory.

If something went wrong during the compilation, we should run CMake again to
change the options selected during the configuration. Then, we should regenerate
the makefiles.

Handling Image and Video Files

[8]

The installation ends by adding the location of the library binaries (for example,
in Windows, the resulting DLL files are located at OPENCV_BUILD\install\x64\
mingw\bin) to the Path environment variable. Without this directory in the Path
field, the execution of every OpenCV executable will give an error as the library
binaries won't be found.

To check the success of the installation process, it is possible to run some of the
examples compiled along with the library (if the BUILD_EXAMPLES option was set
using CMake). The code samples (written in C++) can be found at OPENCV_BUILD\
install\x64\mingw\samples\cpp.

The short instructions given to install OpenCV apply to Windows. A
detailed description with the prerequisites for Linux can be read at
http://docs.opencv.org/doc/tutorials/introduction/
linux_install/linux_install.html. Although the tutorial applies
to OpenCV 2.0, almost all the information is still valid for Version 3.0.

The structure of OpenCV
Once OpenCV is installed, the OPENCV_BUILD\install directory will be populated
with three types of files:

•	 Header files: These are located in the OPENCV_BUILD\install\include
subdirectory and are used to develop new projects with OpenCV.

•	 Library binaries: These are static or dynamic libraries (depending on the
option selected with CMake) with the functionality of each of the OpenCV
modules. They are located in the bin subdirectory (for example, x64\mingw\
bin when the GNU compiler is used).

•	 Sample binaries: These are executables with examples that use the libraries.
The sources for these samples can be found in the source package (for
example, OPENCV_SRC\sources\samples).

OpenCV has a modular structure, which means that the package includes a static or
dynamic (DLL) library for each module. The official documentation for each module
can be found at http://docs.opencv.org/master/. The main modules included in
the package are:

•	 core: This defines the basic functions used by all the other modules and
the fundamental data structures including the important multidimensional
array Mat.

http://docs.opencv.org/doc/tutorials/introduction/linux_install/linux_install.html
http://docs.opencv.org/doc/tutorials/introduction/linux_install/linux_install.html
http://docs.opencv.org/master/

Chapter 1

[9]

•	 highgui: This provides simple user interface (UI) capabilities. Building the
library with Qt support (the WITH_QT CMake option) allows UI compatibility
with such a framework.

•	 imgproc: These are image processing functions that include filtering
(linear and nonlinear), geometric transformations, color space conversion,
histograms, and so on.

•	 imgcodecs: This is an easy-to-use interface to read and write images.

Pay attention to the changes in modules since OpenCV 3.0 as
some functionality has been moved to a new module (for example,
reading and writing images functions were moved from highgui
to imgcodecs).

•	 photo: This includes Computational Photography including inpainting,
denoising, High Dynamic Range (HDR) imaging, and some others.

•	 stitching: This is used for image stitching.
•	 videoio: This is an easy-to-use interface for video capture and video codecs.
•	 video: This supplies the functionality of video analysis (motion estimation,

background extraction, and object tracking).
•	 features2d: These are functions for feature detection (corners and planar

objects), feature description, feature matching, and so on.
•	 objdetect: These are functions for object detection and instances of

predefined detectors (such as faces, eyes, smile, people, cars, and so on).

Some other modules are calib3d (camera calibration), flann (clustering and search),
ml (machine learning), shape (shape distance and matching), superres (super
resolution), video (video analysis), and videostab (video stabilization).

As of Version 3.0 beta, the new contributed modules are distributed
in a separate package (opencv_contrib-master.zip) that can
be downloaded from https://github.com/itseez/opencv_
contrib. These modules provide extra features that should be fully
understood before using them. For a quick overview of the new
functionality in the new release of OpenCV (Version 3.0), refer to the
document at http://opencv.org/opencv-3-0-beta.html.

www.allitebooks.com

https://github.com/itseez/opencv_contrib
https://github.com/itseez/opencv_contrib
http://opencv.org/opencv-3-0-beta.html
http://www.allitebooks.org

Handling Image and Video Files

[10]

Creating user projects with OpenCV
In this book, we assume that C++ is the main language for programming image
processing applications, although interfaces and wrappers for other programming
languages are actually provided (for instance, Python, Java, MATLAB/Octave,
and some more).

In this section, we explain how to develop applications with OpenCV's C++ API
using an easy-to-use cross-platform framework.

General usage of the library
To develop an OpenCV application with C++, we require our code to:

•	 Include the OpenCV header files with definitions
•	 Link the OpenCV libraries (binaries) to get the final executable

The OpenCV header files are located in the OPENCV_BUILD\install\include\
opencv2 directory where there is a file (*.hpp) for each of the modules. The inclusion
of the header file is done with the #include directive, as shown here:

#include <opencv2/<module_name>/<module_name>.hpp>
// Including the header file for each module used in the code

With this directive, it is possible to include every header file needed by the user
program. On the other hand, if the opencv.hpp header file is included, all the header
files will be automatically included as follows:

#include <opencv2/opencv.hpp>
// Including all the OpenCV's header files in the code

Remember that all the modules installed locally are defined in the
OPENCV_BUILD\install\include\opencv2\opencv_modules.
hpp header file, which is generated automatically during the building
process of OpenCV.

The use of the #include directive is not always a guarantee for the correct inclusion
of the header files, because it is necessary to tell the compiler where to find the
include files. This is achieved by passing a special argument with the location of the
files (such as I\<location> for GNU compilers).

Chapter 1

[11]

The linking process requires you to provide the linker with the libraries (dynamic
or static) where the required OpenCV functionality can be found. This is usually
done with two types of arguments for the linker: the location of the library
(such as ‑L<location> for GNU compilers) and the name of the library
(such as -l<module_name>).

You can find a complete list of available online documentation for
GNU GCC and Make at https://gcc.gnu.org/onlinedocs/
and https://www.gnu.org/software/make/manual/.

Tools to develop new projects
The main prerequisites to develop our own OpenCV C++ applications are:

•	 OpenCV header files and library binaries: Of course we need to compile
OpenCV, and the auxiliary libraries are prerequisites for such a compilation.
The package should be compiled with the same compiler used to generate
the user application.

•	 A C++ compiler: Some associate tools are convenient as the code editor,
debugger, project manager, build process manager (for instance CMake), revision
control system (such as Git, Mercurial, SVN, and so on), and class inspector,
among others. Usually, these tools are deployed together in a so-called
Integrated Development Environment (IDE).

•	 Any other auxiliary libraries: Optionally, any other auxiliary libraries
needed to program the final application, such as graphical, statistical, and so
on will be required.

The most popular available compiler kits to program OpenCV C++ applications are:

•	 Microsoft Visual C (MSVC): This is only supported on Windows and it
is very well integrated with the IDE Visual Studio, although it can be also
integrated with other cross-platform IDEs, such as Qt Creator or Eclipse.
Versions of MSVC that currently compatible with the latest OpenCV release
are VC 10, VC 11, and VC 12 (Visual Studio 2010, 2012, and 2013).

•	 GNU Compiler Collection GNU GCC: This is a cross‑platform compiler
system developed by the GNU project. For Windows, this kit is known as
MinGW (Minimal GNU GCC). The version compatible with the current
OpenCV release is GNU GCC 4.8. This kit may be used with several IDEs,
such as Qt Creator, Code::Blocks, Eclipse, among others.

https://gcc.gnu.org/onlinedocs/
https://www.gnu.org/software/make/manual/

Handling Image and Video Files

[12]

For the examples presented in this book, we used the MinGW 4.8 compiler kit for
Windows plus the Qt 5.2.1 library and the Qt Creator IDE (3.0.1). The cross-platform
Qt library is required to compile OpenCV with the new UI capabilities provided by
such a library.

For Windows, it is possible to download a Qt bundle (including Qt
library, Qt Creator, and the MinGW kit) from http://qt-project.
org/. The bundle is approximately 700 MB.

Qt Creator is a cross-platform IDE for C++ that integrates the tools we need to code
applications. In Windows, it may be used with MinGW or MSVC. The following
screenshot shows you the Qt Creator main window with the different panels and
views for an OpenCV C++ project:

The main window of Qt Creator with some views from an OpenCV C++ project

http://qt-project.org/
http://qt-project.org/

Chapter 1

[13]

Creating an OpenCV C++ program with Qt
Creator
Next, we explain how to create a code project with the Qt Creator IDE. In particular,
we apply this description to an OpenCV example.

We can create a project for any OpenCV application using Qt Creator by navigating
to File | New File or File | Project… and then navigating to Non-Qt Project | Plain
C++ Project. Then, we have to choose a project name and the location at which it will
be stored. The next step is to pick a kit (that is, the compiler) for the project (in our
case, Desktop Qt 5.2.1 MinGW 32 bit) and the location for the binaries generated.
Usually, two possible build configurations (profiles) are used: debug and release.
These profiles set the appropriate flags to build and run the binaries.

When a project is created using Qt Creator, two special files (with .pro and .pro.user
extensions) are generated to configure the build and run processes. The build process
is determined by the kit chosen during the creation of the project. With the Desktop
Qt 5.2.1 MinGW 32 bit kit, this process relies on the qmake and mingw32‑make tools.
Using the *.pro file as the input, qmake generates the makefile that drives the build
process for each profile (that is, release and debug). The qmake tool is used from the
Qt Creator IDE as an alternative to CMake to simplify the build process of software
projects. It automates the generation of makefiles from a few lines of information.

The following lines represent an example of a *.pro file (for example,
showImage.pro):

TARGET: showImage
TEMPLATE = app
CONFIG += console
CONFIG -= app_bundle
CONFIG -= qt
SOURCES += \
 showImage.cpp
INCLUDEPATH += C:/opencv300-buildQt/install/include
LIBS += -LC:/opencv300-buildQt/install/x64/mingw/lib \
 -lopencv_core300.dll \
 -lopencv_imgcodecs300.dll\
 -lopencv_highgui300.dll\
 -lopencv_imgproc300.dll

Handling Image and Video Files

[14]

The preceding file illustrates the options that qmake needs to generate the
appropriate makefiles to build the binaries for our project. Each line starts with a tag
indicating an option (TARGET, CONFIG, SOURCES, INCLUDEPATH, and LIBS) followed
with a mark to add (+=) or remove (-=) the value of the option. In this sample
project, we use the non-Qt console application. The executable file is showImage.
exe (TARGET) and the source file is showImage.cpp (SOURCES). As this project is
an OpenCV-based application, the two last tags indicate the location of the header
files (INCLUDEPATH) and the OpenCV libraries (LIBS) used by this particular project
(core, imgcodecs, highgui, and imgproc). Note that a backslash at the end of the
line denotes continuation in the next line.

For a detailed description of the tools (including Qt Creator and qmake)
developed within the Qt project, visit http://doc.qt.io/.

Reading and writing image files
Image processing relies on getting an image (for instance, a photograph or a video
fame) and "playing" with it by applying signal processing techniques on it to get the
desired results. In this section, we show you how to read images from files using the
functions supplied by OpenCV.

The basic API concepts
The Mat class is the main data structure that stores and manipulates images in
OpenCV. This class is defined in the core module. OpenCV has implemented
mechanisms to allocate and release memory automatically for these data structures.
However, the programmer should still take special care when data structures
share the same buffer memory. For instance, the assignment operator does not
copy the memory content from an object (Mat A) to another (Mat B); it only copies
the reference (the memory address of the content). Then, a change in one object
(A or B) affects both objects. To duplicate the memory content of a Mat object, the
Mat::clone() member function should be used.

http://doc.qt.io/

Chapter 1

[15]

Many functions in OpenCV process dense single or multichannel
arrays, usually using the Mat class. However, in some cases, a different
datatype may be convenient, such as std::vector<>, Matx<>, Vec<>,
or Scalar. For this purpose, OpenCV provides the proxy classes
InputArray and OutputArray, which allow any of the previous types
to be used as parameters for functions.

The Mat class is used for dense n-dimensional single or multichannel arrays. It can
actually store real or complex-valued vectors and matrices, colored or grayscale
images, histograms, point clouds, and so on.

There are many different ways to create a Mat object, the most popular being the
constructor where the size and type of the array are specified as follows:

Mat(nrows, ncols, type, fillValue)

The initial value for the array elements might be set by the Scalar class as a typical
four-element vector (for each RGB and transparency component of the image stored
in the array). Next, we show you a usage example of Mat as follows:

Mat img_A(4, 4, CV_8U, Scalar(255));
// White image:
// 4 x 4 single-channel array with 8 bits of unsigned integers
// (up to 255 values, valid for a grayscale image, for example,
// 255=white)

The DataType class defines the primitive datatypes for OpenCV. The primitive
datatypes can be bool, unsigned char, signed char, unsigned short, signed
short, int, float, double, or a tuple of values of one of these primitive types.
Any primitive type can be defined by an identifier in the following form:

CV_<bit depth>{U|S|F}C(<number of channels>)

In the preceding code U, S, and F stand for unsigned, signed, and float,
respectively. For the single channel arrays, the following enumeration is applied,
describing the datatypes:

enum {CV_8U=0, CV_8S=1, CV_16U=2, CV_16S=3,
 CV_32S=4, CV_32F=5, CV_64F=6};

Handling Image and Video Files

[16]

Here, it should be noted that these three declarations are equivalent:
CV_8U, CV_8UC1, and CV_8UC(1). The single-channel declaration fits
well for integer arrays devoted to grayscale images, whereas the three
channel declaration of an array is more appropriate for images with
three components (for example, RGB, BRG, HSV, and so on). For linear
algebra operations, the arrays of type float (F) might be used.

We can define all of the preceding datatypes for multichannel arrays (up to 512
channels). The following screenshots illustrate an image's internal representation
with one single channel (CV_8U, grayscale) and the same image represented with
three channels (CV_8UC3, RGB). These screenshots are taken by zooming in on an
image displayed in the window of an OpenCV executable (the showImage example):

An 8-bit representation of an image in RGB color and grayscale

It is important to notice that to properly save a RGB image with OpenCV
functions, the image must be stored in memory with its channels ordered
as BGR. In the same way, when an RGB image is read from a file, it is
stored in memory with its channels in a BGR order. Moreover, it needs a
supplementary fourth channel (alpha) to manipulate images with three
channels, RGB, plus a transparency. For RGB images, a larger integer
value means a brighter pixel or more transparency for the alpha channel.

Chapter 1

[17]

All OpenCV classes and functions are in the cv namespace, and consequently, we
will have the following two options in our source code:

•	 Add the using namespace cv declaration after including the header files
(this is the option used in all the code examples in this book).

•	 Append the cv:: prefix to all the OpenCV classes, functions, and data
structures that we use. This option is recommended if the external names
provided by OpenCV conflict with the often-used standard template library
(STL) or other libraries.

Image file-supported formats
OpenCV supports the most common image formats. However, some of them need
(freely available) third-party libraries. The main formats supported by OpenCV are:

•	 Windows bitmaps (*.bmp, *dib)
•	 Portable image formats (*.pbm, *.pgm, *.ppm)
•	 Sun rasters (*.sr, *.ras)

The formats that need auxiliary libraries are:

•	 JPEG (*.jpeg, *.jpg, *.jpe)
•	 JPEG 2000 (*.jp2)
•	 Portable Network Graphics (*.png)
•	 TIFF (*.tiff, *.tif)
•	 WebP (*.webp).

In addition to the preceding listed formats, with the OpenCV 3.0 version, it includes
a driver for the formats (NITF, DTED, SRTM, and others) supported by the
Geographic Data Abstraction Library (GDAL) set with the CMake option, WITH_
GDAL. Notice that the GDAL support has not been extensively tested on Windows
OSes yet. In Windows and OS X, codecs shipped with OpenCV are used by default
(libjpeg, libjasper, libpng, and libtiff). Then, in these OSes, it is possible to
read the JPEG, PNG, and TIFF formats. Linux (and other Unix-like open source OSes)
looks for codecs installed in the system. The codecs can be installed before OpenCV
or else the libraries can be built from the OpenCV package by setting the proper
options in CMake (for example, BUILD_JASPER, BUILD_JPEG, BUILD_PNG,
and BUILD_TIFF).

Handling Image and Video Files

[18]

The example code
To illustrate how to read and write image files with OpenCV, we will now describe
the showImage example. The example is executed from the command line with the
corresponding output windows as follows:

<bin_dir>\showImage.exe fruits.jpg fruits_bw.jpg

The output window for the showImage example

In this example, two filenames are given as arguments. The first one is the input
image file to be read. The second one is the image file to be written with a grayscale
copy of the input image. Next, we show you the source code and its explanation:

#include <opencv2/opencv.hpp>
#include <iostream>

using namespace std;
using namespace cv;

int main(int, char *argv[])
{
 Mat in_image, out_image;

 // Usage: <cmd> <file_in> <file_out>
 // Read original image

Chapter 1

[19]

 in_image = imread(argv[1], IMREAD_UNCHANGED);
 if (in_image.empty()) {
 // Check whether the image is read or not
 cout << "Error! Input image cannot be read...\n";
 return -1;
}
// Creates two windows with the names of the images
 namedWindow(argv[1], WINDOW_AUTOSIZE);
 namedWindow(argv[2], WINDOW_AUTOSIZE);
 // Shows the image into the previously created window
 imshow(argv[1], in_image);
 cvtColor(in_image, out_image, COLOR_BGR2GRAY);
 imshow(argv[2], in_image);
 cout << "Press any key to exit...\n";
 waitKey(); // Wait for key press
 // Writing image
 imwrite(argv[2], in_image);
 return 0;
}

Here, we use the #include directive with the opencv.hpp header file that, in fact,
includes all the OpenCV header files. By including this single file, no more files
need to be included. After declaring the use of cv namespace, all the variables and
functions inside this namespace don't need the cv:: prefix. The first thing to do in
the main function is to check the number of arguments passed in the command line.
Then, a help message is displayed if an error occurs.

Reading image files
If the number of arguments is correct, the image file is read into the Mat in_image
object with the imread(argv[1], IMREAD_UNCHANGED) function, where the first
parameter is the first argument (argv[1]) passed in the command line and the
second parameter is a flag (IMREAD_UNCHANGED), which means that the image stored
into the memory object should be unchanged. The imread function determines the
type of image (codec) from the file content rather than from the file extension.

The prototype for the imread function is as follows:

Mat imread(const String& filename,
int flags = IMREAD_COLOR)

www.allitebooks.com

http://www.allitebooks.org

Handling Image and Video Files

[20]

The flag specifies the color of the image read and they are defined and explained by
the following enumeration in the imgcodecs.hpp header file:

enum { IMREAD_UNCHANGED = -1, // 8bit, color or not
 IMREAD_GRAYSCALE = 0, // 8bit, gray
 IMREAD_COLOR = 1, // unchanged depth, color
 IMREAD_ANYDEPTH = 2, // any depth, unchanged color
 IMREAD_ANYCOLOR = 4, // unchanged depth, any color
 IMREAD_LOAD_GDAL = 8 // Use gdal driver
};

As of Version 3.0 of OpenCV, the imread function is in the
imgcodecs module and not in highgui like in OpenCV 2.x.

As several functions and declarations are moved into OpenCV 3.0, it
is possible to get some compilation errors as one or more declarations
(symbols and/or functions) are not found by the linker. To figure
out where (*.hpp) a symbol is defined and which library to link, we
recommend the following trick using the Qt Creator IDE:
Add the #include <opencv2/opencv.hpp> declaration to the
code. Press the F2 function key with the mouse cursor over the symbol
or function; this opens the *.hpp file where the symbol or function is
declared.

After the input image file is read, check to see whether the operation succeeded.
This check is achieved with the in_image.empty()member function. If the image
file is read without errors, two windows are created to display the input and output
images, respectively. The creation of windows is carried out with the following
function:

void namedWindow(const String& winname,
 int flags = WINDOW_AUTOSIZE)

OpenCV windows are identified by a univocal name in the program. The flags'
definition and their explanation are given by the following enumeration in the
highgui.hpp header file:

enum { WINDOW_NORMAL = 0x00000000,
 // the user can resize the window (no constraint)
 // also use to switch a fullscreen window to a normal size
 WINDOW_AUTOSIZE = 0x00000001,

Chapter 1

[21]

 // the user cannot resize the window,
 // the size is constrained by the image displayed
 WINDOW_OPENGL = 0x00001000, // window with opengl support
 WINDOW_FULLSCREEN = 1,
 WINDOW_FREERATIO = 0x00000100,
 // the image expends as much as it can (no ratio constraint)
 WINDOW_KEEPRATIO = 0x00000000
 // the ratio of the image is respected
};

The creation of a window does not show anything on screen. The function
(belonging to the highgui module) to display an image in a window is:

void imshow(const String& winname, InputArray mat)

The image (mat) is shown with its original size if the window (winname) was created
with the WINDOW_AUTOSIZE flag.

In the showImage example, the second window shows a grayscale copy of the
input image. To convert a color image to grayscale, the cvtColor function from the
imgproc module is used. This function can actually be used to change the image
color space.

Any window created in a program can be resized and moved from its default
settings. When any window is no longer required, it should be destroyed in order
to release its resources. This resource liberation is done implicitly at the end of a
program, like in the example.

Event handling into the intrinsic loop
If we do nothing more after showing an image on a window, surprisingly, the image
will not be shown at all. After showing an image on a window, we should start a
loop to fetch and handle events related to user interaction with the window. Such a
task is carried out by the following function (from the highgui module):

int waitKey(int delay=0)

This function waits for a key pressed during a number of milliseconds (delay > 0)
returning the code of the key or -1 if the delay ends without a key pressed. If delay
is 0 or negative, the function waits forever until a key is pressed.

Remember that the waitKey function only works if there is a created
and active window at least.

Handling Image and Video Files

[22]

Writing image files
Another important function in the imgcodecs module is:

bool imwrite(const String& filename,
 InputArray img,
 const vector<int>& params=vector<int>())

This function saves the image (img) into a file (filename), being the third optional
argument a vector of property-value pairs specifying the parameters of the codec
(leave it empty to use the default values). The codec is determined by the extension
of the file.

For a detailed list of codec properties, take a look at the imgcodecs.hpp
header file and the OpenCV API reference at http://docs.opencv.
org/master/modules/refman.html.

Reading and writing video files
Rather than still images, a video deals with moving images. The sources of video
can be a dedicated camera, a webcam, a video file, or a sequence of image files. In
OpenCV, the VideoCapture and VideoWriter classes provide an easy-to-use C++
API for the task of capturing and recording involved in video processing.

The example code
The recVideo example is a short snippet of code where you can see how to use a
default camera as a capture device to grab frames, process them for edge detection,
and save this new converted frame to a file. Also, two windows are created to
simultaneously show you the original frame and the processed one. The example
code is:

#include <opencv2/opencv.hpp>
#include <iostream>

using namespace std;
using namespace cv;

int main(int, char **)
{
 Mat in_frame, out_frame;
 const char win1[]="Grabbing...", win2[]="Recording...";
 double fps=30; // Frames per second

http://docs.opencv.org/master/modules/refman.html
http://docs.opencv.org/master/modules/refman.html

Chapter 1

[23]

 char file_out[]="recorded.avi";

 VideoCapture inVid(0); // Open default camera
 if (!inVid.isOpened()) { // Check error
 cout << "Error! Camera not ready...\n";
 return -1;
 }
 // Gets the width and height of the input video
 int width = (int)inVid.get(CAP_PROP_FRAME_WIDTH);
 int height = (int)inVid.get(CAP_PROP_FRAME_HEIGHT);
 VideoWriter recVid(file_out,
 VideoWriter::fourcc('M','S','V','C'),
 fps, Size(width, height));
 if (!recVid.isOpened()) {
 cout << "Error! Video file not opened...\n";
 return -1;
 }
 // Create two windows for orig. and final video
 namedWindow(win1);
 namedWindow(win2);
 while (true) {
 // Read frame from camera (grabbing and decoding)
 inVid >> in_frame;
 // Convert the frame to grayscale
 cvtColor(in_frame, out_frame, COLOR_BGR2GRAY);
 // Write frame to video file (encoding and saving)
 recVid << out_frame;
 imshow(win1, in_frame); // Show frame in window
 imshow(win2, out_frame); // Show frame in window
 if (waitKey(1000/fps) >= 0)
 break;
 }
 inVid.release(); // Close camera
 return 0;
}

In this example, the following functions deserve a quick review:

•	 double VideoCapture::get(int propId): This returns the value of the
specified property for a VideoCapture object. A complete list of properties
based on DC1394 (IEEE 1394 Digital Camera Specifications) is included with
the videoio.hpp header file.

Handling Image and Video Files

[24]

•	 static int VideoWriter::fourcc(char c1, char c2, char c3, char
c4): This concatenates four characters to a fourcc code. In the example,
MSVC stands for Microsoft Video (only available for Windows). The list of
valid fourcc codes is published at http://www.fourcc.org/codecs.php.

•	 bool VideoWriter::isOpened(): This returns true if the object for writing
the video was successfully initialized. For instance, using an improper codec
produces an error.

Be cautious; the valid fourcc codes in a system depend on the locally
installed codecs. To know the installed fourcc codecs available in the
local system, we recommend the open source tool MediaInfo, available
for many platforms at http://mediaarea.net/en/MediaInfo.

•	 VideoCapture& VideoCapture::operator>>(Mat& image): This grabs,
decodes, and returns the next frame. This method has the equivalent
bool VideoCapture::read(OutputArray image) function. It can be
used rather than using the VideoCapture::grab()function, followed by
VideoCapture::retrieve().

•	 VideoWriter& VideoWriter::operator<<(const Mat& image):
This writes the next frame. This method has the equivalent void
VideoWriter::write(const Mat& image) function.
In this example, there is a reading/writing loop where the window events
are fetched and handled as well. The waitKey(1000/fps) function call is
in charge of that; however, in this case, 1000/fps indicates the number of
milliseconds to wait before returning to the external loop. Although not
exact, an approximate measure of frames per second is obtained for the
recorded video.

•	 void VideoCapture::release(): This releases the video file or capturing
device. Although not explicitly necessary in this example, we include it to
illustrate its use.

User-interactions tools
In the previous sections, we explained how to create (namedWindow) a window to
display (imshow) an image and fetch/handle events (waitKey). The examples we
provide show you a very easy method for user interaction with OpenCV applications
through the keyboard. The waitKey function returns the code of a key pressed before
a timeout expires.

http://www.fourcc.org/codecs.php
http://mediaarea.net/en/MediaInfo

Chapter 1

[25]

Fortunately, OpenCV provides more flexible ways for user interaction, such as
trackbars and mouse interaction, which can be combined with some drawing
functions to provide a richer user experience. Moreover, if OpenCV is locally
compiled with Qt support (the WITH_QT option of CMake), a set of new functions are
available to program an even better UI.

In this section, we provide a quick review of the available functionality to program
user interfaces in an OpenCV project with Qt support. We illustrate this review on
OpenCV UI support with the next example named showUI.

The example shows you a color image in a window, illustrating how to use some
basic elements to enrich the user interaction. The following screenshot displays the
UI elements created in the example:

The output window for the showUI example

The source code of the showUI example (without the callback functions) is as
follows:

#include <opencv2/opencv.hpp>
#include <iostream>

Handling Image and Video Files

[26]

using namespace std;
using namespace cv;

// Callback functions declarations
void cbMouse(int event, int x, int y, int flags, void*);
void tb1_Callback(int value, void *);
void tb2_Callback(int value, void *);
void checkboxCallBack(int state, void *);
void radioboxCallBack(int state, void *id);
void pushbuttonCallBack(int, void *font);

// Global definitions and variables
Mat orig_img, tmp_img;
const char main_win[]="main_win";
char msg[50];

int main(int, char* argv[]) {
 const char track1[]="TrackBar 1";
 const char track2[]="TrackBar 2";
 const char checkbox[]="Check Box";
 const char radiobox1[]="Radio Box1";
 const char radiobox2[]="Radio Box2";
 const char pushbutton[]="Push Button";
 int tb1_value = 50; // Initial value of trackbar 1
 int tb2_value = 25; // Initial value of trackbar 1

 orig_img = imread(argv[1]); // Open and read the image
 if (orig_img.empty()) {
 cout << "Error!!! Image cannot be loaded..." << endl;
 return -1;
 }
 namedWindow(main_win); // Creates main window
 // Creates a font for adding text to the image
 QtFont font = fontQt("Arial", 20, Scalar(255,0,0,0),
 QT_FONT_BLACK, QT_STYLE_NORMAL);
 // Creation of CallBack functions
 setMouseCallback(main_win, cbMouse, NULL);
 createTrackbar(track1, main_win, &tb1_value,
 100, tb1_Callback);
 createButton(checkbox, checkboxCallBack, 0,
 QT_CHECKBOX);
 // Passing values (font) to the CallBack
 createButton(pushbutton, pushbuttonCallBack,

Chapter 1

[27]

 (void *)&font, QT_PUSH_BUTTON);
 createTrackbar(track2, NULL, &tb2_value,
 50, tb2_Callback);
 // Passing values to the CallBack
 createButton(radiobox1, radioboxCallBack,
 (void *)radiobox1, QT_RADIOBOX);
 createButton(radiobox2, radioboxCallBack,
 (void *)radiobox2, QT_RADIOBOX);

 imshow(main_win, orig_img); // Shows original image
 cout << "Press any key to exit..." << endl;
 waitKey(); // Infinite loop with handle for events
 return 0;
}

When OpenCV is built with Qt support, every created window—through the
highgui module—shows a default toolbar (see the preceding figure) with options
(from left to right) for panning, zooming, saving, and opening the properties
window.

Additional to the mentioned toolbar (only available with Qt), in the next subsections,
we comment the different UI elements created in the example and the code to
implement them.

Trackbars
Trackbars are created with the createTrackbar(const String& trackbarname,
const String& winname, int* value, int count, TrackbarCallback
onChange=0, void* userdata=0) function in the specified window (winname),
with a linked integer value (value), a maximum value (count), an optional
callback function (onChange) to be called on changes of the slider, and an argument
(userdata) to the callback function. The callback function itself gets two arguments:
value (selected by the slider) and a pointer to userdata (optional).With Qt support,
if no window is specified, the trackbar is created in the properties window. In the
showUI example, we create two trackbars: the first in the main window and the
second one in the properties window. The code for the trackbar callbacks is:

void tb1_Callback(int value, void *) {

 sprintf(msg, "Trackbar 1 changed. New value=%d", value);
 displayOverlay(main_win, msg);
 return;
}

Handling Image and Video Files

[28]

void tb2_Callback(int value, void *) {

 sprintf(msg, "Trackbar 2 changed. New value=%d", value);
 displayStatusBar(main_win, msg, 1000);
 return;
}

Mouse interaction
Mouse events are always generated so that the user interacts with the mouse
(moving and clicking). By setting the proper handler or callback functions, it is
possible to implement actions such as select, drag and drop, and so on. The callback
function (onMouse) is enabled with the setMouseCallback(const String&
winname, MouseCallback onMouse, void* userdata=0) function in the
specified window (winname) and optional argument (userdata).

The source code for the callback function that handles the mouse event is:

void cbMouse(int event, int x, int y, int flags, void*) {
 // Static vars hold values between calls
 static Point p1, p2;
 static bool p2set = false;

 // Left mouse button pressed
 if (event == EVENT_LBUTTONDOWN) {
 p1 = Point(x, y); // Set orig. point
 p2set = false;
 } else if (event == EVENT_MOUSEMOVE &&
 flags == EVENT_FLAG_LBUTTON) {
 // Check moving mouse and left button down
 // Check out bounds
 if (x > orig_img.size().width)
 x = orig_img.size().width;
 else if (x < 0)
 x = 0;
 // Check out bounds
 if (y > orig_img.size().height)
 y = orig_img.size().height;
 else if (y < 0)
 y = 0;
 p2 = Point(x, y); // Set final point
 p2set = true;
 // Copy orig. to temp. image
 orig_img.copyTo(tmp_img);

Chapter 1

[29]

 // Draws rectangle
 rectangle(tmp_img, p1, p2, Scalar(0, 0 ,255));
 // Draw temporal image with rect.
 imshow(main_win, tmp_img);
 } else if (event == EVENT_LBUTTONUP
 && p2set) {
 // Check if left button is released
 // and selected an area
 // Set subarray on orig. image
 // with selected rectangle
 Mat submat = orig_img(Rect(p1, p2));
 // Here some processing for the submatrix
 //...
 // Mark the boundaries of selected rectangle
 rectangle(orig_img, p1, p2, Scalar(0, 0, 255), 2);
 imshow("main_win", orig_img);
 }
 return;
}

In the showUI example, the mouse events are used to control through a callback
function (cbMouse), the selection of a rectangular region by drawing a rectangle
around it. In the example, this function is declared as void cbMouse(int event,
int x, int y, int flags, void*), the arguments being the position of the
pointer (x, y) where the event occurs, the condition when the event occurs (flags),
and optionally, userdata.

The available events, flags, and their corresponding definition symbols
can be found in the highgui.hpp header file.

Buttons
OpenCV (only with Qt support) allows you to create three types of buttons: checkbox
(QT_CHECKBOX), radiobox (QT_RADIOBOX), and push button (QT_PUSH_BUTTON). These
types of button can be used respectively to set options, set exclusive options, and
take actions on push. The three are created with the createButton(const String&
button_name, ButtonCallback on_change, void* userdata=0, int type=QT_
PUSH_BUTTON, bool init_state=false) function in the properties window
arranged in a buttonbar after the last trackbar created in this window. The arguments
for the button are its name (button_name), the callback function called on the status
change (on_change), and optionally, an argument (userdate) to the callback, the type
of button (type), and the initial state of the button (init_state).

www.allitebooks.com

http://www.allitebooks.org

Handling Image and Video Files

[30]

Next, we show you the source code for the callback functions corresponding to
buttons in the example:

void checkboxCallBack(int state, void *) {

 sprintf(msg, "Check box changed. New state=%d", state);
 displayStatusBar(main_win, msg);
 return;
}

void radioboxCallBack(int state, void *id) {

 // Id of the radio box passed to the callBack
 sprintf(msg, "%s changed. New state=%d",
 (char *)id, state);
 displayStatusBar(main_win, msg);
 return;
}

void pushbuttonCallBack(int, void *font) {

 // Add text to the image
 addText(orig_img, "Push button clicked",
 Point(50,50), *((QtFont *)font));
 imshow(main_win, orig_img); // Shows original image
 return;
}

The callback function for a button gets two arguments: its status and, optionally, a
pointer to user data. In the showUI example, we show you how to pass an integer
(radioboxCallBack(int state, void *id)) to identify the button and a more
complex object (pushbuttonCallBack(int, void *font)).

Drawing and displaying text
A very efficient way to communicate the results of some image processing to the
user is by drawing shapes or/and displaying text over the figure being processed.
Through the imgproc module, OpenCV provides some convenient functions
to achieve such tasks as putting text, drawing lines, circles, ellipses, rectangles,
polygons, and so on. The showUI example illustrates how to select a rectangular
region over an image and draw a rectangle to mark the selected area. The following
function draws (img) a rectangle defined by two points (p1, p2) over an image with
the specified color and other optional parameters as thickness (negative for a fill
shape) and the type of lines:

Chapter 1

[31]

void rectangle(InputOutputArray img, Point pt1, Point pt2,
 const Scalar& color, int thickness=1,
 int lineType=LINE_8, int shift=0)

Additional to shapes' drawing support, the imgproc module provides a function to
put text over an image with the function:

void putText(InputOutputArray img, const String& text,
Point org, int fontFace, double fontScale,
Scalar color, int thickness=1,
int lineType=LINE_8, bool bottomLeftOrigin=false)

The available font faces for the text can be inspected in the core.hpp
header file.

Qt support, in the highgui module, adds some additional ways to show text on the
main window of an OpenCV application:

•	 Text over the image: We get this result using the addText(const Mat& img,
const String& text, Point org, const QtFont& font) function. This
function allows you to select the origin point for the displayed text with a
font previously created with the fontQt(const String& nameFont, int
pointSize=-1, Scalar color=Scalar::all(0), int weight=QT_FONT_
NORMAL, int style=QT_STYLE_NORMAL, int spacing=0) function. In the
showUI example, this function is used to put text over the image when the
push button is clicked on, calling the addText function inside the callback
function.

•	 Text on the status bar: Using the displayStatusBar(const String&
winname, const String& text, int delayms=0) function, we display
text in the status bar for a number of milliseconds given by the last argument
(delayms). In the showUI example, this function is used (in the callback
functions) to display an informative text when the buttons and trackbar of
the properties window change their state.

•	 Text overlaid on the image: Using the displayOverlay(const String&
winname, const String& text, int delayms=0) function, we display
text overlaid on the image for a number of milliseconds given by the last
argument. In the showUI example, this function is used (in the callback
function) to display informative text when the main window trackbar
changes its value.

Handling Image and Video Files

[32]

Summary
In this chapter, you got a quick review of the main purpose of the OpenCV library
and its modules. You learned the foundations of how to compile, install, and use the
library in your local system to develop C++ OpenCV applications with Qt support.
To develop your own software, we explained how to start with the free Qt Creator
IDE and the GNU compiler kit.

To start with, full code examples were provided in the chapter. These examples
showed you how to read and write images and video. Finally, the chapter gave
you an example of displaying some easy-to-implement user interface capabilities
in OpenCV programs, such as trackbars, buttons, putting text on images, drawing
shapes, and so on.

The next chapter will be devoted to establishing the main image processing tools
and tasks that will set the basis for the remaining chapters.

[33]

Establishing Image
Processing Tools

This chapter describes the main data structures and basic procedures that will be
used in subsequent chapters:

•	 Image types
•	 Pixel access
•	 Basic operations with images
•	 Histograms

These are some of the most frequent operations that we will have to perform on
images. Most of the functionality covered here is in the core module of the library.

Basic data types
The fundamental data type in OpenCV is Mat, as it is used to store images. Basically,
an image is stored as a header plus a memory zone containing the pixel data. Images
have a number of channels. Grayscale images have a single channel, while color
images typically have three for the red, green, and blue components (although
OpenCV stores them in a reverse order, that is blue, green, and red). A fourth
transparency (alpha) channel can also be used. The number of channels for an
img image can be retrieved with img.channels().

Establishing Image Processing Tools

[34]

Each pixel in an image is stored using a number of bits. This is called the image depth.
For grayscale images, pixels are commonly stored in 8 bits, thus allowing 256 gray
levels (integer values 0 to 255). For color images, each pixel is stored in three bytes,
one per color channel. In some operations, it will be necessary to store pixels in a
floating-point format. The image depth can be obtained with img.depth(), and the
values returned are:

•	 CV_8U, 8-bit unsigned integers (0..255)
•	 CV_8S, 8-bit signed integers (-128..127)
•	 CV_16U, 16-bit unsigned integers (0..65,535)
•	 CV_16S, 16-bit signed integers (-32,768..32,767)
•	 CV_32S, 32-bit signed integers (-2,147,483,648..2,147,483,647)
•	 CV_32F, 32-bit floating-point numbers
•	 CV_64F, 64-bit floating-point numbers

Note that the most common image depth will be CV_8U for both grayscale
and color images. It is possible to convert from one depth to another using the
convertTo method:

Mat img = imread("lena.png", IMREAD_GRAYSCALE);
Mat fp;
img.convertTo(fp,CV_32F);

It is common to perform an operation on floating-point images (that is, pixel values
are the result of a mathematical operation). If we use imshow() to display this image,
we will not see anything meaningful. In this case, we have to convert pixels to the
integer range 0..255. The convertTo function implements a linear transformation and
has two additional parameters, alpha and beta, which represent a scale factor and a
delta value to add, respectively. This means that each pixel p is converted with:

newp = alpha*p + beta

This can be used to display floating point images properly. Assuming that the img
image has m and M minimum and maximum values (refer to the following code to see
how to obtain these values), we would use this:

Mat m1 = Mat(100, 100, CV_32FC1);
randu(m1, 0, 1e6); // random values between 0 and 1e6
imshow("original", m1);
double minRange,MaxRange;
Point mLoc,MLoc;
minMaxLoc(m1,&minRange,&MaxRange,&mLoc,&MLoc);
Mat img1;

Chapter 2

[35]

m1.convertTo(img1,CV_8U,255.0/(MaxRange-minRange),-255.0/minRange);
imshow("result", img1);

This code maps the range of the result image values to the range 0-255. The following
image shows you the result of running the code:

The result of convertTo (note that the image on the left-hand side is displayed as white)

The image size can be obtained with the rows and cols attributes. There is also
a size attribute that retrieves both:

MatSize s = img.size;
int r=l[0];
int c=l[1];

Apart from the image itself, other data types are very common; refer to the
following table:

Type Type keyword Example
(Small)
vector

VecAB, where A can
be 2,3,4,5 or 6, B can
be b,s,i,f, or d

Vec3b rgb;

rgb[0]=255;

(Up to 4)
scalars

Scalar Scalar a;
a[0]=0;
a[1]=0;

Point PointAB, where A
can be 2 or 3 and B
can be i, f, or d

Point3d p;
p.x=0;
p.y=0;
p.z=0;

Size Size Size s;
s.width=30;
s.height=40;

Rectangle Rect Rect r;
r.x=r.y=0;
r.width=r.height=100;

Establishing Image Processing Tools

[36]

Some of these types have additional operations. For example, we can check whether
a point lies inside a rectangle:

p.inside(r)

The p and r arguments are (two-dimensional) point and rectangle, respectively. Note
that in any case, the preceding table is not exhaustive; OpenCV provides many more
support structures with associated methods.

Pixel-level access
To process images, we have to know how to access each pixel independently. OpenCV
provides a number of ways to do this. In this section, we cover two methods; the first
one is easy for the programmer, while the second one is more efficient.

The first method uses the at<> template function. In order to use it, we have to
specify the type of matrix cells, such as in this short example:

Mat src1 = imread("lena.jpg", IMREAD_GRAYSCALE);
uchar pixel1=src1.at<uchar>(0,0);
cout << "Value of pixel (0,0): " << (unsigned int)pixel1 << endl;
Mat src2 = imread("lena.jpg", IMREAD_COLOR);
Vec3b pixel2 = src2.at<Vec3b>(0,0);
cout << "B component of pixel (0,0):" << (unsigned int)pixel2[0] <<
endl;

The example reads an image in both grayscale and color and accesses the first pixel
at (0,0). In the first case, the pixel type is unsigned char (that is, uchar). In the
second case, when the image is read in full color, we have to use the Vec3b type,
which refers to a triplet of unsigned chars. Of course, the at<> function can also
appear on the left-hand side of an assignment, that is, to change the value of a pixel.

The following is another short example in which a floating-point matrix is initialized
to the Pi value using this method:

Mat M(200, 200, CV_64F);
for(int i = 0; i < M.rows; i++)
 for(int j = 0; j < M.cols; j++)
 M.at<double>(i,j)=CV_PI;

Note that the at<> method is not very efficient as it has to calculate the exact
memory position from the pixel row and column. This can be very time consuming
when we process the whole image pixel by pixel. The second method uses the ptr
function, which returns a pointer to a specific image row. The following snippet
obtains the pixel value of each pixel in a color image:

Chapter 2

[37]

 uchar R, G, B;
 for (int i = 0; i < src2.rows; i++)
 {
 Vec3b* pixrow = src2.ptr<Vec3b>(i);
 for (int j = 0; j < src2.cols; j++)
 {
 B = pixrow[j][0];
 G = pixrow[j][1];
 R = pixrow[j][2];
 }
 }

In the example above, ptr is used to get a pointer to the first pixel in each row.
Using this pointer, we can now access each column in the innermost loop.

Measuring the time
Processing images takes time (comparably much more than the time it takes to
process 1D data). Often, processing time is the crucial factor that decides whether a
solution is practical or not. OpenCV provides two functions to measure the elapsed
time: getTickCount() and getTickFrequency(). You'll use them like this:

double t0 = (double)getTickCount();
// your stuff here ...
elapsed = ((double)getTickCount() – t0)/getTickFrequency();

Here, elapsed is in seconds.

Common operations with images
The following table summarizes the most typical operations with images:

Operation Code examples
Set matrix values img.setTo(0); // for 1-channel img

img.setTo(Scalar(B,G,R); // 3-channel img

MATLAB-style matrix
initialization

Mat m1 = Mat::eye(100, 100, CV_64F);
Mat m3 = Mat::zeros(100, 100, CV_8UC1);
Mat m2 = Mat::ones(100, 100, CV_8UC1)*255;

Random initialization Mat m1 = Mat(100, 100, CV_8UC1);
randu(m1, 0, 255);

Create a copy of the
matrix

Mat img1 = img.clone();

Establishing Image Processing Tools

[38]

Operation Code examples
Create a copy of the
matrix (with the
mask)

img.copy(img1, mask);

Reference a submatrix
(the data is not
copied)

Mat img1 = img (Range(r1,r2),Range(c1,c2));

Image crop Rect roi(r1,c2, width, height);
Mat img1 = img(roi).clone(); // data copied

Resize image resize(img, imag1, Size(), 0.5, 0.5); //
decimate by a factor of 2

Flip image flip(imgsrc, imgdst, code);
// code=0 => vertical flipping
// code>0 => horizontal flipping
// code<0 => vertical & horizontal flipping

Split channels Mat channel[3];
split(img, channel);
imshow("B", channel[0]); // show blue

Merge channels merge(channel,img);

Count nonzero pixels int nz = countNonZero(img);

Minimum and
maximum

double m,M;
Point mLoc,MLoc; minMaxLoc(img,&m,&M,&mLoc,&ML
oc);

The mean pixel value Scalar m, stdd;
meanStdDev(img, m, stdd);
uint mean_pxl = mean.val[0];

Check whether the
image data is null

If (img.empty())
 cout << "couldn't load image";

Arithmetic operations
Arithmetic operators are overloaded. This means that we can operate on Mat images
like we can in this example:

imgblend = 0.2*img1 + 0.8*img2;

In OpenCV, the result value of an operation is subject to the so-called saturation
arithmetic. This means that the final value is actually the nearest integer in the
0..255 range.

Chapter 2

[39]

Bitwise operations bitwise_and(), bitwise_or(), bitwise_xor(), and bitwise_
not() can be very useful when working with masks. Masks are binary images
that indicate the pixels in which an operation is to be performed (instead of the
whole image). The following bitwise_and example shows you how to use the
AND operation to crop part of an image:

#include <opencv2/opencv.hpp>

using namespace cv;
using namespace std;

int main()
{
 Mat img1 = imread("lena.png", IMREAD_GRAYSCALE);
 if (img1.empty())
 {
 cout << "Cannot load image!" << endl;
 return -1;
 }

 imshow("Original", img1); // Original

 // Create mask image
 Mat mask(img1.rows, img1.cols, CV_8UC1, Scalar(0,0,0));
 circle(mask, Point(img1.rows/2,img1.cols/2), 150, 255, -1);
 imshow("Mask",mask);

 // perform AND
 Mat r;
 bitwise_and(img1,mask,r);

 // fill outside with white
 const uchar white = 255;
 for(int i = 0; i < r.rows; i++)
 for(int j = 0; j < r.cols; j++)
 if (!mask.at<uchar>(i,j))
 r.at<uchar>(i,j)=white;

 imshow("Result",r);

 waitKey(0);
 return 0;
}

www.allitebooks.com

http://www.allitebooks.org

Establishing Image Processing Tools

[40]

After reading and displaying the input image, we create a mask by drawing a filled
white circle. In the AND operation, this mask is used. The logical operation is only
applied in those pixels in which the mask value is not zero; other pixels are not
affected. Finally, in this example, we fill the outer part of the result image (that is,
outside the circle) with white. This is done using one of the pixel access methods
explained previously. See the resulting images in the following screenshot:

The result of the bitwise_and example

Next, another cool example is shown in which we estimate the value of Pi. Let's
consider a square and its enclosed circle:

Chapter 2

[41]

Their areas are given by:

2
circleA Pi R= ⋅

24squareA L L R= ⋅ = ⋅

From this, we have:

4 circle

square

APi
A

= ⋅

Let's assume that we have a square image of unknown side length and an enclosed
circle. We can estimate the area of the enclosed circle by painting many pixels in
random positions within the image and counting those that fall inside the enclosed
circle. On the other hand, the area of the square is estimated as the total number of
pixels painted. This would allow you to estimate the value of Pi using the previous
equation.

The following algorithm simulates this:

1.	 On a black square image, paint a solid white enclosed circle.
2.	 On another black square image (same dimensions), paint a large number

of pixels at random positions.
3.	 Perform an AND operation between the two images and count nonzero

pixels in the resulting image.
4.	 Estimate Pi using the equation.

The following is the code for the estimatePi example:

#include <opencv2/opencv.hpp>

using namespace cv;
using namespace std;

Establishing Image Processing Tools

[42]

int main()
{
 const int side=100;
 const int npixels=8000;

 int i,j;
 Mat s1=Mat::zeros(side, side, CV_8UC1);
 Mat s2=s1.clone();
 circle(s1, Point(side/2, side/2), side/2, 255, -1);

 imshow("s1",s1);

 for (int k=0;k<npixels;k++)
 {
 i = rand()%side;
 j = rand()%side;
 s2.at<uchar>(i,j)=255;
 }

 Mat r;
 bitwise_and(s1,s2,r);

 imshow("s2", s2);
 imshow("r", r);

 int Acircle = countNonZero(r);
 int Asquare = countNonZero(s2);
 float Pi=4*(float)Acircle/Asquare;
 cout << "Estimated value of Pi: " << Pi << endl;

 waitKey();
 return 0;
}

The program follows the preceding algorithm exactly. Note that we use the
countNonZero function to count nonzero (white, in this case) pixels. For
npixels=8000, the estimate was 3.125. The larger the value of npixels,
the better the estimation.

Chapter 2

[43]

The output of the estimatePi example

Data persistence
Apart from the specific functions to read and write images and video, in OpenCV,
there is a more generic way to save/load the data. This is referred to as data
persistence: the value of objects and variables in the program can be recorded
(serialized) on the disk. This can be very useful to save results and load the
configuration data. The main class is the aptly named FileStorage, which
represents a file on a disk. Data is actually stored in XML or YAML formats.

These are the steps involved when writing data:

1.	 Call the FileStorage constructor, passing a filename and a flag with the
FileStorage::WRITE value. The data format is defined by the file extension
(that is, .xml, .yml, or .yaml).

2.	 Use the << operator to write data to the file. Data is typically written as
string-value pairs.

3.	 Close the file using the release method.

Reading data requires that you follow these steps:

1.	 Call the FileStorage constructor, passing a filename and a flag with the
FileStorage::READ value.

2.	 Use the [] or >>operator to read data from the file.
3.	 Close the file using the release method.

The following example uses data persistence to save and load trackbar values.

#include <opencv2/opencv.hpp>

using namespace cv;
using namespace std;

Establishing Image Processing Tools

[44]

Mat img1;

void tb1_Callback(int value, void *)
{
 Mat temp = img1 + value;
 imshow("main_win", temp);
}

int main()
{
 img1 = imread("lena.png", IMREAD_GRAYSCALE);
 if (img1.empty())
 {
 cout << "Cannot load image!" << endl;
 return -1;
 }

 int tb1_value = 0;

 // load trackbar value
 FileStorage fs1("config.xml", FileStorage::READ);
 tb1_value=fs1["tb1_value"]; // method 1
 fs1["tb1_value"] >> tb1_value; // method 2
 fs1.release();

 // create trackbar
 namedWindow("main_win");
 createTrackbar("brightness", "main_win", &tb1_value,
 255, tb1_Callback);
 tb1_Callback(tb1_value, NULL);

 waitKey();

 // save trackbar value upon exiting
 FileStorage fs2("config.xml", FileStorage::WRITE);
 fs2 << "tb1_value" << tb1_value;
 fs2.release();

 return 0;
}

Chapter 2

[45]

When OpenCV has been compiled with Qt support, window
properties can be saved, including trackbar values, with the
saveWindowParameters() function.

Once the trackbar is used to control an integer value, it is simply added to the
original image, making it brighter. This value is read when the program starts (the
value will be 0 the first time) and saved when the program exits normally. Note that
two equivalent methods are shown to read the value of the tb1_value variable. The
contents of the config.xml file are:

<?xml version="1.0"?>
<opencv_storage>
<tb1_value>112</tb1_value>
</opencv_storage>

Histograms
Once the image has been defined with a data type and we are able to access its gray
level values, that is, the pixels, we may want to obtain a probability density function
of the different gray levels, which is called the histogram. The image histogram
represents the frequency of occurrence of the various gray levels in the image. The
histogram can be modeled so that the image may change its contrast levels. This is
known as histogram equalization. Histogram modeling is a powerful technique
for image enhancement by means of contrast variation. The equalization allows for
image areas of lower contrast to gain a higher contrast. The following image shows
you an example of an equalized image and its histogram:

An example of an equalized image histogram

Establishing Image Processing Tools

[46]

In OpenCV, the image histogram can be calculated with the void calcHist function
and histogram equalization is performed with the void equalizeHist function.

The image histogram calculation is defined with ten parameters:
void calcHist(const Mat* images, int nimages, const int* channels,
InputArray mask, OutputArray hist, int dims, const int* histSize, const
float** ranges, bool uniform=true, and bool accumulate=false).

•	 const Mat* images: The first parameter is the address of the first image
from a collection. This can be used to process a batch of images.

•	 int nimages: The second parameter is the number of source images.
•	 const int* channels: The third input parameter is the list of the channels

used to compute the histogram. The number of channels goes from 0 to 2.
•	 InputArray mask: This is an optional mask to indicate the image pixels

counted in the histogram.
•	 OutputArray hist: The fifth parameter is the output histogram.
•	 int dims: This parameter allows you to indicate the dimension of the

histogram.
•	 const int* histSize: This parameter is the array of histogram sizes in

each dimension.
•	 const float** ranges: This parameter is the array of the dims arrays of

the histogram bin boundaries in each dimension.
•	 bool uniform=true: By default, the Boolean value is true. It indicates that

the histogram is uniform.
•	 bool accumulate=false: By default, the Boolean value is false. It indicates

that the histogram is nonaccumulative.

The histogram equalization requires only two parameters,
void equalizeHist(InputArray src, OutputArray dst). The first parameter
is the input image and the second one is the output image with the histogram
equalized.

It is possible to calculate the histogram of more than one input image. This allows
you to compare image histograms and calculate the joint histogram of several
images. The comparison of two image histograms, histImage1 and histImage2, can
be performed with the void compareHist(InputArray histImage1, InputArray
histImage2, method) function. The Method metric is the used to compute the
matching between both histograms. There are four metrics implemented in OpenCV,
that is, correlation (CV_COMP_CORREL), chi-square (CV_COMP_CHISQR), intersection or
minimum distance (CV_COMP_INTERSECT), and Bhattacharyya distance (CV_COMP_
BHATTACHARYYA).

Chapter 2

[47]

It is possible to calculate the histogram of more than one channel of the same color
image. This is possible thanks to the third parameter.

The following sections show you two example codes for color histogram calculation
(ColourImageEqualizeHist) and comparison ColourImageComparison. In
ColourImageEqualizeHist, it is also shown how to calculate the histogram
equalization as well as the 2D histogram for two channels, that is, hue (H) and
saturation (S), in the ColourImageComparison example.

The example code
The following ColourImageEqualizeHist example shows you how to equalize
a color image and display the histogram of each channel at the same time. The
histogram calculation of each color channel in the RGB image is done with the
histogramcalculation(InputArray Imagesrc, OutputArray histoImage)
function. To this end, the color image is split into the channels: R, G, and B. The
histogram equalization is also applied to each channel that is then merged to form
the equalized color image:

#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include <iostream>
#include <stdio.h>

using namespace cv;
using namespace std;

void histogramcalculation(const Mat &Image, Mat &histoImage)
{
 int histSize = 255;

 // Set the ranges (for B,G,R))
 float range[] = { 0, 256 } ;
 const float* histRange = { range };

 bool uniform = true; bool accumulate = false;

 Mat b_hist, g_hist, r_hist;

 vector<Mat> bgr_planes;
 split(Image, bgr_planes);

Establishing Image Processing Tools

[48]

 // Compute the histograms:
 calcHist(&bgr_planes[0], 1, 0, Mat(), b_hist, 1, &histSize,
&histRange, uniform, accumulate);
 calcHist(&bgr_planes[1], 1, 0, Mat(), g_hist, 1, &histSize,
&histRange, uniform, accumulate);
 calcHist(&bgr_planes[2], 1, 0, Mat(), r_hist, 1, &histSize,
&histRange, uniform, accumulate);

 // Draw the histograms for B, G and R
 int hist_w = 512; int hist_h = 400;
 int bin_w = cvRound((double) hist_w/histSize);

 Mat histImage(hist_h, hist_w, CV_8UC3, Scalar(0,0,0));

 // Normalize the result to [0, histImage.rows]
 normalize(b_hist, b_hist, 0, histImage.rows, NORM_MINMAX, -1, Mat()
);
 normalize(g_hist, g_hist, 0, histImage.rows, NORM_MINMAX, -1, Mat()
);
 normalize(r_hist, r_hist, 0, histImage.rows, NORM_MINMAX, -1, Mat()
);

 // Draw for each channel
 for(int i = 1; i < histSize; i++){
 line(histImage, Point(bin_w*(i-1), hist_h - cvRound(b_hist.
at<float>(i-1))) , Point(bin_w*(i), hist_h - cvRound(b_hist.
at<float>(i))), Scalar(255, 0, 0), 2, 8, 0);
 line(histImage, Point(bin_w*(i-1), hist_h - cvRound(g_hist.
at<float>(i-1))) , Point(bin_w*(i), hist_h - cvRound(g_hist.
at<float>(i))), Scalar(0, 255, 0), 2, 8, 0);
 line(histImage, Point(bin_w*(i-1), hist_h - cvRound(r_hist.
at<float>(i-1))) , Point(bin_w*(i), hist_h - cvRound(r_hist.
at<float>(i))), Scalar(0, 0, 255), 2, 8, 0);
 }

 histoImage= histImage;
}

int main(int, char *argv[])
{
 Mat src, imageq;
 Mat histImage;

Chapter 2

[49]

 // Read original image
 src = imread("fruits.jpg");
 if(! src.data)
 { printf("Error imagen\n"); exit(1); }

 // Separate the image in 3 places (B, G and R)
 vector<Mat> bgr_planes;
 split(src, bgr_planes);

 // Display results
 imshow("Source image", src);

 // Calculate the histogram to each channel of the source image
 histogramcalculation(src, histImage);

 // Display the histogram for each colour channel
 imshow("Colour Image Histogram", histImage);

 // Equalized Image

 // Apply Histogram Equalization to each channel
 equalizeHist(bgr_planes[0], bgr_planes[0]);
 equalizeHist(bgr_planes[1], bgr_planes[1]);
 equalizeHist(bgr_planes[2], bgr_planes[2]);

 // Merge the equalized image channels into the equalized image
 merge(bgr_planes, imageq);

 // Display Equalized Image
 imshow("Equalized Image ", imageq);

 // Calculate the histogram to each channel of the equalized image
 histogramcalculation(imageq, histImage);

 // Display the Histogram of the Equalized Image
 imshow("Equalized Colour Image Histogram", histImage);

 // Wait until user exits the program
 waitKey();
 return 0;
}

www.allitebooks.com

http://www.allitebooks.org

Establishing Image Processing Tools

[50]

The example creates four windows with:

•	 The source image: This is shown in the following figure in the upper-left
corner.

•	 The equalized color image: This is shown in the following figure in the
upper-right corner.

•	 The histogram of three channels: Here, R= Read, G=Green and B= Blue,
for the source image. This is shown in the following figure in the lower-left
corner.

•	 The histogram of RGB channel for the equalized image: This is shown in
next figure in the lower-right corner. The figure shows you how the most
frequent intensity values for R, G, and B have been stretched out due to the
equalization process.

The following figure shows you the results of the algorithm:

Chapter 2

[51]

The example code
The following ColourImageComparison example shows you how to calculate a 2D
histogram composed of two channels from the same color image. The example code
also performs a comparison between the original image and the equalized image by
means of histogram matching. The metrics used for the matching are the four metrics
that have been mentioned previously, that is, Correlation, Chi-Square, Minimum
distance, and Bhattacharyya distance. The 2D histogram calculation of the H and S
color channel is done with the histogram2Dcalculation(InputArray Imagesrc,
OutputArray histo2D) function. To perform the histogram comparison, the
normalized 1D histogram has been calculated for the RGB image. In order to
compare the histogram, they have been normalized. This is done in histogramRGcal
culation(InputArray Imagesrc, OutputArray histo):

void histogram2Dcalculation(const Mat &src, Mat &histo2D)
{
 Mat hsv;

 cvtColor(src, hsv, CV_BGR2HSV);

 // Quantize the hue to 30 -255 levels
 // and the saturation to 32 - 255 levels
 int hbins = 255, sbins = 255;
 int histSize[] = {hbins, sbins};
 // hue varies from 0 to 179, see cvtColor
 float hranges[] = { 0, 180 };
 // saturation varies from 0 (black-gray-white) to
 // 255 (pure spectrum color)
 float sranges[] = { 0, 256 };
 const float* ranges[] = { hranges, sranges };
 MatND hist, hist2;
 // we compute the histogram from the 0-th and 1-st channels
 int channels[] = {0, 1};

 calcHist(&hsv, 1, channels, Mat(), hist, 1, histSize, ranges,
true, false);
 double maxVal=0;
 minMaxLoc(hist, 0, &maxVal, 0, 0);

 int scale = 1;
 Mat histImg = Mat::zeros(sbins*scale, hbins*scale, CV_8UC3);

 for(int h = 0; h < hbins; h++)
 for(int s = 0; s < sbins; s++)
 {
 float binVal = hist.at<float>(h, s);

Establishing Image Processing Tools

[52]

 int intensity = cvRound(binVal*255/maxVal);
 rectangle(histImg, Point(h*scale, s*scale),
 Point((h+1)*scale - 1, (s+1)*scale - 1),
 Scalar::all(intensity),
 CV_FILLED);
 }
 histo2D=histImg;
}

void histogramRGcalculation(const Mat &src, Mat &histoRG)
{
 // Using 50 bins for red and 60 for green
 int r_bins = 50; int g_bins = 60;
 int histSize[] = { r_bins, g_bins };

 // red varies from 0 to 255, green from 0 to 255
 float r_ranges[] = { 0, 255 };
 float g_ranges[] = { 0, 255 };

 const float* ranges[] = { r_ranges, g_ranges };

 // Use the o-th and 1-st channels
 int channels[] = { 0, 1 };

 // Histograms
 MatND hist_base;

 // Calculate the histograms for the HSV images
 calcHist(&src, 1, channels, Mat(), hist_base, 2, histSize,
ranges, true, false);
 normalize(hist_base, hist_base, 0, 1, NORM_MINMAX, -1, Mat());

 histoRG=hist_base;

}

int main(int argc, char *argv[])
{
 Mat src, imageq;
 Mat histImg, histImgeq;
 Mat histHSorg, histHSeq;

 // Read original image
 src = imread("fruits.jpg");
 if(! src.data)

Chapter 2

[53]

 { printf("Error imagen\n"); exit(1); }

 // Separate the image in 3 places (B, G and R)
 vector<Mat> bgr_planes;
 split(src, bgr_planes);

 // Display results
 namedWindow("Source image", 0);
 imshow("Source image", src);

 // Calculate the histogram of the source image
 histogram2Dcalculation(src, histImg);

 // Display the histogram for each colour channel
 imshow("H-S Histogram", histImg);

 // Equalized Image

 // Apply Histogram Equalization to each channel
 equalizeHist(bgr_planes[0], bgr_planes[0]);
 equalizeHist(bgr_planes[1], bgr_planes[1]);
 equalizeHist(bgr_planes[2], bgr_planes[2]);

 // Merge the equalized image channels into the equalized image
 merge(bgr_planes, imageq);

 // Display Equalized Image
 namedWindow("Equalized Image", 0);
 imshow("Equalized Image", imageq);

 // Calculate the 2D histogram for H and S channels
 histogram2Dcalculation(imageq, histImgeq);

 // Display the 2D Histogram
 imshow("H-S Histogram Equalized", histImgeq);

 histogramRGcalculation(src, histHSorg);
 histogramRGcalculation(imageq, histHSeq);

 /// Apply the histogram comparison methods
 for(int i = 0; i < 4; i++)
 {
 int compare_method = i;
 double orig_orig = compareHist(histHSorg, histHSorg, compare_
method);

Establishing Image Processing Tools

[54]

 double orig_equ = compareHist(histHSorg, histHSeq, compare_
method);

 printf(" Method [%d] Original-Original, Original-Equalized : %f,
%f \n", i, orig_orig, orig_equ);
 }

 printf("Done \n");

 waitKey();
}

The example creates four windows with the source image, the equalized color
image and the 2D histogram for H and S channels for both images the original,
and the equalized image. The algorithm also displays the four numerical matching
parameters obtained from the comparison of the original RGB image histogram
with itself and with the equalized RGB image. For the correlation and intersection
methods, the higher the metric, the more accurate the match. For the chi-square and
Bhattacharyya distance, the less the result, the better the match. The following figure
shows you the output of the ColourImageComparison algorithm:

Chapter 2

[55]

Finally, you can refer to Chapter 3, Correcting and Enhancing Images, as well as
the examples within to cover essential aspects of this broad topic, such as image
enhancement by means of histogram modeling.

For more information, refer to OpenCV Essentials, Deniz O., Fernández
M.M., Vállez N., Bueno G., Serrano I., Patón .A., Salido J. by Packt
Publishing, https://www.packtpub.com/application-
development/opencv-essentials.

Summary
This chapter covered and established the basis of applying image processing
methods used in computer vision. Image processing is often the first step to further
computer vision applications, and therefore, it has been covered here: basic data
types, pixel level access, common operations with images, arithmetic operations,
data persistence, and histograms.

You can also refer to Chapter 3, Correcting and Enhancing Images, of OpenCV Essentials
by Packt Publishing to cover further essential aspects of this broad topic, such
as image enhancement, image restoration by means of filtering, and geometrical
correction.

The next chapter will cover further aspects of image processing to correct and
enhance images by means of smoothing, sharpening, image resolution analysis,
morphological and geometrical transforms, inpainting, and denoising.

https://www.packtpub.com/application-development/opencv-essentials
https://www.packtpub.com/application-development/opencv-essentials

Correcting and
Enhancing Images

This chapter presents methods for image enhancement and correction. Sometimes,
it is necessary to reduce the noise in an image or emphasize or suppress certain
details in it. These procedures are usually carried out by modifying pixel values,
performing some operations on them, or on their local neighborhood as well. By
definition, image-enhancement operations are used to improve important image
details. Enhancement operations include noise reduction, smoothing, and edge
enhancement. On the other hand, image correction attempts to restore a damaged
image. In OpenCV, the imgproc module contains functions for image processing.

In this chapter, we will cover:

•	 Image filtering. This includes image smoothing, image sharpening, and
working with image pyramids.

•	 Applying morphological operations, such as dilation, erosion, opening,
or closing.

•	 Geometrical transformations (affine and perspective transformations).
•	 Inpainting, which is used to reconstruct damaged parts of images.
•	 Denoising, which is necessary to reduce the image noise produced by the

image-capture device.

Correcting and Enhancing Images

[58]

Image filtering
Image filtering is a process to modify or enhance images. Emphasizing certain
features or removing others in an image are examples of image filtering. Filtering is
a neighborhood operation. The neighborhood is a set of pixels around a selected one.
Image filtering determines the output value of a certain pixel located at a position (x,y)
by performing some operations with the values of the pixels in its neighborhood.

OpenCV provides several filtering functions for common image-processing
operations, such as smoothing or sharpening.

Smoothing
Smoothing, also called blurring, is an image-processing operation that is frequently
used to reduce noise, among other purposes. A smoothing operation is performed by
applying linear filters to the image. Then, the pixel values of the output at positions
(xi,yj) are computed as a weighted sum of the input pixel values at positions (xi,yj) and
their neighborhoods. The weights for the pixels in the linear operation are usually
stored in a matrix called kernel. Therefore, a filter could be represented as a sliding
window of coefficients.

The representation of the pixel neighborhood

Let K be the kernel and I and O the input and output images, respectively. Then,
each output pixel value at (i,j) is calculated as follows:

() () ()
,

, , ,
m n

O i j I i m j n K m n= + + ⋅∑

Median, Gaussian, and bilateral are the most used OpenCV smoothing filters.
Median filtering is very good to get rid of salt-and-pepper or speckle noise, while
Gaussian is a much better preprocessing step for edge detection. On the other
hand, bilateral filtering is a good technique to smooth an image while respecting
strong edges.

Chapter 3

[59]

The functions included in OpenCV for this purpose are:

•	 void boxFilter(InputArray src, OutputArray dst, int ddepth,
Size ksize, Point anchor = Point(-1,-1), bool normalize = true,
int borderType = BORDER_DEFAULT): This is a box filter whose kernel
coefficients are equal. With normalize=true, each output pixel value is the
mean of its kernel neighbors with all coefficients equal to 1/n, where n = the
number of elements. With normalize=false, all coefficients are equal to 1.
The src argument is the input image, while the filtered image is stored in
dst. The ddepth parameter indicates the output image depth that is -1 to use
the same depth as the input image. The kernel size is indicated in ksize. The
anchor point indicates the position of the so-called anchor pixel. The (-1, -1)
default value means that the anchor is at the center of the kernel. Finally, the
border-type treatment is indicated in the borderType parameter.

•	 void GaussianBlur(InputArray src, OutputArray dst, Size ksize,
double sigmaX, double sigmaY = 0, int borderType=BORDER_
DEFAULT): This is done by convolving each point in the src input array
with a Gaussian kernel to produce the dst output. The sigmaX and sigmaY
parameters indicate the Gaussian kernel standard deviation in X and Y
directions. If sigmaY is zero, it is set to be equal to sigmaX, and if both are
equal to zero, they are computed using the width and height given in ksize.

Convolution is defined as the integral of the product
of two functions in which one of them is previously
reversed and shifted.

•	 void medianBlur(InputArray src, OutputArray dst, int ksize):
This runs through each element of the image and replaces each pixel with the
median of its neighboring pixels.

•	 void bilateralFilter(InputArray src, OutputArray dst, int d,
double sigmaColor, double sigmaSpace, int borderType=BORDER_
DEFAULT): This is analogous to the Gaussian filter considering the
neighboring pixels with weights assigned to each of them but having two
components on each weight, which is the same used by the Gaussian filter,
and another one that takes into account the difference in intensity between
the neighboring and evaluated pixels. This function needs the diameter of the
pixel neighborhood as parameter d, and sigmaColor sigmaSpace values. A
larger value of the sigmaColor parameter means that farther colors within
the pixel neighborhood will be mixed together, generating larger areas of
semi-equal colors, whereas a larger value of the sigmaSpace parameter
means that farther pixels will influence each other as long as their colors are
close enough.

Correcting and Enhancing Images

[60]

•	 void blur(InputArray src, OutputArray dst, Size ksize, Point
anchor=Point(-1,-1), int borderType=BORDER_DEFAULT): This blurs
an image using the normalized box filter. It is equivalent to using boxFilter
with normalize = true. The kernel used in this function is:

1 1 1
1 1 11

. .
1 1 1

ksize width ksize height

 
 
 
 ⋅
 
 

�
�

� � � �
�

The getGaussianKernel and getGaborKernel
functions can be used in OpenCV to generate custom
kernels, which can then be passed on to filter2D.

In all cases, it is necessary to extrapolate the values of the non-existent pixels outside
the image boundary. OpenCV enables the specification of the extrapolation method
in most of the filter functions. These methods are:

•	 BORDER_REPLICATE: This repeats the last known pixel value:
aaaaaa|abcdefgh|hhhhhhh

•	 BORDER_REFLECT: This reflects the image border: fedcba|abcdefgh|hgfedcb
•	 BORDER_REFLECT_101: This reflects the image border without duplicating the

last pixel of the border: gfedcb|abcdefgh|gfedcba
•	 BORDER_WRAP: This appends the value of the opposite border:

cdefgh|abcdefgh|abcdefg
•	 BORDER_CONSTANT: This establishes a constant over the new border:

kkkkkk|abcdefgh|kkkkkk

The example code
The following Smooth example shows you how to load an image and apply Gaussian
and median blurring to it through GaussianBlur and medianBlur functions:

#include "opencv2/opencv.hpp"

using namespace cv;

int main(int argc, char** argv)
{
 // Read the source file

Chapter 3

[61]

 Mat src;
 src = imread(argv[1]);

 // Apply the filters
 Mat dst, dst2;
 GaussianBlur(src, dst, Size(9, 9), 0, 0);
 medianBlur(src, dst2, 9);

 // Show the results
 namedWindow(" ORIGINAL ", WINDOW_AUTOSIZE);
 imshow(" ORIGINAL ", src);
 namedWindow(" GAUSSIAN BLUR ", WINDOW_AUTOSIZE);
 imshow(" GAUSSIAN BLUR ", dst);
 namedWindow(" MEDIAN BLUR ", WINDOW_AUTOSIZE);
 imshow(" MEDIAN BLUR ", dst2);

 waitKey();
 return 0;
}

The following figure shows you the output of the code:

Original and blurred images from Gaussian and Median blurring transformations

Sharpening
Sharpening filters are used to highlight borders and other fine details within images.
They are based on first- and second-order derivatives. The first derivative of an
image computes an approximation of the image intensity gradient, whereas the
second derivative is defined as the divergence of this gradient. Since digital image
processing deals with discrete quantities (pixel values), the discrete versions of the
first and second derivatives are used for sharpening.

Correcting and Enhancing Images

[62]

First-order derivatives produce thicker image edges and are widely used for
edge-extraction purposes. However, second-order derivatives are used for image
enhancement due to their better response to fine details. Two popular operators
used to obtain derivatives are the Sobel and the Laplacian.

The Sobel operator computes the first image derivative of an image, I, through:

1 0 1
2 0 2
1 0 1

xG I
− 
 = − ∗ 
 − 

1 2 1
0 0 0
1 2 1

yG I
− − − 
 = ∗ 
  

The Sobel gradient magnitude can be obtained by combining the gradient
approximations in the two directions, as follows:

2 2
x yG G G= +

On the other hand, the discrete Laplacian of an image can be given as a convolution
with the following kernel:

2

0.5 1 0.5
1 6 1
0.5 1 0.5

xyD
 
 =  
  

The functions included in OpenCV for this purpose are:

•	 void Sobel(InputArray src, OutputArray dst, int ddepth, int dx,
int dy, int ksize = 3, double scale = 1, double delta = 0, int
borderType = BORDER_DEFAULT): This calculates the first, second, third,
or mixed-image derivatives with the Sobel operator from an image in src.
The ddepth parameter indicates the output image depth, that is, -1 to use
the same depth as the input image. The kernel size is indicated in ksize and
the desired derivative orders in dx and dy. A scale factor for the computed
derivative vales can be established with scale. Finally, the border-type
treatment is indicated in the borderType parameter and a delta value can
be added to the results before storing them in dst.

Chapter 3

[63]

•	 void Scharr(InputArray src, OutputArray dst, int ddepth, int
dx, int dy, double scale = 1, double delta = 0, int borderType
= BORDER_DEFAULT): This calculates a more accurate derivative for a
kernel of size 3 x 3. Scharr(src, dst, ddepth, dx, dy, scale, delta,
borderType) is equivalent to Sobel(src, dst, ddepth, dx, dy, CV_
SCHARR, scale, delta, borderType).

•	 void Laplacian(InputArray src, OutputArray dst, int ddepth, int
ksize = 1, double scale = 1, double delta = 0, int borderType
= BORDER_DEFAULT): This calculates the Laplacian of an image. All the
parameters are equivalent to the ones from the Sobel and Scharr functions
except for ksize. When ksize>1, it calculates the Laplacian of the image in
src by adding up the second x and y derivatives calculated using Sobel.
When ksize=1, the Laplacian is calculated by filtering the image with a 3 x
3 kernel that contains -4 for the center, 0 for the corners, and 1 for the rest of
the coefficients.

getDerivKernels can be used in OpenCV to generate
custom derivative kernels, which can then be passed on
to sepFilter2D.

The example code
The following Sharpen example shows you how to compute Sobel and Laplacian
derivatives from an image through Sobel and Laplacian functions. The example
code is:

#include "opencv2/opencv.hpp"

using namespace cv;

int main(int argc, char** argv)
{
 // Read the source file
 Mat src;
 src = imread(argv[1]);

 // Apply Sobel and Laplacian
 Mat dst, dst2;
 Sobel(src, dst, -1, 1, 1);
 Laplacian(src, dst2, -1);

 // Show the results

Correcting and Enhancing Images

[64]

 namedWindow(" ORIGINAL ", WINDOW_AUTOSIZE);
 imshow(" ORIGINAL ", src);
 namedWindow(" SOBEL ", WINDOW_AUTOSIZE);
 imshow(" SOBEL ", dst);
 namedWindow(" LAPLACIAN ", WINDOW_AUTOSIZE);
 imshow(" LAPLACIAN ", dst2);

 waitKey();
 return 0;
}

The following figure shows you the output of the code:

Contours obtained by Sobel and Laplacian derivatives

Chapter 3

[65]

Working with image pyramids
On some occasions, working with a fixed image size is not possible, and we will
need the original image at different resolutions. For example, in object-detection
problems, examining the whole image trying to find the object takes too much time.
In this case, searching for objects by starting at smaller resolutions is more efficient.
This type of image set is called pyramid or mipmap due to the similarity with the
pyramid structure type if images are organized from the largest to the smallest from
the bottom to the top.

The Gaussian pyramid

There are two kinds of image pyramids: Gaussian pyramids and Laplacian pyramids.

Gaussian pyramids
Gaussian pyramids are created by alternately removing rows and columns in the
lower level and then obtaining the value of the higher-level pixel by applying
a Gaussian filter using the neighborhood from the underlying level. After each
pyramid step, the image reduces its width and height by half and its area is a quarter
of the previous level image area. In OpenCV, Gaussian pyramids can be computed
using the pyrDown, pyrUp, and buildPyramid functions:

•	 void pyrDown(InputArray src, OutputArray dst, const Size&
dstsize = Size(), int borderType = BORDER_DEFAULT): This
subsamples and blurs an src image, saving the result in dst. The size of the
output image is computed as Size((src.cols+1)/2, (src.rows+1)/2)
when it is not set with the dstsize parameter.

•	 void pyrUp(InputArray src, OutputArray dst, const Size& dstsize
= Size(), int borderType = BORDER_DEFAULT): This computes the
opposite process of pyrDown.

Correcting and Enhancing Images

[66]

•	 void buildPyramid(InputArray src, OutputArrayOfArrays dst, int
maxlevel, int borderType = BORDER_DEFAULT): This builds a Gaussian
pyramid for an image stored in src, obtaining maxlevel new images and
storing them in the dst array following the original image that is stored in
dst[0]. Thus, dst stores maxlevel +1 images as a result.

Pyramids are also used for segmentation. OpenCV provides a function to compute
mean-shift pyramids based on the first step of the mean-shift segmentation algorithm:

•	 void pyrMeanShiftFiltering(InputArray src, OutputArray dst,
double sp, double sr, int maxLevel = 1, TermCriteria termcrit
= TermCriteria (TermCriteria::MAX_ITER + TermCriteria::EPS,
5, 1)): This implements the filtering stage of the mean-shift segmentation,
obtaining an image, dst, with color gradients and fine-grain texture
flattened. The sp and sr parameters indicate the spatial window and the
color window radii.

More information about the mean-shift segmentation can be
found at http://docs.opencv.org/trunk/doc/py_
tutorials/py_video/py_meanshift/py_meanshift.
html?highlight=meanshift.

Laplacian pyramids
Laplacian pyramids do not have a specific function implementation in OpenCV,
but they are formed from the Gaussian pyramids. Laplacian pyramids can be seen
as border images where most of its elements are zeros. The ith level in the Laplacian
pyramid is the difference between the ith level in the Gaussian pyramid and the
expanded version of the ith+1 level in the Gaussian pyramid.

The example code
The following Pyramids example shows you how to obtain two levels from a Gaussian
pyramid through the pyrDown function and the opposite operation through pyrUp.
Notice that the original image cannot be obtained after using pyrUp:

#include "opencv2/opencv.hpp"

using namespace cv;

int main(int argc, char** argv)

http://docs.opencv.org/trunk/doc/py_tutorials/py_video/py_meanshift/py_meanshift.html?highlight=meanshift
http://docs.opencv.org/trunk/doc/py_tutorials/py_video/py_meanshift/py_meanshift.html?highlight=meanshift
http://docs.opencv.org/trunk/doc/py_tutorials/py_video/py_meanshift/py_meanshift.html?highlight=meanshift

Chapter 3

[67]

{
 // Read the source file
 Mat src;
 src = imread(argv[1]);

 // Apply two times pyrDown
 Mat dst, dst2;
 pyrDown(src, dst);
 pyrDown(dst, dst2);

 // Show the results
 namedWindow(" ORIGINAL ", WINDOW_AUTOSIZE);
 imshow(" ORIGINAL ", src);
 namedWindow(" 1st PYRDOWN ", WINDOW_AUTOSIZE);
 imshow(" 1st PYRDOWN ", dst);
 namedWindow(" 2st PYRDOWN ", WINDOW_AUTOSIZE);
 imshow(" 2st PYRDOWN ", dst2);

 // Apply two times pyrUp
 pyrUp(dst2, dst);
 pyrUp(dst, src);

 // Show the results
 namedWindow(" NEW ORIGINAL ", WINDOW_AUTOSIZE);
 imshow(" NEW ORIGINAL ", dst2);
 namedWindow(" 1st PYRUP ", WINDOW_AUTOSIZE);
 imshow(" 1st PYRUP ", dst);
 namedWindow(" 2st PYRUP ", WINDOW_AUTOSIZE);
 imshow(" 2st PYRUP ", src);

 waitKey();
 return 0;
}

Correcting and Enhancing Images

[68]

The following figure shows you the output of the code:

The original and two levels of the Gaussian pyramid

Chapter 3

[69]

Morphological operations
Morphological operations process images according to shapes. They apply a
defined "structuring element" to an image, obtaining a new image where the pixels
at positions (xi,yj) are computed by comparing the input pixel values at positions
(xi,yj) and their neighborhoods. Depending on the structuring element selected, a
morphological operation is more sensitive to one specific shape or the other.

The two basic morphological operations are dilation and erosion. Dilation adds
pixels from the background to the boundaries of the objects in an image, while
erosion removes pixels. Here is where the structuring element is taken into account
to select the pixels that are to be added or deleted. In dilation, the value of the output
pixel is the maximum of all the pixels in the neighborhood. Using erosion, the value
of the output pixel is the minimum value of all the pixels in the neighborhood.

An example of dilation and erosion

Other image-processing operations can be defined by combining dilation and
erosion, such as the opening and closing operations, and the morphological gradient.
The opening operation is defined as erosion, followed by dilation, while closing is
its reverse operation—dilation followed by erosion. Therefore, opening removes
small objects from an image while preserving the larger ones and closing is used to
remove small holes while preserving the larger ones in a manner similar to opening.
The morphological gradient is defined as the difference between the dilation and the
erosion of an image. Furthermore, two more operations are defined using opening
and closing: top-hat and black-hat operations. They are defined as the difference
between the source image and its opening in the case of top hat and the difference
between the closing of an image and the source image in the case of black hat. All the
operations are applied with the same structuring element.

Correcting and Enhancing Images

[70]

In OpenCV, it is possible to apply dilation, erosion, opening, and closing through the
following functions:

•	 void dilate(InputArray src, OutputArray dst, InputArray
kernel, Point anchor = Point(-1,-1), int iterations = 1, int
borderType = BORDER_CONSTANT, const Scalar& borderValue =
morphologyDefaultBorderValue()): This dilates an image stored in src
using a specific structuring element, saving the result in dst. The kernel
parameter is the structuring element used. The anchor point indicates the
position of anchor pixel. The (-1, -1) value means that the anchor is at the
center. The operation can be applied several times using iterations. The
border-type treatment is indicated in the borderType parameter and is the
same as in other filters from previous sections. Finally, a constant is indicated
in borderValue if the BORDER_CONSTANT border type is used.

•	 void erode(InputArray src, OutputArray dst, InputArray
kernel, Point anchor = Point(-1,-1), int iterations = 1, int
borderType = BORDER_CONSTANT, const Scalar& borderValue =
morphologyDefaultBorderValue()): This erodes an image using a specific
structuring element. Its parameters are the same as that in dilate.

•	 void morphologyEx(InputArray src, OutputArray dst, int
op, InputArray kernel, Point anchor = Point(-1,-1), int
iterations = 1, int borderType = BORDER_CONSTANT, const Scalar&
borderValue = morphologyDefaultBorderValue()): This performs
advanced morphological operations defined using the op parameter. Possible
op values are MORPH_OPEN, MORPH_CLOSE, MORPH_GRADIENT, MORPH_TOPHAT,
and MORPH_BLACKHAT.

•	 Mat getStructuringElement(int shape, Size ksize, Point anchor
= Point(-1,-1)): This returns a structuring element of the specified size
and shape for morphological operations. Supported types are MORPH_RECT,
MORPH_ELLIPSE, and MORPH_CROSS.

Chapter 3

[71]

The example code
The following Morphological example shows you how to segment red checkers
in a checkerboard, applying a binary threshold (the inRange function) and then
refining the results with dilation and erosion operations (through dilate and erode
functions). The structure used is a circle of 15 x 15 pixels. The example code is:

#include "opencv2/opencv.hpp"

using namespace cv;
using namespace std;

int main(int argc, char** argv)
{
 // Read the source file
 Mat src;
 src = imread(argv[1]);

 // Apply the filters
 Mat dst, dst2, dst3;
 inRange(src, Scalar(0, 0, 100), Scalar(40, 30, 255), dst);

 Mat element = getStructuringElement(MORPH_ELLIPSE,Size(15,15));
 dilate(dst, dst2, element);
 erode(dst2, dst3, element);

 // Show the results
 namedWindow(" ORIGINAL ", WINDOW_AUTOSIZE);
 imshow(" ORIGINAL ", src);
 namedWindow(" SEGMENTED ", WINDOW_AUTOSIZE);
 imshow(" SEGMENTED ", dst);
 namedWindow(" DILATION ", WINDOW_AUTOSIZE);
 imshow(" DILATION ", dst2);
 namedWindow(" EROSION ", WINDOW_AUTOSIZE);
 imshow(" EROSION ", dst3);

 waitKey();
 return 0;
}

Correcting and Enhancing Images

[72]

The following figure shows you the output of the code:

Original, red color segmentation, dilation, and erosion

LUTs
Look-up tables (LUTs) are very common in custom filters in which two pixels with
the same value in the input involves the same value in the output too. An LUT
transformation assigns a new pixel value to each pixel in the input image according
to the values given by a table. In this table, the index represents the input intensity
value and the content of the cell given by the index represents the corresponding
output value. As the transformation is actually computed for each possible intensity
value, this results in a reduction in the time needed to apply the transformation over
an image (images typically have more pixels than the number of intensity values).

Chapter 3

[73]

The LUT(InputArray src, InputArray lut, OutputArray dst,
int interpolation = 0) OpenCV function applies a look-up table transformation
over an 8-bit signed or an src unsigned image. Thus, the table given in the lut
parameter contains 256 elements. The number of channels in lut is either 1 or src.
channels. If src has more than one channel but lut has a single one, the same lut
channel is applied to all the image channels.

The example code
The following LUT example shows you how to divide (by two) the intensity of the
pixels from an image using a look-up table. The LUT needs to be initialized before
using it with this code:

 uchar * M = (uchar*)malloc(256*sizeof(uchar));
 for(int i=0; i<256; i++){
 M[i] = i*0.5; //The result is rounded to an integer value
 }
 Mat lut(1, 256, CV_8UC1, M);

A Mat object is created where each cell contains the new value. The example code is:

#include "opencv2/opencv.hpp"

using namespace cv;

int main(int argc, char** argv)
{
 // Read the source file
 Mat src;
 src = imread(argv[1]);

 // Create the LUT
 uchar * M = (uchar*)malloc(256*sizeof(uchar));
 for(int i=0; i<256; i++){
 M[i] = i*0.5;
 }
 Mat lut(1, 256, CV_8UC1, M);

 // Apply the LUT
 Mat dst;

Correcting and Enhancing Images

[74]

 LUT(src,lut,dst);

 // Show the results
 namedWindow(" ORIGINAL ", WINDOW_AUTOSIZE);
 imshow(" ORIGINAL ", src);
 namedWindow(" LUT ", WINDOW_AUTOSIZE);
 imshow(" LUT ", dst);

 waitKey();
 return 0;
}

The following figure shows you the output of the code:

The original and LUT-transformed images

Geometrical transformations
Geometrical transformations do not change the image content but instead deform the
image by deforming their grid. In this case, output image pixel values are computed
by first obtaining the coordinates of the appropriate input pixels by applying the
corresponding mapping functions and copying the original pixel values from the
obtained positions to the new ones:

() () ()(), , , ,x yO x y I f x y f x y=

Chapter 3

[75]

This type of operation has two problems:

•	 Extrapolation: fx(x,y) and fy(x,y) could obtain values that indicate a pixel
outside the image boundary. The extrapolation methods used in geometrical
transformations are the same as the ones used in image filtering plus another
one called BORDER_TRANSPARENT.

•	 Interpolation: fx(x,y) and fy(x,y) are usually floating-point numbers. In
OpenCV, it is possible to select between nearest-neighbor and polynomial
interpolation methods. Nearest-neighbor interpolation consists of rounding
the floating-point coordinate to the nearest integer. The supported
interpolation methods are:

°° INTER_NEAREST: This is the nearest-neighbor interpolation
explained previously.

°° INTER_LINEAR: This is a bilinear interpolation method. It is used
by default.

°° INTER_AREA: This resamples using pixel area relation.
°° INTER_CUBIC: This is bicubic interpolation method over a 4 x 4

pixel neighborhood.
°° INTER_LANCZOS4: This is the Lanczos interpolation method over an

8 x 8 pixel neighborhood.

The geometrical transformations supported in OpenCV include affine (scaling,
translation, rotation, and so on) and perspective transformations.

Affine transformation
An affine transformation is a geometric transformation that preserves all points from
an initial line on a line after applying it. Furthermore, distance ratios from each of
these points to the ends of the lines are also preserved. On the other hand, affine
transformations don't necessarily preserve angles and lengths.

Geometric transformations such as scaling, translation, rotation, skewing, and
reflection are all affine transformations.

Correcting and Enhancing Images

[76]

Scaling
Scaling an image is resizing it by shrinking or zooming. The function in OpenCV for
this purpose is void resize(InputArray src, OutputArray dst, Size dsize,
double fx = 0, double fy = 0, int interpolation = INTER_LINEAR). Apart
from src and dst, the input and output images, it has some parameters to specify the
size to which the image is to be rescaled. If the new image size is specified by setting
dsize to a value different from 0, the scaled factor parameters, fx and fy, are both 0
and fx and fy are calculated from dsize and the original size of the input image. If
fx and fy are different from 0 and dsize equals 0, dsize is calculated from the other
parameters. A scale operation could be represented by its transformation matrix:

0
0
x

y

s
S

s
 

=  
 

Here, sx and sy are the scale factors in the x and y axis.

The example code
The following Scale example shows you how to scale an image through the resize
function. The example code is:

#include "opencv2/opencv.hpp"

using namespace cv;

int main(int argc, char** argv)
{
 // Read the source file
 Mat src;
 src = imread(argv[1]);

 // Apply the scale
 Mat dst;
 resize(src, dst, Size(0,0), 0.5, 0.5);

 // Show the results
 namedWindow(" ORIGINAL ", WINDOW_AUTOSIZE);
 imshow(" ORIGINAL ", src);
 namedWindow(" SCALED ", WINDOW_AUTOSIZE);
 imshow(" SCALED ", dst);

 waitKey();
 return 0;
}

Chapter 3

[77]

The following figure shows you the output of the code:

Original and scaled images; fx and fy are both 0.5

Translation
Translation is simply moving the image along a specific direction and distance.
Thus, a translation could be represented by means of a vector, (tx,ty), or its
transformation matrix:

1 0
0 1

x

y

t
T

t
 

=  
 

In OpenCV, it is possible to apply translations using the void warpAffine(
InputArray src, OutputArray dst, InputArray M, Size dsize, int flags
= INTER_LINEAR, int borderMode = BORDER_CONSTANT, const Scalar&
borderValue = Scalar()) function. The M parameter is the transformation matrix
that converts src into dst. The interpolation method is specified using the flags
parameter, which also supports the WARP_INVERSE_MAP value, which means that M is
the inverse transformation. The borderMode parameter is the extrapolation method,
and borderValue is used when borderMode is BORDER_CONSTANT.

Correcting and Enhancing Images

[78]

The example code
The Translation example shows you how to use the warpAffine function to
translate an image. The example code is:

#include "opencv2/opencv.hpp"

using namespace cv;

int main(int argc, char** argv)
{
 // Read the source file
 Mat src;
 src = imread(argv[1]);

 // Apply translation
 Mat dst;
 Mat M = (Mat_<double>(2,3) << 1, 0, 200, 0, 1, 150);
 warpAffine(src,dst,M,src.size());

 // Show the results
 namedWindow(" ORIGINAL ", WINDOW_AUTOSIZE);
 imshow(" ORIGINAL ", src);
 namedWindow(" TRANSLATED ", WINDOW_AUTOSIZE);
 imshow(" TRANSLATED ", dst);

 waitKey();
 return 0;
}

The following figure shows you the output of the code:

Chapter 3

[79]

Original and displaced images. The horizontal displacement is 200 and vertical displacement is 150.

Image rotation
Image rotation involves a specific angle, θ. OpenCV supports scaled rotations in a
specific location using a transformation matrix defined as follows:

() () ()() ()
() () () ()()

cos sin 1 cos sin

sin cos sin 1 cos

sf sf sf x sf y
M

sf sf sf x sf y

θ θ θ θ

θ θ θ θ

 ⋅ ⋅ − ⋅ ⋅ − ⋅ ⋅
=  

− ⋅ ⋅ ⋅ ⋅ + − ⋅ ⋅  

Here, x and y are the coordinates of the rotation point and sf is the scale factor.

Rotations are applied like translations by means of the warpAffine function but
using the Mat getRotationMatrix2D(Point2f center, double angle, double
scale) function to create the rotation transformation matrix. The M parameter is the
transformation matrix that converts src into dst. As the names of the parameters
indicate, center is the center point of the rotation, angle is the rotation angle (in a
counter-clockwise direction), and scale is the scale factor.

Correcting and Enhancing Images

[80]

The example code
The following Rotate example shows you how to use the warpAffine function
to rotate an image. A 45-degree centered rotation matrix is firstly obtained by
getRotationMatrix2D(Point2f(src.cols/2, src.rows/2), 45, 1).
The example code is:

#include "opencv2/opencv.hpp"

using namespace cv;

int main(int argc, char** argv)
{
 // Read the source file
 Mat src;
 src = imread(argv[1]);

 // Apply the rotation
 Mat dst;
 Mat M = getRotationMatrix2D(Point2f(src.cols/2,src.rows/2),45,1);
 warpAffine(src,dst,M,src.size());

 // Show the results
 namedWindow(" ORIGINAL ", WINDOW_AUTOSIZE);
 imshow(" ORIGINAL ", src);
 namedWindow(" ROTATED ", WINDOW_AUTOSIZE);
 imshow(" ROTATED ", dst);

 waitKey();
 return 0;
}

The following figure shows you the output of the code:

Chapter 3

[81]

The original image and the image after a 45-degree centered rotation is applied

Skewing
A skewing transformation displaces each point in a fixed direction by an amount
proportional to its signed distance from a line that is parallel to that direction.
Therefore, it will usually distort the shape of a geometric figure, for example, turning
squares into non-square parallelograms and circles into ellipses. However, a skewing
preserves the area of geometric figures, the alignment, and relative distances of
collinear points. A skewing mapping is the main difference between upright and
slanted (or italic) styles of letters.

Skewing can also be defined by its angle, θ.

The original and its rotated 45 degrees from center image

Correcting and Enhancing Images

[82]

Using the skewing angle, the transformation matrices for horizontal and vertical
skewing are:

()
()
1 0 01 cot 0

cot 1 00 1 0H VT T
θ

θ
  

= =   
   

Due to the similarities with previous transformations, the function used to apply
skewing is warpAffine.

On most occasions, it will be necessary to add some size to the output
image and/or apply translation (changing the last column on the shear
transformation matrix) in order to display the output image completely
and in a centered manner.

The example code
The following Skew example shows you how to use the warpAffine function to
skew θ = π/3 horizontally in an image. The example code is:

#include "opencv2/opencv.hpp"
#include <math.h>

using namespace cv;

int main(int argc, char** argv)
{
 // Read the source file
 Mat src;
 src = imread(argv[1]);

 // Apply skew
 Mat dst;
 double m = 1/tan(M_PI/3);
 Mat M = (Mat_<double>(2,3) << 1, m, 0, 0, 1, 0);
 warpAffine(src,dst,M,Size(src.cols+0.5*src.cols,src.rows));

 // Show the results
 namedWindow(" ORIGINAL ", WINDOW_AUTOSIZE);
 imshow(" ORIGINAL ", src);

Chapter 3

[83]

 namedWindow(" SKEWED ", WINDOW_AUTOSIZE);
 imshow(" SKEWED ", dst);

 waitKey();
 return 0;
}

The following figure shows you the output of the code:

The original image and the image when skewed horizontally

Reflection
As reflection is done over the x and y axes by default, it is necessary to apply
translation (the last column of the transformation matrix). Then, the reflection
matrix is:

1 0 0 1 01 0
0 1 0 10 1 0

xx
H V

y y

tt
T T T

t t
−−     

= = =     − −     

Here, tx is the number of image columns and ty is the number of image rows.

Correcting and Enhancing Images

[84]

As with previous transformations, the function used to apply reflection
is warpAffine.

Other affine transformations can be applied using the warpAffine
function with their corresponding transformation matrices.

The example code
The following Reflect example shows you an example of horizontal, vertical, and
combined reflection of an image using the warpAffine function. The example
code is:

#include "opencv2/opencv.hpp"

using namespace cv;

int main(int argc, char** argv)
{
 // Read the source file
 Mat src;
 src = imread(argv[1]);

 // Apply the reflections
 Mat dsth, dstv, dst;
 Mat Mh = (Mat_<double>(2,3) << -1, 0, src.cols, 0, 1, 0
 Mat Mv = (Mat_<double>(2,3) << 1, 0, 0, 0, -1, src.rows);
 Mat M = (Mat_<double>(2,3) << -1, 0, src.cols, 0, -1, src.rows);
 warpAffine(src,dsth,Mh,src.size());
 warpAffine(src,dstv,Mv,src.size());
 warpAffine(src,dst,M,src.size());

 // Show the results
 namedWindow(" ORIGINAL ", WINDOW_AUTOSIZE);
 imshow(" ORIGINAL ", src);
 namedWindow(" H-REFLECTION ", WINDOW_AUTOSIZE);
 imshow(" H-REFLECTION ", dsth);
 namedWindow(" V-REFLECTION ", WINDOW_AUTOSIZE);
 imshow(" V-REFLECTION ", dstv);
 namedWindow(" REFLECTION ", WINDOW_AUTOSIZE);
 imshow(" REFLECTION ", dst);

 waitKey();

Chapter 3

[85]

 return 0;
}

The following figure shows you the output for the code:

The original and rotated images in X, Y, and both axes

Correcting and Enhancing Images

[86]

Perspective transformation
For perspective transformation, a 3 x 3 transformation matrix is needed, although the
work is performed over two-dimensional images. Straight lines remain straight in the
output image, but in this case, proportions change. Finding the transformation matrix
is more complex than with affine transformations. When working with perspective,
the coordinates of four points of the input image matrix and their corresponding
coordinates on the output image matrix are used to perform this operation.

With these points and the getPerspectiveTransform OpenCV function, it is
possible to find the perspective transformation matrix. After obtaining the matrix,
warpPerspective is applied to obtain the output of the perspective transformation.
The two functions are explained in detail here:

•	 Mat getPerspectiveTransform(InputArray src, InputArray dst) and
Mat getPerspectiveTransform(const Point2f src[], const Point2f
dst[]): This returns the perspective transformation matrix calculated from
src and dst.

•	 void warpPerspective(InputArray src, OutputArray
dst, InputArray M, Size dsize, int flags=INTER_
LINEAR, int borderMode=BORDER_CONSTANT, const Scalar&
borderValue=Scalar()): This applies an M affine transformation to an src
image, obtaining the new dst image. The rest of the parameters are the same
as in other geometrical transformations discussed.

The example code
The following Perspective example shows you an example of how to change the
perspective of an image using the warpPerspective function. In this case, it is
necessary to indicate the coordinates of four points from the first image and another
four from the output to calculate the perspective transformation matrix through
getPerspectiveTransform. The selected points are:

 Point2f src_verts[4];
 src_verts[2] = Point(195, 140);
 src_verts[3] = Point(410, 120);
 src_verts[1] = Point(220, 750);
 src_verts[0] = Point(400, 750);
 Point2f dst_verts[4];
 dst_verts[2] = Point(160, 100);
 dst_verts[3] = Point(530, 120);
 dst_verts[1] = Point(220, 750);
 dst_verts[0] = Point(400, 750);

Chapter 3

[87]

The example code is:

#include "opencv2/opencv.hpp"

using namespace cv;

int main(int argc, char** argv)
{
 // Read the source file
 Mat src;
 src = imread(argv[1]);

 Mat dst;
 Point2f src_verts[4];
 src_verts[2] = Point(195, 140);
 src_verts[3] = Point(410, 120);
 src_verts[1] = Point(220, 750);
 src_verts[0] = Point(400, 750);
 Point2f dst_verts[4];
 dst_verts[2] = Point(160, 100);
 dst_verts[3] = Point(530, 120);
 dst_verts[1] = Point(220, 750);
 dst_verts[0] = Point(400, 750);

 // Obtain and Apply the perspective transformation
 Mat M = getPerspectiveTransform(src_verts,dst_verts);
 warpPerspective(src,dst,M,src.size());

 // Show the results
 namedWindow(" ORIGINAL ", WINDOW_AUTOSIZE);
 imshow(" ORIGINAL ", src);
 namedWindow(" PERSPECTIVE ", WINDOW_AUTOSIZE);
 imshow(" PERSPECTIVE ", dst);

 waitKey();
 return 0;
}

Correcting and Enhancing Images

[88]

The following figure shows you the output of the code:

Perspective results with the points marked in the original image

Inpainting
Inpainting is the process of reconstructing damaged parts of images and videos.
This process is also known as image or video interpolation. The basic idea is to
simulate the process done by restorers with antiques. Nowadays, with the wide
use of digital cameras, inpainting has become an automatic process that is used
not only for image restoration by deleting scratches, but also for other tasks,
such as object or text removal.

Chapter 3

[89]

OpenCV supports an inpainting algorithm as of Version 2.4. The function for this
purpose is:

•	 void inpaint(InputArray src, InputArray inpaintMask, OutputArray
dst, double inpaintRadius, int flags): This restores the areas indicated
with non-zero values by the inpaintMask parameter in the source (src) image.
The inpaintRadius parameter indicates the neighborhood to be used by the
algorithm specified by flags. Two methods could be used in OpenCV:

°° INPAINT_NS: This is the Navier-Stokes-based method
°° INPAINT_TELEA: This is the method proposed by Alexandru Telea

Finally, the restored image is stored in dst.

More details about the inpainting algorithms used in OpenCV can
be found at http://www.ifp.illinois.edu/~yuhuang/
inpainting.html

For video inpainting, consider the video as a sequence of images
and apply the algorithm over all of them.

The example code
The following inpainting example shows you how to use the inpaint function to
inpaint the areas of an image specified in an image mask.

The example code is:

#include "opencv2/opencv.hpp"

using namespace cv;

int main(int argc, char** argv)
{
 // Read the source file
 Mat src;

http://www.ifp.illinois.edu/~yuhuang/inpainting.html
http://www.ifp.illinois.edu/~yuhuang/inpainting.html

Correcting and Enhancing Images

[90]

 src = imread(argv[1]);

 // Read the mask file
 Mat mask;
 mask = imread(argv[2]);
 cvtColor(mask, mask, COLOR_RGB2GRAY);

 // Apply the inpainting algorithms
 Mat dst, dst2;
 inpaint(src, mask, dst, 10, INPAINT_TELEA);
 inpaint(src, mask, dst2, 10, INPAINT_NS);

 // Show the results
 namedWindow(" ORIGINAL ", WINDOW_AUTOSIZE);
 imshow(" ORIGINAL ", src);
 namedWindow(" MASK ", WINDOW_AUTOSIZE);
 imshow(" MASK ", mask);
 namedWindow(" INPAINT_TELEA ", WINDOW_AUTOSIZE);
 imshow(" INPAINT_TELEA ", dst);
 namedWindow(" INPAINT_NS ", WINDOW_AUTOSIZE);
 imshow(" INPAINT_NS ", dst2);

 waitKey();
 return 0;
}

The following figure shows you the output of the code:

Chapter 3

[91]

Results of applying inpainting

The first row contains the original image and the mask used. The
second row contains the results from the inpainting proposed by
Telea on the left-hand side and the Navier-Stokes-based method
on the right-hand side.

Correcting and Enhancing Images

[92]

Getting the inpainting mask is not an easy task. The inpainting2 example code
shows you an example of how we can obtain the mask from the source image
using binary thresholding through threshold(mask, mask, 235, 255,
THRESH_BINARY):

#include "opencv2/opencv.hpp"

using namespace cv;

int main(int argc, char** argv)
{
 // Read the source file
 Mat src;
 src = imread(argv[1]);

 // Create the mask
 Mat mask;
 cvtColor(src, mask, COLOR_RGB2GRAY);
 threshold(mask, mask, 235, 255, THRESH_BINARY);

 // Apply the inpainting algorithms
 Mat dst, dst2;
 inpaint(src, mask, dst, 10, INPAINT_TELEA);
 inpaint(src, mask, dst2, 10, INPAINT_NS);

 // Show the results
 namedWindow(" ORIGINAL ", WINDOW_AUTOSIZE);
 imshow(" ORIGINAL ", src);
 namedWindow(" MASK ", WINDOW_AUTOSIZE);
 imshow(" MASK ", mask);
 namedWindow(" INPAINT_TELEA ", WINDOW_AUTOSIZE);
 imshow(" INPAINT_TELEA ", dst);
 namedWindow(" INPAINT_NS ", WINDOW_AUTOSIZE);
 imshow(" INPAINT_NS ", dst2);

 waitKey();
 return 0;
}

The following figure shows you the output of the code:

Chapter 3

[93]

Results of applying inpainting algorithms without knowing the mask

The first row contains the original image and the extracted mask.
The second row contains the results from the inpainting proposed by
Telea on the left-hand side and the Navier-Stokes-based method on
the right-hand side.

The results from this example show you that obtaining a perfect mask is not
always possible. Some other parts of the image, such as the background or noise,
are included sometimes. However, the inpainting results remain acceptable as the
resulting images are close to the ones obtained in the other case.

Correcting and Enhancing Images

[94]

Denoising
Denoising or noise reduction is the process of removing noise from signals obtained
from analog or digital devices. This section focuses its attention on reducing noise
from digital images and videos.

Although smoothing and median filtering are good options to denoise an image,
OpenCV provides other algorithms to perform this task. These are the nonlocal
means and the TVL1 (Total Variation L1) algorithms. The basic idea of the nonlocal
means algorithm is to replace the color of a pixel with an average of the colors from
several image sub-windows that are similar to the one that comprises the pixel
neighborhood. On the other hand, the TVL1 variational denoising model, which
is implemented with the primal-dual optimization algorithm, considers the
image-denoising process a variational problem.

More information about the nonlocal means and the TVL1 denoising
algorithms can be found at http://www.ipol.im/pub/art/2011/
bcm_nlm and http://znah.net/rof-and-tv-l1-denoising-
with-primal-dual-algorithm.html, respectively.

OpenCV provides four functions to denoise color and grayscale images following
the nonlocal means approach. For the TVL1 model, one function is provided. These
functions are:

•	 void fastNlMeansDenoising(InputArray src, OutputArray dst,
float h = 3, int templateWindowSize = 7, int searchWindowSize
= 21): This denoises a single grayscale image loaded in src. The
templateWindowSize and searchWindowSize parameters are the sizes
in pixels of the template patch that is used to compute weights and the
window that is used to compute the weighted average for the given pixel.
These should be odd and their recommended values are 7 and 21 pixels,
respectively. The h parameter regulates the effect of the algorithm. Larger h
values remove more noise defects but with the drawback of removing more
image details. The output is stored in dst.

•	 void fastNlMeansDenoisingColored(InputArray src, OutputArray
dst, float h = 3, float hForColorComponents = 3, int
templateWindowSize = 7, int searchWindowSize = 21): This is a
modification of the previous function for colored images. It converts the src
image to the CIELAB color space and then separately denoises the L and AB
components with the fastNlMeansDenoising function.

http://www.ipol.im/pub/art/2011/bcm_nlm
http://www.ipol.im/pub/art/2011/bcm_nlm
http://znah.net/rof-and-tv-l1-denoising-with-primal-dual-algorithm.html
http://znah.net/rof-and-tv-l1-denoising-with-primal-dual-algorithm.html

Chapter 3

[95]

•	 void fastNlMeansDenoisingMulti(InputArrayOfArrays srcImgs,
OutputArray dst, int imgToDenoiseIndex, int temporalWindowSize,
float h = 3, int templateWindowSize = 7, int searchWindowSize
= 21): This uses an image sequence to obtain a denoised image. Two
more parameters are needed in this case: imgToDenoiseIndex and
temporalWindowSize. The value of imgToDenoiseIndex is the target image
index in srcImgs to be denoised. Finally, temporalWindowSize is used to
establish the number of surrounding images to be used for denoising. This
should be odd.

•	 void fastNlMeansDenoisingColoredMulti(InputArrayOfArra
ys srcImgs, OutputArray dst, int imgToDenoiseIndex, int
temporalWindowSize, float h = 3, float hForColorComponents
= 3, int templateWindowSize = 7, int searchWindowSize
= 21): This is based on the fastNlMeansDenoisingColored and
fastNlMeansDenoisingMulti functions. The parameters are explained in
the rest of the functions.

•	 void denoise_TVL1(const std::vector<Mat>& observations, Mat&
result, double lambda, int niters): This obtains a denoised image in
result from one or more noisy images stored in observations. The lambda
and niters parameters control the strength and the number of iterations of
the algorithm.

The example code
The following denoising example shows you how to use one of the denoising
functions for noise reduction over a colored image (fastNlMeansDenoisingColored).
As the example uses an image without noise, something needs to be added. For this
purpose, the following lines of code are used:

Mat noisy = src.clone();
Mat noise(src.size(), src.type());
randn(noise, 0, 50);
noisy += noise;

A Mat element is created with the same size and type of the original image to store
noise generated by the randn function on it. Finally, the noise is added to the cloned
image to obtain the noisy image.

Correcting and Enhancing Images

[96]

The example code is:

#include "opencv2/opencv.hpp"

using namespace cv;

int main(int argc, char** argv)
{
 // Read the source file
 Mat src;
 src = imread(argv[1]);

 // Add some noise
 Mat noisy = src.clone();
 Mat noise(src.size(), src.type());
 randn(noise, 0, 50);
 noisy += noise;

 // Apply the denoising algorithm
 Mat dst;
 fastNlMeansDenoisingColored(noisy, dst,30,30,7,21);

 // Show the results
 namedWindow(" ORIGINAL ", WINDOW_AUTOSIZE);
 imshow(" ORIGINAL ", src);
 namedWindow(" ORIGINAL WITH NOISE ", WINDOW_AUTOSIZE);
 imshow(" ORIGINAL WITH NOISE ", noisy);
 namedWindow(" DENOISED ", WINDOW_AUTOSIZE);
 imshow(" DENOISED ", dst);

 waitKey();
 return 0;
}

Chapter 3

[97]

The following figure shows you noisy and denoised images from executing the
previous code:

Results from applying denoising

Summary
In this chapter, we explained methods for image enhancement and correction,
including noise reduction, edge enhancement, morphological operations, geometrical
transformations, and the restoration of damaged images. Different options have been
presented in each case to provide the reader with all the options that can be used
in OpenCV.

The next chapter will cover color spaces and how to convert them. In addition,
color-space-based segmentation and color-transfer methods will be explained.

Processing Color
Color is a perceptual result created in response to the excitation of our visual system
by light incident upon the retina in the visible region of the spectrum. The color of
an image may contain a great deal of information, which can be used for simplifying
image analysis, object identification, and extraction based on color. These procedures
are usually carried out considering the pixel values in the color space in which it is
defined. In this chapter, the following topics will be covered:

•	 The color spaces used in OpenCV and how to convert an image from one
color model to another

•	 An example of how to segment a picture considering the color space in which
it is defined

•	 How to transfer the appearance of an image to another using the color
transfer method

Color spaces
The human visual system is able to distinguish hundreds of thousands of colors.
To obtain this information, the human retina has three types of color photoreceptor
cone cells, which respond to incident radiation. Because of this, most human color
perceptions can be generated with three numerical components called primaries.

To specify a color in terms of three or more particular characteristics, there are a
number of methods called color spaces or color models. Selecting between them
to represent an image depends on the operations to be performed, because some
are more appropriate according to the required application. For example, in some
color spaces such as RGB, the brightness affects the three channels, a fact that could
be unfavorable for some image-processing operations. The next section explains
color spaces used in OpenCV and how to convert a picture from one color model
to another.

Processing Color

[100]

Conversion between color spaces (cvtColor)
There are more than 150 color-space conversion methods available in
OpenCV. The function provided by OpenCV in the imgproc module is
void cvtColor(InputArray src, OutputArray dst, int code, int dstCn=0).
The arguments of this function are:

•	 src: This is an input image 8-bit unsigned, 16-bit unsigned (CV_16UC), or
single-precision floating-point.

•	 dst: This is the output image of the same size and depth as src.
•	 code: This is the color space conversion code. The structure of this parameter

is COLOR_SPACEsrc2SPACEdst. Some example values are COLOR_BGR2GRAY
and COLOR_YCrCb2BGR.

•	 dstCn: This is the number of channels in the destination image. If
this parameter is 0 or omitted, the number of the channels is derived
automatically from src and code.

Examples of this function will be described in the upcoming sections.

The cvtColor function can only convert from RGB to another color
space or from another color space to RGB, so if the reader wants to
convert between two color spaces other than RGB, a first conversion
to RGB must be done.

Various color spaces in OpenCV are discussed in the upcoming sections.

RGB
RGB is an additive model in which an image consists of three independent image
planes or channels: red, green, and blue (and optionally, a fourth channel for the
transparency, sometimes called alpha channel). To specify a particular color, each
value indicates the amount of each of the components present on each pixel, with
higher values corresponding to brighter pixels. This color space is widely used
because it corresponds to the three photoreceptors of the human eye.

The default color format in OpenCV is often referred to as RGB but it
is actually stored as BGR (the channels are reversed).

Chapter 4

[101]

The example code
The following BGRsplit example shows you how to load an RGB image, splitting
and showing each particular channel in gray and in a color. The first part of the code
is used to load and show the picture:

#include <opencv2/opencv.hpp>
#include <opencv2/imgproc.hpp>

using namespace std;
using namespace cv;

vector<Mat> showSeparatedChannels(vector<Mat> channels);

int main(int argc, const char** argv)
{
 //Load the image
 Mat image = imread("BGR.png");
 imshow("Picture",image);

The next part of the code splits the picture into each channel and shows it:

 vector<Mat> channels;

 split(image, channels);

 //show channels in gray scale
 namedWindow("Blue channel (gray)", WINDOW_AUTOSIZE);
 imshow("Blue channel (gray)",channels[0]);
 namedWindow("Green channel (gray)", WINDOW_AUTOSIZE);
 imshow("Green channel (gray)",channels[1]);
 namedWindow("Red channel (gray)", WINDOW_AUTOSIZE);
 imshow("Red channel (gray)",channels[2]);

 //show channels in BGR
 vector<Mat> separatedChannels=showSeparatedChannels(channels);

 namedWindow("Blue channel", WINDOW_AUTOSIZE);
 imshow("Blue channel",separatedChannels[0]);
 namedWindow("Green channel", WINDOW_AUTOSIZE);
 imshow("Green channel",separatedChannels[1]);
 namedWindow("Red channel", WINDOW_AUTOSIZE);

Processing Color

[102]

 imshow("Red channel",separatedChannels[2]);

 waitKey(0);

 return 0;
}

It is worth noting the use of the void split(InputArray m,
OutputArrayOfArrays mv) OpenCV function to split the image m in its three
channels and save it in a vector of Mat called mv. On the contrary, the void merge(
InputArrayOfArrays mv, OutputArray dst) function is used to merge all
the mv channels in one dst image. Furthermore, a function denominated as
showSeparatedChannels is used to create three color images representing each of
the channels. For each channel, the function generates vector<Mat> aux composed
by the channel itself and two auxiliary channels ordered with all their values set to
0, which represent the other two channels of the color model. Finally, the aux picture
is merged, generating an image with only one channel fulfilled. This function code,
which will also be used in other examples of this chapter, is as follows:

vector<Mat> showSeparatedChannels(vector<Mat> channels){
 vector<Mat> separatedChannels;
 //create each image for each channel
 for (int i = 0 ; i < 3 ; i++){
 Mat zer=Mat::zeros(channels[0].rows, channels[0].cols,
channels[0].type());
 vector<Mat> aux;
 for (int j=0; j < 3 ; j++){
 if(j==i)
 aux.push_back(channels[i]);
 else
 aux.push_back(zer);
 }

 Mat chann;
 merge(aux,chann);

 separatedChannels.push_back(chann);
 }
 return separatedChannels;
}

Chapter 4

[103]

The following figure shows you the output of the example:

The original RGB image and channel splitting

Grayscale
In grayscale, the value of each pixel is represented as a single value carrying only the
intensity information, composing an image exclusively formed from different shades
of gray. The color space conversion code to convert between RGB and grayscale (Y)
in OpenCV using cvtColor is COLOR_BGR2GRAY, COLOR_RGB2GRAY, COLOR_GRAY2BGR,
and COLOR_GRAY2RGB. These transformations are internally computed as follows:

[] : 0.299 0.587 0.114RGB A toGray Y R G B= ∗ + ∗ + ∗

[] (): , , , maxGray to RGB A R Y G Y B Y A ChannelRange= = = =

Note from the preceding formula that it is not possible to retrieve colors
directly from a grayscale image.

Processing Color

[104]

Example code
The following Gray example shows you how to convert an RGB image to grayscale,
showing the two pictures. The example code is:

#include <opencv2/opencv.hpp>
#include <opencv2/imgproc.hpp>

using namespace cv;

int main(int argc, const char** argv)
{
 //Load the image
 Mat image = imread("Lovebird.jpg");
 namedWindow("Picture", WINDOW_AUTOSIZE);
 imshow("Picture",image);

 Mat imageGray;
 cvtColor(image, imageGray, COLOR_BGR2GRAY);

 namedWindow("Gray picture", WINDOW_AUTOSIZE);
 imshow("Gray picture",imageGray);

 waitKey(0);
 return 0;
}

The following figure shows you the output of the code:

Chapter 4

[105]

The original RGB image and the grayscale conversion

This method to convert from RGB to grayscale has the disadvantage
of losing the contrast of the original image. Chapter 6, Computational
Photography, of this book describes the decolorization process, which
makes this same conversion while overcoming this issue.

CIE XYZ
The CIE XYZ system describes color with a luminance component Y, which is related
to the brightness sensitivity of human vision and two additional channels, X and Z,
standardized by the Commission Internationale de L'Éclairage (CIE) using statistics
from experiments with several human observers. This color space is used to report
color from measuring instruments, such as a colorimeter or a spectrophotometer, and it
is useful when a consistent color representation across different devices is needed. The
main problem of this color space is that the colors are scaled in a non-uniform manner.
This fact caused the CIE to adopt the CIE L*a*b* and CIE L*u*v* color models.

Processing Color

[106]

The color space conversion code to convert between RGB and CIE XYZ in OpenCV
using cvtColor is COLOR_BGR2XYZ, COLOR_RGB2XYZ, COLOR_XYZ2BGR, and COLOR_
XYZ2RGB. These transformations are computed as follows:

0.412453 0.357580 0.180423
0.212671 0.715160 0.072169
0.019334 0.119193 0.950227

X R
Y G
Z B

     
     = ∗     
          

3.240479 1.53715 0.498535
0.969256 1.875991 0.041556
0.055648 0.204043 1.057311

R X
G Y
B Z

− −     
     = − ∗     
     −     

The example code
The following CIExyz example shows you how to convert an RGB image to the CIE
XYZ color space, splitting and showing each particular channel in gray and in a
color. The first part of the code is used to load and convert the picture:

#include <opencv2/opencv.hpp>
#include <opencv2/imgproc.hpp>
using namespace std;
using namespace cv;

vector<Mat> showSeparatedChannels(vector<Mat> channels);

int main(int argc, const char** argv)
{
 //Load the image
 Mat image = imread("Lovebird.jpg");
 imshow("Picture",image);

 //transform to CIEXYZ
 cvtColor(image,image,COLOR_BGR2XYZ);

The next part of the code splits the picture in each of the CIE XYZ channels and
shows them:

 vector<Mat> channels;

 split(image, channels);

 //show channels in gray scale
 namedWindow("X channel (gray)", WINDOW_AUTOSIZE);
 imshow("X channel (gray)",channels[0]);

Chapter 4

[107]

 namedWindow("Y channel (gray)", WINDOW_AUTOSIZE);
 imshow("Y channel (gray)",channels[1]);
 namedWindow("Z channel (gray)", WINDOW_AUTOSIZE);
 imshow("Z channel (gray)",channels[2]);

 //show channels in BGR
 vector<Mat> separatedChannels=showSeparatedChannels(channels);

 for (int i=0;i<3;i++){ cvtColor(separatedChannels[i],separate
dChannels[i],COLOR_XYZ2BGR);
 }
 namedWindow("X channel", WINDOW_AUTOSIZE);
 imshow("X channel",separatedChannels[0]);
 namedWindow("Y channel", WINDOW_AUTOSIZE);
 imshow("Y channel",separatedChannels[1]);
 namedWindow("Z channel", WINDOW_AUTOSIZE);
 imshow("Z channel",separatedChannels[2]);

 waitKey(0);

 return 0;
}

The following figure shows you the output of the code:

The original RGB image and the CIE XYZ channel splitting

Processing Color

[108]

YCrCb
This color space is widely used in video- and image-compression schemes, and it
is not an absolute color space because it is a way to encode the RGB color space.
The Y channel represents luminance, while Cr and Cb represent red-difference
(the difference between the R channel in the RGB colorspace and Y) and blue-
difference (the difference between the B channel in the RGB colorspace and Y)
chroma components, respectively. It is used widely in video- and image-compression
schemes, such as MPEG and JPEG.

The color space conversion code to convert between RGB and YCrCb in OpenCV
using cvtColor is COLOR_BGR2YCrCb, COLOR_RGB2YCrCb, COLOR_YCrCb2BGR, and
COLOR_YCrCb2RGB. These transformations are computed as follows:

0.299 0.587 0.114Y R G B= ∗ + ∗ + ∗

() 0.713Cr R Y delta= − ∗ +

() 0.564Cb B Y delta= − ∗ +

()1.403R Y Cr delta= + ∗ −

() ()0.714 0.344G Y Cr delta Cb delta= − ∗ − − ∗ −

()1.773B Y Cb delta= + ∗ −

Then, take a look at the following:

128 8
32768 16
0.5

for bit images
delta for bit images

for floating point images

−
= −
 −

The example code
The following YCrCb color example shows you how to convert an RGB image to the
YCrCb color space, splitting and showing each particular channel in gray and in a
color. The first part of the code is used to load and convert the picture:

#include <opencv2/opencv.hpp>
#include <opencv2/imgproc.hpp>

using namespace std;

Chapter 4

[109]

using namespace cv;

vector<Mat> showSeparatedChannels(vector<Mat> channels);

int main(int argc, const char** argv)
{
 //Load the image
 Mat image = imread("Lovebird.jpg");
 imshow("Picture",image);

 //transform to YCrCb
 cvtColor(image,image,COLOR_BGR2YCrCb);

The next part of the code splits the picture in to each of the YCrCb channels and
shows them:

 vector<Mat> channels;

 split(image, channels);

 //show channels in gray scale
 namedWindow("Y channel (gray)", WINDOW_AUTOSIZE);
 imshow("Y channel (gray)",channels[0]);
 namedWindow("Cr channel (gray)", WINDOW_AUTOSIZE);
 imshow("Cr channel (gray)",channels[1]);
 namedWindow("Cb channel (gray)", WINDOW_AUTOSIZE);
 imshow("Cb channel (gray)",channels[2]);

 //show channels in BGR
 vector<Mat> separatedChannels=showSeparatedChannels(channels);

 for (int i=0;i<3;i++){
 cvtColor(separatedChannels[i],separatedChannels[i],COLOR_
YCrCb2BGR);
 }
 namedWindow("Y channel", WINDOW_AUTOSIZE);
 imshow("Y channel",separatedChannels[0]);
 namedWindow("Cr channel", WINDOW_AUTOSIZE);
 imshow("Cr channel",separatedChannels[1]);
 namedWindow("Cb channel", WINDOW_AUTOSIZE);
 imshow("Cb channel",separatedChannels[2]);

 waitKey(0);

 return 0;
}

Processing Color

[110]

The following figure shows you the output of the code:

The original RGB image and the YCrCb channel splitting

HSV
The HSV color space belongs to the group of the so-called hue-oriented
color-coordinate systems. This type of color model closely emulates models of
human color perception. While in other color models, such as RGB, an image is
treated as an additive result of three base colors, the three channels of HSV represent
hue (H gives a measure of the spectral composition of a color), saturation (S gives
the proportion of pure light of the dominant wavelength, which indicates how far a
color is from a gray of equal brightness), and value (V gives the brightness relative to
the brightness of a similarly illuminated white color) corresponding to the intuitive
appeal of tint, shade, and tone. HSV is widely used to make a comparison of colors
because H is almost independent light variations. The following figure shows you
this color model representing each of the channels as a part of a cylinder:

Chapter 4

[111]

The color space conversion code to convert between RGB and HSV in OpenCV using
cvtColor is COLOR_BGR2HSV, COLOR_RGB2HSV, COLOR_HSV2BGR, and COLOR_HSV2RGB.
In this case, it is worth noting that if the src image format is 8-bit or 16-bit, cvtColor
first converts it to a floating-point format, scaling the values between 0 and 1. After
that, the transformations are computed as follows:

()max , ,V R G B=

()min , ,
0

0

V R G B
if VS V
otherwise

−
≠= 



()
()
()
()

()
()

60
min , ,

60
120

min , ,

60
240

min , ,

G B
if V R

V R G B

B R
H if V G

V R G B

R G
if V B

V R G B

 −
= −

 −= + = −
 − + =

−

If H<0, then H = H + 360. Finally, the values are reconverted to the destination
data type.

Processing Color

[112]

The example code
The following HSVcolor example shows you how to convert an RGB image to the
HSV color space, splitting and showing each particular channel in grayscale and the
HSV image. The example code is:

#include <opencv2/opencv.hpp>
#include <opencv2/imgproc.hpp>

using namespace std;
using namespace cv;

int main(int argc, const char** argv)
{
 //Load the image
 Mat image = imread("Lovebird.jpg");
 imshow("Picture",image);

 //transform to HSV
 cvtColor(image,image,COLOR_BGR2HSV);

 vector<Mat> channels;

 split(image, channels);

 //show channels in gray scale
 namedWindow("H channel (gray)", WINDOW_AUTOSIZE);
 imshow("H channel (gray)",channels[0]);
 namedWindow("S channel (gray)", WINDOW_AUTOSIZE);
 imshow("S channel (gray)",channels[1]);
 namedWindow("V channel (gray)", WINDOW_AUTOSIZE);
 imshow("V channel (gray)",channels[2]);

 namedWindow("HSV image (all channels)", WINDOW_AUTOSIZE);
 imshow("HSV image (all channels)",image);

 waitKey(0);

 return 0;
}

Chapter 4

[113]

The following figure shows you the output of the code:

The original RGB image, HSV conversion, and channel splitting

The imshow function of OpenCV assumes that the color of the image
to be shown is RGB, so it displays it incorrectly. If you have an image
in another color space and you want to display it correctly, you first
have to convert it back to RGB.

Processing Color

[114]

HLS
The HLS color space belongs to the group of hue-oriented color-coordinate systems,
such as the HSV color model explained previously. This model was developed to
specify the values of hue, lightness, and saturation of a color in each channel. The
difference with respect to the HSV color model is that the lightness of a pure color
defined by HLS is equal to the lightness of a medium gray, while the brightness of a
pure color defined by HSV is equal to the brightness of white.

The color space conversion code to convert between RGB and HLS in OpenCV
using cvtColor is COLOR_BGR2HLS, COLOR_RGB2HLS, COLOR_HLS2BGR, and COLOR_
HLS2RGB. In this case, as with HSV, if the src image format is 8-bit or 16-bit,
cvtColor first converts it to a floating-point format, scaling the values between 0
and 1. After that, the transformations are computed as follows:

()max , ,Vmax R G B=

()min , ,Vmin R G B=

2
Vmax VminL +

=

()

0.5

0.5
2

Vmax Vmin if L
Vmax Vmin

S Vmax Vmin if L
Vmax Vmin

− < +=  − ≥
− +

()
()
()

60 /
120 60 /
240 60 /

G B S if Vmax R
H B R S if Vmax G

R G S if Vmax B

− =
= + − =
 + − =

If H<0, then H = H + 360. Finally, the values are reconverted to the destination
data type.

Chapter 4

[115]

The example code
The following HLScolor example shows you how to convert an RGB image to HLS
color space, splitting and showing each particular channel in grayscale and the HLS
image. The example code is:

#include <opencv2/opencv.hpp>
#include <opencv2/imgproc.hpp>

using namespace std;
using namespace cv;

int main(int argc, const char** argv)
{
 //Load the image
 Mat image = imread("Lovebird.jpg");
 imshow("Picture",image);

 //transform to HSV
 cvtColor(image,image,COLOR_BGR2HLS);

 vector<Mat> channels;

 split(image, channels);

 //show channels in gray scale
 namedWindow("H channel (gray)", WINDOW_AUTOSIZE);
 imshow("H channel (gray)",channels[0]);
 namedWindow("L channel (gray)", WINDOW_AUTOSIZE);
 imshow("L channel (gray)",channels[1]);
 namedWindow("S channel (gray)", WINDOW_AUTOSIZE);
 imshow("S channel (gray)",channels[2]);

 namedWindow("HLS image (all channels)", WINDOW_AUTOSIZE);
 imshow("HLS image (all channels)",image);

 waitKey(0);

 return 0;
}

Processing Color

[116]

The following figure shows you the output of the code:

The original RGB image, HLS conversion, and channel splitting

CIE L*a*b*
The CIE L*a*b* color space is the second uniform color space standardized by CIE
after CIE L*u*v*, which is derived based on the CIE XYZ space and white reference
point. Actually, it is the most complete color space specified by CIE and was created
to be device-independent, like the CYE XYZ model, and to be used as a reference. It
is able to describe the colors visible to the human eye. The three channels represent
the lightness of the color (L*), its position between magenta and green (a*), and its
position between yellow and blue (b*).

The color space conversion code to convert between RGB and CIE L*a*b* in OpenCV
using cvtColor is COLOR_BGR2Lab, COLOR_RGB2Lab, COLOR_Lab2BGR, and COLOR_
Lab2RGB. The procedure used to compute these transformations is explained at
http://docs-hoffmann.de/cielab03022003.pdf.

http://docs-hoffmann.de/cielab03022003.pdf

Chapter 4

[117]

The example code
The following CIElab example shows you how to convert an RGB image to the CIE
L*a*b* color space, splitting and showing each particular channel in grayscale and
the CIE L*a*b* image. The example code is:

#include <opencv2/opencv.hpp>
#include <opencv2/imgproc.hpp>

using namespace std;
using namespace cv;

int main(int argc, const char** argv)
{
 //Load the image
 Mat image = imread("Lovebird.jpg");
 imshow("Picture",image);

 //transform to CIE Lab
 cvtColor(image,image,COLOR_BGR2Lab);

 vector<Mat> channels;

 split(image, channels);

 //show channels in gray scale
 namedWindow("L channel (gray)", WINDOW_AUTOSIZE);
 imshow("L channel (gray)",channels[0]);
 namedWindow("a channel (gray)", WINDOW_AUTOSIZE);
 imshow("a channel (gray)",channels[1]);
 namedWindow("b channel (gray)", WINDOW_AUTOSIZE);
 imshow("b channel (gray)",channels[2]);

 namedWindow("CIE Lab image (all channels)", WINDOW_AUTOSIZE);
 imshow("CIE Lab image (all channels)",image);

 waitKey(0);

 return 0;
}

Processing Color

[118]

The following figure shows you the output of the code:

The original RGB image, CIE L*a*b* conversion, and channel splitting

CIE L*u*v*
The CIE L*u*v* color space is the first uniform color space standardized by CIE. It is
a simple-to-compute transformation of the CIE XYZ space and white reference point,
which attempts perceptual uniformity. Like the CIE L*a*b* color space, it was created
to be device-independent. The three channels represent the lightness of the color (L*)
and its position between green and red (u*), and the last one represents mostly blue
and purple type colors (v*). This color model is useful for additive mixtures of lights
due to its linear addition properties.

The color space conversion code to convert between RGB and CIE L*u*v* in
OpenCV using cvtColor is COLOR_BGR2Luv, COLOR_RGB2Luv, COLOR_Luv2BGR, and
COLOR_Luv2RGB. The procedure used to compute these transformations can be seen
at http://docs.opencv.org/trunk/modules/imgproc/doc/miscellaneous_
transformations.html#cvtcolor.

http://docs.opencv.org/trunk/modules/imgproc/doc/miscellaneous_transformations.html#cvtcolor
http://docs.opencv.org/trunk/modules/imgproc/doc/miscellaneous_transformations.html#cvtcolor

Chapter 4

[119]

The example code
The following CIELuvcolor example shows you how to convert an RGB image to the
CIE L*u*v* color space, splitting and showing each particular channel in grayscale
and the CIE L*u*v* image. The example code is:

#include <opencv2/opencv.hpp>
#include <opencv2/imgproc.hpp>

using namespace std;
using namespace cv;

int main(int argc, const char** argv)
{
 //Load the image
 Mat image = imread("Lovebird.jpg");
 imshow("Picture",image);

 //transform to CIE Luv
 cvtColor(image,image,COLOR_BGR2Luv);

 vector<Mat> channels;

 split(image, channels);

 //show channels in gray scale
 namedWindow("L channel (gray)", WINDOW_AUTOSIZE);
 imshow("L channel (gray)",channels[0]);
 namedWindow("u channel (gray)", WINDOW_AUTOSIZE);
 imshow("u channel (gray)",channels[1]);
 namedWindow("v channel (gray)", WINDOW_AUTOSIZE);
 imshow("v channel (gray)",channels[2]);

 namedWindow("CIE Luv image (all channels)", WINDOW_AUTOSIZE);
 imshow("CIE Luv image (all channels)",image);

 waitKey(0);

 return 0;
}

Processing Color

[120]

The following figure shows you the output of the code:

Original RGB image, CIE L*u*v* conversion, and channel splitting

Bayer
The Bayer pixel-space composition is widely used in digital cameras with only one
image sensor. Unlike cameras with three sensors (one per RGB channel, which is able
to obtain all the information of a particular component), in one sensor camera, every
pixel is covered by a different color filter, so each pixel is only measured in this color.
The missing color information is extrapolated from its neighbors using the Bayer
method. It allows you to get complete color pictures from a single plane where the
pixels are interleaved as follows:

Chapter 4

[121]

A Bayer pattern example

Note that the Bayer pattern is represented by more G pixels than R
and B because the human eye is more sensitive to green frequencies.

There are several modifications of the shown pattern obtained by shifting the pattern
by one pixel in any direction. The color space conversion code to convert from
Bayer to RGB in OpenCV is defined considering the components of the second and
third columns of the second row (X and Y, respectively) as COLOR_BayerXY2BGR. For
example, the pattern of the previous picture has a "BG" type, so its conversion code is
COLOR_BayerBG2BGR.

The example code
The following Bayer example shows you how to convert a picture defined by an RG
Bayer pattern obtained from an image sensor to an RGB image. The example code is:

#include <opencv2/opencv.hpp>
#include <opencv2/imgproc.hpp>

using namespace cv;

int main(int argc, const char** argv)
{
 //Show bayered image in color
 Mat bayer_color = imread("Lovebird_bayer_color.jpg");
 namedWindow("Bayer picture in color", WINDOW_AUTOSIZE);
 imshow("Bayer picture in color",bayer_color);

 //Load bayered image
 Mat bayer = imread("Lovebird_bayer.jpg",CV_8UC3);

Processing Color

[122]

 namedWindow("Bayer picture ", WINDOW_AUTOSIZE);
 imshow("Bayer picture",bayer);

 Mat imageColor;
 cvtColor(bayer, imageColor, COLOR_BayerRG2BGR);

 namedWindow("Color picture", WINDOW_AUTOSIZE);
 imshow("Color picture",imageColor);

 waitKey(0);
 return 0;
}

The following figure shows you the output of the code:

The Bayer pattern image and RGB conversion

Color-space-based segmentation
Each color space represents an image indicating the numeric value of the specific
characteristic measured by each channel on each pixel. Considering these
characteristics, it is possible to partition the color space using linear boundaries (for
example, planes in three-dimensional spaces and one space per channel), allowing
you to classify each pixel according to the partition it lies in, therefore allowing
you to select a set of pixels with predefined characteristics. This idea can be used to
segment objects of an image we are interested in.

Chapter 4

[123]

OpenCV provides the void inRange(InputArray src, InputArray lowerb,
InputArray upperb, OutputArray dst) function to check whether an array of
elements lie between the elements of two other arrays. With respect to color-space-
based segmentation, this function allows you to obtain the set of pixels of an src
image, the values of whose channels lie between the lowerb lower boundaries and
upperb upper boundaries, obtaining the dst image.

The lowerb and upperb boundaries are usually defined as
Scalar(x, y, z), where x, y, and z are the numerical values
of each channel defined as lower or upper boundaries.

The following examples show you how to detect pixels that can be considered to be
skin. It has been observed that skin color differs more in intensity than chrominance,
so normally, the luminance component is not considered for skin detection. This
fact makes it difficult to detect skin in a picture represented in RGB because of the
dependence of this color space on luminance, so HSV and YCrCb color models are
used. It is worth noting that for this type of segmentation, it is necessary to know or
obtain the values of the boundaries per channel.

HSV segmentation
As stated previously, HSV is widely used to make a comparison of colors because
H is almost independent of light variations, so it is useful in skin detection. In this
example, the lower boundaries (0, 10, 60) and the upper boundaries (20, 150, 255) are
selected to detect the skin in each pixel. The example code is:

#include <opencv2/opencv.hpp>
#include <opencv2/imgproc.hpp>

using namespace std;
using namespace cv;

int main()
{
 //Load the image
 Mat image = imread("hand.jpg");
 namedWindow("Picture", WINDOW_AUTOSIZE);
 imshow("Picture",image);

 Mat hsv;

Processing Color

[124]

 cvtColor(image, hsv, COLOR_BGR2HSV);

 //select pixels
 Mat bw;
 inRange(hsv, Scalar(0, 10, 60), Scalar(20, 150, 255), bw);

 namedWindow("Selected pixels", WINDOW_AUTOSIZE);
 imshow("Selected pixels", bw);

 waitKey(0);
 return 0;
}

The following figure shows you the output of the code:

Skin detection using the HSV color space

Chapter 4

[125]

YCrCb segmentation
The YCrCb color space reduces the redundancy of RGB color channels and represents
the color with independent components. Considering that the luminance and
chrominance components are separated, this space is a good choice for skin detection.

The following example uses the YCrCb color space for skin detection using the lower
boundaries (0, 133, 77) and the upper boundaries (255, 173, 177) in each pixel. The
example code is:

#include <opencv2/opencv.hpp>
#include <opencv2/imgproc.hpp>

using namespace std;
using namespace cv;

int main()
{
 //Load the image
 Mat image = imread("hand.jpg");
 namedWindow("Picture", WINDOW_AUTOSIZE);
 imshow("Picture",image);

 Mat ycrcb;
 cvtColor(image, ycrcb, COLOR_BGR2HSV);

 //select pixels
 Mat bw;
 inRange(ycrcb, Scalar(0, 133, 77), Scalar(255, 173, 177), bw);

 namedWindow("Selected pixels", WINDOW_AUTOSIZE);
 imshow("Selected pixels", bw);

 waitKey(0);
 return 0;
}

Processing Color

[126]

The following figure shows you the output of the code:

Skin detection using the YCrCb color space

For more image-segmentation methods, refer to Chapter 4
of OpenCV Essentials by Packt Publishing.

Color transfer
Another task commonly carried out in image processing is to modify the color
of an image, specifically in cases where it is necessary to remove a dominant or
undesirable color cast. One of these methods is called color transfer, which carries
out a set of color corrections that borrow one source image's color characteristics,
and transfer the appearance of the source image to the target image.

Chapter 4

[127]

The example code
The following colorTransfer example shows you how to transfer the color from
a source to target image. This method first converts the image color space to CIE
L*a*b*. Next, it splits the channels for source and target images. After that, it fits the
channel distribution from one image to another using the mean and the standard
deviation. Finally, the channels are merged back together and converted to RGB.

For full theoretical details of the transformation used in the example,
refer to Color Transfer between Images at http://www.cs.tau.
ac.il/~turkel/imagepapers/ColorTransfer.pdf.

The first part of the code converts the image to the CIE L*a*b* color space, while also
changing the type of the image to CV_32FC1:

#include <opencv2/opencv.hpp>
#include <opencv2/imgproc.hpp>

using namespace std;
using namespace cv;

int main(int argc, const char** argv)
{
 //Load the images
 Mat src = imread("clock_tower.jpg");
 Mat tar = imread("big_ben.jpg");

 //Convert to Lab space and CV_32F1
 Mat src_lab, tar_lab;

 cvtColor(src, src_lab, COLOR_BGR2Lab);
 cvtColor(tar, tar_lab, COLOR_BGR2Lab);

 src_lab.convertTo(src_lab,CV_32FC1);
 tar_lab.convertTo(tar_lab,CV_32FC1);

http://www.cs.tau.ac.il/~turkel/imagepapers/ColorTransfer.pdf
http://www.cs.tau.ac.il/~turkel/imagepapers/ColorTransfer.pdf

Processing Color

[128]

The next part of the code performs the color transfer as stated previously:

 //Find mean and std of each channel for each image
 Mat mean_src, mean_tar, stdd_src, stdd_tar;
 meanStdDev(src_lab, mean_src, stdd_src);
 meanStdDev(tar_lab, mean_tar, stdd_src);

 // Split into individual channels
 vector<Mat> src_chan, tar_chan;

 split(src_lab, src_chan);
 split(tar_lab, tar_chan);

 // For each channel calculate the color distribution
 for(int i = 0; i < 3; i++) {
 tar_chan[i] -= mean_tar.at<double>(i);
 tar_chan[i] *= (stdd_src.at<double>(i) / stdd_src.
at<double>(i));
 tar_chan[i] += mean_src.at<double>(i);
 }

 //Merge the channels, convert to CV_8UC1 each channel and convert
to BGR
 Mat output;
 merge(tar_chan, output);
 output.convertTo(output,CV_8UC1);
 cvtColor(output, output, COLOR_Lab2BGR);

 //show pictures
 namedWindow("Source image", WINDOW_AUTOSIZE);
 imshow("Source image",src);
 namedWindow("Target image", WINDOW_AUTOSIZE);
 imshow("Target image",tar);
 namedWindow("Result image", WINDOW_AUTOSIZE);
 imshow("Result image",output);

 waitKey(0);

 return 0;
}

Chapter 4

[129]

The following figure shows you the output of the code:

A night appearance color-transfer example

Summary
In this chapter, we provided a deeper view of the color spaces used in OpenCV
and showed you how to convert between them using the cvtColor function.
Furthermore, the possibilities of image processing using different color models and
the importance of selecting the correct color space considering the operations we
need to make was highlighted. To this end, color-space-based segmentation and
color-transfer methods were implemented.

The next chapter will cover image-processing techniques used for video or
a sequence of images. We will see how to implement video stabilization,
superresolution, and stitching algorithms with OpenCV.

Image Processing for Video
This chapter shows you different techniques related to image processing for video.
While most classical image processing deals with static images, video-based
processing is becoming popular and affordable.

This chapter covers the following topics:

•	 Video stabilization
•	 The video superresolution process
•	 Image stitching

In this chapter, we will work with a video sequence or a live camera directly. The
output of image processing may be either a set of modified images or useful high-
level information. Most image-processing techniques consider images as a two-
dimensional digital signal and apply different techniques to it. In this chapter, a
sequence of images from a video or live camera will be used to make or improve
a new enhanced sequence with different high-level techniques. Thus, more useful
information is obtained, that is, a third time dimension is incorporated.

Image Processing for Video

[132]

Video stabilization
Video stabilization refers to a family of methods used to reduce the blurring associated
with the motion of the camera. In other words, it compensates for any angular
movement, equivalent to yaw, pitch, roll, and x and y translations of the camera. The
first image stabilizers appeared in the early 60s. These systems were able to slightly
compensate for camera shakes and involuntary movements. They were controlled
by gyroscopes and accelerometers based on mechanisms that could cancel or reduce
unwanted movement by changing the position of a lens. Currently, these methods are
widely used in binoculars, video cameras, and telescopes.

There are various methods for image or video stabilization, and this chapter focuses
on the most extended families of methods:

•	 Mechanical stabilization systems: These systems use a mechanical system
on the camera lens so that when the camera is moved, motion is detected by
accelerometers and gyroscopes, and the system generates a movement on the
lens. These systems will not be considered here.

•	 Digital stabilization systems: These are normally used in video and they act
directly on the image obtained from the camera. In these systems, the surface
of the stabilized image is slightly smaller than the source image's surface.
When the camera is moved, the captured image is moved to compensate this
movement. Although these techniques effectively work to cancel movement
by reducing the usable area of movement sensor, resolution and image
clarity are sacrificed.

Video-stabilization algorithms usually encompass the following steps:

General steps of Video-Stabilization algorithms

This chapter focuses on the videostab module in OpenCV 3.0 Alpha, which contains a
set of functions and classes that can be used to solve the video-stabilization problem.

Chapter 5

[133]

Let's explore the general process in more detail. Video stabilization is achieved by
a first estimation of the inter-frame motion between consecutive frames using the
RANSAC method. At the end of this step, an array of 3 x 3 matrices is obtained, and
each of them describes the motion of the two pairs of consecutive frames. Global
motion estimation is very important for this step and it affects the accuracy of the
stabilized final sequence.

You can find more detailed information about the RANSAC method
at http://en.wikipedia.org/wiki/RANSAC.

The second step generates a new sequence of frames based on the estimated
motion. Additional processing is performed, such as smoothing, deblurring, border
extrapolation, and so on, to improve the quality of stabilization.

The third step removes the annoying irregular perturbations—refer to the following
figure. There are approaches that assume a camera-motion model, which work well
when some assumptions can be made about the actual camera motion.

Removing the irregular perturbations

In the OpenCV examples ([opencv_source_code]/samples/cpp/videostab.
cpp), a video-stabilization program example can be found. For the following
videoStabilizer example, the videoStabilizer.pro project needs these libraries:
lopencv_core300, lopencv_highgui300, lopencv_features2d300, lopencv_
videoio300, and lopencv_videostab300.

http://en.wikipedia.org/wiki/RANSAC

Image Processing for Video

[134]

The following videoStabilizer example has been created using the videostab
module of OpenCV 3.0 Alpha:

#include <string>
#include <iostream>
#include <opencv2/opencv.hpp>
#include <opencv2/videostab.hpp>

using namespace std;
using namespace cv;
using namespace cv::videostab;

void processing(Ptr<IFrameSource> stabilizedFrames, string
outputPath);

int main(int argc, const char **argv)
{
Ptr<IFrameSource> stabilizedFrames;
 try
 {

// 1-Prepare the input video and check it
 string inputPath;
 string outputPath;
 if (argc > 1)
 inputPath = argv[1];
 else
 inputPath = ".\\cube4.avi";

 if (argc > 2)
 outputPath = argv[2];
 else
 outputPath = ".\\cube4_stabilized.avi";

Ptr<VideoFileSource> source = makePtr<VideoFileSource>(inputPath);
 cout << "frame count (rough): " << source->count() << endl;

// 2-Prepare the motion estimator

Chapter 5

[135]

// first, prepare the motion the estimation builder, RANSAC L2
 double min_inlier_ratio = 0.1;
Ptr<MotionEstimatorRansacL2> est = makePtr<MotionEstimatorRansacL2>(
MM_AFFINE);
RansacParams ransac = est->ransacParams();
ransac.size = 3;
 ransac.thresh = 5;
 ransac.eps = 0.5;
 est->setRansacParams(ransac);
 est->setMinInlierRatio(min_inlier_ratio);

 // second, create a feature detector
int nkps = 1000;
Ptr<GoodFeaturesToTrackDetector> feature_detector = makePtr<GoodFeatur
esToTrackDetector>(nkps);

// third, create the motion estimator
Ptr<KeypointBasedMotionEstimator> motionEstBuilder = makePtr<KeypointB
asedMotionEstimator>(est);
 motionEstBuilder->setDetector(feature_detector);
Ptr<IOutlierRejector> outlierRejector =
makePtr<NullOutlierRejector>();
 motionEstBuilder->setOutlierRejector(outlierRejector);

// 3-Prepare the stabilizer
StabilizerBase *stabilizer = 0;

// first, prepare the one or two pass stabilizer
 bool isTwoPass = 1;
 int radius_pass = 15;
 if (isTwoPass)
 {
 // with a two pass stabilizer
 bool est_trim = true;

TwoPassStabilizer *twoPassStabilizer = new TwoPassStabilizer();

Image Processing for Video

[136]

 twoPassStabilizer->setEstimateTrimRatio(est_trim);
 twoPassStabilizer->setMotionStabilizer(makePtr<GaussianMot
ionFilter>(radius_pass));

 stabilizer = twoPassStabilizer;
 }
 else
 {
 // with an one pass stabilizer
OnePassStabilizer *onePassStabilizer = new OnePassStabilizer();
 onePassStabilizer->setMotionFilter(makePtr<GaussianMotionF
ilter>(radius_pass));

 stabilizer = onePassStabilizer;
 }

 // second, set up the parameters
 int radius = 15;
 double trim_ratio = 0.1;
 bool incl_constr = false;
stabilizer->setFrameSource(source);
stabilizer->setMotionEstimator(motionEstBuilder);
 stabilizer->setRadius(radius);
 stabilizer->setTrimRatio(trim_ratio);
 stabilizer->setCorrectionForInclusion(incl_constr);
 stabilizer->setBorderMode(BORDER_REPLICATE);

 // cast stabilizer to simple frame source interface to read
stabilized frames
stabilizedFrames.reset(dynamic_cast<IFrameSource*>(stabilizer));

// 4-Processing the stabilized frames. The results are showed and
saved.
processing(stabilizedFrames, outputPath);
 }
 catch (const exception &e)
 {

Chapter 5

[137]

 cout << "error: " << e.what() << endl;
 stabilizedFrames.release();
 return -1;
 }
 stabilizedFrames.release();
 return 0;
}

void processing(Ptr<IFrameSource> stabilizedFrames, string outputPath)
{
 VideoWriter writer;
 Mat stabilizedFrame;
 int nframes = 0;
double outputFps = 25;

 // for each stabilized frame
while (!(stabilizedFrame = stabilizedFrames->nextFrame()).empty())
 {
 nframes++;

 // init writer (once) and save stabilized frame
 if (!outputPath.empty())
 {
 if (!writer.isOpened()) writer.open(outputP
ath,VideoWriter::fourcc('X','V','I','D'),
outputFps, stabilizedFrame.size());
writer << stabilizedFrame;
 }

imshow("stabilizedFrame", stabilizedFrame);
 char key = static_cast<char>(waitKey(3));
 if (key == 27) { cout << endl; break;}

 }
 cout << "processed frames: " << nframes << endl;
 cout << "finished " << endl;
}

Image Processing for Video

[138]

This example accepts the name of an input video file as a default video filename
(.\cube4.avi). The resulting video will be displayed and then saved as .\
cube4_stabilized.avi. Note how the videostab.hpp header is included and the
cv::videostab namespace is used. The example takes four important steps. The first
step prepares the input video path, and this example uses the standard command-
line input arguments (inputPath = argv[1]) to select the video file. If it does not
have an input video file, then it uses the default video file (.\cube4.avi).

The second step builds a motion estimator. A robust RANSAC-based
global 2D method is created for the motion estimator using a smart pointer
(Ptr<object>) of OpenCV (Ptr<MotionEstimatorRansacL2> est = makePtr
<MotionEstimatorRansacL2> (MM_AFFINE)). There are different motion models to
stabilize the video:

•	 MM_TRANSLATION = 0
•	 MM_TRANSLATION_AND_SCALE = 1
•	 MM_ROTATIO = 2
•	 MM_RIGID = 3
•	 MM_SIMILARITY = 4
•	 MM_AFFINE = 5
•	 MM_HOMOGRAPHY = 6
•	 MM_UNKNOWN = 7

There is a trade-off between accuracy to stabilize the video and computational
time. The more basic motion models have worse accuracy and better computational
time; however, the more complex models have better accuracy and worse
computational time.

The RANSAC object is now created (RansacParams ransac = est->
ransacParams()) and their parameters are set (ransac.size, ransac.thresh and
ransac.eps). A feature detector is also needed to estimate the movement between
each consecutive frame that will be used by the stabilizer. This example uses the
GoodFeaturesToTrackDetector method to detect (nkps = 1000) salient features
in each frame. Then, it uses the robust RANSAC and feature-detector methods
to create the motion estimator using the Ptr<KeypointBasedMotionEstimator>
motionEstBuilder = makePtr<KeypointBasedMotionEstimator>(est)
class and setting the feature detector with motionEstBuilder->setDetector
(feature_detector).

Chapter 5

[139]

RANSAC parameters
Size The subset size
Thresh The maximum error to classify as inliers
Eps The maximum outliers ratio
Prob The probability of success

The third step creates a stabilizer that needs the previous motion estimator.
You can select (isTwoPass = 1) a one- or two-pass stabilizer. If you use
the two-pass stabilizer (TwoPassStabilizer *twoPassStabilizer = new
TwoPassStabilizer()), the results are usually better. However, in this example,
this is computationally slower. If you use the other option, one-pass stabilizer
(OnePassStabilizer *onePassStabilizer = new OnePassStabilizer()),
the results are worse but the response is faster. The stabilizer needs to set
other options to work correctly, such as the source video file (stabilizer-
>setFrameSource(source)) and the motion estimator (stabilizer->setMotionE
stimator(motionEstBuilder)). It also needs to cast the stabilizer to simple frame
source video to read stabilized frames (stabilizedFrames.reset(dynamic_cast<I
FrameSource*>(stabilizer))).

The last step stabilizes the video using the created stabilizer. The
processing(Ptr<IFrameSource> stabilizedFrames) function is created to
process and stabilize each frame. This function needs to introduce a path to save
the resulting video (string outputPath = ".//stabilizedVideo.avi") and
set the playback speed (double outputFps = 25). Afterwards, this function
calculates each stabilized frame until there are no more frames (stabilizedFrame
= stabilizedFrames-> nextFrame().empty()). Internally, the stabilizer first
estimates the motion of every frame. This function creates a video writer (writer.
open(outputPath,VideoWriter::fourcc('X','V','I','D'), outputFps,
stabilizedFrame.size())) to store each frame in the XVID format. Finally, it saves
and shows each stabilized frame until the user presses the Esc key.

To demonstrate how to stabilize a video with OpenCV, the previous videoStabilizer
example is used. The example is executed from the command line as follows:

<bin_dir>\videoStabilizer.exe .\cube4.avi .\cube4_stabilized.avi

This cube4.avi video can be found in the OpenCV samples
folder. It also has a great deal of camera movement, which is
perfect for this example.

Image Processing for Video

[140]

To show the stabilization results, first, see four frames of cube4.avi in the following
figure. The figure following these frames shows the first 10 frames of cube4.avi and
cube4_stabilized.avi superimposed without (left-hand side of the figure) and
with (right-hand side of the figure) stabilization.

The four consecutive frames of cube4.avi video that are camera movements

10 superimposed frames of cube4.avi and cube4_stabilizated videos
without and with stabilization

Looking at the preceding figure, on the right-hand side, you can see that the
vibrations produced by the camera movement have been reduced due to the
stabilization.

Chapter 5

[141]

Superresolution
Superresolution refers to the techniques or algorithms designed to increase the
spatial resolution of an image or video, usually from a sequence of images of lower
resolution. It differs from the traditional techniques of image scaling, which use
a single image to increase the resolution, keeping the sharp edges. In contrast,
superresolution merges information from multiple images taken from the same scene
to represent details that were not initially captured in the original images.

The process of capturing an image or video from a real-life scene requires the
following steps:

•	 Sampling: This is the transformation of the continuous system from the
scene of an ideal discrete system without aliasing

•	 Geometric transformation: This refers to applying a set of transformations,
such as translation or rotation, due to the camera position and lens system to
infer, ideally, details of the scene that arrive at each sensor

•	 Blur: This happens due to the lens system or the existing motion in the scene
during the integration time

•	 Subsampling: With this, the sensor only integrates the number of pixels at its
disposal (photosites)

You can see this process of image capturing in the following figure:

The process of capturing an image from a real scene

Image Processing for Video

[142]

During this capture process, the details of the scene are integrated by different
sensors so that each pixel in each capture includes different information. Therefore,
superresolution is based on trying to find the relationship between different captures
that have obtained different details of the scene in order to create a new image with
more information. Superresolution is, therefore, used to regenerate a discretized
scene with a higher resolution.

Superresolution can be obtained by various techniques, ranging from the most
intuitive in the spatial domain to techniques based on analyzing the frequency
spectrum. Techniques are basically divided into optical (using lenses, zoom, and
so on) or image-processing-based techniques. This chapter focuses on image-
processing-based superresolution. These methods use other parts of the lower-
resolution images, or other unrelated images, to infer what the high-resolution image
should look like. These algorithms can be also divided into the frequency or spatial
domain. Originally, superresolution methods only worked well on grayscale images,
but new methods have been developed to adapt them to color images.

In general, superresolution is computationally demanding, both spatially and
temporally, because the size of low-resolution and high-resolution images is high
and hundreds of seconds may be needed to generate an image. To try to reduce
the computational time, preconditioners are used currently for optimizers that
are responsible for minimizing these functions. Another alternative is to use GPU
processing to improve the computational time because the superresolution process
is inherently parallelizable.

This chapter focuses on the superres module in OpenCV 3.0 Alpha, which
contains a set of functions and classes that can be used to solve the problem of
resolution enhancement. The module implements a number of methods based
on image-processing superresolution. This chapter specifically focuses on the
Bilateral TV-L1 (BTVL1) superresolution method implemented. A major difficulty
of the superresolution process is to estimate the warping function to build the
superresolution image. The Bilateral TV-L1 uses optical flow to estimate the
warping function.

You can find more detailed information about the Bilateral TV-L
method at http://www.ipol.im/pub/art/2013/26/ and optical
flow at http://en.wikipedia.org/wiki/Optical_flow.

http://www.ipol.im/pub/art/2013/26/
http://en.wikipedia.org/wiki/Optical_flow

Chapter 5

[143]

In the OpenCV examples ([opencv_source_code]/samples/gpu/super_
resolution.cpp), a basic example of superresolution can be found.

You can also download this example from the OpenCV GitHub
repository at https://github.com/Itseez/opencv/blob/
master/samples/gpu/super_resolution.cpp.

For the following superresolution example project, the superresolution.pro
project file shall include these libraries: lopencv_core300, lopencv_imgproc300,
lopencv_highgui300, lopencv_features2d300, lopencv_videoio300, and
lopencv_superres300 to work correctly:

#include <iostream>
#include <iomanip>
#include <string>

#include <opencv2/core.hpp>
#include <opencv2/core/utility.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/superres.hpp>
#include <opencv2/superres/optical_flow.hpp>
#include <opencv2/opencv_modules.hpp>

using namespace std;
using namespace cv;
using namespace cv::superres;

static Ptr<DenseOpticalFlowExt> createOptFlow(string name);

int main(int argc, char *argv[])
{
// 1-Initialize the initial parameters

// Input and output video
string inputVideoName;
 string outputVideoName;
 if (argc > 1)
 inputVideoName = argv[1];

https://github.com/Itseez/opencv/blob/master/samples/gpu/super_resolution.cpp
https://github.com/Itseez/opencv/blob/master/samples/gpu/super_resolution.cpp

Image Processing for Video

[144]

 else
 inputVideoName = ".\\tree.avi";

 if (argc > 2)
 outputVideoName = argv[2];
 else
 outputVideoName = ".\\tree_superresolution.avi";

const int scale = 4;// Scale factor

const int iterations = 180;// Iterations count

const int temporalAreaRadius =4;// Radius of the temporal search area

string optFlow = "farneback";// Optical flow algorithm
 // optFlow = "farneback";
 // optFlow = "tvl1";
 // optFlow = "brox";
 // optFlow = "pyrlk";

double outputFps = 25.0;// Playback speed output

// 2- Create an optical flow method
Ptr<DenseOpticalFlowExt> optical_flow = createOptFlow(optFlow);

 if (optical_flow.empty()) return -1;

// 3- Create the superresolution method and set its parameters
Ptr<SuperResolution> superRes;
 superRes = createSuperResolution_BTVL1();

superRes->set("opticalFlow", optical_flow);
 superRes->set("scale", scale);
 superRes->set("iterations", iterations);
 superRes->set("temporalAreaRadius", temporalAreaRadius);

Ptr<FrameSource> frameSource;
 frameSource = createFrameSource_Video(inputVideoName);

superRes->setInput(frameSource);

 // Not use the first frame

Chapter 5

[145]

 Mat frame;
 frameSource->nextFrame(frame);

// 4- Processing the input video with the superresolution
 // Show the initial options
 cout << "Input : " << inputVideoName << " " <<
frame.size() << endl;
 cout << "Output : " << outputVideoName << endl;
 cout << "Playback speed output : " << outputFps << endl;
 cout << "Scale factor : " << scale << endl;
 cout << "Iterations : " << iterations << endl;
 cout << "Temporal radius : " << temporalAreaRadius << endl;
 cout << "Optical Flow : " << optFlow << endl;
 cout << endl;

 VideoWriter writer;
 double start_time,finish_time;

 for (int i = 0;; ++i)
 {
 cout << '[' << setw(3) << i << "] : ";
 Mat result;

 // Calculate the processing time
 start_time = getTickCount();
superRes->nextFrame(result);
 finish_time = getTickCount();
 cout << (finish_time - start_time)/getTickFrequency() << "
secs, Size: " << result.size() << endl;

 if (result.empty()) break;

 // Show the result
imshow("Super Resolution", result);

 if (waitKey(1000) > 0) break;

 // Save the result on output file
 if (!outputVideoName.empty())
 {

Image Processing for Video

[146]

if (!writer.isOpened())
 writer.open(outputVideoName, VideoWriter::fourcc('X',
'V', 'I', 'D'), outputFps, result.size());
 writer << result;
 }
 }
 writer.release();
 return 0;
}

static Ptr<DenseOpticalFlowExt> createOptFlow(string name)
{
 if (name == "farneback")
return createOptFlow_Farneback();

 else if (name == "tvl1")
return createOptFlow_DualTVL1();

 else if (name == "brox")
 return createOptFlow_Brox_CUDA();

 else if (name == "pyrlk")
 return createOptFlow_PyrLK_CUDA();

 else
 cerr << "Incorrect Optical Flow algorithm - " << name << endl;

 return Ptr<DenseOpticalFlowExt>();
}

This example creates a program (superresolution) to obtain videos with
superresolution. It takes the path of an input video or uses a default video path
(.\tree.avi). The resulting video is displayed and saved as .\tree_
superresolution.avi. In the first place, the superres.hpp and superres/
optical_flow.hpp headers are included and the cv::superres namespace is
used. The example follows four important steps.

Chapter 5

[147]

The first step sets the initial parameters. It is the input video path that uses the
standard input (inputVideoName = argv[1]) to select the video file, and if it does
not have an input video file, then it uses a default video file. The output video path
also uses the input standard (outputVideoName = argv[2]) to select the output
video file, and if it does not have an output video file, then it uses the default output
video file (.\tree_superresolution) and the output playback speed is also set
(double outputFps = 25.0). Other important parameters of the superresolution
method are the scale factor (const int scale = 4), the iteration count(const
int iterations = 100), the radius of the temporal search area (const int
temporalAreaRadius = 4), and the optical-flow algorithm (string optFlow =
"farneback").

The second step creates an optical-flow method to detect salient features and track
them for each video frame. A new method (static Ptr<DenseOpticalFlowExt>
createOptFlow(string name)) has been created to select between the different
optical-flow methods. You can select between farneback, tvl1, brox, and pyrlk
optical-flow methods. A new method (static Ptr<DenseOpticalFlowExt>
createOptFlow(string name)) is written to create an optical;-flow method to
track features. The two most important methods are Farneback (createOptFlow_
Farneback()) and TV-L1 (createOptFlow_DualTVL1()). The first method is based
on Gunner Farneback's algorithm that computes the optical flow for all points in the
frame. The second method calculates the optical flow between two image frames that
are based on dual formulation on the TV energy and employs an efficient point-wise
thresholding step. This second method is computationally more efficient.

Comparison between the different optical flow methods
Method Complexity Parallelizable
Farneback Quadratic No
TV-L1 Lineal Yes
Brox Lineal Yes
PyrLK Lineal No

You can also learn more about the Farneback optical-flow
method used at http://www.diva-portal.org/smash/
get/diva2:273847/FULLTEXT01.pdf.

http://www.diva-portal.org/smash/get/diva2:273847/FULLTEXT01.pdf
http://www.diva-portal.org/smash/get/diva2:273847/FULLTEXT01.pdf

Image Processing for Video

[148]

The third step creates and sets the superresolution method. An instance of this
method is created (Ptr<SuperResolution> superRes), which uses the Bilateral
TV-L1 algorithm (superRes = createSuperResolution_BTVL1()). This method
has the following parameters for the algorithm:

•	 scale: This is the scale factor
•	 iterations: This is the iteration count
•	 tau: This is an asymptotic value of the steepest descent method
•	 lambda: This is the weight parameter to balance the data term and

smoothness term
•	 alpha: This is a parameter of spatial distribution in Bilateral-TV
•	 btvKernelSize: This is the kernel size of the Bilateral-TV filter
•	 blurKernelSize: This is the Gaussian blur kernel size
•	 blurSigma: This is the Gaussian blur sigma
•	 temporalAreaRadius: This is the radius of the temporal search area
•	 opticalFlow: This is a dense optical-flow algorithm

These parameters are set as follows:

superRes->set("parameter", value);

Only the following parameters are set; the other parameters use their default values:

superRes->set("opticalFlow", optical_flow);
superRes->set("scale", scale);
superRes->set("iterations", iterations);
superRes->set("temporalAreaRadius", temporalAreaRadius);

Afterwards, the input video frame is selected (superRes->setInput(frameSource)).

The last step processes the input video to compute the superresolution. For each
video frame, the superresolution is calculated (superRes->nextFrame(result));
this calculation is computationally very slow, thus the processing time is estimated to
show progress. Finally, each result frame is shown (imshow("Super Resolution",
result)) and saved (writer << result).

Chapter 5

[149]

To show the superresolution results, a small part of the first frame of the tree.avi and
tree_superresolution.avi videos are compared with and without superresolution:

Part of the first frame of tree.avi and tree_superresolution.avi
videos without and with the superresolution process

In the right-hand-side section of the preceding figure, you can observe more details
in the leaves and branches of the tree due to the superresolution process.

Stitching
Image stitching, or photo stitching, can discover the correspondence relationship
between images with some degree of overlap. This process combines a set of images
with overlapping fields of view to produce a panorama or higher-resolution image.
Most of the techniques for image stitching need nearly exact overlaps between the
images to produce seamless results. Some digital cameras can internally stitch a set
of images to build a panorama image. An example is shown in the following figure:

A panorama image created with stitching

Image Processing for Video

[150]

The preceding image example and more information about image
stitching can be found at http://en.wikipedia.org/wiki/
Image_stitching.

Stitching can normally be divided into three important steps:

•	 Registration (images) implies matching features in a set of images to
search for a displacement that minimizes the sum of absolute values in the
differences between overlapping pixels. Direct-alignment methods could
be used to get better results. The user could also add a rough model of the
panorama to help the feature matching stage, in which case, the results are
typically more accurate and computationally faster.

•	 Calibration (images) focuses on minimizing differences between an ideal
model and the camera-lens system: different camera positions and optical
defects such as distortions, exposure, chromatic aberrations, and so on.

•	 Compositing (images) uses the results of the previous step, calibration,
combined with the remapping of the images to an output projection. Colors
are also adjusted between images to compensate for exposure differences.
Images are blended together and seam-line adjustment is done to minimize
the visibility of seams between images.

When there are image segments that have been taken from the same point in
space, stitching can be performed using one of various map projections. The most
important map projections are shown as follows:

•	 Rectilinear projection: Here, the stitching image is viewed on a two-
dimensional plane intersecting the panorama sphere in a single point. Lines
that are straight in reality are shown similar regardless of their direction
on the image. When there are wide views (around 120 degrees), images are
distorted near the borders.

•	 Cylindrical projection: Here, the stitching image shows a 360-degree
horizontal field of view and a limited vertical field of view. This projection
is meant to be viewed as though the image is wrapped into a cylinder and
viewed from within. When viewed on a 2D plane, horizontal lines appear
curved, while vertical lines remain straight.

•	 Spherical projection: Here, the stitching image shows a 360-degree
horizontal field of view and 180-degree vertical field of view, that is, the
whole sphere. Panorama images with this projection are meant to be viewed
as though the image is wrapped into a sphere and viewed from within. When
viewed on a 2D plane, horizontal lines appear curved as in a cylindrical
projection, while vertical lines remain vertical.

http://en.wikipedia.org/wiki/Image_stitching
http://en.wikipedia.org/wiki/Image_stitching

Chapter 5

[151]

•	 Stereographic projection or fisheye projection: This can be used to form
a little planet panorama by pointing the virtual camera straight down and
setting the field of view large enough to show the whole ground and some
of the areas above it; pointing the virtual camera upwards creates a tunnel
effect.

•	 Panini projection: This has specialized projections that may have more
aesthetically pleasing advantages over normal cartography projections. This
projection combines different projections in the same image to fine-tune the
final look of the output panorama image.

This chapter focuses on the stitching module and the detail submodule in
OpenCV 3.0 Alpha, which contains a set of functions and classes that implement
a stitcher. Using these modules, it is possible to configure or skip some steps. The
implemented stitching example has the following general diagram:

In the OpenCV examples, there are two basic examples of stitching, which can be
found at ([opencv_source_code]/samples/cpp/stitching.cpp]) and ([opencv_
source_code]/samples/cpp/stitching_detailed.cpp]).

Image Processing for Video

[152]

For the following, more advanced stitchingAdvanced example, the
stitchingAdvanced.pro project file must include the following libraries to
work correctly: lopencv_core300, lopencv_imgproc300, lopencv_highgui300,
lopencv_features2d300, lopencv_videoio300, lopencv_imgcodecs300, and
lopencv_stitching300:

#include <iostream>
#include <string>
#include <opencv2/opencv_modules.hpp>
#include <opencv2/core/utility.hpp>
#include <opencv2/imgcodecs.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/features2d.hpp>
#include <opencv2/stitching/detail/blenders.hpp>
#include <opencv2/stitching/detail/camera.hpp>
#include <opencv2/stitching/detail/exposure_compensate.hpp>
#include <opencv2/stitching/detail/matchers.hpp>
#include <opencv2/stitching/detail/motion_estimators.hpp>
#include <opencv2/stitching/detail/seam_finders.hpp>
#include <opencv2/stitching/detail/util.hpp>
#include <opencv2/stitching/detail/warpers.hpp>
#include <opencv2/stitching/warpers.hpp>

using namespace std;
using namespace cv;
using namespace cv::detail;

int main(int argc, char* argv[])
{
 // Default parameters
 vector<String> img_names;
double scale = 1;
string features_type = "orb";//"surf" or "orb" features type
float match_conf = 0.3f;
float conf_thresh = 1.f;
string adjuster_method = "ray";//"reproj" or "ray" adjuster method
bool do_wave_correct = true;
WaveCorrectKind wave_correct_type = WAVE_CORRECT_HORIZ;
string warp_type = "spherical";
int expos_comp_type = ExposureCompensator::GAIN_BLOCKS;
string seam_find_type = "gc_color";

Chapter 5

[153]

float blend_strength = 5;
int blend_type = Blender::MULTI_BAND;
string result_name = "panorama_result.jpg";

 double start_time = getTickCount();

// 1-Input images
 if(argc > 1)
 {
 for(int i=1; i < argc; i++)
img_names.push_back(argv[i]);
 }
 else
 {
img_names.push_back("./panorama_image1.jpg");
 img_names.push_back("./panorama_image2.jpg");
 }
 // Check if have enough images
 int num_images = static_cast<int>(img_names.size());
if (num_images < 2) {cout << "Need more images" << endl; return -1; }

// 2- Resize images and find features steps
 cout << "Finding features..." << endl;
 double t = getTickCount();

 Ptr<FeaturesFinder> finder;
 if (features_type == "surf")
finder = makePtr<SurfFeaturesFinder>();

 else if (features_type == "orb")
finder = makePtr<OrbFeaturesFinder>();

 else {cout << "Unknown 2D features type: '" << features_type <<
endl; return -1; }

 Mat full_img, img;
 vector<ImageFeatures> features(num_images);
 vector<Mat> images(num_images);

Image Processing for Video

[154]

 vector<Size> full_img_sizes(num_images);

 for (int i = 0; i < num_images; ++i)
 {
 full_img = imread(img_names[i]);
 full_img_sizes[i] = full_img.size();

 if (full_img.empty()) {cout << "Can't open image " << img_
names[i] << endl; return -1; }

resize(full_img, img, Size(), scale, scale);
 images[i] = img.clone();

(*finder)(img, features[i]);
 features[i].img_idx = i;
 cout << "Features in image #" << i+1 << " are : " <<
features[i].keypoints.size() << endl;
 }
 finder->collectGarbage();
 full_img.release();
 img.release();
 cout << "Finding features, time: " << ((getTickCount() - t) /
getTickFrequency()) << " sec" << endl;

// 3- Match features
 cout << "Pairwise matching" << endl;
 t = getTickCount();
 vector<MatchesInfo> pairwise_matches;
BestOf2NearestMatcher matcher(false, match_conf);
 matcher(features, pairwise_matches);
 matcher.collectGarbage();
 cout << "Pairwise matching, time: " << ((getTickCount() - t) /
getTickFrequency()) << " sec" << endl;

// 4- Select images and matches subset to build panorama
vector<int> indices = leaveBiggestComponent(features, pairwise_
matches, conf_thresh);
 vector<Mat> img_subset;
 vector<String> img_names_subset;
 vector<Size> full_img_sizes_subset;

Chapter 5

[155]

 for (size_t i = 0; i < indices.size(); ++i)
 {
 img_names_subset.push_back(img_names[indices[i]]);
 img_subset.push_back(images[indices[i]]);
 full_img_sizes_subset.push_back(full_img_sizes[indices[i]]);
 }
 images = img_subset;
 img_names = img_names_subset;
 full_img_sizes = full_img_sizes_subset;

 // Estimate camera parameters rough
 HomographyBasedEstimator estimator;
 vector<CameraParams> cameras;
 if (!estimator(features, pairwise_matches, cameras)){cout <<
"Homography estimation failed." << endl; return -1; }

 for (size_t i = 0; i < cameras.size(); ++i)
 {
 Mat R;
 cameras[i].R.convertTo(R, CV_32F);
 cameras[i].R = R;
 cout << "Initial intrinsic #" << indices[i]+1 << ":\n" <<
cameras[i].K() << endl;
 }

// 5- Refine camera parameters globally
Ptr<BundleAdjusterBase> adjuster;
 if (adjuster_method == "reproj")
 // "reproj" method
adjuster = makePtr<BundleAdjusterReproj>();
 else // "ray" method
adjuster = makePtr<BundleAdjusterRay>();

 adjuster->setConfThresh(conf_thresh);
 if (!(*adjuster)(features, pairwise_matches, cameras)) {cout <<
"Camera parameters adjusting failed." << endl; return -1; }

 // Find median focal length
 vector<double> focals;

Image Processing for Video

[156]

 for (size_t i = 0; i < cameras.size(); ++i)
 {
 cout << "Camera #" << indices[i]+1 << ":\n" << cameras[i].K()
<< endl;
 focals.push_back(cameras[i].focal);
 }
 sort(focals.begin(), focals.end());
 float warped_image_scale;
 if (focals.size() % 2 == 1)
 warped_image_scale = static_cast<float>(focals[focals.size() /
2]);
 else
 warped_image_scale = static_cast<float>(focals[focals.size() /
2 - 1] + focals[focals.size() / 2]) * 0.5f;

// 6- Wave correlation (optional)
 if (do_wave_correct)
 {
 vector<Mat> rmats;
 for (size_t i = 0; i < cameras.size(); ++i)
 rmats.push_back(cameras[i].R.clone());

waveCorrect(rmats, wave_correct_type);
 for (size_t i = 0; i < cameras.size(); ++i)
 cameras[i].R = rmats[i];
 }

// 7- Warp images
 cout << "Warping images (auxiliary)... " << endl;
 t = getTickCount();
 vector<Point> corners(num_images);
 vector<UMat> masks_warped(num_images);
 vector<UMat> images_warped(num_images);
 vector<Size> sizes(num_images);
 vector<UMat> masks(num_images);

 // Prepare images masks
 for (int i = 0; i < num_images; ++i)
 {

Chapter 5

[157]

 masks[i].create(images[i].size(), CV_8U);
 masks[i].setTo(Scalar::all(255));
 }

 // Map projections
 Ptr<WarperCreator> warper_creator;
 if (warp_type == "rectilinear")
warper_creator = makePtr<cv::CompressedRectilinearWarper>(2.0f, 1.0f);

 else if (warp_type == "cylindrical")
warper_creator = makePtr<cv::CylindricalWarper>();

 else if (warp_type == "spherical")
warper_creator = makePtr<cv::SphericalWarper>();

 else if (warp_type == "stereographic")
warper_creator = makePtr<cv::StereographicWarper>();

 else if (warp_type == "panini")
warper_creator = makePtr<cv::PaniniWarper>(2.0f, 1.0f);

 if (!warper_creator){ cout << "Can't create the following warper
'" << warp_type << endl; return 1; }

Ptr<RotationWarper> warper = warper_creator->create(static_
cast<float>(warped_image_scale * scale));

 for (int i = 0; i < num_images; ++i)
 {
 Mat_<float> K;
 cameras[i].K().convertTo(K, CV_32F);
 float swa = (float)scale;
 K(0,0) *= swa; K(0,2) *= swa;
 K(1,1) *= swa; K(1,2) *= swa;

 corners[i] = warper->warp(images[i], K, cameras[i].R, INTER_
LINEAR, BORDER_REFLECT, images_warped[i]);

Image Processing for Video

[158]

 sizes[i] = images_warped[i].size();

warper->warp(masks[i], K, cameras[i].R, INTER_NEAREST, BORDER_
CONSTANT, masks_warped[i]);
 }

 vector<UMat> images_warped_f(num_images);
 for (int i = 0; i < num_images; ++i)
 images_warped[i].convertTo(images_warped_f[i], CV_32F);

 cout << "Warping images, time: " << ((getTickCount() - t) /
getTickFrequency()) << " sec" << endl;

// 8- Compensate exposure errors
Ptr<ExposureCompensator> compensator = ExposureCompensator::createDefa
ult(expos_comp_type);
 compensator->feed(corners, images_warped, masks_warped);

// 9- Find seam masks
 Ptr<SeamFinder> seam_finder;
 if (seam_find_type == "no")
seam_finder = makePtr<NoSeamFinder>();

 else if (seam_find_type == "voronoi")
seam_finder = makePtr<VoronoiSeamFinder>();

 else if (seam_find_type == "gc_color")
 seam_finder = makePtr<GraphCutSeamFinder>(GraphCutSeamFinderBa
se::COST_COLOR);

 else if (seam_find_type == "gc_colorgrad")
 seam_finder = makePtr<GraphCutSeamFinder>(GraphCutSeamFinderBa
se::COST_COLOR_GRAD);

 else if (seam_find_type == "dp_color")
seam_finder = makePtr<DpSeamFinder>(DpSeamFinder::COLOR);

 else if (seam_find_type == "dp_colorgrad")
seam_finder = makePtr<DpSeamFinder>(DpSeamFinder::COLOR_GRAD);

 if (!seam_finder){cout << "Can't create the following seam finder
'" << seam_find_type << endl; return 1; }

Chapter 5

[159]

 seam_finder->find(images_warped_f, corners, masks_warped);

 // Release unused memory
 images.clear();
 images_warped.clear();
 images_warped_f.clear();
 masks.clear();

// 10- Create a blender
Ptr<Blender> blender = Blender::createDefault(blend_type, false);
 Size dst_sz = resultRoi(corners, sizes).size();
 float blend_width = sqrt(static_cast<float>(dst_sz.area())) *
blend_strength / 100.f;
 if (blend_width < 1.f)
blender = Blender::createDefault(Blender::NO, false);

 else if (blend_type == Blender::MULTI_BAND)
 {
MultiBandBlender* mb = dynamic_cast<MultiBandBlender*>(blender.get());
 mb->setNumBands(static_cast<int>(ceil(log(blend_width)/
log(2.)) - 1.));
 cout << "Multi-band blender, number of bands: " << mb-
>numBands() << endl;
 }
 else if (blend_type == Blender::FEATHER)
 {
FeatherBlender* fb = dynamic_cast<FeatherBlender*>(blender.get());
 fb->setSharpness(1.f/blend_width);
 cout << "Feather blender, sharpness: " << fb->sharpness() <<
endl;
 }
blender->prepare(corners, sizes);

 // 11- Compositing step
 cout << "Compositing..." << endl;
 t = getTickCount();
 Mat img_warped, img_warped_s;

Image Processing for Video

[160]

 Mat dilated_mask, seam_mask, mask, mask_warped;

 for (int img_idx = 0; img_idx < num_images; ++img_idx)
 {
 cout << "Compositing image #" << indices[img_idx]+1 << endl;

 // 11.1- Read image and resize it if necessary
full_img = imread(img_names[img_idx]);

 if (abs(scale - 1) > 1e-1)
resize(full_img, img, Size(), scale, scale);
 else
 img = full_img;

 full_img.release();
 Size img_size = img.size();

 Mat K;
 cameras[img_idx].K().convertTo(K, CV_32F);

 // 11.2- Warp the current image
warper->warp(img, K, cameras[img_idx].R, INTER_LINEAR, BORDER_REFLECT,
img_warped);

 // Warp the current image mask
 mask.create(img_size, CV_8U);
 mask.setTo(Scalar::all(255));
 warper->warp(mask, K, cameras[img_idx].R, INTER_NEAREST,
BORDER_CONSTANT, mask_warped);

 // 11.3- Compensate exposure error step
compensator->apply(img_idx, corners[img_idx], img_warped, mask_
warped);

 img_warped.convertTo(img_warped_s, CV_16S);
 img_warped.release();
 img.release();
 mask.release();

 dilate(masks_warped[img_idx], dilated_mask, Mat());
 resize(dilated_mask, seam_mask, mask_warped.size());

Chapter 5

[161]

 mask_warped = seam_mask & mask_warped;

 // 11.4- Blending images step
blender->feed(img_warped_s, mask_warped, corners[img_idx]);
 }
 Mat result, result_mask;
 blender->blend(result, result_mask);

 cout << "Compositing, time: " << ((getTickCount() - t) /
getTickFrequency()) << " sec" << endl;

 imwrite(result_name, result);

 cout << "Finished, total time: " << ((getTickCount() - start_time)
/ getTickFrequency()) << " sec" << endl;
 return 0;
}

This example creates a program to stitch images using OpenCV steps. It takes an
input path to select the different input images or uses default input images (.\
panorama_image1.jpg and panorama_image2.jpg), which are shown later. Finally,
the resulting image is shown and saved as .\panorama_result.jpg. In the first
place, the stitching.hpp and detail headers are included and the cv::detail
namespace is used. The more important parameters are also set, and you can
configure the stitching process with these parameters. If you need to use a custom
configuration, it is very useful to understand the general diagram of the stitching
process (the previous figure). This advanced example has 11 important steps. The
first step reads and checks the input images. This example needs two or more images
to work.

The second step resizes the input images using the double scale = 1
parameter and finds the features on each image; you can select between the
Surf (finder = makePtr<SurfFeaturesFinder>()) or Orb (finder =
makePtr<OrbFeaturesFinder>()) feature finders using the string features_type
= "orb" parameter. Afterwards, this step resizes the input images (resize(full_
img, img, Size(), scale, scale)) and finds the features ((*finder)(img,
features[i])).

For more information about SURF and ORB descriptors, refer to
Chapter 5 of OpenCV Essentials by Packt Publishing.

Image Processing for Video

[162]

The third step matches the features that have been found previously. A matcher is
created (BestOf2NearestMatcher matcher(false, match_conf)) with the float
match_conf = 0.3f parameter.

The fourth step selects images and matches subsets to build the panorama. Then,
the best features are selected and matched using the vector<int> indices =
leaveBiggestComponent(features, pairwise_matches, conf_thresh)
function. With these features, a new subset is created to be used.

The fifth step refines parameters globally using bundle adjustment to build an
adjuster (Ptr<BundleAdjusterBase> adjuster). Given a set of images depicting
a number of 2D or 3D points from different viewpoints, bundle adjustment can
be defined as the problem of simultaneously refining the 2D or 3D coordinates,
describing the scene geometry as well as the parameters of the relative motion and
optical characteristics of the cameras employed to acquire the images according
to an optimality criterion involving the corresponding image projections of
all points. There are two methods to calculate this bundle adjustment, reproj
(adjuster = makePtr<BundleAdjusterReproj>()) or ray (adjuster =
makePtr<BundleAdjusterRay>()), which are selected with the string adjuster_
method = "ray" parameter. Finally this bundle adjustment is used as (*adjuster)
(features, pairwise_matches, cameras).

The sixth step is an optional step (bool do_wave_correct = true) that calculates
the wave correlation to improve the camera setting. The type of wave correlation is
selected with the WaveCorrectKind wave_correct_type = WAVE_CORRECT_HORIZ
parameter and calculated as waveCorrect(rmats, wave_correct_type).

The seventh step creates a warper image that needs a map projection. The
map projections have been described previously, and they can be rectilinear,
cylindrical, spherical, stereographic, or panini. There are actually more map
projections implemented in OpenCV. The map projections can be selected with
the string warp_type = "spherical" parameter. Afterwards, a warper is
created (Ptr<RotationWarper> warper = warper_creator-> create(static_
cast<float>(warped_image_scale * scale))) and each image is warped
(warper->warp(masks[i], K, cameras[i].R, INTER_NEAREST, BORDER_
CONSTANT, masks_warped[i])).

Chapter 5

[163]

The eighth step compensates exposure errors by creating a compensator
(Ptr<ExposureCompensator> compensator = ExposureCompensator::createDe
fault(expos_comp_type)) and it is applied to each warped image (compensator-
>feed(corners, images_warped, masks_warped)).

The ninth step finds seam masks. This process searches for the best areas of
attachment for each panorama image. There are some methods implemented in
OpenCV to perform this task, and this example uses the string seam_find_type
= "gc_color" parameter to select them. These methods are NoSeamFinder (there's
no use of this method), VoronoiSeamFinder, GraphCutSeamFinderBase::COST_
COLOR, GraphCutSeamFinderBase::COST_COLOR_GRAD, DpSeamFinder::COLOR, and
DpSeamFinder::COLOR_GRAD.

The tenth step creates a blender to combine each image to build the panorama. There
are two types of blenders implemented in OpenCV, MultiBandBlender* mb =
dynamic_cast<MultiBandBlender*>(blender.get()) and FeatherBlender* fb
= dynamic_cast<FeatherBlender*>(blender.get()), which can be selected with
the int blend_type = Blender::MULTI_BAND parameter. Finally, the blender is
prepared (blender->prepare(corners, sizes)).

The last step composites the final panorama. This step needs what the previous
steps have done to configure the stitching. Four sub-steps are performed to calculate
the final panorama. First, each input image is read (full_img = imread(img_
names[img_idx])) and, if necessary, resized (resize(full_img, img, Size(),
scale, scale)). Second, these images are warped with the created warper
(warper->warp(img, K, cameras[img_idx].R, INTER_LINEAR, BORDER_
REFLECT, img_warped)). Third, these images are compensated for exposure errors
with the created compensator (compensator->apply(img_idx, corners[img_
idx], img_warped, mask_warped)). Finally, these images are blended using the
created blender. The final result panorama is now saved in the string result_name
= "panorama_result.jpg" file.

Image Processing for Video

[164]

To show you the stitchingAdvanced results, two input images are stitched and the
resulting panorama is shown as follows:

Summary
In this chapter, you learned how to use three important modules of OpenCV
that handle image processing in video. These modules are video stabilization,
superresolution, and stitching. Some of the theoretical underpinnings have also
been explained for each module.

In each section of this chapter, a complete example, developed in C++, is explained.
An image result was also shown for each module, showing the main effect.

The next chapter introduces high-dynamic-range images and shows you how to
handle them with OpenCV. High-dynamic-range imaging is typically considered
within what is now called computational photography. Roughly speaking,
computational photography refers to techniques that allow you to extend the
typical capabilities of digital photography. This may include hardware add-ons or
modifications, but it mostly refers to software-based techniques. These techniques may
produce output images that cannot be obtained with a "traditional" digital camera.

Computational Photography
Computational photography refers to techniques that allow you to extend the
typical capabilities of digital photography. This may include hardware add-ons or
modifications, but it mostly refers to software-based techniques. These techniques
may produce output images that cannot be obtained with a "traditional" digital
camera. This chapter introduces some of the lesser-known techniques available in
OpenCV for computational photography: high-dynamic-range imaging, seamless
cloning, decolorization, and non-photorealistic rendering. These three are inside
the photo module of the library. Note that other techniques inside this module
(inpainting and denoising) have been already considered in previous chapters.

High-dynamic-range images
The typical images we process have 8 bits per pixel (bpp). Color images also use 8
bits to represent the value of each channel, that is, red, green, and blue. This means
that only 256 different intensity values are used. This 8 bpp limit has prevailed
throughout the history of digital imaging. However, it is obvious that light in nature
does not have only 256 different levels. We should, therefore, consider whether this
discretization is desirable or even sufficient. The human eye, for example, is known
to capture a much higher dynamic range (the number of light levels between the
dimmest and brightest levels), estimated at between 1 and 100 million light levels.
With only 256 light levels, there are cases where bright lights appear overexposed
or saturated, while dark scenes are simply captured as black.

Computational Photography

[166]

There are cameras that can capture more than 8 bpp. However, the most common
way to create high-dynamic-range images is to use an 8 bpp camera and take images
with different exposure values. When we do this, problems of a limited dynamic
range are evident. Consider, for example, the following figure:

A scene captured with six different exposure values

The top-left image is mostly black, but window details are visible.
Conversely, the bottom-right image shows details of the room, but
the window details are barely visible.

We can take pictures with different exposure levels using modern smartphone
cameras. With iPhone and iPads, for example, as of iOS 8, it is very easy to change
the exposure with the native camera app. By touching the screen, a yellow box
appears with a small sun on its side. Swiping up or down can then change the
exposure (see the following screenshot).

The range of exposure levels is quite large, so we may have to
repeat the swiping gesture a number of times.

If you use previous versions of iOS, you can download camera apps such as Camera+
that allow you to focus on a specific point and change exposure.

Chapter 6

[167]

For Android, tons of camera apps are available on Google Play that can adjust the
exposure. One example is Camera FV-5, which has both free and paid versions.

If you use a handheld device to capture the images, make sure the
device is static. In fact, you may well use a tripod. Otherwise, images
with different exposures will not be aligned. Also, moving subjects will
inevitably produce ghost artifacts. Three images are sufficient for most
cases, with low, medium, and high exposure levels.

The exposure control using the native camera app in an iPhone 5S

Smartphones and tables are handy to capture a number of images with different
exposures. To create HDR images, we need to know the exposure (or shutter) time
for each captured image (see the following section for the reason). Not all apps allow
you to control (or even see) this manually (the iOS 8 native app doesn't). At the time
of writing this, at least two free apps allow this for iOS: Manually and ManualShot!
In Android, the free Camera FV-5 allows you to control and see exposure times. Note
that F/Stop and ISO are two other parameters that control the exposure.

Computational Photography

[168]

Images that are captured can be transferred to the development computer and used
to create the HDR image.

As of iOS 7, the native camera app has an HDR mode that automatically
captures three images in a rapid sequence, each with different exposure.
These images are also automatically combined into a single (sometimes
better) image.

Creating HDR images
How do we combine multiple (three, for example) exposure images into an HDR
image? If we consider only one of the channels and a given pixel, the three pixel
values (one for each exposure level) must be mapped to a single value in the larger
output range (say, 16 bpp). This mapping is not easy. First of all, we have to consider
that pixel intensities are a (rough) measure of sensor irradiance (the amount of light
incident on the camera sensor). Digital cameras measure irradiance but in a nonlinear
way. Cameras have a nonlinear response function that translates irradiance to pixel
intensity values in the range of 0 to 255]. In order to map these values to a larger
set of discrete values, we must estimate the camera response function (that is, the
response within the 0 to 255 range).

How do we estimate the camera response function? We do that from the pixels
themselves! The response function is an S-shaped curve for each color channel, and
it can be estimated from the pixels (with three exposures of a pixel, we have three
points on the curve for each color channel). As this is very time consuming, usually,
a set of random pixels is chosen.

There's only one thing left. We previously talked about estimating the relationship
between irradiance and pixel intensity. How do we know irradiance? Sensor
irradiance is directly proportional to the exposure time (or equivalently, the shutter
speed). This is the reason why we need exposure time!

Finally, the HDR image is computed as a weighted sum of the recovered irradiance
values from the pixels of each exposure. Note that this image cannot be displayed on
conventional screens, which also have a limited range.

A good book on high-dynamic-range imaging is High Dynamic Range
Imaging: Acquisition, Display, and Image-Based Lighting by Reinhard et al,
Morgan Kaufmann Pub. The book is accompanied by a DVD containing
images in different HDR formats.

Chapter 6

[169]

Example
OpenCV (as of 3.0 only) provides functions to create HDR images from a set of
images taken with different exposures. There's even a tutorial example called hdr_
imaging, which reads a list of image files and exposure times (from a text file) and
creates the HDR image.

In order to run the hdr_imaging tutorial, you will need to download
the required image files and text files with the list. You can download
them from https://github.com/Itseez/opencv_extra/tree/
master/testdata/cv/hdr.

The CalibrateDebevec and MergeDebevec classes implement Debevec's method to
estimate the camera response function and merge the exposures into an HDR image,
respectively. The following createHDR example shows you how to use both classes:

#include <opencv2/photo.hpp>
#include <opencv2/highgui.hpp>
#include <iostream>

using namespace cv;
using namespace std;

int main(int, char** argv)
{
 vector<Mat> images;
 vector<float> times;

 // Load images and exposures...
 Mat img1 = imread("1div66.jpg");
 if (img1.empty())
 {
 cout << "Error! Input image cannot be read...\n";
 return -1;
 }
 Mat img2 = imread("1div32.jpg");
 Mat img3 = imread("1div12.jpg");
 images.push_back(img1);
 images.push_back(img2);
 images.push_back(img3);
 times.push_back((float)1/66);

https://github.com/Itseez/opencv_extra/tree/master/testdata/cv/hdr
https://github.com/Itseez/opencv_extra/tree/master/testdata/cv/hdr

Computational Photography

[170]

 times.push_back((float)1/32);
 times.push_back((float)1/12);

 // Estimate camera response...
 Mat response;
 Ptr<CalibrateDebevec> calibrate = createCalibrateDebevec();
 calibrate->process(images, response, times);

 // Show the estimated camera response function...
 cout << response;

 // Create and write the HDR image...
 Mat hdr;
 Ptr<MergeDebevec> merge_debevec = createMergeDebevec();
 merge_debevec->process(images, hdr, times, response);
 imwrite("hdr.hdr", hdr);

 cout << "\nDone. Press any key to exit...\n";
 waitKey(); // Wait for key press
 return 0;
}

The example uses three images of a cup (the images are available along with the
code accompanying this book). The images were taken with the ManualShot! app
mentioned previously, using exposures of 1/66, 1/32, and 1/12 seconds; refer to
the following figure:

The three images used in the example as inputs

Chapter 6

[171]

Note that the createCalibrateDebevec method expects the images and exposure
times in an STL vector (STL is a kind of library of useful common functions and data
structures available in standard C++). The camera response function is given as a
256 real-valued vector. This represents the mapping between the pixel value and
irradiance. Actually, it is a 256 x 3 matrix (one column per each of the three color
channels). The following figure shows you the response given by the example:

The estimated RGB camera response functions

The cout part of code displays the matrix in the format used by
MATLAB and Octave, two widely used packages for numerical
computation. It is straightforward to copy the matrix in the output
and paste it in MATLAB/Octave in order to display it.

The resulting HDR image is stored in the lossless RGBE format. This image format
uses one byte per color channel plus one byte as a shared exponent. The format
uses the same principle as the one used in the floating-point number representation:
the shared exponent allows you to represent a much wider range of values. RGBE
images use the .hdr extension. Note that as it is a lossless image format, .hdr files
are relatively large. In this example, the RGB input images are 1224 x 1632 each (100
to 200 KB each), while the output .hdr file occupies 5.9 MB.

The example uses Debevec and Malik's method, but OpenCV also provides another
calibration function based on Robertson's method. Both calibration and merge
functions are available, that is, createCalibrateRobertson and MergeRobertson.

Computational Photography

[172]

For more information on the other functions and the theory behind
them, refer to http://docs.opencv.org/trunk/modules/
photo/doc/hdr_imaging.html.

Finally, note that the example does not display the resulting image. The HDR image
cannot be displayed in conventional screens, so we need to perform another step
called tone mapping.

Tone mapping
When high-dynamic-range images are to be displayed, information can be lost. This
is due to the fact that computer screens also have a limited contrast ratio, and printed
material is also typically limited to 256 tones. When we have a high-dynamic-range
image, it is necessary to map the intensities to a limited set of values. This is called
tone mapping.

Simply scaling the HDR image values to the reduced range of the display device
is not sufficient in order to provide a realistic output. Scaling typically produces
images that appear as lacking detail (contrast), eliminating the original scene content.
Ultimately, tone-mapping algorithms aim at providing outputs that appear visually
similar to the original scene (that is, similar to what a human would see when
viewing the scene). Various tone-mapping algorithms have been proposed and it
is still a matter of extensive research. The following lines of code can apply tone
mapping to the HDR image obtained in the previous example:

Mat ldr;
Ptr<TonemapDurand> tonemap = createTonemapDurand(2.2f);
tonemap->process(hdr, ldr); // ldr is a floating point image with
ldr=ldr*255; // values in interval [0..1]
imshow("LDR", ldr);

The method was proposed by Durand and Dorsey in 2002. The constructor actually
accepts a number of parameters that affect the output. The following figure shows
you the output. Note how this image is not necessarily better than any of the three
original images:

http://docs.opencv.org/trunk/modules/photo/doc/hdr_imaging.html
http://docs.opencv.org/trunk/modules/photo/doc/hdr_imaging.html

Chapter 6

[173]

The tone-mapped output

Three other tone-mapping algorithms are available in OpenCV:
createTonemapDrago, createTonemapReinhard, and createTonemapMantiuk.

An HDR image (the RGBE format, that is, files with the .hdr extension) can be
displayed using MATLAB. All it takes is three lines of code:

hdr=hdrread('hdr.hdr');
rgb=tonemap(hdr);
imshow(rgb);

pfstools is an open source suite of command-line tools to read, write,
and render HDR images. The suite, which can read .hdr and other
formats, includes a number of camera calibration and tone-mapping
algorithms. Luminance HDR is free GUI software based on pfstools.

Computational Photography

[174]

Alignment
The scene that will be captured with multiple exposure images must be static. The
camera must also be static. Even if the two conditions met, it is advisable to perform
an alignment procedure.

OpenCV provides an algorithm for image alignment proposed by G. Ward in 2003.
The main function, createAlignMTB, takes an input parameter that defines the
maximum shift (actually, a logarithm the base two of the maximum shift in each
dimension). The following lines should be inserted right before estimating the
camera response function in the previous example:

 vector<Mat> images_(images);
 Ptr<AlignMTB> align=createAlignMTB(4);// 4=max 16 pixel shift
 align->process(images_, images);

Exposure fusion
We can also combine images with multiple exposures with neither camera response
calibration (that is, exposure times) nor intermediate HDR image. This is called
exposure fusion. The method was proposed by Mertens et al in 2007. The following
lines perform exposure fusion (images is the STL vector of input images; refer to the
previous example):

 Mat fusion;
 Ptr<MergeMertens> merge_mertens = createMergeMertens();
 merge_mertens->process(images, fusion); // fusion is a
 fusion=fusion*255; // float. point image w. values in [0..1]
 imwrite("fusion.png", fusion);

The following figure shows you the result:

Exposure fusion

Chapter 6

[175]

Seamless cloning
In photomontages, we typically want to cut an object/person in a source image and
insert it into a target image. Of course, this can be done in a straightforward way by
simply pasting the object. However, this would not produce a realistic effect. See, for
example, the following figure, in which we wanted to insert the boat in the top half
of the image into the sea at the bottom half of the image:

Cloning

Computational Photography

[176]

As of OpenCV 3, there are seamless cloning functions available in which the result is
more realistic. This function is called seamlessClone and it uses a method proposed
by Perez and Gangnet in 2003. The following seamlessCloning example shows you
how it can be used:

#include <opencv2/photo.hpp>
#include <opencv2/highgui.hpp>
#include <iostream>

using namespace cv;
using namespace std;

int main(int, char** argv)
{
 // Load and show images...
 Mat source = imread("source1.png", IMREAD_COLOR);
 Mat destination = imread("destination1.png", IMREAD_COLOR);
 Mat mask = imread("mask.png", IMREAD_COLOR);
 imshow("source", source);
 imshow("mask", mask);
 imshow("destination", destination);

 Mat result;
 Point p; // p will be near top right corner
 p.x = (float)2*destination.size().width/3;
 p.y = (float)destination.size().height/4;
 seamlessClone(source, destination, mask, p, result, NORMAL_CLONE);
 imshow("result", result);

 cout << "\nDone. Press any key to exit...\n";
 waitKey(); // Wait for key press
 return 0;
}

Chapter 6

[177]

The example is straightforward. The seamlessClone function takes the source,
destination, and mask images and a point in the destination image in which the
cropped object will be inserted (these three images can be downloaded from
https://github.com/Itseez/opencv_extra/tree/master/testdata/cv/
cloning/Normal_Cloning). See the result in the following figure:

Seamless cloning

The last parameter of seamlessClone represents the exact method to be used (there
are three methods available that produce a different final effect). On the other hand,
the library provides the following related functions:

Function Effect
colorChange Multiplies each of the three color channels of the source image

by a factor, applying the multiplication only in the region
given by the mask

illuminationChange Changes illumination of the source image, only in the region
given by the mask

textureFlattening Washes out textures in the source image, only in the region
given by the mask

As opposed to seamlessClone, these three functions only accept source and
mask images.

https://github.com/Itseez/opencv_extra/tree/master/testdata/cv/cloning/Normal_Cloning
https://github.com/Itseez/opencv_extra/tree/master/testdata/cv/cloning/Normal_Cloning

Computational Photography

[178]

Decolorization
Decolorization is the process of converting a color image to grayscale. Given this
definition, the reader may well ask, don't we already have grayscale conversion?
Yes, grayscale conversion is a basic routine in OpenCV and any image-processing
library. The standard conversion is based on a linear combination of the R, G, and
B channels. The problem is that such a conversion may produce images in which
contrast in the original image is lost. The reason is that two different colors (which
are perceived as contrasts in the original image) may end up being mapped to the
same grayscale value. Consider the conversion of two colors, A and B, to grayscale.
Let's suppose that B is a variation of A in the R and G channels:

A = (R,G,B) => G = (R+G+B)/3

B = (R-x,G+x,B) => G = (R-x+G+x+B)/3 = (R+G+B)/3

Even though they are perceived as distinct, the two colors A and B are mapped to
the same grayscale value! The images from the following decolorization example
show this:

#include <opencv2/photo.hpp>
#include <opencv2/highgui.hpp>
#include <iostream>

using namespace cv;
using namespace std;

int main(int, char** argv)
{
 // Load and show images...
 Mat source = imread("color_image_3.png", IMREAD_COLOR);
 imshow("source", source);

 // first compute and show standard grayscale conversion...
 Mat grayscale = Mat(source.size(),CV_8UC1);
 cvtColor(source, grayscale, COLOR_BGR2GRAY);
 imshow("grayscale",grayscale);

 // now compute and show decolorization...
 Mat decolorized = Mat(source.size(),CV_8UC1);

Chapter 6

[179]

 Mat dummy = Mat(source.size(),CV_8UC3);
 decolor(source,decolorized,dummy);
 imshow("decolorized",decolorized);

 cout << "\nDone. Press any key to exit...\n";
 waitKey(); // Wait for key press
 return 0;
}

Decolorization example output

The example is straightforward. After reading the image and showing the result
of a standard grayscale conversion, it uses the decolor function to perform the
decolorization. The image used (the color_image_3.png file) is included in the
opencv_extra repository at https://github.com/Itseez/opencv_extra/tree/
master/testdata/cv/decolor.

The image used in the example is actually an extreme case. Its
colors have been chosen so that the standard grayscale output is
fairly homogeneous.

https://github.com/Itseez/opencv_extra/tree/master/testdata/cv/decolor
https://github.com/Itseez/opencv_extra/tree/master/testdata/cv/decolor

Computational Photography

[180]

Non-photorealistic rendering
As part of the photo module, four functions are available that transform an input
image in a way that produces a non-realistic but still artistic output. The functions
are very easy to use and a nice example is included with OpenCV (npr_demo). For
illustrative purposes, here we show you a table that allows you to grasp the effect
of each function. Take a look at the following fruits.jpg input image, included
with OpenCV:

The input reference image

The effects are:

Function Effect
edgePreservingFilter Smoothing is a handy and frequently used filter. This function

performs smoothing while preserving object edge details.

Chapter 6

[181]

Function Effect
detailEnhance Enhances details in the image

pencilSketch A pencil-like line drawing version of the input image

Computational Photography

[182]

Function Effect
stylization Watercolor effect

Summary
In this chapter, you learned what computational photography is and the related
functions available in OpenCV 3. We explained the most important functions within
the photo module, but note that other functions of this module (inpainting and noise
reduction) were also considered in previous chapters. Computational photography
is a rapidly expanding field, with strong ties to computer graphics. Therefore, this
module of OpenCV is expected to grow in future versions.

The next chapter will be devoted to an important aspect that we have not yet
considered: time. Many of the functions explained take a significant time to compute
the results. The next chapter will show you how to deal with that using modern
hardware.

[183]

Accelerating Image
Processing

This chapter deals with the acceleration of image processing tasks using General
Purpose Graphics Processing Units (GPGPUs) or, in short, GPUs with parallel
processing. A GPU is essentially a coprocessor dedicated to graphics processing
or floating point operations, aimed at improving performance on applications
such as video games and interactive 3D graphics. While the graphics processing is
executed in the GPU, the CPU can be dedicated to other calculations (such as the
artificial intelligence part in games). Every GPU is equipped with hundreds of simple
processing cores that allow massive parallel execution on hundreds of "simple"
mathematical operations on (normally) floating point numbers.

CPUs seem to have reached their speed and thermal power limits. Building a
computer with several CPUs has become a complex problem. This is where GPUs
come into play. GPU processing is a new computing paradigm that uses the GPU to
improve the computational performance. GPUs initially implemented certain parallel
operations called graphics primitives that were optimized for graphics processing.
One of the most common primitives for 3D graphics processing is antialiasing, which
makes the edges of the figures have a more realistic appearance. Other primitives are
drawings of rectangles, triangles, circles, and arcs. GPUs currently include hundreds
of general-purpose processing functions that can do much more than rendering
graphics. Particularly, they are very valuable in tasks that can be parallelized, which
is the case for many computer vision algorithms.

OpenCV libraries include support for the OpenCL and CUDA GPU architectures.
CUDA implements many algorithms; however, it only works with NVIDIA graphic
cards. CUDA is a parallel computing platform and programming model created by
NVIDIA and implemented by the GPUs that they produce. This chapter focuses on
the OpenCL architecture, as it is supported by more devices and is even included in
some NVIDIA graphic cards.

Accelerating Image Processing

[184]

The Open Computing Language (OpenCL) is a framework that writes programs
that can be executed on CPUs or GPUs attached to a host processor (a CPU). It
defines a C-like language to write functions, called kernels, which are executed on
the computing devices. Using OpenCL, kernels can be run on all or many of the
individual processing elements (PEs) in parallel to the CPUs or GPUs.

In addition, OpenCL defines an Application Programming Interface (API) that allows
programs running on the host (the CPU) to launch kernels on the computer devices
and manage their device memories, which are (at least conceptually) separated from
the host memory. OpenCL programs are intended to be compiled at runtime so that
applications that use OpenCL are portable between implementations of various host
computer devices. OpenCL is also an open standard maintained by the nonprofit
technology consortium Khronos Group (https://www.khronos.org/).

OpenCV contains a set of classes and functions that implement and accelerate the
OpenCV functionality using OpenCL. OpenCV currently provides a transparent
API that enables the unification of its original API with OpenCL-accelerated
programming. Therefore, you only need to write your code once. There is a new
unified data structure (UMat) that handles data transfers to the GPUs when it is
needed and possible.

Support for OpenCL in OpenCV has been designed for ease of use and does not
require any knowledge of OpenCL. At a minimum level, it can be viewed as a set
of accelerations, which can take advantage of the high computing power when using
modern CPU and GPU devices.

To correctly run OpenCL programs, the OpenCL runtime should be provided by
the device vendor, typically in the form of a device driver. Also, to use OpenCV
with OpenCL, a compatible SDK is needed. Currently, there are five available
OpenCL SDKs:

•	 AMD APP SDK: This SDK supports OpenCL on CPUs and GPUs, such as
X86+SSE2 (or higher) CPUs and AMD Fusion, AMD Radeon, AMD Mobility,
and ATI FirePro GPUs.

•	 Intel SDK: This SDK supports OpenCL on Intel Core processors and Intel
HD GPUs, such as Intel+SSE4.1, SSE4.2 or AVX, Intel Core i7, i5 and i3 (1st,
2nd, and 3rd Generation), Intel HD Graphics, Intel Core 2 Solo (Duo Quad
and Extreme), and Intel Xeon CPUs.

•	 IBM OpenCL Development Kit: This SDK supports OpenCL on AMD
servers such as IBM Power, IBM PERCS, and IBM BladeCenter.

https://www.khronos.org/)

Chapter 7

[185]

•	 IBM OpenCL Common Runtime: This SDK supports OpenCV on CPUs and
GPUs, such as X86+SSE2 (or higher) CPUs and AMD Fusion and Raedon,
NVIDIA Ion, NVIDIA GeForce, and NVIDIA Quadro GPUs.

•	 Nvidia OpenCL Driver and Tools: This SDK supports OpenCL on some
Nvidia graphic devices such as NVIDIA Tesla, NVIDIA GeForce, NVIDIA
Ion, and NVIDIA Quadro GPUs.

OpenCV with the OpenCL installation
The installation steps already presented in Chapter 1, Handling Image and Video Files,
need some additional steps to include OpenCL. The newly required software is
explained in the following section.

There are new requirements to compile and install OpenCV with OpenCL on
Windows:

•	 OpenCL-capable GPU or CPU: This is the most important requirement. Note
that OpenCL supports many computing devices but not all. You can check
whether your graphic cards or processors are compatible with OpenCL. This
chapter uses the AMD APP SDK for an AMD FirePro W5000 GPU to execute
the examples.

There is a list with the supported computer devices for this SDK at
http://developer.amd.com/tools-and-sdks/opencl-zone/
amd-accelerated-parallel-processing-app-sdk/system-
requirements-driver-compatibility/.There, you can also
consult the minimum SDK version that you need.

•	 Compilers: OpenCV with OpenCL is compatible with Microsoft and MinGW
compilers. It is possible to install the free Visual Studio Express edition.
However, if you choose Microsoft to compile OpenCV, at least Visual Studio
2012 is recommended. However, the MinGW compiler is used in this chapter.

•	 AMD APP SDK: This SDK is a set of advanced software technologies that
enable us to use compatible computing devices to execute and accelerate
many applications beyond just graphics. This SDK is available at http://
developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-
parallel-processing-app-sdk/.This chapter uses Version 2.9 of the SDK
(for 64 bit Windows); you can see the installation progress in the following
screenshot.

http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk/system-requirements-driver-compatibility/
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk/system-requirements-driver-compatibility/
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk/system-requirements-driver-compatibility/
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk/
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk/
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk/

Accelerating Image Processing

[186]

If this step fails, maybe you might need to update the controller of
your graphic card. The AMD controllers are available at http://
www.amd.com/en-us/innovations/software-technologies.

Installing the AMD APP SDK

•	 OpenCL BLAS: Basic Linear Algebra Subroutines (BLAS) is a set of open
source math libraries for parallel processing on AMD devices. It can be
downloaded from http://developer.amd.com/tools-and-sdks/opencl-
zone/amd-accelerated-parallel-processing-math-libraries/. This
chapter uses the 1.1 BLAS version for Windows 32/64 bits, and you can see
the installation progress in the following screenshot (the left-hand side).

•	 OpenCL FFT: Fast Fourier Transform (FFT) is a very useful function that
many algorithms of image processing need. Therefore, this function is
implemented for parallel processing on AMD devices. It can be downloaded
from the same URL as given previously. This chapter uses the 1.1 FFT
version for Windows 32/64 bits, and you can see the installation progress
in the following screenshot (the right-hand side):

http://www.amd.com/en-us/innovations/software-technologies
http://www.amd.com/en-us/innovations/software-technologies
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-math-libraries/
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-math-libraries/

Chapter 7

[187]

Installing BLAS and FFT for OpenCL

•	 Qt libraries for C++ compiler: In this chapter, the MinGW binaries of Qt
libraries are used to compile OpenCV with OpenCL. The other alternative is
to install the latest version of Qt and use the Visual C++ compiler. You can
choose the Qt version and used compiler. The package manager, by means
of the MaintenanceTool.exe application located at C:\Qt\Qt5.3.1, can be
used to download other Qt versions. This chapter uses Qt (5.3.1) and MinGW
(4.8.2) 32 bits to compile OpenCV with OpenCL.

When the previous requirements are met, you can generate a new build configuration
with CMake. This process differs in some points from the typical installation that was
explained in the first chapter. The differences are explained in this list:

•	 When selecting the generator for the project, you can choose the compiler
version corresponding with the installed environment in your machine.
This chapter uses MinGW to compile OpenCV with OpenCL, and then the
MinGW Makefiles option is selected, specifying the native compilers. The
following screenshot shows this selection:

CMake selecting the generator project

Accelerating Image Processing

[188]

•	 The options shown in the following screenshot are needed to build
the OpenCV with OpenCL project. The WITH_OPENCL, WITH_
OPENCLAMDBLAS, and WITH_OPENCLAMDFFT options must be
enabled. The BLAS and FFT paths must be introduced on CLAMDBLAS_
INCLUDE_DIR, CLAMDBLAS_ROOT_DIR, CLAMDFFT_INCLUDE_
DIR, and CLAMDFFT_ROOT_DIR. In addition, as shown in Chapter 1,
Handling Image and Video Files, you will need to enable WITH_QT and
disable the WITH_IPP option as well. It is also advisable to enable BUILD_
EXAMPLES. The following screenshot shows you the main options selected
in the build configuration:

CMake selecting the main options

Chapter 7

[189]

Finally, to build the OpenCV with OpenCL project, the CMake project that was
previously generated must be compiled. The project was generated for MinGW, and
therefore, the MinGW compiler is needed to build this project. Firstly, the [opencv_
build]/ folder is selected with Windows Console, and we execute this:

./mingw32-make.exe -j 4 install

The -j 4 parameter is the number of the core CPUs of the system that we want to
use for the parallelization of the compilation.

Now the OpenCV with OpenCL project is ready to be used. The path of the new
binaries files must be added to the system path, in this case, [opencv_build]/
install/x64/mingw/bin.

Do not forget to remove the old binary files of OpenCV from the path
environment variable.

A quick recipe to install OpenCV with OpenCL
The installation process can be summarized in the following steps:

1.	 Download and install AMD APP SDK, which is available at http://
developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-
parallel-processing-app-sdk.

2.	 Download and install BLAS and FFT AMD, which are available at http://
developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-
parallel-processing-math-libraries.

3.	 Configure the OpenCV build with CMake. Enable the WITH_OPENCL,
WITH_OPENCLAMDBLAS, WITH_QT, and Build_EXAMPLESWITH_
OPENCLAMDFFT options. Disable the WITH_IPP option. Finally,
introduce the BLAS and FFT paths on CLAMDBLAS_INCLUDE_DIR,
CLAMDBLAS_ROOT_DIR, CLAMDFFT_INCLUDE_DIR, and
CLAMDFFT_ROOT_DIR.

4.	 Compile the OpenCV project with mingw32-make.exe.
5.	 Finally, modify the path environment variable to update the OpenCV bin

directory (for example, [opencv_build]/install/x64/mingw/bin).

http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-math-libraries/
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-math-libraries/
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-math-libraries/

Accelerating Image Processing

[190]

Check the GPU usage
When the GPU is being used on a Windows platform, there is no application to
measure its usage. The GPU usage is useful for two reasons:

•	 It is possible to know whether you are using the GPU correctly
•	 You can monitor the GPU usage percentage

There are some applications in the market for this purpose. This chapter uses AMD
System Monitor to check the GPU usage. This application monitors the CPU,
memory RAM, and GPU usage. Refer to the following screenshot for this:

AMD System Monitor monitors the CPU, GPU, and Memory RAM usages

Chapter 7

[191]

The AMD System Monitor can be downloaded from http://
support.amd.com/es-xl/kb-articles/Pages/
AMDSystemMonitor.aspx for Microsoft Windows (32 or 64 bits).

Accelerating your own functions
In this section, there are three examples of using OpenCV with OpenCL. The first
example allows you to check whether the installed SDK is available and obtain useful
information about the computing devices that support OpenCL. The second example
shows you two versions of the same program using CPU and GPU programming,
respectively. The last example is a complete program to detect and mark faces. In
addition, a computational comparative is performed.

Checking your OpenCL
The following is a simple program that is shown to check your SDK and the available
computing devices. This example is called checkOpenCL. It allows you to display
the computer devices using the OCL module of OpenCV:

#include <opencv2/opencv.hpp>
#include <opencv2/core/ocl.hpp>

using namespace std;
using namespace cv;
using namespace cv::ocl;

int main()
{
vector<ocl::PlatformInfo> info;
 getPlatfomsInfo(info);
PlatformInfo sdk = info.at(0);

 if (sdk.deviceNumber()<1)
 return -1;

 cout << "******SDK*******" << endl;
 cout << "Name: " <<sdk.name()<< endl;
cout << "Vendor: " <<sdk.vendor()<< endl;
cout << "Version: " <<sdk.version()<< endl;
 cout << "Number of devices: " <<sdk.deviceNumber()<< endl;

http://support.amd.com/es-xl/kb-articles/Pages/AMDSystemMonitor.aspx
http://support.amd.com/es-xl/kb-articles/Pages/AMDSystemMonitor.aspx
http://support.amd.com/es-xl/kb-articles/Pages/AMDSystemMonitor.aspx

Accelerating Image Processing

[192]

 for (int i=0; i<sdk.deviceNumber(); i++){
Device device;
 sdk.getDevice(device, i);
 cout << "\n\n*********************\n Device " << i+1 <<
endl;

 cout << "Vendor ID: " <<device.vendorID()<< endl;
 cout << "Vendor name: " <<device.vendorName()<< endl;
 cout << "Name: " <<device.name()<< endl;
 cout << "Driver version: " <<device.driverVersion()<< endl;
 if (device.isAMD()) cout << "Is an AMD device" << endl;
 if (device.isIntel()) cout << "Is a Intel device" << endl;
 cout << "Global Memory size: " <<device.globalMemSize()<<
endl;
 cout << "Memory cache size: " <<device.globalMemCacheSize()<<
endl;
 cout << "Memory cache type: " <<device.globalMemCacheType()<<
endl;
 cout << "Local Memory size: " <<device.localMemSize()<< endl;
 cout << "Local Memory type: " <<device.localMemType()<< endl;
 cout << "Max Clock frequency: " <<device.maxClockFrequency()<<
endl;
 }

 return 0;
}

The code explanation
This example displays the installed SDK and the available computing devices that
are compatible with OpenCL. Firstly, the core/ocl.hpp header is included and the
cv::ocl namespace is declared.

The information about the available SDK in your computer is obtained using
the getPlatfomsInfo(info) method. This information is stored in the
vector<ocl::PlatformInfo> info vector and selected with PlatformInfo sdk
= info.at(0). Afterwards, the main information about your SDK is shown, such as
the name, vendor, SDK version, and the number of computing devices compatible
with OpenCL.

Finally, for each compatible device, its information is obtained with the sdk.
getDevice(device, i) method. Now different information about each computing
device can be shown, such as the vendor ID, vendor name, driver version, global
memory size, memory cache size, and so on.

Chapter 7

[193]

The following screenshot shows you the results of this example for the computer
used:

Information about the SDK used and compatible computing devices

Your first GPU-based program
In the following code, two versions of the same program are shown: one only
uses the CPU (native) to perform the computations and the other uses the
GPU (with OpenCL). These two examples are called calculateEdgesCPU and
calculateEdgesGPU, respectively, and allow you to observe the differences between
CPU and GPU versions.

The calculateEdgesCPU example is shown in the first place:

#include <opencv2/opencv.hpp>

using namespace std;
using namespace cv;

int main(int argc, char * argv[])
{
 if (argc < 2)
 {

Accelerating Image Processing

[194]

 cout << "./calculateEdgesCPU <image>" << endl;
 return -1;
 }

Mat cpuFrame = imread(argv[1]);
 Mat cpuBW, cpuBlur, cpuEdges;

 namedWindow("Canny Edges CPU",1);

cvtColor(cpuFrame, cpuBW, COLOR_BGR2GRAY);
 GaussianBlur(cpuBW, cpuBlur, Size(1,1), 1.5, 1.5);
 Canny(cpuBlur, cpuEdges, 50, 100, 3);

imshow("Canny Edges CPU", cpuEdges);
 waitKey();

 return 0;
}

Now, the calculateEdgesGPU example is shown:

#include "opencv2/opencv.hpp"
#include "opencv2/core/ocl.hpp"

using namespace std;
using namespace cv;
using namespace cv::ocl;

int main(int argc, char * argv[])
{
 if (argc < 2)
 {
 cout << "./calculateEdgesGPU <image>" << endl;
 return -1;
 }

setUseOpenCL(true);

Mat cpuFrame = imread(argv[1]);
UMat gpuFrame, gpuBW, gpuBlur, gpuEdges;

cpuFrame.copyTo(gpuFrame);

 namedWindow("Canny Edges GPU",1);

Chapter 7

[195]

 cvtColor(gpuFrame, gpuBW, COLOR_BGR2GRAY);
 GaussianBlur(gpuBW, gpuBlur, Size(1,1), 1.5, 1.5);
 Canny(gpuBlur, gpuEdges, 50, 100, 3);

imshow("Canny Edges GPU", gpuEdges);
 waitKey();

 return 0;
}

The code explanation
These two examples obtain the same result, as shown in the following screenshot.
They read an image from the standard command-line input arguments. Afterwards,
the image is converted to gray scale and the Gaussian Blur and the Canny filter
functions are applied.

In the second example, there are some differences that are required to work with
the GPU. First, OpenCL must be activated with the setUseOpenCL(true) method.
Second, Unified Mats (UMat) are used to allocate memory in the GPU (UMat
gpuFrame, gpuBW, gpuBlur, gpuEdges). Third, the input image is copied from the
RAM to GPU memory with the cpuFrame.copyTo(gpuFrame) method. Now, when
the functions are used, if they have an OpenCL implementation, then these functions
will be executed on the GPU. If some of these functions do not have an OpenCL
implementation, the normal function will be executed on the CPU. In this example,
the time elapse using the GPU programming (second example) is 10 times better:

Results of the preceding two examples

Accelerating Image Processing

[196]

Going real time
One of the main advantages of GPU processing is to perform computations in a
much faster way. This increase in speed allows you to execute heavy computational
algorithms in real-time applications, such as stereo vision, pedestrian detection, optical
flow, or face detection. The following detectFaces example shows you an application
to detect faces from a video camera. This example also allows you to select between
the CPU or GPU processing in order to compare the computational time.

In the OpenCV examples ([opencv_source_code]/samples/cpp/facedetect.
cpp), a related face detector example can be found. For the following detectFaces
example, the detectFace.pro project needs these libraries: -lopencv_core300,
-opencv_imgproc300, -lopencv_highgui300, -lopencv_videoio300, and
lopencv_objdetct300.

The detectFaces example uses the ocl module of OpenCV:

#include <opencv2/core/core.hpp>
#include <opencv2/core/ocl.hpp>
#include <opencv2/objdetect.hpp>
#include <opencv2/videoio.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/imgproc.hpp>

#include <iostream>
#include <stdio.h>

using namespace std;
using namespace cv;
using namespace cv::ocl;

int main(int argc, char * argv[])
{
 // 1- Set the initial parameters
 // Vector to store the faces
 vector<Rect> faces;
 CascadeClassifier face_cascade;
String face_cascade_name = argv[2];
 int face_size = 30;
 double scale_factor = 1.1;
 int min_neighbours = 2;

Chapter 7

[197]

VideoCapture cap(0);
UMat frame, frameGray;
 bool finish = false;

 // 2- Load the file xml to use the classifier
 if (!face_cascade.load(face_cascade_name))
 {
 cout << "Cannot load the face xml!" << endl;
 return -1;
 }

 namedWindow("Video Capture");

 // 3- Select between the CPU or GPU processing
 if (argc < 2)
 {
 cout << "./detectFaces [CPU/GPU | C/G]" << endl;
 cout << "Trying to use GPU..." << endl;
setUseOpenCL(true);
 }
 else
 {
 cout << "./detectFaces trying to use " << argv[1] << endl;
 if(argv[1][0] == 'C')
 // Trying to use the CPU processing
 setUseOpenCL(false);
 else
 // Trying to use the GPU processing
 setUseOpenCL(true);
 }

 Rect r;
 double start_time, finish_time, start_total_time, finish_total_
time;
 int counter = 0;

 // 4- Detect the faces for each image capture
 start_total_time = getTickCount();
 while (!finish)
 {

Accelerating Image Processing

[198]

 start_time = getTickCount();
cap >> frame;
 if (frame.empty())
 {
 cout << "No capture frame --> finish" << endl;
 break;
 }

cvtColor(frame, frameGray, COLOR_BGR2GRAY);
equalizeHist(frameGray,frameGray);

 // Detect the faces
face_cascade.detectMultiScale(frameGray, faces, scale_factor, min_
neighbours, 0|CASCADE_SCALE_IMAGE, Size(face_size,face_size));

 // For each detected face
 for (int f = 0; f <faces.size(); f++)
 {
 r = faces[f];
 // Draw a rectangle over the face
rectangle(frame, Point(r.x, r.y), Point(r.x + r.width, r.y +
r.height), Scalar(0,255,0), 3);
 }

 // Show the results
imshow("Video Capture",frame);

 // Calculate the time processing
 finish_time = getTickCount();
cout << "Time per frame: " << (finish_time - start_time)/
getTickFrequency() << " secs" << endl;

 counter++;

 // Press Esc key to finish
 if(waitKey(1) == 27) finish = true;
 }

 finish_total_time = getTickCount();
cout << "Average time per frame: " << ((finish_total_time - start_
total_time)/getTickFrequency())/counter << " secs" << endl;

 return 0;
}

Chapter 7

[199]

The code explanation
The first step sets the initial parameters, such as the xml file (String face_cascade_
name argv[2]) that uses the classifier to detect the faces, the minimum size of each
detected face (face_size=30), the scale factor (scale_factor = 1.1), and the
minimum number of neighbors (min_neighbours = 2) to find a trade-off between
true positive and false positive detections. You can also see the more important
differences between the CPU and GPU source codes; you only need to use the
Unified Mat (UMat frame, frameGray).

There are other available xml files in the [opencv_source_code]/
data/haarcascades/ folder to detect different body parts such as
eyes, lower bodies, smiles, and so on.

The second step creates a detector using the preceding xml file to detect faces.
This detector is based on a Haar feature-based classifier that is an effective object-
detection method proposed by Paul Viola and Michael Jones. This classifier has a
high accuracy of detecting faces. This step loads the xml file with the face_cascade.
load(face_cascade_name) method.

You can find more detailed information about Paul Viola and
Michael Jones method at http://en.wikipedia.org/wiki/
Viola%E2%80%93Jones_object_detection_framework.

The third step allows you to select between the CPU or GPU processing
(setUseOpenCL(false) or setUseOpenCL(true), respectively). This example uses
the standard command-line input arguments (argv[1]) to select this. The user can
execute the following from the Windows console to select between CPU or GPU
processing, respectively, and the classifier path:

<bin_dir>/detectFaces CPU pathClassifier

<bin_dir>/detectFaces GPU pathClassifier

If the user does not introduce an input argument, then GPU processing is used.

http://en.wikipedia.org/wiki/Viola%E2%80%93Jones_object_detection_framework
http://en.wikipedia.org/wiki/Viola%E2%80%93Jones_object_detection_framework

Accelerating Image Processing

[200]

The fourth step detects faces for each image captured from the video camera. Before
that, each captured image is converted to gray scale (cvtColor(frame, frameGray,
COLOR_BGR2GRAY)) and its histogram is equalized (equalizeHist(frameGray,
frameGray)). Afterwards, using the created face detector, the different
faces are searched over the current frame using the face_cascade.
detectMultiScale(frameGray, faces, scale_factor, min_neighbours,
0|CASCADE_SCALE_IMAGE, Size(face_size,face_size)) multiscale detection
method. Finally, a green rectangle is drawn over each detected face, and then
it is displayed. A screenshot of this example running is shown in the following
screenshot:

8.

The preceding example detecting a face

Chapter 7

[201]

The performance
In the preceding example, the computational time is calculated to compare the CPU
and GPU processing. The average processing time per frame is obtained.

A big advantage of choosing GPU programming is performance. Therefore, the
previous example calculates the time measurements to compare the speedups
obtained with respect to the CPU version. The time is stored at the beginning of the
program using the getTickCount() method. Afterwards, at the end of the program,
the same function to estimate the time is used again. A counter is stored to know
the number of iterations as well. Finally, the average processing time per frame is
calculated. The preceding example has an average processing time per frame of 0.057
seconds per frame (or 17.5 FPS) using the GPU, whereas the same example using
the CPU has an average processing time per frame of 0.335 seconds per frame (or
2.9 FPS). In conclusion, there is a speed increment of 6x. This increment is significant,
especially when you only need to change a few lines of the code. However, it is
possible to achieve a much higher rate of speed increments, which is related to the
problem and even with how the kernels are designed.

Summary
In this chapter, you learned how to install OpenCV with OpenCL on your computer
and develop applications using your computer devices, which are compatible with
OpenCL, with the last version of OpenCV.

The first section explains what OpenCL is and the available SDKs. Remember that
depending your computing devices, you will need a specific SDK to work correctly
with OpenCL. In the second section, the installation process to install OpenCV with
OpenCL is explained, and the AMD APP SDK has been used. In the last section,
there are three examples using GPU programming (the second example also has a
CPU version in order to compare them). In addition, in the last section, there is a
computational comparative between CPU and GPU processing, where the GPU is
shown to be six times faster than the CPU version.

[203]

Index
A
affine transformation

about 75
image rotation 79
reflection 83, 84
scaling 76
skewing 81, 82
translation 77

alignment, HDR images 174
AMD APP SDK

URL 185
AMD controllers

URL 186
AMD System Monitor

URL, for downloading 191
Application Programming Interface

(API) 184
arithmetic operations 38-42

B
basic API concepts 14-16
basic data types 33-36
Bayer

about 120, 121
example code 121, 122

Bilateral TV-L1 algorithm
about 142, 148
parameters 148
URL 142

bits per pixel (bpp) 165
BLAS

URL 186

BSD license 1
bundle adjustment 162
buttons 29, 30

C
C++

OpenCV application, creating with 10
calculateEdgesCPU example

about 193
code 195

calculateEdgesGPU example
about 194
code 195

checkOpenCL example
about 191
code 192, 193

CIE L*a*b* color space
about 116
example code 117, 118

CIE L*u*v* color space
about 118
example code 119, 120

CIE XYZ color space
about 105
example code 106, 107

CMake
about 4
library, compiling 7
library, installing 7
OpenCV, configuring with 4, 6
setting 4
URL 4

color models. See color spaces

[204]

color-space-based segmentation
about 122, 123
HSV segmentation 123, 124
YCrCb segmentation 125, 126

color spaces
about 99
Bayer 120, 121
CIE L*a*b* 116
CIE L*u*v* 118
CIE XYZ 105
conversion, with cvtColor method 100
grayscale 103
HLS 114
HSV 110, 111
RGB 100
YCrCb 108

color transfer
about 126
example code 127-129

ColourImageComparison example,
histograms 51-55

ColourImageEqualizeHist example,
histograms

about 47
equalized color image window 50
histogram of three channels window 50
source image window 50

Commission Internationale de L'Éclairage
(CIE) 105

compiler kits, OpenCV C++ applications
GNU GCC (GNU Compiler Collection) 11
Microsoft Visual C (MSVC) 11

computational photography 165
Compute Unified Device Architecture

(CUDA) 2
CPU 183
cvtColor method

code argument 100
dst argument 100
dstCn argument 100
src argument 100
used, for color spaces conversion 100

cylindrical projection 150

D
data persistence 43-45
decolorization

about 178
example 178, 179

denoising
about 94
example code 95-97
functions 94, 95
reference link 94

detectFaces example
about 196
code 196-199

digital stabilization systems 132

E
estimatePi example 41
exposure fusion, HDR images 174
extrapolation methods 75

F
Farneback optical flow method

URL 147
FFT AMD

URL 189
file structure, OpenCV

header files 8
library binaries 8
sample binaries 8

fisheye projection. See stereographic
projection

functions, accelerating
about 191
calculateEdgesCPU example 193
calculateEdgesGPU example 194
checkOpenCL example 191
detectFaces example 196
GPU programming, performance 201

functions, seamlessCloning example
colorChange 177
illuminationChange 177
textureFlattening 177

[205]

G
Gaussian pyramids

about 65
functions 65, 66

GDAL (Geographic Data Abstraction
Library) 17

geometrical transformations
about 74
affine transformation 75
extrapolation methods 75
interpolation methods 75
perspective transformation 86

GNU GCC
URL 11

GNU toolkit 4
Graphic Processing Unit (GPU) 2
grayscale

about 103
example code 104, 105

GUI (Graphical User Interface) 4

H
Haar feature-based classifier 199
HDR images

about 165-167
alignment 174
createHDR example 169-172
creating 168
exposure fusion 174
tone mapping 172, 173

hdr_imaging tutorial
URL, for file prerequisites 169

high dynamic range images. See HDR
images

histogram equalization 45
histograms

about 45-47
ColourImageComparison example 51-55
ColourImageEqualizeHist example 47-50

HLS
about 114
example code 115

HSV
about 110, 111
example code 112, 113

hue 110
saturation 110
value 110

HSV segmentation 123, 124

I
IBM OpenCL Common Runtime 185
IBM OpenCL Development Kit 184
image capturing process

about 141
blur 141
geometric transformation 141
sampling 141
subsampling 141

image files
event handling, into intrinsic loop 21
example code 18, 19
reading 14, 19-21
writing 14, 22

image file-supported formats 17
image filtering

about 58
image pyramids 65
sharpening 61, 62
smoothing 58-60

image processing time
measuring 37

image pyramids
about 65
example code 66-68
Gaussian pyramids 65, 66
Laplacian pyramids 65, 66

image rotation
about 79
example code 80

image stitching
about 149
calibration 150
compositing 150
registration 150
stitchingAdvanced

example 152, 161-164
URL 150

imgproc module 57
imshow function 113

[206]

inpainting
about 88
example code 89-93
functions 89
reference link 89

Integrated Development Environment
(IDE) 11

Integrated Performance Primitives (IPP) 2
Intel SDK 184
interpolation methods 75

K
kernel 58
Khronos Group

URL 184

L
Laplacian pyramids 65, 66
Linux 8
Luminance HDR 173
LUTs (look-up tables)

about 72, 73
example code 73, 74

M
Make

URL 11
map projections

about 150
cylindrical 150
panini 151
rectilinear 150
spherical 150
stereographic 151

mean-shift segmentation
reference link 66

mechanical stabilization systems 132
MinGW (Minimal GNU GCC) 11
mipmap 65
modules, OpenCV

core 8
features2d 9
highgui 9
imgcodecs 9

imgproc 9
objdetect 9
photo 9
stitching 9
video 9
videoio 9

morphological operations
about 69
example code 71, 72
functions 70

mouse interaction 28, 29

N
non-photorealistic rendering

about 180
detailEnhance effect 181
edgePreservingFilter effect 180
stylization effect 182

Nvidia OpenCL Driver and Tools 185

O
OpenCL SDKs

AMD APP SDK 184
IBM OpenCL Common Runtime 185
IBM OpenCL Development Kit 184
Intel SDK 184
Nvidia OpenCL Driver and Tools 185

Open Computing Language
(OpenCL) 2, 184

OpenCV
about 1, 2
compiler, obtaining 4
configuring, with CMake 4, 6
downloading 3
installing 3
reference link, for modules 9
references 2-4
structure 8
user projects, creating with 10

OpenCV API
URL 22

OpenCV application
developing, with C++ 10

OpenCV C++ applications
prerequisites 11, 12

[207]

OpenCV C++ program
creating, with Qt Creator 13, 14

OpenCV, with OpenCL
installation process 189

operations, with images 37, 38

P
panini projection 151
parameters, Bilateral TV-L1 algorithm

alpha 148
blurKernelSize 148
blurSigma 148
btvKernelSize 148
iterations 148
lamba 148
opticalFlow 148
scale 148
tau 148
temporalAreaRadius 148

perspective transformation
about 86
example code 86, 88
functions 86

pfstools 173
pixel-level access 36, 37
prerequisites, OpenCV C++ applications

auxiliary libraries 11
C++ compiler 11
OpenCV header files and library

binaries 11
pyramid 65

Q
Qt bundle

URL, for downloading 12
Qt Creator

about 12
OpenCV C++ program, creating with 13, 14

Qt framework
about 4
URL 4

Qt project
URL 14

R
RANSAC method

URL 133
Rapid Environment Editor tool

URL 4
rectilinear projection 150
reflection

about 83, 84
example code 84, 85

requisites, for installing OpenCV with
OpenCL

about 185-189
AMD APP SDK 185
compilers 185
OpenCL BLAS (Basic Linear Algebra

Subroutines) 186
OpenCL-capable GPU or CPU 185
OpenCL FFT (Fast Fourier Transform) 186
Qt libraries, for C++ compiler 187

RGB
about 100
example code 101-103

S
scaling

about 76
example code 76, 77

seamless cloning 175-177
seamlessCloning example

about 176
functions 177

sharpening
about 62
example code 63
functions 62

skewing
about 81, 82
example code 82, 83

smoothing
about 58
example code 60, 61
functions 59, 60

spherical projection 150
standard template library (STL) 17

[208]

stereographic projection 151
sticher 151
superres module 142
superresolution

about 141, 142
example 143-149
URL, for example 143

T
Threading Building Blocks (TBB) 2
tone mapping, HDR images 172, 173
trackbars 27
translation

about 77
example code 78

TVL1 (Total Variation L1) 94

U
Unified Mats (UMat) 184, 195
user-interactions tools

about 24, 25
buttons 29, 30
mouse interaction 28, 29
text, displaying 30, 31
text, drawing 30, 31
trackbars 27

user interface (UI) 9
user projects

creating, with OpenCV 10

V
video files

reading 22
recVideo example 22-24
writing 22

video stabilization
about 132
digital stabilization systems 132
mechanical stabilization systems 132
steps 132, 133
videoStabilizer example 134-140

W
Windows 7, 8

Y
YCrCb

about 108
example code 108, 109
segmentation 125, 126

Thank you for buying
Learning Image Processing with OpenCV

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

OpenCV Essentials
ISBN: 978-1-78398-424-4 Paperback: 214 pages

Acquire, process, and analyze visual content to build
full-fledged imaging applications using OpenCV

1.	 Create OpenCV programs with a rich user
interface.

2.	 Develop real-world imaging applications using
free tools and libraries.

3.	 Understand the intricate details of OpenCV
and its implementation using easy-to-follow
examples.

OpenCV Computer Vision
Application Programming
Cookbook
Second Edition
ISBN: 978-1-78216-148-6 Paperback: 374 pages

Over 50 recipes to help you build computer vision
applications in C++ using the OpenCV library

1.	 Master OpenCV, the open source library of the
computer vision community.

2.	 Master fundamental concepts in computer
vision and image processing.

3.	 Learn the important classes and functions of
OpenCV with complete working examples
applied on real images.

Please check www.PacktPub.com for information on our titles

OpenCV Computer Vision
Application Programming [Video]
ISBN: 978-1-84969-488-9 Duration: 02:27 hours

Incorporate OpenCV's powerful computer vision
application programming techniques to build and
make your own applications stand out from the crowd

1.	 Learn everything you need to get started
with OpenCV.

2.	 Contains many practical examples covering
different areas of computer vision that can
be mixed and matched to build your own
application.

3.	 Packed with code with relevant explanation
to demonstrate real results from real images.

OpenCV Computer Vision
with Python
ISBN: 978-1-78216-392-3 Paperback: 122 pages

Learn to capture videos, manipulate images, and
track objects with Python using the OpenCV Library

1.	 Set up OpenCV, its Python bindings, and
optional Kinect drivers on Windows, Mac
or Ubuntu.

2.	 Create an application that tracks and
manipulates faces.

3.	 Identify face regions using normal color
images and depth images.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Handling Image and
Video Files
	An introduction to OpenCV
	Downloading and installing OpenCV
	Getting a compiler and setting CMake
	Configuring OpenCV with CMake
	Compiling and installing the library

	The structure of OpenCV
	Creating user projects with OpenCV
	General usage of the library
	Tools to develop new projects
	Creating an OpenCV C++ program with Qt Creator

	Reading and writing image files
	The basic API concepts
	Image file-supported formats
	The example code
	Reading image files
	Event handling into the intrinsic loop
	Writing image files

	Reading and writing video files
	The example code

	User-interactions tools
	Trackbars
	Mouse interaction
	Buttons
	Drawing and displaying text

	Summary

	Chapter 2: Establishing Image Processing Tools
	Basic data types
	Pixel-level access
	Measuring the time
	Common operations with images
	Arithmetic operations
	Data persistence
	Histograms
	The example code
	The example code

	Summary

	Chapter 3: Correcting and
Enhancing Images
	Image filtering
	Smoothing
	The example code

	Sharpening
	The example code

	Working with image pyramids
	Gaussian pyramids
	Laplacian pyramids
	The example code

	Morphological operations
	The example code

	LUTs
	The example code

	Geometrical transformations
	Affine transformation
	Scaling
	Translation
	Image rotation
	Skewing
	Reflection

	Perspective transformation

	Inpainting
	The example code

	Denoising
	The example code

	Summary

	Chapter 4: Processing Color
	Color spaces
	Conversion between color spaces (cvtColor)
	RGB
	Grayscale
	CIE XYZ
	YCrCb
	HSV
	HLS
	CIE L*a*b*
	CIE L*u*v*
	Bayer

	Color-space-based segmentation
	HSV segmentation
	YCrCb segmentation

	Color transfer
	The example code

	Summary

	Chapter 5: Image Processing for Video
	Video stabilization
	Superresolution
	Stitching
	Summary

	Chapter 6: Computational Photography
	High-dynamic-range images
	Creating HDR images
	Example

	Tone mapping
	Alignment
	Exposure fusion

	Seamless cloning
	Decolorization
	Non-photorealistic rendering
	Summary

	Chapter 7: Accelerating Image Processing
	OpenCV with the OpenCL installation
	A quick recipe to install OpenCV with OpenCL
	Check the GPU usage

	Accelerating your own functions
	Checking your OpenCL
	The code explanation

	Your first GPU-based program
	The code explanation

	Going real time
	The code explanation
	The performance

	Summary

	Index

