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Preface 

There is a growing demand of image processing in diverse application areas, 
such as multimedia computing, secured image data communication, biomedi- 
cal imaging, biometrics, remote sensing, texture understanding, pattern recog- 
nition, content-based image retrieval, compression, and so on. As a result, it 
has become extremely important to provide a fresh look at the contents of an 
introductory book on image processing. We attempted to introduce some of 
these recent developments, while retaining the classical ones. 

The first chapter introduces the fundamentals of the image processing tech- 
niques, and also provides a window to the overall organization of the book. 
The second chapter deals with the principles of digital image formation and 
representation. The third chapter has been devoted to  color and color im- 
agery. In addition to the principles behind the perception of color and color 
space transforation, we have introduced the concept of color interpolation or 
demosaicing, which is today an integrated part of any color imaging device. 
We have described various image transformation techniques in Chapter 4. 
Wavelet transformation has become very popular in recent times for its many 
salient features. Chapter 5 has been devoted to  wavelet transformation. 

The importance of understanding the nature of noise prevalent in various 
types of images cannot be overemphasized. The issues of image enhancement 
and restoration including noise modeling and filtering have been detailed in 
Chapter 6. Image segmentation is an important task in image processing and 
pattern recognition. Various segmentation schemes have been elaborated in 
Chapter 7. Once an image is appropriately segmented, the next important 

xix 



xx PREFACE 

task involves classification and recognition of the objects in the image. Various 
pattern classification and object recognition techniques have been presented 
in Chapter 8. Texture and shape play very important roles in image un- 
derstanding. A number of texture and shape analysis techniques have been 
detailed in Chapter 9. 

In sharp contrast with the classical crisp image analysis, fuzzy set theo- 
retic approaches provide elegant methodologies for many image processing 
tasks. Chapter 10 deals with a number of fuzzy set theoretic approaches. 
We introduce content-based image retrieval and image mining in Chapter 11. 
Biomedical images like x-Ray, ultrasonography, and CT-Scan images provide 
sufficient information for medical diagnostics in biomedical engineering. We 
devote Chapter 12 to  biomedical image analysis and interpretation. In this 
chapter, we also describe some of the biometric algorithms, particularly face 
recognition, signature verification, etc. In Chapter 13, we present techniques 
for remotely sensed images and their applications. In Chapter 14, we describe 
principles and applications of dynamic scene analysis, moving-object detec- 
tion, and tracking. Image compression plays an important role for image 
storage and transmission. We devote Chapter 15 to fundamentals of image 
compression. We describe the JPEG standard for image compression in Chap- 
ter 16. In Chapters 17 and 18, we describe the new JPEG2000 standard. 

The audience of this book will be undergraduate and graduate students 
in universities all over the world, as well as the teachers, scientists, engineers 
and professionals in R&D and research labs, for their ready reference. 
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Introduction 

1.1 FUNDAMENTALS OF IMAGE PROCESSING 

We are in the midst of a visually enchanting world, which manifests itself 
with a variety of forms and shapes, colors and textures, motion and tran- 
quility. The human perception has the capability t o  acquire, integrate, arid 
interpret all this abundant visual information around us. It is challenging to 
impart such capabilities to a machine in order to interpret the visual informa- 
tion embedded in still images, graphics, and video or moving images in our 
sensory world. It is thus important to  understand the techniques of storage, 
processing, transmission, recognition, and finally interpretation of such visual 
scenes. In this book we attempt to  provide glimpses of the diverse areas of 
visual information analysis techniques. 

The first step towards designing an image analysis system is digital im- 
age acquisition using sensors in optical or thermal wavelengths. A two- 
dimensional image that is recorded by these sensors is the mapping of the 
three-dimensional visual world. The captured two dimensional signals are 
sampled and quantized to yield digital images. 

Sometimes we receive noisy images that are degraded by some degrading 
mechanism. One common source of image degradation is the optical lens 
system in a digital camera that acquires the visual information. If the camera 
is not appropriately focused then we get blurred images. Here the blurring 
mechanism is the defocused camera. Very often one may come across images 
of outdoor scenes that were procured in a foggy environment. Thus any 
outdoor scene captured on a foggy winter morning could invariably result 
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into a blurred image. In this case the degradation is due to  the fog and mist 
in the atmosphere, and this type of degradation is known as atmospheric 
degradation. In some other cases there may be a relative motion between the 
object and the camera. Thus if the camera is given an impulsive displacement 
during the image capturing interval while the object is static, the resulting 
image will invariably be blurred and noisy. In some of the above cases, we need 
appropriate techniques of refining the images so that the resultant images are 
of better visual quality, free from aberrations and noises. Image enhancement, 
filtering, and restoration have been some of the important applications of 
image processing since the early days of the field [1]-[4]. 

Segmentation is the process that subdivides an image into a number of 
uniformly homogeneous regions. Each homogeneous region is a constituent 
part or object in the entire scene. In other words, segmentation of an image is 
defined by a set of regions that are connected and nonoverlapping, so that each 
pixel in a segment in the image acquires a unique region label that indicates 
the region it belongs to. Segmentation is one of the most important elements 
in automated image analysis, mainly because a t  this step the objects or other 
entities of interest are extracted from an image for subsequent processing, 
such as description and recognition. For example, in case of an aerial image 
containing the ocean and land, the problem is to segment the image initially 
into two parts-land segment and water body or ocean segment. Thereafter 
the objects on the land part of the scene need to be appropriately segmented 
and subsequently classified. 

After extracting each segment; the next task is to  extract a set of meaning- 
ful features such as texture, color, and shape. These are important measurable 
entities which give measures of various properties of image segments. Some 
of the texture properties are coarseness, smoothness, regularity, etc., while 
the common shape descriptors are length, breadth, aspect ratio, area, loca- 
tion, perimeter, compactness, etc. Each segmented region in a scene may be 
characterized by a set of such features. 

Finally based on the set of these extracted features, each segmented object 
is classified to  one of a set of meaningful classes. In a digital image of ocean, 
these classes may be ships or small boats or even naval vessels and a large class 
of water body. The problems of scene segmentation and object classification 
are two integrated areas of studies in machine vision. Expert systems, seman- 
tic networks, and neural network-based systems have been found to perform 
such higher-level vision tasks quite efficiently. 

Another aspect of image processing involves compression and coding of 
the visual information. With growing demand of various imaging applica- 
tions, storage requirements of digital imagery are growing explosively. Com- 
pact representation of image data and their storage and transmission through 
communication bandwidth is a crucial and active area of development today. 
Interestingly enough, image data generally contain a significant amount of su- 
perfluous and redundant information in their canonical representation. Image 
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compression techniques helps to  reduce the redundancies in raw image data 
in order to reduce the storage and communication bandwidth. 

1.2 APPLICATIONS OF IMAGE PROCESSING 

There are a large number of applications of image processing in diverse spec- 
trum of human activities-from remotely sensed scene interpretation to biomed- 
ical image interpretation. In this section we provide only a cursory glance in 
some of these applications. 

1.2.1 Automatic Visual Inspection System 

Automated visual inspection systems are essential to improve the productivity 
and the quality of the product in manufacturing and allied industries [5]. We 
briefly present few visual inspection systems here. 

0 Automatic inspection of incandescent lamp filaments: An in- 
teresting application of automatic visual inspection involves inspection 
of the bulb manufacturing process. Often the filament of the bulbs get 
fused after short duration due to  erroneous geometry of the filament, 
e.g., nonuniformity in the pitch of the wiring in the lamp. Manual in- 
spection is not efficient to  detect such aberrations. 

In an automated vision-based inspection system, a binary image slice of 
the filament is generated, from which the silhouette of the filament is 
produced. This silhouette is analyzed to  identify the non-uniformities 
in the pitch of the filament geometry inside the bulb. Such a system has 
been designed and installed by the General Electric Corporation. 

0 Faulty component identification: Automated visual inspection may 
also be used to  identify faulty components in an electronic or electrome- 
chanical systems. The faulty components usually generate more thermal 
energy. The infra-red (IR) images can be generated from the distribu- 
tion of thermal energies in the assembly. By analyzing these IR images, 
we can identify the faulty components in the assembly. 

0 Automatic surface inspection systems: Detection of flaws on the 
surfaces is important requirement in many metal industries. For exam- 
ple, in the hot or cold rolling mills in a steel plant, it is required to 
detect any aberration on the rolled metal surface. This can be accom- 
plished by using image processing techniques like edge detection, texture 
identification, fractal analysis, and so on. 
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1.2.2 Remotely Sensed Scene Interpretation 

Information regarding the natural resources, such as agricultural, hydrolog- 
ical, mineral, forest, geological resources, etc., can be extracted based on 
remotely sensed image analysis. For remotely sensed scene analysis, images 
of the earth’s surface are captured by sensors in remote sensing satellites or 
by a multi-spectral scanner housed in an aircraft and then transmitted to 
the Earth Station for further processing [6, 71. We show examples of two 
remotely sensed images in Figure 1.1 whose color version has been presented 
in the color figure pages. Figure l . l ( a )  shows the delta of river Ganges in 
India. The light blue segment represents the sediments in the delta region 
of the river, the deep blue segment represents the water body, and the deep 
red regions are mangrove swamps of the adjacent islands. Figure l . l (b )  is the 
glacier flow in Bhutan Himalayas. The white region shows the stagnated ice 
with lower basal velocity. 

(4 (b) 

fig. 1.1 Example of a remotely sensed image of (a) delta of river Ganges, (b) Glacier 
flow in Bhutan Himalayas. Courtesy:  NASA/GSFC/METI/ERSDAC/JAROS, and 
U.S . /Japan ASTER Science  Team.  

Techniques of interpreting the regions and objects in satellite images are 
used in city planning, resource mobilization, flood control, agricultural pro- 
duction monitoring, etc. 

1.2.3 Biomedical Imaging Techniques 

Various types of imaging devices like X-ray, computer aided tomographic (CT) 
images, ultrasound, etc., are used extensively for the purpose of medical di- 
agnosis [8]-[lo]. Examples of biomedical images captured by different image 
formation modalities such as CT-scan, X-ray, and MRI are shown in Fig- 
ure 1.2. 

(i) localizing the objects of interest, i.e. different organs 

(ii) taking the measurements of the extracted objects, e.g. tumors in the 
image 
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Fig. 1.2 Examples of (a) CT-scan image of brain, (b) X-ray image of wrist, ( c )  MRI 
image of brain. 

(iii) interpreting the objects for diagnosis. 

Some of the biomedical imaging applications are presented below. 

(A) Lung disease identification: In chest X-rays, the structures containing 
air appear as dark, while the solid tissues appear lighter. Bones are 
more radio opaque than soft tissue. The anatomical structures clearly 
visible on a normal chest X-ray film are the ribs, the thoracic spine, 
the heart, and the diaphragm separating the chest cavity from the ab- 
dominal cavity. These regions in the chest radiographs are examined for 
abnormality by analyzing the corresponding segments. 

(B) Heart disease zdentification: Quantitative measurements such as heart 
size and shape are important diagnostic features to classify heart dis- 
eases. Image analysis techniques may be employed to radiographic im- 
ages for improved diagnosis of heart diseases. 

( C )  Dzgital mammograms: Digital mammograms are very useful in detect- 
ing features (such as micro-calcification) in order to diagnose breast 
tumor. Image processing techniques such as contrast enhancement, seg- 
mentation, feature extraction, shape analysis, etc. are used to analyze 
mammograms. The regularity of the shape of the tumor determines 
whether the tumor is benign or malignant. 

1.2.4 Defense surveillance 

Application of image processing techniques in defense surveillance is an im- 
portant area of study. There is a continuous need for monitoring the land and 
oceans using aerial surveillance techniques. 

Suppose we are interested in locating the types and formation of Naval ves- 
sels in an aerial image of ocean surface. The primary task here is to segment 
different objects in the water body part of the image. After extracting the 
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segments, the parameters like area, location, perimeter, compactness, shape, 
length, breadth, and aspect ratio are found, to classify each of the segmented 
objects. These objects may range from small boats to massive naval ships. 
Using the above features it is possible to  recognize and localize these objects. 
To describe all possible formations of the vessels, it is required that we should 
be able to  identify the distribution of these objects in the eight possible di- 
rections, namely, north, south, east, west, northeast, northwest, southeast 
and southwest. From the spatial distribution of these objects it is possible to  
interpret the entire oceanic scene, which is important for ocean surveillance. 

1.2.5 Content-Based Image Retrieval 

Retrieval of a query image from a large image archive is an important ap- 
plication in image processing. The advent of large multimedia collection and 
digital libraries has led to an important requirement for development of search 
tools for indexing and retrieving information from them. A number of good 
search engines are available today for retrieving the text in machine readable 
form, but there are not many fast tools to  retrieve intensity and color im- 
ages. The traditional approaches to searching and indexing images are slow 
and expensive. Thus there is urgent need for development of algorithms for 
retrieving the image using the embedded content in them. 

The features of a digital image (such as shape, texture, color, topology 
of the objects, etc.) can be used as index keys for search and retrieval of 
pictorial information from large image database. Retrieval of images based 
on such image contents is popularly called the content-based image retrieval 
[ll, la] .  

1.2.6 Moving- 0 bject Tracking 

Tracking of moving objects, for measuring motion parameters and obtaining 
a visual record of the moving object, is an important area of application in 
image processing [13, 141. In general there are two different approaches to  
object tracking: 

1. Recognition-based tracking 

2 .  Motion-based tracking. 

A system for tracking fast targets (e.g., a military aircraft, missile, etc.) 
is developed based on motion-based predictive techniques such as Kalman 
filtering, extended Kalman filtering, particle filtering, etc. In automated im- 
age processing based object tracking systems, the target objects entering the 
sensor field of view are acquired automatically without human intervention. 
In recognition-based tracking, the object pattern is recognized in successive 
image-frames and tracking is carried-out using its positional information. 
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1.2.7 Image and Video Compression 

Image and video compression is an active application area in image process- 
ing [12, 151. Development of compression technologies for image and video 
continues to  play an important role for success of multimedia communication 
and applications. Although the cost of storage has decreased significantly over 
the last two decades, the requirement of image and video data storage is also 
growing exponentially. A digitized 36 cm x 44 cm radiograph scanned at 70 
pm requires approximately 45 Megabytes of storage. Similarly, the storage re- 
quirement of high-definition television of resolution 1280 x 720 at 60 frames 
per second is more than 1250 Megabits per second. Direct transmission of 
these video images without any compression through today’s communication 
channels in real-time is a difficult proposition. Interestingly, both the still 
and video images have significant amount of visually redundant information 
in their canonical representation. The redundancy lies in the fact that the 
neighboring pixels in a smooth homogeneous region of a natural image have 
very little variation in their values which are not noticeable by a human ob- 
server. Similarly, the consecutive frames in a slow moving video sequence are 
quite similar and have redundancy embedded in them temporally. Image and 
video compression techniques essentially reduce such visual redundancies in 
data representation in order to represent the image frames with significantly 
smaller number of bits and hence reduces the requirements for storage and 
effective communication bandwidth. 

1.3 HUMAN VISUAL PERCEPTION 

Electromagnetic radiation in the optical band generated from our visual en- 
vironment enters the visual system through eyes and are incident upon the 
sensitive cells of the retina. The activities start in the retina, where the sig- 
nals from neighboring receivers are compared and a coded message dispatched 
on the optic nerves to the cortex, behind our ears. An excellent account of 
human visual perception may be found in [16]. The spatial characteristics of 
our visual system have been proposed as a nonlinear model in [17, 181. 

Although the eyes can detect tranquility and static images, they are essen- 
tially motion detectors. The eyes are capable of identification of static objects 
and can establish spatial relationships among the various objects and regions 
in a static scene. Their basic functioning depends on comparison of stim- 
uli from neighboring cells, which results in interpretation of motion. When 
observing a static scene, the eyes perform small repetitive motions called sac- 
cades that move edges past receptors. The perceptual recognition and inter- 
pretation aspects of our vision, however, take place in our brain. The objects 
and different regions in a scene are recognized in our brain from the edges 
or boundaries that encapsulate the objects or the regions inside the scene. 
The maximum information about the object is embedded along these edges 
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or boundaries. The process of recognition is a result of learning that takes 
place in our neural organization. The orientation of lines and the directions 
of movements are also used in the process of object recognition. 

fig. 1.3 Structure of human eye. 

1.3.1 Human Eyes 

The structure of an eye is shown in Figure 1.3. The transportation of the vi- 
sual signal from the retina of the eye to the brain takes place through approx- 
imately one and a half million neurons via optic nerves. The retina contains 
a large number of photo-receptors, compactly located in a more or less regu- 
lar, hexagonal array. The retinal array contains three types of color sensors, 
known as cones in the central part of the retina named as fovea centralis. The 
cones are distributed in such a way that they are densely populated near the 
central part of the retina and the density reduces near the peripheral part of 
the fovea. There are three different types of cones, namely red, green and 
blue cones which are responsible for color vision. The three distinct classes 
of cones contain different photosensitive pigments. The three pigments have 
maximum absorptions at  about 430 nm (violet), 530 nm (blue-green) and 560 
nm (yellow-green). 

Another type of small receptors fill in the space between the cones. These 
receptors are called rods which are responsible for gray vision. These receptors 
are more in number than the cones. 

Rods are sensitive to very low-levels of illumination and are responsible for 
our ability to  see in dim light (scotopic vision). The cone or photopic system, 
on the other hand, operates at  high illumination levels when lots of photons 
are available, and maximizes resolution at  the cost of reduced sensitivity. 
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1.3.2 

The optic nerve in our visual system enters the eyeball and connects with rods 
and cones located a t  the back of the eye. 

The neurons contain dendrites (inputs), and a long axon with an arboriza- 
tion a t  the end (outputs). The neurons communicate through synapses. The 
transmission of signals is associated with the diffusion of the chemicals across 
the interface and the receiving neurons are either stimulated or inhibited by 
these chemicals, diffusing across the interface. The optic nerves begin as bun- 
dles of axons from the ganglion cells on one side of the retina. The rods and 
cones, on the other side, are connected to  the ganglion cells by bipolar cells, 
and there are also horizontal nerve cells making lateral connections. 

The signals from neighboring receptors in the retina are grouped by the 
horizontal cells to  form a receptive field of opposing responses in the center 
and the periphery, so that a uniform illumination of the field results in no 
net stimulus. In case of nonuniform illumination, a difference in illumination 
at the center and the periphery creates stimulations. Some receptive fields 
use color differences, such as red-green or yellow-blue, so the differencing of 
stimuli applies to color as well as to  brightness. There is further grouping of 
receptive field responses in the lateral geniculate bodies and the visual cortex 
for directional edge detection and eye dominance. This is low-level processing 
preceding the high-level interpretation whose mechanisms are unclear. Never- 
theless, it demonstrates the important role of differencing in the senses, which 
lies at  the root of contrast phenomena. If the retina is illuminated evenly in 
brightness and color, very little nerve activity occurs. 

There are 6 to 7 million cones, and 110 to 130 million rods in a normal 
human retina. Transmission of the optical signals from rods and cones takes 
place through the fibers in the optic nerves. The optic nerves cross a t  the 
optic chiasma, where all signals from the right sides of the two retinas are 
sent to  the right half of the brain, and all signals from the left, to the left 
half of the brain. Each half of the brain gets half a picture. This ensures that 
loss of an eye does not disable the visual system. The optical nerves end at 
the lateral geniculate bodies, halfway back through the brain, and the signals 
are distributed to the visual cortex from there. The visual cortex still has 
the topology of the retina, and is merely the first stage in perception, where 
information is made available. Visual regions in two cerebral hemispheres are 
connected in the corpus callosum, which unites the halves of the visual field. 

Neural Aspects of the Visual Sense 

1.4 COMPONENTS OF A N  IMAGE PROCESSING SYSTEM 

There are several components of an image processing system. The first major 
component of an image processing system is a camera that captures the images 
of a three-dimensional object. 



1.4.1 Digital Camera 

The sensors which are used in most of the cameras are either charge coupled 
device (CCD) or CMOS sensors. The CCD camera comprises a very large 
number of very small photo diodes, called photosites. The electric charges 
which are accumulated at  each cell in the image are transported and are 
recorded after appropriate analog to digital conversion. 

In CMOS sensors, on the other hand, a number of transistors are used for 
amplification of the signal at each pixel location. The resultant signal at each 
pixel location is read individually. Since several transistors are used the light 
sensitivity is lower. This is because of the fact that some of the photons are 
incident on these transistors (used for signal amplification), located adjacent 
to  the photo-sensors. The current state-of-the-art CMOS sensors are more 
noisy compared to  the CCD sensors. However, they consume low power and 
they are less expensive. 

In case of bright sunlight the aperture, located behind the camera lens, need 
not be large since we do not require much light, while on cloudy days when we 
need more light to  create an image the aperture should be enlarged. This is 
identical to the functioning of our eyes. Thc shutter speed gives a measure of 
the amount of time during which the light passes through the aperture. The 
shutter opens and closes for a time duration which depends on the requirement 
of light. The focal length of a digital camera is the distance between the focal 
plane of the lens and the surface of the sensor array. Focal length is the critical 
information in selecting the amount of required magnification which is desired 
from the camera. 

Fig. 1.4 Top and bottom fields in interlace scan. 

In an interlaced video camera, each image frame is divided in two fields. 
Each field contains either the even (top field) or odd (bottom field) horizontal 
video lines. These two fields are assembled by the video display device. The 
mode of assembling the top and bottom fields in an interlace camera is shown 
in Fig. 1.4. In progressive scan cameras on the other hand, the entire frame is 
output as a single frame. When a moving scene is imaged, such as in robotic 
vision, it is captured using strobe pulse to  illuminate the object in the scene. 
In such cases of imaging applications, progressive scan cameras are preferable. 
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Interlaced cameras are not used in such applications because the illumination 
time may be shorter than the frame time and only one field will be illuminated 
and captured if interlaced scanning is used. 

A digital camera can capture images in various resolutions, e.g., 320 x 240, 
or 352 x 288, or 640 x 480 pixels on the low to medium resolution range to  
1216 x 912 or 1600 x 1200 pixels on the high resolution size. The cameras 
that we normally use can produce about 16 million colors, i.e., a t  each pixel 
we can have one of 16 million colors. 

The spatial resolution of an image refers t o  the image size in pixels, which 
corresponds to  the size of the CCD array in the camera. The process of 
zooming an image involves performing interpolation between pixels to produce 
a zoomed or expanded form of the image. Zooming does not increase the 
information content in addition to  what the imaging system provides. The 
resolution, however, may be decreased by subsampling which may be useful 
when system bandwidth is limited. Sensor resolution depends on the smallest 
feature size of the objects in a scene that we need our imaging system to 
distinguish, which is a measure of the object resolution. For example in an 
OCR system, the minimum object detail that needs to  be discerned is the 
minimum width of line segments that constitute the pattern. In case of a line 
drawing, the minimum feature size may be chosen as two pixels wide. The 
sensor resolution of a camera is the number of rows and columns of the CCD 
array, while the field of view FOV is the area of the scene that the camera 
can capture. The FOV is chosen as the horizontal dimension of the inspection 
region that includes all the objects of interest. The sensor resolution of the 
camera = 2FOV/object resolution. The sensor resolution or sensor size is thus 
inversely proportional to the object resolution. The resolution of quantization 
refers to  the number of quantization levels used in analog to  digital (A/D) 
conversions. Higher resolution in this sense implies improved capability of 
analyzing low-contrast images. 

Line scan cameras use a sensor that has just a row of CCD elements. An 
image may be captured by either moving the camera or by moving the image 
being captured by the camera. The number of elements in a line scan camera 
ranges from 32 to 8096. Even a single detector moved in a scanning pattern 
over an area can also be used to  produce a video signal. A number of features, 
such as shutter control, focus control, exposure time control along with various 
triggering features are supported in cameras. 

1.4.1.1 Capturing colors in a digital camera There are several ways in which 
a digital camera can capture colors. In one approach, one uses red, green, 
and blue filters and spins them in front of each single sensor sequentially one 
after another and records three separate images in three colors at a very fast 
rate. Thus the camera captures all the three color components at each pixel 
location. While using this strategy an automatic assumption is that during 
the process of spinning the three filters, the colors in the image must not 
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change (i.e., they must remain stationary). This may not be a very practical 
solution. 

A practical solution is based on the concept of color interpolation or de- 
mosaicing, which is a more economical way to  record the three primary colors 
of an image. In this method, we permanently place only one type of filter 
over each individual photo-site. Usually the sensor placements are carried out 
in accordance to a pattern. The most popular pattern is called the Bayer's 
pattern [19], where each pixel is indicated by only one color-red, blue, or 
green pixel. It is possible to make very accurate guesses about the missing 
color component in each pixel location by a method called color interpolation 
or demosaicing [20, 211. We cover different methods of color interpolation in 
Chapter 3. 

In high-quality cameras, however, three different sensors with the three 
filters are used and light is directed to the different sensors by using a beam 
splitter. Each sensor responds only to  small wavelength band of color. Thus 
the camera captures each of the three colors at  each pixel location. These 
cameras will have more weight and they are costly. 

1.5 ORGANIZATION OF THE BOOK 

In this chapter, we introduced some fundamental concepts and a brief intro- 
duction to digital image processing. We have also presented few interesting 
applications of image processing in this chapter. 

Chapter 2 deals with the principles of image formation and their digital 
representation in order to  process the images by a digital computer. In this 
chapter, we also review the concepts of sampling and quantization, as well as 
the various image representation and formatting techniques. 

In Chapter 3,  we present the basics of color imagery. the color spaces and 
their transformation techniques. In this chapter, we also present a novel con- 
cept of color interpolation to  reconstruct full color imagery from sub-sampled 
colors prevalent in low-cost digital camera type image processing devices. 

Chapter 4 has been devoted to discuss various image transformation tech- 
niques and their underlying theory. Some of the popular image transforma- 
tion techniques such as Discrete Fourier Transform, Discrete Cosine Trans- 
form. Karhaunen-Loeve Transform, Singular Value decomposition, Walsh- 
Hadamard transform and their salient properties are discussed here. 

M'avelet transformation has become very popular in image processing ap- 
plications in recent times for its many salient features. Chapter 5 has been 
devoted to wavelet transformation. We discuss both the convolution and lift- 
ing based algorithms for implementation of the DWT. 

The importance of understanding the nature of noise and imprecision preva- 
lent in various types of images cannot be overemphasized. This issue has been 
detailed in Chapter 6. We present a number of algorithms for enhancement, 
restoration, and filtering of images in this chapter. 
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Image segmentation is possibly one of the most important tasks in image 
processing. Various edge detection schemes have been elaborated in Chap- 
ter 7. Region based segmentation strategies such as thresholding, region 
growing, and clustering strategies have been discussed in this chapter. 

Once an image is appropriately segmented, the next important task in- 
volves classification and recognition of the objects in the image. The vari- 
ous supervised and unsupervised pattern classification and object recognition 
techniques have been presented in Chapter 8. Several neural network architec- 
tures namely multilayer perceptron, Kohonen’s Self Organizing feature map, 
and counterpropagation networks have been discussed in this chapter. 

Texture and shape of objects play a very important role in image un- 
derstanding. A number of different texture representation and analysis tech- 
niques have been detailed in Chapter 9. In this chapter, we have also discussed 
various shape discrimination strategies with examples. 

In sharp contrast with the classical crisp image analysis techniques, fuzzy 
set theoretic approaches provide elegant methodologies which yield better 
results in many image processing tasks. We describe a number of image 
processing algorithms based on fuzzy set theoretic approaches in Chapter 10. 

In today’s world dealing with Internet, the application on content based 
image retrieval became important because of image search and other multime- 
dia applications. We introduce the concepts of content-based image retrieval 
and image miningin Chapter 11. 

Biomedical images like x-Ray, ultrasonography, and CT-scan images pro- 
vide sufficient information for medical diagnostics in biomedical engineering. 
We devote Chapter 12 to  biomedical image analysis and interpretation. In this 
chapter, we also describe two important applications of biometric recognition, 
viz., face recognition and signature verification. 

Remote sensing is one of the most important applications in image pro- 
cessing. We discuss various satellite based remotely sensed image processing 
applications in Chapter 13. 

In Chapter 14, we describe principles and applications of dynamic scene 
analysis, moving-object detection, and tracking. We also included recent de- 
velopments such as condensation algorithm and particle filtering for object 
tracking . 

Image Compression plays an important role for image storage and transmis- 
sion. We devote Chapter 15 to  describe the fundamentals of image compres- 
sion and principles behind it. There are many image compression techniques 
in the literature. However, adhering to  image compression standards is im- 
portant for interoperability and exchange of image data in today’s networked 
world. The international standard organization, defined the algorithms and 
formats for image compression towards this goal. We describe the JPEG 
standard for image compression in Chapter 16. 

In this era of internet and multimedia communication, it is necessary 
to incorporate new features and functionalities in image compression stan- 
dards in order to serve diverse application requirements in the market place. 
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JPEG2000 is the new image compression standard to  achieve this goal. In 
Chapters 17 and 18, we elaborate on the JPEG2000 standard, its applications 
and implementation issues. 

1.6 HOW IS THIS BOOK DIFFERENT? 

With the growth of diverse applications, it became a necessity to provide a 
fresh look at the contents of an introductory image processing book. In our 
knowledge there is no other book that covers the following aspects in detail. 

We present a set of advanced topics, in this book, retaining the classical 
ones. 

We cover several applications such as biomedical and biometric im- 
age processing, Content based image retrieval, remote sensing, dynamic 
scene analysis, pattern recognition, shape and texture analysis, etc. 

We include new concepts in color interpolation to produce full color from 
sub-sampled Bayer pattern color prevalent in today's digital camera and 
other imaging devices [21]. 

The concepts of Discrete Wavelet Transform and its efficient implemen- 
tation by lifting approach have been presented in great detail. 

In this era of internet and multimedia communication, there is necessity 
to incorporate many new features and functionalities in image compres- 
sion standards to serve diverse application. JPEG2000 is the new image 
compression standard to achieve this goal [15]. We devote two chapters 
on the JPEG2000 standard in great detail. 

We present the concepts and techniques of Content based image retrieval 
and image mining [ll]. 

The principles of moving-object detection and tracking, including recent 
developments such as condensation algorithm and particle filtering for 
object tracking [14] have been discussed in this book. 

Applications of dental and mammogram image analysis in biomedical 
image processing [9, 101 have been presented here. 

Both the soft and hard computing approaches have been dealt in greater 
length with respect to  the major image processing tasks [ll]. 

The fuzzy set theoretic approaches are rich to solve many image process- 
ing tasks, but not much discussions are present in the classical image 
processing books [22, 231. 
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We present the direction and development of current research in certain 
areas of image processing. 

We have provided extensive bibliography in the unified framework of this 
book. 

1.7 S U M M A R Y  

In this chapter, we have introduced the concepts, underlying principles, and 
applications of image processing. We have visited the role of eyes as  the most 
important visual sensor in the human and animal world. The components 
constituting a computer vision system are presented briefly here. The orga- 
nization of book and how this book is different from other image processing 
books currently in the market have also been discussed. 
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Image Formation and 
Representation 

2.1 INTRODUCTION 

There are three basic components of image formation, i.e. , the illumination, 
the reflectance models of surfaces which are imaged, and the process of image 
formation at the retina of human eyes or at  the sensor plane of the camera. 
Once the images are formed (which is a two-dimensional analog signal), the 
next process involves sampling and digitization of the analog image. The 
digital images so formed after all these processes need to  be represented in 
appropriate format so that they may be processed and manipulated by a 
digital computer for various applications. In this chapter, we discuss the 
principles of image formation and the various representation schemes. 

2.2 IMAGE FORMATION 

Understanding of physics of illumination is the first step of understanding of 
image formation. We start our discussion with the physics of illumination. 

2.2.1 Illumination 

Illumination is a fundamental component in the image formation process, 
which generates sense in our visual organ. Light produces the psychological 
sensation when it impinges on our eyes and excites our visual sense. The 
strength of this sensation, which is the sensation of brightness, can be quan- 
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tified by averaging the responses of many human observers. The average 
response, i.e., the psychovisual sensation is determined at  different spectral 
wavelengths. The peak spectral sensitivity of a human observer happens a t  
555 nm wavelength. If this sensitivity is normalized to  one, then the sensitiv- 
ity drops down to 0.0004 a t  the two ends of the optical spectrum (i.e., a t  400 
‘nm and 735 nm). 

It may be noted here that equal amounts of luminous flux produce equal 
brightness, which is proportional to  the logarithm of the luminous flux. Fech- 
ner’s Law defines the brightness by the relation 

F 

FO 
B = klog(-), 

where Fo is a reference luminous flux, measured in lumane (Im). The above 
relation shows that doubling the luminous flux does not double the apparent 
brightness. 

fig. 2.1 Differential solid angle formation. 

Let us consider a point source which emits luminous flux along radial lines. 
This point source of illumination may be anisotropic. A finite amount of 
radiation is emitted from the anisotropic point source in a finite cone. This 
cone has its vertex at  the point source 0, and its base of area dA a t  a distance T 

from the point source 0, the normal to dA making an angle 0 with the radius. 
Then, this cone is measured by the differential solid angle 

dA cos B 
r2 

dR = ~ 

measured in steradians as shown in Figure 2.1. It is positive or negative as 
the normal to  dA points outwards or inwards. 
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It  is clear that the total solid angle surrounding a point is 47r. The luminous 
intensity I of a point source is the ratio $, where F is the luminance flux. 
The luminous intensity is in general a function of direction and it is measured 
in candela (cd). If 1 lm (lumane) is emitted per steradian, the intensity is 1 
cd. An isotropic point source of intensity I candela emits 47rI lumane. 

The luminous flux incident on area dA from a source of intensity I is 

dA cos 6' 
dF = I- 

r2 ' 

as shown in Figure 2.1. This follows directly from the definition of I as 
luminous flux per unit solid angle and the definition of solid angle. If the 
source is an extended one, then this must be integrated over the source area. 
The luminous flux per unit area falling on a surface is called the illumination 
E of the surface, and is measured in lm/m2 (lumane per square meter), which 
is called a lux. For a point source, 

dF COSQ 

dA r2  

When a surface is illuminated, the response to incident light differs quite 
significantly, depending upon the nature of the surface. There are different 
types of surfaces with different characteristics. Some surfaces may be perfectly 
absorbing (e.g., black absorbing surfaces), which absorb the entire incident 
luminous flux and do not reflect any light. Other surfaces reflect the light 
incident on them. 

E =  -=I-.  

2.2.2 Reflectance Models 

Depending on the nature of reflection we group them in three categories- 
Lambertian, Specular, and Hybrid surfaces. 

0 Lambertian Reflectance: The Lambertian surfaces are those sur- 
faces from which light is reflected in all directions. The nature of such 
reflectance is a diffused one. The reflection from the wall painted with 
flat paints, papers, fabrics, ground surfaces are some of the examples 
of Lambertian reflection. The illuminated region of the surface emits 
the entire incident light in all directions covering solid angle 27r radians. 
The Lambertian surface appears equally bright from all directions (i.e., 
equal projected areas radiate equal amounts of luminous flux). Many 
real surfaces approach to  be nearly Lambertian. The reflectance map of 
the Lambertian surface may be modelled as 

I~ = E ~ A  cos e ,  
where Eo is the strength of the incident light source, A is the surface 
area of the Lambertian patch and Q is the angle of incidence. Such a 
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model applies better when the angle of incidence as well as the angle of 
reflection are both small. 

Specular Reflectance: A specularly reflecting surface, such as that 
of a metal or mirror reflects the light according to the laws of reflection 
(i.e., the angle of reflection is equal to  the angle of incidence). The 
reflectance from such a surface is known as specular reflection. 

0 Hybrid Reflectance Model: There exists another type of reflection, 
which are mostly found in display devices. These are known as Hazes. In 
the real world most of the surfaces we come across are neither Lamber- 
tian nor specular. They possess the combination of both the properties 
and are termed as h y b n d  surfaces. For example, the cathode-ray oscillo- 
scopes may be considered as having considerable specular reflection and 
very low to moderate Lambertian reflection. The specular components 
of reflection from these surfaces may be reduced by using antireflection 
coatings on these surfaces. The reflectance models from such surfaces 
may be described as 

where w is the weight of thp specular component of the hybrid surface, 
and I s  and IL are the specular and Lambertian intensities of the hybrid 
surface. 

The problem of sun glint and glare assumes importance while working 
with optical imagery of water, snow, or even roads. This problem in- 
creases as the sun angle increases. This is due to the specular reflection 
of light from the object surface. In scenes containing water body the 
glint increases at  high sun angle. At high sun angle much of the sunlight 
reaches the bottom of the water body and as a result the bottom of the 
water body gets illuminated and the potential for glint increases. The 
effect of glint depends on the sun angle, and also on the focal length 
and the field of view of the imaging devices. The glare is much more 
common over water, which has a much higher natural reflectance than 
vegetation. This can be seen on the waters. where the glare appears 
grayish-silver. 

I = W I S  + (1 - W ) I L ,  

2.2.3 Point Spread Function 

The basis of image formation can be explained by the p0in.t spread function 
(PSF). The PSF indicates how a point source of light results in a spread image 
in the spatial dimension. 

Let us assume that we want to find the image of a single point at  (x, 
y). If the imaging system is perfectly focused and without any stochastic 
disturbance, then all the photons from the point source will strike the detector 
focal plane at  the same point and will produce a point image. However, the 
resultant image of this point source will interestingly not be a point, or a 
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perfect copy of the point; but a blurred version of it. Usually the intensity 
at  the center will be maximum and it will progressively reduce away from 
the center, resulting in a Gaussian distribution function. The blurring results 
from several factors - the blurring may be due to  inappropriate focusing, 
imperfection of the lens, scatter of photons or the interaction of photons with 
the detector array. The resultant image is described in terms of its point 
spread function (PSF), as defined below 

L e s ( z ,  Y) = Ldz, Y) @ P ( z ,  Y) 

where @ is the convolution operation, and I,,, is the resultant image when 
the input image I i d  is convolved with the point spread function P(z,y) a t  
location (2, y). The width of the PSF decides the nature of the resultant 
image. 

Fig. 2.2 Example of point spread function. 

Thus if we know the point spread function, it is possible to  restore the 
image by deconvolution. We know that the convolution in the time domain 
is analogous to the multiplication in the frequency domain. In the Fourier 
Transform domain 

or 

where F (f(z, y))  represents the Fourier transform of the two-dimensional im- 
age function f(z, y) .  Thus given the Fourier transform of the resultant image 
along with the Fourier transform of the point spread function, we can recon- 
struct the original point object by taking the inverse transform of F (Iid(z, y)).  

Figure 2.2 shows the PSF of a typical imaging device. The width within 
which the PSF drops to half on both the sides of the center point is known 
as full width half maximum (FWHM). If now there are two points which 
are separated by a distance of FWHM or more, then the two points can be 
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distinguished in the image. Otherwise the points will be indistinguishable in 
the image plane. This is shown in Figure 2.3. The PSF is not necessarily 
symmetrical and it may have different spreads in different directions. 

Fig. 2.3 Indistinguishability of point sources. 

Often it is difficult to produce a perfect point source to  measure the point 
spread function. In this case a line or edge is often used instead, giving the 
line spread function (LSF), or edge response function (ERF). The line spread 
function is a simple extension of the concept of PSF. As in case of a PSF, 
profiles can be generated orthogonally through the line image! and as in case 
of PSF, FWHM is used for defining the resolution. 

2.3 SAMPLING A N D  Q U A N T I Z A T I O N  

Understanding the process of sampling and quantization is one of the key 
areas in image processing. A comprehensive and detailed description of the 
theory may be found in [l, 21. The phenomenal research of Shannon on the 
diverse aspects of communications in a noisy environment has led to the un- 
derstanding of the process of sampling continuous signals [ 3 ] .  The theories of 
image sampling and quantization have been investigated from two viewpoints. 
The two-dimensional images may be viewed as deterministic systems, where 
a continuous-valued image, representing the intensity or luminance at  each 
point of the image, is sampled by an array of Dirac-Delta functions of infinite 
size. The results of sampling and reconstruction of such a deterministic image 
field may be found in (41. In an alternative view images have been considered 
as samples of two-dimensional random processes. In this approach an image is 
viewed as a two-dimensional stationary random process with a certain mean 
and autocorrelation function. The practical images may always be viewed 
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as the ideal image with additive noise, which is modelled as a random field. 
Sampling of such a two-dimensional random field model of images has been 
discussed in [5]. 

Fig. 2.4 Two-dimensional sampling array. 

Let f(x, y) be a continuous-valued intensity image and let s(x, y) be a 
two-dimensional sampling function of the form 

The two-dimensional sampling function is an infinite array of dirac delta func- 
tions as shown in Figure 2.4. The sampling function, also known as a comb 
function, is arranged in a regular grid of spacing Ax and A y  along X- and Y 
axes respectively. The sampled image may be represented as 

fs(x, y) = f(x, Y)S(X, Y) 

The sampled image fs(z,y) is an array of image intensity values a t  the 
sample points (jAx, ICAy) in a regular two-dimensional grid. Images may be 
sampled using rectangular and hexagonal lattice structures as shown in Fig- 
ure 2.5. One of the important questions is how small Ax and A y  should be, so 
that we will be able to reconstruct the original image from the sampled image. 
The answer to  this question lies in the Nyquist theorem, which states that  a 
time varying signal should be sampled at  a frequency which is at least twice 
of the maximum frequency component present in the signal. Comprehensive 
discussions may be found in [l, 2, 4, 61. 

2.3.1 Image Sampling 

A static image is a two-dimensional spatially varying signal. The sampling 
period, according to  Nyquist criterion, should be smaller than or at the most 
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fig. 2.5 (a) Rectangular and (b) hexagonal lattice structure of the sampling grid 

equal to half of the period of the finest detail present within an image. This 
implies that the sampling frequency along x axis ul,, 2 2wk and along y axis 
wys 2 2w,”, where .I,“ and wy” are the limiting factors of sampling along x 
and y directions. Since we have chosen sampling of Ax along X-axis and Ay 
along Y-axis, Ax 5 + and Ay 5 -+. The values of Ax and Ay should 

be chosen in such a way that the image is sampled at  Nyquist frequency. If 
Ax and Ay values are smaller, the image is called oversampled, while if we 
choose large values of Ax and Ay the image will be undersampled. If the 
image is oversampled or exactly sampled, it is possible to reconstruct the 
bandlimited image. If the image is undersampled, then there will be spectral 
overlapping, which results in alaaszng effect. We have shown images sampled 
at  different spatial resolutions in Figure 2.6 to  demonstrate that the aliasing 
effect increases as the sampling resolution decreases. 

w r  

fig. 2.6 Images sampled at 256 x 256, 128 x 128 , 64 x 64, 32 x 32, and 16 x 16 
rectangular sampling grids. 
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If the original image is bandlimited in Fourier domain, and if the sampling 
is performed at the Nyquist rate, then it is possible to reconstruct the original 
image using appropriate sample interpolation. This property is valid in both 
the cases (i.e., for deterministic and random image fields). The theory of 
sampling in a lattice of two or more dimensions has been well documented 
in [7].  The aliasing errors caused by undersampling of the image has been 
discussed in [6] .  The aliasing error can be reduced substantially by using a 
presampling filter. Thus by choosing a filter which attenuates the high spatial 
frequencies, the errors get reduced. However, if there is any attenuation in 
the pass band of the reconstruction filter, it results in a loss of resolution of 
the sampled image [2]. Reports on the results of sampling errors using Fourier 
and optimal sampling have been presented in [8]. 

2.3.2 Image Quantization 

Conversion of the sampled analog pixel intensities to discrete valued integer 
numbers is the process of quantization. Quantization involves assigning a 
single value to  each sample in such a way that the image reconstructed from 
the quantized sample values are of good quality and the error introduced 
because of quantization is small. The dynamic range of values that the samples 
of the image can assume is divided into a finite number of intervals, and each 
interval is assigned a single level. Early work on quantization may be found 
in [9]-[11]. 

Some of the interesting questions are as follows: 

0 How many quantized levels are sufficient to  represent each sample? 

0 How do we choose the quantization levels? 

As the number of quantization levels increases, obviously the quantized 
image will approximate the original continuous-valued image in a better way 
with less quantization error. When the quantization levels are chosen equally 
spaced at  equal interval, it is known as uniform quantization. When the 
sample intensity values are equally likely to occur at different intervals, uni- 
form quantization is always preferred. In many situations, however, the image 
samples assume values in a small range quite frequently and other values infre- 
quently. In such a situation, it is preferable to use nonuniform quantization. 
The quantization in such cases should be such that they will be finely spaced 
in the small regions in which the sample values occur frequently, and coarsely 
spaced in other regions. The uniform and nonuniform quantization levels are 
shown in Figures 2.7(a) and 2.7(b) respectively. The process of nonuniform 
quantization is implemented by the process of companding, in which each sam- 
ple is first processed by a nonlinear compressor, then quantized uniformly and 
finally again processed by an expander before reconstruction of the original 
image [ll]. 
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output 

(4 (b) 

Fig. 2.7 Two-dimensional (a) uniform quantization (b) nonuniform quantization. 

2.3.2.1 Monochrome and Color Image Quantization In monochrome image 
quantization, we assign uniform length code to each image sample. If n is the 
number of code-bits assigned to  each sample, then the number of amplitude 
quantization levels M = 2n. This kind of code assignment is known as pulse 
code modulation (PCM) coding. The number of levels M is so chosen that 
the resultant image quality is acceptable to the human observers. The eye 
is able to discriminate the absolute brightness of only around 15 shades of 
gray values, however, it is more sensitive to  the difference in the brightness 
of adjacent gray shades. If we choose a reduced number of gray levels, the 
noticeable artifacts is a gray scale contouring. This contouring artifact occurs 
in an image where in some regions, the analog change in brightness is very 
slow. In the quantized image, however, this change in brightness appears as 
a step jump. This is shown in Figure 2.8, where the effect of reduction of the 
number of quantized levels is prominently observed, specially in those regions 
of the image where the brightness changes very slowly. 

A color image, represented by red, green, and blue components, is quan- 
tized in individual color bands. When each color component is linearly quan- 
tized over a maximum range into 2n levels, then each color sampled pixel is 
quantized in 3n bits, because it  requires n bits for each color component. 

2.4 BINARY IMAGE 

In light of the above discussion we may consider that  images may be binary, 
gray or color. The pixels in a binary image can assume only two values, 0 or 
1; a gray image may be quantized to  a number of intensity levels, depending 
on the application, while a color image may be quantized in different color 
bands. As the number of intensity levels increases, the image is represented to 
a better approximation, although the storage requirements also grow propor- 
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fig. 2.8 Image quantization: results of finer to coarser quantization. 

tionately. The binary images are thus least expensive, since the storage and 
also processing requirement is the least in case of binary images. Examples of 
binary images are line drawings, printed text on a white page, or silhouette. 
These images contain enough information about the objects in the image and 
we can recognize them easily. There are a number of applications in computer 
vision where binary images are used for object recognition, tracking, and so 
on. The applicability of binary images is, however, limited because the over- 
all information content in such images is limited. A gray level image may 
be converted to  a binary image by thresholding process. In the next section 
we will review some of the interesting properties and operations of a binary 
image [12]. 

2.4.1 Geometric Properties 

Geometric properties of a binary image such as connectivity, projection, area, 
and perimeter are important components in binary image processing. 

An object in a binary image is a connected set of 1 pixels. The following 
definitions related to  connectivity of pixels in a binary image are important. 
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0 Connected Pixels: A pixel PO at (i0,jo) is connected to another pixel 
P, at (i,,jn) if and only if there exists a path from PO to P,, which is 
a sequence of points ( i ~ , j o ) ,  (i~,jl), . . . , (i , , jn),  such that the pixel at  
(ik,jk) is a neighbor of the pixel at  (ik+l,jk+l) and Pk = Pk+1 for all 
k ,  0 < k < n -  1. 

0 4-connected: When a pixel at location ( i , j )  has four immediate neigh- 
bors at  ( i  + l,j), (i - l ,j),  ( i , j  + l), and ( i , j  - l), they are known as 
,$-connected. Two four connected pixels share a common boundary as 
shown in Figure 2.9(a). 

0 8-connected: When the pixel a t  location ( i , j )  has. in addition to above 
four immediate neighbors, a set of four corner neighbors at  (i + 1, j + l), 
(i + 1, j  - l), ( i  - 1, j  + l), and (i - 1 , j  - l), they are known as 8- 
connected. Thus two pixels are eight neighbors if they share a common 
corner. This is shown in Figure 2.9(b). 

0 Connected component: A set of connected pixels (4 or 8 connected) 
forms a connected component. Such a connected component represents 
an object in a scene as shown in Figure 2.9(c). 

0 Background: The set of connected components of 0 pixels forms the 
background as shown in Figure 2.9(c). 

Once an object is identified, some of the attributes of the object may be 
defined as follows. 

0 Area of a n  object: The area of a binary object is given by 

A = O[i,jl> 
a 3  

where O [ i , j ]  represents the object pixels (binary 1). The area is thus 
computed as the total number of object pixels in the object. 
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Location of object: The location of the object is usually given by the 
center of mass and is given as 

where x, and yc are the coordinates of the centroid of the object and 
A is the area of the object. In effect thus the location of the object is 
given by the first-order moment. 

Orientation of a n  object: When the objects have elongated shape, the 
axis of elongation is the orientation of the object. The axis of elongation 
is a straight line so that the sum of the squared distances of all the object 
points from this straight line is minimum. The distance here implies the 
perpendicular distance from the object point to  the line. 

Perimeter of an  object: To compute the perimeter of an object, we iden- 
tify the boundary object pixels covering an area. Perimeter is defined 
by the sum of these boundary object pixels. 

Projection of an object onto a line: The projections of a binary image 
provide good information about the image. The projections may be 
computed along horizontal, vertical, or diagonal lines. The horizontal 
projection is obtained by counting the number of object pixels in each 
column of the binary image, while the total number of object pixels in 
each row yields the vertical projection as follows: 

In Figure 2.10, we show the histograms of the binary object along the 
horizontal and vertical axes in terms of number of object pixels pro- 
jected in the corresponding axis. Each square in the grid in the object 
represents an object pixel. Sum of the counts of projected pixels in ei- 
ther axis gives the area of the binary object. From Figure 2.10, it can 
be validated that Phor = Pv,, = 59 which is the area of the object. If 
there exists only one object in the scene, either of Phor or P,,, yields 
the area of the object. 

I t  should be noted that different images may have the same projection and 
hence the projection is not a unique attribute of an object. 

2.4.2 

One efficient way to represent an object in a binary image is by chain codes. 
Each boundary pixel of an object has at least one adjacent neighboring bound- 
ary pixel such that the direction of the next boundary pixel from the current 

Chain code representation of a binary object 
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fig. 2.10 Histogram of a binary object along horizontal and vertical axes. 

one is specified by a unique number between 1 and 8. Each number represents 
one of eight possible directions as shown in Fig 2.11(a). The representation 
is efficient because each direction can be encoded by only 3 bits. The par- 
tial chain code of the boundary for the head-and-shoulder binary image in 
Fig 2.11(b) is " ....... 7 7 7 7 7 7 8 7 7 7 8 77 77 7 7 7 8 7 7 8 7 7 7 7 7 7 7 7 8 7 7 
8 8 7 8 7 8 8 8 1 8 8 8 1 8 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 8 8 1 1 8 8 1 8 1 8 1 8 1 7 7  
1 7 1 7 7 7 7 7 7 7 7 7 7 6 7 6 6 6 7 6 6 7 7 7 7 ......... 7 7 .  Figure 2.11(c) shows the 
dominant vertices along the head-and-shoulder contour of the binary image. 

7 

(a) (b) (c) 

fig. 2.11 (a) chain code, (b) binary image, (c) dominant vertices along the contour. 
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Now given two shape patterns of two objects in a binary image and their 
chain codes, we can get a similarity measure to  determine similarity in shape 
and orientation between the objects. 

Let C' and C" be two chain codes of length m and n respectively and 
m 5 n, the cross correlation between the two chain codes is given by 

. 7 l  

The value of j at which R c ~ p ( j )  assumes maximum value, yields the chain 
code segment of C" that best matches C' It is easy to  note that when C' and 
C" are exactly identical the cross correlation between them is 1. 

There are other interesting features which provide adequate information 
about a binary image. Some of these are moments, compactness, Euler num- 
ber, medial axis and so on. Also a number of interesting operations, known as 
morphological operations provide rich information about the shape of a binary 
image. These find number of applications in image processing as discussed in 
Chapters 7 and 9. 

2.5 TH R EE- DI M ENS I ON A L I M A G  IN G 

Three-dimensional imaging using stereo vision finds a number of applications 
(e.g., industrial inspection of three-dimensional objects, biomedical imaging, 
creating three-dimensional database of city, regional planning, image based 
rendering, etc.). 

2.5.1 Stereo Images 

The human eye has a remarkable property of three-dimensional perception 
of the world around us. We use two images of the same object captured by 
both our eyes and combine them to get a three-dimensional perception. There 
are several techniques to  extract three-dimensional information using various 
sensors like radar sensors, acoustic sensors, laser range finders, etc. In the use 
of stereo vision, we can use two images of the object using two cameras and 
combine them to get the depth perception as in case of human vision. There 
exist a number of algorithms which yield the depth information from such 
stereo images. The principle involved in these algorithms is that of finding 
the same feature from both the images captured from left and right cameras 
and then measuring the depth using triangulation technique. 

The process of triangulation involves intersecting the lines of sight from 
each camera to  the object. As a matter of fact, identifying the same point in 
the original image from two stereo images (i.e., establishing correspondence 
between two image points), which are the projections of the same point in the 
original image is an interesting problem in computer vision. Figure 2.12 shows 
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Fig. 2.12 Stereo image pair (a) from left camera and (b) from right camera. 

Fig. 2.13 The depth map image from a range camera 

the pair of a stereo image (left and right). Once we determine the distance 
maps of the scene, a number of shape features or volumetric features can be 
extracted from the object. 

2.5.2 Range Image Aquisition 

In contrast to the intensity capturing cameras, e.g., CCD or CMOS sensor 
based cameras that we have described so far, there is a distinctly different 
type of camera known as the range camera, which captures a raster image of 
depth information about a three-dimensional object. Using the range camera 
we do not record the intensity or the color information of the object to be 
imaged. On the contrary, a range camera yields an image, where each image 
location gives a measure of the range or depth or distance of the object point 
from the camera plane. As in the case of quantization of intensity images here 
also the range or depth values are quantized in say 256 levels. The quantized 
distance or the range values are displayed as a gray scale image, such that 
each intensity value gives a measure of the distance. These cameras provide 
two-and-a-half-dimensional image, in contrast to  the three-dimensional one, 
which provides complete three-dimensional information of the image. It may 



IMAGE FILE FORMATS 33 

be noted here that MRI images yield complete three-dimensional information. 
The range cameras are again of several types. The laser range finder uses a 
single optical beam and computes the depth information from the time delay 
between the incident and the reflected pulse of laser beam. In continuous scan 
case, the phase shift is measured. The laser beam sweeps across the entire 
field of view in equiangular increments, say 60 degree x 60 degree, and for 
achieving this objective two mirrors are used. 

In another version of range cameras, using structured lights, two optical 
paths are used. The depth information is computed in such scanners using 
the method of triangulation. The example of depth map image (depth map 
of the image in Figure 2.12) from a range camera is shown in Figure 2.13. 
The color version of this figure is provided in the color pages to show different 
segments in distinct colors. 

2.6 IMAGE FILE FORMATS 

There are a number of file formats in which one may store the images in 
files and retrieve them from files. These are known as image file format stan- 
dards. Here we will present some of the most popularly used Image file format 
standards. 

Tagged Image Format (.tif, .tiff): The .tif format is a very broad format, 
which can handle anything from bitmaps to compressed color palette 
images. The tzo format supports several compression schemes, but is 
often used for uncompressed images as well. This format is popular, 
relatively simple, and allows color. 

Portable Network Graphics (.png): This is an extensible file format that 
provides lossless, well-compressed storage of raster images. This simple 
format covers the major functionalities of .tiff. Gray scale, color palette, 
and full-color (true-color) images are supported by this file format. I t  
supports an optional alpha channel, and depths from 1 to 16 bits per 
channel. 

JPEG (.jpg): It  is the most widely used standard for transmission of pic- 
torial information and includes a variable lossy encoding as part of the 
standard, set by a quality parameter. 

MPEG (.mpg): This format is extensively used throughout the Web and is 
used only for motion images. This uses compression, yielding only lossy 
videos. 

Graphics Interchange Format (.gif): This format supports 8-bit color palette 
images and is not very popular among the image processing researchers. 

RGB (.rgb): This is an image file standard from Silicon Graphics for color 
images. 
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RAS (.ras) This is an uncompressed scan-out of three color bands for Sun 

Postscript (.ps, .eps, .epsf): This image format is mainly used while intro- 
ducing images or figures in a book or note and for printing. In postscript 
format, gray level images are represented by decimal or hex numerals 
encoded in ASCII. 

Raster images. 

Portable Image File Formats: Some of the most commonly used image 
file formats are Portable Image Formats, which include Portable Bitmap, 
Portable Graymap, Portable Pixmap, and Portable network map. The 
default suffixes for these formats are .pbm, .pgm, .ppm, and .pnm. These 
formats are a convenient method of saving and reading the image data. 
These are some of the image formats which support all kinds of images 
of increasing complexity-from bits to gray levels to  color pixmaps of 
various sorts. 

PPM: A PPM file consists of two parts, a header and the image data. The 
header consists of a t  least three parts. The first part is a magic PPM 
identifier. The PPM identifier can be either P3 (for ASCII format image 
data) or P6 (data in binary format). The next part consists of the width 
and height of the image as ASCII numbers. The last part of the header 
gives the maximum value of the color components for the pixels. In 
addition to the above, a comment can be placed anywhere with a # 
character; the comment extends t o  the end of the line. 

PGM: This format is identical to the above except it stores gray scale in- 
formation, that is, one value per pixel instead of three (r, g, b). The 
only difference in the header section is the magic identifiers which are 
P2 and P5; these correspond to the ASCII and binary form of the data 
respectively. 

PBM: PBM stores single-bit pixel image as a series of ASCII 0 or 1’s. Tradi- 
tionally 0 refers to  white while 1 refers to black. The header is identical 
to PPhl  and PGM format except there is no third header line (the max- 
imum pixel value doesn’t have any meaning). The magic identifier for 
PBhI is P1. 

2.7 SOME IMPORTANT NOTES 

There are some important notes which need to be remembered while designing 
an image processing system. It  is important to ensure that the appropriate 
imaging system is set up before capturing an image. If the illumination level 
is low, it may lead to  underexposure of the sensor while too much illumination 
can lead to overexposure. Both under and overexposed images need prepro- 
cessing for detecting objects in a scene. I t  is also important to choose correct 
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sensor resolution so that the captured images have adequate object resolution 
which help in automated recognition. 

An image is represented by a two-dimensional matrix of size M x N .  It  
is convenient to choose the topmost and leftmost point as the origin (0, 0) 
and coordinates of all other pixels are assigned accordingly. Quite frequently, 
we perform local operation inside a 3 x 3 or sometimes larger neighborhoods. 
Every pixel in an image, except those at  the borders has two horizontal two 
vertical and four diagonal neighbors, totaling 8 neighbors. Only the pixels on 
the borders have five neighbors. In such situations, there are three possible 
options: 

1. We may pad up the entire image on all the sides with zero gray value 
pixels, making it a (Ad + 1) x ( N  + 1) image. 

2. We may ignore the pixels on the boundary and perform the operations 
on the inner pixels only. 

3. The image may be considered as cyclically closed, which means that the 
last column is adjacent to the first column and last row is adjacent to 
the first row. 

We categorize the low level image processing operations into following three 
different types. 

1. Type 0 operation: If the output intensity level at  a certain pixel is strictly 
dependent on only the input intensity level at  that point, such an op- 
eration is known as type 0 or a point  operation. Point operations are 
quite frequently used in image segmentation, pixel classification, image 
summing, differencing, etc. 

2. Type 1 Operations: If the output intensity level at  a pixel depends on 
the input intensity levels of the neighboring pixels as well, then such 
operations are termed type 1 or local operations. Examples of local 
operations are Edge detection, image filtering, etc. 

3. Type 2 operations: If the operations are such that the output level at  a 
point is dependent on some geometrical transformation, these operations 
are termed type 2 or Geometrical operations. 

2.8 SUMMARY 

In this chapter we have discussed the theory of digital Image formation, their 
representation and various image formats in which the digital images can be 
stored in the computer. We have discussed the role of illumination and the 
different reflectance models, which are the two most important components 
of image formation. The principal ideas behind formation of digital images 
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are based on the concepts of sampling and quantization. We have discussed 
these concepts in this chapter. Some of the important properties of binary 
images have also been discussed here. 
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3 
Color and Color Imagery 

3.1 INTRODUCTION 

Color is important visual information which keeps humans fascinated since 
birth. Light (chromatic information) reflected from an object is absorbed by 
the cone cells of our visual system and ultimately leads to  a perception of color. 
There are three cone classes in the human vision system to  perceive color. 
The light reflected from the object leads to different amounts of absorptions 
in these three classes of cones in the human eye. The interpretation of these 
cone absorptions by our nervous system is the basis of our color perception. 
So color is a perceptual representation of the surface reflectance of an object. 

In addition to shape, texture, and other low-level image features color 
information is an important feature which has been successfully used in many 
image processing applications such as object recognition, image matching, 
content-based image retrieval, computer vision, color image compression, etc. 
Color science still remains a challenging field of study in the computer vision 
and digital image processing community today [1]-[3]. In this chapter, we 
briefly describe the principles behind the perception of colors by the human 
visual system and then describe the important color space transformation 
techniques suitable for digital image processing. We describe the interpolation 
of color to  restore full color from subsampled color information that is common 
in most of the color digital cameras and other imaging devices. 

37 
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3.2 PERCEPTION OF COLORS 

The human eyc is sensitive to  electromagnetic radiation in wavelengths rang- 
ing from 400 nm (violet) to 770 nm (red) [2]. The spectral response of the 
human eye is shown in Figure 3.1. It  may be seen from Figure 3.1 that the eye 
responds to only a small spectral wavelength in the optical band of the entire 
electromagnetic spectrum. The machine vision systems today, however, can 
respond to a much larger extended spectrum ranging, from 780 nm to 1400 
nm in the near-infrared range, 1400 nm to 3300 nm in mid-infrared, 3 to  10 
pm in far-infrared and also 100 nm to  380 nm in ultraviolet light range. This 
has been possible because of the availability of a large range of special sensors 
available for recording these signals. 

1 .o T 

f ig. 3.1 Spectral response of human eye. 

A color image can be represented as a function C(z, y,  t ,  A).  I t  is thus a 
function of the location (z,y), wavelength X of the reflected light, and also 
of time in case of a dynamic image. When an image is captured in a fked 
wavelength A ,  it is called a monochromatic image. 

The existence of three spectral sensitivity functions VR(X), VG(A), and 
VB(X) provides a basis for color vision. In fact the monochromatic lights 
at  430, 530, and 560 nm at which the eye responses are maximum are not 
exactly blue, green, and red respectively, and some researchers prefer to use 
the nomenclature of short-, medium-, and long-wavelength cones instead of 
R, G,  and B cones. The cones provide us with color vision (photopic vision) 
that can distinguish remarkably fine wavelength changes. The relative spectral 
sensitivity of the eye has been measured as the function of the wavelength. The 
measurements reveal that human eyes have peak scotopic spectral sensitivity 
at  wavelength 507 nm and peak photopic spectral sensitivity at  wavelength 
555 nm as shown in Figure 3.1. 

The object in the scene as perceived by human eyes or the camera system 
is characterized by its radiance R(A, x, y, t ) ,  where X is the wavelength of the 
electromagnetic radiation a t  position (2, y)  and at  time t for a particular 
color. There exists a direct relationship between the physical stimulii from 
the object, say the luminance of a display device, and the subjective human 
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perception, say the response of a human being. The relationship was first 
formulated by Weber in his law, which states that 

- = k  WL 

L 

where WL is the just noticeable difference in the brightness or luminance which 
is required to perceive a difference between L and L + WL. The constant k 
assumes an approximate value 0.015. It is obvious that as the brightness L 
increases, WL also increases, for k to  be constant. This implies that for large 
values of luminance L,  a larger increase in luminance WL is required for dis- 
tinguishing two objects of luminance L and L + WL respectively. The just 
noticeable difference is, however, much smaller a t  the lower values of lumi- 
nance. The relationship between the stimulus and the observer’s perception 
is not linear. Experimental investigations show that Weber’s law is valid only 
for intermediate luminance values and not for very high or low luminance Val- 
ues. The relationship between the perceived brightness B and the luminance 
L is logarithmic (i.e., B 0: log L) .  

3.3 COLOR SPACE QUANTIZATION A N D  JUST NOTICEABLE 
DIFFERENCE (JND) 

The availability of a large number of colors in the images causes problems 
in many image processing applications. Large redundancy, nonlinearity, and 
huge color space dimensionality in the real-life color image data reduces the 
efficiency of color image processing, coding, and analysis algorithms. Reduc- 
tion in the number of colors reduces the search space and hence improves the 
convergence time considerably. After removing the redundancy and reducing 
the number of colors in a digital color image, the efficiency of the algorithms 
may considerably increase. The process of representing the complete color 
space using a comparatively few representative colors without compromising 
much on the image quality is widely known as  quantization or sampling the 
RGB color space. The RGB color space may be nonlinearly sampled to  reduce 
the redundancy in colors and to  reduce the color space dimensionality [4, 51. 

The modern computer graphics systems may be able to generate millions 
of colors while a sound vision observer (as defined by CIE) can respond to  
only 17,000 colors at  the maximum intensity. Thus the huge space containing 
millions of colors may be mapped on to  a new space containing approximately 
17,000 colors by maintaining the same perceptual quality of the image, sim- 
ulating the human color vision performance. The red color cones have min- 
imum spectral sensitivity, green color cones have the maximum sensitivity, 
while blue color cones have moderate but near to green sensitivity. One may 
use 24 samples in each basic color shade for color rendition experiments. Tak- 
ing into consideration the spectral sensitivity of the color cones, nonuniform 
sampling of the color space yields better results for accommodating approxi- 
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mately 17,000 colors in the RGB space. Thus 24 quantization levels on R-axis, 
26 levels on B-axis and 28 levels on G-axis yields better sampling. 

Use of a sampling theorem in this direction has not yet been fully explored. 
New approaches have been suggested which modifies the color space itself 
considering the physiological limitations of human color vision. Thus the RGB 
space is transformed into a new color space with much less dimensionality. 

According to the three color theory of Thomas Young, all the colors are 
perceived by our visual system as linear combination of the basic colors. The 
response curves of the three cones (i.e., red, green, and blue cones) against the 
wavelength are presented in (41. A human eye can discriminate between two 
colors if they are at  least one just noticeable difference away from each other. 
Actual value of the just noticeable difference (JND) in terms of coordinates 
may not be constant over the RGB space due to  nonlinearity of human vision 
and the nonuniformity of the RGB space. At higher illumination, the color 
sensing power of the eye is more if it has not been saturated. The constants 
in Buchsbaum's nonlinearity equation take care of the eye adaptation con- 
ditions and the illumination conditions. Buchsbaum started his work with 
the findings of Weber and analytically derived the visual nonlinearity in the 
logarithmic form. Though his predicted logarithmic behavior is supported by 
physiological literature, it does not consider the saturation behavior shown 
by the human vision at  high intensities [5, 61. 

3.4 COLOR SPACE AND TRANSFORMATION 

A number of color spaces or color models have been suggested and each one of 
them has a specific color coordinate system and each point in the color space 
represents only one specific color [ 2 ,  3, 71. Each color model may be useful for 
specific applications. Typical color images, particularly those generated by a 
digital imaging system, are represent,ed as red, green, blue and are normally 
called RGB images. They are useful for color monitors, and video cameras. 
An RGB color image, represented by 8 bits of R, G, and B pixels has 2563 or 
16,777,216 colors. There are a number of such color spaces like CMYK, HSV, 
HIS, or LUV, etc. 

3.4.1 CMYK space 

Another interesting color model utilizes CMYK (cyan, magenta, yellow, and 
black) and this model finds utility in color printers. Most of the output devices 
including color printers or copiers use CMY color model. Just as the primary 
additive colors are red, green and blue, the primary colors of pigments on the 
other hand are magenta, cyan and yellow and the corresponding secondary 
colors are red, green and blue. The conversion from RGB to  CMY may be 



COLOR SPACE AND TRANSFORMATION 41 

Derformed as [:]=[!]-[!I. 
where R, G, B represent the normalized color values in the range 0 t o  1. 

It may be easily verified from the above that a cyan coated surface does not 
contain red, or a surface pigmented by magenta is devoid of green. It may also 
be noted that equal amounts of pigments primaries (e.g. cyan, magenta, and 
yellow) produces black. Thus a four-color system cyan ( C ) ,  magenta ( M ) ,  
yellow ( Y ) ,  and black ( B )  forms a four-color model. 

3.4.2 

In this color space (also known as YIQ color space), the luminance information 
Y represents the gray scale information, while hue ( I )  and saturation (Q) carry 
the color information. The conversion from RGB to YIQ is 

NTSC or YlQ Color Space 

.299 .587 .114 [ 31 = [ .596 -.274 -.322 ] [ i ]  . (3.2) 

.211 -.523 .312 

The elements of the first row when added become unity and the elements 
in the second and third row sum to 0. Thus in a gray scale image, where 
R = G = B ,  the color components I and Q are zero. The NTSC color space 
is used in television. 

3.4.3 YCbCr Cotor Space 

In this color space, Y is the luminous component while Cb and C, provide the 
color information. The color information is stored as two color difference com- 
ponents Cb and C,. This color space is used in digital video. The information 
from RGB to  YCbC, is as follows: 

24.966 ] [ i ]  . (3.3) 
65.481 128.553 [ g ]  = [ :2"h] + [ -37.797 -74.203 112.00 

128 112.00 -93.786 -18.214 

3.4.4 Perceptually Uniform Color Space 

Although both RGB and CMYK color models are extremely useful for color 
representation, color processing, and also for development of hardware, these 
models are in no way similar to  the human vision model. 

One of the major limitations of the RGB color space is that it is a nonuni- 
form one. Uniform color space is one in which the Euclidean color distance 
between two color points at  any part of the color space corresponds to the 



42 COLOR AND COLOR IMAGERY 

perceptual difference between the two colors by the human vision system. In 
nonuniform color spaces, on the other hand, two different colors at a distance 
d apart in one part of the color space does not exhibit the same degree of 
perceptual difference as two other colors a t  the same distance apart in an- 
other part of the color space. In imaging applications, perceptually uniform 
color spaces are of great importance. Based on the physiological knowledge 
of human vision, the nonuniform RGB space needs to  be mapped into new 
perceptually uniform spaces. 

3.4.4.1 Color is an attribute of visual perception and can 
be described by many color names like red, green, yellow, white, gray, black, 
and so on. Like colors, hue is also an attribute of human perception and 
can be described as red, green, blue, purple, and yellow as primary hues or 
any intermediate combinations of the primary hues. Interestingly, although 
black, white, and gray are considered as colors, according to CIE (Commission 
International de 1’Eclairage) they are not hues. From the above discussions 
thus we can consider there are two classes of perceived colors: (1) chromatic 
colors (i.e., the hues which do not include black, white and gray) and (2) 
achromatic colors, which are not hues (i.e., black, white, and gray). 

Colors and Hues 

3.4.4.2 HSV Color Space HSL or HSI is one color space, which describes 
colors as perceived by human beings. HSI (or HSV) stands for hue (H), 
saturation (S) and intensity (I) (or value V). 

Hue has been already mentioned as a color property of light. I t  may also 
be conceived as a property of the surface reflecting or transmitting the light. 
For example, a blue car reflects blue hue. Moreover it is also an attribute of 
the human perception. 

The hue which is essentially the chromatic component of our perception 
may again be considered as weak hue or strong hue. The colorfulness of a 
color is described by the saturation component. For example, the color from 
a single monochromatic source of light, which produces colors of a single 
wavelength only, is highly saturated, while the the colors comprising hues of 
different wavelengths have little chroma and have less saturation. The gray 
colors do not have any hues and hence they are zero saturation or unsaturated. 
Saturation is thus a measure of colorfulness or whiteness in the color perceived. 
The lightness ( L )  or intensity ( I )  or value ( V )  essentially provides a measure 
of the brightness of colors. This gives a measure of how much light is reflected 
from the object or how much light is emitted from a region. It is proportional 
to the electromagnetic energy radiated by the object. The luminosity (or 
intensity) essentially helps human eye to perceive color. A colorful object in 
dark doesn’t appear colorful at  all. 

Another method of expressing the colors in an image is Principal Gom- 
ponent Transform (PCT), which examines all the RGB vectors of an image 
and finds the linear transformation that aligns the coordinate axes, so that 
most of the information is along one axis, called the principal axis. PCT 
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color spaces help in image compression as we can get about 90% or more 
of the information into one band. However, in computer vision applications, 
the images obtained by the systems are readily in RGB form. Thus one may 
use either RGB format or any other formats, so that the work can be easily 
ported to  other color representation systems using appropriate mathematical 
transformations. 

3.4.4.3 The HSV image may be 
computed from RGB using different forms of transformations. Some of them 
are as follows: 

RGB to HSV Color Space Transformation 

0 The simplest form of HSV transformation is 

min( R, G ,  B )  R + G + B  , v =  
3 V 

, s = 1- 1 3(G - B )  
( R  - G )  + ( R  - B )  

H = tan 

However, the hue ( H )  becomes undefined when saturation S = 0. 

0 The most popular form of HSV transformation is shown next, where the 
T ,  g, b values are first obtained by normalizing each pixel such that 

B , b =  
R G 

R + G + B  g = ~ + ~ + ~  R + G + B ’  
r =  

Accordingly, the H ,  S ,  and V values can be computed as 

0 i f V = 0  

V - 7  i f V > 0 ,  
s=  { (3.5) 

min(r,g.b) 

i f S = O  

i f V = r  

H = \  60* [ 2 + =  1 i f V = g  

I 60* “ I  4 + s  i f V =  b, 

H = H+360 if H < 0. (3.7) 

The results obtained by using either of the above transformations yield rea- 
sonably good results. 
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V 
A 

Fig. 3.2 Perceptual representation of HSV color space. 

The perceptual representation of the HSV color space has a conical shape, 
as shown in Figure 3.2. The Value ( V )  varies along the vertical axis of the 
cone, the Hue ( H )  varies along the periphery of the circle of the cone and 
is represented as an angle about the vertical axis, and the Saturation ( S )  
varies along the radial distance as shown in Figure 3.2. We have shown the 
vertices a hexagon on the periphery of the circle in Figure 3.2 to show six 
colors separated by GO" angles. Red is at  0" (coincides with 300"), Yellow 
at 60", Green at  120", Cyan at  180°, Blue at  240". and Magenta at  300". 
The complementary colors are 180" apart. For example, Blue and Yellow 
are the complementary colors. Apex of the cone (V = 0) represents Black. 
Again. V = 1 and S = 0 represents White. The colors have their maximum 
luminosity (V = 1) at the periphery of the circle. V = 1 and S = 1 represent 
the pure hues for any color. 

3.4.5 CIELAB color Space 

The CIELAB color space, which was adopted as an international standard 
in the 1 9 7 0 ~ ~  by CIE is indeed a perceptually uniform space. The Euclidean 
distance between two color points in the CIELAB color space corresponds to 
the perceptual difference between the two colors by the human vision system. 
This property of the CIELAB color space has made it particularly attractive 
and useful for color analysis, and the superiority of the CIELAB color space 
over other color spaces has been demonstrated in many color image applica- 
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tions. For example the CIELAB color space has been successfully used for 
color clustering. In this approach the color difference in the CIELAB color 
space has been used in the computation of the dissimilarities between colors 
and this has been used for color clustering. The color difference formula in the 
CIELAB color space is used in the computation of the dissimilarities between 
colors and the formulation of the color membership function. 

3.4.5.1 RGB to CIELAB Color Space Transformation The transformation from 
RGB to  CIELAB is as follows [2, 71: 

X = 0.412453R + 0.357580G + 0.180423B 

Y = 0.212G71R + 0.715160G + 0.0721G9B 

2 = 0.019334R + 0.119193G + 0.950227B 

Based on this definition, L*a*b* is defined as 

L* = llGf(Y/Yn) - 16 

a* = 500[f(X/Xn) - f(Y/KJI 

b* = 200[f(Y/Yn) - .f(Z/zn)] 

where 
g'/s if q > 0.008856 

= { 7.787q + 16/116 otherwise 

X,,Y,, and 2, represent a reference white as defined by a CIE standard 
illuminant, DG5 in this case, and are obtained by setting R = G = B = 100 

( 4  E {$, g, &I). 

3.5 COLOR INTERPOLATION OR DEMOSAICING 

Due to the cost and packaging consideration, in digital imaging devices such 
as a digital camera, the image color is captured in a subsampled pattern. 
Typically each pixel in the captured raw image contains only one of the three 
primary color components, R (Red), G (Green), or B (Blue). This subsampled 
color image is generated using certain pattern of a Color Filter Array (CFA). 
This CFA is realized by coating the surface of the electronic sensor array using 
some optical material that  acts as a band-pass filter. This coating allows the 
photons corresponding to only one color component to be transmitted to the 
sensor. A typical and widely used CFA pattern is called Bayer Pattern [S]. 
In Figure 3.3, we have shown a Bayer pattern image of dimension 8 x 8. 
Each cell in Figure 3.3 represents a pixel with only one color component as 
indicated by either R or G or B. 

A full-color image needs the information of all the three colors in each 
pixel location. As a result, it is essential t o  interpolate the missing two col- 
ors in each pixel location using the information of the neighboring pixels. 
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Fig. 3.3 Bayer pattern. 

The methodology to  recover or interpolate these missing color components is 
known as color interpolation or color demosaicing [9]-(111. Color interpolation 
algorithms can be broadly classified into two categories: 

1. Nonadaptive algorithms: In nonadaptive color interpolation algo- 
rithms, a fixed pattern of computation is applied in every pixel location 
in the subsampled color image to  recover the missing two color compo- 
nents. 

2. Adaptive algorithms: In adaptive color interpolation algorithms, in- 
telligent processing is applied in every pixel location based on the charac- 
teristics of the image in order to recover the missing color components. 
This type of algorithm yields better results in terms of visual image 
quality as compared with the nonadaptive algorithms. 

3.5.1 Nonadaptive Color lnterpolation Algorithms 

In this section, we review some nonadaptive color interpolation algorithms 
reported in the literature. These algorithms are simple to implement and their 
computational requirements are much lower than the nonadaptive algorithms. 

3.5.1.1 In this simple method [ll, 121, each 
missing color is approximated by nearest pixel representing that color in the 
input image. The nearest neighbor can be any one of the upper, lower, left, 
and right pixels. The only advantage of this approach is that  the computa- 
tional requirement is very small and suitable for applications where speed is 
very crucial. However, the significant color errors make it unacceptable for a 
still imaging system, such as high-resolution digital cameras. 

Nearest Neighbor Replication 

3.5.1.2 Bilinear lnterpolation In this algorithm [ll], a missing color com- 
ponent is interpolated by linear average of the adjacent pixels representing 
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the missing color. As an example, the pixel coordinate (4, 7 )  in Figure 3.3 
contains BLUE component only. Hence the missing GREEN component at 
pixel coordinate (4, 7 )  can be estimated as average of the left, right, top, and 
bottom GREEN pixels at pixel coordinates (4, S), (4, 8), (3, 7 ) ,  and (5, 7 )  
respectively. The missing RED component can be estimated as average of the 
four diagonally adjacent corner RED pixels at coordinates (3, 6), (3, 8), (5, 
6), and (5, 8) respectively. 

This method is very simple, but the results suffer from pixel artifacts (e.g., 
zipper effect) introduced in the neighborhood of the interpolated pixels. This 
may be acceptable in a moderate quality video application because the artifact 
may not be immediately visible by the human eye due to the effect of motion 
blur, but is not acceptable in still imaging applications. 

3.5.1.3 Median lnterpolation Median interpolation [13] allocates the missing 
color component with the “median” value of the color components in the 
adjacent pixels, as opposed to the linear average used in bilinear interpolation. 
This provides a slightly better result in terms of visual quality as compared 
with the bilinear interpolation. However, the resulting images are still blurry 
and not acceptable for high-quality imagery. 

3.5.1.4 Smooth Hue Transition lnterpolation The key problem in both bilin- 
ear and median interpolation is that the hue values of adjacent pixels change 
suddenly because of the nature of these algorithms. On the other hand, the 
Bayer pattern can be considered as a combination of a luminance channel 
(green pixels, because it green contains mostly luminous information) and 
two chrominance channels (red and blue pixels). The smooth hue transition 
interpolation algorithm [14] treats these channels differently. The missing 
GREEN component in every RED and BLUE pixel in the Bayer pattern can 
first be interpolated using bilinear interpolation. The idea of chrominance 
channel interpolation is to impose a smooth transition in hue value from pixel 
to pixel. In order to do so, it defines “blue hue” as B/G, and “red hue” as 
R/G. To interpolate the missing BLUE component Bm,n in pixel location (m, 
n )  in the Bayer pattern, the following three cases may arise: 

Case 1: The pixel at location (m, n) is GREEN and the adjacent left and 
right pixels are BLUE color. Pixel at location (2, 2) in Figure 3.3 is 
such an example. The missing BLUE component in location (m, n)  can 
be estimated as 

Case 2: The pixel at (m, n )  is GREEN and the adjacent top and bottom 
pixels are BLUE. The pixel at (3, 3) in Figure 3.3 is such an example. 
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The missing BLUE component can be estimated as 

Gm,n Bm-1.n Bm+l,n -~ Bm,n 2 [ Gm-l,n ’ G] ‘ 

Case 3: The pixel at (m, n)  is RED and four diagonally neighboring corner 
pixels are BLUE. The pixel at  location (3, 2) in Figure 3.3 is such an 
example. The missing BLUE component in location (m, n )  can be 
estimated as 

1 -  Bm-1,n-1 Bm-l.n+l Bm+1,n-1 Bm+~,n+l 

Gm-1,n-1 Gm-l,n+l Grnf1,n-l Gm+l,n+l 
+ + + Bm,n = 

We can interpolate the missing RED component in each location in a similar 
fashion. In any color image processing system, after the raw image is captured 
by an electronic sensor it goes through several image processing steps before 
it can be displayed or stored for usage. As explained in [ll] , if the captured 
image is transformed into logarithmic exposure space from linear space before 
interpolation, instead of BIG or RIG, one can now define the “hue value” as 
B - G or R - G, because of the logarithmic property log(X/Y) = log(X) - 
log(Y) = X’ - Y’, where X’ = log(X) and Y’ = log(Y). Since all the 
division for calculating hue value is replaced by subtraction, this helps reduce 
computational complexity for implementation. 

3.5.2 Adaptive algorithms 

3.5.2.1 Pattern Matching-Based Interpolation Algorithm In the Bayer pat- 
tern, a BLUE or RED pixel has four neighboring GREEN pixels. A simple 
pattern matching technique for reconstructing the missing color components 
based on the pixel contexts was proposed in [15]. This pattern matching al- 
gorithm defines a green pattern for the pixel at  location (m, n) containing a 
non-GREEN color component as a four-dimensional integer-valued vector: 

gm.n = (Gm-l,n, Gm+l.n, Gm,n-l, Gm.n+l). 

The similarity (or difference) between two green patterns 91 and g2 is defined 
as the vector 1-norm 

3 

1191 - 9211 = c 191% - 9211. 
z=o 

When the difference between two green patterns is small, it is likely that the 
two pixel locations where the two green patterns are defined will have similar 
RED and BLUE color components. 

A weighted average proportional to  degree of similarity of the green pat- 
terns is used to  calculate the missing color component. For example if the 
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pixel a t  location (m, n) is RED, the missing BLUE component Bm,n is esti- 
mated by comparing the green pattern gm.n with the four neighboring green 
patterns gm-i,n-i, gm+l,n-l, gm-i.n+i, and gm+l.n+l- If the difference be- 
tween gm.n and each of the four neighboring green patterns is uniformly small 
(below a certain threshold), then a simple average is used to  estimated the 
missing BLUE color component, 

Otherwise, only the top two best-matched green pattern information items are 
used. For example, if 11g( m, n)  - g (m - 1, n - 1) I I and 1 1  g (m, n) - g (m + 1, n - 1) I I 
are the two smallest differences, then the missing BLUE color is estimated as 

Brn-l.n-lA1-t Bm+1,,-1A2 
A1 +A2 

Bm,n  = 1 

whereA1 = (1g(m,n)-g(m+l,n- l ) I I  and A2 = 11g(m,n)-g(m-l,n-l).II 
The missing RED components can be interpolated in a similar fashion. 

3.5.2.2 A Block Matching Algorithm Acharya, et al. [9] defined a block 
matching algorithm for color interpolation based on a concept of Color Block. 
The color block of a non-green pixel is defined as a set x = (x1 ,52 ,~3 ,54)  
formed by the four neighboring green pixels, say, 21, 5 2 ,  23, and 5 4 .  We 
define a new metric Color Gravity as the mean 3 = (XI + 2 2  + 5 3  + 54)/4. 
The similarity between two color blocks is defined as the absolute difference 
of their color gravities. The block matching algorithm is developed based on 
the selection of a neighboring color block whose color gravity is closest to  the 
color gravity of the color block under consideration. 

For any non-green pixel in the Bayer pattern image, there are four neigh- 
boring green pixels GN (the North neighbor), Gs (South), GE (East), and 
Grv (the West neighbor), which form the color block g = (GN,  Gs ,  GE,  G w )  
and its color gravity is i j  = (GN + Gs + GE + Gw)/4 .  The missing GREEN 
value is simply computed by the median of G N ,  Gs, GE,  and Gw. If the 
pixel a t  (m, n) is BLUE, it will have four diagonally RED pixels RNE (the 
Northeast neighbor), RSE (the Southeast neighbor), Rsw (the Southwest 
neighbor), and RNW (the Northwest neighbor) whose color blocks are gNE, 
gSE, gsw, and gNiv and the corresponding color gravities are ~ N E ,  ~ S E ,  gsw, 
and ~ N W  respectively. The missing RED component is assumed to be one of 
these four diagonal red pixels based on best match of their color gravities. The 
best match (or minimal difference Amin) is the minimum of A1 = Iij - O N E / ,  
A2 = 10 - GsEI ,  A3 = Iij - i j s ~ j ,  and A4 = Itj - ~ N w I .  Similarly, we can 
estimate the missing BLUE component in a RED pixel location due to the 
symmetry of red and blue sampling position in a Bayer pattern image. For 
the green pixel location, only two color blocks (either up-bottom or left-right 
positions) are considered for the missing RED or BLUE color. The algorithm 
can be described as: 
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Begin 
for each pixel in the Bayer pattern image do 

if the pixel at location (m, n) is not GREEN then 
{ 

Gm?n + m e d i a n { G ~ ,  Gs,  GE, Gw}; 
A1 = 13 - GNEI;  

A2 = Ig - SSEI; 

A3 = 19 - Sswl; 
A4 = 13 - SNWI; 

if the pixel a t  location (m, n) is RED then 

if (Amin = A, ) then Bm,n + BNE;  
if (Amin = A2 ) then Bm,n +- BSE;  
if (Amin = A3 ) then Bm,, t Bsw; 
if (Amin = A4 ) then Bm,n + BNW; 

1 

I 
if the pixel a t  location (m, n) is BLUE then 

if (A,,, = A, ) then Rm,n + RNE;  
if (A,,, = A2 ) then Rm>n + RSE;  
if (Am,, = A3 ) then Rm,n +- Rsw; 
if (Amzn = A4 ) then Rm>n + R N W ;  

{ 

1 
1 

if the pixel at location (m, n )  is GREEN then 

if (A, < Ab) then B,,, +- Bu else Bm.n + Bb; 

if (A1 < AT) then Rm,n + RI else Rm,n +- R,; 
1 

1 
End. 

This algorithm provides a much sharper image as compared to  the median, 
or bilinear interpolation, or the simple pattern matching. However, since 
it does not consider smooth hue transition, the color bleeding artifacts still 
remains a problem for some images containing sharp edges, such as the image 
of a Zebra. 
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and 6V = 
Bm,n-~ + Bm,n+2 

2 
6H = Bm.n - 

3.5.2.3 Edge Sensing Interpolation In this algorithm, different predictors are 
used for the missing GREEN values depending on the luminance gradients 
[ll, 161. For each pixel containing only the RED or the BLUE component, two 
gradients (one in the horizontal direction, the other in the vertical direction) 
are defined as 

Bm-2,n + Bm+2.n 
2 Bm,n - 

6H = /Gm,n-l - Gm,n+l/ and 6V = 1Gm-1,n - Gm+l,nJ, 

where 1x1 denotes absolute value of z. Based on these gradients and a certain 
threshold ( T ) ,  the interpolation algorithm can be described as follows: 

begin 
if 6H < T and 6V > T (i.e. smoother in horizontal direction) then 

Gm,n + (Gm,n-l+ Gm,n+1)/2; 

else if 6H > T and 6V < T (i.e. smoother in vertical direction) then 
Gm,n + (Gm-l,n + Gm+l,n)/2; 

A slightly different edge sensing interpolation algorithm is described in [17]. 
Instead of luminance gradients, chrominance gradients are used. For a pixel 
location containing only the BLUE component, the two gradients are 

Similar treatment can be done for the RED pixels as well. 

3.5.2.4 Linear Interpolation with Laplacian Second-Order Corrections This al- 
gorithm [IS] was developed with the goal of enhanced visual quality of the 
interpolated image when applied on images with sharp edges. Missing color 
components are estimated by the following steps. 

Estimation of GREEN component: Consider estimating the missing 
GREEN component (Gm,n) at a BLUE pixel (Bm.n) at location (m, n) ,  as 
an example. Interpolation at a RED pixel location can be done in the similar 
fashion. We define horizontal and vertical gradients in this pixel location as 
follows: 

and 
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Intuitively, we can consider SH and SV as combination of the luminance 
gradient and the chrominance gradient as described in the edge sensing in- 
terpolation algorithm in the previous section. In the expression of SH,  the 
first term \Gm,n-l - Gm,n+lj is thc first-order difference of the neighboring 
green pixels, considered to be the luminance gradient and the second term 

- Bm,n)l is the second-order derivative of the 
neighboring blue pixels, considered as the chrominance gradient. Using these 
two gradients, the missing green component Gm,n at location (m, n )  is esti- 
mated as follows. 

- Bm.n-2) - 

Hence, the interpolation for missing GREEN component has two parts. 
The first part is the linear average of the neighboring green values, and the 
second part can be considered as a second-order correction term based on the 
neighboring blue (red) components. 

Estimation of RED (or BLUE) component: The missing RED (or 
BLUE) color components are estimated in every pixel location after estima- 
tion of the missing green components is complete. Depending on the position, 
we have three cases: 

1. Estimate the missing RED (BLUE) coniponent at  a GREEN pixel (Gm.n), 
where nearest neighbors of RED (BLUE) pixels are in the same column, 
e.g., pixel location ( 4 ,  4) as shown in Figure 3.3.  The missing RED 
(BLUE) component is estimated as 

2. Estimate the missing RED (BLUE) component at a GREEN pixel (Gm,n), 
where nearest neighbors of RED (BLUE) pixels are in the same row, e.g., 
pixel location ( 3 ,  3 )  as shown in Figure 3.3. The missing RED (BLUE) 
component is estimated as 
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3. Estimate RED (BLUE) color component a t  a BLUE (RED) pixel, e.g. 
the RED pixel at (3, 4) as shown in Figure 3.3. Here we first define two 
diagonal gradients as 

6D1 = IEm-1,n-1 - Rm+l,n+1I+l(Grn,n - Gm-1,n-I) + (Gm,n - Gm+l,n+l)/ ,  

and 

~ D z  1 /Rm-l,n+l - Rm+l.n-1/ + I(Gm,n - Gm-l,n+l) + (Gm,n - Gm+l,n-1)1 

Using these diagonal gradients, the algorithm for estimating the missing 
color components is described as : 

if SD1 < 6 0 2  then 

else if SD1 > 6 0 2  then 

Rm,n + 

This algorithm provides much better visual quality of the reconstructed 
image containing a lot of sharp edges. However, the second-order derivative 
for calculating the gradients makes the algorithm quite sensitive to  noise. 
Since only the color information in the same direction (vertical, horizontal, or 
one of the diagonal directions based on the gradient information) is used for 
interpolation, we believe that it is still possible to  further improve the visual 
quality of the reconstructed image. 

3.5.3 

In fuzzy membership assignment strategy, we assign different membership val- 
ues to  members of a set to reflect their degrees of belongingness within that set 
[19]. Depending upon the correlation among the surrounding pixels, a fuzzy 
membership assignment to the surrounding horizontal and vertical pixels has 
been formulated in [lo]. The membership grades have been experimentally 
derived through exhaustive subjective visual inspection, taking into consider- 
ation the exhaustive set of images having possible edges in the horizontal and 
vertical directions. 

A Novel Adaptive Color Interpolation Algorithm 
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Let us now consider the estimation of the GREEN component (Gm,n) a t  
the pixel location (m, n)  containing the RED component (f&) only. The 
following four cases may arise, where there is a possible edge along the hori- 
zontal direction: 

1. /Gm.n-l - Gm,,+ll is small while /Gm-l,n - Gm+l,,l is arbitrarily large. 
Here we can assume existence of a horizontal edge. 

2. lGm,n-l - Gm,n+l/ is small and lGm-l,n - Gm+l,,/ is arbitrary and 
Glm,n  - 1 Gm,,+l NN Gm+l,,. In this case, there is clearly a possible 
edge at the pixel location R,,,, and the intensity of this edge depends 
on the surrounding pixel values Gm-l,n and Gm+l.n. 

3. This case is similar to  case 2 with a difference Glm, n - 1 M Gm,n+l = 
Gm- 1.n. 

4. In this case we consider all the four connecting neighboring pixels Gm.n-l, 
Gm,n+l, Gm-1,n and Gm+l,n that are all different subject to  the condi- 
tion lGm-l,n - Gm+l,nI - IGm,n-l - Gm,n+11 0. 

In each of these cases, the fuzzy membership value of 0.5 has been assigned to 
the horizontal green pixels Gm,n-l and Gm,n+l and 0.1 has been assigned to 
vertical green pixels Gm-l,n and Gm+l.n. Based on this strategy, the missing 
green component (Gm.n) can be interpolated as follows: 

that is 

Gm-l,n + Gm+l,n 
2 

+ 0.1667 Gm,n-I + Gm.n+l 
2 

Gm,n = 0.8333 

Using this fuzzy membership assignment as a weighted-average tool for 
missing color interpolation, we can fully utilize all the neighboring information 
for estimating the missing color information. 

3.5.3.1 Three Steps of the Interpolation Algorithm The proposed interpola- 
tion algorithm is a three-step algorithm as summarized here: 

1. Estimation of all missing GREEN components. After completion of this 
step, each and every pixel location has a green component. 

2. Estimation of missing BLUE (or RED) component a t  each RED (or 
BLUE) pixel. The GREEN components estimated in the previous step 
are used in this step. The decision is based on the change of hue values. 

3. Estimation of missing RED and BLUE at GREEN pixels in the Bayer 
pattern. The estimated RED (or BLUE) at BLUE (or RED) pixels in 
step 2 have been utilized for interpolation. 
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Estimation of all missing GREEN components: Let us consider esti- 
mation of the missing GREEN component (Gm,n) at a RED pixel (Rm,n)  
location (m, n ) ,  e.g., pixel coordinate (3, 4) in Figure 3.3. First, we estimate 
two parameters in terms of changes in the Hue values, one in the horizontal 
direction and the other in the vertical direction. The change in hue value in 
the horizontal direction can be estimated as 

Char (Rm.n+I - Gm.n+I) - (Rm.n-1 - G m , n - l ) .  

Since the RED components Rrn,,+1 and Rm.n-l are missing in pixel coordi- 
nates (m, n + 1) and (m, n - l), we approximate them as 

Rm3n + Rm,n-2 

2 
, and Rm.n-l = Rm,n + Rm,n+2 

2 R m , n + ~  FZ 

Hence tho, can be approximated as 

and hence 

In a similar fashion the change in hue value in the vertical direction can be 
estimated as 

1 5 (pRm-2,n + 2Gm-1,n - 2Gm+1,n + Rm+2,n).  C u e ,  

Depending on the values of c h o T  and Cue,, different fuzzy membership num- 
bers are used as weighting factors to estimate the missing GREEN components 
as described here: 

if ( Ichorl  < ICverI) then 

Gm>n = 0.8333 XhoT + 0.1667 Xu,,; 

Gm,n = 0.1667Xhor + 0.8333XUer; 

endif 

where 
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It should be noted that Xhor and Xu,, above are estimated based on the 
assumption of smooth hue transition as discussed earlier with a weighting 
factor (0.5) in the second term to reduce the sensitivity of noise in the image. 

The similar strategy can be applied for interpolation of the missing GREEN 
component at  the pixel coordinates containing the BLUE component only. 

Es t imat ion  of B L U E / R E D  components at the R E D / B L U E  pixels: 
Let us consider estimation of the missing BLUE component (Bm,n) at RED 
pixel (Rm.n),  e.g., coordinate (3 ,  4) in Figure 3.3. Since the green components 
have already been interpolated in step 1, the hue values of the four corner 
BLUE pixels a t  (m  - 1, n ~ l), ( m  ~ 1, n + l), ( m  + 1, n - l), (m  + 1, n + 1) 
are 

Hnw = Bm-1,n-1 - Gm-l,n-l, Hsw Bm+l,n-~ - Gm+1.n-1. 

Hne = Bm-l,n+l - Gm-l,n+l, Hse = Bm+l,n+l - Gm+~,n+l 

respectively and the differences of the hues along the diagonals are 

AH1 = H,, - Hse,  and AH2 = Hne - Hs,  

The procedure for estimation of the missing BLUE component in the RED 
pixel location in the Bayer pattern is as follows. 

if ( lAHI /  < /AH21) then 

else 

endif 

where 

Bm,n + Gm3n + O-8333XDzagl $- 0.1667X~zag2; 

Bm,n + Gm.n + 0.1667X~zagl + 0.8333XDzag2; 

Bm-1,n-1 - Gm-l,n-1+ Bm+l.n+l - Gm+l.n+~ 
2 XDzagl = 

The RED component a t  a BLUE pixel location is interpolated similarly. 

Es t imat ion  of missing B L U E / R E D  components at GREEN pixels: 
Let us now consider estimation of the missing BLUE component (Bm.n) at 
GREEN pixel (Gm.n), e.g., at coordinate (3 ,  3) in Figure 3.3. We already 
interpolated the BLUE components in the pixel coordinates containing the 
RED component only and vice versa. The blue hue of the north, south, east, 
and west neighbors of the GREEN pixel a t  (m, n) are 

Hn = Bm-1)n - Gm-~,n> Hs = Bm+l,n - Gm+l.n, 
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respectively. Difference of the hues in horizontal and vertical directions are 

AH,,, = He - H w ,  and AH,,, = Hn - H, 

The procedure to  interpolate the missing BLUE component at the pixel co- 
ordinate containing only the GREEN component in the Bayer pattern is as 
follows: 

The missing RED component can be interpolated in a similar fashion. 

3.5.4 Experimental Results 

To show the effectiveness of the above color interpolation algorithm, we can 
synthetically generate the Bayer pattern from a full-color RGB image by sim- 
ply dropping two color components in each pixel coordinate (if the original 
Bayer pattern image cannot be grabbed from a digital camera directly). We 
show the results of the above color interpolation in Figure 3.4. the color ver- 
sion of the figure is provided in the color pages section. Figure 3.4(a) is a full 
color image. The image contains lots of high-frequency patterns in the form 
of black-and-white sharp edges in different angles. We generated the Bayer 
pattern image from the original image in Figure 3.4(a) by simply dropping two 
color components in each pixel to  show the results. This synthetically gener- 
ated Bayer pattern image is then interpolated to  the full-color image using the 
adaptive algorithm discussed above. The interpolated result is shown in Fig- 
ure 3.4(b). We have chosen this particular image because of its high-frequency 
nature and other interesting image characteristics. The comparative studies 
of different color interpolation algorithms with number of different adaptive 
and non-adaptive color interpolation algorithms have been presented in [lo].  
In all different types of images, the adaptive algorithm discussed here provides 
better image quality compared to  others. 
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fig. 3.4 
polation. 

(a) Original Image and (b) result. of fuzzy assignment-based adaptive inter- 
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3.6 S U M M A R Y  

In this chapter, we have presented a concise description of the human color 
perception. The need for color space transformation has been explained and 
some of the popular color spaces such as RGB, HSV, CIELAB, etc. and the 
formulation for their transformations have been presented. 

Due to  the cost and packaging consideration, in digital imaging devices 
such as a digital camera, only a single electronic sensor is used and the need 
for color interpolation or demosaicing will remain critical until other technolo- 
gies such as  multi-channel color moir free sensor is mature. In this chapter, 
we have introduced the concept of color interpolation, defined the problem 
and reviewed different types of color interpolation algorithms proposed in the 
literature. We discussed an interesting technique based on fuzzy membership 
assignment strategy along with the concept of smooth hue transition for esti- 
mating the missing colors in each pixel. This algorithm significantly improves 
the overall visual quality of the reconstructed color images. 
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Image Transformation 

4.1 INTRODUCTION 

Two-dimensional image transforms are extremely important areas of study in 
image processing [l, 21. The image output in the transformed space may be 
analyzed, interpreted, and further processed for implementing diverse image 
processing tasks. These transformations are widely used, since by using these 
transformations, it is possible to  express an image as a combination of a set 
of basic signals, known as the basis functions. In case of Fourier transform 
of an image these basis signals are sinusoidal signals with different periods 
which describe the spatial frequencies in an image. This implies that an im- 
age is decomposed into its constituent sinusoids, using the Fourier transform, 
and the amplitudes of various frequencies constitute the frequency spectrum 
of the image. The process of inverse Fourier transform operation involves 
synthesizing the image by adding up its constituent frequencies. The notion 
of frequency, more specifically spatial frequency, is not a mere mathematical 
abstraction. On the other hand, interestingly the human vision system, which 
is a biological system, essentially performs the frequency analysis of the image 
incident on the retina of our eyes. Thus such transforms, such as the Fourier 
transform, reveal spectral structures embedded in the image that may be used 
to  characterize the image. 

61 
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4.2 FOURIER TRANSFORMS 

The understanding of the formation and analysis of two-dimensional signals, 
viz., images, has been possible because of the advent of various orthogonal 
transforms. Fourier transform is one of the most important tools which have 
been extensively used not only for understanding the nature of an image and 
its formation but also for processing the image. We have already mentioned 
that an image is a two-dimensional signal and can be viewed as a surface 
in two-dimensional space. Using Fourier transform, it has been possible to 
analyze an image as a set of spatial sinusoids in various directions, each si- 
nusoid having a precise frequency. But before we venture into understanding 
Fourier transform on an image, let us first look into the Fourier transform of 
a continuous valued one-dimensional signal. 

4.2.1 One-Dimensional Fourier Transform 

The one-dimensional continuous Fourier transform, (CFT) of a continuous 
function f ( x )  is 

F ( w )  = /'" f ( x )  exp [ - j  27rwzI dx. (4.1) 
J - - 0 3  

The corresponding inverse Fourier transform is 

f ( z )  = /+m F ( w )  exp [ j  2.rr wz] 

Eq. 4.1 can be decomposed into a real component 
component I ( w )  as 

--03 

F ( w )  = R(w) + j I ( w ) .  

dw . (4.2) 

R ( w )  and an imaginary 

(4.3) 

The magnitude function IF(w)(  is called the Fourier Spectrum of the function 
f ( x )  and is denoted as 

\ F ( u ) )  = J R 2 ( w )  + P(w).  (4.4) 

The multiplication of a function f ( z )  with exp [ - j  27rwx] d x  and integrat- 

The phase angle @(w) of the function f(x) is denoted by 
ing the product over the entire z results in a function of the parameter w. 

(4.5) 

Example: Let us consider a simple one-dimensional rectangular function 

1 when x =  0 
0 otherwise ' 

f(z) = rect ( z )  = { 
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The Fourier transform of the above signal (rectangular function) may be com- 
puted from Eq. 4.1 as 

+m 5 sin(u) 
rect(-)exp[-j27rwx] dx = -, 

U U 

which is popularly known as a Sync function. 

4.2.2 Two-Dimensional Fourier Transform 

Extending the concept of one-dimensional Fourier transform, the two-dimensional 
Fourier transform of a continuous function f(x, y) is denoted by 

F ( w ,  $) = f(x, y) exp [ - j  27r (ux + $y)] dy dx. (4.6) 

The operation of multiplication of a two-dimensional function f ( x ,  y)  with 
exp [ - j  27r (wx + $y)] results in some interesting observations. Using Euler's 
formula the exponential function can be decomposed as 

-m -02 

This implies that  the function f (x, y) is essentially multiplied by the terms 
cos (2 7r wx) cos (2 7r $y), sin (2 7r w x )  sin (2  7r $y), sin (2 7r wx) cos (2 7r +y), and 
sin (2 T U X )  sin (2 7r $y). If the function f(x, y) is a doubly symmetric function 
along both the X and Y directions, then the Fourier transform of f ( x , y )  
involves only the multiplication of the cos (2 7r ux) cos (2 7r $y) term. For a 
general nonsymmetric two-dimensional function f (x, y) as in most of the real- 
life images: the multiplication will involve all four terms. 

The integral F ( w ,  $) thus yields the results of limit summation of an infinite 
number of sin and cos terms. The variable w in Eq. 4.6 indicates the frequency, 
i.e., the number of waves per unit length in X direction, and $ indicates the 
number of waves along the Y direction. For a certain pair of values of these 
frequency components the integral yields just the amplitude of the chosen 
component. 

function f ( 5 ,  y) are 
Accordingly, the magnitude spectrum and phase angle of the two-dimensional 

IF(w, $11 = J R 2 ( w ,  $1 + I 2 ( W ,  $) (4.7) 

and 

respectively. It should be noted that the power spectrum of f ( x , y )  may be 
denoted as 

P(W, Icl) = +)I2 = R2(W, +) + 12(w,  Icl). (4.9) 
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The corresponding inverse two-dimensional Fourier transform is 

f ( x ,  y) = 1'" /+m F ( w ,  $1 exp [ j  27r (wx + +y)l ct$ ctu. (4.10) 
-m -cc 

4.2.3 Discrete Fourier Transform (DFT) 

When the function or signal is represented in discrete form using a sequence 
of discrete samples such as f ( z )  = {f(0), f(l),  . . . , f ( N -  l)}, the correspond- 
ing Fourier Transform of the discrete signal is the Discrete Fourier Transform 
(DFT). Since the signal is discretized, the operation of integration in contin- 
uous Fourier trunsfomn (CFT) is replaced by summation operations in DFT. 
We present the one-dimensional DFT and also the two-dimensional DFT in 
the following subsections. 

4.2.3.1 One-Dimensional DFT The one-dimensional discrete Fourier trans- 
form of a function f(x) of size N with integer index x running from 0 to N - 1, 
is represented by 

I .  

y=o 

The corresponding one-dimensional inverse 

N-1 

u=o 

L J 

DFT is 

(4.11) 

(4.12) 

4.2.3.2 Two-Dimensional DFT The two-dimensional discrete Fourier trans- 
form of a two-dimensional signal f ( z , y )  of dimension M x N with integer 
indices x and y running from 0 to M - 1 and 0 to N - 1, is represented by 

The equivalent two-dimensional inverse DFT is 

M-1 N-1 

f ( z ,  y) = C C ~ ( u ,  u) exp [ j  27r (E + $!)I . (4.14) 
u=o v=o 

4.2.4 Transformation Kernels 

As we have already noted the general forward and inverse Fourier transfor- 
mation can be expressed as 
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and 

In the above equations g(z, y,  u, u) is known as forward transformation ker- 
nel and h(z, y, u, v) is the inverse transformation kernel. Here u and v assume 
values in the range (0,1, .  . . , N - 1). As can be further observed, these kernels 
are dependent only on the spatial positions and frequencies along X and Y 
directions, and are independent of either f ( z ,  y) or F(u ,  w). These kernels are 
like a set of basis functions. If the kernel g ( z , y , u , v )  = g1(z,u)gz(y,v), we 
say that the kernel is separable. If in addition the functional forms of g1 and 
gz are identical, then the kernel is said to be symmetric. 

I t  easy to show that the kernel g(z, y, u, v) is separable and symmetric sincc 

g(z, y, u, u) = exp [ - j  27r (X + T)] = exp [ - j  27r (X)] exp [ - j  27r ($)I 
In a likewise fashion it may be easily proved that the inverse kernel g(z, y, u, v) 
is also symmetric and separable. 

4.2.5 Matrix Form Representation 

In case the kernel is observed to  be symmetric and separable it may be ex- 
pressed as 

F = A f ( z , y ) A  (4.17) 

where f(z,y) is an image matrix of dimension N x N and A is a symmet- 
ric transformation matrix of dimension N x N with elements = g ( i , j ) .  
Multiplying both the sides of Eq. 4.17 by a matrix B ,  we get 

B F B  = B [ A f ( z , y ) A ] B .  (4.18) 

To recover the original image f(z,y), we need to choose B = A-' = g - ' ( z , j ) .  
In that case, Eq. 4.18 reduces to 

B F B = B [ A f ( z , y ) A ] B = A - ' A f ( z , y ) A A - l = f ( z , y ) .  

Thus the original image f ( z ,  y) can be reconstructed. 
The Figure 4.1 shows the results of two-dimensional DFT. Figure 4.l(a) 

is a two-dimensional sync function which is the result of DFT of the square 
image shown in Figure 4.l(a).  Similarly, Figure 4.l(d) is the DFT of the 
two-dimensional DC function shown in Figure 4.l(c). 
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Fig. 4.1 Examples: (a) square image, (b) DFT magnitude of the square image, (c) 
two-dimensional DC signal, (d) DFT magnitude of the DC signal, (e) two-dimensional 
exponential function, ( f )  DFT magnitude of the exponential function. 



FOURER TRANSFORMS 67 

4.2.6 Properties 

0 Translation: The translation of a Fourier transform pair is 

The above implication indicates the correspondence between a two- 
dimensional image function and its Fourier transform. 

0 Rotation: Assuming that the function f ( z ,  y) undergoes a rotation of 
a,  the corresponding function f ( s ,  y) in polar coordinates will then be 
represented as f ( r , a ) ,  where z = rcoscr and y = rsincr. The cor- 
responding DFT F(u,w)  in polar coordinates will be represented as 
F(P ,y) ,  where u = pcosy and u = ps iny .  

The above implies that if f ( z ,  y)  is rotated by cro, then F ( u ,  w) will be 
rotated by the same angle (YO and hence we can imply that f ( r ,  cr + ( Y O )  

corresponds to F(P ,  y + QO) in the DFT domain and vice versa. 

0 Separability: The separability property of a two-dimensional trans- 
form and its inverse ensures that such computations can be performed by 
decomposing the two-dimensional transforms into two one-dimensional 
transforms. From Eqs. 4.13 and 4.14 describing the DFT and inverse 
DFT of a two-dimensional function f ( z ,  y), we can express them in sep- 
arable form as follows. 

Hence the two-dimensional DFT (as well as the inverse DFT) can be 
computed by the taking the one-dimensional DFT row-wise in the two- 
dimensional image and the result is again transformed column-wise by 
the same one-dimensional DFT. 

0 Distributive property: The DFT of sum of two functions f l ( z ,  y)  
and f i ( z , y )  is identical to the sum of the DFT of these two functions, 
i.e., 

where F{f(z ,y)} is the DFT of f ~ ( z , y ) .  It should be noted that the 
distributive property for product of two functions does not hold, i.e., 

F{fl(z,Y) + f2(z,  Y>> = F{fl(Z, Y)) + F { f z ( z ,  Y)), 

F{fl(z, Y) . f2 (5 ,  Y)) # F{fl(z, Y)).F{f i (G Y)). 
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0 Scaling property: The DFT of a function f ( z , y )  multiplied by a 
scalar(k) is identical to the multiplication of the scalar with the DFT of 
the function f(z, y), i.e., 

F { k f ( T  Y)) = k F ( u ,  .). 

0 Convolution: The DFT of convolution of two functions is equal to  the 
product of the DFT of these two functions, i.e., 

F{fl(zly) (23 fl(zl?/)) = F1(u17J).Wu,'u). 

0 Correlation: The correlation between two functions fi (2, y) and f 2 ( l ~ ,  y) 
in continuous domain is denoted as 

f l (G Y) f2(z, y) = s'-m fl*(Q, P ) f 2 ( .  + a,  Y + P)da.dP, 
-a --m 

whereas the correlation in the discrete domain is denoted as 

M-1 N - 1  

The DFT of the correlation of two functions fl (z, y) and f2(z, y) is the 
product of the complex conjugate of the DFT of the first function and 
the DFT of the second function, i.e., 

0 Periodicity: The DFT of a two-dimensional function f ( z , y )  and its 
inverse are both periodic with period r ,  i.e., 

F(u,'u) =F(u+7,.) = F ( u , v + r )  = F ( u + - r , v + - r )  

All the properties presented in this section are valid for continuous Fourier 
transform (CFT) cases as well. 

4.2.7 Fast Fourier Transform 

The number of complex multiplications and additions to  compute Eq. 4.11 
for DFT is O ( N 2 ) .  However, we can adopt a divide-and-conquer approach to  
reduce the computational complexity of the algorithm to  O ( N  log, N ) .  This 
algorithm is popularly known as the Fast Fourier Transform (FFT).  There are 
many implementations of the FFT proposed in the literature. Here we present 
a general idea of the divide-and-conquer approach toward implementation of 
the FFT. The general principles is based on successive division method using 
divide-and-conquer approach as explained below. 
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As shown in Eq. 4.11, the one-dimensional DFT of a onedimensional signal 
f(x) is computed . N-1 

1 
F ( u )  = - c f ( Z ) K T  

x=o 
N 

where 

KN = exp [ - j  g] . 
(4.20) 

(4.21) 

For ease of explanation, we assume that N is a power of 2 and hence N can 
be expressed as M = 2n = 2M,  where n is a positive integer. Hence, Eq. 4.20 
can be written as 

1 M - 1  
= 5 { -& EEi' f(22)K;p)  4- & EX=o 

(4.22) 
As per Eq. 4.21, K;:; = KF and hence Eq. 4.22 can be written as 

Let us define the first component 
component as Fodd(u). Hence, 

in Eq. 4.23 as Feven(u) and the second 

1 
2 F ( u )  = - { F  e v e n ( u )  + ~ i ~ f F o d d ( u ) ) .  (4.24) 

I t  may be pointed out that  Feven(u) is the DFT of the sequence composed 
of the even samples f(22)  (i.e., f ( O ) ,  f ( 2 ) ,  f ( 4 ) ,  . . . , f ( 2 M  - 2)) of the original 
discrete signal f(x), whereas Fodd(u) is the DFT of the sequence composed 
of all the odd samples f ( 2 z  + 1) (i.e., f(l),  f ( 3 ) ,  f ( 5 ) ,  . . . , f ( 2 h l  - 1)) of the 
original discrete signal f(x). Size of both the even and odd sequences f ( 2 z )  
and f ( 2 z  + 1) is $. Hence computation of both Feven(u) and Fodd(u) are 
essentially $-point DFT each. As a result, the N-point DFT F ( u )  can be 
computed as two $-point DFT operations Feven(u) and Fodd(u) followed by 
addition of Feuen with F o d d  scaled by K ; ~ ~ .  In the similar fashion, the 
point DFT computations of each of Feven(u) and Fodd(u) may further be 
decomposed into two 2 point DFT computations for each as shown in Fig- 
ure 4.2. We can continue this in log, N iterations until each become a 1-point 
computation as shown in Figure 4.2. 

Thus in the algorithm discussed above, each N point transform has been 
computed as two N/2 point transforms. The algorithm for computation of 
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N-point D l T  

f(N/2-2) f( N/2- 1 ) f(N-2) f(N-1) 

F;g. 4.2 FFT computation by Successive Decomposition. 

the N point FFT using successive division approach is shown in Figure 4.2. 
The computational complexity of the algorithm is O ( N  log, N ) .  

4.3 DISCRETE COSINE TRANSFORM 

Discrete Cosine Transform (DCT) is the basis for many image and video 
compression algorithms, especially the baseline JPEG and MPEG standards 
for compression of still and video images respectively. 

The one-dimensional forward discrete Cosine transform (1D FDCT) of N 
samples is formulated by 

T ( 2 Z  + 1). 
F ( u )  = y f (x) COS [ 2N ] 

x=o 
N 

for u = O , l , .  . . , N - 1, where 

for u = o 
1 otherwise. 

C(u)  = 

The function f ( z )  represents the value of the x t h  sample of the input 

The one-dimensional inverse discrete Cosine trunsfomn (1D IDCT) is for- 
signal. F ( u )  represents a DCT coefficient for u = O, l , .  . . , N - 1. 

mulated in a similar fashion as follows, 

"':; ""I f (x) = gy C(u)F(u)  COS 

u=o 
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for z = 0,1, . . . ,  N -  1. 
The two-dimensional DCT can be computed using the one-dimensional 

DCT horizontally and then vertically across the signal because DCT is a 
separable function. The two-dimensional forward discrete Cosine transform 
(2D FDCT) of a block of M x N samples of a two-dimensional signal F ( z ,  y) 
is formulated as 

r(2z + 1). r ( 2 y  + 1)" 
N-1 M-1 

2 
F(u,  w) = - c(u)c(w) f(z,?/)cos [ 2N ] ' O S  [ 2M ] m z=o y=o 

for u = O , l , . .  . , N  - 1 and w = 0,1, . . . ,  A4 - 1, where 

for k = o 
1 otherwise. 

C ( k )  = 

The function f ( z , y )  represents the value of the z t h  sample in the y t h  
row of a two-dimensional signal. F(u,  w )  is a two-dimensional transformed 
coefficient for u = 0,1 , .  . . , N - 1 and 2, = 0,1 , .  . . , M - 1. 

The above expression for 2D FDCT is clearly a separable function because 
we can express the formula as follows: 

As a result we can accomplish the 2D FDCT of a two-dimensional signal by 
applying 1D FDCT first row-wise followed by 1D FDCT column-wise in two 
steps. First, the 1D FDCT is applied row-wise in all the rows independently 
to obtain F ( u ,  y), where 

for u = O , l , .  . . , N  - 1. 

columns of F ( u ,  y)  to obtain the result F ( u ,  u), where 
In the second step, the same 1D FDCT is applied column-wise in all the 

for u = O , l , .  . . , M  - 1. 

puted in a similar fashion. The 2D IDCT of F(u,  w )  is formulated as 
The two-dimensional inuerse discrete Cosine transform (2D IDCT) is com- 
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for z = O,l , .  .. , N  - 1 and y = 0,1 , .  . . , M  - 1. 
The above function is again a separable function similar to  what we have 

shown for the 2D FDCT. As a result, the 2D IDCT can be computed in 
exactly the opposite way of the 2D FDCT. The 2D IDCT is computed in 
two steps: by first applying 1D IDCT column-wise followed by the 1D IDCT 
row-wise. After column-wise computation of 1D IDCT in every column of the 
input signal F ( u ,  v), we obtain F ( u ,  y), where 

for v = 0 , 1 ,  . . . ,  M -  1. 

of F ( u ,  y)  to obtain the two-dimensional signal f ( s ,  y) ,  where 
In the second step, the same 1D IDCT is applied row-wise in all the rows 

f o r u = 0 , 1 ,  ..., N-1.  
The two-dimensional DCT kernel is a separable function and hence the 

2D DCT computation can be done in two steps, by applying one-dimensional 
DCT row-wise and then column-wise instead of the direct computation. 

Since DCT belongs to  the family of DFT, there are fast DCT algorithms of 
computational complexity O ( N  log, N )  similar to  the Fast Fourier Transform 
(FFT). There are many fast DCT algorithms proposed in the literature [3]. 

4.4 WALSH-HADAMARD TRANSFORM (WHT) 

Like the Fourier transform, the discrete Wulsh Hudamurd Transform (WHT) 
also has a separable symmetric kernel. The discrete Vl'alsh Hadamard trans- 
form of a function f ( z )  is denoted by 

- N - l  

where 

2 ,  

x=o 

(4.25) 

is the kernel of WHT, where n = logzN and b, (z )  is the i th bit in binary 
representation of z .  The WHT kernel g(x, u )  is a symmetric matrix having a 
set of N orthogonal rows and columns. The symmetric WHT kernel for N = 
1, 2, 4 and 8 are shown in Eqs. 4.26-4.29 respectively: 

H1 = [I] (4.26) 
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(4.27) 

(4.28) 
=_I 1 1 -1 1 -1 
J;? 1 1 -1 -1 

1 1  -1 -1 1 

1 1 1 1 1 1 1 1  
1 -1 1 -1 1 -1 1 -1 
1 1 -1 -1 1 1 -1 -1 
1 -1 -1 1 1 -1 -1 1 
1 1 1 1 -1 -1 -1 -1 
1 -1 1 -1 -1 1 -1 1 
1 1 -1 -1 -1 -1 1 1 
1 -1 -1 1 -1 1 1 -1 

(4. 9) 
Hence the recursive relation to  generate a Walsh-Hadamard Transform kernel 
can be represented as 

(4.30) 

The advantage of using the WHT is the simplicity in its computation in 
view of the binary nature of the transform kernel. The WHT has been used 
for shape analysis, and other signal and image processing applications. 

4.5 KARHAUNEN-LOEVE TRANSFORM OR PRINCIPAL 
COMPONENT ANALYSIS 

Karhaunen.-Loeve Transform, or Principal Component Analysis (PCA) has 
been a popular technique for many image processing and pattern recognition 
applications. This transform which is also known as Hotelling Transform 
is based on the concepts of statistical properties of image pixels or pattern 
features [I, 21. 

Principal component analysis (PCA) forms the baiis of the Karhunen- 
Loeve (KL) transform for compact representation of data [ l ] .  The KL trans- 
form and the theory behind the principal component analysis are of funda- 
mental importance in signal and image processing. The principle has also 
found its place in data mining for reduction of large-dimensional datasets. I t  
has been successfully applied to text analysis and retrieval for text mining as 
well [4]. 
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One of the major problems in pattern recognition and image processing 
is the dimensionality reduction. In practical pattern recognition problems, 
quite often the features that we choose are correlated with each other and a 
number of them are useless so far as their discriminability is concerned. If 
we can reduce the number of features, i.e., reduce the dimensionality of the 
feature space, then we will achieve better accuracy with lesser storage and 
computational complexities. 

X' 

Fig. 4.3 Dimensionality Reduction. 

In Figure 4.3 there are a number of twedimensional pattern points, belong- 
ing to two different pattern classes (shown by X and 0 symbols), where each 
pattern is described by only two features X and Y .  It  may be observed that 
the projection of the pattern points both on X and Y axis are overlapping. As 
a result, the two features X and Y do not exhibit good discriminability. I t  is 
possible to  find a reduced set of features that may result in better discrimina- 
tion between the two classes. This is shown by the nonoverlapping projections 
of the patterns belonging to  two classes on the new feature axis ( X ' )  as shown 
in Figure 4.3. PCA is one such tool which yields an extremely powerful tech- 
nique for dimensionality reduction and many image processing applications 
such as compression, classification, feature selection, etc. Before describing 
the PCA, we would briefly present the concepts of covariance matrix. 
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4.5.1 Covariance Matrix 

In practical pattern recognition problems there are usually more than one 
feature. During the process of statistical analysis of these data, we have to  
find out whether these features are independent of one another. Otherwise 
there exists a relationship between each pair of features. For example, while 
extracting the features of human face, one may choose two features such as 
(1) X to denote the distance between the centers of the two irises, and (2) 
Y to  denote the distance between the centers of the left and right eyebrows. 
From a large set of human faces, we can determine the mean and the standard 
deviation of the above two features. The standard deviation for each of the 
above two dimensions of the face data set may be computed independently 
of each other. To understand whether there exists any relationship between 
these two features, we have to  compute how much the first feature X of each 
of the patterns in our data set varies from the mean of the second feature 
Y .  This measure, which is computed similar to variance, is always measured 
between two features. The covariance is computed as follows: 

where n is the number of facial patterns, and x and Y are the mean of feature 
X and Y respectively. 

If the covariance value is positive, it implies that when one feature ( X )  
increases, the other feature ( Y )  also increases. If the value of C o v ( X , Y )  
is negative, then as one feature increases, the other one decreases. In case 
where there is no correlation between the two features X and Y the covariance 
becomes zero, indicating that the two features are independent of each other. 
In the problem of face feature selection then one may find that the features 
have positive covariance, meaning that if X increases the other feature Y 
also increases. In case of a multi-dimensional feature vector, the covariance 
is measured between each pair of features. In practical pattern recognition 
problems, we compute a covariance matrix, where each element of the matrix 
gives a measure of the covariance between two features. 

4.5.2 Eigenvectors and Eigenvalues 

Before we discuss principal component analysis, we will briefly explain the 
concept of eigenvectors and eigenvalues of a matrix. Let us assume that we 
have a square matrix A of dimension n x n, which when multiplied by a vector 
X of dimension n x 1 yields another vector Y of dimension n x 1, which is 
essentially the same as the original vector X that was chosen initially. Such 
a vector X is called an eigenvector which transforms a square matrix A into 
a vector, which is either the same vector X or a multiple of X (i.e., a scaled 
version of the vector X). The matrix A is called a transformation matrix, 
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while the vector X is called an eigenvector. As is well known, any integer 
multiplication of the vector results in the same vector pointing to the same 
direction, with only its magnitude being scaled up (i.e., the vector is only 
elongated). 

It is interesting to note here that eigenvectors can be determined only from 
the square matrices, while every square matrix does not necessarily yield an 
eigenvector. Also an n x n square transformation matrix may have only n 
number of eigenvectors. All these eigenvectors are perpendicular or orthogonal 
to  each other. Every eigenvector is associated with a corresponding eigenvalue. 
The concept of an eigenvalue is that of a scale which when multiplied by the 
eigenvector yields the same scaled vector in the same direction. 

4.5.3 Principal Component Analysis 

While computing the principal component analysis, we represent an N x N 
image as a one-dimensional vector of N * N elements, by placing the rows of 
the image one after another. Then we compute the covariance matrix of the 
entire data set. Next we compute the eigenvalues of this covariance matrix. 
The eigenvectors corresponding to  the most significant eigenvalues will yield 
the principal components. To get the original data back we have to  consider 
all the eigenvectors in our transformation. If we discard some of the less 
significant eigenvectors in the final transformation, then the retrieved data 
will lose some information. However, if we choose all the eigenvectors, we can 
retrieve the original data. 

4.5.4 Singular Value Decomposition 

The principal component analysis has also been developed based on the matrix 
theory for Singular Value Decomposition (SVD). According to singular value 
decomposition (SVD) theory, for any arbitrary A 1  x N matrix F of rank L 
there exists an Ad x A l  unitary matrix U and an N x N unitary matrix V so 
that 

where 

UTFV = A;. 

X i  ( L )  
0 

0 

(4.32) 



KARHAUNEN-LOEVE TRANSFORM OR PRINCIPAL COMPONENT ANALYSIS 77 

is an M x N diagonal matrix and the first L diagonal elements X b  ( i ) ,  for 
i = 1, 2, . . . , L,  are called the singular values of input matrix F .  Since U and 
V are unitary matrices, we have 

UUT = I M ,  

VVT = I N ,  

where IM and IN  are the identity matrices of dimension M and N ,  respec- 
tively. As a result, the input matrix F can be decomposed as 

F = U A i V T .  (4.33) 

The columns of U are chosen as the eigenvectors u, of the symmetric matrix 
FFT so that  

U ~ ( F F ~ ) U  = 

0 

1 (4.34) 

where X ( i ) ,  i = 1, 2, . . . , L,  are the nonzero eigenvalues of F F T .  Similarly, 
the columns of matrix V are eigenvectors un of the symmetric matrix F T F  
as defined by 

V ~ ( F ~ F ) V  = 1 (4.35) 

where X ( i ) ,  i = 1, 2, . . . , L are the corresponding nonzero eigenvalues of F T F .  
The input matrix can be represented in series form by these eigenvalues and 
eigenvectors as 

(4.36) 
a= 1 

If the eigenvalues X ( i ) ,  for i = 1, 2, . . . , L are sorted in decreasing order 
and only first K from the sorted list are significant ( K  < L ) ,  then we can 
approximate the input matrix F by a smaller-dimensional matrix F using 
these first K eigenvalues and corresponding eigenvectors only. 
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The eigenvector corresponding to  the highest eigenvalue of F T F  is called 
the first principal component. Likewise, the second principal component is the 
eigenvector corresponding to the next highest eigenvalue of F T F ,  and so on. 
Hence the kth principal component is the eigenvector corresponding to the 
kth largest eigenvalue of F T F .  

4.6 SUMMARY 

In this chapter, we have described the principles and mathematical formu- 
lations of different image transformation techniques. We have described the 
principles of one-dimensional and two-dimensional Fourier transform (both 
continuous and discrete) and their properties with some examples. We de- 
scribed the discrete Cosine transform (DCT) both in one and two dimensions 
and principle behind Walsh Hadamard transform (WHT) as well. We also 
discussed the principles behind Karhaunen-Loeve transform and its proper- 
ties. 
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3 
Discrete Wavelet 

Transform 

5.1 INTRODUCTION 

The Fourier transform is an analysis of global frequency content in the signal. 
There are applications in image processing that require the analysis to  be 
localized in the spatial domain. This can be handled by introducing spatial 
frequency into Fourier analysis. The classical way of doing this is through 
what is called Windowed Fourier Transform. Central idea of windowing is 
reflected in Short Time Fourier Transform (STFT). The windowed transform 
of f(x) is given as 

+m 

F ( w ,  a )  = 1, f ( x ) g ( x  - Q) exp-jwz dx (5.1) 

where w represents the frequency and a denotes the position of the window. 
It  may be noted here that the Gaussian is well-localized around the time 
x = a. Thus, Eq. 5.1 transforms the signal f (x) in a small window around a. 
The STFT conveys the localized frequency component present in the signal 
during the short window of time. The same concept may be extended to  a 
two-dimensional spatial image where the localized frequency components may 
be determined from the windowed transform. This is one of the basis of the 
conceptual understanding of wavelet transforms. 

The concept of wavelet was hidden in the works of mathematicians even 
more than a century ago. In 1873, Karl Weierstrass mathematically described 
how a family of functions can be constructed by superimposing scaled versions 
of a given basis function [l]. Mathematically a “wave” is expressed as a si- 
nusoidal (or oscillating) function of time or space. Fourier analysis expands 

79 
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an arbitrary signal in terms of an infinite number of sinusoidal functions of 
its harmonics and has been well studied by the signal processing community 
for decades. Fourier representation of signals is known to be very effective 
in analysis of time-invariant (stationary) periodic signals. In contrast to a 
sinusoidal function, a wavelet is a small wave whose energy is concentrated 
in time. The term wavelet was originally used in the field of seismology to 
describe the disturbances that emanate and proceed outward from a sharp 
seismic impulse [2]. In 1982, Morlet et al. first described how the seismic 
wavelets could be effectively modeled mathematically [3 ] .  In 1984, Grossman 
and Morlet extended this work to show how an arbitrary signal can be ana- 
lyzed in terms of scaling and translation of a single mother waveZet function 
(basis) [4]. Wavelets allow both time and frequency analysis of signals si- 
multaneously because of the fact that the energy of wavelets is concentrated 
in time and still possesses the wave-like (periodic) characteristics. As a re- 
sult, wavelet representation provides a versatile mat hematical tool to analyze 
transient, time-variant (nonstationary) signals that are not statistically pre- 
dictable especially at  the region of discontinuities-a feature that is typical 
of images having discontinuities at  the edges. For historical perspectives of 
wavelets, the reader is referred to the treatise by Ives hleyer [ 5 ] .  

5.2 WAVELET TRANS FORMS 

Wavelets are functions generated from one single function (basis function) 
called the prototype or mother wavelet by dilations (scalings) and translations 
(shifts) in time (frequency) domain. If the mother wavelet is denoted by $( t ) ,  
the other wavelets $'a,b( t )  can be represented as 

where a and b are two arbitrary real numbers. The variables a and b rep- 
resent the parameters for dilations and translations respectively in the time 
axis. From Eq. 5 .2 ,  it is obvious that the mother wavelet can be essentially 
represented as 

$(t)  = $l.O(t). ( 5 . 3 )  

For any arbitrary a # 1 and b = 0, we can derive that 

As shown in Eq. 5.4, ga,0(t) is nothing but a time-scaled (by a )  and 
amplitude-scaled (by a) version of the mother wavelet function $(t)  in 
Eq. 5 . 3 .  The parameter a causes contraction of $( t )  in the time axis when 
a < 1 and expansion or stretching when a > 1. That's why the parameter 
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a is called the dilation (scaling) parameter. For a < 0, the function 7,ba,b(t) 

results in time reversal with dilation. 
Mathematically, we can substitute t in Eq. 5.4 by t - b to cause a translation 

or shift in the time axis resulting in the wavelet function 7,bt,,b(t) as shown in 
Eq. 5.2. The function ?)a,b( t )  is a shift of $a ,o ( t )  in right along the time axis 
by an amount b when b > 0 whereas it is a shift in left along the time axis by 
an amount b when b < 0. That's why the variable b represents the translation 
in time (shif t  in frequency) domain. 

Fig. 5.1 (a) A mother wavelet $( t ) ,  (b) @(t/a):  0 < a < 1, (c) @(t/cv): a > 1. 

In Figure 5.1, we have shown an illustration of a mother wavelet and its 
dilations in the time domain with the dilation parameter a = a. For the 
mother wavelet $( t )  shown in Figure 5. l (a) ,  a contraction of the signal in 
the time axis when a < 1 is shown in Figure 5.l(b) and expansion of the 
signal in the time axis when a > 1 is shown in Figure 5.l(c). Based on this 
definition of wavelets, the wavelet transform (WT) of a function (signal) f ( t )  
is mathematically represented by 

(5.5) 
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The inverse transform to reconstruct f ( t )  from W ( a ,  b) is mathematically 
represented by 

1 
f ( t )  = -W(a, b)$,,dt)da db (5 .6)  

a=-m b=-m 1 a 1 2  
where 

and q ( w )  is the Fourier transform of the mother wavelet $( t ) .  
If a and b are two continuous (nondiscrete) variables and f ( t )  is also a con- 

tinuous function, W ( a ,  b )  is called the continuous wavelet transform (CWT). 
Hence the CWT maps a one-dimensional function f ( t )  to a function W ( a ,  b) 
of two continuous real variables a (dilation) and b (translation). 

5.2.1 Discrete Wavelet Transforms 

Since the input signal (e.g., a digital image) is processed by a digital computing 
machine, it is prudent to define the discrete version of the wavelet transform. 
Before we define the discrete wavelet transform, it is essential to  define the 
wavelets in terms of discrete values of the dilation and translation parameters 
a and b instead of being continuous. There are many ways we can discretize a 
and b and then represent the discrete wavelets accordingly. The most popular 
approach of discretizing a and b is using Eq. 5.7, 

a = a r ,  b = nboar  (5 .7)  

where m and n are integers. Substituting a and b in Eq. 5.2 by Eq. 5.7, the 
discrete wavelets can be represented by Eq. 5.8. 

- 

$m,n(t) = a. m/2$ ( a i m t  - nbo) . (5.8) 

There are many choices to select the values of a0 and bo. We select the 
most common choice here: a0 = 2 and bo = 1; hence, a = 2" and b = 
n2m. This corresponds to  sampling (discretization) of a and b in such a 
way that the consecutive discrete values of a and b as well as the sampling 
intervals differ by a factor of two. This way of sampling is popularly known 
as dyadic sampling and the corresponding decomposition of the signals is 
called the dyadic decomposition. Using these values, we can represent the 
discrete wavelets as in Eq. 5.9, which constitutes a family of orthonormal 
basis functions, 

In general, the wavelet coefficients for function f ( t )  are given by 

$m.n(t) = 2-427Jj (2-mt - n) . (5.9) 

c,,,(f) = a i m / 2  1 f ( t )$  (u imt  - nbo) dt  (5.10) 
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and hence for dyadic decomposition, the wavelet coefficients can be derived 
accordingly as 

(5.11) 

This allows us to  reconstruct the signal f ( t )  in from the discrete wavelet 
coefficients as 

c a m  

(5.12) 
m=-m n=-m 

The transform shown in Eq. 5.10 is called the wavelet series, which is analo- 
gous to  the Fourier series because the input function f ( t )  is still a continuous 
function whereas the transform coefficients are discrete. This is often called 
the discrete time wavelet transform (DTWT). For digital signal or image pro- 
cessing applications executed by a digital computer, the input signal f ( t )  
needs to  be discrete in nature because of the digital sampling of the original 
data, which is represented by a finite number of bits. When the input function 
f ( t )  as well as the wavelet parameters a and b are represented in discrete form, 
the transformation is commonly referred to as the discrete wavelet transform 
(DWT) of signal f ( t )  [6, 71. 

The discrete wavelet transform (DWT) became a very versatile signal pro- 
cessing tool after Mallat [6] proposed the multiresolution representation of sig- 
nals based on wavelet decomposition. The advantage of the DWT over Fourier 
transformation is that it performs multiresolution analysis of signals with lo- 
calization both in time and frequency, popularly known as time-frequency 
localization. As a result, the DWT decomposes a digital signal into different 
subbands so that the lower-frequency subbands have finer frequency resolution 
and coarser time resolution compared to  the higher-frequency subbands. The 
DWT is being increasingly used for image compression due to  the fact that 
the DWT supports features like progressive image transmission (by quality, by 
resolution), ease of compressed image manipulation, region of interest coding, 
etc. DWT is the basis of the new JPEG2000 image compression standard [8]. 

5.2.2 Gabor filtering 

Gabor filter is an example of wavelet filters widely used in many image pro- 
cessing applications such as texture analysis, segmentation, classification, etc. 
[9]. In all such applications, it is necessary to analyze the spatial frequency 
components of an image in a localized fashion. For localized frequency anal- 
ysis it is desirable to have a Gaussian envelope whose width adjusts with the 
frequency of the complex sinusoids. Gabor wavelets form class of self simi- 
lar functions which yield better localization in space. The 2D Gabor filters 
optimally achieve joint resolution/localization in space and spatial frequency 
domains. 
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Gabor elementary functions are Gaussians modulated by complex sinu- 
soids. The 2D Gabor functions are complex sinusoid (carrier) gratings modu- 
lated by 2D Gaussian functions in the space domain, and shifted Gaussians in 
the spatial frequency domain which means that they are complex valued func- 
tions. Regardless of the region of frequencies passed, the 2D Gabor functions 
uniquely minimize the 2D space-frequency uncertainty principle for complex- 
valued functionss. Hence Gabor functions can be interpreted as the product 
of a modulating amplitude envelope with a complex carrier function whose 
argument is a modulating phase envelope, both of which can be computed 
and analyzed separately. 

In the spatial domain, the Gabor function is a complex exponential modu- 
lated by a Gaussian function. The Gabor function forms a complete and non- 
orthogonal basis set and its impulse response in the two-dimensional plane 
has the following general form : 

where uo denotes the radial frequency of the Gabor function. The space 
constants ox and oy define the Gaussian envelope along the X -  and Y-axes. 
In a similar fashion, the Gabor function, obtained by modulation of complex 
exponential function in Y-direction by Gaussian function, is given as 

Figure 5.2 shows the perspective plot of a typical Gabor filter in the spatial 
domain. The real and imaginary components of the 2D Gabor function are 
shown in Figures 5.2(a) and 5.2(b) respectively. 

f ig.  5.2 2D Gabor filter: (a) Real component, (b) Imaginary component. 

Each of the complex Gabor filters has the real (even) and imaginary (odd) 
parts that are conveniently implemented as the spatial mask of hl x M sizes. 
For a symmetric region of support, A4 is preferred to be an odd number. 
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A class of self-similar functions, referred t o  as Gabor wavelets, can be 
obtained by appropriate dilation and rotation of the mother Gabor function. 
This function can be dilated and rotated to get an array of filters. If we assume 
the number of dilations to be S and there are L number of orientations, the 
filter bank consists of S x L filters. The Gabor filter bank has the parameters 
(a) frequency half-peak bandwidth, (b) orientation half-peak bandwidth, (c) 
center frequency, and (d) orientation. The Gabor filters can be configured to 
have various shapes, bandwidths, center frequencies, and orientations by the 
adjustments of these parameters. 

5.2.3 Concept of Multiresolution Analysis 

There were a number of orthonormal wavelet basis functions of the form 
$~ , ,~ ( t )  = 2-m/2$ (2-,t - n)  discovered in the 1980s. The theory of mul- 
tiresolution analysis presented a systematic approach to  generate the wavelets 
[6, 101. The idea of multiresolution analysis is to approximate a function f ( t )  
a t  different levels of resolution. 

In multiresolution analysis, we consider two functions: the mother wavelet 
$I@) and the scalingfunction q5(t). The dilated (scaled) and translated (shifted) 
version of the scaling function is given by q5m,n(t) = 2-"/24(2-mt - n). For 
fixed m, the set of scaling functions 4m,n(t) are orthonormal. By the linear 
combinations of the scaling function and its translations we can generate a 
set of functions 

(5.15) 
n 

The set of all such functions generated by linear combination of the set 
{$m,n(t)} is called the span of the set {$m.n(t)} ,  denoted by Span{4,,,(t)}. 
Now consider V, to be a vector space corresponding to  Span{q5m.n(t)}. As- 
suming that the resolution increases with decreasing m, these vector spaces 
describe successive approximation vector spaces, . . . c V2 c V, c Vo c V-1 c 
V-2 c . . ., each with resolution 2, (i.e., each space V,+, is contained in the 
next resolution space 5) .  In multiresolution analysis, the set of subspaces 
satisfies the following properties: 

1. Vm+l c V,, for all m: This property states that each subspace is con- 
tained in the next resolution subspace. 

= L 2 ( R ) :  This property indicates that  the union of subspaces is 
dense in the space of square integrable functions L2(R) ;  R indicates a 
set of real numbers (upward completeness property). 

3. nV, = 0 (an empty set): This property is called downward complete- 

4. f ( t )  E VO H f ( 2 - " t )  E V,: Dilating a function from resolution space 
Vo by a factor of 2, results in the lower resolution space V, (scale or 
dilation invariance property). 

2. 

ness property. 
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5. f ( t )  E Vo ++ f ( t  - n)  E Vo: Combining this with the scale invariance 
property above, this property states that translating a function in a 
resolution space does not change the resolution (translation invariance 
property). 

6. There exists a set {4(t - n)  E Vo: n is an integer} that forms an or- 
thonormal basis of Vo. 

The basic tenet of multiresolution analysis is that whenever the above 
properties are satisfied, there exists an orthonormal wavelet basis $m,n(t) = 
2-m/24(2-mt - n) such that 

P m - l ( f )  = P,(f) + Cc,, ,( f)$m,n(t)  (5.16) 

where Pj is the orthogonal projection of $ onto V,. For each m, consider the 
wavelet functions $,.n(t) span a vector space W,. It is clear from Eq. 5.16 
that the wavelet that generates the space W,, and the scaling function that 
generates the space V, are not independent. W, is exactly the orthogonal 
complement of V, in Vm-l. Thus, any function in Vm-l can be expressed 
as the sum of a function in V, and a function in the wavelet space W,. 
Symbolically, we can express this as 

V,-I = v, CE w,. (5.17) 

Since m is arbitrary, 

Thus, 

Continuing in this fashion, we can establish that 

v m  = Vm+l@ Wm+l. (5.18) 

(5.19) vm-1 = v,,, @ W,+l @ iv7rL. 

v,-1 = v, @ W, a3 W&l@ W k - 2  @ ' .  ' Wm (5.20) 

for any k 2 m. 
Thus, if we have a function that belongs to  the space Vm-l (i.e., the func- 

tion can be exactly represented by the scaling function at resolution m - l),  
we can decompose it into a sum of functions starting with lower-resolution 
approximation followed by a sequence of functions generated by dilations of 
the wavelet that represent the loss of information in terms of details. Let 
us consider the representation of an image with fewer and fewer pixels a t  
successive levels of approximation. The wavelet coefficients can then be con- 
sidered as the additional detail information needed to go from a coarser to 
a finer approximation. Hence, in each level of decomposition the signal can 
be decomposed into two parts, one is the coarse approximation of the signal 
in the lower resolution and the other is the detail information that was lost 
because of the approximation. The wavelet coefficients derived by Eq. 5.10 
or 5.11, therefore, describe the information (detail) lost when going from an 
approximation of the signal at  resolution 2"-' to  the coarser approximation 
a t  resolution 2,. 
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5.2.4 

It is clear from the theory of multiresolution analysis in the previous section 
that multiresolution analysis decomposes a signal into two parts-one approx- 
imation of the original signal from finer to coarser resolution and the other 
detail information that was lost due to  the approximation. This can be math- 
ematically represented as  

Implementation by Filters and the Pyramid Algorithm 

(5.21) 
n n 

where fm( t )  denotes the value of input function f ( t )  at resolution 2,, c,+I,~ 
is the detail information, and a , + ~ , ~  is the coarser approximation of the signal 
at resolution 2,+'. The functions, 4,+1,~  and $,+I,~, are the dilation and 
wavelet basis functions (orthonormal). 

In 1989, Mallat [6] proposed the multiresolution approach for wavelet de- 
composition of signals using a pyramidal filter structure of quadrature mirror 
filter (QMF) pairs. In multiresolution analysis, it can be proven that decom- 
position of signals using the discrete wavelet transform can be expressed in 
terms of FIR filters [6, 101 and all the discussions on multiresolution analysis 
boil down to the following algorithm (Eq. 5.22) for computation of the wavelet 
coefficients for the signal f ( t ) .  For details see the original paper by Mallat 

PIf 

(5.22) 

where g and h are the high-pass and low-pass filters, gz = (-1)'h-,+l and 
h, = 2lI2 J $(x - i ) 4 ( 2 x )  dx. Actually, a,.,(f) are the coefficients charac- 
terizing the projection of the function f ( t )  in the vector subspace V, (i.e., 
approximation of the function in resolution 2,), whereas c,,,(f) E W, are 
the wavelet coefficients (detail information) a t  resolution 2,. If the input sig- 
nal f ( t )  is in discrete sampled form, then we can consider these samples as the 
highest-order resolution approximation coefficients a ~ , ~ ( f )  E VO and Eq. 5.22 
describes the multiresolution subband decomposition algorithm to construct 
c ~ , , ~ ( f )  and ~ m . ~ ( f )  a t  level m with a low-pass filter h and high-pass filter g 
from c , - ~ . ~ ( f ) ,  which were generated at level m - 1. These filters are called 
the analysis filters. The recursive algorithm to  compute DWT in different lev- 
els using Eq. 5.22 is popularly called Mallat's Pyramid Algorithm [6]. Since 
the synthesis filters h and g have been derived from the orthonormal basis 
functions 4 and $, these filters give exact reconstruction 

1 c m , n ( f )  = x k  g2n-k a m - l , k ( f )  

a m , n ( f )  X I ,  h2n-k a m - l , k ( f )  

(5.23) 
n n 

Most of the orthonormal wavelet basis functions have infinitely supported 
$ and accordingly the filters h and g could be with infinitely many taps. 
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However, for practical implementation of the DWT for image processing ap- 
plications, it is desirable to  have finite impulse response (FIR) filters with a 
small number of taps. I t  is possible to construct such filters by relaxing the or- 
thonormality requirements and using biorthogonal basis functions. It should 
be noted that the wavelet filters are orthogonal when (h’,g’) = ( h , g ) ,  other- 
wise it is biorthogonal. In such a case the filters (h’ and g’, called the synth,esis 
filters) for reconstruction of the signal can be different than the analysis filters 
( h  and g )  for decomposition of the signals. In order to achieve exact recon- 
struction, we can construct the filters such that it satisfies the relationship of 
the synthesis filter with the analysis filter as shown in Eq. 5.24: 

(5.24) 

If (h’, 9’) = (h ,  g ) ,  the wavelet filters are called orthogonal, otherwise they 
are called biorthogonal. The popular (9, 7) wavelet filter adopted in JPEG2000 
standard is one example of such a biorthogonal filter [8]. The signal is still 
decomposed using Eq. 5.22, but the reconstruction equation is now done using 
the synthesis filters h‘ and g‘ as shown in Eq. 5.25: 

n n 

(5.25) 

Lp+@++Jl 
THREE-LEVEL SIGNAL DECOMPOSITION THREE-LEVEL SIGNAL RECONSTRUCTION 

Fig. 5.3 
rials using pyramidal filter structure. 

Three-level multiresolution wavelet decomposition and reconstruction of sig- 

Let‘s summarize the DWT computation here in terms of simple digital FIR 
filtering. Given the input discrete signal z(n) (shown as a(0,  n )  in Figure 5.3), 
it is filtered parallelly by a low-pass filter (h )  and a high-pass filter ( 9 )  at each 
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transform level. The two output streams are then subsampled by simply 
dropping the alternate output samples in each stream to produce the low- 
pass subband y~ (shown as a(1,n) in Figure 5.3) and high-pass subband YH 
(shown as c ( 1 , n )  in Figure 5.3). The above arithmetic computation can be 
expressed as follows: 

TL-1 r H - 1  

yL(n) = c h(i)z(2n - i ) ,  YH(72) = g(i)z(2n - 2 )  (5.26) 
2=0 i=O 

where 71, and TH are the lengths of the low-pass ( h )  and high-pass (9) filters 
respectively. Since the low-pass subband a ( 1 , n )  is an approximation of the 
input signal, we can apply the above computation again on a( 1, n) to  produce 
the subbands 4 2 ,  n )  and c(2,  n) and so on. This multiresolution decomposi- 
tion approach is shown in Figure 5.3 for three levels of decomposition. During 
the inverse transform to reconstruct the signal, both a ( 3 , n )  and c ( 3 , n )  are 
first upsampled by inserting zeros between two samples, and then they are 
filtered by low-pass (h') and high-pass (9') filters respectively. These two fil- 
tered output streams are added together to reconstruct a(2 ,n)  as shown in 
Figure 5.3. The same continues until we reconstruct the original signal a(0,  n). 

5.3 EXTENSION TO TWO-DIMENSIONAL SIGNALS 

The 2D extension of DWT is essential for transformation images. A two- 
dimensional signal (image) can be represented by a 2D array X [ M ,  N ]  with 
hl rows and N columns, where M and N are nonnegative integers. The 
simple approach for 2D implementation of the DWT is to  perform the one- 
dimensional DWT row-wise to produce an intermediate result and then per- 
form the same one-dimensional DWT column-wise on this intermediate result 
to  produce the final result. This is shown in Figure 5.4(a). This is possible 
because the two-dimensional scaling functions can be expressed as separable 
functions which are the product of two one-dimensional scaling functions such 
as 42(x,y) = &(z)&(y). The same is true for the wavelet function $(z,y) as 
well. Applying the one-dimensional transform in each row, we produce two 
subbands in each row. When the low-frequency subbands of all the rows (L) 
are put together, it looks like a thin version (of size M x %) of the input signal 
as shown in Figure 5.4(a). Similarly we put together the high-frequency sub- 
bands of all the rows to produce the H subband of size M x %, which contains 
mainly the high-frequency information around discontinuities (edges in an im- 
age) in the input signal. Then applying a one-dimensional DWT column-wise 
on these L and H subbands (intermediate result), we produce four subbands 
LL, LH, HL, and HH of size % x % respectively, as shown in Figure 5.4(a). 
LL is a coarser version of the original input signal. LH, HL, and HH are the 
high-frequency subband containing the detail information. It should be noted 
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that we could have applied the one-dimensional DWT column-wise first and 
then row-wise to achieve the same result. 

row-wise 
DWT - L 

(a) First level of decomposition 

LH2 HH2 

(b) Second level decomposition (c )  Third level decomposition 

Fig. 5.4 Row-column computation of two-dimensional DWT. 

As shown in Figure 5.4(b), the LL1 subband can be further decomposed 
into four subbands LL2, HL2, LH2, and HH2 based on the principle of mul- 
tiresolution analysis. The same computation can continue to further decom- 
pose LL2 into higher levels. In Figure 5.5, we show the result of the wavelet 
transform at different levels with a real-life image provided by the JPEG2000 
standard committee. The subbands have been normalized to  8 bits for the 
purpose of display. 

5.4 LIFTING IMPLEMENTATION OF T H E  DWT 

The DWT implementation is basically frame-based as opposed to  the DCT- 
type block-based implementation. Such an implementation requires both a 
large number of arithmetic computations and a large memory. Recently, a 
new mathematical formulation for wavelet transformation has been proposed 
by Swelden [ll] based on spatial construction of the wavelets and a very 
versatile scheme for its factorization has been suggested in [12]. This new 
approach is called the lifting-based wavelet transform, or simply lifting. The 
main feature of the lifting-based DWT scheme is t o  break up the high-pass 
and low-pass wavelet filters into a sequence of smaller filters that in turn 
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Fig. 5.5 
(d) after level 3 decomposition. 

(a) Original BIKE image and subbands; (b) after level 1, (c) after level 2, 

can be converted into a sequence of upper and lower triangular matrices, 
which will be discussed in the subsequent section. This scheme often requires 
far fewer computations compared to  the convolution-based DWT [ll, 121, 
and its computational complexity can be reduced up to 50%. It  has several 
other advantages, including “in-place” computation of the DWT, integer-to- 
integer wavelet transform (IWT), symmetric forward and inverse transform, 
requiring no signal boundary extension, etc. Lifting has been suggested for 
implementation of the DWT in the upcoming JPEG2000 standard [8]. 

In FIR-based DWT implementation, the input signal (x) is filtered sep- 
arately by a low-pass filter (L) and a high-pass filter (9). The two output 
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Fig. 5.6 Signal analysis and reconstruction in DWT. 

streams are then subsampled by simply dropping the alternate samples to  
produce the low-pass ( y ~ )  and high-pass ( y ~ )  subbands as shown in Fig- 
ure 5.6. These two filters ( h , j )  form the analysis filter bank. The original 
signal can be reconstructed by a synthesis filter bank (h,g) starting from y~ 
and Y H  as shown in Figure 5.6. We have adopted the discussion on lifting 
from the celebrated paper by Daubechies and Sweldens [12]. It should also 
be noted that we adopted the notation (h ,  j )  for the analysis filter and (h ,  
g) as the synthesis filter in this section and onward in this chapter. Given 
a discrete signal z(n) ,  arithmetic computation of above can be expressed as 
follows: 

where TL and 7 H  are the lengths of h and 3 respectively. During the inverse 
transform, both y~ and YH are first upsampled by inserting zeros between 
two samples and then they are filtered by low-pass (h )  and high-pass (9) 
synthesis filters respectively. The two output streams are added to obtain the 
reconstructed signal (2') as shown in Figure 5.6. 

5.4.1 

A digital filter h = {. . . , h k - 1 ,  h k ,  h k + l , .  . .} is a h e a r  time-invariant operator 
which can be completely defined by its impulse response { h k  E R 1 k E 2). 
These impulse responses ( h k )  are popularly called filter coeficients. The Z- 
transform of an FIR filter h is expressed as a Laurent polynomial h ( z )  as 
shown in Eq. 5.28, 

Finite Impulse Response Filter and Z-transform 

(5.28) 
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where m and n are positive integers. The degree of the above Laurent poly- 
nomial is defined as lh(z)I = n - m. Thus the length of the FIR filter h is 
n-m+ 1 (i.e., the degree of the associated Laurent polynomial plus one). The 
sum or difference of two Laurent polynomials is a Laurent polynomial. The 
product of two Laurent polynomials a(.) and b ( z )  is a Laurent polynomial 
of degree la(i)l + /b(z)J .  Let us assume that b ( z )  # 0 and Iu(z)I 2 / b ( z ) l .  
In general, exact division of u ( z )  by b ( z )  is not possible. However, division 
with remainder is possible although this division is not unique. There always 
exists a quotient q ( z )  and a remainder ~ ( z )  (not necessarily unique) with 
1q(z)1 = / u ( z ) /  - Ib(z)/ and Ir(z)l < lb(z)I so that 

u(i) = b ( z ) q ( z )  + (2). (5.29) 

5.4.2 

The Euclidean algorithm can be used to find the greatest common divisor 
(gcd) of two Laurent polynomials a(.) and b(s) .  If b(z)  # 0 and la(z)l 2 
lb(z)I, we can state the algorithm as follows. By operations '/' and '%' in the 
algorithm, we mean to  find the quotient and remainder of the division. 

Euclidean Algorithm for Laurent Polynomials 

From the above algorithm, it is clear that the greatest common divisor (gcd) 
of a ( i )  and b(i) is an, where n is the smallest integer for which b , ( z )  = 0. The 
number of iterations by the while loop in the above algorithms is bounded 
by n 5 /n(z ) l  + 1. From the above algorithm, we can establish that 

which can be rewritten as 

(5.30) 

(5.31) 
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Thus, 

Since ao(z) = a(z)  and bo(z) = b ( z ) ,  we obtain the following factorization 
after iterating the above equation: 

(5.33) 

The above factorization algorithm will be used in Section 5.4.4.3 to  show 
how the polyphase matrix for a filter pair can be factorized into lifting se- 
quences. 

5.4.3 

For any practical signal transformation technique from one domain to another, 
the transformation should be reversible. For example, the Fourier transform 
converts a signal from the time domain to the frequency domain. When inverse 
Fourier transform is applied on the signal in frequency domain, the signal is 
converted back to  the time domain. Ideally, if there is no additional processing 
or manipulation done in the frequency domain data after the transformation 
(i.e., if there is no loss of data or information a t  any form), the reconstructed 
signal after inverse Fourier transform should be an exact replica of the original 
one. The same principle applies for the DWT as well. Hence we need to  choose 
the filter bank for DWT in such a way that perfect reconstruction is achieved. 
For the filter bank in Figure 5.6, the conditions for perfect reconstruction of 
a signal [12] are given by 

Perfect Reconstruction and Polyphase Representation of Filters 

(5.34) 
h(z)h(Z-l) + g ( z ) S ( z - ' )  = 2 

h(z)h( -z -1)  + g(z)tj(-z-l) = 0 

where h(z) is the 2-transform of the FIR filter h. 

The polyphase representation of a filter h is expressed as 

h ( z )  = h,(z2)  + z-lh,(z2) (5.35) 

where h, contains the even filter coefficients and h, contains the odd filter co- 
efficients of the FIR filter h. In general by polyphase representation, we mean 
to  split a sequence into several subsequences for possible parallel processing 
of the subsequences. From Eq. 5.35, we can intuitively split the filter into 
two smaller filters-one (he) with the even filter coefficients and the other (h,) 
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with the odd filter coefficients delayed by a clock cycle, whose Ztransform 
can be expressed as 

k k 

and we can define a polyphase matr ix  for the filter h as 

(5.36) 

(5.37) 

Based on the discussion above, the polyphase representation of the filters 
g ( z ) ,  h (z ) ,  and s ( z )  is expressed as follows: 

1 g ( z )  = g e ( z 2 )  + z - l g o ( z 2 )  

1 L ( z )  = L e ( z 2 )  + z- ' i io(z2)  (5.38) 

3 ( z )  = ~ ~ ( z 2 )  + 2 - 1 ~ ~ ( 2 2 )  J 
Based on the above formulation, we can define two polyphase matrices  as 

follows: 

Often the polyphase matrix P(z)  is called the dual of the polyphase matrix 
P ( z ) .  For perfect reconstruction, these two polyphase matrices P ( z )  and p ( z )  
satisfy the following relation in Eq. 5.40, 

P ( z ) P ( z - y  = I (5.40) 

where I is the 2 x 2 ident i ty  matrix. Now based on the above formulation, 
the wavelet transform in terms of the polyphase matrix can be expressed as 

for the forward DWT and 

(5.41) 

(5.42) 

for the inverse DWT. 
If the determinant of the polyphase matrix P ( z )  is unity (i.e., IP(z)l = 

h e ( z ) g o ( z )  - g e ( z ) h o ( z )  = l), then the matrix P ( z )  is invertible. Hence we 
can apply Cramer's rule [12] in Eq. 5.40 as follows: 
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From Eq. 5.39, we find that 

(5.44) 

(5.45) 

which implies that 

h ( z )  = - z - l g ( - z - I ) ,  fj(z) = z-%(-z-l) (5.46) 

and hence 
h ( z )  = -z- l+z- l ) ,  g ( z )  = z - 'h ( - z -1 ) .  (5.47) 

When the determinant of P ( z )  is unity, the synthesis filter pair (h,g) is called 
complementary and so is the analysis filter pair (h,fj). When ( h , g ) = ( h , j ) ,  the 
wavelet transformation is called orthogonal; otherwise it is biorthogonal. 

When h ( z )  = h ( z )  = g ( z )  = g ( z )  = 1, the DWT simply splits an input 
signal (x = {xk 1 k E 2)) into two subsequences, one with all the odd samples 
(zzi+l) and the other with all the even sequences (zzi). This is called the lazy 
wavelet transform [ 111. 

5.4.4 Lifting 

There are two types of lifting. One is called primal lifting and the other is 
called dual lifting. We define these two types of lifting based on the mathe- 
matical formulations shown in the previous section. 

5.4.4.1 According to  the lifting theorem [la],  if the wavelet 
filter pair (h, 9)  is complementary then any other FIR filter gne" that is 
complementary to h is of the form 

Primal Lifting 

g n e w ( z )  = g ( z )  + h ( z ) s ( z 2 )  (5.48) 

where s( z 2 )  is a Laurent polynomial 

Proof: Expanding gnew(z )  in polyphase representation, we get 
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(5.50) 

(5.51) 

It can be easily verified that the determinant of Pnew(z)  is 1 and hence it 
proves Eq. 5.48. From Eq. 5.40 we know that 

p n e w ( Z ) p n e w ( z - y  = 1. (5.52) 

Thus, we can derive that 

Consequently 

(5.54) 

Hence, the lifting created a new low-pass filter 

P y t )  = h ( t )  - g(z)s (z -2) .  (5.55) 

As a result, we have lifted the low-pass subband with the help of the high-pass 
subband. This is called the primal lifting. 

5.4.4.2 By dual 1i.ing we mean lifting the high-pass subband 
with the help the low-pass subband. If ( h ,  g )  is complementary, then any 
other new FIR filter hne" complementary to g is of the form 

Dual Lifting 

hnew(z) = h ( z )  + g(z)t(z2) (5.56) 

where t ( z 2 )  is a Laurent polynomial. Following the similar deduction as pre- 
sented in the primal lifting section, the dual lifting creates a new high-pass 
filter 

ljnew(z) = Q(z) - h(z) t ( z -2) .  (5.57) 
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5.4.4.3 In this section, we show how a complementary 
filter pair for wavelet transformation can be factorized into lifting steps. 

We can compute the greatest common divisor ( g c d )  of h e ( z )  and h,(z) by 
applying the Euclidean algorithm as shown in Section 5.4.2. If K is the gcd 
of h,(z) and h,(z),  we can express h,(z)  and h,(z) as follows: 

Lifting Factorization 

k=l 

(5.58) 

According to  the theory of lifting discussed in Section 5.4.4, if (h ,  i j )  is a 
complementary filter pair, then we can always find another complementary 
filter fine, so that the polyphase matrix can be represented as 

We can again rewrite Eq. 5.59 as 

It should be noted that 

and 

(5.61) 

(5.62) 

Applying the rules in Eqs. 5.61 and 5.62 into Eq. 5.60, we can rewrite it as 

We also know from the lifting formulation that we can always construct filter 
i j  by lifting ijnew as 

1 P ( z )  = P e w ( , )  [ . 1 i ( z )  
(5.64) 

By combining all of the above formulations, we can conclude that given a 
complementary filter pair (h ,  i j ) ,  there always exist Laurent polynomials & ( z )  
and & ( z )  for 1 5 i 5 n and we can factorize the polyphase matrix P(z )  into a 
finite sequence of alternating upper and lower triangular matrices as follows, 
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where K is a constant and acts as a scaling factor (so is +). In practice, .?,(a) 
and & ( 2 )  are usually of second- or lower-order polynomials, which correspond 
to  usually one- to  threetap FIR filters. Computing the upper triangular 
matrix is known as primal lifting, and this is emphasized in the literature as 
lifting the low-pass subband with the help of the high-pass subband. Similarly, 
computation of the lower triangular matrix is called dual lifting, which is lifting 
of the high-pass subband with the help of the low-pass subband [l l ,  121. Often 
these two basic lifting steps are called update and predict as well. The above 
factorization can also be formulated in the following way: 

5.4.4.4 Lifting Algorithm Hence the lifting-based forward wavelet transform 
essentially means first applying the lazy wavelet transform on the input stream 
(split into even and odd samples), then alternately executing primal and dual 
lifting steps, and finally scaling the two output streams by + and K respec- 
tively to  produce low-pass and high-pass subbands, as shown in Figure 5.7(a). 
The inverse DWT using lifting can be derived by traversing the above steps in 
the reverse direction, first scaling the low-pass and high-pass subband inputs 
by K and 1/K respectively, and then applying the dual and primal lifting 
steps after reversing the signs of the coefficients in f(2) and S ( z ) ,  and finally 
the inverse lazy transform by upscaling the output before merging them into 
a single reconstructed stream as shown in Figure 5.7(b). 

Due to the linearity of the lifting scheme, if the input data are in integer 
format, it is possible to  maintain data in integer format throughout the trans- 
form by introducing a rounding function in the filtering operation. Due to 
this property, the transform is reversible (i.e., lossless) and is called integer 
wavelet transform (IWT) [13]. It should be noted that filter coefficients need 
not be integers for IWT. However, if a scaling step is present in the factor- 
ization, IWT cannot be achieved. It has been proposed in [13] to  split the 
scaling step into additional lifting steps to achieve IWT. 

5.4.4.5 
and 0 = (-L, 2 1, -;). Hence, 

Example Consider the Le Gall (5,3) spline filter, with h = (-i, i, i, i, -$) 
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(a) Forward t ransform 

... 

... 

(b) Inverse t ransform 

fig. 5.7 Lifting-based forward and inverse DWT. 

From the above equations, we can easily derive that 

As a result, the polyphase matrix of this filter bank is 

Also based on conditions of perfect reconstructions of the complementary 
filters as described in Eq. 5.34, we can derive the corresponding synthesis 
filters as follows: 

h ( z )  = -z-Qj(-z-l) = $2-1 + 1 + $2, 
g ( z )  = 2 - q + - 1 )  ~ -Lz-3 - Lz-2 + - 1 ~ 1 

8 4 4 P- 

and hence h = ($,1, i) and g = (-S, 1 1 3  - a ,  1 1  - E ) .  
Now based on the lifting factorization of the polyphase matrix, the possible 

factorization of P ( z )  that leads to a band matrix multiplication is 

1 ,  P(.)=[ i(l+”’] [ 1 
0 1 - i ( 1 + z - l )  1 

If the samples are numbered starting from 0, we consider the even terms of 
the output stream as the samples of low-pass subband and similarly the odd 
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M I =  

terms as the samples of high-pass subband. Accordingly, we can interpret 
the above matrices in the time domain as y2z+l = - - + ( ~ 2 ~  + ~ 2 ~ + 2 )  + z22+1 

and ~2~ = ~ ( y 2 ~ + 1  + Y 2 ~ + 3 )  + ~ 2 %  where 0 5 i 5 $ for an input stream z 
of length N and y’s are the transformed signal values. Note that the odd 
samples are calculated from even samples and even samples are calculated 
from the updated odd samples. The corresponding matrices M I  and M2 are 
shown below, where a = - $  and b = i. The transform of the signal X is 
Y = XM1Mz while the inverse is X = YMZM1. The matrices M1 and M2 
are as follows: 

- 1 a o . . . . . .  
0 1 0 0  . . . . .  
O a l a 0  . . . .  
. 0 0 1 0 0 . . .  
. . O a l a O . .  
. . .  0 0 1 0 0 .  
. . . .  O a l a 0  
. . . . .  0 0 1 0  
0 . . . . .  0 a l  

M 1 =  

, M z  = 

- 
l a 0  . . . . . .  ’ 
0 1 0 0  . . . . .  
O a l a 0  . . . .  
. 0 0 1 0 0 . . .  
. . 0 a 1 a 0 . . , I L . l z =  
. . .  0 0 1 0 0 .  
. . . .  O a l a 0  
. . . . .  0 0 1 0  

- 0 . .  . .  . o  a 1 - 

- 1 0 0 . .  . . . .  
O l b O  . . . . .  
0 0 1 0 0  . . . .  
. O b l b O . . .  
. . 0 0 1 0 0 . .  
. . .  O b l b 0 .  
. . . .  0 0 1 0 0  
. . . . .  O b 1 0  
0 . . . . .  0 0 1  

- 1 0 0 . .  . . .  . -  
O l b O  . . . . .  
0 0 1 0 0 . .  . .  
. O b l b O . . .  
. . 0 0 1 0 0 . .  
. . .  O b l b 0 .  
. . . .  0 0 1 0 0  
. . . . .  O b 1 0  
0 . . . . .  0 0 1  

The other wavelet filter bank that has been proposed in JPEG2000 Part 
1 is the (9, 7) filter. The most efficient factorization of the polyphase matrix 
for (9, 7) filter is as follows [12]; 

where a=-1.586134342, b=-0.0529801185, c=0.882911076, d=-0.443506852, 
K=1.149604398. In terms of banded matrix operation, the transform can be 
represented as Y = XMlhl2AI3M4, while the inverse transform is represented 
as X = YM4M3A42M,. The matrices M I ,  h f z ,  M3, and M4 are as follows: 

MB = 

- 1 c 0 . . . . . .  
0 1 0 0  . . . . .  
O C l C O  . . . .  
. 0 0 1 0 0 . . .  
. . O c l c O . .  
. . .  0 0 1 0 0 .  
. . . .  O C l C O  

. . . .  . 0 0 1 0  
0 . . . . .  O c l  

, M4 = 

- l o o . . . . . .  
O l d 0  . . . . .  
0 0 1 0 0  . . . .  
. O d l d O . . .  
. . 0 0 1 0 0 . .  
. . .  O d l d 0 .  
. . . .  0 0 1 0 0  
. . . . .  O d 1 0  
0 . . . . .  0 0 1  
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Most of the practical wavelet filters are decomposed either into 2 or 4 
matrices (primal and dual). For example, each of the filter banks C(13, 7), 
S(13, 7 ) ,  (2,6), (2, 10) can be decomposed into two matrices and (6, 10) can 
be decomposed into four matrices, as has been described in detail in [14]. 

5.4.5 

Computation of the lifting-based discrete wavelet transform can be explained 
via a data dependency diagram as shown by a block diagram in Figure 5.8. 
For the DWT requiring four lifting factors, such as the (9, 7) filter, the com- 
putation is done in four stages as shown in Figure 5.8. For the DWT filters 
requiring only two lifting factors, such as the (5, 3 )  filter, the intermediate 
two stages can simply be bypassed. 

Data Dependency Diagram for Lifting Computation 

Input 

First. 
stage 

Second 
stage 

HP  output 

LP output 

HP  

’ LP 

f ig.  5.8 Data dependency diagram with four lifting factors. 

The results produced in the first stage of computation in the data depen- 
dency diagram can be stored immediately in the registers containing the odd 
samples of the input data because these odd samples are not used in later 
stages of computation in the data dependency diagram. Similarly the results 
produced in the second stage can be stored back to the registers allocated to  
the even samples of input data. Continuing in the same way, the high-pass 
(low-pass) output samples are stored into the registers where the odd (even) 
samples of the input data were originally stored at  the beginning of the com- 
putation. As a result no extra memory is required at any stage. This property 
of lifting is popularly called “in-place” computation in the literature. 
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5.5 ADVANTAGES OF LIFTING-BASED DWT 

The idea of lifting-based implementation of discrete wavelet transform is a 
relatively recent development and it is still an active area of research in math- 
ematics and signal processing. The lifting-based DWT has many advantages 
over the convolution-based approach. Some of them are as follows. 

0 Computational eficiency : Usually the lifting-based DWT requires less 
computation (up to  50%) compared to  the convolution-based approach. 
However, the savings depend on the length of the filters. 

0 Memo y savings: During the lifting implementation, no extra memory 
buffer is required because of the in-place computation feature of lifting. 
This is particularly suitable for hardware implementation with limited 
available on-chip memory. 

0 Integer-to-integer transform: The lifting-based approach offers integer- 
to-integer transformation suitable for lossless image compression. 

0 No boundary extension: In lossless transformation mode, we can avoid 
the boundary extension (discussed in Section 17.6.1.3 of Chapter 17) of 
the input data because the original input can be exactly reconstructed 
by integer-to-integer lifting transformation. 

0 Parallel processing: From Figure 5.8, it is obvious that multiple MAC 
(multiply and accumulate) processors can produce the output samples 
in each stage in parallel. The computation of each MAC processor is of 
the form a(z, + z,+2) + z,+1. The only sequential part is the order of 
the lifting operations. 

5.6 SUMMARY 

In this chapter, we have discussed the theoretical foundation of the discrete 
wavelet transform (DWT) both for convolution and lifting-based approaches. 
We have examined the multiresolution analysis feature of the wavelet trans- 
form, which makes it suitable for its application in image compression. We 
have discussed the pyramid algorithm for implementation of the DWT using 
the multiresolution approach. The properties of Gabor filter useful in image 
analysis has been discussed. Lifting-based implementation of discrete wavelet 
transform is new and became very popular for a number of efficient features in 
it. We have described the underlying theory behind the lifting algorithm for 
DWT and showed how it is implemented via banded matrix multiplication. 
We have given examples of the lifting factorization for the two default wavelet 
filter kernels (9, 7) and ( 5 ,  3) in the JPEG2000 standard. We have discussed 
the advantages of lifting-based DWT over the traditional convolution-based 
approach. 
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Imaae Enhancement and 
J 

Restoration 

6.1 INTRODUCTION 

Millions of pictures ranging from biomedical images to  the images of natural 
surroundings and activities around us enrich our daily visual experience. All 
these images create elegant perception in our sensory organs. They also con- 
tain a lot of important information and convey specific meanings in diverse 
domains of application. 

When such pictures are converted from one form to another by processes 
such as imaging, scanning, or transmitting, the quality of the output image 
may be inferior to  that of the original input picture. There is thus a need to  
improve the quality of such images, so that the output image is visually more 
pleasing to  human observers from a subjective point of view. To perform this 
task, it is important to increase the dynamic range of the chosen features in 
the image, which is essentially the process of image enhancement. 

Enhancement has another purpose as well, that  is to  undo the degradation 
effects which might have been caused by the imaging system or the channel. 
The growing need to develop automated systems for image interpretation ne- 
cessitates that the quality of the picture to be interpreted should be free from 
noise and other aberrations. Thus it is important to perform preprocessing op- 
erations on the image so that the resultant preprocessed image is better suited 
for machine interpretation. Image enhancement thus has both a subjective 
and an objective role and may be viewed as a set of techniques for improving 
the subjective quality of an image and also for enhancing the accuracy rate 
in automated object detection and picture interpretation. 
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Enhancement refers to  accentuation or sharpening of image features, such 
as contrast, boundaries, edges, etc. The process of image enhancement, how- 
ever, in no way increases the information content of the image data. It in- 
creases the dynamic range of the chosen features with the final aim of improv- 
ing the image quality. Modeling of the degradation process, in general, is not 
required for enhancement. However, knowledge of the degradation process 
may help in the choice of the enhancement technique. The realm of image 
enhancement covers contrast and edge enhancement, noise filtering, feature 
sharpening, and so on. These methods find applications in visual information 
display, feature extraction, object recognition, and so on [1]-[3]. These algo- 
rithms are generally interactive, application dependent, and employ linear or 
nonlinear local or global filters. 

Image enhancement techniques, such as contrast stretching, map each gray 
level into another gray level using a predetermined transformation function. 
One example of it is histogram equalization method, where the input gray 
levels are mapped so that the output gray level distribution is uniform. This 
is a powerful method for the enhancement of low-contrast images. Other 
enhancement techniques may perform local neighborhood operations as in 
convolution; transform operations as in discrete Fourier transform; and other 
operations as in pseudo-coloring where a gray level image is mapped into a 
color image by assigning different colors to different features. An important 
issue in image enhancement is quantifying the criterion for enhancement. 

Many image enhancement techniques are empirical and require interactive 
procedures to obtain satisfactory results. Enhancement techniques are based 
on combinations of methods from spatial and frequency domains. 

6.2 D IST INCTION B E T W E E N  IMAGE E N H A N C E M E N T  A N D  
R E S T 0  RAT I0 N 

Sometimes we receive noisy images which are degraded by some degrading 
mechanism. One common source of degradation is the optical lens system 
in a digital camera which acquires the visual information. If the camera is 
not appropriately focused then we get blurred images. Here the cause of blur 
is the defocused camera. Very often one may come across images of outdoor 
scenes that were procured in a foggy environment. An outdoor scene captured 
on a foggy winter morning could result in a blurred image. In this case the 
degradation is due to the fog and mist in the atmosphere, and this type of 
degradation is known as atmospheric degradation. In some other cases there 
may be a relative motion between the object and the camera. Thus if the 
camera is given an impulsive displacement during the image capturing interval 
while the object is static, the resulting image will invariably be blurred and 
noisy. 
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Thus it may be observed that in all the above cases the resultant image is a 
degraded version of the original object. Here the sources of degradations are 
either the defocused camera as in the first case, or the atmospheric degradation 
caused by fog as in the second case, or a relative accelerated motion between 
the object and the focal plane of the lens of the camera during the capturing 
of the image as in the third case. The conventional enhancement techniques 
would not be suitable to  get the original objects from the image. In such 
cases, if we can appropriately model the degrading mechanism then by some 
kind of deconvolution we may be able to  reconstruct the original scene back. 
A number of strategies have been suggested by researchers for restoring the 
original object from the degraded scene. If we can mathematically model 
the cause of degradation, then it becomes easy to reconstruct or restore the 
original scene. Needless to  say, these reconstruction or restoration techniques 
are different from the enhancement techniques which are employed essentially 
to  get a better-quality picture and not necessarily the original object from the 
scene. 

If the mathematical model of the source which causes degradation is known, 
then the standard techniques of inverse filtering or deconvolution work quite 
well. However, in many situations it may be difficult to  model the degrad- 
ing source appropriately. In such cases blind deconvolution strategies are 
employed to  restore the original scene from the degraded image. 

6.3 SPATIAL IMAGE ENHANCEMENT TECHNIQUES 

The spatial filtering techniques used for noise reduction (or smoothing) are as 
follows: 

0 Spatial low-pass, high-pass and band-Pass filtering 

0 Unsharp masking and crisping 

0 Directional smoothing 

0 Median filtering. 

6.3.1 Spatial Low-Pass and High-Pass Filtering 

From our knowledge in signal processing theory we know that low-pass filter- 
ing attenuates the high-frequency components in the signal and is essentially 
equivalent to  integrating the signal. Integration in turn implies summation 
and averaging the signal. Low-pass filtering of an image is a spatial averaging 
operation. It produces an output image, which is a smooth version of the 
original image, devoid of the high spatial frequency components that may be 
present in the image. In particular, this operation is useful in removing visual 
noise, which generally appears as sharp bright points in the image. Such high 
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spatial frequencies associated with these spikes are attenuated by the low-pass 
filter. 

High-pass filtering of an image, on the other hand, produces an output 
image in which the low spatial frequency components are attenuated. The 
cut off frequency at which lower frequencies are attenuated is varied by the 
selection of filter coefficients. High-pass filtering is used for edge enhancement. 
Since the sharpness of an image is related to the content of high-frequency 
components, low-pass filtering leads to  blurring, while high-pass filtering is 
used for deblurring. 

Such a filter can easily be implemented by subtracting the low-pass output 
from its input. Typically, the low-pass filter would perform a relatively long- 
term spatial average, on a 3 x 3 or 5 x 5 or larger window. 

6.3.2 

When each pixel is replaced by a weighted average of its neighborhood pixels, 
the resulting image a low pass filtered image. The output image in this case 
is expressed as 

Averaging and Spatial Low-Pass Filtering 

where f ( m ,  n)  and g(m, n )  are the input and output images respectively, I.lr 
is a suitably chosen neighborhood around the pixel a t  location (m,n) ,  and 
u( k ,  1) are the filter weights. 

In general in spatial averaging filters all the weights are assigned equal 
values. Hence the mathematical representation of the filtering becomes: 

k . n  - 

where N is the number of pixels in the neighborhood W .  Quite often each 
pixel is replaced by the average of its nearest four neighboring pixels only as 
given by 

g(m, n) = O.5[f(m1 4+0.25{f(m-1, n)+f (m+l ,  n)+f(m,  n-l)+f(m, n+l)}] 

The spatial averaging operation on an image may be used to smooth the 
(6.3) 

noise. If the observed image is given as: 

d m ,  n)  = f ( m ,  n )  + .I(m, 71.) (6.4) 

then the spatial average yields: 

where V(m, n )  is the spatial average of the noise component q(m, n). If the 
noise has a variance 02, then it can be shown that ij(m,n) is zero mean and 
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has variance $ . This implies that  by performing spatial averaging the image 
noise power is reduced by a factor equal to the number of pixels chosen in the 
neighborhood of the central pixel. 

The conventional spatial filtering utilizes an averaging procedure to  gen- 
erate the smoothened image. The weights used to  average are image data 
invariant. Thus all regions of the image which can be brought under an arbi- 
trary neighborhood W are equally affected. Thus spatial filtering by averaging 

(a) does not take into account the effect of the difference of gray levels 
between the central pixel and a neighboring pixel. 

(b) does not always take into account the diminishing influence of the pixels 
that are situated in increasing distance from the central pixel. 

6.3.3 Unsharp Masking and Crisping 

As we have already observed, a sharp image can be obtained by high-pass 
filtering a blurred image. Alternatively, subtracting a blurred version of the 
image from the original image may also lead to  the sharpening of the image. 
As the name suggests the unsharp masking technique is used for crisping 
the edges. Such a technique is used in the printing industries. A signal 
proportional to  the unsharp or low-pass-filtered version of the original noisy 
image is subtracted from the image, such that the resulting image w(m, n) is 
a crip high-contrast image. Here 

where g(m, n) is a low-pass-filtered version of the original image f (m,  n) .  
From an alternative viewpoint, a gradient or a high-pass signal may be 

added to the original image, which may result in a better high-contrast image. 
From this view point, the unsharp masking operation can be represented by: 
w(m, n)  = f (m,  n) + yh(nz, n )  where y > 0 and h(m, n)  is a suitably defined 
gradient at  (m,n).  This is also referred to  as high emphasis filter, where the 
high frequency components are emphasized while retaining the low frequency 
components of the image. Any gradient function may be used, and these 
functions are discussed in chapter 7. 

6.3.4 Directional Smoothing 

Low-pass filters always result in blurring the image and quite often the crisp 
edges are blurred by averaging. To minimize this effect, directional averag- 
ing filter can be used. Spatial averages g ( r n , n ; 8 )  are calculated in several 
directions 8 as: 

1 
g(m, n; 8) = - f (m - k ,  n - l), ( k ,  1) E W, (6.6) NO 
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where Wo is the neighborhood selected in the direction 8. 
The key to  the implementation of effective directional smoothing is to  iden- 

tify a specific direction 8* for which lf(rn, n) - g(m, n; 8.) I is minimum. Such 
a 8* for which the above objective function is minimum yields the desired 
result. The directional smoothing operation often prevents the edges from 
getting blur resulting from the smoothing operation. 

6.4 HISTROGRAM-BASED CONTRAST ENHANCEMENT 

In a poorly contrasted image a large number of pixels occupy only a small 
portion of the available range of intensities. Through histogram modification 
we reassign each pixel with a new intensity value so that the dynamic range 
of gray levels is increased. The principle here is to stretch the dynamic range 
of the pixel values in such a way that the lighter pixels may turn still lighter, 
while the comparatively darker pixels may be still darkened. I t  is quite obvious 
that by suitably stretching the pixel values the overall contrast of the image 
will increase. 

Linear contrast stretching and histogram equalization are two widely uti- 
lized methods for global image enhancement. The linear contrast stretching 
linearly adjusts the image’s dynamic range and histogram equalization uses 
the input to output mapping relation obtained from the integral of the image 
histogram. Histogram equalization is a technique which consists of adjusting 
the gray scale of the image so that the gray level histogram of the input image 
is mapped onto a uniform histogram. 

The basic assumption used here is that the information conveyed by an 
image is related to  the probability of occurrence of gray levels in the form of 
histogram in the image. By uniformly distributing the probability of occur- 
rence of gray levels in the image, i t  becomes easier to perceive the information 
content of the image. Thus through histogram modification we reassign each 
pixel with a new intensity value according to  its original intensity. We first 
discuss the image histogram. 

6.4.1 Image Histogram 

Histogram of an image represents the relative frequency of occurrence of the 
various gray levels in the image. Mathematically speaking for a digital image 
with gray levels in the range [0, L - 11, the histogram is a discrete function 
1 ) ( T k )  = %, where T k  is the k th  gray level, and n k  is the number of pixels in 
the image with that gray level. N is the total number of pixels in the image. 
It may be noted that k = 0 ,1 , .  . . , L - 1. 

The histogram gives primarily the global description of the image. For 
example, if the image histogram is narrow, then it means that the image is 
poorly visible because the difference in gray levels present in the image is 
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generally low. Similarly a widely distributed histogram means that almost 
all the gray levels are present in the image and thus the overall contrast and 
visibility increases. The shape of the histogram of an image reveals important 
contrast information, which can be used for image enhancement. Histogram 
modeling techniques modify an image so that its histogram has some desired 
shape. This is useful in stretching the low-contrast levels of images with 
narrow histograms. The histogram modeling methods used for enhancement 
can be broadly classified into local and global methods. In local methods the 
operation is limited only for some limited number of pixels or more casually 
within some restricted region of the image. Global methods, on the other hand 
modify the entire image based on the overall image histogram information. 

6.4.2 Histogram Equalization 

Histogram equalization is a technique which consists of adjusting the gray 
scale of the image so that the gray level histogram of the input image is 
mapped onto a uniform histogram (11-[3]. The histogram equalization tech- 
nique is based on a transformation using the histogram of a complete image 
in histogram equalization, the goal is to  obtain a uniform histogram for the 
output image. Let the variable r represents a random variable which indi- 
cates the gray level of an image. Initially we can assume that r is continuous 
and lies within the closed interval [0:1] with r = 0 representing black and 
r = 1 representing white. For any r in the specified interval let us consider a 
transformation of the form: 

s = T ( T ) .  

The transformation produces a level s for every pixel value T in the original 
image. It is assumed that the transformation T satisfies the following criteria: 

0 T ( r )  is a single valued function, monotonically increasing in the interval 

0 T ( r )  lies between 0 and 1. 

[O: 11. 

The first condition preserves the order from black to  white in the gray 
scale, and the second one guarantees that the function is consistent with the 
allowed range of pixel gray values. The inverse transform from s to  r can be 
represented by 

r = T - y s ) .  

Let the original and transformed gray levels be characterized by their prob- 
ability density functions p r ( r )  and p ,  (s) respectively. Then from elementary 
probability theory, if p r ( r )  and p, (s )  are known and if T- ' ( s )  satisfies the 
first condition stated above in ( I )  then the probability density function of the 
transformed gray level is given by: 
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If the transformation is given by: 

then substituting 2 = 1 in Eq. 6.7 we obtain Ps(s)  = 1. Thus it is possible 
to  obtain a uniformly distributed histogram of an image by the transformation 
described by Eq. 6.8. 

From the above discussions, it is clear that using a transformation function 
equal to the cumulative distribution of T (as given by Eq. 6.8) produces an 
image whose gray levels have a uniform density. This implies that  such a 
transformation results in an increase in the dynamic range of the pixel gray 
values which produces a pronounced effect on the appearance of the image. 

P ,  ( r )  

C 04 - 

c 03 - 

5 0 2  - I 

Fig. 6.1 Histogram equalization results: (a) original image, (b) histogram of the 
image. (c) equalized histogram (d) enhanced image. 

A simple algorithm to implement histogram equalization for a gray level 
image is given below 
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0 for every pixel in the image get gray value in variable i, hist[i] = hist[i] + 
1 when i = 0 to  L - 1 for a L level image. 

0 from the histogram array, get cumulative frequency of histogram hist,f [i] = 
hiSt,f(i - 11 + hist[i]. 

0 generate the equalized histogram as 

where, L is the number of gray levels present in the image, N 2  is number 
of pixel in N X N  image, 1x1 is truncation of z to the nearest integer. 

0 Replace the gray value i, by eqhist[i] for each i. The eqhist contains 
the new mapping of gray values. 

I t  is shown in Figure 6.1 that while histogram of the original image is very 
nonuniform due to  lot of undulations, the histogram of the equalized image 
has more or less a uniform density function. Often the unimodal histogram 
of images having dynamic gray intensity are confined in a very narrow range. 
Such images may be enhanced by equalizing the histogram which results from 
the extension of the dynamic range of the original image [4, 51. 

6.4.3 Local Area Histogram Equalization 

Although the above methods are simple they do not take into account lo- 
cal details and the global histogram equalization has the undesired effect of 
overemphasizing noise. Histogram equalization can also be performed locally, 
where the equalization is based on the histogram of the portion of the image 
under a two-dimensional sliding window that is centered over the pixel in the 
center of the rectangular region and its gray level is modified by equalization 
procedures. For the pixels that  are not center pixels, bilinear interpolations 
of the four neighboring center pixel transformations are used to approximate 
the local area histogram transformation. 

6.4.4 Histogram Specification 

A generalization of the procedure given above can be used to modify the 
image so as to  obtain the image histogram of some desired shape. The input 
gray level T is first transformed nonlinearly by some f ( r ) ,  and the output is 
uniformly quantized. As we have seen that for histogram equalization the 
function f ( r )  can be given as: 
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In general if we want to  transform the input histogram p r ( r )  to the his- 
togram given by the probability density function p s ( s ) ,  then we first define a 
random variable w as: 

which also satisfies: 
r s  

w = J, Ps(z)dz = F,(s) 

Eliminating w we have 

s = Fs-l[F,(r)]. 

(6.10) 

(6.11) 

(6.12) 

Histogram equalization like many other contrast enhancement methods, 
does not take into account contrast perception. This often results in a degra- 
dation of the subjective image quality. 

6.4.5 Histogram Hyperbolization 

To avoid the drawback, Frei has proposed a method called histogram hy- 
perbolization [GI. His model is based on Weber's law, which expresses the 
logarithmic relationship between the perceived brightness and the luminos- 
ity of the object. Histogram hyperbolization is a technique which produces 
images with a uniform distribution of the perceived brightness levels. The hu- 
man visual system has a logarithmic response to stimuli and thus the image 
information should be redistributed so as to produce images with uniform dis- 
tribution of the perceived brightness levels. The method is based on Weber's 
law according to  which B = log(I + C), where B the perceived brightness 
is a logarithmic function of the light intensity I incident on the eye. C is 
a constant. Weber's law follows from the experimentation on brightness dis- 
crimination that consists of exposing an observer to a uniform field of intensity 
I in which the intensity I of a disk is increased gradually with a quantity AT. 
The value of A I  from which the observer perceives the disk is called the 
differential threshold. 

To measure the performance of an image contrast enhancement method, 
a set of performance parameters like, image contrast value, local intensity 
variance, uniformity measure, white-black ratio and homogeneity measures 
may be used as tools for performance evaluation. 

6.4.6 Median Filtering 

In median filtering the input pixel is replaced by the median of the pixels 
contained in the neighborhood [7] .  Symbolically this can be represented as: 

v(rn,n)  = rnedian{y(rn - k , n  - l), ( k ,  1) E W }  (6.13) 
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where W is suitably chosen neighborhood. The algorithm for median filtering 
requires arranging the pixel gray values in the neighborhood in increasing or 
decreasing order and picking up the value at the center of the array. Generally 
the size of the neighborhood is chosen as odd number so that a well-defined 
center value exists. If, however, the size of the neighborhood is even the 
median is taken as the arithmetic mean of the two values at the center. 

Fig. 6.2 Result of median filtering: (a) original image, (b) salt and pepper noisy 
image, ( c )  result of median filtering. 

The result of median filtering is shown in Figure 6.2 as an example. Fig- 
ure 6.2(a) shows the original image, Figure 6.2(a) is the original image cor- 
rupted with a salt-and-pepper noise, and Figure 6.2(c) shows the result of 
median filter applied on Figure 6.2(b). Some of the properties of median filter 
are: 

0 It is a nonlinear filter. 

0 It is useful in removing isolated lines or pixels while preserving spatial 
resolution. It is found that median filter works well on binary noise but 
not so well when the noise is Gaussian. 

0 Its performance is poor when the number of noise pixels is greater than 
or equal to half the number of pixels in the neighborhood. 

6.5 FREQUENCY D O M A I N  METHODS OF IMAGE ENHANCEMENT 

When an image f(z, y) is convolved with a linear operator h(z ,  y), the resul- 
tant image g(z. y) is given by 

dzcl = h(z ,  * f(z, Y). 

The convolution theorem states that the convolution in spatial domain is 
equivalent to multiplication in frequency domain. This implies that 

G(u,  U) = H ( u ,  u )F(u ,  U) 
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where G(u,v) ,  H ( u , v ) ,  and F ( u , v )  are the Fourier transforms of g(rc,y), 
h(z ,  y) ,  and f ( z ,  y)  respectively. Taking the inverse Fourier transform of 
G ( u , v ) ,  we get 

It may be observed that by suitable selection of h ( z , y ) ,  we get a resultant 
image g(z, y)  which is an enhanced version of the original image f ( z ,  y) .  As- 
suming f(x, y)  to be point source of light, i.e., a unit impulse function whose 
Fourier transform is unity, 

g ( 2 ,  y) = q H ( u .  v )F(u .  v)]. 

G(u ,  v) = H ( u ,  v) 

or 
s ( x ,  Y) = 3-l [ H ( u ,  .)I = h(2 ,  Y) 

which is known as point spread function (PSF). PSF is an inverse of optical 
transfer function. As discussed in Chapter 2, a point source of light (analogous 
to an impulse) is blurred or spread by the imaging device which is given by 
the PSF. 

Enhancement in the frequency domain is achieved by high-pass, low-pass, 
and band-pass filtering of the original image. The task of enhancement in fre- 
quency domain involves computing the Fourier transform of the image f ( z ,  y)  
(i.e. F ( u ,  v))and the filter transfer function H ( u ,  v) and taking the inverse 
Fourier transform of the product F ( u ,  w ) H ( u ,  v). The variations in gray level 
in an image represents the frequency component present in the image. A uni- 
formly homogeneous image with constant gray value has 0 frequency, while 
an image with adjacent black-and-while image has high spatial frequencies. 

An ideal low-pass filter transfer function in two-dimension is given as 

1 when D(u ,u )  5 DO { 0 when D(u ,v )  > DO 
N ( u , v )  = 

where D(u,  v) = v ' m  represents the distance of (u ,  v) from origin. It 
may be observed from this definition that the t,ransition from pass-band is 
very sharp at  the cutoff frequency for an ideal 2D filter and all the frequencies 
inside a circle of radius D are passed without any attenuation while the rest of 
the frequencies are all attenuated. The transfer function of the Butterworth 
low-pass filter of order n is 

The Butterworth filter transfer function has a smooth transition from pass- 
band to  cutoff band and when D(u ,  w) = DO, H ( u ,  v) = ;, which is 50% below 
its maximum value. 

Similarly the Butterworth high-pass and band-pass filters can be defined 
by appropriate transfer functions. 
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( a) (b) 

Fig. 6.3 Two-dimensional filter response (a) high-pass, (b) low-pass. 

The transfer function of the two-dimensional high-pass and low-pass filters 
are shown in Figure 6.3. The results of high-pass and low-pass filtered images 
are shown in Figure 6.4. 

(a) (b) (c) 

Fig. 6.4 (a) Input image, (b) High-passed filtered, (c) Low-pass filtered output images. 

6.5.1 Homomorphic Filter 

Homomorphic filters are widely used in image processing for compensating 
the effect of nonuniform illumination in an image. Pixel intensities in an im- 
age represents the light reflected from the corresponding points in the objects. 
As discussed in Chapter 2, image f(z,y) may be characterized by two com- 
ponents: (1) the amount of source light incident on the scene being viewed, 
and (2) the amount of light reflected by the objects in the scene. These 
portions of light are called the illumination and reflectance components, and 
are denoted i ( z ,  y) and T ( Z ,  y)  respectively. The functions i ( z ,  y) and T ( Z ,  y) 
combine multiplicatively to  give the image function f ( z ,  y): 

f ( S >  Y) = i ( Z ,  Y).(ZC, Y) (6.14) 
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where 0 < i ( z , y )  < a and 0 < ~ ( z , y )  < 1. Homomorphic filters are used in 
such situations where the image is subjected to the multiplicative interference 
or noise as depicted in Eq. 6.14. We cannot easily use the above product to  
operate separately on the frequency components of illumination and reflection 
because the Fourier transform of f ( z ,  y) is not separable; that is 

W(.l Y)) # 3.(i(., Y ) ) . % T ( G  Y)}. (6.15) 

We can separate the two components by taking the logarithm of the two sides 

ln{f(., Y)) = ln{i(z, Y)} + ln{r(z, Y)>. (6.16) 

Taking Fourier transforms on both sides we get, 

Q{ln{f(., Y))) = S{Wi (?  Y))) + W n { r ( z ,  Y)})  (6.17) 

that is, F(u,w) = I(u,w) + R(u,w), where F ( u , v ) ,  I(..,.) and R(u,w) are 
the Fourier transforms of ln{f(z, y)}, In{i(z, y)}, and ln{r(z, y)} respectively. 
The function F represents the Fourier transform of the sum of two images: a 
low-frequency illumination image and a high-frequency reflectance image. 

If we now apply a filter with a transfer function that suppresses low- 
frequency components and enhances high-frequency components, then we can 
suppress the illumination component and enhance the reflectance component. 
Taking the inverse transform of F ( u ,  w )  and then anti-logarithm, we get 

f’b Y) = i’b, Y) + T ’ ( Z ,  Y) (6.18) 

The result of homomorphic filter is shown in Figure 6.5. 

Fig. 6.5 
(c) result of homomorphic filtering. 

Homomorphic filtering: (a) homomorphic filter response, (b) input image, 

6.6 NOISE MODELING 

Quite often an image gets corrupted by noise, which may arise in the process 
of acquiring the image, or during its transmission, or even during reproduction 
of the image. Removal of noise from an image is one of the most important 
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tasks in image processing. Depending on the nature of the noise, such as 
additive or multiplicative type of noise, there are several approaches towards 
removing noise from an image. The nature of the noise is primarily inherent 
to  the imaging procedure. The general model of such systems consists of a 
detector and a recorder. Mathematically the imaging procedure including 
corruption by noise can be represented by 

r r  
(6.20) 

Here u(z, y) represents the object (also called the original image), and v(z, y)  
is the observed image. The image formation process can often be modeled by 
the linear system described in (6.20). Here h(z ,  y; z’, y’) represents the impulse 
response of the image acquiring process. In case of a shift-invariant system 
h(z ,  y; z‘, y’) = h(x - x’, y - y’), functions f ( )  and g() are generally nonlinear 
and represent the characteristics of detector or recording mechanisms. The 
term q(z,y) represents the additive noise, which has an image dependent 
random component f [g(w)]q~ and an image independent random component 
172. 

In general the noise model given by (6.21) is applicable in many situations. 
For example, in photographic systems the noise in the electron beam current 
is often modeled as: 

where g ( )  is the detector model and 171 and 172 are zero mean, mutually inde- 
pendent, Gaussian white noise fields. The detector function can, for example, 
return the illumination at  the point (2, y). 

The signal dependent term arises from the random deposition of silver grain 
on the film due to exposure and the term 772(z,y) represents additive wide- 
band thermal noise, which is Gaussian in nature. In case of films r/~(x, y) is 
not usually present. 

The presence of signal dependent term in the noise modeling makes the 
restoration of noisy images more difficult. 

A different type of noise in the coherent imaging of objects is called speckle 
noise. For low-resolution objects it is often multiplicative and occurs when- 
ever the surface roughness of the object being imaged is of the order of the 
wavelength of the incident radiation. For example, when a photograph is digi- 
tized by using optical scanners, speckle noise can occur because the roughness 
of the paper surface is much of the order of the long wavelength of the light 
used for scanning. Speckle noise can be modeled as: 
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where the speckle noise intensity is given by s(z,y) and q(z,y)is a white 
Gaussian noise. 

6.6.1 

The noise embedded in an image manifests in diverse varieties. The noise may 
be correlated or uncorrelated: it may be signal dependent or independent, and 
so on. The knowledge about the imaging system and the visual perception of 
the image helps in generating the noise model and estimating of the statistical 
characteristics of noise embedded in an image is important because it helps 
in seperating the noise from the useful image signal. For example, in case of 
Moire noise, which is an extremely narrow-band noise (i.e., energy is concen- 
trated in a very narrow-bands), it is easy to detect the noise from the much 
wider image spectrum, since its spectrum contains few concentrated peaks in 
the background. We describe four important classes of noise here. 

Types of Noise in An Image and Their Characteristics 

1. Additive noise: Sometimes the noises generated from sensors are ther- 
mal white Gaussian, which is essentially additive and signal indepen- 
dent, i.e., g(z,y) = f(z,  y) + n(z ,y) ,  where g(z,y) is the result of the 
original image function f(z,  y) corrupted by the additive Gaussian noise 
n(x, Y). 

2. Multiplicative noise: The graininess noise from photographic plates is 
essentially multiplicative in nature. The speckle noise from the imaging 
systems as in Coherent SAR, ultrasound imaging etc. are also multi- 
plicative in nature, which may be modeled as g(z, y)  = f ( z ,  y) * n ( x ,  y) ,  
where n(z ,  y)  is the multiplicative noise. 

3. Impulse noise: Quite often the noisy sensors generate inipulse noise. 
Sometimes the noise generated from digital (or even analog) image trans- 
mission system is impulsive in nature, which can be modeled as 

(6.24) 

where i ( z , y )  is the impulsive noise and p is a binary parameter that  
assumes the values of either 0 or 1. The impulse noise may be easily 
detected from the noisy image because of the contrast anomalies. Once 
the noise impulses are detected, these are replaced by the signal samples. 
In the next section we will present a technique of noise removal when 
the image is embedded with impulse noise. 

4. Quantization noise: The quantization noise is essentially a signal de- 
pendent noise. This noise is characterized by the size of signal quanti- 
zation interval, which has been discussed in Chapter 2 .  Such noise pro- 
duces image-like artifacts and may produce false contours around the 
objects. The quantization noise also removes the image details which 
are of low-contrast. 
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6.7 IMAGE RESTORATION 

Improving the quality of images acquired by optical, electro-optical or elec- 
tronic means is one of the basic tasks in digital image processing. Two- 
dimensional images may be degraded due to  several reasons, e.g., 

0 Imperfection of the imaging system 

Imperfection in the transmission channel 

0 Degradation due to atmospheric condition 

0 Degradation due to relative motion between the object and the camera 

Thus the original scene is usually blurred due to convolution of the de- 
grading mechanism as above. In many real-life situations a random noise is 
usually added to the degraded data. The random noise may originate from 
the image formation process, transmission medium, recording process, etc. 

A typical cause of degradation may be defocusing of the camera lens system, 
sudden jerking motion of the imaging system, etc. The additive Gaussian noise 
results in the degraded image 

g(5 ,  Y) = H [ f ( z ,  Y)I + v(2, Y) 
where f ( s ,  y) is the pixel value of the original image at the point (IC, y), H is 
the degradation model, and g(z,y) is the pixel value of the degraded image 
at the point (x,y); ~ ( I c ,  y) is the additive noise. 

A simple degradation model may be achieved by convolving a 3 x 3 window 
with the original image. Thus g(z, y) becomes 

g(5,  Y) = c H ( k ,  l)f(. - k >  Y - 1 )  + v(5, Y). 
k.lEw 

Here w represents the convolution window. A simple 3x3 blurring functions 
may look like this: i[: : :I. 

1 1 1  

There are conventional methods like inverse filtering, Wiener filtering, 
Kalman filtering, Algebraic approach, etc., to restore the original object. In 
all these cases we assume that the blurring function H is known. If H is 
known, then obviously we can get back or restore the original image f ( z ,  y), 
simply by convolving the degraded image with the inverse of the blurring 
function. To remove the noise, it is important that the noise statistics should 
be known apriori. 

The algebraic approach is based on the principle of estimating S from f 
(i.e., the original image) which minimizes a predefined performance criterion. 
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If there is no additive noise, then a meaningful criterion function will be to  
find S such that H S  is an approximation of 9 in a least square sense. These 
techniques will be explained in detail in the next section. 

6.7.1 

The general strategy to remove noise from an image corrupted with impulse 
noise is a two-step process: 

Step 1: Identify whether the pixel under consideration is noisy. If noisy, then 

Image Restoration of Impulse Noise Embedded Images 

go to  step 2,  otherwise do not change the pixel value. 

Step 2: Replace the noisy pixel by another value to generate noise-free image. 

To implement the above steps, we choose a window of size (2M + 1) x (2M + 
1) around each pixel of the image. To detect if a pixel is noise corrupted, find 
the difference of the pixel from the median of the pixel values in the chosen 
window of size (2M + 1) x (2M + 1) around the pixel under test. If the 
difference is higher than a threshold, the pixel is detected as noisy; else it is 
a considered a noise-free pixel. The algorithm as presented above, however, 
cannot remove the impulse noise if the image is too much corrupted with 
noise. This is because of following two reasons: 

1. the choice of a local window alone is unable to reflect the global details 
of the image 

2. the choice of a small local neighborhood does not even consider the local 
region details. 

To take into consideration the above two factors, several strategies of noise 
detection and cleaning may be employed. Wang and Zhang [8] have proposed 
a scheme, where they have chosen, in addition to a local neighborhood of size 
(2M+ 1) x (2M+ 1) around each noisy pixel, another window of the same size, 
located at a different place of the image in the vicinity of the pixel under test 
at position ( i , j ) .  This second window is selected with its center positioned at  
( k , l ) ,  while the first window is selected around the pixel location ( i , j ) .  

The second window should be chosen at ( k , l )  in such a way that it is 
covered by a larger search window of size (2N + 1) x (2N + 1); N > M 
centered around the noisy pixel at ( i , j )  location and the pixel at ( k , l )  is 
a nonnoisy pixel. Thus there exists many such candidate second windows 
and the one that best matches with the first local window at ( i , j )  should be 
selected. The best match is identified based on the mean square error 

While computing the best match, only these corresponding pixel pairs should 
be used from the first and second windows which are both good. The one 
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with minimum MSE becomes the winner. The corrupted pixel is replaced by 
the center pixel of the wining second window. 

6.7.2 Restoration of Blurred Image 

The basic principle of image restoration is as follows: Given an image f ( z ,  y),  
convolved with a blurring function h(z ,  y), with additive noise n(2, y), the task 
is to  reconstruct the original image from the noisy image. In the frequency 
domain, the process of degradation mechanism can be written as 

G(u, U) = F ( u ,  U) . H ( u ,  W) + N ( u ,  U) (6.25) 

where G(u, w) is the Fourier transform of the input image g(z, y) ,  F(u ,  v) is 
the Fourier transform of the original image f ( z , y ) ,  H ( u , v )  is the Fourier 
transform of the blur mechanism h and N(u,w) is the Fourier transform of 
the noise added to the image. From Eq. 6.25, we get 

(6.26) 

From the equation we observe that the original image cannot be recovered 
because the random noise function N(u,w) is unknown. Moreover, if the 
degradation function H ( u , v )  has very small or zero values, the ratio # 
would be very large or infinite and the estimate p(u ,  w) would be dominated 
by this factor. This problem can be overcome by limiting the analysis to  the 
frequencies near the origin H(0,O) as it represents the average value of h(z ,  y) 
and it is normally the highest value of H ( u ,  v). 

The blurring mechanism is essentially a low-pass filter, and thus H ( u ,  v) 
is large a t  low frequencies and it decreases at high frequencies. The power 
spectrum of noise is more or less uniform. The power spectrum of the image 
will generally be large a t  low frequencies and decreases at high-frequency. 
Thus a t  low frequencies is low and F ( u ,  v) is much larger than m. 

H ( u , u )  

6.7.3 Inverse Filtering 

Inverse filtering approach toward image restoration assumes that the degra- 
dation of the image is caused by a linear function h( i , j ) .  The additive noise 
is assumed to  be independent of the image signal [3, 91. Thus the degradation 
can be expressed in the Fourier domain as 

G(u,  v) = F ( u ,  v ) H ( u ,  W) + N ( u ,  W) (6.27) 

where F(u ,  v) is the Fourier transform of the uncorrupted image, G(u, v) is 
the Fourier transform of the degraded image, H ( u ,  v) is the Fourier transform 
of the degradation process h( i , j ) .  Therefore from the above equation we can 
write 

F ( u ,  U) = G(u,v)H-'(u,  V )  - N ( u ,  v )H- l (u ,  U )  (6.28) 
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Froin the above equation it is evident that the original image cannot be re- 
stored in case the nature of the random noise function is unknown. 

In case there is no additive noise N ( u , u ) ,  thc inverse filtering performs 
very well. If. however. the noise N ( u ,  u) is present, then its influence becomes 
significant at  higher frequency (u, u), where the magnitude of H ( u ,  u) becomes 
quite low. The effect of noise in such cases influences the result of restoration. 
If however, we restrict the restoration to a small neighborhood region around 
the origin of (u ,  u), the H ( u ,  u) is usually large in this neighborhood and thus 
the restoration results are moderately acceptable. 

6.7.4 Wiener Filter 

Wiener filter is a discrete time linear FIR filter [9]. This has been widely 
used in reconstruction of one-dimensional signals and two-dimensional im- 
ages. Although Wiener filter is sensitive to noise, yet it can be used for good 
restoration of the original image. The elegance of Wiener filter lies in the 
fact that it incorporates the prior knowledge about the noise embedded in the 
signal and also the spectral density of the object being imaged. As a result, 
Wiener filter provides a better and improved restoration of original signal 
since it takes care of the noise process involved in the filtering. The discrete 
version of the Wiener filter is a straightforward extension to  the continuous 
Wiener filter. 

In this section we discuss a method that restores an image in the presence 
of blur as well as noise. Here, we consider that both the image f ( z , y )  and 
the noise ~ ( x ,  y) are the zero mean random processes and the objective is to 
obtain an estimate f ( z ,  y) of the original image f ( z ,  y) such that the mean 
square error is 

(6.29) 

is minimized, where E{.}  is the expected value of the argument. The resulting 
estimate is also called MMSE estimate. Assuming linear shift invariance 

where w(x ,  y) is the Wiener filter. 
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where 
Rf(Z, Y) = E [ f ( %  Y I 2 ]  

From the above, we can express the error as 

e2 = R ~ ( x , Y ) +  

w(2, Y) * h(z ,  Y) * Rf(T Y) * h(Z,  Y) * 4 x 7  Y M Z ,  Y) * Rf(Zc, Y) * 4 2 ,  51) 

-2w(z ,  9) * h(z ,  Y) * Rf(% Y) 
The error can thus be written in matrix form as 

e2 = T r  "Rfl + [WI [HI [Rfl /HIT [WIT + [WI [Rnl [WIT - 2 [WI [HI [Rfl] 

where [W],  [HI,  etc. are stacked notations. For example, if the image matrix is 
represented as a N 2  x 1 vector, then [W] and [HI are matrices of size N 2  x N 2 .  
Differentiating the above with respect to [W] and equating to  zero we get 

(6.32) 

Since we have assumed that H is linear shift invariant and f is stationary, 
applying fourier transform leads to  

dividing by S ~ ( U ,  u) both in the numerator and denominator we get 

Now 
F(u,  V )  = W(u ,  v)G(u, w) 

(6.33) 

(6.34) 

(6.35) 

and assuming that the image and the noise are uncorrelated, and one of them 
has zero mean, the estimate of the original image is given in frequency domain 
from the above equation as 

(6.36) 

where H ( u ,  w) is the Fourier transform of the function representing the de- 
grading mechanism and G(u,  22) is the spectrum of the degraded image. Power 
spectrum of the noise is 

and the power specturm of the original image is 
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This is known as the Wiener filter or the minimum mean square error filter 
or the least square error filter. Here we can see that the filter does not have 
the same problem as the inverse filter even if the degraded function has zero 
values. If the noise is zero, the second term in the denominator vanishes and 
the Wiener filter reduces to  the inverse filter. The results of restoration by 
the inverse filter and the Wiener filter and their comparison are shown in 
Figure 6.6. 

Fig. 6.6 The results of restoration: (a) original image. (b) degraded image, (c) inverse 
filtered result, (d) Wiener filtered result 

The above analysis attempts to restore the object from a single degraded 
measurement and it is called single frame wiener restoration. If on the other 
hand we have multiple number of blurred and noisy images of the same ob- 
jects, we can apply wiener restoration to  each corrupted observation and av- 
erage the outputs of Wiener filter [lo]. Alternatively we can also average 
the measurements and then apply the Wiener filter to  this averaged data. I t  
may be noted that in the second case Wiener filtering will be different as the 
noise power gets reduced by averaging multiple observations. Now if we have 
multiple blurred and noisy image sequences as in a video sequence there will 
be additional correlation factors which may exist between the frames of the 
original image sequences. In such cases we need to make use of multi-frame 
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Wiener filter to restore the images ill]. This will help in making use of the 
information content in other frames in restoring a particular frame. 

6.8 IMAGE RECONSTRUCTION BY OTHER METHODS 

6.8.1 Image Restoration by Bispectrum 

In many practical situations, the available data is a set of noisy frames, in 
which the objects are not known and are shifted from frame to frame. Due to 
the misalignment of objects in each frame, a simple ensemble averaging cannot 
be used to improve the signal to  noise ratio. In such cases, phase information 
may be more useful than the corresponding magnitude information [12]-[15]. 
Thus, while reconstructing the object in an image, it is necessary to  obtain 
a phase estimate as clear as possible of the original object. Bispectrum [13] 
retains the phase and magnitude information of the signal while suppressing 
the additive Gaussian noise. As a matter of fact, bispectrum suppresses the 
linear phase component, which represents the linear shift and thus averaging 
of bispectrum can be used for object reconstruction [13]-[15]. 

The bispectrum B(w11w2) of a real discrete time sequence f ( i )  may be 
represented as 

+m +a 

B(Ul,W2) = c c Rf(rn, n ) e - j ( m w l + n w z )  (6.37) 

where Rf(m,n)  is the third order moment of the sequence f ( i )  represented 
as 

Rf(% n)  = c f ( i ) f ( i  + m ) f ( i  + .) 

The bispectrum defined in Eq. 6.37, may be expressed as 

Bf(W11W2) = F(wl)F(wz)F*(wl + w2) (6.39) 

where F ( w )  is the Fourier transform of the sequence f ( i ) ,  corresponding to  
the object. 

The bispectrum of the object signal f ( i )  needs to be estimated when the 
degraded signal g ( i )  corrupted with additive Gaussian zero-mean, stationary 
noise n(i)  is available to us. The bispectrum of f ( i )  may be estimated from 
the set of noisy observations g ( i )  as 

m=-a n=-m 

+oo 

(6.38) 
2=--00 

N 
1 

Bf(~1,~2) = C Gk(~i)Gk(~2)Gi(~i + ~ 2 )  (6.40) 

where G~(w) is the Fourier transform of the k th  record g k ( i )  and k = 1, .  . . N ,  
where N is the number of noisy frames. The problem of extracting phase of 

k=l 
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f ( i )  has been addressed in [13]-[15]. Once the phase estimate is available, the 
object can be reconstructed. 

6.8.2 Tomographic Reconstruction 

Tomographic reconstruction finds lot of application in biomedical imaging, 
geological exploration, etc. Seismic tomography is an efficient exploration 
tool where localization of subsurface resources, detection of hazardous sub- 
surface region, etc. are carried out using electromagnetic and seismic waves. 
The presence of anomalies in subsurface geological formations can be detected 
and their location, size, shape, and other parameters may be estimated using 
backprojection techniques, algebraic reconstruction technique, simultaneous 
iterative reconstruction technique and evolutionary programming based meth- 
ods [16, 171. 

6.9 SUMMARY 

In this chapter, we have discussed the basic principles involved in the process 
of image enhancement and restoration. The enhancement strategies have been 
classified as spatial domain and frequency domain techniques. We have pre- 
sented a couple of techniques in both spatial domain and frequency domain. 
The distinction between enhancement and restoration has been explained. 
Two-dimensional image restoration using Wiener filter, restoration of impulse 
noise corrupted image signals, and restoration of blurred noise corrupted sig- 
nals have been presented. 
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7 
Image Segmentation 

7.1 PRELIMINARIES 

The growing need for automated image analysis and interpretation in a wide 
range of applications necessitates the development of segmentation algorithms. 
Segmentation involves partitioning an image into a set of homogeneous and 
meaningful regions, such that the pixels in each partitioned region possess 
an identical set of properties or attributes [1]-[3]. These sets of properties 
of the image may include gray levels, contrast, spectral values, or textural 
properties. The result of segmentation is a number of homogeneous regions, 
each having an unique label. An image is thus defined by a set of regions that 
are connected and nonoverlapping, so that each pixel in the image acquires a 
unique region label that indicates the region it belongs to. The set of objects of 
interest in an image, which are segmented, undergoes subsequent processing, 
such as object classification and scene description. 

A complete segmentation of an image R involves identification of a finite 
set of regions (R1, Ra, RJ, . . . , R N )  such that 

1. R = R ~ U R ~ U . . . R N .  

2. R, n Rj = @,Vi # j .  

3. P(Ri)  = Tkue,V i 

4. P(Rt U Rj) = False, i # j 
There may exist a number of possible partitions, but the selection of an 

appropriate set of regions depends on the choice of the property P association 
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in the region [4]. In addition, connectivity among the pixels in a region need 
to be considered. Segmentation algorithms are based on one of the two basic 
properties of gray-level values-discontinuity and similarity among the pixels. 

In the first category of algorithms, we partition an image based on abrupt 
changes in gray level. The principal areas of interest within this category are 
the detection of lines and edges in an image. Thus if we can extract the edges 
in an image and link them, then the region is described by the edge contour 
that contains it. 

We may view the process of segmentation from another perspective. From 
this point of view, the connected set of pixels having more or less the same 
homogeneous intensity form the regions. Thus the pixels inside the regions 
describe the region and the process of segmentation involves partitioning the 
entire scene in a finite number of regions. 

The principal approaches in the second category are based on the similar- 
ity among the pixels within a region. While segmenting an image, various 
local properties of the pixels are utilized. The well-established segmentation 
techniques are: 

Histogram-based thresholding 

0 Region growing 

0 region splitting and merging 

Clustering/Classification 

Graph theoretic approach 

0 Rule-based or knowledge-driven approach 

This chapter discusses the issues associated with segmentation of an image. 
We present some of the basic algorithms of image segmentation, starting with 
the discussions on edge detection process. 

7.2 EDGE, LINE, AND POINT DETECTION 

Edge detection: Edges, lines, and points carry a lot of information about 
the various regions in the image. These features are usually termed as local 
features, since they are extracted from the local property alone. Though the 
edges and lines are both detected from the abrupt change in the gray level, 
yet there is an important difference between the two. An edge essentially 
demarcates between two distinctly different regions, which means that an 
edge is the border between two different regions. A line, on the other hand, 
may be embedded inside a single uniformly homogeneous region. For example, 
a thin line may run between two plots of agricultural land, bearing the same 
vegetation. A point is embedded inside a uniformly homogeneous region and 
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its gray value is different from the average gray value of the region in which it 
is embedded. This is analogous to  a spike. The changes in the gray levels in 
case of a perfect step edge, line, ramp edge are shown in the form of an edge 
profile in Figure 7.1. The diverse forms and nature of ideal edges and lines, 
such as step edge, ramp edge, line, step line, are shown in Figure 7.2. 

Fig. 7.1 Edge profile of one row of a synthetic image. 
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Fig. 7.2 Different types of edges: (a) step, (b) ramp, ( c )  line, (d) step-line. 

The edge detection operation is essentially an operation to  detect significant 
local changes in the intensity level in an image. The change in intensity level 
is measured by the gradient of the image. Since an image f(z,y) is a two- 
dimensional function, its gradient is a vector 

The magnitude of the gradient may be computed in several ways 

(7.1) 
G [ f ( z , y ) l  = &q 
G [ f ( z ,  Y)1 = lGzl + P Y I  

G[f(z,  Y)1 = max {IGZl, IGyll 
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The direction of the gradient is 

B(z, y) = tan-' (Gy/G,) 

where the angle B is measured with respect to the X-axis. 
Gradient operators compute the change in gray level intensities and also 

the direction in which the change occurs. This is calculated by the difference 
in values of the neighboring pixels, i.e, the derivatives along the X-axis and 
Y-axis. In a two-dimensional image the gradients are approximated by 

and 
Gy = f ( i , j  + 1) - f (Z, j ) .  

Gradient operators require two masks, one to obtain the X-direction gradient 
and the other to obtain the Y-direction gradient. These two gradients are 
combined to  obtain a vector quantity whose magnitude represents the strength 
of the edge gradient a t  a point in the image and whose angle represents the 
gradient angle. Figure 7.3 shows the gradient images of a checker board image 
along horizontal, vertical directions, and also along both the directions. 

Fig. 7.3 
both directions. 

(a) Input image, (b) vertical edges, (c) horizontal edges, (d) edge image along 

Alternative approach to computation of edge gradients involves convolv- 
ing the image with a set of edge templates, chosen in say eight equispaced 
directions-east, northeast, north, northwest, west, southwest, south, and south- 
east. The image is convolved with each of these gradient templates. Each 
template responds to the edges in a particular direction. 
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7.2.0.1 An ideal edge detector is required to 
detect an edge point precisely in the sense that a true edge point in an image 
should not be missed, while a false, nonexistent edge point should not be 
erroneously detected. These two requirements often conflict with each other. 
The decision regarding the existence of an edge point is based on a threshold. 
Thus if the magnitude of the gradient is greater than a threshold, then we 
infer that an edge point exists at that point, else there is no edge point. If 
the selected threshold is large, then there is a possibility that true edge points 
may be undetected, while if the threshold is low, many noisy points may be 
falsely detected as edge points. The goal of an ideal edge detector is to choose 
the threshold appropriately. 

Since gradient operation enhances image noise, the best way to  reduce this 
problem is to filter high spatial frequencies containing noise prior to applying 
the gradient operators. 

Ideal edge detection process 

7.3 EDGE DETECTOR 

A number of edge detectors based on a single derivative have been developed 
by various researchers. Amongst them most important operators are the 
Robert operator, Sobel operator, Prewitt operator, Canny operator, Krisch 
operator [1]-[5], etc. In each of these operator-based edge detection strategies, 
we compute the gradient magnitude in accordance with the formula given 
below. If the magnitude of the gradient is higher than a threshold, then we 
detect the presence of an edge. Below we discuss some of these operators. 

7.3.1 Robert Operator-Based Edge Detector 

The Robert Cross operator is a simple gradient operator based on a 2 x 2 
gradient operator. This operator provides the simplest approximation of the 
gradient magnitude given as 

The convolution mask for the Robert’s operator is shown below. Since the 
Robert kernel is only a 2 x 2 mask, it is quite sensitive to noise. 

7.3.2 Sobel Operator-Based Edge Detector 

Sobel operator is a 3 x 3 neighborhood based gradient operator. The con- 
volution masks for the Sobel operator are defined by the two kernels shown 
in Figure 7.4. The two masks are separately applied on the input image 
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Fi 
-1 -2 -1  

Rl 
1 0 - 1  

Fig. 7.4 Sobel masks to compute (a) gradient G, and (b) gra.dient G, 

to  yield two gradient components G, and G, in the horizontal and vertical 
orientations respectively. 

G, = [ f ( i  - 1 , j  - 1) + 2 f ( i  - 1,j) + f ( i  - 1, j  + I)] - 

[ f ( i  + 1, j  - 1) + 2 f ( i  + 1,j)  + f ( i  + 1,j + I)] 

and 

G, = [ f ( i  - 1 , j  - 1) + 2 f ( i , j  - 1) + f ( i  + 1 , j  - I)] - 

[ f ( i  - 1, j  + 1) + 2 f ( i , j  + 1) + f ( i  + 1 , j  + l)] 

The gradient magnitude is usually computed as 

However, the other two formulae in Eq. 7.1 can also be used to compute the 
gradient magnitude. The direction of gradient is computed as in Eq. 7.2. 

The result of an edge image generated by the Sobel operator is shown in 
Figure 7.5. The edge images have been computed using threshold values 110, 
90 and 70. I t  may be observed from the images that as the treshold value is 
decreased, more and more number of non edge points become edge points. 

7.3.3 Prewitt Operator-Based Edge Detector 

The Prewitt operator is defined by a set of eight masks, four of which are 
shown in Figure 7.6. Others can be generated by rotation of 90' successively. 
The mask that produces maximal response yields the direction of the gradient. 

The magnitude and direction of the edge gradients can be computed in a 
similar fashion as in the Sobel operator. The result of an edge image generated 
by the Prewitt operator is shown in Figure 7.7. 

7.3.4 Kirsch Operator 

Similar to  the Prewitt operators, Kirsch masks can be defined in eight direc- 
tions, which yields the estimated gradients in these directions. In Figure 7.8, 
we show the Kirsch masks which detect gradients in four directions only. 
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fig. 7.5 Edge Image using Sobel operator (a) Original image, edge detection using 
threshold value (b) 110, (c) 90, (d) 70. 

- 1  0 

-1 -1 0 w 
(c) (4 

fig. 7.6 Prewitt masks in 90' successive rotations. 

7.3.5 Canny's Edge Detector 

Canny's edge detector ensures good noise immunity and at the same time 
detects true edge points with minimum error [5]. Canny has optimized the 
edge detection process by 

1. Maximizing the signal-to-noise ratio of the gradient 
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Fig. 7.7 Prewitt results with thresholds (a) 110, (b) 90, (c) 70 (d) 50. 

pJ 
-5 -5 -5 

pJ 
-5 3 

-3 -3 

(C) 

Fig. 7.8 Kirsch masks to  compute gradients in four directions. 

2. An edge localization factor, which ensures that the detected edge is 
localized as accurately as possible 

3. Minimizing multiple responses to a single edge 

The signal-to-noise ratio of the gradient is maximized when true edges are 
detected and false edges are avoided. Thus by discarding the false responses 
when there are multiple number of responses to  a single edge, the noise- 
corrupted edges may be removed. In this method the image is first convolved 
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with Gaussian smoothing filter with standard deviation 0. This operation is 
followed by gradient computation on the resultant smoothed image. 

7.3.5.1 Non-Maxima Suppression The Canny's edge detector produces thick 
edges wider than a pixel. The operation of non maxima suppression thins 
down the broad ridges of gradient magnitude. There are several techniques 
for such a thinning operation. In one technique, the edge magnitudes of two 
neighboring edge pixels, perpendicular to the edge direction are considered 
and the one with lesser edge magnitude is discarded. 

7.3.5.2 Double Thresholding The gradient image obtained after non-maxima 
suppression may still contain many false edge points. To remove false edge 
points, an appropriate threshold is selected such that all the edge points having 
magnitude greater than the threshold may be preserved as true edge points, 
while others are removed as false edge points. If the threshold is small, then 
a number of false edge points may be detected as true edge points, otherwise 
some true edge points may be missed. To avoid this problem, two thresholds 
TI and T2 may be chosen to  create two different edge images El and E2, where 
T2 z 1.5T1. El will contain some false edge points, whereas E2 will contain 
very few false edge points and miss a few true edge points. Threshold selection 
algorithm starts with the edge points in E2, linking the adjacent edge points 
in E2 forming a contour, and the process continues till no more adjacent edge 
points are available. At the boundary of the contour the algorithm searches 
for the next edge points from the edge image El in its 8-neighborhood. The 
gaps between two edge contours may be filled by taking edge points from 
El till the gap has been completely filled up. This process yields complete 
contour constituted by the true edges of the image. 

7.3.5.3 Edge Threshold Selection The detection of edges is based on com- 
paring the edge gradient with a threshold. This threshold value can be chosen 
low enough only when there is no noise in the image, so that all true edges can 
be detected without miss. In noisy images, however, the threshold selection 
becomes a problem of maximum likelihood ratio optimization based on Bayes 
decision theory, which has been discussed at length in Chapter 8. 

Let the apriori probability of detection of true edges be P ( E d g e )  and that 
of no edge be P ( n o e d g e )  while p ( e d g e )  and p ( n o e d g e )  are the conditional 
probability density functions of edge and no-edge classes. The probability of 
true edge detection P T ~ ~ ~  and the probability of false edge detection P F ~ ~ ~ ~  
can be computed using Bayes Decision Theory discussed in Chapter 8. The 
result of an edge image generated by the Canny's edge detector is shown in 
Figure 7.9. 
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Fig. 7.9 (a) Original image, (b) edge image by Canny's edge detector 

7.3.6 Operators-Based on Second Derivative 

The principle of edge detection based on double derivative is to detect only 
those points as edge points which possess local maxima in the gradient values. 
In this case, we get a peak in the first derivative and a zero crossing at  the 
second derivative a t  the edge points. Hence the points at  which the second 
derivative has a zero crossing are treated as edge points. Laplacian operator 
is the most commonly used second derivative-based edge operator. 

7.3.6.1 Laplacian Operator The gradient operators that we have discussed 
so far are anisotropic, i.e., they are not rotation invariant. If we apply the 
isotropic operators to  an image and then rotate the resultant image, it will 
yield the same results as rotating the image first and then applying the op- 
erator. The utility of isotropic edge operator is that we can extract direction 
invariant enhanced edges. An isotropic gradient operator involves derivatives 
of even order. The Laplacian. operator is one such isotropic rotation invariant 
operator. The Laplacian operator is expressed by 

d 2 f  - dG, - d [f ( i l j )  - f ( 2 , j  - I)]  - ___- d f ( i , j )  df  (2,j - 1) 
d x 2  d x  d x  d x  d x  

- 

= f ( i , j  + 1) - 2 f ( i , j )  + f ( i , j  - 1). 

d 2  f - = f ( 2  + 1.j)  - 2 f ( i , j )  + f ( 2  - 1,j) .  
dY2 

Similarly 

The corresponding convolution masks along X and Y directions for a 4- 
neighbor Laplacian impulse response is shown in Figure 7.10. 

Combining the two convolution masks in Figure 7.10, the gain normalized 
4-neighbor Laplacian impulse response kernel may be represented as shown in 
Figure 7.11 (a). In a like-wise fashion, the gain normalized 8-neighbor Lapla- 
cian impulse response kernel is shown in Figure 7.11(b). 
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(4 (b) 

Fig. 7.10 Laplacian masks (a)in X-direction, and (b) in Y-direction. 

1 
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fig. 7.11 Laplacian Impulse Response Kernels. 

The Laplacian can also be computed as f - f ,  where for a 4-neighbor case 

Laplacian, being the second derivative operator has zero response to linear 
ramp. In case of a ramp edge, it responds to  the two sides, but not in the 
middle part of the ramp edge. On one side of the edge it gives positive response 
while on the other we get negative response. 

Fig. 7.12 (a) Original image, (b) edge image by Laplacian edge detector. 

The principle of edge detection based on a double derivative is to detect only 
those points as edge points which possess local maxima in the gradient values. 
Thus at edge points, we get a peak in the first derivative and a zero crossing 
at the second derivative. Hence the points at which the second derivative 
has a zero crossing are treated as edge points. The result of Laplacian edge 
detector is shown in Figure 7.12. 
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7.3.6.2 Laplacian of Gaussian (LOG) Operator Laplacian operator is suscep- 
tible to  noise. To reduce the noise susceptibility, Laplacian of Gaussian (LOG) 
operator can be used. LOG first performs the Gaussian smoothing, which is 
followed by the Laplacian operation. I t  is less susceptible to noise because 
Gaussian function reduces the noise and the resultant Laplacian mask min- 
imizes the probability of detection of false edges. The LOG function for 
convolution is defined as 

(7.3) 

The three-dimensional plot of the LOG function is shaped like a Mexican hat 
as shown in Figure 7.13(a). As (T increases, we need a wider convolution mask. 
The first zero-crossing of the LOG function takes place at  & and the two- 
dimensional cross section of the zero-crossing of the Mexican hat is shown in 
Figure 7.13(b). 

Fig. 7.13 (a) 3D plot of LOG function, (b) cross section showing zero crossing. 

The 5 x 5 convolution mask to implement LOG edge detector is 

0 0 - 1 0 0  
0 -1 -2  -1 

7.3.6.3 DifFerence of Gaussian (DOG) operator It is possible to  approximate 
the LOG filter by taking the difference of two differently sized Gaussians. 
Such a filter is known as a DOG filter (Difference of Gaussians) given as 

(7.4) 

The DOG operator is implemented by convolving an image with a mask which 
is obtained by subtracting two Gaussian masks with two different sigma values 
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as shown in Eq. 7.4. The ratio 2 between 1 to 2 yields good results for edge 
detection. The 7 x 7 convolution mask to implement the DOG edge detector 
is as shown below: 

0 0 -1 -1 -1 0 0 
0 -2 -3 -3 -3 -2 0 
-1 -3 5 5 5 -3 -1 
-1 -3 5 16 5 -3 -1 
-1 -3 5 5 5 -3 -1 
0 -2 -3 -3 -3 -2 0 
0 0 -1 -1 -1 0 0 

7.3.7 Limitations of Edge-Based Segmentation 

The principal limitations of edge detection methods are: 

(a) The edges extracted using the classical methods often do not necessarily 
correspond to boundary objects. In many low-quality images, captured 
using low quality imaging devices, some of the conventional methods 
produce spurious edges and gaps and their applicabilities are thus lim- 
ited. 

(b) The edge detection techniques depend on the information contained in 
the local neighborhood of the image. Most of the edge detection tech- 
niques do not consider model-based information embedded in an image. 

(c) In most of the cases the edge detection strategies ignore the higher order 
organization which may be meaningfully present in the image. 

(d) After the edge points are extracted from the image, these points are 
linked in order to determine boundaries. This is usually done by first 
associating edge elements into edge segments and then by associating 
segments into boundaries. The edge linking process sometimes lead to 
discontinuities and gaps in the image. 

(e) The edge linking methods often resort to arbitrary interpolation in order 
to  complete boundary gaps. 

(f)  It is often difficult to identify and classify spurious edges. 

7.4 IMAGE THRESHOLDING TECHNIQUES 

Gray level thresholding techniques are computationally inexpensive methods 
for partitioning a digital image into mutually exclusive and exhaustive re- 
gions. The thresholding operation involves identification of a set of optimal 
thresholds, based on which the image is partitioned into several meaningful 
regions. A survey of various thresholding schemes may be found in [6]. 
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One of the earliest thresholding algorithms was suggested by Otsu [7], which 
is based on the principle that the gray-level for which the inter-class variance is 
maximum is selected as the threshold. For a gray level k all the gray-value 5 k 
will form a class (Co) and all the others will form a different class (Cl). Select 
that k as threshold for which the between class variance V ( k )  is maximum. 
The criterion proposed by Otsu maximizes the between-class variance of pixel 
intensity. This method results in more computational complexity because of 
complexities involved in computation of the between-class variance. 

7.4.1 Bi-level Thresholding 

Bi-level thresholding is employed on images which have bimodal histograms. 
In bi-level thresholding, the object and background form two different groups 
with distinct gray levels. Examples are: 

1. The alphanumeric characters in a book are generally darker than the 
background white paper. 

2. The chromosomes in an image of mitotic cells, are darker than the back- 
ground. 

Fig. 7.14 Bimodal Image Thresholding. 

In both these cases, the shapes of the histograms are bimodal with peaks 
corresponding to the object and background regions and a valley in between. 
The valley point is usually chosen as the threshold. In bimodal thresholding 
all gray values greater than threshold T are assigned the object label and all 
other gray values are assigned the background label, thus separating the object 
pixels from the background pixels. Thresholding thus is a transformation of 
an input image A into a segmented output image B as follows: 

(a) b,, = 1 for a,, 2 T .  

(b) b,, = 0 for at, < T ,  where T is the threshold 

Here b,, = 1, for the object pixels and b,, = 0, for the background pixels. 
In Figure 7.14, we show the bi-level image thresholding of the saturn image. 
A simple iterative algorithm for threshold selection in a birnodal image is 
presented below. 
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Step 1: Choose an initial threshold T c To 

Step 2: Partition the image using T in two regions-background and fore- 
ground (object). 

Step 3: Compute mean gray values p1 and p2 of background and object 
regions respectively. 

Step 4: Compute the new threshold T +- w; 
Step 5: Repeat Steps 2 to 4 until there is no change of T .  

7.4.2 Multilevel Thresholding 

In multilevel thresholding, the image is partitioned into different segments 
using multiple threshold values. The histograms in such cases are multi- 
modal, with valleys in between. 

If objects are disjoint and their gray levels are clearly distinct from the 
background, then the histogram is multimodal with each peak distinctly sep- 
arate from the other. While segmenting such an image, the valleys in between 
the peaks are chosen as the threshold values. Such a multiobject segmentation 
is shown in figure Figure 7.15. 

(b) (c) (4 
Fig. 7.15 
(c) segmented foreground objects, (d) segmented background. 

hfultilevel Image thresholding: (a) hlultimodal Histogram, (b) input image, 

The threshold T may be global or local depending on the following cases. 
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1. When T depends only on gray value g(z ,  y), the thresholding is global. 

2. The thresholding is local when T depends on both g(z ,  g)  and N ( z ,  y) ,  
where N(z,y) denotes a local image property at  the point (z,y). The 
local image property may be computed from the local image statistics, 
e.g., the average gray level over a neighborhood around the point (z, y).  

If additionally the threshold T depends on the time as well as on g(z ,  y)  and 
N ( z ,  y) ,  then the thresholding scheme is called dynamic. 

7.4.3 Entropy-Based Thresholding 

Entropy based thresholding is widely used in bilevel thresholding. Entropy is 
a measure of information in an image defined by Shannon [B]. The variants 
of Shannon’s entropy have been effectively used for estimation of thresholds 
in image segmentation [6]-[ll]. In entropy-based thresholding, the entropy of 
foreground (object) and background regions are used for optimal selection of 
thresholds. 

In Kapur’s thresholding technique [9], the foreground and background re- 
gion entropies are 

- 

and 

where the foreground gray values range from 0 to T and background pixels 
lie in [T + 1, L - 11 in an L-level gray image. In Eqs. 7.5 and 7.6, p ( g )  is the 
probability mass function 

where h(g) is the histogram of gray value g and N is the total number of 
pixels. The foreground and background area probability values are 

T L-1 

g=o g=T+l 

The thresholding strategy maximizes the total entropy of both the foreground 
and the background regions. The desired threshold is 1 for which the total 
entropy assumes the maximum value. 

Renyi’s entropy has also been used for image thresholding [6]. The Renyi’s 
entropy for foreground and background regions are 
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In this thresholding technique, the total entropy of foreground and background 
regions is computed for various p and appropriate p value is chosen that yields 
the best thresholding results. 

(c) ( 4  

Fig. 7.16 
Kapoor, and (d) Renyi’s Entropy. 

Comparison of thresholding techniques: (a) original image, (b) Otsu, (c) 

Figure 7.16 shows the thresholded images by using Otsu, Kapoor, and 
Renyi’s entropy based thresholding algorithms, as an example. 

7.4.4 

Quite often we encounter situations where two local maxima belong to the 
same global maximum in an image. Several techniques may be employed to  
avoid detection of such local maxima: 

Problems Encountered and Possible Solutions 

A minimum distance of gray levels between these maxima is usually 
required for a good thresholding. Even if the histogram is bimodal, cor- 
rect segmentation may not occur with objects located in a background 
having diverse gray levels. The histogram may be smoothed to  ensure 
good thresholding. 

The influence of the pixels with a high image gradient may be reduced. 
This implies that the histogram will contain the gray levels that belong 
mostly either to the object or to  the background, deleting the border 
pixels having intermediate gray values. This will produce a deeper valley 
and thus allow easier determination of the threshold. 
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0 Another technique uses only gray level gradient pixels to form the gray 
level histogram in which the peak corresponds to the gray level bor- 
ders between the object and the background. This histogram should be 
unimodal and the threshold is selected as the gray level of the peak. 

7.5 REGION GROWING 

Region growing refers t o  the procedure that groups pixels or subregions into 
larger regions. Starting with a set of seed points, the regions are grown from 
these points by including to  each seed point those neighboring pixels that have 
similar attributes like intensity] gray level texture, color, etc. I t  is an iterative 
process where each seed pixel grows iteratively until every pixel is processed 
and thereby forms different regions whose boundaries are defined by closed 
polygons. 

The important issues in the region growing are: 

Selection of initial seeds that represent regions and the selection of suit- 
able properties for including the points in various regions during the 
growing process. 

0 Growing the pixels based on certain properties of the image may not 
ascertain good segmentation. Connectivity or adjacency information 
should also be used in the region-growing process. 

0 Similarity: The similarity denotes the minimum difference in the gray 
level observed between two spatially adjacent pixels or average gray level 
of a set of pixels, which will yield different regions. If this difference is 
less than the similarity threshold value, the pixels belong to the same 
region. 

0 Area of region: The minimum area threshold is associated with the 
smallest region size in pixels. In the segmented image, no region will be 
smaller than this threshold, defined by the user. 

Region growing post-processing: Region growing often results in under- 
growing or overgrowing as a result of nonoptimal parameter setting. A variety 
of postprocessors has been developed. which combine segmentation informa- 
tion obtained from region growing and edge-based segmentation. Simpler 
postprocessors are based on general heuristics and decrease the number of 
small regions in the segmented image that cannot be merged with any adja- 
cent region according to the originally applied homogeneity criteria. 

7.5.1 Region Adjacency Graph 

The adjacency relation among the regions in a scene can be represented by a 
region adjacency graph (RAG). The regions in the scene are represented by a 
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set of nodes N = { N l ,  Nz , .  . . , N,} in the RAG, where node N, represent the 
region R, in the scene and properties of the region R, is stored in the node 
data structure N,. The edge e,,3 between N, and N3 represent the adjacency 
between the regions R, and R3. Two regions R, and R3 are adjacent if there 
exist a pixel in region R, and a pixel in region R3 which are adjacent to  
each other. The adjacency can be either 4-connected or %connected. The 
adjacency relation is reflexwe and symmetrzc, but not necessarily transitzve. 
In Figure 7.17, we show the adjacency graph of a scene with five distinct 
regions. 

f i g .  7.17 (a) A scene with 6 distinct regions, (b) the adjacency graph of the scene. 

A binary matrix A is called an adjacency matrix when it represents a region 
adjacency graph (RAG). When the nodes Ni and N3 in RAG are adjacent, 
ai,j in A is 1. Since adjacency relation is reflexive, the diagonal elements of 
the matrix are all 1. The adjacency matrix (relation) of a multiregion scene 
in Figure 7.17(a) is shown below. 

7.5.2 Region Merging and Splitting 

A segmentation algorithm can produce too many small regions because of 
fragmentation of a single large region in the scene. In such a situation, the 
smaller regions need to  be merged based on similarity and compactness of the 
smaller regions. A simple region merging algorithm is presented below. 

Step 1: Segment the image into R1, Rz, .  . . , R, using a set of thresholds. 
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Step 2: Create a region adjacency graph (RAG) from the segmented descrip- 
tion of the image. 

Step 3: For every Ri, i = 1 , 2 , .  . . , m, identify all Rj,  j # i from the RAG 
such that Ri is adjacent to Ri. 

Step 4: Compute an appropriate similarity measure S,, between R, and R,, 
for all i and j .  

Step 5:  If S,, > T, then merge R, and R,. 

Step 6: Repeat steps 3 to 5 until there is no region to be merged according 
to the similarity criteria. 

Another strategy for merging is based on the intensity of the edges between 
two regions. In this method, merging between adjacent regions is based on 
the edge intensity along the length of the demarcating boundary between two 
regions. If the edge intensity is small, i.e., the edge points are weak, then 
the two regions can be merged if the merger does not change the mean pixel 
intensity values considerably. 

There are situations, when too little regions are generated because of in- 
accurate preliminary segmentation. This is due to wrong merger of different 
regions into a single one. In such situation, the variances of the gray values in 
a segmented region may be above a threshold ( T )  and hence the region needs 
to  be split in smaller regions such that each of the smaller regions has uniform 
small variances. 

Splitting and merging can be combined together for segmenting complex 
scenes where a rule-based may guide the applications of split and merge op- 
erations. 

7.5.3 Clustering Based Segmentation 

Data driven segmentation techniques can be histogram-oriented or cluster- 
oriented. Histogram-oriented segmentation produces an individual segmenta- 
tion for each feature of the multifeature data, and then overlaps the segmen- 
tation results from each feature to  produce more fragmented regions. Cluster- 
oriented segmentation uses the multidimensional data to partition the image 
pixels into clusters. Cluster-oriented techniques may be more appropriate 
than histogram-oriented ones in segmenting images, where each pixel has sev- 
eral attributes and is represented by a vector. Cluster analysis has attracted 
much attention since the 1960’s and has been applied in many fields such 
as OCR (optical character Recognition) system, fingerprint identification, re- 
mote sensing, biological image segmentation, and so on. 

In cost rrvirLirrLization clustering techniques, each clustering configuration is 
assigned a value or cost to  measure its goodness. An appropriate cost function 
measures the goodness of a cluster. Usually, the cost for a cluster configuration 
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is its squared error, i.e., the sum of squared Euclidean distances of each point 
to  its cluster center. Thus low values of such a cost indicate better clustering 
results. It is found that this cost surface is complicated in nature with many 
poor local minima. 

K-means is a popular cluster based segmentation method where each pixel 
is iteratively assigned to  the nearest cluster and the cluster center position 
is recalculated. After each iteration the cost will decrease until the cluster 
configuration converges at a stable state, at which point the cost is a t  a local 
minimum. 

Many image segmentation systems use an iterative moving method which 
attempts to  search for a cluster configuration to  determine whether the cost 
will decrease if a pixel is assigned from its current cluster to  another. The 
pixel will be moved only if the cost decreases because of this assignment. 
Obviously the final result of this method depends on the initial configuration 
and the sequences of pixels which are tested. 

7.6 WATER FALL A LG 0 R IT H M FOR S EG M E N  TAT I0 N 

Waterfall algorithm is an interesting morphological segmentation technique. 
The watershed transformation is the paradigm of segmentation of morphology 
and has proven to be a powerful tool used in the solution of multiple applica- 
tions. The principles and application of waterfall algorithm may be found in 
[12, 131. In this technique a gray level image is considered as a topographic 
relief, where every pixel is assigned to a catchment basin of a regional minima. 
Thus every regional minima is considered to  have a zone of influence. The 
watershed lines are the lines which separate these regions or zones of influ- 
ence. Each smallest topographical region has sufficient information regarding 
its surrounding topographical map. The rainfall-pro regions are the only re- 
gions that get rainfall. Every region knows about the resultant flow of water 
caused due to the rain. This is because of the a-priori knowledge about the 
slope of the region and the surface tension of the water in that region. 

Fig. 7.18 
object. 

(a) An original image, (b) interframe difference image, (c) segmented human 



152 IMAGE SEGMENTATION 

In video sequence of images, consecutive image frames change only in their 
edges and the object is detected by linking the edges. I t  is the inherent ability 
of human beings to  correlate an object with its outline or edge information. 
Thus starting with the edge information as seed points (rainfall-pro regions), 
region growing is performed recursively as long as the neighboring pixels (sur- 
rounding regions) are within a certain global limit (surface tension). For 
different cases the surface tension will change with global and local criteria. 
This is quite similar to  the waterfall model in the plateau area where the wa- 
ter spreads in the surrounding regions, based on the porosity of the soil and 
surface tension of the flowing water. 

Results of waterfall algorithm of images are shown in Figure 7.18. The main 
drawback of this method is the oversegmentation produced. Two approaches 
are proposed in the literature to  overcome this drawback: 

0 the selection of markers, which supposes that the characteristics of the 
interesting objects are known. 

0 hierarchical approaches, that are able to rank the importance of each 
region. 

7.7 CONNECTED COMPONENT LABELING 

Connected component labeling is defined on a set of objects. In an image, 
connected component is said to be a separate and independent object. In- 
dependency comes with the connectivity. A connected component may be 
4-connected or 8-connected. In 4-connected case, any element having coor- 
dinate ( z , ~ )  in that  connected component has at  least one element having 
coordinate in the following set: 

( ( 5 ,  Y - I ) ,  (2, Y + I), (. - 1, Y ) ,  (. + 1, Y)} 
and all the elements having coordinate in that set should belong to the same 
connected component. For %connected the neighboring set of coordinate will 
be 

{(. - 1, Y - 11, (. - 1, Y ) ,  (. - 1, Y + 11, (., Y - 11, (.> Y + 11, (. + 1, Y - I), 

(. + 1, Y), (. + 1,Y + 1)). 
To perform the connected component labeling there are many methods. 

Further detail in connected component labeling and a two pass algorithm are 
presented in Section 14.4 in Chapter 14. 

7.8 DOCUMENT IMAGE SEGMENTATION 

Document image segmentation is a part of document image analysis (DIA), 
which is concerned with automatic interpretation of printed and handwritten 
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documents, including, text, drawings, maps, etc [14]-[16]. Document analy- 
sis is used to  extract geometric structures of a document. The document is 
broken down into several blocks which represent different constituent parts 
of a document, such as text lines, headings, graphics, and half-tones with 
or without the knowledge regarding the specific format. Due to  its immense 
potential for commercial applications research in this field supports a rapidly 
growing industry including OCR and vision systems for DIA. General OCR 
systems show high accuracy in interpreting text portions but fail to  properly 
process other components like graphics, half-tones (general picture), mathe- 
matical formulas, and equations. To provide a complete support to OCR it 
is required to segment the document in block level. Major independent parts 
of commonly used documents are as follows 

1. Half-tone 

2. Text 

3. Graphics 

Half-tones are the pictures having gray value distribution as observed in 
newspaper, magazine, etc. Texts are the set of alphabets, numeric, and sym- 
bols, while graphics are the pictorial interpretation of graphs, geometrical 
sketches and line arts. Based on the spatial orientation, the text may be (a) 
Tabular text, (b) Non-tabular text. 

In the domain of tabular text the different sub-parts are (a) Table, (b) TOC 
(Table of Content) page, and (c) Index page. Tables are the horizontally and 
vertically separated data set, having different rows and columns. TOC pages 
are the table of content pages that indicates the relation of orderly arranged 
subjects and the related page numbers. Index pages are alphabetically ordered 
pages with indexing terms. 

Non-tabular texts are the normal pages found in any document page. I t  is 
divided into (a) Normal text, (b) Heading, (c) Math equations. Normal text 
is self-explanatory and observed mainly in all the paper documents whereas 
heading is text with bigger font, while math equations are enriched with spe- 
cial mathematical symbols, which are difficult for OCR to  retrieve. 

The first step in document image segmentation system involves prepro- 
cessing followed by segmentation. Preprocessing includes binarization, noise 
reduction, skew detection, and character thinning [14]. It is important to ob- 
tain good quality document page before layout analysis is attempted. Various 
filtering strategies can be employed to  filter the noise and reconstruct the bro- 
ken lines which may result from skeletonization process. Pixel classification 
followed by region classification are attempted for segmenting the document 
in a set of homogeneous regions. In view of the fact that different regions in 
a document have different textures, texture based segmentation is well suited 
for document page segmentation. 
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fig. 7.19 (a) A document image, (b) text portion segmented 

Figure 7.19(a) shows a noisy document page having text and table from 
which the text portion has been segmented. The resulting tabular structure 
is shown in Figure 7.19(b). 

Document processing leads to the form processing system whose objective 
is to extract the user-filled data. The layout structure of the form must be 
known in advance to identify as well as to exclude pre-printed data such as 
text, logo, boxes and lines. A blank form without any user-filled data may be 
used to extract the layout structure as reference prototype. These reference 
prototypes may be stored in a Prototype database and can be compared with 
the instances of a filled-in input form. 

7.9 SUMMARY 

The problem of image segmentation has been viewed as a problem of de- 
tection of edges and also as a problem of partitioning an image into several 
partitions. In this chapter we have presented both the approaches towards 
image segmentation. The objective of segmentation is to minimize the clas- 
sification errors and reduce the statistical uncertainty. This has lead to the 
development of several algorithms based on local and global properties of the 
pixels in an image. Thresholding techniques are simple and elegant. A number 
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of histogram thresholding schemes have been presented here. Other segmen- 
tation strategies, mainly region growing, region split and merge, have been 
discussed. Waterfall algorithms find applications in many image processing 
tasks where edge linking is avoided after edge detection. This algorithm has 
been deeply discussed here. Finally, an application of segmentation in the 
area of document image analysis has been briefly reviewed. 
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Recognition of Image 
Pat t  e m s  

8.1 INTRODUCTION 

Once an image is segmented, the next task is to recognize the segmented 
objects or regions in the scene. Hence, the objective in pattern recognition is 
to  recognize objects in the scene from a set of measurements of the objects. 
Each object is a pattern and the measured values are the features of the 
pattern. A set of similar objects possessing more or less identical features are 
said to  belong to  a certain pattern class. 

Pattern recognition is an integral part of machine vision and image pro- 
cessing [ l]-[6]and finds its applications in biometric and biomedical image 
diagnostics to document classification, remote sensing, and so on. 

There are many types of features and each feature has a specific technique 
for measurement. In addition, higher-order features are formed by combi- 
nations or distributions of the simpler set of features. As an example, each 
letter in the English alphabet is composed of a set of features like horizon- 
tal, vertical, slant straight lines, as well as some curvilinear line segments. 
While the letter ‘A’ is described by two slant lines and one horizontal line, 
letter ‘B’ has a vertical line with two curvilinear segments, joined in a specific 
structural format. Some of the features of a two- or three-dimensional object 
pattern are the area, volume, perimeter, surface, etc. which can be measured 
by counting pixels. Similarly the shape of an object may be characterized 
by its border. Some of the attributes to  characterize the shape of an object 
pattern are Fourier descriptors, invariant moments, medial axis of the object, 
and so on. 

157 
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Sample 
Pattern 

The color of an object is an extremely important feature, which can be 
described in various color spaces. Also various types of textural attributes 
characterize the surface of an object. The techniques to  measure the features 
are known as feature extraction techniques. Patterns may be described by 
a set of features, all of which may not have enough discriminatory power to 
discriminate one class of patterns from another. The selection and extraction 
of appropriate features from patterns poses the first major problem in pattern 
recognition. 

Feature + Learning 
Extraction 

8.2 DECISION THEORETIC PATTERN CLASSIFICATION 

A number of pattern classification techniques have been used for the recog- 
nition of patterns. Some of these techniques are known as decision theoretic 
techniques, in which the classification of an unknown pattern is decided based 
on some deterministic or statistical or even fuzzy set theoretic principles. The 
block diagram of a decision theoretic pattern classifier is shown in Figure 8.1. 

Classified 
Pattern Extraction Classifier output 

Fig. 8.1 Block diagram of a decision theoretic pattern classifier. 

The decision theoretic pattern recognition techniques are mainly of two 
types 

1. Classification methods based on supervised learning 

2. Classification methods using unsupervised techniques. 

The supervised classification algorithms can further be classified as 

0 Parametric classifiers 

0 Nonparametric classifiers 

In parametric supervised classification, the classifier is trained with a large 
set of labeled training pattern samples in order to estimate the statistical 
parameters of each class of patterns such as mean, variance, etc. By the term 
‘labeled pattern sam.ples’, we mean the set of patterns whose class memberships 
are known in advance. The input feature vectors obtained during the training 
phase of the supervised classification are assumed t o  be Gaussian in nature. 
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The minimum distance classifier and the mmimum likelihood classifier are 
some of the frequently used supervised algorithms. 

On the other hand, the parameters are not taken into consideration in the 
nonparametric supervised classification techniques. Some of the nonparamet- 
ric techniques are K-nearest neighbor, Parzen window technique, etc. 

In unsupervised case, the machine partitions the entire data set based on 
some similarity criteria. This results in a set of clusters, where each cluster of 
patterns belong to a specific class. 

8.3 BAYESIAN DECISION THEORY 

Bayesian decision theory is a very good tool for pattern classification. Assume 
that there are N classes of patterns C1, ( 2 2 , .  . . , C N ,  and an unknown pattern 
z in a d-dimensional feature space z = [XI, 5 2 ,  5 3 ,  . . . , zd]. Hence the pattern 
is characterized by d number of features. The problem of pattern classification 
is to compute the probability of belongingness of the pattern z to each class 
Ci, i = 1 , 2 , .  . . , N .  The pattern is classified to the class c k  if probability of 
its belongingness to ck is maximum. 

While classifying a pattern based on Bayesian decision theory, we distin- 
guish two kinds of probabilities: (1) Apriori probability, and (2) Aposteriori 
probaility. The apriori probability indicates the probability that the pattern 
should belong to a class, say c k ,  based on the prior belief or evidence or 
knowledge. This probability is chosen even before making any measurements, 
i.e., even before selection or extraction of a feature. Sometimes this proba- 
bility may be modeled using Gaussian distribution, if the previous evidence 
suggests it. In cases where there exists no prior knowledge about the class 
membership of the pattern, usually a uniform distribution is used to model it. 
For example, in a four class problem, we may choose the apriori probability 
as 0.25, assuming that the pattern is equally likely to belong to any of the 
four classes. 

The aposteriori probability P(C, Iz), on the other hand, indicates the final 
probability of belongingness of the pattern z to a class C i .  The aposteriori 
probability is computed based on the 

feature vector of the pattern, 

0 class conditional probability density functions p(zlCi) for each class C,, 

Apriori probability P(Ci) of each class C,. 

Bayesian decision theory states that the aposteriori probability of a pattern 
belonging to a pattern class c k  is given by 
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The denominator ELl p(zlC,)P(C,) in the above expression is the scaling 
term which yields the normalized value of the aposteriori probability that the 
pattern z belongs to class Ci. Hence, 5 belongs to class C, when 

P(C,Jz) = max{P(C~l~),~(~zl~),~~~,~(~~l~)} 

8.3.1 Parameter Estimation 

Given a large number of labeled training sample patterns, the next task is to  
estimate the parameters of the Gaussian distribution p(zlC,). Since in most 
of the cases we require more than one feature, we have to select multivariate 
Gaussian distribution, which is given as 

e { - ~ ( ~ - ~ ~ ) T ~ ~ l ( ~ - ~ ~ ) }  

(2rI)d/2 jC,11/2 
P(XlC2)  = 

The parameters that we need to estimate are (1) mean feature vector pt ,  
and (2) covariance matrix C, for each pattern class C,. If the chosen features 
are statistically independent, then the off diagonal elements of the covariance 
matrix C, will be zero. In such a situation, the covariance matrix C, will 
contain only the diagonal elements which represent the variances for each 
feature dimension and hence computing the inverse of the diagonal covariance 
matrix becomes simpler. During the training phase, the parameters such as 
the elements of the mean feature vector p and the covariance matrix C are 
estimated. The next step is to compute the aposteriori probability of the test 
pattern sample to one of the classes. 

8.3.2 Minimum Distance Classification 

Distance functions are used to measure the similarity or dissimilarity between 
two classes of patterns. The smaller the distance between two classes of pat- 
terns, the larger is the similarity between them. The manamum dastance clas- 
szficatzon algorithm is computationally simple and commonly used. It can 
result in classification accuracies that are comparable to  other more compu- 
tationally intensive algorithms like maximum likelihood class. The classifier 
finds the distances from a test input data vectors to all the mean vectors 
representative of the target classes. The unknown pattern is assigned to that 
class from which its distance is smaller than its distances to all other classes. 

Let us consider an N class problem. If the class C, contains a single proto- 
type pattern pt selected by appropriate measure and distance of the unknown 
pattern X = [XI. z2, . . . , z,] from the pattern class C, is d(X, p t ) ,  then the 
pattern X belongs to the class CI, if 

Dk = min{d(xi, Pz)}  

for all z = l , . . . , N  . The distance function d is supposed to satisfy three 
properties as below. 
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1. Reflexitivity: The distance between a pattern X = [XI, 2 2 , .  . . , z,] 
and itself is always less than or equal t o  its distance with any other 
pattern. This implies that D ( X , X )  5 D ( X , Y ) ,  for all Y # X .  In fact 
such a distance is in most of the cases zero, i.e., D ( X , X )  = 0. 

2. Symmetry: The distance between pattern X = [XI,  z 2 , .  . . , x,] and 
pattern Y = [yl ,  y 2 , .  . . , y,] is always equal to  the distance between 
pattern Y and pattern X ,  i.e., D ( X ,  Y )  = D(Y,  X). 

3. Triangular law of inequality: The sum of the distances between pat- 
tern X = [XI,  z 2 ,  . . . , x,] and pattern Y = [yl ,  y 2 ,  . . . , y,] and between 
pattern Y and pattern 2 = [zl, z 2 , .  . . , z,] is always greater than the 
distance between pattern X and pattern 2, i.e, D ( X ,  Y )  + D(Y,  2) > 
D ( X ,  2). 

8.3.2.1 Minkowski Distance In the numeric domain, a popular distance mea- 
sure is the Minkowski distance. This is a generalized distance measure between 
two data objects or patterns A and B computed as 

0 When p = 1, the distance is called the c i ty  block or Manhattan distance, 
which is computed as 

n 

a = 1  

When p = 2, the distance is called the Euclidean distance, which is 
computed as 

8.3.2.2 Mahalanobish Distance The Mahalanobish distance essentially indi- 
cates the distance between a test pattern and a pattern class. If the parameters 
of the distribution of a specific pattern class are assumed to be Gaussian with 
mean feature vector /I and the covariance matrix C, then the Mahalanobish 
distance between the test pattern with the feature vector x and that pattern 
class C is given by 

where p is the mean feature vector of the pattern samples belonging to  the 
pattern class C and C is the covariance matrix of C.  
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8.3.2.3 Bounded Distance In many pattern classification problems, it may 
be useful to work with a bounded distance function, which lies in the range 
[0,1]. Any given distance function D ( X ,  Y )  may be transformed into a bounded 
distance function d ( X ,  Y ) ,  where 

D ( X ,  Y )  
D ( X , Y )  + 1' 

d ( X , Y )  = 

It  is obvious that when distance is measured with the function d ,  the maximum 
distance between any two patterns lies between 0 and 1, regardless of their 
location. 

It is interesting to note that even when D ( X ,  Y )  is not bounded, d ( X ,  Y )  
is. Thus both distances induce the same notion of nearness between the two 
patterns X and Y .  There are many such functions, like f ( a )  = -&, which 
produce new distance functions. These functions may be found to  be useful 
in pattern classification. 

8.4 NONPARAMETRIC CLASSIFICATION 

The nonparametric classification strategies are not dependent on the estima- 
tion of parameters. There are several nonparametric classifiers, e.g., K-nearest 
neighbor classifier, Parzen window-based classifier, etc. [l, 71. 

8.4.1 K-Nearest-Neighbor Classification 

In many situations we may not have the complete statistical knowledge about 
the underlying joint distribution of the observation or feature vector 2 and 
the true class C, to which the pattern belongs. 

The K-nearest neighbor rule is a nonparametric pattern classifier, which 
is simple, yet yields good classification accuracy. Let us consider a two class 
problem. Assume that all the samples belonging to each of the two particular 
classes are independently and identically distributed according to the distri- 
bution p(x). The samples which are similar most likely will have the same 
aposteriori probabilities. For an unknown test sample, K nearest rule sug- 
gests that it should be assigned to the class to which majority of its K-nearest 
neighbors belong. 

There are, however, certain problems in classifying an unknown pattern 
using nearest neighbor rule. If there are N number of sample patterns, then 
to ascertain the nearest neighbor, we need to compute N distances from the 
test pattern to  each of the sample points. Also it is important to store all 
these N sample points. This leads to  increase of the computational as well 
as storage complexity of the K-nearest neighbor problem. As the number 
of features increases, we require more number of training data samples and 
hence it increases the storage and computational complexities as well. 
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To reduce these complexities various researchers have taken different mea- 
sures. 

0 Remove the redundant data from the data set, which will reduce the 
storage complexity. 

0 The training samples need to  be sorted to  achieve better data structure 
for reducing the computational complexities. 

0 The distance measure to be used for computation should be simple. 

8.4.1.1 A two-class pattern classification example A two-class pattern clas- 
sification problem is exemplified in Figure 8.2. We consider k = 5 nearest 
neighbors from the unknown pattern X ,  marked by the dotted line within an 
appropriate neighborhood around the test pattern X. As shown in Figure 8.2, 
there are three patterns from class Cz and two from class C1. The majority 
decision enables assignment of the unknown pattern X to class C,. 

0 
0 

o +  

Fig. 8.2 A k-nearest neighbor example for k = 5 .  

To reduce the computational and storage complexity for implementation of 
K-nearest neighbor algorithm, a number of techniques have been suggested 
in [l]. The asymptotic error in case of K-nearest neighbor is less than twice 
that of Baysean classification error. 

8.5 LINEAR D I S C R I M I N A N T  ANALYSIS 

An image can be described by a set of local features, These features can be 
extracted a t  each pixel of the image. The features may be, Gabor Wavelet 
feature, shape feature, color feature or texture feature and so on. Let f k ( p )  
denotes the k t h  feature at pixel p .  The raster scanning of the entire image 
yields a vector f k  a t  each pixel of the image. This results in a large matrix, 
whose dimensionality is equal to  the number of the pixels in the image. If 



164 RECOGNITION OF IMAGE PATTERNS 

each pixel in an image is associated with d number of features, we have a 
matrix F = {f l , .  . . , f d }  of dimension n x d, where n is the total number of 
pixels in the image. I t  may be noted here that this matrix contains lot of local 
information of the entire image, much of which is redundant. The discrim- 
inant analysis is employed to find which variables discriminate between two 
classes and is essentially analogous to the analysis of variance. In discriminant 
analysis, we assume that the discriminant function is linear, i.e., 

g(s) = W t X  + 20 = 0 

is a linear decision surface, called as hyperplane, which partitions the fea- 
ture space in two subspaces. In Fisher's linear discriminat approach, the 
d-dimensional patterns x are projected onto a line, such that the projection 
of data 

y = wLx 

are well separated. The measure of this separation can be chosen as 

where ml and m2 are the projection means for classes C1 and C2 and 3: and 
Sz are the within class variances of the projected data [l]. Here 

s; = c (y - mzy 

gives a measure of scatter of the projected set of data points y. The objective 
function J(zijt) is maximized for the weight w' such that 

w'= s,-l (f i1- 6 2 ) .  

The discriminant function can be extended to a generalized polynomial 

rl r l r l  

2 = 1  a = 1  j=1 

where the first three terms yield a quadratic discriminant function. 
The Fisher linear discriminant function is widely used for identifying the 

linear separating vector between pattern classes. The procedure uses the max- 
imization of between class scatter while minimizing the intra-class variances. 

8.6 UNSUPERVISED CLASSIFICATION STRATEGIES - 
CLUSTERING 

The ability to cluster data in a finite set of groups is an essential feature of 
human intelligence. The elements or patterns in a cluster have more similari- 
ties among them compared to their similarities from other clusters. Thus in a 
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clustering problem, we have a set of patterns, that  have to be partitioned in a 
set of clusters such that the patterns within a cluster are more similar to each 
other than the patterns from other clusters or partitions. Thus central to  the 
goals of cluster analysis lies the notion of similarity. There are a couple of 
methods of clustering. We can divide these methods into the following three 
classes: 

1. Hierarchical methods 

2 .  K-means methods 

3. Graph theoretic methods 

In hierarchical algorithms, the data set is partitioned in a number of clusters 
in a hierarchical fashion. The hierarchical clustering methods may again be 
subdivided into the following two categories. 

1. Agglomerative clustering: In agglomerative clustering, we start with 
a set of singleton clusters, which are merged in each step, depending 
on some similarity criterion, and finally we get the appropriate set of 
clusters. 

2 .  Divisive clustering: In divisive clustering, as the name suggests, the 
whole set of patterns initially is assumed to  belong to a single cluster, 
which subsequently is divided in several partitions in each step. 

The hierarchical clustering may be represented by dendograms, a tree struc- 
ture which demonstrates the merging (fusion) or division of points in each step 
of hierarchical partitioning. Agglomerative clustering is the bottom up clus- 
tering procedure where each singleton pattern (leaf nodes a t  the bottom of the 
dendogram) merges with other patterns, according to some similarity crite- 
rion. In divisive algorithm, on the other hand, starting with the root node S, 
we recursively partition the set of patterns until singleton patterns are reached 
a t  the bottom of the tree. 

8.6.1 Single Linkage Clustering 

The single linkage or nearest neighbor agglomerative clustering technique in- 
volves grouping of patterns based on a measure of intercluster (distance be- 
tween two clusters). The distance between two clusters, each containing finite 
number of pattern samples is defined as the distance between the closest pair 
of patterns. where the pair is made up of one pattern belonging to  each cluster. 
Assuming two clusters PI and P2, each containing finite number of patterns, 
in single linkage method, the distance between PI and Pz is given by 

a r L Z T L ( P 1 ,  P2) = min{4Pz,P,)}, 
Z > J  

where pattern p ,  is in cluster Pl and pattern p3 is in cluster P2. 
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8.6.2 Complete Linkage Clustering 

In complete linkage clustering, distance between two clusters is defined as the 
distance between the most distant pair of patterns, each pattern belonging to  
one cluster. This method may thus be called the farthest-neighbor method. 
In complete linkage method, the distance between PI and P2 is given by 

% a z ( P l ,  P2) = ma{d(p,,p,)), 
a.3 

where pattern p ,  is in cluster PI and pattern p,  is in cluster P2. 

8.6.3 Average Linkage Clustering 

In average linkage clustering, the distance between two clusters is given by 
the average of all distances between all pairs of patterns. In this method, the 
distance between PI and P2 is 

where pattern pi is in cluster PI and pattern p j  is in cluster 4. If there are 
1x1 number of patterns in Cluster PI and n2 patterns in cluster P2, then the 
average distance between two clusters is given by 

where pattern p ,  is in cluster PI and pattern p j  is in cluster P2. 

8.7 K-MEANS CLUSTERING ALGORITHM 

In K-means clustering approach, we partition the set of input patterns S into 
a set of K partitions, where K is known in advance. The method is based on 
the identification of the centroids of each of the K clusters. Thus, instead of 
computing the pairwise interpattern distances between all the patterns in all 
the clusters, here the distances may be computed only from the centroids. The 
method thus essentially boils down to searching for a best set of K centroids 
of the clusters as follows: 

Step 1: Select K initial cluster centers C1, C2,. . . , CK.  

Step 2: Assign each pattern X E S to  a cluster C, (1 5 i 5 K ) ,  whose 
centroid is nearest to pattern X. 

Step 3: Recompute the centroids in each cluster C, (1 5 j 5 K )  in which 
there has been any addition or deletion of pattern points. 

Step 4: Jump to step 2, until convergence is achieved. 
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Fig. 8.3 Syntactic pattern recognition system 
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The major problem is the selection of initial cluster configurations. I t  is 
possible either to select the first k samples as the initial cluster centers or to 
randomly select K samples from the pool of patterns as the cluster centers. A 
rough partition in K clusters may, however, yield a better set of initial cluster 
centers. 

8.8 SYNTACTIC PATTERN CLASSIFICATION 

It  may be noted that there exists an inherent structure inside a pattern and 
there is a positive interrelationship among the primitive elements which form 
a pattern [2, 3, 5, 8, 91. The limitations of decision theoretic pattern classi- 
fication techniques lie in their incapability t o  articulate this interrelationship 
of the pattern substructures. This has led to  a new era of structural or syn- 
tactic pattern recognition. The interrelationship between pattern elements 
called primitives and the articulated description of a pattern in terms of such 
relations provide a basis of structural or linguistic approach to  pattern recog- 
nition. 

In syntactic pattern recognition each pattern is characterized by a string 
of primitives and the classification of a pattern in this approach is based on 
analysis of the string with respect to the grammar defining that pattern class. 
The syntactic approach to  pattern recognition involves a set of processes, viz., 

1. Selection and extraction of a set of primitives (segmentation problem) 

2. Analysis of pattern description by identification of the interrelationship 
among the primitives 

3. Recognition of the allowable structures defining the interrelationship 
between the pattern primitives 

A typical block diagram of a syntactic pattern recognition system is shown 
in Fig 8.3. 



168 RECOGNITION OF IMAGE PATTERNS 

Fig. 8.4 (a) Example of a Freeman chain code (b) Freeman chain code of an octagon. 

8.8.1 Primitive selection Strategies 

As mentioned earlier, segmentation of patterns poses the first major problem 
in syntactic pattern recognition. A pattern may be described by a string of 
subpatterns or primitives, which may easily be identified. If each subpattern 
is complex in structure, each of them may again be described by simpler 
subpatterns which are easily identifiable. 

The problem of primitive selection is a fundamental one and various ap- 
proaches to  primitive selection have been suggested in the literature [a, 4, 81. 
One of the most frequently used schemes of boundary descriptions is the 
chain code method by Freeman [lo]. Under this approach, a rectangular grid 
is overlaid on a two-dimensional pattern and straight line segments are used 
to  connect the adjacent grid points covering the pattern. 

Let us consider a sequence of n points { p l , p 2 . .  . . ,p,} which describe a 
closed curve. Here the point p ,  is a neighbor of p,-l and p,+l when z < n, 
whereas the point p ,  is the neighbor of p,-l and the point po and also po is 
the neighbor of p l  and p,. The Freeman chain code contains n vectors p2p,-1 
and each of these vectors is represented by an integer m = 0,1, . . . ,7 as shown 
in Figure 8.4(a). Each line segment is assigned an octal digit according to its 
slope and the pattern is represented by a chain of octal digits. This type of 
representation yields patterns composed of a string of symbolic valued prim- 
itives. Figure 8.4(b) shows the Freeman chain code of a closed pattern. This 
method may be used for coding any arbitrary two-dimensional figures com- 
posed of straight line or curved segments and has been widely used in many 
shape recognition applications. The major limitation of this procedure is that 
the patterns need adequate preprocessing for ensuring proper representation. 

Once a satisfactory solution to the primitive selection and extraction prob- 
lem is available, the next step is the identification of structural interrelation- 
ship among the extracted pattern primitives. A pattern may be described 
as sets of strings or sentences belonging to specific pattern classes. First or- 
der logic may be used for describing the primitive interrelationship where a 



pattern is described by certain predicates and objects occurring in the pat- 
tern may be defined using the same predicates. When the patterns are rep- 
resented as strings of primitives they may be considered as sentences of a 
regular, context-free, or context-sensitive languages. Thus suitable grammars 
may be defined for generating pattern languages by specifying a set of pro- 
duction rules which generate the sentences in the said pattern language. The 
corresponding computing machines known as automata have the capability of 
recognizing whether a string of primitives belongs to  a specific pattern class 
[8, 111. 

8.8.2 High-Dimensional Pattern Grammars 

The string representation of patterns is quite adequate for structurally sim- 
pler forms of patterns. The classical string grammars are, however, weak in 
handling noisy and structurally complex pattern classes. This is because the 
only relationship supported by string grammars is the concatenation relation- 
ship between the pattern primitives. Here each primitive element is attached 
with only two other primitive elements-one to  its right and the other to its 
left. Such a simple structure thus may not be sufficient to characterize more 
complex patterns, which may require better connectivity relationship for their 
description. An appropriate extension of string grammars has been suggested 
in the form of high-dimensional grammars. These grammars are more power- 
ful as generators of language and are capable of generating complex patterns 
like chromosome patterns, nuclear bubble chamber photographs, etc. [a, 3, 41. 

In a string grammar each primitive symbol is attached with only two other 
primitive elements, one to  the right and the other to the left of the element. 
A class of grammars was suggested by Fedder [3], where a set of primitive 
elements may be used with multiple connectivity structure. These grammars 
are known a s  PLEX grammars. PLEX grammar involving primitive structures 
called n-attaching point entity (NAPE) and a set of identifiers associated with 
each NAPE has been used for pattern generation. The n-attaching point 
entities are primitive elements in which there are n number of specified points 
on the primitive elements where other attaching elements may be connected. 
Thus this class of grammars have more generating capabilities compared to 
the string grammars. 

8.9 SYNTACTIC INFERENCE 

A key problem in syntactic Pattern Recognition is inferring an appropriate 
grammar using a set of samples belonging to different pattern classes. 

In syntactic pattern recognition, the problem of grammatical inference is 
one of central importance. This approach is based on the underlying assump- 
tion of the existence of at least one grammar characterizing each pattern class. 
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The identification and extraction of the grammar characterizing each pattern 
class forms the core problem in the design of a syntactic pattern classifier. 
The problem of grammatical inference involves development of algorithms to 
derive grammars using a set of sample patterns which are representatives of a 
pattern class under study. This may thus be viewed as a learning procedure 
using a finitely large and growing set of training patterns. In syntactic pat- 
tern classification, the strings belonging to a particular pattern class may be 
considered to  form sentences belonging to  the language corresponding to  the 
pattern class. A machine is said to recognize a pattern class if for every string 
belonging to  that pattern class, the machine decides that it is a member of 
the language and for any string not in the pattern class, it either rejects or 
loops forever. A number of interesting techniques have been suggested for the 
automated construction of automaton which accepts the strings belonging to  
a particular pattern class [Ill. 

8.10 SYMBOLIC PROJECTION METHOD 

Here we will present a scene interpretation scheme based on a work by Jungert 
[12]. The structure is called symbolic projections and its principles are rela- 
tively simple and straightforward. The basic idea is to project the positions 
of all objects in a scene or image along each coordinate axis and then generate 
a string corresponding to each one of the axes. Each string contains all the 
objects in their relative positions, that  is, one object is either equal to  or less 
than any of the others. Figure 8.5 shows how simple objects can be projected 
along the X- and Y-coordinate axis. The two operators used are equal to and 
less then. The strings are called U- and the V-strings, where the U-string cor- 
responds to  the projections of the objects along the X-axis, and the V-string 
to  the Y-axis. The symbolic projections are best suited for describing relative 
positions of objects, which is important in spatial reasoning in images of our 
discussion. 

One may use several spatial relational operators, such as equal, less then, 
greater than, etc., as follows: 

Equal (=): Two objects A and B are said to  be equal in spatial di- 
mension, i.e., A = B if and only if centroid of A is same as the centroid 
of B. 

0 Less than (<): Two objects A and B separated by a distance may be 
spatially related by A < B if and only if max(A,) < min(B,), where 
max(A,) (or min(B,)) indicates the maximum (or minimum) values 
of the projection of all the pixels in object A (or object B )  along the 
X-direction. Similar relationships can be defined along the Y-axis. 

0 Greater than (>): Two objects A and B separated by a distance may 
be spatially related by A > B if and only if min(A,) > max(B,). 
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Fig. 8.5 Example of a symbolic projection. 

0 Top and Bottom: Two objects A and B separated by a distance may 
be spatially related by A top of B if and only if min(A,) > max(B,) 
and hence Bbottom of A’. 

The illustration of the less-than operator is shown as an example in Fig- 
ure 8.5. From the figures, it is clear that the maximum value of the projection 
( 2 2 )  of object A along X-direction is less than the minimum value of the pro- 
jection ( 2 3 )  of object B.  This implies that the object A is to  the left of the 
object B. Similarly, the minimum value of the projection (y2)  of object A 
along Y-direction is greater than the maximum value of the projection ( y ~ )  
of object B. Hence the object A is top of object B.  

To describe all possible formations of the object, it is required that we 
should be able to  identify the spatial relationships among the objects in eight 
possible directions, namely, North, South, East, West, Northeast, Northwest, 
Southeast, and Southwest. 

8.11 ARTIFICIAL NEURAL NETWORKS 

Artificial Neural networks have been extensively used in image segmentation 
and object classification problems [13]-[17]. These networks are essentially 
learning networks, which are used for Classifying pixels or objects in a scene. 
They are large set of interconnected neurons, which execute in parallel to  
perform the task of learning. The neurons are modeled after the biological 
neurons and hence they are termed as neural networks. Based on the type 
of learning process, these networks may be supervised or unsupervised. In 
this chapter, we discuss a multilayered perceptron neural network based on 
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one supervised learning and Kohonen’s self organizing feature map, which is 
based on unsupervised learning. 

8.11.1 Evolution of Neural Networks 

Historically it was the work on linear threshold units, modeled after the inter- 
connected set of human neurons, by McCulloch and Pitt in 1943, which was 
the first attempt towards building a neural network [18]. Their model con- 
sisted of a network of simple units, called linear threshold units, which could 
perform logical AND, OR operations. Thc subsequent attempt by Hebb on 
Hebbian learning in 1949 and his postulates are the founding ones based on 
which most of the later day learning rules have been derived [19]. It  was, 
however, possibly the concepts of perceptron by Rosenblatt in 1957 which was 
the first attempt to  design a classifier based on learning network [20]. The 
limitations of perceptron were soon brought out by Minsky and Papert, and 
it was found that perceptron was unable to  discriminate between the Pattern 
classes which are not linearly separable [21]. The current, wave of popularity 
of Neural networks is due to Hopfeld networks and work by Rumelhart et. al. 

Although there exists many models and representations of ANNs, each one 
of these networks possesses four tuple attributes < N c ,  W, CT, 6 >, where N c  
is a finite set of highly interconnected neurons with outputs nlrn2, . . . , Nk; 
1Y denotes a finite set of weights which represents the strength w,j of the 
interconnection between neurons ni and nj; cr is a propagation rule which 
shows how the input signals to a neuron n, propagates through it. A typical 
propagation rule may be a( i )  = C njw,j and 6 is an activation function which 
is usually a nonlinear function like sigmoid function or a hard limiter. 

1161. 

8.11.2 Multilayer Perceptron 

The most popular neural network model is the rnultilayer perceptron (MLP), 
which is an extension of the single layer perceptron proposed by Rosenblatt 
[16, 201. Multilayer perceptrons, in general, are feedforward network, having 
distinct input, output, and hidden layers. The architecture of multilayered 
perceptron with error backpropagation network is shown in Figure 8.6. 

In an hl-class problem where the patterns are N-dimensional, the input 
layer consists of N neurons and the output layer consists of A1 neurons. There 
can be one or more middle or hidden layer(s). We will consider here a single 
hidden layer case, which is extendable to any number of hidden layers. Let 
the hidden layer consists of p neurons. The output from each neuron in the 
input layer is fed to all the neurons in the hidden layer. No computations are 
performed at  the input layer neurons. The hidden layer neurons sum up the 
inputs, passes them through the sigmoid non-linearity and fan-out multiple 
connections to the output layer neurons. 
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Fig. 8.6 Architecture of a Backpropagation Neural Network. 

In feed forward activation, neurons of the first hidden layer compute their 
activation and output values and pass these on to the next layer as inputs to  
the neurons in the output layer, which produce the networks actual response 
t o  the input presented to  neurons at the input layer. Once the activation 
proceeds forward from the input to the output neurons, the network's response 
is compared to the desired output corresponding to each set of labeled pattern 
samples belonging to  each specific class, there is a desired output. The actual 
response of the neurons at  the output layer will deviate from the desired 
output which may result in an error at the output layer. The error a t  the 
output layer is used to compute the error a t  the hidden layer immediately 
preceding the output layer and the process continues. 

In view of the above, the net input to  the j t h  hidden neuron may be 
expressed as 

N 

n= 1 

The output of the j t h  hidden layer neuron is 

where XI, . . . , xn is the input pattern vector, weights wij represents the weight 
between the hidden layer and the input layer, and 9; is the bias term associ- 
ated with each neuron in the hidden layer. Identical equations with change of 
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subscripts hold good for the output layer. These calculations are known as for- 
ward pass. In the output layer, the desired or target output is set as T k  and the 
actual output obtained from the network is ok. The error ( T k  - o k )  between 
the desired signal and the actual output signal is propagated backward during 
the backward pass. The equations governing the backward pass are used to 
correct the weights. Thus the network learns the desired mapping function by 
back propagating the error and hence the name ‘error backpropagation’. The 
generalized delta rule originates from minimizing the sum of squared error 
between the actual network output and desired output responses ( T k )  over all 
the patterns. The average error E is a function of weight as shown: 

To minimize the error El we have to find the root of the partial derivatives 

dE M 

k = l  c,,-o. 
E can be minimized by taking incremental steps t o  correct the weights by 
using the Delta rule. 

for the output layer can be obtained by chain rule: 

where 7 is the learning rate of of the hidden layer neurons. Similarly, 6, can 
be denoted by 

4 = 0 , ( 1  - O,)(T, - 0,) 

where T3 is the ideal response. Following the chain rule, 6, for the i layer can 
be similarly obtained. 

The elegant nature of the equations for both 6, and 6, emanate from the 
differentiable characteristic of the sigmoidal function. Thus, when the errors 
are propagated backwards, we get a formulation in terms of expected and 
calculated output patterns. Herein lies the power and simplification, which 
makes backpropagation so versatile. The equation for changing the weights 
between the input and hidden layers can similarly be represented as 
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The process of weight correction can be speeded up by adding a momentum 
term, which takes into account the correction applied in the faster iterations. 
I t  may be pointed out that  the backpropagation performs gradient descent 
in E. By adjusting the weights after each sample patterns is presented, the 
network converges to a fixed weight vector. McClelland and Rumelhart had 
shown how by selecting small learning rate, a good approximation of gradient 
descent can be achieved through the sequence of small movements [16]. 

8.11.3 Kohonen’s Self-organizing Feature Map 

The essential constituents of Kohonen’s neural network model are as follows 
[17]: 

0 An array of neurons receiving coherent inputs simultaneously, and com- 
puting a simple output function 

0 A mechanism for comparing the neuron outputs to select the neuron 
producing maximum output 

0 A local interaction between the selected neuron and its neighbors. 

0 An adaptive mechanism that updates the interconnection weights 

The self-organizing feature map (SOFM) is an unsupervised learning net- 
work [17] , which transforms pdimensional input patterns to  a q-dimensional 
(usually q = 1 or 2) discrete map in a topologically ordered fashion. In- 
put points that are close in pdimension are also mapped closely on the q- 
dimensional lattice. Each lattice cell is represented by a neuron that has a 
pdimensional adaptable weight vector associated with it. With every input its 
match with each weight vector is computed. Then the best matching weight 
vector and some of its topological neighbors are adjusted so that the similar 
patterns are clustered together. Initially, the process starts with a large neigh- 
borhood; with passage of iteration, the neighborhood size is reduced gradually. 
At a given time instant, within the neighborhood, the weight vector associated 
with each neuron is updated differently. The strength of interaction between 
the winner and a neighboring node is inversely related to  the distance (on the 
lattice) between them. 

input pattern be simultaneously incident on each of an N x N array of neu- 
rons. The output of the i th neuron is defined as 

Consider the self-organizing network given in Figure 8.7. Let an M-dimensional 

where 2 is the hl-dimensional input vector incident on it along the connection 
weight vector mi, lc belongs to  the subset Si of neurons having interconnec- 
tions with the i th neuron, wki denotes the fixed feedback coupling between 
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the lcth and ith neurons, .[.I is a suitable sigmoidal output function, t denotes 
a discrete time index, and T stands for the transpose. 

K n h n n e n 

Layer 

Layer 

/ 

I I .. ..... .. I 
xo X N  

f ig. 8.7 Kohonen self-organizing feature map. 

Initially the components of the mi values are set to small random values 
lying in the range [0,0.5] or even sometimes [-0.1,0.1]. If the best match 
between vectors mi and x occurs at  neuron c, then we have 

where 1 ) .  ) I  indicates the Euclidean norm. 
The weight updation is given as [17] 

(8 .3 )  
mz(t) + a(t)  (x ( t )  - ml(t)) for i E N, 

mz(t + 1) = otherwise, 

where a( t )  is a positive constant that decays with time and N ,  defines a topo- 
logical neighborhood around the maximally responding neuron c, such that 
it also decreases with time. Different parts of the network become selectively 
sensitized to different inputs in an ordered fashion so as to form a continuous 
map of the signal space. After a number of sweeps through the training data, 
with weight updating at each iteration obeying Eq. (8.3), the asymptotic val- 
ues of m, cause the output space to attain proper topological ordering. This 
is basically a variation of unsupervised learning. 

8.11.4 Counterpropagation Neural Network 

A counterpropagation network, suggested by Hecht - Nielson is a combination 
of Kohonen’s self organizing network and Grossberg’s outstar network [22]- 
[24]. The counterpropagation network architecture is as shown in Figure 8.8. 
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Fig. 8.8 Architecture of a Counterpropagation Neural Network. 

The counterpropagation neural network employs a supervised learning mech- 
anism where the input and output vectors propagate in a counter-flow man- 
ner and hence the name counterpropagation network. The network has an 
input layer in which there are fanout connections of the input vector, X = 
{XI, 2 2 ,  . . . , XN} to  a middle (hidden) layer which is a two-dimensional Koho- 
nen's layer. The final Grossberg outstar layer with M number of processing el- 
ements provides the approximation of the output vector 0 = { 0 1 , 0 2 , .  . . , Ohf}. 

The training and operation of the counterpropagation network are carried 
out in two phases. In the first phase, the Kohonen's layer is trained by the 
self-organization principle as explained in the previous section. The i th node 
in the Kohonen's layer is chosen such that lIW, - XI1 5 liW, - XII, for all 
j # i. The weight vectors of the i th node in the Kohonen's layer are then 
updated as 

W P e w  = W y  + Q (x - W y )  2,. 

Here the learning constant (Y is adaptively changed as the training progresses. 
The parameter Z, is chosen such that Z, = 1 when i is the winner node 
and 2, = 0 otherwise. The output of the Kohonen's layer is next fed to the 
Grossberg layer, which is trained as 

As the learning progresses after presentation of a large number of training 
samples, IV, vector is updated in such a way that they are approximately 
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equiprobable in the nearest neighbor sense. The network functions as a look- 
up table after the training is over. When a test pattern X is presented, the 
network finds the i th vector W, closest to X and produces the output Y 
associated with this weight vector. The network is model independent and 
data driven. The crisp counterpropagation network may be generalized to  
a fuzzy counterpropagation network by extending the Kohonen’s layer to a 
fuzzy self-organized feature map [ 221. 

8.11.5 Global Features of Networks 

Keeping in view the above discussion, there is an underlying commonality in 
the functioning of all the different neural networks. These are 

0 All the neural networks has inherent parallelism in their functioning. 

0 The functions of the basic functional units i.e., the neurons are more or 
less identical in a particular type of network. 

0 The parameters of a neural network undergo incremental changes which 
eventually settles down to a steady value after the network converges. 

0 The level of activation of a particular neuron depends exclusively on 
the current state of the neuron and those surrounding it and which are 
directly interconnected with it. 

8.12 SUMMARY 

Recognition and classification of image patterns are important tasks in low 
level computer vision and image processing due to its diverse applications. 
The image patterns are key to  classification and interpretation of images. In 
this chapter, we have discussed various supervised and unsupervised pattern 
classification techniques. These techniques find wide applications in diverse 
areas of image analysis, viz., segmentation, pixel classification, and interpreta- 
tion of images. Amongst the supervised classifiers, we have discussed Baysian 
classification which is a parametric model and K-nearest neighbor classifier 
which is a nonparametric model of classification. We have also described three 
different neural network architectures namely, multilayer perceptron with er- 
ror backpropagation, Kohonen’s self organizing feature map, and counter- 
propagation neural networks. Ail these three networks perform quite well in 
pixel classification, object detection, and image segmentation. 
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Texture and Shape 
Analysis 

9.1 INTRODUCTION 

The human vision system perceives scenes having variations of intensity and 
color, which form certain repeated patterns, called texture. In a textured im- 
age, a set of local statistics or attributes vary slowly or remain approximately 
periodic. These attributes, which are repetitive or quasi-repetitive patterns, 
dominate any textured scene. 

A texture is an ensemble of repetitive subpatterns, which follow a set of 
well defined placement rules. These sub patterns themselves are made up of 
more fundamental units, called primitives. Such characterization of textures 
are generally applicable mainly to  deterministic type of textures, such as, 
line arrays, checker boards, hexagonal tiling, etc. There are images, such as 
satellite images of the earth surface, which apparently do not possess such 
basic pattern primitives which are repeated in the overall pattern. 

There is a large diversity of textural patterns and their rendering mecha- 
nisms in nature. In his theory of textons, Julesz formalized the way in which 
human perception is able to discriminate textures in a preattentive way [1]- 
[4]. He concluded that blobs called teztons, together with their geometric and 
intensity attributes, form the primitives on which texture perception is based. 

The attributes and utilities of textures can be summarized as 

Textures are repetitive patterns, which characterize the surfaces of many 
classes of objects. Thus classification of object patterns becomes easy if 
the textures present in the image are identified and differentiated from 
each other. 

181 
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0 Textures provide vital information about the arrangement of the funda- 
mental elements of an image. 

0 The attributes of a texture may be described in qualitative terms such 
as coarseness, homogeneity, orientation of image structure, and spatial 
relationships between image intensities or tones. Texture analysis is the 
quantification and use of such image properties which aid in texture 
discrimination. 

In view of its multifaceted properties, Texture analysis finds a lot of appli- 
cations in many areas, e.g., medical image analysis, automatic surface inspec- 
tion, remote sensing etc. 

9.1.1 Primitives in Textures 

A primitive is a connected set of pixels, characterized by a set of attributes. 
The simplest primitive is a single pixel with its gray tone attribute. In general, 
a connected set of pixels all having the same gray tone or all having same edge 
direction forms a primitive. Some local attributes, other than gray tone may 
be considered while defining a primitive. Other attributes includes measures 
of shape of connected regions and homogeneity of its local property. For 
example, a connected set of resolution cells can be associated with its length 
or elongation of its shape or variance of its local property. Primitives can be 
generated from image data by various neighborhood operators. 

9.1.2 Classification of textures 

Based on the attributes, textures are of two types: 

1. Microtextures 

2. Macrotextures 

This classification is based on the size of the primitives that constitute 
the textures. Both microtexture and macrotexture are composed of primitive 
elements with specific shapes, sizes and placements. Two important attributes 
of such textures are coarseness and directionality. Coarseness relates to the 
size of the texture elements. If the primitive element size is large, then the 
texture is termed a coarse texture or macro texture and if the size is small 
the resultant texture is a fine or micro texture. Directionality corresponds to 
the orientation of the texture elements and to  their spatial arrangement. 

Based on the feature selection and classification philosophy, texture under- 
standing methods are divided into three major groups: 

0 spatial methods 

0 structural methods 

0 statistical methods 
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9.1.2.1 Spatial Methods In spatial methods, a texture is modeled as a sur- 
face, from which spatially compact and visually perceptual features like lines, 
edges, orientation, etc., are extracted over a larger area. These methods look 
for such repetitive perceptual features, and creates a vector of these percep- 
tual features in the texture. Various orthonormal transforms may be employed 
to  characterize these features. Based on the spatial relationships among the 
primitives, textures may be classified as weak and strong textures. Weak 
textures are those which have weak spatial relationship amongst the primi- 
tives, while strong textures have non-random spatial interactions between the 
primitives 

9.1.2.2 Structural methods In structural characterization, a texture is viewed 
as made up of many primitive textural elements, called texel, arranged accord- 
ing to some specific placement rules. In structural texture analysis, the texture 
is considered as the repetition of some primitives with a certain rule of place- 
ment. Human beings have the ability to perceive the structural characteristics 
of some textures. The traditional Fourier spectrum analysis is often used to  
determine these primitives and the displacement rule. For example, the first 
few most prominent components in the spectrum can be used to characterize 
a given texture. 

9.1.2.3 Statistical methods In statistical methods a texture is modeled as a 
random field and a statistical probability density function model is fitted to 
the spatial distribution of intensities in the texture. Typically, these methods 
measure the interactions of small number of pixels. High-order statistics like 
Markov Models, may be used as invariant statistical texture classifiers. In 
these methods, the aim is to  characterize the stochastic properties of the 
spatial distribution of gray levels in an image. The most common features used 
in practice are the measures derived from the spatial gray tone cooccurrence 
matrix. 

9.2 GRAY LEVEL COOCCURRENCE MATRIX 

A well-known statistical tool for extracting second-order texture information 
from images is the gray level cooccurrence matrix (GLCM). It was possibly 
Julesz who had first proposed the conjecture that the second order statistics 
is sufficient for human discrimination of textures [2]-[4]. 

Originally introduced by Haralick et al. [ 5 ] ,  GLCM measures second-order 
texture characteristics which play an important role in human vision, and has 
been shown to achieve a similar level of classification performance. 

The GLCM of an N x N image f ( i , j ) ,  containing pixels (with dynamic 
range G) with gray levels {0,1,. . . , G- 1) is a two-dimensional matrix C(i ,  j ) ,  
where each element of the matrix represents the probability of joint occurrence 
of intensity levels i and j at a certain distance say d and an angle 8. Thus 
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there may be multiple number of cooccurrence matrices depending on various 
values of d and 8. A number of texture characterization and segmentation 
methods use GLCM [6]-[9] to  classify various texture classes. 

Several texture measures may be directly computed from the gray level 
cooccurrence matrix. Haralick et  al. suggested a set of 14 features, which can 
be used to classify texture images [5]. Some of the important features like 
angular second moment, contrast, entropy, inverse difference moment, and 
so on, are described below. The following features may be computed from 
the normalized cooccurrence matrix C,,,,(i, j ) ,  which may be obtained by 
dividing each element in C ( i , j )  by total number of pixel pairs. 

Angular second moment: The angular second mom.ent (ASM) feature is 
defined as 

Pl C ( i , j ) >  

where C(i ,  j )  represents the joint probability of occurrence of pixels with 
intensities i and j ,  and L is the number of distinct gray levels. This is 
a measure of local homogeneity in the image. Its value is high when the 
image has very good homogeneity. In a non homogenous image, where 
there are many gray level transitions, the ASM assumes lower values. 

Contrast: The contrast feature Fz is given by 

This measure shows the amount of local variation and is the opposite 
of homogeneity. Thus when high values concentrate along the diagonal 
of the cooccurrence matrix, the contrast feature yields a measure of the 
difference moment of cooccurrence matrix. It is a measure of the amount 
of local variations present in the image. For uniform images, the value 
of contrast is zero, which is the minimum value for the contrast. As the 
variations in the image increase, the value of contrast also increases. 

Correlation: This measure analyzes the linear dependency of gray levels 
of neighboring pixels. Typically this measure is high, when the scale of 
local texture is larger than the distance. The correlation feature (F3) is 
a measure of gray tone linear dependencies in the image. 

Entropy: The entropy of a texture (F4) is measured as 

F4 = ~ ~ i j C ( Z , j ) l ~ g C ( Z , j ) .  

This measure yields a measure of complexity and complex textures tend 
to have high entropy. 

Inverse Difference Moment (IDM): The IDM feature is given by 

C(i ,  j )  
F5 = cc [1+ ( i  - j )  * 2 ]  
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where i and j are two different pixel intensities. The IDM feature is the 
inverse of the contrast of the cooccurrence matrix. I t  is a measure of the 
amount of local uniformity present in the image. If the image is spatially 
uniform, the value of inverse difference moment will be maximum, ap- 
proaching 1. In case of an image having large number of adjacent pixels, 
where ji - j l  is very small, value of inverse difference moment will be 
high. Thus IDM is high in those images having very less contrast and 
low for images having very high contrast. 

Although there are a number of other potential features which can be 
extracted from the cooccurrence matrix, it has been observed that all the 
features proposed in [5]  are not effective in all types of textures and there is 
a need to  extract application-specific appropriate features. This approach in- 
creases the feature discriminatory power with a reduction in the classification 
error. 

9.2.1 Spatial Relationship of Primitives 

Once we have the locations and attributes of a set of primitives, we can con- 
struct a spatial relationship (e.g., adjacency relationship) among the primi- 
tives. 

The following features extracted from spatial relationships of the texture 
primitives are effectively used in texture discrimination. 

0 Edge per unit area: To compute the edge per unit area around a 
pixel in an image, the magnitudes of the edge gradients of the pixel in 
a neighborhood is first computed by a standard edge operator. Mean 
of the edge gradient magnitudes in the neighborhood is called the edge 
per unit area associated with the pixel. 

Run-length: The gray level run-length primitive in its one-dimensional 
form is a maximum collinear connected set of pixels all having the same 
gray level. Properties of the primitives can be lengths of run and angular 
orientation of run. 

Maximal component run-length: The maximal component run- 
length is a maximally connected set of pixels all having the same gray 
level. This feature have properties such as size of run-length, average 
gray level, maximum or minimum diameter and its angular orientation. 

Relative Extrema Density: Extrema is defined along a horizontal 
scan as: 

1. Relative minimum: In any row of pixels, a pixel i having gray 
level g ( i )  is a relative minimum if g ( i )  satisfies both 

g ( i )  5 g ( i  + 1) and g ( i )  I g ( i  - 1) (9.1) 
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2 .  Relative maximum: A pixel is a relative maximum if g ( i )  satis- 
fies both 

9.2.2 Generalized Cooccurrence 

Strong texture measures take into account the cooccurrence between the tex- 
ture primitives. This is often referred in literature as the generalized cooccur- 
rence relationship [6, lo]. 

To define the concept of generalized cooccurrence, it is necessary to first 
decompose an image into its primitives. Let Q be the set of all primitives 
on the image. Then we need to measure primitive properties such as mean 
gray tone, variance of gray tones, regions, size shape etc. Let T be the set 
of all the properties and f be a function of assigning to each primitive in Q a 
property of T Finally we need to  specify a spatial relation between primitives 
such as distance or adjacency. Let S 5 Q X Q  be the binary relation pairing 
all primitives which satisfy the spatial relation. 

9.3 TEXTURE SPECTRUM 

The texture spectrum, a statistical way of describing texture feature of an im- 
age, was first conceived by He and Wang [11]-[13]. In this method a texture 
unit represents the local texture information for a given pixel and its neigh- 
borhood, and the global texture of an image is characterized by its texture 
spectrum. A brief review of the texture spectrum as proposed originally is 
presented as follows. 

The basic concept is that  a texture image can be represented as  a set of 
essential small units termed as texture units, which characterize the local 
texture information for a given pixel and its neighborhood. The statistics of 
all the texture units over the entire image reveal the global texture aspects. 

In a square raster digital image, each pixel is surrounded by eight neigh- 
boring pixels. The local texture information for pixel is then extracted from 
the neighboring pixels, which form the elements of the 3 x 3 window with the 
pixel under consideration as the central one. It can be noted that the eight 
neighborhoods represents the smallest complete unit from which texture spec- 
trum information can be obtained. 

Given a neighborhood of 3 x 3 pixels, which are denoted by a set containing 
nine elements, V = { VO, Vl , .  . . , V8}, where V, ( i = 0,1, . . . , 8 )  represents the 
gray level of the i th element in the neighborhood with VO representing the 
gray level of the central pixel. It is important to note that the eight pixels 
in the neighborhood are always taken in some order and the subscripts might 
denote the direction in which a particular neighborhood pixel lies. 
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The corresponding texture unit T U  of the pixel is then defined by a set con- 
taining eight elements. Thus, T U  = { E l ,  E 2 , .  + . , Eg}, and Ei (i = 1,2 , .  . . ,8) 
is determined by the following description: 

0 when V,  < VO 
1 when V, = VO { 2 when V, > VO 

Ei = 

where the element Ei occupies the same position as the pixel i. As each 
element of the TU has one of the three possible values, the combination of all 
the eight elements results in 38 = 6561 possible texture units in total. There 
is no unique way to  label and order all these texture units. The proposed 
algorithm labels these texture units by the following formula: 

NTU = 3i-'E,, i = 1 , 2 , .  . . , 8  

where NTU represents the texture unit number. 
Each texture unit number describes the local texture aspect of a given 

pixel, which are the relative gray level relationships between the central pixel 
and its neighbors. Thus, the statistics on frequency of occurrence of all the 
texture unit numbers over a large region of an image should reveal texture 
information. With this background, the term texture spectrum is defined as 
the frequency distribution of all the texture unit (numbers) with the abscissa 
indicating the texture unit number NTU and the ordinate the frequency of its 
occurrence. 

(4 (b) 

Fig. 9.1 (a) An input image, (b) texture spectrum of the image. 

The results of texture spectrum is shown in Figure 9.1. 

9.4 T E X T U R E  CLASSIFICATION USING FRACTALS 

Another interesting way of looking at a textured image is like this: Suppose we 
change the resolution of the textured image, then this will lead to  the change in 
their properties. If now we attempt to  measure the change of the properties a t  
various resolutions, then we will be able to sufficiently characterize the nature 
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of the textured surface. If now we measure the areas of gray level surfaces a t  
various resolutions, then we will observe that the area will decrease a t  coarse 
resolution. This is because the finer details inside the area will disappear when 
we capture the image a t  a course resolution. Thus the rate of decrease of areas 
as the images are captured a t  lower resolutions or scales will characterize the 
nature of the texture. Textures may thus be classified based on the change 
in their properties with changing resolution. Fractal properties of the picture 
are computed from the rate of this decrease in area, and are used for texture 
comparison and classification. There have been attempts to understand this 
relationship by the researchers of the computer vision community. The advent 
of the concepts of fractals has enhanced this understanding [14, 151. 

9.4.1 Fractal Lines and Shapes 

Mandelbrot has first, suggested the technique of length measurement of a coast- 
line [14]. Using a yardstick of length 6, if n is number of steps the yardstick 
takes to  cover the entire coastline, the approximate length of the coastline is 
n6. It  may be noted here that as we choose smaller and smaller length of the 
scale, the observed length increases. 

An alternative strategy to  compute the length of the curve is to consider 
all the points which are located within a distance of say 6, on all sides from 
each point on the curve. The set of all such points thus forms a strip of width 
26. The length of the coastline can thus be computed as the area covered by 
this strip divided by 26. Needless to  say that as 6 + 0, the length increases 
substantially. Here also the measured length is a function of the scale 6. 

The third strategy may be to  cover the coastline with a number of disks of 
radius 6. The sum of the areas covered by all these disks divided by 26 yields 
the approximate length of the coastline. 

The length of the coastline L estimated by any of the three methods men- 
tioned above is a function of the scale d. The higher is the value of 6 the less 
is the estimation of the length. This estimated length L(6)  is related to  the 
fractal dimension d of the line by the following equation 

L ( 6 )  = Fel -d ,  

where F is a constant for particular type of the line. It is the true distance 
between two points in case of a straight line. For a straight line the actual 
distance is exactly equal to the estimated distance and thus the fractal dimen- 
sion of a straight line is 1. Although the estimated length of the line L ( 6 )  is 
proportional to the scale 6, one chooses the fractal dimension d of a coastline 
is independent of the scale 6. If we plot L ( 6 )  versus 6, we will get a straight 
line with slope (1 - d ) .  The fractal dimension is actually calculated from the 
slope of this line. 
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9.4.2 Fractals in Texture Classification 

In an image each pixel may be conceived as a point in a three dimensional 
space, where the pixel location is given by its two-dimensional coordinates and 
the pixel intensity forms the third dimension. Thus each pixel in a texture 
image may be considered as a cuboid with its length and width equal to 
the pixel dimensions, and height equal to pixel intensity. The total exposed 
surface of forms a measure of the surface area of the texture. The area may 
be calculated a t  different integer ruler sizes L, by averaging adjacent pixels to 
generate a new image with pixel size L. Assuming the texture is a continuous 
self-similar fractal. then surface area and ruler size follow the relation 

A(L) C( L(2 - D ) ,  

where D is the fractal dimension of the image. The fractal dimension D can 
be inferred from the slope of A(L) versus L in the logarithmic scale, i.e., 

Extending the concepts of Mandelbrot as presented above, the fractal di- 
mension of such an image may be computed by different techniques. One of 
these techniques, known as “box counting” method, is based on computing 
the number of boxes of dimension L x L x L (where L is the scale size) to 
cover the entire space. This is true only if the entire 3D space is statistically 
self-similar. The number of boxes N ( L )  of size L x L x L needed to  cover the 
set obeys the power law 

{ log,(A(L)), log,(L) }. 

N(L)  C( L-D, 

where D is the fractal dimension, and N(L)  is the number of boxes used for 
covering the space. The fractal dimension D may be estimated from the slope 
of a linear fit to  the data { log, L, - log,(N(L)) } by computing a number of 
N(L)  for several L’s. Sometimes it becomes easier to  scale the pixel intensity 
before estimating the fractal dimension. The box counting method described 
above provides a good estimate and it works well for optimum box sizes for 
which the discrete boxes more closely approximates the continuous surface. 

9.4.3 

In this method we again consider each pixel in the texture to be a point in 
discrete 3-D space, using integer pixel intensity as the third dimension. Peleg 
et. al. have presented an algorithm to  compute the fractal dimension of a 
texture surface [IS]. The basic philosophy of covering blanket method of fractal 
dimension computation is to  cover the surface of the two-dimensional plot of 
the intensity image with two blankets each of thickness, one above the image 
surface and the other below the surface. Effectively thus we may conceive to 
have a single blanket with thickness 26, wrapped around the image intensity 
surface f(z,j). Let us consider that the upper covering surface is denoted 
as U~(i,j) and the lower covering surface is denoted as L ~ ( i , j ) .  Initially we 

Computing Fractal Dimension Using Covering Blanket method 
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may assume that both the upper and lower covering blankets coincide with 
the image surface f ( z , ) ,  i.e., U;(i,j) = L:(i , j )  = f(z,j), where U:( i , j )  and 
L:(i , j)  are the initial values of the upper and lower covering blankets Uh(i,j) 
and Lg( i , j )  respectively. The two blanket surfaces are defined below. 

1. Upper blanket surface 

U d i , j )  = m={US5-1(i,j) + 1,m={~b- l (m,n)}}  1 

where I(m,n) - ( i , j ) l  5 1. 

2. Lower blanket surface 

where I(m,n) - (i , j) l  L: 1. 

In the above formulation, only those image points (m, n )  have been chosen 
in the 3 x 3 neighborhood around the central ( i , j ) t h  pixel, whose distances 
are less than or equal to  one from the ( i , j ) t h  pixel location. This implies that  
while computing the upper and lower blanket surfaces we have chosen only the 
immediate four connected neighbors from the (i, j ) t h  pixel location. In reality, 
we could as well choose the eight connected neighbors in the neighborhood 
of the ( i , j ) th  pixel. Thus all those points (2 ,  y) are included in the covering 
blanket which satisfy the condition 

It  may be noted here that any blanket with thickness 6 will automatically 
include the points covered by the blanket with thickness 6 - 1. The volume of 
the blanket is computed from the upper blanket and lower blanket as follows: 

The surface area can be computed from the difference of the two volumes of 
the blankets measured with radius 6 and 6 - 1 and may be given as 

vs - vs-1 

2 
Ag = 

The division by 2 is necessitated to  take into account both the upper as well as 
lower layers. By taking the difference between V, and V h - 1 ,  we have isolated 
those features which have changed from scale 6 - 1 to  scale 6. The above 
formulation of the surface area yields good results for both fractal as well as 
nonfractal surfaces. 

The above area A h  is related to  the fractal dimension D as 
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If we plot As versus 6 on a log-log scale, the slope of the resultant straight line 
is 2 - D ,  where D is the fractal dimension of the image surface. For nonfractal 
surfaces this slope is not a straight line. Peleg et. a1 [16] computed a fractal 
signature for each gray level image surface by finding the slope of the best fit- 
ting straight line through three points [log,(&- l), log, A6-11, [log, 6, log, A&], 
and [log,(6 + l), log, As+l] .  If the object is a fractal object, the fractal signa- 
ture so computed should be equal to 2 - D for all values of 6. In Figure 9.2b), 
we shown the segmented description of five distinctly different textures rep- 
resenting different fractal surfaces. 

Fig. 9.2 
image, (c) segmented image using fractal dimension 

(a) Covering blanket to compute fractal dimension, (b) A multi-textured 

9.5 SHAPE ANALYSIS 

Understanding complex objects using texture, color, motion, etc. from the 
pixel statistics have been widely investigated. Like textures, the form or the 
shape is another fundamental unit of perception and recognizing objects using 
their global shape has been gaining immense importance in diverse application 
areas like biomedical image analysis, video surveillance, biometrics, and so on. 

Shape is the ensemble of all the geometrical information of an object which 
do not change even when the location, scale and orientation of the object 
are changed. Thus shape is invariant to Euclidean similarity transformations. 
There are various ways to describe shapes. The techniques of shape analysis 
may be categorized as (1) contour-based shape analysis and (2) region-based 
shape analysis. 

In contour based shape analysis methods, a shape is represented by a coarse 
discrete sampling of the object contour. A set of landmark points are extracted 
from this contour. Since there exists variability amongst the shape patterns, 
shape preserving transformations, i.e., rigid translation, rotation and scale 
invariant transforms are necessary before establishing the equivalence amongst 
the shape classes. 
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In region based approach, on the other hand, invariant shape features are 
extracted from the interior as well as boundary pixels inside a region, and 
classification is carried out using these features. 

To accomplish the shape analysis task, statistical shape analysis is being 
widely investigated [17]-[19]. 

9.5.1 Landmark Points 

An interesting way to  describe a shape pattern is by defining a finite set of 
landmark points inside the object. Dryden & hlardia define landmarks as 
points of correspondence on each object that  matches between and within the 
population [17] and classified these points into three subgroups: 

1. Anatomical landmark points: These points are assigned by an expert 
that  corresponds between organisms in some biologically meaningful 
way. For example the joins of tissues or bones may be considered as 
anatomical landmarks. Landmark points have been successfully used 
for medical image analysis [17, 201 

2. Mathematical landmark points: These are the points located on an ob- 
ject, which obey some interesting mathematical or geometrical property, 
such as, high curvature or an extremum point. 

3. Pseudo-landmark points: These are a set of constructed points on an 
object either on the outline or between other landmark points and may 
be appropriately defined by the user. Continuous curvilinear shapes 
may be approximated by a large number of pseudo landmark points. 
Usually pseudo landmarks may be chosen as a set of equispaced points 
along the outline between the pair of other landmarks. 

Landmark points may be described as nodes or vertices of a polygon enclos- 
ing the shape pattern. They may be a set of fiducial points on say biometric 
patterns like fingerprints. They also may represent some important key points 
or marker locations in a remotely sensed image, e.g., the intersection between 
two roads. 

9.5.2 Polygon as Shape Descriptor 

An efficient representation of a planar shape may be the concatenation of the 
ordered pair of an n-point polygon in k dimensions. This can be achieved by 
concatenating each dimension into a k x n-vector. The vector representation 
of a two-dimensional planar shapes may thus be represented as 

5 = [ { 2 1 > 5 2 ,  . . .  ,Zn), {Yl, Y2, . .  . I Yn>I. 

The location, scale and rotational invariant shape representation may be 
achieved by establishing a coordinate reference with respect to position, scale, 
and rotation, to which all the shape patterns should be aligned. 
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Quite often we need to align shapes with one-to-one point correspondence. 
Thus given two shapes, the shape alignment procedure involves four steps: 

Step 1. Compute the centroid of each shape. 

Step 2. Rescale each shape to have equal size. 

Step 3. Align with respect to position the two shapes at  their centroids. 

Step 4. Align with respect to orientation by rotation. 

9.5.3 

One scheme to  detect a set of dominant points on the curve is to determe the 
curvature at  each point, and computing the resultant cumulative curvature 
for all the points starting with the last detected dominant point [21]. 

Dominant points are those points along an image outline that store a lot of 
important information about the shape of the image. These points are usually 
points of high curvature. I t  does not mean that the points of small curvature 
are devoid of such information. In many cases, the cumulative curvature due 
t o  a large number of such points occurring consecutively is significant. A 
number of algorithms have been suggested for finding curvature extrema on 
a digital curve. In general, there are two approaches to the problem. 

Dominant points in Shape Description 

0 Method I: to  detect the dominant points directly through angle or corner 
detection schemes. 

Method 11: to  obtain a piecewise linear polygonal approximation of the 
digital curve depending on certain restrictions on the extent to which the 
shape has been preserved. Dominant points then correspond approxi- 
mately to  the intersections of adjacent line segments of the polygon. 
These points are also known as the vertices or break points of the closed 
curve (polygon). 

9.5.4 

For a smooth curve on a real Euclidean plane, curvature is defined as the 
change in slope as a function of arc length and can be expressed in terms of 
first- and second-order derivatives. I t  is known that points having high cur- 
vature are rich in information content regarding the shape of the curve. As a 
result of this fact, several dominant point detection algorithms use techniques 
for direct measurement of discrete curvature or its functions (also called mea- 
sures of significance). Since shape and curvature are intimately related, it is 
important to  find the curvature accurately. Keeping in mind that the curve 
being used is a digitized version of a smooth curve, precise determination of 
curvature is a challenge. After the determination of digital curvature at  each 
point, the next part is to detect the dominant points for which several schemes 

Curvature and I ts  Role in Shape Determination 



194 TEXTURE AND SHAPE ANALYSIS 

have been suggested. A lot of schemes use the curvature or its functions and 
then determine the dominant points using a threshold. 

9.5.5 

Given a two-dimensional image the problem of approximating its shape from 
its polygonal representation has received paramount importance during the 
last decades. Such a polygonal representation finds a number of applications 
in diverse areas such as chromosome analysis, industrial machine part classi- 
fication, character recognition, biometric data analysis, etc. The outline of a 
two-dimensional object usually characterizes the fundamental features of the 
object patterns. Any closed planer curve may be approximated by a polygon 
in any desired accuracy so that its representation can have a smooth appear- 
ance, which is a sequence of straight line segments. Identifying such a curve 
which passes through or near a set of given points is the problem of polygonal 
approximat ion. 

I t  has been observed from the human visual information system, that some 
dominant points along an object contour are rich in information content and 
they are sufficient to  characterize the shape of the object. An approach to  
apply the basic philosophy of the human understanding and recognition pro- 
cedure of complex two-dimensional curves leads to the detection of dominant 
points on the curves which when joined by straight line segments can approx- 
imate the shape to  any desired degree of accuracy. 

There are many algorithms for the detection of dominant points on digital 
curves. Piecewise linear approximation of the planar curve allows for a vari- 
able number of segments. After an arbitrary initial choice, the segments are 
split or merged in order to  derive the error norms under a prespecified bound. 

A parallel algorithm based on the determination of average curvature of 
the points on the curve by determining the region of support of each point, 
may be found in [21]. Since the level of detail represented at  each point on 
the digital curve varies, a smoothing factor based on the local properties of 
the curve has to be used to  find the curvature at each point. This smoothing 
factor is determined by the region of support. The advantage of the algorithm 
is that it requires no smoothing parameter. 

Polygonal Approximation for Shape Analysis 

9.6 ACTIVE CONTOUR MODEL 

Segmentation of monochrome images uses basic properties of gray-level val- 
ues to detect the isolated points, lines and edges. Alternately segmentation 
can also be performed by thresholding, region growing, region splitting and 
merging. Quite often they produce spurious edges and gaps which do not 
necessarily correspond to boundary objects. The limitation of these methods 
is due to their complete reliance on the information contained in the local 
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neighborhood of the image. They ignore both model-based information and 
higher order organization of the image. Another problem associated with 
these methods is edge grouping. After extracting edges from the image, they 
have to be grouped or linked in order to determine boundaries, which often 
does not yield good results. 

The application of prior knowledge, say geometrical knowledge, strengthens 
the visual interpretation of shape via the stabilizing influence of prior expecta- 
tions of the shapes that are likely to be seen. The seminal work of Kass et al. 
on snakes provides a novel approach to  visual analysis of shape [22]. Snakes 
are active contour models which are widely used in detecting object boundary 
shape as well as for tracking a moving object in an image sequence. I t  is an 
elastic contour which is fitted to features detected in an image. The nature of 
its elastic energy draws it more or less strongly to certain preferred configura- 
tions, representing prior information about shape which is to  be balanced with 
evidence from an image. Thus Snake is an energy-minimizing spline guided by 
external constraint forces and influenced by image forces that pull it towards 
features such as lines and edges. Snakes lock onto nearby edges, localizing 
them accurately [22, 231. A number of approaches have been proposed for 
shape analysis using active contours [22]-[24]. 

These models utilize deformable contours, which conform to  various object 
shapes and motion. Snakes have been used for edge and curve detection, 
segmentation, shape modeling and visual tracking. It is a parametric curve, 
and its properties are specified through a function called energy functional. 
A partial differential equation controlling the snake causes it to  evolve so as 
to  reduce its energy. The motion of the snake is caused by simulated forces 
acting upon it. 

The edge map of the image can be viewed as a landscape on which the 
parametric curve can slither. A force acts upon the curve and moves across 
the landscape trying to reach the energy equilibrium. The model driving it 
across the landscape has following two components 

1. The first component enables the snake to preserve the original shape, 
to develop a corner, etc. 

2. The other component instructs it where to go. 

It is important that the curve clings to  the boundary of a specific object 
in the scene. The boundary can be recognized as low values of the negative 
edge map, so that the equilibrium equation should be set up in such a way 
that the curve tends to  minimize the term involving the negative edge map. 
Since we know the general shape of the object in question, we may design the 
evolution equation in such a way that the snake easily can embrace the object. 
I t  is elastic, stiff, and is able to  develop a corner. In addition, if the inertia 
is attributed to  a snake it acquires dynamic behavior which can be used to  
apply prior knowledge of motion, not just of shape. 
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9.6.1 Deformable Template 

Deformable templates constitute another important approach to object esti- 
mation. This approach employs prior knowledge about the shape of the object 
in a direct manner. This prior shape information is specified as a sketch, bi- 
nary template or a parametric prototype. The a priori information is then 
encoded either in the form of edge information from a binary template or the 
parameter vector. That information does not need to be exact in the sense 
that it matches the boundaries of the image exactly. 

We may say that the difference between snakes and deformable templates 
is that snakes are form-free energy minimizing functions. In snakes model, 
there is no global structure of the curve except for some general regularization 
constraints such as continuity and smoothness of the boundary. On the other 
hand, parametric deformable templates control deformation using a set of 
parameters, which are capable of encoding a specific shape. This type of 
model is used when more specific shape information is available, which can 
be described either by a binary temple or a set of parameters. 

The prototype template describes one and the most likely instance of the 
object shape. We apply a parametric transformation to the prototype and 
deform its boundaries varying the deformation parameters in order to capture 
a large variety of possible instances. If the object in interest is of biological 
nature, the form will resemble, but still vary from individual to individual. 
Those small variations can be captured by the random deformations of the 
prototype, so that a deform template may match the object of interest better 
then the original template. Objects may also be noise corrupted or degraded 
in some way so that the original shape is lost. In that case too a deformed 
template may match the object better that the original one. 

Initially boundaries of the object in an image is extracted using an ap- 
propriate edge detector. Matching is next performed on all the objects by 
aligning the templates in the database with the image in question using some 
potential energy function. 

9.6.1.1 
given by 

Basic Snake Model The basic snake model, as proposed in [22] is 

In the basic snake model, the position of the snake on the image is represented 
parametrically by a planar curve v(s) = (z(s),y(s)), Eznt represent the in- 
ternal energy of the spline due to bending, Ermage represents image forces 
pushing the snake towards the desired object. Econt gives rise to external 
constraint forces. 

The internal spline energy can be written as: 
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where ‘us(.) is the first derivative and v,,(s) is the second derivative of ~ ( s )  
with respect to  s. The spline energy is composed of a first-order term con- 
trolled by a ( s )  and a second-order term controlled by p(s). The first-order 
term makes the snake act like a membrane and the second-order term makes 
it act like a thin plate. Adjusting the weights a(s )  and p(s),  controls the 
relative importance of the membrane and thin-plate term. 

In a digital image, the image energy function Eimage is derived from the 
image so that it takes on its smaller values at the feature of interest, such 
as boundaries. Given a gray-level image f (x ,y ) ,  viewed as a function of 
continuous position variables (x, y), typically external energies designed to 
lead an active contour towards edges are: 

where Go(x,  y) is a two-dimensional Gaussian function with standard devia- 
tion u and V is the gradient operator. 

I t  is easy to see from these definitions that larger 0’s will cause the bound- 
aries to  become blurry. Such large u ’s are often necessary, however in order to  
increase the capture range of the active contour. A snake has it weakness as- 
sociated with short capture range, which would not enable user to randomly 
place the starting points of snake. Also, a concavity kind of edge becomes 
highly challenging to  snake deformation. However, many other further im- 
proved models have also been developed. 

A balloon model is added on another term to snake’s external fore. I t  is 
a unit vector perpendicular t o  snake’s curve at  a point. The specialty of this 
force is to  inflate snake from within like a balloon. So, if a snake is placed inside 
of the image, it can expand itself until it hits the boundary of that image. 
Hence, the edge is traced. This ability helped us greatly when the object is 
too close to the boundary of a picture and cannot be enclosed from outside. 
Also, balloon has a better adoption to concaved edges than traditional snake. 
From an initial oriented curve we add to the previous forces a pressure force 
pushing outside as if we introduced air inside. The force F now becomes: 

where P is the potential associated with the external force, n(s)  is the unit 
vector to the curve at  point v(s) and kl  is the amplitude of this force. If the 
sign of k1 is changed it will have effect of deflation instead of inflation. 

The results of boundary tracking by Snake algorithm is shown in Figure 9.3. 
Although balloon is a better model, however, it still has short capture range 
which leads to limitations of snake. A better snake model is the gradient 
vector flow (GVF) snake. GVF snake keeps the strong and useful part of 
the traditional snake: the internal force. But, instead of image gradient, it 
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Fig. 9.3 
contour after 10 iterations, (c) final contour. 

Results of active contour modelling by SNAKE - (a) original Image, (b) 

created its own force field: GVF force field. Snake or active contour models 
are good tools for depicting the exact edges and provide higher level of usage. 
No matter how capable a snake’s abilities are, its performance is very much 
rely on the intuitive user’s interpretation of images in order to provide it with 
a good guidance towards its destiny. 

9.7 SHAPE DISTORTION AND NORMALIZATION 

While capturing two-dimensional images, based on the camera placement 
there are four possible basic forms of planar object shape distortions-rotation, 
scaling, translation, and skewing [25, 261. A good shape descriptor should be 
invariant to  these distortions. I t  is thus important to normalize the shape 
patterns in its original and various distorted forms, such as scaled, rotated, 
translated or skewed forms, so that they al1,more or less, resemble similar to 
each other. When an appropriate set of features are extracted only after such 
a normalization, shape classification yields much better accuracy. We will 
consider shape normalization of a binary image f ( s ,  y) in which f ( s ,  y)  = 1 
indicates that  ( 2 ,  y)  is an object pixel, otherwise it is a background pixel. Such 
a normalization algorithm to  normalize the shapes, called shape compacting 
[ 2 5 ] ,  involves the following steps: 

1. computing the shape dispersion matrix M ,  

2 .  aligning the coordinate axes with the eigen vectors of hl, and 

3. rescaling the axes using the eigenvalues of hl. 

9.7.1 Shape Dispersion Matrix 

For a given shape, its dispersion matrix A4 reveals the variances and covari- 
ances amongst the pixels in the image. The dispersion matrix is a key element 
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in the normalization process. The alignment of the coordinate axis uses the 
dispersion matrix M and takes care of the rotation of the object. Rescaling 
the coordinate axes is integral component of shape compacting and it uses 
the dispersion matrix. The basic philosophy of shape normalization process is 
that after the normalization operation, the shape will have a dispersion matrix 
equal to  an identity matrix multiplied by a constant. This is an indication 
that the shape is in its most compact form. 

To compute the dispersion matrix first we calculate the shape centroid 

The shape dispersion matrix M is a 2 by 2 matrix 

M =  
m 2 . 2  

where 

If we consider each object pixel as a data point, the shape can be viewed as 
a cluster of pixels. The shape dispersion matrix M computed above is exactly 
the covariance matrix of the cluster. It has already been discussed that a set 
of principal components may be selected from the covariance matrix, which is 
used to decouple the set of correlated features. It is also necessary to scale the 
features so that the clusters become compact. The shape dispersion matrix 
essentially performs the same function; it normalizes a shape by making it 
compact. 

9.7.2 

The origin of the coordinate system is shifted to  the center of the shape and 
then the coordinate syst,em is rotated according to the eigenvectors of the 
dispersion matrix M. 

The matrix M has two eigenvectors El and E 2  corresponding to the eigen- 
values A1 and X 2 .  The two normalized eigenvectors El and E 2  of M are 
computed as follows: 

Shifting and Rotating the Coordinate Axes 
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and 

Ivow we can construct a matrix R from El and E2 by: 

Since M is real and symmetric, El and E2 are orthogonal to each other. 
Furthermore, they are normalized to unit length. Thus, R is an orthonormal 
matrix. 

We now transform the coordinate system by first translating the origin to 
the shape center and then multiplying the coordinates with matrix R. Now, 
each object pixel location (x,y)  will have a new location (x',y') given by: 

Since R is an orthonormal matrix, the geometric interpretation of the trans- 
formation by R is pure coordinate rotation. The new coordinate axes are in 
the same directions as El and E2. 

The dispersion matrix D of the translated and rotated shape is given by: 

9.7.3 

In the previous step, we have rotated the coordinate system so that the new 
X-axis points in the direction in which the shape is most dispersed. The effect 
of the rotation on the dispersion matrix is that now it is a diagonal matrix. 
Since our objective is to have a shape whose dispersion matrix is a scaled 
identity matrix, in this last step we will change the scales of the two axes 
according to  the eigenvalues XI and X2. That is, for an object pixel location 
(d. y'). the new location (z", y") is obtained through a transformation defined 

Changing the scales of the bases 

where k is a system-wide constant. 
Since W is a diagonal matrix, the effect of the above step on the shape is 

to  change the scales of the two coordinate basis vectors so that the shape is in 
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Fig. 9.4 Normalized images by shape dispersion matrix: (a)-(b) rotated image of 
letter K,  (c)-(d) normalized results, (e)-(f) scaled and translated version of letter K 
image, (g)-(h) normalized results 

its most compact form and with a normalized size. The results of translation, 
rotation, and scale invariance compact form generation has been shown in 
Figure 9.4. 

9.8 CONTOUR-BASED SHAPE DESCRIPTOR 

The contour-based shape descriptors may be classified as Fourier shape de- 
scriptor [27,  281, wavelet-based shape descriptors [29], triangulation-based de- 
scriptors, minimum bounding circles or ellipse-based shape descriptors, etc. 
Here we describe the Fourer based shape descriptor only. 

9.8.1 Fourier based shape descriptor 

In this method, we first compute the object’s shape signature. Then we 
compute the discrete fourier transform on that shape signature. The shape 
signature of an object may be derived from either the boundary points of the 
object or they may be computed from the curvature or the radii information 
of the boundary points. For example, the shape signature of an arbitrarily 
shaped object may be given as {fl, f2, . . . , f n } ,  where each fi represents the 
distance from the centroid to the i th  point of the boundary. These points 
may be captured a t  an interval of equal angles from the centroid, such that 
these points are uniformly sampled along the boundary. The shape signature 
as suggested above is, however immune to noise. Even a small change in the 
location of the object boundary may lead to  a large change in the overall shape 
representation. On the other hand, if we compute the Fourier transform on 
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the shape signature, then the fourier coefficients captures the general shape 
characteristics in a better way. The fourier descriptors so computed are, 
however, not invariant to  rotation and scaling. By appropriate normalization 
of the boundary to make it of a standard size and orientation,the fourier 
descriptor preserves all the shape attributes of an object. The magnitude 
information of F ( u )  is invariant to rotation. 

9.8.1.1 Normalized Fourier Descriptor The Fourier descriptor is computed by 
taking the DFT of the tangents of the sequence of points along the boundary 
of the shape. These descriptors are invariant to  translation and rotation, 
but they are not scale invariant. By appropriately normalizing the Fourier 
descriptor, we may make it scale invariant which will be called as normalized 
Fourier descriptors. The normalized Fourier descriptors are computed by 
normalizing the length of the shape contour to  1. 

Also the scale normalization can be achieved by creating a new feature 
I F ( n ) l  which are scale invariant features. The major IF(1)I IF (2 ) I  vector - IF(0)l’ IF(0)l’ .. . ’ IF(0)l’ 

limitation of these descriptors is that  they do not take into consideration the 
interior of the shape, such as the holes within them. Also occluded objects, or 
complex objects consisting of multiple number of disconnected regions cannot 
be described by these descriptors. 

9.8.1.2 Shape Features The polygonal approximation of an object as ob- 
tained using the technique described in the previous section should be free 
from noise and redundant points. The shape features of the object can be 
extracted using the vertices of the polygon. Let us assume that we have set 
of vertices Vo, Vl,. . . , V N - ~  of the polygon represented by (50, yo),  (51, y l ) ,  
‘ .  +, ( x N - ~ ,  y ~ - l ) .  The following shape features are useful to  discriminate 
between two shape classes. 

1. Shape Compactness is defined as 

where A is the area of the polygon and P is its perimeter. If the shape 
is a circular one, its compactness will be equal to  1. If, however, the 
space is a very thin and long bar, its compactness will be close to 0. 

2.  Eccentricity is defined as 

where pp,q  = C C(x - z ) p ( y  - y ) q  is the ( p ,  q )  order central moment 
of the shape and (%,jj) is the centroid of the object. The eccentricity 
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actually represents the ratio of the minor axis to  major axis of the best 
fitting ellipse of the shape. 

3. Solidity = $, where A is the area of the polygon and H is the convex 
hull area of the polygon approximating the shape. If the shape is convex, 
its solidity will be closer to 1. 

9.9 REGION BASED SHAPE DESCRIPTORS 

The region based shape descriptors take into consideration all the interior and 
bounadary pixels of the shape. The most prominent region shape descriptor is 
based on the moments. Various types of moments have been used for moment 
based shape classification [30]-[33]. These are 

0 geometric moment 

0 Hu’s invariant moments 

0 Zernike moments 

0 Radial Chebyshev Moments 

The Geometric and invariant moments have been discussed in Chapter 11. 
The seven moments of Hu are invariant to  translation, rotation and scaling. 

However, their basis is not orthogonal and hence these moments have high 
degree of information redundancy. The higher order Hu’s moments are also 
very sensitive to  noise. Also since the basis involves powers of p and q,  the 
dynamic range of the moment values of the objects belonging to the same 
shape class is very high. They are normalized with respect to  the spread or 
the dynamic range. 

9.9.1 Zernike moments 

Keeping in view the above problems associated with the invariant Moments, it 
was found necessary to  have moments in which the basis functions are orthog- 
onal [30]. Teague introduced two different continuous-orthogonal moments- 
Zernike and Legendre moments, based on the orthogonal Zernike and Legen- 
dre polynomials,respectively. Several studies have shown the superiority of 
Zernike moments over Legendre moments due to  their better feature repre- 
sentation and Rotation invariance: The magnitudes of Zernike moments are 
invariant to  rotation. They are robust to noise arid car1 take care of minor vari- 
ations in shape. Since the basis is orthogona1,they have minimum information 
redundancy. 
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9.9.2 Radial Chebyshev Moments (RCM) 

Mukundan et al. has suggested the use of discrete orthogonal moments to  
eliminate the problems associated with the continuous orthogonal moments 
[33].  They introduced Chebyshev moments based on the discrete orthogonal 
Chebyshev polynomial and showed that Chebyshev moments are superior to  
geometric, Zernike, and Legendre moments in terms of image reconstruction 
capability. They have introduced radial Chebyshev moments, which possess 
rotational invariance property 

9.10 GESTALT THEORY OF PERCEPTION 

The Gestalt theory suggests how we perceive the objects around us and how 
we discriminate the objects in the foreground from the entire background. A 
set of laws, popularly known as Gestalt Laws guides us in our understanding of 
human perception in discriminating between the objects and the background. 
Some of the Gestalt Laws, which define the human perception process are 
shown below. 

1. A set of objects which are close together, i.e., in proximity with each 
other in space are perceived as grouped together. 

2. Objects which are similar to one another in terms of shape, size, or color 
are grouped together. 

3.  Objects that form closed units tend to  be perceived as together. 

4. Elements forming continuous lines or curves appear to be grouped to- 
get her. 

5 .  There is a minimum contrast which needs to be detected by an observer 
for discriminating the spatial frequencies in a picture. 

9.11 SUMMARY 

Textures and shapes are extremely important features in human as well as 
machine vision and understanding systems. These areas have been gaining 
paramount importance in recent times. In this chapter, we have provided 
glimpses of some of the techniques for texture feature extraction using gray 
level co-occurrence matrices, fractal dimension, etc. Active contour modelling 
techniques have been discussed for shape analysis and image processing. 
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I0  
Fuzzy Set Theory in 

Image Processing 

10.1 INTRODUCTION TO FUZZY SET THEORY 

With the introduction of fuzzy set theory by L. A. Zadeh in 1965 [l], there has 
been a significant progress in the area of visual and cognitive sciences. Fuzzy 
sets have been extensively used in computer vision and machine intelligence 
since then. Fuzzy set deals with the imprecision and vagueness embedded in 
human understanding systems and provides an elegant framework for describ- 
ing, analyzing, and interpreting the vague and uncertain events. The human 
vision system is essentially a fuzzy system, since we can understand and in- 
terprete the imprecise visual world around us. In this chapter we will provide 
glimpses of fuzzy sets and some of its applications in image processing. 

10.2 WHY FUZZY IMAGE? 

A gray image possesses ambiguity within pixels due to  inherent vagueness or 
imprecision embedded in an image, rather than to  the randomness in proba- 
bilistic sense. The imprecision in an image pattern is due to  several factors. 

0 Ambiguity in gray values of an image 

0 Spatial (i.e., geometrical) ambiguity 

0 Imprecision in Knowledge base 

0 Combination of all the above factors 

209 
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An image is a two-dimensional mapping of the three-dimensional world 
around us. During the process of capturing the two-dimensional image data, 
a lot of ambiguity arises in the gray values of the image. For example, in 
a digital image pixels of gray levels I and I + AI are two different intensity 
levels, yet they visually appear to be the same bright pixel levels. There exists 
an ambiguity or imprecision in describing whether a pixel is bright or dark. 

Spatial ambiguity is caused by the imprecision in object boundaries, or the 
edges within the image. In a digital image, a pixel is either an edge or a 
no-edge. But the edges are not always precisely defined and thus ambiguity 
arises in practical images. 

Fuzzy images are characterized by the degree to  which each pixel belongs 
to  a particular region. I t  is a mathematical tool to describe and interpret 
ill-defined attributes, such as, pixel gray level, edges, regions, etc. Also the 
primitives, such as corners, curves, etc. in an image may be described more 
logically using fuzzy sets. 

In many image-processing applications, we employ expert knowledge to  
interpret an input scene. Examples are object recognition, region segmene- 
tation, scene description, and so on. Fuzzy logic offer us powerful tools to  
represent and process human knowledge in the form of fuzzy if-then-else rules. 
Even the structural information in a pattern may be better described using 
fuzzy structural rules. 

In view of the above discussion it may be observed that there is a neces- 
sity to use alternative tool, like fuzzy sets to describe, analyze and interpret 
images. This will provide a framework for representing and manipulating the 
uncertainties in the image, such as image regions, boundaries, etc. 

10.3 INTRODUCTION TO FUZZY SET THEORY 

The conventional set (or crisp set) theory is based on a binary valued member- 
ship, which implies that  a particular element either belongs to  a particular set 
or it does not belong to  it. A crisp set is defined as one whose elements fully 
belong to the set and they possess well-defined common attributes, which can 
be measured quantitatively. In a crisp set the common attributes are equally 
shared by all the elements of the set. 

In fuzzy sets, on the other hand, the degree of membership of an element 
to  the set is indicated by a membership value, which signifies the extent to 
which the element belongs to  the set. The membership value lies between 
0 and 1, with membership 0 indicating no membership and 1 indicating full 
membership of the element to the set. In a crisp set, the membership values 
of its elements are either 0 or 1. 

The membership of an element z in a fuzzy set is obtained by a membership 
function p ( x )  that maps every element belonging to the fuzzy set X F  to the 
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interval [0,1]. Formally this mapping is written as: 

p(.) : XF --f [o : 11. 
The membership assignment is primarily subjective in the sense that the 

users specify the membership values. In many applications, the membership 
function is chosen based on an objective criterion. In some situations prob- 
ability measures may be used for assigning the membership values. These 
membership functions are useful in modelling and quantifying various impre- 
cise linguistic, nonmathematical, or ambiguous terms. 

There are two commonly used ways to denote a fuzzy set. If p is the 
membership function of a particular element 2, then the fuzzy set XF may 
be written as a set of fuzzy singletons: 

XF = { ( X , P ( Z ) ) } .  

Alternatively the fuzzy set may be explicitly indicated as the union of all 
2 I p(z)  singletons and thus can be written as: 

10.4 PRELIMINARIES A N D  BACKGROUND 

In this section we will present some of the preliminaries and basic operations 
involved in fuzzy sets, which will be useful in understanding diverse applica- 
tions of fuzzy sets [2, 31. 

10.4.1 Fuzzification 

Fuzzification is used to transform a crisp data set into a fuzzy data set or sim- 
ply to  increase the fuzziness of an existing fuzzy set. Thus for fuzzification we 
use a fuzzifier functions which may be dependent on one or more parameters. 

Let us consider the set of all bright pixels in an image. Here the intensity 
of the pixel is qualified by the linguistic term bright. The pixel intensity I is 
a variable, which is called a linguistic variable, since it can assume linguistic 
values bright, dark, etc. Such linguistic variables do not have any precise value 
but they convey imprecise concepts which we human beings can understand. 

If x is a member of the fuzzy set of all bright pixels, then the extent to  
which it is bright is given by its membership function p(x) .  One possible 
membership function can be written as: 

(10.1) 

where FI and Fz are known as exponential and denominational fuzzifiers re- 
spectively [4]. As may be observed, the selection of the parameters, i.e., 
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exponential and denominational fuzzifiers, is provided by the users and they 
may use subjective judgements for parameter selection. 

The above fuzzification function was originally proposed by Zadeh [1]-[3] 
and has since been extensively used to model the membership function of a 
fuzzy element J: by choosing suitable fuzzifier values [4, 51. 

In Eqn. 10.1, F 2  denotes the crossover point across which the membership 
values will change quite appreciably and F1 denotes the rate at  which this 
change will occur. It may be noted that the exponential fuzzifier mentioned 
above is positive. 

10.4.2 Basic Terms and Operations 

Some of the definitions and important operations in fuzzy sets are given below. 
Intersect ion and Union:  The intersection of two fuzzy sets X = {x I pl(x)} 
and Y = {y I p2(y)} is defined as the fuzzy set 2 = { z  I p ( z ) }  such that z E X 
and z E Y and p ( z )  = min[pl(z), p2(z)]. Similarly the union  of two fuzzy 
set is defined on the basis of the max function. The union of X and Y is de- 
fined as 2 = { z  1 p ( z ) } ,  z E X and z E Y ,  such that p ( z )  = max[pl(z), p2(2)].  

Complement:  The complement of a fuzzy set X = {x 1 pl(z)} is defined as 
the set 2 = { z  I p ( z ) } ,  z E X such that p(z)  = 1 - p l ( z ) .  

Produc t :  The product of two fuzzy sets X = {z I p l ( z ) }  and Y = {y I p2(y)} 
is defined as the fuzzy set 2 = { z  I p ( z ) }  such that t E X and z E Y .  and 
p(.) = Pl(Z)P2(2). 

Power  of a fuzzy set :  The power of a fuzzy set X = {z I p1(1c)} raised to  
the power Q is defined as the fuzzy set 2 = { z  1 p ( t ) }  such that z E X and 
z E Y ,  such that p(z)  = pl(z)O. 

Equality:  Two fuzzy sets X = { x 1 p 1 ( x ) }  and Y = {yIp2(y)} are said to 
be equal if for all x E X + J: E Y and for all y E Y + y E X ,  such that 
Pl(Z) = Y2(Y) and Pl(Y1 = P2(2). 

E m p t y  set: A fuzzy set is said to be an empty  set if the membership values 
of all its elements is zero. 

Norma l  set: A fuzzy set is called a normal  set if the membership values of 
all its elements are one. 

Alpha c u t  or Alpha level set: If X = { ~ c l p l ( z ) }  is a fuzzy set then the 
alpha cut  or alpha level set of X is defined as the fuzzy set 2 = { z  I p(z ) }  
such that z E X and p ( z )  = p l ( z )  with the condition that p l ( z )  > Q. 



IMAGE AS A FUZZY SET 213 

Linguistic Variables and Hedge: Fuzzy set theoretic techniques are mainly 
employed in ambiguous situations and statements. For example, it deals with 
adjectives like bright,  dark, large, small, medium, or adverbs like very, more 
or less, etc. These words have no precise semantics and they cannot be rep- 
resented using crisp mathematics. In fuzzy mathematics, such adjectives or 
adverbs may be adequately described in terms of linguistic variables and the 
ambiguity may be modeled to  a large extent. 

Example: Let us consider the set of bright pixels in an image, in which a 
particular pixel has membership value 0.9. If we want to compute the mem- 
bership value of that  pixel to  the set of very bright pixels, its new membership 
value will be somewhat lower. We make a suitable transformation on its exist- 
ing membership value (in the set of bright pixel) to obtain its new membership 
value in the set of very bright pixels. A popularly used transformation to  qual- 
ify a fuzzy element by the adverb very is to  square its existing membership 
value, which yields its new membership value 0.81, which is less than 0.9 as 
expected. 

In Table 10.1, some of the linguistic modifiers and their corresponding 
operations on the membership values are listed 

Table 10.1 Membership function of linguistic hedges 

Modifier 

VERY 
MORE OR LESS 
INTENSIFY 
PLUS 
MINUS 
NOT 

Operation on the membership value, 
p is transformed to p' 

p' = p2 (Concentration) 
p' = ,/ii (Dilation) 
p' = 2p2 if p 5 0.5 and p' = 1 - 2(1 - p)' if p > 0.5 

p: = = p1.25 pQ.75 

p ' = l - p  

The above table summarizes the various ways in which ambiguous linguistic 
terms can be interpreted mathematically in fuzzy domain to  obtain more 
meaningful quantitative expressions. 

10.5 IMAGE AS A FUZZY SET 

To solve the ambiguity in image description, we can define membership func- 
tion p ( g ) ,  which gives satisfactorily the extent to  which a particular pixel 
with gray value g is dark or bright. For example, to  represent dark, the pixels 
toward the lower end of the gray level scale will have high membership values 
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(near l), which gradually transit to low values (near 0) as the pixel gray level 
changes from dark to  light. Fuzzy sets may be satisfactorily applied to model 
ambiguous and imprecise image information. Here we have assumed that the 
imprecise image information concerns the darkness or lightness of a pixel. 

Similarly the ambiguity resulting from the imprecision in an image, such as, 
the continuity of a line segment, shape of objects, similarity of regions, which 
cannot be represented suitably and uniquely in conventional mathematics may 
be taken care of using fuzzy sets. 

With this background we can proceed to the formal way of representing an 
image as a fuzzy set. 

Conventionally an image X of size M x N is represented as a two-dimensional 
matrix where the pixel at  location (i, j ) ,  i = 0, .  . . , A4 - 1, j = 0,.  . . , N - 1, 
is represented as xzj . Thus for an n-bit gray scale image zzj  can take values 
from 0 to L - 1, where L = 2n and mathematically 

2 3  

Definition of a fuzzy image includes the gray value xzJ along with a member- 
ship value ~ ( 5 , ~ )  associated with it.  This membership value ~ ( 2 , ~ )  represents 
the extent to  which a pixel a t  location ( i ,  j )  belongs to a class, having a 
specific attribute. Thus in fuzzy set theory, an image X of size M x N hav- 
ing L levels of gray can be considered as an array of fuzzy singletons, each 
associated with a membership value or function. Thus a fuzzy image can be 
represented as: 

i j  

The membership function of the gray value essentially reflects the membership 
or belongingness of the pixel to a certain class. 

10.5.1 

The assignment of the membership function may be performed by several 
ways. 

Selection of the Membership Function 

0 Membership based on visual model: The membership function may be 
assigned in accordance with the human visual perceptual model. We 
may model the variation of the membership values of the pixels in a 
linear fashion as the pixel gray value changes from 0 to L - 1 (for an 
L level image). The human visual response to illumination, however, 
is not linear but closely exponential. When a shade is too dark or too 
light (or bright), the human eye fails to  notice any slight change around 
it. Thus the membership values of the gray levels toward the extreme 
low or extreme high end of the entire scale should not change appre- 
ciably. However, the response of the human eye to different degrees of 
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illumination is approximately linear in the mid range. The membership 
function may be kept more or less linear in that range of gray values. 

Statistical Distribution: The membership values of the pixels may be 
assigned on the basis of image statistics as a whole or on the basis of 
local information at  a pixel calculated from the surrounding pixels. The 
probability density function of the Gaussian or gamma distribution may 
be used for assignment of membership values [6].  

Gamma membership function: The pdf of gamma distribution is given 
as: 

(v) 7-1 e x p ( - y )  

, x 2 p,  a n d y , p  > 0 (10.2) 
r(Y) 

f ( x )  = 

where y is the shape parameter, m is the location parameter, 0 is the 
scale parameter and r is the gamma function, which is defined as 

r ( a )  = ta-1 e --t dt. 

The case where m = 0 and 
bution, and the equation for the gamma distribution reduces to  

= 1 is called the standard gamma distri- 

Now if ,f3 = 1, y = 1, and m # 0, then the gamma distribution in the 
above equation becomes 

f (x) = exp(-(z - m)) .  (10.3) 

Gamma membership functions have been observed to  yield very good 
results in image processing [6].  

10.6 FUZZY METHODS OF CONTRAST ENHANCEMENT 

The human eye does not respond to  subtle differences in illumination. The 
purpose of contrast enhancement is to improve the overall visibility of the 
image gray levels. This may be achieved by transforming the image gray 
levels in such a way that the dark pixels appear darker and light pixels appear 
lighter. Such a transform increases the differences in gray level intensity and 
thus enables our vision system to discern these differences. 

The contrast stretching algorithms may employ single-level or multilevel 
thresholding. For example, a threshold can be selected at  a gray level XI 

and any gray level falling below that is still reduced and any gray level falling 
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above it is increased. Care is taken that the stretching saturates at the extreme 
ends. For example, if we employ linear stretching across a single threshold xt, 
mathematically it can be represented as 

(10.4) 1 CON(x) = (1 + v1)x, 5 > xt 
= x, x = Z t  

x < xt = (1 - 2'2)Z, 

where C O N ( z )  is the contrast intensifier function which transforms a gray 
level x into its intensified values, and v1 and 212 are fractions between 0 and 1 
which decide the percentage stretching of the gray value IC across the selected 
threshold. 

In similar ways linear stretching algorithms can also be devised with mul- 
tiple thresholds, such that the above logic may be employed between a pair 
of consecutive thresholds. 

Fuzzy methods for contrast enhancement employ a membership function 
p(x) to determine the extent of darkness (or brightness) of a pixel gray value 
and then apply a suitable transformation on the membership value to generate 
the membership value of that pixel in the contrast intensified image. 

10.6.1 Contrast Enhancement Using Fuzzifier 

Several interesting image enhancement techniques have been suggested based 
on fuzzy sets [5, 71. For an image whose gray level a t  the location (m, n)  is 
given by x,, the membership function is defined as  

where xmax is the maximum gray level available in the image and Fd and F, 
are denominational fuzzifier and exponential fuzzifier respectively [5].  

Eq. 10.5 shows that as p(z,,) + 1 when x,, + x,,,, i.e., the highest 
gray level represents maximum brightness. The membership function, as in 
Eq. 10.5, represents the degree of brightness of a particular pixel. 

It may be noted that the membership value always occurs within a range 
defined by [cy,l]. The minimum gray level that a pixel can assume is 0, which 
yields the lower limit of a. Thus cy is obtained as 

(10.6) 

An appropriately chosen intensifier operator stretches the contrast in an 
image. It transforms membership values above 0.5 to  higher or lower values. 
Intensifier operation becomes increasingly nonlinear as the membership values 
moves away from 0.5 to  still higher values and those below 0.5 to still lower 
values. The intensifier operator may be chosen as : 
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fig. 10.1 (a) A chest X-ray imagel, (b) contrast stretched image using crisp logic, 
(c) fuzzy contrast enhancement, (d) chest X-ray image2, (e) fuzzy constrast enhanced 
image2 

(10.7) 
= 1 - 2(1 - P ) ~ ,  p > 0.5 

I N T ( p )  = 2 $ ,  

where I N T ( p )  is the intensification function on the membership values. The 
modified gray values are obtained by taking an inverse mapping function 
computed by the modified membership values, obtained after the original 
membership values are operated upon by the I N T  operator. 

The aforementioned methods are applied to  the image and results are shown 
in Figure 10.1. For easy comparison the result obtained by stretching is also 
included. The fuzzy based approach has been found to give visibly better 
results compared to the conventional linear contrast stretching method. 

It can be seen that the performance of the conventional linear stretching 
is quite poor as it darkens the image uniformity and thus makes the vision 
stressed. The fuzzy based method shows better results and does not darken 
the image. Selecting two sets of Fd and F,, shows the effect of parameter 
variation on this method. The selection has been entirely supervised. 

10.6.2 

Spatial filtering utilizes an averaging procedure to  generate the smoothened 
image. The weights usually chosen for the averaging are crisp and they do 
not depend on the pixel intensity in the image. Thus all regions of the image 
under an arbitrary neighborhood W are equally affected by averaging. The 
limitations of such a method are that they do not take into account 

Fuzzy Spatial Filter for Noise Removal 

0 the effect of the difference of gray levels between the central pixel and 
a neighboring pixel 

0 the diminishing influence of the pixels, which are situated at increasing 
distance from the central pixel. 

These two principal limitations of the conventional spatial filtering are 
taken into consideration while designing fuzzy spatial filter. Fuzzy spatial 
filters which smoothen a given image by employing averaging techniques, de- 
cide the weights of their masks on the basis of the above considerations. 
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While averaging, the contribution of a particular pixel in a certain neigh- 
borhood would decrease as it becomes increasingly different from that of the 
central pixel. This principle leads us to define the fuzzy membership values 
of a pixel. These membership values, in turn, serve as the weights in the 
averaging process of the pixels in the neighborhood. Thus the weights used 
in this filter are not constant and depend on the neighborhood information of 
the central pixel. 

10.6.3 Smoothing Algorithm 

The membership function determines the extent to which a particular pixel in 
the neighborhood represents the central pixel. Thus as the pixel moves away 
from the central pixel its membership value would decrease. At the same 
time if it has a large difference of gray value from that of the central pixel its 
membership value would become lower than what it would have been if the 
difference were smaller. 

Taking this into account the membership function can be modeled as a 
double bell-shaped curve. The membership function as it can be expected 
depends on two parameters, difference of gray values and distance [4, 71. 

Let the gray level of the pixel at the location (m, n) be given by xmn. If 
the central pixel gray level be given by xc ,  then the membership value p(x i j )  
of any pixel in the neighborhood of xc is given by: 

(10.8) 

where d is the distance between the central pixel x ,  and the neighboring pixel 
xij; Q and p are two scaling factors which determine the extent of flatness 
of the membership function. It can be noticed that the membership function 
returns 1 only when the neighboring pixel and the central pixel coincide. That 
is to say x ,  = xij. Thus the central pixel has the maximum contribution in 
determining its modified value. 

In the averaging procedure the membership values themselves serve as the 
weights of the gray levels of the pixels in the neighborhood. In light of above 
discussions the algorithm can be presented concisely as follows: 

0 For a central pixel 5 ,  determine a neighborhood W of some suitable 
size. 

0 For each pixel xij  in the neighborhood determine the membership value 
PLY. 

0 The modified gray value of the central pixel can thus be given by 

(10.9) 
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10.7 IMAGE SEGMENTATION USING FUZZY METHODS 

Fuzzy set theory has been extensively applied in the area of image thresholding 
and segmentation. A number of thresholding approaches have been suggested 
in the literature [8]-[13]. Several interesting fuzzy distance functions and sim- 
ilarity measures have been suggested in [8, 9, 14, 151. These measures have 
been demonstrated to yield excellent results in image thresholding. The con- 
cepts of fuzzy first order and second order statistics, viz., fuzzy histogram and 
cooccurrence matrices have been presented in [16]-[18]. These measures yield 
excellent segmented description of images having bimodal or multimeodal his- 
tograms. The fuzzy second order statistics characterize textured images in a 
better way than their corresponding hard counterparts [16, 171. A number of 
research reports indicate the superiority of fuzzy sets in segmenting an image 
over its crisp counterpart [12]-[18]. In the foregoing discussion in Chapter 7, 
we have noted that the selection of a set of appropriate thresholds is important 
in image segmentation. Often the image histogram does not show any well- 
defined peaks, and consequently the selection of proper thresholds becomes 
difficult. Similarly there is a possibility that the pixels belonging to the same 
object are partitioned in diverse groups because of poor threshold selection 
which does not take into account the effect of possible different illumination 
at different parts of the same object. 

The problem of thresholding involves identifying an optimal threshold T 
and segmenting the scene into two meaningful regions-object (0) and back- 
ground (B), i.e, 

(10.10) 

insuchawaythat  O U B = G a n d O n B = d .  
Algorithms employing such a formulation dichotomize the pixels determin- 

istically into object and background classes and therefore fail to reflect the 
structural details embedded in the original gray distribution. Many of these 
schemes often yield poor results in some classes of images. An appropriate 
t hresholding scheme that 

0 provides a soft thresholded description of the image based on fuzzy set 
theoretic concepts, 

0 can incorporate a wide range of object background size and scatter im- 
balances, and 

0 does not depend excessively on assumptions of gray distributions in the 
image 

have been investigated in [16]-[18]. 
Fuzzy thresholding involves partitioning the image into two fuzzy sets 0 

and B corresponding to object and background by identifying the membership 
distributions pd and pfi associated with these regions. A natural extension 
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into fuzzy setting has been proposed in [5], where an image is characterized 
by a monotonic membership function p~ such that 

p 6 ( I m n )  < 0.5 if IT,, < T 
p 6 ( I m n )  > 0.5 if I,, > T ,  

(10.11) 

and the cross over point of the membership function matches with the hard 
threshold. Background region, B ,  was considered as the fuzzy complement of 
object region, 0, i.e., 

P A j )  + = 1.0 v j  (10.12) 

Huang and Wang proposed a fuzzy thresholding scheme which minimizes 
the fuzziness in the thresholded description and at  the same time accom- 
modates the variations in the gray-values in each of the regions [lo]. They 
assigned memberships as 

-1 

[I + +] if fmn 2 T 
(10.13) 

{ o  if I,, < T 
&fmn)  = 

where p is the mean gray-value of 0 and the parameter K controls the arnount 
of fuzziness in the segmented description. A similar membership assignment 
was employed for B also. They classified the pixels unequivocally into object 
or background regions with the help of the hard threshold T and thereby 
led to an abrupt discontinuity of membership distribution in the object and 
background regions, such that,  

(10.14) 

The histogram representing the frequency of occurrence is modeled as 

Here, p1 corresponds to the ratio of sizes of object and background regions in 
the image while another parameter p2 = denotes the measure for ratio of 
scatter. When p1 = p2 = 1.0, the object and background regions have equal 
size and equal dispersion. A typical example of f(.) is a Gaussian function 
with a total number of N, pixels given by 

(10.16) 

Bayes decision theory provides a minimum error optimal threshold T ,  where 
both object and background distributions provide equal gray-density. If the 
histogram is bimodal, and the minimum error threshold corresponds to  the 
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valley of histograms. This does not imply either that the histogram valley, al- 
ways corresponds to  the optimal threshold T or that the histograms generated 
by the model are always bimodal. 

Various fuzzy set theoretic distance and divergence measures have been 
suggested in a number of applications, such as, threshold selection, image 
segmentation by fuzzy divergence, region extraction, and region extraction 
from color images [6, 8, 91. 

10.8 FUZZY APPROACHES T O  PIXEL CLASSIFICATION 

Fuzzy approaches to  pixel classification have found applications in problems 
where (1) precise knowledge about the pattern classes is not available, ( 2 )  
large number of pattern samples are not available for statistical estimation of 
parameters, (3) patterns have partial membership to  different classes. 

In the hard clustering approach, each sample is considered to  belong t o  only 
one cluster and the clusters are considered as disjoint sets of data. The k- 
means algorithm partitions a given set of samples into k classes by iteratively 
recomputing the partition. In each iteration, the means of all the classes 
are computed and a sample is assigned to  the class, whose mean is nearest 
from the pattern sample. Mathematically, k-means algorithm minimizes the 
sum of within cluster scatters and provides accurate results when classes are 
compact and well separated. 

In practice, however, there are many situations where the clusters are not 
disjoint and a sample pattern or a pixel in an image may belong to  different 
clusters. Such a situation cannot be handled by crisp clustering techniques. 
For example, a particular pixel on the river bed in an aerial image may belong 
partly to  water class and partly to the wet-soil class. In fuzzy segmentation 
such problems can be handled quite well and several algorithms are available 
for segmentation of images, where the class separation is not well defined 
[S, 12, 18, 191. 

Fuzzy approaches t o  supervised pattern classification and clustering may 
be found in [19]. The basic postulates of fuzzy clustering is that a member 
may have partial memberships grades in several fuzzy clusters. A membership 
value in the interval [0,1] is assigned t o  each sample in every cluster, based 
on certain measurements. 

In fuzzy clustering a pattern is assigned with a degree of belongingness 
to  each cluster in a partition. Here we will present the most popular fuzzy 
clustering algorithm, known as fuzzy c-means algorithm. 

10.9 FUZZY C-MEANS ALGORITHM 

Fuzzy c-means clustering algorithm [19, 201, a generalization of the hard c- 
means algorithm yields extremely good results in image region clustering and 
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object classification. As in hard k-means algorithm, fuzzy c-means algorithm 
is based on the minimization of a criterion function. The following criterion 
function may be chosen. 

C n  

(10.17) 
i=l k=l 

where, 

0 X I ,  2 2 ,  . . . , x ,  are the n sample points 

0 V = {q, v 2 ,  . . . , v,} are the cluster centers 

0 U = [ U i k ]  is c x n matrix, where U i k  is the membership value of the kth 
input sample xk in the i th  cluster. The membership values satisfy the 
following conditions: 

0 m E [1,00] is an exponent weight factor. There is no fixed rule for 
choosing the exponent weight factor. However, in many applications 
m = 2 is a common choice. In case of crisp clustering m may be chosen 
as 1. 

The above three conditions imply the followings: 

0 The membership values of each sample x k  to a particular cluster should 
lie between 0 and 1 

0 each sample Xk must belong to a t  least one cluster and the sum of the 
membership values to each cluster should be one 

0 Each class must have at  least one sample and all the samples cannot 
belong to a particular class. 

It may be pointed here that if the samples have crisp membership to  each 
cluster, then U i k  assumes the values 0 or 1 for each sample, depending upon 
its belongingness to  each cluster. The objective function in this case is the 
sum of the squared Euclidean distances between each input sample and its 
corresponding cluster center, weighted by the fuzzy membership values. 

The algorithm iteratively updates the cluster centers using the expression: 

(10.18) 
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The fuzzy membership function of the k th  sample xk to  the z th  cluster is 
given by the following; 

- 1 m-1  

1 , i = 1 1 2 , . . . , c ;  k = 1 , 2 , . . . , n  (10.19) 
[ (Xk - u t ) 2 1  

c;=1 [ (zicly*)2] - 

Uzk = 
m - 1  

It can be noted that the weight factor m, reduces the influence of small 

The FCM algorithm is thus summarized as follows: 

1. Initialize U(O) randomly or based on some approximation. Initialize V(') 
and calculate U ( " ) .  Set the iteration counter t = 1. Select the number 
of cluster centers c and choose the value of m. 

membership values. 

2. Compute the cluster centers. Given U ( t ) ,  calculate according to 
the Eq. 10.18. 

3. Given V ( t )  update the membership values t o  U(t+l)  according to Eq. 10.19. 

4. Stop iteration if \uf"k+" - ~ $ 1  5 E ,  where E is small positive number. 

5 .  Increment iteration counter to  t = t + 1. Go to step 2. 

It may be noted that,  while applying the FCM to  image clustering or 
segmentation the data points or the sample points 51, 5 2 ,  . . . , x, are the pixel 
gray values. Thus n represents the total number of pixels in the image. 

10.10 FUSION OF FUZZY LOGIC WITH NEURAL NETWORKS 

Fusion of fuzzy logic with neural networks has been suggested by a number 
of researchers [21]-[23]. The advantages of fuzzy logic combined with the at- 
tractive properties of neural networks yield better performance of a pattern 
classifier. In a fuzzy neural network, neuron functions, their input-outputs, 
and the network parameters are fuzzified. These networks can handle fuzzy 
input output relationships which are often encountered in many image pro- 
cessing applications. Several fuzzy neural networks have been used in diverse 
applications of image processing [21]-[23]. 

Fuzzy MLP with error backpropagation system uses fuzzy inputs repre- 
sented in the form of quantitative, linguistic, or a combination of these. Fur- 
ther, the system can learn the input output relationships and generate rules 
which can subsequently be used by a conventional expert system. A logical 
extension of multilayer perceptron, can be used to  learn the input output 
fuzzy relationship in the form of if-then-else rules. The output is presented 
with a certain amount of confidence level. The novel feature of the network 



224 FUZZY SET THEORY IN IMAGE PROCESSING 

is to query for missing information. The neurons are programmed to do min- 
max and product probabilistic sum operators to represent the nodes a t  the 
hidden and output layers respectively. Backpropagation algorithm is suitably 
modified for logical operations. The rules generated from the fuzzy neural 
networks can be applied to  rule based systems to overcome the problem of 
rule extraction from experts. Thus neuro-fuzzy networks have been found to 
be useful for generating rule base for expert systems. 

Adaptive Resonance Theory based neural networks have evolved from the 
biological theory of cognitive information processing. Grossberg had first 
proposed this network in 1976. 

10.10.1 

The Self Organising Feature Map, proposed by Kohonen. can be generalized 
To design a Fuzzy Kohonens network, which yields better performance com- 
pared to its crisp counterpart. The basic objective of this network is to cluster 
the input patterns, in such a way that the total Eucledian distance between 
each pattern and its nearest cluster centroid is minimum. Here the concept of 
winner is a fuzzy one.Each input pattern evokes partial response in more than 
one node and the weights of more than one node can be updated proportional 
to  the response.The learning takes place according to the membership of the 
winner. The algorithm for Fuzzy Kohonen [22] is shown below. 

Step 1: Initialize the neurons with random weights wl(0).  i = 1,. . . , N .  

Step 2: Compute the distances d ( 2 k , w Z )  from the input pattern x k  to each 

Fuzzy Self Organising Feature M a p  

of the competing neurons wa. 

Step 3: Compute the membership of the winner neuron based on the distance 
measure d ( z k ,  wz). 

Step 4: Update the weight associated with each neuron. 

The weight updataion is performed in accordance to the following updation 
rule. 

W Z ( t  + 1) = W(t)  + Q ( t ) Z Z ( t ) [ Z k  - wz(t)l (10.20) 

2% = (Pzdf- ’  (10.21) 

where z, is the fuzzy scaling function given by 

where 
1 (A)- 

c;=, (&)* 
(10.22) 

and D,k = d ( z k ,  wi). The scaling function 2, depends on the fuzzy generator 
fm which is a real number greater than 1. Interestingly, the closer is the 
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neuron to  the input patter the larger is its win membership. During the 
learning process, all the neurons orient themselves towards the input pattern 
to  gradually decreasing levels proportional to  their distances. 

10.11 SUMMARY 

In this chapter we have introduced the fundamentals of Fuzzy set theory and 
some of their applications in Image Processing. The concepts of imprecision in 
images have been addressed here and the strategies adopted in image enhance- 
ment. Segmentation and pixel classisifaction using fuzzy set theory have been 
presented. Several membership assignment schemes have been discussed in 
detail. Various contrast enhancement strategies along with histogram based 
fuzzy enhancement and thresholding have been suggested. Fuzzy threshold- 
ing yields better results than their corresponding crisp counterparts. Also the 
pixel classifiction using fuzzy neural networks perform better than the crip 
networks. To fuzzy neural networks, viz., fuzzy self organizing feature map 
and fuzzy counterpropagation networks have been presented in this chapter. 
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11.1 INTRODUCTION 

Tremendous amount of visual information in the form of image and video 
data are distributed all over the world like any other nonvisual data such 
as numeric and nonnumeric data, speech, voice, text, etc. Data mining is 
the field of study to extract valuable information from very large data set by 
discovering patterns and knowledge embedded into the data. Image mining 
broadly deals with extraction of the valuable information embedded in large 
image and video databases [l]. This promising field is still in the early stage 
of its development. Most of the work in this area has been restricted mainly 
in the development of content-based image retrieval (CBIR) systems. 

Retrieval of a query image from a large database of images is an important 
task in the area of computer vision and image processing. The advent of large 
multimedia collection and digital libraries has led to  an important require- 
ment for development of search tools for indexing and retrieving information 
from them. A number of good search engines are available today for retriev- 
ing the text in machine readable form, but there are not many fast tools to  
retrieve intensity and color images. The traditional approaches to searching 
and indexing images are slow and expensive. Thus there is continued need to  
develop efficient algorithms in image mining and CBIR. 

The indexing and retrieval of images usually seeks to  find semantic infor- 
mation. Retrieving this semantic information and automatic segmentation of 
the image into objects using machine vision techniques is a nontrivial problem 
today. Many image attributes such as color, shape, and texture are having 
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direct correlation with semantics embedded in the image. For example, the 
skin of tigers has a unique texture wherever they are found and using this 
image attribute, it may be possible to  index and retrieve the images of tigers. 

Image retrieval using similarity measures is an elegant technique used in 
content-bused image retrieval (CBIR). Ideally a CBIR system should auto- 
matically extract the semantic information about the images for a specific 
application area. 

To a very large extent, the low-level image features such as color, texture, 
and shape are widely used for CBIR. While attempting the task of image re- 
trieval, we identify the mutual correspondence between two images in a set of 
database images using similarity relations. The content-based query system 
processes a query image and assigns this unknown image to the closest pos- 
sible image available in the database. In view of the above discussion, it may 
be concluded that selection and extraction of low-level image features consti- 
tuting the image and subsequent similarity-based matching and classification 
are the two issues in content-based image retrieval [1]-[8]. 

11.2 IMAGE MINING 

Traditional data mining techniques have been developed mainly for structured 
datatypes. The image datatype does not belong to this structured category, 
suitable for interpretation by a machine, and hence the mining of image data 
is a challenging problem. Content of an image is visual in nature and the 
interpretation of the information conveyed by an image is mainly subjective, 
based on the human visual system. 

Image data have been used for machine vision, based on extraction of de- 
sired features from an image and interpretation of these features for particular 
applications. This is a challenging area of study, and it has been extensively 
explored in pattern recognition and machine vision for quite some time. Al- 
though interpretation of the image content by the human visual system is a 
natural and apparently effortless procedure, it remains a mystery how the hu- 
man brain processes this information. Hence modeling the process of human 
interpretation of the semantic content of images is still a research challenge. 
As a result, it is difficult to  define a single set of algorithms or functionalities 
that can claim to comprise a complete set of image mining tools. 

The research and development of mining image data is relatively new, and 
has become an emerging field of study today. Most of the activities in mining 
image data have been in the search and retrieval of images based on the 
analysis of similarity of a query image or its feature(s) with the entries in the 
image database. The image retrieval systems can be broadly categorized into 
two categories based on the type of searches. 

In the first category, the images are described based on user-defined texts 
13, 41. The images are indexed and retrieved based on these rudimentary 
descmptrons, such as their size, type, date and time of capture, identity of 
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owner, keywords, or some text description of the image. As a result, this is 
often called description based or text-based image retrieval process. The im- 
age indices are predefined based on these descriptions, and they are searched 
on these indices when a query is posed as 

Find the images from an image database which matches with the given set 
of descriptions, e.g. images captured on  January 8 to June 30, 2005 and size 
bigger than 100 Kbyte. 

The text-based descriptions of the images are usually typed manually for 
each image by human operators, because the automatic generation of key- 
words for the images is difficult without incorporation of visual information 
and feature extraction. As a result, this is a very labor-intensive process and 
is impractical in today’s multimedia information age. Moreover, since the de- 
scription of images is very much subjective, the automated process to  generate 
a text-based description for indexing of the images could be very inaccurate 
and incomplete. 

In the second category, the query can be posed as 

Find the images similar to a given query image. 

This second category of similarity-based image retrieval process is the content- 
based image retrieval (CBIR) [5]-[9]. In CBIR systems, the images are searched 
and retrieved based on the visual content of the images. Based on these vi- 
sual contents, desirable images features can be extracted and used as index 
or basis of search. 

There are, in general, three fundamental modules in a content-based image 
retrieval system: 

1. Visual content or feature extraction 

2. Multidimensional indexing and 

3. Retrieval 

The images in an image database are indexed-based on extracted inherent 
visual contents (or features) such as color, texture, pattern, image topology, 
shape of objects, and their layouts and locations within the image, etc. An 
image can be represented by a multidimensional vector of the extracted fea- 
tures from the image. The feature vector actually acts as the signature of the 
image. This feature vector can be assumed to be associated to a point in the 
multidimensional space. As an example, an image can be represented by an 
N-dimensional feature vector whose first n1 components may represent color, 
the next 712 components may represent shape, the following n3 components 
may represent some image topology, and finally n4 components may represent 
texture of the image, so that there are N = 121 + n2 + 723 + 714 components. 
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Fig. 11.1 Architecture of a content-based image retrieval system. 
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As a result, an example image can be simply used as a query using visual 
content-based indexing. 

The query image can be analyzed to extract the visual features and can 
be compared to find matches with the indices of the images stored in the 
database. The extracted image features are stored as metadata, and images 
are indexed based on this metadata information. This metadata information 
comprises some measures of the extracted image features. The feature vectors 
of similar images will then be clustered in the N-dimensional space. Retrieving 
similar images to  a query image then boils down to finding the indices of those 
images in the N-dimensional search space whose feature vectors in the N-  
dimensional space are within some threshold of proximity to  the point of the 
query image. This indexing structure is popularly known as multidimensional 
access structure (MAS) [lo]. 

The architecture for a possible content-based image retrieval system is 
shown in Figure 11.1. The CBIR systems architecture is essentially divided 
into two parts. In the first part, the images from the image database are 
processed offline. The features from each image in the image database are 
extracted to form the metadata information of the image, in order to describe 
the image using its visual content features. Next these features are used to 
index the image, and they are stored into the metadata database along with 
the images. In the second part, the retrieval process is depicted. The query 
image is analyzed to extract the visual features, and these features are used 
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to  retrieve the similar images from the image database. Rather than directly 
comparing two images, similarity of the visual features of the query image is 
measured with the features of each image stored in the metadata database as 
their signatures. Often the similarity of two images is measured by computing 
the distance between the feature vectors of the two images. The retrieval sys- 
tems return the first k images, whose distance from the query image is below 
some defined threshold. 

Several image features have been used to  index images for content-based 
image retrieval systems. Most popular among them are color, texture, shape, 
image topology, color layout, region of interest, etc. We discuss some of these 
features in greater detail in the following sections. 

11.3 IMAGE FEATURES FOR RETRIEVAL AND MINING 

11.3.1 Color Features 

Color is one of the most widely used visual features in content-based image 
retrieval [11]-[14]. While we can perceive only a limited number of gray 
levels, our eyes are able to  distinguish thousands of colors and a computer can 
represent even millions of distinguishable colors in practice. Color has been 
successfully applied to  retrieve images, because it has very strong correlations 
with the underlying objects in an image. Moreover, color feature is robust 
to  background complications, scaling, orientation, perspective, and size of an 
image. 

Although we can use any color space for computation of a color histogram 
HSV (hue, saturation, value), HLS (hue, lightness, saturation), and CIE 

color spaces (such as CIELAB, CIELUV) have been found to  produce better 
results as compared to  the RGB space. Since these color spaces are visually 
(or perceptually) uniform compared to the RGB, they are found to be more 
effective to measure color similarities between images. 

11.3.1.1 Color Histogram This is the most commonly used color feature in 
CBIR [ll, 121. Color histogram has been found to be very effective in charac- 
terizing the global distribution of colors in an image, and it can be used as an 
important feature for image characterization. To define color histograms, the 
color space is quantized into a finite number of discrete levels. Each of these 
levels becomes a bin in the histogram. The color histogram is then computed 
by counting the number of pixels in each of these discrete levels. There are 
many different approaches to  quantize a color space to determine the number 
of such discrete levels [11]-[13]. 

Using the color histogram, we can find the images that have similar color 
distribution. One can think of the simplest measure of similarity by com- 
puting the distance between two histograms. Let us consider that H ( l )  = 

{hi'),  h y ) ,  . . . , h g ) }  and H ( 2 )  = {h(;3), h f ) ,  . . . , h g ) }  are two feature vectors 
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generated from the color histograms of two images, where hi’) and h y )  are 
the count of pixels in the j t h  bin of the two histograms respectively, and K 
is the number of bins in each histogram. We can define a simple distance 
between two histograms as 

. -  Incoherent pixel 
9 6  gK \aunt in bin K 

.... pK-l %>Coherent pixel 
P6 P K  count in bin K 

b 

(11.1) 
j=1 

There is another distance measure between two histograms, popularly known 
as histogram intersection. The histogram intersection is the total number of 
pixels common to both the histograms. This can be computed as 

K 

(11.2) 
j=1 

The above equations can bc normalized to maintain the value of the distance 
measure in the range [0,1]. To normalize I ( H ( l ) ,  H(*)), it is divided either 
by the total number of pixels in one of the histograms or by the size of the 
image. 

11.3.1.2 Color Coherence Vector One problem with the color histogram- 
based similarity measure approach is that the global color distribution doesn’t 
reflect the spatial distribution of the color pixels locally in the image. This 
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cannot distinguish whether a particular color is sparsely scattered all over the 
image or it appears in a single large region in the image. 

The color coherence vector-based [14] approach was designed to accommo- 
date the information of spatial color into the color histogram. Here we can 
classify each pixel in an image, based on whether it belongs to a large uni- 
form region. For example, we can consider a region to be uniformly colored 
if it consists of the same color and the area of the region is above a certain 
threshold (say, 2%) of the whole image area. We refer to the pixels in these 
regions as coherent pixels. 

In this approach, each histogram bin is divided into two parts. One contains 
the count of pixels belonging to a large uniformly colored region and the other 
contains the same colored pixels belonging to a sparse region. Let us consider 
that the ith bin of the histogram contains p j  coherent pixels and q j  incoherent 
pixels. Using this partition, the color coherence vector of an image can be 
expressed as { ( P I ,  q l ) ,  (p2 ,  q 2 ) ,  ' .  . , ( p ~ ,  q K ) } .  We show this in Figure 11.2. 
It should be noted that (p1 + q1,pZ + q 2 , .  . . , p ~  + q K }  is the original color 
histogram without this distinguishing power. The color coherence vectors 
provide superior retrieval results with this additional distinguishing capability, 
as compared to the global color histogram method [14]. 

11.3.1.3 Color Moment This is a compact representation of the color feature 
to characterize a color image [12]. It has been shown that most of the color 
distribution information is captured by the three low-order moments. The 
first-order moment ( p )  captures the mean color, the second-order moment 
(a) captures the standard deviation, and the third-order moment captures 
the skewness (0) of color. These three low-order moments (p,, o,, 0,) are 
extracted for each of the three color planes, using the following mathematical 
formulation. 

(11.3) 

(11.4) 

(11.5) 

where p& is value of the cth color component of the color pixel in the ith 
row and j t h  column of the image. As a result, we need to extract only nine 
parameters (three moments for each of the three color planes) to characterize 
the color image. Weighted Euclidean distance between the color moments of 
two images has been found to be effective to calculate color similarity [12]. 



234 IMAGE MINING AND CONTENT-BASED IMAGE RETRIEVAL 

11.3.1.4 Linguistic Color Tag The global color distribution using color his- 
togram does not take advantage of the fact that the adjacent histogram bins 
might actually represent roughly the same color, because of the limited ability 
of the human perceptual system. Moreover, only a limited number of color 
shades are sufficient for visual discrimination between two images. To take 
advantage of this, a color matching technique based on linguistic tags, to  iden- 
tify a color with a name, has been proposed recently [15]. The concept behind 
this technique is to  construct equivalence classes of colors, which are identified 
by linguistic tags (or color name such as pink, maroon, etc.), that perceptu- 
ally appear the same to  the human eye but are distinctly different from that 
of neighboring subspaces. Using this approach, the dimensionality of color 
features is significantly reduced. This also helps to reduce computations for 
color similarity measures. A color palette of 15 colors corresponding to 15 
equivalent classes was developed by Iqbal and Aggarwal using this technique, 
and was applied effectively in color similarity measures to  distinguish color 
images [15]. 

11.3.2 Texture Features 

Texture is a very interesting image feature that has been used for character- 
ization of images, with application in content-based image retrieval. There 
is no single formal definition of texture in the literature. However, a major 
characteristic of texture is the repetition of a pattern or patterns over a region 
in an image. The elements of patterns are sometimes called textons. The 
size, shape, color, and orientation of the textons can vary over the re,' oion. 
The difference between two textures can be in the degree of variation of the 
textons. I t  can also be due to  spatial statistical distribution of the textons 
in the image. Texture is an innate property of virtually all surfaces, such as 
bricks, fabrics, woods, papers, carpets, clouds, trees, lands, skin, etc. I t  con- 
tains important information regarding underlying structural arrangement of 
the surfaces in an image. When a small area in an image has wide variation of 
discrete tonal features, the dominant property of that area is texture. On the 
other hand, the gray tone is a dominant property when a small area in the 
image has very small variation of discrete tonal features. Texture analysis has 
been an active area of research in pattern recognition since the 1970s [16, 171. 

A variety of techniques have been used for measuring textural similarity. In 
1973, Haralick et al. proposed co-occurrence matrix representation of texture 
features to mathematically represent gray level spatial dependence of texture 
in an image [16]. In this method the co-occurrence matrix is constructed based 
on the orientation and distance between image pixels. Meaningful statistics 
are extracted from this co-occurrence matrix, as the representation of texture. 
Since basic texture patterns are governed by periodic occurrence of certain 
gray levels, co-occurrence of gray levels at predefined relative positions can 
be a reasonable measure of the presence of texture and periodicity of the 
patterns. 
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Several texture features such as entropy, energy, contrast, and homogeneity, 
can be extracted from the co-occurrence matrix of gray levels of an image. 
The gray level co-occurrence matrix C ( i j )  is defined by first specifying a 
displacement vector dz ,y  = (62, 6 y )  and then counting all pairs of pixels sepa- 
rated by displacement dz ,y  and having gray levels i and j .  The matrix C ( i j )  
is normalized by dividing each element in the matrix by the total number of 
pixel pairs. Using this co-occurrence matrix, the texture features metrics are 
computed as follows. 

Entropy  = - ~ ( i ,  j )  log ~ ( i ,  j ) ,  (11.6) 
i j  

Energy  = C2( i , j ) ,  (11.7) 
i j  

Contras t  = J-'(i - j ) 2 ~ ( i , j ) ,  (11.8) 
i j  

C(i ,  j )  
1 + 12 - j l  

Homogenei ty  = 
i j  

(11.9) 

Practically, the co-occurrence matrix C(i ,  j )  is computed for several values of 
displacement dz , y ,  and the one which maximizes a statistical measure is used. 

Tamura et al. proposed computational approximations to the texture fea- 
tures, based on the psychological studies in visual perception of textures [17]. 
The texture properties they found visually meaningful for texture analysis 
are coarseness, contrast, directionality, linelikeness, regularity, and roughness. 
These texture features have been used in many content-based image retrieval 
systems [5, 61. Popular signal processing techniques have also been used in 
texture analysis and extraction of visual texture features. Wavelet transforms 
have been applied in texture analysis and classification of images, based on 
multiresolution decomposition of the images and representing textures in dif- 
ferent scales [18]-[21]. Among the different wavelet filters, Gabor filters were 
found to be very effective in texture analysis. 

11.3.3 Shape features 

Shape is another image feature applied in CBIR. Shape can roughly be defined 
as the description of an object minus its position, orientation and size. There- 
fore, shape features should be invariant to translation, rotation, and scale, for 
an effective CBIR, when the arrangement of the objects in the image are not 
known in advance. To use shape as an image feature, it is essential to seg- 
ment the image to detect object or region boundaries; and this is a challenge. 
Techniques for shape characterization can be divided into two categories. 

The first category is boundary-based, using the outer contour of the shape of 
an object. The second category is region-based, using the whole shape region 
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of the object. The most prominent representatives of these two categories are 
Fourier descriptors 1221 and moment invariants [23]. The main idea behind 
the Fourier descriptors is to  use the Fourier-transformed boundaries of the 
objects as the shape features, whereas the idea behind moment invariants 
is to use region-based geometric moments that are invariant to translation 
and rotation. Hu identified seven normalized central moments as shape fea- 
tures, which are also scale invariant. We provide expressions for these seven 
invariants below. 

11.3.3.1 
spatial domain. Geometric moment [l] of order p + q is denoted as 

Moment invariants Let F ( x ,  y) denote an image in the two-dimensional 

(1 1.10) 

for p ,  q = 0 , 1 , 2 , .  . .. The central moments are expressed as 

P P 9  = x x - XC)”(Y - 

where xc = 9 y - w, and (xc, yc) is called the center of the region or 
object. Hence the central moments, of order up to  3, can be computed as 

mo.o ’ - mo.o  

The normalized central moments, denoted T ~ , ~ ,  are defined as 

(1 1.12) 

(11.13) 

where 

(1 1.14) 
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for p + q = 2 , 3 , .  . .. A set of seven transformation invariant moments can be 
derived from the second- and third-order moments as follows: 

(11.15) 
This set of normalized central moments is invariant to translation, rotation, 
and scale changes in an image. 

In addition to the geometric moments, the circularity, aspect ratio, sym- 
metricity, and concavity are also used for segmentation and shape detection 
in images. We exclude detailed discussions on these features here. 

The problem with shape-based CBIR system development is that  the shape 
features need very accurate segmentation of images to  detect the object or 
region boundaries. Image segmentation is an active area of research and most 
of the segmentation algorithms are still computationally very expensive for 
online image segmentation. Robust and accurate segmentation of images still 
remains a challenge in computer vision. As a result, shape feature-based 
image retrieval has been mainly limited to  image databases where objects or 
regions are readily available. 

11.3.4 Topology 

A digital image can be represented by one or more topological properties [l], 
which typically represent the geometric shape of an image. The interesting 
characteristic of topological properties is that  when changes are made to  the 
image itself, such as stretching, deformation, rotation, scaling, translation, 
or other rubber-sheet transformations, these properties of the image do not 
change. As a result, topological properties can be quite useful in characteri- 
zation of images and can be used as a signature of an image content to  use in 
content-based image retrieval. 

One topological property of a digital image is known as Euler number [l]. 
The Euler number is usually computed in a binary image. However, it can 
be extended to characterize gray-tone images as well by defining a vector of 
Euler numbers of the binary planes of the gray-tone image. This has been 
called the Euler vector [24]. The Euler number is defined as the difference 
between number of connected components and number of holes in a binary 
image. Hence if an image has C connected components and H number of 
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Fig. 11.3 Sample binary images with (a) Euler number 0 and (b) Euler number 2. 

holes, the Euler number E of the image can be defined as 

E = C - H .  (1 1.16) 

Euler number of the binary image in Figure 11.3(a) is 0 because the image 
has one connected component and one hole, whereas the Euler number of 
Figure 11.3(b) is 2 because i t  has seven connected components and five holes. 
The binary image of letter B will have Euler number -1 because it has one 
connected component and two holes. 

Euler number remains invariant despite the transformation of the image due 
to translation, rotation, stretching, scaling, etc. For some classes of digital 
images, Euler numbers have strong discriminatory power. In other words, 
once the Euler number for a particular digital image is known, the digital 
image may be readily distinguished from other digital images in its class. 
This implies that the Euler number may be used for more efficient searching 
or matching of digital images. For example, the Euler number may be used 
in medical diagnosis such as the detection of malaria infected cells. As the 
Euler number of an infected cell is often different from that of a normal cell, 
the malaria infected cells may be identified by calculating the Euler number 
of each cell image. Euler number may also be used for image searching, such 
as in a database of logo images. 

11.3.4.1 Euler Vector Above usage of Euler number has been extended to 
gray-tone images, by defining a vector of Euler numbers [24]. This vector is 
called the Euler vector. Intensity value of each pixel in an 8-bit gray-tone 
image can be represented by an 8-bit binary vector b,, i = O , l , .  . . ,7 ,  that is, 
( b 7 ,  b6,  b5, bq,  b3, ba, b l ,  bo ) ,  where b, E (0 , l ) .  The i th bit-plane is formed 
with b,’s from all the pixels in the gray-tone image. To define Euler vector, we 
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retain the first four most significant bit-planes corresponding to ( 6 7 ,  b g ,  b5, b4) ,  

because they contain most of the information of the image. This 4-bit binary 
vector is converted to its corresponding reflected gray code (g7,g6,  g5,  g 4 ) ,  

where g7 = b7, $3 = b7 @ bg, g5 = bg @ b5, g4 = b5 @ bq, and @ denotes the 
binary XOR (modulo-2) operation. 

11.3.4.2 Euler vector of a gray-tone image is a 4-tuple ( E 7 ,  Eg, 
E5, E4), where Ei is the Euler number of the bit-plane formed with reflected 
gray codes gi of all the pixels in the image. 

Definition 

Gray code representation of intensity values offers a distinct advantage 
over standard binary representation in this particular context. Euler vector is 
found to  be more insensitive to  noise and other changes, when the gray code 
is used. This happens because two consecutive numbers have unit Hamming 
distance in gray-code representation and, for most of the cases, a small change 
in intensity values cannot affect all the 4 bit planes simultaneously in gray 
representation. Euler vector can be used as a quick combinatorial signature 
of an image and has been used for image matching in content-based image 
retrieval [24]. 

11.3.5 Multidimensional Indexing 

Multidimensional indexing is an important component of content-based im- 
age retrieval. Development of indexing techniques has been an active area 
in database management, computational geometry, and pattern recognition. 
However, the notion of indexing has subtle differences in different communi- 
ties. The notion of indexing in multimedia data mining and content-based 
image retrieval is different from its notion in the traditional database man- 
agement systems. In traditional database management systems (particularly 
for relational databases), the indexing refers t o  the access structure of the 
database files in terms organization of the records. Indexes are specified 
based on one or more attributes of the records in order to process queries 
based on those attributes. These record and file structures are well organized 
and supported by an access structure such as hashing, B-tree, etc. In the in- 
formation retrieval community, the indexing mechanism is concerned with the 
process to  assign terms (or phrases or keywords or descriptors) to a document 
so that the document can be retrieved based on these terms. The indexing 
in content-based image retrieval or mining multimedia data is similar to the 
notion adopted in the information retrieval. The primary concern of indexing 
is to assign a suitable description to the data in order to detect the infor- 
mation content of the data. As we explained in the previous sections, the 
descriptors of the multimedia data are extracted based on certain features or 
feature vectors of the data. These content descriptors are then organized into 
a suitable access structure for retrieval. 
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The key issues in indexing for content-based image retrieval are (1) reduc- 
tion of high dimensionality of the feature vectors, (2) finding an efficient data 
structure for indexing, and (3) finding suitable similarity measures. 

In CBIR, the dimensionality of feature vectors is normally very high. Today 
the dimensionality is typically of the order of lo2. With the exploration of 
multimedia content, this order may grow in future. Before indexing, it is 
very important to  reduce the dimensionality of the feature vectors. The most 
popular approach to reduce high dimensionality is application of the principal 
component analysis, based on singular decomposition of the feature matrices. 
The theory behind singular value decomposition of a matrix and generation of 
principal components for reduction of high dimensionality has been discussed 
in detail in Section 4.5. The technique has also been elaborated in Section ?? 
with regard to  text mining. This can be applied to both text and image 
datatypes in order t o  reduce the high dimensionality of the feature vectors 
and hence simplify the access structure for indexing the multimedia data. 

After dimensionality reduction, it is very essential to select an appropriate 
multidimensional indexing data structure and algorithm to  index the feature 
vectors. There are a number of approaches proposed in the literature. The 
most popular among them are multidimensional binary search trees [25], R- 
tree [as], variants of R-tree such as R*-Tree [27], SR-tree [28], SS-tree 1291, 
Kd-tree 1301, etc. All these indexing methods provide reasonable performance 
for dimensions up to  around 20, and the performance deteriorates after that. 
Moreover, most of these tree-based indexing techniques have been designed for 
traditional database queries such as point queries and range queries, but not 
for similarity queries for multimedia data retrieval. There have been some 
limited efforts in this direction. Multimedia database indexing particularly 
suitable for data mining applications remains a challenge. So exploration of 
new efficient indexing schemes and their data structures will continue to be a 
challenge for the future. 

After indexing of images in the image database, it is important to use a 
proper similarity measure for their retrieval from the database. Similarity 
measures based on statistical analysis have been dominant in CBIR. Distance 
measures such as Euclidean distance, Mahalanobis distance, Manhattan dis- 
tance, and similar techniques have been used for similarity measures. Distance 
of histograms and histogram intersection methods have also been used for this 
purpose, particularly with color features. 

Another aspect of indexing and searching is to have minimum disk latency 
while retrieving similar objects. Chang et al. proposed a clustering technique 
to  cluster similar data on disk to achieve this goal, and they applied a hashing 
technique to index the clusters [31]. In spite of lots of development in this 
area, finding new and improved similarity measures still remains a topic of 
interest in computer science, statistics, and applied mathematics. 
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AIRPLANE I 73.23 

11.3.6 Results of a Simple CBIR System 

69.84 

Table 11.1 CBIR match performance (70) 

ANIMAL 

CAR 
FLOWER 
ANIMAL 
Overall 

A :  Moment invariants only. 
B: Circularity, symmetricity, aspect ratio and concavity. 
C: Energy, entropy, contrast and homogeneity. 

82.56 86.75 
43.48 77.03 
49.56 72.44 
66.55 77.79 

A simple image matching scheme for an experimental content-based im- 
age retrieval system that uses moment, shape, and texture features extracted 
from the images, has been discussed in [32]. The shape features have been 
extracted using moment computation (feature set A )  of the regions, combined 
with circularity, aspect ratio, concavity, and symmetricity metrics (feature set 
B ) .  The texture of the images has been generated using the energy, entropy, 
contrast, and homogeneity measures as image features (set C). We present 
here results of this system using around 290 samples taken from an image 
database containing several classes of images, including animals, cars, flow- 
ers, etc. Distances of the query image from the database images have been 
computed simply as C,  I f ,  - f,' 1 ,  where fi and f,' are the values of the 
i th  feature of the database image and query image respectively. The top 10 
closest images have been taken as the query result, excluding the query image 
itself if it is present in the database. 

Table 11.2 CBIR weighted match performance (%) 

I Image I All Features I All features I 

Tables 11.1 and 11.2 provide the results, where each database image is used 
as a query image to  find the top 10 from the database. From Table 11.1, we 
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observe that the overall performance can be improved by mixing the different 
feature sets for image query. 

Further improvement can be achieved by assigning weights to  each feature 
as follows: 

p g z  I f i  - f,’I, 
a 

where W,, is the weight of the i th feature for image group g and the database 
image belongs to image group g. Here W,, is computed as k, where ogz 

is the standard deviation of the i th feature value of the images in group g. 
Table 11.2 indicates that  this improves the matching performance. 

The summary of the results is presented in Figure 11.4 for eight query 
images. In each row the first column indicates the query image. For all rows 
the five best matches are shown, with the query image (as all of them are 
present in the database) naturally coming first as the best match. 

11.4 FUZZY SIMILARITY MEASURE IN AN IMAGE RETRIEVAL 
SYSTEM 

In an image retrieval system, a dababase image containing a set of shape, tex- 
ture and color features is created. The features of the query image are next 
matched with the features of each image in the database. Different similarity 
functions which are essentially mappings between a pair feature vectors and a 
positive real-valued number yield a measure of the visual similarity between 
the two images. As an example, let us consider the color histogram as the 
feature. In cases where the overall color distribution of an image is more 
important regardless of the spatial arrangement in the image, then indexing 
using global color distribution will be more useful; otherwise, the local distri- 
bution of colors may be used as features. A global color histogram represents 
M number of intensity histograms, where M is the number of colors (usually 
M = 3 for an RGB image). Some of the fuzzy logic-based similarity measures 
between two images are explained below [33]. 

0 Fuzzy similarity measure based on Min-Max ratio: The similar- 
ity between two images A and B is given by 

where ~ A ( N )  and ~ B ( N )  are fuzzy membership values of the N t h  gray 
level of the histogram AN and BN of the two images A and B respec- 
tively. For an identical pair of images, the similarity value will be 1. 

0 Similarity measure based on normalized absolute difference: 
The similarity measure based on normalized absolute difference between 
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Fig. 11.4 Results of image matching in the CBIR system. 
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the fuzzy membership values of gray levels, computed from the his- 
tograms, is as below: 

The variant of the above measure can be expressed as 

where intersection represents minimum and union represents maximum 
of two membership values. It can be shown that if AN 2 BN 2 C N ,  
corresponding to the histogram A N ,  B N ,  and CN respectively for N = 
(0’1,. . . , L - 1) of three images A, B,  and C then Sl (A,  B )  2 Sl (A,  C )  
and Sl ( B ,  C) 2 S1 (A ,  C ) .  This is an interesting property of the fuzzy 
similarity measure which has been stated earlier. Also it is easy to show 
that the similarity measures S(A, B )  between two images A and B are 
symmetric. 

0 Similarity measure based on Tversky’s model: A feature con- 
trast model has been characterized as a set of binary point features by 
Tversky [33] .  Here a feature set has been considered as a set of logic 
predicates which are true for a set of stimuli (such as the binary features 
of an image). Let a and b be two stimuli and A and B are the sets of 
the features. A similarity measure s ( a , b )  between a and b has been 
suggested as having the following properties. 

- Matching: s (a ,  b )  = F ( A n  B ,  A - B ,  B - A)  

- Monotonicity: s(a,  b)  > s (a ,  c), whenever A n  C C A n  B ,  A-  B C 
A - C,  B - A c  C -  A. 

A function that satisfied matching and monotonicity is called a matching 
function. 

Similarity based on Tversky’s model has been extended to the similarity 
between gray and color images in [33] based on the generalized Tversky’s 
index (GTI). Assuming, AN and BN are the histograms of two images 
A and B ,  the GTI is given as 

where f (.) is a positive increasing function and a and 0 are two nonneg- 
ative parameters. The values of a and ,C? provide the relative importance 
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of the distinctive features in the similarity measures. Interestingly, the 
GTI measure explained above provides a set theoretic index for similar- 
ity assessment based on human perception. The same GTI measure a s  
shown in Eq. 11.17 can be expressed in terms of the fuzzy membership 
values of the gray levels of images A and B as follows: 

GTI(A,  B; a ,  p)  = 

C N = ~  min lvbA~ P B }  
L 

L 
C~=1(minlv{~A,pLg}+(Ymin{l. lA,1 -pLg} + p  m i w { 1 ~  PA,  pLg)) ’ 

(11.18) 
where PA and p~ are the membership values of the gray levels of the his- 
tograms of two images A and B. When the two histograms are similar, 
the GTI index will be high with nonnegative a and p values. 

Fig. 11.5 Result of color image retrieval by fuzzy Similarity measure. 

The results of color image retrieval using a fuzzy similarity measure is 
shown in Figure 11.5. The color version of Figure 11.5 is shown in the color 
pages section. The top leftmost image has been used as the query image to  
search in a database of color images of flags of various nations. The resulting 
matched images are shown in Figure 11.5. 

11.5 VIDEO MINING 

Currently text-based search engines are commercially available, and they are 
predominant in the World Wide Web for search and retrieval of information. 
However, demand for search and mining multimedia data based on its content 
description is growing. Search and retrieval of contents is no longer restricted 
to  traditional database retrieval applications. As an example, it is often re- 
quired to find a video clip of a certain event in a television studio. In the 
future the content customers will demand to search and retrieve video clips 
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based on content description in different forms. I t  is not difficult to imagine 
that one may want t o  mine and download the images or video clips containing 
the presence of Mother Teresa from the Internet or search and retrieve them 
from a video archival system. It is even possible to demand for retrieval of a 
video which contains a tune of a particular song. 

In order to meet the demands for retrieval of audio-visual contents, there is 
a need of efficient solution to search, identify, and filter various types of audio- 
visual content of interest to  the user using non-text-based technologies. Rec- 
ognizing this demand, the MPEG (Moving Picture Expert Group) standard 
committee, under the auspices of the International Standard Organization, is 
engaged in a work item to define a standard for multimedia audio-visual con- 
tent description interface [34]. JPEG2000 is the new standard for still-picture 
compression and has been developed in such a way that metadata informa- 
tion can be stored in the file header for access and retrieval by users as well 
[32]. There is a mode in the JPEG2000 standard which particularly focuses 
on compressing moving pictures or video and its content description. 

All these developments will influence effective mining of video data in the 
near future. Video mining is yet to take off as a mainstream active area of 
research and development by the data mining community. The development 
has so far been restricted to  retrieval of video content only. However, there are 
ample opportunities that  data mining principles can offer in conjunction with 
the video retrieval techniques toward the successful development of video data 
mining. In order to  influence our readers in this direction, we present here a 
brief description of the MPEG7 standard for multimedia content description 
interface and a general discussion on a possible video retrieval system. Ap- 
plication of data mining techniques on top of this development is left to  our 
readers for their imagination. 

11.5.1 

There is a wrong notion that MPEG7 is another video compression standard. 
However, adoption of data compression principles is essential to define this 
standard for compact description of the multimedia contents. The goal of the 
MPEG7 is not to  define another video compression standard. The purpose of 
this standardization activity is to specify a standard set of descriptors that 
can be used to  identify content and permit search for particular multimedia 
content in a multimedia information system. 

The goal of MPEG7 is to  define a standard set of descriptors that can 
be used to describe various types of multimedia information, as well as the 
relationship between the various descriptors and their structures. In principle 
these descriptors will not depend on the way the content is available, either on 
the form of storage or on their format. For example, video information can be 
encoded with any compression scheme (MPEG1, MPEG2, MPEG4, JPEG, 
JPEG2000, or any other proprietary algorithm) or it can be uncompressed 
in its raw format without any encoding. It is even possible to  generate a 

MPEG7: Multimedia Content Description Interface 
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description of an analog video, or a picture drawn on paper. The audio- 
visual data description in MPEG7 may include still pictures, video, graphics, 
audio, speech, three-dimensional models, and information about how these 
data elements are combined in the multimedia presentation. 

\ Scope of 
MPEG-7 

Mechanism 

Fig. 11.6 Scope of the MPEG7 standard. 

The top-level scope of the MPEG7 standard is shown in Figure 11.6. The 
block diagram emphasizes that only the audio-visual description of multimedia 
data is meant to be standardized. The standard neither defines nor deals with 
the mechanism for extraction of features from the multimedia data, nor is it 
connected with its encoding or search and retrieval mechanism. Accordingly, 
the MPEG committee was chartered to standardize the following elements as 
described in the requirement document for MPEG7 work item [35]: 

1. A set of descriptors: A descriptor is a representation of a feature, such 
as color, shape, texture, image topology, motion, or title, to name a few. 
The descriptor defines the syntax and semantics of representation of the 
feature. 

2. A set of description schemes: A description scheme specifies the struc- 
ture and semantics of the relationships between its components, which 
may be both descriptors and description schemes as well. 

3. A set of coding schemes for the descriptors. 

4. A description definition language (DDL) to  specify the description schemes 
and descriptors. 
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Shot 

Feature 
Extraction Key Frame 

Query-{ Query Result 
Processing 

Index 
Generation ’ 

Fig. 11.7 Video retrieval systems architecture. 

Metadata 
Database 

The goal of MPEG7 work item is a tall order. The final output of the 
standard is yet to  be seen. 

11.5.2 Content-Based Video Retrieval System 

Content-based image retrieval techniques can be extended, in principle, to 
video retrieval systems. However, this is not very straightforward because 
of the temporal relationship of video frames and their inherent structure. A 
video is not only a sequence of pictures, it represents the actions and events 
in a chronological order to  convey a story and represent a moving visual 
information. In other words, one may argue that each video clip can be 
considered as a sequence of individual still pictures and each individual frame 
can then be indexed and stored using the traditional content-based image 
retrieval techniques. Again, this is not very practical given the number of 
frames in a good-quality video clip of even a few minutes. This also does not 
capture the story structure, which is a collection of actions and events in time. 

A generic video retrieval system, which can fit in MPEG7 model, is shown in 
Figure 11.7. As shown in this figure, a video clip is first temporarily segmented 
into video shots. A shot is a piece of a video clip (Le., a group of frames or 
pictures), where the video content from one frame to the adjacent frames 
does not change abruptly. One of these frames in a shot is considered to  
be a keg frame. This key frame is considered to be a representative for the 
picture content in that shot. Sequence of key frames can define the sequence 
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of events happening in the video clip. This is very useful to identify the type 
and content of the video. Detection of shots and extraction of the key frames 
from video clips is a research challenge [36, 371. 

As an individual still picture, each key frame can be segmented into a num- 
ber of objects with desired meaningful image features such as shape, texture, 
color, topology, and many others as defined in Section 11.2 for content-based 
image retrieval. The semantic relationship between these individual features 
or feature vectors defines an object of interest to  the user. We can apply 
similar feature extraction techniques and generate index structures for the 
key frames using the feature vectors, as described for content-based image 
retrieval. These indexed feature data and the corresponding key frames are 
stored in the metadata database. Collection of this metadata information 
describes the content of the video clip. 

In a video retrieval system, the query processing depends on the appli- 
cations. It can be similar to  content-based image retrieval, as described in 
Section 11.2, or it can be more complex depending upon the type of query 
processing. In its simplest form, a picture can be supplied to the video re- 
trieval system as a query image. This query image is then matched with each 
and every key frame stored in the metadata database. The matching tech- 
nique is repeated, based on the extraction of different features from the query 
image, followed by the matching of these features with the stored features of 
the key frames in the database. Once a match of the query picture with a key 
frame is found, the piece of video can be identified by the index of the key 
frame along with the actual shot and the video clip. 

Success of the MPEG7 will influence the future development of image and 
video mining. 

11.6 SUMMARY 

Discovery knowledge and mining new information from large image databases 
is an interesting area of study today in this era of internet and multimedia 
computing and communication. Development of image mining has been in- 
fluenced by the research on content-based image retrieval. In this chapter, we 
have presented two approaches in content-based image retrieval based on both 
crisp classical feature extraction techniques as well as fuzzy similarity based 
techniques for image matching. Here we have discussed various features based 
on color, texture, shape, etc. for feature-based matching and retrieval. We 
have shown some results and explained how the content based image retrieval 
can be used as image and video mining tools. 
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Biometric  And 
Biomedical Image 

Processing 
12.1 INTRODUCTION 

Some of the major applications of image processing that we have witnessed 
in the last two decades are in the areas of biometric and biomedical image 
processing. The human vision system comes across a large set of biometric 
features and biomedical images and recognizes them without any conscious 
effort. To impart this capability to a machine is, however, difficult. The bio- 
metric identification systems are useful in several applications such as com- 
mercial and law enforcement applications, especially in criminal identification, 
security system, videophone, credit card verification, photGIDs for personal 
identification, etc. Recognition of human faces, fingerprints, signatures, and 
many other such biometric images constitute an important area of research 
in the field of computer vision. 

Similarly there are different types of biomedical non-evasive imaging modal- 
ities such as X-ray, computed tomography (CT), magnetic resonance imaging 
(MRI), ultrasound images, and many others, which are used in the medical 
field for disease diagnosis and treatment planning. These imaging modalities 
reflect the state of the internal anatomy and dynamic body functions. It is 
important to understand the principal imaging modalities and the process- 
ing techniques to  enhance, filter, segment, and interpret such images. The 
radiation in diverse forms utilized in these imaging techniques interact with 
various tissues to  produce images from which the anatomical and structural 
information of various organs are extracted. The study of science and technol- 
ogy of such information transformation is essentially the studies of biomedical 
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imaging. In this chapter we have presented some of these imaging modalities 
and their analysis and processing techniques. 

12.2 BlOMETRlC PATTERN RECOGNITION 

Human face and human signature represent some of the most common bio- 
metric patterns that our visual system encounters daily. We present here the 
classification techniques of these two biometric features. A lot of interest has 
been generated in automated face recognition and a number of implementa- 
tion approaches have been proposed [1]-[3]. 

The major strategies used in face identification are either based on features 
or they are based on face space, such as Eigenface or Fisherface. 

Most of the the feature based methods extract features from front view of 
the face and sometimes also from side face profiles. An automatic face recogni- 
tion system employing both front and side views of the face is more accurate, 
since it takes advantage of the explicit information inherently available in both 
the views of the human face. Face recognition approaches employ diverse tech- 
niques like neural nets, elastic template matching, Karhunen-Loeve expansion, 
algebraic moments, iso-density lines, etc. [2 ] - [5 ] .  Each of these methods has 
its advantages and limitations. The feature extraction and matching tech- 
niques for face recognition are presented in the next section. 

12.2.1 Feature Selection 

A set of landmark points are first identified from the front and side views of 
the human face, which are then used for feature measurement based on area, 
angle and distances between them. The combined set of features extracted 
from both the views is usually very effective to  distinguish faces and provides 
more reliability over systems using features only from a single view because 
the side profile features provide additional structural profile information of 
the face, not visible from the frontal images. 

Extraction of features from the front view may be performed from the edge 
images [ 5 ] .  The template matching may be used for extraction of the eyes from 
the face image, while features such as nose, lips, chin, etc., may be extracted 
from the horizontal and vertical edge maps of a human face. 

12.2.2 Extraction of Front Facial Features 

Correlation-based technique extracts several front facial components such as 
eyes, eyebrows, eye points, etc. A set of eye templates are initially chosen. The 
facial image f ( i , j )  is convolved with a set of appropriately chosen templates 
T(m,  n) ,  represented by the following filter operation: 

F ( i , j )  = x y ; T ( m , n )  * f ( i  + m,j + n). 
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This convolution process generates a set of energy measures at the output of 
the filter. The position of the eye is determined from the output of the convo- 
lution filter. Using translation, scale, and rotation invariant affine transform, 
we can detect the eyes from the convolution filter. 

Once the two eyes have been detected, the eyebrow positions can be located 
within a small search region above the eye-center. Subsequently, a set of 
eyebrow templates can be matched along the column of the iris in each half 
of the eyebrow template window to detect the eyebrows above the left and 
right eyes. Some of the front facial features are invariant features, which do 
not change with facial expression, whereas others are variant features. Some 
of the front facial points are shown in Figure 12.1. Among the front facial 
features, eyes have a significant role in the recognition process. 

Fig. 12.1 
binarized side view, (c) contour of the side profile with fiducial points marked on it. 

(a) Some of the Fiducial feature points of front face, (b) side view, (c) 

Some of the invariant and variant features from the front face view. are 
illustrated as follows: 

1. Invariant features 

0 Distance between left and right iris centers 

0 Distance between two inner eye points 

0 Distance between two outer eye points 

0 Distance form eye-center (mid point of distance between two iris 
centers) to nose tip 

2. Variant features: 

0 Distance between left iris center and left eyebrow (same column) 

0 Distance between right iris center and right eyebrow (same column) 

0 Face width at  the nose tip 
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12.2.3 Extraction of side facial features 

12.2.3.1 Selection of fiducial marks The outline profile of the side view of 
a human face yields a set of good features for identification. The selected 
landmark points are (1) nose point, (2) chin point, ( 3 )  forehead point, (4) 
bridge point, (5) brow point, ( 6 )  lip-bottom-curve point. 

The digitized photograph of the side face is transformed to side outline 
profile and the landmark points are then extracted. The side face image, its 
binarized version, side profile, and the selected landmark points are shown in 
Figure 12.1. Seven distance measures and one area measure are now extracted 
from the landmark points obtained from each side profile. 

12.2.3.2 Distance and Area measures A set of distance measures computed 
from the extracted landmark points are (1) Nose to  Forehead distance] (2) 
Nose to Bridge distance, (3) Nose to Nose Bottom distance, (4) Brow to  
Bridge distance, (5) Brow to Chin distance, (6) Nose to Chin distance, ( 7 )  
Nose Bottom to Lip Bottom curve point distance. Area of the profile on the 
left portion of the line joining forehead and chin point is taken as the area 
measure feature. 

Fig. 12.2 
lip distance 

(a) Nose to Chin distance, (b) Nose to forehead distance (c) Chin angle (d) 

Some of the side facial features are shown in Figure 12.2. The set of fea- 
tures] from the front view and the side profile form a combined feature vector 
array. Each facial photograph is reduced to this feature vector array which 
is expected to  be unique for each face and is stored in a file with subject 
index number. To remove the effect of scaling, the distance measure and area 
measure values of side view have been normalized with respect to the distance 
between nose point and bridge point. Similarly the measures of front face are 
normalized with respect to  the inter-ocular distance. 
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12.2.4 Face Identification 

The facial images may be acquired by a digital camera in a well illuminated 
room. The front view is captured by making the subjects look into the camera, 
while the side view should be taken by keeping the faces at approximately right 
angle to  the camera. A set of optimal features from the front and side face 
are next extracted and these feature values are stored in a separate file. Let 
the vectors in the main face data file be called M-vectors. The test-data file 
contains the 15 dimensional feature vector for the unknown sample. 

To reduce the computational complexity of matching the feature vector 
values along with their subject indices are stored in ascending order. The 
test feature values are inserted at  the appropriate places in the sorted feature 
list in each feature (column). The two nearest neighbors of the test sample 
pattern are identified in each column and their similarities are evaluated. 

Algorithm for k-nearest neighbor classifier for face matching is as below. 

Step 1 Arrange the feature values along with their subject indices in each 
column in ascending order. 

Step 2. Insert each feature vector of the test sample at  its appropriate place 
in each column. 

Step 3. Determine the two nearest neighbors in each column and compute 
the similarities of the test pattern to  both the nearest neighbors, each 
having a subject index. 

Step 4. Compute the overall similarity of the test pattern to all the subject 
indices. 

Step 5. Assign the subject index having maximum similarity value t o  the 
test face. 

If the face in the test-file does not belong to  any of those stored in the main- 
data file, it gives out the class index of the nearest similar face to  that of the 
test face.The algorithm as above yields excellent results on face recognition. 

12.3 FACE RECOGNITION USING EIGENFACES 

indexEigenface The ezgenfuce representation method for face recognition is 
based on the principal component analysis. The main idea is to  decompose 
face images into a set of eigenfaces (a small set of characteristic feature im- 
ages), which are the principal components of the original images [6]. These 
eigenfaces function as the orthogonal basis vectors of a linear subspace called 
face space. The face recognition strategy involves projecting a new face image 
into the face space and then comparing its position in the face space with 
those of known faces. In this method the training set of facial image patterns 
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are converted into a vector of M x N x K where M x N is image size and K 
is number of training samples. This M x N-dimensional space is indeed very 
large and it is important to  reduce the dimensionality of this space before 
attempting face recognition. Principal component analysis (PCA) and linear 
discriminant analysis (LDA) are two common approaches to reduce this large 
dimensionality. 

The basic philosophy in PCA is to map all the M x N-dimensional face 
samples, xi, i = { l , . . . , k }  to  a single vector yi,  i = {1, . . . ,n}  so that yi 
represents xi, i.e., 

where each xi represents a face and w is a weight vector which represents 
scaling. The objective function is maximization of variance, i.e., 

y2 = w T 2 2  (12.1) 

n. 

- n  
where 

1 
% =  -CYt. n 

2=1 

(12.2) 

(12.3) 

The set of weight vectors w1,. . . , Wk represent the eigenvectors of the co- 
variance matrix computed from the set of sample faces and k < M N .  This 
implies that we select only a few eigenvectors corresponding to the dominant 
eigenvalues and thus reduce the dimensionality of facial features. 

For an accurate face recognition system, the accuracy should be quite high 
and at the same time the processing time for a test face image should be 
low. The recognition system should be invariant to the head rotation and 
translation, and also to the illumination intensity changes. 

12.3.1 Face Recognition Using Fisherfaces 

Another interesting technique, known as Fisherface also uses the linear pro- 
jection concept of eigenfaces and elastic branch graph matching. Fisherface 
uses Fisher linear discriminant analysis (FLDA) which yields a robust clas- 
sifier, and enhances the classification accuracies of the face patterns. Fisher 
linear discriminant function (FLDF) creates a linearly separable space which 
is efficient in discriminating the face patterns. FLDF finds out a number of 
linear functions which partitions the face space in k distinct classes [7]. 

While using Fisherface approach, the training face patterns includes not 
only a single face but various expressions of a face pattern. Let there be 
ni samples of different expressions of the i th  face class and m(2) represent 
the average feature vector of the n, samples of the i th  class. The objective 
function to  be maximized in this case is 

JF  =max{  WTSB w } 
WTSW w (12.4) 
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where Sg is between class scatter matrix given by 

and SW is within class scatter matrix given by 

(12.5) 

In Eqs. 12.4, 12.5, and 12.6, m represents the sample mean vector, ni is 
the number of samples in ith class, and xy) represents j t h  facial expression 
of the ith face and W is the projection matrix. 

The objective function J F  attempts to  maximize the Euclidean distance 
between the face images belonging to different persons, while minimizing the 
distance between the face images belonging to  the same person. The projec- 
tion direction that maximizes JF yields the column vectors of the projection 
matrix W .  The objective function J F  is maximized when the column vectors 
of W are the eigen vectors of SG'SB. It may be noted here that if the di- 
mensionality of the sample space is larger than the number of samples in the 
training set, Sw becomes singular and thus its inverse does not exist. Several 
strategies have been attempted to take care of such situations. 

Both the PCA and LDA preserve the global structure of the face-space, 
but Fisherface method has better discriminating capability compared to the 
Eigenface method. 

Another interesting face recognition technique, called Laplacianface ap- 
proach uses locality preserving projection to  map into a face subspace [8]. 
This method attempts to  obtain a face subspace that best detects the essen- 
tial face manifold structure by preserving the local information. The method 
yields better accuracy compared to  Fisherface or Eigenface methods. 

12.4 SIGNATURE VERIFICATION 

Signature is an important biometric measure, which are subject to  intra- 
personal variation. An automated system for signature verification is feasible 
only if the representation of the signature image is insensitive to  intra-personal 
variations, but sensitive to inter-personal variations. The goal is to maximize 
the distance between signatures of different individuals, the maximizing con- 
straint being that the distance between the signatures of the same person is 
kept constant or minimized, once the measure of distance is properly defined. 
A number of interesting techniques on signature verification has been reported 

[91-[111. 
We now present a four-step methodology for signature verification. 
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Step 1. Preprocess and binarize the signature image. 

Step 2. Extract the medial axis, the thinned version of the signature pattern. 

Step 3. Perform water-filling operation. Extract the structural features from 
the water-filled pattern. 

Step 4. Using any matching algorithm, identify the best match from the 
signature database using the features extracted in steD 3. 

f ig. 12.3 Signature Image (a) Original (b) Thinned version of the original (c) Samples 
of original and forged signatures (d) example of waterfilling 

12.5 PREPROCESSING OF SIGNATURE PATTERNS 

The binarized signature image, as in Figure 12.3(a), is thinned using any 
standard thinning algorithm. The objective is to obtain a trajectory of the 
pen-tip. I t  may be observed from Figure 12.3(b) that the thinned image does 
not accurately capture the pen-tip trajectory, while it adequately preserves 
the structural information necessary for recognition. 



PREPROCESSING OF SlGNATURE PATTERNS 261 

Some artifacts introduced by thinning are: 

0 loops and holes in the binary image are reduced to single segments. 

0 strokes intersect on a sequence of points instead of a single point. 

0 false loops may arise in the thinned version, which can affect the water- 
filling algorithm. 

0 there may be a loss in the continuity of the connected components. 

Edge map is usually used for extracting object shape, which requires edge 
linking. This is not a trivial problem, considering the fact that the edge set can 
be seen as general graphs. A heuristic graph search is not optimal, since vital 
information may be lost, while optimal methods like dynamic programming 
may be computationally too expensive. Also the edge detectors are not usually 
ideal, which may result in creation of false edge points. 

To address the above issue, a good solution is to  employ the water-filling 
algorithm, which can extract features directly from the edge map without 
edge linking or shape representation. The algorithm performs a raster scan 
on the edge map and fill in water at the first edge pixel that has less than 2 
neighbors, i.e., the fill in process starts at an end point. The waterfront then 
flows along the edges in all paths available (4-connectivity or 8-connectivity). 
This algorithm can be regarded as a simulation of “flooding of connected 
canal systems” and hence the name “water-filling algorithm”. In the example 
shown here, 4-connectivity has been depicted. A small part of the signature 
image (Figure 12.3(a)) has been chosen, whose thinned version is shown in 
Figure 12.3(b), while the waterfilling process is depicted in Figure 12.3(d). 
The following quantities are used as primitives and their values refer to  the 
Figure 12.3(d). 

1. Filling time: It is the time taken by water to  fill a set of connected edges. 
The filling time is (14, 12, l}. 

2. Group point count: It is the number of pixels, which offer three paths 
for the waterfront to  travel, keeping aside the path from which the front 
had reached that pixel. Group point count is (0, 0, O}. 

3.  Multiple point count: It is the number of pixels, which offer 4 or more 
paths for the water-front to  travel, keeping aside the path from which 
the front had reached that pixel. It is applicable only for 8-connectivity 
and the count value is (0, 0, 0). 

4. Edge point count: It is the number of points, which have no paths for 
the waterfront to flow, keeping aside the path from which the front had 
reached that pixel. Edge point count is {2, 2, l}. 

5. Loop count: It is the number of simple loops in a set of connected 
edges. Using the 8-connectivity, there can be many instances of false 
loops, which need to be removed. Loop count is (0, 1, 0). 
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6. Water amount: I t  is the total amount of water used to  fill up the set of 
edges in terms of the number of pixels. Water count is (14, 18, 1). 

7. Horizontal (vertical) cover: It is the width (height) of the rectangular 
bounding box of the set of edges. Horizontal cover is (6, 5, 1) and 
vertical cover is (8, 6, 1). 

Using these primitives, a set of secondary or structural features can be 
extracted. Some of these structural features are: 

0 Maximum Filling Time (MFT) and associated Fork Count (FC): MFT 
is defined as the maximum of the individual filling times. MFT & FC 
are features associated with a salient object in the image. 

0 Filling Time Histogram and associated Average Fork Count (FTH & 
AFC): This is a global feature on all sets of connected edges in the 
edge map. It  represents the edge map by the distribution of the edge 
” length.” 

0 Global Loop Count and Maximum Loop Count (GLC & MLC): Global 
loop count is defined as the summation of all the loop counts. MLC on 
the other hand is the maximum value of all the loop counts. 

12.5.1 Feature Extraction 

A multistage matching algorithm is used for signature matching. After the 
initial pre-processing is performed, the water-filling features are extracted 
next. 

The conventional Hough transform is now applied on the image, and the 
accumulator values are incremented in the parameter space. 

1. Remove all horizontal lines, which contain at  least one run of length 
greater than a parameter, say maxrun. 

2 .  Remove all horizontal strips of height less than the parameter say, strip 
height. 

The above two steps are performed, since the Hough transform produces 
all possible lines in the parameter form. If the parts of the image which 
are not persistent strokes, are not removed, we get unnecessary count in the 
accumulator cells. The signatures are more or less scribbled in a small patch 
in a horizontal fashion. A study of scribbled signatures shows that the length 
of the perfectly horizontal strokes is not persistent. 

The top few accumulator values are used as the feature values for match- 
ing. A new algorithm for matching is proposed, which directly works in the 
parameter space of the Hough transform and based on which matching is 
done. 
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12.5.1.1 A Matching Strategy The matching strategy should be inherently 
robust to scaling and translation. It is assumed here that the signatures 
acquired are more or less horizontal in orientation and that the slight changes 
in angle due to  intra-personal variations is effectively taken care of. Certain 
assumptions, which are made while designing a signature verifier are listed 
below. 

0 The intra-personal signatures may be inherently translated, during the 
image acquisition stage itself. The algorithm is designed for translation 
invariance. 

0 The variations in intra-personal signatures may be a variation in the 
slant, position or length of the keystroke; which is not too much. 

0 Same strokes of the same person may be of variable length, in different 
signatures. 

The test signature is matched with those in the database and the signature 
with minimum distance measure, i.e., which is closest enough to  the best 
match in the database is selected. 

The experiment should be carried out on a database of a large number 
of signatures as shown in Figure 12.3(c) taken from many people and include 
signatures of all types from very smooth cursive type of signatures to  scribbled 
signatures. The aim of signature verification is to identify the skilled forgeries. 

12.6 BIOMEDICAL IMAGE ANALYSIS 

Bio medical image processing can broadly be classified into (1) Microscopic 
image analysis, and (2) Macroscopic image analysis. A brief description of 
the two are given below. 

12.6.1 Microscopic Image Analysis 

In microscopic image analysis, we deal with the living organisms, Which are 
microscopically small objects, and are important in understanding the sci- 
ences of biology and medicine. Living organisms are composed of cells and 
the normal and abnormal cells influence growth, developments, disease or ma- 
lignancy in human body. Advanced imaging techniques have made it possible 
to  view these hidden aspects of microscopic biological material and helped the 
understanding of the biomedical sciences over the past several decades. 

The digital image processing techniques have been extensively used to  im- 
prove the clarity of microscope images using several techniques detailed in 
Chapter 6. Some of the techniques like histogram manipulations, image filter- 
ing etc have been employed extensively to  get quantitative and morphometric 
information about the biological organisms. 
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Image processing techniques have also been used to automate and stan- 
dardize diagnostic tests performed on blood cells, historical samples cervical 
smears, chromosome preparations and chromosome analysis and other types 
of microscopic images. 

12.6.2 Macroscopic Image Analysis 

In macroscopic image analysis, we deal with the images of human organs 
such as heart, brain, eye, etc., which are enhanced, segmented and analyzed. 
Different image processing tasks like image filtering, shape modeling, segmen- 
tation, classification and interpretation techniques have been extensively used 
in diagnostic radiology, cardiology, dentistry, and many other areas. 

The preprocessing phase involves enhancement, deblurring, and filtering of 
the radiographs. The enhancement techniques may be linear or non-linear, 
and may involve local or global filters. Deblurring techniques consist of in- 
verse or Weiner filters. Edge detection and boundary detections are important 
steps in many biomedical image analysis applications. Segmentation including 
thresholding techniques are useful in segmenting objects of interest. Various 
supervised and unsupervised techniques have been used for analysis of macro- 
scopic images.When adequate prior information is available, matched filters 
can be used.Shape modeling including 3D representation and graphic manip- 
ulations have also been extensively used. 

Medical image engineering includes a broad range of image formation modal- 
ities such as computer aided conventional radiography, time varying images, 
stationary non-invasive images, tomographic reconstruction, x-ray computed 
tomography, positron emission tomography, MRI, volume image reconstruc- 
tion, nuclear imaging. ultrasonic imaging. diaphonography, electro-encephalography, 
opthalmography, etc. 

12.7 BIOMEDICAL IMAGING MODALITIES 

Here we briefly review some important biomedical imaging techniques [la]. 

12.7.1 Magnetic Resonance Imaging (MRI) 

Various constituent organs in human body contains considerable amount of 
water molecule and fat, and thus there is an abundance of Hydrogen in our 
body tissues. The MRI signals, emanate from these Hydrogen nuclei, when 
they are excited by magnetic stimulus and these signals are used for imaging. 
Noted physicists Bloch and Purcell have first conceived the concept of MRI, an 
advanced type of imaging technique in the year 1946. The principle involved 
here is to  stimulate the matter magnetically and the imaging signal is obtained 
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by the changes in the fundamental properties of matter, in response to this 
magnetic stimulus. 

MRI (alternatively Nuclear MRI) utilizes a tomographic imaging technique 
and captures the image in form of slices. Each body slice, abundant in hy- 
drogen, may be viewed as a set of voxels, which are volumetric cells element 
, where each Hydrogen nuclei represents one voxel. When properly excited, 
these nuclei represented by a volumetric cell give out NMR signal, and the in- 
tensity of the image pixel is proportional to  the intensity of NMR signal from 
the corresponding voxel. Thus from the mapping of the individual tissues, 
the cumulative mapping of the entire organ is obtained. 

The imaging applies one-dimensional magnetic field gradient over a slice. 
I t  works on the principle of frequency encoding, where the obtained signal is 
proportional to  the number of spins perpendicular to  the applied magnetic 
vector, and the resonance frequency is a function of the position of the spin. 
MRI applies 1-dimensional field gradient to a slice and records the response, 
now the field vector is rotated through a circle in small steps, and the recorded 
data can be back projected for getting the image. 

Using the principles stated above the imaging may employ various tech- 
niques such as Multisliced Imaging, Oblique Imaging, Spin Echo Imaging, In- 
version Recovery, Gradient Recalled Echo Imaging, etc. The imaging tech- 
nique depends upon the pulses that are used for excitation. 

MRI is nowadays widely used in visceral imaging for tumor detection and 
also in other applications in spine, neck, brain, etc. Apart from being an ac- 
curate imaging system it enjoys a great advantage of being safe in application. 
I t  doesn’t employ the conventional belief that  the frequency used for imaging 
should be smaller than the object. I t  uses phase and frequency variation in 
the RF range, hence devoid of the hazardous effect of other visceral imaging 
techniques such as X-Ray. 

12.7.2 Computed Axial Tomography 

Computed axial tomography, popularly known as CT-scan or CAT scan is 
another powerful technique for medical imaging. This is employed in imaging 
of soft tissue system, as well as hard bones, and blood vessel. 

This imaging technique employs X-ray photography principle. It sends X- 
rays with different strength, and depending upon the type of obstruction it 
faces, the X-ray beams are characterized based on the responses. This employs 
tomographic imaging techniques, i.e., the imaging is carried on slices. 

Structurally a CAT scanner contains a X-ray tube, and a detector. The 
tube is rotated along a spiral/circular path and the image of the slice is cap- 
tured by the X-ray detector. During a full rotation, the detector records a 
large number (nearly 1000 per rotation) of snapshots. The images are further 
broken into several independent data set and further processed in a number 
of parallel channels. During this processing the profile is back projected to  
give the actual image of the tomographic slice. 
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The CAT scanner is a banana shaped device, that performs the function 
of X-ray beam firing as well as the photography. I t  also contains the frame 
that rotates the X-ray tube for producing a rotating X-ray beam. Apart from 
the scanner device a CT-scan system requires parallel PC interfacing, in a 
mutually communicating mode, and also advanced three-dimensional image 
processing algorithms for image reconstruction by the back projection method. 
The rotation of the frame, table, control of the X-ray beam is also built on 
microprocessor based system. Being fully computerized the required zone may 
be imaged by sliding a window with high precision. 

Though originally evolved as a slice imaging, modern CT-scans uses volume 
imaging for a 3D reconstruction of the imaged viscera. As stacking of slices 
may lead to  misalignment because of voluntary and involuntary movements 
on the patient’s part such as respiration, etc. 

Because of the imaging technique, CT-scan provides sufficient perspective 
views of the object for 3D reconstruction. PC  based system organization al- 
lows a CT-scan to  carry out high quality 3D image processing to provide an 
excellent opportunity for the diagnosis purpose, C T  has got another big ad- 
vantage in terms of speed. Due to microprocessor based data acquisition and 
fast parallel processing algorithms, CT-scan has a significant speed advantage 
over other imaging techniques. 

CT uses 3D imaging based on X-ray vision, so it has got the penetration 
power and hence can be used for virtual endoscopy of colon or bronchial canal, 
without any physical endoscope. Even in some cases it reaches beyond the 
scope of the invasive endoscopes. 

CT-scan is extensively used in imaging of visceral organs like the brain, 
lungs, kidneys, liver, pancreas, pelvis, and blood vessels. With the improve- 
ment in the imaging techniques gradually it is finding in application in cancer 
detection as well as diagnosis of heart disease, stroke, etc. 

12.7.3 Nuclear and Ultrasound Imaging 

In nuclear medicine, radioactive materials are usually given through intra- 
venous (IV), or swallowed or inhaled to obtain images of human organs. The 
passage of movement of the radioactive substance is tracked by a detector. 
Radionuclides get tagged with certain substances within the body. I t  emits 
gamma radiation which is captured by a sensor in a gamma camera. These 
images are poor in resolut,ion, yet they visualize the physiological functions, 
such as metabolism in a clear way. 

In ultrasound images, an ultrasonic pulse propagates from a transducer 
placed on the skin of the patient. The backscattered echosignal is recorded 
from which an image is constructed. Ultrasound gets transmitted through 
water. The cysts which are watery fluid structure does not send any echo 
to  the recorder. On the other hand bones, calcification and fats absorb and 
reflect the ultrasound beam to  a small extent and creates acoustic shadowing. 
Thus cysts can be detected in any organ using ultrasound images. 
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12.8 X-RAY IMAGING 

X-ray images on photographic films are the oldest and most frequently used 
form of medical imaging. X-ray imaging is the fastest and easiest way for a 
physician to  view and assess broken bones, a cracked skull or in back bone. 
X-ray is useful in detecting more adverse forms of cancer in bones. Diagnostic 
X-ray images can be created by passing small highly controlled amounts of 
radiation through the body, capturing the resulting shadows and reflections 
on a photographic plate. The X - ray images are caused by various levels 
of absorption by calcified structures, soft tissues, fatty substances and so on. 
There are two types of projections (i) Postero-Anterior (PA) when the beam 
traverses from the back t o  the front of the patient, and (ii) Antero-Posterior 
(AP) where radiation traverses in the opposite direction. 

12.8.1 

An interesting survey of low level image processing including pre-processing, 
feature extraction and classification techniques for radiographic images may 
be found in [13]-[17]. Interesting Feature selection and pattern classification 
techniques for Digital chest radiograph have been highlighted in [lS, 191. 

Radiographic analysis chest X-ray film (a standard view PA erect 14 x 17 
film) involves number of steps. In radiographic images the regions containing 
air appears as black, while the regions containing more solid tissues appear 
light. Bone containing calcium are more radio opaque than soft tissue. The 
anatomical structures clearly visible on a normal chest X-ray film are the ribs, 
the throcic spine, the heart, and the diaphragm separating the chest cavity 
from the abdominal cavity. All the different regions in the chest radiographs 
may be examined for abnormality, however primary emphasis is on the lungs 
and heart. There are several disease processes with diagnostic signs that can 
be identified on a PA chest radiograph. Important indicator of lung diseases: 

X-Ray Images for Lung Disease Identification 

a) vascular pattern within the lung field 

b) increase in tissues adjacent to  the small bronchi and blood vessels 

c) small tumors, rib fractures and localized pneumonia. 

12.8.2 Enhancement of Chest X-Ray 

A number of enhancement strategies have been employed by various researchers 
for enhancement of chest images. Gabor filters have been used for enhance- 
ment of the nodule by removing the continuous components. Laplacian of 
Gaussian filter has also been employed to  enhance the isotropic features of 
the lung nodules. By enhancing the contrast between the region inside the 
nodule and the background structure, the lung nodules can be made more 
visible. 
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12.8.3 

Lung cancers originate as a small growth, or nodule in the lung. Use of 
screening CT scans are extremely useful in detecting nodules a s  small as 2 
or 3 mm within the lungs. A CT scanner captures a series of high-speed 
X-rays, which are used to generate three-dimensional images. These images 
are interpreted by the radiologists. The scan itself takes less than 20 seconds 
to  perform and no preparation is required on the part of the patient. The CT 
lung scan uses low-radiation-dose computed tomography to detect cancers of 
extremely small diameter. Screening CT-scans are capable of detecting lung 
nodules much smaller than by conventional chest X-ray. 

Lung nodules are commonly described as small round like blob object. I t  is 
roughly spherical and has a density comparable to water, which is higher than 
the surrounding lung parenchyma. Radiologist uses circularity and density 
versus size measurement, as criteria for nodule detection. 

Some of the features used for the detection and classification of nodule in 
a chest radiograph are 

CT-scan for Lung Nodule Detection 

(a) Gray lewel statistics features are (i) First order and second order statis- 
tics like mean, standard deviation computed from the histogram of the 
gray values of the inner core region and also the outer region of the sus- 
pected region, (ii) Contrast between the core part and the outer shell 
region 

(b) Geometric features are (i) Circularity of the shape, (ii) Average eccen- 
tricity, (iii) Kurtosis, (iv) Directionality of the mass, (v) Shape factor, 
(vi) Area, perimeter, etc., (vii) Compactness. 

(c) Other features are (i) Textures, (ii) Angular second moment, (iii) En- 

An appropriate classifier is next designed utilizing a set of features from 
the above list. for classification of the nodule as benign or malignant. Various 
classifiers including neural network based classifier have been proposed for the 
detection of nodules in chest radiographs [20]. 

tropy, (iv) Inverse Difference Moment. 

12.8.4 

The heart size and shape are important features for heart disease detection and 
classification. These along with other features are extracted from the ordinary 
PA chest radiograph. Rheumatic heart disease affects the mitral, aortic and 
the tricuspid valves. The inflammation caused by the disease cause scattering 
of the valve leaflets. The involved valve or values produce The anatomical 
changes in the heart and great vessels should be detected in chest radiographs. 
In mitral stenosis diseases, the changes are characterized by a 

X-Ray Images for Heart Disease Identification 

a) filling of the region immediately above the heart and lateral to the pul- 
monary artery and left hilar region. 
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b) reduction or disappearance of the aortic knob. 

c) slight to severe protrusion of the left atrial appendage and a steep de- 
scent of the left ventricular arch to  the diaphragm. 

d)  enlargement of the cardiac projection with elongation and greater round- 
ing of the left ventricular arch. 

The heart diseases may be classified in five classes - (1) Normal, ( 2 )  Mi- 
tral stenosis only, (3) Other mitral valve lesions, (4) Aortic and mitral valve 
involvement, and (5) Aortic involvement. 

12.8.5 X-Ray Images for Congenital Heart Disease 

Several efforts have been put forward by the researchers to  detect congenital 
heart disease from chest radiographs.Congenita1 heart disease is associated 
with a broad range of structural anomalies of the heart. The problems associ- 
ated with identification of heart diseases is that it is not possible to see all the 
chambers of the heart on any one projection. To make a diagnosis of conven- 
tional disease, the PA chest X-ray is most important because it contains the 
most diagnostic information. The lateral view is a complimentary view, which 
shows both the right ventricle and the left ventricle. Radiologists and cardi- 
ologists use a right anterior oblique radiograph and a left anterior oblique 
radiograph. These views are part of a cardiac series but are not routinely 
taken. The major tasks involved in analyzing the PA chest X-ray are 

step 1: Preprocess the chest radiograph 

step 2: Extract the heart contour by active contour model. 

step 3: Determine the heart size and extract the shape parameters 

step 4: Determine the right and left edge of the heart 

step 5: Determine the lower right and lower-left corner of the heart. 

step 6: obtain the cardiac rectangle from the heart contour. 

step 7: Extract a set of features from the cardiac outline. 

step 8: Classify the chest X-ray using the shape parameters. 

There may be an overlap of the heart boundaries and the right main pul- 
monary vessels. Using an appropriate thresholding technique the right edge, 
may be determined. 
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12.8.6 

Robust image enhancement techniques are useful in obtaining good quality 
medical images, which can efficiently enhance the radiographic images, sup- 
pressing the image noise considerably. Gradient operators can be used for 
the enhancement of images, and are widely used in medical image processing 
applications. The gradient operators enhance image edges and at the same 
time enhance noise also and hence the need for a filter before edge enhance- 
ment is attempted. Emphasizing the fine details of a radiographic image while 
suppressing noise is possible by employing a median filter prior to applying 
a gradient operator. Approximations to  the pill box blur and Gaussian low 
pass filter also yield noise reduction. 

Several adaptive image enhancement algorithms are available in the litera- 
ture. An adaptive algorithm first removes the film artifacts, then computes the 
gradient images by using the first derivative operators and finally enhances 
the important features of the radiographic image by adding the adaptively 
weighted gradient images. The local statistics of the image are utilized for 
adaptive realization of the enhancement, so that the image details can be 
enhanced and image noise can be suppressed. The contrast-limited adaptive 
histogram equalization (CLAHE) produces images in which the noise content 
of an image is not enhanced, but in which sufficient contrast is provided for the 
visualization of structures within the image. Images processed with CLAHE 
have a more natural appearance and facilitate the comparison of different ar- 
eas of an image. However, the reduced contrast enhancement of CLAHE may 
hinder the ability of an observer to detect the presence of some significant 
gray-scale contrast. 

Enhancement of Chest Radiographs Using Gradient Operators 

f ig. 12.4 Chest Image (a) Original, enhanced by (h) histogram equalization, ( c )  local 
area histogram equalization, (d) another input original image, (e) enhanced by contrast 
limited adaptive histogram equalization. 

Figure 12.4(a) is the original chest x-ray image. In Figure 12.4(b) and 
(c), the lung boundaries and edges of the bones are enhanced using histogram 
equalization and local area histogram equalization respectively. Figure 12.4(d) 
is another original chest x-ray image and the enhanced image by contrast 
limited adaptive histogram equalization is shown in Figure 12.4(e). 
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12.8.7 Bone Disease identification 

The image processing of bones provides important information like the exis- 
tence of any tumor or growth in the bone and if it is present, it is important 
to  estimate the location, size and shape of the tumor and density of the tumor 
with reasonable accuracy. Other features of interest like the bone destruction 
visibility, type of bone destruction, penetration of cortex, fracture sign may 
also be available by image processing. The common use of bone radiographs 
is to assist physicians in identifying and treating fractures. Images of skull, 
spine, joints. Bone X-rays are an essential tool in orthopedic surgery such as 
spiral repair, joint replacements or fracture reduction. Texture analysis has 
been observed to detect severe Osteoporosis of bones [21]. 

12.8.8 Rib-cage identification 

Finding the rib-cage in chest radiograph is an important area of research in 
X-ray image processing. To find the rib cage is t o  find and identify the upper 
and lower contours of each rib. Each of these contours constitutes, description 
of a rib. The rib cage finder consists of the 

Step 1. Preprocessing, which consists of scanning digitizing and filtering the 
input radiograph. 

Step 2. Local edge detection , consisting of gradient operator, a Laplacian 
and a threshold operator. 

Step 3. Global boundary detector which finds candidates for the dorsal and 
ventral portions of the rib contours by matching straight, parabolic and 
elliptical curve segments to the 

Step 4. Rib linker, which matches and joins the corresponding dorsal and 
ventral segments from step3 by a fourth degree polynomial. The poly- 
nomial represents each rib contour as a separate entity. 

In order to enhance the edges, a high pass filtering in the spatial frequency 
domain with an transformation function is required. The important uses of 
the Rib cage finder are 

(a) Rib image contribute false positives in tumor detection algorithm. Hence 
detecting the Rib should facilitate removal of these false positives. 

(b) The ribs give the radiologists a convenient frame of reference for the 
description and location of the heart and lung within the thoracic cavity. 

(c) The outer envelope of the Rib provides a more accurate basis for com- 
puting the boundary of the chest cavity than other available techniques. 
Earlier work on automatic rib detection has been reported in [22]. 
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12.9 DENTAL X-RAY IMAGE ANALYSIS 

Dental caries and periodontal disease are the most common dental diseases in 
the world. Dental caries has affected human being widely in modern times. 
Dental caries is an infectious microbiological disease that results in localized 
dissolution and destruction of the calcified tissues of the teeth. If untreated 
the caries results in the progressive distraction of the tooth and infection of 
the dental pulp takes place. 

12.10 CLASSIFICATION O F  DENTAL CARIES 

Classification of dental caries is important for the diagnosis and treatment 
planning of the dental disease, which has been affecting a very large population 
throughout the globe. I t  is also helpful for conducting detailed study and 
investigations about the nature of the dental disease. Classification of dental 
diseases is decided on the basis of certain criteria, such as based on whether 
the lesion is within the enamel, dentin or whether it touches the pulp. Dental 
caries are, clearly visible in the x-ray changes and it can be detected from the 
caries lesion present in the radiographs. 

Image processing techniques will help check the x-ray and examine the 
ext,ent to which the caries lesion is present and then classify the type of caries 
present in the dental radiograph. [23 ,  241. A computer aided interpretation 
and quantification of angular periodontal bone defects on dental radiograph is 
performed by P.F. Van der stelt and Wil G.M. Geraets. Capabilities of human 
observers to detect and describe small bone defects objectively are limited. 
Digital image processing can provide a useful contribution to  the diagnostic 
process. Their procedure was able to rank series of artificial periodontal bone 
lesions as accurate as experienced clinicians. Comparison of data from clinical 
inspection of lesions during surgery and quantitative result of the digitized 
procedure shows that the latter produced reliable information on the lesion 
size. Dental caries can be classified in a number of ways depending upon the 
clinical features, which characterize the particular lesion. Dental caries may 
be classified according to the location of the individual teeth as (a) Pit or 
Fissure caries and (b) Smooth surface caries. 

According to the rapidity of the process dental caries can be classified as 
(i) Acute dental caries and (ii) Mild dental caries. 

Caries may also be classified according to other criteria. 

(i) Primary (virgin) caries: Depending on whether the lesion is a new one 
attacking a previously intact surface, 

(ii) Secondary (Recurrent) caries: Depending on whether whether it is lo- 
calized around the margins of a restoration. 

According to the extent of attack dental caries may be classified as 
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1. ENAMEL CARIES: Caries of the enamel is preceded by the formation 
of a microbial (dental) plaque. The processes vary slightly, depending 
upon the occurrence of the lesion on smooth surfaces or in pit or fissures. 
When the caries have affected the outer enamel portion alone and if 
the inner dentine and pulp regions are healthy then the type of caries 
is called enamel caries. Enamel caries can further be classified as (a) 
Smooth surface caries and (b) Pit and fissures caries. 

2. DENTINAL CARIES: Caries of the dentin begins with the natural 
spread of the process along the natural spread of great numbers of 
the dentinal tubules each which acts as a tract leading to the denti- 
nal pulp along which the micro-organism may travel at  a variable rate 
of speeds depending upon some factors. In some instances carious in- 
vasion appears to  occur through an enamel lamella so that little if any 
visible alteration in the enamel occurs. Thus when lateral spread a t  the 
dentino-enamel junction occurs with involvement of under lying dentin, 
a cavity of considerable size may actually from with only slight clinically 
evident changes in the overlying enamel except for its undermining. 

3. PULPAL CARIES: The carious lesion discussed prior to  this point has 
been limited chiefly to coronal caries, and process has involved basically 
the enamel and dentin of that portion of the tooth. Another form of 
disease does exit which is known as root caries or root surface caries. At 
one time it was also referred to as caries of cementum. It  is generally 
recognized that the longer life span of persons today, with the retention 
of teeth into the later decades of life has increased the no: of population 
exhibiting gingival recession with clinical exposure of cementa1 surfaces 
and there by probably increasing the prevalence of root caries. Root 
surface must be exposed to the oral environment before caries can de- 
velop here. In this section dental caries classification is performed based 
on the edge detection: The caries affected tooth is selected , which is 
subsequently used for caries classification. 

12.10.1 Classification of Dental Caries 

The dental caries classification algorithm is briefly explained below. The ra- 
diographic image is first captured using an appropriate X Ray imaging device, 
connected to the image analysis system. The image is captured along a line 
parallel to the long axis of the tooth. The dental x ray image is initially seg- 
mented into individual tooth, which is followed by binarization of the tooth 
pattern. The edge detection of the segmented tooth yields the outline of the 
dental cavity. The classification may be achieved using a simple rule based 
system. By determining the number of carries affected pixels, the region area 
may be extracted. If there exists only one black region and there is an ad- 
jacent white border, i.e., black carries region is adjacent to  the white border 
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Fig. 12.5 Dental Image 

enclosing the tooth, then the carries is classified as palpal. If on the other 
hand there exists two or more number of black regions and the width of the 
black region is less than 2 mm then it is Enamel carry. I t  may be pointed out 
here that the thickness of enamel around the tooth is approximately 2 mm. 
Alternately if it is more than 2 mm that means it is dentinal carries. The 
result of the above procedure implemented on two different sets of enamal 
caries, dentinal caries and pulpal caries are shown in Figure 12.5. 

12.11 M A M M O G R A M  IMAGE ANALYSIS 

The detection and classification of various types of tumors in digital mam- 
mograms using mammogram image analysis system has found paramount 
importance in recent times [25]-[28]. Breast masses, both non-cancerous and 
cancerous lesions, appear as white regions in mammogram films. The fatty 
tissues appear as black regions, while other components of the breast, such 
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as glands, connective tissue, tumors, calcium deposits, etc appear as shades 
of gray, more towards the brighter intensity on a mammogram. Some types 
of breast cancer show signs of invasion or spread - they are spreading types, 
while in some others there is no evidence of invasion, and these are called 
non-spreading types. The breast cancer starts as the non-spreading type, and 
later starts spreading and invading as the cancer cells become more abnormal 

Ductal Carcinoma In Situ (DCIS) is a non-spreading cancers, which is 
detected during routine mammography. 

12.11.1 Breast Ultrasound 

Mammography continues to  be the most widely used imaging device, because 
of its cost-effectiveness and accuracy. There are, however, other methods of 
imaging the breast. 

Ultrasound uses pulses of high-frequency sound waves to detect abnormal- 
ities in the breast. One of the major advantages of ultrasound is that, it can 
distinguish a benign fluid-filled cyst from a solid lesion that may be cancerous. 
Cystic areas are rarely cancerous. The ultrasound does not always detect mi- 
cro calcifications, microscopic deposits of calcium which are often indicative 
of breast cancer. 

12.11.2 

The steps in a mammogram image analysis system are as follows. 

Steps in Mammogram Image Analysis 

Step 1. Enhancement of mammogram image 

Step 2. Suspicious area segmentation 

Step 3. Feature extraction: 

Step 4. Classification of masses 

Step 5. Analysis of classifier performance. 

12.11.3 Enhancement of Mammograms 

The first step in the analysis of mammogram images involves enhancement 
or denoising of the image. The denoising technique should not deteriorate 
or destroy the information content in the image. The objective is to  remove 
background noise while preserving the edge information of suspicious areas in 
the images. 

Various enhancement techniques, viz, histogram equalization, neighbor- 
hood based contrast enhancement algorithm, selective Median filtering en- 
hancement method based on multiscale analysis etc. may be used for enhanc- 
ing the contrast of mammogram images. 
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A mammographic image utilizes a narrow range of gray levels, without a 
well-defined histogram structure. Thus conventional histogram equalization 
techniques may not be suitable in enhancing the mammogram images. 

One may attempt fuzzy spatial filtering for enhancement of mammogram 
images. The conventional spatial filtering utilizes an averaging procedure to 
generate the smooth image. The weights used for averaging are crisp and 
invariant to image data. Thus all the pixels inside the window region of the 
image, which can be brought under an arbitrary neighborhood W, are equally 
affected. The conventional spatial filtering method by masking or averaging 
does not take into account the effect of the difference of gray levels between 
the central pixel and a neighboring pixel arid it does not always take into 
account the diminishing influence of the pixels that are situated in incrcasing 
distance from the central pixel. 

These two limitations of the conventional spatial filtering (averaging) are 
taken care of while designing the fuzzy spatial filter. 

12.11.4 Suspicious Area Detection 

The efficiency of a mammogram image analyzer depends on the effective seg- 
mentation of the lesion region in an image. The mammogram images are 
complicated images where segmentation of riot only the uniform smooth re- 
gions of images is required but also the discrete cluttered portions. So a novel 
approach towards development of such an adaptive thresholding technique us- 
ing the concepts of wavelets and Multi-resolution analysis may possibly give 
better results. 

A suspicious area is a tumor area - benign or otherwise. A tumor like 
template may be defined based on several characteristics of benign tumor 
areas, namely brightness contrast, uniform density, approx circular shape etc. 

The detection accuracy will be evaluated in terms of the number of true 
positives (TP) for a given number of false positives (FP) detections. TP is 
an object whose area overlaps the centroid of the biopsy proven areas. FP 
comprises of all other objects classified as potential masses. 

segmentation algorithm to extract lesions from their surrounding tissues. 
hIarkov random elds have been used to classify the different regions in a 
mammogram based on texture[30]. Segmenting lesions in digital mammo- 
grams using a radial gradient index (RGI) based algorithm and a probabilistic 
algorithm were reported in [31]. These techniques are seeded segmentation 
algorithms. In their work, RGI is a measure of the average proportion of the 
gradients directed radially outward. Because of inherent nature of RGI, it 
gives more emphasis to round shaped lesions. Other interesting techniques of 
automated seeded Lesion Segmentation in Digital Mammogram and detection 
of circumscribed masses in mammograms, may be found in [32, 331 

The goal of seeded lesion segmentation is to  separate suspected masses 
from surrounding tissues as effectively as possible. Segmentation of lesion 

Petrick et al. [29] employed density weighted contrast enhancement (DWCE) 
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regions in a mammographic image is not easy due to  the low contrast and 
the fuzzy nature of the transition of a malignant lesion from its core region 
to  surrounding tissues. 

Here we present a method for lesion segmentation based on mean shift 
algorithm, a simple nonparametric procedure for estimating density gradi- 
ents [32]. Iteration of mean shift gives rise to natural clustering algorithm. 
An objective measure has been developed to  differentiate a target T (lesion) 
from its background B (Tissue). The performance of the proposed method is 
compared against RGI method. It results in more meaningful features being 
extracted from potential lesion regions, and, ultimately, in better classification 
of malignant lesions from normal tissue regions. 

12.11.5 LESION SEGMENTATION 

The lesion tissues are usually brighter than its surrounding tissues and pos- 
sess uniform density inside the area. The malignant lesion area possesses an 
approximately uniform and more or less compact circular shape of varying 
size [?I .  Quite often they are observed to  possess fuzzy edges. Given a sub 
image or region-of-interest (ROI) of dimension n by m containing the suspect 
lesion, the set of coordinates in the ROI is represented by 

I = {(i , j )  : i = 1 , 2 , . . . , n  and j = 1,2;-.,m}. 

The image function describing the pixel gray levels of this sub image is 
given by f ( i , j ) .  The pixel values of f ( i , j )  are normalized between 0 (black) 
and 1 (white). 

Lesions tend to  be compact, meaning that their shapes are typically con- 
vex. To incorporate this knowledge into the creation of the partitions, the 
original image is multiplied by a function, called the constraint function that 
suppresses distant pixel values. One may use an isotropic Gaussian function 
centered on the seed point location ( p i , p j )  with a fixed variance 0’ as the 
constraint function. The function h(i ,  j )  resulting from the multiplication of 
the original ROI with the constraint function is given by 

h ( i , j )  = ~ ( i , j ) N ( i , j ; p ~ , p 3 , u z ) ,  (12.7) 

where N ( i , j ;  pLzr p3,  u 2 )  is circular normal distribution centered a t  ( p t ,  p 3 )  
with a variance u2. 

12.11.5.1 Clustering based on non-parametric densityestirnation There are 
several nonparametric methods available for probability density estimation: 
histogram, naive method, the nearest neighbor method, and kernel estimation. 
The kernel estimation method is one of the most popular techniques used in 
estimating density. Given a set of n data points xi ,  i = 1 , 2 , . . . n  in a d- 
dimensional Euclidian space, the multivariate kernel density estimator with 
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kernel q5 and window radius (bandwidth) h, is defined as 

(12.8) 

After density estimation we identify candidate-clusters by using gradient 
ascent (hill-climbing) to pinpoint local maxima of the density pn(x). Specif- 
ically, the k-nearest neighbors of every point is determined, whereupon each 
point is linked to the point of highest density among these neighbors (possi- 
bly itself). Upon iteration, this procedure ends up assigning each point to a 
nearby density-maximum, thus carving up the data set in compact and dense 
clumps. 

12.1 1.5.2 Density Gradient Estimation and Mean Shift Method Application of 
the mean shift leads to  the steepest ascent with a varying step size according to 
the magnitude of the gradient 134, 351 Assuming that the probability density 
function p(x) of the pdimensional feature vectors x is multimodal and also 
assuming that a small sphere S, of radius r centered on x contains the feature 
vectors y such that Iy - xi 5 r. The expected value of the vector z = y - x, 
given x and S,, may be derived as 

(12.9) 

The mean shift vector, which is the vector of difference between the local 
mean and the center of the window, is proportional to the gradient of the 
probability density at  x. The proportionality factor is reciprocal to  p(x). This 
is beneficial when the highest density region of the probability density function 
is sought. Such region corresponds to large p(x), i.e. small mean shifts. On the 
other hand, low-density regions correspond to large mean shifts. The shifts are 
always in the direction of probability density maximum, which describes the 
mode. At the mode the mean shift is close to  zero. The mean shift algorithm 
is tool needed for feature space analysis. The unimodality condition, assumed 
during derivation of Eq. 12.9, can be relaxed and extended to multimodal 
conditions by randomly choosing the initial location of the search window. 
The algorithm then converges to the closest high-density region. 

The width of the constraint function in Eq. 12.8 should be chosen based 
on the knowledge of lesions. Within the same segmentation class an image 
containing large homogeneous regions should be analyzed a t  higher resolution 
than an image with many textured areas. The simplest measure of the visual 
activity can be derived from the global covariance matrix. 

12.11.5.3 Objective Measure for Segmentation The basic idea involves de- 
veloping an objective measure to  differentiate a target T (lesion) from its 
background B (Tissue) within the mammographic image. The target T has a 
greater density within the mammogram, thus having higher mean gray level 
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intensity component compared to the surrounding background B. A good ob- 
jective measure should aim to yield high value at the point where the contrast 
between target T and background B is high. The measure is initially com- 
puted by determining the difference between mean gray values in the target 
and background areas as 

6, = PT - PB (12.10) 

In addition, the objective measure should at  the same time yield low values 
with the spread of gray scales in the target area compared with the background 
area. This reduction can be achieved by the ratio of the gray level variances 
as 

U T  

UB 
6, = - (12.11) 

The resulting target to  background contrast ratio R can be computed as 

(12.12) 

This effective segmentation measure leads to  a large value of R when the 
contrast between target T and background B is high. In order to  quantify 
the performance differences between the different segmentation methods, an 
overlap measure (0) may be used as follows: 

Area(L n T )  
O =  

Area(L U T )  
(1 2.13) 

where L and T are the segmented region obtained from the mean shift al- 
gorithm based segmentation and that obtained by the expert radiologist re- 
spectively. The value of 0 lies between between 0 (no overlap) and 1 (exact 
overlap). 

Figure 12.6(a) shows a set of noisy mammogram images. Figure 12.6(b) 
shows the corresponding segmented regions of the lesions in the mammogram 
images in Figure 12.6(a) using mean shift algorithm and Figure 12.6(c) shows 
the same using RGI algorithm. 

12.11.6 Feature Selection and Extraction 

The methods for classification of non-tumor, benign, malignant masses utilize 
the area measurement, signature of boundary shape, edge distance and edge 
intensity variation] etc. Contour modelling generates boundary model and 
measures the similarity between the generated model and extracted region. 
The local mean intensity, tumor circularity] normalized radial length, mean 
and standard deviation of the normalized radial length along with the Fourier 
descriptor based shape factor, moment based shape factors etc are some of the 
prominent features. The selection of optimal set of features is an important 
decision in the final classification of the mammogram. Also features like, 
area, shape descriptor, edge intensity variation features, etc., are used for 
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Fig. 12.6 
and ( c )  segmented regions using RGI. 

(a) Original Mammogram Images. (b) segmented regions using mean shift. 

tumor and non-tumor classification. An expert system provides the user with 
a facility to  classify various test mammogram images for diagnosis. The design 
of the expert system uses a set of fuzzy rules capable of handling the pervasive 
fuzziness of information in the knowledge base for mammogram interpretation. 

12.11.7 

The given mammogram image is decomposed into multi-resolution hierarchy 
of localized information at  different spatial frequencies. Multi-scale wavelet 
representation suggests a mathematical coherent basis not only for exist- 
ing multi-grid techniques but also for exploiting non-linear systems. Multi- 
resolution wavelet analysis provides a natural hierarchy in which to  embed an 
interactive paradigm for accomplishing scale-space feature analysis. Similar to  
tradition coarse to fine matching strategies, the radiologist may first choose to  
look for coarse features ( e g  Dominant masses) within low frequency levels of 
wavelet transform and later examine finer features ( e g  Micro calcifications) 
at  higher frequency levels. Choosing wavelets that are simultaneously local- 
ized in both space and frequency results in powerful methodology for image 

Wavelet Analysis of Mammogram Image 
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analysis. The following are the key features of wavelet analysis of mammo- 
gram image: 

1. By modifying wavelet coefficients associated with multi-scale edges from 
level 2 alone improves the local contrast of both micro and macro- 
calcifications clusters not visible in original low-contrast mammogram. 

2. Radiologists have observed that the subtle features including calcifica- 
tions and the penetration of fibro glandular structure into the obvious 
mass tissue are made clearer. In addition, the geometric shapes of calci- 
fications (important for diagnosis) are made more visible and improved 
definition is seen in the ductules (intra and extra lobular units) as well 
as in arterial structure within the less dense tissue of breast. 

3. A mammogram is generally dominated by low frequency information 
while micro-calcifications appear in High frequency bands. This makes 
wavelet methods suitable for extraction of micro-calcifications since wavelets 
allow separation of image into frequency bands without affecting spatial 
locality. 

4. Calcifications in general are small and they appear in certain levels of 
wavelet decomposition of the image. 

Also, from the biological mechanisms of HVS, multi-resolution and multi- 
orientation are known features of HVS. There exist cortical neurons, which 
respond specifically to stimuli within certain orientations and frequencies. 

12.12 SUMMARY 

Biometric and biomedical imaging are important areas of image processing 
applications today. In this chapter, we have reviewed some of the techniques 
on automatic identification of biometric features such as human faces and 
signatures. A number of feature extraction techniques based on front and 
side facial images have been described. Similarly, a novel waterfall based 
algorithm for extraction of signature features has been discussed. Chest ra- 
diographs and dental imageries are two most important application areas in 
biomedical imaging. We have discussed techniques of enhancement, segmen- 
tation and classification of diseases related to chest and dental abnormalities 
in this chapter. Digital mammogram is another important medical imaging 
technique. It is widely being used by medical practitioners to detect breast 
cancers and other applications. We presented a scheme for automated identi- 
fication of lesions in digital mammogram. 
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13 
Remotely Sensed 

Mu It zsp ee t ra I See n e 
Analysis 

13.1 INTRODUCTION 

Information regarding the natural resources of a country is extremely useful 
for planning purposes. Resources include agricultural resources (e.g., food 
stock like rice, wheat, vegetables, etc.), hydrological resources (e.g., water 
bodies like rivers, canals, ponds, etc.), mineral resources (e.g., metal mines, 
coal, etc), forest resources, geological and strategic resources, etc. Such infor- 
mation can be conveniently extracted from remote sensing images. Remote 
sensing techniques utilize satellite and aerial image data to estimate the avail- 
able resources in a country. For remotely sensed scene analysis, the images 
of objects on the earth’s surface are captured by sensors in remote sensing 
satellites or by multispectral scanners housed in an aircraft. These images are 
then transmitted to the earth station for further processing. 

Digital processing of remotely sensed image data has been of great impor- 
tance in recent times [1]-[4]. The availability of digital pictures of earth’s sur- 
face from various sources, such as LANDSAT multispectral imageries, SPOT 
high-resolution multiband and panchromatic data, IRS (Indian Remote Sens- 
ing) Satellite, and MODIS from Terra (EOS AM) and Aqua (EOS PM) satel- 
lites, etc., have enabled researchers to pursue extensive low-level and high-level 
processing tasks on these satellite borne images of the earth’s terrain. 

The classification of remotely sensed data involves procedures for assigning 
the inultiband image pixels obtained from remotely sensed satellite imageries 
to  an appropriate set of meaningful object classes. From the classified images, 
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useful information can be made available for the proper utilization of natural 
resources. 

Various approaches, such as statistical, knowledge-based, and neural net- 
work based methods have been proposed for the classification of the remotely 
sensed scenes. With an increase in the spatial, spectral, and temporal reso- 
lution of the sensing instruments, more advanced and efficient techniques are 
required for the classification and interpretation of remotely sensed data. In 
this chapter, we present brief description of the various satellite data along 
with some of the techniques of satellite based image analysis. 

13.2 SATELLITE SENSORS A N D  IMAGERIES 

Remotely sensed images of the earth are captured from satellites or aircrafts 
for agricultural, hydrological, geological, military and many other applica- 
tions. Prominent among satellite based systems are LANDSAT Multi Spec- 
tral Scanner (MSS), Thematic Mapper (TM), SPOT, Indian Remote Sensing 
Satellite (IRS), Moderate Resolution Imaging Spectroradiometer (MODIS), 
Multiangle Imaging Spectro Radiometer (MISR), and Synthetic Aperture Radar 
(SAR). 

13.2.1 LANDSAT Satellite Images 

The first remote sensing satellite LANDSAT was launched by United States in 
1972. It contained onboard image vidicon cameras operating in three separate 
visible wave lengths bands. The multispectral scanning system of LANDSAT 
provided four-band images of the earth’s surface. These four-band images were 
captured in four wave-lengths; three in the visible and one in the near-infrared 
portion of the electromagnetic spectrum. The satellite located a t  about 912 
kilometer away from the earth completes one revolution around the earth in 
around 1 hour 43 minutes. I t  completes fourteen orbits a day with repetitive 
coverage of eighteen days. Four more LANDSAT satellite were subsequently 
launched which were located at an orbital altitude of 705 kilometer. The 
LANDSAT-MSS sensors having cross track scanning were incorporated in all 
the five LANDSAT satellites. The spatial resolution of LANDSAT MSS data 
is 56 m x 79 m. 

LANDSAT-TM (Thematic Mapper) having cross-track scanner with bidi- 
rectional oscillating scan mirror and arrays of detectors has seven spectral 
bands, ranging from the visible to  infra red region with 30 m spatial resolu- 
tion, improved detector sensitivity and radiometric resolution. The satellite 
also had sensor in the thermal IR band with 120m resolution. The seven 
band Thematic Mapper (TM) sensor provides information with greater radio- 
metric precision. I t  yields much better boundaries and accentuates textural 
appearance of the different categories of objects. 
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SPOT, a French satellite, provides three-band data of 20 m resolution, and 
also a single band 10 m Panchromatic data. 

13.2.2 

The Indian Remote Sensing Satellite (IRS) has a scanner known as Linear 
Image scanning System (LISS). Various combination of bands (which were 
adopted in LISS-I and LISS-I1 cameras of IRS series of satellites) provide 
information for specific purposes. LISS-I Camera has spatial resolution of 
72.5 m having a viewing width of 148.48 km. Two cameras each of LISS-11, 
LISS-IIA & LISS-IIB, with spatial resolution of 36.25 m and a strip width 
of 74.24 km, provide a combined strip width of 145.45 km allowing a 3 km 
overlap. The utilities of each band are as follows: 

Indian Remote Sensing Satellite Imageries 

0 Band 1 (0.45-0.52 pm): In this band, plant pigments exhibit a strong 
spectral reflectance. There is a comparatively higher penetration in wa- 
ter in this band, which is useful for mapping suspended sediments/water 
quality and various under water studies in the coastal region. 

0 Band 2 (0.52-0.59 pm): The discrimination of vegetation cover, and 
also the identification of iron oxides may be best achieved in this band. 

0 Band 3 (0.62-0.68 pm): This band is centered near the chlorophyll 
absorption band of vegetation, and is useful for the identification of 
plant species. 

0 Band 4 (0.77-0.86 pm):Healthy vegetation exhibits high reflectance in 
this band and hence this band is useful for green biomass estimation, 
crop vigor studies, etc. Water absorption in this region clearly demar- 
cates land and water boundary. 

IRS-IB was launched as a backup for IRS-IA, The second generation remote 
sensing satellite IRS-IC has a polar sun-synchronous orbit a t  an altitude of 
817 km and IRS-ID provides continuity of data flow for earth monitoring. 
These two satellites have been provided with improved versions of LISS- 111, 
WIFS (V'ide Field Sensor) and PAN cameras for multiple purposes. 

13.2.3 

MODIS is a key instrument onboard the Terra (EOS AM) and Aqua (EOS 
PM) satellites, collecting data in 36 spectral bands. It provides high radio- 
metric sensitivity (12 bit)in 36 spectral bands ranging from 0.4pm to 14.4pm. 
Two bands are imaged at  a nominal resolution of 250 m at nadir, with five- 
bands at  500 m, and the remaining 29 bands at 1 km resolution. The images 
captured from MODIS of Terra and Aqua satellites are shown in Figure 13.1. 
Their color version of Figure 13.1 is shown in color pages section. 

Moderate Resolution Imaging Spectroradiometer (MODIS) 
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(a) (b) 

Fig. 13.1 Remotely sensed images from hlODIS 

The information of the various bands of lClODIS are as follows: 

0 Bands 1-2 (620-876 nm): Land, cloud and aerosols boundary. 

0 Bands 3-7 (459-2155 nm): Land, cloud and aerosols properties. 

0 Bands 8-16 (405-877 nm): Ocean color, phytoplankton, and biogeo- 
chemistry. 

0 Bands 17-19 (890-965 nm): Atmospheric water vapor. 

0 Bands 20-23 (3.660-4.080 pm): Surface/cloud temperature. 

0 Bands 24-25 (4.433-4.549 pm): Atmospheric temperature. 

0 Bands 26-28 (1.360-7.475 pm): Cirrus clouds, water vapor. 

0 Band 29 (8.400-8.700 pm): Cloud properties. 

0 Band 30 (9.580-9.880 pm): Ozone. 

0 Bands 31-32 (10.780-12.270 pm): Surface/cloud temperature. 

0 Bands 33-36 (13.285-14.385 pm): Cloud top altitude. 

13.2.4 Synthetic Aperture Radar (SAR) 

It is a coherent microwave imaging method, which plays an important role in 
remote sensing. Many physical and geometric parameters of the earth objects 
in the scene contribute to the gray values of a SAR image pixel [2]. SAR is 
able to reliably map the Earth’s surface and acquire information about its 
physical properties, such as topography, morphology and roughness. SAR 
can be most beneficially used over land, ice, and space surfaces. As the space 
borne SAR systems operate in the microwave region of the spectrum and 
provide their own illumination, they can acquire information globally and 
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almost independently of meteorological conditions and the sun illumination. 
They are, therefore, most suitable for operational monitoring tasks. The 
side looking imaging geometry, pulse compression techniques as well as the 
synthetic aperture concept are employed to  achieve geometric resolutions in 
the order of tens of meters with physical antennas of modest size. The use of 
space-borne SAR as interferometers also serves as an extremely powerful tool 
for mapping the Earth’s land, ice, and even the sea surface topography. 

13.3 FEATURES OF MULTISPECTRAL IMAGES 

Remote sensing images are available in two forms-photographic film form 
and digital form. Variations in the scene characteristics are represented as 
variations in brightness on photographic films. A particular part of a scene 
reflecting more energy appears bright, while a different part of the same scene 
reflecting lesser energy appears relatively dark. The pixel intensity depicts the 
average radiance of a relatively area within a remotely sensed scene. The size 
of this area affects the reproduction of details within the scene. With reduction 
in the pixel size greater scene detail is preserved in the digital representation. 

13.3.1 

Although there is no fixed standard for the storage and transfer of remotely 
sensed data, the CEOS (Committee on Earth Observation Satellites) format 
is a widely accepted standard. An image consisting of four spectral channels 
can be visualized as four superimposed images, with corresponding pixels in 
each band registering exactly to  those in the other bands. Remote sensing 
data are organized using one of the following three common formats: 

Data Formats for Digital Satellite Imagery 

0 Band Interleaved by Pixel (BIP) 

0 Band Interleaved by Line (BIL) 

0 Band Sequential (BQ) 

13.3.2 Distortions and Corrections 

The satellite images transmitted to  the earth stations are associated with var- 
ious types of distortions and each distortion has specific corrective strategy, 
such as, radiometric corrections and geometric corrections. 

Radiometric Distortions: The radiation from the sun is incident on the 
ground pixel and then gets reflected to the sensor. The molecules of oxygen, 
carbon-di-oxide, ozone, and water present in the atmosphere attenuate the ra- 
diation very strongly in certain wavelengths. Scattering by these atmospheric 
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particles is the dominant mechanism that leads to  radiometric distortion in im- 
age data. Radiometric Corrections are carried out when an image is recorded 
by sensors which contain errors in the measured brightness values of pixels. 
These errors are referred to  as radiometric errors and can result from 

0 The instruments used to  record the data 

0 The effects of the atmosphere 

Radiometric processing influences the brightness values of an image by cor- 
recting for sensor malfunctions or by adjusting the values to compensate for 
atmospheric degradation. Radiometric distortion may result in a situation 
where the relative distribution of brightness over an image in a given band 
can be different from that in the ground scene. Also sometimes the relative 
brightness of a single pixel from one band to  another can be distorted com- 
pared to the spectral reflectance characteristics of the corresponding region 
on the ground. 

The following procedures are used for the removal of the above defects: 

1. Duplicating correction: Sometimes, due to malfunctional detectors, 
a set of adjacent pixels may contain spurious intensity values. In such 
cases the defective lines may be replaced by either a duplicate of the 
previous line or the next line. If the value of the spurious pixel at 
position (z, y) is f ( z ,  y), then it is cleaned by the rule F ( z ,  y) = f ( x ,  y-  
1) or f (z ,y  + 1). Even the average of the two lines also yields good 
results, i.e., F ( z ,  y)  = [ ( f ( z ,  y - 1) + f ( z ,  y + 1)]/2. 

2. Destripping correction: Sometimes a set of detectors in a certain 
spectral band may go out of adjustment. This may result in an image, 
where patterns of lines with consistently high or low intensity values 
occur repeatedly. Such horizontal strips of patterns from satellite images 
need correction. The destripping correction enhances the visual quality 
of the image. I t  also enhances the objective information content of the 
image. 

3. Geometric correction: While capturing images of the earth’s surface, 
one needs to consider the curvature of the earth, platform motion, and 
nonlinearities in the scanning motion, which produce geometrical dis- 
tortions in satellite images. These distortions are corrected to produce 
rectified images. 

The resultant images, after correction, may still lack in contrast and image 
enhancement techniques are useful for getting better quality images for further 
processing. 
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13.4 SPECTRAL REFLECTANCE OF VARIOUS EARTH OBJECTS 

Different categories of earth objects have different sensitivities a t  a particular 
spectral band. For example, plant biomass is sensitive at 0.77 pm to 0.86 
pm while chlorophyll has more sensitivity in 0.62 pm to 0.68 pm. Green 
reflectance of vegetation is sensitive at 0.52 pm to 0.59 pm spectral band. 
The spectral reflectance of various features on the earth's surface are discussed 
briefly below. 

13.4.1 Water Regions 

In multispectral satellite images, water is the unique land cover type for which 
the band reflectance values decrease as the band number increases, except in 
band 6 which is the thermal band. In other words, if pixel (i ,  j )  lies entirely 
within a water region, then bij  > b:j > b:j > btj > b!j > b e ,  where the 
intensity vector bij  at  each pixel ( 2 ,  j )  contains the seven band reflectances: 
b - .  - [b!. b2. . . . b?.]. 

23 - 23 , 23 7 , 23 
It is easy to locate water bodies in remote sensing images using this prop- 

erty. However, the various types of water bodies, like clear water and turbid 
water, manifest different properties in the visible wavelengths. Clear water 
absorbs relatively little energy in the wavelength, less than 0.6 pm. However, 
as the turbidity of the water changes (because of the presence of organic and 
inorganic materials), the reflectance changes dramatically. For example, water 
containing large quantities of suspended materials derived from the erosion 
rocks, soil, etc. normally has much higher visible reflectance than clear water. 
Moreover, water absorbs energy in the near- and far-infrared wavelengths. 

13.4.2 Vegetation Regions 

Green vegetation usually has a high reflectance at near-infrared wavelengths 
(band 4 in LANDSAT T M  data) and a low-reflectance at  the red wavelengths 
(band 3 in T M  data). Thus it is possible to discriminate between two different 
plant species using a feature which is a ratio of the reflectances at these two 
wavelengths. This 
scene, is defined as 

index, known as vegetation index  at pixel ( i ,  j )  of the 

(13.1) 

(k) where rij represents the reflectance at  the lcth band for vegetation class. 
Depending on the value of the vegetation index, a pixel is classified as 

either belonging to  a vegetation class or nonvegetation class. The spectral 
reflectance curve for green (healthy) vegetation, almost always manifests the 
peak and valley configuration. The pigments in the plant leaves are responsible 
for the valleys in the visible portion of the spectrum. 
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Chlorophyll present in green plants strongly absorbs energy in the wave- 
length bands centered at  around 0.45 pm and 0.65 pm. The plant leaves in 
general absorb the red and blue energies very heavily and strongly reflect green 
energy. Plant reflectance in the 0.7 pm to 1.3 pm range is largely due to the 
internal structure of plant leaves, which varies greatly from one plant species 
to another. Hence, the measurement of reflectance values in this range often 
permits us to discriminate one plant species from another. One may observe 
a decrease in the reflectance of plant leaves a t  1.4 pm, 1.9 p i ,  and 2.7 pm, 
because water molecules in the leaves strongly absorbs the radiation at  these 
wavelengths. 

13.4.3 Soil 

Soil usually does not exhibit significant variation in reflectance in the en- 
tire visible band. However two interrelated factors affecting soil reflectance 
are the moisture content and the texture of soil. For example, the presence 
of moisture in the soil decreases the reflectance. The moisture content of 
soil again strongly depends upon its texture; coarse sandy soils are usually 
well drained resulting in low moisture content and relatively high spectral re- 
flectance. Poorly drained (high textured) soils, on the other hand, generally 
have lower reflectance. Two other factors that reduce soil reflectance are sur- 
face roughness and organic matter content. The presence of iron oxide in soil 
also significantly decrease reflectance in the visible wavelength. 

13.4.4 Man-made/Artificial Objects 

Interestingly, there does not exist unique spectral signature of some man-made 
materials like urban/suburban features. Numerous man-made materials have 
roughly the same spectral reflectance properties. Thus the spectral reflectance 
of urban scenes obtained from remote sensing satellites is often not unique, 
and accurate identification require a domain knowledge of the scene, in ad- 
dition to  simple spectral response. The features like size, shape, and texture 
information of the remotely sensed scene are essential for accurate identifica- 
tion and classification of urban features in the scene. Often shadows provide 
useful information for the interpretation of artificial objects. Concrete and 
asphalt pavements have spectral reflectances typical of man-made materials, 
i.e., generally increasing reflectance with increasing wavelengths. The bright- 
ness of asphalt varies with the age of the pavement as a result of weathering, 
i.e., new asphalt is relatively dark and old asphalt is relatively bright. The 
shape of the spectral profile is highly variable due to the influence of vehi- 
cles, paint markings, oil marks, etc. Asphalt can be discriminated from the 
roofs of building structures on the basis of differences in contrast, i.e., asphalt 
generally has a lower brightness and temperature compared to the roofs (of 
the buildings, because the ground base below the pavement acts as a heat 
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sink conducting heat away from the surface). Roofs generally have a higher 
reflectance than asphalt because of the lack of such a heat sink. 

13.5 S C E N E CLASS I F I CAT I0 N S T RAT EG I ES 

One of the most important aspects of remotely sensed digital image processing 
involves segmentation and pixel classification of the image data. Usually the 
maximum likelihood classifier based on Bayes' decision theory is employed to 
classify the pixels. 

It has been observed that Bayes decision theory works well when the prob- 
ability density function of each class of earth objects is estimated properly. 
In such cases one achieves very high recognition accuracy while classifying 
the pixels in a multispectral remotely sensed image. We present two neu- 
ral network architectures, namely backpropagation and counterpropagation 
networks, for remotely sensed satellite image classification. 

13.5.1 

Neural networks are promising techniques for the classification of remotely 
sensed data [5]-[8]. 

To classify multispectral data using a neural network, the spectral values 
in different bands are mapped onto a set of input neurons. Different schemes 
can be used for input data representation. Some researchers used one input 
node (neuron) for each spectral band of the satellite image [7]. One may use 
other options for feeding the multispectral data to  the network. For making 
the neural network classification invariant to  the changes in the gray values 
of the image due to seasonal variations, normalization may be performed in 
each spectral band of the image. The normalized gray value of a pixel in a 
spectral band may be chosen as 

Neural Network-Based Classifier Using Error Backpropagation 

fp - fm in  

fmax - fmzn ' 
fnorm = (13.2) 

Here f m z n  and f m a x  are the minimum and maximum gray values in a spectral 
band and fp is the gray value of the pixel under consideration. Each class 
is represented by one output neuron in the output layer, i.e., the number 
of output nodes is equal to the number of categories of the object classes. 
An input pattern is assigned to class i, if the output node i has the highest 
activation of all output nodes. If either the activation of all output nodes is 
below a specified threshold, or the activations of two or more output nodes are 
above threshold and are very close, then the pixel class cannot be ascertained. 

The multilayer perceptron (MLP) network is trained with finitely large 
number of input samples, i.e., pixels belonging to each class of regions present 
in the scene input. Once the network training is over, i.e., it has converged, 
the network is tested using test pixel samples. During the training phase, 
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experiments should be carried out by varying the parameters like learning 
constant, momentum, etc., and the performance of the network is evaluated 
for each parameter setting. The network configuration, such as number of 
hidden layers or the number of neurons in a hidden layer, should also be 
varied as training progresses. 

13.5.2 Counterpropagation network 

The counterpropagation network combines the hidden layer, which is a Ko- 
honen layer with competitive units that undergoes unsupervised learning [8]. 
The top layer is a non competitive Grossberg layer and the hidden layer are 
fully interconnected. The Grossberg layer is trained by the Widrow-Hoff or 
Grossberg rule. The architecture used for the classification of multispectral 
image data consists of a three layered CPN network, which has been dis- 
cussed in Chapter 8. Here the Kohonen (competitive) layer has been chosen 
as a rectangular grid of nodes. The weight updation for the nodes in the 
hidden layer is done not only for the winner node but also for the nodes in 
its neighborhood. The output layer (Grossberg layer) consists of a number 
of nodes equivalent to the number of earth surface categories present in the 
scene to be classified. 

Adaptation of the output layer weights is achieved using the Widrow-Hoff 
rule for the winning unit Z, = 1; all other units are set to zero. Thus the only 
weight adjusted for the output unit j is the weight connected to  the winning 
unit c. For the two IRS image data sets used for training and testing the 
neural network, we have used fourteen and eight nodes respectively as the 
output nodes. 

The network uses four nodes in the input layer, where each node represent 
the normalized pixel gray value [0,1] in each spectral band. 

13.5.3 Experiments and Results 

The aim of remotely sensed scene classification is to create a map covering 
a set of major categories. For example, in rural areas the major land cover 
categories may be: (1) agricultural land, (2) built-up land, (3) forest, and (4) 
water. 

The two aforesaid neural network architectures may be used for the classi- 
fication of remotely sensed satellite data for land-cover analysis. The classifi- 
cation accuracy estimation of the results obtained by neural networks may be 
performed by comparing the ground truth pixels (samples) and the classified 
pixels through the confusion or error matrix. 

The performance of backpropagation network is affected by many factors, 
such as number of hidden nodes, learning rate and appropriate selection of 
training samples. Therefore, several experiments may be conducted to gain in- 
sight into the network operation. The parameters of the network may be cho- 
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sen as (1) nodes in the hidden layer, (2) learning rate, (3) momentum factor. 
The peak performance may be achieved with a particular set of parameters. 
The effect of variations of these parameters on the system performance should 
be observed. While for smaller learning rates the neural network training is 
slow, for larger values of the learning rate the learning algorithm oscillates. 

The neural network should be trained using a sufficiently large number of 
training samples generated from the ground truth data from different classes 
within the data sets. The method of selecting the training sets also affects the 
classification accuracy. All the training data sets were processed to  delete the 
occurrence of any repeated patterns and also t o  remove the confusing patterns, 
which are located on the boundary demarcating two pattern classes. After 
the training phase is over, the network should be tested using the whole scene. 

Performance of the counterpropagation network is affected by many factors 
such as the learning rate of the Kohonen layer and the output (Grossberg) 
layer, the size and the arrangement of nodes in the Kohonen layer (linear 
array or rectangular grid), the strategy to  update weights (only for winner 
node or for winner node and the neighboring nodes) in the Kohonen layer, 
and the activation function used for the nodes in the Kohonen layer. Several 
experiments are required to  be conducted t o  get insight into the network 
operations. The effect of variations in the grid size of the Kohonen layer on 
the performance of the network should also be observed. In many applications 
it is found that the classification accuracy increases with an increase in the 
grid size of the Kohonen layer. 

13.5.4 Classification Accuracy 

The classification accuracy is the most important aspect of assessing the per- 
formance and reliability of a classifier. The best way of representing the clas- 
sification accuracy is by comparing the ground truth pixels and the classified 
pixels through the confusion/error matrix. 

The confusion/error matrix is in the form of a m x m matrix, where m is the 
number of classes. I t  shows the number of samples (pixels) classified correctly 
and, for the misclassified samples, it shows how they are distributed among the 
other classes. The samples which do not belong to any of the specified classes 
are termed as unknown class samples. The sum of the pattern samples lying 
on the main diagonal of the confusion/error matrix gives the total number of 
correctly classified samples. Dividing this sum by the total number of labeled 
samples gives the classification accuracy of the network. One of the most 
important characteristics of the error matrix is its ability to summarize the 
errors of omission and commission. The error of omission for each class is 
computed by summing the number of samples assigned to incorrect classes 
along each class row and dividing this by the total number of samples in that 
class. The error of commission of a class is computed by summing the number 
of samples assigned to incorrect classes along each column and dividing this 
by the total number of samples in that class. 
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Analysis of the two network architectures indicates that both the back- 
propagation network and the counterpropagation network yield very good 
results. The problem of slow training of a MLP network can be reduced to 
a reasonable level by the use of adaptive backpropagation algorithms. The 
time taken for classification varies linearly with the size of the image. Each 
pixel is classified independently of its neighbors. Therefore, large images can 
be split into smaller parts to  speedup the classification process using coarse 
grain multiprocessor machines. The counterpropagation network is a faster al- 
ternative to the backpropagation network. The improvement in training time 
with counterpropagation network is substantial. The performance in terms of 
classification accuracy is also comparable to  the backpropagation network. 

The classification results of both the backpropagation and the counterprop- 
agation neural networks are comparable t,o the maximum likelihood classifier. 
Moreover, both the networks are insensitive to the form of the underlying 
probability density function. 

13.6 S P ECT R A L C LASS I F I CAT I0 N-A K NOW L E D G E- 6 AS ED 
APPROACH 

In case of satellite images, the domain knowledge of the image can be exploited 
to  improve the quality of image segmentation techniques [3, 4, 9, 101. 

The absence of such knowledge usually makes the choice of a correct number 
of region types a difficult problem. The segmentation techniques can generally 
be divided into two categories partzal (or general-purpose) segmentation and 
complete (or knowledge-guided) Segmentation. 

There are some segmentation techniques which segment an image into ho- 
mogeneous regions without any apriori knowledge about the image context 
or the image-generation processes. Many popular segmentation techniques 
like thresholding, split and merge, and region growing techniques fall into this 
category. 

The knowledge used in the segmentation process can be divided into two 
types: spectral and spatzal. In remote sensing, spectral properties associated 
with different land cover types have been extensively studied. Spectral knowl- 
edge plays an important role in image Segmentation. Spatial knowledge deals 
with the spatial relationships like proximity, connectivity and associativity 
among various objects in an image. Such knowledge has been widely used in 
the interpretation of aerial photographs. The generation of spatial rules has 
been automated for aerial photographs but not for LANDSAT images, possi- 
bly, due to the complexity of LANDSAT images and the difficulty associated 
with the acquisition of spatial knowledge from the domain experts. 
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13.6.1 

The human expert first identifies some regions in the image and provides an 
initial interpretation of the image. The automated image interpretation infor- 
mation that can be reliably extracted from image features is called spectral 
knowledge. Spectral knowledge is usually extracted from an image by select- 
ing a representative site for each class and extracting the statistics of that  
class. 

Spectral Information of Natural/Man-Made Objects 

13.6.2 

The selected training sites representing the land cover classes of interest should 
not be typical ones but should represent the norms for each class. The image 
coordinates for these sites are then identified and used to extract features 
from the data of each of these sites. Training data should be selected in such 
a way that the features should be of the same value if the environment from 
which they are obtained is relatively homogeneous. However, if conditions 
change dramatically] as the study progresses across the study area, it is likely 
that the features extracted from the training sites acquired at one end of the 
study area will not be true representatives of the spectral conditions found 
in the other end of the same study area. Hence, the selection of training 
sites plays a major role in the acquisition of spectral knowledge related to  the 
interpretation of remotely sensed images. 

Training Site Selection and Feature Extraction 

13.6.3 System Implementation 

The knowledge-based classification of satellite images is the most important 
step in the development of an image understanding system. From the map 
of the area of interest, some of the regions are selected as the representative 
target classes. Analysis is then done for finding the features of the classes 
from the representative training sites. 

The mean feature vector and variances of the different categories of the 
study area are used for framing the knowledge rules used for the classifica- 
tion. By using this methodology, different knowledge rules can be framed for 
the classification of satellite scenes. These knowledge rules almost completely 
describe the study area. 

Spectral knowledge organization: In the development of the spectral 
knowledge base, two types of relations are used for describing the features: 
(1) band-to-band (BB) and ( 2 )  category-to-background (CB). The band-to- 
band feature represents the relationship between different spectral bands i.e. 
the shape of the spectral reflectance curve. The band-to-band constraints are 
used to characterize the shape of the reflectance curve in terms of inequalities 
of combinations of spectral bands to  avoid the use of absolute thresholds. 
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The category-to-background feature is based on the observation that land 
cover categories are often consistently brighter or darker than the surrounding 
pixels that belong to other categories. This feature is defined in terms of the 
contrast gradient between the category pixels and the normal background 
response. The sign of the constraint gradient is defined for each spectral 
band. 

13.6.4 Rule Creation 

All rules do not necessarily support binary decisions, i.e., accept if true and 
reject if false. In most of the cases the antecedents may be satisfied only 
partially. Also even if the antecedents are fully satisfied, the consequent may 
be fuzzy. 

For the development of a knowledge based segmentation system, following 
three types of knowledge rules or constraints are used for representing the 
domain knowledge of the scene under consideration. 

1. Mandatory constraints: These rules describe the spectral properties that 
are expected to be satisfied by all the pixels belonging to a category. In 
other words, these rules represent the general features of target cate- 
gories. 

2. Optional constraints: These rules describe the spectral properties to be 
satisfied by a group of pixels belonging to a category. 

3. Contradictory constraints: These are the rules that describe spectral 
properties that are known to contradict a category. 

An interesting approach is to represent these knowledge rules in terms of 
three parameters that are used to  direct the accumulation of evidence, i.e., 
a constraint, a supporting weight and an opposing weight. The supporting 
and opposing weights are associated with each of the target classes. The 
constraint is used for rule validation and is evaluated as a function of the 
local distribution of reflectance values of each pixel. The weights determine 
the relative significance of the evidence provided by a given constraint in 
supporting or opposing a category. 

If the constraint is validated, then the supporting evidence is incremented 
by incrementing the supporting weight, otherwise the opposing weight is in- 
cremented depending on one of the three types of constraints used for clas- 
sification. If the constraint is mandatory, then on validation the supporting 
weight will be increased, otherwise the opposing weight will be increased. On 
the other hand, if the constraint under consideration is an optional one, then 
on validation we increment the supporting weight. If, however, the constraint 
under consideration is contradictory, then if it is invalid the opposing weight 
is incremented, but no change is done to the supporting weight. The step size 
for incrementing the supporting and opposing weights is selected on the basis 
of the level to which a rule can describe the category of interest. 
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13.6.5 Rule-Base Development 

A number of rules may be created for the pixel classification of TM imagery. 
These rules should embody the spectral knowledge of the scene under consid- 
eration. The consequent of each rule is associated with an action to  be taken 
to  update weights (incrementation or decrementation of the weights). Some 
of the rules for the classification of general classes like water, and structure 
class are given below: 

0 RULE 1 (mandatory): 

- IF (the mean value of pixel follows the band decreasing property) THEN 
{the pixel belong to water class and hence increment the supporting 
weight for the water class} ELSE {the pixel does not belong to  water 
class and hence increment the opposing weight for the water class}. 

The extent to which the weights are incremented is user specified and 
is data dependent. 

0 RULE 2 (optional): 

- IF (the average of bands 4 and 5 is greater than the average of bands 
1 and 2 )  THEN {pixel may belong to  the structure class and hence 
increment the supporting weight for the structure class} ELSE {pixel 
may not belong to  the structure class and increment the opposing weight 
for the structure class}. 

The optional rule need not be followed strictly. These rules will partially 
enhance the truth values of an evidence. The optional rules may be 
checked only in cases where confusion exists. 

0 RULE 3 (contradictory): 

(if intensity of a segment in band 7 is less than its average intensity 
in band 1 and band 2 )  THEN {the segment is not concrete and hence 
increase the opposing weight for the concrete class}. 

For a contradictory rule, the consequence leads to the enhancement of 
the possibility of nonbelongingness to a class. 

The rules presented above use band-to-band type of knowledge. Likewise 
the rules for differentiating the different land cover categories present in the 
image under consideration may be used for the classification of the image. 
Classification decisions are made on the basis of convergent evidence, i.e., the 
category having the highest ratio of supporting to opposing evidence at the 
disposal of the final rule is selected as the representative class of that pixel. 
The selection of a representative class is usually done on the basis of the 
scores for different target classes. The scores for each of the classes are found 
by using the scores for the different classes. The score for a class may be 
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computed by using the following formulaes: 

where Esup.z and Eopp.z are the supporting and opposing weights for class a .  
The maximum possible score of 100 indicates that there are no opposing 

evidences and only supporting evidence, while the minimum score represents 
the presence of only opposing evidence and no supporting evidence. In case 
there are equal amount of supporting and opposing evidences, the score is 
zero and the decision in this r a w  i q  hard  

Fig. 13.2 Satellite Image (a) original, (b) segmented by inmiltilayered perceptron (error 
backpropagation), (c) segmented by Fuzzy self-organizing feature map. 

Figure 13.2(a) shows a satellite image of a river surrounded by vegetation 
and forestry. Figures 13.2(b) and 13.2(c) are the results of segmentation of the 
satellite image into different regions by multilayer perceptron and fuzzy self- 
organizing feature map network approaches respectively. The color version of 
Figure 13.2 is provided in color pages section. The major land cover categories 
in the scene has been seen appropriately classified by both the techniques. The 
errors of omission and commission are quite low in both the segmentation 
results. 

13.7 SPATIAL REASONING 

Since geometry is an important aspect of defining the world, spatial reasoning 
plays a useful role in the interpretation process of an image understanding 
system. Usually, after the segmentation and classification stage we get the 
information regarding the class of a segment, but not the structural and con- 
textual information of a segment, which is very important for the interpreta- 
tion of any scene. This can be explained by using the fact that ,  though two 
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segments may belong to the water class one of them may be a river and the 
other a water pond. From the spectral classification, we can only infer that 
both belong to  the water class. In spatial reasoning that utilizes the spatial 
parameters of the segmented objects in a scene yields good recognition of the 
objects. 

In general the image understanding system utilizes two different types of 
spatial information to  recognize an object: (1) intrinsic properties, i.e., at- 
tributes such as size, shape, length, etc. and (2) semantic knowledge of the 
scene, i.e., spatial relations among the different objects present in the scene. In 
a scene understanding system both the intrinsic and the semantic knowledge 
should be incorporated for better interpretation results. 

13.7.1 Evidence Accumulation 

The first step in the design of a spatial data analysis system involves the accu- 
mulation of evidence for spatial reasoning. The spatial evidence is obtained by 
the spatial reasoning expert and the spatial knowledge rule base is developed 
from the apriori structural and contextual information about the different ob- 
jects in the scene. These sets of rules describe the structural properties of 
different objects present in the scene and may be derived by using the map 
information. For the final inference, forward or backward chaining inference 
mechanism may be used, which gives a final interpretation of the segment. 
Here we discuss about the accumulation of evidence, spatial knowledge base, 
and the inference mechanism. 

After extracting a segment by any appropriate segmentation strategy, the 
parameters like area, location, perimeter, compactness, shape, length, breadth, 
end points, aspect ratio, and the adjacent information are extracted to inter- 
pret the segment. 

The information of adjacent pixels is extremely important for distinguishing 
between objects closely resembling one another. The following seven features 
are useful: 

1. Length of a segment: For identipiing linear segments like rivers, 
canals, roads, railway line, airport runways, the length of the segment 
is an important parameter for spatial reasoning. The length of any 
segment is usually the length of its thinned segment, which is almost 
always the number of pixels in the skeleton. After the process of seg- 
ment extraction. the object of interest js skeletonized and the number of 
pixels in the thinned segment is considered as the length of the segment. 
For skeletonizing a segment any good thinning algorithm, like the Safe 
Point Thinning Algorithm (SPTA), may be used. It is possible that 
the skeleton of a segment may consist of many branches and only the 
main branch with the maximum length is considered as the length of 
the segment. For linear segments, the end points of a segment provide 
a useful guide for the interpretation of a segment. 
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2. Area, breadth, and perimeter: The area of any given segment or 
the connected component is calculated as the number of pixels in the 
segment. The average breadth of a given segment is calculated as the 
ratio of its area to  its length. The perimeter of the segment is computed 
from the number of border points of the segment. 

3. Aspect ratio: The aspect ratio of a segment is defined as the ratio of 
length to  breadth of a segment, and is mainly used for the representation 
of the regular-shaped objects present in the scene. 

4. Compactness: The compactness information is used for finding the 
shape of a given segment. It is calculated as the ratio of the square 
of the perimeter to  the area of a given segment. It is known that the 
compactness is maximum for circle in the continuous case, and in the 
case of digital domain it is more for square and hexagonal objects and 
less for linear segments. By using this property the shape of the segment 
can be inferred. 

5 .  Location of a Segment: The centers of gravityies may be chosen 
as the location of a regular-shaped segment. The X-coordinate of the 
center of gravity is calculated as the average of the X-coordinates of all 
the pixels and the Y-coordinate of center of gravity as the average of 
the Y-coordinates of all the pixels of the segment respectively. 

6. Moment of inertia: The moment of inertia is also useful for finding 
the shape of a given segment, which is calculated by using the following 
formula. 

and hence 

M.I.  = ,,/M.I.; + M.I.; 

and X i  and Y ,  are the coordinates of the ith pixel and n the number 
of pixels in the segment. M.I., and M.I., represent moment of inertia 
about the axes parallel to  the x-axis and y-axis passing through CG of 
the segment. 

7. The presence of CG within the segment: Location of the CG 
of a segment provides an important information of the segment. To 
find out whether the CG of a segment lies inside the segment or not, 
the measure of relative distances of the CG point with all pixels of the 
segment can be used. All the above spatial parameters may be used for 
spatial reasoning. 
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13.7.2 Spatial Rule Generation 

A set of spatial rules are framed by using the domain knowledge of the scene. 
These rules are developed to form an interface between the forward-chaining 
inference mechanism and the facts obtained from the above evidences for the 
spatial reasoning. The final interpretation of the scene is obtained at this 
stage. A few of the rules in the rule base used for spatial reasoning are 
discussed here. 

In this reasoning we first divide all the segments into either linear or regular 
shaped categories. Some of the rules used for this purpose are as below. 

Rule 1: IF (moment of inertia/ area of a segment is high) AND (aver- 
age breadth of the segment is not high) THEN {the segment is linear}. 

Rule 2: IF (moment of inertia/ area of a segment is low) AND (center 
of gravity of a segment is inside another segment) THEN {the segment 
is regular-shaped}. 

Depending on the spatial parameters, the segments have been inter- 
preted as follows. 

0 Rule 3: IF (segment is linear AND average breadth of the segment is 
low) And the segment class is water) ,  THEN { the segment is a canal 
or a river}. 

Rule 4: IF (segment is regular-shaped AND belongs to the water class) 
THEN {the segment is lake}. 

The rules are generated from the domain knowledge of the problem. The 
objective of the analysis is to classify the different land cover regions in various 
categories of interest and then locate the rivers, water ponds, parks, residential 
areas, etc., present in the scene. 

13.8 OTHER APPLICATIONS OF REMOTE SENSING 

Interesting applications for the generation of the Cover Map of a Remotely 
Sensed Image for GIS Applications has been reported in [ll]. Other important 
applications include change detection, which is briefly discussed below. 

13.8.1 

Repeat pass change detection incorporates the basic principle of imaging the 
same area after an elapsed time and is particularly useful in detecting changes 
in the that area. 

Change detection techniques for SAR data can be divided into several cat- 
egories, each corresponding to different image quality requirements. In a first 
category, changes are detected based on the temporal tracking of objects or 

Change Detection using SAR Imageries 
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stable image features of recognizable geometrical shape. Absolute calibration 
of the data is not required, but the data must be rectified from geometric 
distortions due to differences in imaging geometry or SAR processing param- 
eters, and the accurate spatial registration of the multi-date data is essential. 
Applications include sea-ice monitoring and motion tracking, monitoring of 
glaciers, landslides, and oceanic features. In the second category, changes are 
detected based on temporal differences in radar backscatter. The requirements 
are a stable calibration accuracy of the data, and an accurate spatial registra- 
tion of the multi-date data. Typical applications include monitoring of crops, 
volcanic activity, snow extent and conditions, glacial melt, soil moisture, and 
vegetation water content. 

The methods of change detection consist of image ratioing, differencing 
techniques as well as techniques based on wavelet decompostion and singular 
value decomposition. Application of 2D Gabor filter has been shown t o  detect 
the changes in SAR images [12]. We have introduced the Gabor filter and its 
characteristics in Chapter 5. Gabor filter is particular suitable for character- 
izing textures in an image. The orientation parameters of the Gabor filter are 
useful in delineating the texture orientations in satellite (SAR) image. 

SAR images are characterized by more textural information than gray tone 
variations. The features associated with texture can be effectively, extracted. 
The texture based segmentation algorithm is applied on the SAR repeat pass 
images followed by image differencing and ratioing techniques in order to 
achieve change detection in the images. 

Fig. 13.3 
of the original after a time interval. (c) changes in them. 

Change detection from repeat pass SAR image: (a) original, (b) repeat pass 

The test image Figures 13.3(a) and 13.3(b) show two SAR repeat pass 
images of an urban area of size 31.2 miles by 27.9 miles. The radar illumination 
is from the left side of the image. The image shows a single channel of SIR-C 
radar data: L-band, horizontally transmitted and received. Image differencing 
technique have been applied to  the original Figure 13.3(a) and changed images 
Figure 13.3(b) and the result of changes that has taken place during the time 
interval of the repeat pass is shown in Figure 13.3(c). 
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13.9 SUMMARY 

In this chapter we have presented brief description of the different satellite 
Imageries, their utilities and applications in diverse areas of resource mon- 
itoring and management using satellite image data. The techniques of re- 
motely sensed scene segmentation and pixel classification have been discussed 
here. Pixel classification using neural network based techniques, viz, multi- 
layered perceptron with error backpropagation and counterpropagation based 
networks have been discussed. Knowledge based systems play an important 
role in remote sensing. Design of a system using spectral rules has been de- 
tailed here. Different aspects of spatial reasoning have been encoded for finer 
classification and recognition of regions. An interesting application of image 
processing is on change detection from remotely sensed images which has been 
discussed in this chapter. 
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Dynamic  Scene Analysis: 
Movina Object Detection 

r /  r /  

and Tracking 
14.1 INTRODUCTION 

The detection and classification of moving objects is an important area of 
research in computer vision. The problem assumes immense importance be- 
cause of the fact that our visual world is dynamic and we constantly come 
across video scenes that contain a finitely large number of moving objects. 
To segment, detect, and track these objects from a video sequence of images 
is possibly the most important challenge that the vision experts confront to- 
day. In this chapter, we will present the problems and the possible solutions 
of each subtask in dynamic image analysis. These systems find applications 
in human surveillance, security systems, traffic monitoring, industrial vision, 
defense surveillance, etc. [1]-[3] 

14.2 PROBLEM DEFINITION 

The first step for moving object detection and tracking involves foreground- 
background separation by subtracting the background from each frame of a 
video sequence. This difference shows the moving objects, e.g., a moving 
man or a moving car in the scene and is known as foreground detection. 
The problem complexity in extracting the moving objects in a dynamic scene, 
however, increases with the increasing presence of motion due to  various other 
phenomena. For example factors such as the change in illumination, variation 
of sunlight as the day progresses, change of appearance of color due to white- 

307 
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balancing (and/or color correction) in the color digital camera itself, change 
of pixel values due to flickering and other phenomena, create false motions in 
the dynamic scene. Also motions due to shadow movement, tree movement, 
and many such other events in the scene need to be considered and detected 
as false motion. In view of the above, we need to model the background 
continuously so that only moving objects of interest may be detected and 
tracked accurately. 

14.3 ADAPTIVE BACKGROUND MODELING 

The key issues in the understanding of background modeling are: 

0 Why background modeling is at all necessary 

0 What are the conventional approaches of background modeling and 

0 The new strategies based on some of the concepts put forward by several 
researchers over the last decade 

By the term background we mean the static part of the scene that does not 
change with time. It is only the moving objects that  change their positions 
in the scene. Interestingly, however, there are several factors resulting in 
a change of the background. It  is thus important that while dealing with 
continuous monitoring of the scene, as in the case of video surveillance, we 
should model this background continuously. 

Background modeling is necessary due to the following reasons: 

1. There is a possibility of frequent change in illumination in the outdoor 
scenes, resulting from clouds, rains, fogs, etc. 

2 .  Natural phenomena such as storms and winds also cause changes in 
background due to  the movement of tree branches, bushes, etc. 

3. Even on a normal day, the overall outdoor illumination changes from 
dawn to dusk as the brightness of the sunlight changes continuously. 

4. Changes are observed due to glints and glare of the sun, which are quite 
prominent as the sun angle changes. 

5 .  hlanmade artificial lights like street lights also cause a change in the 
background. 

6. There are other moving objects, including shadows, which obscure the 
visual field and produces clutter and changes in t,he background. 

Each of the above factors causes change in the background, which is not 
a static entity. Modeling of the background is thus an essential component 
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in dynamic scene analysis. The background modeling methods fail if the 
algorithm does not model the background continuously, since the background 
undergoes continuous changes because of the factors outlined above. Without 
continuous and adaptive background modeling, the errors in the modelled 
background accumulate continuously. As a consequence, the detection and 
tracking of moving objects may be erroneous. 

14.3.1 Basic Background Modeling Strategy 

In a continuously changing scene, it is important to note that each pixel may 
have a constant motion. This means that a particular pixel may undergo 
constant change in its brightness value with the change in environmental con- 
ditions. Another interesting phenomenon occurs quite often. A pixel may 
belong to the class of tree leaf at  a particular frame and the same pixel may 
assume another class, say a human being, moving in front of the tree, in the 
next frame. It  is thus important that each pixel variation should be mod- 
eled in a statistical sense. Continuous estimation of this statistical model, 
which embodies all such variations, is the main philosophy of the background 
modeling. 

In cases where we have very few or no moving objects in the background, we 
may simply average the background frames to  create an approximated static 
background. Simple background modeling methods work when we get large 
number of background frames without any moving objects in the scenes. In 
most of the practical cases, however, there are considerable number of moving 
objects. This necessitates the adoption of robust background modeling [7, 81. 

14.3.2 

A pixel in a scene may be conceived as belonging to one of a multiple number 
of pattern classes, such as, tree leaves, grass, etc. Each class assumes a spe- 
cific probability distribution. Each specific class of patterns will be modeled 
by a specific histogram of intensity values which provides a measure of its 
distribution. When the pixel belongs to a single monolithic class, the ideal 
distribution of values should be a compact, Gaussian-like cluster around some 
mean point. 

However, since each pixel is in a constant state of motion, a particular 
pixel in the scene may be considered as a combination of many Gaussian 
distributions and a single Gaussian would not be sufficient to model the pixel 
value. 

In practice, multiple objects may appear in the view of a particular pixel 
along with a change in the lighting condition. Thus multiple, adaptive Gaus- 
sians are required for modeling a pixel. We use an adaptive mixture of Gaus- 
sians to approximate this process. 

A Robust Method of Background Modeling 
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Let us consider the past history of a pixel over time, which is essentially a 
time series of scalars for gray values (or vectors for color pixel values). At a 
given time instant t ,  the history of a particular pixel { X I ,  X z , .  . . , X t - l } ,  is 
given by a weighted combination of a number of Gaussian distributions, (say 
K )  as below. The higher is the value of K ,  the better is the approximation. 

K 

P ( X , )  = c(u.z,t % ( Z z . t , C 1 2 , t , c z , t ) ,  

z=1 

where wz,t is the estimated weight at  t th  frame of the i th  Gaussian distri- 
bution, q2(xz , t ,  p,,t, c,,t) with pZ,t as the mean value and cz,t as the variance 
representing the i t h  pattern class. The Gaussian for i the class is 

The parameters that  we need to  estimate and update are (1) mean feature 
vector pz,tr and ( 2 )  covariance matrix C,,t. If the features are independent, 
then the covariance elements of C,,t tend to zero. Assuming that the corre- 
lation among the red (It), green (G) and blue (B) components of a pixel is 
very small and their variances are identical, the covariance matrix C,,t can be 
expressed as 

where I is an identity matrix. 
A new pixel value, in general, is represented by one of the K number 

of major components of the mixture model and this is used to update the 
model. When the intensity value of a pixel falls within a predefined range of 
distribution, we say that the pixel matches with the distribution. If none of the 
K distributions match the current pixel value, the least probable distribution 
is replaced with a new distribution with the current value as its mean value. 

The prior weights Wz,k,t+l of the K distributions a t  time t + 1 are adjusted 
as follows: 

CZ,t = 6 , t 2  I 

Wa>k,t+l = awz,k,t f PMz,t, 

where cr and P are two learning constants and M2,t is 1 for the model matched 
and 0 for the unmatched models. The mean and covariance parameters are 
updated as follows. 

P,.t+l = PlPz,t + P25z, t+l  

and 
2 

Oz,t+l = P l G , t 2  + P 2 ( Z t  - PZ,t)%,t - Pz,t). 

The learning constants p1 and p2 in the above updation equations controls 
the speed of learning and p1 + p 2  = 1. 

The basic purpose of background model estimation is to  determine which of 
the Gaussians of the mixture are most likely produced by background process. 
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Fig. 14.1 
ure: (a) modelled background, (b) an input frame, (c) segmented human object. 

Results of background modeling and segmentation of a moving human fig- 

After ranking the distributions by an appropriate strategy, the most likely 
background distribution remain on top of ranked list and the less probable 
transient background distributions gravitate toward the bottom, which may 
eventually be replaced by new distributions. 

One of the significant advantages of this background modeling is that, 
when a pixel in the foreground is allowed to become part of the background, 
it doesn’t destroy the existing model of the background. 

14.4 CONNECTED COMPONENT LABELING 

Once we get a set of foreground pixels in each frame, after background mod- 
eling and differencing, it is important to threshold them so as to  yield a set 
of binary points. These labeled foreground binary pixels representing the ob- 
ject and background are next segmented into regions by connected component 
labeling algorithm, which yields a set of smooth blobs corresponding to each 
of the moving objects. The objective of connected component labeling is to 
determine all the connected set of components in an image an assign a distinct 
label to each pixel in the same connected component. 

In a binary image scanned from left to  right, an unlabeled object pixel is 
assigned a label, say X and each of its neighboring object pixels is assigned 
the same label till there is no more unlabelled object pixel in the image. Such 
a recursive algorithm for connected component labelling may be efficiently 
computed on a mesh-connected parallel machine. An alternate strategy of 
connected component labelling can be defined in two passes. In the first pass, 
each object pixel is assigned a label according to the following criteria. 
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(a) If both the upper neighbor P(i - 1,j) and left neighbor P( i , j  - 1) of the 
object pixel P(i ,  j )  in a 4-connected neighborhood have the same label 
X ,  then assign label X to P ( i , j ) .  

(b) If either the upper neighbor P(i - 1,j) or the left neighbor P( i , j  - 1) 
of the object pixel P ( i , j )  in a 4-connected neighborhood has the label 
X ,  then assign label X to  P ( i , j ) .  

(c) If the upper neighbor P(i -  1,j)  has label X and left neighbor P ( i , j  -1) 
of the object pixel P ( i , j )  has a different label Y (i.e., 2 # Y )  in a 4- 
connected neighborhood, then assign label X to P ( i , j ) .  Enter X and 
Y in an equivalence table, say E .  

(d) If the upper neighbor P(i  - 1,j) and left neighbor P( i , j  - 1) of the 
object pixel P(i ,  j )  in a 4-connected neighborhood are both nonobject 
pixels, then assign new label 2 to the pixel P(z , j ) .  Enter label 2 in the 
equivalence table E. 

Usually we assign numeric labels to  each component. The equivalence table 
E contains a set of equivalent labels. 

In the second pass, the equivalent labels are merged to create unique labels 
for each connected component in the image. If X and Y are two equivalent 
labels in E ,  then reassign Y by X when X < Y or vice versa. As a result, 
each connected component is assigned a unique label. 

Hence the above connected component labeling algorithm is a two pass 
algorithm. In the first pass the object pixels belonging to the same connected 
component are assigned different labels and are recorded as equivalent in the 
equivalence table E .  In the second pass where the equivalent labels are merged 
together so that each connected component is assigned a unique label. 

14.5 SHADOW DETECTION 

Shadow detection and suppression is possibly one of the most important tasks 
in video surveillance [4]-[8]. If we can suppress the shadows the task of object 
recognition and scene interpretation becomes easy. One of the most important 
properties of shadow is that  the pixels forming the moving object and its 
shadow are detected simultaneously from the inter-frame differences. The 
shadows and the moving object which causes it are always located adjacent 
to each other. Thus they may be enclosed in the same blob. Also quite often 
the shadows of two moving objects may get merged into a single blob, which 
may result in false object detection. 

Thus we have to  understand some of the important properties of shadows 
which may be useful in differentiating shadows from the moving objects. 

Shadows may be of different types. Sometimes a portion of the object 
may be dark because this part was not illuminated at all. These shadows are 
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termed self-shadows. On the contrary, shadows produced by an object on a 
surface are called cast-shadows. As the object, say a human figure moves, the 
shadow also moves. There are three different properties of the shadows: 

1. Shadows are better distinguished in HSV color space, which resembles 
more of human perception. This implies that the shadows produced by 
the objects, change the H ,  S ,  and V more significantly. 

2. Also the shadow points cast by the object reduce the intensity of the 
background pixels, i.e., shadows have a darkening effect on the back- 
ground. 

3. It has been observed that shadows lower the saturation of points, which 
means that the difference between the background pixel saturation val- 
ues and the shadow pixel saturation values will be positive. 

Shadow suppression algorithm using both intensity and color information 
yields good results [5]. 

14.6 PRINCIPLES OF OBJECT TRACKING 

Once appropriate background modeling and shadow detection and elimina- 
tion have been performed, the next task is tracking the object in the midst of 
clutter. Many interesting approaches have been reported on different tracking 
algoritms [lo]-[12] The following eight design considerations may be incorpo- 
rated in a target tracking system. 

1. Stationary Background: When the scene contains multiple objects, 
the background is stationary while all or part of the objects in the 
foreground may be in motion. 

2. Target size variation: The target size reduces as the target moves 
further away from the camera. Thus a scaling mechanism needs to  be 
incorporated during the process of tracking. 

3. Occlusion or Temporary loss of target: During the tracking phase 
the target may be temporarily lost as it goes behind another object. 
This is known as occlusion. In such cases the system will recover the 
target automatically. 

4. Target Model: The model of the target needs to be incorporated. In 
case of human tracking, for example, a human figure may be modeled as 
an ensemble of several ellipses, where each ellipse represents the individ- 
ual body parts like head, torso, hands, and legs, etc. The color, shape, 
intensity, and other attributes of the object may vary while the object 
is in motion, and yet the tracker should be able to track correctly. 
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5.  Automatic Target detection: The tracker should be able to detect 
all the new targets automatically and start tracking the them. 

6. Real time: The tracking algorithm should be computationally simple 
and optimum so that the tracking can be implemented in real time. 

trajectory. There may be abrupt changes in the target path. 
7. Target trajectory: The target may or may not follow a particular 

8. Target speed: Speed of the target can change abruptly; it may be 
constant, increasing, or decreasing. 

14.7 MODEL OF TRACKER SYSTEM 

A tracking system may be modeled as a three-state sequential machine as 
shown in the figure. The sequential machine has three states, i.e., locking, 
tracking and recovery. Functions of each state are as follows: 

1. Locking state: Initially the system is in locking state, when the cam- 
era is in search mode, i.e., searching for targets. During this state the 
processing is carried out on the whole image frame. The system will 
partition the image frame captured by camera into a number of moving 
objects. The history of these objects is extracted by checking the trajec- 
tory followed by the objects, and confirmation of the moving object is 
carried out in automatic mode. Once the target is confirmed the control 
of the system is transferred to  tracking state. 

2. Tracking state: This stage should use computationally inexpensive 
techniques. Current location extracted by locking state is used for pro- 
cessing. Next position of the target is identified, and that positional 
information is stored in history database. If the target does not exist 
in the predicted window area, then the system control is transferred to  
recovery state. 

3. Recovery state: Quite often the moving object of interest may be lost 
temporarily or permanently. In this state if the target is lost, the system 
will try to  recover the target from low-resolution image. If the target 
is recovered in a few frames, then the system will transfer control t o  
tracking state; otherwise it remains in recovery state till its predefined 
time expires. After the time is elapsed, control transfers to  locking state. 

14.8 DISCRETE KALMAN FILTERING 

A thorough and precise approach for dynamic state estimation is formulated 
under Bayesian methods [9, 121. The methodology is to  construct the prob- 
ability distribution function (PDF) of the state vector based on all available 
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information. This PDF summerises the current state of knowledge about the 
state vector and then the optimal computational approach can be formulated 
based on this. The PDF will be Gaussian in the case of linear/Gaussian 
problem and the Kalman filter is found to yield optimal solution to discrete 
data filtering. A distinctive feature of Kalman filter is that its mathematical 
formulation is described in state space concepts and its solution is computed 
recursively. Each updated estimate is computed from previous estimate and 
from the new input data. This offers the advantage that only the previous 
estimate need to be stored in memory. Kalman filter has been applied widely 
in the field of tracking and navigation. 

Kalman filter addresses the problem of estimation of the state x E Xn of a 
discrete-time controlled process which is governed by linear stochastic differ- 
ence equation 

X k  = h k - 1  + B U k  -k W k - 1  

with a measurement z E !JF' i.e 

The random variables wk and 'uk represent the process and measurement 
noise respectively. These are assumed to be independent white noise,with 
normal probability distributions. 

where Q and R are the process and measurement noise covariances respec- 
tively.The matrix A of dimension nxn relates the state at the previous time 
step k -  1 to the state at the current time step k .  The matrix B is of dimension 
nxl and it relates to the control input to the state u E Xl. The matrix H is 
of size mxn relating the state of measurement. 

Let ii = xk /Z(k- l )  denote the apriori state estimate at step k ,  which is 
based on the knowledge of the process up to k - 1. Let k k  = z k / z ( k )  be the 
aposteriori state estimate at step k given the measurement z ( k ) .  

We define apriori and aposteriori error estimate as 

- 
ek = x k  - x k / z k - l  

ek = x k  - xk / zk  

The a priori estimate of error covariance is defined as 

and a posteriori estimate of error covariance is 
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In formulating the Kalman filter equation, the objective is to determine 
the equation relating a posteriori state estimate x k  as a h e a r  combination of 
a priori estimate xi as 

The term [ z k  - H X ~ / , Z ~ - ~ ]  is called measurement innovation or resid- 
ual. The residual reflects the discrepancy between predicted measurement 
H x k l 2 k - I  and the actual measurement z k .  

The nxm size matrix K is defined as Kalman Gain.One of the popular form 
of expressing Kalman gain is 

The Kalman filter equations can be described in various forms and the 
equations formulated above is one of them. 

14.8.1 Discrete Kalman Filter Algorithm 

Kalman filter estimates a process by using a form of feedback control. The 
filter estimates the process at  some time and then obtain feedback in the form 
of noisy measurements. The equations for Kalman filter fall in two groups: 
T i m e  update equations and measurem,ent equations. The time update equa- 
tions are responsible for projecting forward the current state and the error co 
variance estimates to obtain the a priori estimates for the next step. The mea- 
surement update equations cater for incorporating a new measurement into 
a priori estimate to obtain an improved a posteriori estimate. The discrete 
Kalman time update equations are 

A -  

X k  = A2k-l + BUk 

PL = APL-,AT + Q 

where P i  is &[e:, e x T ] ,  aprioriestimate error covariance and 9 - 1  is E [ e k - l ,  er-l], 
aposteriori estimate error covariance. 

The measurement update equations are 

Kk = PiHT(HPLHT f R)-' 

& = X i  + K k ( Z k  - HX, 

Pk = ( I  - KkH)PL. 

The algorithm can be formulated as 

0 Compute the Kalman Gain Kk using Kk = A H T ( H P k H T  + R)-l 
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0 Obtain the measurement datat(k).  

0 Compute and update the a posteriori state estimate 

y k  = i k -  + K k ( z k  - H i k - )  

0 Compute and update the error covariance 

P k  = (1 - K k H ) P [  

0 Compute and project the new state estimate 

0 Compute and project the error covariance 

&-+I = A%AT + Q 

After each time and measurement update pair, the process is repeated with 
previous aposteriori estimates which are used to predict new apriori estimates. 
This recursive nature makes the practical implementation computationally 
feasible to  solve real time tracking problems. 

14.9 EXTENDED KALMAN FILTERING 

As described earlier, the Kalman filter addresses the general problem of es- 
timating the state  EX^ of a discrete time controlled stochastic difference 
equation. However, if the process to be estimated and/or the measurement 
relationship to the process is non-linear, a method known as Extended Kalman 
Filtering wherein the current mean and covariance is linearized is used. Ex- 
tended Kalman filter is the most popular approach for implementing recursive 
non-linear filters. This is a linearization technique based on the first order 
Taylor series expansion of the non-linear system and measurement functions 
about the current estimate of the state. 

In the non-linear case, the process equation is defined as 

with a measurement t = h ( x k ,  ' u k ) ,  wherein the random variables wk and v k  

represent the process and measurement noise. In this case, the non-linear 
function f in the above difference equation relates the state at previous time 
instant lc - 1 to the state a t  current time instant lc. The non-linear function 
h in the measurement equation relates the state x k  to  the measurement tk. 
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As it may not be feasible to  obtain individual values of noise w t  and 2/k 

at  each time step periodically, the approach is to approximate the state and 
measurement vector without them as 

f k  = f ( X i - 1 ,  U k i  0) 

and 
Fk = ( f k ,  0 )  

where f k  is the aposteriori estimate of the state computed data up to time 
instant k - 1. 

For estimating the process with non-linear difference and measurement 
relationships, the equations can be expressed as 

x k  FZ : fk  -k A ( X k - 1  - X i - 1 )  + W W k - 1  

z k  Z?, f H ( X k  - y k )  + V v k  

where x k  and zk are actual state and measurement vectors, x-k and ijk are 
approximate state and measurement vectors. X-k is the aposteriori estimate 
a t  time instant k. 

A is Jacobian matrix of partial derivatives o f f  with respect to x ,  i.e., 

H is Jacobian matrix of partial derivatives of h with respect to x ,  i.e. 

W is Jacobian matrix of partial derivatives o f f  with respect to w ,  i.e., 

V is Jacobian matrix of partial derivatives of h with respect to z1, i.e., 

We define the prediction error and measurement residual error as 

- - exk x k  - x k  

and - - e,, z k  - Zk 

With the above definition, the governing equations for the error process 
can now be approximated as 

ex, zz A ( X k - 1  - ?,+-I) + Ek 
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and 

'Zk + Vk 

where &k and V k  denote the new independent random variables having zero 
mean and covariance matrices W Q W T  and VRVT 

The above equations closely resemble the difference and measurement equa- 
tions of Discrete Kalman Falter and are linear. Hence actual measurement 
residual e,, and a hypothetical second Kalman filter can be used to estimate 
the prediction error Ex, M A(xk-1 - i k - 1 )  + Ek defined as f k  so as to obtain 
the a posteriori state estimate for the non-linear process as 

and the random variables & k ,  v k  and e,, will have approximately the following 
probability distributions: 

p ( e ; k )  N ( o , E [ e i k >  

p(&) N(O,WQkWT) 

p(qk) N(O, VRkVT) 

Now considering the predicted value &k to be be zero, the Kalman equation 
can be expressed as 

ei, = Kke,, 

and the state equations can be expressed as 

yk = f k  -k Kke,, = 2, f Kk(Zk - Zk) 

The above equations can be used for the measurement update in the Ex- 
tended Kalman Filter. To summerize, the Extended Kalman filter time update 
equations are 

x i  = f (x i -1 ,  Ukr 0 )  

and the measurement equations are 

f k  =Z?k--kKk(Zk -h(?i,O) 

Pk = (I - KkHk)PF 

An important feature of Extended Kalman filter is that the Jacobian Hk 
in the equation for Kalman gain KI, serves to correctly propagate only the 
relevant component of measurement information. 
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For a particular problem, if the assumptions of the Kalman filter hold, 
then no other algorithm can out perform it. However, for a variety of real 
world computer vision applications, these assumptions are often unrealistic. 
So alternate techniques which approximate the function is employed. Particle 
filtering has emerged as a powerful tool in solution to these problems. A 
number of different types of particle filter exists which are optimal for certain 
class of applications. 

14.10 PARTICLE FILTER BASED OBJECT TRACKING 

A number of tracking strategies have been suggested and important ones are 
based on Kalman filters and extended Kalman filtering. In tracking prob- 
lem, if the assumptions of the Kalman filter hold, then no other algorithm 
can outperform. However, in real life applications, these assumptions may 
not hold a t  all the time and approximate techniques must be employed [9]. 
Extended Kalman Filter approximates the models used for the dynamics and 
measurement process, in order to  be able to approximate the probability den- 
sity of Gaussian. Particle filtering approximates the density directly as a finite 
number of samples. Different types of particle filters exists and some form of 
implementation outperform others when used for specific applications. In this 
section, we will present the tracking algorithm using Particle filters. 

With advancements in the computing field, particle filtering has emerged 
as a powerful methodology for sequential signal processing. Broadly stating, 
Particle filtering is the recursive implementation of Monte-Carlo based statis- 
tical signal processing. A number of excellent particle filtering based tracking 
may be found in [9]-[16] and many others where this method has been applied 
to  solve a wide range of application areas. 

Particle filter techniques are formulated on the concepts of Baysien theory 
and Sequential Importance Sampling. This approach has been found to be 
very effective in dealing with non-gaussian and non-linear problems. The basic 
approach is to approximate the relevant distributions with random measures 
composed of properly weighted particles. 

The process equation can be defined as 

x k  = f k ( x k - 1 ~ w k )  

with a measurement vector zk = hk(zk,vk), where h k  is the measurement 
function, f k  is the system transition matrix at  time instant k.  The random 
variables wk and vk represent the process and measurement noise, which are 
assumed to  be independent. 

In particle filtering based tracking, we use discrete random measures to 
approximate the continuous probability distribution functions [3, 11, 12, 171. 
These discrete random measures are formed out of particles which are suitably 
weighted, where the weights are probability masses, computed by using Bayes 
theory. The particles are samples of unknown states from state space. 
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One of the features of particle filtering is that the approximation of de- 
sired probability distribution function is attempted against the approach of 
linearization around the current estimate. In this technique, the concept of 
importance sampling is important. Since, this is a sequential process, it is 
known as sequential importance sampling. 

Assuming the noise samples are independent, the joint a posteriori distri- 
bution of ( ~ 0 ~ x 1 ,  ... xk) can be expressed as 

K 

P(Yk/Zk) 0: P(Xol.0) l-I P ( Z t / X t ) . P ( X t / X t l l )  

t=l  

The recursive formula for obtaining P(Yk/Zk) from ( x i - l / Z k - l )  is 

As mentioned earlier, we use the methods based on approximations. These 
approximations can be expressed as, 

where x ( ~ )  are the particles and w ( ~ )  are the corresponding weights and M is 
the number of particles. 6(.) is a Dirac delta function. With approximation, 
the expectation operations become summations as 

M 

&[f(X)] M c W r n . f ( X r n )  

m= 1 

In particle filtering: another factor is importance sampling. The probability 
distribution function is approximated by particles, each of them assigned with 
equal weights 1/M. When the direct sampling from the distribution function 
is not feasible, then the particles dm) are generated from a distribution n (z)  
, known as importance function and then assign weights as 

On normalization of the weights, this is expressed as 

,*(m) 
wm = - 

C , = 1  
M '  

If the importance function can be factored as 
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and the weights: 

then, we can determine xirn) as 

with weight wLm) as 

and the posterior density function 

M 

m = l  

As M --f 03, the approximation approaches the true a posteriori density 
P(zk/Zk) .  The 
importance function must have the same support as the PDF which is being 
approximated. The closer the selected importance function to the PDF, the 
better the approximation. 

One of the problem in implementation of the particle filtering is that the 
discrete random measure degenerates quickly, implying the deterioration of 
performance of particle filter. This effect can be reduced by careful selection 
of importance sampling function and resampling. Resampling is the process 
by which, the particles which have been assigned with small and negligible 
weights are resampled with particles with large weights. 

Broadly, when the particle filter techniques are used for tracking a human 
object, the major steps involved in the algorithm can be stated as : 

It is important to choose a proper importance function. 

1. Resampling 

2. Dynamics and 

3. Weight updation using observation 

In the first phase, initially we choose a particle and n number of copies of the 
same. 

14.10.1 Particle Attributes 

For each new particle generated, the particle generating system may determine 
a set of attributes that are assigned initially to the particle. Some of these 
attributes may be position, velocity, size, chromatic and achromatic values, 
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transparency, shape, and lifetime. Several parameters of a particle system 
control the initial position of its particles. A particle system has a position 
in three-dimensional space that defines its origin. Two angles of rotation 
about a coordinate system through this origin give it an orientation. We may 
choose some shape which defines a region around its origin into which newly 
born particles are randomly placed. These regions may be any regular or even 
arbitrary shaped regions, e.g., a rectangle of length 1 and width w, or a sphere 
of radius r ,  or a circle of radius r in the x-y plane. 

14.10.2 Particle Filter Algorithm 

The algorithm is as below. 

Step 0 (initialization phase): Choose the centroids of the human blobs as ob- 
tained from the output of the morphological transforms as the seed particles. 

Step 1 (resampling phase): Estimate the scale s(0 < s < 1) from the blob 
location and size of the blob using a lookup table. Compute the radius of 
circle r, in which the particles are located as also the number of resampled 
particles N corresponding to  each blob. Please note that both T and N are 
also functions of scale. 

Step 2 (dynamic estimation): In this phase we estimate the dynamics of 
motion of the particles. Here we have chosen a random walk strategy to  
estimate the next location, i.e., the dynamics is based on random walk. 

Select pz = py = 0 and cz = (a1 + blA,) which is variance around each blob 
I ,  a1 is the minimum variance that the particle search space will cover even 
when there is very little or no movement of the particle, and b l  is a constant 
which is multiplied with the directivity constancy factor A, along x-direction 
oY = (a1 + blAy)s, where the parameters are defined in a similar way. 

Select a circle with radius r around from look up table. Here r is a function 
of scale. 

Step 3 (weight assignment): Assign weight to each particle 

where d ( p i , q i )  yields a matching measure between the ith particle and the 
actual blob in the image frame. Normalize the weights if necessary and rank 
the particles according to  the weights. Go to  step 1 (i.e., resampling phase). 
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14.10.3 Results of Object Tracking 

Figure 14.2 shows a sequence of video frames, where there is a moving human 
figure in a static background. The color version of the figure is provided in 
the color page section. The tracked human figure in each color frame is shown 
in a blob, enclosed in a red rectangular bounding box. Here a set of hundred 
particles have been chosen at each frame representing the moving target. A 
simple random walk guides the motion of the human and the search region 
shape has been chosen as a square window of 50 x 50 pixels. The moving 
object could be continuously tracked in every frame in a sequence of 10.000 
frames. 

Fig. 14.2 Results of particle filter based tracking - moving human figure encapsulated 
in rectangular bounding boxes at an interval of 10 frames. 

14.11 CONDENSATION ALGORITHM 

The condensation algorithm is a form of particle filtering. This is based on 
factored sampling and extended to apply iteratively to successive images in a 
sequence. The tracking mechanism based on Particle filters essentially involves 
tracking a variable as it evolves over time with a non gaussian multi-modal 
probability distribution function [ll]. The objective here is to  track features 
and outlines of foreground objects modeled as curves as they move in clut- 
tered environment. The variable we are talking about may be the position of a 
target or the pose of a moving robot. At a particular instant our variable, say 
position of a target, may be represented as an ensemble of a set of samples. 
where each sample is known as a particle. 'Thus each particle is a copy of the 
variable. Also each particle has a weight, which specifies the contribution of 
the particle to  the overall estimate of the variable. How do we estimate our 
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variable of interest (i.e., position of the target)? This may be obtained from 
the weighted sum of all the particles. 

Discrete-time propagation of state density: The state of the modeled 
object at time t is denoted xt and the its history is X t  = ( 2 1 , .  . . , , zt}.  The 
set of image features at time t is zt with history 2, = ( ~ 1 , .  . . , zt} .  

Stochastic dynamics: The new state is conditioned directly only on the 
immediately preceding state, independent of the earlier history. This still al- 
lows quite general dynamics. 

Condensation Algorithm 

construct the “new” sample-set { sjn),  4in), . In)},  n = 1,. . . , N for time t .  

From the “old” sample-set at time-step t - 1, 

Construct the nth of N new samples as follows: 

1. Select a sample st as follows: 

(a) Generate a random number T E [0,1], uniformly distributed. 

(b) Find, by binary subdivision, the smallest j for which cEl  2 T 

(c) Set st = siP1 

2. Predict by sampling from 

p(zt,z*--l) = S t  

to choose each st. For instance, in the case that the dynamics are 
governed by a linear stochastic differential equation, the new sample 
value may be generated from random walk - see item 1. 

3. Measure and assign weight to the new position in terms of the measured 
features zt:  

4t = P ( Z t l Z t  = .t) 

4. Normalize q5t so that En $in) = 1 and store together with cumulative 
probability as ( s t ,  &, ct ) . 

5. Repeat Steps 1 to 4 to  construct the N new samples. 

6. Estimate the moments of the tracked position at time-step t as 

N 

n- 1 

Thus the variable of interest (the mean position of the tracked object in this 
example) may be tracked as it propagates through a cluttered environment. 
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14.12 SUMMARY 

Dynamic estimation and Tracking of objects in a scene from an image se- 
quence has a wide range of application, like video surveillance, Defence, Bio 
medical and weather modeling etc. The methods described above has been 
extensively used in real world applications. Adaptive background modeling 
is important so as to  cater for the frequent change in illumination of the ob- 
served scene. A robust background model is essential to eliminate unwanted 
changes in the scenes. If background model is not updated, this could result 
in wrong moving object estimate.Once the pixels have been classified as fore- 
ground and background, a thresholding is to  be applied to filter out noise and 
isolated points, which are falsely detected. Connected component labeling 
yields a a set of smooth blobs corresponding to  each moving objects. If there 
is only one object, which need to  be tracked in a clear non varying background, 
then the problem is relatively simple. In case of multiple object tracking, and 
with varying background, which need to be eliminated, complex approaches 
are needed. For this, formulation of suitable tracking model is important. 
Typically, this is modeled as a three state sequential machine. i.e. Lock- 
ing, Tracking and Recovery. For a linear Gaussian process, the Kalman filter 
provides an optimal recursive estimate. The mathematical formulation is in 
state space concepts. Each updated estimate is computed from previous esti- 
mate and the new input data. If the process to be estimatedltracked and/or 
the measurement relationship to the process is non-linear, then the approach 
known as Extended Kalman Filtering is used.This has been the popular ap- 
proach for implementation of recursive state estimate for a non-linear process. 
Particle filtering is a powerful technique and is the recursive implementation 
of Monte-Carlo based statistical signal processing. These are formulated on 
the concepts of bayesian theory and sequential importance sampling. Multi- 
ple object tracking under varying background in real time / near real time is 
a very challenging area of research. Development of a robust adaptive back- 
ground model will compliment the effectiveness of object tracking. Research 
on effective management of shadow detection and object occlusion problem 
can lead to building a robust tracking solution. 
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15 
Introduction to  Image 

Co mp ressi on 

15.1 INTRODUCTION 

Demand for communication of multimedia data through the telecommuni- 
cations network and accessing the multimedia data through the Internet is 
growing explosively. In order to handle this pervasive multimedia data usage, 
it is essential that the data representation and encoding of multimedia data 
be standard across different platforms and applications. Image data comprise 
a significant portion of the multimedia data and they occupy the lion’s share 
of the communication bandwidth for multimedia communication. As a result, 
development of efficient image compression techniques continues to be an 
important challenge to  us, both in academia and in industry. 

Despite the many advantages of digital representation of signals compared 
to  the analog counterpart, they need a very large number of bits for stor- 
age and transmission. For example, a television-quality low-resolution color 
video of 30 frames per second with each frame containing 640 x 480 pixels 
(24 bits per color pixel) needs more than 210 megabits per second of storage. 
As a result, a digitized one-hour color movie would require approximately 95 
gigabytes of storage. The storage requirement for upcoming high-definition 
television (HDTV) of resolution 1280 x 720 a t  60 frames per second is far 
greater. A digitized one-hour color movie of HDTV-quality video will re- 
quire approximately 560 gigabytes of storage. A digitized 14 x 17 square 
inch radiograph scanned at 70 pm occupies nearly 45 megabytes of storage. 
Transmission of these digital signals through limited-bandwidth communica- 
tion channels is even a greater challenge and sometimes impossible in its raw 
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form. Although the cost of storage has decreased drastically over the past 
decade due to  significant advancement in microelectronics and storage tech- 
nology, the requirement of data storage and data processing applications is 
growing explosively to outpace this achievement. 

Interestingly enough, most of the sensory signals such as still image, video, 
and voice generally contain significant amounts of superfluous and redundant 
information in their canonical representation as far as the human perceptual 
system is concerned. By human perceptual system, we mean our eyes and 
ears. For example, the neighboring pixels in the smooth region of a natural 
image are very similar and small variation in the values of the neighboring 
pixels are not noticeable to the human eye. The consecutive frames in a 
stationary or slowly changing scene in a video are very similar and redundant. 
Some audio data beyond the human audible frequency range are useless for 
all practical purposes. This fact tells us that there are data in audio-visual 
signals that cannot be perceived by the human perceptual system. We call 
this perceptual redundancy. There are many such examples of redundancy in 
digital representation in all sorts of data. 

Data compression is the technique to reduce the redundancies in data repre- 
sentation in order to  decrease data storage requirements and hence communi- 
cation costs. Reducing the storage requirement is equivalent to increasing the 
capacity of the storage medium and hence communication bandwidth. Thus 
the development of efficient compression techniques will continue to be a de- 
sign challenge for future communication systems and advanced multimedia 
applications. 

15.2 INFORMATION THEORY CONCEPTS 

The Mathematical Theory of Communication, which we also call Information 
Theory here, pioneered by Claude E. Shannon in 1948 [1]-[4] is considered to  
be the theoretical foundation of data compression research. Since then many 
data compression techniques have been proposed and applied in practice. 

Representation of data is a combination of information and redundancy [l]. 
Information is the portion of data that must be preserved permanently in its 
original form in order to correctly interpret the meaning or purpose of the 
data. However, redundancy is that portion of data that can be removed when 
it is not needed or can be reinserted to  interpret the data when needed. Most 
often, the redundancy is reinserted in order to regenerate the original data 
in its original form. Data compression is essentially a redundancy reduction 
technique. The redundancy in data representation is reduced such a way that 
it can be subsequently reinserted to  recover the original data, which is called 
decompression of the data. In the literature, sometimes data compression is 
referred to as coding and similarly decompression is referred to  as decoding. 

Usually development of a data compression scheme can be broadly divided 
into two phases-modeling and coding. In the modeling phase, information 
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about redundancy that exists in the data is extracted and described in a 
model. Once we have the description of the model, we can determine how 
the actual data differs from the model and encode the difference in the coding 
phase. Obviously, a data compression algorithm becomes more effective if the 
model is closer to the characteristics of the data generating process, which we 
often call the source. The model can be obtained by empirical observation of 
the statistics of the data generated by the process or the source. In an em- 
pirical sense, any information-generating process can be described as a source 
that emits a sequence of symbols chosen from a finite alphabet. Alphabet is 
the set of all possible symbols generated by the source. For example, we can 
think of this text as  being generated by a source with an alphabet containing 
all the ASCII characters. 

15.2.1 

If the symbols produced by the information source are statistically indepen- 
dent to each other, the source is called a discrete memoryless source. A 
discrete memoryless source is described by its source alphabet 

Discrete Memoryless Model and Entropy 

and the associated probabilities of occurrence 

of the symbols a l ,  a2,. . . , aN in the alphabet A.  
The definition of the discrete memoryless source model provides us a very 

powerful concept of quantification of average information content per symbol 
of the source, or entropy of the data. The concept of “entropy” was first 
used by physicists as a thermodynamic parameter to measure the degree of 
“disorder” or “chaos” in a thermodynamic or molecular system. In a statistical 
sense, we can view this as a measure of degree of “surprise” or “uncertainty.” 
In an intuitive sense, it is reasonable to assume that the appearance of a less 
probable event (symbol) gives us more surprise, and hence we expect that 
it might carry more information. On the contrary, the more probable event 
(symbol) will carry less information because it was more expected. 

With the above intuitive explanation, we can comprehend Shannon’s defini- 
tion of the relation between the source symbol probabilities and corresponding 
codes. The amount of information content, I ( u i ) ,  for a source symbol ail in 
terms of its associated probability of occurrence p ( a i )  is 

(15.1) 

The base 2 in the logarithm indicates that the information is expressed in 
binary form, or bits. In terms of binary representation of the codes, a symbol 
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ai that is expected to  occur with probability p(a i )  is best represented in 
approximately - log, p(a i )  bits. As a result, a symbol with higher probability 
of occurrence in a message is coded using a fewer number of bits. 

If we average the amount of information content over all t,he possible sym- 
bols of the discrete memoryless source, we find the average amount of infor- 
mation content per source symbol from the discrete memoryless source. This 
is expressed as 

N N 

(15.2) 

This is popularly known as entropy in information theory. Hence entropy is 
the expected length of a binary code over all possible symbols in a discrete 
memoryless source. 

The concept of entropy is very powerful. In “stationary” systems, where 
the probabilities of occurrence of the source symbols are fixed, it provides a 
bound for the compression that can be achieved. This is a very convenient 
measure of the performance of a coding system. Without any knowledge of the 
physical source of data, it is not possible to know the entropy, and the entropy 
is estimated based on the outcome of the source by observing the structure 
of the data as source output. Hence estimation of the entropy depends on 
observation and assumptions about the structure of the source data sequence. 
These assumptions are called the model of the sequence. 

15.2.2 Noiseless Source Coding Theorem 

The Noiseless Source Coding Theorem by Shannon [l] establishes the min- 
imum average code word length per source symbol that can be achieved, 
which in turn provides the upper bound on the achievable compression loss- 
lessly. The Noiseless Source Coding Theorem is also known as Shannon’s first 
theorem. This is one of the major source coding results in information theory 

If the data generated from a discrete memoryless source A are considered as 
grouped together in blocks on n symbols, to  form an n-extended source, then 
the new source A” has N n  possible symbols { a t } ,  with probability P(at )  = 
P(at , )P(uZ2) .  . .P(at_) ,  i = 1 , 2 , .  . . , Nn.  By deriving the entropy of the new 
n-extended source, it can be proven that E(A”) = nE(A) ,  where E ( A )  is the 
entropy of the original source A.  Let us now consider encoding blocks of n 
source symbols at  a time into binary codewords. For any E > 0, it is possible 
to  construct a codeword for the block in such a way that the average number 
of bits per original source symbol, z, satisfies 

11, 2, 31. 

E ( A )  5 L < E(A)  + E .  

The left-hand inequality must be satisfied for any uniquely decodable code for 
the block of n source symbols. 
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The Noiseless Source Coding Theorem states that  any source can be loss- 
lessly encoded with a code whose average number of bits per source symbol is 
arbitrarily close to, but not less than, the source entropy E in bits by coding 
infinitely long extensions of the source. Hence, the noiseless source coding 
theorem provides us the intuitive (statistical) yardstick to measure the infor- 
mation emerging from a source. 

Example: We consider a discrete memoyless  source with alphabet A1 = 
{ a , P , y , S }  and the associated probabilities are p ( a )  = 0.65, p ( P )  = 0.20, 
p(y) = 0.10, p ( 6 )  = 0.05 respectively. The entropy of this source is E = 

-(O.651og2 0.65 + 0.2010g2 0.20 + 0.1010g2 0.10 + 0.0510g2 0.05), which is ap- 
proximately 1.42 bits/symbol. As a result, a data sequence of length 2000 
symbols can be represented using approximately 2820 bits. 

Knowing something about the structure of the data sequence often helps to 
reduce the entropy estimation of the source. Let us consider that the numeric 
data sequence generated by a source of alphabet A2 = {0,1,2,3} is D = 
0 1 1 2 3 3 3 3 3 3 3 3 3 2 2 2 3 3 3 3, as an example. The probability 
of appearance of the symbols in alphabet A2 are p ( 0 )  = 0.05, p(1) = 0.10: 
p(2) = 0.20, and p ( 3 )  = 0.65 respectively. Hence the estimated entropy of 
the sequence D is E = 1.42 bits per symbol. If we assume that correlation 
exists between two consecutive samples in this data sequence, we can reduce 
this correlation by simply subtracting a sample by its previous sample to 
generate the residual values ri = s i  - si-l for each sample s i .  Based on 
this assumption of the model, the sequence of residuals of the original data 
sequence is D = o 1 o 1 1 o o o o o o o o -I o o 1 o o 0, consisting of 
three symbols in a modified alphabet A 2  = {-1,1,0}. The probability of 
occurrence of the symbols in the new alphabet A are P(-1) = 0.05, p(1) = 0.2, 
and p ( 0 )  = 0.75 respectively as computed by the number of occurrence in 
the residual sequence. The estimated entropy of the transformed sequence 
is E = -(0.0510g20.05 + 0.210g~0.2 + 0.7510g~0.75) = 0.992 (i.e., 0.992 
bits/symbol). 

This is a simple example to  demonstrate that the data sequence can be 
represented with fewer numbers of bits if encoded with a suitable entropy 
encoding technique and hence resulting in data compression. 

15.2.3 Unique Decipherability 

Digital representation of data in binary code form allows us to  store it in 
computer memories and to  transmit it through communication networks. In 
terms of length of the binary codes, they can be fixed-length as shown in 
column A of Table 15.1 with alphabet {a,  /3, y, d}, as an example, where all 
the symbols have been coded using the same number of bits. The binary codes 
could also be variable-length codes as shown in columns B or C of Table 15.1 
in which the symbols have different code lengths. 
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Table 15.1 Examples of variablelength codes 

Consider the string S = aayapab. The binary construction of the string 
S using variable-length codes A, B, and C is as follows: 

CA(S) = 00001000010011 

CB(S)  = 001100100111 

CC(S) = 000001001. 

Given the binary code CA(S)  = 00001000010011, it is easy to recognize or 
uniquely decode the string S = aayapa6 because we can divide the binary 
string into nonoverlapping blocks of 2 bits each and we know that two con- 
secutive bits form a symbol as shown in column A. Hence the first two bits 
“00” form the binary code for the symbol a,  the next two bits “00” is sim- 
ilarly mapped to the symbol a, the following two bits “lo” can be mapped 
to  symbol y, and so on. We can also uniquely decipher or decode the binary 
code C B ( S )  = 001100100111 because the first bit (0) represents the symbol a; 
similarly the next bit (0) also represents the symbol ai according to  the code in 
column B. The following three consecutive bits “110” uniquely represent the 
symbol y. Following this procedure, we can uniquely reconstruct the string 
S = aayapab without any ambiguity. 

But deciphering the binary code Cc(S)  = 000001001 is ambiguous because 
it has many possibilities-ayypyp, aiya6yp, or aaaaaipyp to name a few. 
Hence the code Cc(S)  = 000001001 is not uniquely decipherable using the 
code in column C in Table 15.1. 

It is obvious that the fixed-length codes are always uniquely decipherable. 
But not all the variable-length codes are uniquely decipherable. The uniquely 
decipherable codes maintain a particular property called the prefix property. 
According to the prefix property, no codeword in the code-set forms the prefix 
of another distinct codeword [5]. A codeword C = Q C ~ C ~ . . . C ~ C - ~  of length k 
is said to  be the prefix of another codeword D = dodl...d,-l of length m if 
c, = d ,  for all i = 0,1,  . . .  , k - 1 and k l m .  

Note that none of the codes in column A or in column B is a prefix of 
any other code in the corresponding column. The codes formed using either 
column A or column B are uniquely decipherable. On the other hand, binary 
code of a in column C is a prefix of both the binary codes of y and 6. 
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Some of the popular variable-length coding techniques are Shannon-Fano 
Coding [6], Huffman Coding [7], Elias Coding [8], Arithmetic Coding [9], etc. 
It should be noted that the fixed-length codes can be treated as a special case 
of uniquely decipherable variable-length code. 

15.3 CLASSIFICATION OF COMPRESSION ALGORITHMS 

In an abstract sense, we can describe data compression as a method that 
takes an input data D and generates a shorter representation of the data c ( D )  
with a fewer number of bits compared to that of D. The reverse process is 
called decompression, which takes the compressed data c (D)  and generates or 
reconstructs the data D’ as shown in Figure 15.1. Sometimes the compression 
(coding) and decompression (decoding) systems together are called a CODEC, 
as shown in the broken box in Figure 15.1. 

i -  7 Reconstructed 
Compression 14 Compressed Data Decompression 

System System 
D 

Fig. 15.1 CODEC. 

The reconstructed data D’ could be identical to the original data D or it 
could be an approximation of the original data D ,  depending on the recon- 
struction requirements. If the reconstructed data D’ is an exact replica of 
the original data D,  we call the algorithm applied to  compress D and decom- 
press c (D)  to be lossless. On the other hand, we say the algorithms are lossy 
when D’ is not an exact replica of D. Hence as far as the reversibility of the 
original data is concerned, the data compression algorithms can be broadly 
classified in two categories-lossless and lossy . Usually we need to apply loss- 
less data compression techniques on text data or scientific data. For example, 
we cannot afford to  compress the electronic copy of this textbook using a lossy 
compression technique. It is expected that we shall reconstruct the same text 
after the decompression process. A small error in the reconstructed text can 
have a completely different meaning. We do not expect the sentence “You 
should not delete this file” in a text to  change to “You should now delete this 
file” as a result of an error introduced by a lossy compression or decompression 
algorithm. Similarly, if we compress a huge ASCII file containing a program 
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written in C language, for example, we expect to get back the same C code 
after decompression because of obvious reasons. The lossy compression tech- 
niques are usually applicable to  data where high fidelity of reconstructed data 
is not required for perception by the human perceptual system. Examples 
of such types of data are image, video, graphics, speech, audio, etc. Some 
image compression applications may require the compression scheme to be 
lossless (i.e., each pixel of the decompressed image should be exactly identical 
to the original one). Medical imaging is an example of such an application 
where compressing digital radiographs with a lossy scheme could be a disas- 
ter if it has to  make any compromises with the diagnostic accuracy. Sirnilar 
observations are true for astronomical images for galaxies and stars. 

Sometimes we talk about perceptual lossless compression schemes when we 
can compromise with introducing some amount of loss into the reconstructed 
image as long as there is no perceptual difference between the reconstructed 
data and the original data, if the human perceptual system is the ultimate 
judge of the fidelity of the reconstructed data. For example, it is hardly 
noticeable by human eyes if there is any small relative change among the 
neighboring pixel values in a smooth non-edge region in a natural image. 

In this context, we need to  mention that sometimes data cornpression is 
referred to as coding in the literature. The terms noiseless and noisy coding, 
in the literature, usually refer to lossless and lossy compression techniques 
respectively. The term “noise” here is the “error of reconstruction” in the lossy 
compression techniques because the reconstructed data item is not identical 
to the original one. Throughout this book we shall use lossless and lossy 
compression in place of noiseless and noisy codin,g respectively. 

Data compression schemes could be static or dynam,ic. In static methods, 
the mapping from a set of messages (data or signal) to the corresponding 
set of compressed codes is always fixed. In dynamic methods, the mapping 
from the set of messages to the set of compressed codes changes over time. A 
dynamic method is called adaptive if the codes adapt to changes in ensemble 
characteristics over time. For example, if the probabilities of occurrences 
of the symbols from the source are not fixed over time, we can adaptively 
formulate the binary codewords of the symbols, so that the compressed file 
size can adaptively change for better compression efficiency. 

15.4 SOURCE CODING ALGORITHMS 

In this section, we present some of the popular source coding algorithnis used 
for data compression. From an information theoretic perspective, source cod- 
ing can mean both lossless and lossy compression. However, it is often reserved 
by researchers to  indicate lossless coding only. In the signal processing com- 
munity, the source coding is used to  mean source model-based coding. We 
adopt this convention here and by source coding we mean lossless coding only. 
These algorithms can be used directly to compress any data losslessly. De- 
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pending on the characteristics of the data, each algorithm may give different 
compression performance. So selection of the particular algorithm will depend 
on characteristics of the data themselves. In lossy image compression mode, 
the source coding algorithms are usually applied in the entropy encoding step 
after transformation and quantization. 

15.4.1 Run-Length Coding 

The neighboring pixels in a typical image are highly correlated to each other. 
Often it is observed that the consecutive pixels in a smooth region of an 
image are identical or the variation among the neighboring pixels is very 
small. Appearance of runs of identical values is particularly true for binary 
images where usually the image consists of runs of 0’s or 1’s. Even if the 
consecutive pixels in gray scale or color images are not exactly identical but 
slowly varying, it can often be preprocessed and the consecutive processed 
pixel values become identical. If there is a long run of identical pixels, it 
is more economical to  transmit the length of the run associated with the 
particular pixel value instead of encoding individual pixel values. 

Run-length coding is a simple approach to source coding when there exists 
a long run of the same data, in a consecutive manner, in a data set. As an 
example, the data d = 5 5 5 5 5 5 5 19 19 19 19 19 19 19 19 19 19 19 19 0 0 0 0 
0 0 0 0 8 23 23 23 23 23 23 contains long runs of 5‘5, 19’s, O’s, 23’s, etc. Rather 
than coding each sample in the run individually, the data can be represented 
compactly by simply indicating the value of the sample and the length of its 
run when it appears. In this manner, the data d can be run-length encoded 
as (5 7) (19 12) (0 8) (8 1) (23 6). For ease of understanding, we have shown 
a pair in each parentheses. Here the first value represents the pixel, while the 
second indicates the length of its run. 

In some cases, the appearance of runs of symbols may not be very apparent. 
But the data can possibly be preprocessed in order to  aid run-length coding. 
Consider the data d = 26 29 32 35 38 41 44 50 56 62 68 78 88 98 108 118 
116 114 112 110 108 106 104 102 100 98 96. We can simply preprocess this 
data, by taking the sample difference e ( i )  = d ( i )  - d ( i  - l), to produce the 
processed data E= 26 3 3 3 3 3 3 6 6 6 6 10 10 10 10 10 -2 -2 -2 -2 -2 
-2 -2 -2 -2  -2 -2. This preprocessed data can now be easily run-length 
encoded as (26 1) (3 6) (6 4) (10 5) (-2 11). A variation of this technique is 
applied in the baseline JPEG standard for still-picture compression [14]. The 
same technique can be applied to numeric databases as well. 

On the other hand, binary (black-and-white) images, such as facsimile, 
usually consist of runs of 0’s or 1’s. As an example, if a segment of a binary 
image is represented as 

d = 00000000011111111111000000000000000lll000O0000000001001111111111 

and it can be compactly represented as c (d )  = (9, 11, 15, 3,  13, 1, 2, 10) by 
simply listing the lengths of alternate runs of 0’s and 1’s. While the original 
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binary data d requires 65 bits for storage, its compact representation c(d)  
requires 32 bits only under the assumption that each length of run is being 
represented by 4 bits. The early facsimile compression standard (CCITT 
Group 3, CCITT Group 4) algorithms were developed based on this principle 

[Il l .  

15.5 HUFFMAN CODING 

From Shannon’s Source Coding Theory, we know that a source can be coded 
with an average code length close to the entropy of the source. In 1952, D. 
A. Huffman [7] invented a coding technique to produce the shortest possible 
average code length given the source symbol set and the associated probability 
of occurrence of the symbols. Codes generated using this coding technique 
are popularly known as Huffman codes. Huffman coding technique is based 
on the following two observations regarding optimum prefix codes. 

1. The more frequently occurring symbols can be allocated with shorter 
codewords than the less frequently occurring symbols. 

2. The two least frequently occurring symbols will have codewords of the 
same length, and they differ only in the least significant bit. 

Average length of these codes is close to  entropy of the source. 
Let us assume that there are m source symbols {sl, s2, . . .  , s,} with as- 

sociated probabilities of occurrence { P I ,  p2 ,  . . . , p,}. Using these probability 
values, we can generate a set of Huffman codes of the source symbols. The 
Huffman codes can be mapped into a binary tree, popularly known as the 
Huffman tree. We describe the algorithm to generate the Huffman tree and 
hence the Huffman codes of the source symbols below. We show a Huffman 
tree in Figure 15.2. 

1. Produce a set N={Nl ,  Nz, . . . , N,} of nz nodes as leaves of a binary 
tree. Assign a node N, with the source symbol s,, i = 1, 2 ,  ’ .  . , m and 
label the node with the associated probability p,. 
(Example: As shown in Figure 15.2, we start with eight nodes No, N l ,  
N2, N3, N4, N5, NG, N7 corresponding to the eight source symbols a, b,  
c, d ,  e ,  f ,  g. h, respectively. Probability of occurrence of each symbol is 
indicated in the associated parentheses.) 

2. Find the two nodes with the two lowest probability symbols from the 
current node set, and produce a new node as a parent of these two nodes. 
(Example: From Figure 15.2 we find that the two lowest probability 
symbols g and d are associated with nodes NG and N3 respectively. The 
new node N8 becomes the parent of N3 and NC.) 

3. Label the probability of this new parent node as the sum of the proba- 
bilities of its two child nodes. 
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(Example: The new node Ns is now labeled by probability 0.09, which 
is the sum of the probabilities 0.06 and 0.03 of the symbols d and g 
associated with the nodes N3 and NG respectively.) 

4. Label the branch of one child node of the new parent node as 1 and the 
branch of the other child node as 0. 
(Example: The branch N3 to N8 is labeled by 1 and the branch NG to  
Ns is labeled by 0.) 

1 

5. Update the node set by replacing the two child nodes with smallest 
probabilities by the newly generated parent node. If the number of 
nodes remaining in the node set is greater than 1, go to Step 2. 
(Example: The new node set now contains the nodes No, N1, N2, N4, 

N5, N7, N8 and the associated probabilities are 0.30, 0.10, 0.20, 0.09, 
0.07, 0.15, 0.09, respectively. Since there are more than one node in 
the node set, Steps 2 to 5 are repeated and the nodes Ng, N ~ o ,  N11, 

N12, N13, N14 are generated in the next six iterations, until the node 
set consists only of N14.) 

6. Traverse the generated binary tree from the root node to  each leaf node 
N,, i = 1, 2, ... , m, to  produce the codeword of the corresponding 
symbol sz, which is a concatenation of the binary labels (0 or 1) of the 
branches from the root to  the leaf node. 
(Example: The Huffman code of symbol h is 110, formed by concate- 
nating the binary labels of the branches N14 to  N13, N13 to  N11 and 
Nl1 to N7.) 

It is needless to  mention that any ensemble of binary codes, which can be 
mapped into a binary tree, consists of prefix codes. Hence Huffman code is 
also a prefix code. The Huffman code generation process described above is a 
bottom-up approach, since we perform the code construction process on the 
two symbols with least probabilities. 

Example: Assume the alphabet S = {a ,  b, c ,  d, e ,  f, g, h }  with 8 source 
symbols and their corresponding probabilities are p ( a )  = 0.30, p ( b )  = 0.10, 
p ( c )  = 0.20, p ( d )  = 0.06, p ( e )  = 0.09, p(f) = 0.07, p ( g )  = 0.03, and 
p ( h )  = 0.15 respectively. The Huffman tree generated by the Huffman Coding 
algorithm is shown in Figure 15.2 and the corresponding Huffman code table 
is shown in Table 15.2. 

Let us consider a string M of 200 symbols generated from the above source, 
where the numbers of occurrences of a, b, c, d, e ,  f, g and h in M are 60, 20, 
40, 12, 18, 14, 6 and 30 respectively. Size of the encoded message M using 
the Huffman codes in Table 15.2 will be 550 bits. Here it requires 2.75 bits 
per symbol on the average. On the other hand, the length of the encoded 
message AT will be 600 bits if it is encoded by a fixed-length code of length 
3 for each of the symbols. This simple example demonstrates how we can 
achieve compression using variable-length coding or source coding techniques. 
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NO 

a (0.30) 

N 1  

b (0.10) 7’ N 2  

f (0.07) (0.16) 

I N6 

g (0.03) 1 
0 

k (0.31) 

h (0.15) 
0 

0 

Fig. 15.2 Hiiffman tree construction for Example 1. 

15.6 ARITHMETIC CODING 

Arithmetic coding is a variable-length source encoding technique [12]. In 
traditional entropy encoding techniques such as Huffman coding, each input 
symbol in a message is substituted by a specific code specified by an integer 
number of bits. Arithmetic coding deviates from this paradigm. In arithmetic 
coding, a sequence of input symbols is represented by an interval of real num- 
bers between 0.0 and 1.0. The longer the message, the smaller the interval to 
represent the message becomes, as will be evident in the following discussions. 
More probable symbols reduce the interval less than the less probable sym- 
bols and hence add fewer bits in the encoded message. As a result, the coding 
result can reach to Shannon’s entropy limit for a sufficiently large sequence of 
input symbols as long as the statistics are accurate. 



ARITHMETIC CODING 341 

Probability 

0.30 
0.10 
0.20 
0.06 
0.09 
0.07 
0.03 
0.15 

Table 15.2 Huffman Code Table 

Huffman 
Code 
10 
0 0 1  
01  
11111 
0 0 0  
1110 
11110 
110 

Symbol 

Arithmetic coding offers superior efficiency and more flexibility compared 
to  the popular Huffman coding. It is particularly useful when dealing with 
sources with small alphabets such as binary alphabets and alphabets with 
highly skewed probabilities. Huffman coding cannot achieve any compres- 
sion for a source of binary alphabets. As a result arithmetic coding is highly 
efficient for coding bilevel images. However, arithmetic coding is more compli- 
cated and is intrinsically less error resilient compared to  the Huffman coding. 

15.6.1 Encoding Algorithm 

The arithmetic coding algorithm is explained here with an example. We 
consider a four-symbol alphabet A = { a ,  b, c ,  d }  with the fixed symbol prob- 
abilities p ( a )  = 0.3, p ( b )  = 0.2, p ( c )  = 0.4, and p ( d )  = 0.1 respectively. The 
symbol probabilities can be expressed in terms of partition of the half-open 
range [O.O, 1.0) as shown in Table 15.3. 

Table 15.3 Probabi1it.y model 

Index Symbol Probability Cumulative Range 
Probability 

[O.O, 0.3) 
[0.3, 0.5) 

0.4 0.9 [0.5> 0.9) 
4 d 0.1 1 .o [0.9, 1.0) 

The algorithm for arithmetic coding is presented below. In this algorithm, 
we consider N is the length of the message (i.e., total number of symbols 
in the message); F ( i )  is the cumulative probability of i t h  source symbol as 
shown in Table 15.3. 
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.0.90 

0.70 

0.62 o.86;I b 

0.50 - 

Algorithm: Ar i thmet ic  Coding  
begin 

L = 0.0; 
H = 1.0; 
F ( 0 )  = 0; 
for ( j  = 1 to N )  { 

i = index of Symbol(j); 
L = L + ( H  - L )  * F(2 - 1); 
H = L + ( H  - L )  * F ( i ) ;  

1 
output  (9); 

end 

- 

Example: We would like to  encode a message “cacbad” using the above 
fixed model of probability estimates. At the beginning of both encoding and 
decoding processes, the range for the message is the entire half-open interval 
[O.O, l . O ) ,  which can be partitioned into disjoint subintervals or ranges iO.0, 
0.3) ,  [0.3, 0.5), [0.5, 0.9), and [0.9, 1.0) corresponding to the symbols a,  b,  c, 
and d respectively, as shown by the range R(s tar t )  in Figure 15.3 in terms of 
the vertical bar with ticks representing the symbol probabilities stipulated by 
the probability model. As each symbol in the message is processed, the range 
is narrowed down by the encoder as explained in the algorithm. 

0.608 o.620 < 
C 

0.560 

0.536 

0.500 

c 

I\ b 
b~ 

0.57728 - 

0.560 0.57440- 

0.577287- 0.57728Q 

0.576992 

0.575840 

0.575264 

0.5744 - 0.57699- 
R(c) R(ca) R(cac) R(cacb) R(cacba) R(cacbad 

Fig. 15.3 Arithmetic coding technique: an example. 

Since the first symbol of the message is c, the range is first narrowed down 
to the half-open interval R(c)=[0.5,  0.9). This range is further partitioned 
into exactly the same proportions as the original one, yielding the four half- 
open disjoint intervals [0.5, 0.62), [0.62, 0.70), [0.70, 0.86), and [0.86, 0.9) 
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corresponding to a ,  b, c and d respectively as shown in Figure 15.3. As a result, 
the range is narrowed down to R(ca)=[0.5, 0.62) when the second symbol a 
in the message is processed. This new range [0.5, 0.62) is now partitioned into 
four disjoint intervals [0.5, 0.536), [0.536, 0.560), [0.560, 0.608), and [0.608, 
0.62). After processing the third symbol, c, the range is accordingly narrowed 
down to R(cac)=[0.560, 0.608). This is again partitioned into [0.560, 0.5744), 
[0.5744, 0.5840), [0.5840, 0.6032), and [0.6032, 0.608) in order to  process the 
next symbol in the message. After processing the fourth symbol, b, the range 
is now narrowed down to  R(cacb)=[0.5744, 0.5840). This is again partitioned 
into four intervals [0.5744, 0.57728), [0.57728. 0.57920), [0.57920, 0.58304), 
and [0.58304, 0.584) corresponding to  the symbols a,  b, c, and d respectively. 
After processing the fifth symbol, a ,  the range is now narrowed down to 
R ( c a  c ba)=[0.5744, 0.57728). This is further partitioned into the disjoint 
intervals [0.5744, 0.575264), [0.575264, 0.575840), [0.575840, 0.576992), and 
[0.576992, 0.57728). The last symbol in the message is d and hence the final 
range for the message becomes R(cacbad)=[0.576992, 0.57728). As a result, 
the message “ca c b a d” can be encoded by any number in the range [0.576992, 
0.57728) because it is not necessary for the decoder to  know both ends of the 
range produced by the encoder. If we use the midpoint of the interval, the 
encoded value will be 0.577136. Assuming that we choose 0.577, the decoding 
processing is explained below using the same probability model in Figure 15.3 
used in the encoding process. 

15.6.2 Decoding Algorithm 

Both the encoder and the decoder have the same probability model. Initially 
the decoder starts with the range [O.O, l . O ) ,  which is partitioned into four 
intervals [O.O, 0.3), [0.3, 0.5), [0.5, 0.9), and [0.9, 1.0) corresponding to  the 
symbols a,  b, c,  and d in the alphabet. As soon as the decoder receives an 
encoded number 0.577, it can immediately decode that the first symbol of the 
message is c because the number 0.577 belongs to  the range [0.5, 0.9) and the 
range is narrowed down to [0.5, 0.9) and partitioned into [0.5, 0.62), [0.62, 
0.70), [0.70, 0.86), and [0.86, 0.9) in a similar fashion as the encoder. Since 
the number 0.577 belongs to  the range [0.5, 0.62), it can immediately decode 
the second symbol to be a. The range is now narrowed down to [0.5, 0.62) 
and partitioned into [0.5, 0.536), [0.536, 0.560), [0.560, 0.608), and [0.608, 
0.62). Since the number 0.577 belongs to the range [0.560, 0.608), the de- 
coder can decode the third symbol to  be c. The range is now narrowed down 
to  [0.560, 0.608) and partitioned into the four subintervals [0.560, 0.5744), 
[0.5744, 0.584), [0.584, 0.6032), and [0.6032, 0.608). Since the number 0.577 
belongs in the range [0.5744, 0.584), the decoder deduces that the next sym- 
bol is b and narrows the range down to be [0.5744, 0.584). The range is now 
subdivided into [0.5744, 0.57728), [0.57728. 0.5792), [0.5792, 0.58304), and 
[0.58304, 0.584). Since the number 0.577 belongs within the range [0.5744, 
0.57728), the next symbol decoded is a and the range is narrowed down to 
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[0.5744, 0.57728) and partitioned into four subintervals [0.5744, 0.575264), 
[0.575264, 0.575840), [0.575840, 0.576992), and [0.576992, 0.57728). Since 
0.577 belongs to  the range [0.576992, 0.57728), it is very natural that the 
decoder decodes the next symbol to  be d and narrows the range down to 
[0.576992, 0.5770784), [0.5770784, 0.577136), [0.577136, 0.5772512), and [ 
0.5772512, 0.57728) respectively. Hence the decoder could uniquely decode 
the message “ c a c b a d ”  until this step. If the decoder is aware of the length 
of the message, it can stop decoding here. Otherwise, it can continue decod- 
ing the next symbol to be a because 0.577 belongs to the range [0.576992, 
0.5770784) and so on indefinitely. Hence the decoder faces the problem of de- 
tecting the end of the message in order to stop. To resolve the ambiguity, we 
can ensure that each message ends with a special terminating symbol known 
to  both encoder and decoder. In this example, if we assume that d is the 
special terminating symbol, the decoder will effectively stop after decoding 
the message “c a c b a d.” Otherwise the length of the original message needs 
to be known to the decoder in order to stop decoding effectively. 

15.6.3 The QM-Coder 

The QM-coder [14] is an enhancement of the Q-coder [13]. The QM-coder 
is the adaptive binary arithmetic coding algorithm used in the JBIG (Joint 
Bilevel Image Processing Group) standard for bilevel image compression. Al- 
though it follows the same principle of arithmetic coding, Qhl-coder is de- 
signed for simplicity and speed. The input symbols to  the Qhl-coder are single 
bits of the bilevel image and it is free from multiplications by approximating 
the computation of intervals by fixed-precision integer arithmetic operations 
(addition, subtraction, and shift operations only). 

The main idea behind the QM-coder is to map the input bits into more  
probable symbol (hlPS) and less probable symbol (LPS). This can be explained 
in terms of a black-and-white image. If bits 0 and 1 represent the black and 
white pixels respectively, then in a mostly black region 0 will be mapped to  
MPS and 1 will be mapped to LPS, whereas in a mostly white region 1 will be 
mapped to MPS and 0 will be mapped to LPS. Before the next bit is input, the 
QM-coder determines which bit is MPS (the other bit is LPS) and compresses 
this information instead of the input bit directly. During the decoding process, 
the Qhl-decoder decodes whether the bit just decoded is MPS or LPS and then 
converts this information to actual binary pixel value. Hence the QM-coder 
assigns the intervals to  the MPS and LPS symbols instead of the 0 or 1 input 
bit. If the probability estimate of LPS is Q ,  then the probability estimate 
of hiPS is (1 - Q) because there are only two symbols in the alphabet. For 
interval A, the QM-coder divides the interval into two subintervals according 
to the value of Q. The sizes of the Subintervals assigned to LPS and MPS are 
AQ and A( l  - Q) respectively as shown in Figure 15.4. 

In QM-coder, the value of A is always assumed to maintain close to 1. As a 
result. the subintervals of LPS and MPS can be approximated to  AQ M Q and 
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A 

A - Q  

0 

1 

LPS subinterval = Q x A % Q 

MI’S subinterval = (1 - Q) A x A - Q 

Fig. 15.4 Subinterval assignment in Qhf-coder. 

A( 1 - Q )  z A - Q respectively and hence the multiplication is avoided. The 
subinterval of LPS is placed above the subinterval of MPS as shown in Figure 
15.4. Accordingly, the MPS and LPS are assigned the subintervals [0, A - Q )  
and [ A  - &, A)  respectively. Actually the value of A is always maintained 
within the range 1.5 > A 2 0.75. Whenever the value of A drops below 
0.75 during the encoding process, the renormalization is done by repeated 
doubling (shifting left) A until it is greater than or equal to  0.75. Whenever 
we renormalize A,  we need to apply the same renormalization t o  C as well to  
keep these two parameters in sync. 

We denote the output code stream of the QM-coder by C. Ideally C can be 
any value within the current interval as we explained in the arithmetic coding 
algorithm in the previous section. However, for simplicity of implementation, 
the QM-coder points C a t  the bottom of the current interval. If the current 
input is MPS (or LPS), C is updated by adding the bottom of the MPS 
(or LPS) subinterval to  the current value of C. Since the bottom of MPS 
subinterval is 0, C actually remains unchanged when MPS is encoded. During 
encoding of LPS, C is updated by adding A-Q to  the current value of C since 
A - Q is the bottom of the LPS subinterval as shown in Figure 15.4. It  should 
be noted that the encoder is initialized with the A = 1 at the beginning of the 
encoding process. Hence the encoding algorithm can be described as follows. 

When MPS is encoded: 

begin 
C is unchanged; 

if (C < 0.75) then 
A = A - Q ;  

Renormalize A and C: 
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endif; 
end 

When LPS is encoded: 

begin 
C = C +  ( A -  Q ) ;  
A = Q; 
Renormalize A and C ;  

end 

The probability estimation in QM-coder is accomplished by using a pre- 
determined table of Q values. The value of Q of the LPS is updated each 
time a renormalization occurs during the encoding. The table consists of a 
preset ordered list of the Q values. For every renormalization, Q is updated 
by the next lower or next higher Q value in the table, depending on whether 
the renormalization takes place because of encoding of an LPS or MPS during 
the encoding process. An important issue in QM-coder is called the problem 
of interval inversion. This problem happens when the size of the subinterval 
assigned to  MPS becomes smaller than the size of the LPS subinterval because 
of the result of approximation of A and C. This problem occurs when LPS 
actually occurs more frequently than the MPS due to some peculiar character- 
istics of the input bits. As a result, it is possible that the value of Q becomes 
of the order of 0.5 and as a result the size of the subinterval assigned to MPS 
can be as small as 0.25. In this situation, the problem is solved by revers- 
ing the assignment of the two subintervals whenever the LPS subinterval is 
greater than the MPS subinterval. This is known as the conditional exchange. 
The term conditional is used due to the fact that the subinterval reassignment 
takes place only when the LPS probability occupies more than half of the to- 
tal interval A. Thus the condition for interval inversion is Q > A - Q. Since 
Q 5 0.5, we get 0.5 2 Q > A - Q. As a result, both the subintervals Q 
and A - Q are less than 0.75 and this necessitates renormalization of A and 
C. That’s why the conditional exchange is performed only after the encoder 
detects that renormalization is needed. 

We have demonstrated the situation of a conditional exchange as an exam- 
ple in Figure 15.5. We assume that the current value of A is 1.35, which is less 
than 1.5 as shown in Figure 15.5(a). Assuming that Q = 0.5, the subintervals 
[O.O, 0.85) and [0.85, 1.35) are assigned to  MPS and LPS respectively as shown 
in Figure 15.5(a). Now if the value of A is changed to A = A - Q = 0.85 in the 
next coding cycle, the symbol orders are inverted and accordingly subintervals 
assigned to LPS and MPS are exchanged as shown in Figure 15.5(b). The 
subintervals assigned to  LPS and MPS after conditional exchange are [O.O, 
0.35) and [0.35, 0.85) respectively, as shown in Figure 15.5(b). 

Incorporating the process of handling the conditional exchange, the encod- 
ing algorithm thus becomes as follows. 
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fig. 15.5 Subinterval assignment in QM-coder, (a) without conditional exchange and 
(b) with conditional exchange. 

QM-Coder: The Encoding Algorithm 

When MPS is encoded: 

begin 
C is unchanged; 
A = A - Q ;  
if (C < 0.75) then 

if ( A  < Q) then 
C = C + A ;  
A = Q; 

endif; 
Renormalize A and C; 

endif; 
end 

When LPS is encoded: 

begin 
A = A - Q ;  
if (A 2 Q) then 

C = C + A ;  
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A = Q; 
endif; 
Renormalize A and C ;  

end 

15.6.3.1 The QM-Decoder The decoder decodes an MPS or LPS by de- 
termining which subinterval the value of the code stream belongs to. The 
QM-decoder is just the reverse of the encoder. For simplicity we ignore the 
conditional exchange situation here. The matching decoding algorithm is as 
follows. 

QM-Decoder: The Decoding Algorithm 

begin 
if (C 2 Q )  then 

(MPS is decoded) 
C = C - Q ;  
A = A - Q ;  

else 
(LPS is decoded) 
A = Q: 

endif; 
if (A < 0.75) then 

endif; 
Renormalize A and C ;  

end. 

Another variation of Q-coder, called the MQ-coder, has been used for adap- 
The details of this tive binary arithmetic coding in JPEG2000 encoding. 

algorithm will be discussed in Chapter 18. 

15.7 SUMMARY 

In this chapter, we have introduced readers to  the fundamentals of data and 
image compression. We have discussed some fundamentals including infor- 
mation theory such as discrete memoryless model. entropy, noiseless source 
coding theorem, unique decipherability, etc., in order to aid readers in un- 
derstanding the principles behind data compression. In this chapter, we have 
also presented some of the key source coding algorithms widely used in data 
and image compression. First we have described the run-length coding scheme 
with an example. We have described the popular Huffman coding scheme that 
is used in various image and data compression techniques. Arithmetic coding 
is an alternative approach for an efficient entropy encoding and it achieves 
compression efficiency very close to the entropy limit. We discussed the basic 
principles of arithmetic coding with an example. Binary arithmetic coding is 
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a key algorithm for bilevel image compression. We discussed the QM-coder 
algorithm for implementation of an adaptive binary arithmetic coding, which 
has been adopted in the JBIG standard for bilevel image compression and also 
in a mode of JPEG standard. A variation of QM-coder called the MQ-coder 
is the basis of the entropy encoding of the new JPEG2000 standard for still 
picture compression. 
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16 
JPEG: Still Imaae 

Compression StandaJrd 

16.1 INTRODUCTION 

JPEG is the first international image compression standard for continuous- 
tone still images-both grayscale and color images [l, 21. JPEG is the acronym 
for Joint Photographic Experts Group. This image compression standard is a 
result of collaborative efforts by the International Telecommunication Union 
(ITU), International Organization for Standardization (ISO), and Interna- 
tional Electrotechnical Commission (IEC). The JPEG standard is officially 
referred to as ISO/IEC IS (International Standard) 10918-1: Digital Com- 
pression and Coding of Continuous-tone Still Images, and also ITU-T Rec- 
ommendation T.81. The goal of this standard is to support a variety of ap- 
plications for compression of continuous-tone still images of most image sizes 
in any color space in order to  achieve compression performance at or near the 
state-of-the-art with user-adjustable compression ratios and with very good 
to excellent reconstructed quality. Another goal of this standard is that it 
would have manageable computational complexity for widespread practical 
implementation. JPEG defines four modes of operations: 

1. Sequential lossless mode: Compress the image in a single scan and the 
decoded image is an exact replica of the original image. 

2. Sequential DCT-based mode: Compress the image in a single scan using 
DCT-based lossy compression technique. As a result, the decoded image 
is not an exact replica, but an approximation of the original image. 

351 



352 JPEG: STILL IMAGE COMPRESSION STANDARD 

3. Progressive DCT-based mode: Compress the image in multiple scans and 
also decompress the image in multiple scans with each successive scan 
producing a better-quality image. 

4. Hierarchical mode: Compress the image at  multiple resolutions for dis- 
play on different devices. 

The three DCT-based modes (2, 3, and 4) in JPEG provide lossy compres- 
sion because precision limitation to  digitally compute DCT (and its inverse) 
and the quantization process introduce distortion in the reconstructed image. 
For sequential lossless mode of compression, predictive coding is used instead 
of the DCT-based transformation, and also there is no quantization involved 
in this mode. The hierarchical mode uses extensions of either the DCT-based 
coding or predictive coding techniques. The simplest form of the sequential 
DCT-based JPEG algorithm is called the baseline JPEG algorithm, which is 
based on Huffman coding for entropy encoding. The other form of sequen- 
tial DCT-based JPEG algorithm is based on arithmetic coding for entropy 
encoding. The baseline JPEG algorithm is widely used in practice. We shall 
describe the JPEG lossless algorithm and the baseline JPEG algorithm in 
greater detail in this chapter. 

People often mention motion JPEG for compression of moving pictures. 
This is not really a standard. Although it is not specifically defined as part 
of the standard, JPEG can be used to  compress image sequences in video 
on the basis that video clips can be considered as a sequence of still image 
frames and each image frame can be compressed independently using the 
JPEG algorithm. This process of image sequence compression is popularly 
known as motion JPEG in the industry. 

JPEG standard does not specify any inherent file format. It defines only 
the syntax of the compressed bitstream. This caused creation of a number of 
file formats to  store the JPEG compressed images such as JFIF (JPEG File 
Interchange Format), JPEG extension to TIFF 6.0, FlashPix, etc. But none 
of them is considered to be an official international standard defined under 
the auspices of an international standards committee. 

16.2 T H E  JPEG LOSSLESS C O D I N G  A L G O R I T H M  

The lossless JPEG compression is based on the principles of predictive coding. 
Since the adjacent pixels in a typical image are highly correlated, it is possible 
to extract a great deal of information about a pixel from its neighboring pixel 
values. Predictive coding is a simple method for spatial redundancy reduction. 
In this method, a pixel value is predicted by a set of previously encoded 
adjacent pixels using a suitable prediction model. For an ideal prediction 
model, the predicted value of the pixel can be equal to the actual value. But 
that is not the case in reality. Using an effective prediction model, we can 
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predict the pixel value, which is very close to  its actual value and hence error 
of prediction can be very small. 

A practical approach to  the prediction model is to  take a linear combination 
of the previously encoded immediate neighboring adjacent pixels. The reason 
for taking the previously encoded pixel values is that the same values will be 
available to  the decoder when it decodes the pixels in the same order they 
were encoded by the encoder. The difference between the actual pixel value 
and the predicted value is called the differential or the prediction error value. 
The prediction error is then entropy encoded using a variable-length encoding 
technique to  generate compressed image. This method is popularly known as 
Dafferential Pulse Code Modulation (DPCM). 

In the lossless JPEG algorithm, the value of a pixel in any pixel location 
in the image is first predicted by using one or more of the previously encoded 
adjacent pixels A,  B,  and C as shown in Figure 16.l(a) to predict pixel X .  It 
then encodes the difference between the pixel and its predicted value, usually 
called the prediction error or prediction residual, by either Huffman coding or 
arithmetic coding. 

(a) 

Los4ess Encoder 
,.. ._ .. . .............. 

Predictor Encoder 
Compresced 

.. Image Ddtd . . . . . . . . . 
Input 

Image Data 
Table 

Specification 

(b) 

fig. 16.1 
mode. 

(a) Three-pixel prediction neighborhood, (b) encoder diagram in lossless 

There are eight possible options for prediction as shown in Table 16.1. The 
No prediction option 0 in Table 16.1 is available only for differential coding in 
the JPEG hierarchical mode. We briefly discuss the essence of the hierarchical 
mode of coding later in this chapter. Options 1 to 3 are one-dimensional 
predictors and options 4 to 7 are two-dimensional predictors. Depending on 
the nature of the image, one predictor may yield better compression results 
compared to any other predictor. However, experimental results for various 
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Option 

0 
1 
2 
3 
4 
5 
6 
7 

kinds of images show that on the average their performances are relatively 
close to each other [3]. The chosen option for prediction is indicated in the 
header of the compressed file so that both the encoder and decoder use the 
same function for prediction. 

Prediction Function Type of Prediction 

No prediction Differential Coding 
X, = A 1D Horizontal Prediction 
X , = B  1D Vertical Prediction 
x, = c 1D Diagonal Prediction 
X p = A + B - C  2D Prediction 
X , = A + ; ( B - C )  2-D Prediction 
X , = B + i ( A - C )  2-D Prediction 
X,= ; ( A + B )  2-D Prediction 

TJbk 16.1 Prediction functions in lossless JPEG. 

In lossless mode, the standard allows precision ( P )  of the input source 
image to be 2 bits to 16 bits wide. Since there is no previously encoded pixel 
known to  the encoder when it encodes the very first pixels in the very first 
row of the image, it is handled differently. For a given input precision P and a 
point transform parameter Pt, the predicted value for the first pixel in the first 
line is 2p-pt-1 . By default, we can assume Pt = 0. For details of the point 
transform parameter, the reader is advised to consult the JPEG standard [l]. 

For all other pixels (except the first one) in the first line, we use option 1 
for prediction function. Except for the first line, option 2 is used to predict 
the very first pixel in all other lines. For all other pixels, we select one of the 
eight options for the prediction function from Table 16.1. Once a predictor is 
selected, it is used for all other pixels in the block. 

In the lossless JPEG standard, the prediction error values are computed 
modulo 216 in order to  take consideration of the full precision allowed in this 
mode. These error values are not directly encoded using Huffman codes. They 
are first represented as a pair of symbols (CATEGORY, MAGNITUDE). 
The first symbol CATEGORY represents the category of the error value. The 
second symbol MAGNITUDE represents the variable-length integer (VLI) 
for the prediction error value. The category represents the number of bits 
to encode the MAGNITUDE in terms of VLI. All the possible prediction 
error values modulo 216 and their corresponding categories are shown in Ta- 
ble 16.2. Only the CATEGORY in the symbol pair for each prediction error 
value is Huffman coded. The codeword for the symbol pair (CATEGORY, 
MAGNITUDE) is formed in two steps. First it assigns the Huffman code 
of the CATEGORY. This Huffman code is then appended with additional 
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Table 16.2 Categories of prediction error values. 

Category 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

Prediction Error Value 
0 

-1, +1 
-3, -2, +2, +3 

-7, . . .  ) -4, +4, . . . ,  +7 
-15, . . . ,  -8, +8, . . . ,  +15 

-31, ..., -16, +16, . . . , +31 
-63, ... , -32, +32, . .., +63 

-127, . . . ,  -64, +64, ..., $127 
-255, ..., -128, +128, ..., +255 
-511, . . . ,  -256, +256, . . . ,  +511 

-1023, . . . ,  -512, +512, ..., +lo23 
-2047, . . . ,  -1024, +1024, . . . ,  +2047 
-4095, . . . ,  -2048, +2048, . . . ,  +4095 
-8191, . . . ,  -4096, +4096, . . . ,  +8191 

-16383, . . . ,  -8192, t.8192, . . . ,  +16383 
-32767, . . . , -16384, $16384, . . . , $32767 

+32768 

CATEGORY number of bits t o  represent the MAGNITUDE in VLI. If 
the prediction error value is positive, the MAGNITUDE is directly binary 
represented by a VLI using CATEGORY number of bits and hence it starts 
with bit 1. If the error value is negative, the VLI is one’s complement of its 
absolute value and hence it starts with bit 0. For example, the prediction er- 
ror value 25 is represented by the pair (5, 25) because the number 25 belongs 
to category 5 in Table 16.2 and hence 25 is represented by a 5-bit VLI. If the 
Huffman code for category 5 is 011, then the binary codeword for the error 
value 25 will be 01111001. The first three bits correspond to the Huffman 
code 011 for category 5 and the next 5 bits, 11001, is the VLI for 25. Sim- 
ilarly, the prediction error value -25 will be represented as 01100110 where 
the last 5 bits, 00110, is the 1’s complement of 11001 to represent -25, and 
since -25 belongs to  the same category 5, the first three bits of the codeword 
corresponds to the Huffman code of category 5. Use of the category table 
greatly simplifies the Huffman coder. Without this categorization, we would 
need to  use a Huffman table with 216 entries for all the 216 possible symbols 
of prediction error values, which definitely complicates the implementation 
of the Huffman coder both in software and hardware, if it is not rendered 
impossible for all practical purposes. 

Detailed information for implementation of the JPEG lossless coding for 
both the Huffman coding mode and the arithmetic coding mode can be found 
in Annex H of the JPEG standard [l]. 
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16.3 BASELINE JPEG COMPRESSION 

The baseline JPEG compression algorithm is widely used among the four 
modes in JPEG family. This is defined for rompreision of continuous-tone 
images with 1 to 4 components. Number of components for grayscale im- 
ages is 1, whereas a color image can have up to  four color components. The 
baseline JPEG allows only 8-bit samples within each component of the source 
image. An example of a four-component color image is a CMYK (Cyan, Ma- 
genta. Yellow, and Black) image, which is used in many applications such as 
printing, scanning, etc. A color image for display has three color components, 
RGB (Red, Green, and Blue), though. In a typical color image, the spatial in- 
tercomponent correlation between the red, green, and blue color components 
is significant. In order to  achieve good compression performance, correlation 
between the color components is first reduced by converting the RGB image 
into a decorrelated color space. In baseline JPEG, a three-color RGB image 
is first transformed into a luminance-chrominancc (L -C) color space such as 
YCbCT, YUV, CIELAB, etc. The advantage of converting the image into 
luminance-chrominance color space is that the luminance and chrominance 
components are very much decorrelated between each other. Moreover, the 
chrominance channels contain much redundant information and can easily be 
subsampled without sacrificing any visual quality for the reconstructed image. 

16.3.1 Color Space Conversion 

In this book, we consider color space conversion from RGB to YcbC, and 
vice versa only. There are several ways to  convert from RGB to YCbC, color 
space. In this book, we adopt the CCIR (International Radio Consultative 
Committee) Recommendation 601-1. This is the typical method for color 
conversion used in baseline JPEG compression. According to the CCIR 601-1 
Recommendation, the transformation from RGB to YCbC, is done based on 
the following mathematical expression: 

0.299000 0.587000 0.114000 ( A ) = (  -0.168736 -0.331264 0.500002) ( i )  . 
Cr 0.500000 -0.418688 -0.081312 

Color space conversion from RGB to  Ycbc ,  using the above transformation 
may result in negative numbers for Cb and C,, while Y is always positive. In 
order to  represent Cb and C, in unsigned &bit integers, they are level shifted 
by adding 128 to each sample followed by rounding and saturating the value 
in the range [O, 2551. Hence the above transformation can be expressed as 

0.29900 0.58700 0.11400 ( z b  ) = ( -0.16874 -0.33126 0.50000) ( i )  + ( i::) 
Cr 0.50000 -0.41869 -0.08131 
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in order to produce 8-bit unsigned integers for each of the components in the 
YCbC, domain. Accordingly, the inverse transformation from Ycbc, t o  RGB 
is done as 

0.0 1.40210 
1.0 -0.34414 -0.71414 

0.0 ) ( i: ) - ( :t ) .  ( i )  = ( 1.0 1.77180 

After the color space conversion, most of the spatial information of the 
image is contained in the luminance component ( Y ) .  The chrominance com- 
ponents (Cb and C,) contain mostly redundant color information and we lose 
little information by subsampling these components both horizontally and/or 
vertically. We can subsample the chrominance components by simply throw- 
ing away every other sample in each row and/or in each column if desired. 
If we subsample the redundant chrominance components both horizontally 
and vertically, the amount of data required to  represent the color image is 
reduced to  half because the size of each chrominance component (Cb and 
C,) is one-fourth of the original size. This color format is called the 4:2:0 
color subsampling format. Baseline JPEG also supports 4:2:2 and 4:4:4 color 
formats. Each chrominance component, in 4:2:2 color format, has the same 
vertical resolution as the luminance component, but the horizontal resolution 
is halved by dropping alternate samples in each row. In 4:4:4 format, both the 
chrominance components c b  and C, have identical vertical and horizontal res- 
olution as the luminance component. Hence no subsampling is done in 4:4:4 
format. The subsampling operation to  generate in 4:2:0 or 4:2:2 color format 
is the first lossy step. For a grayscale image there is only one component and 
obviously no color transformation is required. 

16.3.2 Source image Data Arrangement 

In the previous section. we have seen that  the dimension of each of the color 
components Y ,  Cb. and C, could be different depending on the color sub- 
sampling format. Each color component is divided into 8 x 8 nonoverlapping 
blocks, and we can form what is called a mznzmum coded unzt (MCU) in JPEG 
by selecting one or more data  blocks from each of the color components. The 
standard defines the arrangement of the data  blocks in interleaved or nonin- 
terleaved scanning order of the color components. In noninterleaved scan, the 
data blocks in each color component are stored and processed separately in 
raster scan order, left-to-right and top-to-bottom. In interleaved order, data 
blocks from all the color components appear in each MCU. Definition of the 
hZCUs for 4:4:4, 4:2:2, and 4:2:0 formats of YCbC, images in interleaved scan 
is shown in Figure 16.2. 

Each dot in Figure 16.2 represents a 8 x 8 data block. In 4:4:4 format 
interleaved scan, each MCU consists of a data  block from each of the Y ,  C b ,  

and C, components as shown in Figure 16.2(a). The order of processing these 
blocks is in the scan order from left t o  right and top to  bottom. For example, 
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0 1 2 3 4 ..... 0 1 2 3 4 ..... 0 1 2 3 4 ..... 
0 

1 1 
2 2 
3 3 

(a) 
MCUO=YOO CbOO CrOO 
MCUZ=YOZ CbOZ CrO2 

MCUI=YOI CbOl CrOl 
MCU3=Y03 Cb03 CrO3 

;$y& iQ” ;r 
2 
3 

Y Cb Cr 

(b) 
MCUO=YOOYOl Y1OYllCbO0CblOCrOOCrlO 
MCUI=Y02Y03Y12Y13CbOl Cbl l  CrOl C r l l  

I (d MCUU=YOOYOl YlOYl l  CbOOCrOO 
MCUkYOZ YO3 Y12 Y13 CbOl CrOl 

the first MCU consists of the first data blocks YO0 from the Y component 
followed by the first data blocks CbOO from the c b  component followed by 
CrOO from the C, component as shown in Figure 16.2(a). The next MCU 
consists of YO1, CbOl, and CrOl respectively. After all the MCUs consisting 
of the 8 x 8 data blocks from the first row, as shown in Figure 16.2(a), are 
encoded the second row of 8 x 8 blocks are scanned in a similar fashion. This 
procedure is continued until the last 8 x 8 block in the raster scan is encoded. 
In 4:2:2 format, each MCU consists of a 2 x 2 unit of four data blocks from 
the Y component, a 2 x 1 unit of two data blocks from each of the c b  and 
C,. components, and the corresponding order of processing is shown in Figure 
16.2(b). In 4:2:0 format, each MCU consists of 2 x 2 units of four data blocks 
from the Y component, one from each of the c b  and C, components, and the 
corresponding order of processing is shown in Figure 16.2(c). 

16.3.3 The Baseline Compression Algorithm 

The baseline JPEG algorithm follows the principles of block-based transform 
coding. Block diagram of the baseline JPEG algorithm for a grayscale image 
with a single component is shown in Figure 16.3. For a color image, the same 
algorithm is applied in each 8 x 8 data block based on the source image data 
arrangement as described in the previous section. 
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re-ordering I 

~ ____...__.......__.........~..............-.... 

Zig-zag 
ordering Quantizer 

~~~~ - 8  FDCT 
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Specifications 
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Quantization Image Data 
Table 
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Fig. 16.3 Baseline JPEG: (a) compression, (b) decompression. 

The image component is first divided into nonoverlapping 8 x 8 blocks 
in the raster scan order left-to-right and top-to-bottom as shown in Fig- 
ure 16.3(a). Each block is then encoded separately by the ENCODER shown 
in the broken box in Figure 16.3(a). The first step is to level shift each pixel in 
the block to  convert into a signed integer by subtracting 128 from each pixel. 
Each level-shifted pixel in the 8 x 8 block is then transformed into frequency 
domain via forward discrete cosine transform (FDCT). The FDCT of an 8 x 
8 block of pixels f(z7 y) for (x, y = 0,1, .  . . ,7 )  is defined by: 

for u = 0,1 , .  . . , 7  and 'L' = 0,1, .  . . , 7, where 

&- for k = o 
1 otherwise. 

C ( k )  = 

We discuss discrete cosine transform in great detail in Chapter 4. 

16.3.4 Coding the DCT Coefficients 

The transformed 8 x 8 block now consists of 64 DCT coefficients. The first co- 
efficient F(0,O) is the DC component of the block and the other 63 coefficients 
are AC components AC,,, = F ( u , v )  of the block as shown in Figure 16.4. 
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. . . . . . . .  

The DC component F(0,O) is essentially the sum of the 64 pixels in the input 
8 x 8 pixel block multiplied by the scaling factor iC(u)C(v)  = as shown 
in the expression for F ( u ,  u). 

AC 

37 

Fig. 16.4 DC and AC components of the transformed block. 

The next step in the compression process is to quantize the transformed 
coefficients. This step is primarily responsible for losing the information and 
hence introduces distortion in the reconstructed image. That’s why baseline 
JPEG is a lossy compression. Each of the 64 DCT coefficients are uniformly 
quantized. The 64 quantization step-size parameters for uniform quantization 
of the 64 DCT coefficients form an 8 x 8 quantization matrix. Each element in 
the quantization matrix is an integer between 1 and 255.  Each DCT coefficient 
F ( u .  ti) is divided by the corresponding quantizer step-size parameter Q(u. u) 
in the quantization matrix and rounded to the nearest integer as 

The standard does not define any fixed quantization matrix. It is the prerog- 
ative of the user to select a quantization matrix. There are two quantization 
matrices provided in Annex K of the JPEG standard for reference, but not 
as a requirement. These two quantization matrices are shown in Tables 16.3 
and 16.4 respectively. 

Table 16.3 is the luminance quantzzatzon matmx for quantizing the trans- 
formed coefficients of the luminance component of an image. Table 16.4 is the 
chromznance quantzzatzon m a t n x  for quantizing the transformed coefficients 
of the chrominance components of the image. These two quantization tables 
have been designed based on the psychovisual experiments by Lohscheller [4] 
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Table 16.3 Luminance quantization matrix 

16 11 
12 12 
14 13 
14 17 
18 22 
24 35 
49 64 
72 92 

10 
14 
16 
22 
37 
55 
78 
95 

16 
19 
24 
29 
56 
64 
87 
98 

24 
26 
40 
51 
68 
81 

103 
112 

40 51 
58 60 
57 69 
87 80 

109 103 
104 113 
121 120 
100 103 

61 
55 
56 
62 
77 
92 

101 
99 

Table 16.4 Chrominance quantization matrix 

17 18 24 47 99 99 99 99 
18 21 26 66 99 99 99 99 
24 26 56 99 99 99 99 99 
47 66 99 99 99 99 99 99 
99 99 99 99 99 99 99 99 
99 99 99 99 99 99 99 99 
99 99 99 99 99 99 99 99 
99 99 99 99 99 99 99 99 

to determine the visibility thresholds for 2D basis functions. These tables 
may not be suitable for all kinds of images, but they provide reasonably good 
results for most of the natural images with 8-bit precision for luminance and 
chrominance samples. If the elements in these tables are divided by 2, we get 
perceptually lossless compression-the reconstructed image is indistinguish- 
able from the original one by human eyes. If the quantization tables are 
designed based on the perceptual masking properties of human eyes, many of 
the small DCT coefficients and mainly high-frequency samples are zeroed out 
to  aid significant compression. This is done by using larger quantization step- 
size parameters for higher-frequency AC components as shown in Tables 16.3 
and 16.4. Quality of the reconstructed image and the achieved compression 
can be controlled by a user by selecting a quality factor Q-JPEG to tune the 
elements in the quantization tables as proposed by the Independent JPEG 
Group (IJG) and implemented in their software [5]. The value of Q-JPEG 
may vary from 1 to 100. The quantization matrices in Tables 16.3 and 16.4 
have been set for Q-JPEG = 50. For other Q-JPEG values, each element 
in both the tables is simply scaled by the factor alpha (a )  as defined in [ 5 ] ,  
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where 

Q-JPEG 50 

2 - 

if 1 5 Q-JPEG 5 50 

if 50 5 Q-JPEG 5 100, 
.=( 

subject t o  the condition that  the minimum value of the scaled quantization 
matrix elements aQ(u, v) is 1. For the best reconstructed quality, Q-JPEG 
is set t o  100 

BLOCK i- BLOCK , 

Fig. 16.5 (a) Zig-zag ordering of AC coefficients; (b) differential coding of DC. 

After quantization of the DCT coefficients, the quantized DC coefficient 
is encoded by differential encoding. The DC coefficient DCi of the current 
block is subtracted by the DC coefficient DCi-1 of the previous block and the 
difference D I F F  = DC, - DCi-1 is encoded as shown in Figure 16.5(b). This 
is done to  exploit the spatial correlation between the DC values of the adja- 
cent blocks. Encoding of the AC coefficients is not straightforward. Instead 
of encoding each AC coefficient in the block, only the significant (nonzero) 
coefficients are encoded by an efficient manner such that the runs of zeros 
preceding a nonzero value are embedded into the encoding. Usually there are 
few significant low-frequency AC coefficients in the whole 8 x 8 block and 
most of the higher-frequency coefficients are quantized to 0's. In order to 
exploit this property, the AC coefficients are ordered in a particular irregular 
order sequence as shown in Figure 16.5(a). This irregular ordering of the AC 
coefficients is called zzg-zag ordering. This is done to  keep the low-frequency 
coefficients together and form long runs of 0's corresponding to  the higher- 
frequency quantized coefficients. This zig-zag sequence is then broken into 
runs of zeros ending in a nonzero value. Before we explain the entropy en- 
coding procedure, let us show the results of level shifting, DCT, quantization, 
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and zig-zag ordering with an example 8 x 8 block extracted from a natural 
image. 

Example: A Sample 8 x 8 Data Block 

110 110 118 118 121 
108 111 125 122 120 
106 119 129 127 125 
110 126 130 133 133 
115 116 119 120 122 
115 106 99 110 107 
110 91 82 101 99 
103 76 70 95 92 

126 
125 
127 
131 
125 
116 
104 
91 

131 131 
134 135 
138 144 
141 148 
137 139 
130 127 
120 118 
107 106 

The 8 x 8 Data Block After Level Shifting 

-18 
-20 
-22 
-18 
- 13 
-13 
-18 
-25 

-18 -10 -10 
-17 -3 -6 
-9 1 -1 
-2 2 5 

-12 -9 -8 
-22 -29 -18 
-37 -46 -27 
-52 -58 -33 

-7 
-8 
-3 

5 
-6 

-21 
29 

-36 

-2 3 3 
-3 6 7 
-1 10 16 

3 13 20 
-3 9 11 
- 12 2 -1 
-24 -8 -10 
-37 -21 -22 

DCT Coefficients of the above 8 x 8 Block 

-89.00 
74.14 

-63.65 
3.73 
2.50 
7.52 

-3.40 
-2.26 

-63.47 
-2.90 

3.10 
2.85 
0.57 

0.43 
-1.80 

-0.88 

18.21 

5.08 
6.67 

-19.93 

-4.46 
-0.63 

0.81 
1.73 

-6.85 
-21.04 

14.82 
8.99 
0.52 

-0.10 
0.28 
0.23 

7.50 
-17.88 

10.12 
-3.38 

3.00 
0.41 

-0.40 
-0.21 

13.45 
-10.81 

9.33 
1.54 

-2.89 
-3.21 
-0.19 
-0.12 

-7.00 
8.29 
1.31 
1.04 

-0.32 
-2.74 
-0.58 

1.23 

0.13 
5.26 

-0.62 
-0.62 

1.33 
-2.07 
-1.09 

1.61 
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Results of DCT Coefficients Quantized by Luminance Quantization Matrix 

- 6 - 6  2 0 0 0 0 0  
6 0 - 1 - 1 - 1 0 0 0  

-5 0 0 1 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  

After the DC coefficient is differentially encoded, the AC coefficients are or- 
dered in the zig-zag sequence and the sequence is subsequently broken into 
a number of runs of zeros ending in a nonzero Coefficient. The entropy en- 
coding procedure for differentially encoded DC coefficient is identical to the 
entropy encoding of the prediction error values that we explained for lossless 
JPEG. For 8-bit images in baseline JPEG, the DCT coefficients fall in the 
range [-1023, +1023]. Since the DC coefficient is differentially encoded, the 
differential values of DC fall in the range [-2047, +2047]. Assuming that the 
DC coefficient of the previous block is -4 as an example, the differential DC 
value of the present block is -2. From Table 16.2, we find that this belongs 
to category 2 and hence - 2  is described as (2, 01). If the Huffman code of 
category 2 is 011, then -2 is coded as 01101, where the last two bits 01 rep- 
resent the variable-length integer (VLI) code of -2. There are two Huffman 
tables (Tables K.3 and K.4) for encoding the DC coefficients in Annex K of 
the baseline JPEG standard for reference. But the user can choose any table 
and add them as part of the header of the compressed file [I]. Table K . 3  is 
supplied for coding the luminance DC differences as a reference. Table K.4 is 
supplied for chrominance DC differences. 

After zig-zag ordering of the AC coefficients in the example, the resulting 
sequence is -6 6 -5 0 2 0 -1 0 0 0 0 0 -1 0 0 -1 1 0  0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . T h i s  
sequence of AC coefficients can be mapped into an zntermedzate sequence of a 
combination of two symbols, symbol1 and symbol2: symbol1 is represented by 
a pair (RUNLENGTH, CATEGORY),  where RUNLENGTH is the num- 
ber of consecutive zeros preceding the nonzero AC coefficient being encoded 
and CATEGORY is the number of bits to represent the VLI code of this 
nonzero AC coefficient; symbol:! is a single piece of information designated 
(AMPLITUDE) that is encoded by the VLI code of the nonzero AC coef- 
ficient. Accordingly, the zig-zag sequence in the example can be compactly 



BASELINE JPEG COMPRESSION 365 

represented as: 

The first significant (nonzero) AC coefficient in the zig-zag sequence is 
-6. It is represented as (0, 3)(-6) because it precedes with no run of ze- 
ros (i.e., RUNLENGTH = 0) and the AMPLITUDE = -6 belongs to 
CATEGORY = 3. Similarly, the following two nonzero coefficients 6 and -5 
are represented as (0, 3)(6) and (0, 3)(-5) respectively. The next significant 
coefficient 2 is represented by (1, 2)(2) because it precedes a 0 coefficient (i.e., 
RUNLENGTH = 1) and AMPLITUDE = 2 belongs to CATEGORY = 2. 
Similarly, the next significant symbol is represented as (1, 1) (- 1). The follow- 
ing significant coefficient -1 is represented as (5, 1)(-1) because it precedes 
five 0’s (i.e., RUNLENGTH = 5) and AAdPLITUDE = -1 belongs to 
CATEGORY = 1. Following the same procedure, the next two nonzero co- 
efficients -1 and 1 are represented by (2, 1)(-1) and (0, 1)(1) respectively. 
There are no other nonzero coefficients in the remainder of the zig-zag se- 
quence. It is represented by a special symbol (0,O) to  indicate that the re- 
maining elements in the zig-zag block are all zeros. Each (RUNLENGTH, 
CATEGORY) pair is encoded using a Huffman code and the corresponding 
AMPLITUDE is encoded by the VLI code. 

There are two special symbols in encoding the zig-zag sequence of AC 
coefficients-(0,O) and (15, 0). The first special symbol is (O,O), and it is 
referred to as EOB (end-of-block), to  indicate that the remaining elements in 
the zig-zag block are zeros. The other special symbol is (15, 0) and it is also 
referred to  as ZRL (zero-run-length) to indicate a run of 16 zeros. Maximum 
length of a run of zeros allowed in baseline JPEG is 16. If there are more than 
16 zeros, then the run is broken into the number of runs of zeros of length 
16. For example, consider 57 zeros before a nonzero coefficient, say -29. This 
will be represented by (15, 0) (15, 0) (15, 0), (9, 5)(-29). The first three (15, 
0) pairs represent 48 zeros and (9, 5)(-29) represents 9 zeros followed by the 
coefficient -29 which belongs to category 5. 

The baseline JPEG allows a maximum of four Huffman tables-two for 
encoding AC coefficients and two for encoding DC coefficients. In luminance- 
chrominance image data, usually two Huffman tables (one for AC and one 
for DC) are used for encoding luminance data and similarly two for encoding 
chrominance data. The Huffman tables used during the compression process 
are stored as header information in the compressed image file in order to  
uniquely decode the coefficients during the decompression process. There are 
two Huffman tables (Table K.5 and K.6) for encoding the AC coefficients and 
two others (Table K.3 and K.4) for encoding the DC coefficients in Annex 
K of the baseline JPEG standard for reference. The users can choose any 
table of their choice and store it as part of the header of the compressed 
file [l]. Tables K.3 and K.5 are recommended for luminance DC differences 
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Fig. 16.6 (a) Original Peppers image, (b) compressed with baseline JPEG using qual- 
ity factor 75 (1.57 bit/pixel), (c) compressed with baseline JPEG using quality factor 
10 (0.24 bit/pixel), and (d) compressed with the new JPEG2000 standard using the 
same bit rate (0.24 bit/pixel). 

and AC coefficients. Tables K.4 and K.6 are recommended for corresponding 
chrominarice channels. 

Let 11s now allocate the variable-length codes in the last example. The 
codewords for (0, O), (0 ,  l), (0, 3),  (1, l), (1, 2) ,  (2, l ) ,  and ( 5 ,  1) from Table 
K.5 are 1010, 00, 100, 1100, 11011, 11100, and 1111010 respectively. VLI 
codes for the nonzero AC coefficients 1, -1, 2, - 5 ,  6 and -6 are 1, 0, 10, 010, 
110, and 001 respectively. Codeword for the differential DC value is 01101. 
The compressed bitstream for the 8 x 8 block is shown below, and it requires 
only 52 bits as opposed to  512 bits required by the original 8 x 8 block of 
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8-bit pixels, 

01101100001100110100010110111011000111101001110000011010 

where the first five bits, 01101, represent the DC coefficient and the other 
47 bits represent the AC coefficients. Hence, we achieved approximately 1O:l 
compression using baseline JPEG to compress the block as shown above. 

Decompression is the inverse process to decode the compressed bitstream 
in order to  properly reconstruct the image. The inverse functions in the 
decompression process are obvious and the corresponding block diagram of 
the baseline decompression algorithm is shown in Figure 16.3(b). 

We show a picture of the famous “Peppers” image in Figure 16.6(a). The 
color version of Figure 16.6 is provided in the color figures page. The im- 
age is compressed using the baseline JPEG algorithm with quality factor 
Q-JPEG = 75 and the reconstructed image is perceptually almost identi- 
cal to  the original image. This is shown in Figure 16.6(b). When we compress 
the same image with quality factor Q-JPEG = 10, we can see prominent 
artifacts in the image as shown in Figure 16.6(c). The nature of artifacts that 
is caused by lossy JPEG compression/decompression is called blocking arti- 
facts. This happens because of the discontinuities created at the 8 x 8 block 
boundaries, since the blocks are compressed and decompressed independently. 
The new JPEG2000 standard solves this problem by using discrete wavelet 
transform (DWT) over the whole image [2]. Figure 16.6(d) shows the result of 
the JPEG2000 standard compressing the image with the same bit-rate (0.24 
bits per pixel). We discuss details of this new standard in Chapters 17 and 
18. 

16.4 SUMMARY 

In this chapter, we have described the JPEG standard for still image com- 
pression. JPEG is essentially the first international standard for gray level 
and color image compression. JPEG has four different modes of algorithms. 
We have discussed both the lossy and lossless compression algorithms. We de- 
scribed the prediction-based lossless JPEG algorithm and the DCT based lossy 
compression as well. Baseline JPEG is a lossy compression algorithm and the 
most widely used algorithm among all different modes in the JPEG standard 
for still image compression. We have discussed the principles and algorithms 
for the baseline JPEG standard in great detail in this chapter. We have 
presented some results of the baseline JPEG algorithm and compared its per- 
formance with the discrete wavelet transformed (DWT) based new JPEG2000 
standard for image compression. We describe the new JPEG2000 standard in 
great details in Chapters 17 and 18. 
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17 
JPEG2OOO Standard For 

Image Compression 

17.1 I NTRO D U CTI  0 N 

JPEG2000 is the new international standard for image compression [l] devel- 
oped jointly by the International Organization for Standardization (ISO) , and 
the International Electrotechnical Commission (IEC) and also recommended 
by International Telecommunications Union (ITU) . 

Although JPEG (actually baseline JPEG) has been very successful in the 
marketplace for more than a decade, it lacks many features desired by inter- 
active multimedia applications, its usage in current communications (wired 
or wireless) environments, and Internet applications platforms. A fundamen- 
tal shift in the image compression approach came after the discrete wavelet 
transform (DWT) became popular [2]-[6]. Exploiting the interesting features 
in DVC’T, many scalable image compression algorithms were proposed in the 
literature [7]-[13]. 

The JPEG2000 standard is effective in wide application areas such as In- 
ternet, digital photography, digital library, image archival, compound docu- 
ments, image databases, color reprography (photocopying, printing, scanning, 
facsimile), graphics, medical imaging, multispectral imaging such as remotely 
sensed imagery, satellite imagery, mobile multimedia communication, 3G cel- 
lular telephony, client-server networking, e-commerce, etc. 

369 
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17.2 WHY JPEG2000? 

The underlying philosophy behind development of the JPEG2000 standard 
was to compress an image once and decode the compressed bitstream in many 
ways to  meet different applications requirements. Some of the salient features 
offered by the JPEG2000 standard that are effective in vast areas of applica- 
tions are as follows: 

Superior low bit-rate performance: It offers superior performance in 
terms of visual quality and PSNR (peak signal-to-noise ratio) at  very 
low bit-rates (below 0.25 bit/pixel) compared to the baseline JPEG. For 
equivalent visual quality JPEG2000 achieves more compression com- 
pared to JPEG. This has been demonstrated in Fig.16.6 in Chapter 16, 
and its color version is provided in the color figures page. 

Continuous tone and bi-level image compression: The JPEG2000 stan- 
dard is capable of compressing and decompressing both the continuous- 
tone (gray scale and color) and hi-level images. The JBIG2 standard was 
defined to compress the hi-level images and it uses the same MQ-coder 
that is used to entropy encode the wavelet coefficients of the grayscale 
or color image components. 

Large dynamic range of the pixels: The JPEG2000 standard-compliant 
systems can compress and decompress images with various dynamic 
ranges for each color component. Although the desired dynamic range 
for each component in the requirement document is 1 to 16 bits, the 
system is allowed to  have a maximum of 38 bits precision based on the 
bitstream syntax. 

Large images and large numbers of image components: The JPEG2000 
standard allows the maximum size of an image to be (232 - 1) x (232 - 1) 
and the maximum number of components in an image to  be 214. 

Lossless and lossy compression: The single unified compression architec- 
ture can provide both the lossless and the lossy mode of image compres- 
sion. As a result, the same technology is applicable in varying applica- 
tions areas ranging from medical imagery requiring lossless compression 
to  digital transmission of images through communication networks. 

Fixed size can be preassigned: The JPEG2000 standard allows users to 
select a desired size of the compressed file. This is possible because of the 
bit-plane coding of the architecture and controlling the bit-rate through 
the rate control. The compression can continue bit-plane by bit-plane 
in all the code-blocks until the desired compressed size is achieved and 
the compression process can terminate. 
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Progressive transmission by pixel accuracy and resolution: Using the 
JPEG2000 standard, it is possible to  organize the code-stream in a pro- 
gressive manner in terms of pixel accuracy (i.e., visual quality or SNR) 
of images that allows reconstruction of images with increasing pixel ac- 
curacy as more and more compressed bits are received and decoded. 
This is possible by progressively decoding most significant bit-plane to 
less significant bit-planes until all the bit-planes are reconstructed. The 
code-stream can also be organized as progressive in resolution such that 
the higher-resolution images are generated as more compressed data are 
received and decoded. 

Region of interest (ROI) coding: The user may desire certain parts of an 
image that are of greater importance to  be encoded with higher fidelity 
compared to  the rest of the image. During decompression the quality 
of the image also can be adjusted depending on the degree of interest 
in each region of interest. For example, a medical practitioner may find 
a certain region (or number of regions) in the radiograph to  be more 
informative than the other parts. 

Random access and compressed domain processing: By randomly ex- 
tracting t.he code-blocks from the compressed bitstream, it is possible 
to  manipulate certain areas (or regions of interest) of the image. Some 
of the examples of compressed-domain processing could be cropping, 
flipping, rotation, translation, scaling, feature extraction, etc. 

Robustness to bit-errors (error resiliency): Robustness to bit-errors is 
highly desirable for transmission of images over noisy communications 
channels. The JPEG2000 standard facilitates this by coding small size 
independent code-blocks and including resynchronization markers in the 
syntax of the compressed bitstream. There are also provisions to detect 
and correct errors within each code-block. 

Sequential buildup capability: The JPEG2000-compliant system can be 
designed to encode an image from top to bottom in a single sequential 
pass without the need to buffer an entire image, and hence is suitable 
for low-memory on-chip VLSI implementation. The line-based imple- 
mentation of DWT and tiling of the images facilitates this feature. 

Metadata: The extended file syntax format allows inclusion of metadata 
information to  describe the data (image) into the compressed bitstream. 
For example, the JPX file format, defined in JPEG2000 Part 2: Exten- 
sions, allows any legal ICC (International Color Consortium) profile to 
be embedded in the file. 

In Figure 17.1, we have demonstrated the results of some of the capabili- 
ties of the JPEG2000 technology. The input image shown in Figure 17.l(a) is 
actually a color image, although we have shown the gray scale version of the 
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Fig 17.1 Example of capabilities of' JPEG2000 technology. 
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image here. We applied three levels of DWT to  decompose the input image 
and generated the compressed bitstream with ROI encoding. The bitstream 
was generated by compressing the image losslessly. From the same bitstream, 
we decoded the image progressively until we reconstructed the original image 
as shown by the lossless arrow. While decoding in progressive manner, the re- 
constructed image is visually lossless at  5.2 bits per pixel or above as shown in 
Figure 17.1(b). In Figure 17.1(c), we show the random-access capability. We 
have accessed the compressed bits only for the code-blocks forming the sub- 
region (or cropped version of the image) and decoded the result as shown in 
Figure 17.1(c). When we decode only one component (in this example we de- 
coded the G component), we get a grayscale image as shown in Figure 17.1(d). 
After decoding the bitstream progressively a t  two levels of resolution, we gen- 
erate a 2:l downscaled (horizontally and vertically) version of the image as 
shown in Figure 17.1(e). After decoding to  1.89 bits per pixel, we losslessly 
reconstructed the ROI portion of the image, but introducing artifacts in the 
rest of the image as shown in Figure 17.1(f). As a result, we can conclude 
that an image can be compressed once and the compressed bitstream can be 
decoded in many different ways to suit the desired requirement. For further 
details the readers can refer to [l]. 

17.3 PARTS OF T H E  JPEG2000 STANDARD 

As of writing this book, the standard has 11 parts (because Part 7 has been 
abandoned) with each part adding new features to the core standard in Part 
1. The 11 parts and their features are as follows: 

0 Part 1-Core Coding System [l, 141 specifies the basic feature set and 
code-stream syntax for JPEG2000. 

0 Part 2-Extensions [15] to  Part 1. This part adds a lot more features 
to  the core coding system. 

0 Part 3-Motion JPEG2000 [16] specifies a file format (MJ2) that con- 
tains an image sequence encoded with the JPEG2000 core coding algo- 
rithm for motion video. 

0 Part 4-Conformance Testing [17] is now published as an International 
Standard (ISO/IEC 15444-4:2002). I t  specifies compliance-testing pro- 
cedures for encoding/decoding using Part 1 of JPEG2000. 

0 Part 5-Reference Software [18]. In this part, two software source pack- 
ages (using Java and C programming languages) are provided for the 
purpose of testing and validation for JPEG2000 systems implemented 
by the developers. 

0 Part 6-Compound Image File Format [19] specifies another file for- 
mat (JPM) for the purpose of storing compound images. The ITU-T 
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T.441ISO 16485 [20] multilayer mixed raster content (MRC) model is 
used to represent a compound image in Part 6 of JPEG2000. 

0 Part 7-This part has been abandoned. 

0 Part 8-Secure JPEG2000 (JPSEC). This part deals with security as- 
pects for JPEG2000 applications such as encryption, watermarking, etc. 

0 Part 9-Interactivity Tools, APIs, and Protocols (JPIP).  This part de- 
fines an interactive network protocol, and it specifies tools for efficient 
exchange of JPEG2000 images and related metadata. 

0 Part 10-3D and Floating Point Data (JP3D). This part is developed 
with the concern of three-dimensional data such as 3D medical image 
reconstruction, as an example. 

Part 11-Wireless (JPWL). This part is developed for wireless multi- 
media applications. The main concerns for JPWL are error protection, 
detection, and correction for JPEG2000 in an error-prone wireless envi- 
ronment. 

0 Part 12-IS0 Base media file format has a common text with ISO/IEC 
14496-12 for MPEG-4. 

Parts 8 to 11 (and possible additional parts) are still under development 
as of writing this book. 

17.4 OVERVIEW OF T H E  JPEG2000 PART 1 ENCODING SYSTEM 

Like JPEG, the JPEG2000 standard is also written from the decoder point 
of view. This means that the decoder is specified quite precisely from marker 
segments to bitstream syntax in the JPEG2000 standard document. The de- 
tail of the specification of the decoder is sufficient to dictate the functionalities 
of the encoder. However, i t  is very difficult for a beginner to understand the 
standard document. Once the encoder system is well understood, it becomes 
easier to comprehend the decoder system described in the standard document. 
The whole compression system is simply divided into three phases. We call 
them (1) image preprocessing, (2) compression, and (3) compressed bitstream 
format ion. 

17.5 IMAGE PREPROCESSING 

The image preprocessing phase consists of three optional major functions: first 
tiling, then DC level shafting, followed by the multicomponent transformation. 
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17.5.1 Tiling 

The first preprocessing operation is tiling. In this step, the input source 
image is (optionally) partitioned into a number of rectangular non-overlapping 
blocks if the image is very large. Each of these blocks is called a tile. All the 
tiles have exactly the same dimension except the tiles at the image boundary 
if the dimension of the image is not an integer multiple of the dimension 
of the tiles. The tile sizes can be arbitrary up to  the size of the original 
image. For an image with multiple components, each tile also consists of these 
components. For a gray scale image, the tile has a single component. Since 
the tiles are compressed independently, visible artifacts may be created at the 
tile boundaries when it is heavily quantized for very-low-bit-rate compression 
as typical in any block transform coding. Smaller tiles create more boundary 
artifacts and also degrade the compression efficiency compared to the larger 
tiles. Obviously, no tiling offers the best visual quality. On the other hand, if 
the tile size is too large, it requires larger memory buffers for implementation 
either by software or hardware. 

17.5.2 DC Level Shifting 

Originally, the pixels in the image are stored in unsigned integers. For mathe- 
matical computation, it is essential to  convert the samples into two's comple- 
ment representation before any transformation or mathematical computation 
starts in the image. The purpose of DC level shifting (optional) is to  ensure 
that the input image samples have a dynamic range that is approximately 
centered around the zero. The DC level shifting is performed on image sam- 
ples that are represented by unsigned integers only. All samples 12(x ,  y) in the 
i t h  component of the image (or tile) are level shifted by subtracting the same 
quantity 2s:7z-' to produce the DC level shifted sample I i (x ,  y) as follows, 

S' -1 I i (x ,  y) +- I Z ( Z ,  y) - 2 s=* 

where S&z is the precision of image samples signaled in the SIZ (image and 
tile size) marker segment in compressed bitstream. 

For images whose samples are represented by signed integers, such as CT 
(computed tomography) images, the dynamic range is already centered about 
zero, and no DC level shifting is required. 

17.5.3 Multicomponent Transformations 

The multicomponent transform is effective in reducing the correlations (if any) 
among the multiple components in a multicomponent image. This results in 
reduction in redundancy and increase in compression performance. Actually, 
the standard does not consider the components as color planes and in that 
sense the standard itself is colorblind. However, it defines an optional mul- 
ticomponent transformation in the first three components only. These first 
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three components can be interpreted as three color planes (R, G, B) for ease of 
understanding. That’s why they are often called multicomponent color trans- 
formation as well. However, they do not necessarily represent Red-Green-Blue 
data of a color image. In general, each component can have different bit-depth 
(precision of each pixel in a component) and different dimension. However, 
the condition of application of the multicomponent transform is that the first 
three components should have identical bit-depth and identical dimension as 
well. 

The JPEG2000 Part 1 standard supports two different transformations: (1) 
reversible color transform (RCT), and (2) irreversible color transform (ICT). 
The RCT can be applied for both lossless and lossy compression of images. 
However, ICT is applied only in lossy compression. 

17.5.3.1 Reversible Color Transformation For lossless compression of an im- 
age, only the reversible color transform (RCT) is allowed because the pixels 
can be exactly reconstructed by the inverse RCT. Although it has been defined 
for lossless image compression, the standard allows it for lossy compression as 
well. In case of lossy compression, the errors are introduced by the transfor- 
mation and/or quantization steps only, not by the RCT. The forward RCT 
and inverse RCT are given by: 

Forward RCT: 
R+2G+B 

yT = 1 7 1  
U T = B - G  

V T = R - G  

Inverse RCT: 

R = V T + G  

B = U T + G  

(17.1) 

(17.2) 

17.5.3.2 Irreversible Color Transformation The irreversible color transforma- 
tion (ICT) is the same as the luminance-chrominance color transformation 
used in baseline JPEG, presented in Chapter 16. ICT is applied for lossy 
compression only. Y is the luminance component of the image representing 
intensity of the pixels (light) and Cb and Cr are the two chrominance compo- 
nents representing the color information in each pixel. In baseline JPEG, the 
chrominance components can be subsampled to  reduce the amount of data 
to start with. However, in the JPEG2000 standard, this subsampling is not 
allowed. 
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fig. 17.2 (a) Block diagram of the JPEG2000 encoder algorithm; (b) dataflow. 

17.6 COMPRESSION 

After the optional preprocessing phase, as described in the previous section, 
the compression phase actually generates the compressed code. The com- 
putational block diagram of the functionalities of the compression system is 
shown in Figure 17.2(a). The data flow of the compression system is shown 
in Figure 17.2(b). As shown in Figure 17.2(b), each preprocessed component 
is independently compressed and transmitted as shown in Figure 17.2(a). 

The compression phase is mainly divided into three sequential steps: (1) 
discrete wavelet transform (DWT), (2) quantization, and ( 3 )  entropy encod- 
ing. After preprocessing, each component is independently analyzed by a 
suitable discrete wavelet transform (DW'T). The DWT essentially decomposes 
each component into a number of subbands in different resolution levels. Each 
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subband is then independently quantized by a quantization parameter, in case 
of lossy compression. The quantized subbands are then divided into a number 
of smaller code-blocks of equal size, except for the code-blocks at  the bound- 
ary of each subband. Typical size of the code-blocks is usually 32 x 32 or 64 
x 64 for better memory handling. Each code-block is then entropy encoded 
independently to  produce compressed bitstreams as shown in the dataflow 
diagram in Figure 17.2(b). 

17.6.1 Discrete Wavelet Transformation 

We discussed the DWT in greater detain in Chapter 5. The maximum number 
of levels of decomposition allowed in Part 1 is 32. In Part 1 of the JPEG2000 
standard, only power of 2 dyadic decomposition in multiple levels of resolution 
is allowed. 

17.6.1.1 Discrete Wavelet Transformation for Lossy Compression For lossy 
compression, the default wavelet filter used in the JPEG2000 standard is 
the Daubechies (9, 7) biorthogonal spline filter. By (9, 7) we indicate that the 
analysis filter is formed by a 9-tap low-pass FIR filter and a 7-tap high-pass 
FIR filter. Both filters are symmetric. The analysis filter coefficients (for 
forward transformation) are as follows: 

0 9-tap low-pass filter: [h-4, h-3, h-2, h- l ,  ho, hl ,  h2, h3, h4] 

h4 = h-4 = +0.026748757410810 

h3 = h-3 = -0.016864118442875 

h2 = h-2 = -0.078223266528988 

hi = h-1 = +0.266864118442872 

ho = f0.602949018236358 

g3 = 9-3 = +0.0912717631142495 

Q2 = Q-2 = -0.057543526228500 

91 = 9-1 = -0.591271763114247 

go = +1.115087052456994 

For the synthesis filter pair used for inverse transformation, the low-pass 
FIR filter has seven filter coefficients and the high-pass FIR filter has nine 
coefficients. The corresponding synthesis filter coefficients are as follows: 

0 7-tap low-pass filter: [hL3, hy2 ,  hLl, hb, hi ,  hk, h;] 

h; = hy3 = -0.0912717631142495 
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h; = hL2 = -0.057543526228500 

hi = hL1 = +0.591271763114247 

hb = +1.115087052456994 

17.6.1.2 Reversible Wavelet Transform for Lossless Compression For lossless 
compression, the default wavelet filter used in the JPEG2000 standard is the 
Le Gall (5, 3) spline filter [21]. Although this is the default filter for lossless 
transformation, it can be applied in lossy compression as well. However, 
experimentally it has been observed that the (9, 7) filter produces better 
visual quality and compression efficiency in lossy mode than the (5, 3) filter. 
The analysis filter coefficients for the (5, 3) filter are as follows: 

5-tap low-pass filter: [h-z, h-1, ho, h l ,  h2] 

h2 = h-2 = -118 

hi =h-l = 1/4 

ho = 314 

3-tap high-pass filter: [g-l, go, g l ]  

91 =g-1 = -112 

90 = 1 

The corresponding synthesis filter coefficients are as follows: 

3-tap low-pass filter: [h'_,, hb, hi] 
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17.6.1.3 Like a convolution, filtering is applied to the 
input samples by multiplying the filter coefficients with the input samples 
and accumulating the results. Since these filters are not causal, they cause 
discontinuities at  the tile boundaries and create visible artifacts at the im- 
age boundaries as well. This introduces the dilemma of what to  do at  the 
boundaries. In order to  reduce discontinuities in tile boundaries or reduce 
artifacts at  image boundaries, the input samples should be first extended 
periodically a t  both sides of the input boundaries before applying the one- 
dimensional filtering both during row-wise and column-wise computation. By 
symmetrical/mirror extension of the data around the boundaries, one is able 
to  deal with the noncausal nature of the filters and avoid edge effects. The 
number of additional samples needed to extend the boundaries of the input 
data is dependent on filter length. The general idea of period extension of 
the finite-length signal boundaries is explained by the following two examples. 

Boundary Handling 

Example 1: Consider the finite-length input signal A B C D E F G H .  For 
an FIR filter of odd length, the signal can be extended periodically as 

F G H G F E D C B A B C D E F G H G F E D C B A B C . . .  

The two underlined sequences demonstrate the symmetry of extension with 
respect to the first sample ( A )  and the last sample (H) of the input signal 
as axis, and hence the boundary samples (A  and H )  are not included in the 
extension. The overlined sequence is the original input signal. This is called 
“whole-sample” symmetric (WSS) extension. Thc (9, 7) and (5, 3 )  filter ker- 
nels in Part 1 of the standard are odd-length filters and the boundary handling 
is done using the whole-sample symmetric extension. 

Example 2: For an FIR filter of even length, the signal can be extended 
periodically as 

. . .  F G H H G F E D C B A A B C D E F G H H G F E D C B A A B C  . . .  

The two underlined sequences demonstrate the mirror symmetry of the input 
signal at  both of the boundaries and the overlined sequence is the original 
input signal. This is called “half-sample” symmetric (HSS) extension, in which 
the boundary samples (A and H )  are also included in the extension because 
of the mirror symmetry. The even-length filters are allowed in the Part 2 
extension of the standard and the boundary handling is accomplished by the 
half-sample symmetric extension. 

17.6.2 Quantization 

After the DWT, all the subbands are quantized in lossy compression mode in 
order to reduce the precision of the subbands to aid in achieving compression. 
Quantization of DWT subbands is one of the main sources of information loss 
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in the encoder. Coarser quantization results in more compression and hence 
in reducing the reconstruction fidelity of the image because of greater loss 
of information. Quantization is not performed in case of lossless encoding. 
In Part 1 of the standard, the quantization is performed by uniform scalar 
quantization with dead-zone about the origin. In dead-zone scalar quantizer 
with step-size &, the width of the dead-zone (i.e., the central quantization 
bin around the origin) is 2& as shown in Figure 17.3. The standard supports 
separate quantization step-sizes for each subband. The quantization step 
size (Ab) for a subband ( b )  is calculated based on the dynamic range of the 
subband values. The formula of uniform scalar quantization with a dead-zone 
is 

(17.3) 

where y b ( i , j )  is a DWT coefficient in subband b and &, is the quantization 
step size for the subband b. All the resulting qunantized DWT coefficients 
qb(i, j )  are signed integers. 

fig. 17.3 Dead-zone quantization about the origin. 

All the computations up to  the quantization step are carried out in two’s 
complement form. After the quantization, the quantized DWT coefficients are 
converted into sign-magnitude represented prior to  entropy coding because of 
the inherent characteristics of the entropy encoding process, which will be 
described in greater detail in Chapter 18. 

17.6.3 Region of Interest Coding 

The region of interest (ROI) coding is a unique feature of the JPEG2000 
standard. It allows different regions of an image to be coded with different 
fidelity criteria. These regions can have arbitrary shapes and be disjoint to 
each other. In Figure 17.4, we show an example of ROI coding. We com- 
pressed the ROI portion of the Zebra image losslessly and introduced losses 
in the non-ROI (background) part of the image. The reconstructed image af- 
ter decompression is shown in Figure 17.4(a). We indicate the ROI by a circle 
around the head of the Zebra in Figure 17.4(a). In Figure 17.4(b), we picto- 
rially show the difference between the original image and the reconstructed 
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Fig. 17.4 
original image and reconstructed image. 

(a) Reconstructed image with circular shape ROI; (b) difference between 

image after ROI coding and decoding. The values of difference of the original 
and the reconstructed pixels in the ROI region (i.e., inside the circle) are all 
zeros (black) and they are nonzero (white) in the non-ROI parts of the image. 
This shows the capability of the JPEG2000 standard in how we can compress 
different regions of an image with different degrees of fidelity. 

The ROI method defined in the JPEG2000 Part 1 standard is called the 
MAXSHIFT method [22]. The MAXSHIFT method is an extension of the 
scaling-based ROI coding method [23]. During ROI coding, a binary mask 
is generated in the wavelet domain for distinction of the ROI from the back- 
ground as shown in Figure 17.5(a). In the scaling-based ROI coding, the bits 
associated with the wavelet coefficients corresponding to an ROI (as indicated 
by the ROI mask) are scaled (shifted) to  higher bit-planes than the bits as- 
sociated with the non-ROI portion of the image. This is shown by a block 
diagram in Figure 17.5(b). During the encoding process, the most significant 
ROI bit-planes are encoded and transmitted progressively before encoding 
the bit-planes associated with the non-ROI background region. As a result, 
during the decoding process, the most significant bit-planes of ROI can be 
decoded before the background region progressively in order to produce high 
fidelity in the ROI portions of the image compared to  its background. In this 
method, the encoding can stop at any point and still the ROI portion of the 
reconstructed image will have higher quality than the non-ROI portion. In 
scaling-based ROI, the scaling parameter and the shape information needs to  
be transmitted along with the compressed bitstream. This is used in the Part 
2 extension of the standard. 

In JPEG2000 Part 1, the MAXSHIFT technique is applied instead of the 
more general scaling-based technique. The MAXSHIFT allows arbitrary- 
shaped regions to be encoded without requiring to  transmit the shape infor- 
mation along with the compressed bitstream. As a result, there is no need for 
shape coding or decoding in the MAXSHIFT technique. The basic principle of 



COMPRESSION 383 

(b) 

Fig. 17.5 (a) ROI mask; (b) scaling of ROI coefficients. 
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the MAXSHIFT method is to find the minimum value (V&) in the ROI and 
the maximum value in the background (both in wavelet transformed domain) 
and then scale (shift) the wavelet coefficients in ROI in such a manner that 
the smallest coefficient in the ROI is always greater than the largest coefficient 
in the background. Then the bit-planes are encoded in the order of the most 
significant bit (MSB) plane first to  the least significant bit (LSB) plane last. 
Figure 17.6 shows an example where the LSB plane of ROI is shifted above 
the MSB plane of the background region. During the decompression process, 
the wavelet coefficients that are larger than Vmin are identified as the ROI 
coefficients without requiring any shape information or the binary mask that 
was used during the encoding process. The ROI coefficients are now shifted 
down relative to Vmin in order to represent it with original bits of precision. 

MSB 

t 
background 

1 
LSB 

Fig. 17.6 MAXSHIFT. 

In JPEG2000, due to  the sign-magnitude representation of the quantized 
wavelet coefficients required in the bit-plane coding, there is an implementa- 
tion precision for number of bit-planes. Scaling the ROI coefficients up may 
cause an overflow problem when it goes beyond this implementation precision. 
Therefore, instead of shifting ROI up to higher bit-planes, the coefficients of 
background are downscaled by a specified value s ,  which is stored in the RGN 
marker segment in the bitstream header. The decoder can deduce the shape 
information based on this shift value s and magnitude of the coefficients. By 
choosing an appropriate value of s, we can decide how many bit-planes to  
truncate in the background in order to achieve overall bit-rate without sacri- 
ficing the visual quality of the ROI. 
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17.6.4 Rate Control 

Although the key encoding modules of JPEG2000 such as wavelet transfor- 
mation, quantization, and entropy coding (bit-plane coding and binary arith- 
metic coding) are clearly specified, some implementation issues are left up to 
the prerogative of the individual developers. Rate control is one such open 
issue in JPEG2000 standard. Rate control is a process by which the bit- 
rates (sometimes called coding rates) are allocated in each code-block in each 
subband in order to  achieve the overall target encoding bit-rate for the whole 
image while minimizing the distortion (errors) introduced in the reconstructed 
image due to quantization and truncation of codes to achieve the desired code 
rate [24]. It can also be treated in another way. Given the allowed distor- 
tion in the MSE (mean square energy) sense, the rate control can dictate the 
optimum encoding rate while achieving the maximum given MSE. 

The JPEG2000 encoder generates a number of independent bitstreams by 
encoding the code-blocks. Accordingly a rate-distortion optimization algo- 
rithm generates the truncation points for these bitstreams in an optimal way 
in order to minimize the distortion according to a target bit rate. After the 
image is completely compressed, the rate-distortion optimization algorithm is 
applied once at the end using all the rate and ratedistortion slope informa- 
tion of each coding unit. This is the so-called post-compression rate-distortion 
(PCRD) algorithm [24, 251. 

The bit-rate control is purely an encoder issue, and remains an open issue 
for the JPEG2000 standard. It is up to  the prerogative of the developers how 
they want to accomplish the rate-distortion optimization in a computationally 
efficient way without incurring too much computation and/or hardware cost. 

17.6.5 Entropy Encoding 

Physically the data are compressed by the entropy encoding of the quantized 
wavelet coefficients in each code-block in each subband. We have devoted a 
complete chapter (Chapter 18) to discussion of entropy encoding. Here we 
just summarize the entropy-encoding scheme at the top level for the sake of 
completeness of this chapter. The entropy coding and generation of com- 
pressed bitstream in JPEG2000 is divided into two coding steps: Tier-1 and 
Tier-2 coding. 

17.6.5.1 Tier-1 Coding In Tier-1 coding, the code-blocks are encoded inde- 
pendently. If the precision of the elements in the code-block is p ,  then the 
code-block is decomposed into p bit-planes and they are encoded from the 
most significant bit-plane to  the least significant bit-plane sequentially. Each 
bit-plane is first encoded by a fractional bit-plane coding (BPC) mechanism to 
generate intermediate data in the form of a context and a binary decision value 
for each bit position. In JPEG2000 the embedded block coding with optimized 
truncation (EBCOT) algorithm [25] has been adopted for the BPC. EBCOT 
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encodes each bit-plane in three coding passes, with a part of a bit-plane being 
coded in each coding pass without any overlapping with the other two coding 
passes. That is the reason why the BPC is also called fractional bit-plane 
coding. The three coding passes in the order in which they are performed 
on each bit-plane are significant propagation pass, magnitude refinement pass, 
and cleanup pass. The algorithm is very complex and we have devoted a com- 
plete chapter on this with a number of examples to aid the reader in better 
understanding of the algorithm. The details of these coding passes and the 
EBCOT algorithm are dealt with in Chapter 18. 

The binary decision values generated by the EBCOT are encoded using 
a variation of binary arithmetic coding (BAC) to generate compressed codes 
for each code-block. The variation of the binary arithmetic coder is a context 
adaptive BAC called the MQ-coder, which is the same coder used in the JBIG2 
standard to compress bi-level images [26]. The context information generated 
by EBCOT is used to  select the estimated probability value from a lookup 
table and this probability value is used by the MQ-coder to adjust the intervals 
and generate the compressed codes. JPEG2000 standard uses a predefined 
lookup table with 47 entries for only 19 possible different contexts for each 
bit type depending on the coding passes. This facilitates rapid probability 
adaptation in the MQ-coder and produces compact bitstreams. 

The working principles and detail flowchart (algorithm) for implementation 
of the MQ-coder are presented in Chapter 18. 

17.7 TIER-2 CODING A N D  B I T S T R E A M  FORMATION 

After the compressed bits for each code-block are generated by Tier-1 coding, 
the Tier-2 coding engine efficiently represents the layer and block summary 
information for each code-block. A layer consists of consecutive bit-plane 
coding passes from each code-block in a tile, including all the subbands of 
all the components in the tile. The block summary information consists of 
length of compressed code words of the code-block, the most significant mag- 
nitude bit-plane at which any sample in the code-block is nonzero, as well as 
the truncation point between the bitstream layers, among others. The de- 
coder receives this information in an encoded manner in the form of two tag 
trees. This encoding helps to represent this information in a very compact 
form without incurring too much overhead in the final compressed file. The 
encoding process is popularly known as Tag Tree coding. 

17.8 S U M M A R Y  

In this chapter, we have presented an overview of the JPEG2000 standard 
for image compression. We have discussed different salient features of the 
new JPEG2000 standard and how they influence vast applications areas. We 
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have introduced different parts of the standard. The core coding system in 
JPEG2000 has been defined in Part 1 of the standard. We have dealt in great 
length with the underlying principles and algorithms for the Part 1 core cod- 
ing system for JPEG2000 standard. The whole compression system can be 
divided into three phases-image preprocessing, compression, and compressed 
bitstream formation. In this chapter, we first discussed the concepts behind 
the preprocessing functionalities, including tiling of the input image, DC level 
shifting, and multicomponent transformation, before the actual compression 
takes place. We discussed the implementation issues of the discrete wavelet 
transform supported by the JPEG2000 Part 1 standard including the sym- 
metric extension at  the boundary of the signals both for lossless and lossy 
compression. Theoretical foundation of the discrete wavelet transform and 
its implementation issues were elaborated on earlier in Chapter 5. In lossy 
compression mode, a dead-zone scalar quantization technique is applied on 
the wavelet coefficients. The concept of region of interest coding allows one 
to  encode different regions of the input image with different fidelity. We saw 
that the region of interesting coding can be achieved in terms of simply scal- 
ing the wavelet coefficients, and demonstrated some examples. The entropy 
coding and the generation of compressed bitstream in JPEG2000 are divided 
into two coding steps: Tier-1 and Tier-2 coding. We introduced the Tier-1 
coding step in entropy encoding based on a fractional bit-plane coding scheme 
(EBCOT) and an adaptive binary arithmetic coding (MQ-coder) to  generate 
the compressed codes. The details of the algorithms for both the Tier-1 coding 
and the Tier-2 coding are presented in greater detail in Chapter 18. 
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18 
Coding Algorithms in 
JPEG2000 Standard 

18.1 INTRODUCTION 

As shown in Section 17.6, Figure 17.2(a), after the DWT and quantization, 
the encoding phase in JPEG2000 is divided into two steps-Tier-1 coding 
and Tier-2 coding. In Tier-1 coding, each code-block is entropy encoded 
independently. In Tier-2 coding, the information of the compressed codewords 
generated in the Tier-1 coding step are encoded using a Tag Tree coding 
mechanism, which will be discussed in great detail in this chapter. 

Entropy coding in JPEG2000 [l, 21 is combination of fractional bit-plane 
coding (BPC) [3] and binary arithmetic coding (BAC) [4], which is known as 
Tier-1 coding in JPEG2000. In this chapter, we will explain this new paradigm 
of fractional bit-plane coding technique. The implementation of the MQ-coder 
for binary arithmetic coding follows the same principle of QM-coder described 
in Chapter 15. 

18.2 PARTITIONING DATA FOR CODING 

During entropy encoding, each wavelet subband is further divided into a num- 
ber of code-blocks. At this stage all the elements in all the subbands are 
represented in sign and magnitude representation of integers instead of two’s 
complement. Dimension of the code-blocks is always a power of 2 with the 
minimum height and width being 4 and maximum height and width being 
1024. Further restriction in dimension of a code-block is that if height of a 
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code-block is 2" and width of the code-block 2Y, then x+ y is limited to  be less 
than or equal to  12. Typical choice of code-block size is 64 x 64 or 32 x 32. 
It has been found experimentally that the compression performance degrades 
when the code-block size is chosen below 16 x 16. It  should be noted that 
the profile-0 of JPEG2000 Part 1 amendments further restricts the code-block 
size to be either 32 x 32 or 64 x 64. 

During the coding phase, each code-block is decomposed into a number of 
bit-planes. If the precision of the subband is P bits, then each code-block 
in the subband is decomposed into P number of bit-planes. Bit-plane coding 
(BPC) is applied on each bit-plane of the code-blocks to generate intermediate 
data in the form of a context and a binary decision value. The intermediate 
data is input to  the binary arithmetic coding (BAC) step to generate the final 
compressed bitstream. 

18.3 TIER-1 CODING IN JPEG2000 

In JPEG2000, the Embedded Block Coding with Optimized Truncation (EBCOT)  
algorithm by David S. Taubman [l, 31 has been adapted to implement the 
BPC. This algorithm has been built to  exploit the symmetries and redun- 
dancies within and across the bit-planes so as to  minimize the statistics to 
be maintained and minimize the coded bitstream that BAC would generate. 
EBCOT encodes each bit-plane in three passes, with a part of the bit-plane 
being coded in each of these passes without any overlapping with the other 
two passes. That is the reason why this bit-plane coding is also called frac- 
tional bit-plane coding. The three passes in the order they are performed on 
each bit-plane are: 

1. Significance Propagation Pass (SPP): Bit positions that have a 
magnitude of 1 for the first time (i.e., the most significant bit of the 
corresponding sample coefficients) are coded in this pass. 

2. Magnitude Refinement Pass (MRP): Bit positions that have not 
been coded in SPP and that have had magnitude of 1 in previous bit- 
planes (i.e., the current bit is not the most significant bit of the corre- 
sponding sample coefficient) are coded in this pass. 

3. Cleanup pass (CUP): Bit positions that have not been coded in ei- 
ther of the two earlier passes are coded in this pass. This pass also 
incorporates a form of run-length coding to help in coding a string of 
zeros. 

18.3.1 Fractional Bit-Plane Coding 

In order to make it easy for readers to understand this complex algorithm, we 
first provide the definition of terms used to describe the algorithm, followed 
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by the explanation of four basic coding operations and three coding passes. 
Then we provide a simple example to illuminate the detailed process of the 
BPC coder. 

18.3.1.1 Definition of Terms 

0 Code-block (y): A code-block is a two-dimensional array that consists 
of integers (wavelet coefficients with or without quantization). Each 
code-block has width and height that specify its size. Each integer of 
the code-block can be either positive, zero, or negative. Each of the 
elements of a code-block are associated with 0, (T', and 7 to indicate 
their coded states (see (T, d, and 7 for detailed descriptions). 

0 Sign ar ray  ( x ) :  x is a two-dimensional array representing the signs of 
the elements of a code-block. It has the exact same dimensions as the 
code-block. Each element x[m, n] represents the sign information of the 
corresponding element y[m, n] in the code-block as follows. 

1 if y[m,n] < 0 
xIn1,nl = { 0 otherwise 

When referenced to  x[m,n] during encoding or decoding, m or n may 
be out of range of a code-block, such as m = -1. This will happen 
when we are working on the boundary of the code-block. In those cases, 
x[m, n] is always set to  equal zero. 

0 Magni tude  a r r ay  (w): 'u is a two-dimensional array of unsigned in- 
tegers. Dimension of this array is exactly the same as the dimension 
of the code-block. Each element of w represents the absolute value of 
the integer at the corresponding location in the code-block, that is, 
w[m, n] = ly[m, n] 1 ,  where y[m, n] is the integer element at spatial loca- 
tion (m,n)  in the code-block. The notation wP[m,n] is used to denote 
the P t h  bit of v[m, n]. 

Bit-plane: The magnitude array u can be conceptually viewed as a 
three-dimensional array, with the bit sequence of the integers in the 
third dimension. Each particular order of bits of every element of w 
constitutes a single bit-plane. We can also view w as a one-dimensional 
array consisting of a number of bit-planes. 

Example: Consider (2, 0) denotes a 2 x 1 array w with only two 
elements. The two bit-planes for this array will be (1, 0) and (0, 0). 

We say one bit-plane is more significant than the other if its bits are more 
significant than those of the other. Not all bit-planes of 'u are going to be 
coded because a bit sequence may have as many leading zeros as possible 
for a particular nonnegative value. We code only the most significant 
bit-plane containing at least one 1 and all the other subsequent less 
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I 
I 

significant bit-planes, regardless of whether they have 1 or not. In other 
words, a bit-plane that entirely consists of 0 is ignored unless there is a 
higher significant bit-plane that contains at least one 1. We call those 
uncoded bit-planes “leading-zero bit-planes.” A nonnegative integer P 
is frequently used to  refer to a bit-plane to be coded. We use vp[m,n] 
to represent the bit at spatial location (m,n) of the bit-plane P of the 
code-block. 
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f ig. 18.1 
mode. 

Scan pattern with a 5 x 10 code-block: (a) regular mode: (b) vertical causal 

Scan pattern: Scan pattern defines the order of encoding or decoding 
the bit-planes of a code-block. The scan pattern of a code-block can be 
conceptually divided into sections (or stripes), each with four consecu- 
tive rows starting from the first row of a code-block. If the total number 
of rows of a code-block is not a multiple of 4, all the sections will have 
four consecutive rows except the very last section. The scan starts from 
the first section and down to the last section until all elements of a code- 
block are encoded or decoded. Each section is scanned from the first 
row of the first column. The next location to be scanned will be the next 
row on the same column. After a column in the section is completely 
coded, start scanning at the first row of the next column in the same 
section. Continue the coding process until all columns in a section are 



TIER-1 CODING IN JPEG2000 395 

coded. This same process is then applied to  the next adjacent section 
until all of them are coded. An example of scan pattern for a 5 x 10 
code-block is shown in Figure 18.1. Figure 18.l(a) shows the regular 
mode of the scan pattern. The JPEG2000 Part 1 also specified another 
scanning mode, vertical causal mode. In vertical causal mode, every 
section (sometimes referred to as stripe), that is, 4 rows by N columns, 
will be considered as a standalone module. In other words, under the 
vertical causal mode, all the information of neighbors from the same 
code-block but different sections will not be used in the current section. 
Figure 18.l(b) shows the vertical causal mode for the same example 
shown in Figure 18.1(a). 

0 State variables a, a’ and 7: Three two-dimensional “binary” arrays, 
a, a’, and 7 ,  are created to  indicate the coding states of each element in 
the code-block during the coding process. These arrays have the exact 
the same dimension as the code-block. Initially, each of the elements of 
these arrays are set to  0 (i.e., a[m,  n] = 0 ,  ~ ‘ [ m ,  n] = 0 ,  and ~ [ m ,  n] = 0, 
for all m and n). Once the coding process starts, the values of the two 
variables a[m, n] and ~ ’ [ m ,  n] may change to 1 depending on certain 
conditions, but are never changed back to 0 until the entire code-block 
is encoded. On the other hand, the values of ~ [ m ,  7x1 are reset to  0 right 
after completion of coding of each bit-plane. Interpretations of these 
three variables are as follows: 

1. When a[m, n] = 1, it indicates that the first nonzero bit of u[m, n] 
at row m and column n has been coded; otherwise it is equal to 0. 
When referenced to  a[m,n] during encoding or decoding, m or n 
may be out of range or have an invalid value, such as m = -1. In 
this case, a[m, n] is equal to  0. 

2. When u’[m, n] = 1, i t  indicates that a magnitude refinement coding 
operation (defined in the next section) has been applied to  v[m, n]; 
otherwise, it is equal to zero. 

3. When ~ [ r n , n ]  = 1, it indicates that zero coding operation (defined 
in the next section) has been applied to  up[m, n] in the significant 
propagation pass; otherwise, it is equal to  0. 

0 Preferred neighborhood: An element y[m, n] in the code-block is said 
to be in a preferred neighborhood if at least one of its eight adjacent 
neighbors has a value equal to  1. 

0 Zero coding tables: There are three zero coding tables for the purpose 
of zero coding operations as shown in Tables 18.1-18.3. The context 
information generated in zero coding operation is based on the values 
of the significance states (a) of the eight neighbors of the element being 
encoded. In Figure 18.2, we show the eight neighbors of an element 
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(say X) used in these tables to form the “context.” For example, X is 
an element in the LL subband, and the two horizonal neighbors have 
significance state value of 1 (i.e., H = 2) .  The context value 8 will 
be used as shown in Table 18.1. 

Fig. 18.2 Neighborhood for zero cod27~g context generation 

Table 18.1 Zero Coding context table for code-blocks from LL and LH subbands 

LL and LH Subbands Context Label 

2 1  

Note: “x” in the table denotes “do not care.” 

Table 18.2 Zero coding context table for code-blocks from HL subbands 

I I 

0 1  0 j 2 2 1  2 
0 1  0 1  1 

18.3.1.2 Coding Operations There are four possible coding operations used 
in EBCOT to generate the values of context (CX) and decision ( D )  as in- 
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0 
2 2  
1 
0 

Table 18.3 Zero coding context table for code-blocks from HH subbands 

1 3 
0 2 
0 1 
0 0 

I HH Subbands I Context Label I 

termediate data before the BAC. CX is a nonnegative integer while D is a 
binary value, 0 or 1. There are 19 different context values (0-18) used in these 
four coding operations. The index of the current bit-plane is assumed to  be 
P. Exactly when or where these operations are applied is subject to current 
coding pass, the location of the current element, and the status of the state 
variables. 

0 Zero coding (ZC): For zero coding operation, the decision bit D is 
equal to u p  [m, n] and CX is selected from one of the three “zero coding 
context tables” related to  the relevant subband (LH, HL or HH) the 
code-block belongs to. There are nine entries in each context table. 
They are derived using the values of the significance states of the eight 
surrounding neighbors of the current coefficient bit, up[m, n]. As shown 
in the tables, each entry depends on how many and which neighbors of 
up[m, n] are significant. 

0 Sign coding (SC): The D and CX for the sign coding are determined 
by a horizontal reference value H and a vertical reference value V .  Sup- 
pose that the current scan location is (m, n); the values of H and V are 
obtained by the following equations. 

H=min[l .max(- l .u[m.n-11 x ( 1 - 2 ~ [ m , n - l ] ) + u [ m , n + l ]  x (1 -2x[m.n+1] ) ) ]  

I ’ = m i n [ l , m a x ( - l , u [ m - 1 . n ]  x ( 1 - 2 ~ [ m - l , n ] ) + o [ m + l , n ]  x (1 -2x[m+1 ,n ] ) ) ]  

The reference values of H and V indicate three possible situations as 
follows: 

1. 0 indicates that both neighbors are insignificant, or both neighbors 
are significant but have opposite signs. 

2. 1 indicates that one or both neighbors are significant with positive 
sign. 
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3. -1 indicates that  one or both neighbors are significant with nega- 
tive sign. 

The neighbors mean the two adjacent horizontal locations of the current 
scan location for H and the two vertical locations of the current scan 
location for V. Significant at a location means the value of the state 
variable D at that  location is 1 while insignificant means the value of D 

is 0. 

As shown in Table 18.4, H and V are used together to determine the 
context (CX) and a binary value 2, which in terms is used to calculate 
the value of D as D = @ x[m, n],  where @ represents an Exclusive-OR 
operation. 

Table 18.4 Reference Table for Sign Coding mi 
1 -1 0 11 
0 1 0  10 

-1 
-1 12 

0 Magnitude refinement coding (MRC): For magnitude refinement 
coding, D a t  position (m, n)  in the P t h  bit-plane is simply equal to the 
bit value uP[m,n].  The value of CX is determined by a’[m,n] and the 
sum of its eight adjacent values of the state variable D is as follows: 

- If D’ = 1 at the current position, which indicates that  it is not the 
first magnitude refinement for this element, then CX = 16. 

- When D’ = 0 at  the current position and the sum of the values of 
D of its eight adjacent neighbors is also 0, then CX = 14. 

- When d = 0 at the current position and the sum of the values of 
D of its eight adjacent neighbors is greater than 0, then CX = 15. 

In Table 18.5, we summarize the logic for generation of the context 
values (CX) as described above. 

0 Run-length coding (RLC): Unlike the other three coding operations, 
run-length coding may code from one to  four consecutive bits in the 
current scan pattern stripe. Exactly how many bits are encoded depends 
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a”m,n] 

1 

Table 18.5 Reference Table for Magnitude Refinement Coding 

u[m - 1,n] + a [ m + l , n ]  + 
a [ m -  1 , n -  I] + a[m-  l , n +  11 + cx 
a [ m + l , n - l ]  + a [ m + l , n + l ]  

X 16 
0 2 1  
0 0 

15 
14 

on where the first 1 bit (if any) is located in the four consecutive bits. If 
all of them are O’s, then all four bits are coded. If one (or more) of these 
four bits is 1, then the first 1 in the scan pattern and any preceding 0’s in 
between the current scan location are coded. For example, suppose that 
0101 are four consecutive bits along the scan pattern of a bit-plane. If 
the current location is a t  the first 0 and we are going to apply run-length 
coding, then the first two bits, 01, are coded and the next location will 
be at the second 0. 

A run-length coding operation may generate either one D or three D’s, 
depending on whether the four consecutive bits are all 0’s or not. The 
first D is equal to  0 if all four bits are equal to 0; otherwise it is equal 
to 1. For both cases, CX is equal to  a unique run-length context value 
17. In other words, a (CX, D )  pair with values (17, 0) indicates four 
consecutive 0 bits, and a (CX, D) pair with values (17, 1) means there 
is at least one 1 bit in the current scan pattern stripe. 

In the case that a t  least one of the four bits in the current scan pattern 
is 1, two more D’s are used with a “UNIFORM” context value 18 to 
indicate the location of the first 1 bit in the 4-bit scan pattern. Since 
height of the scan pattern is four, a zero-based index with two bits is 
sufficient to indicate the location of the first 1 bit from the top. The 
first and the second D’s with a UNIFORM context represent the most 
significant and the least significant bits of these two bits representing 
the distance. 

Continuing with the example for coding 01, the values of the first and 
the second D’s are 0 and 1, respectively. The corresponding (CX, D )  
pairs will be (18, 0) and (18, 1). 

Table 18.6 shows the summary of all 19 different contexts used in the four 
different coding operations, and their corresponding initial index values for 
the probability estimation lookup table used in BAC (discussed in the next 
section). 

18.3.1.3 Coding passes There are three coding passes-significance propaga- 
tion pass (SPP), magnitude refinement pass (MRP), and cleanup pass (CUP). 
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Table 18.6 Nineteen different contexts and their initial index for BAC proba.bility 
estimation lookup table 

Operation 

Zero Coding 

Sign Coding 

Context Initial index 
cx I(CX) 
0 4 
1 0 
2 0 
3 0 
4 0 
5 0 
6 0 
7 0 
8 0 
9 0 
10 0 
1 1  0 
12 0 
13 0 

Magnitude Refinement Coding 

Run-Length Coding 
UNIFORM 

Three different coding passes are applied to each bit-plane of a code-block ex- 
cept the first bit-plane (the most significant bit-plane), which is applied only 
with the cleanup pass. Even if we do apply the SPP and MRP to the most 
significant bit-plane, due to the initial condition there will be no bits coded 
in those two passes. After each coding pass completes a run of scan pattern 
in the current bit-plane, the next coding pass restarts the scan pattern from 
the beginning. The first bit-plane is only encoded by the cleanup pass. The 
remaining bit-planes are coded in the order of significance propagation pass, 
magnitude refinement pass, and cleanup pass. They are described below. 

14 0 
15 0 
16 0 
17 3 
18 46 

0 Cleanup pass (CUP): CUP applies to every bit-plane of a code-block 
after completion of MRP, except the first bit-plane, which does not need 
the MRP. 

In each position (m,n)  follow in the scan pattern, CUP first checks 
where a[m, n] and ~ [ m ,  n] are both 0’s. If any one of them is not 0, then 
proceed to  the next bit position in the bit-plane. If they are both O’s, 
then check whether to apply run-length coding (RLC) or zero coding 
(ZC), but not both. RLC is applied when all of the following three 
conditions are true: 
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1. m is a multiple of four, including rn = 0. 

2. a = 0 for the four consecutive locations on the same column, start- 

3. a = 0 for all the adjacent neighbors of the four consecutive bits in 

ing from current scan position. 

the column. 

If any one of the above conditions is false, then zero coding (ZC) is ap- 
plied to  the current location. Depending on whether run-length coding 
or zero coding is applied in the current location, the number of bits 
coded may vary. The next bit to be coded is the bit after the last coded 
bit. Note that run-length coding should not be applied to the last sec- 
tion with fewer than four rows in a scan pattern because there would 
not be four consecutive bits available in the same column. 

After completion of the run-length coding or zero coding, we need to 
check whether we need to apply sign coding (SC) before we move on to  
code the next bit. Suppose the last coded position is ( z , j ) .  If up[z , j ]  = 
1, which indicates this bit is the most significant bit of the current 
sample, the cleanup pass applies sign coding and assigns cr value of the 
last coded location to be 1 (i.e., a[ i , j ]  = 1) right after run-length or 
zero coding is done. Otherwise, no sign coding is needed. 

Continue coding the bits along the scan pattern until all of the bits of 
the bit-plane are coded. After completion of the cleanup pass for a bit- 
plane, reset q[m,n] = 0 for all rn and n in the bit-plane before moving 
into the next bit-plane. Figure 18.3 shows the flowchart of the cleanup 
pass we just described. 

0 Significance propagat ion  pass (SPP): This is the first pass applied 
to every bit-plane of a code-block, except the first bit-plane. Significance 
propagation pass first applies zero coding if the current scan position 
(m,n)  is in a preferred neighborhood and a[rn,n] = 0. If zero coding 
cannot be applied, then proceed to the next bit position. If the zero 
coding is applied, ~ [ m ,  n] is set to 1. After zero coding is completed, we 
need to  check whether sign coding is needed at the current bit position 
(m, n) .  If uP[m, n] = 1, then sign coding is applied and we set a[m, n] = 

1. 

Continue coding the bits along the scan pattern until all of the bits of the 
bit-plane are coded. Figure 18.4 shows the flowchart of the significance 
propagation pass. 

0 Magni tude  ref inement  pass (MRP): This is the second pass applied 
to every bit-plane of a code-block, except the first bit-plane, which does 
not need magnitude refinement pass. 

If the state variables a[m, n] = 1 and ~ [ r n ,  n] = 0, then we apply magni- 
tude refinement coding (h4RC) to  the current scan position (rn, n) and 
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( seta[ i ]~]  = 1)  

Next bit 
(based on fixed scan pattern) 

end of bit plane? 

Fig. 18.3 Flowchart of cleanup pass. 
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SPP( ) 

@ row m, column n 

Sign Coding 
(seto[m][n] = 1) 

-I- 

Next bit 
(based on fixed scan pattern) 

end of bit plane? 

Fig. 18.4 Flowchart of significance propagation pass. 
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for current location 
@ row m, column n 

c 

Coding 

/ \ N o I  Next hit 

/ 1 (based on fixed scan oattern) 1 

fig. 18.5 Flowchart of magnitude refirieriient pass. 

set d[rn,n] = 1. Continue coding the bits along the scan pattern until 
all of the bits of the bit-plane are coded. Figure 18.5 shows the flowchart 
of the magnitude refinement pass. 

0 Selective binary arithmetic coding-bypass mode: Instead of ap- 
plying the binary arithmetic coding (hlQ-coder) on symbols (the con- 
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-4 

texts and decision bits) generated during all three coding passes, the 
bypass mode allows bypassing MQ-coder for the SPP and MRP after 
the four most significant bit-planes are coded. In other words, only 
those symbols generated in the CUP will be coded with the MQ-coder, 
and raw decision bits and sign bits will be coded during the SPP and 
MRP, if the bypass mode is selected. 

3 0 0 5  
- 3 7 2 1  

-1 -2 3 
0 6 0 2  

18.3.1.4 JPEG2000 Bit-Plane Coding: Encoder and Decoder Algorithms As 
we discussed earlier, the quantized wavelet coefficients in each subband are 
converted into sign-magnitude represented before the entropy encoding starts. 
For each input code-block, we can first initialize the two-dimensional arrays 
w and x, where the value of w[m,n] is the magnitude and x[m,n] is the sign 
information of the element at position (m, n )  in the code-block. The number 
of bit-planes in the code-block to  be encoded ( P )  is determined by searching 
the largest value in array w. Initially, all elements in two-dimensional arrays 
o, o’, and 77 are set to  0’s. 

The first bit-plane to  be coded is the most significant bit-plane. As men- 
tioned at the definition of bit-plane, the leading-zero bit-planes consisting 
entirely of zeros are ignored. A more (higher) significant bit-plane is always 
coded before coding a less (lower) significant bit-plane. If P = 0, we don’t 
need to do any coding and the output is empty. If P 2 1, then we apply the 
cleanup pass only to  the first bit-plane. For the remaining bit-planes, we first 
apply the significance propagation pass, then the magnitude refinement pass, 
and then the cleanup pass. Figure 18.6 shows the top-level flowchart of the 
fractional bit-plane coder. 

The procedure of the decoder is essentially the same as for the encoder. For 
the sake of completeness, we also show the encoding and decoding procedures 
via the flowcharts as shown in Figures 18.7 and 18.8 respectively for P 2 1. 

18.3.2 Examples of BPC Encoder 

In this section we present an example detailing all the operations step by step 
and the output generated by encoding a 4 x 4 code-block. 

Input of the encoder: An input 4 x 4 code-block is shown below: 

The magnitude array (w) is shown below: 
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0 0 0 0  
1 0 0 0  
1 1 1 0  
0 0 0 0  

start J 

i 
initial all 
d It 1=0 
a" I[ 1=0 
rl I I1 l=O 

P = # of bit planes - 1 

I 

call procedure CUP0 

p == O? 

reset all q[ I[ ]=0 
P = P - 1  

1 I start at beginning 
of bit-dane P 

1 
call procedure SPPO 

i 

start at beginning 
of bit-plane P 

1 
call procedure MRPO 

f ig. 18.6 Top-level flowchart of fractional bit-plane coder for P > 0. 

0 The sign array (x) is shown below: 

0 The three bit-planes are shown below as bit-planes of the magnitude 
array v2, vl, and vo respectively: 
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Fig. 18.7 Flowchart of fractional bit-plane encoder for P > 0 
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Fig. 18.8 Flowchart of fractional bit-plane decoder for P > 0. 
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0 0 0 1  
0 1 0 0  
1 0 0 0  
0 1 0 0  

; ; ! G :  m, 
0 0 1 1  
0 1 0 1  0 0 0 0  

0 The coding sequence for the code-block and the output (CX, D )  gener- 
ated are shown here. We show the sequence of coding operations (ZC, 
RLC, SC, or MRC) at  bit position ( T O W ,  column) for the bit-plane P. 
The resulting CX and D are shown after each colon in each step. For 
example, the first operation in the sequence below indicates a run-length 
coding (RLC) applied in CUP a t  position (0, 0) in the first bit-plane. 
The output are CX = 17 and D = 1. The (CX, D )  pair with (17, 1) 
indicates there is a 1 bit in the current four rows of scanned samples. 
Therefore, two pairs of (CX, D )  are generated with values (18, 1) and 
(18, 0). The two decision bits indicate that  the first 1 bit is a t  the zero- 
based location ( 1 0 ) ~  = 2 as shown in first column of w2. A sign coding 
(SC) is followed after the RLC, and since all the state variables have ini- 
tial value zeros, a context 9 and 2 = 0 are selected from Table 18.4. The 
decision bit D = x(0,O) @ = 1 @ 0 = 1 is generated as shown in step 
4 of CUP for bit-plane 2 below. After each pass, the temporal contents 
of the state variables 0, q,  and 0’ in the current bit-plane are also listed. 

CUP for Bit-Plane 2 

1. RLC for (0, 0): CX=17, D=l 

2. RLC for (2, 0): 18, 1 

3 .  RLC for (2,  0): 18, 0 

4. SC for (2, 0): 9, 1 

5. ZC for ( 3 ,  0): 3, 0 

6. ZC for (0, 1): 0, 0 

7. ZC for (1, 1): 1, 1 

8. SC for (1, 1): 9, 0 

9. ZC for (2, 1): 7, 0 

10. ZC for ( 3 ,  1): 1, 1 

11. SC for (3, 1): 9, 0 

12. ZC for (0, 2): 1, 0 

13. ZC for (1, 2): 5, 0 

14. ZC for (2, 2): 2, 0 
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0 0 0 0  
0 1 0 0  0 1 0 0  0 0 0 0  

1 0 0 0  0 0 0 0  
0 1 0 0  0 1 0 0  0 0 0 0  

15. ZC for (3, 2 ) :  5, 0 

16. RLC for (0, 3): 17, 1 

17. RLC for (0, 3): 18, 0 

18. RLC for (0, 3): 18, 0 

19. SC for (0, 3): 9, 0 

20. ZC for (1, 3): 3, 0 

21. ZC for (2, 3): 0, 0 

22. ZC for (3, 3): 0, 0 

0 0 0 0  
0 0 0 0  
0 0 0 0  
0 0 0 0  

212 u 77 u' 

SPP for Bit-Plane 1 

23. ZC for (0, 0): CX=1, D = 1 

24. SC for (0, 0): 9, 0 

25. ZC for (1, 0): 7, 1 

26. SC for (1, 0): 12, 1 

27. ZC for (3, 0): 7, 0 

28. ZC for (0, 1): 7, 0 

29. ZC for (2, 1): 7, 0 

30. ZC for (0, 2): 6, 0 

31. ZC for (1, 2): 6, 1 

32. SC for (1, 2): 12, 0 

33. ZC for (2, 2 ) :  3, 1 

34. SC for (2, 2): 10, 1 

35. ZC for (3, 2): 7 ,  0 

36. ZC for (1, 3): 7, 0 

37. ZC for (2, 3): 6, 1 

38. SC for (2, 3): 12, 1 

39. ZC for (3, 3): 3, 1 

40. SC for (3, 3): 10, 0 
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1 1 1 0  

0 1 1 1  ml m, -: 1 ;  :~ 0 1 0 1  0 1 0 1  

u1 U 77 U' 

0 0 0 0  

0 0 0 0  
0 0 0 0  m, 

1 0 0 1  
1 1 1 0  
1 0 1 1  
0 1 0 1  

MRP for Bit-Plane 1 

1 0 0 0  
1 1 1 0  
0 0 1 1  
0 1 0 1  

41. MRC for (2, 0): CX=15, D=O 

42. MRC for (1, 1): 15, 1 

43. MRC for (3, 1): 14, 1 

44. MRC for (0, 3): 14, 0 

1 0 0 0  1 0 0 1  
1 1 1 0  
1 0 1 1  

0 1 0 1  0 1 0 1  
pJ 

u1 U 77 U' 

1 1 1 0  0 0 0 1  
1 0 1 1  0 1 0 0  
0 1 1 1  
1 0 1 1  0 1 0 0  

CUP for Bit-Plane 1 

(Note: This pass does not generate any CX or D.) 

SPP for Bit-Plane 0 

45. ZC for (3, 0): CX=7, D= 0 

46. ZC for (0, 1): 7, 0 

47. ZC for (2, 1): 8, 1 

48. SC for (2, 1): 11, 0 

49. ZC for (0, 2): 7, 0 

50. ZC for (3, 2 ) :  8, 0 
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1 0 0 1 .  
1 1 0 1  
0 1 0 1  
0 0 0 0  

51. ZC for (1, 3 ) :  7, 1 

52. SC for (1, 3 ) :  13, 0 

1 1 1 1  0 0 0 1  1 1 1 0  
1 1 1 1  0 1 0 0  1 0 1 1  
0 1 0 1  1 0 1 0  0 1 0 1  

VO CJ rl of 

1 0 0 1  
1 1 1 1  
1 1 1 1  
0 1 0 1  

0 1 1 0  0 0 0 1  

0 1 0 1  1 1 1 1  0 1 0 0  1 0 0 0  
0 0 0 0  0 1 0 1  1 0 1 0  0 1 0 0  

mi ml mi 
MRP for Bit-Plane 0 

53. MRC for (0, 0): CX=15, D= 1 

54. MRC for (1, 0): 15, 1 

55. MRC for (2, 0): 16, 0 

56. MRC for ( I ,  1): 16, 1 

57. MRC for (3, 1): 16, 0 

58. MRC for (1, 2): 15, 0 

59. MRC for (2, 2): 15, 0 

60. MRC for (0, 3): 16, 1 

61. MRC for (2, 3 ) :  15, 1 

62. MRC for (3, 3): 15, 0 

WO cr 77 d 

CUP for Bit-Plane 0 

(Note: This pass does not generate any CX or D.) 

B 0 0 0 0  rn 0 1 0 1  
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18.3.3 Binary Arithmetic Coding-MQ-Coder 

As explained in the previous section, the fractional bit-plane coding (EBCOT) 
produces a sequence of symbols, pairs of context and decision (CX, D), in each 
coding pass. The context-based adaptive binary arithmetic MQ-coder that is 
used in JBIG2 [5] is adapted in JPEG2000 standard to encode these symbols. 
The probability values (Qe) and probability estimation/mapping process are 
provided by the standard as a lookup table with four fields (or four functions), 
which is defined in Table 18.7. We discussed the principles of arithmetic cod- 
ing, binary arithmetic coding (BAC), and the implementation procedure of 
an adaptive version of BAC (the QM-coder, used in JPEG) in Chapter 15. 
In JPEG2000, the binary arithmetic coder is called the MQ-coder, which is a 
variation of the QM-coder. Here we present the implementation procedures of 
the MQ-coder based on the informative materials provided by the standard. 
Besides the probability table, the Qe-table (Table 18.7), we need two more 
lookup tables, I(CX) and MPS(CX). This is because there could be 19 differ- 
ent contexts generated by the bit-plane coder, and we need to keep track of 
the state and the index of the Qe-table for each context. The I(CX) is used 
to  keep track of the index of the Qe-table and the initial values are provided 
by the standard (as shown in Table 18.6). The A4PS(CX) specifies the sense 
(0 or 1) of the more probable symbol of context CX, and all MPS(CX) are 
initialized with value zero. Table 18.7 can be viewed as four lookup tables, 
Qe(I(CX)), NMPS(I(CX)), NLPS(I(CX)) , and SWITCH(I( CX)) respectively. 
The I(CX) is the current index for the context CX. The Qe(I(CX)) provides 
the probability value, NMPS(I(CX))/NLPS(I(CX)) indicates the next index 
for a MPS/LPS renormalization, and SWITCH(I(CX)) is a flag used to  indi- 
cate whether a change of the sense of MPS(CX) is needed. The same tables 
and initial values will be used in both encoder and decoder. We will see 
more details on how these variables are used in the following implementation 
subsections. 

18.4 TIER-2 CODING IN JPEG2000 

In the JPEG2000 standard [1, 21, the Tier-2 coding engine is responsible for 
efficiently representing layer and block summary information for each code- 
block, including: 

0 The bitstream layers to which the code-block contributes the compressed 
codewords; this is also known as the Ynclusion information.” 

0 The length of these codewords. 

0 The most significant magnitude bit-plane at which any sample in the 
code-block is nonzero, also known as the zero bit-planes information. 
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Table 18.7 BAC Qe-value and probability estimation lookup table 

Index 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 

Qe NMPS NLPS SWITCH 
Ox5601 
0x3401 
0x1801 
OxOACl 
0x0521 
0x0221 
0x5601 
0x5401 
0x4801 
0x3801 
0x3001 
0x2401 
OXlCOl 
Ox1601 
0x5601 
0x5401 
0x5101 
Ox4801 
0x3801 
0x3401 
0x3001 
0x2801 
0x2401 
0x2201 
OXlCOl 
0x1801 
0x1601 
0x1401 
0x1201 
O X l l O l  
OxOAC 1 
oxo9c1 
Ox08A1 
0x0521 
0x0441 
Ox02A1 
0x0221 
0x0141 
O X O l l l  
0x0085 
Ox0049 
0x0025 
Ox00 1 5 
0x0009 
0x0005 
0x000 1 
0x5601 

1 
2 
3 
4 
5 
38 
7 
8 
9 
10 
11 
12 
13 
29 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
45 
46 

1 
6 
9 
12 
29 
33 
6 
14 
14 
14 
17 
18 
20 
21 
14 
14 
15 
16 
17 
18 
19 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
46 

1 
0 
0 
0 
0 
0 
1 
0 
0 
0 
0 
0 
0 
0 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
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The truncation points between the bitstream layers, that is, the number 
of coding passes information. 

This information is known to the encoder. The decoder receives this in- 
formation in an encoded format, which combines two Tag Trees (one for the 
inclusion information and the other for the zero bit-planes information) in the 
encoding procedure. 

Tag Tree is a particular type of quad-tree data structure, which provides 
the framework for efficiently representing information in the Tier-2 coding 
engine of JPEG2000. Size of the header included in the compressed file in the 
JPEG2000 standard is much larger than in the JPEG standard and contains 
lots of important information. The Tag Tree coding mechanism helps in rep- 
resenting the layer and block summary information for each code-block to be 
included in the header of the compressed file. In this section, we first discuss 
the basic Tag Tree compression technique. Then we discuss the bitstream for- 
mation methodology and how the Tag Trees are integrated in Tier-2 coding 
in detail. 

18.4.1 Bitstream Formation 

Before we discuss how Tag Tree encoding can be used to encode the packet 
header information, we need to explain some terminology about bitstream 
formation and the progression order defined in JPEG2000. 

18.4.1.1 Definition of Terms 

Packet: Compressed data representing a component, specific tile, layer, res- 
olution level, and precinct. 

Layer: The coded data (bitstream) of each code-block is distributed across 
one or more layers in the code-stream. Each layer consists of some 
number of consecutive bit-plane coding passes from each code-block in 
the tile, including all subbands of all components for that tile. 

Resolution: Partition of DWT subbands in one tile. 

There are ( N L  +1) resolutions for N L  levels DWT decomposition. 
r = 0 : LL(NL) subband only 
r = 1 : HL(NL), LH(NL), HH(NL) 

r = N L  : H L l , L H l , H H I  

Precinct: Partition in each resolution (formed in DWT domain). Power of 2 
in size (line up with code-block size boundary). Don’t cause block (tile) 
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artifacts. Figure 18.9 shows an example for a precinct from a two-level 
DWT with three resolutions. 

r = O  r = l  r = 2  

8 i 1 6 ; 7 ‘ :  , :  I I I I I i l l 0 l l l l i  1 7 
I .  

............ ............ 

Fig. 18.9 A precinct from a two-level DWT with three resolutions. 

Component: A color image may have several components from a specified 
color space. A component is a two-dimensional array of samples from 
an image. 

18.4.1.2 Progression Order The standard allows five different progression 
orders, which are specified in the coding style default (COD) markers unless 
otherwise overridden by the progression order default (POD) marker. Five 
different possible progression orders defined by the standard are listed below. 

1. Layer-resolution-component-position progressive 

2. Resolution-layer-component-position progressive 

3. Resolution-position-component-layer progressive 

4. Position-component-resolution-layer progressive 

5. Component-position-resolution-layer progressive 

The standard has the layer-resolution-component-position progressive or- 
der as the default order. 

Figure 18.10(a) shows an example of a single-component image applied 
with two-level DWT decomposition and partitioned into 16 code-blocks. For 
the sake of discussion and simplicity, as shown in Figure 18.10(b), we as- 
sume all code-blocks (CB1-CB16) have four bit-planes (BP4 denotes the MSB 
plane); the letters S, M, and C stand for the bitstream generated during 
significance propagation pass, magnitude refinement pass, and cleanup pass, 
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2LH 

(CB3) 

(CB9) j (CB10) 

(CB11) \ (CB12) 

(CB5) (CB6) 

(CB7) j (CBS) 

I 

(CB13) j (CB14) 

(CB15) j (CB16) 

(bitstream with highest resolution & target file size) 

\ (progressive in terms of quality) 

Fig. 18.10 (a) A two-level DWT with 16 code-blocks, (b) bitstream formations. (Note: 
The letters S, M, and C in (b) stand for t,he bitstream generated during significance 
propagation pass, magnitude refinement pass, and cleanup pass, respectively.) 
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respectively. Conceptually, the bottom-nested dash-line boxes stand for pro- 
gressive in terms of resolution where the bitstreams generated from the lowest- 
resolution code-block (CB1) were sent out first, followed by the bitstreams 
generated from resolution 1 (CB2, CB3, and CB4), and then the bitstreams 
generated from resolution 2 (CB5-CB16). The progressive in terms of quality 
can be done by first sending out all the bitstreams generated from all the 
code-blocks for the MSB plane (BP4), followed by the bitstreams generated 
from all the code-blocks for the next bit-plane (BP2), and so on (as shown in 
Figure 18.10(b) with nested solid-line boxes). On the other hand, in order t o  
meet a certain bandwidth or target file size with the highest resolution, we 
can even send out the bitstreams that are corresponding to  the shading area 
as shown in Figure 18.10(b). 

18.4.2 Packet Header Information Coding 

All the compressed bitstreams from a specific tile, layer, resolution, compo- 
nent, and precinct are stored in a contiguous segment called a packet. The 
packet header information appears in the bitstream immediately preceding the 
packet data, unless one of the PPM (main packed packet header marker) or 
PPT (tile-part packed packet header) marker segments has been used. Both 
the packet header information and packet data  are constructed based on the 
order of contribution from the LL, HL, LH, and HH subbands. The packet 
header contains the following information: 

Zero-length packet, which is encoded using one bit; the value 0 de- 
notes a zero-length packet, and the value 1 indicates a nonzero-length 
packet. 

0 Inclusion information, which is encoded with a separate Tag Tree. 
The value in this Tag Tree is the number of the layer (a zero-based 
index) in which the code-block is first included. 

0 Number of (leading) zero bit-planes, which is used to  identify the ac- 
tual number of bit-planes for coefficients from the code-block. A second 
Tag Tree is used to  encode this information. 

0 Number of coding passes for each code-block in this packet. This 
number is encoded using the codewords shown in Table 18.8. 

0 Length (in bytes) of the bitstream from a given code-block, which is 
encoded either in a single-codeword segment or a multiple-codeword 
segment. This is the case when a termination occurs between coding 
passes that are included in the packet. 

The codewords (as shown in Table 18.8) for the number of coding passes 
for each code-block are variable-length codes. The number 37 through 164 
has a 9-bit 1111 11111 as prefix followed by 7 bits as the offset from 37. The 
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# of Coding Passes 
1 
2 
3 
4 
5 

6-36 
37-164 

number 6 through 36 has a 4-bit 1111 as prefix followed by 5 bits as the offset 
from 6. 

Codeword 
0 
10 

1100 
1101 
1110 

1111 0000 0-1111 1111  0 
1111 11111 0000 000-1111 11111 1111 111 

Table 18.8 Codewords for the number of coding passes 

The single-codeword segment is used to  encode the number of bytes con- 
tributed to a packet by a code-block. The number of bits needed to  represent 
the length of bytes can be derived using 

bits = LBlocks + Lloga(nwmber of coding passes)],  

where LBlocks is a code-block-wise state variable with initial value three. The 

value of LBlocks can be increased if there are k l’s (i.e., ‘11111 .... 1’) followed 
by a bit 0 (this is also known as the code-block length indicator); the value 
of LBlocks is increased by k .  If k = 0, then the bit 0 is used as a delimiter, 
which means no increase for the value of LBlocks. There is no restriction on 
number of bits used to represent the code length in the packet. 

k - 
18.5 SUMMARY 

In this chapter, we have dealt with details of coding algorithms and bitstream 
formation in JPEG2000 standard. We have discussed the fractional bit-plane 
coding (EBCOT) and the MQ-coder for implementation of the adaptive binary 
arithmetic coding scheme proposed in JPEG2000 standard. We described 
the terminology and their underlying concepts behind these algorithms. The 
EBCOT has three coding passes and four coding operations. We discussed 
in great detail the concepts behind these coding operations and how they 
are used in each coding pass in order to encode the bit-planes of the DWT 
coefficients. We took an example and showed how to generate the context and 
decision information by the EBCOT algorithm. This context and decision 
pair is then used by the MQ-coder to generate compressed codewords. We 
described the flowcharts for all the modules in both the EBCOT and the MQ- 
coder algorithms and their implementation issues. We have discussed the Tier- 
2 encoding scheme using the Tag Tree coding mechanism. We have discussed 
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the basic definitions for the Tag Tree with an example and showed how the 
two-dimensional integer arrays can be mapped into a Tag Tree. This Tag Tree 
encoding is the basis for encoding the code-block and layer information in the 
compressed file header. We compressed a small component of size 80 x 60, 
generated the code-block information, and displayed the results as an example. 
We also showed the different progression orders achievable by the JPEG2000 
standard in order to  influence different areas of applications. In summary, we 
have detailed entropy encoding (Tier-1 and Tier-2 encoding) in this chapter. 
For further detail of the JPEG2000 standard and implementation issues both 
in software and hardware, the readers are suggested to  refer the book by 
Acharya et al. [l]. 
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Classification, 221 
Classifier, 158 
Clustering, 13, 150, 164, 166 
Code 

Fixed-length, 333 
Uniquely decipherable, 335 
Variable-length, 333 

Code-block, 391, 393 
CODEC, 335 
Codes 

Coding, 2, 330, 359 
Variable-length, 41 8 

Arithmetic coding, 335 
Elias coding, 335 
Huffman coding, 335 
Shannon-Fano coding, 335 

Magnitude refinement, 398 
Run-length coding, 398 
Sign coding, 397 
Zero coding, 397 

Bypass mode, 404 
CUP, 392, 400 
MRP, 392, 401 
SPP, 392, 401 

Bayer Pattern, 45 
Bayer pattern, 12 
CIE, 39 
CIELAB, 44 
Color filter array, 45 
Demosaicing, 12, 45 
HSV, 44 
Hue, 42 
Interpolation, 12, 45 
Just noticeable difference, 39, 

Luminance, 39 
Perception, 38 
Saturation, 44 
Value, 44 
Weber law, 39 

Coding operation 

Coding pass 

Color, 2, 11, 37, 231 

40 

Color coherence vector, 233 
Color histogram, 231 

Color moment, 233 
Color space, 40, 231, 356 

YCbCT, 41, 356 
CIE, 231 
CMYK, 40 
HIS, 40 
HLS, 231 
HSV, 40, 231 
LUV, 40 
NTSC, 41 
Perceptually uniform, 41 
RGB, 40, 231 
Transformation, 40 
YIQ, 41 

Color tag, 234 
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Compression, 2 
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Lossy compression, 335 
Perceptual lossless, 336 
Video compression, 7 

JPEG, 351 
JPEG2000, 367, 369 

Compression standard 
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8-connected, 28 
Connected component, 28, 
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Content-based video retrieval, 248 
Covariance, 75 
Crisping, 109 

152, 311 

13, 14, 227, 229 

Data compression, 330, 336 

DC level shifting, 375 
DCT, 70 
Decoding, 330 
Decompression, 330 
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Image compression, 329 
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Difference of Gaussian, 142 
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DWT, 377 
Dynamic scene analysis, 13, 307 
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216, 267, 275 

Entropy, 331 
Entropy coding, 377 
Error resiliency, 371 
Euler number, 237 

Face identification, 257 
Face recognition, 257, 258 
File format, 33 
Filtering, 2, 12 

Band-pass, 107 
Butterworth, 116 
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Histogram, 110 
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Histogram hyperbolization, 114 
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HSS, 380 
HSV, 231 
Huffman coding, 338 
Huffman tree, 338 
Human visual system, 7 

Axon, 9 
Cone, 8, 9 
Dendrites, 9 

Optic nerves, 8 
Retina, 9 
Rod, 8, 9 

Eye, 8 

ICC profile, 371 
Image compression, 329 
Image formation, 12, 17 

Illumination, 17 
Luminous flux, 18 
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Lossy compression, 335, 336 
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renormalization, 345 

Objective, 105 
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Quality, 329 
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Error, 25 
Level, 25 
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MAXSHIFT, 382 
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Stereo image, 31 
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