ALI YASIR (BIT 2)

www.oumstudents.tk

EXAMPLE C PROGRAMMING CODES

User
Sticky Note
MigrationConfirmed set by User

User
Sticky Note
MigrationConfirmed set by User

User
Sticky Note
Accepted set by User

User
Sticky Note
Accepted set by User

User
Sticky Note
Marked set by User

User
Sticky Note
Marked set by User

User
Sticky Note
MigrationConfirmed set by User

User
Sticky Note
Accepted set by User

Program

main()

printf ("I see, I remember”);

Fig 1.2 A program to print one line of text

Addition of Two Numbers

Program
/* Programm ADDITION line-1 */
/* Written by EBG line-2 */
main () /* line-3 */
{ /* line-4 */
int number; /* line-5 */
float amount; /* line-6 */
/* line-7 */
number = 100; /* line-8 */
/* line-9 */
amount = 30.75 + 75.35; /* line-10 */
printf (“$d\n”, number) ; /* line-11 */
printf (“%5.2f”,amount) ; /* line-12 */
} /* line-13 */
Fig.1.4 Program to add two numbers
Program
JHm e INVESTMENT PROBLEM —-—=-—=-—-=-—=—-———————- */

#define PERIOD 10
#define PRINCIPAL 5000.00

[F e MAIN PROGRAM BEGINS ———————————————————— */
main ()
{ /*=———— DECLARATION STATEMENTS —-—-—--—-——————————— */

int year;
float amount, value, inrate;
[Fr e —— ASSIGNMENT STATEMENTS - - ——————————-—-—-—-———— */
amount PRINCIPAL;
inrate = 0.11;
year = 0;

R e E e COMPUTATION STATEMENTS —-—-——-—=-——————————— */

[— COMPUTATION USING While ILOOP - ——————————————— */
while (year <= PERIOD)
{ printf (“%2d %8.2f\n”,year, amount) ;
value = amount + inrate * amount;
year = year + 1;
amount = value;
}
A e while LOOP ENDS ——-————-—————————————— */
}
[K PROGRAM ENDS ———————————————————mmm o */

Program
YA e PROGRAM USING FUNCTION —-——-—=-———————————— */
int mul (int a, int b); [Fr—m———— DECLARATION —-—-—-———-—————- */
A e E et MAIN PROGRAM BEGINS —--————-———————————— */
main ()
{
int a, b, c;
a = b5;
b = 10;
c = mul (a,b);
printf (“multiplication of %d and %d is %d”,a,b,c);
}
J* mmmmmmmm o MAIN PROGRAM ENDS

MUL () FUNCTION STARTS —--—--——————————— */

int mul (int x, int vy)
int p;

p = x*y;
{
return (p) ;

JF mm e MUL () FUNCTION ENDS -—--—=--—=--———————- */

Fig.1.7 A Program using a user-defined function

[—— PROGRAM USING COSINE FUNCTION
#include <math.h>

#define PI 3.1416

#define MAX 180

main ()

{

int angle;

float x,y;
angle = 0;
printf (% Angle Cos (angle) \n\n”") ;

while (angle <= MAX)
{
x = (PI/MAX) *angle;
y = cos(x);
printf (“%15d %13.4f\n”, angle, y);
angle = angle + 10;

1. Calculation of Average of Numbers
A program to calculate the average of a set of N numbers is given in Fig.2.11.

AVERAGE OF n VALUES

Program

#define N 10 /* SYMBOLIC CONSTANT */

main ()

{
int count ; /* DECLARATION OF */
float sum, average, number ; /* VARIABLES */
sum =0 ; /* INITIALIZATION */
count = 0 ; /* OF VARIABLES */

while(count < N)

{

scanf ("%f", &number) ;

sum = sum + number ;
count = count + 1 ;
}
average = sum/N ;
printf ("N = %d Sum = %$f", N, sum);
printf (" Average = %f", average);
}
Output
1
2.3
4.67
1.42
7
3.67
4.08
2.2
4.25
8.21
N = 10 Sum = 38.799999 Average = 3.880000

Fig. 2.11 Average of N numbers

The variable number is declared as float and therefore it can take both integer and real
numbers. Since the symbolic constant N is assigned the value of 10 using the #define
statement, the program accepts ten values and calculates their sum using the while loop. The

variable count counts the number of values and as soon as it becomes 11, the while loop is
exited and then the average is calculated.

Notice that the actual value of sum is 38.8 but the value displayed is 38.799999. In fact, the

actual value that is displayed is quite dependent on the computer system. Such an inaccuracy is
due to the way the floating point numbers are internally represented inside the computer.

2. Temperature Conversion Problem

The program presented in Fig.2.12 converts the given temperature in fahrenheit to celsius using
the following conversion formula:

FAHRENHEIT - CELSIUS CONVERSION TABLE

Program
#define F LOW 0 [mmm e */
#define F MAX 250 /* SYMBOLIC CONSTANTS */
#define STEP 25 [e mm e */
main ()
{
typedef float REAL ; /* TYPE DEFINITION */
REAL fahrenheit, celsius ; /* DECLARATION */
fahrenheit = F LOW ; /* INITIALIZATION */

printf ("Fahrenheit Celsius\n\n") ;

while(fahrenheit <= F MAX)

{
celsius = (fahrenheit - 32.0) / 1.8 ;
printf (" %5.1f %7.2f\n", fahrenheit, celsius);
fahrenheit = fahrenheit + STEP ;

Output
Fahrenheit Celsius
0.0 -17.78
25.0 -3.89
50.0 10.00

75.0 23.89

100.0 37.78
125.0 51.67
150.0 65.56
175.0 79.44
200.0 93.33
225.0 107.22
250.0 121.11

Fig. 2.12 Temperature conversion

The program prints a conversion table for reading temperature in celsius, given the fahrenheit
values. The minimum and maximum values and step size are defined as symbolic constants.
These values can be changed by redefining the #define statements. An user-defined data type
name REAL is used to declare the variables fahrenheit and celsius.

The formation specifications %5.1f and %7.2 in the second printf statement produces two-
column output as shown.

Example 2.1
Representation of integer constants on a 16-bit computer.

The program in Fig.2.9 illustrates the use of integer constants on a 16-bit machine. The output in
figure 2.3 shows that the integer values larger than 32767 are not properly stored on a 16-bit
machine. However, when they are qualified as long integer (by appending L), the values are
correctly stored.

INTEGER NUMBERS ON 16-BIT MACHINE

Program
main ()
{
printf ("Integer values\n\n");
printf ("%$d %$d %d\n", 32767,32767+1,32767+10) ;
printf ("\n");
printf ("Long integer values\n\n");
printf ("$1d %1d %$1d\n", 32767L,32767L+1L,32767L+10L) ;
}
Output
Integer values
32767 -32768 -32759
Long integer values
32767 32768 32777
Fig. 2.3 Representation of integer constants
Example 2.2

Program in Figure 2.8 shows typical declarations, assignments and values stored in various
types of variables.

The variables x and p have been declared as floating-point variables. Note that the way the
value of 1.234567890000 that we assigned to x is displayed under different output formats. The
value of x is displayed as 1.234567880630 under %.12If format, while the actual value assigned
is 1.234567890000. This is because the variable x has been declared as a float that can store
values only upto six decimal places.

The variable m that has been declared as int is not able to store the value 54321 correcily.
Instead, it contains some garbage. Since this program was run on a 16-bit machine, the
maximum value that an int variable can store is only 32767. However, the variable k (declared
as unsigned) has stored the value 54321 correctly. Similarly, the long int variable n has stored
the value 1234567890 correctly.

The value 9.87654321 assigned to y declared as double has been stored correctly but the value

is printed as 9.876543 under %lf format. Note that unless specified otherwise, the printf function
will always display a float or double value to six decimal places. We will discuss later the output
formats for displaying numbers.

EXAMPLES OF ASSIGNMENTS

Program
main ()

{

S DECLARATIONS . & vt vttt e ettt eeteeeenenenns */
float X, P 7
double Yy, d 7
unsigned k ;

JF e DECLARATIONS AND ASSIGNMENTS............ */
int m = 54321 ;
long int n = 1234567890 ;

S ASSIGNMENT S e o v ettt ettt e ee st eeseeennenns */
x = 1.234567890000 ;
y = 9.87654321 ;
k = 54321 ;
p=q9g=1.0;

S PRINTING . « v ittt ittt et eeeeeeeeeeeeenennns */
printf ("m = %d\n", m) ;
printf ("n = %$1d\n", n) ;
printf ("x = %.121f\n", x) ;
printf ("x = %$f\n", x) ;
printf("y = %.121f\n",y)
printf("y = $1f\n", vy) ;
printf("k = $u p = %f g = %.121f\n", k, p, 9 ;

}

Output

m = -11215

n = 1234567890

x = 1.234567880630

x = 1.234568

y = 9.876543210000

y = 9.876543

k = 54321 p = 1.000000 g = 1.000000000000

Fig. 2.8 Examples of assignments

Example 2.3

The program in Fig.2.9 illustrates the use of scanf funtion.

The first executable statement in the program is a printf, requesting the user to enter an integer
number. This is known as "prompt message" and appears on the screen like

Enter an integer number

As soon as the user types in an integer number, the computer proceeds to compare the value
with 100. If the value typed in is less than 100, then a message

Your number is smaller than 100
is printed on the screen. Otherwise, the message
Your number contains more than two digits

is printed. Outputs of the program run for two different inputs are also shown in Fig.2.9.

INTERACTIVE COMPUTING USING scanf FUNCTION

Program

main ()

{

int number;

printf ("Enter an integer number\n");
scanf ("%d", &number);

if (number < 100)
printf ("Your number is smaller than 100\n\n");
else
printf ("Your number contains more than two digits\n");

Output

Enter an integer number
54
Your number is smaller than 100

Enter an integer number
108
Your number contains more than two digits

Fig.2.9 Use of scanf function

Example 2.4

Sample Program 3 discussed in Chapter 1 can be converted into a more flexible interactive
program using scanf as shown in Fig.2.10.

n this case, computer requests the user to input the values of the amount to be invested, interest
rate and period of investment by printing a prompt message

Input amount, interest rate, and period

and then waits for input values. As soon as we finish entering
INTERACTIVE INVESTMENT PROGRAM

Program

main ()

{
int year, period ;
float amount, inrate, value ;

printf ("Input amount, interest rate, and period\n\n") ;

scanf ("%f %$f %d", &amount, &inrate, &period) ;
printf ("\n") ;
year = 1 ;

while (year <= period)

{

value = amount + inrate * amount ;
printf ("%$2d Rs %8.2f\n", year, value) ;
amount = wvalue ;

year = year + 1 ;

Output
Input amount, interest rate, and period
10000 0.14 5

Rs 11400.00
Rs 12996.00
Rs 14815.44
Rs 16889.60
Rs 19254.15

g w N

Input amount,

20000

~ oUW DN

Rs
Rs
Rs
Rs
Rs
Rs
Rs

0.12

22400.
25088.
28098.
31470.
35246.
39476.
44213.

interest rate, and period

7

00
00
56
39
84
46
63

Fig.2.10 Interactive investment program

CASE STUDIES
1. SALESMAN'S SALARY

A computer manufacturing company has the following monthly compensation policy to their sales-
persons:

Minimum base salary : 1500.00
Bonus for every computer sold :200.00
Commission on the total monthly sales : 2 per cent

Since the prices of computers are changing, the sales price of each computer is fixed at the
beginning of every month. A program to compute a sales-person's gross salary is given in
Fig.3.9.

PROGRAM TO CALCULATE A SALESMAN'S SALARY

Program
#define BASE SALARY 1500.00
#define BONUS RATE 200.00
#define COMMISSION 0.02
main ()
{
int quantity ;

float gross_salary, price ;
float Dbonus, commission ;

printf ("Input number sold and price\n") ;
scanf ("%d %f", &quantity, &price) ;

bonus BONUS RATE * quantity ;
commission COMMISSION * quantity * price ;
gross_salary = BASE SALARY + bonus + commission ;

printf ("\n");
printf ("Bonus = %6.2f\n", bonus) ;
printf ("Commission = %6.2f\n", commission) ;
printf ("Gross salary = %6.2f\n", gross salary) ;
}
Output
Input number sold and price
5 20450.00
Bonus = 1000.00
Commission = 2045.00
Gross salary = 4545.00

Fig. 3.9 Program of salesman's salary
Given the base salary, bonus, and commission rate, the inputs necessary to calculate the gross
salary are, the price of each computer and the number sold during the month.
The gross salary is given by the equation :
Gross salary = base salary + (quantity * bonus rate)
+ (quantity * Price) * commission rate
2. SOLUTION OF THE QUADRATIC EQUATION
An equation of the form
ax’ +bx+c=0
is known as the quadratic equation. The values of x that satisfy the equation are known as the
roots of the equation. A quadratic equation has two roots which are given by the following two

formulae:

-b + sqrt(b’ - 4ac)

root 1 =
2a

-b - sqrt(b? - 4ac)

root 2 =
2a

A program to evaluate these roots is given in Fig.3.10. The program requests the user to input the
values of a, b and ¢ and outputs root1 and root2.

SOLUTION OF QUADRATIC EQUATION

Program
#include <math.h>
main ()
{
float a, b, ¢, discriminant,

rootl, root2;

printf ("Input values of a, b, and c\n");
scanf ("%$f %f %f", &a, &b, &c);

discriminant = b*b - 4*a*c ;

if (discriminant < 0)
printf ("\n\nROOTS ARE IMAGINARY\n");

else

{
rootl = (-b + sqgrt(discriminant))/(2.0%a);
root2 = (-b - sqgrt(discriminant))/(2.0%a);

printf ("\n\nRootl %5.2f\n\nRoot2 = %5.2f\n",
rootl, root2);

Output

Input values of a, b, and c

2 4 -16
Rootl = 2.00
Root2 = -4.00

Input values of a, b, and c
12 3

ROOTS ARE IMAGINARY

Fig.3.10 Solution of a quadratic equation

The term (b2-4ac) is called the discriminant. If the discriminant is less than zero, its square roots
cannot be evaluated. In such cases, the roots are said to be imaginary numbers and the program
outputs an appropriate message.

Example 3.1

into months and days.

The program in Fig.3.1 shows the use of integer arithmetic to convert a given number of days

PROGRAM TO CONVERT DAYS TO MONTHS AND DAYS

Program

main ()

{

int months, days

printf ("Enter days\n")

scanf ("%d", &days)

months = days / 30

days = days % 30

printf ("Months = %d

.
14

’

I3

I3

’

Days

5d",

months,

days)

.
14

Output

Enter days
265
Months = 8 Days = 25

Enter days
364
Months = 12 Days = 4

Enter days
45
Months =1 Days = 15

Fig. 3.1 lllustration of integer arithmetic

Example 3.2

Program of Fig.3.2 prints a sequence of squares of numbers. Note the use of the shorthand
operator *= .

The program attempts to print a sequence of squares of numbers starting from 2. The statement
a*=a;
which is identical to
a=a*a;
replaces the current value of a by its square. When the value of a becomes equal or greater than
N (=100) the while is terminated. Note that the output contains only three values 2, 4 and 16.

USE OF SHORTHAND OPERATORS

Program
#define N 100
#define A 2
main ()
{
int a;
a = A;

while(a < N)

{
printf ("%d\n", a);
a *= ay

Fig. 3.2 Use of shorthand operator *=

Example 3.3

In Fig.3.3, the program employs different kinds of operators. The results of their evaluation are
also shown for comparison.

Notice the way the increment operator ++ works when used in an expression. In the statement
c=++a-b;

new value of a (= 16) is used thus giving the value 6 to c. That is, a is incremented by 1 before it

is used in the expression. However, in the statement

d =b++ + a;
the old value of b (=10) is used in the expression. Here, b is incremented by 1 after it is used in
the expression.

We can print the character % by placing it immediately after another % character in the control
string. This is illustrated by the statement

printf("a%%b = %d\n", a%b);
The program also illustrates that the expression
c>d?1:0

assumes the value 0 when c is less than d and 1 when c is greater than d.

ILLUSTRATION OF OPERATORS

Program
main ()

int a, b, ¢, d;

Q
I
+
+
O~
|
O

printf("a = $d b = %d d = %d\n",a, b, d);

printf ("a/b = %d\n", a/b);
printf ("a%$%b = %d\n", as%b);
printf ("a *= b = $d\n", a*=b);
printf ("$d\n", (c>d) 2 1 : 0);
printf ("%d\n", (c<d) 2 1 : 0);

a =16 b =10 c¢c =6
a=16 b =11 d = 26

a/b =1
asb =5
a *= Db =176
0
1
Fig. 3.3 Further illustration of arithmetic operators
Example 3.4

The program in Fig.3.4 illustrates the use of variables in expressions and their evaluation.

utput of the program also illustrates the effect of presence of parentheses in expressions. This

is discussed in the next section.

EVALUATION OF EXPRESSIONS

Program

main ()
{

float a, b, ¢, x, vy, z;

a=9;

b =12;

c = 3;

x a - / 3+ c*2 - 1;
y=a-b/ (3 +c¢c) * (2-1);
z a-(b/ (3+c) *2) -1;
printf("x = %f\n", x);

x = 10.000000
y = 7.000000
z = 4.000000

Fig.3.4 Illustrations of evaluation of expressions

Example 3.5

Output of the program in Fig.3.6 shows round-off errors that can occur in computation of
floating point numbers.

PROGRAM SHOWING ROUND-OFF ERRORS

float sum, n, term ;

int count = 1 ;

sum = 0 ;

printf ("Enter value of n\n") ;
scanf ("%f", &n) ;

term = 1.0/n ;

while(count <= n)

{
sum = sum + term ;
count++ ;

}

printf ("Sum = %$f\n", sum) ;

Output

Enter value of n
99
Sum = 1.000001

Enter value of n
143
Sum = 0.999999

Fig.3.6 Round-off errors in floating point computations

We know that the sum of n terms of 1/nis 1. However, due to errors in floating point
representation, the result is not always 1.

PROGRAM SHOWING THE USE OF A CAST

Program
main ()
{
float sum ;
int n ;
sum =
for(n=1; n<= 10 ; ++n)
{
sum = sum + 1/ (float)n ;
printf ("%$2d %6.4f\n", n, sum) ;
}
}
Output
1 1.0000
2 1.5000
3 1.8333
4 2.0833
5 2.2833
6 2.4500
7 2.5929
8 2.7179
9 2.8290
10 2.9290

Fig. 3.8 Use of a cast

CASE STUDIES
1. Inventory Report

Problem: The ABC Electric Company manufactures four consumer products. Their inventory
position on a particular day is given below:

Code Quantity Rate (Rs)
F105 275 575.00
H220 107 99.95
1019 321 215.50
M315 89 725.00

It is required to prepare the inventory report table in the following format:

INVENTORY REPORT
Code Quantity Rate Value

Total Value: -——---

The value of each item is given by the product of quantity and rate.

Program: The program given in Fig.4.12 reads the data from the terminal and generates the
required output. The program uses subscripted variables which are discussed in Chapter 7.

INVENTORY REPORT

Program
#define ITEMS 4
main ()
{ /* BEGIN */

int i, quantity[5];
float rate[5], value, total value;
char code[5][5];

/* READING VALUES */

i =1;
while (1 <= ITEMS)
{

printf ("Enter code, quantity, and rate:");
scanf ("%s %d %f", code[i], &quantityl[i], &ratel[i]);
i++;
}
/e Printing of Table and Column Headings....... */
printf ("\n\n");
printf (" INVENTORY REPORT \n") ;
printf("-——=-—mm e \n") ;
printf (" Code Quantity Rate Value \n") ;
printf("-——=-—mm e \n") ;
J* e Preparation of Inventory Position.......... */
total value = 0;
i =1;

while (1 <= ITEMS)
{
value = quantity[i] * ratel[i];
printf ("$5s %10d %$10.2f $e\n",code[i],quantity[i],
rate[i],value);
total value += value;

1++;
}

/e Printing of End of Table......veeeenennn.. */
printf("-——=-————m— \n")
printf (" Total Value = %e\n",total value);
printf("----------------"r \n") ;

} /* END */

Output

Enter code, quantity, and rate:F105 275 575.00
Enter code, quantity, and rate:H220 107 99.95
Enter code, quantity, and rate:I019 321 215.50
Enter code, quantity, and rate:M315 89 725.00

INVENTORY REPORT

Code Quantity Rate Value

F105 275 575.00 1.581250e+005
H220 107 99.95 1.069465e+004
I019 321 215.50 6.917550e+004
M315 89 725.00 6.452500e+004

Fig.4.12 Program for inventory report

2. Reliability Graph

Problem: The reliability of an electronic component is given by

reliability (r) = e '

where A is the component failure rate per hour and t is the time of operation in hours. A graph is
required to determine the reliability at various operating times, from 0 to 3000 hours. The failure
rate A (lamda)is 0.001.

RELIABILITY GRAPH

Problem

#include <math.h>
#define LAMDA 0.001

main ()

{

double t;
float r;
int i, R;
for (i=1; 1<=27; ++1)
{
printf ("--");
}

printf ("\n");

for (t=0; t<=3000; t+=150)
{

r = exp (-LAMDA*t) ;

R = (int) (50*r+0.5);

printf (" |");

for (i=1l; 1<=R; ++1)

{

printf ("*");
}

printf ("#\n") ;
for (i=1l; 1i<3; ++i)

printf (" |\n");

I***k*k**#
I***k*k***************************************#
I*************************************#
I********************************#
I***************************#
I************************#
I********************#

I*****************#

I***************#

I*************#

I***********#

I**********#

I********#

I*******#

I*k*k*k*k*k*k#

I*k*k*k*k*k#

I*****#

I****#

I***#

I*k*k*k#

I‘k*k#

Fig.4.13 Program to draw reliability graph
Program: The program given in Fig. 4.13 produces a shaded graph. The values of t are self-
generated by the for statement
for (t=0; t <= 3000; t =t+150)
in steps of 150. The integer 50 in the statement
R = (int)(50*r+0.5)

is a scale factor which converts r to a large value where an integer is used for plotting the curve.
Remember r is always less than 1.

Example 4.1

The program in Fig.4.1 shows the use of getchar function in an interactive environment.

The program displays a question of YES/NO type to the user and reads the user's
response in a single character (Y or N). If the response is Y, it outputs the message

My name is BUSY BEE

otherwise, outputs.

You are good for nothing

Note there is one line space between the input text and output message.

READING A CHARACTER FROM KEYBOARD

Program

#include <stdio.h>
main ()
{

char answer;

printf ("Would you like to know my name?\n");

printf ("Type Y for YES and N for NO: ");
answer = getchar(); /* Reading a character...*/
if (answer == 'Y' || answer == 'y')
printf ("\n\nMy name is BUSY BEE\n");
else

printf ("\n\nYou are good for nothing\n");

Output

Would you like to know my name?
Type Y for YES and N for NO: Y

My name is BUSY BEE

Would you like to know my name?
Type Y for YES and N for NO: n

You are good for nothing

Fig.4.1 Use of getchar function

Example 4.2

The program of Fig.4.2 requests the user to enter a character and displays a message on the
screen telling the user whether the character is an alphabet or digit, or any other special
character.

This program receives a character from the keyboard and tests whether it is a letter or
digit and prints out a message accordingly. These tests are done with the help of the
following functions:

isalpha(character)
isdigit(character)

For example, isalpha assumes a value non-zero (TRUE) if the argument character contains an
alphabet; otherwise it assumes 0 (FALSE). Similar is the case with the function isdigit.

TESTING CHARACTER TYPE

Program:

#include <stdio.h>
#include <ctype.h>

main ()
{
char character;
printf ("Press any key\n");

character = getchar();

if (isalpha (character) > 0)
printf ("The character is a letter.");

else
if (isdigit (character) > 0)
printf ("The character is a digit.");

else
printf ("The character is not alphanumeric.");

Output

Press any key
h
The character is a letter.

Press any key
5
The character is a digit.

Press any key
*

The character is not alphanumeric.

Fig.4.2 Program to test the character type

Example 4.3

A program that reads a character from keyboard and then prints it in reverse case is given in
Fig.4.3. That is, if the input is upper case, the output will be lower case and vice versa.

The program uses three new functions: islower, toupper, and tolower. The function islower is
a conditional function and takes the value TRUE if the argument is a lower case alphabet;
otherwise takes the value FALSE. The function toupper converts the lower case argument into
an upper case alphabet while the function tolower does the reverse.

WRITING A CHARACTER TO THE SCREEN

Program

#include <stdio.h>
#include <ctype.h>

main ()

{
char alphabet;

printf ("Enter an alphabet");
putchar ('\n'"); /* move to next line */
alphabet = getchar();

if (islower (alphabet))

putchar (toupper (alphabet)) ;
else

putchar (tolower (alphabet)) ;

Output
Enter an alphabet
a
A
Enter an alphabet
Q

q
Enter an alphabet
z
Z

Fig.4.3 Reading and writing of alphabets in reverse case

Example 4.4

Various input formatting options for reading integers are experimented in the program shown
in Fig. 4.4.

The first scanf requests input data for three integer values a, b, and ¢, and accordingly three
values 1, 2, and 3 are keyed in. Because of the specification %*d the value 2 has been skipped
and 3 is assigned to the variable b. Notice that since no data is available for c, it contains
garbage.

The second scanf specifies the format %2d and %4d for the variables x and y respectively.
Whenever we specify field width for reading integer numbers, the input numbers should not
contain more digits that the specified size. Otherwise, the extra digits on the right-hand side will
be truncated and assigned to the next variable in the list. Thus, the second scanf has truncated
the four digit number 6789 and assigned 67 to x and 89 to y. The value 4321 has been assigned
to the first variable in the immediately following scanf statement.

READING INTEGER NUMBERS

Program:

main ()

{
int a,b,c,x,v,2;
int p,q,r;

printf ("Enter three integer numbers\n");
scanf ("%d %*d %d", &a, &b, &c) ;
printf ("$d %d %d \n\n",a,b,c);

printf ("Enter two 4-digit numbers\n");
scanf ("%$2d %44d", &x, &y) ;
printf ("$d %d\n\n", x,y);

printf ("Enter two integers\n");
scanf ("$d %d", &a, &x);
printf ("$d %4 \n\n",a,x);

printf ("Enter a nine digit number\n");
scanf ("%3d %4d %$3d", &p, &9, &r) ;
printf ("%d %d %d \n\n",p,q,r);

printf ("Enter two three digit numbers\n");
scanf ("sd %d", &x, &y) ;
printf ("%d %d",x,vy);

Output

Enter three integer numbers
123
1 3 -3577

Enter two 4-digit numbers
6789 4321
67 89

Enter two integers
44 66
4321 44

Enter a nine-digit number
123456789
66 1234 567

Enter two three-digit numbers
123 456
89 123

Fig.4.4 Reading integers using scanf

Example 4.5
Reading of real numbers (in both decimal point and exponential notation) is illustrated in

Fig.4.5.

READING OF REAL NUMBERS

Program:
main ()
{
float x,y;
double p,q;

printf ("Values of x and y:");

scanf ("%f %Se", &x, &y);

printf ("\n");

printf ("x = $f\ny = $f\n\n", x, v);

printf ("Values of p and g:");
scanf ("%1f %1f", &p, &qg);

printf ("\np = %1f\ng = %e",p
printf ("\n\np = %.121f\np =

Output

Values of x and y:12.3456 17.5e-2

x = 12.345600
y = 0.175000
Values of p and g:4.142857142857 18.5678901234567890

p = 4.142857142857
g = 1.856789012346e+001

Fig.4.5 Reading of real numbers

Example 4.6
Reading of strings using %wc and %ws is illustrated in Fig.4.6.

The program in Fig.4.6 illustrates the use of various field specifications for reading strings. When
we use %wec for reading a string, the system will wait until the w" character is keyed in.

Note that the specification %s terminates reading at the encounter of a blank space.
Therefore, name2 has read only the first part of "New York" and the second part is
automatically assigned to name3. However, during the second run, the string "New-
York" is correctly assigned to name2.

READING STRINGS

Program

main ()
{
int no;
char namel[15], name2[15], name3[15];

printf ("Enter serial number and name one\n");
scanf ("%d %15c", &no, namel);
printf ("$d %$15s\n\n", no, namel);

printf ("Enter serial number and name two\n");
scanf ("%d %s", &no, name2);
printf ("$d %$15s\n\n", no, name2);

printf ("Enter serial number and name three\n");
scanf ("$d %15s", &no, name3);
printf ("$d %$15s\n\n", no, name3);

Output

Enter serial number and name one
1 123456789012345
1 123456789012345r

Enter serial number and name two
2 New York
2 New

Enter serial number and name three
2 York

Enter serial number and name one
1 123456789012
1 123456789012 r

Enter serial number and name two

2 New-York

2 New-York

Enter serial number and name three
3 London

3 London

Fig. 4.6 Reading of strings

Example 4.7
The program in Fig. 4.7 illustrates the function of %[] specification.

ILLUSTRATION OF %[] SPECIFICATION

Program-A

main ()

{
char address[80];

printf ("Enter address\n");

scanf ("% [a-z’]", address);

printf ("$-80s\n\n", address);
}

Output
Enter address

new delhi 110002
new delhi

ILLUSTRATION OF $%[”~] SPECIFICATION

Program-B

main ()

{
char address[80];

printf ("Enter address\n");
scanf ("$[*\n]", address);
printf ("%$-80s", address);

Output

Enter address
New Delhi 110 002
New Delhi 110 002

Fig.4.7 lllustration of conversion specification%]] for strings

Example 4.8

The program presented in Fig.4.8 illustrates the testing for correctness of reading of data by
scanf function.

The function scanf is expected to read three items of data and therefore, when the values for all
the three variables are read correctly, the program prints out their values. During the third run,
the second item does not match with the type of variable and therefore the reading is terminated
and the error message is printed. Same is the case with the fourth run.

In the last run, although data items do not match the variables, no error message has been
printed. When we attempt to read a real number for an int variable, the integer part is

assigned to the variable, and the truncated decimal part is assigned to the next variable.
Note that the character “2' is assigned to the character variable c.

TESTING FOR CORRECTNESS OF INPUT DATA

Program

main ()

{
int a;
float b;
char c;

printf ("Enter values of a, b and c\n");

if (scanf ("%d %f %c", &a, &b, &c) == 3)
printf("a = %d b = %f c = %c\n" , a, b, c);

else
printf ("Error in input.\n");

Output Enter values of a, b and c
12 3.45 A
a =12 b = 3.450000 c = A

Enter values of a, b and c
23 78 9
a =23 Db = 78.000000 c =9

Enter values of a, b and c
8 A 5.25

Error in input.
Enter values of a, b and c
Y 12 67

Error in input.
Enter values of a, b and c
15.75 23 X

a =15 Db = 0.750000 c

Il
N

Fig.4.8 Detection of errors in scanf input

Example 4.9

The program in Fig.4.9 illustrates the output of integer numbers under various formats.

PRINTING OF INTEGER NUMBERS

Program:
main ()
{
int m = 12345;
long n = 987654;

printf ("$d\n",m) ;
printf ("%$10d\n",m) ;
printf ("$010d\n", m) ;
printf ("%$-10d\n", m) ;
printf ("%$101d\n",n);
printf ("$101d\n", -n) ;
}
Output
12345
12345
0000012345
12345
987654
-987654
Fig.4.9 Formatted output of integers
Example 4.10

All the options of printing a real number are illustrated in Fig.4.10.

PRINTING OF REAL NUMBERS

Program:

main ()

{
float y = 98.7654;

printf ("$7.4£\n", v);
printf ("$f\n", vy);
printf ("$7.2f\n", vy);
printf ("$-7.2f\n", vy);
printf ("$07.2f\n", vy);

%*‘*f"’ 7, 2’ y);
"\n");

"$10.2e\n", y);

"$12.4e\n", -vy);
"$-10.2e\n", y)

"$e\n", vy);

printf
printf
printf
printf
printf

’

—~ o~ o~~~ —

Output 98.7654
98.765404
98.77
98.77
0098.77
98.77
9.88e+001
-9.8765e+001
9.88e+001
9.876540e+001

Fig.4.10 Formatted output of real numbers

Example 4.11

Printing of characters and strings is illustrated in Fig.4.11.

PRINTING OF CHARACTERS AND STRINGS

Program

main ()

{
char x = '"A';
static char name[20] = "ANIL KUMAR GUPTA";
printf ("OUTPUT OF CHARACTERS\n\n") ;
printf ("$c\n%3c\n%5c\n", x,x,x);
printf ("$3c\n%c\n", x,Xx);
printf ("\n");

printf ("OUTPUT OF STRINGS\n\n");
printf ("$s\n", name);
printf ("$20s\n", name);

(
(
(
printf ("%$20.10s\n", name);
(
(
(

printf ("$.5s\n", name);
printf ("$-20.10s\n", name);
printf ("$5s\n", name);

Output

OUTPUT OF CHARACTERS

OUTPUT OF STRINGS

ANIL KUMAR GUPTA
ANIL KUMAR GUPTA
ANIL KUMAR
ANTIL
ANIL KUMAR
ANIL KUMAR GUPTA

Fig.4.11 Printing of characters and strings

CASE STUDIES

1. Range of Numbers
Problem: A survey of the computer market shows that personal computers are sold at varying
costs by the vendors. The following is the list of costs (in hundreds) quoted by some vendors:

35.00, 40.50, 25.00, 31.25, 68.15,
47.00, 26.65, 29.00 53.45, 62.50

Determine the average cost and the range of values.

Problem analysis: Range is one of the measures of dispersion used in statistical analysis of a
series of values. The range of any series is the difference between the highest and the lowest
values in the series. Thatis

Range = highest value - lowest value
It is therefore necessary to find the highest and the lowest values in the series.
Program: A program to determine the range of values and the average cost of a personal
computer in the market is given in Fig.5.14.

RANGE OF NUMBERS

Program

main ()
{
int count;
float value, high, low, sum, average, range;

sum = 0;
count = 0;

printf ("Enter numbers in a line
input a NEGATIVE number to end\n");
input:
scanf ("$f", &value);

if (value < 0) goto output;

count = count + 1;
if (count == 1)
high = low = value;

else if (value > high)
high = value;
else if (value < low)
low = wvalue;

sum = sum + value;
goto input;

output:
average = sum/count;
range = high - low;
printf ("\n\n") ;

printf ("Total values : %d\n", count);

printf ("Highest-value: %$f\nLowest-value : %$f\n",
high, low);
printf ("Range : $f\nAverage : $f\n",

range, average);

Output

Enter numbers in a line : input a NEGATIVE number to end
35 40.50 25 31.25 68.15 47 26.65 29 53.45 62.50 -1

Total values : 10

Highest-value: 68.150002
Lowest-value : 25.000000
Range : 43.150002
Average : 41.849998

Fig.5.14 Calculation of range of values
When the value is read the first time, it is assigned to two buckets, high and low, through the
statement
high = low = value;
For subsequent values, the value read is compared with high; if it is larger, the value is assigned
to high. Otherwise, the value is compared with low; if it is smaller, the value is assigned to low.
Note that at a given point, the buckets high and low hold the highest and the lowest values read

so far.

The values are read in an input loop created by the goto input; statement. The control is
transferred out of the loop by inputting a negative number. This is caused by the statement

if (value < 0) goto output;

Note that this program can be written without using goto statements. Try.

2. Pay-Bill Calculations

Problem: A manufacturing company has classified its executives into four levels for the benefit of
certain perks. The levels and corresponding perks are shown below:

Perks
Level
Conveyance Entertainment
allowance allowance
1 1000 500
2 750 200
3 500 100
4 250 -

An executive's gross salary includes basic pay, house rent allowance at 25% of basic pay and
other perks. Income tax is withheld from the salary on a percentage basis as follows:

Gross salary Tax rate
Gross <= 2000 No tax deduction
2000 < Gross <= 4000 3%
4000 < Gross <= 5000 5%

Gross > 5000 8%

Write a program that will read an executive's job number, level number, and basic pay and then
compute the net salary after withholding income tax.

Problem analysis:

Gross salary = basic pay + house rent allowance + perks
Net salary = Gross salary - income tax.

The computation of perks depends on the level, while the income tax depends on the gross
salary. The major steps are:

1. Read data.

2. Decide level number and calculate perks.
3. Calculate gross salary.

4. Calculate income tax.

5. Compute net salary.

6. Print the results.

Program: A program and the results of the test data are given in Fig. 5.15. Note that the last
statement should be an executable statement. That is, the label stop: cannot be the last line.

PAY-BILL CALCULATIONS

Program
#define cal 1000
#define CA2 750
#define CA3 500
#define Cca4 250
#define EAl 500
#define EA2 200
#define EA3 100
#define EA4 0
main ()
{
int level, Jjobnumber;
float gross,
basic,
house rent,
perks,
net,
incometax;
input:

printf ("\nEnter level,

job number, and basic pay\n");

printf ("Enter 0 (zero) for level to END\n\n");

f", &jobnumber, &basic);

EAL;

EA2;

EAS3;

EA4;

scanf ("%d", &level);
if (level == 0) goto stop;
scanf ("$d %
switch (level)
{
case 1:
perks = CAl +
break;
case 2:
perks = CA2 +
break;
case 3:
perks = CA3 +
break;
case 4:
perks = CA4 +
break;
default:

}

house rent
basic + house rent + perks;

gro
if

els

printf ("Error
goto stop;

in level code\n");

= 0.25 * basic;

Ss =

(gross <= 2000)

incometax = 0;

e if (gross <= 4000)
incometax = 0.03

* gross;

else if (gross <= 5000)

incometax = 0.05 * gross;
else
incometax = 0.08 * gross;

net = gross - incometax;
printf ("%$d %d %.2f\n", level, jobnumber, net);
goto input;

stop: printf ("\n\nEND OF THE PROGRAM") ;

Output

Enter level, job number, and basic pay
Enter 0 (zero) for level to END

1 1111 4000
1 1111 5980.00

Enter level, job number, and basic pay
Enter 0 (zero) for level to END

2 2222 3000
2 2222 4465.00

Enter level, job number, and basic pay
Enter 0 (zero) for level to END

3 3333 2000
3 3333 3007.00

Enter level, job number, and basic pay
Enter 0 (zero) for level to END

4 4444 1000
4 4444 1500.00

Enter level, job number, and basic pay
Enter 0 (zero) for level to END

0
END OF THE PROGRAM

Fig.5.15 Pay-bill calculations

Example 5.1

The program in Fig.5.3 reads four values a, b, c, and d from the terminal and evaluates the
ratio of (a+b) to (c-d) and prints the result, if c-d is not equal to zero.

The program given in Fig.5.3 has been run for two sets of data to see that the paths
function properly. The result of the first run is printed as

Ratio = -3.181818

ILLUSTRATION OF if STATEMENT

Program

main ()

{
int a, b, ¢, d;
float ratio;

printf ("Enter four integer values\n");
scanf ("$d %d %$d %d", &a, &b, &c, &d);

if (¢-d != 0) /* Execute statement block */
{

ratio = (float) (a+b)/ (float) (c-d);

printf ("Ratio = $f\n", ratio);

Output

Enter four integer values
12 23 34 45
Ratio = -3.181818

Enter four integer values
12 23 34 34

Fig. 5.3 lllustration of simple if statement

Example 5.2

The program in Fig.5.4 counts the number of boys whose weight is less than 50 kgs and height
is greater than 170 cm.

The program has to test two conditions, one for weight and another for height. This is
done using the compound relation

if (weight < 50 && height > 170)
This would have been equivalently done using two if statements as follows:
if (weight < 50)
if (height > 170)
count = count +1;
If the value of weight is less than 50, then the following statement is executed, which in turn is
another if statement. This if statement tests height and if the height is greater than 170, then

the count is incremented by 1.

COUNTING WITH if

Program

main ()
{
int count, i;
float weight, height;

count = 0;
printf ("Enter weight and height for 10 boys\n");

for (i =1; i <= 10; i++)
{
scanf ("%f $f", &weight, &height);
if (weight < 50 && height > 170)
count = count + 1;

}

printf ("Number of boys with weight < 50 kgs\n");
printf ("and height > 170 cm = %d\n", count);

Output

Enter weight and height for 10 boys

45 176.5
55 174.2
47 168.0
49 170.7
54 169.0
53 170.5
49 167.0
48 175.0
47 167

51 170

Number of boys with weight < 50 kgs
and height > 170 cm = 3

Fig. 5.4 Use of if for counting

The power series contains the recurrence relationship of the type

X
Tn = Tha (---)1 forn>1

T, =x forn=1
T0=1

If T (usually known as previous term) is known, then T, (known as present term) can be easily
found by multiplying the previous term by x/n. Then

e = To+ T4+ To+...... + T, = sum

EXPERIMENT WITH if...else STATEMENT

Program
#define ACCURACY 0.0001

main ()
{
int n, count;
float x, term, sum;

printf ("Enter value of x:");
scanf ("$f", &x);

n = term = sum = count = 1;

while (n <= 100)
{
term = term * x/n;
sum = sum + term;
count = count + 1;
if (term < ACCURACY)
n = 999;
else
n=n-+1;

}

printf ("Terms = %d Sum = $f\n",

sum) ;

Output

Enter value of x:0
Terms = 2 Sum = 1.000000

Enter value of x:0.1
Terms = 5 Sum = 1.105171

Enter value of x:0.5
Terms = 7 Sum = 1.648720

Enter value of x:0.75
Terms = 8 Sum = 2.116997

Enter value of x:0.99
Terms = 9 Sum = 2.691232

Enter value of x:1
Terms = 9 Sum = 2.718279

Fig 5.6 lllustration of if...else statement

Example 5.4

The program in Fig. 5.8 selects and prints the largest of the three numbers using nested
if....else statements.

SELECTING THE LARGEST OF THREE VALUES

Program

main ()

{
float A, B, C;

printf ("Enter three values\n");
scanf ("%f %f %f", &A, &B, &C);

printf ("\nLargest value is ");
if (A>B)
{
if (A>C)
printf ("$f\n", A);
else

printf ("$f\n", C);
}

else
{
if (C>B)
printf ("$f\n", C);
else
printf ("$f\n", B);

}

Output

Enter three wvalues
23445 67379 88843

Largest value is 88843.000000

Fig 5.8 Selecting the largest of three numbers

Example 5.5
An electric power distribution company charges its domestic consumers as follows:

Consumption Units Rate of Charge
0-200 Rs. 0.50 per unit
201 - 400 Rs. 100 plus Rs.0.65 per unit excess of 200
401 - 600 Rs. 230 plus Rs.0.80 per unit excess of 400
601 and above Rs. 390 plus Rs.1.00 per unit excess of 600

The program in Fig.5.10 reads the customer number and power consumed and prints
the amount to be paid by the customer.

USE OF else if LADDER

Program

main ()

{
int wunits, custnum;
float charges;

printf ("Enter CUSTOMER NO. and UNITS consumed\n");
scanf ("$d %d", &custnum, &units);

if (units <= 200)
charges = 0.5 * units;
else 1f (units <= 400)
charges = 100 + 0.65 * (units - 200);
else 1f (units <= 600)
charges = 230 + 0.8 * (units - 400);
else
charges

390 + (units - 600);

printf ("\n\nCustomer No: %d: Charges = %.2f\n",
custnum, charges);

}

Output

Enter CUSTOMER NO. and UNITS consumed 101 150
Customer No:101 Charges = 75.00

Enter CUSTOMER NO. and UNITS consumed 202 225
Customer No:202 Charges = 116.25

Enter CUSTOMER NO. and UNITS consumed 303 375
Customer No:303 Charges = 213.75

Enter CUSTOMER NO. and UNITS consumed 404 520
Customer No:404 Charges = 326.00

Enter CUSTOMER NO. and UNITS consumed 505 625
Customer No:505 Charges = 415.00

Fig. 5.10 lllustration of else..if ladder

Example 5.6

An employee can apply for a loan at the beginning of every six months, but he will be
sanctioned the amount according to the following company rules:

Rule 1: An employee cannot enjoy more than two loans at any point of time.
Rule 2 : Maximum permissible total loan is limited and depends upon the category of the

employee.

A program to process loan applications and to sanction loans is given in Fig. 5.12.

CONDTTTONAL OPERATOR

Program

#define MAXLOAN 50000

main ()

{

long int loanl, loan2, loan3, sancloan, sum23;

printf ("Enter the values of previous two loans:\n");
scanf (" %1d %1d", &loanl, &loan2);

printf ("\nEnter the value of new loan:\n");

scanf (" %1d", &loan3);
sum23 = loan2 + loan3;
sancloan = (loanl>0)? 0 : ((sum23>MAXLOAN)??

MAXILOAN - loan2 : loan3);

printf ("\n\n");
printf ("Previous loans pending:\n%ld %1d\n", locanl,loan2);
printf ("Loan requested = %$1d\n", loan3);
printf ("Loan sanctioned = %$1d\n", sancloan);
}
Output

Enter the values of previous two loans:

0

20000

Enter the value of new loan:
45000

Previous loans pending:
0 20000

Loan requested = 45000
Loan sanctioned = 30000

Enter the values of previous two loans:
1000 15000

Enter the value of new loan:
25000

Previous loans pending:
1000 15000

Loan requested = 25000
Loan sanctioned 0

Fig 5.12 [llustration of the conditional operator

Example 5.7
Program presented in Fig.5.13 illustrates the use of the goto statement.

The program evaluates the square root for five numbers. The variable count keeps the count
of numbers read. When count is less than or equal to 5, goto read; directs the control to the
label read; otherwise, the program prints a message and stops.

USE OF goto STATEMENT

Program

#include <math.h>
main ()
{
double x, y;
int count;

count = 1;

printf ("Enter FIVE real values in a LINE \n");
read:
scanf ("%$1f", &x);
printf ("\n");
if (x < 0)
printf ("Value - %d is negative\n",count);
else

{

y = sqgrt(x);
printf ("$1f\t %$1f\n", x, Vy):
}

count = count + 1;

if (count <= 5)
goto read;
printf ("\nEnd of computation");

Output

Enter FIVE real values 1in a LINE
50.70 40 -36 75 11.25

50.750000 7.123903
40.000000 6.324555

Value -3 is negative
75.000000 8.660254

11.250000 3.354102
End of computation

Fig.5.13 Use of the goto statement

1.

CASE STUDIES

Table of Binomial Coefficients

Problem: Binomial coefficients are used in the study of binomial distributions and reliability
of multicomponent redundant systems. It is given by

m m!
B(mx) = () =--mmmmmmmn , m >=x
X x! (m-x)!

A table of binomial coefficients is required to determine the binomial coefficient for any set of
m and Xx.

Problem Analysis: The binomial coefficient can be recursively calculated as follows:

B(m,0) =1
m-x+1
B(m,x) = B(mx-1)[—34— x=1,2,3,...m
X
Further,
B(o,0) =1

That is, the binomial coefficient is one when either x is zero or m is zero. The
program in Fig.6.12 prints the table of binomial coefficients for m = 10. The
program employs one do loop and one while loop.

EVALUATION OF BINOMIAL COEFFICIENTS

Program

#define MAX 10
main ()
{
int m, x, binom;
printf (" m x");
for (m = 0; m <= 10 ; ++m)
printf ("%4d", m);

printf ("\n-——=--=—=—=-——— -
m = 0;
do

{
printf ("%2d ", m);
x = 0; binom = 1;
while (x <= m)
{
if(m == [l x == 0)
printf ("%4d", binom);
else
{
binom = binom * (m - x + 1)/x;
printf ("%$4d", binom);

x =x + 1;

printf ("\n");
m=m+ 1;

}

while (m <= MAX);

printf("-----------—--—
}
Output m x 0 1 2 3 4 5 6 7 8 9 10

0 1

1 1 1

2 1 2 1

3 1 3 3 1

4 1 4 6 4 1

5 1 5 10 10 5 1

6 1 6 15 20 15 6 1

7 1 7 21 35 35 21 7 1

8 1 8 28 56 70 56 28 8 1

9 1 9 36 84 126 126 84 36 9 1
10 1 10 45 120 210 252 210 120 45 10 1

Fig.6.12 Program to print binomial coefficient table

2. Histogram

Problem: In an organization, the employees are grouped according to their basic pay for the
purpose of certain perks. The pay-range and the number of employees in each group are as

follows:
Group Pay-Range Number of Employees
1 750 - 1500 12
2 1501 - 3000 23
3 3001 - 4500 35
4 4501 - 6000 20
5 above 6000 11

Draw a histogram to highlight the group sizes.

Problem Analysis: Given the size of groups, it is required to draw bars representing the
sizes of various groups. For each bar, its group number and size are to be written.

Program in Fig.6.13 reads the number of employees belonging to each group and draws a
histogram. The program uses four for loops and two if.....else statements.

PROGRAM TO DRAW HISTOGRAM

Program:
#define N 5

main ()

{
intvalue[N];
int i, j, n, x;

for (n=0; n < N; ++n)

{

printf ("Enter employees in Group - %d ",n+1);
scanf ("%d", &x);
value[n] = x;

printf ("$d\n", valuel[n]);

}
printf ("\n");

printf (" [\n") ;
for (n = 0 ; n < N ; ++n)
{
for (1 =1 ; 1 <= 3 ; 1i++)

{

if (1 == 2)
printf ("Group-%1d |",n+1);
else

printf (" "),

for (j =1 ; 7 <= value[n]; ++3)
printf ("*");
if (i == 2)
printf (" (%d)\n", valuelnl]);
else

printf ("\n");
}

printf (" I\n") ;
}
}
Output

Enter employees in Group - 1 : 12
12

Enter employees in Group - 2 : 23
23

Enter employees in Group - 3 : 35
35

Enter employees in Group - 4 : 20
20

Enter Employees in Group - 5 : 11
11

|‘k*~k*~k*~k*****

Group_l |************(12)
|************

:***********************

Group_z |***********************(23)
|***********************
:****‘k*******************‘k*‘k*‘k*‘k*‘k**

Group_3 |****‘k*******************‘k*‘k*‘k*‘k*‘k** (35)
|************************‘k*‘k*‘k*‘k*‘k**
:‘k*******************

Group_4 |********************(20)
|********************

|***********

Group_S |***********(11)
|***********

Fig.6.13 Program to draw a histogram

3. Minimum Cost

Problem: The cost of operation of a unit consists of two components C1 and C2 which can

be expressed as functions of a parameter p as follows:

C1 = 30-8p
C2 =10+p°

The parameter p ranges from 0 to 10. Determine the value of p with an accuracy of + 0.1
where the cost of operation would be minimum.

Problem Analysis:
Totalcost = C4+C, = 40-8p + p2

The cost is 40 when p = 0, and 33 when p = 1 and 60 when p = 10. The cost, therefore,
decreases first and then increases. The program in Fig.6.14 evaluates the cost at successive
intervals of p (in steps of 0.1) and stops when the cost begins to increase. The program
employs break and continue statements to exit the loop.

PROBLEM OF MINIMUM COST

Program:

main ()

{
float p, cost, pl, costl;

for (p = 0; p<=10; p=p + 0.1)
{
cost = 40 - 8 * p + p * p;
if(p == 0)
{
costl = cost;
continue;
}
if (cost >= costl)
break;
costl = cost;
pl = p;
}
p=(p+pl)/2.0;
cost = 40 - 8 * p + p * p;
printf ("\nMINIMUM COST = %.2f AT p = %.1f\n",
cost, p);
}

Output

MINIMUM COST = 24.00 AT p = 4.0

Fig.6.14 Program of minimum cost problem

4. Plotting of Two Functions

Problem: We have two functions of the type

y1 =exp (-axg
y2 =exp (-ax/2)

Plot the graphs of these functions for x varying from 0 to 5.0.

Problem Analysis: Initially when x = 0, y1 = y2 =1 and the graphs start from the same
point. The curves cross when they are again equal at x = 2.0. The program should have
appropriate branch statements to print the graph points at the following three conditions:

1. y1 > y2
2. y1 < y2
3. y1 =y2

The functions y1 and y2 are normalized and converted to integers as follows:

y1 = 50 exp (-axg +0.5
y2 = 50 exp (-ax“/2)+ 0.5

The program in Fig.6.15 plots these two functions simultaneously. (0 for y1, * for y2, and #
for the common point).

PLOTTING OF TWO FUNCTIONS

Program
#include <math.h>

main ()

{

a = 0.4;

printf(" Y ——————— > \nu) ;
printf(" 0 -———--------—-— \n")
for ((x = 0; x < 5; x = x+0.25)

{ /* BEGINNING OF FOR LOOP */

J* .. Evaluation of functions */

yl = (int) (50 * exp(-a * x) + 0.5);
y2 = (int) (50 * exp(-a * x * x/2) + 0.5);

/e Plotting when y1 = y2......... */
if (yl == y2)

if (x == 2.5)

printf (" X [|");
else
printf (" "),

for (1 =1; 1 <=yl - 1; ++1i)
printf (" ");

printf ("#\n");

continue;

/* . Plotting when y1 > y2 */
if (yl > y2)

if ((x == 2.5)
printf (" X [");
else
printf (" [")
for (1 = 1;

printf (" ");

printf

for (
pri

printf
contin

........ P
1if (x ==
printf
else
printf

for (1 =
printf

(n*n)’.

14

i=1; 1 <= (yl
ntf ("_")

("O\n") ;

ue;

lotting when y2
2.5)

(" X |")’.
"M

1, i<= (yl -
(" ");

END OF FOR LOOP
[\n");

i <=y2 -1 ; ++1i)

- y2 - 1); ++1i)

1); ++1i)

vyl - 1); ++1i)

Y ——————- >
|
|
|
|
| 0---
| 0---—~
| 0---=+
| —%
| #
| * —
| *===0
| *omm e 0
| Fommm e 0
| Fommmme 0
| e 0
| e 0
| Fmmmmm- 0
| #mmm o 0
| *mmm e 0
| * - 0
|

Fig.6.15 Plotting of two functions

Example 6.1
A program to evaluate the equation
y=x"
when n is a non-negative integer, is given in Fig.6.2

The variable y is initialized to 1 and then multiplied by x, n times using the while loop. The loop
control variable, count is initialized outside the loop and incremented inside the loop. When the
value of count becomes greater than n, the control exists the loop.

EXAMPLE OF while STATEMENT

Program

main ()

{
int count, n;
float x, y;

printf ("Enter the values of x and n : ");
scanf ("$f %d", &x, &n);

y = 1.0;

count = 1; /* Initialisation */

/* LOOP BEGINs */

while (count <= n) /* Testing */
{
y = yrx;
count++; /* Incrementing */

}
/* END OF LOOP */

printf ("\nx = %f; n = %d; x to power n = $f\n",x,n,vy);

Output

Enter the values of x and n : 2.5 4
x = 2.500000; n = 4; x to power n = 39.062500

Enter the values of x and n : 0.5 4
x = 0.500000; n = 4; x to power n = 0.062500

Fig.6.2 Program to compute x to the power n using while loop

PRINTING OF MULTIPLICATION TABLE

Program:

#define COLMAX 10
#define ROWMAX 12

main ()

{

int row,column, vy;

row = 1;
printf (" MULTIPLICATION TABLE \n") ;
printf ("-—-------——m o \n") ;
do /¥, OUTER LOOP BEGINS........ */
{
column = 1;
do /R INNER LOOP BEGINS....... */
{
y = row * column;
printf ("%4d", v);
column = column + 1;
}
while (column <= COLMAX); /*... INNER LOOP ENDS ...*/

printf ("\n");
row = row + 1;

Output
MULTIPLICATION TABLE
1 2 3 4 5 6 7 8 9 10
2 4 6 8 10 12 14 16 18 20
3 6 9 12 15 18 21 24 27 30
4 8 12 16 20 24 28 32 36 40
5 10 15 20 25 30 35 40 45 50
6 12 18 24 30 36 42 48 54 60
7 14 21 28 35 42 49 56 63 70
8 16 24 32 40 48 56 64 72 80

Fig.6.3 Printing of a multiplication table using do...while loop

Example 6.3

The program in Fig.6.4 uses a for loop to print the "Powers of 2" table for the power 0 to 20,
both positive and negative.

The program evaluates the value
p=2"
successively by multiplying 2 by itself n times.
1

Note that we have declared p as a long int and q as a double.

Additional Features of for Loop

The for loop in C has several capabilities that are not found in other loop constructs. For
example, more than one variable can be initialized at a time in the for statement. The statements
p=1;
for (n=0; n<1l7; ++n)

can be rewritten as

for (p=1, n=0; n<17; ++n)

USE OF for

LOOP

Program:

main ()

{
long int p;

int n;
double a;
printf("-------------m \n") ;
printf (" 2 to power n 2 to power -n\n");
printf ("--—————"—"-"-—H—-—H—-"""-""-""""""""""""""“"“"“"“"“"—"—"——~———— \n") ;
p = 1;
for (n = 0; n < 21 +4+n) /* LOOP BEGINS */
{
if (n ==
p =1
else
p=p* 2;
q = 1.0/ (double)p ;
printf ("$101d %$10d %20.121f\n", p, n, q);
} /* LOOP ENDS */
printf("--——------------"--"-""——— \n") ;
}
Output ------------- - - - - - - - --"-"-"-"-"--"-—"-""""""""-""""""——-
2 to power n n 2 to power -n
1 0 1.000000000000
2 1 0.500000000000
4 2 0.250000000000
8 3 0.125000000000
16 4 0.062500000000
32 5 0.031250000000
64 6 0.015625000000
128 7 0.007812500000
256 38 0.003906250000
512 9 0.001953125000
1024 10 0.000976562500
2048 11 0.000488281250
4096 12 0.000244140625
8192 13 0.000122070313
16384 14 0.000061035156
32768 15 0.000030517578
65536 16 0.000015258789
131072 17 0.000007629395
262144 18 0.000003814697
524288 19 0.000001907349
1048576 20 0.000000953674

Fig.6.4 Program to print 'Power of 2" table using for loop

Example 6.4

A class of n students take an annual examination in m subjects. A program to read the

marks obtained by each student in various subjects and to compute and print the total marks
obtained by each of them is given in Fig.6.5.

The program uses two for loops, one for controlling the number of students and the other for
controlling the number of subjects. Since both the number of students and the number of

subjects are requested by the program, the program may be used for a class of any size and any
number of subjects.

The outer loop includes three parts:
(1) reading of roll-numbers of students, one after another,
(2) inner loop, where the marks are read and totaled for each student, and

(3) printing of total marks and declaration of grades.

ILLUSTRATION OF NESTED LOOPS

Program

#define FIRST 360
#define SECOND 240
main ()
{
int n, m, i, 7j,
roll number, marks, total;
printf ("Enter number of students and subjects\n");
scanf ("$d %d", &n, &m);
printf ("\n");
for (1 = 1; 1 <=n

{

;o o++1)

printf ("Enter roll number : ");
scanf ("%d", &roll number);

total = 0 ;
printf ("\nEnter marks of %d subjects for ROLL NO %d\n",

m, roll number) ;
for (7 = 1; J <= m; Jj++)
{

scanf ("%d", &marks);

total = total + marks;

}
printf ("TOTAL MARKS = %d ", total);
if (total >= FIRST)

printf (" (First Division)\n\n");

else 1f (total >= SECOND)

printf (" (Second Division)\n\n");
else
printf (" (*** F A I L ***)\n\n");

Output

Enter number of students and subjects
3 6

Enter roll number : 8701

Enter marks of 6 subjects for ROLL NO 8701
81 75 83 45 61 59
TOTAL MARKS = 404 (First Division)

Enter roll number : 8702

Enter marks of 6 subjects for ROLL NO 8702
51 49 55 47 65 41
TOTAL MARKS = 308 (Second Division)

Enter roll number : 8704

Enter marks of 6 subjects for ROLL NO 8704
40 19 31 47 39 25

TOTAL MARKS = 201 (*** F A I L ***)

Fig.6.5 lllustration of nested for loops

Example 6.5
The program in Fig.6.8 illustrates the use of the break statement in a C program.

The program reads a list of positive values and calculates their average. The for loop is written
to read 1000 values. However, if we want the program to calculate the average of any set of
values less than 1000, then we must enter a 'negative' number after the last value in the list, to
mark the end of input.

USE OF break IN A PROGRAM

Program

main ()
{
int m;
float x, sum, average;

printf ("This program computes the average of a
set of numbers\n");

printf ("Enter values one after another\n");
printf ("Enter a NEGATIVE number at the end.\n\n");
sum = 0;
for m=1; m <= 1000 ; ++m)
{
scanf ("$f", &x);
if (x < 0)

break;
sum += X ;

}

average = sum/ (float) (m-1);

printf ("\n");

printf ("Number of values = %d\n", m-1);
printf ("Sum = %f\n", sum);
printf ("Average = %$f\n", average);

Output
This program computes the average of a set of numbers
Enter values one after another

Enter a NEGATIVE number at the end.

21 23 24 22 26 22 -1

Number of values = 6
Sum = 138.000000
Average = 23.000000

Fig.6.8 Use of break in a program

Example 6.6

A program to evaluate the series
1
------ = 1+x+X X+
1-x

for -1 < x <1 with 0.01 per cent accuracy is given in Fig.6.9. The goto statement is used to
exit the loop on achieving the desired accuracy.

We have used the for statement to perform the repeated addition of each of the terms in the
series. Since it is an infinite series, the evaluation of the function is terminated when the term x"
reaches the desired accuracy. The value of n that decides the number of loop operations is not
known and therefore we have decided arbitrarily a value of 100, which may or may not result in
the desired level of accuracy.

EXAMPLE OF exit WITH goto STATEMENT

Program
#define LOOP 100
#define ACCURACY 0.0001
main ()
{
int n;

float x, term, sum;

printf ("Input value of x : ");
scanf ("$f", &x);
sum = 0 ;
for (term =1, n =1 ; n <= LOOP ; ++n)
{
sum += term ;
i1f (term <= ACCURACY)
goto output; /* EXIT FROM THE LOOP */
term *= x ;
}
printf("\nFINAL VALUE OF N IS NOT SUFFICIENT\n");
printf ("TO ACHIEVE DESIRED ACCURACY\n");

goto end;

output:

printf ("\nEXIT FROM LOOP\n");

printf ("Sum = %f; No.of terms = %d\n", sum, n);
end:

; /* Null Statement */

Output

Input value of x : .21
EXIT FROM LOOP
Sum = 1.265800; No.of terms = 7

Input value of x : .75
EXIT FROM LOOP
Sum = 3.999774; No.of terms

34

Input value of x : .99
FINAL VALUE OF N IS NOT SUFFICIENT
TO ACHIEVE DESIRED ACCURACY

Fig.6.9 Use of goto to exit from a loop

Example 6.7

The program in Fig.6.11 illustrates the use of continue statement.

The program evaluates the square root of a series of numbers and prints the results. The

process stops when the number 9999 is typed in.

In case, the series contains any negative numbers, the process of evaluation of square root
should be bypassed for such numbers because the square root of a negative number is not
defined. The continue statement is used to achieve this. The program also prints a message
saying that the number is negative and keeps an account of negative numbers.

The final output includes the number of positive values evaluated and the number of negative
items encountered.

USE OF continue STATEMENT

Program:
#include <math.h>

main ()

{
int count, negative;
double number, sqgroot;

printf ("Enter 9999 to STOP\n");
count = 0 ;
negative = 0 ;

while (count <= 100)

{
printf ("Enter a number : ");
scanf ("%1f", &number);

if (number == 9999)
break; /* EXIT FROM THE LOOP */
if (number < 0)

{

printf ("Number is negative\n\n");
negativet+ ;
continue; /* SKIP REST OF THE LOOP */
}
sgroot = sqgrt (number) ;
printf ("Number = %1f\n Square root = %$1f\n\n",
number, sgroot);
count++ ;
}
printf ("Number of items done = %d\n", count);
printf ("\n\nNegative items = %d\n", negative);
printf ("END OF DATA\n") ;

Output

Enter 9999 to STOP
Enter a number : 25.0
Number = 25.000000
Square root = 5.000000

Enter a number : 40.5
Number = 40.500000
Square root = 6.363961

Enter a number : -9
Number is negative

Enter a number : 16
Number = 16.000000
Square root = 4.000000

Enter a number : -14.75
Number is negative

Enter a number : 80
Number = 80.000000
Square root = 8.944272

Enter a number : 9999
Number of items done = 4
Negative items =
END OF DATA

N

Fig.6.11 Use of continue statement

CASE STUDIES

7.1. Median of a List of Numbers

When all the items in a list are arranged in order, the middle value which divides the items into
two parts with equal number of items on either side is called the median. Odd number of items
have just one middle value while even number of items have two middle values. The median for
even number of items is therefore designated as the average of the two middle values.
The maijor steps for finding the median are as follows:

1. Read the items into an array while keeping a count of the items.

2. Sort the items in increasing order.

3. Compute median.

The program and sample output are shown in Fig.7.7. The sorting algorithm used is as follows:

1. Compare the first two elements in the list, say a[1], and a[2]. If a[2] is
smaller than a[1], then interchange their values.

Compare a[2] and a[3]; interchange them if a[3] is smaller than a[2].
Continue this process till the last two elements are compared and interchanged.
4. Repeat the above steps n-1 times.
In repeated trips through the array, the smallest elements 'bubble up' to the top. Because of this

bubbling up effect, this algorithm is called bubble sorting. The bubbling effect is illustrated below
for four items.

Initial After After After
values step 1 step 2 step 3
80 | —mm— 35 35 35
«— —
Trip-1 35 80 65 65
< —
65 65 80 15
— —
10 10 10 80
35 | e— 35 35
65 80 |« 80
Trip-2
— —
10 65 65

80 10 10

During the first trip, three pairs of items are compared and interchanged whenever needed. It
should be noted that the number 80, the largest among the items, has been moved to the bottom
at the end of the first trip. This means that the element 80 (the last item in the new list) need not
be considered any further. Therefore, trip-2 requires only two pairs to be compared. This time, the
number 65 (the second largest value) has been moved down the list. Notice that each trip brings

35 | —— 10

Trip-3
10 D 35
65 65
80 80

the smallest value 10 up by one level.

The number of steps required in a trip is reduced by one for each trip made. The entire process
will be over when a trip contains only one step. If the list contains n elements, then the number of

comparisons involved would be n(n-1)/2.

PROGRAM TO SORT A LIST AND FIND ITS MEDIAN

Program

#define N 10

main()

{

/*

/*

int i,3,n;
float median,al[N],t;

printf ("Enter the number of items\n");
scanf ("%d", &n);

Reading items into array a */

printf ("Input %d values \n",n);
for (1 = 1; 1 <= n ; 1i++)

scanf ("$f", &ali]l);
Sorting begins */

for (i =1 ; 1 <= n-1 ; 1i++)
{ /* Trip-i begins */

for (3 =1 ; J <= n-1 ; J++)

if (alj] <= alj+1l])
{ /* Interchanging values */

t =aljl;
alj] = alj+1];
alj+1l] = t;

}

else

continue ;

}

} /* sorting ends */

/* calculation of median */

if (n % 2 == 0)

median = (a[n/2] + a[n/2+11)/2.0 ;
else

median = a[n/2 + 1];

/* Printing */

for (1 =1 ; i <= n ; i++)
printf ("Sf ", alil);
printf ("\n\nMedian is %f\n", median);

Output

Enter the number of items

5

Input 5 values

1.111 2.222 3.333 4.444 5.555

5.555000 4.444000 3.333000 2.222000 1.111000

Median is 3.333000

Enter the number of items

6

Input 6 values

3 5 8 9 4 ¢

9.000000 8.000000 6.000000 5.000000 4.000000 3.000000

Median is 5.500000

Fig.7.7 Program to sort a list of numbers and to determine median

2. Calculation of Standard Deviation

In statistics, standard deviation is used to measure deviation of data from its mean. The formula
for calculating standard deviation of n items is

s = v variance
where
1 n
variance = = --—--—-) (xi-m)2
i=1
n
and 1 n
m =mean = ------ > X,
n i=1

The algorithm for calculating the standard deviation is as follows:

Read n items.

Calculate sum and mean of the items.
Calculate variance.

Calculate standard deviation.

N =

Complete program with sample output is shown in Fig.7.8.

PROGRAM TO CALCULATE STANDARD DEVIATION

Program

#include <math.h>
#define MAXSIZE 100

main()
{
int 1i,n;
float value [MAXSIZE], deviation,
sum, sumsgr,mean,variance, stddeviation;

sum = sumsqgr = n = 0 ;

printf ("Input values: input -1 to end \n");
for (i=1; i< MAXSIZE ; i++)
{

scanf ("$f", &value[il]);

if (value[i] == -1)
break;
sum += valuel[i];
n += 1;
}
mean = sum/ (float)n;

for (1 = 1 ; i<= n; 1i++)

deviation = value[i] - mean;
sumsgr += deviation * deviation;

}

variance = sumsqr/ (float)n ;

stddeviation = sqgrt(variance) ;

printf ("\nNumber of items : %d\n",n);

printf ("Mean : %f\n", mean);

printf ("Standard deviation : %f\n", stddeviation);
}
Output

Input values: input -1 to end
65 9 27 78 12 20 33 49 -1

Number of items : 8
Mean : 36.625000
Standard deviation : 23.510303

Fig 7.8 Program to calculate standard deviation

3. Evaluating a Test

A test consisting of 25 multiple-choice items is administered to a batch of 3 students. Correct
answers and student responses are tabulated as shown below:

ltems
1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
el L L L L]
Student 1
Student 2
Student 3

The algorithm for evaluating the answers of students is as follows:

1. Read correct answers into an array.

2. Read the responses of a student and count the correct ones.
3. Repeat step-2 for each student.

4. Print the results.

A program to implement this algorithm is given in Fig.7.9. The program uses the following arrays:

keyli] - To store correct answers of items
responseli] - To store responses of students
correct[i] - To identify items that are answered correctly.

PROGRAM TO EVALUATE A MULTIPLE-CHOICE TEST

Program

#define STUDENTS 3
#define ITEMS 25
main()

{
char key[ITEMS+1],response[ITEMS+1];
int count, 1, student,n,
correct [ITEMS+1];

/* Reading of Correct answers */

printf ("Input key to the items\n");

for(i=0; i < ITEMS; i++)
scanf ("%c", &key[i]);

scanf ("%c", &key[i]);
key[i] = "\0"';

/* Evaluation begins */

for (student = 1; student <= STUDENTS ; student++)
{
/*Reading student responses and counting correct ones*/
count = 0;
printf ("\n");
printf ("Input responses of student-%d\n", student);

for(i=0; i < ITEMS ; i++)
scanf ("%c", &response[i]);

scanf ("%c", &response[i]);

response[i] = '\0';

for (i=0; 1 < ITEMS; i++)
correct[i] = 0;

for(i=0; i < ITEMS ; i++)

if (response[i] == key[i])
{
count = count +1 ;
correct[i] =1 ;

}

/* printing of results */

printf ("\n");

printf ("Student-%d\n", student);

printf ("Score is %d out of %d\n",count, ITEMS);
printf ("Response to the items below are wrong\n");
n = 0;

for (i=0; i1 < ITEMS ; i++)

if (correct[i] == 0)
{
printf ("%d ",i+1);
n = n+l;
}
if(n == 0)
printf ("NIL\n") ;
printf ("\n");

} /* Go to next student */

/* Evaluation and printing ends */

}

Output

Input key to the items
abcdabcdabcdabcdabecdabeda

Input responses of student-1
abcdabcdabcdabecdabcecdabeda

Student-1

Score 1s 25 out of 25

Response to the following items are wrong
NIL

Input responses of student-2
abcddcbaabcecdabecdddddddddd

Student-2

Score 1s 14 out of 25

Response to the following items are wrong
56 7 8 17 18 19 21 22 23 25

Input responses of student-3
aaaaaaaaaaaaaaaaaaaaaaaaa

Student-3

Score is 7 out of 25

Response to the following items are wrong
2346 7810 11 12 14 15 16 18 19 20 22 23 24

Fig 7.9 Program to evaluate responses to a multiple-choice test

4. Production and Sales Analysis

A company manufactures five categories of products and the number of items manufactured and
sold are recorded product-wise every week in a month. The company reviews its production
schedule at every month-end. The review may require one or more of the following information:

(a) Value of weekly production and sales.

(b) Total value of all the products manufactured.

(c) Total value of all the products sold.

(d) Total value of each product, manufactured and sold.

Let us represent the products manufactured and sold by two two-dimensional arrays M and S
respectively. Then,

M11 M12 M13 M14 M15

M21 M22 M23 M24 M25

M31 M32 M33 M34 M35

M41 M42 M43 M44 M45

S11 S12 S13 S14 S15
S21 S22 S23 S24 S25
S31 532 S33 S34 S35
S41 542 543 S44 S45

where Mij represents the number of jth type product manufactured in ith week and Sij the number
of jth product sold in ith week. We may also represent the cost of each product by a single
dimensional array C as follows:

C1 Cc2 C3 C4 C5 C =

where Cj is the cost of jth type product.

We shall represent the value of products manufactured and sold by two value arrays, namely,
Mvalue and Svalue. Then,

Mvalue[i][j] = Mij x Cj
Svalueli][j] = Sij x Cj

A program to generate the required outputs for the review meeting is shown in Fig.7.10. The
following additional variables are used:

Mweek[i] = Value of all the products manufactured in week i.

5

= X Mvalueli][j]

=
Sweek[i] = Value of all the products sold in week i

5

= X Svalue[il[j]

=1

Mproduct[j] = Value of jth type product manufactured during the month

4
= X Mvalueli][j]
i=1

Sproduct[j] = Value of jth type product sold during the month
4

= ¥ Svalue[i[j
i=1

Mtotal = Total value of all the products sold during the month
4 5
= ¥ Mweek[i] = 2 Mproduct(j]
i=1 =1
Stotal = Total value of all the products sold during the month
4 5

= X Sweek[]= Z Sproduct[j]

i=1 j=1

PRODUCTION AND SALES ANALYSIS

Program

main()
{
int M[5][6],S[5][6],C[6],
Mvalue[5] [6],Svalue[5] [6],
Mweek [5], Sweek[5],
Mproduct[6], Sproductl[6],
Mtotal, Stotal, i,Jj,number;

/* Input data */
printf (" Enter products manufactured week wise \n") ;
printf (" M11,M12,----, M21,M22,---- etc\n");

for (i=1; i<=4; i++)
for(j=1;j<=5; j++)
scanf ("%d", &M[1]1[3]);

printf (" Enter products sold week wise\n");
printf (" s11,S812,----, S21,S822,---- etc\n");

for (i=1; 1i<=4; 1i++)
for (j=1; j<=5; j++)
scanf ("%d", &S[i][j]);

printf (" Enter cost of each product\n");
for (j=1; J <=5; J++)
scanf ("%d",&C[J]);
/* Value matrices of production and sales */
for (i=1; i<=4; i++)
for (j=1; j<=5; j++)
{
Mvalue[i] [j] = M[i][j] * CI[J];
Svalue[i] [j] = S[i][J] * C[J];
}

/* Total value of weekly production and sales */

for (i=1; i<=4; i++)
{
Mweek [1]
Sweek [1]
for (3=1; 3j<
{

.
14

Il
o o

5; Jj++)

Mweek[1] += Mvaluel[i] [J];
Sweek[i1] += Svalueli]l[j]:;

/* Monthly value of product wise production and sales */
for (§=1; j<=5; J++)
{

Mproduct[j] = 0 ;
Sproduct[j] = 0 ;
for(i=1; i<=4; i++)

{
Mproduct[j] += Mvaluel[i] []]:
Sproduct[j] += Svalue[il[]j]:

/* Grand total of production and sales values */

Mtotal = Stotal = 0;
for (i=1; i<=4; i++)
{
Mtotal += Mweek[1];
Stotal += Sweek[i];
}

/***

Selection and printing of information required
***/
printf ("\n\n") ;
printf (" Following is the list of things you can\n");
printf (" request for. Enter appropriate item number\n");
printf (" and press RETURN Key\n\n");

printf (" 1.Value matrices of production & sales\n");
printf (" 2.Total value of weekly production & sales\n");
printf (" 3.Product wise monthly value of production &");
printf (" sales\n");

printf (" 4.Grand total value of production & sales\n");

printf (" 5.Exit\n");

number = 0;
while (1)
{ /* Beginning of while loop */

printf ("\n\n ENTER YOUR CHOICE:");
scanf ("%d", &number) ;
printf ("\n");

if (number == 5)

{
printf (" G O O D B Y E\n\n");
break;

}

switch (number)

{ /* Beginning of switch */

/* VALUTE MATRTICES */

case 1:

printf (" VALUE MATRIX OF PRODUCTION\n\n") ;
for (i=1; i<=4; i++)
{

printf (" Week (%d)\t",1);

for(j=1; J <=5; J++)

printf ("$7d4d", Mvaluel[i][]J]):

printf ("\n");
}
printf ("\n VALUE MATRIX OF SALES\n\n");
for(i=1; i <=4; i++)
{

printf (" Week (%d)\t",1);

for (j=1; J <=5; J++)

printf ("%7d", Svalueli]l[3j]):

printf ("\n") ;
}
break;
/* WEEZKTLY ANALYS STIS */
case 2:
printf (" TOTAL WEEKLY PRODUCTION & SALES\n\n") ;
printf (" PRODUCTION SALES\n") ;
printf (" —mm——————— - \n") ;

for(i=1; i <=4; i++)
{

printf (" Week (%d)\t", 1i);

printf ("$7d\t%7d\n", Mweek[1], Sweek[i1]);
}

break;

/* PRODUCTWTISE ANALYSTIS */

case 3:
printf (" PRODUCT WISE TOTAL PRODUCTION &") ;

(
printf (" SALES\n\n");
printf (" PRODUCTION SALES\n") ;
printf(" ———m—————= - \n") ;

for (j=1; j <=5; j++)
{

printf (" Product (%d)\t", J);

printf ("$7d\t%7d\n",Mproduct[]J], Sproduct([j]);
}

break;

/* GRAND TOTATLS */

case 4:

printf(" GRAND TOTAL OF PRODUCTION & SALES\n");
printf ("\n Total production = %d\n", Mtotal);

printf (" Total sales = %d\n", Stotal);
break;
/* DEFAULT */
default
printf (" Wrong choice, select again\n\n");
break;

} /* End of switch */
} /* End of while loop */
printf (" Exit from the program\n\n");

} /* End of main */

Output

Enter products manufactured week wise
mMl1i,M12,----, M21,M22,---- etc

11 15 12 14 13

13 13 14 15 12

12 16 10 15 14

14 11 15 13 12

Enter products sold week wise
si11i,s1i2,----, S21,S822,---- etc
10 13 9 12 11

12 10 12 14 10

11 14 10 14 12

12 10 13 11 10

Enter cost of each product

10 20 30 15 25

Following is the 1list of things you can
request for. Enter appropriate item number
and press RETURN key

.Value matrices of production & sales

.Total value of weekly production & sales
.Product wise monthly value of production & sales
.Grand total value of production & sales

Exit

ENTER YOUR CHOICE:1

g w N

VALUE MATRIX OF PRODUCTION

Week (1) 110 300 360 210 325
Week (2) 130 260 420 225 300
Week (3) 120 320 300 225 350
Week (4) 140 220 450 185 300
VALUE MATRIX OF SALES
Week (1) 100 260 270 180 275
Week (2) 120 200 360 210 250
Week (3) 110 280 300 210 300
Week (4) 120 200 390 165 250

ENTER YOUR CHOICE:2
TOTAL WEEKLY PRODUCTION & SALES
PRODUCTION SALES

Week (1) 1305 1085
Week (2) 1335 1140
Week (3) 1315 1200
Week (4) 1305 1125

ENTER YOUR CHOICE:3
PRODUCT WISE TOTAL PRODUCTION & SALES

PRODUCTION SALES

Product (1) 500 450
Product (2) 1100 940
Product (3) 1530 1320
Product (4) 855 765
Product (5) 1275 1075

ENTER YOUR CHOICE:4

GRAND TOTAL OF PRODUCTION & SALES
Total production = 5260

Total sales = 4550

ENTER YOUR CHOICE:5

G OOD BYE

Exit from the program

Fig.7.10 Program for production and sales analysis

Program in Fig.7.1 uses a one-dimensional array x to read the values and compute the sum of
their squares.

PROGRAM SHOWING ONE-DIMENSIONAL ARRAY

Program :

main ()

int i ;
float x[10], wvalue, total ;

/*READING VALUES INTO ARRAY
printf ("ENTER 10 REAL NUMBERS\n") ;
for(1 =0 ; 1 < 10 ; 1i++)

{

scanf ("$f", &value) ;
x[1] = value ;

/* o0COMPUTATION OF TOTAL
total = 0.0 ;

for(i =0
total =

;1 < 10 ; 1i++)
total + x[1] * x[1] ;

/*. oL . . PRINTING OF x[i] VALUES AND TOTAL
printf ("\n");
for(1 =0 ; 1 < 10 ; 1i++)

printf ("x[%$2d] = %5.2f\n", i+1l, x[i])

printf ("\ntotal = %.2f\n", total) ;

*/

K/

*/

14

Output
ENTER 10 REAL NUMBERS
1.1 2.2 3.3 4.4 5.5 6.6 7.7 8.8 9.9

10.10

.10
.20
.30
.40
.50
.60
.70
.80
.90
.10

HKoOXOX X X X X X XX

L R B e T e B e B e B e T e T e B]

Y
O W O Joy U WN B

Il
O W W Joy U WN

I
=

|
O
s
0]
=
Il

446.86

Fig.7.1 Program to illustrate one-dimensional array

Example 7.2
Given below is the list of marks obtained by a class of 50 students in an annual examination.

43 65 51 27 79 11 56 61 82 09 25 36 07 49 55 63 74 81 49 37
40 49 16 75 87 91 33 24 58 78 65 56 76 67 45 54 36 63 12 21
73 49 51 19 39 49 68 93 85 59

Write a program to count the number of students belonging to each of following groups of
marks: 0-9, 10-19, 20-29,.....,100.

IThe program coded in Fig.7.2 uses the array group containing 11 elements, one for each range
of marks. Each element counts those values falling within the range of values it represents.

For any value, we can determine the correct group element by dividing the value by 10. For
example, consider the value 59. The integer division of 59 by 10 yields 5. This is the element into
which 59 is counted.

PROGRAM FOR FREQUENCY COUNTING

Program
fdefine MAXVAL 50
fdefine COUNTER 11
main ()
{
float value [MAXVAL];
int i, low, high;

int group [COUNTER] = {0,0,0,0,0,0,0,0,0,0,0};

/*READING AND COUNTING*x/
for(i =0 ; 1 < MAXVAL ; i++)
{

/*.READING OF VALUES */
scanf ("$f", &value[i])

/*.COUNTING FREQUENCY OF GROUPS. */

++ group[(int) (valuel[i] + 0.5) / 10] ;

/*PRINTING OF FREQUENCY TABILE*/
printf ("\n");
printf (" GROUP RANGE FREQUENCY\n\n") ;

for(i = 0 ; i < COUNTER ; i++)
{

low =i * 10 ;
if (i == 10)
high = 100 ;
else
high = low + 9 ;
printf (" %2d %3d to %3d %d\n",

i+l, low, high, groupl[i])

Output
43 65 51 27 79 11 56 61 82 09 25 36 07 49 55 63 74
81 49 37 40 49 16 75 87 91 33 24 58 78 65 56 76 67
45 54 36 63 12 21 73 49 51 19 39 49 68 93 85 59

(Input data)

GROUP RANGE FREQUENCY
1 0 to 9 2
2 10 to 19 4
3 20 to 29 4
4 30 to 39 5
5 40 to 49 8
6 50 to 59 8
7 60 to 69 7
8 70 to 79 6
9 80 to 89 4
10 90 to 99 2

11 100 to 100 0

Fig.7.2 Program for frequency counting

Example 7.3

Write a program using a two-dimensional array to compute and print the following
information from the table of data discussed above:
(a) Total value of sales by each girl.

(b) Total value of each item sold.
(c) Grand total of sales of all items by all girls.

The program and its output are shown in Fig.7.4. The program uses the variable value in two-
dimensions with the index i representing girls and j representing items. The following equations
are used in computing the results:

2
(a) Total sales by m " girl= = value [m][j]
(girl_total[m]) j=0
3
(b) Total value of n""item = = value [i][n]
(item_total[n]) i=0
3 2
(c) Grand total = I = valueli][j]
i=0 j=0
3
= X girl_totalli]
i=0
2
=2 item_total[j]
j=0

PROGRAM SHOWING TWO-DIMENSIONAL ARRAYS

Program:
#define MAXGIRLS 4
#define MAXITEMS 3
main ()

{
int value [MAXGIRLS] [MAXITEMS] ;
int girl total[MAXGIRLS] , item total [MAXITEMS];
int i, j, grand total;

[F e READING OF VALUES AND COMPUTING girl total ...*/

printf ("Input data\n");
printf ("Enter values, one at a time, row-wisel\n\n");

for(i =0 ; 1 < MAXGIRLS ; i++)
{
girl total[i] = 0;
for(j =0 ; j < MAXITEMS ; j++)
{
scanf ("%d", &valueli]l[j]):
girl total[i] = girl total[i] + valuel[i][J];

for(3 = 0 ; j < MAXITEMS ; J++)

item total([j] = O;

for(

i =0 ; i < MAXGIRLS ; i++)
item total[j] = item totallj] + valuel[i][]J];

grand total = 0;

for (

i =0

; 1 < MAXGIRLS ; i++)

grand total = grand total + girl total[i];

printf ("\n GIRLS TOTALS\n\n");

for (

printf ("Salesgirl[%d] = %d\n", i+1, girl totall[i]

i

0

; 1 < MAXGIRLS ; i++)

printf ("\n ITEM TOTALS\n\n");

for (

J

0

; J < MAXITEMS ; j++)

printf ("Item[%d] = %d\n", j+1 , item total[]]
printf ("\nGrand Total = %d\n", grand total);

4

) ;

) ;

Output

Input data
Enter values,

310
210
405
260

257
190
235
300

365
325
240
380

GIRLS TOTALS

Salesgirl
Salesgirl
Salesgirl
Salesgirl

ITEM TOTALS

Item[1]
Item[2]
Item[3]

Grand Total

= 118

100

= 131

one at a time, row wise

= 950

5
0
0

725
880
940

3495

Fig.7.4 lllustration of two-dimensional arrays.

Example 7.4
Write a program to compute and print a multiplication table for numbers 1 to 5 as

shown below:

1 2
1 1 2
2 2 4 10
3 3 6
4 4 8
5 5 | 10 25

The program shown in Fig.7.5 uses a two-dimensional array to store the table values.
Each value is calculated using the control variables of the nested for loops as follows:

product(i,j) = row * column

where i denotes rows and j denotes columns of the product table. Since the indices 1 and |
ranges from 0 to 4, we have introduced the following transformation:

row = i+1
column = j+1

PROGRAM TO PRINT MULTIPLICATION TABLE

Program:
#define ROWS 5
#define COLUMNS 5
main ()

{ int row, column, product[ROWS] [COLUMNS] ;

int i, 3 >
printf (" MULTIPLICATION TABLE\n\n") ;
printf (" L

for(j = 1 ; § <= COLUMNS ; j++)
printf ("%44" , J)

printf ("\n") ;

printf ("-—-—------—-——— \n") ;

for(i =0 ; 1 < ROWS ; 1i++)

row =1 + 1 ;
printf ("%2d |", row) ;
1

for(j = ; J <= COLUMNS ; J++)
column = j ;
product[i] [j] = row * column ;
printf ("%4d", product[i]l[]j])

}
printf ("\n") ;

Output

MULTIPLICATION TABLE
1 2 3 4 5

1 1 2 3 4 5
2 2 4 6 8 10
3 3 6 9 12 15
4 4 8 12 16 20
5 5 10 15 20 25

Fig.7.5 Program to print multiplication table using two-dimensional array

Example 7.5

A survey to know the popularity of four cars (Ambassador, Fiat, Dolphin and Maruti) was
conducted in four cities (Bombay, Calcutta, Delhi and Madras). Each person surveyed was
asked to give his city and the type of car he was using. The results, in coded form, are
tabulated as follows:

M1 C 2 B 1 D3 M2 B 4

Cc 1 b3 M4 B 2 D 1 C 3
D 4 D4 M1 M1 B 3 B 3
C 1 1 C2 M4 M 4 C 2
D 1 ¢C2 B 3 M1 B 1 C 2
D 3 M4 C1 D2 M3 B 4

Codes represent the following information:

M - Madras 1 - Ambassador
D — Delhi 2 - Fiat

C - Calcutta 3 - Dolphin

B — Bombay 4 - Maruti

Write a program to produce a table showing popularity of various cars in four cities.

A two-dimensional array frequency is used as an accumulator to store the number of cars used,
under various categories in each city. For example, the element frequency [i][j] denotes the
number of cars of type j used in city i. The frequency is declared as an array of size 5x5 and all
the elements are initialized to zero.

The program shown in fig.7.6 reads the city code and the car code, one set after another, from
the terminal. Tabulation ends when the letter X is read in place of a city code.

PROGRAM TO TABULATE SURVEY DATA

Program

main ()
{
int 1, Jj, car;
int frequencyl[5][5] = { {0},{0},{0},{0}, {0} };

/*.

/*.

char city;

printf ("For each person, enter the city code \n");
printf ("followed by the car code.\n");
printf ("Enter the letter X to indicate end.\n");

TABULATION BEGINS */

for(i =1 ; 1 < 100 ; i++)
{
scanf ("%c", &city);
if(city == '"X')
break;

scanf ("%d", &car);

switch (city)
{

case 'B' : frequency[l][car]++;
break;
case 'C' : frequency[2] [car]++;
break;
case 'D' : frequency[3] [car]++;
break;
case '"M' : frequencyl4][car]++;
break;
}
}
.TABULATION COMPLETED AND PRINTING BEGINS. . . .*/
printf ("\n\n");
printf (" POPULARITY TABLE\n\n"):;
erintf ("----——————-"-"-"—"""""— == ——— \n") ;
printf ("City Ambassador Fiat Dolphin Maruti \n");
erintf ("--------—-——— - \n") ;

for(i =1 ; 1 <=4 ; 1i++)

{

switch (i)

{

case 1 : printf ("Bombay "y
break ;

case 2 : printf("Calcutta ") ;
break ;

case 3 : printf ("Delhi "y
break ;

case 4 : printf ("Madras "y
break ;

}
for(3 =1 ; 3 <=4 ; j++)

printf ("$7d4d", frequencyl[i][j])
printf ("\n") ;

/*. PRINTING ENDS.

Output

For each person, enter the city code
followed by the car code.
Enter the letter X to indicate end.

M1C2B1D3MZ2B4
C1DbD3M4B2D1CS3
D4D4M1IMIBI3B3
cl1cl1c2M4mM4icC2
D1 C2B3MI1B1C?2
D3M4C1D2M3B4 X
POPULARITY TABLE
City Ambassador Fiat Dolphin Maruti
Bombay 2 1 3 2
Calcutta 4 5 1 0
Delhi 2 1 3 2
Madras 4 1 1 4

Fig.7.6 Program to tabulate a survey data

CASE STUDIES

1. Counting Words in a Text

One of the practical applications of string manipulations is counting the words in a text.
We assume that a word is a sequence of any characters, except escape characters and
blanks, and that two words are separated by one blank character. The algorithm for
counting words is as follows:

1. Read a line of text.

2. Beginning from the first character in the line, look for a blank. If a blank is found,
increment words by 1.

3. Continue steps 1 and 2 until the last line is completed.
The implementation of this algorithm is shown in Fig.8.11. The first while loop will be executed
once for each line of text. The end of text is indicated by pressing the "Return' key an extra time
after the entire text has been entered. The extra "Return’ key causes a newline character as input
to the last line and as a result, the last line contains only the null character.
The program checks for this special line using the test
if (line[0] == "\0")

and if the first (and only the first) character in the line is a null character, then counting is
terminated. Note the difference between a null character and a blank character.

COUNTING CHARACTERS, WORDS AND LINES IN A TEXT

Program

#include <stdio.h>

main ()
{
char 1line[81], ctr;
int 1i,c,
end = 0,
characters = 0,
words = O,
lines = 0;
printf ("KEY IN THE TEXT.\n");

printf ("GIVE ONE SPACE AFTER EACH WORD.\n");
printf ("WHEN COMPLETED, PRESS 'RETURN'.\n\n");

while(end == 0)

{
/* Reading a line of text */

c = 0;
while ((ctr=getchar()) != '\n")

line[c++] = ctr;
line[c] = '"\O';

/* counting the words in a line */

if(line[0] == '\0")

break ;
else
{

words++;

for (i=0; line[i] != '"\O0';i++)

if(linef[i] == ' ' || line[i] == '"\t'")
words++;

}

/* counting lines and characters */

lines = lines +1;
characters = characters + strlen(line);

}
printf ("\n");

printf ("Number of lines = %d\n", lines);
printf ("Number of words = %d\n", words);
printf ("Number of characters = %d\n", characters);

Output

KEY IN THE TEXT.
GIVE ONE SPACE AFTER EACH WORD.
WHEN COMPLETED, PRESS 'RETURN'.

Admiration is a very short-lived passion.
Admiration involves a glorious obliquity of vision.
Always we like those who admire us but we do not
like those whom we admire.

Fools admire, but men of sense approve.

Number of lines = 5
Number of words = 36
Number of characters = 205

Fig.8.11 Counting of characters, words and lines in a text

The program also counts the number of lines read and the total number of characters in
the text. Remember, the last line containing the null string is not counted.

After the first while loop is exited, the program prints the results of counting.

2. Processing of a Customer List

Telephone numbers of important customers are recorded as follows:

Full name Telephone number
Joseph Louis Lagrange 869245
Jean Robert Argand 900823
Carl Freidrich Gauss 806788

It is desired to prepare a revised alphabetical list with surname (last name) first, followed by a
comma and the initials of the first and middle names. For example,

Argand,J.R
We create a table of strings, each row representing the details of one person, such as first_name,
middle_name, last_name, and telephone_number. The columns are interchanged as required

and the list is sorted on the last_name. Fig.8.12 shows a program to achieve this.

PROCESSING OF CUSTOMER LIST

Program
#define CUSTOMERS 10
main()
{
char first name[20][10], second name[20][10],
surname [20] [10], name[20][20],
telephone[20] [10], dummy[20];
int i, 3;
printf ("Input names and telephone numbers \n");
printf ("?");
for (1i=0; 1 < CUSTOMERS ; 1i++)

{

scanf ("%$s %s %s %s", first namel[i],
[1 telephone[i]);

second name[i], surname[i],

/* converting full name to surname with initials */

surname[i])
\AJ " -
")

first name[i][0];
I\O';

strcpy (name[i],
strcat (name[i],

dummy [0]

dummy [1]

strcat (name[i], dummy);
strcat (name[i], ".");

dummy [0] = second name[i] [0];
dummy [1] = '\O0';

strcat (name[i], dummy);

}

/* Alphabetical ordering of surnames */

for(i=1; i <= CUSTOMERS-1; i++)
for (j=1; j <= CUSTOMERS-1i; J++)

if(strcmp (name[j-1], name[j]) > 0)

{

/* Swaping names */
strcpy (dummy, name[j-11);
strcpy (name[j-1], name[]j]):;
strcpy (name[j], dummy);

/* Swaping telephone numbers */
strcpy (dummy, telephonel[j-11);
strcpy (telephone[j-1],telephone[]j])
strcpy (telephone([j], dummy);
}
/* printing alphabetical list */
printf ("\nCUSTOMERS LIST IN ALPHABETICAL ORDER \n\n");
for(i=0; 1 < CUSTOMERS ; 1i++)
printf (" $-20s\t %-10s\n", name[i], telephoneli]):;

Output

Input names and telephone numbers
?Gottfried Wilhelm Leibniz 711518
Joseph Louis Lagrange 869245

Jean Robert Argand 900823

Carl Freidrich Gauss 806788

Simon Denis Poisson 853240
Friedrich Wilhelm Bessel 719731
Charles Francois Sturm 222031
George Gabriel Stokes 545454
Mohandas Karamchand Gandhi 362718

Josian Willard Gibbs 123145

CUSTOMERS LIST IN ALPHABETICAL ORDER

Argand, J.R 900823
Bessel,F.W 719731
Gandhi,M.K 362718
Gauss,C.F 806788
Gibbs,J.W 123145
Lagrange, J.L 869245
Leibniz,G.W 711518
Poisson,S.D 853240
Stokes,G.G 545454
Sturm,C.F 222031

Fig.8.12 Program to alphabetize a customer list

Example 8.1
Write a program to read a series of words from a terminal using scanf function

The program shown in Fig.8.1 reads four words and displays them on the screen. Note that the
string 'Oxford Road' is treated as two words while the string 'Oxford-Road' as one word.

READING A SERIES OF WORDS USING scanf FUNCTION

Program

main()

{
char wordl[40], word2[40], word3[40], word4([40];

printf ("Enter text : \n");
scanf ("%s %s", wordl, word2);
scanf ("%s", word3);

scanf ("$s", word4);

printf ("\n");

printf ("wordl = $s\nword2 = %s\n", wordl, word2);
printf ("word3 = $s\nword4 = %s\n", word3, word4);

Output

Enter text
Oxford Road, London M17ED

wordl = Oxford
word?2 = Road,
word3 = London
word4 M17ED

Enter text

Oxford-Road, London-M17ED United Kingdom
wordl = Oxford-Road

word2 = London-M17ED

word3 = United

word4 Kingdom

Fig.8.1 Reading a series of words using scanf

Example 8.2
Write a program to read a line of text containing a series of words from the terminal.

The program shown in Fig.8.2 can read a line of text (upto a maximum of 80 characters) into the
string line using getchar function. Every time a character is read, it is assigned to its location in
the string line and then tested for newline character. When the newline character is read
(signalling the end of line), the reading loop is terminated and the newline character is replaced
by the null character to indicate the end of character string.

When the loop is exited, the value of the index ¢ is one number higher than the last character
position in the string (since it has been incremented after assigning the new character to the

string). Therefore the index value ¢-1 gives the position where the null character is to be stored.

PROGRAM TO READ A LINE OF TEXT FROM TERMINAL

Program
#include <stdio.h>

main()

{
char 1line[81], character;
int c;

c = 0;

printf ("Enter text. Press <Return> at end\n");
do
{
character = getchar();
line[c] = character;
c++;
}

while (character != '\n');
c=c-1;

line[c] = "\0';

printf ("\n%s\n", line);

}

Output
Enter text. Press <Return> at end
Programming in C is interesting.
Programming in C is interesting.

Enter text. Press <Return> at end
National Centre for Expert Systems, Hyderabad.

National Centre for Expert Systems, Hyderabad.

Fig.8.2 Program to read a line of text from terminal

Example 8.3
Write a program to copy one string into another and count the number of characters copied.

The program is shown in Fig.8.3. We use a for loop to copy the characters contained inside
string2 into the string1. The loop is terminated when the null character is reached. Note that we
are again assigning a null character to the string1.

COPYING ONE STRING INTO ANOTHER

Program

main()

{
char stringl[80], string2[80];

int i;

printf ("Enter a string \n");
printf ("?");

scanf ("%s", string2);

for(1=0 ; string2[i] != '\0'; i++)
stringl[i] = string2[il];
stringl[i] = '\0';

printf ("\n");
printf ("$s\n", stringl);
printf ("Number of characters = %d\n", i);

}

Output
Enter a string
?Manchester

Manchester
Number of characters

10

Enter a string
?Westminster

Westminster
Number of characters = 11

Fig.8.3 Copying one string into another

Example 8.4

Write a program to store the string "United Kingdom" in the array country and display the string
under various format specifications.

The program and its output are shown in Fig.8.4. The output illustrates the following features of
the %s specifications.
1. When the field width is less than the length of the string, the entire string is printed.

2. The integer value on the right side of the decimal point specifies the number of
characters to be printed.

3. When the number of characters to be printed is specified as zero, nothing is printed.
4. The minus sign in the specification causes the string to be printed left-justified.

5. The specification % .ns prints the first n characters of the string

WRITING STRINGS USING %s FORMAT

Program

main ()

{
char country[1l5] = "United Kingdom";

printf ("\n\n");
printf ("*123456789012345*\n") ;

printf (" -—————————————- \n") ;
printf ("$15s\n", country):;
printf ("$5s\n", country);
printf ("$15.6s\n", country);
printf ("$-15.6s\n", country);
printf ("$15.0s\n", country);
printf ("%$.3s\n", country);
printf ("$s\n", country);
printf ("-—--—-------—-———- \n") ;

}

Output
123456789012345%

United Kingdom
United Kingdom
United

United

Uni
United Kingdom

Fig.8.4 Writing strings using %s format

The outputs of the program in Fig.8.5, for variable specifications %12.*s, %.*s, and %*.1s are
shown in Fig.8.6, which further illustrates the variable field width and the precision specifications.

PRINTING SEQUENCES OF CHARACTERS

Program

main ()

{

int ¢, d;
char string[] = "CProgramming";

printf ("\n\n") ;
printf("---------—-——- \n") ;
for(c =0 ; c <= 11 ; c++)
{

d=—c¢c + 1;

printf ("|%-12.*s|\n", d, string);
}

printf (" |-—-—————---——- [\n") ;
for(c =11 ; c >= ; c-—)
{

d=c+ 1;

printf ("|%-12.*s|\n", d, string);

C

CP

CPr

CPro

CProg
CProgr
CProgra
CProgram
CProgramm
CProgrammi
CProgrammin
CProgramming

Output

CProgramming
CProgrammin
CProgrammi
CProgramm
CProgram
CProgra
CProgr
CProg

CPro

CPr

CP

C

Fig.8.5 lllustration of variable field specifications

Example 8.6

Write a program which would print the alphabet set a to z and A to Z in decimal and character
form.

The program is shown in Fig.8.7. In ASCII character set, the decimal numbers 65 to 90 represent
uppercase alphabets and 97 to 122 represent lowercase alphabets. The values from 91 to 96 are
excluded using an if statement in the for loop.

PRINTING ALPHABET SET IN DECIMAL AND CHARACTER FORM

Program

main ()

{

char «c¢;

printf ("\n\n");
for(c =65 ; ¢c <=122 ; ¢c=c¢c + 1)
{
if(c > 90 && ¢ < 97)
continue;

printf ("[%4d - %c ", c, c);
}
printf ("|\n");

Output
| 65 - A | 66 -B | 67 -C | 68 -D| 69 -E | 70 -F
| 71 -G | 72 -H | 73 -1 | 74 -3 1| T5-K | 76 - 1L
| 77 -M | 78 -N| 79 -0 80-P]|] 81 -0Q | 82 -R
| 83 -S| 84 -T | 8 -U| 86 -V | 87 -W]|] 88 -X
| 89 -Y | 9 -2 1] 97 -a | 98 -b | 99 - c | 100 - d
| 101 - e | 102 - £ | 103 - g | 104 - h | 105 - i | 106 - j
| 107 - k| 108 -1] 109 - m | 110 - n | 111 - o | 112 - p
| 113 - g | 114 - r | 115 - s | 116 - t | 117 = u | 118 - v
| 119 - w | 120 - x | 121 - vy | 122 - z |

Fig.8.7 Printing of the alphabet set in decimal and character form
Example 8.7

The names of employees of an organization are stored in three arrays, namely first_name,
second_name, and last_name. Write a program to concatenate the three parts into one
string to be called name.

The program is given in Fig.8.8. Three for loops are used to copy the three strings. In the first
loop, the characters contained in the first_name are copied into the variable name until the null
character is reached. The null character is not copied; instead it is replaced by a space by the
assignment statement

namel[i] =" ;
Similarly, the second_name is copied into name, starting from the column just after the space
created by the above statement. This is achieved by the assignment statement

name[i+j+1] = second_name[j];

If first_name contains 4 characters, then the value of i at this point will be 4 and therefore the first
character from second_name will be placed in the fifth cell of name. Note that we have stored a
space in the fourth cell.

In the same way, the statement
nameli+j+k+2] = last_name[k];
is used to copy the characters from last_name into the proper locations of name.

At the end, we place a null character to terminate the concatenated string name. In this example,
it is important to note the use of the expressions i+j+1 and i+j+k+2.

CONCATENATION OF STRINGS

Program

main ()

{

int 1, 3, k ;

char first name[10] = {"VISWANATH"} ;
char second name[10] = {"PRATAP"} ;
char last name[10] = {"SINGH"} ;

char name [30] ;
/* Copy first name into name */

for(i = 0 ; first name[i] != '"\0' ; i++)
name[i] = first name[i] ;

/* End first name with a space */

name([i] = " ' ;

/* Copy second name into name */

for(j = 0 ; second name[j] != '"\0' ; J++)
name [i+j+1] = second name[j] ;

/* End second name with a space */

name[i+j+1] = ;
/* Copy last name into name */

for(k = 0 ; last name[k] != '"\O'; k++)
name [1+]j+k+2] = last namelk] ;

/* End name with a null character */
name [i+j+k+2] = '"\0' ;

printf ("\n\n") ;
printf ("$s\n", name) ;

Output
VISWANATH PRATAP SINGH

Fig.8.8 Concatenation of strings

Example 8.8

s1, s2, and s3 are three string variables. Write a program to read two string constants into s1
and s2 and compare whether they are equal or not. If they are not, join them together. Then
copy the contents of s1 to the variable s3. At the end, the program should print the contents of
all the three variables and their lengths.

The program is shown in Fig.8.9. During the first run, the input strings are "New" and
"York". These strings are compared by the statement

x = stremp(s1, s2);

Since they are not equal, they are joined together and copied into s3 using the statement
strepy(s3, s1);

The program outputs all the three strings with their lengths.

During the second run, the two strings s1 and s2 are equal, and therefore, they are not joined
together. In this case all the three strings contain the same string constant "London".

ILLUSTRATIONS OF STRING-HANDLING FUNCTIONS

Program

#include <string.h>

main ()

{

/~k

char s1[20], s2[20], s3[201;
int x, 11, 12, 13;

printf ("\n\nEnter two string constants \n");
printf ("?");
scanf ("%s %s", sl, s2);

comparing sl and s2 */
X = strcmp(sl, s2);
if(x !'= 0)
printf ("\n\nStrings are not equal \n");
strcat (sl, s2); /* joining sl and s2 */
}
else

printf ("\n\nStrings are equal \n");

/* copying sl to s3

/*

/~k

strcpy(s3, sl);
Finding length of strings */

11 strlen(sl);
12 strlen(s2);
13 = strlen(s3);

output */

printf ("\nsl = %$s\t length = %d characters\n"
printf ("s2 = %s\t length = %d characters\n",
printf ("s3 = %s\t length

%d characters\n",

, sl1, 11);

s2,
s3,

12);
13);

Output

Enter two string constants
? New York

Strings are not equal

sl = NewYork length = 7 characters
s2 = York length = 4 characters
s3 = NewYork length = 7 characters

Enter two string constants
? London London

Strings are equal

sl = London length = 6 characters
s2 = London length = 6 characters
s3 = London length = 6 characters

Fig.7.9 lllustration of string handling functions

Example 8.9

Write a program that would sort a list of names in alphabetical order.

A program to sort the list of strings in alphabetical order is given in Fig.8.10. It employs the
method of bubble sorting described in Case Study 1 in the previous chapter.

SORTING OF STRINGS IN ALPHABETICAL ORDER

Program

#define ITEMS 5
#define MAXCHAR 20

main()

{
char string[ITEMS] [MAXCHAR], dummy[MAXCHAR];
int 1 =0, j = 0;
/* Reading the list */
printf ("Enter names of %d items \n ", ITEMS);
while (i < ITEMS)
scanf ("%s", stringl[i++]);
/* Sorting begins */

for (i=1; i < ITEMS; i++) /* Outer loop begins */

{
for (j=1; j <= ITEMS-1i ; Jj++) /*Inner loop begins*/
{

if (strcmp (string[j-1], string[j]) > 0)
{ /* Exchange of contents */
strcpy (dummy, string[j-1]);
strcpy (string[j-1], string[jl):
strcpy (stringl[j], dummy);
}

} /* Inner loop ends */
} /* Outer loop ends */

/* Sorting completed */
printf ("\nAlphabetical list \n\n");
for (i=0; 1 < ITEMS ; 1++)

printf ("%s", stringl[il]);

Output

Enter names of 5 items
London Manchester Delhi Paris Moscow
Alphabetical 1list

Delhi
London
Manchester
Moscow
Paris

Fig.8.10 Sorting of strings.

Case Study

Calculation of Area Under a Curve

One of the applications of computers in numerical analysis is computing the area under a curve.
One simple method of calculating the area under a curve is to divide the area into a number of
trapezoids of same width and summing up the area of individual trapezoids. The area of a
trapezoid is given by

Area=0.5 (h1+h2) b

Where h1 and h2 are the heights of two sides and b is the width as shown in Fib 9.18.

/ /\\ curve >

() b _//
«— —
h1 he
A X _ B

Fig. 9.18 Area under a curve
The program in Fig 9.20 calculates the area for a curve of the function
f(x) = x> + 1
between any two given limits, say, A and B.
Input
Lower limit (A)

Upper limit (B)
Number of trapezoids

Output

Total area under the curve between the given limits.

Algorithm

1. Input the lower and upper limits and the number of trapezoids.

ook wh

Calculate the width of trapezoids.
Initialize the total area.

Calculate the area of trapezoid and add to the total area.
Repeat step-4 until all the trapezoids are completed.
Print total area.

The algorithm is implemented in top-down modular form as in Fig. 9.19.

main

input

The evaluation of f(x) has been done using a separate function so that it can be easily modified to

find_area

function_x

Fig 9.19 Modular Chart

allow other functions to be evaluated.

The output for two runs shows that better accuracy is achieved with larger number of trapezoids.

trap_area

The actual area for the limits 0 and 3 is 12 units (by analytical method)

AREA UNDER A CURVE

Program

#include <stdio.h>

float start point, /* GLOBAL VARIABLES */
end point,
total area;

int numtraps;

main()
{
void input (void) ;
float find area(float a,float b,int n); /* prototype */

print ("AREA UNDER A CURVE”) ;
input ();
total area = find area(start point, end point, numtraps);
printf (Y"TOTAL AREA = $f”, total area);
}
void input (void)
{
printf ("\n Enter lower limit:”);
scanf (“$f”, &start point);
printf (“Enter upper limit:”);
scanf (“%f”, &end point);
printf (“Enter number of trapezoids:”);
scanf (“%d”, &numtraps):;
}
float find area(float a, float b, int n)
{
float base, lower, hl, h2; /* LOCAL VARIABLES */
float function x(float x); /* prototype */
float trap area(float hl,float h2,float base);/*prototype*/

base = (b-1)/n;

lower = a;
for (lower =a; lower <= b-base; lower = lower + base)
{
hl = function x(lower);

hl = function x(lower + base);
total area +=trap_area(hl, h2, base);

return (total area);

float trap area(float height 1,float height 2, float base)
{
float area; /* LOCAL VARIABLE */
area = 0.5 " (height 1 + height 2) ~ base;
return (area) ;

}

float function x(float x)

{
/* F(X) =X * X+ 1*/

return (x*x + 1);

Output

AREA UNDER A CURVE

Enter lower limit: O

Enter upper limit: 3

Enter number of trapezoids: 30
TOTAL AREA = 12.005000

AREA UNDER A CURVE

Enter lower limit: O

Enter upper limit: 3

Enter number of trapezoids: 100
TOTAL AREA = 12.000438

Fig. 9.20 Computing area under a curve

Example 9.1

Write a program with multiple functions that do not communicate any data between them.

A program with three user-defined functions is given in Fig.9.4. main is the calling function that
calls printline and value functions. Since both the called functions contain no arguments, there
are no argument declarations. The printline function, when encountered, prints a line with a
length of 35 characters as prescribed in the function. The value function calculates the value of

principal amount after a certain period of years and prints the results. The following equation is
evaluated repeatedly:

value = principal(1+interest-rate)

FUNCTIONS WITH THE ARGUMENTS, NO RETURN VALUES

Program

/* Function declaration */
void printline (void);
void wvalue (void);

main ()
{
printline () ;
value () ;
printline () ;
}
/* Functionl: printline() */
void printline (void) /* contains no arguments */
{
int 1 ;

for(i=1l; i <= 35; i++)
printf ("&%c",'-");
printf ("\n");
}

/* Function2: value() */
void value (void) /* contains no arguments */
{

int year, period;

float inrate, sum, principal;

printf ("Principal amount?");
scanf ("%f", é&principal);
printf ("Interest rate? ")
scanf ("$f", &inrate);

printf ("Period? ")
scanf ("%d", é&period);

sum = principal;
year = 1;
while (year <= period)
{
sum = sum * (l+inrate);
year = year +1;
}
printf ("\n%8.2f %5.2f %54 %12.2f\n",
principal,inrate,period, sum) ;

Principal amount? 5000

Interest rate? 0.12
Period? 5
5000.00 0.12 5 8811.71

Fig.9.4 Functions with no arguments and no return values

Example 9.2

Modify the program of Example 9.1 to include the arguments in the function calls.

The modified program with function arguments is presented in Fig.9.7. Most of the program is
identical to the program in Fig.9.4. The input prompt and scanf assignment statement have been
moved from value function to main. The variables principal, inrate, and period are declared in
main because they are used in main to receive data. The function call

value(principal, inrate, period);
passes information it contains to the function value.
The function header of value has three formal arguments p,r, and n which correspond to the
actual arguments in the function call, namely, principal, inrate, and period. On execution of the

function call, the values of the actual arguments are assigned to the corresponding formal
arguments. In fact, the following assignments are accomplished across the function boundaries:

p = principal;
r = inrate;
n = period;

FUNCTIONS WITH ARGUMENTS BUT NO RETURN VALUES

Program

/* prototypes */
void printline (char c);
void value (float, float, int);

main()

{
float principal, inrate;
int period;

printf ("Enter principal amount, interest");
printf (" rate, and period \n");

scanf ("%f $f %d", &principal, &inrate, &period);
printline('Z");

value (principal, inrate,period) ;

printline('C'");

void printline (char ch)
{
int i ;
for (i=1; 1 <= 52; 1i++)
printf ("%c",ch);
printf ("\n");

void value(float p, float r, int n)

int year ;
float sum ;
sum = p ;
year = 1;
while (year <= n)
{
sum = sum * (l+r);
year = year +1;
1
printf ("$f\t%f\t%d\t%f\n",p, r,n, sum) ;

Output

Enter principal amount, interest rate, and period
5000 0.12 5

LLLLLLLLL L0000 0200000202220 20202022220202020202220202022222020222227
5000.000000 0.120000 5 8811.708984
CCCCCCCCCCCCCCCCCCCCCCCCCCeeceeeeeeeceeccceeccecececceccecece

Fig.9.7 Functions with arguments but no return values

Example 9.3

In the program presented in Fig. 9.7 modify the function value, to return the final amount
calculated to the main, which will display the required output at the terminal. Also extend the
versatility of the function printline by having it to take the length of the line as an argument.

The modified program with the proposed changes is presented in Fig. 9.9. One major change is
the movement of the printf statement from value to main.

FUNCTIONS WITH ARGUMENTS AND RETURN VALUES

Program

void printline (char ch, int len);

value (float, float, int);

main()

{
float principal, inrate, amount;
int period;
printf (“Enter principal amount, interest”);
printf (“rate, and period\n”);
scanf (%f $f %d”, &principal, &inrate, &period);
printline (‘*’ , 52);
amount = value (principal, inrate, period);
printf (M\n%$E\tSE\LSd\t$f\n\n"”, principal,

inrate,period, amount) ;

printline('=’,52);

}

void printline(char ch, int len)

{

int 1;
for (i=1l;i<=len;i++) printf (“%c”,ch);
printf (“\n”);

}

value (float p, float r, int n) /* default return type */
{

int year;

float sum;

sum = p; year = 1;

while (year <=n)

{

sum = sum * (l+r);
year = year +1;
}
return (sum) ; /* returns int part of sum */

Output

Enter principal amount, interest rate, and period
5000 0.12 5

R IR b I IR IR I I b 4

5000.000000 0.1200000 5 8811.000000

Fig.9.9 Functions with arguments and return values

Example 9.4

Write a function power that computes x raised to the power y for integers x and y and returns
double-type value.

Fig 9.10 shows a power function that returns a double. The prototype declaration
double power(int, int);

appears in main, before power is called.

POWER FUNCTIONS

Program
main()
{ int x,y; /*input data */
double power (int, int); /* prototype declaration*/
printf (“Enter x,y:”);

scanf (“%d %d” , &x,&y);
printf (“%d to power %d is $f\n”, x,y,power (x,V));

}

double power (int x, int vy);

{

double p;
p=1.0; /* x to power zero */
if(y >=o0)
while (y—-) /* computes positive powers */
p = x;
else
while (y++) /* computes negative powers */
p /= x;

return (p) ;

Output

Enter x,y:16?
16 to power 2 is 256.000000

Enter x,y:1677
16 to power -2 is 0.003906

Fig 9.10 Illustration of return of float values

Example 9.5

Write a program to calculate the standard deviation of an array of values. The array
elements are read from the terminal. Use functions to calculate standard deviation and
mean.

Standard deviation of a set of n values is given by

n
SD= ---2/41-xi)2 —
N =1

Where x is the mean of the values.

FUNCTIONS WITH ARRAYS

Program
#include <math.h>
#define SIZE 5

float std dev(float al[], int n);
float mean (float al[], int n);

main()

{
float value[SIZE];
int 1i;

printf ("Enter %d float values\n", SIZE);
for (i=0 ;i < SIZE ; 1i++)
scanf ("$f", &valuel[il]);
printf ("Std.deviation is %$f\n", std dev(value,SIZE));
}

float std dev(float a[], int n)
{

int 1i;
float x, sum = 0.0;
x = mean (a,n);
for(i=0; i < n; 1i++)
sum += (x-al[i])*(x-al[i]);
return (sgrt (sum/ (float)n)) ;

}

float mean(float al]l,int n)

{

int 1 ;

float sum = 0.0;

for(i=0 ; 1 < n ; 1++)
sum = sum + af[i];

return (sum/ (float)n) ;

Output
Enter 5 float wvalues
35.0 67.0 79.5 14.20 55.75

Std.deviation 1s 23.231582

Fig.9.11 Passing of arrays to a function

Example 9.6

Write a program that uses a function to sort an array of integers.

A program to sort an array of integers using the function sort() is given in Fig.9.12. Its output
clearly shows that a function can change the values in an array passed as an argument.

SORTING OF ARRAY ELEMENTS

Program

void sort(int m, int x[]);
main ()
{
int 1i;
int marks[5] = {40, 90, 73, 81, 35};

printf ("Marks before sorting\n");
for(i = 0; i < 5; 1++)

printf ("%d ", marks[i]);
printf ("\n\n") ;

sort (5, marks);

printf ("Marks after sorting\n");
for(i = 0; i < 5; 1i++)
printf ("%4d", marks[i]);
printf ("\n");
}

void sort(int m, int x[1)

{

int i, j, t;

for(i = 1; 1 <= m-1; 1i++)
for(j = 1; j <= m-1i; j++)
if(x[J-11 >= x[3])
{
t = x[j-1];
x[3-11 = x[31;
x[J] = t;

Output
Marks before sorting
40 90 73 81 35
Marks after sorting
35 40 73 81 90
Fig.9.12 Sorting of array elements using a function
Example 9.7

Write a multifunction to illustrate how automatic variables work.

A program with two subprograms function1 and function2 is shown in Fig.9.13. m is an
automatic variable and it is declared at the beginning of each function. m is initialized to 10, 100,
and 1000 in function1, function2, and main respectively.

When executed, main calls function2 which in turn calls function1. When main is active, m =
1000; but when function2 is called, the main's m is temporarily put on the shelf and the new
local m = 100 becomes active. Similarly, when function1 is called, both the previous values of m
are put on the shelf and the latest value of m (=10) becomes active. As soon as function1
(m=10) is finished, function2 (m=100) takes over again. As soon it is done, main (m=1000)
takes over. The output clearly shows that the value assigned to m in one function does not affect
its value in the other functions; and the local value of m is destroyed when it leaves a function.

ILLUSTRATION OF WORKING OF auto VARIABLES

Program

void functionl (void) ;
void function?2 (void) ;

main()

int m = 1000;
function2 () ;

printf ("$d\n",m) ; /* Third output */
void functionl (void)
int m = 10;

printf ("$d\n",m) ; /* First output */

voilid function?2 (void)

int m = 100;

functionl () ;
printf ("$d\n",m); /* Second output */

Output
10
100
1000
Fig.9.13 Working of automatic variables
Example 9.8

Write a multifunction program to illustrate the properties of global variables.

A program to illustrate the properties of global variables is presented in Fig.9.14. Note that
variable x is used in all functions but none except fun2, has a definition for x. Because x has
been declared 'above' all the functions, it is available to each function without having to pass x as
a function argument. Further, since the value of x is directly available, we need not use return(x)
statements in fun1 and fun3. However, since fun2 has a definition of x, it returns its local value
of x and therefore uses a return statement. In fun2, the global x is not visible. The local x hides
its visibility here.

ILLUSTRATION OF PROPERTIES OF GLOBAL VARIABLES

Program

int funl (void) ;
int fun2 (void);
int fun3(void);
int x ; /* global */

main (

}
funl (

{
}

int £
{

}

x = 10 ; /* global x */
printf("x = %d\n", x);
printf ("x = %d\n", funl());
printf ("x = %d\n", fun2()):;
printf ("x = %d\n", fun3()):;
void)

x =x + 10 ;
un2 (void)
int x ; /* local */

x =1 3
return (x);

fun3 (void)

{

}

x = x + 10 ; /* global x */

Output x = 10
X 20
x =1
x = 30
Fig.9.14 lllustration of global variables
Example 9.9

Write a program to illustrate the properties of a static variable.

he program in Fig.9.15 explains the behaviour of a static variable.

ILLUSTRATION OF STATIC VARIABLE

Program

void stat (void) ;
main ()
{
int 1i;
for (i=1; i<=3; i++)
stat ();
}

void stat (void)

static int x = 0;

X = x+1;
printf ("x = %d\n", x);
}
Output
x =1
X = 2
x =3

Fig.9.15 lllustration of static variable

CASE STUDY
Book Shop Inventory

A book shop uses a personal computer to maintain the inventory of books that are being sold at
the shop. The list includes details such as author, title, price, publisher, stock position, etc.
Whenever a customer wants a book, the shopkeeper inputs the title and author of the book and
the system replies whether it is in the list or not. If it is not, an appropriate message is displayed.
If book is in the list, then the system displays the book details and asks for number of copies. If
the requested copies are available, the total cost of the books is displayed; otherwise the
message "Required copies not in stock" is displayed.

A program to accomplish this is shown in Fig.10.8. The program uses a template to define the
structure of the book. Note that the date of publication, a member of record structure, is also
defined as a structure.

When the title and author of a book are specified, the program searches for the book in the list
using the function
look_up(table, s1, s2, m)

The parameter table which receives the structure variable book is declared as type struct
record. The parameters s1 and s2 receive the string values of title and author while m receives
the total number of books in the list. Total number of books is given by the expression

sizeof(book)/sizeof(struct record)
The search ends when the book is found in the list and the function returns the serial
number of the book. The function returns -1 when the book is not found. Remember that
the serial number of the first book in the list is zero. The program terminates when we
respond "NO" to the question

Do you want any other book?
Note that we use the function
get(string)

to get title, author, etc. from the terminal. This enables us to input strings with spaces such as "C
Language". We cannot use scanf to read this string since it contains two words.

Since we are reading the quantity as a string using the get(string) function, we have to convert it
to an integer before using it in any expressions. This is done using the atoi() function.

BOOK SHOP INVENTORY

Programs

#include <stdio.h>
#include <string.h>

struct record

{
char author[20];
char title[307];
float price;

struct

{
char month[10];

int year;

}

date;
char publisher[10];
int quantity;

}i
int look up(struct record table[],char sl[],char s2[],int m);
void get (char string []);

main ()

{
char title[30], author[20];
int index, no of records;
char response[10], quantity[10];
struct record book[] = {
{"Ritche","C Language",45.00,"May",1977,"PHI", 10},
{"Kochan", "Programming in C",75.50,"July",1983, "Hayden", 5},
{"Balagurusamy", "BASIC",30.00, "January",1984,"TMH",0},
{"Balagurusamy", "COBOL", 60.00, "December", 1988, "Macmillan", 25}

}i

no of records = sizeof (book)/ sizeof (struct record);
do

{

printf ("Enter title and author name as per the list\n");

printf ("\nTitle: ") ;
get (title);

printf ("Author: "y,
get (author) ;

index = look up(book, title, author, no of records);

if (index !'= -1) /* Book found */
{
printf ("\n%s %s %.2f %s %d $s\n\n",
book[index] .author,
book[index] .title,
book[index] .price,
book[index] .date.month,
book[index] .date.year,
book[index] .publisher) ;
printf ("Enter number of copies:");

get (quantity) ;
if (atoi(quantity) < book[index].quantity)

printf ("Cost of %d copies = %.2f\n",atoi (quantity),
book[index] .price * atoi(quantity));
else
printf ("\nRequired copies not in stock\n\n");
}

else

printf ("\nBook not in list\n\n");

printf ("\nDo you want any other book?

get (response) ;
}
while (response[0]
printf ("\n\nThank you.

IYI ||

}

void get (char string [])
{
char
int
do
{

c;

i = 0;

c = getchar();

string[i++] =
}
while (c
string[i-1] =

=

int look up(struct record table[],char
int iy
for(i = 0; 1 < m;
if(strcmp(sl,
strcmp (s2,
return (i) ;
return(-1);

i++)
table[i] .title) =
table[i] .author)

response[0] ==
Good bye!\n");

(YES / NO):");

')

sl[],char s2[],int m)

0 &&

== 0)
/* book found
/* book not found

*/
*/

Output

Enter title and author name as per the list

Title:
Author:

BASIC
Balagurusamy

Balagurusamy BASIC 30.00 January 1984 TMH

Enter number of copies:5

Required copies not in stock
Do you want any other book?

Enter title and

Title:
Author:

COBOL
Balagurusamy

(YES / NO):y
author name as per the list

Balagurusamy COBOL 60.00 December 1988 Macmillan

Enter number of copies:7

Cost of 7 copies = 420.00

Do you want any other book? (YES / NO):y
Enter title and author name as per the list

Title: C Programming
Author: Ritche
Book not in list

Do you want any other book? (YES / NO):n

Thank you. Good bye!

Fig.10.8 Program of bookshop inventory

Example 10.1

Define a structure type, struct personal that would contain person name, date of joining and
salary. Using this structure, write a program to read this information for one person from the
keyboard and print the same on the screen.

Structure definition along with the program is shown in Fig.10.1. The scanf and printf functions
illustrate how the member operator ".' is used to link the structure members to the structure
variables. The variable name with a period and the member name is used like an ordinary
variable.

DEFINING AND ASSIGNING VALUES TO STRUCTURE MEMBERS

Program
struct personal

{

char name[20];

int day;
char month[10];
int year;

float salary;
bi
main ()
{

struct personal person;

printf ("Input Values\n");

scanf ("%s %d %s %d %f",
person.name,
&person.day,
person.month,
&person.year,
&person.salary);

printf ("%$s %d %s %d %f\n",
person.name,
person.day,
person.month,
person.year,
person.salary);

Output
Input Values

M.L.Goel 10 January 1945 4500
M.L.Goel 10 January 1945 4500.00

Fig.10.1 Defining and accessing structure members

Example 10.2

Write a program to illustrate the comparison of structure variables.

The program shown in Fig.10.2 illustrates how a structure variable can be copied into another of
the same type. It also performs member-wise comparison to decide whether two structure
variables are identical.

COMPARISON OF STRUCTURE VARIABLES

Program

struct class

{
int number;
char name[20];
float marks;

}s

main ()
{
int x;
struct class studentl = {111,"Rao",72.50};
struct class student2 = {222,"Reddy", 67.00};
struct class student3;
student3 = student2;
X = ((student3.number == student2.number) &&
(student3.marks == student2.marks)) 2?2 1 : O;
if(x == 1)
{
printf ("\nstudent2 and student3 are same\n\n");
printf ("$d %s %f\n", student3.number,
student3.name,
student3.marks) ;
}
else

printf ("\nstudent2 and student3 are different\n\n");

Output
student?2 and student3 are same

222 Reddy 67.000000

Fig.10.2 Comparing and copying structure variables

Example 10.3

For the student array discussed above, write a program to calculate the subject-wise and
student-wise totals and store them as a part of the structure.

The program is shown in Fig.10.4. We have declared a four-member structure, the fourth one for
keeping the student-totals. We have also declared an array total to keep the subject-totals and
the grand-total. The grand-total is given by total.total. Note that a member name can be any
valid C name and can be the same as an existing structure variable name. The linked name
total.total represents the total member of the structure variable total.

ARRAYS OF STRUCTURES

Program

struct marks

{

int subl;
int sub2;
int sub3;

int total;
i
main ()
{
int 1i;
struct marks student[3] = {{45,67,81,0},
{75,53,69,0},
{57,36,71,0}};
struct marks total;

for(i = 0; i <= 2; i++)
{
student[i] .total = student[i].subl +
student[i] .sub2 +
student[i] .sub3;

total.subl = total.subl + student[i].subl;
total.sub2 = total.sub2 + student[i].sub2;
total.sub3 = total.sub3 + student[i].sub3;
total.total = total.total + student[i].total;

}

printf (" STUDENT TOTAL\n\n") ;

for(i = 1 <= 2; 1i++)

0;
printf ("Student [%d] %d\n", 1i+41,student[i].total);

printf ("\n SUBJECT TOTAL\n\n") ;

printf ("%s %d\n%s %$d\n%s %d\n",
"Subject 1 ", total.subl,
"Subject 2 ", total.sub2,
"Subject 3 ", total.sub3);

printf ("\nGrand Total = %d\n", total.total):;

Output

STUDENT TOTAL
Student[1] 193
Student[2] 197
Student [3] 164
SUBJECT TOTAL
Subject 1 177
Subject 2 156
Subject 3 221
Grand Total = 554

Fig.10.4 Illustration of subscripted structure variables

Example 10.4

Rewrite the program of Example 10.3 using an array member to represent the three subjects.

The modified program is shown in Fig.10.5. You may notice that the use of array name for
subjects has simplified in code.

ARRAYS WITHIN A STRUCTURE

Program

main ()
{
struct marks
{
int subl[3];
int total;
}s
struct marks student[3] =
{45,67,81,0,75,53,69,0,57,36,71,0};

struct marks total;
int 1i,73;

for(i = 0; 1 <= 2; 1i++)
{ for(j = 0; j <= 2; J++)
{ student[i].total += student[i].sub[]j];
total.sub[j] += student[i].sub[]j];
iotal.total += student[i].total;

}

printf ("STUDENT TOTAL\n\n") ;
for(i = 0; 1 <= 2; 1i++)
printf ("Student [%d] %d\n", 141, student[i].total);
printf ("\nSUBJECT TOTAL\n\n") ;
for(j = 0; j <= 2; j++)
printf ("Subject-%d %$d\n", J+1, total.sub[]J]):
printf ("\nGrand Total = %$d\n", total.total);
}
Output
STUDENT TOTAL
Student[1] 193
Student[2] 197
Student [3] 164
SUBJECT TOTAL
Subject-1 177
Subject-2 156
Subject-3 221

Grand Total 554

Fig.10.5 Use of subscripted members in structures

Example 10.5

Write a simple program to illustrate the method of sending an entire structure as a
parameter to a function.

A program to update an item is shown in Fig.10.6. The function update receives a copy of the
structure variable item as one of its parameters. Note that both the function update and the
formal parameter product are declared as type struct stores. It is done so because the function
uses the parameter product to receive the structure variable item and also to return the updated
values of item.

The function mul is of type float because it returns the product of price and quantity. However,
the parameter stock, which receives the structure variable item is declared as type struct
stores.

The entire structure returned by update can be copied into a structure of identical type. The
statement

item = update(item,p_increment,q_increment);

replaces the old values of item by the new ones.
STRUCTURES AS FUNCTION PARAMETERS

Program
/* Passing a copy of the entire structure */

struct stores
{
char name[20];
float price;
int quantity;
i
struct stores update (struct stores product, float p, int qg);
float mul (struct stores stock);

main ()

{
float p_increment, value;
int g_increment;

struct stores item = {"XyYz", 25.75, 12};
printf ("\nInput increment values:");

printf (" price increment and quantity increment\n");
scanf ("%$f %d", &p_increment, &g increment);

/*____________________________*/
item = update(item, p increment, g increment);

J* — — — — — — — - - o o L LD ooy
printf ("Updated values of item\n\n");
printf ("Name : %$s\n",item.name) ;
printf ("Price : $f\n",item.price);
printf ("Quantity : %d\n",item.quantity);

/2 Y
value = mul (item);

/*____________________________*/
printf ("\nValue of the item = $f\n", value);

}

struct stores update(struct stores product, float p, int q)
{

product.price += p;

product.quantity += q;

return (product) ;

float mul (struct stores stock)

{

return (stock.price * stock.quantity);

}

Output

Input increment values: price increment and quantity increment
10 12

Updated values of item

Name ¢ XYZ

Price : 35.750000

Quantity : 24

Value of the item = 858.000000

Fig.10.6 Using structure as a function parameter

CASE STUDIES

1. Processing of Examination Marks

Marks obtained by a batch of students in the Annual Examination are tabulated as follows:

Student name Marks obtained
S.Laxmi 45 67 38 55
V.S.Rao 77 89 56 69

It is required to compute the total marks obtained by each student and print the rank list based on
the total marks.

The program in Fig.11.14 stores the student names in the array name and the marks in the array
marks. After computing the total marks obtained by all the students, the program prepares and
prints the rank list. The declaration

int marks[STUDENTS] [SUBJECTS+1];

defines marks as a pointer to the array's first row. We use rowptr as the pointer to the row of
marks. The rowptr is initialized as follows:

int (*rowptr) [SUBJECTS+1] = array;
Note that array is the formal argument whose values are replaced by the values of the actual
argument marks. The parentheses around *rowptr makes the rowptr as a pointer to an array of
SUBJECTS+1 integers. Remember, the statement

int “*rowptr[SUBJECTS+1];
would declare rowptr as an array of SUBJECTS+1 elements.
When we increment the rowptr (by rowptr+1), the incrementing is done in units of the size of

each row of array, making rowptr point to the next row. Since rowptr points to a particular row,
(*rowptr)[x] points to the xth element in the row.

POINTERS AND TWO-DIMENSIONAL ARRAYS

Program

#define STUDENTS 5
#define SUBJECTS 4
#include <string.h>

main ()

{
char name[STUDENTS] [20];
int marks[STUDENTS] [SUBJECTS+1];
printf ("Input students names & their marks in four subjects\n");
get list (name, marks, STUDENTS, SUBJECTS);
get sum(marks, STUDENTS, SUBJECTS+1);

printf ("\n");
print list (name,marks, STUDENTS, SUBJECTS+1) ;

get rank list (name, marks, STUDENTS, SUBJECTS+1);

printf ("\nRanked List\n\n");
print list (name,marks, STUDENTS, SUBJECTS+1) ;

/* Input student name and marks */
get list(char *string[],
int array [] [SUBJECTS +1], int m, int n)
{
int i, j, (Frowptr) [SUBJECTS+1] = array;
for(i = 0; 1 < m; i++)

{
scanf ("%s", stringl[i]);
for(j = 0;

(

7 < SUBJECTS; j++)
scanf ("%d", & (* (rowptr + 1)) I[3]);

}
}
/* Compute total marks obtained by each student */
get sum(int array [] [SUBJECTS +1], int m, int n)
{

int i, j, (*rowptr) [SUBJECTS+1] = array;

for(i = 0; i < m; i++)

{

(* (rowptr + 1)) [n-1] = O;

)

]
for(j =0; j < n-1; J++
n-1] += (*(rowptr + 1)) I[J];

(* (rowptr + 1)) [

/* Prepare rank list based on total marks */
get rank list(char *string [],

int array [] [SUBJECTS + 1]

int m,

int n)

int i, Jj, k, (*rowptr) [SUBRJECTS+1] = array;
char *temp;

for(i = 1; 1 <= m-1; i++)
for(j = 1; 3 <= m-1i; J++)
if((*(rowptr + j-1)) [n-1] < (*(rowptr + J))[n-1])
{
swap_string(string[j-1], stringl[j]);
for(k = 0; k < n; k++)
swap_int (& (* (rowptr + j-1)) [k], & (* (rowptr+j)) [k]);
}
1
/* Print out the ranked list */
print list(char *stringl[],
int array [] [SUBJECTS + 1],
int m,
int n)
{
int i, j, (*rowptr) [SUBJECTS+1] = array;
for(i = 0; i < m; i++)

}

{
printf ("%$-20s", string[il]):
for(j = 0; 3 < n; J++)
printf ("$5d", (* (rowptr + 1)) [J]);
printf ("\n");

—_— o~

/* Exchange of integer values */

swap_int (int *p, int *q)

{

int temp;

temp = *p;
*p = *q;
*q = temp;

/* Exchange of strings */

swap_ string(char sl[], char s2[])

{

char swaparea[256];

int iz

for(i = 0; i < 256; i++)
swapareal[i] = '\0';

i = 0;

while(s1l[i] != '"\0' && 1 < 256)
{

swapareal[i] = sl[i];
i++;
}
i=0;
while (s2[1] != '"\0' && 1 < 256)

{
sl[i] = s2[1];

sl[++i] = "\0"';
}
i=0;
while (swaparea([i] != '\0")
{
s2[1i] = swapareal[i];
s2[++1i] = '"\0';

}

Output

Input students names & their marks in four subjects

S.Laxmi 45 67 38 55

V.S.Rao 77 89 56 69

A.Gupta 66 78 98 45

S.Mani 86 72 0 25

R.Daniel 44 55 66 77

S.Laxmi 45 67 38 55 205
V.S.Rao 77 89 56 69 2091
A.Gupta 66 78 98 45 287
S.Mani 86 72 0 25 183
R.Daniel 44 55 66 77 242

Ranked List

V.S.Rao 77 89 56 69 291
A.Gupta 66 78 98 45 287
R.Daniel 44 55 66 77 242
S.Laxmi 45 67 38 55 205
S.Mani 86 72 0 25 183

Fig.11.14 Preparation of the rank list of a class of students.
2. Inventory Updating
The price and quantity of items stocked in a store changes every day. They may either increase
or decrease. The program in Fig.11.15 reads the incremental values of price and quantity and

computes the total value of the items in stock.

The program illustrates the use of structure pointers as function parameters. &item, the address
of the structure item, is passed to the functions update() and mul(). The formal arguments

product and stock, which receive the value of &item, are declared as pointers of type struct
stores.

STRUCTURES AS FUNCTION PARAMETERS
Using structure pointers

Program

struct stores

{
char name[20];
float price;
int quantity;

}i

main ()

{
void update (struct stores *, float, int);
float p_increment, value;
int g_increment;

struct stores item {"Xyz", 25.75, 12};

struct stores *ptr = &item;
printf ("\nInput increment values:");
printf (" price increment and quantity increment\n");

scanf ("$f %d", &p_increment, &g increment);

/*___________________________*/
update (&item, p increment, g increment);

/X = — = — = — - - - & & - & - - - - - - - - - - - = %/
printf ("Updated values of item\n\n");
printf ("Name : %$s\n",ptr->name) ;
printf ("Price : $f\n",ptr->price);
printf ("Quantity : %d\n",ptr->quantity);

/2
value = mul (&item)

/2
printf ("\nValue of the item = $%f\n", value);

void update (struct stores *product, float p, int qg)

product->price += p;
product->quantity += g;
}

float mul (struct stores *stock)

{

return (stock->price * stock->quantity);

Output

Input increment values: price increment and quantity increment

10 12
Updated values of item

Name . XYZ

Price : 35.750000

Quantity : 24

Value of the item = 858.000000

Fig.11.15 Use of structure pointers as function parameters.

Example 11.1

Write a program to print the address of a variable along with its value.

The program shown in Fig.11.4, declares and initializes four variables and then prints out these
values with their respective storage locations. Notice that we have used %u format for printing
address values. Memory addresses are unsigned integers.

ACCESSING ADDRESSES OF VARIABLES

Program

main ()

{
char as
int X;
float p, g;

addr
addr
addr
addr

a — vAv,.
x = 125;
p = 10.25, g = 18.76;
printf ("%$c is stored at
printf ("%d is stored at
printf ("$f is stored at
printf ("$f is stored at

}
Output

A is stored at addr 4436.

125 is stored at addr 4434.
10.250000 is stored at addr
18.760000 is stored at addr

4442 .
4438.

Fig.11.4 Accessing the address of a variable

Example 11.2

by a printer.

Write a program to illustrate the use of indirection operator ™' to access the value pointed to

The program and output are shown in Fig.11.5. The program clearly shows how we can access
the value of a variable using a pointer. You may notice that the value of the pointer ptr is 4104
and the value it points to is 10. Further, you may also note the following equivalences:

X = *(&x) = *ptr =y
&x = &*ptr

ACCESSING VARIABLES USING POINTERS

o® o© oo
o

o

o

Program

main ()

{
int X, Vi
int *ptr;
x = 10;
ptr = &x;
y = *ptr;
printf("Value of x is %d\n\n", x);
printf ("$d is stored at addr %u\n", x, &x);
printf ("$d is stored at addr %u\n", *&x, &x);
printf ("$d is stored at addr %u\n", *ptr, ptr);
printf ("$d is stored at addr %u\n", y, &*ptr);
printf ("$d is stored at addr %u\n", ptr, &ptr);
printf ("$d is stored at addr %u\n", y, &y);
*ptr = 25;
printf ("\nNow x = %d\n", x);

}

Output

Value of x is 10

10 is stored at addr 4104
10 is stored at addr 4104
10 is stored at addr 4104
10 is stored at addr 4104
4104 is stored at addr 4106
10 is stored at addr 4108

Now x = 25

Fig.11.5 Accessing a variable through its pointer

Example 11.3

Write a program to illustrate the use of pointers in arithmetic operations.

The program in Fig.11.7 shows how the pointer variables can be directly used in
expressions. It also illustrates the order of evaluation of expressions. For example, the
expression

4* -*p2 [/ *p1 +10
is evaluated as follows:

((4*(-("p2)) / (*p1)) + 10

When *pl =

12 and *p2 = 4, this expression evaluates to 9. Remember, since all the

variables are of type int, the entire evaluation is carried out using the integer arithmetic.

ILLUSTRATION OF POINTER EXPRESSIONS

Program

main ()

{
int a, b, *pl, *p2, x, v, zZ;
a = 12;
b 4;
pl = &a;
p2 = &b;
x = *pl * *p2 - 6;
y 4* - *p2 / *pl + 10;
printf ("Address of a = %u\n", pl);
printf ("Address of b = %u\n", p2);
printf ("\n");
printf ("a = %d, b = %d\n", a, b);
printf ("x = %d, y = %d\n", x, V);
*p2 = *p2 + 3;
*pl = *p2 - 5;
z = *pl * *p2 - 6;
printf ("\na = %d, b = %d,", a, b);
printf (" z = %d\n", 2z);

}

Output

Address of a = 4020

Address of b = 4016

a =12, b = 4

x =42, y =9

a=2, b=7, z =28

Fig.11.7 Evaluation of pointer expressions
Example 11.4

Write a program using pointers to compute the sum of all elements stored in an array.

The program shown in Fig.11.8 illustrates how a pointer can be used to traverse an array
element. Since incrementing an array pointer causes it to point to the next element, we need only
to add one to p each time we go through the loop.

POINTERS IN ONE-DIMENSIONAL ARRAY

Program

main ()
{
int *p, sum, 1i;
int x[5] = {5,9,6,3,7};
i = 0;
P = X; /* initializing with base address of x */
printf ("Element Value Address\n\n") ;
while (i < 5)
{

o)

printf (" x[%d] %d %u\n", i, *p, p);

sum = sum + *p; /* accessing array element */
i++, pt+; /* incrementing pointer */
}
printf ("\n Sum = %d\n", sum);
printf ("\n &x[0] = %u\n", &x[0]);
printf ("\n p = %u\n", p);
}
Output
Element Value Address
x[0] 5 166
x[1] 9 168
x[2] 6 170
x[3] 3 172
x[4] 7 174
Sum = 55
&x[0] = 166
P = 176
Fig.11.8 Accessing array elements using the pointer
Example 11.5

Write a program using pointers to determine the length of a character string.

A program to count the length of a string is shown in Fig.11.10. The statement
char *cptr = name;

declares cptr as a pointer to a character and assigns the address of the first character of name
as the initial value. Since a string is always terminated by the null character, the statement

while(*cptr !="\0")
is true until the end of the string is reached.
When the while loop is terminated, the pointer cptr holds the address of the null character.
Therefore, the statement

length = cptr - name;

gives the length of the string name.

[DJEJL[H]I]]

name cpt]
(54) (59)

The output also shows the address location of each character. Note that each character
occupies one memory cell (byte).

POINTERS AND CHARACTER STRINGS

Program

main ()
{
char “*name;
int length;
char “*cptr = name;

name = "DELHI";

printf (“%$s\n”, name);

while (*cptr != '\0")

{
printf ("$c is stored at address %ul\n", *cptr, cptr);
cptr++;

}

length = cptr - name;

printf ("\nLength of the string = %d\n", length);

Output

DELHI

is stored at address 54
is stored at address 55
is stored at address 56
is stored at address 57
is stored at address 58

HiD MO

Length of the string = 5

Fig.11.10 String handling by pointers

Example 11.6

Write a function using pointers to exchange the values stored in two locations in the memory.

The program in Fig.11.11 shows how the contents of two locations can be exchanged using their
address locations. The function exchange() receives the addresses of the variables x and y and
exchanges their contents.

POINTERS AS FUNCTION PARAMETERS

Program

void exchange (int *, int *); /* prototype */
main ()
{

int x, vy;

x = 100;

y = 200;

printf ("Before exchange : x = %d y = %d\n\n", x, V)
exchange (&x, &Vy) ; /* call */

printf ("After exchange : x = %d y = %d\n\n", x, V)

}
exchange (int *a, int *b)

{

int t;
t = *a; /* Assign the value at address a to t */
*a = *b; /* put b into a */
b = t; / put t into b */
}
Output
Before exchange : x = 100 y = 200

After exchange

b
Il

200 vy = 100

Fig.11.11 Passing of pointers as function parameters

Example 11.7

Write a program that uses a function pointer as a function argument.

A program to print the function values over a given range of values is shown in Fig.11.12. The
printing is done by the function table by evaluating the function passed to it by the main.

With table, we declare the parameter f as a pointer to a function as follows:
double (*f)();
The value returned by the function is of type double. When table is called in the statement
table (y, 0.0, 2, 0.5);
we pass a pointer to the function y as the first parameter of table. Note that y is not followed by a
parameter list.
During the execution of table, the statement

value = (*f)(a);

calls the function y which is pointed to by f, passing it the parameter a. Thus the function y is
evaluated over the range 0.0 to 2.0 at the intervals of 0.5.

Similarly, the call
table (cos, 0.0, PI, 0.5);

passes a pointer to cos as its first parameter and therefore, the function table evaluates the
value of cos over the range 0.0 to Pl at the intervals of 0.5.

ILLUSTRATION OF POINTERS TO FUNCTIONS

Program

#include <math.h>

#define PI 3.1415926

double y(double);

double cos (double);

double table (double(*f) (), double, double, double);

main ()

{ printf ("Table of y(x) = 2*x*x-x+1\n\n");
table(y, 0.0, 2.0, 0.5);

printf ("\nTable of cos (x)\n\n");
table (cos, 0.0, PI, 0.5);

}
double table (double(*f) (),double min, double max, double step)

{

double a, value;
for(a = min; a <= max; a += step)
{
value = (*f) (a);
printf ("$5.2f %10.4f\n", a, value);
}
}
double y(double x)
{

}

return (2*x*x-x+1) ;

Output

Table of y(x) = 2*x*x-x+1
0.00 1.0000
0.50 1.0000
1.00 2.0000
1.50 4.0000
2.00 7.0000

Table of cos (x)
0.00 1.0000
0.50 0.8776

1.00 0.5403

1.50 0.0707
2.00 -0.4161
2.50 -0.8011
3.00 -0.9900
Fig.11.12 Use of pointers to functions
Example 11.8

Write a program to illustrate the use of structure pointers.
A program to illustrate the use of a structure pointer to manipulate the elements of an array of

structures is shown in Fig.11.13. The program highlights all the features discussed above. Note
that the pointer ptr (of type struct invent) is also used as the loop control index in for loops.

POINTERS TO STRUCTURE VARIABLES

Program

struct invent
{
char “*name([20];
int number;
float price;
bi
main ()
{
struct invent product[3], *ptr;
printf ("INPUT\n\n") ;
for (ptr = product; ptr < product+3; ptr++)
scanf ("%s %d %f", ptr->name, &ptr->number, &ptr->price);

printf ("\nOUTPUT\n\n") ;

ptr = product;
while (ptr < product + 3)
{
printf ("%$-20s %5d %10.2f\n",
ptr—->name,
ptr->number,
ptr->price);

ptr++;

}

}
Output

INPUT
Washing machine 5 7500
Electric iron 12 350
Two _1in one L 1250

OUTPUT

Washing machine 5 7500.00
Electric iron 12 350.00
Two_in one 7 1250.00

Fig.11.13 Pointer to structure variables

Example 12.1

Write a program to read data from the keyboard, write it to a file called INPUT, again read the
same data from the INPUT file, and display it on the screen.

A program and the related input and output data are shown in Fig.12.1. We enter the input data
via the keyboard and the program writes it, character by character, to the file INPUT. The end of
the data is indicated by entering an EOF character, which is control-Z in the reference system.
(This may be control-D in other systems). The file INPUT is closed at this signal.

WRITING TO AND READING FROM A FILE

Program

#include <stdio.h>

main ()

{
FILE *f1;
char c;

printf ("Data Input\n\n");
/* Open the file INPUT */
f1 = fopen ("INPUT", "w");

/* Get a character from keyboard */
while ((c=getchar()) != EOF)

/* Write a character to INPUT */
putc(c, £fl);

/* Close the file INPUT *x/
fclose (f1l) ;

printf ("\nData Output\n\n");
/* Reopen the file INPUT */
f1l = fopen ("INPUT","xr");

/* Read a character from INPUT*/
while ((c=getc(fl)) != EOF)

/* Display a character on screen */
printf ("sc",c);

/* Close the file INPUT */
fclose (fl);

Output

Data Input

This is a program to test the file handling
features on this system”Z

Data Output

This is a program to test the file handling
features on this system

Fig.12.1 Character oriented read/write operations on a file

Example 12.2

A file named DATA contains a series of integer numbers. Code a program to read these
numbers and then write all 'odd' numbers to a file to be called ODD and all “even' numbers to
a file to be called EVEN.

The program is shown in Fig.12.2. It uses three files simultaneously and therefore we need to
define three-file pointers 1, f2 and f3.

First, the file DATA containing integer values is created. The integer values are read from the
terminal and are written to the file DATA with the help of the statement

putw(number, f1);
Notice that when we type -1, the reading is terminated and the file is closed. The next step is to
open all the three files, DATA for reading, ODD and EVEN for writing. The contents of DATA file
are read, integer by integer, by the function getw(f1) and written to ODD or EVEN file after an
appropriate test. Note that the statement

(number = getw(f1)) != EOF
reads a value, assigns the same to number, and then tests for the end-of-file mark.
Finally, the program displays the contents of ODD and EVEN files. It is important to note that the

files ODD and EVEN opened for writing are closed before they are reopened for reading.

HANDLING OF INTEGER DATA FILES

Program

#include <stdio.h>
main ()
{
FILE *f1, *f2, *£3;
int number, i;

printf ("Contents of DATA file\n\n");
f1 = fopen ("DATA", "w"); /* Create DATA file */
for(i = 1; i <= 30; 1i++)
{
scanf ("%d", &number) ;
if (number == -1) break;
putw (number, £1) ;
}
fclose (fl);

f1 = fopen ("DATA", "r");
f2 = fopen ("ODD", "w");
f3 = fopen ("EVEN", "w");

/* Read from DATA file */
while ((number = getw(fl)) != EOF)
{

if (number %2 == 0)
putw (number, £3); /* Write to EVEN file */
else
putw (number, f2); /* Write to ODD file */
}
fclose (fl);
fclose (£2);
fclose (£3);

f2 = fopen ("ODD","r");
f3 = fopen ("EVEN", "r");
printf ("\n\nContents of ODD file\n\n");

while ((number = getw(f2)) != EOF)
printf ("%4d", number);
printf ("\n\nContents of EVEN file\n\n");

while ((number = getw(f3)) != EOF)
printf ("%$4d", number);

fclose (f2);
fclose (£3);

Output

Contents of DATA file
111 222 333 444 555 666 777 888 999 000 121 232 343 454 565 -1

Contents of ODD file
111 333 555 777 999 121 343 565

Contents of EVEN file
222 444 666 888 0 232 454

Fig.12.2 Operations on integer data

The program is given in Fig.12.3. The filename INVENTORY is supplied through the keyboard.
Data is read using the function fscanf from the file stdin, which refers to the terminal and it is
then written to the file that is being pointed to by the file pointer fp. Remember that the file
pointer fp points to the file INVENTORY.

After closing the file INVENTORY, it is again reopened for reading. The data from the file, along
with the item values are written to the file stdout, which refers to the screen. While reading from a
file, care should be taken to use the same format specifications with which the contents have
been written to the file....é

HANDLING OF FILES WITH MIXED DATA TYPES
(fscanf and fprinf)

Program

#include <stdio.h>

main ()
{
FILE *fp;
int number, quantity, i;
float price, value;
char item[10], filename[10];

printf ("Input file name\n");
scanf ("%$s", filename);

fp = fopen(filename, "w");

printf ("Input inventory data\n\n");
printf ("Item name Number Price Quantity\n");
for(i = 1; 1 <= 3; 1i++)
{
fscanf (stdin, "%s %d %$f %d",
item, &number, &price, &quantity);
fprintf (fp, "%s %d %.2f 34",
item, number, price, quantity):;
}
fclose (fp);
fprintf (stdout, "\n\n");

fp = fopen(filename, "xr");

printf ("Item name Number Price Quantity Value\n") ;
for(i = 1; 1 <= 3; 1i++)
{
fscanf (fp, "%s %d %f d",item, &number, &price, &quantity) ;
value = price * quantity;
fprintf (stdout, "%$-8s %7d %8.2f %$8d %11.2f\n",
item, number, price, quantity, value);
}
fclose (fp) ;

Output

Input file name
INVENTORY
Input inventory data

Item name Number Price Quantity
AAA-1 111 17.50 115
BBB-2 125 36.00 75

C-3 247 31.75 104

Item name Number Price Quantity Value
AAA-1 111 17.50 115 2012.50
BBB-2 125 36.00 75 2700.00
C-3 247 31.75 104 3302.00

Fig.12.3 Operations on mixed data types

Example 12.4

Write a program to illustrate error handling in file operations.

The program shown in Fig.12.4 illustrates the use of the NULL pointer test and feof function.
When we input filename as TETS, the function call

fopen("TETS", "r");

returns a NULL pointer because the file TETS does not exist and therefore the message "Cannot
open the file" is printed out.

Similarly, the call feof(fp2) returns a non-zero integer when the entire data has been read, and
hence the program prints the message "Ran out of data" and terminates further reading.

ERROR HANDLING IN FILE OPERATIONS

Program

#include <stdio.h>

main ()

{
char *filename;
FILE *fpl, *fp2;
int i, number;

fpl = fopen ("TEST", "w");
for(i = 10; 1 <= 100; 1 += 10)
putw (i, fpl);

fclose (fpl);
printf ("\nInput filename\n");

open file:
scanf ("%$s", filename);

if((fp2 = fopen(filename,"r")) == NULL)
{
printf ("Cannot open the file.\n");
printf ("Type filename again.\n\n");
goto open file;

}

else

for(i = 1; i <= 20; i++)
{ number = getw(fp2);
if (feof (fp2))
{
printf ("\nRan out of data.\n");
break;
}
else
printf ("$d\n", number) ;

}

fclose (fp2);

Output

Input filename

TETS

Cannot open the file.
Type filename again.

TEST
10
20
30
40

50
60
70
80
90
100

Ran out of data.

Fig.12.4 lllustration of error handling

Example 12.5

Write a program that uses the functions ftell and fseek.

A program employing ftell and fseek functions is shown in Fig.12.5. We have created a file
RANDOM with the following contents:

Position ----> 012........... 25
Character
stored ---> ABC............ Z

We are reading the file twice. First, we are reading the content of every fifth position and printing
its value along with its position on the screen. The second time, we are reading the contents of
the file from the end and printing the same on the screen.

During the first reading, the file pointer crosses the end-of-file mark when the parameter n of
fsee(fp,n,0) becomes 30. Therefore, after printing the content of position 30, the loop is
terminated.
For reading the file from the end, we use the statement

fseek(fp,-1L,2);

to position the file pointer to the last character. Since every read causes the position to move
forward by one position, we have to move it back by two positions to read the next character.
This is achieved by the function

fseek(fp, -2L, 1);

in the while statement. This statement also tests whether the file pointer has crossed the file
boundary or not. The loop is terminated as soon as it crosses it.

ILLUSTRATION OF fseek & ftell FUNCTIONS

Program

#include <stdio.h>

main ()

{
FILE *fp;
long n;

char c;

fp = fopen ("RANDOM", "w");

while ((c = getchar()) !'= EOF)
putc (c, fp) 7

printf ("No. of characters entered = %1d\n", ftell (fp)):

fclose (fp);
fp = fopen ("RANDOM","r") ;
n = 0L;

while (feof (fp) == 0)

{
fseek (fp, n, 0); /* Position to (n+l1l)th character */
printf ("Position of %c is %1d\n", getc(fp),ftell(fp));
n = n+5L;

}

putchar ('\n'");

fseek (fp,-1L,2); /* Position to the last character */
do
{
putchar (getc (fp))
}
while (!fseek (fp,-2L,1));
fclose (fp) ;

Output

ABCDEFGHIJKLMNOPQRSTUVWXYZ"Z
No. of characters entered = 26

Position of A is O
Position of F is 5
Position of K is 10
Position of P is 15
Position of U is 20
Position of Z is 25
Position of is 30

ZYXWVUTSRQPONMLKJIHGFEDCBA

Fig.12.5 lllustration of fseek and ftell functions

Example 12.6

Write a program to append additional items to the file INVENTORY and print the total contents
of the file.

The program is shown in Fig.12.6. It uses a structure definition to describe each item and a
function append() to add an item to the file.

On execution, the program requests for the filename to which data is to be appended. After
appending the items, the position of the last character in the file is assigned to n and then the file
is closed.

The file is reopened for reading and its contents are displayed. Note that reading and displaying
are done under the control of a while loop. The loop tests the current file position against n and
is terminated when they become equal.

APPENDING ITEMS TO AN EXISTING FILE

Program

#include <stdio.h>

struct invent_record

{

char name[10];

int number;
float price;
int quantity;
i
main ()

{
struct invent record item;
char filename[10];

int response;
FILE *fp;
long n;

void append (struct invent record 8x, file *y);

printf ("Type filename:");
scanf ("$s", filename);

fp = fopen(filename, "a+");
do
{
append (&item, fp);
printf ("\nItem %s appended.\n",item.name) ;
printf ("\nDo you want to add another item\
(1 for YES /0 for NO)?");
scanf ("%d", &response);
} while (response == 1);

n = ftell (fp); /* Position of last character */
fclose (fp) ;

fp = fopen(filename, "r");

while (ftell (fp)

{

< n)

fscanf (fp, "%s %d $Sf sd",

item.name,

&item.number,

&item.price, &item.quantity):;

fprintf (stdout, "%$-8s %7d %8.2f %8d\n",

item.name,

}
fclose (fp

}

) ;

item.number, item.price,

item.quantity) ;

void append(struct invent record *product, File *ptr)

{

printf ("Item name:");
product->name) ;

scanf ("%s

"
14

printf ("Item number:");
&product->number) ;

scanf ("%d

A
4

printf ("Item price:");
&product->price);

scanf ("$£f

A
4

printf ("Quantity:");
&product->quantity) ;

scanf ("%d

A
4

fprintf (ptr,

m"mo o
%s %d

o

¢}

.2f %d",

product->name,
product->number,
product->price,
product->quantity) ;

Output

Type filename:INVENTORY

Item name: XXX
Item number:4
Item price:40
Quantity:34

44
.50

Item XXX appended.
Do you want to add another item(l for YES /0 for NO)?1

Item name:YYY
Item number:5
Item price:50
Quantity:45

55
.50

Item YYY appended.
Do you want to add another item(l for YES /0 for NO)?0

AAA-1
BBB-2
Cc-3
XXX
YYYy

111
125
247
444
555

17.
36.
31.
40.
50.

50
00
75
50
50

115
75
104
34
45

Fig.12.6 Adding items to an existing file

Example 12.7

Write a program that will receive a filename and a line of text as command line
arguments and write the text to the file.

Figure 12.7 shows the use of command line arguments. The command line is
F12 7 TEXT AAAAAA BBBBBB CCCCCC DDDDDD EEEEEE FFFFFF GGGGGG

Each word in the command line is an argument to the main and therefore the total number of
arguments is 9.

The argument vector argv[1] points to the string TEXT and therefore the statement
fp = fopen(argv[1], "w");
opens a file with the name TEXT. The for loop that follows immediately writes the remaining 7

arguments to the file TEXT.

COMMAND LINE ARGUMENTS

Program

#include <stdio.h>

main (argc, argv)
int argc; /* argument count */
char *argv[]; /* list of arguments */
{

FILE *fp;

int 1i;

char word[15];

fp = fopen(argv[1l], "w"); /* open file with name argv[1l] */
printf ("\nNo. of arguments in Command line = %d\n\n",argc);
for(i = 2; 1 < argc; i++)

fprintf (fp,"%s ", argv[il]); /* write to file argv[1l] */

fclose (fp) ;
/* Writing content of the file to screen */

printf ("Contents of %s file\n\n", argv([1l]);
fp = fopen(argvI[l], "r");
for(i = 2; 1 < argc; i++)
{
fscanf (fp, "%s", word);
printf ("$s ", word);

}

fclose (fp) ;
printf ("\n\n");

/* Writing the arguments from memory */

for(i = 0; 1 < argc; 1i++)
printf ("$*s \n", i*5,argv[i]);

Output

C>F12 7 TEXT AAAAAA BBBBBB CCCCCC DDDDDD EEEEEE FFFFFF GGGGG

No. of arguments in Command line = 9

Contents of TEXT file

AAAAAA BBBBBB CCCCCC DDDDDD EEEEEE FFEFFE GGGGGG

C:\C\F12 7.EXE
TEXT
AAAAAA
BBBBBB
ccececee
DDDDDD
EEEEEE
FFFFFF
GGGGGG

Fig.12.7 Use of command line arguments

CASE STUDIES

1. Insertion in a Sorted List

The task of inserting a value into the current location in a sorted linked list involves two
operations:

1. Finding the node before which the new node has to be inserted. We call this node as
‘Key node’.

2. Creating a new node with the value to be inserted and inserting the new node by
manipulating pointers appropriately.

In order to illustrate the process of insertion, we use a sorted linked list created by the create
function discussed in Example 13.3. Figure 13.11 shows a complete program that creates a list
(using sorted input data) and then inserts a given value into the correct place using function
insert.

INSERTING A NUMBER IN A SORTED LIST

Program

#include <stdio.h>
#include<stdio.h>
#define NULL O

struct linked list
{
int number;
struct linked-list *next;
}i
typedef struct linked 1lit node;

main ()
{
int n;
node *head;
void create (node *p);
node *insert (node *p, int n);
void print (node *p);

head = (node *)malloc(sizeof (node));

create (head) ;

printf (“\n”);

printf (“Original list: “);

print (head) ;

printf (“\n\n”);

printf (“Input number to be inserted: “);
scanf (“%d”, &n);

head = inert (head,n);
printf (“\n”);
printf (“New list: “);

print (head);

}

void create (node *1list)

{
printf (“Input a number \n”);
printf (Y (type -999 at end): V),
scanf (“%d”, &list->number);

if (list->number == -999)

{
list->next = NULL;

}

else /* create next node */

{
list->next = (node *)malloc(sizeof (node)) ;
create (list->next);

}

return:

}

void print (node *list)

{
if(list->next != NULL)
{

printf (“%sd -->", list->number);

if(list ->next->next = = NULL)
printf (“%d”, list->next->number);

print (list->next);
}

return:

}

node *insert (node *head, int x)
{
node *pl, *p2, *p;
pl = NULL;
p2 = head; /* p2 points to first node */

for(; p2->number < x; p2 = p2->next)
{

pl = p2;
if (p2->next->next == NULL)
{
p2 = p2->next; /* insertion at end */
break;

}

/*key node found and insert new node */

p = (node)malloc(sizeof(node)); / space for new node */
p—>number = x; /* place value in the new node */
p->next = p2; /*link new node to key node */

if (pl == NULL)
head = p; /* new node becomes the first node */

pl->next = p; /* new node inserted in middle */

return (head);

Output
Input a number
(type —-999 at end); 10

Input a number
(type —-999 at end); 20

Input a number
(type —-999 at end); 30

Input a number
(type —-999 at end); 40

Input a number
(type —-999 at end); -999

Original list: 10 -->20-->30-->40-->-999

Input number to be inserted: 25
New list: 10-->20-->25-->30-->40-->-999

Fig.13.11 Inserting a number in a sorted linked list

The function takes two arguments, one the value to be inserted and the other a pointer to the
linked list. The function uses two pointers, p1 and p2 to search the list. Both the pointers are
moved down the list with p1 trailing p2 by one node while the value p2 points to is compared with
the value to be inserted. The ‘key node’ is found when the number p2 points to is greater (or
equal) to the number to be inserted.

Once the key node is found, a new node containing the number is created and inserted between
the nodes pointed to by p1 and p2. The figures below illustrate the entire process.

key node

head

&> 10 20 30 40 ["

p1 p2
) x = 25 (value to be inserted)

At the start of the search

key node
head
™ 10 20 30 40 ["
Jm l p2
When key node is found
key node
head
® " 10 20 30 40 >
N .
lm i p2
Pe——» 925 |Newnode
When new node is created
key node
head
" 10 20 30 40 >
lm p2
[]

25

When new node is inserted

2. Building a Sorted List

The program in fig. 13.11 can be used to create a sorted list. This is possible by creating ‘one
item’ list using the create function and then inserting the remaining items one after another using
insert function.

A new program that would build a sorted list from a given list of numbers is shown in Fig. 13.12.
The main function creates a ‘base node’ using the first number in the list and then calls the
function insert_sort repeatedly to build the entire sorted list. It uses the same sorting algorithm
discussed above but does not use any dummy node. Note that the last item points to NULL.

CREATION OF SORTED LIST FROM A GIVEN LIST OF

NUMBERS

Program

#include <stdio.h>
#include <stdlib.h>
#define NULL 0

struct linked list

{

b

int number;
struct linked list *next;

typedef struct linked list node;

main ()

{

}

int n;

node *head = NULL;

void print (node *p);

node *insert Sort(node *p, int n);

printf (“Input the list of numbers.\n”);
printf ("At end, type -999.\n”);
scanf (“*%d”, &n) ;

while(n !'= -999)
{
if (head == NULL) /* create ‘base’ node */
{
head = (node *)malloc(sizeof (node));
head ->number = n;
head->next = NULL;

else /* insert next item */
head = insert sort (head,n);

scanf (“%d”, é&n);
}
printf (“\n”);
print (head) ;
print (“\n”) ;

node *insert sort(node *list, int x)

{

node *pl, *p2, *p;
pl = NULL;

p2 = list; /* p2 points to first node */

for(; p2->number < x ; p2 = p2->next)
{
pl = p2;
if (p2->next == NULL)
{
P2 = p2->next; /* p2 set to NULL */
break; /* insert new node at end */

}

/* key node found */

p = (node *)malloc(sizeof (node)); /* space for new node */
p—->number = x; /* place value in the new node */
p->next = p2; /* link new node to key node */
if (pl == NULL)

list = p; /* new node becomes the first node */
else

pl->next = p; /* new node inserted after 1lst node */
return (list);

}
void print (node *list)
{
if (list == NULL)
printf (“"NULL") ;
else
{
printf (“&d-->", list->number) ;
print (list->next;
}

return;

Output

Input the list of number.
At end, type - 999.
80 70 50 40 60 -999

40-->50-->60-->70-->80 —-->NULL

Input the list of number.
At end, type -999.
40 70 50 60 80 -999

40-->50-->60-->70-->80-->NULL

Fig.13.12 Creation of sorted list from a given list of numbers

Example 13.1

Write a program that uses a table of integers whose size will be specified interactively at run
time.

The program is given in Fig.13.2. It tests for availability of memory space of required size. Ifitis
available, then the required space is allocated and the address of the first byte of the space

allocated is displayed. The program also illustrates the use of pointer variable for storing and
accessing the table values.

USE OF malloc FUNCTION

Program

#include <stdio.h>
#include <stdlib.h>
#define NULL O

main ()
{
int *p, *table;
int size;
printf (“"\nWhat is the size of table?”);
scanf (“%$d”,size);

printf (“\n”)
[Fmmmm e Memory allocation -------------—- */
if((table = (int*)malloc(size *sizeof (int))) == NULL)

{

printf (“No space available \n”);
exit (1) ;
}
printf (“*\n Address of the first byte is %u\n”, table);

/* Reading table values*/
printf ("M\nInput table values\n”);
for (p=table; p<table + size; p++)
scanf (“%d”,p) ;
/* Printing table values in reverse order*/

for (p = table + size -1; p >= table; p --)
printf (“*%d is stored at address %u \n”, *p,p);

Output

What is the size of the table? 5
Address of the first byte is 2262

Input table wvalues
11 12 13 14 15

15 is stored at address 2270
14 is stored at address 2268
13 is stored at address 2266
12 is stored at address 2264
11 is stored at address 2262

Fig.13.2 Memory allocation with malloc

Example 13.2

Write a program to store a character string in a block of memory space created by malloc
and then modify the same to store a larger string.
The program is shown in Fig. 13.3. The output illustrates that the original buffer size obtained is
nodifiedtocontaima targer—string.—Note that theorigimat contentsof thebuffer remains—sam
even after modification of the original size.

USE OF realloc AND free FUNCTIONS

Program

#include <stdio.h>
#include<stdlib.h>
#define NULL O

main ()

{

char *buffer;
/* Allocating memory */

if ((buffer = (char *)malloc(10)) == NULL)
{

printf (“malloc failed.\n”);

exit (1) ;
}

printf (“Buffer of size %d created \n",_msize(buffer));
strcpy (buffer, “HYDERABAD”) ;
printf ("\\nBuffer contains: %$s \n “, buffer);

/* Realloction */

if ((buffer = (char *)realloc(buffer, 15)) == NULL)
{

printf (“Reallocation failed. \n”);
exit (1) ;
}

printf ("M\nBuffer size modified. \n”);
printf ("M\nBuffer still contains: %$s \n”,buffer);

strcpy (buffer, “SECUNDERBAD”) ;
printf ("M\nBuffer now contains: %s \n”,buffer);

/* Freeing memory */

free (buffer);
}

Output

Buffer of size 10 created

Buffer contains: HYDERABAD

Buffer size modified

Buffer still contains: HYDERABAD
Buffer now contains: SECUNDERABAD

Fig . 13.3 Reallocation and release of memory space

Example 13.3

Write a program to create a linear linked list interactively and print out the list and the total
number of items in the list.

The program shown in Fig.13.7 first allocates a block of memory dynamically for the first node
using the statement

head = (node *)malloc(sizeof(node));

which returns a pointer to a structure of type node that has been type defined earlier. The linked
list is then created by the function create. The function requests for the number to be placed in
the current node that has been created. If the value assigned to the current node is —999, then
null is assigned to the pointer variable next and the list ends. Otherwise, memory space is
allocated to the next node using again the malloc function and the next value is placed into it.
Not that the function create calls itself recursively and the process will continue until we enter the
number —999.

The items stored in the linked list are printed using the function print which accept a pointer to
the current node as an argument. It is a recursive function and stops when it receives a NULL
pointer. Printing algorithm is as follows;

1. Start with the first node.
2. While there are valid nodes left to print

a) print the current item and
b) advance to next node

Similarly, the function count counts the number of items in the list recursively and return the total
number of items to the main function. Note that the counting does not include the item —999
(contained in the dummy node).

CREATING A LINEAR LINKED LIST

Program

#include<stdio.h>
#include<stdlib.h>
#define NULL O

struct linked list
{
int number;
struct linked list *next;
bi
typedef struct linked list node; /* node type defined */

main ()

node *head;

void create (node *p);

int count (node *p);

void print (node *p);

head = (node *)malloc (sizeof (node)) ;

create (head) ;

printf (“\n”);

printf (head) ;

printf (“\n”);

printf ("\nNumber of items = %d \n”, count (head));
}
void create (node *1list)
{

printf (“Input a number\n”);

printf (Y (type -999 at end): ”);

scanf (*%d”, &list -> number); /* create current node */

if (list->number == -999)

{ list->next = NULL;

ilse /*create next node */

{ list->next = (node *)malloc(sizeof (node)) ;
create (list->next);

}

return;

}

void print (node *list)

{
if(list->next != NULL)
{

printf (“%$d-->",1list ->number); /* print current item */

if (list->next->next == NULL)
printf (“%d”, list->next->number);

printf (list->next) ; /* move to next item */
}
return;

}

int count (node *1list)
{
if (list->next == NULL)
return (0);
else
return (l+ count (list->next));

Output

Input a number
(type —-999 to end); 60

Input a number
(type -999 to end); 20

Input a number
(type -999 to end); 10

Input a number
(type -999 to end); 40

Input a number
(type -999 to end); 30

Input a number
(type —-999 to end); 50

Input a number
(type —-999 to end); -999

60 -->20 -->10 -->40 -->30 -->50 --> -999

Number of items = 6

Fig. 13.7 Creating a linear linked list

Example 13.4

Write a function to insert a given item before a specified node known as key node.

The function insert shown in Fig.13.8 requests for the item to be inserted as well as the
‘key node”. If the insertion happens to be at the beginning, then memory space is created
for the new node, the value of new item is assigned to it and the pointer head is assigned
to the next member. The pointer new which indicates the beginning of the new node is
assigned to head. Note the following statements:

new->number = X;
new->next = head;
head = new;

FUNCTION INSERT

node *insert (node *head)
{
node *find(node *p, int a);
node *new; /* pointer to new node */
node *nl; /* pointer to node preceding key node */
int key;

int x; /* new item (number) to be inserted */

printf (“Value of new item?”);

scanf (“$d”, &x);

printf (“WValue of key item ? (type -999 if last) “);
scanf (“"%d”, &key);

if (head->number == key) /* new node is first */
{
new = (node *)malloc(size of (node));
new ->number = X;
new->next = head;
head = new;
}
else /* find key node and insert new node */
{ /* before the key node */
nl = find(head, key); /* find key node */
if (nl == NULL)
printf ("\n key is not found \n”);
else /* insert new node */
{
new = (node *)malloc(sizeof (node));
new->number = XxX;
new->next = nl->next;
nl->next = new;

}
}
return (head) ;
}
node *find(node *lists, int key)

{

if (list->next->number == key) /* key found */
return(list);
else
if (list->next->next == NULL) /* end */
return (NULL) ;
else

find (list->next, key);

Fig. 13.8 A function for inserting an item into a linked list

Example 13.5

Write a function to delete a specified node.

A function to delete a specified node is given in Fig.13.9. The function first checks whether the
specified item belongs to the first node. If yes, then the pointer to the second node is temporarily
assigned the pointer variable p, the memory space occupied by the first node is freed and the

location of the second node is assigned to head. Thus, the previous second node becomes the
first node of the new list.

If the item to be deleted is not the first one, then we use the find function to locate the position of
‘key node’ containing the item to be deleted. The pointers are interchanged with the help of a
temporary pointer variable making the pointer in the preceding node to point to the node following
the key node. The memory space of key node that has been deleted if freed. The figure below
shows the relative position of the key node

key node
. e > o>
A A A
n1 n1->next n1->next->next
The execution of the followingscode deletes the key node.
p = n1->next->next;
free (n1->next);
n1->next = p; n1->next
key node
> . . > ~———»
n1
[]
FUNCTION DELETE
node *delete (node *head)
{
node *find(node *p, int a);
int key; /* item to be deleted */
node *nl; /* pointer to node preceding key node */
node *p; /* temporary pointer */

printf ("\n What is the item (number) to be deleted?”);
scanf (“%d”, &key);

if (head->number == key) /* first node to be deleted) */

{
p = head->next; /* pointer to 2" node in list */
free (head) ; /* release space of key node */
head = p; /* make head to point to 1°° node */

}

else

{
nl = find(head, key);

if (nl == NULL)
printf ("\n key not found \n”);
else /* delete key node */
{
p = nl->next->next; /* pointer to the node

following the keynode */

free (nl->next); /* free key node */
nl->next = p; /* establish link */
}
}
return (head) ;

}
/* USE FUNCTION find() HERE */

Fig.13.9 A function for deleting an item from linked list

Inventory-project 2

Application: Inventry Management System
Compiled on: Borland Turbo C++ 3.0
Programmer: Geetika Mukhi

#include <conio.h>
#include <stdio.h>
#include <stdlib.h>
#include <dos.h>
#include <graphics.h>
#include <string.h>

#define TRUE 1
#define FALSE O

/* List of Global variables used in the application*/

int mboxbrdrclr,mboxbgclr,mboxfgcir; /* To set colors for all message
boxes in the app11cat1on /

int menutxtbgclr,menutxtfgclr,appframecir; /* To set the frame and color's
for menu jitems's*/

int sectionl_symb,sectionl_bgclr,sectionl_fgclr; /* To set color of section 1, the
region around the menu options*/

int section2_symb,section2_bgclr,section2_fgclr; /* To set color of section 2, the
section on the right of the menu options*/

int fEdit;

int animcounter;

static struct struct_stock /* Main database structure*/

char itemcode[8];

char itemname[50];

float jtemrate;

float itemqty;

int minqty; /*Used for Reorder level, which
is the minimum no of stock*/
}inv_stock;

struct struct_bill

char itemcode[8];
char itemname[50];
float jtemrate;
float itemqty;
float jtemtot;
}item_biT11[100];

char password[8];
const Tong int stocksize=sizeof(inv_stock); /*stocksize stores the size of the

struct_stock*/
float tot_investment;

int numItems; /*To count the no of items in the
stock®*/))
int button,column,row; /*To allow mouse operations in the

application®*/

FILE *dbfp; /*To perform database file operations
on "inv_stock.dat"*/

int main(void)
Page 1

Inventory-project 2

float issued_qty;

char userchoice,code[8];

int flag,i,itemsold;

float getInvestmentInfo(void);
FILE *ft;

int result;
getConfiguration();

/* opens & set 'dbfp' globally so that it is accessible from anywhere in the
application®*/

dbfp=fopen("d:\invstoc.dat","r+");

if(dbfp==NULL)

clrscr(Q);

printf("\nDatabase does not exists.\nPress Enter key to create it. To exit,
press any other key.\n ");

fflush(stdin);

if(getch()==13)

dbfp=fopen("d:\invstoc.dat", "w+");

printf("\nThe database for the application has been created.\nYou must restart
the application.\nPress any key to continue.\n");

fflush(stdin);

getch();

exit(0);

else

exit(0);

/* Application control will reach here only if the database file has been opened
successfully*/
if(initmouse()==0)
messagebox (10,33, "Mouse could not be loaded.","Error ",'
', mboxbrdrclr,mboxbgclr,mboxfgclr,0);
showmouseptr();
_setcursortype(_NOCURSOR) ;

while(1)
{

clrscr(Q;
fEdit=FALSE;
ShowMenu () ;
numItems=0;
rewind(dbfp);

/* To calculate the number of records in the database*/

while(fread(&inv_stock,stocksize,1l,dbfp)==1)
++numItems;

textcolor(menutxtfgclr);

textbackground(menutxtbgclr) ;

gotopos(23,1);

cprintf("Total Items in Stock: %d",numItems);

textcolor(BLUE);

textbackground (BROWN) ;

fflush(stdin);

/*The application will wait for user response */
userchoice=getUserrResponse();
switch(userchoice)

Page 2

Inventory-project 2
/* To Close the application*/
case '0':
Backupbatabase(); /*Backup the Database file to secure data*/
flushal1(Q);
fclose(dbfp);
fcloseall();
print2screen(12,40,"Thanks for Using the application.",BROWN,BLUE,Q);
sleep(1);
setdefaultmode();
exit(0);

/* To Add an item*/
case '1':
}f(getdata()==1)

fseek(dbfp,0,SEEK_END);

/*Write the item information into the database*/
fwrite(&inv_stock,stocksize,1,dbfp);

prinﬁ%§creen(l3,33,"The item has been successfully added. ",BROWN,BLUE,O);
getc ;

break;

/* To edit the item information*/
case '2':
print2screen(2,33,"Enter Item
Code>",BROWN,BLUE, Q) ;gotopos(2,54) ;fflush(stdin);
scanf("%s" ,&code) ;

fEdit=TRUE;
if(checkid(code)==0)
if(messagebox(0,33,"Press Enter key to edit the item.","Confirm",'

',mboxbrdrg]r,mboxbgc]r,mboxfgc]r,O)!=13)

messagebox(10,33,"The item information could not be modified. Please
try again.","Edit ",' ',mboxbrdrclr,mboxbgclr,mboxfgclr,0);

fEdit=FALSE;

break;

s

fEdit=TRUE;

getdata();

fflush(stdin);
fseek(dbfp,-stocksize,SEEK_CUR);
fwrite(&inv_stock,stocksize,1,dbfp);

else
messagebox(10,33,"The item is not available in the database.","No records
found","' ',mboxbrdrclr,mboxbgclr,mboxfgclir,0);
fEdit=FALSE;
break;

/* To show information about an an Item*/

case '3':
print2screen(2,33,"Enter Item Code:

" ,BROWN,BLUE,0) ;gotopos(2,55) ;fflush(stdin);

scanf("%s" ,&code) ;
flag=0;
rewind(dbfp);
while(fread(&inv_stock,stocksize,1,dbfp)==1)

if(strcmp(inv_stock.itemcode,code)==0)

DisplayIteminfo();
Page 3

Inventory-project 2

flag=1;
}
if(flag==0)
messagebox(10,33,"The item is not available."”,”"No records found ",'
', mboxbrdrclr,mboxbgcl1r,mboxfgclr,0);
break;
/* To show information about all items in the database*/
case '4':
if(humItems==0)
messagebox(10,33,"No items are available. ","Error ",'
', mboxbrdrclr,mboxbgc1r,mboxfgclr,0);
textcolor(BLUE);

textbackground (BROWN) ;

gotopos(3,33);

cprintf("Number of Items Available in Stock: %d",numItems);
gotopos(4,33);

getInvestmentInfo();

cprintf("Total Investment :Rs.%.2f",tot_investment);

gotopos(5,33);

cprintf("Press Enter To View. Otherwise Press Any Key...");fflush(stdin);
}f(getch()==l3)

rewind(dbfp);
while(fread(&inv_stock,stocksize,1,dbfp)==1); /*List All records*/
DisplayItemRecord(inv_stock.itemcode);

textcolor(BLUE);
break;

/* To issue Items*/
case '5':
itemsold=0;
i=0;
top:
print2screen(3,33,"Enter Item Code:
" ,BROWN,BLUE,0) ; fflush(stdin) ;gotopos(3,55);
scanf("%s",&code) ;
if(checkid(code)==1)
if(messagebox(10,33,"The item is not available.”","No records found ",'
' ,mboxbrdrclr,mboxbgclr,mboxfgclr,0)==13)
goto top;
else
goto bottom;
rewind(dbfp);
while(fread(&inv_stock,stocksize,1,dbfp)==1)

if(strcmp(inv_stock.itemcode,code)==0) /*To check if the item code is
available in the database*/

issued_qty=IssueItem();
}f(issued_qty > 0)

itemsold+=1;
strcpy(item_bil1[i].itemcode,inv_stock.itemcode);
strcpy(item_bil1[i].itemname,inv_stock.itemname);
item_bil1[i].itemgty=1issued_qty;
item_bil1[i].itemrate=inv_stock.itemrate;
jteT_bi11[i].itemtot=inv_stock.itemrate*issued_qty;
i+=1;

print2screen(19,33,"would you 1like to issue another
Page 4

Inventory-project 2
item(Y/N)?",BROWN,BLUE, Q) ; fflush(stdin) ;gotopos(19,45);
if(toupper(getch())=="Y")
goto top;
bottom:
break;

break;
/* Items to order*/

case '6':
if(humItems<=0)

messagebox(10,33,"No items are available. ","Items Not Found ",'
',mboxbrdrg]r,wboxbgc]r,mboxfgc]r,O);
reak;

print2screen(3,33,"stock of these items is on the minimum
Tevel:",BROWN,RED,0) ;fflush(stdin);

flag=0;

fflush(stdin);

rewind(dbfp);

while(fread(&inv_stock,stocksize,1,dbfp)==1)

if(inv_stock.itemgqty <= inv_stock.minqgty)

DisplayIteminfo();
flag=1;

}
if(flag==0)
messagebox(10,33,"No item is currently at reorder level.","Reorder
Items"B' 'kmboxbrdrc1r,mboxbgc1r,mboxfgc]r,O);
reak;

default:
"mgssagebox(10,33,"The option you have entered is not available.","Invalid

option ",' ',mboxbrdrclr,mboxbgclr,mboxfgcir,0);
break;

}
3

/*Display Menu & Skins that the user will see*/
ShowMenu ()
if(sectionl_bgclr != BROWN || sectionl_symb != " '

fillcolor(2,1,23,39,sectionl_symb,sectionl_bgclr,sectionl_fgclr,0);
if(section2_bgclr != BROWN || section2_symb != "' ')

fillcolor(2,40,23,79,section2_symb,section2_bgclr,section2_fgclr,0);
print2screen(2,2,"1: Add an Item",menutxtbgclr,menutxtfgcir,0);
print2screen(4,2,"2: Edit Item Information",menutxtbgclr,menutxtfgclir,0);
print2screen(6,2,"3: Show Item Information",menutxtbgclr,menutxtfgclir,0);
print2screen(8,2,"4: view Stock Report",menutxtbgclr,menutxtfgclr,0);
print2screen(10,2,"5: Issue Items from Stock",menutxtbgclr,menutxtfgclr,0);
print2screen(12,2,"6: View Items to be Ordered ",menutxtbgclr,menutxtfgclr,0);
print2screen(14,2,"0: Close the application",menutxtbgclr,menutxtfgcir,0);

htskin(0,0,"' ',80,appframeclr,LIGHTGREEN,Q);
htskin(1,0,' ',80,appframeclr,LIGHTGREEN,O0);
vtskin(0,0,' ',24,appframeclr,LIGHTGREEN,0);
vtskin(0,79,"' ',24,appframeclr,LIGHTGREEN,O0);
htskin(24,0,' ',80,appframeclr,LIGHTGREEN,OQ);

Page 5

Inventory-project 2
vtskin(0,31,"' ',24,appframeclr,LIGHTGREEN,0);
return;

/*Wait for response from the user & returns choice*/
getUserResponse()

int ch,i;
animcounter=0;

?h11e(!kbhit())
getmousepos (&button,&row,&column);

/*To show Animation*/
BT1inkText(0,27,"Inventory Management System",1,YELLOW,RED,LIGHTGRAY,0,50);
animcounter+=1;

44

if(button==1 && row==144 && column>=16 && column<=72) /*Close*/
return('0');

if(button==1 && row==16 && column>=16 && column<=136) /*Add New Item*/
return('1l');

if(button==1 && row==32 && column>=16 && column<=144) /*Edit Item*/
return('2');

if(button==1 && row==48 && column>=16 && column<=160) /*Show an Item*/
return('3");

if(button==1 && row==64 && column>=16 && column<=104) /*Stock Report*/
return('4');

if(button==1 && row==80 && column>=16 && column<=144) /*Issue an Item*/
return('5");

if(button==1 && row==96 && column>=16 && column<=152) /*Items to order*/
return('6');

}
ch=getch();
return ch;

}

/*Reads a valid id and its information,returns 0 if id already exists*/
getdata()

char tmp[8];

float tst;

_setcursortype (_NORMALCURSOR) ;

print2screen(3,33,"Enter Item Code: ",BROWN,BLUE,Q);fflush(stdin);gotopos(3,53);
scanf("%s" ,&tmp) ;

}f(check1d(tmp)==0 && fEdit == FALSE)

messagebox(10,33,"The id already exists. ","Error ",'
' ,mboxbrdrclr,mboxbgcl1r,mboxfgclr,0);
return O;
strcpy(inv_stock.itemcode, tmp); /*Means got a correct item code*/

print2screen(4,33,"Name of the Item: ",BROWN,BLUE,Q);fflush(stdin);gotopos(4,53);
gets(inv_stock.1itemname) ;
print2screen(5,33,"Price of Each unit:
" BROWN,BLUE,0) ; ffTush(stdin) ;gotopos(5,53);
scanf("%f",&inv_stock.itemrate);

print2screen(6,33,"Quantity: ",BROWN,BLUE,0);fflush(stdin);gotopos(6,53);
scanf("%f" ,&inv_stock.itemqty);
print2screen(7,33,"Reorder Level: ",BROWN,BLUE,Q);fflush(stdin);gotopos(7,53);

scanf("%d" ,&inv_stock.mingty) ;
_setcursortype (_NOCURSOR) ;
Page 6

Inventory-project 2
return 1;

/*Returns 0 if the id already exists in the database, else returns 1%/
int CheckId(char item[8])

{
rewind(dbfp);
while(fread(&inv_stock,stocksize,1,dbfp)==1)
if(strcmp(inv_stock.itemcode,item)==0)
return(0);
return(l);

/*Displays an Item*/
DisplayItemRecord(char idno[8])

rewind(dbfp);
while(fread(&inv_stock,stocksize,1,dbfp)==1)
if(strcmp(idno,inv_stock.itemcode)==0)
DisplayItemInfo();
return;

/*Displays an Item information*/
?isp1ayItemInfo()

int r=7;

textcolor(menutxtfgclr);

textbackground(menutxtbgclr);

gotopos(r,33);

cprintf("Item Code: %s"," ");
gotopos(r,33);

cprintf("Item Code: %s",inv_stock.itemcode);

gotopos(r+1,33);

cprintf("Name of the Item: %s"," ");
gotopos(r+1,33);

cprintf("Name of the Item: %s",inv_stock.itemname);
gotopos(r+2,33);

cprintf("Price of each unit: %.2f"," ");
gotopos(r+2,33);

cprintf("Price of each unit: %.2f",inv_stock.itemrate);
gotopos(r+3,33);

cprintf("Quantity in Stock: %.4f"," ");
gotopos(r+3,33);

cprintf("Quantity in Stock: %.4f",inv_stock.itemqty);
gotopos(r+4,33);

cprintf("Reorder Level: %d"," ");
gotopos(r+4,33);

cprintf("Reorder Level: %d",inv_stock.minqty);

gotopos(r+5,33);

cprintf("\nPress Any Key...");fflush(stdin);getch(Q;
textbackground (BROWN) ;

textcolor(BLUE);

return;

}

/*This function will return 0 if an item cannot issued, else issues the item*/
IssueItem()

float issueqgnty;
DisplayIteminfo();
print2screen(15,33,"Enter Quantity: ",BROWN,BLUE,Q);fflush(stdin);gotopos(15,49);
scanf("%f" ,&issueqnty);
Page 7

Inventory-project 2

/*If the stock of the item is greater than minimum stock*/
if((inv_stock.itemqty - issuegnty) >= inv_stock.minqty)

textcolor(BLUE);

textbackground (BROWN) ;

gotopos(18,33);

cprintf("%.4f Item(s) issued.",issueqnty);

gotopos(19,33);

cprintf("You should pay RS. %.2f",issuegnty*inv_stock.itemrate);getch();

textcolor(BLUE);

;ny_stock.itemqty—=1ssueqnty; /*Updating quantity for the item 1in
stock*

fseek(dbfp,-stocksize,SEEK_CUR);

fwrite(&inv_stock,stocksize,1,dbfp);

return issueqnty;

/* If the stock of the item is Tess than minimum stock.ie Reorder Tevel*/
else

messagebox(10,33,"Insufficient quantity in stock.","Insufficient Stock",'
' ,mboxbrdrclr,mboxbgclr,mboxfgclr,0);
gotopos(17,33);
textcolor(BLUE);
textbackground (BROWN) ;
cprintf("ONLY %.4f pieces of the Item can be
issued.”,inv_stock.itemqty-inv_stock.minqty);
gotopos(18,33);
cprintf("Press Any Key...");getch();
textcolor(BLUE);
textbackground (BROWN) ;
return O;
b
}

/* Calculates the total investment amount for the stock available*/
float getInvestmentInfo(void)

tot_investment=0;

rewind(dbfp);

while(fread(&inv_stock,stocksize,1,dbfp)==1)
tot_investment+=(inv_stock.itemrate*inv_stock.itemqty);
return tot_investment;

}
/* Creates a backup file "Bakckup" of "inv_stock.dat"*/
Backupbatabase(void)

FILE *fback;

fback=fopen("d:/Backup.dat","w");

rewind(dbfp);

while(fread(&inv_stock,stocksize,1,dbfp)==1)
fwrite(&inv_stock,stocksize,1, fback);

fclose(fback);

return;

}

/*This structure is used color settings for the application*/
struct colors

char cfg_name[10];

int mboxbrdrclr;
Page 8

Inventory-project 2
int mboxbgclr;
int mboxfgclr;

int menutxtbgclr;
int menutxtfgclr;
int appframecir;

int sectionl_symb;
int sectionl_bgclr;
int sectionl_fgclr;

int section2_symb;
int section2_bgclr;
int section2_fgclr;
}clr;
const Tong int clrsize=sizeof(clr);

/* Gets the display configuration for the application*/
%etConfiguration()

FILE *flast;
flast=fopen("Tlastcfg","r+");
if(flast==NULL)

SetbDefaultcolor();
return O;

}
rewind(flast);

/*Reads the first record.*/
fread(&clr,clrsize,1l,flast);

#ifdef OKAY
if(strcmp(clr.cfg_name,"Tastclr") !=0)

SetbDefaultcolor();
fclose(flast);
return O;

}
#endif
mboxbrdrclr=clr.mboxbrdrclr;mboxbgcTr=clr.mboxbgclr;mboxfgclr=clr.mboxfgclr;

m$nutxtbgc1r=c1r.menutxtbgc1r;menutxtfgc]r=c1r.menutxtfgc1r;appframec1r=c1r.appframe
clr;

sectionl_symb=clr.sectionl_symb;sectionl_bgclr=clr.sectionl_bgclr;sectionl_fgclr=clr
.sectionl_fgclr;

section2_symb=clr.section2_symb;section2_bgclr=clr.section2_bgclr;section2_fgclr=clr
.section2_fgclr;

fclose(flast);

return 1;

/* Sets the default color settings for the application*/
SetbefaultColor()

mboxbrdrc1r=BLUE,mboxbgc1r=GREEN,mboxfgc1r=wHITE;
menutxtbgclr=BROWN,menutxtfgclr=BLUE,appframec]r=CYAN;

sectionl_symb=' ', sectionl_bgc]lr=BROWN,sectionl_fgclr=BLUE;
section2_symb=' ', section2_bgcTr=BROWN,section2_fgclr=BLUE;
return 1;

Page 9

Inventory-project 2

/* Adds animation to a text */]]]]
BlinkText(const int r,const int c,char txt[],int bgclr,int fgclr,int BGCLR2,int
FGCLR2,int blink,const int dly)

{

int len=strlen(txt);
BGCLR2=bgC1 r; FGCLR2=BLUE;

htskin(r,c,' ',Ten,bgclr,bgclr,0);
print2screen(r,c,txt,bgclr,fgclr,blink);

write2screen(r,c+animcounter+l, txt

animcounter],BGCLR2,FGCLR2,0);

write2screen(r,c+animcounter+2,txt[animcounter+l],BGCLR2,FGCLR2,0);
write2screen(r,c+animcounter+3,txt[animcounter+2],BGCLR2,FGCLR2,0);
write2screen(r,c+animcounter+4,txt[animcounter+3],BGCLR2,FGCLR2,0);
write2screen(r,c+animcounter+5,txt[animcounter+4],BGCLR2,FGCLR2,0);
write2screen(r,c+animcounter+6,txt[animcounter+5],BGCLR2,FGCLR2,0);

deTay(dly*2);
write2screen(r,c+animcounter+l, txt

animcounter],bgclr,fgclir,0);

write2screen(r,c+animcounter+2,txt[animcounter+1],bgclr,fgclr,0);
write2screen(r,c+animcounter+3,txt[animcounter+2],bgclr,fgclir,0);
write2screen(r,c+animcounter+4,txt[animcounter+3],bgclr,fgclr,0);
write2screen(r,c+animcounter+5,txt[animcounter+4],bgclr,fgclir,0);
write2screen(r,c+animcounter+6,txt[animcounter+5],bgclr,fgclir,0);

animcounter+=1;
if(animcounter+5 >= len) animcounter=0;

return;

/* Displays a single charector with its attrribute*/)]
write2screen(int row,int col,char ch,int bg_color,int fg_color,int bTink)

int attr;
char far *v;
char far *ptr=(char far*)0xB8000000;
if(b1link!=0)
b1ink=128;

attr=bg_color+bTlink;

attr=attr<<4;

attr+=fg_color;

attr=attr|blink;

v=ptr+row*160+col1*2;
column®*/

*v=ch;

V++;

*v=attr;

return O;

/*Calculates the video memory address corresponding to row &

/* Prints text with color attribute direct to the screen*/])
print2screen(int row,int col,char string[],int bg_color,int fg_color,int bTlink)

int i=row,j=col,strno=0,len;
Ten=strlen(string);
¥hi1e(j<80)

jo+
1f(3==79)
Page 10

) Inventory-project 2
0;

J_':
1+

write2screen(i,j,string[strno],bg_color,fg_color,blink); /*See below
function*/

strno+=1;
if(strno > len-1)
break;
}
return;

/* Prints text horizondally*/
htskin(int row,int column,char symb,int no,int bg_color,int fg_color,int blink)

int 1i;
for(i=0;i<no;i++)
write2screen(row,column++,symb,bg_color,fg_color,bTink); /*Print one
symbol*/
return;

/*Print text vertically*/]])]]
vtskin(int row,int column,char symb,int no,int bg_color,int fg_color,int blink)

int 1;
for(i=0;1i<no;i++)

write2screen(row++,column,symb,bg_color,fg_color,bTink); /*Print one symbol*/
return;

/* Shows a message box*/
messagebox(int row,int column,char message[50],char heading[10],char symb,int
borderclr,int bg_color,int fg_color,int blink)

int len;

char key,image[1000];

Ten=strlen(message);

capture_image(row,column, row+3,column+len+7,&image);

draw_mbox (row,column, row+3,column+len+7,symb,symb,borderclr,YELLOW,b1ink,borderclr,y
ELLOW,bTink);

fillcolor(row+1l,column+l, row+2,column+len+6,' ',bg_color,bg_color,0);
print2screen(row+1,column+2,message,bg_color,fg_color,blink);
print2screen(row+2,column+2,"Press Any Key... ",bg_color,fg_color,bTink);
print2screen(row,column+1,heading,bordercir,fg_color,blink);

sound(400) ;

deTlay(200);

nosound() ;

fflush(stdin);

key=getch();
put_image(row,column, row+3,column+len+7,&image);
return key;

}

/* Fills color in a region*/
fillcolor(int top_row,int left_column,int bottom_row,int right_column,char symb,int
?g_co]or,int fg_color,int blink)

int i,3;
for(i=top_row;i<=bottom_row;i++)
htskin(i,left_column,symb,right_column-Teft_column+1,bg_color,fg_color,blink);
Page 11

Inventory-project 2
return;

/* Prints a message box with an appropriate message*/
draw_mbox(int trow,int tcolumn,int brow,int bcolumn,char hsymb,char vsymb,int
?bg_co1or,int hfg_color,int hblink,int vbg_color,int vfg_color,int vblink)

htskin(trow,tcolumn,hsymb,bcolumn-tcolumn,hbg_color,hfg_color,hblink);
htskin(brow,tcolumn,hsymb,bcolumn-tcolumn,hbg_color,hfg_color,hblink);
vtskin(trow,tcolumn,vsymb,brow-trow+l,vbg_color,vfg_color,vblink);
vtskin(trow,bcolumn,vsymb,brow-trow+1,vbg_color,vfg_color,vblink);
return;

}

/* Copies the txt mode image below the messagebox*/]]])
capture_image(int toprow,int lTeftcolumn,int bottomrow,int rightcolumn,int *image)

char far *vidmem;

int 1i,j,count;

count=0;

for(i=toprow;i<=bottomrow;i++)
for(j=leftcolumn;j<=rightcolumn;j++)

vidmem=(char far*)0xB8000000+(i*160)+(j*2); /*Calculates the video memory
address corresponding to row & column¥*/

image[count]=*vidmem;

image[count+1]=*(vidmem+1);

count+=2;

return;

/* Places an image on the screen*/]))]
put_image(int toprow,int Teftcolumn,int bottomrow,int rightcolumn,int image[])

char far *ptr=(char far*)0xB8000000;

char far *vid;

int i,j,count;

count=0;

for(i=toprow;i<=bottomrow;i++)
for(j=leftcolumn;j<=rightcolumn;j++)

vid=ptr+(i*160)+(j*2); /*Calculates the video memory address corresponding to
row & column*/

*vid=image[count];

*(vid+1l)=1image[count+1];

count+=2;

return;

/* To move the curser position to derired position*/
gotopos(int r,int c)

union REGS 1i,0;
i.h.ah=2;
i.h.bh=0;
i.h.dh=r;
i.h.dl=c;
int86(16,&i,&0);
return O;

Page 12

Inventory-project 2
union REGS 1i,0;

/* Initialize the mouse*/
initmouse()

i.x.ax=0;
int86(0x33,&i,&0);
return(o.x.ax);

/* Shows the mouse pointer*/
showmouseptr()

i.x.ax=1;
int86(0x33,&i,&0);
return;

/* Get the mouse position*/)
getmousepos(int *button,int *x,int *y)

i.X.ax=3;
int86(0x33,&i,&0);
*button=0.Xx.bx;
*X=0.X.dX;
*Yy=0.X.CX;

return O;

}

/* Restores the default text mode*/
setdefaultmode()

set25x800);
setdefaultcolor();
return;

/* Sets the default color and cursor of screen*/
setdefaultcolor()

int 1;
char far *vidmem=(char far*)0xB8000000;
window(1,1,80,25);
clrscr(Q;
for (i=1;i<4000;1i+=2)
*(vidmem+i)=7;
_setcursortype (_NORMALCURSOR) ;
return;

/* Sets 25x80 Text mode*/
zet25x80()
asm mov ax,0x0003;

asm int 0x10;
return;

Page 13

LinkListExample

Application: Linked List Example
Compiled on: Borland Turbo C++ 3.0
Programmer: Geetika Mukhi

#include <stdio.h>
#include <conio.h>

/* Structure for nodes of linked list*/
struct Tistnode {

int value;

struct Tistnhode * next;

t&pedef struct Tistnode node;

node * first,*save,*current;

node * getnode();

void InsertAtStart(int x);

void InsertAteEnd(int x);

void InsertInMid(int n_no,int x);
int DeleteNode(int kv);

node * FindNode(int kv);

void ReverseList();

void sortList(Q);

void ClearList();

void showList(Q);

int CountNodes();

void main()

int choice,nodevalue,insertPos;
first = NULL;
do

clrscr(Q;

printf("\nl. 1Insert a value at the Start");
printf("\n2. Show the Linked List");

printf("\n3. 1Insert a value at the End");
printf("\n4. Clear Linked List");

printf("\n5. Show the Number of Nodes in the Linked List");
printf("\n6. 1Insert the value After Mentioned Node");
printf("\n7. Delete a Node of Linked List");
printf("\n8. Search a Node of Linked List");
printf("\n9. Sort the Linked List");

printf("\nl1l0. Reverse the Linked List");

printf("\n0. Close the application");

printf("\n\nPlease Enter Your Choice\n");
scanf("%d" ,&choice);
switch (choice)

case 1:
printf("\nEnter The Node value To Be Inserted At The Start: \n");
scanf("%d",&nodevalue);
InsertAtStart(nodevalue);
break;
Page 1

case 2

case

case

case

case 6

LinkListExample

ShowList();
break;

3:

printf("\nEnter The Node value To Be Inserted At The End: \n");
scanf("%d" ,&nhodevalue);

InsertAteEnd(nodevalue);

break;

4:
ClearList(Q);
break;

5:
printf("\n%d Nodes are available in the Linked List",CountNodes());
getct();

reak;

printf("\nEnter The Position after which you"
" want to Insert the new value: \n");

scanf("%d" ,&insertPos);

if (insertPos > CountNodes())

printf(" Node at position %d cannot be inserted. There are only"
" %d node(s) in the 1list",insertPos,CountNodes());
getch(Q);

else

printf("\nEnter The value To Be Inserted after %d node(s):

\n",insertPos);

case

case

case

case

}

scanf("%d",&nodevalue) ;
InsertInMid(insertPos,nodevalue);

break;

7:

printf("\nEnter The Node value To Be Deleted: \n");
scanf("%d" ,&nodevalue);

DeleteNode(nodevalue);

break;

8:

printf("\nEnter The Node value To Be Searched: \n");
scanf("%d" ,&nodevalue);

FindNode(nodevalue);

break;

9:
sortList();
break;

10:
ReverseList();
break;

while (choice!=0);

Page 2

LinkListExample
3

/* This function reverses the sequences of nodes in the Tinked Tlist*/
void ReverseList()

node *temp;]
current = save = first;
if (first == NULL)

printf("\a\nThere are no nodes in the Linked List.\n");

getch(Q);

}

else

{

save = NULL;

while (current != NULL)
temp = save;
save = current;

current = current->next;
save->next = temp;

first = save;

printf("\nThe Linked List Has Been Reversed.\n");
}getch();

}

/* This function will sort the linked Tist*/
¥oid SortList()

int temp;]
current = save = first;
if (first==NULL)

printf("\aThere are no nodes in the Linked List.\n");

getch(Q);

}

else

{ .

for (current=first;(current != NULL);current=current->next)
for (save=current->next;(save != NULL);save=save->hext)

if (current->value < save->value)

temp = save->value;
save->value = current->value;
current->value = temp;

}
3

printf("\nThe Linked List Has Been Sorted.\n");
%etch();

}

/* This function searches for a particular node value in the linked Tist*/
node * FindNode(int nvalue)
{
current = first;
if (first == NULL)
Page 3

LinkListExample
printf("\a\nThere are no nodes in the Linked List.");

}getch();
else
while ((current != NULL) && (current->value != nvalue))
current = current->next;
if (current->value == nvalue)
printf("\nThe Node is available in the Linked List.\n");
getch(Q;
return(current);
else
printf("\nThe Node is not available in the Linked List. Please try again.\n");
%etch();

}

/* This function deletes a node from the linked Tist*/
}nt DeleteNode(int nvalue)

int undel;
current = first;
if (first == NULL)

printf("\a\nThere are no nodes in the Linked List.");
%etch();

else

¥hi1e ((current != NULL) && (current->value != nvalue))

save = current;
current = current->next;

if (current->value == nvalue)
if (current == first)
undel = current->value;
current = current->next;
free(first);
first = current;

else

undel = current->value;

save->hext = current->hext;
free(current);

printf("Node with value %d has been Deleted.",nvalue);
getch(Q;
return(undel);

else

printf("Node with value %d is not available in the Linked List. Please try
again.",nvalue);

getch(Q);
Page 4

LinkListExample

}
}

/* This function inserts a node in the middle of the Tinked Tist*/
void InsertInMid(int nPos,int nvalue)

int count=0;

node *temp;

temp = getnode();
temp->value = nvalue;
temp->next = NULL;
current = first;
while (count < nPos)

save = current;
current = current->next;
count++;

if (first == NULL) first = temp;
else if (current == first)

temp->next = current;

first = temp;

}

else

{
temp->next
save->nhext

save->next;
temp;

}

/* This function returns the node*/

?ode * getnode()

o
=

node * temp;
temp = (node *) malloc(sizeof(node));
if (temp == NULL)

printf("\nProblem in allocating memory to the node.!\n");
§X1t(1);

else
return(temp);

/* This function calculates the number of nodes contained in the Tinked Tlist*/
int CountNodes()

{

int count=0;

current = first;

while (current != NULL)

count++;
current = current->next;

return(count);

}

/* This function inserts a node at the start of the Tinked list*/
void InsertAtStart(int nvalue)

Page 5

LinkListExample
node *temp;
temp = getnode();
temp->value = nvalue;
temp->next = NULL;
if (first == NULL)
first = temp;
else
{ .
temp->next = first;
first = temp;

}

/* This function inserts a node at the end of the Tinked Tist*/
void InsertAteEnd(int nvalue)

node *temp;

temp = getnode();

temp->value = nvalue;

temp->hext = NULL;

if (first == NULL)
first = temp;

else

{ .

current = first;

while (current != NULL)

save = current;
current = current->next;

save->next = temp;

}

/* This function shows all the data contained in the Tinked 1list*/
void ShowList()

clrscr(Q;
current = first;
if (current == NULL)
printf("\aThere are no nodes in the Linked List.\n");
while (current != NULL)

printf("\n%d",current->value);
current = current->next;

}
getch(Q);
}

/* This function clears all data from the linked Tlist*/
void ClearList()

current = first;
while (current != NULL)

{

current = current->next;
free(first);
first = current;

b
printf("\nLinked List has been cleared.\n");
getch(Q);

Page 6

matrixmulti

Application: Matrix Multiplication
Compiled on: Borland Turbo C++ 3.0
Programmer : Geetika Mukhi

#include <stdio.h>
#include <stdlib.h>
#define MAXSIZE 20

void
RecordData(int mt[][MAXSIZE], int n),
Mu1t1p1y(int mtl[][MAXSIZE], 1nt mt2[][MAXSIZE],
int mt3[][MAXSIZE], int size),
ShowResult(int mt[][MAXSIZE], int size);

void main()

int size;

int mtl[MAXSIZE][MAXSIZE],
mt2[MAXSIZE][MAXSIZE],
mt3[MAXSIZE][MAXSIZE];

char checkAnotheroperation;

checkAnotheroOperation="y'
while(checkAnotheroOperation=="y")

clrscrQ;

/* Reads data of Matrix mtl and mt2 and multiply the two matrices*/
printf("MATRIX MULTIPLICATION\n\n");
printf("Please Enter the Matrix Size: ");
scanf("%d", &size);

printf("\nEnter the First Matrix:\n");
RecordbData(mtl, size);

printf("\nMatrix mtl:\n");

ShowResult(mtl, size);

printf("\nEnter the Second Matrix:\n");
RecordData(mt2, size);

printf("\nMatrix mt2:\n");

ShowResult(mt2, size);

Multiply(mtl, mt2, mt3, size);

/* Show the resultant matrix */

printf("\nResultant Matrix mt3 After Multiplication of mtl and mt2:\n");
ShowResult(mt3, size);

printf("\nwould Tike to perform another matrix multiplication? (y/n):");
fflush(stdin);

checkAnotheroperation=getche();

}

/* This function multiplies the two matrices and stores the result in a third
matrix*/
void Multiply(int mtl[][MAXSIZE],

int mt2[][MAXSIZE],

int mt3[][MAXSIZE],

int size)

Page 1

matrixmulti

for (1T =0; 1 < size; 14+)
for (m=0; m < size; m++) {
mt3L T J[L m] = 0;
for (n=0; n < size; n++)
me3L T I1Lm] +=mtl[T J[L m 1 * mt2L n J[m 1;
}

/* This function records the data of_a matrix*/
void Recordbata(int mt[][MAXSIZE], int size)
{

int row, col;

for (row = 0; row < size; row++)
for (col = 0; col < size; col++)
scanf("%d", &mt[row][col]);

/* This function prints the contents of a matrix*/
void showResult(int mt[][MAXSIZE], int size)
int row, col;
for (row = 0; row < size; row++) {
for (col = 0; col < size; col++)

printf("%d ", mt[row][col]);
putchar('\n');

Page 2

Record Entry-project 1

Application: Record Entry System
Compiled on: Borland Turbo C++ 3.0
Programmer: Geetika Mukhi

#include <stdio.h>
#include <conio.h>
#include <string.h>
#include <dos.h>

#include <ctype.h>

void dataentry(void);

void selectAdminoption(void);
void getbata(int option);

int showAdminMenu;

void main(Q)

int canceloption, timeOption,entryOption,exitOption;
char choice[1];
char selectOption[1];

textcolor(YELLOW) ;
canceloption=0;

/* Shows the main menu for the application*/
¥hi1e (canceloption==0)
clrscr(Q;
gotoxy(30,7);
printf("Please Select an Action-->");
gotoxy(30,10);
printf("Daily Time Record [1] ");
gotoxy(30,11);

printf("Data Entry [21 ");
gotoxy(30,12);
printf("Close [31 ");

gotoxy(30,15);

printf("Please Enter Your Choice (1/2/3): ");
scanf("%s" ,&choice);
timeoption=strcmp(choice,"1");
entryoption=strcmp(choice,"2");
exitoption=strcmp(choice,"3");

if (timeOption==0)

clrscrQ;
gotoxy(23,6);
pr1' ntf("DAILY EMPLOYEE TIME RECORDING SYSTEM");
gotoxy(16,24);
printf("Input Any Other key to Return to Previous Screen.');
gotoxy(31,9);
printf("[1] Employee Log In ");
gotoxy(31,10);
printf("[2] Employee Log out");
gotoxy(28,12);
printf("Please Enter Your Option: ");
scanf("%s" ,&selectoption);
if (strcmp(selectoption,"1")==0)
Page 1

Record Entry-project 1
getbData(5);
if (strcmp(selectoption,'2")==0)
getData(6);
canceloption=0;
if (entryoption==0)

dataentry();
canceloption=0;

}f (exitoption==0)

canceloption=1;

}f (! (timeoption==0 || entryoOption==0 || exitOption==0))

gotoxy(10,17);

printf("You Have Entered an Invalid Option. Please Choose Either
1, 2 or 3. ");

getch();

canceloption=0;

clrscrQ;

gotoxy(23,13);

printf("The Application will Close Now. Thanks!");
; getch(Q);

/* This function provides logic_for data entry to be done for the system.
Access to Data Entry screens will be only allowed to administrator user.*/
void dataentry(void)

char adminName[10], passwd[5],buffer[1];
char tempo[6],sel[1];
int validuserNameOption,validuserPwdOption, returnOption,UserName,inc,tmp;
char plus;
clrscr(Q;
validuserNameOption=0;
validuserpwdOption=0;
?hi1e (validuserpwdoption==0)
clrscr(Q;
while (validuserNameOption==0)

clrscrQ;

gotoxy(20,5);

pr1' ntf("IT SOFTWARE DATA ENTRY SYSTEM-ADMIN INTERFACE");
gotoxy(20,24);

printf("Info: Type return to go back to the main screen.");
gotoxy(28,10);

printf("Enter Administrator Name: ");

scanf("%s" ,&adminName) ;
returnoption=strcmp(adminName, " return');
UserName=strcmp(adminName, "admin");

Page 2

Record Entry-project 1
}f (returnoption==0)

goto stream;

}
}f (!'(userName==0 || returnoption==0))

gotoxy(32,11);

printf("Administrator Name is Invalid.");
getch();

¥a1idUserNameOption=O;

else

validuserNameOption=1;

}

gotoxy(30,11);
printf("Enter Password: ");
inc=0;

while (inc<5)

passwd[inc]=getch(Q;
inc=inc+1;
}printf("* ");

inc=0;
while (inc<5)

tempo[inc]=passwd[inc];
inc=inc+1;

}
whiTle(getch()!=13);
if (!str%mp(tempo, "adminl2™))

gotoxy(28,13);
" printf("You have Entered a Wrong Password. Please Try Again.
’ getchQ;
validuserpPwdoption=0;
validuserNameOption=0;

else

clrscrQ;

gotoxy(24,11);

textcolor (YELLOW+BLINK) ;

cprintf("You Have Successfully Logged In.");
gotoxy(24,17);

textcolor(YELLOW) ;

printf("Press Any Key to Continue.");
validuserpPwdoption=1;
validuserNameOption=1;

getch();

showAdminMenu=0;

while (showAdminMenu==0)

clrscrQ;

gotoxy(24,4);

printf("ADMIN OPTIONS");

gotoxy(26,9);

printf("Add New Employee [11");
Page 3

Record Entry-project 1
gotoxy(26,11);
printf('"'Show Daily Entries [21");
gotoxy(26,13);
printf("search Employee Record [3]");
gotoxy(26,15);

printf("Remove Employee [(41");
gotoxy(26,17);
printf("Close [51");

gotoxy(24,21);
printf("Please enter your choice: ");
selectAdminoption();

stream: {}

}

/* This function provides the administrator level functionalities, such as Adding or
deleting an employee.*/
void selectAdminOption(void)

char chc[1];
int chooseNew, chooseShow,chooseSearch,chooseRemove,chooseClose;

gets(chc);

chooseNew=strcmp(chc,"1");
chooseShow=strcmp(chc,"2");
chooseSearch=strcmp(chc,"3");
chooseRemove=strcmp(chc,"4");
chooseClose=strcmp(chc,"5");

if (!(chooseNew==0 || chooseShow==0 || chooseSearch==0 || chooseRemove==0 ||
chooseClose==0))

gotoxy(19,21);

textcolor (RED+BLINK) ;

cprintf("Invalid Input!");
gotoxy(34,21);

textcolor(YELLOW) ;

cprintf("Press any key to continue.");

b

}f (chooseNew==0)
clrscr(Q;
gotoxy(25,5);
getbata(l);

else if(chooseShow==0)
getbata(2);
else if(chooseSearch==0)

clrscr(Q;
getbata(3);

else if(chooseRemove==0)
getbata(4);

Page 4

Record Entry-project 1
else if (chooseClose==0)

showAdminMenu=1;
}
3
/* This function retreives data from the database as well as do data processing
according to user requests.
The function provides functionality for menu options provided to both employee as

well as administrator user¥/
void getbata(int option)
{

FILE *db,*tempdb;

char anotherEmp;

int choice;

int showMenu,posx,posy;
char checksave, checkAddNew;
int i;

struct employee

char firstname[30];
char lastname[30];
char password[30];
int empid;

char Tloginhour;
char loginmin;
char Toginsec;
char logouthour;
char Togoutmin;
char logoutsec;
int yr;

char mon;

char day;

};
struct employee empData;

char confirmpPassword[30];

Tong int size;

char TastNameTemp[30],firstNameTemp[30],password[30];
int searchid;

char pass[30];

char findEmployee;

char confirmbelete;

struct date today;
struct time now;

clrscr(Q;

/* opens the Employee Database*/
db=fopen("d:/empbase.dat","rb+");
if(db==NULL)

db=fopen("d:/empbase.DAT", "wb+") ;
}f(db==NULL)

printf("The File could not be opened.\n");
) exit(Q);

3
printf("Application Database \n");
Page 5

Record Entry-project 1
size=sizeof(empbata);
showMenu=0;
whiTle(showMenu==0)

{
fflush(stdin);
choice=option;

/* Based on the choice selected by admin/employee, this switch statement
processes the request*/
switch(choice)

/* To add a new employee to the database*/
case 1:
fseek(db,0,SEEK_END);
anotherEmp="y"';

¥hi1e(anotherEmp=='y')

checkAddNew=0;
while(checkAddNew==0)

clrscr(Q;

gotoxy(25,3);

pr1' ntf("ADD A NEW EMPLOYEE");

gotoxy(13,22);

printf("warning: Password Must Contain Six(6) AlphaNumeric
Digits.");

gotoxy(5,8);

printf("Enter First Name: ");

scanf("%s",&firstNameTemp) ;

gotoxy(5,10);

printf("Enter Last Name: ");

scanf("%s" ,&lastNameTemp) ;

gotoxy(43,8);

printf("Enter Password: ");

for (i=0;i<6;i++)

password[i]=getch(;
printf("* ");

}
password[6]="\0";
while(getch()!=13);

gotoxy(43,10);
printf("confirm Password: ");

Eor (i=0;1<6;1++)
confirmPassword[i]l=getch();
printf("* ");

confirmPassword[6]="\0";

while(getch()!=13);
if (strcmp(password,confirmPassword))

gotoxy(24,12);

printf("Passwords do not match.");
gotoxy(23,13);

printf("Press any key to continue.");
getch();

Page 6

Record Entry-project 1
else

{

checkAaddNew=1;

rewind(db);

empData.empid=0;
while(fread(&empbata,size,1l,db)==1);
if (empbData.empid<2000)
empData.empid=20400;

empData.empid=empData.empid+1;

gotoxy(29,16);

printf("Save Employee Information? (y/n): ");
checksave=getche();

}f (checksave=="y")

strcpy(empbata.firstname, firstNameTemp);
strcpy(empbata.lastname, TastNameTemp) ;
strcpy(empbata.password,password) ;
empData.loginhour="t";

empData. 1ogouthour='t"

empData.day="j

fwr1te(&empData size,1l,db);

b

gotoxy(28,16);

printf(" ");

gotoxy(28,16);

printf("would 1ike to add another employee? (y/n):");
fflush(stdin);

anotherEmp=getche();

grintf("\n");

}

break;

/* To view time records for all employees*/
case 2:

clrscrQ;

gotoxy(21,2);

pri ntf("VIEW EMPLOYEE INFORMATION");

gotoxy(1,5);

printf("Employee ID Employee Name Time Logged In Time Logged Out
Date\n\n");

rewind(db) ;

posx= 3

posy=

¥h11e(fread(&empData size,1,db)==1)

empData.firstname[0]=toupper(empData.firstname[0]);
empData.lastname[0]=toupper(empData.lastname[0]);
gotoxy(posx, posy);

printf("%d",empbata.empid);

gotoxy(posx+10,posy);

printf("| %s, %s'",empData.lastname,empbData.firstname);
gotoxy(posx+30,posy);

if (empbata.loginhour=="t")

}printf("l Not Logged In');

else
printf("|
%d:%d:%d",empbata.loginhour,empbata.loginmin,empbData.loginsec);
Page 7

Record Entry-project 1

gotoxy(posx+49,posy) ;
1f (empData.logouthour=="t")

?rintf("l Not Logged out™);

else
printf("|

%d:%d:%d" ,empData. logouthour,empbata.logoutmin,empbData.logoutsec);
}f (empbata.day=="j")

gotoxy(posx+69,posy) ;
printf("| No Date");

else

{
gotoxy(posx+73,posy);
?rintf("l %d/%d/%d" ,empData.mon,empData.day,empbData.yr);

posy=posy+1;
getch(Q);

printf("\n");
break;

/* To search a particular employee and view their time records*/
case 3:

clrscr(Q;

gotoxy(27,5);

pr1' ntf("SEARCH EMPLOYEE INFORMATION");
gotoxy(25,9);

printf("Enter Employee Id to Search: ");
scanf("%d", &searchid);
findEmployee="f";

rewind(db) ;
while(fread(&empbata,size,1l,db)==1)

}f (empData.empid==searchid)

gotoxy(33,11);
textcolor (YELLOW+BLINK) ;
cprintf("Employee Information is Available.");
textcolor(YELLOW) ;
gotoxy(25,13);
printf("Employee name is: %s
%s" ,empData.lastname,empbata.firstname);
if(empbata.loginhour=="t")

gotoxy(25,14);
Erintf("Log In Time: Not Logged In");

?1se
gotoxy(25,14);
printf("Log In Time is:
%d:%d:%d" ,empData.loginhour,empData. loginmin,empData.loginsec);
if(empDpata.logouthour=="t")

{
gotoxy(25,15);
Page 8

Record Entry-project 1
?rintf("Log Out Time: Not Logged out");

else

{
gotoxy(25,15);
printf("Log Out Time is:
%d:%d:%d" ,empData.Togouthour,empData.logoutmin,empData.logoutsec);

findEmployee="t"';
%etch();

}
if (findeEmployee!="t")

{

gotoxy(30,11);

textcolor (YELLOW+BLINK) ;

cprintf("Employee Information not available. Please modify the search.");
textcolor(YELLOW) ;

getch();

break;

/* To remove entry of an employee from the database*/
case 4:
clrscr(Q;
gotoxy(25,5);
pr1' ntf("REMOVE AN EMPLOYEE");
gotoxy(25,9);
printf("Enter Employee Id to Delete: ");
scanf("%d", &searchid);
findEmployee="f";
rewind(db) ;
?hi1e(fread(&empData,size,1,db)==1)

if (empbData.empid==searchid)

gotoxy(33,11);
textcolor (YELLOW+BLINK) ;
cprintf("Employee Information is Available.");
textcolor(YELLOW) ;
gotoxy(25,13);
printf("Employee name 1is: %s
%s" ,empData.lastname,empbata.firstname);
findEmployee="t"';

b
}
if (findeEmployee!="t")

{

gotoxy(30,11);

textcolor (YELLOW+BLINK) ;

cprintf("Employee Information not available. Please modify the search.");
textcolor(YELLOW) ;

getch();

}f (findeEmployee=="t")
gotoxy(29,15);
printf("Do you want to Delete the Employee? (y/n)");
confirmbelete=getche();
if (confirmbelete=='y' || confirmbelete=="Y")

Page 9

Record Entry-project 1
tempdb=fopen("d:/tempo.dat”, "wb+");
rewind(db) ;
whi]e(fr?ad(&empData,size,l,db)==1)

if (empbata.empid!=searchid)

fseek(tempdb,0,SEEK_END) ;
?write(&empData,size,l,tempdb);

}
fclose(tempdb);
fclose(db);
remove("d:/empbase.dat");
rename("d:/tempo.dat","d:/empbase.dat");
?b=f0pen("d:/empbase.dat","rb+");

break;

/* To login an employee into the system and record the Togin date and time*/
case 5:
clrscr(Q;
gotoxy(20,4);
pri ntf("DAILY EMPLOYEE TIME RECORDING SYSTEM");
gotoxy(20,23);
printf("warning: Please Enter Numeric Vvalues Only.");
gotoxy(23,7);
printf("Enter Your Id to Login: ");
scanf("%d", &searchid);
gotoxy(20,23);
printf(" "
findEmployee="f";
rewind(db) ;
while(fread(&empbata,size,1,db)==1)

if (empbData.empid==searchid)

gotoxy(23,8);
printf("Enter Your Password: ");

for (i=0;1<6;1++)

pass[i]=getch();
printf("* ");

pass[6]="\0";
whiTe(getch()!=13);

if (strcmp(empbData.password,pass))
gotoxy(23,11);

textcolor (YELLOW+BLINK) ;
cprintf("You Have Supplied a wWrong Password.");

textcolor(YELLOW) ;
findEmployee="t"';
getch();

break;

}
gotoxy(23,11);
textcolor (YELLOW+BLINK) ;
cprintf("You have successfully Logged In the System.");
textcolor(YELLOW);
gotoxy(23,13);
Page 10

Record Entry-project 1
printf("Employee name: %s %s'",empData.lastname,empData.firstname);
gettime(&now) ;
getdate(&today);
gotoxy(23,14);
printf("Your LogIn Time:

%2d:%2d:%2d" ,now. ti_min,now.ti_hour,now.ti_sec);
gotoxy(23,15);
printf("Your Log In Date:

%d/%d/%d" ,today.da_mon, today.da_day,today.da_year);
empData.day=today.da_day;
empData.mon=today.da_mon;
empData.yr=today.da_year;
fseek(db,-size,SEEK_CUR);
empData. loginhour=now.ti_min;
empData. loginmin=now.ti_hour;
empData.loginsec=now.ti_sec;
fwrite(&empbata,size,1,db);
findEmployee="t";
getch();

b
if (findeEmployee!="t")

{

gotoxy(30,11);

textcolor (YELLOW+BLINK) ;

cprintf("Employee Information is not available.");
textcolor(YELLOW);

%etch();

break;

/* To logout an employee and record the logout date and time*/
case 6:

clrscr(Q;

gotoxy(20,4);

pr1' ntf("DAILY EMPLOYEE TIME RECORDING SYSTEM");
gotoxy(20,23);

printf("warning: Please Enter Numeric Vvalues Only.");
gotoxy(23,7);

printf("Enter Your Id to Logout: ");

scanf("%d", &searchid);

gotoxy(20,23);

printf(" "3
findEmployee="'f";

rewind(db) ;

while(fread(&empbata,size,1l,db)==1)

if (empbata.empid==searchid)

gotoxy(23,8);
printf("Enter Password: ");

for (i=0;i<6;i++)

pass[il=getch();
printf("* ");

b
pass[6]="\0";
while(getch()!=13);

Page 11

Record Entry-project 1
if (strcmp(empData.password,pass))

gotoxy(30,11);
textcolor (YELLOW+BLINK) ;
cprintf("You Have Supplied a Wrong Password.");

textcolor(YELLOW) ;
findEmployee="t";
getch();

break;

%

gotoxy(23,11);

textcolor (YELLOW+BLINK) ;

cprintf("You have successfully Logged out of the System.™);

textcolor(YELLOW);

gotoxy(23,13);

printf("Employee name is: %s
%s" ,empData.lastname, empbata.firstname);

gettime(&now) ;

getdate(&today);

gotoxy(23,14);

printf("Your Log Out Time:
%2d:%2d:%2d" ,now.ti_min,now.ti_hour,now.ti_sec);

gotoxy(23,15);

printf("Your Log Out Date:
%d/%d/%d" ,today.da_mon, today.da_day,today.da_year);

fseek(db,-size,SEEK_CUR);

empData. logouthour=now.ti_min;

empData. logoutmin=now. ti_hour;

empData. logoutsec=now.ti_sec;

fwrite(&empbata,size,1,db);

findEmployee="t"';

getch();

}
}f (findEmployee!="t")
gotoxy(23,11);

textcolor(YELLOW+BLINK);]]
cprintf("Employee Information is not available.");

textcolor(YELLOW) ;
getch(Q;
}
break;
/* Show previous menu*/
case 9:
printf("\n");
?Xit();
fclose(db);
showMenu=1;
}
}

Page 12

	0.pdf
	Chapter 1-p.pdf
	Chapter 2-CS.pdf
	Chapter 2-p.pdf
	Chapter 3-CS.pdf
	Chapter 3-p.pdf
	Chapter 4-CS.pdf
	Chapter 4-p.pdf
	Chapter 5-CS.pdf
	Chapter 5-p.pdf
	Chapter 6-CS.pdf
	Chapter 6-p.pdf
	Chapter 7-CS.pdf
	Chapter 7-p.pdf
	Chapter 8-CS.pdf
	Chapter 8-p.pdf
	Chapter 9-CS.pdf
	Chapter 9-p.pdf
	Chapter 10-CS.pdf
	Chapter 10-p.pdf
	Chapter 11-CS.pdf
	Chapter 11-p.pdf
	Chapter 12-p.pdf
	Chapter 13-CS.pdf
	Chapter 13-p.pdf
	Inventory-project 2.pdf
	LinkListExample.pdf
	matrixmulti.pdf
	Record Entry-project 1.pdf

