
CM0268
MATLAB

DSP
GRAPHICS

1

332

JJ
II
J
I

Back

Close

Digital Audio Effects
Having learned to make basic waveforms and basic filtering lets

see how we can add some digital audio effects. These may be applied:

• As part of the audio creation/synthesis stage — to be subsequently
filtered, (re)synthesised

• At the end of the audio chain — as part of the production/mastering
phase.

• Effects can be applied in different orders and sometimes in a
parallel audio chain.

• The order of applying the same effects can have drastic differences
in the output audio.

• Selection of effects and the ordering is a matter for the sound you
wish to create. There is no absolute rule for the ordering.

CM0268
MATLAB

DSP
GRAPHICS

1

333

JJ
II
J
I

Back

Close

Typical Guitar (and other) Effects Pipeline

Some ordering is standard for some audio processing, E.g:
Compression→ Distortion→ EQ→ Noise Redux→ Amp Sim→
Modulation→ Delay→ Reverb

Common for some guitar effects pedal:

ZOOM G1/G1X18

Compressor

Auto Wah

Booster

Tremolo

Phaser

FD Clean

VX Clean

HW Clean

US Blues

BG Crunch

Hall

Room

Spring

Arena

Tiled Room

Delay

Tape Echo

Analog
Delay

Ping Pong
Delay

AMP Sim.ZNR Chorus

Ensemble

Flanger

Step

Pitch Shift

COMP/EFX DRIVE EQ MODULATION REVERBDELAYAMPZNR
Effect modules

Effect types

Effect Types and Parameters

Linking Effects

The patches of the G1/G1X consist of eight
serially linked effect modules, as shown in the

illustration below. You can use all effect
modules together or selectively set certain
modules to on or off.

Explanation of symbols

! Module selector
The Module selector symbol
shows the position of the knob at
which this module/parameter is
called up.

! Expression pedal
A peda l i con in t he l i s t i ng
indicates a parameter that can be
controlled with the built-in or an
external expression pedal.

When this item is selected, the parameter in the
module can then be controlled in real time with a
connected expression pedal.

! Tap
A [TAP] icon in the l i s t ing
indicates a parameter that can be
set with the [BANK UP•TAP]
key.

When the respective module/effect type is
selected in edit mode and the [BANK UP•TAP]
key is pressed repeatedly, the parameter (such as
modulation rate or delay time) will be set
according to the interval in which the key is
pressed.

TAP

* Manufacturer names and product names mentioned in this listing are trademarks or
registered trademarks of their respective owners. The names are used only to illustrate sonic
characteristics and do not indicate any affiliation with ZOOM CORPORATION.

For some effect modules, you can select an effect type from several possible choices. For example, the
MODULATION module comprises Chorus, Flanger, and other effect types. The REVERB module
comprises Hall, Room, and other effect types from which you can choose one.

Effect Types and Parameters

ZOOM G1/G1X 19

"PATCH LEVEL

"COMP/EFX (Compressor/EFX) module

"DRIVE module

PATCH LEVEL (Prm)

Determines the overall volume level of the patch.

Sets the patch level in the range from 2 – 98, 1.0. A setting of 80 corresponds to unity gain (input level
and output level are equal).

This module comprises the effects that control the level dynamics such as compressor, and
modulation effects such as tremolo and phaser.

COMP/EFX (Type&Prm)

Adjusts the COMP/EFX module effect type and intensity.

Compressor
This is an MXR Dynacomp type compressor. It attenuates high-level signal components and boosts
low-level signal components, to keep the overall signal level within a certain range. Higher setting
values result in higher sensitivity.

Auto Wah
This effect varies wah in accordance with picking intensity. Higher setting values result in higher
sensitivity.

Booster
Raises signal level and creates a dynamic sound. Higher setting values result in higher gain.

Tremolo
This effect periodically varies the volume. Higher setting values result in faster modulation rate.

Phaser
This effect produces sound with a pulsating character. Higher setting values result in faster modulation
rate.

Ring Mod (Ring Modulator)
This effect produces a metallic ringing sound. Higher setting values result in higher modulation
frequency.

Slow Attack
This effect reduces the attack rate of each individual note, producing a violin playing style sound.
Higher setting values result in slower attack times.

Vox Wah
This effect simulates a half-open vintage VOX wah pedal. Higher setting values result in higher
emphasized frequency.

Cry Wah
This effect simulates a half-open vintage Crybaby wah pedal. Higher setting values result in higher
emphasized frequency.

This module includes 20 types of distortion and an acoustic simulator. For this module, the two
items DRIVE and GAIN can be adjusted separately.

DRIVE (Type)

Selects the effect type for the DRIVE module.

FD Clean VX Clean
Clean sound of a Fender Twin Reverb ('65
model) favored by guitarists of many
music styles.

Clean sound of the combo amp VOX AC-
30 operating in class A.

2 10

C1 C9

A1 A9

B1 B9

T1 T9

P1 P9

R1 R9

S1 S9

V1 V9

1 9

FD V

Note: Other Effects Units allow for a completely reconfigurable
effects pipeline. E.g. Boss GT-8

http://www.bossus.com/gear/productdetails.php?ProductId=720

CM0268
MATLAB

DSP
GRAPHICS

1

334

JJ
II
J
I

Back

Close

Classifying Effects
Audio effects can be classified by the way do their processing:

Basic Filtering — Lowpass, Highpass filter etc,, Equaliser

Time Varying Filters — Wah-wah, Phaser

Delays — Vibrato, Flanger, Chorus, Echo

Modulators — Ring modulation, Tremolo, Vibrato

Non-linear Processing — Compression, Limiters, Distortion,
Exciters/Enhancers

Spacial Effects — Panning, Reverb, Surround Sound

CM0268
MATLAB

DSP
GRAPHICS

1

335

JJ
II
J
I

Back

Close

Basic Digital Audio Filtering Effects:
Equalisers

Filters by definition remove/attenuate audio from the spectrum
above or below some cut-off frequency.

• For many audio applications this a little too restrictive

Equalisers, by contrast, enhance/diminish certain frequency bands
whilst leaving others unchanged:

• Built using a series of shelving and peak filters

• First or second-order filters usually employed.

CM0268
MATLAB

DSP
GRAPHICS

1

336

JJ
II
J
I

Back

Close

Shelving and Peak Filters
Shelving Filter — Boost or cut the low or high frequency bands with

a cut-off frequency, Fc and gain G

Peak Filter — Boost or cut mid-frequency bands with a cut-off
frequency, Fc, a bandwidth, fb and gain G

CM0268
MATLAB

DSP
GRAPHICS

1

337

JJ
II
J
I

Back

Close

Shelving Filters
A first-order shelving filter may be described by the transfer function:

H(z) = 1 +
H0

2
(1± A(z)) where LF/HF + /−

where A(z) is a first-order allpass filter — passes all frequencies
but modifies phase:

A(z) =
z−1 + aB/C
1 + aB/Cz−1

B=Boost, C=Cut

which leads the following algorithm/difference equation:

y1(n) = aB/Cx(n) + x(n− 1)− aB/Cy1(n− 1)

y(n) =
H0

2
(x(n)± y1(n)) + x(n)

CM0268
MATLAB

DSP
GRAPHICS

1

338

JJ
II
J
I

Back

Close

Shelving Filters (Cont.)

The gain, G, in dB can be adjusted accordingly:

H0 = V0 − 1 where V0 = 10G/20

and the cut-off frequency for boost, aB, or cut, aC are given by:

aB =
tan(2πfc/fs)− 1

tan(2πfc/fs) + 1

aC =
tan(2πfc/fs)− V0

tan(2πfc/fs)− V0

CM0268
MATLAB

DSP
GRAPHICS

1

339

JJ
II
J
I

Back

Close

Shelving Filters Signal Flow Graph

y(n)A(z) ± ×
H0/2

+x(n) y1(n)

1

where A(z) is given by:
T

x(n − 1)

y(n)

× ×aB/C 1

+ +

× −aB/C

T

y1(n − 1)

x(n)

1

CM0268
MATLAB

DSP
GRAPHICS

1

340

JJ
II
J
I

Back

Close

Peak Filters
A first-order shelving filter may be described by the transfer function:

H(z) = 1 +
H0

2
(1− A2(z))

where A2(z) is a second-order allpass filter:

A(z) =
−aB + (d− daB)z−1 + z−2

1 + (d− daB)z−1 + aBz−2

which leads the following algorithm/difference equation:

y1(n) = 1aB/Cx(n) + d(1− aB/C)x(n− 1) + x(n− 2)

−d(1− aB/C)y1(n− 1) + aB/Cy1(n− 2)

y(n) =
H0

2
(x(n)− y1(n)) + x(n)

CM0268
MATLAB

DSP
GRAPHICS

1

341

JJ
II
J
I

Back

Close

Peak Filters (Cont.)

The center/cut-off frequency, d, is given by:

d = −cos(2πfc/fs)

The H0 by relation to the gain, G, as before:

H0 = V0 − 1 where V0 = 10G/20

and the bandwidth, fb is given by the limits for boost, aB, or cut,
aC are given by:

aB =
tan(2πfb/fs)− 1

tan(2πfb/fs) + 1

aC =
tan(2πfb/fs)− V0

tan(2πfb/fs)− V0

CM0268
MATLAB

DSP
GRAPHICS

1

342

JJ
II
J
I

Back

Close

Peak Filters Signal Flow Graph

y(n)A(z) +× ×
−1 H0/2

+x(n) y1(n)

1

where A(z) is given by:
x(n)

T T

x(n − 1) x(n − 2)

× × ×−aB/C d(1 − aB/C) 1

+ + +
y(n)

× ×aB/C −d(1 − aB/C)

T T
y1(n − 2) y1(n − 1)

1

CM0268
MATLAB

DSP
GRAPHICS

1

343

JJ
II
J
I

Back

Close

Shelving Filter EQ MATLAB Example
The following function, shelving.m performs a shelving filter:

function [b, a] = shelving(G, fc, fs, Q, type)
%
% Derive coefficients for a shelving filter with a given amplitude
% and cutoff frequency. All coefficients are calculated as
% described in Zolzer’s DAFX book (p. 50 -55).
%
% Usage: [B,A] = shelving(G, Fc, Fs, Q, type);
%
% G is the logrithmic gain (in dB)
% FC is the center frequency
% Fs is the sampling rate
% Q adjusts the slope be replacing the sqrt(2) term
% type is a character string defining filter type
% Choices are: ’Base_Shelf’ or ’Treble_Shelf’

%Error Check
if((strcmp(type,’Base_Shelf’) ˜= 1) && ...

(strcmp(type,’Treble_Shelf’) ˜= 1))
error([’Unsupported Filter Type: ’ type]);

end

http://www.cs.cf.ac.uk/Dave/CM0268/Lecture_Examples/Digital_Audio_FX/shelving.m

CM0268
MATLAB

DSP
GRAPHICS

1

344

JJ
II
J
I

Back

Close

K = tan((pi * fc)/fs);
V0 = 10ˆ(G/20);
root2 = 1/Q; %sqrt(2)

%Invert gain if a cut
if(V0 < 1)

V0 = 1/V0;
end

%%%%%%%%%%%%%%%%%%%%
% BASE BOOST
%%%%%%%%%%%%%%%%%%%%
if((G > 0) & (strcmp(type,’Base_Shelf’)))

b0 = (1 + sqrt(V0)*root2*K + V0*Kˆ2) / (1 + root2*K + Kˆ2);
b1 = (2 * (V0*Kˆ2 - 1)) / (1 + root2*K + Kˆ2);
b2 = (1 - sqrt(V0)*root2*K + V0*Kˆ2) / (1 + root2*K + Kˆ2);
a1 = (2 * (Kˆ2 - 1)) / (1 + root2*K + Kˆ2);
a2 = (1 - root2*K + Kˆ2) / (1 + root2*K + Kˆ2);

%%%%%%%%%%%%%%%%%%%%
% BASE CUT
%%%%%%%%%%%%%%%%%%%%
elseif ((G < 0) & (strcmp(type,’Base_Shelf’)))

b0 = (1 + root2*K + Kˆ2) / (1 + root2*sqrt(V0)*K + V0*Kˆ2);

CM0268
MATLAB

DSP
GRAPHICS

1

345

JJ
II
J
I

Back

Close

b1 = (2 * (Kˆ2 - 1)) / (1 + root2*sqrt(V0)*K + V0*Kˆ2);
b2 = (1 - root2*K + Kˆ2) / (1 + root2*sqrt(V0)*K + V0*Kˆ2);
a1 = (2 * (V0*Kˆ2 - 1)) / (1 + root2*sqrt(V0)*K + V0*Kˆ2);
a2 = (1 - root2*sqrt(V0)*K + V0*Kˆ2) / ...

(1 + root2*sqrt(V0)*K + V0*Kˆ2);

%%%%%%%%%%%%%%%%%%%%
% TREBLE BOOST
%%%%%%%%%%%%%%%%%%%%
elseif ((G > 0) & (strcmp(type,’Treble_Shelf’)))

b0 = (V0 + root2*sqrt(V0)*K + Kˆ2) / (1 + root2*K + Kˆ2);
b1 = (2 * (Kˆ2 - V0)) / (1 + root2*K + Kˆ2);
b2 = (V0 - root2*sqrt(V0)*K + Kˆ2) / (1 + root2*K + Kˆ2);
a1 = (2 * (Kˆ2 - 1)) / (1 + root2*K + Kˆ2);
a2 = (1 - root2*K + Kˆ2) / (1 + root2*K + Kˆ2);

%%%%%%%%%%%%%%%%%%%%
% TREBLE CUT
%%%%%%%%%%%%%%%%%%%%

elseif ((G < 0) & (strcmp(type,’Treble_Shelf’)))

b0 = (1 + root2*K + Kˆ2) / (V0 + root2*sqrt(V0)*K + Kˆ2);
b1 = (2 * (Kˆ2 - 1)) / (V0 + root2*sqrt(V0)*K + Kˆ2);
b2 = (1 - root2*K + Kˆ2) / (V0 + root2*sqrt(V0)*K + Kˆ2);
a1 = (2 * ((Kˆ2)/V0 - 1)) / (1 + root2/sqrt(V0)*K ...

CM0268
MATLAB

DSP
GRAPHICS

1

346

JJ
II
J
I

Back

Close

+ (Kˆ2)/V0);
a2 = (1 - root2/sqrt(V0)*K + (Kˆ2)/V0) /

(1 + root2/sqrt(V0)*K + (Kˆ2)/V0);

%%%%%%%%%%%%%%%%%%%%
% All-Pass
%%%%%%%%%%%%%%%%%%%%
else

b0 = V0;
b1 = 0;
b2 = 0;
a1 = 0;
a2 = 0;

end

%return values
a = [1, a1, a2];
b = [b0, b1, b2];

CM0268
MATLAB

DSP
GRAPHICS

1

347

JJ
II
J
I

Back

Close

Shelving Filter EQ MATLAB Example (Cont.)

The following script shelving eg.m illustrates how we use the shelving
filter function to filter:
infile = ’acoustic.wav’;

% read in wav sample
[x, Fs, N] = wavread(infile);

%set Parameters for Shelving Filter
% Change these to experiment with filter

G = 4; fcb = 300; Q = 3; type = ’Base_Shelf’;

[b a] = shelving(G, fcb, Fs, Q, type);
yb = filter(b,a, x);

% write output wav files
wavwrite(yb, Fs, N, ’out_bassshelf.wav’);

% plot the original and equalised waveforms
figure(1), hold on;
plot(yb,’b’);
plot(x,’r’);
title(’Bass Shelf Filter Equalised Signal’);

http://www.cs.cf.ac.uk/Dave/CM0268/Lecture_Examples/Digital_Audio_FX/shelving_eg.m

CM0268
MATLAB

DSP
GRAPHICS

1

348

JJ
II
J
I

Back

Close

%Do treble shelf filter
fct = 600; type = ’Treble_Shelf’;

[b a] = shelving(G, fct, Fs, Q, type);
yt = filter(b,a, x);

% write output wav files
wavwrite(yt, Fs, N, ’out_treblehelf.wav’);

figure(1), hold on;
plot(yb,’g’);
plot(x,’r’);
title(’Treble Shelf Filter Equalised Signal’);

CM0268
MATLAB

DSP
GRAPHICS

1

349

JJ
II
J
I

Back

Close

Shelving Filter EQ MATLAB Example (Cont.)

The output from the above code is (red plot is original audio):

0 5 10 15

x 104

−1.5

−1

−0.5

0

0.5

1

1.5
Bass Shelf Filter Equalised Signal

0 5 10 15

x 104

−1.5

−1

−0.5

0

0.5

1

1.5
Treble Shelf Filter Equalised Signal

Click here to hear: original audio, bass shelf filtered audio,
treble shelf filtered audio.

http://www.cs.cf.ac.uk/Dave/CM0268/Lecture_Examples/Digital_Audio_FX/acoustic.wav
http://www.cs.cf.ac.uk/Dave/CM0268/Lecture_Examples/Digital_Audio_FX/out_bassshelf.wav
http://www.cs.cf.ac.uk/Dave/CM0268/Lecture_Examples/Digital_Audio_FX/out_treblehelf.wav

CM0268
MATLAB

DSP
GRAPHICS

1

350

JJ
II
J
I

Back

Close

Time-varying Filters

Some common effects are realised by simply time varying a filter
in a couple of different ways:

Wah-wah — A bandpass filter with a time varying centre (resonant)
frequency and a small bandwidth. Filtered signal mixed with
direct signal.

Phasing — A notch filter, that can be realised as set of cascading IIR
filters, again mixed with direct signal.

CM0268
MATLAB

DSP
GRAPHICS

1

351

JJ
II
J
I

Back

Close

Wah-wah Example
The signal flow for a wah-wah is as follows:

y(n)+×

×BP

direct-mix

wah-mix
Time

Varying

x(n)

1

where BP is a time varying frequency bandpass filter.

• A phaser is similarly implemented with a notch filter replacing
the bandpass filter.

• A variation is the M -fold wah-wah filter where M tap delay
bandpass filters spread over the entire spectrum change their
centre frequencies simultaneously.

• A bell effect can be achieved with around a hundred M tap
delays and narrow bandwidth filters

CM0268
MATLAB

DSP
GRAPHICS

1

352

JJ
II
J
I

Back

Close

Time Varying Filter Implementation:
State Variable Filter

In our audio application of time varying filters we now want
independent control over the cut-off frequency and damping factor
of a filter.

(Borrowed from analog electronics) we can implement a
State Variable Filter to solve this problem.

• One further advantage is that we can simultaneously get lowpass,
bandpass and highpass filter output.

CM0268
MATLAB

DSP
GRAPHICS

1

353

JJ
II
J
I

Back

Close

The State Variable Filter

+ +

yh(n)

×

F1

+

yb(n)

×

F1

+

yl(n)

T T

×
−1 × Q1

T

T×
−1

x(n)

1

where:

x(n) = input signal
yl(n) = lowpass signal
yb(n) = bandpass signal
yh(n) = highpass signal

CM0268
MATLAB

DSP
GRAPHICS

1

354

JJ
II
J
I

Back

Close

The State Variable Filter Algorithm
The algorithm difference equations are given by:

yl(n) = F1yb(n) + yl(n− 1)

yb(n) = F1yh(n) + yb(n− 1)

yh(n) = x(n)− yl(n− 1)−Q1yb(n− 1)

with tuning coefficients F1 and Q1 related to the cut-off frequency,
fc, and damping, d:

F1 = 2 sin(πfc/fs), and Q1 = 2d

CM0268
MATLAB

DSP
GRAPHICS

1

355

JJ
II
J
I

Back

Close

MATLAB Wah-wah Implementation
We simply implement the State Variable Filter with a variable

frequency, fc. The code listing is wah wah.m:
% wah_wah.m state variable band pass
%
% BP filter with narrow pass band, Fc oscillates up and
% down the spectrum
% Difference equation taken from DAFX chapter 2
%
% Changing this from a BP to a BR/BS (notch instead of a bandpass) converts
% this effect to a phaser
%
% yl(n) = F1*yb(n) + yl(n-1)
% yb(n) = F1*yh(n) + yb(n-1)
% yh(n) = x(n) - yl(n-1) - Q1*yb(n-1)
%
% vary Fc from 500 to 5000 Hz

infile = ’acoustic.wav’;

% read in wav sample
[x, Fs, N] = wavread(infile);

http://www.cs.cf.ac.uk/Dave/CM0268/Lecture_Examples/Digital_Audio_FX/wah_wah.m

CM0268
MATLAB

DSP
GRAPHICS

1

356

JJ
II
J
I

Back

Close

%%%%%%% EFFECT COEFFICIENTS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%
% damping factor
% lower the damping factor the smaller the pass band
damp = 0.05;

% min and max centre cutoff frequency of variable bandpass filter
minf=500;
maxf=3000;

% wah frequency, how many Hz per second are cycled through
Fw = 2000;
%%%

% change in centre frequency per sample (Hz)
delta = Fw/Fs;

% create triangle wave of centre frequency values
Fc=minf:delta:maxf;
while(length(Fc) < length(x))

Fc= [Fc (maxf:-delta:minf)];
Fc= [Fc (minf:delta:maxf)];

end

% trim tri wave to size of input
Fc = Fc(1:length(x));

CM0268
MATLAB

DSP
GRAPHICS

1

357

JJ
II
J
I

Back

Close

% difference equation coefficients
% must be recalculated each time Fc changes
F1 = 2*sin((pi*Fc(1))/Fs);
% this dictates size of the pass bands
Q1 = 2*damp;

yh=zeros(size(x)); % create emptly out vectors
yb=zeros(size(x));
yl=zeros(size(x));

% first sample, to avoid referencing of negative signals
yh(1) = x(1);
yb(1) = F1*yh(1);
yl(1) = F1*yb(1);

% apply difference equation to the sample
for n=2:length(x),

yh(n) = x(n) - yl(n-1) - Q1*yb(n-1);
yb(n) = F1*yh(n) + yb(n-1);
yl(n) = F1*yb(n) + yl(n-1);
F1 = 2*sin((pi*Fc(n))/Fs);

end

%normalise
maxyb = max(abs(yb));
yb = yb/maxyb;

CM0268
MATLAB

DSP
GRAPHICS

1

358

JJ
II
J
I

Back

Close

% write output wav files
wavwrite(yb, Fs, N, ’out_wah.wav’);

figure(1)
hold on
plot(x,’r’);
plot(yb,’b’);
title(’Wah-wah and original Signal’);

CM0268
MATLAB

DSP
GRAPHICS

1

359

JJ
II
J
I

Back

Close

Wah-wah MATLAB Example (Cont.)

The output from the above code is (red plot is original audio):

0 5 10 15

x 104

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Wah−wah and original Signal

Click here to hear: original audio, wah-wah filtered audio.

http://www.cs.cf.ac.uk/Dave/CM0268/Lecture_Examples/Digital_Audio_FX/acoustic.wav
http://www.cs.cf.ac.uk/Dave/CM0268/Lecture_Examples/Digital_Audio_FX/out_wah.wav

CM0268
MATLAB

DSP
GRAPHICS

1

360

JJ
II
J
I

Back

Close

Wah-wah Code Explained
Three main parts:

• Create a triangle wave to modulate the centre frequency of the
bandpass filter.

• Implementation of state variable filter

• Repeated recalculation if centre frequency within the state variable
filter loop.

CM0268
MATLAB

DSP
GRAPHICS

1

361

JJ
II
J
I

Back

Close

Wah-wah Code Explained (Cont.)

Creation of triangle waveform we have seen previously— see
waveforms.m.

• Slight modification of this code here to allow ’frequency values’
(Y-axis amplitude) to vary rather than frequency of the triangle
waveform — here the frequency of the modulator wave is
determined by wah-wah rate, F w, usually a low frequency:

% min and max centre cutoff frequency of variable bandpass filter
minf=500; maxf=3000;
% wah frequency, how many Hz per second are cycled through
Fw = 2000;

% change in centre frequency per sample (Hz)
delta = Fw/Fs;
% create triangle wave of centre frequency values
Fc=minf:delta:maxf;
while(length(Fc) < length(x))

Fc= [Fc (maxf:-delta:minf)];
Fc= [Fc (minf:delta:maxf)];

end
% trim tri wave to size of input
Fc = Fc(1:length(x));

http://www.cs.cf.ac.uk/Dave/CM0268/Lecture_Examples/Tutorial_5_Matlab_DSP_Synth/waveforms.m

CM0268
MATLAB

DSP
GRAPHICS

1

362

JJ
II
J
I

Back

Close

Wah-wah Code Explained (Cont.)

Note: As the Wah-wah rate is not likely to be in perfect sync with
input waveform, x, we must trim it to the same length as x.

Modifications to Wah-wah

• Adding Multiple Delays with differing centre frequency filters
but all modulated by same Fc gives an M-fold wah-wah

• Changing filter to a notch filter gives a phaser

– Notch Filter (or bandreject/bandstop filter (BR/BS)) —
attenuate frequencies in a narrow bandwidth (High Q factor)
around cut-off frequency, u0

• See Lab worksheet and useful for coursework

CM0268
MATLAB

DSP
GRAPHICS

1

363

JJ
II
J
I

Back

Close

Bandreject (BR)/Bandpass(BP) Filters

(Sort of) Seen before (Peak Filter). Here we have, BR/BP:

y(n)A2(z) ±

BR = +
BP = −

×

1/2

x(n) y1(n)

1

where A2(z) (a second order allpass filter) is given by:
x(n)

T T

x(n − 1) x(n − 2)

× × ×−c d(1 − c) 1

+ + +
y(n)

× ×c −d(1 − c)

T T

y1(n − 2) y1(n − 1)

1

CM0268
MATLAB

DSP
GRAPHICS

1

364

JJ
II
J
I

Back

Close

Bandreject (BR)/Bandpass(BP) Filters (Cont.)

The difference equation is given by:

y1(n) = −cx(n) + d(1− c)x(n− 1) + x(n− 2)

−d(1− c)y1(n− 1) + cy1(n− 2)

y(n) =
1

2
(x(n)± y1(n))

where
d = −cos(2πfc/fs)

c =
tan(2πfc/fs)− 1

tan(2πfc/fs) + 1

Bandreject = +
Bandpass = −

CM0268
MATLAB

DSP
GRAPHICS

1

365

JJ
II
J
I

Back

Close

Delay Based Effects
Many useful audio effects can be implemented using a delay

structure:

• Sounds reflected of walls

– In a cave or large room we here an echo and also reverberation
takes place – this is a different effect — see later

– If walls are closer together repeated reflections can appear
as parallel boundaries and we hear a modification of sound
colour instead.

• Vibrato, Flanging, Chorus and Echo are examples of delay effects

CM0268
MATLAB

DSP
GRAPHICS

1

366

JJ
II
J
I

Back

Close

Basic Delay Structure
We build basic delay structures out of some very basic FIR and IIR

filters:

• We use FIR and IIR comb filters

• Combination of FIR and IIR gives the Universal Comb Filter

CM0268
MATLAB

DSP
GRAPHICS

1

367

JJ
II
J
I

Back

Close

FIR Comb Filter
This simulates a single delay:

• The input signal is delayed by a given time duration, τ .

• The delayed (processed) signal is added to the input signal some
amplitude gain, g

• The difference equation is simply:

y(n) = x(n) + gx(n−M) with M = τ/fs

• The transfer function is:

H(z) = 1 + gz−M

CM0268
MATLAB

DSP
GRAPHICS

1

368

JJ
II
J
I

Back

Close

FIR Comb Filter Signal Flow Diagram

+
y(n)

TM

×

×x(n − M)

1

g

x(n)

1

CM0268
MATLAB

DSP
GRAPHICS

1

369

JJ
II
J
I

Back

Close

FIR Comb Filter MATLAB Code

fircomb.m:

x=zeros(100,1);x(1)=1; % unit impulse signal of length 100

g=0.5; %Example gain

Delayline=zeros(10,1); % memory allocation for length 10

for n=1:length(x);
y(n)=x(n)+g*Delayline(10);
Delayline=[x(n);Delayline(1:10-1)];

end;

http://www.cs.cf.ac.uk/Dave/CM0268/Lecture_Examples/Digital_Audio_FX/fircomb.m

CM0268
MATLAB

DSP
GRAPHICS

1

370

JJ
II
J
I

Back

Close

IIR Comb Filter
This simulates a single delay:

• Simulates endless reflections at both ends of cylinder.

• We get an endless series of responses, y(n) to input, x(n).

• The input signal circulates in delay line (delay time τ) that is fed
back to the input..

• Each time it is fed back it is attenuated by g.

• Input sometime scaled by c to compensate for high amplification
of the structure.

• The difference equation is simply:

y(n) = Cx(n) + gy(n−M) with M = τ/fs

• The transfer function is:

H(z) =
c

1− gz−M

CM0268
MATLAB

DSP
GRAPHICS

1

371

JJ
II
J
I

Back

Close

IIR Comb Filter Signal Flow Diagram

× +
y(n)

TM

× y(n − M)

g

c

x(n)

1

CM0268
MATLAB

DSP
GRAPHICS

1

372

JJ
II
J
I

Back

Close

IIR Comb Filter MATLAB Code

iircomb.m:

x=zeros(100,1);x(1)=1; % unit impulse signal of length 100

g=0.5;

Delayline=zeros(10,1); % memory allocation for length 10

for n=1:length(x);
y(n)=x(n)+g*Delayline(10);
Delayline=[y(n);Delayline(1:10-1)];

end;

http://www.cs.cf.ac.uk/Dave/CM0268/Lecture_Examples/Digital_Audio_FX/iircomb.m

CM0268
MATLAB

DSP
GRAPHICS

1

373

JJ
II
J
I

Back

Close

Universal Comb Filter
The combination of the FIR and IIR comb filters yields the Universal

Comb Filter:

• Basically this is an allpass filter with an M sample delay operator
and an additional multiplier, FF.

TM

x(n − M)

×

×

BL

FF

+ +
y(n)

×
FB

x(n)

1

• Parameters: FF = feedforward, FB = feedbackward, BL = blend

CM0268
MATLAB

DSP
GRAPHICS

1

374

JJ
II
J
I

Back

Close

Universal Comb Filter Parameters

Universal in that we can form any comb filter, an allpass or a delay:

BL FB FF
FIR Comb 1 0 g
IIR Comb 1 g 0
Allpass a −a 1
delay 0 0 1

CM0268
MATLAB

DSP
GRAPHICS

1

375

JJ
II
J
I

Back

Close

Universal Comb Filter MATLAB Code

unicomb.m:

x=zeros(100,1);x(1)=1; % unit impulse signal of length 100

BL=0.5;
FB=-0.5;
FF=1;
M=10;

Delayline=zeros(M,1); % memory allocation for length 10

for n=1:length(x);
xh=x(n)+FB*Delayline(M);
y(n)=FF*Delayline(M)+BL*xh;
Delayline=[xh;Delayline(1:M-1)];

end;

http://www.cs.cf.ac.uk/Dave/CM0268/Lecture_Examples/Digital_Audio_FX/unicomb.m

CM0268
MATLAB

DSP
GRAPHICS

1

376

JJ
II
J
I

Back

Close

Vibrato - A Simple Delay Based Effect
• Vibrato — Varying the time delay periodically

• If we vary the distance between and observer and a sound source
(cf. Doppler effect) we here a change in pitch.

• Implementation: A Delay line and a low frequency oscillator (LFO)
to vary the delay.

• Only listen to the delay — no forward or backward feed.

• Typical delay time = 5–10 Ms and LFO rate 5–14Hz.

CM0268
MATLAB

DSP
GRAPHICS

1

377

JJ
II
J
I

Back

Close

Vibrato MATLAB Code

vibrato.m function, Use vibrato eg.m to call function:

function y=vibrato(x,SAMPLERATE,Modfreq,Width)

ya_alt=0;
Delay=Width; % basic delay of input sample in sec
DELAY=round(Delay*SAMPLERATE); % basic delay in # samples
WIDTH=round(Width*SAMPLERATE); % modulation width in # samples
if WIDTH>DELAY

error(’delay greater than basic delay !!!’);
return;

end;

MODFREQ=Modfreq/SAMPLERATE; % modulation frequency in # samples
LEN=length(x); % # of samples in WAV-file
L=2+DELAY+WIDTH*2; % length of the entire delay
Delayline=zeros(L,1); % memory allocation for delay
y=zeros(size(x)); % memory allocation for output vector

http://www.cs.cf.ac.uk/Dave/CM0268/Lecture_Examples/Digital_Audio_FX/vibrato.m
http://www.cs.cf.ac.uk/Dave/CM0268/Lecture_Examples/Digital_Audio_FX/vibrato_eg.m

CM0268
MATLAB

DSP
GRAPHICS

1

378

JJ
II
J
I

Back

Close

for n=1:(LEN-1)
M=MODFREQ;
MOD=sin(M*2*pi*n);
ZEIGER=1+DELAY+WIDTH*MOD;
i=floor(ZEIGER);
frac=ZEIGER-i;
Delayline=[x(n);Delayline(1:L-1)];
%---Linear Interpolation-----------------------------
y(n,1)=Delayline(i+1)*frac+Delayline(i)*(1-frac);
%---Allpass Interpolation------------------------------
%y(n,1)=(Delayline(i+1)+(1-frac)*Delayline(i)-(1-frac)*ya_alt);
%ya_alt=ya(n,1);

end

CM0268
MATLAB

DSP
GRAPHICS

1

379

JJ
II
J
I

Back

Close

Vibrato MATLAB Example (Cont.)

The output from the above code is (red plot is original audio):

0 50 100 150 200 250 300 350 400 450 500
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3
Vibrato First 500 Samples

Click here to hear: original audio, vibrato audio.

http://www.cs.cf.ac.uk/Dave/CM0268/Lecture_Examples/Digital_Audio_FX/acoustic.wav
http://www.cs.cf.ac.uk/Dave/CM0268/Lecture_Examples/Digital_Audio_FX/out_vibrato.wav

CM0268
MATLAB

DSP
GRAPHICS

1

380

JJ
II
J
I

Back

Close

Vibrato MATLAB Code Explained

Click here to hear: original audio, vibrato audio.
The code should be relatively self explanatory, except for one part:

• We work out the delay (modulated by a sinusoid) at each step, n:

M=MODFREQ;
MOD=sin(M*2*pi*n);
ZEIGER=1+DELAY+WIDTH*MOD;

• We then work out the nearest sample step: i=floor(ZEIGER);

• The problem is that we have a fractional delay line value: ZEIGER

ZEIGER = 11.2779
i = 11

ZEIGER = 11.9339
i = 11

ZEIGER = 12.2829
i = 12

http://www.cs.cf.ac.uk/Dave/CM0268/Lecture_Examples/Digital_Audio_FX/acoustic.wav
http://www.cs.cf.ac.uk/Dave/CM0268/Lecture_Examples/Digital_Audio_FX/out_vibrato.wav

CM0268
MATLAB

DSP
GRAPHICS

1

381

JJ
II
J
I

Back

Close

Fractional Delay Line - Interpolation

• To improve effect we can use some form of interpolation to
compute the output, y(n).

– Above uses Linear Interpolation
y(n,1)=Delayline(i+1)*frac+Delayline(i)*(1-frac);

or:

y(n) = x(n− (M + 1)).frac + x(n−M).(1− frac)
– Alternatives (commented in code)

%---Allpass Interpolation------------------------------
%y(n,1)=(Delayline(i+1)+(1-frac)*Delayline(i)-...

(1-frac)*ya_alt);
%ya_alt=y(n,1);

or:

y(n) = x(n− (M + 1)).frac + x(n−M).(1− frac)−
y(n− 1).(1− frac)

– or spline based interpolation — see DAFX book p68-69.

CM0268
MATLAB

DSP
GRAPHICS

1

382

JJ
II
J
I

Back

Close

Comb Filter Delay Effects:
Flanger, Chorus, Slapback, Echo
• A few popular effects can be made with a comb filter (FIR or IIR)

and some modulation

• Flanger, Chorus, Slapback, Echo same basic approach but different
sound outputs:

Effect Delay Range (ms) Modulation
Resonator 0 . . . 20 None
Flanger 0 . . . 15 Sinusoidal (≈ 1 Hz)
Chorus 10 . . . 25 Random
Slapback 25 . . . 50 None
Echo > 50 None

• Slapback (or doubling) — quick repetition of the sound,
Flanging — continuously varying LFO of delay,
Chorus — multiple copies of sound delayed by small random
delays

CM0268
MATLAB

DSP
GRAPHICS

1

383

JJ
II
J
I

Back

Close

Flanger MATLAB Code

flanger.m:

% Creates a single FIR delay with the delay time oscillating from
% Either 0-3 ms or 0-15 ms at 0.1 - 5 Hz

infile=’acoustic.wav’;
outfile=’out_flanger.wav’;

% read the sample waveform
[x,Fs,bits] = wavread(infile);

% parameters to vary the effect %
max_time_delay=0.003; % 3ms max delay in seconds
rate=1; %rate of flange in Hz

index=1:length(x);

% sin reference to create oscillating delay
sin_ref = (sin(2*pi*index*(rate/Fs)))’;

%convert delay in ms to max delay in samples
max_samp_delay=round(max_time_delay*Fs);

% create empty out vector
y = zeros(length(x),1);

http://www.cs.cf.ac.uk/Dave/CM0268/Lecture_Examples/Digital_Audio_FX/flanger.m

CM0268
MATLAB

DSP
GRAPHICS

1

384

JJ
II
J
I

Back

Close

% to avoid referencing of negative samples
y(1:max_samp_delay)=x(1:max_samp_delay);

% set amp suggested coefficient from page 71 DAFX
amp=0.7;

% for each sample
for i = (max_samp_delay+1):length(x),
cur_sin=abs(sin_ref(i)); %abs of current sin val 0-1
% generate delay from 1-max_samp_delay and ensure whole number
cur_delay=ceil(cur_sin*max_samp_delay);
% add delayed sample
y(i) = (amp*x(i)) + amp*(x(i-cur_delay));

end

% write output
wavwrite(y,Fs,outfile);

CM0268
MATLAB

DSP
GRAPHICS

1

385

JJ
II
J
I

Back

Close

Flanger MATLAB Example (Cont.)

The output from the above code is (red plot is original audio):

0 5 10 15

x 104

−1.5

−1

−0.5

0

0.5

1

1.5
Flanger and original Signal

Click here to hear: original audio, flanged audio.

http://www.cs.cf.ac.uk/Dave/CM0268/Lecture_Examples/Digital_Audio_FX/acoustic.wav
http://www.cs.cf.ac.uk/Dave/CM0268/Lecture_Examples/Digital_Audio_FX/out_flanger.wav

CM0268
MATLAB

DSP
GRAPHICS

1

386

JJ
II
J
I

Back

Close

Modulation
Modulation is the process where parameters of a sinusoidal signal

(amplitude, frequency and phase) are modified or varied by an audio
signal.

We have met some example effects that could be considered as a
class of modulation already:

Amplitude Modulation — Wah-wah, Phaser

Phase Modulation — Vibrato, Chorus, Flanger

We will now introduce some Modulation effects.

CM0268
MATLAB

DSP
GRAPHICS

1

387

JJ
II
J
I

Back

Close

Ring Modulation
Ring modulation (RM) is where the audio modulator signal, x(n)

is multiplied by a sine wave, m(n), with a carrier frequency, fc.

• This is very simple to implement digitally:

y(n) = x(n).m(n)

• Although audible result is easy to comprehend for simple signals
things get more complicated for signals having numerous partials

• If the modulator is also a sine wave with frequency, fx then one
hears the sum and difference frequencies: fc+ fx and fc− fx, for
example.

• When the input is periodic with at a fundamental frequency, f0,
then a spectrum with amplitude lines at frequencies |kf0 ± fc|
• Used to create robotic speech effects on old sci-fi movies and can

create some odd almost non-musical effects if not used with care.
(Original speech)

http://www.cs.cf.ac.uk/Dave/CM0268/Lecture_Examples/Digital_Audio_FX/IlikeMM_ringmod.wav
http://www.cs.cf.ac.uk/Dave/CM0268/Lecture_Examples/Digital_Audio_FX/IlikeMM.wav

CM0268
MATLAB

DSP
GRAPHICS

1

388

JJ
II
J
I

Back

Close

MATLAB Ring Modulation
Two examples, a sine wave and an audio sample being modulated

by a sine wave, ring mod.m

filename=’acoustic.wav’;

% read the sample waveform
[x,Fs,bits] = wavread(filename);

index = 1:length(x);

% Ring Modulate with a sine wave frequency Fc
Fc = 440;
carrier= sin(2*pi*index*(Fc/Fs))’;

% Do Ring Modulation
y = x.*carrier;

% write output
wavwrite(y,Fs,bits,’out_ringmod.wav’);

Click here to hear: original audio, ring modulated audio.

http://www.cs.cf.ac.uk/Dave/CM0268/Lecture_Examples/Digital_Audio_FX/ring_mod.m
http://www.cs.cf.ac.uk/Dave/CM0268/Lecture_Examples/Digital_Audio_FX/acoustic.wav
http://www.cs.cf.ac.uk/Dave/CM0268/Lecture_Examples/Digital_Audio_FX/out_ringmod.wav

CM0268
MATLAB

DSP
GRAPHICS

1

389

JJ
II
J
I

Back

Close

MATLAB Ring Modulation: Two sine waves
% Ring Modulate with a sine wave frequency Fc
Fc = 440;
carrier= sin(2*pi*index*(Fc/Fs))’;

%create a modulator sine wave frequency Fx
Fx = 200;
modulator = sin(2*pi*index*(Fx/Fs))’;

% Ring Modulate with sine wave, freq. Fc
y = modulator.*carrier;

% write output
wavwrite(y,Fs,bits,’twosine_ringmod.wav’);

Output of Two sine wave ring modulation (fc = 440, fx = 380)

0 50 100 150 200 250
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Click here to hear: Two RM sine waves (fc = 440, fx = 200)

http://www.cs.cf.ac.uk/Dave/CM0268/Lecture_Examples/Digital_Audio_FX/twosine_ringmod.wav

CM0268
MATLAB

DSP
GRAPHICS

1

390

JJ
II
J
I

Back

Close

Amplitude Modulation
Amplitude Modulation (AM) is defined by:

y(n) = (1 + αm(n)).x(n)

• Normalise the peak amplitude of M(n) to 1.

• α is depth of modulation

α = 1 gives maximum modulation
α = 0 tuns off modulation

• x(n) is the audio carrier signal

• m(n) is a low-frequency oscillator modulator.

• When x(n) and m(n) both sine waves with frequencies fc and
fx respectively we here three frequencies: carrier, difference and
sum: fc, fc − fx, fc + fx.

CM0268
MATLAB

DSP
GRAPHICS

1

391

JJ
II
J
I

Back

Close

Amplitude Modulation: Tremolo
A common audio application of AM is to produce a tremolo effect:

• Set modulation frequency of the sine wave to below 20Hz

The MATLAB code to achieve this is tremolo1.m

% read the sample waveform
filename=’acoustic.wav’;
[x,Fs,bits] = wavread(filename);

index = 1:length(x);

Fc = 5;
alpha = 0.5;

trem=(1+ alpha*sin(2*pi*index*(Fc/Fs)))’;
y = trem.*x;

% write output
wavwrite(y,Fs,bits,’out_tremolo1.wav’);

Click here to hear: original audio, AM tremolo audio.

http://www.cs.cf.ac.uk/Dave/CM0268/Lecture_Examples/Digital_Audio_FX/tremolo1.m
http://www.cs.cf.ac.uk/Dave/CM0268/Lecture_Examples/Digital_Audio_FX/acoustic.wav
http://www.cs.cf.ac.uk/Dave/CM0268/Lecture_Examples/Digital_Audio_FX/out_tremolo1.wav

CM0268
MATLAB

DSP
GRAPHICS

1

392

JJ
II
J
I

Back

Close

Tremolo via Ring Modulation

If you ring modulate with a triangular wave (or try another waveform)
you can get tremolo via RM, tremolo2.m
% read the sample waveform
filename=’acoustic.wav’;
[x,Fs,bits] = wavread(filename);

% create triangular wave LFO
delta=5e-4;
minf=-0.5;
maxf=0.5;

trem=minf:delta:maxf;
while(length(trem) < length(x))

trem=[trem (maxf:-delta:minf)];
trem=[trem (minf:delta:maxf)];

end

%trim trem
trem = trem(1:length(x))’;

%Ring mod with triangular, trem
y= x.*trem;

% write output
wavwrite(y,Fs,bits,’out_tremolo2.wav’);

Click here to hear: original audio, RM tremolo audio.

http://www.cs.cf.ac.uk/Dave/CM0268/Lecture_Examples/Digital_Audio_FX/tremolo2.m
http://www.cs.cf.ac.uk/Dave/CM0268/Lecture_Examples/Digital_Audio_FX/acoustic.wav
http://www.cs.cf.ac.uk/Dave/CM0268/Lecture_Examples/Digital_Audio_FX/out_tremolo2.wav

CM0268
MATLAB

DSP
GRAPHICS

1

393

JJ
II
J
I

Back

Close

Non-linear Processing

Non-linear Processors are characterised by the fact that they create
(intentional or unintentional) harmonic and inharmonic frequency
components not present in the original signal.

Three major categories of non-linear processing:

Dynamic Processing: control of signal envelop — aim to minimise
harmonic distortion Examples: Compressors, Limiters

Intentional non-linear harmonic processing: Aim to introduce
strong harmonic distortion. Examples: Many electric guitar effects
such as distortion

Exciters/Enhancers: add additional harmonics for subtle sound
improvement.

CM0268
MATLAB

DSP
GRAPHICS

1

394

JJ
II
J
I

Back

Close

Limiter
A Limiter is a device that controls high peaks in a signal but aims

to change the dynamics of the main signal as little as possible:

• A limiter makes use of a peak level measurement and aims to
react very quickly to scale the level if it is above some threshold.

• By lowering peaks the overall signal can be boosted.

• Limiting used not only on single instrument but on final
(multichannel) audio for CD mastering, radio broadcast etc.

CM0268
MATLAB

DSP
GRAPHICS

1

395

JJ
II
J
I

Back

Close

MATLAB Limiter Example
The following code creates a modulated sine wave and then limits

the amplitude when it exceeds some threshold,The MATLAB code
to achieve this is limiter.m:

%Create a sine wave with amplitude
% reduced for half its duration

anzahl=220;
for n=1:anzahl,

x(n)=0.2*sin(n/5);
end;
for n=anzahl+1:2*anzahl;

x(n)=sin(n/5);
end;

http://www.cs.cf.ac.uk/Dave/CM0268/Lecture_Examples/Digital_Audio_FX/limiter.m

CM0268
MATLAB

DSP
GRAPHICS

1

396

JJ
II
J
I

Back

Close

MATLAB Limiter Example (Cont.)
% do Limiter

slope=1;
tresh=0.5;
rt=0.01;
at=0.4;

xd(1)=0; % Records Peaks in x
for n=2:2*anzahl;
a=abs(x(n))-xd(n-1);
if a<0, a=0; end;

xd(n)=xd(n-1)*(1-rt)+at*a;
if xd(n)>tresh,

f(n)=10ˆ(-slope*(log10(xd(n))-log10(tresh)));
% linear calculation of f=10ˆ(-LS*(X-LT))

else f(n)=1;
end;
y(n)=x(n)*f(n);

end;

CM0268
MATLAB

DSP
GRAPHICS

1

397

JJ
II
J
I

Back

Close

MATLAB Limiter Example (Cont.)

Display of the signals from the above limiter example:

0 50 100 150 200 250 300 350 400 450
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Input Signal x(n)

0 50 100 150 200 250 300 350 400 450
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8
Output Signal y(n)

0 50 100 150 200 250 300 350 400 450
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Input Peak Signal xd(n)

0 50 100 150 200 250 300 350 400 450
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Gain Signal f(n)

CM0268
MATLAB

DSP
GRAPHICS

1

398

JJ
II
J
I

Back

Close

Compressors/Expanders

Compressors are used to reduce the dynamics of the input signal:

• Quiet parts are modified

• Loud parts with are reduced according to some static curve.

• A bit like a limiter and uses again to boost overall signals in
mastering or other applications.

• Used on vocals and guitar effects.

Expanders operate on low signal levels and boost the dynamics is
these signals.

• Used to create a more lively sound characteristic

CM0268
MATLAB

DSP
GRAPHICS

1

399

JJ
II
J
I

Back

Close

MATLAB Compressor/Expander
A MATLAB function for Compression/Expansion, compexp.m:

function y=compexp(x,comp,release,attack,a,Fs)
% Compressor/expander
% comp - compression: 0>comp>-1, expansion: 0<comp<1
% a - filter parameter <1
h=filter([(1-a)ˆ2],[1.0000 -2*a aˆ2],abs(x));
h=h/max(h);
h=h.ˆcomp;
y=x.*h;
y=y*max(abs(x))/max(abs(y));

http://www.cs.cf.ac.uk/Dave/CM0268/Lecture_Examples/Digital_Audio_FX/compexp.m

CM0268
MATLAB

DSP
GRAPHICS

1

400

JJ
II
J
I

Back

Close

MATLAB Compressor/Expander (Cont.)

A compressed signal looks like this , compression eg.m:

% read the sample waveform
filename=’acoustic.wav’;
[x,Fs,bits] = wavread(filename);

comp = -0.5; %set compressor
a = 0.5;
y = compexp(x,comp,a,Fs);

% write output
wavwrite(y,Fs,bits,...

’out_compression.wav’);

figure(1);
hold on
plot(y,’r’);
plot(x,’b’);
title(’Compressed and Boosted Signal’); 0 5 10 15

x 104

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Compressed and Boosted Signal

Click here to hear: original audio, compressed audio.

http://www.cs.cf.ac.uk/Dave/CM0268/Lecture_Examples/Digital_Audio_FX/compression_eg.m
http://www.cs.cf.ac.uk/Dave/CM0268/Lecture_Examples/Digital_Audio_FX/acoustic.wav
http://www.cs.cf.ac.uk/Dave/CM0268/Lecture_Examples/Digital_Audio_FX/out_compression.wav

CM0268
MATLAB

DSP
GRAPHICS

1

401

JJ
II
J
I

Back

Close

MATLAB Compressor/Expander (Cont.)

An expanded signal looks like this , expander eg.m:

% read the sample waveform
filename=’acoustic.wav’;
[x,Fs,bits] = wavread(filename);

comp = 0.5; %set expander
a = 0.5;
y = compexp(x,comp,a,Fs);

% write output
wavwrite(y,Fs,bits,...

’out_compression.wav’);

figure(1);
hold on
plot(y,’r’);
plot(x,’b’);
title(’Expander Signal’); 0 5 10 15

x 104

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Expander Signal

Click here to hear: original audio, expander audio.

http://www.cs.cf.ac.uk/Dave/CM0268/Lecture_Examples/Digital_Audio_FX/expander_eg.m
http://www.cs.cf.ac.uk/Dave/CM0268/Lecture_Examples/Digital_Audio_FX/acoustic.wav
http://www.cs.cf.ac.uk/Dave/CM0268/Lecture_Examples/Digital_Audio_FX/out_expander.wav

CM0268
MATLAB

DSP
GRAPHICS

1

402

JJ
II
J
I

Back

Close

Overdrive, Distortion and Fuzz
Distortion plays an important part in electric guitar music, especially

rock music and its variants.
Distortion can be applied as an effect to other instruments including
vocals.

Overdrive — Audio at a low input level is driven by higher input
levels in a non-linear curve characteristic

Distortion — a wider tonal area than overdrive operating at a higher
non-linear region of a curve

Fuzz — complete non-linear behaviour, harder/harsher than
distortion

CM0268
MATLAB

DSP
GRAPHICS

1

403

JJ
II
J
I

Back

Close

Overdrive
For overdrive, Symmetrical soft clipping of input values has to

be performed. A simple three layer non-linear soft saturation scheme
may be:

f (x) =

2x for 0 ≤ x < 1/3
3−(2−3x)2

3
for 1/3 ≤ x < 2/3

1 for 2/3 ≤ x ≤ 1

• In the lower third the output is liner — multiplied by 2.

• In the middle third there is a non-linear (quadratic) output
response

• Above 2/3 the output is set to 1.

CM0268
MATLAB

DSP
GRAPHICS

1

404

JJ
II
J
I

Back

Close

MATLAB Overdrive Example

The MATLAB code to perform symmetrical soft clipping is,
symclip.m:

function y=symclip(x)
% y=symclip(x)
% "Overdrive" simulation with symmetrical clipping
% x - input
N=length(x);
y=zeros(1,N); % Preallocate y
th=1/3; % threshold for symmetrical soft clipping

% by Schetzen Formula
for i=1:1:N,

if abs(x(i))< th, y(i)=2*x(i);end;
if abs(x(i))>=th,

if x(i)> 0, y(i)=(3-(2-x(i)*3).ˆ2)/3; end;
if x(i)< 0, y(i)=-(3-(2-abs(x(i))*3).ˆ2)/3; end;

end;
if abs(x(i))>2*th,

if x(i)> 0, y(i)=1;end;
if x(i)< 0, y(i)=-1;end;

end;
end;

http://www.cs.cf.ac.uk/Dave/CM0268/Lecture_Examples/Digital_Audio_FX/symclip.m

CM0268
MATLAB

DSP
GRAPHICS

1

405

JJ
II
J
I

Back

Close

MATLAB Overdrive Example (Cont.)

An overdriven signal looks like this , overdrive eg.m:

% read the sample waveform
filename=’acoustic.wav’;
[x,Fs,bits] = wavread(filename);

% call symmetrical soft clipping
% function
y = symclip(x);

% write output
wavwrite(y,Fs,bits,...

’out_overdrive.wav’);

figure(1);
hold on
plot(y,’r’);
plot(x,’b’);
title(’Overdriven Signal’); 0 5 10 15

x 104

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Overdriven Signal

Click here to hear: original audio, overdriven audio.

http://www.cs.cf.ac.uk/Dave/CM0268/Lecture_Examples/Digital_Audio_FX/overdrive_eg.m
http://www.cs.cf.ac.uk/Dave/CM0268/Lecture_Examples/Digital_Audio_FX/acoustic.wav
http://www.cs.cf.ac.uk/Dave/CM0268/Lecture_Examples/Digital_Audio_FX/out_overdrive.wav

CM0268
MATLAB

DSP
GRAPHICS

1

406

JJ
II
J
I

Back

Close

Distortion/Fuzz
A non-linear function commonly used to simulate distortion/fuzz

is given by:

f (x) =
x

|x|(1− e
αx2/|x|)

• This a non-linear exponential function:

• The gain, α, controls level of distortion/fuzz.

• Common to mix part of the distorted signal with original signal
for output.

CM0268
MATLAB

DSP
GRAPHICS

1

407

JJ
II
J
I

Back

Close

MATLAB Fuzz Example

The MATLAB code to perform non-linear gain is,
fuzzexp.m:

function y=fuzzexp(x, gain, mix)
% y=fuzzexp(x, gain, mix)
% Distortion based on an exponential function
% x - input
% gain - amount of distortion, >0->
% mix - mix of original and distorted sound, 1=only distorted
q=x*gain/max(abs(x));
z=sign(-q).*(1-exp(sign(-q).*q));
y=mix*z*max(abs(x))/max(abs(z))+(1-mix)*x;
y=y*max(abs(x))/max(abs(y));

Note: function allows to mix input and fuzz signals at output

http://www.cs.cf.ac.uk/Dave/CM0268/Lecture_Examples/Digital_Audio_FX/fuzzexp.m

CM0268
MATLAB

DSP
GRAPHICS

1

408

JJ
II
J
I

Back

Close

MATLAB Fuzz Example (Cont.)

An fuzzed up signal looks like this , fuzz eg.m:

filename=’acoustic.wav’;

% read the sample waveform
[x,Fs,bits] = wavread(filename);

% Call fuzzexp
gain = 11; % Spinal Tap it
mix = 1; % Hear only fuzz
y = fuzzexp(x,gain,mix);

% write output
wavwrite(y,Fs,bits,’out_fuzz.wav’);

0 5 10 15

x 104

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Fuzz Signal

Click here to hear: original audio, Fuzz audio.

http://www.cs.cf.ac.uk/Dave/CM0268/Lecture_Examples/Digital_Audio_FX/fuzz_eg.m
http://www.cs.cf.ac.uk/Dave/CM0268/Lecture_Examples/Digital_Audio_FX/acoustic.wav
http://www.cs.cf.ac.uk/Dave/CM0268/Lecture_Examples/Digital_Audio_FX/out_fuzz.wav

CM0268
MATLAB

DSP
GRAPHICS

1

409

JJ
II
J
I

Back

Close

Reverb/Spatial Effects
The final set of effects we look at are effects that change to spatial

localisation of sound. There a many examples of this type of processing
we will study two briefly:

Panning in stereo audio

Reverb — a small selection of reverb algorithms

CM0268
MATLAB

DSP
GRAPHICS

1

410

JJ
II
J
I

Back

Close

Panning
The simple problem we address here is mapping a monophonic

sound source across a stereo audio image such that the sound starts
in one speaker (R) and is moved to the other speaker (L) in n time
steps.
• We assume that we listening in a central position so that the angle

between two speakers is the same, i.e. we subtend an angle 2θl
between 2 speakers. We assume for simplicity, in this case that
θl = 45◦

CM0268
MATLAB

DSP
GRAPHICS

1

411

JJ
II
J
I

Back

Close

Panning Geometry
• We seek to obtain to signals one for each Left (L) and Right (R)

channel, the gains of which, gL and gR, are applied to steer the
sound across the stereo audio image.

• This can be achieved by simple 2D rotation, where the angle we
sweep is θ:

Aθ =

[
cos θ sin θ
− sin θ cos θ

]
and [

gL
gR

]
= Aθ.x

where x is a segment of mono audio

CM0268
MATLAB

DSP
GRAPHICS

1

412

JJ
II
J
I

Back

Close

MATLAB Panning Example
The MATLAB code to do panning, matpan.m:

% read the sample waveform
filename=’acoustic.wav’;
[monox,Fs,bits] = wavread(filename);

initial_angle = -40; %in degrees
final_angle = 40; %in degrees
segments = 32;
angle_increment = (initial_angle - final_angle)/segments * pi / 180;

% in radians
lenseg = floor(length(monox)/segments) - 1;
pointer = 1;
angle = initial_angle * pi / 180; %in radians

y=[[];[]];

for i=1:segments
A =[cos(angle), sin(angle); -sin(angle), cos(angle)];
stereox = [monox(pointer:pointer+lenseg)’; monox(pointer:pointer+lenseg)’];
y = [y, A * stereox];
angle = angle + angle_increment; pointer = pointer + lenseg;

end;

% write output
wavwrite(y’,Fs,bits,’out_stereopan.wav’);

http://www.cs.cf.ac.uk/Dave/CM0268/Lecture_Examples/Digital_Audio_FX/matpan.m

CM0268
MATLAB

DSP
GRAPHICS

1

413

JJ
II
J
I

Back

Close

MATLAB Panning Example (Cont.)

0 5 10 15

x 104

−1.5

−1

−0.5

0

0.5

1

1.5
Stereo Panned Signal Channel 1 (L)

0 5 10 15

x 104

−1.5

−1

−0.5

0

0.5

1

1.5
Stereo Panned Signal Channel 2 (R)

Click here to hear: original audio, stereo panned audio.

http://www.cs.cf.ac.uk/Dave/CM0268/Lecture_Examples/Digital_Audio_FX/acoustic.wav
http://www.cs.cf.ac.uk/Dave/CM0268/Lecture_Examples/Digital_Audio_FX/out_stereopan.wav

CM0268
MATLAB

DSP
GRAPHICS

1

414

JJ
II
J
I

Back

Close

Reverb
Reverberation (reverb for short) is probably one of the most heavily

used effects in music.
Reverberation is the result of the many reflections of a sound that

occur in a room.

• From any sound source, say a speaker of your stereo, there is a
direct path that the sounds covers to reach our ears.

• Sound waves can also take a slightly longer path by reflecting off
a wall or the ceiling, before arriving at your ears.

CM0268
MATLAB

DSP
GRAPHICS

1

415

JJ
II
J
I

Back

Close

The Spaciousness of a Room

• A reflected sound wave like this will arrive a little later than the
direct sound, since it travels a longer distance, and is generally
a little weaker, as the walls and other surfaces in the room will
absorb some of the sound energy.

• Reflected waves can again bounce off another wall before arriving
at your ears, and so on.

• This series of delayed and attenuated sound waves is what we
call reverb, and this is what creates the spaciousness sound of a
room.

• Clearly large rooms such as concert halls/cathedrals will have a
much more spaciousness reverb than a living room or bathroom.

CM0268
MATLAB

DSP
GRAPHICS

1

416

JJ
II
J
I

Back

Close

Reverb v. Echo
Is reverb just a series of echoes?

Echo — implies a distinct, delayed version of a sound,

• E.g. as you would hear with a delay more than one or
two-tenths of a second.

Reverb — each delayed sound wave arrives in such a short period
of time that we do not perceive each reflection as a copy of the
original sound.

• Even though we can’t discern every reflection, we still hear
the effect that the entire series of reflections has.

CM0268
MATLAB

DSP
GRAPHICS

1

417

JJ
II
J
I

Back

Close

Reverb v. Delay

Can a simple delay device with feedback produce reverberation?

Delay can produce a similar effect but there is one very important
feature that a simple delay unit will not produce:

• The rate of arriving reflections changes over time
• Delay can only simulate reflections with a fixed time interval.

Reverb — for a short period after the direct sound, there is generally
a set of well defined directional reflections that are directly related
to the shape and size of the room, and the position of the source
and listener in the room.

• These are the early reflections
• After the early reflections, the rate of the arriving reflections

increases greatly are more random and difficult to relate to the
physical characteristics of the room.
This is called the diffuse reverberation, or the late reflections.
• Diffuse reverberation is the primary factor establishing a room’s

’spaciousness’ — it decays exponentially in good concert halls.

CM0268
MATLAB

DSP
GRAPHICS

1

418

JJ
II
J
I

Back

Close

Reverb Simulations
There are many ways to simulate reverb.

We will only study two classes of approach here (there are others):

• Filter Bank/Delay Line methods

• Convolution/Impulse Response methods

CM0268
MATLAB

DSP
GRAPHICS

1

419

JJ
II
J
I

Back

Close

Schroeder’s Reverberator
• Early digital reverberation algorithms tried to mimic the a rooms

reverberation by primarily using two types of infinite impulse
response (IIR) filters.

Comb filter — usually in parallel banks
Allpass filter — usually sequentially after comb filter banks

• A delay is (set via the feedback loops allpass filter) aims to make
the output would gradually decay.

CM0268
MATLAB

DSP
GRAPHICS

1

420

JJ
II
J
I

Back

Close

Schroeder’s Reverberator (Cont.)

An example of one of Schroeder’s well-known reverberator designs
uses four comb filters and two allpass filters:

Note:This design does not create the increasing arrival rate of
reflections, and is rather primitive when compared to current
algorithms.

CM0268
MATLAB

DSP
GRAPHICS

1

421

JJ
II
J
I

Back

Close

MATLAB Schroeder Reverb
The MATLAB function to do Schroeder Reverb, schroeder1.m:

function [y,b,a]=schroeder1(x,n,g,d,k)
%This is a reverberator based on Schroeder’s design which consists of n all
%pass filters in series.
%
%The structure is: [y,b,a] = schroeder1(x,n,g,d,k)
%
%where x = the input signal
% n = the number of allpass filters
% g = the gain of the allpass filters (should be less than 1 for stability)
% d = a vector which contains the delay length of each allpass filter
% k = the gain factor of the direct signal
% y = the output signal
% b = the numerator coefficients of the transfer function
% a = the denominator coefficients of the transfer function
%
% note: Make sure that d is the same length as n.
%

% send the input signal through the first allpass filter
[y,b,a] = allpass(x,g,d(1));

% send the output of each allpass filter to the input of the next allpass filter
for i = 2:n,

[y,b1,a1] = allpass(y,g,d(i));
[b,a] = seriescoefficients(b1,a1,b,a);

end

http://www.cs.cf.ac.uk/Dave/CM0268/Lecture_Examples/Digital_Audio_FX/Reverb/schroeder1.m

CM0268
MATLAB

DSP
GRAPHICS

1

422

JJ
II
J
I

Back

Close

% add the scaled direct signal
y = y + k*x;

% normalize the output signal
y = y/max(y);

The support files to do the filtering (for following reverb methods
also) are here:

• delay.m,

• seriescoefficients.m,

• parallelcoefficients.m,

• fbcomb.m,

• ffcomb.m,

• allpass.m

http://www.cs.cf.ac.uk/Dave/CM0268/Lecture_Examples/Digital_Audio_FX/Reverb/delay.m
http://www.cs.cf.ac.uk/Dave/CM0268/Lecture_Examples/Digital_Audio_FX/Reverb/seriescoefficients.m
http://www.cs.cf.ac.uk/Dave/CM0268/Lecture_Examples/Digital_Audio_FX/Reverb/parallelcoefficients.m
http://www.cs.cf.ac.uk/Dave/CM0268/Lecture_Examples/Digital_Audio_FX/Reverb/fbcomb.m
http://www.cs.cf.ac.uk/Dave/CM0268/Lecture_Examples/Digital_Audio_FX/Reverb/ffcomb.m
http://www.cs.cf.ac.uk/Dave/CM0268/Lecture_Examples/Digital_Audio_FX/Reverb/allpass.m

CM0268
MATLAB

DSP
GRAPHICS

1

423

JJ
II
J
I

Back

Close

MATLAB Schroeder Reverb (Cont.)

An example script to call the function is as follows,
reverb schroeder eg.m:

% reverb_Schroeder1_eg.m
% Script to call the Schroeder1 Reverb Algoritm

% read the sample waveform
filename=’../acoustic.wav’;
[x,Fs,bits] = wavread(filename);

% Call Schroeder1 reverb
%set the number of allpass filters
n = 6;
%set the gain of the allpass filters
g = 0.9;
%set delay of each allpass filter in number of samples
%Compute a random set of milliseconds and use sample rate
rand(’state’,sum(100*clock))
d = floor(0.05*rand([1,n])*Fs);
%set gain of direct signal
k= 0.2;

[y b a] = schroeder1(x,n,g,d,k);

% write output
wavwrite(y,Fs,bits,’out_schroederreverb.wav’);

http://www.cs.cf.ac.uk/Dave/CM0268/Lecture_Examples/Digital_Audio_FX/Reverb/reverb_schroeder_eg.m

CM0268
MATLAB

DSP
GRAPHICS

1

424

JJ
II
J
I

Back

Close

MATLAB Schroeder Reverb (Cont.)

The input signal (blue) and reverberated signal (red) look like this:

0 5 10 15

x 104

−1.5

−1

−0.5

0

0.5

1
Schroeder Reverberated Signal

Click here to hear: original audio, Schroeder reverberated audio.

http://www.cs.cf.ac.uk/Dave/CM0268/Lecture_Examples/Digital_Audio_FX/acoustic.wav
http://www.cs.cf.ac.uk/Dave/CM0268/Lecture_Examples/Digital_Audio_FX/Reverb/out_schroederreverb.wav

CM0268
MATLAB

DSP
GRAPHICS

1

425

JJ
II
J
I

Back

Close

MATLAB Schroeder Reverb (Cont.)

The MATLAB function to do the more classic 4 comb and 2 allpass
filter Schroeder Reverb, schroeder2.m:
function [y,b,a]=schroeder2(x,cg,cd,ag,ad,k)
%This is a reverberator based on Schroeder’s design which consists of 4
% parallel feedback comb filters in series with 2 cascaded all pass filters.
%
%The structure is: [y,b,a] = schroeder2(x,cg,cd,ag,ad,k)
%
%where x = the input signal
% cg = a vector of length 4 which contains the gain of each of the
% comb filters (should be less than 1 for stability)
% cd = a vector of length 4 which contains the delay of each of the
% comb filters
% ag = the gain of the allpass filters (should be less than 1 for stability)
% ad = a vector of length 2 which contains the delay of each of the
% allpass filters
% k = the gain factor of the direct signal
% y = the output signal
% b = the numerator coefficients of the transfer function
% a = the denominator coefficients of the transfer function
%

% send the input to each of the 4 comb filters separately
[outcomb1,b1,a1] = fbcomb(x,cg(1),cd(1));
[outcomb2,b2,a2] = fbcomb(x,cg(2),cd(2));
[outcomb3,b3,a3] = fbcomb(x,cg(3),cd(3));
[outcomb4,b4,a4] = fbcomb(x,cg(4),cd(4));

http://www.cs.cf.ac.uk/Dave/CM0268/Lecture_Examples/Digital_Audio_FX/Reverb/schroeder2.m

CM0268
MATLAB

DSP
GRAPHICS

1

426

JJ
II
J
I

Back

Close

% sum the ouptut of the 4 comb filters
apinput = outcomb1 + outcomb2 + outcomb3 + outcomb4;

%find the combined filter coefficients of the the comb filters
[b,a]=parallelcoefficients(b1,a1,b2,a2);
[b,a]=parallelcoefficients(b,a,b3,a3);
[b,a]=parallelcoefficients(b,a,b4,a4);

% send the output of the comb filters to the allpass filters
[y,b5,a5] = allpass(apinput,ag,ad(1));
[y,b6,a6] = allpass(y,ag,ad(2));

%find the combined filter coefficients of the the comb filters in
% series with the allpass filters
[b,a]=seriescoefficients(b,a,b5,a5);
[b,a]=seriescoefficients(b,a,b6,a6);

% add the scaled direct signal
y = y + k*x;

% normalize the output signal
y = y/max(y);

CM0268
MATLAB

DSP
GRAPHICS

1

427

JJ
II
J
I

Back

Close

Moorer’s Reverberator
Moorer’s reverberator build’s on Schroeder:

• Parallel comb filters with different delay lengths are used to
simulate modes of a room, and sound reflecting between parallel
walls

• Allpass filters to increase the reflection density (diffusion).

• Lowpass filters inserted in the feedback loops to alter the
reverberation time as a function of frequency

– Shorter reverberation time at higher frequencies is caused by
air absorption and reflectivity characteristics of wall).

– Implement a dc-attenuation, and a frequency dependent
attenuation.

– Different in each comb filter because their coefficients depend
on the delay line length

CM0268
MATLAB

DSP
GRAPHICS

1

428

JJ
II
J
I

Back

Close

Moorer’s Reverberator

(a) Tapped delay lines simulate early reflections —- forwarded to (b)

(b) Parallel comb filters which are then allpass filtered and delayed
before being added back to early reflections — simulates diffuse
reverberation

CM0268
MATLAB

DSP
GRAPHICS

1

429

JJ
II
J
I

Back

Close

MATLAB Moorer Reverb
The MATLAB function to do Moorer’ Reverb, moorer.m:

function [y,b,a]=moorer(x,cg,cg1,cd,ag,ad,k)
%This is a reverberator based on Moorer’s design which consists of 6
% parallel feedback comb filters (each with a low pass filter in the
% feedback loop) in series with an all pass filter.
%
%The structure is: [y,b,a] = moorer(x,cg,cg1,cd,ag,ad,k)
%
%where x = the input signal
% cg = a vector of length 6 which contains g2/(1-g1) (this should be less
% than 1 for stability), where g2 is the feedback gain of each of the
% comb filters and g1 is from the following parameter
% cg1 = a vector of length 6 which contains the gain of the low pass
% filters in the feedback loop of each of the comb filters (should be
% less than 1 for stability)
% cd = a vector of length 6 which contains the delay of each of comb filter
% ag = the gain of the allpass filter (should be less than 1 for stability)
% ad = the delay of the allpass filter
% k = the gain factor of the direct signal
% y = the output signal
% b = the numerator coefficients of the transfer function
% a = the denominator coefficients of the transfer function
%

http://www.cs.cf.ac.uk/Dave/CM0268/Lecture_Examples/Digital_Audio_FX/Reverb/moorer.m

CM0268
MATLAB

DSP
GRAPHICS

1

430

JJ
II
J
I

Back

Close

MATLAB Moorer Reverb (Cont.)
% send the input to each of the 6 comb filters separately
[outcomb1,b1,a1] = lpcomb(x,cg(1),cg1(1),cd(1));
[outcomb2,b2,a2] = lpcomb(x,cg(2),cg1(2),cd(2));
[outcomb3,b3,a3] = lpcomb(x,cg(3),cg1(3),cd(3));
[outcomb4,b4,a4] = lpcomb(x,cg(4),cg1(4),cd(4));
[outcomb5,b5,a5] = lpcomb(x,cg(5),cg1(5),cd(5));
[outcomb6,b6,a6] = lpcomb(x,cg(6),cg1(6),cd(6));

% sum the ouptut of the 6 comb filters
apinput = outcomb1 + outcomb2 + outcomb3 + outcomb4 + outcomb5 + outcomb6;

%find the combined filter coefficients of the the comb filters
[b,a]=parallelcoefficients(b1,a1,b2,a2);
[b,a]=parallelcoefficients(b,a,b3,a3);
[b,a]=parallelcoefficients(b,a,b4,a4);
[b,a]=parallelcoefficients(b,a,b5,a5);
[b,a]=parallelcoefficients(b,a,b6,a6);

% send the output of the comb filters to the allpass filter
[y,b7,a7] = allpass(apinput,ag,ad);

%find the combined filter coefficients of the the comb filters in series
% with the allpass filters
[b,a]=seriescoefficients(b,a,b7,a7);

% add the scaled direct signal
y = y + k*x;

% normalize the output signal
y = y/max(y);

CM0268
MATLAB

DSP
GRAPHICS

1

431

JJ
II
J
I

Back

Close

MATLAB Moorer Reverb (Cont.)

An example script to call the function is as follows,
reverb moorer eg.m:

% reverb_moorer_eg.m
% Script to call the Moorer Reverb Algoritm

% read the sample waveform
filename=’../acoustic.wav’;
[x,Fs,bits] = wavread(filename);

% Call moorer reverb
%set delay of each comb filter
%set delay of each allpass filter in number of samples
%Compute a random set of milliseconds and use sample rate
rand(’state’,sum(100*clock))
cd = floor(0.05*rand([1,6])*Fs);

% set gains of 6 comb pass filters
g1 = 0.5*ones(1,6);
%set feedback of each comb filter
g2 = 0.5*ones(1,6);
% set input cg and cg1 for moorer function see help moorer
cg = g2./(1-g1);
cg1 = g1;

http://www.cs.cf.ac.uk/Dave/CM0268/Lecture_Examples/Digital_Audio_FX/Reverb/reverb_moorer_eg.m

CM0268
MATLAB

DSP
GRAPHICS

1

432

JJ
II
J
I

Back

Close

MATLAB Moorer Reverb (Cont.)

%set gain of allpass filter
ag = 0.7;
%set delay of allpass filter
ad = 0.08*Fs;
%set direct signal gain
k = 0.5;

[y b a] = moorer(x,cg,cg1,cd,ag,ad,k);

% write output
wavwrite(y,Fs,bits,’out_moorerreverb.wav’);

CM0268
MATLAB

DSP
GRAPHICS

1

433

JJ
II
J
I

Back

Close

MATLAB Moorer Reverb (Cont.)

The input signal (blue) and reverberated signal (red) look like this:

0 5 10 15

x 104

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Moorer Reverberated Signal

Click here to hear: original audio, Moorer reverberated audio.

http://www.cs.cf.ac.uk/Dave/CM0268/Lecture_Examples/Digital_Audio_FX/acoustic.wav
http://www.cs.cf.ac.uk/Dave/CM0268/Lecture_Examples/Digital_Audio_FX/Reverb/out_moorerreverb.wav

CM0268
MATLAB

DSP
GRAPHICS

1

434

JJ
II
J
I

Back

Close

Convolution Reverb
If the impulse response of the room is known then the most faithful

reverberation method would be to convolve it with the input signal.

• Due usual length of the target response it is not feasible to
implement this with filters — several hundreds of taps in the
filters would be required.

• However, convolution readily implemented using FFT:

– Recall: The discrete convolution formula:

y(n) =
∞∑

k=−∞
x(k).h(n− k) = x(n) ∗ h(n)

– Recall: The convolution theorem which states that:
If f (x) and g(x) are two functions with Fourier transforms F (u)
andG(u), then the Fourier transform of the convolution f (x)∗g(x)
is simply the product of the Fourier transforms of the two functions,
F (u)G(u).

CM0268
MATLAB

DSP
GRAPHICS

1

435

JJ
II
J
I

Back

Close

Commercial Convolution Reverbs
Commercial examples:

• Altiverb — one of the first
mainstream convolution reverb
effects units

• Most sample based synthesisers
(E.g. Kontakt, Intakt) provide some
convolution reverb effect

• Dedicated sample-based software
instruments such as Garritan Violin
and PianoTeq Piano use convolution
not only for reverb simulation but
also to simulate key responses of the
instruments body vibration.

http://www.audioease.com/Pages/Altiverb/AltiverbMain.html
http://www.garritan.com/stradivari.html
http://www.pianoteq.com/

CM0268
MATLAB

DSP
GRAPHICS

1

436

JJ
II
J
I

Back

Close

Room Impulse Responses
Apart from providing a high (professional) quality recording of a

room’s impulse response, the process of using an impulse response
is quite straightforward:
• Record a short impulse (hand clap,drum hit) in the room.

• Room impulse responses can be simulated in software also.

• The impulse encodes the rooms reverb characteristics:

CM0268
MATLAB

DSP
GRAPHICS

1

437

JJ
II
J
I

Back

Close

MATLAB Convolution Reverb
Let’s develop a fast convolution routine, fconv.m:

function [y]=fconv(x, h)
%FCONV Fast Convolution
% [y] = FCONV(x, h) convolves x and h, and normalizes the output
% to +-1.
% x = input vector
% h = input vector
%

Ly=length(x)+length(h)-1; %
Ly2=pow2(nextpow2(Ly)); % Find smallest power of 2 that is > Ly
X=fft(x, Ly2); % Fast Fourier transform
H=fft(h, Ly2); % Fast Fourier transform
Y=X.*H; % DO CONVOLUTION
y=real(ifft(Y, Ly2)); % Inverse fast Fourier transform
y=y(1:1:Ly); % Take just the first N elements
y=y/max(abs(y)); % Normalize the output

See also: MATLAB built in function conv()

http://www.cs.cf.ac.uk/Dave/CM0268/Lecture_Examples/Digital_Audio_FX/Reverb/fconv.m

CM0268
MATLAB

DSP
GRAPHICS

1

438

JJ
II
J
I

Back

Close

MATLAB Convolution Reverb (Cont.)

An example of how we call this function given an input signal and
suitable impulse response, reverb convolution eg.m:

% reverb_convolution_eg.m
% Script to call implement Convolution Reverb

% read the sample waveform
filename=’../acoustic.wav’;
[x,Fs,bits] = wavread(filename);

% read the impulse response waveform
filename=’impulse_room.wav’;
[imp,Fsimp,bitsimp] = wavread(filename);

% Do convolution with FFT
y = fconv(x,imp);

% write output
wavwrite(y,Fs,bits,’out_IRreverb.wav’);

http://www.cs.cf.ac.uk/Dave/CM0268/Lecture_Examples/Digital_Audio_FX/Reverb/reverb_convolution_eg.m

CM0268
MATLAB

DSP
GRAPHICS

1

439

JJ
II
J
I

Back

Close

MATLAB Convolution Reverb (Cont.)

Some example results:

Living Room Impulse Response Convolution Reverb:

0 500 1000 1500 2000 2500
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5
Impulse Response

0 2 4 6 8 10 12 14 16

x 104

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Impulse Response Reverberated Signal

Click here to hear: original audio,
room impulse response audio, room impulse reverberated audio.

http://www.cs.cf.ac.uk/Dave/CM0268/Lecture_Examples/Digital_Audio_FX/acoustic.wav
http://www.cs.cf.ac.uk/Dave/CM0268/Lecture_Examples/Digital_Audio_FX/Reverb/impulse_room.wav
http://www.cs.cf.ac.uk/Dave/CM0268/Lecture_Examples/Digital_Audio_FX/Reverb/out_IRreverb_room.wav

CM0268
MATLAB

DSP
GRAPHICS

1

440

JJ
II
J
I

Back

Close

MATLAB Convolution Reverb (Cont.)

Cathedral Impulse Response Convolution Reverb:

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 104

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Impulse Response

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 105

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Impulse Response Reverberated Signal

Click here to hear: original audio,
cathedral impulse response audio, cathedral reverberated audio.

http://www.cs.cf.ac.uk/Dave/CM0268/Lecture_Examples/Digital_Audio_FX/acoustic.wav
http://www.cs.cf.ac.uk/Dave/CM0268/Lecture_Examples/Digital_Audio_FX/Reverb/impulse_cathedral.wav
http://www.cs.cf.ac.uk/Dave/CM0268/Lecture_Examples/Digital_Audio_FX/Reverb/out_IRreverb_cathedral.wav

CM0268
MATLAB

DSP
GRAPHICS

1

441

JJ
II
J
I

Back

Close

MATLAB Convolution Reverb (Cont.)

It is easy to implement some odd effects also

Reverse Cathedral Impulse Response Convolution Reverb:

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 104

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Impulse Response

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 105

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Impulse Response Reverberated Signal

Click here to hear: original audio,
reverse cathedral impulse response audio,
reverse cathedral reverberated audio.

http://www.cs.cf.ac.uk/Dave/CM0268/Lecture_Examples/Digital_Audio_FX/acoustic.wav
http://www.cs.cf.ac.uk/Dave/CM0268/Lecture_Examples/Digital_Audio_FX/Reverb/impulse_revcathedral.wav
http://www.cs.cf.ac.uk/Dave/CM0268/Lecture_Examples/Digital_Audio_FX/Reverb/out_IRreverb_revcathedral.wav

CM0268
MATLAB

DSP
GRAPHICS

1

442

JJ
II
J
I

Back

Close

MATLAB Convolution Reverb (Cont.)

You can basically convolve with anything:

Speech Impulse Response Convolution Reverb:

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 104

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8
Impulse Response

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 105

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Impulse Response Reverberated Signal

Click here to hear: original audio,
speech ‘impulse response’ audio, speech impulse reverberated audio.

http://www.cs.cf.ac.uk/Dave/CM0268/Lecture_Examples/Digital_Audio_FX/acoustic.wav
http://www.cs.cf.ac.uk/Dave/CM0268/Lecture_Examples/Digital_Audio_FX/Reverb/impulse_MM.wav
http://www.cs.cf.ac.uk/Dave/CM0268/Lecture_Examples/Digital_Audio_FX/Reverb/out_IRreverb_MM.wav

	Digital Audio Effects
	Classifying Effects
	Basic Digital Audio Filtering Effects: Equalisers
	 Shelving and Peak Filters
	Shelving Filters
	Peak Filters
	Shelving Filter EQ MATLAB Example
	Time-varying Filters
	Wah-wah Example
	Time Varying Filter Implementation: State Variable Filter
	The State Variable Filter
	The State Variable Filter Algorithm
	MATLAB Wah-wah Implementation
	Wah-wah Code Explained
	Delay Based Effects
	Basic Delay Structure
	FIR Comb Filter
	IIR Comb Filter
	Universal Comb Filter
	Vibrato - A Simple Delay Based Effect
	Comb Filter Delay Effects: Flanger, Chorus, Slapback, Echo
	Modulation
	Ring Modulation
	MATLAB Ring Modulation
	Amplitude Modulation
	Amplitude Modulation: Tremolo
	Non-linear Processing
	Limiter
	MATLAB Limiter Example
	Compressors/Expanders
	MATLAB Compressor/Expander
	Overdrive, Distortion and Fuzz
	Overdrive
	MATLAB Overdrive Example
	Distortion/Fuzz
	MATLAB Fuzz Example
	Reverb/Spatial Effects
	Panning
	Panning Geometry
	MATLAB Panning Example
	Reverb
	Reverb v. Echo
	Reverb Simulations
	Schroeder's Reverberator
	MATLAB Schroeder Reverb
	Moorer's Reverberator
	MATLAB Moorer Reverb
	Convolution Reverb
	Commercial Convolution Reverbs
	Room Impulse Responses
	MATLAB Convolution Reverb

