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Abbreviations

1D

2D, 3D, ...
AAM
AGC
Al
ART
ASM
BBF
BBN
BRDF
B-rep
CAD
CCD
CHMM
CIE
CMOS
CMY
CONDENSATION
CRT
CSF
CSG
CcT

dB
DCT
DFT
dof
DPCM
DWF
ECG
EEG
EM
FFT
FLANN
FOE
GA

one dimension(al)

two dimension(al), three dimension(al), ...
active appearance model

automatic gain control

artificial intelligence

adaptive resonance theory

active shape model

best bin first

Bayesian belief network

bi-directional reflectance distribution function
boundary representation

computer-aided design

charge-coupled device

coupled HMM

International Commission on Illumination
complementary metal-oxide semiconductor
cyan, magenta, yellow

CONditional DENSity propagATION
cathode ray tube

cerebro-spinal fluid

constructive solid geometry

computed tomography

decibel, 20 times the decimal logarithm of a ratio

discrete cosine transform
discrete Fourier transform
degrees of freedom
differential PCM

discrete wavelet frame
electro-cardiogram
electro-encephalogram
expectation-maximization
fast Fourier transform
fast library for approximate nearest neighbors
focus of expansion
genetic algorithm
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GB Giga byte = 230 bytes = 1,073,741,824 bytes

GIS geographic information system
GMM Gaussian mixture model

GRBF Gaussian radial basis function

GVF gradient vector flow

HDTV high definition TV

HLS as HSI

HMM hidden Markov model

HOG histogram of oriented gradients

HSI hue, saturation, intensity

HSL as HSI

HSV hue, saturation, value

ICA independent component analysis
ICP iterative closest point algorithm
ICRP iterative closest reciprocal point algorithm
THS intensity, hue, saturation

JPEG Joint Photographic Experts Group
Kb Kilo bit = 210 bits = 1,024 bits

KB Kilo byte = 2!° bytes = 1,024 bytes
KLT Kanade-Lucas-Tomasi (tracker)
LBP local binary pattern

LCD liquid crystal display

MAP maximum a posteriori

Mb Mega bit = 220 bits = 1,048,576 bits
MB Mega byte = 220 bytes = 1,048,576 bytes
MB, MB2 Manzanera—Bernard skeletonization
MCMC Monte Carlo Markov chain

MDL minimum description length
MJPEG motion JPEG

MPEG moving picture experts group

MRF Markov random field

MRI magnetic resonance imaging

MR magnetic resonance

MSE mean-square error

MSER maximally stable extremal region
ms millisecond
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us microsecond

OCR optical character recognition
0S order statistics

PCA principal component analysis
PDE partial differential equation
p.d.f. probability density function
PDM point distribution model

PET positron emission tomography
PMF Pollard-Mayhew-Frisby (correspondence algorithm)
PTZ pan-tilt-zoom

RANSAC RANdom SAmple Consensus
RBF radial basis function

RCT reversible component transform
RGB red, green, blue

RMS root mean square

SIFT scale invariant feature transform
SKIZ skeleton by inference zones
SLR single lens reflex

SNR signal-to-noise ratio

STET short term Fourier transform
SVD singular value decomposition
SVM support vector machine

TLD tracking-learning-detection

TV television

USB universal serial bus
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Symbols

arg(z,y)
argmax (expr(i))
argmin (expr (7))
div

mod

round(z)

0

AC
ACB,BDA
ANB

AUB

A\ B

of /0x
Vf, grad f
V2f
[*g
F.xG
Dg

Dy

Dg

F*
rank(A)
T*

&
L
o

angle (in radians) from x axis to the point (z,y)
the value of i that causes expr(i) to be maximal

the value of i that causes expr(i) to be minimal

integer division or divergence

remainder after integer division

largest integer which is not bigger than x 4+ 0.5
empty set

complement of set A

set A is included in set B

intersection between sets A and B

union of sets A and B

difference between sets A and B

(uppercase bold) matrices

(lowercase bold) vectors

magnitude (or modulus) of vector x

scalar product between vectors x and y
estimate of the value z

absolute value of a scalar

Dirac function

small finite interval of x, difference

partial derivative of the function f with respect to x
gradient of f

Laplace operator applied to f

convolution between functions f and g
element-by-element multiplication of matrices F', G
Euclidean distance

city block distance

chessboard distance

complex conjugate of the complex function F'
rank of a matrix A

transformation dual to transformation 7', also complex conjugate of T
mean value operator

linear operator

origin of the coordinate system
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number of (e.g., pixels)

point set symmetrical to point set B
morphological dilation

morphological erosion

morphological opening

morphological closing

morphological hit-or-miss transformation
morphological thinning

morphological thickening

logical and

logical or

sum of elements on the matrix main diagonal
cov covariance matrix

sec secant, seca = 1/ cosa

<>00® ®° 06 Ik

=+
=
a3
Q
@

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Contents

List of algorithms XXi
Preface XXV
Possible course outlines XXXi
1 Introduction 1
1.1  Motivation 1
1.2 Why is computer vision difficult? 3
1.3 Image representation and image analysis tasks 5
1.4 Summary 9
1.5  Exercises 10
1.6 References 10

2 The image, its representations and properties 11
2.1  Image representations, a few concepts 11
2.2 Image digitization 14
2.2.1  Sampling 14

2.2.2  Quantization 15

2.3 Digital image properties 16
2.3.1  Metric and topological properties of digital images 16

2.3.2 Histograms 23

2.3.3  Entropy 24

2.3.4  Visual perception of the image 25

2.3.5 Image quality 27

2.3.6  Noise in images 28

2.4 Color images 30
2.4.1  Physics of color 30

2.4.2  Color perceived by humans 32

2.4.3  Color spaces 36

2.4.4  Palette images 38

2.4.5 Color constancy 39

2.5 Cameras: An overview 40
2.5.1 Photosensitive sensors 40

2.5.2 A monochromatic camera 42

2.5.3 A color camera 44

2.6  Summary 45

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



xii Contents

2.7 Exercises 46
2.8  References 48
3 The image, its mathematical and physical background 50
3.1  Overview 50
3.1.1  Linearity 50

3.1.2  The Dirac distribution and convolution 51

3.2 Linear integral transforms 52
3.2.1 Images as linear systems 53

3.2.2  Introduction to linear integral transforms 53

3.2.3 1D Fourier transform 54

3.2.4 2D Fourier transform 59

3.2.5  Sampling and the Shannon constraint 62

3.2.6  Discrete cosine transform 65

3.2.7  Wavelet transform 66

3.2.8 Eigen-analysis 72

3.2.9  Singular value decomposition 73
3.2.10 Principal component analysis 74
3.2.11 Radon transform 7
3.2.12 Other orthogonal image transforms 78

3.3 Images as stochastic processes 79
3.4  Image formation physics 82
3.4.1 Images as radiometric measurements 82

3.4.2 Image capture and geometric optics 83

3.4.3 Lens aberrations and radial distortion 86

3.4.4 Image capture from a radiometric point of view 89

3.4.5  Surface reflectance 92

3.5 Summary 95
3.6  Exercises 97
3.7  References 98
4 Data structures for image analysis 100
4.1  Levels of image data representation 100
4.2  Traditional image data structures 101
4.2.1 Matrices 101

4.2.2  Chains 104

4.2.3 Topological data structures 106

4.2.4 Relational structures 107

4.3  Hierarchical data structures 108
4.3.1 Pyramids 108

4.3.2  Quadtrees 109

4.3.3  Other pyramidal structures 111

4.4  Summary 112
4.5  Exercises 113
4.6  References 115
5 Image pre-processing 116
5.1  Pixel brightness transformations 117

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Contents xiii

5.1.1 Position-dependent brightness correction 117

5.1.2  Gray-scale transformation 117

5.2  Geometric transformations 120
5.2.1 Pixel co-ordinate transformations 121

5.2.2  Brightness interpolation 123

5.3  Local pre-processing 125
5.3.1 Image smoothing 125

5.3.2 Edge detectors 133

5.3.3  Zero-crossings of the second derivative 139

5.3.4  Scale in image processing 143

5.3.5 Canny edge detection 144

5.3.6  Parametric edge models 147

5.3.7  Edges in multi-spectral images 148

5.3.8  Local pre-processing in the frequency domain 148

5.3.9 Line detection by local pre-processing operators 155
5.3.10 Detection of corners (interest points) 156
5.3.11 Detection of maximally stable extremal regions 160

5.4  Image restoration 162
5.4.1 Degradations that are easy to restore 163

5.4.2 Inverse filtering 163

5.4.3  Wiener filtering 164

5.5 Summary 165
5.6  Exercises 167
5.7  References 174
6 Segmentation | 178
6.1  Thresholding 179
6.1.1  Threshold detection methods 181

6.1.2  Optimal thresholding 183

6.1.3  Multi-spectral thresholding 186

6.2 Edge-based segmentation 187
6.2.1 Edge image thresholding 188

6.2.2 Edge relaxation 190

6.2.3 Border tracing 191

6.2.4 Border detection as graph searching 196

6.2.5 Border detection as dynamic programming 206

6.2.6 Hough transforms 210

6.2.7 Border detection using border location information 217

6.2.8  Region construction from borders 218

6.3 Region-based segmentation 220
6.3.1 Region merging 221

6.3.2 Region splitting 224

6.3.3  Splitting and merging 225

6.3.4 Watershed segmentation 229

6.3.5 Region growing post-processing 232

6.4 Matching 232
6.4.1 Template matching 233

6.4.2 Control strategies of templating 235

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Xiv Contents

6.5 Evaluation issues in segmentation 236
6.5.1 Supervised evaluation 237

6.5.2  Unsupervised evaluation 240

6.6 Summary 241
6.7 Exercises 245
6.8 References 248
7 Segmentation Il 255
7.1  Mean shift segmentation 255
7.2 Active contour models—snakes 263
7.2.1  Traditional snakes and balloons 264

7.2.2 Extensions 267

7.2.3  Gradient vector flow snakes 268

7.3  Geometric deformable models—level sets and geodesic active contours 273
7.4  Fuzzy connectivity 280
7.5  Towards 3D graph-based image segmentation 288
7.5.1  Simultaneous detection of border pairs 289

7.5.2  Suboptimal surface detection 293

7.6  Graph cut segmentation 295
7.7 Optimal single and multiple surface segmentation— LOGISMOS 303
7.8  Summary 317
7.9  Exercises 319
7.10 References 321
8 Shape representation and description 329
8.1  Region identification 333
8.2  Contour-based shape representation and description 335
8.2.1 Chain codes 336

8.2.2  Simple geometric border representation 337

8.2.3  Fourier transforms of boundaries 341

8.2.4 Boundary description using segment sequences 343

8.2.5  B-spline representation 346

8.2.6  Other contour-based shape description approaches 348

8.2.7  Shape invariants 349

8.3  Region-based shape representation and description 353
8.3.1  Simple scalar region descriptors 353

8.3.2 Moments 358

8.3.3 Convex hull 360

8.3.4  Graph representation based on region skeleton 365

8.3.5  Region decomposition 370

8.3.6  Region neighborhood graphs 372

8.4  Shape classes 373
8.5  Summary 373
8.6  Exercises 375
8.7  References 379
9 Object recognition 385

9.1 Knowledge representation 386

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Contents XV

9.2  Statistical pattern recognition 390
9.2.1 Classification principles 392

9.2.2  Nearest neighbors 393

9.2.3 Classifier setting 395

9.2.4 Classifier learning 398

9.2.5  Support vector machines 400

9.2.6  Cluster analysis 406

9.3  Neural nets 407
9.3.1 Feed-forward networks 409

9.3.2  Unsupervised learning 411

9.3.3 Hopfield neural nets 412

9.4  Syntactic pattern recognition 413
9.4.1 Grammars and languages 415

9.4.2  Syntactic analysis, syntactic classifier 417

9.4.3 Syntactic classifier learning, grammar inference 420

9.5  Recognition as graph matching 421
9.5.1 Isomorphism of graphs and subgraphs 421

9.5.2  Similarity of graphs 425

9.6  Optimization techniques in recognition 426
9.6.1  Genetic algorithms 427

9.6.2 Simulated annealing 430

9.7  Fuzzy systems 432
9.7.1  Fuzzy sets and fuzzy membership functions 432

9.7.2  Fuzzy set operators 434

9.7.3  Fuzzy reasoning 435

9.7.4  Fuzzy system design and training 438

9.8 Boosting in pattern recognition 439
9.9 Random forests 442
9.9.1 Random forest training 444

9.9.2 Random forest decision making 446

9.9.3 Random forest extensions 448

9.10 Summary 448
9.11 Exercises 452
9.12 References 459
10 Image understanding 464
10.1 Image understanding control strategies 466
10.1.1 Parallel and serial processing control 466
10.1.2 Hierarchical control 466
10.1.3 Bottom-up control 467
10.1.4 Model-based control 468
10.1.5 Combined control 469
10.1.6 Non-hierarchical control 472

10.2 SIFT: Scale invariant feature transform 474
10.3 RANSAC: Fitting via random sample consensus 477
10.4 Point distribution models 481
10.5 Active appearance models 492

10.6 Pattern recognition methods in image understanding 503

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



xvi Contents

10.6.1 Classification-based segmentation 503
10.6.2 Contextual image classification 505
10.6.3 Histograms of oriented gradients—HOG 509

10.7 Boosted cascades of classifiers 513
10.8 Image understanding using random forests 517
10.9 Scene labeling and constraint propagation 524
10.9.1 Discrete relaxation 525
10.9.2 Probabilistic relaxation 527
10.9.3 Searching interpretation trees 530

10.10 Semantic image segmentation and understanding 531
10.10.1 Semantic region growing 532
10.10.2 Genetic image interpretation 534

10.11 Hidden Markov models 543
10.11.1 Applications 548
10.11.2 Coupled HMMs 549
10.11.3 Bayesian belief networks 551

10.12 Markov random fields 553
10.12.1 Applications to images and vision 555

10.13 Gaussian mixture models and expectation—-maximization 556
10.14 Summary 564
10.15 Exercises 568
10.16 References 572
11 3D geometry, correspondence, 3D from intensities 582
11.1 3D vision tasks 583
11.1.1 Marr’s theory 585
11.1.2  Other vision paradigms: Active and purposive vision 587

11.2 Basics of projective geometry 589
11.2.1 Points and hyperplanes in projective space 590
11.2.2 Homography 592
11.2.3 Estimating homography from point correspondences 594

11.3 A single perspective camera 598
11.3.1 Camera model 598
11.3.2 Projection and back-projection in homogeneous coordinates 601
11.3.3 Camera calibration from a known scene 602

11.4  Scene reconstruction from multiple views 602
11.4.1 Triangulation 603
11.4.2 Projective reconstruction 604
11.4.3 Matching constraints 605
11.4.4 Bundle adjustment 607
11.4.5 Upgrading the projective reconstruction, self-calibration 608

11.5 Two cameras, stereopsis 609
11.5.1 Epipolar geometry; fundamental matrix 610
11.5.2 Relative motion of the camera; essential matrix 612
11.5.3 Decomposing the fundamental matrix to camera matrices 613
11.5.4 Estimating the fundamental matrix from point correspondences 614
11.5.5 Rectified configuration of two cameras 615

11.5.6 Computing rectification 617

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Contents Xvii

11.6 Three cameras and trifocal tensor 619
11.6.1 Stereo correspondence algorithms 621
11.6.2 Active acquisition of range images 627

11.7 3D information from radiometric measurements 630
11.7.1 Shape from shading 631
11.7.2 Photometric stereo 635

11.8 Summary 636

11.9 Exercises 637

11.10 References 639

12 Use of 3D vision 644

12.1 Shape from X 644
12.1.1 Shape from motion 644
12.1.2 Shape from texture 651
12.1.3 Other shape from X techniques 652

12.2  Full 3D objects 655
12.2.1 3D objects, models, and related issues 655
12.2.2 Line labeling 656
12.2.3 Volumetric representation, direct measurements 658
12.2.4 Volumetric modeling strategies 660
12.2.5 Surface modeling strategies 662
12.2.6 Registering surface patches and their fusion to get a full 3D

model 663

12.3 2D view-based representations of a 3D scene 670
12.3.1 Viewing space 670
12.3.2 Multi-view representations and aspect graphs 670

12.4 3D reconstruction from an unorganized set of 2D views, and Structure
from Motion 671

12.5 Reconstructing scene geometry 674

12.6 Summary 677

12.7 Exercises 678

12.8 References 680

13 Mathematical morphology 684

13.1 Basic morphological concepts 684

13.2  Four morphological principles 686

13.3 Binary dilation and erosion 687
13.3.1 Dilation 688
13.3.2 Erosion 689
13.3.3 Hit-or-miss transformation 692
13.3.4 Opening and closing 692

13.4 Gray-scale dilation and erosion 694
13.4.1 Top surface, umbra, and gray-scale dilation and erosion 694
13.4.2 Umbra homeomorphism theorem, properties of erosion and

dilation, opening and closing 697
13.4.3 Top hat transformation 698
13.5 Skeletons and object marking 699

13.5.1 Homotopic transformations 699

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



xviii  Contents

13.5.2 Skeleton, medial axis, maximal ball 699
13.5.3 Thinning, thickening, and homotopic skeleton 701
13.5.4 Quench function, ultimate erosion 704
13.5.5 Ultimate erosion and distance functions 706
13.5.6 Geodesic transformations 707
13.5.7 Morphological reconstruction 709

13.6 Granulometry 711
13.7 Morphological segmentation and watersheds 713
13.7.1 Particle segmentation, marking, and watersheds 713
13.7.2 Binary morphological segmentation 714
13.7.3 Gray-scale segmentation, watersheds 716

13.8 Summary 717
13.9 Exercises 718
13.10 References 720
14 Image data compression 722
14.1 Image data properties 723
14.2 Discrete image transforms in image data compression 724
14.3 Predictive compression methods 727
14.4  Vector quantization 730
14.5 Hierarchical and progressive compression methods 730
14.6 Comparison of compression methods 732
14.7 Other techniques 733
14.8 Coding 733
14.9 JPEG and MPEG image compression 734
14.9.1 JPEG—still image compression 734
14.9.2 JPEG-2000 compression 736
14.9.3 MPEG—full-motion video compression 738

14.10 Summary 740
14.11 Exercises 742
14.12 References 744
15 Texture 747
15.1 Statistical texture description 750
15.1.1 Methods based on spatial frequencies 750
15.1.2 Co-occurrence matrices 752
15.1.3 Edge frequency 754
15.1.4 Primitive length (run length) 755
15.1.5 Laws’ texture energy measures 757
15.1.6 Local binary patterns—LBPs 757
15.1.7 Fractal texture description 762
15.1.8 Multiscale texture description—wavelet domain approaches 764
15.1.9 Other statistical methods of texture description 768

15.2 Syntactic texture description methods 769
15.2.1 Shape chain grammars 770
15.2.2 Graph grammars 772

15.2.3 Primitive grouping in hierarchical textures 773

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Contents XiX

15.3 Hybrid texture description methods 775
15.4 Texture recognition method applications 776
15.5 Summary 7
15.6 Exercises 779
15.7 References 782
16 Motion analysis 787
16.1 Differential motion analysis methods 790
16.2 Optical flow 794
16.2.1 Optical flow computation 794
16.2.2 Global and local optical flow estimation 797
16.2.3 Combined local-global optical flow estimation 800
16.2.4 Optical flow in motion analysis 801

16.3 Analysis based on correspondence of interest points 804
16.3.1 Detection of interest points 805
16.3.2 Lucas-Kanade point tracking 805
16.3.3 Correspondence of interest points 807

16.4 Detection of specific motion patterns 810
16.5 Video tracking 814
16.5.1 Background modeling 815
16.5.2 Kernel-based tracking 820
16.5.3 Object path analysis 826

16.6 Motion models to aid tracking 831
16.6.1 Kalman filters 831
16.6.2 Particle filters 837
16.6.3 Semi-supervised tracking—TLD 840

16.7 Summary 843
16.8 Exercises 846
16.9 References 848
Index 853

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



List of algorithms

2.1 Distance transform 20
2.2 Computing the brightness histogram 23
2.3 Generation of additive, zero mean Gaussian noise 28
4.1  Co-occurrence matrix C,.(z,y) for the relation r 102
4.2 Integral image construction 103
5.1 Histogram equalization 119
5.2 Smoothing using a rotating mask 130
5.3  Efficient median filtering 131
5.4  Canny edge detector 146
5.5  Harris corner detector 159
5.6 Enumeration of extremal regions. 161
6.1 Basic thresholding 179
6.2  Otsu’s threshold detection 184
6.3 Recursive multi-spectral thresholding 186
6.4  Non-maximal suppression of directional edge data 188
6.5 Hysteresis to filter output of an edge detector 189
6.6  Inner boundary tracing 191
6.7  Outer boundary tracing 193
6.8  Extended boundary tracing 195
6.9  Border tracing in gray-level images 196
6.10  A-algorithm graph search 198
6.11 Heuristic search for image borders 205
6.12 Boundary tracing as dynamic programming 208
6.13 Curve detection using the Hough transform 212
6.14 Generalized Hough transform 217
6.15 Region forming from partial borders 219
6.16 Region merging (outline) 221
6.17 Region merging via boundary melting 223
6.18  Split and merge 226
6.19  Split and link to the segmentation tree 227
6.20 Single-pass split-and-merge 228
6.21 Efficient watershed segmentation 230
6.22 Removal of small image regions 232
7.1 Mean shift mode detection 259
7.2 Mean shift discontinuity-preserving filtering 261
7.3 Mean shift image segmentation 262
7.4  Absolute fuzzy connectivity segmentation 282

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



xxii List of algorithms

7.5 Fuzzy object extraction 284
7.6 Fuzzy object extraction with preset connectedness 285
7.7 Graph cut segmentation 300
7.8  Optimal surface segmentation 304
7.9 Multiple optimal surface segmentation 311
8.1 4-neighborhood and 8-neighborhood region labeling 333
8.2  Region identification in run length encoded data 335
8.3  Quadtree region identification 335
8.4  Curvature estimation — HK2003 algorithm 338
8.5 Calculating area in quadtrees 354
8.6 Region area calculation from Freeman 4-connectivity chain code
representation 354
8.7  Region convex hull construction 361
8.8  Simple polygon convex hull detection 363
8.9 Fully parallel skeleton by thinning — MB algorithm 366
8.10 Fully parallel skeleton by thinning — MB2 algorithm 367
8.11 Region graph construction from skeleton 370
9.1  Minimum distance classifier learning and classification 393
9.2  Nearest neighbor search with K-D trees 394
9.3 Learning and classification by estimating normal distribution probability
densities 400
9.4 Support vector machine learning and classification 404
9.5 K-means cluster analysis 406
9.6  Back-propagation learning 410
9.7  Unsupervised learning of the Kohonen feature map 411
9.8 Recognition using a Hopfield net 413
9.9  Syntactic recognition 414
9.10 Graph isomorphism 424
9.11 Maximal clique location 425
9.12  Genetic algorithm 429
9.13 Simulated annealing optimization 431
9.14 Fuzzy system design 438
9.15 AdaBoost 440
9.16 AdaBoost-MH 441
10.1 Bottom-up control 467
10.2  Coronary border detection—a combined control strategy 471
10.3  Non-hierarchical control 472
10.4  Scale Invariant Feature Transform—SIFT 476
10.5 Random sample consensus for model fitting—RANSAC 478
10.6  Approximate alignment of similar training shapes 482
10.7 Fitting an ASM 487
10.8 AAM construction 492
10.9  Active appearance model matching 495
10.10 Contextual image classification 507
10.11 Recursive contextual image classification 508
10.12 HOG object detection and localization 510
10.13 Classifier generation for Viola-Jones face detection 514

10.14 Discrete relaxation 527

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



List of algorithms xxiii

10.15 Probabilistic relaxation 529
10.16 Updating a region adjacency graph and dual to merge two regions 532
10.17 Semantic region merging 533
10.18 Genetic image segmentation and interpretation 537
10.19 Gaussian mixture parameters via expectation-maximization 559
10.20 Expectation-maximization (a generalization of Algorithm 10.19) 562
10.21 Baum-Welch training for HMMs (the forward-backward algorithm) 564
11.1  Image rectification 618
11.2  PMF stereo correspondence 626
11.3  Reconstructing shape from shading 633
12.1 Line labeling 657
12.2  Tterative closest reciprocal points 668
15.1 Auto-correlation texture description 750
15.2  Co-occurrence method of texture description 753
15.3 Edge-frequency texture description 754
15.4  Primitive-length texture description 756
15.5  Shape chain grammar texture synthesis 770
15.6  Texture primitive grouping 774
16.1 Relaxation computation of optical flow from dynamic image pairs 796
16.2  Optical flow computation from an image sequence 796
16.3  General Lucas—Kanade tracking 806
16.4  Velocity field computation from two consecutive images 808
16.5 Background maintenance by median filtering 816
16.6 Background maintenance by Gaussian mixtures 818
16.7 Kernel-based object tracking 823
16.8  Condensation (particle filtering) 837
16.9 Tracking-Learning-Detection—TLD 842

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Preface

Image processing, analysis, and machine vision are an exciting and dynamic part of cog-
nitive and computer science. Following an explosion of interest during the 1970s and
1980s, subsequent decades were characterized by a maturing of the field and significant
growth of active applications; remote sensing, technical diagnostics, autonomous vehicle
guidance, biomedical imaging (2D, 3D, and 4D) and automatic surveillance are the most
rapidly developing areas. This progress can be seen in an increasing number of software
and hardware products on the market—as a single example of many, the omnipresence
of consumer-level digital cameras, each of which depends on a sophisticated chain of
embedded consumer-invisible image processing steps performed in real time, is strik-
ing. Reflecting this continuing development, the number of digital image processing and
machine vision courses offered at universities worldwide continues to increase rapidly.

There are many texts available in the areas we cover—a lot of them are referenced in
this book. The subject suffers, however, from a shortage of texts which are ‘complete’ in
the sense that they are accessible to the novice, of use to the educated, and up to date.
Here we present the fourth edition of a text first published in 1993. We include many
of the very rapid developments that have taken and are still taking place, which quickly
age some of the very good textbooks produced in the recent past.

Our target audience spans the range from the undergraduate with negligible ex-
perience in the area through to the Master’s, Ph.D., and research student seeking an
advanced springboard in a particular topic. The entire text has been updated since the
third version (particularly with respect to most recent development and associated refer-
ences). We retain the same Chapter structure, but many sections have been rewritten or
introduced as new. Among the new topics are the Radon transform, a unified approach
to image/template matching, efficient object skeletonization (MB and MB2 algorithms),
nearest neighbor classification including BBF/FLANN, histogram-of-oriented-Gaussian
(HOG) approach to object detection, random forests, Markov random fields, Bayesian
belief networks, scale invariant feature transform (SIFT), recent 3D image analysis/vision
development, texture description using local binary patterns, and several point tracking
approaches for motion analysis. Approaches to 3D vision evolve especially quickly and we
have revised this material and added new comprehensive examples. In addition, several
sections have been rewritten or expanded in response to reader and reviewer comments.
All in all, about 15% of this edition consists of newly written material presenting state-
of-the-art methods and techniques that already have proven their importance in the field:
additionally, the whole text has been edited for currency and to correct a small number
of oversights detected in the previous edition.

In response to demand, we have re-incorporated exercises (both short-form ques-
tions, and longer problems frequently requiring practical usage of computer tools and/or
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xxvi Preface

development of application programs) into this text. These re-use the valuable practi-
cal companion text to the third edition [Svoboda et al., 2008], but also cover material
that was not present in earlier editions. The companion text provides Matlab-based im-
plementations, introduces additional problems, explains steps leading to solutions, and
provides many useful linkages to allow practical use: a Solution Manual is available
via the Cengage secure server to registered instructors. In preparing this edition, we
gratefully acknowledge the help and support of many people, in particular our reviewers
Saeid Belkasim, Georgia State University, Thomas C. Henderson, University of Utah,
William Hoff, Colorado School of Mines, Lina Karam, Arizona State University, Peter
D. Scott, the University at Buffalo, SUNY and Jane Zhang, California Polytechnic State
University. Richard W. Penney, Worcestershire, UK gave close attention to our third
edition which has permitted the correction of many shortcomings. At our own institu-
tions, Reinhard Beichel, Gary Christensen, Hannah Dee, Mona Garvin, lan Hales, Sam
Johnson, Derek Magee, Ipek Oguz, Kalman Palagyi, Andrew Rawlins, Joe Reinhardt,
Punam Saha, and Xiaodong Wu have been a constant source of feedback, inspiration and
encouragement.

This book reflects the authors’ experience in teaching one- and two-semester un-
dergraduate and graduate courses in Digital Image Processing, Digital Image Analysis,
Image Understanding, Medical Imaging, Machine Vision, Pattern Recognition, and Intel-
ligent Robotics at their respective institutions. We hope that this combined experience
will give a thorough grounding to the beginner and provide material that is advanced
enough to allow the more mature student to understand fully the relevant areas of the
subject. We acknowledge that in a very short time the more active areas will have moved
beyond this text.

This book could have been arranged in many ways. It begins with low-level process-
ing and works its way up to higher levels of image interpretation; the authors have chosen
this framework because they believe that image understanding originates from a com-
mon database of information. The book is formally divided into 16 chapters, beginning
with low-level processing and working toward higher-level image representation, although
this structure will be less apparent after Chapter 12, when we present mathematical mor-
phology, image compression, texture, and motion analysis which are very useful but often
special-purpose approaches that may not always be included in the processing chain.

Decimal section numbering is used, and equations and figures are numbered within
each chapter. Each chapter is supported by an extensive list of references and exercises.
A selection of algorithms is summarized formally in a manner that should aid imple-
mentation. Not all the algorithms discussed are presented in this way (this might have
doubled the length of the book); we have chosen what we regard as the key, or most use-
ful or illustrative, examples for this treatment. Each chapter further includes a concise
Summary section, Short-answer questions, and Problems/Exercises.

Chapters present material from an introductory level through to an overview of
current work; as such, it is unlikely that the beginner will, at the first reading, expect
to absorb all of a given topic. Often it has been necessary to make reference to material
in later chapters and sections, but when this is done an understanding of material in
hand will not depend on an understanding of that which comes later. It is expected that
the more advanced student will use the book as a reference text and signpost to current
activity in the field—we believe at the time of going to press that the reference list is
full in its indication of current directions, but record here our apologies to any work we
have overlooked. The serious reader will note that the reference list contains citations

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Preface XXVii

of both the classic material that has survived the test of time as well as references that
are very recent and represent what the authors consider promising new directions. Of
course, before long, more relevant work will have been published that is not listed here.

This is a long book and therefore contains material sufficient for much more than
one course. Clearly, there are many ways of using it, but for guidance we suggest an
ordering that would generate five distinct modules:

Digital Image Processing |, an undergraduate course.

Digital Image Processing Il, an undergraduate/graduate course, for which Digital Im-
age Processing I may be regarded as prerequisite.

Computer Vision |, an undergraduate/graduate course, for which Digital Image Pro-
cessing I may be regarded as prerequisite.

Computer Vision Il, a graduate course, for which Computer Vision I may be regarded
as prerequisite.

Image Analysis and Understanding, a graduate course, for which Computer Vision I
may be regarded as prerequisite.

The important parts of a course, and necessary prerequisites, will naturally be specified
locally; a suggestion for partitioning the contents follows this Preface.

Assignments should wherever possible make use of existing software; it is our expe-
rience that courses of this nature should not be seen as ‘programming courses’, but it
is the case that the more direct practical experience the students have of the material
discussed, the better is their understanding. Since the first edition was published, an
explosion of web-based material has become available, permitting many of the exercises
we present to be conducted without the necessity of implementing from scratch. We
do not present explicit pointers to Web material, since they evolve so quickly; however,
pointers to specific support materials for this book and others may be located via the
designated book web page, http://www.cengage.com/engineering .

In addition to the print version, this textbook is also available online through Mind-
Tap, a personalized learning program. If you purchase the MindTap version of this book,
you will obtain access to the book’s MindTap Reader and will be able to complete assign-
ments online. If your class is using a Learning Management System (such as Blackboard,
Moodle, or Angel) for tracking course content, assignments, and grading, you can seam-
lessly access the MindTap suite of content and assessments for this course. In MindTap,
instructors can:

e Personalize the learning path to match the course syllabus by rearranging content,
hiding sections, or appending original material to the textbook content.

e Connect a Learning Management System portal to the online course and Reader.
o Customize online assessments and assignments.

e Track student progress and comprehension with the Progress application.

o Promote student engagement through interactivity and exercises.

Additionally, students can listen to the text through ReadSpeaker, take notes and high-
light content for easy reference, as well as self-check their understanding of the material.
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The book has been prepared using the INXTEX text processing system. Its completion
would have been impossible without extensive usage of the Internet computer network
and electronic mail. We would like to acknowledge the University of Iowa, the Czech
Technical University, the Department of Computer Science at Prifysgol Aberystwyth,
and the School of Computing at the University of Leeds for providing the environment
in which this book was born and re-born.

Milan Sonka is Director of the Iowa Institute for Biomedical Imaging, Professor/Chair
of Electrical & Computer Engineering, and Professor of Ophthalmology & Visual Sciences
and Radiation Oncology at the University of lowa, lowa City, lowa, USA. His research
interests include medical image analysis, computer-aided diagnosis, and machine vision.
Véclav Hlavac is Professor of Cybernetics at the Czech Technical University, Prague. His
research interests are knowledge-based image analysis, 3D model-based vision and rela-
tions between statistical and structural pattern recognition. Roger Boyle very recently
retired from the School of Computing at the University of Leeds, England, where he had
been Head. His research interests are in low-level vision and pattern recognition, and he
now works within the UK National Phenomics Centre at Prifysgol Aberystwyth, Cymru.

All authors have contributed throughout—the ordering on the cover corresponds to
the weight of individual contribution. Any errors of fact are the joint responsibility of
all.

Final typesetting has been the responsibility of Hrvoje Bogunovi¢ at the University
of Towa. This fourth collaboration has once more jeopardized domestic harmony by
consuming long periods of time; we remain very happy to invest more work in this text
in response to readers’ comments.

References

Svoboda T., Kybic J., and Hlavac V. Image Processing, Analysis, and Machine Vision: A
MATLAB Companion. Thomson Engineering, 2008.
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Possible course outlines

Here, one possible ordering of the material covered in the five courses proposed in the
Preface is given. This should not, of course, be considered the only option—on the
contrary, the possibilities for organizing Image Processing and Analysis courses are prac-
tically endless. Therefore, what follows shall only be regarded as suggestions, and in-

structors shall tailor content to fit the assumed knowledge, abilities, and needs of the
students enrolled.

Figure 1 shows course pre-requisite dependencies of the proposed ordering. Figure 2

shows the mapping between the proposed course outlines and the material covered in the
individual chapters and sections.

Digital Image
Processing |
uG
Digital Image Computer Vision |
Processing Il
UG/G UG/G
Computer Vision Il Imangn?IyS; and
nderstanding
G G

Figure 1: Pre-requisite dependencies of the proposed five courses. UG = undergraduate course,
G = graduate course. © Cengage Learning 2015.
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Figure 2: Mapping between the proposed course outlines and material covered in individual
chapters and sections. See course outlines for details. © Cengage Learning 2015.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.
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Digital Image Processing | (DIP 1)

An undergraduate course.

1 Introduction

2 The image, its representation and properties

2.1 Image representations
2.2 Image digitization
2.3 Digital image properties

4 Data structures for image analysis
5 Image pre-processing

5.1 Pixel brightness transformations
5.2 Geometric transformations

5.3 Local pre-processing (except 5.3.6-5.3.7, 5.3.9-5.3.11, limited coverage of 5.3.4,
5.3.5)

5.4 Tmage restoration (except 5.4.3)
6 Segmentation I

6.1 Thresholding (except 6.1.3)

6.2 Edge-based segmentation (except 6.2.4, 6.2.5, 6.2.7, 6.2.8)
6.3 Region growing segmentation (except 6.3.4)

6.4 Matching

6.5 Evaluation issues in segmentation
3 The image, its mathematical and physical background
3.2 Linear integral transforms (3.2.1-3.2.4, 3.2.6 only)
14 TImage data compression (except wavelet compression, except 14.9)

Practical image processing projects

Digital Image Processing Il (DIP 1I)

An undergraduate/graduate course, for which Digital Image Processing I may be re-
garded as prerequisite.

1 Introduction (brief review)
2 The image, its representation and properties

2.4 Color images

2.5 Cameras

3 The image, its mathematical and physical background (except 3.2.8-3.2.10)

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Possible course outlines xxxiii

5 Image pre-processing

5.3.4 Scale in image processing
5.3.5 Canny edge detection
5.3.6 Parametric edge models
5.3.7 Edges in multi-spectral images
5.3.8 Pre-processing in frequency domain
5.3.9 Line detection

5.3.10 Corner detection

5.3.11 Maximally stable extremal regions

5.4 Image restoration
6 Segmentation I

6.1 Thresholding — considering color image data
6.2.1 Edge image thresholding — considering color image data
6.3.1-3 Region-based segmentation — considering color image data

6.4 Matching — considering color image data
14 Tmage compression

14.2 Discrete image transforms in image compression
14.9 JPEG and MPEG

13 Mathematical morphology

Practical image processing projects

Computer Vision | (CV 1)

An undergraduate/graduate course, for which Digital Image Processing I may be re-
garded as prerequisite.

1 Introduction (brief review)
2 The image, its representation and properties (brief review)
6 Segmentation I

6.2.4 Border detection as graph searching

6.2.5 Border detection as dynamic programming

6.2.7 Border detection using border location information
6.2.8 Region construction from borders

6.3.4 Watershed segmentation

7 Segmentation II
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7.1 Mean shift segmentation
7.2 Active contour models
8 Shape representation and description
9 Object recognition
9.1 Knowledge representation
9.2 Statistical pattern recognition (except 9.2.5)

9.3 Neural networks

9.4 Syntactic pattern recognition
10 Image understanding

10.1 Image understanding control strategies

10.2 SIFT

10.3 RANSAC

10.6 Pattern recognition methods in image understanding
10.9 Scene labeling

10.10 Semantic image segmentation and understanding
15 Texture

Practical computer vision projects

Computer Vision Il (CV II)
A graduate course, for which Computer Vision I may be regarded as prerequisite.
2 The image, its representation and properties

2.4 Color images

2.5 Cameras
3 The image, its mathematical and physical background
3.4 Image formation physics
5 Image pre-processing
5.3.4 Scale in image processing
5.3.5 Canny edge detection
5.3.6 Parametric edge models
5.3.7 Edges in multi-spectral images
5.3.9 Line detection
5.3.10 Corner detection

5.3.11 Maximally stable extremal regions
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11 3D Vision, geometry and radiometry
12 Use of 3D vision
16 Motion analysis

Practical 3D vision projects

Image Analysis and Understanding (1AU)

A graduate course, for which Computer Vision I may be regarded as prerequisite.
7 Segmentation IT (except 7.1, 7.2)
9 Object recognition

9.2.5 Support vector machines
9.5 Recognition as graph matching
9.6 Optimization techniques in recognition
9.7 Fuzzy systems
9.8 Boosting in pattern recognition

9.9 Random forests
3 The image, its mathematical and physical background

3.2.8 Eigen analysis
3.2.9 Singular value decomposition

3.2.10 Principal component analysis
10 Image understanding

10.1 Image understanding control strategies
10.4 Point distribution models
10.5 Active appearance models
10.7 Boosted cascade of classifiers
10.8 Image understanding using random forests
10.11 Hidden Markov models
10.12 Markov random fields

10.13 Gaussian mixture models and expectation maximization
16 Motion analysis

Practical image understanding projects
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Chapter

Introduction

1.1 Motivation

Vision allows humans to perceive and understand the world surrounding them, while
computer vision aims to duplicate the effect of human vision by electronically perceiving
and understanding an image. Books other than this one would dwell at length on this
sentence and the meaning of the word ‘duplicate’—whether computer vision is simulating
or mimicking human systems is philosophical territory, and very fertile territory too.

Giving computers the ability to see is not an easy task—we live in a three-dimensional
(3D) world, and when computers try to analyze objects in 3D space, the visual sen-
sors available (e.g., TV cameras) usually give two-dimensional (2D) images, and this
projection to a lower number of dimensions incurs an enormous loss of information.
Sometimes, equipment will deliver images that are 3D but this may be of questionable
value: analyzing such datasets is clearly more complicated than 2D, and sometimes the
‘three-dimensionality’ is less than intuitive to us ... terahertz scans are an example of
this. Dynamic scenes such as those to which we are accustomed, with moving objects or a
moving camera, are increasingly common and represent another way of making computer
vision more complicated.

Figure 1.1 could be witnessed in thousands of farmyards in many countries, and
serves to illustrate just some of the problems that we will face.

Figure 1.1: A frame from a video of a typical farm-
yard scene: the cow is one of a number walking nat-
urally from right to left. Courtesy of D. R. Magee,
University of Leeds.
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2 Chapter 1: Introduction

There are many reasons why we might wish to study scenes such as this, which
are attractively simple to us. The beast is moving slowly, it is clearly black and white,
its movement is rhythmic, etc.; however, automated analysis is very fraught—in fact,
the animal’s boundary is often very difficult to distinguish clearly from the background,
the motion of the legs is self-occluding and (subtly) the concept of ‘cow-shaped’ is not
something easily encoded. The application from which this picture was taken! made use
of many of the algorithms presented in this book: starting at a low level, moving features
were identified and grouped. A ‘training phase’ taught the system what a cow might
look like in various poses (see Figure 1.2), from which a model of a ‘moving’ cow could
be derived (see Figure 1.3).
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Figure 1.2: Various models for a cow silhouette: a straight-line boundary approximation has
been learned from training data and is able to adapt to different animals and different forms of
occlusion. Courtesy of D. R. Magee, University of Leeds.

These models could then be fitted to new (‘unseen’) video sequences. Crudely, at
this stage anomalous behavior such as lameness could be detected by the model failing
to fit properly, or well.

Thus we see a sequence of operations—image capture, early processing, segmentation,
model fitting, motion prediction, qualitative/quantitative conclusion—that is character-
istic of image understanding and computer vision problems. Each of these phases (which
may not occur sequentially!) may be addressed by a number of algorithms which we shall
cover in due course.

1 The application was serious; there is a growing need in modern agriculture for automatic monitoring
of animal health, for example to spot lameness. A limping cow is trivial for a human to identify, but it
is very challenging to do this automatically.
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1.2 Why is computer vision difficult? 3

Figure 1.3: Three frames from a cow sequence: notice the model can cope with partial occlusion
as the animal enters the scene, and the different poses exhibited. Courtesy of D. R. Magee,
University of Leeds.

This example is relatively simple to explain, but serves to illustrate that many com-
puter vision techniques use the results and methods of mathematics, pattern recognition,
artificial intelligence (AI), psycho-physiology, computer science, electronics, and other
scientific disciplines.

Why is computer vision hard? As an exercise, consider a single gray-scale (mono-
chromatic) image: put the book down and before proceeding write down a few reasons
why you feel automatic inspection and analysis of it may be difficult.

1.2  Why is computer vision difficult?

This philosophical question provides some insight into the complex landscape of computer
vision. It can be answered in many ways: we briefly offer six—most of them will be
discussed in more detail later in the book.

Loss of information in 3D — 2D is a phenomenon which occurs in typical image cap-
ture devices such as a camera or an eye. Their geometric properties have been
approximated by a pinhole model for centuries (a box with a small hole in it—a
‘camera obscura’ in Latin). This physical model corresponds to a mathematical
model of perspective projection; Figure 1.4 summarizes the principle. The projective
transformation maps points along rays but does not preserve angles and collinearity.

Figure 1.4: The pinhole model of
imaging geometry does not distin-
guish size of objects. © Cengage

real candle virtual image pinhole image pléne Learning 2015.

The main trouble with the pinhole model and a single available view is that the
projective transformation sees a small object close to the camera in the same way as
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4 Chapter 1: Introduction

a big object remote from the camera. In this case, a human needs a ‘yardstick’ to
guess the actual size of the object which the computer does not have.

Interpretation of image(s) is a problem humans solve unwittingly that is the principal
tool of computer vision. When a human tries to understand an image then previous
knowledge and experience is brought to the current observation. Human ability to
reason allows representation of long-gathered knowledge, and its use to solve new
problems. Artificial intelligence has worked for decades to endow computers with
the capability to understand observations; while progress has been tremendous, the
practical ability of a machine to understand observations remains very limited.

From the mathematical logic and/or linguistics point of view, image interpreta-
tion can be seen as a mapping

interpretation: image data — model .

The (logical) model means some specific world in which the observed objects make
sense. Examples might be nuclei of cells in a biological sample, rivers in a satellite
image, or parts in an industrial process being checked for quality. There may be
several interpretations of the same image(s). Introducing interpretation to computer
vision allows us to use concepts from mathematical logic, linguistics as syntax (rules
describing correctly formed expressions), and semantics (study of meaning). Consid-
ering observations (images) as an instance of formal expressions, semantics studies
relations between expressions and their meanings. The interpretation of image(s) in
computer vision can be understood as an instance of semantics.

Practically, if the image understanding algorithms know into which particular
domain the observed world is constrained, then automatic analysis can be used for
complicated problems.

Noise is inherently present in each measurement in the real world. Its existence calls
for mathematical tools which are able to cope with uncertainty; an example is prob-
ability theory. Of course, more complex tools make the image analysis much more
complicated compared to standard (deterministic) methods.

Too much data. Images are big, and video—increasingly the subject of vision appli-
cations—correspondingly bigger. Technical advances make processor and memory
requirements much less of a problem than they once were, and much can be achieved
with consumer level products. Nevertheless, efficiency in problem solutions is still
important and many applications remain short of real-time performance.

Brightness measured in images is given by complicated image formation physics. The
radiance (= brightness, image intensity) depends on the irradiance (light source
type, intensity and position), the observer’s position, the surface local geometry,
and the surface reflectance properties. The inverse tasks are ill-posed—for example,
to reconstruct local surface orientation from intensity variations. For this reason,
image-capture physics is usually avoided in practical attempts at image understand-
ing. Instead, a direct link between the appearance of objects in scenes and their
interpretation is sought.

Local window vs. need for global view. Commonly, image analysis algorithms analyze
a particular storage bin in an operational memory (e.g., a pixel in the image) and its
local neighborhood; the computer sees the image through a keyhole; this makes it
very difficult to understand more global context. This problem has a long tradition in
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1.3 Image representation and image analysis tasks 5

artificial intelligence: in the 1980s McCarthy argued that formalizing context was a
crucial step toward the solution of the problem of generality. It is often very difficult
to interpret an image if it is seen only locally or if only a few local keyholes are
available. Figure 1.5 illustrates this pictorially. How context is taken into account is
an important facet of image analysis.

© ® O @ Figure 1.5: [Illustration of the world seen

©® - through several keyholes providing only a local

context. It is very difficult to guess what ob-

@ © o ject is depicted; the complete image is shown in
Figure 1.6. © Cengage Learning 2015.

1.3 Image representation and image analysis tasks

Image understanding by a machine can be seen as an attempt to find a relation between
input image(s) and previously established models of the observed world. Transition from
the input image(s) to the model reduces the information contained in the image to rele-
vant information for the application domain. This process is usually divided into several
steps and several levels representing the image are used. The bottom layer contains
raw image data and the higher levels interpret the data. Computer vision designs these
intermediate representations and algorithms serving to establish and maintain relations
between entities within and between layers.

Image representation can be roughly divided according to data organization into four
levels, see Figure 1.7. The boundaries between individual levels are inexact, and more
detailed divisions are also proposed in the literature. Figure 1.7 suggests a bottom up
approach, from signals with almost no abstraction, to the highly abstract description
needed for image understanding. Note that the flow of information does not need to
be unidirectional; often feedback loops are introduced which allow the modification of
algorithms according to intermediate results.

This hierarchy of image representation and related algorithms is frequently catego-
rized in an even simpler way—Ilow-level image processing and high-level image under-
standing.

Low-level processing methods usually use very little knowledge about the content of
images. In the case of the computer knowing image content, it is usually provided by
high-level algorithms or directly by a human who understands the problem domain. Low-
level methods may include image compression, pre-processing methods for noise filtering,
edge extraction, and image sharpening, all of which we shall discuss in this book. Low-
level image processing uses data which resemble the input image; for example, an input
image captured by a TV camera is 2D in nature, being described by an image function
f(z,y) whose value, at simplest, is usually brightness depending on the co-ordinates x,y
of the location in the image.

If the image is to be processed using a computer it will be digitized first, after
which it may be represented by a rectangular matrix with elements corresponding to the
brightness at appropriate image locations. More probably, it will be presented in color,
implying (usually) three channels: red, green and blue. Very often, such a data set will
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6 Chapter 1: Introduction

Figure 1.6: It is easy for humans to interpret an
image if it is seen globally: compare to Figure 1.5.

© Cengage Learning 2015.

be part of a video stream with an associated frame rate. Nevertheless, the raw material
will be a set or sequence of matrices which represent the inputs and outputs of low-level
image processing.

High-level processing is based on knowledge, goals, and plans of how to achieve those
goals, and artificial intelligence methods are widely applicable. High-level computer
vision tries to imitate human cognition (although be mindful of the health warning given
in the very first paragraph of this chapter) and the ability to make decisions according to
the information contained in the image. In the example described, high-level knowledge
would be related to the ‘shape’ of a cow and the subtle interrelationships between the
different parts of that shape, and their (inter-)dynamics.

High-level vision begins with some form of formal model of the world, and then
the ‘reality’ perceived in the form of digitized images is compared to the model. A
match is attempted, and when differences emerge, partial matches (or subgoals) are
sought that overcome them; the computer switches to low-level image processing to
find information needed to update the model. This process is then repeated iteratively,
and ‘understanding’ an image thereby becomes a co-operation between top-down and
bottom-up processes. A feedback loop is introduced in which high-level partial results
create tasks for low-level image processing, and the iterative image understanding process
should eventually converge to the global goal.

Computer vision is expected to solve very complex tasks, the goal being to obtain
similar results to those provided by biological systems. To illustrate the complexity of
these tasks, consider Figure 1.8 in which a particular image representation is presented—

Understanding objects

Objects

A

Image with
features
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v v,

From features to objects

v

CRegions

From images to features

Interest
points Texture LN ]

A
Digital
image

A

Y

Image digitization . . .
Figure 1.7: Four possible levels of image repre-

sentation suitable for image analysis problems
in which objects have to be detected and clas-
sified. Representations are depicted as shaded
ovals. © Cengage Learning 2015.

From objects to images

Objects
or a scene,
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s Figure 1.8: An unusual image representa-
180 ygp tion. © R.D. Boyle 2015.

the value on the vertical axis gives the brightness of its corresponding location in the
[gray-scale] image. Consider what this image might be before looking at Figure 1.9,
which is a rather more common representation of the same image.

Both representations contain exactly the same information, but for a human observer
it is very difficult to find a correspondence between them, and without the second, it is
unlikely that one would recognize the face of a child. The point is that a lot of a
priori knowledge is used by humans to interpret the images; the machine only begins
with an array of numbers and so will be attempting to make identifications and draw
conclusions from data that to us are more like Figure 1.8 than Figure 1.9. Increasingly,
data capture equipment is providing very large data sets that do not lend themselves to
straightforward interpretation by humans—we have already mentioned terahertz imaging
as an example. Internal image representations are not directly understandable—while
the computer is able to process local parts of the image, it is difficult for it to locate global
knowledge. General knowledge, domain-specific knowledge, and information extracted
from the image will be essential in attempting to ‘understand’ these arrays of numbers.

Low-level computer vision techniques overlap almost completely with digital image
processing, which has been practiced for decades. The following sequence of processing
steps is commonly seen: An image is captured by a sensor (such as a camera) and
digitized; then the computer suppresses noise (image pre-processing) and maybe enhances
some object features which are relevant to understanding the image. Edge extraction is
an example of processing carried out at this stage.

Image segmentation is the next step, in which the computer tries to separate objects
from the image background and from each other. Total and partial segmentation may be
distinguished; total segmentation is possible only for very simple tasks, an example being
the recognition of dark non-touching objects from a light background. For example, in
analyzing images of printed text (an early step in optical character recognition, OCR)
even this superficially simple problem is very hard to solve without error. In more
complicated problems (the general case), low-level image processing techniques handle
the partial segmentation tasks, in which only the cues which will aid further high-level
processing are extracted. Often, finding parts of object boundaries is an example of
low-level partial segmentation.

Object description and classification in a totally segmented image are also understood
as part of low-level image processing. Other low-level operations are image compression,
and techniques to extract information from (but not understand) moving scenes.
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8 Chapter 1: Introduction

Figure 1.9: Another representation of Figure 1.8.
© R.D. Boyle 2015.

Low-level image processing and high-level computer vision differ in the data used.
Low-level data are comprised of original images represented by matrices composed of
brightness (or similar) values, while high-level data originate in images as well, but only
those data which are relevant to high-level goals are extracted, reducing the data quantity
considerably. High-level data represent knowledge about the image content—for example,
object size, shape, and mutual relations between objects in the image. High-level data
are usually expressed in symbolic form.

Many low-level image processing methods were proposed in the 1970s or earlier:
research is trying to find more efficient and more general algorithms and is implementing
them on more technologically sophisticated equipment, in particular, parallel machines
(including GPU’s) are being used to ease the computational load. The requirement for
better and faster algorithms is fuelled by technology delivering larger images (better
spatial or temporal resolution), and color.

A complicated and so far unsolved problem is how to order low-level steps to solve
a specific task, and the aim of automating this problem has not yet been achieved. It is
usually still a human operator who finds a sequence of relevant operations, and domain-
specific knowledge and uncertainty cause much to depend on this operator’s intuition
and previous experience.

High-level vision tries to extract and order image processing steps using all available
knowledge—image understanding is the heart of the method, in which feedback from
high-level to low-level is used. Unsurprisingly this task is very complicated and computa-
tionally intensive. David Marr’s book [Marr, 1982], discussed in Section 11.1.1, influenced
computer vision considerably throughout the 1980s; it described a new methodology and
computational theory inspired by biological vision systems. Developments in the 1990s
moved away from dependence on this paradigm, but interest in properly understanding
and then modeling human visual (and other perceptual) systems persists—it remains the
case that the only known solution to the ‘vision problem’ is our own brain!

Consider 3D wision problems for a moment. We adopt the user’s view, i.e., what
tasks performed routinely by humans would be good to accomplish by machines. What
is the relation of these 3D vision tasks to low-level (image processing) and high-level (im-
age analysis) algorithmic methods? There is no widely accepted view in the academic
community. Links between (algorithmic) components and representation levels are tai-
lored to the specific application solved, e.g., navigation of an autonomous vehicle. These
applications have to employ specific knowledge about the problem solved to be competi-
tive with tasks which humans solve. Many researchers in different fields work on related
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1.4 Summary 9

problems and research in ‘cognitive systems’ could be the key which may disentangle the
complicated world of perception which includes also computer vision.

Figure 1.10 depicts several 3D vision tasks and algorithmic components expressed
on different abstraction levels. In most cases, the bottom-up and top-down approach is
adopted to fulfill the task.

(MeasuremenD (Manipulation) (Recognition) (Navigation) (Pursuit )
Shape from X Invariants

. ) — Trackin
3D reconstruction Objects detection,
Image analysis
Image processing

Figure 1.10: Several 3D computer vision tasks from the user’s point of view are on the upper
line (filled). Algorithmic components on different hierarchical levels support it in a bottom-up
fashion. © Cengage Learning 2015.

1.4 Summary
e Human vision is natural and seems easy; computer mimicry of this is difficult.

o We might hope to examine pictures, or sequences of pictures, for quantitative and
qualitative analysis.

e Many standard and advanced Al techniques are relevant.

e ‘High’ and ‘low’ levels of computer vision can be identified.

e Processing moves from digital manipulation, through pre-processing, segmentation,
and recognition to understanding—but these processes may be simultaneous and

co-operative.

e An understanding of the notions of heuristics, a priori knowledge, syntax, and
semantics is necessary.

e The vision literature is large and growing; books may be specialized, elementary,
or advanced.

e A knowledge of the research literature is necessary to stay up to date with the
topic.

e Developments in electronic publishing and the Internet are making access to vision

simpler.
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1.5 Exercises

Short-answer questions

S1.1 What is the difference between image analysis (or computer vision) on one side and
computer graphics on the other side?

S1.2 Walking around your local town, locate five instances in which digital images are now
publicly visible or in use where they would not have been 10-15 years ago.

S1.3 For some or all of the instances identified in Exercise S1.2, estimate the economics of
the application—the size of market implied and the cost of the unit.

S1.4 Determine the current cost of domestic video cameras and storage, and image-capture
hardware for home computers. Try to determine the cost of comparable equipment 1,
5, and 10 years ago. Make some predictions about the power and price of comparable
equipment in 1, 5, and 10-year time.

S1.5 In your own, or a local, university, determine how long image processing, image analysis,
or computer vision have been taught. Try to determine the major syllabus or course
offering changes over the last 1, 5, and (if possible) 10 years.

S1.6 Locate a topic area of computer science outside vision in which heuristics are commonly
used.

S1.7 Locate a topic area of computer science outside vision in which a priori information is
commonly used.

S1.8 Locate a topic area of computer science outside vision in which syntax is commonly
used.

S1.9 Locate a topic area of computer science outside vision in which semantics are commonly
used.

S1.10 In a technical or academic library, locate the section on computer vision. Examine the
texts there, noting the date of publication and chapter titles; compare them with those
of this text. Draw some conclusions about the topics (or, at least, their titles) that are
static, and those which have developed recently.

S1.11 Select at random some journal references from the listings at the end of each chapter in
this book. Construct a histogram of publication year.

S1.12 Locate in a library some of the references selected in Exercise S1.11; study the publi-
cation dates of references listed there, and draw another histogram of years. What do
this exercise and Exercise S1.11 tell you about the development of computer vision?

S1.13 Make yourself familiar with solved problems and Matlab implementations of selected
algorithms provided in the corresponding chapter of the Matlab Companion to this text
[Svoboda et al., 2008]. The Matlab Companion homepage http://visionbook.felk.cvut.cz
offers images used in the problems, and well-commented Matlab code is provided for
educational purposes.

S1.14 Use the Matlab Companion [Svoboda et al., 2008] to develop solutions to additional
exercises and practical problems provided there. Implement your solutions using Matlab
or other suitable programming languages.

1.6 References
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Chapter

The image, its representations
and properties

This chapter and the next introduce concepts and mathematical tools which are widely
used in image analysis, and will be used throughout this book. We have separated this
material into essential basics (this chapter) and more intense mathematical theory (the
next). This division is intended to help the reader to start practical work immediately;
mathematical details may be skipped in favor of concentrating on the intuitive meaning
of the basic concepts while the next chapter provides a thorough anchoring to a math-
ematical background. Such a division can never be perfect, and this chapter contains
some forward references and dependencies on its successor.

2.1 Image representations, a few concepts

Mathematical models are often used to describe images and other signals. A signal is
a function depending on some variable with physical meaning; it can be one-dimensional
(e.g., dependent on time), two-dimensional (e.g., an image dependent on two co-ordinates
in a plane), three-dimensional (e.g., describing a volumetric object in space), or higher-
dimensional. A scalar function might be sufficient to describe a monochromatic image,
while vector functions may be used to represent, for example, color images consisting of
three component colors.

Functions we shall work with may be categorized as continuous, discrete, or dig-
ital. A continuous function has continuous domain and range; if the domain set is
discrete, then we have a discrete function; if the range set is also discrete, then we have
a digital function. Many of these functions will be linear, and correspondingly simple to
deal with.

We shall take the usual intuitive definition of image—an example might be the image
on the human retina, or captured by a video camera. This can be modeled by a continu-
ous (image) function of two variables f(x,y) where (z,y) are co-ordinates in a plane, or
perhaps three variables f(z,y,t), where ¢ is time. This model is reasonable in the great
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12 Chapter 2: The image, its representations and properties

majority of applications that we encounter, and which are presented in this book. Nev-
ertheless, it is worth realizing that an ‘image’ may be acquired in many ways. We shall
note often that color is the norm, even when algorithms are presented for monochroma-
tic images, but we do not need to constrain ourselves to the visible spectrum. Infra-red
cameras are now very common (for example, for night-time surveillance). Other parts of
the electro-magnetic [EM] spectrum may also be used; microwave imaging, for example,
is becoming widely available. Further, image acquisition outside the EM spectrum is also
common: in the medical domain, datasets are generated via magnetic resonance (MR),
X-ray computed tomography (CT), ultrasound etc. All of these approaches generate
large arrays of data requiring analysis and understanding and with increasing frequency
these arrays are of 3 or more dimensions. We imply a study of all these modalities in the
title of this book.

The continuous image function

The (gray-scale) image function values correspond to brightness at image points. The
function value can express other physical quantities as well (temperature, pressure dis-
tribution, distance from the observer, etc.). Brightness integrates different optical
quantities—using brightness as a basic quantity allows us to avoid the complicated pro-
cess of image formation which will be discussed in Section 3.4.

The image on the retina or on a camera sensor is intrinsically two-dimensional (2D).
We shall call such an image bearing information about brightness points an intensity
image. The 2D image on the imaging sensor is commonly the result of projection of a
three-dimensional (3D) scene. The simplest mathematical model for this is a pin-hole
camera (see Figure 1.4).

The 2D intensity image is the result of a perspective projection of the 3D scene,
which is modeled by the image captured by a pin-hole camera illustrated in Figure 2.1.
In this figure, the image plane has been reflected with respect to the XY plane in order

X=[x, y,z]T

image plane Figure 2.1: Perspective projection geometry.
© Cengage Learning 2015.

not to get a mirrored image with negative co-ordinates. The quantities x, y, and z are
co-ordinates of the point X in a 3D scene, and f is the distance from the pinhole to the
image plane. f is commonly called the focal length because in lenses it has a similar
meaning. The projected point u has co-ordinates (u,v) in the 2D image plane, which
can easily be derived from similar triangles

zf yf

. v="= (2.1)
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2.1 Image representations, a few concepts 13

A non-linear perspective projection is often approximated by a linear parallel (or or-
thographic) projection, where f — oo. Implicitly, 2z — oo says that the orthographic
projection is a limiting case of the perspective projection for faraway objects.

When 3D objects are mapped into the camera plane by perspective projection, a lot
of information disappears because such a transform is not one-to-one. Recognizing or re-
constructing objects in a 3D scene from one image is an ill-posed problem. In Chapter 11,
we shall consider more elaborate representations that attempt to recapture information
about the original scene that an image depicts. As may be expected, this is not a simple
task and involves intermediate representations that try to establish the depth of points
in the image. The aim is to recover a full 3D representation such as may be used in com-
puter graphics—that is, a representation independent of the viewpoint, and expressed in
the co-ordinate system of the object rather than of the viewer. If such a representation
can be recovered, then any intensity image view of the object(s) may be synthesized by
standard graphics techniques.

Recovering information lost by perspective projection is only one, mainly geomet-
ric, problem of computer vision—another is understanding image brightness. The only
information available in an intensity image is the brightness of the appropriate pixel,
which is dependent on a number of independent factors such as object surface reflectance
properties (given by the surface material, microstructure, and marking), illumination
properties, and object surface orientation with respect to viewer and light source—see
Section 3.4. It is a non-trivial and again ill-posed problem to separate these components
when trying to recover the 3D geometry of an object from the intensity image.

Some applications work with 2D images directly—for example, an image of a flat
specimen viewed by a microscope with transparent illumination, a character drawn on
a sheet of paper, the image of a fingerprint, etc. Many basic and useful methods used in
digital image analysis do not therefore depend on whether the object was originally 2D or
3D. Much of the material in this book restricts itself to the study of such methods—the
problem of 3D understanding is addressed explicitly in Chapters 11 and 12.

Image processing often deals with static images, in which time is constant. A mono-
chromatic static image is represented by a continuous image function f(z,y) whose ar-
guments are co-ordinates in the plane. Most images considered in this book will be
presented as monochromatic and static, but we will frequently note that they are taken
from color or dynamic applications, and extensions of the techniques we develop will be
obvious.

Computerized image processing uses digital image functions which are usually rep-
resented by matrices, so co-ordinates are natural numbers. The domain of the image
function is a region R in the plane

R:{(x,y),lgachm,lgygyn}, (2.2)

where .., y, represent the maximal co-ordinates. The function has a limited domain—
infinite summation or integration limits can be used, as the image function value is zero
outside the domain R. The customary orientation of co-ordinates in an image is in the
normal Cartesian fashion (horizontal z-axis, vertical y-axis, origin bottom-left), although
the (row, column, origin top-left) orientation used in matrices is also often used.

The range of image function values is also limited; by convention, in monochromatic
images the lowest value corresponds to black and the highest to white. Brightness values
bounded by these limits are gray-levels.
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14 Chapter 2: The image, its representations and properties

The quality of a digital image grows in proportion to the spatial, spectral, radiomet-
ric, and time resolutions. The spatial resolution is given by the proximity of image
samples in the image plane; spectral resolution is given by the bandwidth of the light
frequencies captured by the sensor; radiometric resolution corresponds to the number
of distinguishable gray-levels; and time resolution is given by the interval between time
samples at which images are captured. The question of time resolution is important in
dynamic image analysis, where time sequences of images are processed.

Images f(z,y) can be treated as deterministic functions or as realizations of stochas-
tic processes. Mathematical tools used in image description have roots in linear sys-
tem theory, integral transforms, discrete mathematics, and the theory of stochastic pro-
cesses. Mathematical transforms usually assume that the image function f(z,y) is ‘well-
behaved’, meaning that the function is integrable, has an invertible Fourier transform,
etc. A comprehensive explanation of the mathematical background useful for represent-
ing and treating image functions is given in [Bracewell, 2004; Barrett and Myers, 2004].

2.2 Image digitization

An image to be processed by computer must be represented using an appropriate discrete
data structure, for example, a matrix. An image captured by a sensor is expressed as
a continuous function f(x,y) of two co-ordinates in the plane. Image digitization means
that the function f(z,y) is sampled into a matrix with M rows and N columns. Image
quantization assigns to each continuous sample an integer value—the continuous range
of the image function f(z,y) is split into K intervals. The finer the sampling (i.e., the
larger M and N) and quantization (the larger K'), the better the approximation of the
continuous image function f(z,y) achieved.

Image function sampling poses two questions. First, the sampling period should be
determined—this is the distance between two neighboring sampling points in the image.
Second, the geometric arrangement of sampling points (sampling grid) should be set.

2.2.1 Sampling

Clearly, there is a relationship between the density of digital sampling and the detail that
the image will contain; the theoretical aspects of this (in particular, Shannon’s theorem)
are given in Section 3.2.5—the reader is strongly encouraged to understand at least the
implications of this important result. It is worth glancing ahead to Figure 3.11 to see a
clear illustration of this intuitive issue.

For now, it is sufficient to appreciate that if quality comparable to an ordinary
(standard) television image is required, sampling into a 512 x 512 grid is used (768 x 576
for PAL format and 640 x 480 for NTSC format using a rectangular capture window);
this is the reason many image digitizers use this (or higher) resolution. Resolution of
high-definition television (HDTV) is up to 1920 x 1080 pixels. Such a resolution turns
out to be adequate for a very wide range of practically useful tasks. Yet, much higher
image resolutions are routinely available — for example provided by digital cameras or
smartphones — with 10,000 x 7,096 pixels being the highest resolution available from a
CMOS chip in 2013 (79 Megapixels, see also Section 2.5.1).

A continuous image is digitized at sampling points. These sampling points are
ordered in the plane, and their geometric relation is called the grid. The digital image
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2.2 Image digitization 15

is then a data structure, usually a matrix. Grids used in practice are usually square
(Figure 2.2a) or hexagonal (Figure 2.2b). It is important to distinguish the grid from
the raster; the raster is the grid on which a neighborhood relation between points is
defined.!

Figure 2.2: (a) Square grid. (b) Hexagonal grid.
(a) (b) © Cengage Learning 2015.

One infinitely small sampling point in the grid corresponds to one picture element
also called a pixel or image element in the digital image; in a three-dimensional image,
an image element is called a voxel (volume element). The set of pixels together covers
the entire image; however, the pixel captured by a real digitization device has finite size
(since the sampling function is not a collection of ideal Dirac impulses but a collection of
limited impulses—see Section 3.2.5). The pixel is a unit which is not further divisible?
from the image analysis point of view. We shall often refer to a pixel as a ‘point’.

2.2.2 Quantization

A value of the sampled image fs(j Az, k Ay) is expressed as a digital value in image
processing. The transition between continuous values of the image function (brightness)
and its digital equivalent is called quantization. The number of quantization levels
should be high enough to permit human perception of fine shading details in the image.
Most digital image processing devices use quantization into k equal intervals. If b bits
are used to express the values of the pixel brightness then the number of brightness levels
is k = 2°. Eight bits per pixel per channel (one each for red, green, blue) are commonly
used although systems using other numbers (e.g., 16) can be found. An efficient computer
representation of brightness values in digital images requires that eight bits, four bits,
or one bit are used per pixel, meaning that one, two, or eight pixel brightnesses can be
stored in one byte.

The main problem in images quantized with insufficient brightness levels is the oc-
currence of false contours which effect arises when the number of brightness levels is
lower than that which humans can easily distinguish. This number is dependent on
many factors—for example, the average local brightness—but displays which avoid this
effect will normally provide a range of at least 100 intensity levels. This problem can be
reduced when quantization into intervals of unequal length is used; the size of intervals
corresponding to less probable brightnesses in the image is enlarged. These gray-scale
transformation techniques are considered in Section 5.1.2.

Figures 3.11a and 2.3a-d demonstrate the effect of reducing the number of brightness
levels in an image. An original image with 256 brightness levels (Figure 3.11a) has its

1E.g., if 4-neighborhoods are used on the square grid, the square raster is obtained. Similarly, if
8-neighborhoods are used on the same square grid, then the octagonal raster is obtained. These 4-
neighborhood and 8-neighborhood concepts are introduced in Section 2.3.1.

2In some case, the properties of an image at subpixel resolution can be computed. This is achieved
by approximating the image function by a continuous function.
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16 Chapter 2: The image, its representations and properties

Figure 2.3: Brightness levels. (a) 64. (b) 16. (c¢) 4. (d) 2. © Cengage Learning 2015.

number of brightness levels reduced to 64 (Figure 2.3a), and no degradation is perceived.
Figure 2.3b uses 16 brightness levels and false contours begin to emerge, and this becomes
clearer in Figure 2.3c with four brightnesses and in Figure 2.3d with only two.

2.3 Digital image properties

A digital image has several properties, both metric and topological, which are some-
what different from those of continuous two-dimensional functions. Human perception
of digital images is a frequent aspect, since judgment of image quality is also important.

2.3.1 Metric and topological properties of digital images

A digital image consists of picture elements with finite size—these pixels carry informa-
tion about the brightness of a particular location in the image. Usually (and we assume
this hereafter) pixels are arranged into a rectangular sampling grid. Such a digital im-
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2.3 Digital image properties 17

age is represented by a two-dimensional matrix whose elements are natural numbers
corresponding to the quantization levels in the brightness scale.

Some intuitively clear properties of continuous images have no straightforward anal-
ogy in the domain of digital images. Distance is an important example. Any function
D holding the following three condition is a ‘distance’ (or a metric)

D(p,q) >0;D(p,q) =0if and only if p=q, identity,
D(p,q) = D(q,p), symmetry,
D(p,r) < D(p,q) + D(q,r), triangular inequality.

The distance between points with co-ordinates (4, ) and (h, k) may be defined in several
different ways.

The Euclidean distance Dg known from classical geometry and everyday experi-
ence is defined by

D ((i.); (h, k) = V(i = h)? + (j = k)2 (2:3)
The advantage of Euclidean distance is that it is intuitively obvious. The disadvantages
are costly calculation due to the square root, and its non-integral value.

The distance between two points can also be expressed as the minimum number of
elementary steps in the digital grid which are needed to move from the starting point to
the end point. If only horizontal and vertical moves are allowed, the ‘city block’ dis-
tance distance Dy is obtained (also called the L; metric or Manhattan distance, because
of the analogy with the distance between two locations in a city with a rectangular grid

of streets):
Dy (G ), (ho k) =l i =h | +]j—k] . (2:4)

If moves in diagonal directions are allowed in the digitization grid, we obtain the
distance Dg, or ‘chessboard’ distance. Dg is equal to the minimal number of king-
moves on the chessboard from one part to another:

Ds((i,7), (h,k)) =max{ |i—h| [j—Fk]|}. (2.5)

These distance definitions are illustrated in Figure 2.4.

012 3 4
0 @~ De
1 /’; < — D, Figure 2.4: Distance metrics D., D4, and Dg. © Cengage
2| &7--1-7 -= D, Learning 2015.

Pixel adjacency is another important concept in digital images. Two pixels (p,q)
are called 4-neighbors if they have distance D4(p,q) = 1. Analogously, 8-neighbors
have Dg(p,q) = 1—see Figure 2.5.

It will become necessary to consider important sets consisting of several adjacent
pixels—regions (in set theory, a region is a connected set). More descriptively, we can
define a path from pixel P to pixel ) as a sequence of points Ay, Ao, ..., A,, where
Ay =P, A, =0Q, and A;;; is a neighbor of A;, i =1,...,n — 1; then a region is a set
of pixels in which there is a path between any pair of its pixels, all of whose pixels also
belong to the set.

If there is a path between two pixels in the set of pixels in the image, these pixels
are called contiguous. Alternatively, we can say that a region is a set of pixels in which
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18 Chapter 2: The image, its representations and properties

Figure 2.5: Neighborhood of the representative
pixel (gray filled pixel in the middle). © Cengage
(a) 4-neighborhood  (b) 8-neighborhood Learning 2015.

each pair of pixels is contiguous. The relation ‘to be contiguous’ is reflexive, symmetric,
and transitive and therefore defines a decomposition of the set (the image in our case)
into equivalence classes (regions). Figure 2.6 illustrates a binary image decomposed by
the relation ‘contiguous’ into three regions.

Figure 2.6: The relation ‘to be contiguous’ de-
v ] composes an image into individual regions. The

—> Japanese Kanji character meaning ‘near from
s here’ decomposes into 3 regions. © Cengage
Learning 2015.

Assume that R; are disjoint regions in the image which were created by the relation
‘to be contiguous’, and further assume (to avoid special cases) that these regions do not
touch the image bounds. Let R be the union of all regions R;; R® be the set complement
of R with respect to the image. The subset of R® which is contiguous with the image
bounds is called the background, and the remainder of the complement R® is called
holes.® A region is called simple contiguous if it has no holes. Equivalently, the
complement of a simply contiguous region is contiguous. A region with holes is called
multiple contiguous.

Note that the concept of region uses only the property ‘to be contiguous’. Secondary
properties can be attached to regions which originate in image data interpretation. It is
common to call some regions in the image objects; a process which determines which
regions in an image correspond to objects in the world is a part of image segmentation
and is discussed in Chapters 6 and 7.

The brightness of a pixel is a very simple property which can be used to find objects
in some images; if, for example, a pixel is darker than some predefined value (threshold),
then it belongs to the object. All such points which are also contiguous constitute one
object. A hole consists of points which do not belong to the object and are surrounded
by the object, and all other points constitute the background. An example is the black
printed text on this white sheet of paper, in which individual letters are objects. White
areas surrounded by the letter are holes, for example, the area inside the letter ‘0. Other
white parts of the paper are the background.

These neighborhood and contiguity definitions on the square grid create interesting
paradoxes. Figure 2.7a shows two digital line segments with 45° slope. If 4-connectivity
is used, the lines are not contiguous at each of their points. An even worse conflict with
intuitive understanding of line properties is also illustrated; two perpendicular lines do
intersect in one case (upper right intersection) and do not intersect in another case (lower
left), as they do not have any common point (i.e., their set intersection is empty).

3Some literature does not distinguish holes and background, and calls both of them background.
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Figure 2.7: Paradoxes of crossing lines.
(a) (b) © Cengage Learning 2015.

It is known from Euclidean geometry that each closed curve (e.g., a circle) divides
the plane into two non-contiguous regions. If images are digitized in a square grid using
8-connectivity, we can draw a line from the inner part of a closed curve into the outer
part which does not intersect the curve (Figure 2.7b). This implies that the inner and
outer parts of the curve constitute only one region because all pixels of the line belong to
only one region, giving another paradox. One possible solution to contiguity paradoxes
is to treat objects using 4-neighborhoods and background using 8-neighborhoods (or vice
versa). A more exact treatment of digital images paradoxes and their solution for binary
and other images can be found in [Klette and Rosenfeld, 2004].

These problems are typical on square grids—a hexagonal grid (see Figure 2.2), how-
ever, solves many of them. Any point in the hexagonal raster has the same distance
to all its six neighbors. There are some problems peculiar to the hexagonal raster as
well (for example, it is difficult to express a Fourier transform on it). For reasons of
simplicity and ease of processing, most digitizing devices use a square grid despite the
known drawbacks.

An alternative approach to the connectivity problems is to use discrete topology
based on cellular complexes [Kovalevsky, 1989]. This approach develops a complete
strand of image encoding and segmentation that deals with many issues we shall come
to later, such as the representation of boundaries and regions. The idea, first proposed
by the German mathematician Riemann in the nineteenth century, considers families of
sets of different dimensions; points, which are O-dimensional sets, may then be assigned
to sets containing higher-dimensional structures (such as pixel arrays). This approach
permits the removal of the paradoxes we have seen.

The distance transform—also called the distance function or chamfering al-
gorithm or simply chamfering—is a simple application of the concept of distance. The
idea is important as it provides the basis of several fast algorithms that will be seen mul-
tiple times in this book. The distance transform provides the distance of pixels from
some image subset (perhaps describing objects or some features). The resulting ‘image’
has pixel values of 0 for elements of the relevant subset, low values for close pixels, and
then high values for pixels remote from it—the appearance of this array gives the name
to the technique.

For illustration, consider a binary image, in which ones represent the objects and
zeros the background. The input image is shown in Figure 2.8 and the result of the Dy
distance transform is illustrated in Figure 2.9.

To calculate the transform, a two-pass algorithm has been suggested [Rosenfeld and
Pfaltz, 1966, 1968] for distances Dy and Dg. The idea is to traverse the image by a small
local mask. The first pass starts from the top-left of the image and moves horizontally
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Figure 2.8: Input image: gray pixels corre- Figure 2.9: Result of the [D4] distance

spond to objects and white to background. transform. © Cengage Learning 2015.

© Cengage Learning 2015.

left to right until it reaches the bounds of the image and then returns to the beginning
of the next row. The second pass goes from the bottom-right corner in the opposite
bottom-up, right to left direction using a different local mask. The effectiveness of the
algorithm comes from propagating the values of the previous image investigation in a
‘wave-like” manner. The masks used in calculations are shown in Figure 2.10.

AL | AL BR Figure 2.10: Pixel neighborhoods used in distance transform
calculations—p is the central one. The neighborhood on the left is
AL | P P | BR used in the first pass (top-down, left to right); that on the right is
used in the second (bottom-up, right to left). © Cengage Learning
AL BR | BR 2015.

Algorithm 2.1: Distance transform

1. Choose a distance N,,q, that exceeds the image dimension with respect to the
chosen distance metric (D4 or Dg). Initialize an image F' of the same dimension
as the input: set pixels corresponding to the subset(s) to be chamfered to 0, and
all others to Nyqz-

2. (Refer to Figure 2.10.) Pass through image pixels from top to bottom and left
to right. For a given pixel, consider neighbors above and to the left and set

F(p) = min (F(p), D(p,q) + F'(a)) -
3. (Refer to Figure 2.10.) Pass through image pixels from bottom to top and right

to left. For a given pixel, consider neighbors above and to the left and set

F(p) = min (F(p),D(p,q) + F(q)) -

4. If any pixels remain still set at Nyqz, g0 to (2).

5. The array F' now holds a chamfer of the chosen subset(s).
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(a)

Figure 2.11: Three distances used often in distance transform calculations—the input consists
of three isolated ‘ones’. Output distance is visualized as intensity; lighter values denote higher
distances. Contour plots are superimposed for better visualization. (a) Euclidean distance Dg.
(b) City block distance Ds. (c¢) Chessboard distance Ds. @ Cengage Learning 2015.

This algorithm needs obvious adjustments at image boundaries, where the sets AL
and BR are truncated. It is open to various improvements by using different distance
calculations [Montanari, 1968; Barrow et al., 1977; Borgefors, 1986; Breu et al., 1995;
Maurer et al., 2003]. Distance transform performance for Dg, Dy, Dg on an input
consisting only of three distinct ‘ones’ is shown in Figure 2.11.

The distance transform has many applications, e.g., in discrete geometry, path
planning and obstacle avoidance in mobile robotics, finding the closest feature in the
image, and skeletonization (discussed with mathematical morphology methods in Sec-
tion 13.5.5).

An edge is a further important concept used in image analysis. This is a local
property of a pixel and its immediate neighborhood—it is a vector given by a magnitude
and direction which tells us how fast the image intensity varies in a small neighborhood
of a pixel. Images with many brightness levels are used for edge computation, and
the gradient of the image function is used to compute edges. The edge direction is
perpendicular to the gradient direction which points in the direction of the fastest image
function growth. Edges are considered in detail in Section 5.3.2.

The related concept of the crack edge creates a structure between pixels in a similar
manner to that of cellular complexes. However, it is more pragmatic and less mathe-
matically rigorous. Four crack edges are attached to each pixel, which are defined by its
relation to its 4-neighbors. The direction of the crack edge is that of increasing bright-
ness, and is a multiple of 90°, while its magnitude is the absolute difference between the
brightness of the relevant pair of pixels. Crack edges are illustrated in Figure 2.12 and
may be be used in considering image segmentation (Chapter 6).

The border (boundary) of a region is another important concept in image analysis.
The border of a region R is the set of pixels within the region that have one or more
neighbors outside R. The definition corresponds to an intuitive understanding of the
border as a set of points at the bound of the region. This definition is sometimes referred
to as the inner border to distinguish it from the outer border, that is, the border
of the background (i.e., its complement) of the region. Inner and outer borders are
illustrated in Figure 2.13. Due to the discrete nature of the image, some inner border
elements which would be distinct in the continuous case coincide in the discrete case, as
can be seen with the one-pixel-wide line at the right of Figure 2.13.
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Figure 2.12: Crack edges.  Figure 2.13: Region inner borders shown as white circles and outer
© Cengage Learning 2015. borders shown as black squares (using 4-neighborhoods). © Cen-
gage Learning 2015.

While edges and borders are related, they are not the same thing. ‘Border’ is a global
concept related to a region, while ‘edge’ expresses local properties of an image function.
One possibility for finding boundaries is chaining the significant edges (points with high
gradient of the image function). Methods of this kind are described in Section 6.2.

A region is described as convex if any two points within it are connected by a
straight line segment, and the whole line lies within the region—see Figure 2.14. The
property of convexity decomposes all regions into two equivalence classes: convex and
non-convex.

Figure 2.14: A convex region (left)
and non-convex region (right). © Cen-
gage Learning 2015.

A convex hull of a region is the smallest convex region containing the input (pos-
sibly non-convex) region. Consider an object whose shape resembles the letter ‘R’ (see
Figure 2.15). Imagine a thin rubber band pulled around the object; the shape of the
rubber band provides the convex hull of the object. Convex hull calculation is described
in Section 8.3.3.

l E . & Figure 2.15: Description using topological components:

) Convex  ™mlakes An ‘R’ object, its convex hull, and the associated lakes
Region hull E3Bays and bays. © Cengage Learning 2015.

Topological properties are not based on the distance concept. Instead, they are
invariant to homeomorphic transforms which can be illustrated for images as rubber
sheet transforms. Imagine a small rubber balloon with an object painted on it; topo-
logical properties of the object are those which are invariant to arbitrary stretching of
the rubber sheet. Stretching does not change contiguity of the object parts and does not
change the number of holes in regions. We use the term ‘topological properties’ of the
region to describe its qualitative properties invariant to small changes (e.g., the property
of being convex), even though an arbitrary homeomorphic transformation can change a
convex region to a non-convex one and vice versa. Considering the rubber sheet analogy,
we mean that the stretching of the sheet is only gentle. Further properties of regions
that are not rubber sheet invariant are described in Section 8.3.1.
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An object with non-regular shape can be represented by a collection of its topological
components, Figure 2.15. The set inside the convex hull which does not belong to an
object is called the deficit of convexity. This can be split into two subsets: lakes (dark
gray) are fully surrounded by the object; and bays (light gray) are contiguous with the
border of the convex hull of the object.

The convex hull, lakes, and bays are sometimes used for object description; these
features are used in Chapter 8 (object description) and in Chapter 13 (mathematical
morphology).

2.3.2 Histograms

The brightness histogram h(z) of an image provides the frequency of the brightness
value z in the image—the histogram of an image with L gray-levels is represented by
a one-dimensional array with L elements.

Algorithm 2.2: Computing the brightness histogram
1. Assign zero values to all elements of the array hy.

2. For all pixels (z,y) of the image f, increment hy(f(z,y)) by 1.

The histogram provides a natural bridge between images and a probabilistic descrip-
tion. We might want to find a first-order probability function p;(z;z,y) to indicate the
probability that pixel (x,y) has brightness z. Dependence on the position of the pixel is
not of interest in the histogram; the function p;(z) is of interest and the brightness his-
togram is its estimate. The histogram is often displayed as a bar graph, see Figure 2.16.

The histogram is usually the only global information about the image which is avail-
able. It is used when finding optimal illumination conditions for capturing an image,
gray-scale transformations, and image segmentation to objects and background. Note
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Figure 2.16: Original image (a) and its brightness histogram (b). © Cengage Learning 2015.
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that one histogram may correspond to several images; for instance, a change of the
object position on a constant background does not affect it.

The histogram of a digital image typically has many local minima and maxima, which
may complicate its further processing. This problem can be avoided by local smoothing
of the histogram; this may be done, for example, using local averaging of neighboring
histogram elements as the base, so that a new histogram h} (z) is calculated according
to

1 K
y(z) = ijK hy(z+3), (2.6)

where K is a constant representing the size of the neighborhood used for smoothing. This
algorithm would need some boundary adjustment, and carries no guarantee of removing
all local minima. Other techniques for smoothing exist, notably Gaussian blurring; in the
case of a histogram, this would be a one-dimensional simplification of the 2D Gaussian
blur, equation (5.47), which will be introduced in Section 5.3.3.

2.3.3 Entropy

If a probability density p is known then image information content can be estimated
regardless of its interpretation using entropy H. The concept of entropy has roots in
thermodynamics and statistical mechanics but it took many years before it was related
to information. The information-theoretic formulation comes from Shannon [Shannon,
1948] and is often called information entropy.

An intuitive understanding of information entropy relates to the amount of uncer-
tainty about an event associated with a given probability distribution. The entropy can
serve as an measure of ‘disorder’. As the level of disorder rises, entropy increases and
events are less predictable.

Entropy is formally defined assuming a discrete random variable X with possible
outcomes (called also states) x1,...,x,. Let p(x)) be the probability of the outcome z,
k=1,...n. Then the entropy is defined as

H(X) =Y plow) log, (1) = 3" plen) logy pl) (27)

n

k=1 p(x) k=1
The entropy of the random variable X is the sum, over all possible outcomes k of X,
of the product of the probability of outcome x; with the logarithm of the inverse of the
probability of .

The base of the logarithm in this formula determines the unit in which entropy
is measured. If this base is two then the entropy is given in bits. Recall that the
probability density p(x) needed to calculate the entropy is often estimated using a gray-
level histogram in image analysis, Section 2.3.2.

Entropy measures the uncertainty about the realization of a random variable. For
Shannon, it served as a proxy capturing the concept of information contained in a message
as opposed to the portion of the message that is strictly determined and predictable by
inherent structures. For example, we shall explore entropy to assess redundancy in an
image for image compression (Chapter 14).
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2.3.4 \Visual perception of the image

Anyone who creates or uses algorithms or devices for digital image processing should take
into account the principles of human image perception. If an image is to be analyzed by
a human the information should be expressed using variables which are easy to perceive;
these are psycho-physical parameters such as contrast, border, shape, texture, color, etc.
Humans will find objects in images only if they may be distinguished effortlessly from
the background. A detailed description of the principles of human visual perception can
be found in [Bruce et al., 1996; Palmer, 1999]. Human perception of images provokes
many illusions, the understanding of which provides valuable clues about visual mecha-
nisms. Some of the better-known illusions will be mentioned here—the topic is covered
exhaustively from the point of view of computer vision in [Frisby, 1979].

The situation would be relatively easy if the human visual system had a linear re-
sponse to composite input stimuli—i.e., a simple sum of individual stimuli. A decrease of
some stimulus, e.g., area of the object in the image, could be compensated by its intensity,
contrast, or duration. In fact, the sensitivity of human senses is roughly logarithmically
proportional to the intensity of an input signal. In this case, after an initial logarithmic
transformation, response to composite stimuli can be treated as linear.

Contrast

Contrast is the local change in brightness and is defined as the ratio between average
brightness of an object and the background. Strictly speaking, we should talk about
luminance® instead of brightness if our aim is to be physically precise. The human eye
is logarithmically sensitive to brightness, implying that for the same perception, higher
brightness requires higher contrast.

Apparent brightness depends very much on the brightness of the local surroundings;
this effect is called conditional contrast. Figure 2.17 illustrates this with five circles of the
same size surrounded by squares of different brightness. Humans perceive the brightness
of the small circles as different.

Figure 2.17: Conditional contrast effect. Circles inside squares have the same brightness and
are perceived as having different brightness values. © Cengage Learning 2015.

Acuity

Acuity is the ability to detect details in an image. The human eye is less sensitive to slow
and fast changes in brightness in the image plane but is more sensitive to intermediate
changes. Acuity also decreases with increasing distance from the optical axis.
Resolution in an image is firmly bounded by the resolution ability of the human eye;
there is no sense in representing visual information with higher resolution than that of

4Luminance describes the amount of light that passes through or is emitted from a particular area,
and falls within a given solid angle. Luminance is given candela per square meter [cd/m?2].
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the viewer. Resolution in optics is defined as the inverse value of a maximum viewing
angle between the viewer and two proximate points which humans cannot distinguish,
and so fuse together.

Human vision has the best resolution for objects which are at a distance of about
250 mm from an eye under illumination of about 500 lux; this illumination is provided
by a 60 W bulb from a distance of 400 mm. Under these conditions the distance between
two distinguishable points is approximately 0.16 mm.

Some visual illusions

Human perception of images is prone to many illusions. For a comprehensive treatment
of the subject, see [Palmer, 1999].

Object borders carry a lot of information for humans. Boundaries of objects and
simple patterns such as blobs or lines enable adaptation effects similar to conditional
contrast, mentioned above. The Ebbinghaus illusion is a well-known example—two cir-
cles of the same diameter in the center of images appear to have different diameters

(Figure 2.18).
. O
o ? o Q O Q

O Figure 2.18: The Ebbinghaus illusion. © Cengage
Learning 2015.

Perception of one dominant shape can be fooled by nearby shapes. Figure 2.19 shows
parallel diagonal line segments which are not perceived as parallel. Figure 2.20 contains
rows of black and white squares which are all parallel. However, the vertical zigzag
squares disrupt our horizontal perception.

i

Figure 2.19: Disrupted parallel diagonal Figure 2.20: Horizontal lines are parallel,
lines. © Cengage Learning 2015. although not perceived as such. © Cengage
Learning 2015.

Perceptual grouping

Perceptual grouping [Palmer, 1999] is a principle used in computer vision to aggregate
elements provided by low-level operations such as edgels, which are small blobs to bigger
chunks having some meaning. Its roots are in Gestalt psychology first postulated by
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Wertheimer in 1912 [Brett King and Wertheimer, 2005]. Gestalt psychology proposes
that the operational principle of the mind and brain is holistic, parallel, and with self-
organizing tendencies.

Gestalt theory was meant to have general applicability; its main tenets, however,
were induced almost exclusively from observations on visual perception. The overriding
theme of the theory is that stimulation is perceived in organized or configuration terms.
Gestalt in German means configuration, structure or pattern of physical, biological, or
psychological phenomena so integrated to constitute a functional unit with properties
not derivable by summation of its parts. Patterns take precedence over elements and
have properties that are not inherent in the elements themselves.

e 6 6 6 o o o o not grouped
® e [ 2N J [ 3N ] ( N ] by proximity

O O @€ @€ O O @ @ Dysimilarty

o o § . e o . 0 bysimiarity Figure 2.21: Grouping according to
properties of elements. © Cengage
® ® N N # # N\ N\ bydiection Learning 2015.

The human ability to group items according to various properties is illustrated in
Figure 2.21. Perceived properties help people to connect elements together based on
strongly perceived properties as parallelism, symmetry, continuity and closure taken in
a loose sense as illustrated in Figure 2.22.

WS O My O

paralellism symmetry continuity closure

Figure 2.22: Tllustration of properties perceived in images which allow humans to group together
elements in cluttered scenes. © Cengage Learning 2015.

It has been demonstrated that mimicking perceptual grouping in machine vision
system is a plausible technique. It permits the creation of more meaningful chunks of
information from meaningless outcomes of low-level operations such as edge detection.
Such grouping is useful in image understanding. This principle will be used in this book
mainly for image segmentation.

2.3.5 Image quality

An image might be degraded during capture, transmission, or processing, and measures
of image quality can be used to assess the degree of degradation. The quality required
naturally depends on the purpose for which an image is used.

Methods for assessing image quality can be divided into two categories: subjective
and objective. Subjective methods are often used in television technology, where the
ultimate criterion is the perception of a selected group of professional and lay viewers.
They appraise an image according to a list of criteria and give appropriate marks. Details
about subjective methods may be found in [Pratt, 1978].
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Objective quantitative methods measuring image quality are more interesting for
our purposes. Ideally such a method also provides a good subjective test, and is easy to
apply; we might then use it as a criterion in parameter optimization. The quality of an
image f(z,y) is usually estimated by comparison with a known reference image g(z,y)
[Rosenfeld and Kak, 1982], and a synthesized image is often used for this purpose. One
class of methods uses simple measures such as the mean quadratic difference > (g — f)?,
but this does not distinguish a few big differences from many small differences. Instead of
the mean quadratic difference, the mean absolute difference or simply maximal absolute
difference may be used. Correlation between images f and g is another alternative.

Another class measures the resolution of small or proximate objects in the image.
An image consisting of parallel black and white stripes is used for this purpose; then the
number of black and white pairs per millimeter gives the resolution.

2.3.6 Noise in images

Real images are often degraded by some random errors—this degradation is usually called
noise. Noise can occur during image capture, transmission, or processing, and may be
dependent on, or independent of, the image content.

Noise is usually described by its probabilistic characteristics. Idealized noise, called
white noise is often used. White noise has a constant power spectrum (explained in
Section 3.2.3), meaning that all noise frequencies are present and have the same intensity.
For example, the intensity of white noise does not decrease with increasing frequency as
is typical in real-world signals. White noise is frequently employed to model the worst
approximation of degradation, the advantage being that its use simplifies calculations.

A special case of white noise is Gaussian noise. A random variable with a Gaussian
(normal) distribution has its probability density function given by the Gaussian curve.
In the 1D case the density function is

1 —(z—w)?
p(x) = T , (2.8)

oV2r

where p is the mean and o the standard deviation of the random variable. Gaussian
noise is a very good approximation to noise that occurs in many practical cases.

When an image is transmitted through some channel, noise which is usually indepen-
dent of the image signal occurs. This signal-independent degradation is called additive
noise and can be described by the model

f(x’y) :g(xvy)—’_y(xvy) ) (29)

where the noise v and the input image g are independent variables. Algorithm 2.3 will
generate zero mean additive Gaussian noise in an image—this can often be of use in
testing or demonstrating many algorithms in this book which are designed to remove
noise, or to be noise resistant.

Algorithm 2.3: Generation of additive, zero mean Gaussian noise

1. Suppose an image has gray-level range [0,G — 1]. Select o > 0; low values
generate less noise.
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Plate 4: © Cengage Learning 2015. Page 39, Figure 2.34.
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Plate 7: Courtesy of M. Urban, Czech Technical University, Prague. Page 159, Figure 5.34.

Plate 8: Courtesy of J. Matas, Czech Technical University, Prague. Page 160, Figure 5.35.
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Plate 9: © 2002 IEEE. Reprinted, with permission, from D. Comaniciu, P. Meer, “Mean shift: A
robust approach toward feature space analysis,” IEEE Trans. Pattern Anal. Machine Intell., vol. 24,
pp. 603-619, 2002. Page 259, Figure 7.2.
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Plate 10: © 2002 IEEE. Reprinted, with permission, from D. Comaniciu, P. Meer, “Mean shift: A
robust approach toward feature space analysis,” IEEE Trans. Pattern Anal. Machine Intell, vol. 24,
pp. 603-619, 2002. Page 260, Figure 7.3.
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Plate 11: Republished with permission of American Society of Plant Biologists, from The Plant Cell,
Pound et al., “CellSeT: Novel Software to Extract and Analyze Structured Networks of Plant Cells

from Confocal Images,” 1989; permission conveyed through Copyright Clearance Center, Inc. Page 268,
Figure 7.11.

Plate 12: Courtesy of J. K. Udupa, University of Pennsylvania. Page 287, Figure 7.28.
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Plate 13: Courtesy of Y. Boykov, University of Western Ontario and B. Geiger, Siemens Research.
Page 302, Figure 7.38.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Color inset G

(c)

Plate 14: Yin, Y., Zhang, X., Williams, R., Wu, X., Anderson, D.D., Sonka, M., “LOGISMOS-
Layered Optimal Graph Image Segmentation of Multiple Objects and Surfaces: Cartilage Segmentation
in the Knee Joint,” Medical Imaging, IEEE Transactions, Volume: 29, Issue: 12, Digital Object Identi-
fier: 10.1109/TMI1.2010.2058861, Publication Year: 2010, Page(s): 2023-2037. Page 316, Figure 7.48.
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Plate 15: Sun S., Sonka M., and Beichel R., “Lung segmentation refinement based on optimal surface
finding utilizing a hybrid desktop/virtual reality user interface,” Computerized Medical Imaging and
Graphics, 37(1):15-27, 2018b. Page 316, Figure 7.49.
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Plate 16: Based on [Criminisi et al., 2011]. Page 448, Figure 9.35.
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Plate 19: Based on [Criminisi et al., 2011]. Page 446, Figure 9.38.
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Plate 20: Based on [Criminisi et al., 2011]. Page 447, Figure 9.39.
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Plate 21: Based on [Criminisi et al., 2011]. Page 447, Figure 9.40.
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Plate 22: Handbook of Mathematical Models in Computer Vision, “38D active shape and appearance
models in cardiac image analysis,” 2006, pp. 471-486, B. Lelieveldt, A. Frangi, S. Mitchell, H. van
Assen, S. Ordas, J. Reiber, and M. Sonka. Page 499, Figure 10.20.
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Plate 23: © 2005 IEEE. Reprinted, with permission, from N. Dalal and B. Triggs, “Histograms of
oriented gradients for human detection,” Conference on Computer Vision and Pattern Recognition, pp.

886-893, 2005. Page 512, Figure 10.51.
(d) () (2)

Plate 24: © 2005 IEEE. Reprinted, with permission, from N. Dalal and B. Triggs, “Histograms of
oriented gradients for human detection,” Conference on Computer Vision and Pattern Recognition, pp.
886-893, 2005. Page 513, Figure 10.32.

Plate 25: With kind permission from Springer Science+Business Media: Outdoor and Large-Scale
Real-World Scene Analysis, “An introduction to random forests for multi-class object detection,” 2012,
pp. 2483-263, J. Gall, N. Razavi, and L. Gool. Page 518, Figure 10.37.
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Plate 26: © 2011 IEEE. Reprinted, with permission, from Gall, J., Yao, A., Razavi, N., Van Gool,
L., Lempitsky, V., “Hough forests for object detection, tracking, and action recognition,” IEEE Trans.
Pattern Anal. Machine Intell, vol. 33, pp. 2188-2202, IEEE, 2011. Page 519, Figure 10.38.

(b) (c)
Plate 27: © 2011 IEEE. Reprinted, with permission, from Gall, J., Yao, A., Razavi, N., Van Gool,
L., Lempitsky, V., “Hough forests for object detection, tracking, and action recognition,” IEEE Trans.
Pattern Anal. Machine Intell, vol. 83, pp. 2188-2202, IEEE, 2011. Page 521, Figure 10.89.
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Plate 28: With kind permission from Springer Science+Business Media: Outdoor and Large-Scale
Real-World Scene Analysis, “An introduction to random forests for multi-class object detection,” 2012,
pp. 243-263, J. Gall, N. Razavi, and L. Gool. Page 521, Figure 10.40.

Plate 29: A. Criminisi, J. Shotton, and E. Konukoglu, Decision Forests for Classfication, Regression,
Density Estimation, Manifold Learning and Semi-Supervised Learning. Microsoft Research technical
report TR-2011-114. © 2012 Microsoft Corporation. All rights reserved. Page 522, Figure 10.41.
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Plate 30: © 2011 IEEE. Reprinted, with permission, from Shotton J., Fitzgibbon A., Cook M., Sharp
T., Finocchio M., Moore R., Kipman A., and Blake A., “Real-time human pose recognition in parts
from single depth images,” Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference,

pp. 1297-1304, 2011. Page 522, Figure 10.42.
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Plate 31: © 2011 IEEE. Reprinted, with permission, from Shotton J., Fitzgibbon A., Cook M., Sharp
T., Finocchio M., Moore R., Kipman A., and Blake A., “Real-time human pose recognition in parts
from single depth images,” Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference,

pp. 1297-1304, 2011. Page 523, Figure 10.44.

Plate 32: A. Criminisi, J. Shotton, and E. Konukoglu, Decision Forests for Classfication, Regression,
Density Estimation, Manifold Learning and Semi-Supervised Learning. Microsoft Research technical
report TR-2011-114. © 2012 Microsoft Corporation. All rights reserved. Page 523, Figure 10.44.
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Plate 33: Courtesy of H. M. Dee, The University of Aberystwyth. Page 556, Figure 10.61.
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Plate 34: With kind permission from Springer Science+Business Media: Pattern Analysis and Appli-
cations, Volume 7, Issue 4, 2004, pp 386-401, Stephen J. McKenna, figures 1, 12, 6 and 18, Copyright
© 2005, Springer-Verlag London Limited. Page 557, Figure 10.62.
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Plate 36: Courtesy of I. Hales, University of Leeds. Page 677, Figure 12.34.
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Plate 37: Courtesy of H. M. Dee, The University of Aberystwyth.
Page 807, Figure 16.11.
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2.3 Digital image properties 29

2. For each pair of horizontally neighboring pixels (x,y), (x,y + 1) generate a pair
of independent random numbers 7, ¢ in the range [0, 1].

3. Calculate

z1 = ocos(2mrp)vV—2 Inr
29 = osin(2rp)vV—2 Inr .

(This is the Box-Muller transform which assumes that z;, zo are independently
normally distributed with zero mean and variance o2.)

(2.10)

4. Set f(z,y) = g(x,y)+21 and f'(z,y+1) = g(x,y+ 1)+ 22, where g is the input

image.
5. Set
0 if f'(z,y) <0,
flz,y)=¢G-1 if fi(z,y) >G—1, (2.11)
f'(z,y) otherwise,
0 if f'(z,y+1)<0,
flzy+1) =G -1 if f'(x,y+1)>G—-1, (2.12)

f'(z,y +1) otherwise.

6. Go to 3 until all pixels have been scanned.

The truncation performed by equations (2.11) and (2.12) will attenuate the Gaussian
nature of the noise; this will become more marked for values of ¢ that are high relative
to G. Other algorithms for noise generation may be found in [Pitas, 1993].

Equation (2.9) leads to a definition of signal-to-noise ratio (SNR); computing the
total square value of the noise contribution

E=Y V(xy)),
(=,y)
which we compare this with the total square value of the observed signal
F= Z f2 (iL', y) .
(=,y)
The signal-to-noise ratio is then
F

SNR = — (2.13)

(strictly, we are comparing the mean observation with the mean error—the computation
is obviously the same). SNR represents a measure of image quality, with high values
being ‘good’. It is often expressed in the logarithmic scale, in decibels

SNRdB =10 logw SNR. (2.14)
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30 Chapter 2: The image, its representations and properties
The noise magnitude depends in many cases on the signal magnitude itself

f=gv. (2.15)

This model describes multiplicative noise. An example of multiplicative noise is tele-
vision raster degradation, which depends on TV lines; in the area of a line this noise is
maximal, and between two lines it is minimal.

Quantization noise occurs when insufficient quantization levels are used, for exam-
ple, 50 levels for a monochromatic image. In this case false contours appear. Quantization
noise can be eliminated simply, see Section 2.2.2.

Impulse noise means that an image is corrupted with individual noisy pixels whose
brightness differs significantly from that of the neighborhood. The term salt-and-
pepper noise is used to describe saturated impulsive noise—an image corrupted with
white and/or black pixels is an example. Salt-and-pepper noise can corrupt binary im-
ages.

The problem of suppressing noise in images is addressed in Chapter 5. If nothing
is known a priori about noise properties, local pre-processing methods are appropriate
(Section 5.3). If the noise parameters are known in advance, image restoration techniques
can be used (Section 5.4).

2.4 Color images

Human color perception adds a subjective layer on top of underlying objective physical
properties—the wavelength of electromagnetic radiation. Consequently, color may be
considered a psycho-physical phenomenon.

Color has long been used in painting, photography and films to display the surround-
ing world to humans in a similar way to that in which it is perceived in reality. There
is considerable literature on the variants in the naming of colors across languages, which
is a very subtle affair [Kay, 2005]. The human visual system is not very precise in per-
ceiving color in absolute terms; if we wish to express our notion of color precisely we
would describe it relative to some widely used color which is used as a standard: recall,
e.g., the red of a British pillar box. There are whole industries which present images to
humans—the press, films, displays, and hence a desire for color constancy. In computer
vision, we have the advantage of using a camera as a measuring device, which yields
measurements in absolute quantities.

Newton reported in the 17th century that white light from the sun is a spectral
mixture, and used the optical prism to perform decomposition. This was a radical idea
to propose at time; over 100 years later influential scientists and philosophers such as
Goethe refused to believe it.

2.4.1 Physics of color

The electromagnetic spectrum is illustrated in Figure 2.23.

Only a narrow section of the electromagnetic spectrum is visible to a human, with
wavelength from approximately 380nm to 740 nm. Visible colors with the wavelengths
shown in Figure 2.24 are called spectral colors and are those which humans see when
white light is decomposed using a Newtonian prism, or which are observed in a rainbow
on the sky. Colors can be represented as combinations of the primary colors, e.g., red,
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Figure 2.23: Division of the electromagnetic spectrum (ELF is Extremely Low Frequencies).
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Figure 2.24: Wavelength X of the spectrum visible to humans. © Cengage Learning 2015.

green, and blue, which for the purposes of standardization have been defined as 700 nm,
546.1 nm, and 435.8 nm, respectively [Pratt, 1978], although this standardization does
not imply that all colors can be synthesized as combinations of these three.

The intensity of irradiation for different wavelengths A\ usually changes. This varia-
tion is expressed by a power spectrum (called also power spectrum distribution) S()\).

Why do we see the world in color? There are two predominant physical mechanisms
describing what happens when a surface is irradiated. First, the surface reflection
rebounds incoming energy in a similar way to a mirror. The spectrum of the reflected
light remains the same as that of the illuminant and it is independent of the surface—
recall that shiny metals ‘do not have a color’. Second, the energy diffuses into the material
and reflects randomly from the internal pigment in the matter. This mechanism is called
body reflection and is predominant in dielectrics such as plastic or paints. Figure 2.25
illustrates both surface reflection (mirroring along surface normal n) and body reflection.
Colors are caused by the properties of pigment particles which absorb certain wavelengths
from the incoming illuminant wavelength spectrum.

Most sensors used for color capture, e.g., in cameras, do not have direct access to
color; the exception is a spectrophotometer which in principle resembles Newton’s
prism. Incoming irradiation is decomposed into spectral colors and intensity along the

surface
// reflection

incident
body
refection

color pigment

Figure 2.25: Observed color of objects is caused by certain wavelength absorptions by pigment
particles in dielectrics. © Cengage Learning 2015.
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32 Chapter 2: The image, its representations and properties

spectrum with changing wavelength A is measured in a narrow wavelength band, for in-
stance, by a mechanically moved point sensor. Actual spectrophotometers use diffraction
gratings instead of a glass prism.

Sometimes, intensities measured in several narrow bands of wavelengths are collected
in a vector describing each pixel. Each spectral band is digitized independently and is rep-
resented by an individual digital image function as if it were a monochromatic image. In
this way, multispectral images are created. Multispectral images are commonly used
in remote sensing from satellites, airborne sensors and in industry. Wavelength usually
span from ultraviolet through the visible section to infrared. For instance, the LAND-
SAT 7 satellite transmits digitized images in eight spectral bands from near-ultraviolet
to infrared.

2.4.2 Color perceived by humans

Evolution has developed a mechanism of indirect color sensing in humans and some
animals. Three types of sensors receptive to the wavelength of incoming irradiation have
been established in humans, thus the term trichromacy. Color sensitive receptors on
the human retina are the cones. The other light sensitive receptors on the retina are the
rods which are dedicated to sensing monochromatically in low ambient light conditions.
Cones are categorized into three types based on the sensed wavelength range: S (short)
with maximum sensitivity at ~ 430nm, M (medium) at ~ 560nm, and L (long) at =~
610nm. Cones S, M, L are occasionally called cones B, G and R, respectively, but that is
slightly misleading. We do not see red solely because an L cone is activated. Light with
equally distributed wavelength spectrum looks white to a human, and an unbalanced
spectrum appears as some shade of color.

The reaction of a photoreceptor or output from a sensor in a camera can be modeled
mathematically. Let ¢ be the specific type of sensor, ¢ = 1,2, 3, (the retinal cone type
S, M, L in the human case). Let R;(\) be the spectral sensitivity of the sensor, I(\) be
the spectral density of the illumination, and S()\) describe how the surface patch reflects
each wavelength of the illuminating light. The spectral response g; of the i-th sensor,
can be modeled by integration over a certain range of wavelengths

A2

g = / 1) Ri(A) S(V) dA (2.16)

A1

Consider the cone types S, M, L. How does the vector (gs, gnr,qr,) represent the color
of the surface patch? It does not according to equation (2.16) since the output from the
photosensors depends on the three factors I(\), S(A) and R(XA). Only the factor S(X) is
related to the surface patch. Only in the ideal case, when the illumination is perfectly
white, i.e., I(A) = 1, can we consider (gs,qn,qr) as an estimate of the color of the
surface.

Figure 2.26 illustrates qualitatively the relative sensitivities of S, M, L cones. Mea-
surements were taken with the white light source at the cornea so that absorption of
wavelength in cornea, lens and inner pigments of the eye is taken into account [Wandell,
1995].

A phenomenon called color metamer is relevant. A metamer, in general, means
two things that are physically different but perceived as the same. Red and green adding
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to produce yellow is a color metamer, because yellow could have also been produced by
a spectral color. The human visual system is fooled into perceiving that red and green
is the same as yellow.

Consider a color matching experiment in which someone is shown a pattern consisting
of two adjacent color patches. The first patch displays a test light—a spectral color of
certain wavelength. The second patch is created as an additive combination of three
selected primary lights, e.g., colors red=645.2 nm, green=>525.3 nm and blue=444.4 nm.
The observer is asked to control the red, green and blue intensities until both patches
look identical. This color matching experiment is possible because of the color metamer.
The result of measurements (redrawn from [Wandell, 1995]) is in Figure 2.27. Negative
lobes can be seen on the curves for red and green in this figure. This would seem to be
impossible. For wavelengths exhibiting negative values the three additive lights do not
perceptually match the spectral color because it is darker. If the perceptual match has
to be obtained then the observer has to add the intensity to the patch corresponding to
the spectral color. This increase of this intensity is depicted as a decrease in the color
matching function. Hence the negative values.

g 35
S 3.0 SN
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£ 20 ) \
E« L5 P \‘ Figure 2.27: Color matching functions ob-
> 1o | Blue green ! \ tained in the color matching experiment.
é ) 4 1N \ Intensities of the selected primary colors
£ 03 / /\\ / AR AN which perceptually match spectral color of
— 00 EESC] / A [nm] given wavelength A. Based on [Wandell,
0.5 S i
400 500 600 700 1995].

Human vision is prone to various illusions. Perceived color is influenced, besides
the spectrum of the illuminant, by the colors and scene interpretation surrounding the
observed color. In addition, eye adaptation to changing light conditions is not very fast
and perception is influenced by adaptation. Nevertheless, we assume for simplicity that
the spectrum of light coming to a point on the retina fully determines the color.

Since color can be defined by almost any set of primaries, the world community
agreed on primaries and color matching functions which are widely used. The color
model was introduced as a mathematical abstraction allowing us to express colors as
tuples of numbers, typically as three or four values of color components. Being motivated
by the press and the development of color film, in 1931, CIE (International Commission
on Hlumination, still acting in Lausanne, Switzerland) issued a technical standard called
XYZ color space.
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34 Chapter 2: The image, its representations and properties

The standard is given by the three imaginary lights X=700.0nm, Y'=546.1nm,
Z=435.8nm and by the color matching functions X (), Y(A) and Z(\) correspond-
ing to the perceptual ability of an average human viewing a screen through an aperture
providing a 2° field of view. The standard is artificial because there is no set of physically
realizable primary lights that would yield the color matching functions in the experiment.
Nevertheless, if we wanted to characterize the imaginary lights then, roughly speaking,
X =~ red, Y ~ green and Z = blue. The CIE standard is an example of an absolute stan-
dard, i.e., defining unambiguous representation of color which does not depend on other
external factors. There are more recent and more precise absolute standards: CIELAB
1976 (ISO 13665) and HunterLab (http://www.hunterlab.com). Later, we will also dis-
cuss relative color standards such as RGB color space: there are several RGB color spaces
used—two computer devices may display the same RGB image differently.

The XYZ color standard fulfills three requirements:

o Unlike the color matching experiment yielding negative lobes of color matching
functions, the matching functions of XYZ space are required to be non-negative.

o The value of Y () should coincide with the brightness (luminance).

o Normalization is performed to assure that the power corresponding to the three
color matching functions is equal (i.e., the area under all three curves is equal).

The resulting color matching functions are shown in Figure 2.28. The actual color is a
mixture (more precisely a convex combination) of

cx X+ceyY+cez 72, (2.17)

where 0 < ¢x, ¢y, ¢z < 1 are weights (intensities) in the mixture. The subspace of colors

perceivable by humans is called the color gamut and is demonstrated in Figure 2.29.
3D figures are difficult to represent, and so a planar view of a 3D color space is used.

The projection plane is given by the plane passing through extremal points on all three
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Figure 2.28: Color matching functions for the CIE Figure 2.29: Color gamut - a subspace

standard from 1931. X(X), Y(X), Z(\) are color of the X,Y, Z color space showing all

matching functions. Based on [Wandell, 1995]. colors perceivable by humans. © Cen-
gage Learning 2015.
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y CIE Chromaticity Diagram 1931
530

540

Figure 2.30: CIE chromaticity diagram is
a projection of XYZ color space into a
plane. The triangle depicts a subset of col-
ors spanned by red, green, and blue. These
are TV colors, i.e., all possible colors, which
can be seen on a CRT display. © Cengage
Learning 2015. A color version of this figure
may be seen in the color inset—Plate 1.

axes, i.e., points X,Y, Z. The new 2D coordinates x,y are obtained as
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The result of this plane projection is the CIE chromaticity diagram, see Figure 2.30.
The horseshoe like subspace contains colors which people are able to see. All mono-
chromatic spectra visible to humans map into the curved part of the horseshoe—their
wavelengths are shown in Figure 2.30.

Display and printing devices use three selected real primary colors (as opposed to
three synthetic primary colors of XYZ color space). All possible mixtures of these primary
colors fail to cover the whole interior of the horseshoe in CIE chromaticity diagram. This
situation is demonstrated qualitatively for three particular devices in Figure 2.31.
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Figure 2.31: Gamuts which can be displayed using three typical display devices. © Cengage
Learning 2015. A color version of this figure may be seen in the color inset—Plate 2.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.
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2.4.3 Color spaces

Several different primary colors and corresponding color spaces are used in practice, and
these spaces can be transformed into each other. If the absolute color space is used then
the transformation is the one-to-one mapping and does not lose information (except for
rounding errors). Because color spaces have their own gamuts, information is lost if the
transformed value appears out of the gamut. See [Burger and Burge, 2008] for a full
explanation and for algorithms; here, we list several frequently used color spaces.

The RGB color space has its origin in color television where Cathode Ray Tubes
(CRT) were used. RGB color space is an example of a relative color standard (as opposed
to the absolute one, e.g., CIE 1931). The primary colors (R-red, G—green and B-blue)
mimicked phosphor in CRT luminophore. The model uses additive color mixing to inform
what kind of light needs to be emitted to produce a given color. The value of a particular
color is expressed as a vector of three elements—intensities of three primary colors, and
a transformation to a different color space is expressed by a 3 x 3 matrix. Assume that
values for each primary are quantized to m = 2" values; let the highest intensity value
be k = m — 1; then (0,0,0) is black, (k, k, k) is (television) white, (k,0,0) is ‘pure’ red,
and so on. The value k = 255 = 28 — 1 is common, i.e., 8 bits per color channel. There
are 2562 = 224 = 16,777,216 possible colors in such a discretized space.

Figure 2.32: RGB color space with primary
colors red, green, blue and secondary colors
yellow, cyan, magenta. Gray-scale images
with all intensities lie along the dashed line
R . connecting black and white in RGB color
+"" Red (k,0,0) Yellow (k,k,0) space. © Cengage Learning 2015.

The RGB model may be thought of as a 3D co-ordinatization of color space (see
Figure 2.32); note the secondary colors which are combinations of two pure primaries.
There are specific instances of the RGB color model such as sSRGB, Adobe RGB and
Adobe Wide Gamut RGB, which differ slightly in transformation matrices and the gamut.
One of the transformations between RGB and XYZ color spaces is

3.24 154 —0.50] [X
= |-098 18 004 |Y],
0.06 —0.20 1.06] |Z

[0.41 0.36 0.18] [R]
= 1021 072 007] |G| . (2.18)
002 012 095 |B]

NS> WQw

The US and Japanese color television formerly used YIQ color space. The Y com-
ponent describes intensity and I, Q represent color. YIQ is another example of additive
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color mixing. This system stores a luminance value with two chrominance values, corre-
sponding approximately to the amounts of blue and red in the color. This color space
corresponds closely to the YUV color model in the PAL television norm (Australia, Eu-
rope, except France, which uses SECAM). YIQ color space is rotated 33° with respect to
the YUV color space. The YIQ color model is useful since the Y component provides all
that is necessary for a monochrome display; further, it exploits advantageous properties
of the human visual system, in particular our sensitivity to luminance, the perceived
energy of a light source.

The CMY —for Cyan, Magenta, Yellow—color model uses subtractive color mixing
which is used in printing processes. It describes what kind of inks need to be applied
so the light reflected from the white substrate (paper, painter’s canvas) and passing
through the inks produces a given color. CMYK stores ink values for black in addition.
Black can be generated from C, M and Y components but as it is abundant in printed
documents, it is of advantage to have a special black ink. Many CMYK colors spaces
are used for different sets of inks, substrates, and press characteristics (which change the
color transfer function for each ink and thus change the appearance).

HSYV - Hue, Saturation, and Value (also known as HSB, hue, saturation, brightness)
is often used by painters because it is closer to their thinking and technique. Artists
commonly use three to four dozen colors (characterized by the hue; technically, the
dominant wavelength). If another color is to be obtained then it is mixed from the
given ones, for example, ‘purple’ or ‘orange’. The painter also wants colors of different
saturation, e.g., to change ‘fire brigade red’ to pink. She will mix the ‘fire brigade red’
with white (and/or black) to obtain the desired lower saturation. The HSV color model
is illustrated in Figure 2.33.

".

| Figure 2.33: HSV color model illustrated as a

. . . . ... cylinder and unfolded cylinder. © Cengage Learn-
Satum . m ing 2015. A color version of this figure may be seen
(chroma) . (chroma) in the color inset—Plate 3.

HSV decouples intensity information from color, while hue and saturation corre-
spond to human perception, thus making this representation very useful for developing
image processing algorithms. This will become clearer as we proceed to describe image
enhancement algorithms (for example, equalization Algorithm 5.1), which if applied to
each component of an RGB model would corrupt the human sense of color, but which
would work more or less as expected if applied to the intensity component of HSV (leav-
ing the color information unaffected). HSL (hue, saturation, lightness/luminance), also
known as HLS or HSI (hue, saturation, intensity) is similar to HSV. ‘Lightness’ replaces
‘brightness’. The difference is that the brightness of a pure color is equal to the brightness
of white, while the lightness of a pure color is equal to the lightness of a medium gray.
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Models ‘ Color spaces ‘ Applications

Colorimetric XYZ Colorimetric calculations

Device oriented, nonuniform spaces | RGB, UIQ Storage, processing, coding, color TV
Device oriented, Uniform spaces LAB, LUV Color difference, analysis

User oriented HSL, HSI Color perception, computer graphics

2.4.4 Palette images

Palette images (also called indexed images) provide a simple way to reduce the
amount of data needed to represent an image. The pixel values constitute a link to a
lookup table (also called a color table, color map, palette). The table contains as
many entries as the range of possible values in the pixel, which is typically 8 bits = 256
values. Each entry of the table maps the pixel value to the color, so there are three
values, one for each of three color components. In the typical case of the RGB color
model, values for red, green and blue are provided. It is easy to see that this approach
would reduce data consumption to one-third if each of the RGB channels had originally
been using 8 bits (plus size of the look up table). Many widely used image formats for
raster images such as TIFF, PNG and GIF can store palette images.

If the number of colors in the input image is less than or equal to the number of
entries in the lookup table then all colors can be selected and no loss of information
occurs. Such images may be cartoon movies, or program outputs. In the more common
case, the number of colors in the image exceeds the number of entries in the lookup table,
a subset of colors has to be chosen, and a loss of information occurs.

This color selection may be done many ways. The simplest is to quantize color space
regularly into cubes of the same size. In the 8 bit example, there would be 8 x 8 x 8 =
512 such cubes. If there is, e.g., a green frog in green grass in the picture then there will
not be enough shades of green available in the lookup table to display the image well. In
such a case, it is better to check which colors appear in the image by creating histograms
for all three color components and quantize them to provide more shades for colors which
occur in the image frequently. If an image is converted to a palette representation then
the nearest color (in some metric sense) in the lookup table is used to represent the
original color. This is an instance of vector quantization (see Section 14.4) which is
widely used in analyzing large multi-dimensional datasets. It is also possible to view
the occupation by the pixels of RGB space as a cluster analysis problem (see Section
9.2.6), susceptible to algorithms such as k-means (Algorithm 9.5).

The term pseudo-color is usually used when an original image is gray-level and
is displayed in color; this is often done to exploit the color discriminatory power of
human vision. The same palette machinery as described above is used for this purpose;
a palette is loaded into the lookup table which visualizes the particular gray-scale image
the best. It could either enhance local changes, or might provide various views of the
image. Which palette to choose depends on the semantics of the image and cannot be
derived from image statistics alone. This selection is an interactive process.

Almost all computer graphics cards work with palette images directly in hardware.
The content of the lookup table will be filled by the programmer.
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2.4.5 Color constancy

Consider the situation in which the same surface is seen under different illumination, e.g.,
for a Rubik’s cube in Figure 2.34. The same surface colors are shown fully illuminated
and in shadow. The human vision system is able to abstract to a certain degree from
the illumination changes and perceive several instances of a particular color as the same.
This phenomenon is called color constancy. Of course, it would be desirable to equip
artificial perception systems based on photosensors with this ability too, but this is very
challenging.

s, e - .
Figure 2.34: Color constancy: The Rubik cube is captured in sunlight, and two of three visible
sides of the cube are in shadow. The white balance was set in the shadow area. There are six
colors on the cube: R-red, G-green, B-blue, O-orange, W-white, and Y-yellow. The assignment
of the six available colors to 3 x 9 visible color patches is shown on the right. Notice how different
the same color patch can be: see RGB values for the three instances of orange. © Cengage Learning
2015. A color version of this figure may be seen in the color inset—Plate 4.

Recall equation (2.16) which models the spectral response ¢; of the i-th sensor by
integration over a range of wavelengths as a multiplication of three factors: spectral
sensitivity R;(A) of the sensor ¢ = 1, 2,3, spectral density of the illumination I(\), and
surface reflectance S(A). A color vision system has to calculate the vector ¢; for each pixel
as if I(A\) = 1. Unfortunately, the spectrum of the illuminant I()) is usually unknown.

Assume for a while the ideal case in which the spectrum I()A) of the illuminant is
known. Color constancy could be obtained by dividing the output of each sensor with
its sensitivity to the illumination. Let ¢; be the spectral response after compensation for
the illuminant (called von Kries coefficients), ¢, = p; ¢;, where

A2
pi = 1/ /I()\) Ri(\)d . (2.19)
A1

Partial color constancy can be obtained by multiplying color responses of the three
photosensors with von Kries coefficients p;.

In practice, there are several obstacles that make this procedure intractable. First,
the illuminant spectrum I()\) is not known; it can only be guessed indirectly from reflec-
tions in surfaces. Second, only the approximate spectrum is expressed by the spectral
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response ¢; of the i-th sensor. Clearly the color constancy problem is ill-posed and cannot
be solved without making additional assumptions about the scene.

Several such assumptions have been suggested in the literature. It can be assumed
that the average color of the image is gray. In such a case, it is possible to scale the
sensitivity of each sensor type until the assumption becomes true. This will result in an
insensitivity to the color of the illumination. This type of color compensation is often
used in automatic white balancing in video cameras. Another common assumption is
that the brightest point in the image has the color of the illumination. This is true when
the scene contains specular reflections which have the property that the illuminant is
reflected without being transformed by the surface patch.

The problem of color constancy is further complicated by the perceptual abilities of
the human visual system. Humans have quite poor quantitative color memory, and also
perform color adaptation. The same color is sensed differently in different local contexts.

2.5 Cameras: An overview

2.5.1 Photosensitive sensors

Photosensitive sensors most commonly found in cameras can be divided into two groups:

Sensors based on photo-emission principles exploit the photoelectric effect. An exter-
nal photon carried in incoming radiation brings enough energy to provoke the emis-
sion of a free electron. This phenomenon is exhibited most strongly in metals. In
image analysis related applications, it has been used in photomultipliers and vacuum
tube TV cameras.

Sensors based on photovoltaic principles became widely used with the development of
semiconductors. The energy of a photon causes an electron to leave its valence
band and changes to a conduction band. The quantity of incoming photons affects
macroscopic conductivity. The excited electron is a source of electric voltage which
manifests as electric current; the current is directly proportional to the amount of
incoming energy (photons). This phenomenon is exploited in several technological
elements as a photodiode, an avalanche photodiode (an amplifier of light which has
similar behavior from the user’s point of view as the photomultiplier; it also ampli-
fies noise and is used, e.g., in night vision cameras), a photoresistor, and Schottky
photodiode.

There are two types of semiconductor photoresistive sensors used widely in cameras:
CCDs (charge-coupled devices) and CMOS (complementary metal oxide semiconductor),
both developed in the 1960s and 1970s. CCDs initially became technologically mature in
the 1970s and became the most widely used photosensors in cameras. CMOS technology
started being technologically mastered from about the 1990s.

In a CCD sensor, every pixel’s charge is transferred through just one output node
to be converted to voltage, buffered, and sent off-chip as an analog signal. All of the
pixel area can be devoted to light capture. In a CMOS sensor, each pixel has its own
charge-to-voltage conversion, and the sensor often includes amplifiers, noise-correction,
and digitization circuits, so that the chip outputs (digital) bits. These other functions
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increase the design complexity and reduce the area available for light capture. The chip
can be built to require less off-chip circuitry for basic operation.

The basic CCD sensor element includes a Schottky photodiode and a field-effect
transistor. A photon falling on the junction of the photodiode liberates electrons from
the crystal lattice and creates holes, resulting in the electric charge that accumulates
in a capacitor. The collected charge is directly proportional to the light intensity and
duration of its falling on the diode. The sensor elements are arranged into a matrix-
like grid of pixels—a CCD chip. The charges accumulated by the sensor elements are
transferred to a horizontal register one row at a time by a vertical shift register. The
charges are shifted out in a bucket brigade fashion to form the video signal.

There are three inherent problems with CCD chips.

o The blooming effect is the mutual influence of charges in neighboring pixels.

o It is impossible to address directly individual pixels in the CCD chip because read
out through shift registers is needed.

e Individual CCD sensor elements are able to accumulate approximately 30-200 thou-
sands electrons. The usual level of inherent noise of the CCD sensor is on the level
of 20 electrons. The signal-to-noise ratio (SNR) in the case of a cooled CCD chip
is SNR = 20 log(200000/20), i.e., the logarithmic noise is approximately 80 dB at
best. This means that the sensor is able to cope with four orders of magnitude of
intensity in the best case. This range drops to approximately two orders of magni-
tude with common uncooled CCD cameras. The range of incoming light intensity
variations is usually higher.

Here, current technology does not beat the human eye. Evolution equipped us with
the ability to perceive intensity (brightness) in a remarkable range of nine orders of
magnitude (if time for adaptation is provided). This range is achieved because the eye
response to intensity is proportional logarithmically to the incoming intensity. Neverthe-
less, among the sensors available, CCD cameras have high sensitivity (are able to see in
darkness) and low levels of noise. CCD elements are abundant, also due to widely used
digital photo cameras.

The development of semiconductor technology permits the production of matrix-like
sensors based on CMOS technology. This technology is used in mass production in the
semiconductor industry because processors and memories are manufactured using the
same technology. This yields two advantages. The first is that mass production leads to
low prices; because of the same CMOS technology, the photosensitive matrix-like element
can be integrated to the same chip as the processor and/or operational memory. This
opens the door to ‘smart cameras’ in which image capture and basic image processing is
performed on the same chip.

The advantage of CMOS cameras (as opposed to CCD) is a higher range of sensed
intensities (about 4 orders of magnitude), high speed of read-out (about 100 ns) and
random access to individual pixels. The disadvantage is a higher level of noise by ap-
proximately one degree of magnitude.
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2.5.2 A monochromatic camera

The camera consists of the optical system (lens), the photosensitive sensor(s) and elec-
tronics which enables the processing of a captured image, and transfer to further pro-
cessing.

While image acquisition increasingly uses fully digital cameras, the earlier genera-
tion analog cameras are briefly described for completeness. Analog cameras generate
a complete TV signal which contains information about light intensity, and horizontal
and vertical synchronization pulses allowing row by row display. The frame scan can be
with interlaced lines as in ordinary analog TV, which was introduced to reduce image
flickering on cathode-ray tube (CRT) screens. A rate of 60 half-frames per second is used
in the USA and Japan, and 50 half-frames per second in Europe and elsewhere. The
whole image has 525 lines in the USA and Japan, 625 lines in Europe and elsewhere.
Analog cameras require a digitizer card (a frame grabber) to be incorporated in the image
acquisition chain.

Analog cameras have problems with jitter which means that two neighboring lines
are not aligned properly and ‘float’ in a statistical manner one against the other. The
human eye is insensitive to jitter because it is able to smooth out the statistical variation.
However, jitter causes problems when the camera is used for measurement purposes such
as gauging. Non-interlaced analog cameras with an appropriate frame grabber suppress
this problem. Non-interlaced cameras do not need to conform to TV norms, and usually
provide higher resolution such as 1024 x 720 pixels. Nowadays, the preferred solution
is to use digital cameras offering much higher resolution in measurement applications—
with CMOS camera chip resolution reaching 10,000 x 7,096 at the time this edition was
prepared (2013).
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Figure 2.35: Analog CCD camera. © Cengage Learning 2015.

A block diagram of an analog camera with a CCD chip is in Figure 2.35. The block
AGC (Automatic Gain Control) automatically changes the gain of the camera according
to the amount of light in the scene. The gain is set as a compromise between necessary
sensitivity in low illuminated areas and the attempt to avoid saturation of bright areas.

Cameras usually contain another block named ~y correction which performs nonlinear
transformation of the intensity scale. The necessity for this in the display chain originates
in television technology with cathode-ray tubes (CRT). The dependency between the grid
bias voltage U and the resulting irradiance L (~ brightness) of the luminophore follows
a power law, L = UP—the typical value of 3 is 2.2. The shape of the transfer curve is
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roughly parabolic. Note that the intensity of modern flat Liquid Crystal Displays (LCD)
depends linearly on the input voltage.

In order to maintain a linear transfer function of the whole display chain with CRT,
there is a need to compensate the non-linear transfer function by an inverse curve. It was
easier and cheaper to include compensation circuitry into a few cameras at the beginning
of the television era than to put it into a mass produced TV set. Due to the need for
backward compatibility, there is a module in cameras which modifies the dependency of
the output voltage of the camera Uy, on the input radiation E, U, = EY/# = E7. The
typical value is thus v = 1/2.2 & 0.45. Some cameras allow the y-value to be set in the
range [0,1]. The value y=1 corresponds to the correction being switched off.

Sometimes, it is necessary to use the camera as an absolute measuring device of
incoming intensities. The image capturing chain has to be radiometrically calibrated
before the actual measurement starts. In such a case, there is a need to switch off
AGC and ~-correction. Higher quality cameras allow both AGC and ~-correction to be
switched on or off. In cheaper cameras, it may be possible to switch off AGC and ~
correction by intervening into the camera electronics.

Analog cameras are equipped with video circuitry which adds frame synchronization
pulses to the signal. The high-pass filter in the camera compensates for a decrease of
high frequencies in the optical part. The TV signal is usually conducted by a coaxial
cable to a digitizer (frame grabber) in a computer. At the input of the digitizer, there
are sometimes equalization filters to compensate for the loss of high frequencies in the
cable.

A block diagram of a digital camera is in Figure 2.36. The conversion from pho-
ton energy to voltage is the same as in analog cameras including potential AGC and/or
~-correction. The analog-to-digital (A/D) converter provides a number proportional to
the input intensity. These numbers have to be transferred to the computer for further
processing—the connection can be done using either parallel or serial hardware. Se-
rial connections usually exploit widely used technology standardized in the IEEE 1394
(FireWire) or USB (Universal Serial Bus) protocols. In the case of parallel connection,
only short cables of length about 1 meter can be used.
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Figure 2.36: Digital CCD camera. © Cengage Learning 2015.
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Analog cameras ‘ Digital cameras
+  Cheap. + Cheap webcams. Dropping price for others.
4+ Long cable possible (up to 300m). | —  Shorter cable (= 10m for Firewire).

Kilometers after conversion to optical cable.
Any length for Internet cameras.
—  Multiple sampling of a signal. Single sampling.

— Noisy due to analog transmission. No transmission noise.

++ +

—  Line jitter. Lines are vertically aligned.

2.5.3 A color camera

Electronic photosensitive sensors are monochromatic. Three strategies are usually em-
ployed to capture color images:

e Record three different images in succession by employing color filters in front of
monochromatic cameras. This approach is used only in precise laboratory mea-
surements because it is impractical and impossible for any image capture involving
motion.

« Using a color filter array on a single sensor.
e The incoming light is split into several color channels using a prism-like device.

A color filter array mosaic is often combined with a single photosensitive sensor
to create a color camera. Each pixel is covered with an individual filter which can be
implemented either on a cover glass on the chip package (hybrid filter) or directly on the
silicon (monolithic filter). Each pixel captures only one color. Consequently, the color
resolution is about one third of the geometric resolution which would correspond to a
monochromatic camera with same number of pixels. The full color values for each pixel
can be interpolated from pixel values of the same color in local neighborhood.

The human eye is most sensitive to green, less to red, and least to blue. This property
is used by the most common color filter for single chip cameras called the Bayer filter
mosaic or pattern (Bryce Bayer, US patent 3971065, 1976), see Figure 2.37. It can be
seen that the number of green-sensitive pixels is equal to the combined number of pixels
sensitive to red and blue.

G|/B|G|B|G|B|G|B

RIGIRIG|IR|IG|R|G

G|B|G|B|G|B|G|B Figure 2.37: Bayer filter mosaic for single chip color cam-
RIG|R|G|R|G|R|G eras. © Cengage Learning 2015.

A great advantage of a mosaic filter is its optical simplicity. It provides the single
focal plane necessary for the use of standard film lenses. Good mosaic filters provide
excellent band-pass transmission. Many professional digital SLR and studio cameras use
mosaic filters.

Multiple-chip cameras use color filters to split incoming light into separate color
channels. Photosensors are simple and preserve the spatial resolution. Aligning and
registering the sensors to the color splitter to the prism requires high precision. For

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



2.6 Summary 45

pixels of the same size, color splitter systems should allow higher sensitivity in low light
conditions, since they should lose less light in the filters. In practice, this advantage
is not always available. Color splitting devices often include absorption filters because
simple refraction may not provide sufficiently precise color separation. The beam split-
ter approach complicates the optical system and limits lens selection significantly. The
additional optical path of the prism increases both lateral and longitudinal aberration
for each color’s image. The longitudinal aberration causes different focal lengths for each
color; the photosensor could be moved independently to each color’s focal point, but
then the lateral aberration would produce different magnification for each color. These
aberrations can be overcome with a lens specifically designed for use with the prism, but
such camera-specific lenses would be rare, inflexible, and expensive.

2.6 Summary

e Basic concepts

— A 2D image gray-scale image is represented by a scalar function f(z,y) of two
variables which give coordinates in a plane.

— In many cases, a 2D image is formed as the result of a projection of a 3D scene
into 2D.

— The domain of the digitized image is a limited discrete grid the coordinates
of which are natural numbers. The range of the digitized image is a limited
discrete set of gray values (brightnesses). A pixel is the elemental part of an
image.

e Image digitization

— Digitization (sampling) of an image can be seen as a product of a sampling
function and a continuous image function.

— Usually the grid consists of regular polygons (squares or hexagons). The
second aspect of sampling is setting the distance between the sampling points
(the smaller sampling distance the higher the resolution of the image).

— Gray level quantization governs the appearance of shading and false contour.
A human is able to recognize about 60 gray levels at most. Images containing
only black and white pixels are called the binary.

e Digital image properties

— The neighborhood relation of a pixel has to be defined to be able to represent
discrete geometry.

— A function providing distance between two pixels has to be established. The
most commonly used are ‘city block’, ‘chessboard’, and everyday Euclidean
distance. If the neighborhood relation is set for a grid then a raster is obtained.

— Given a raster, topological properties are induced. These properties are based
on the relation ‘being contiguous’ and lead to concepts of region, background,
hole, and region border. The convex hull of a region is the minimal convex
subset containing it.
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— 4-neighborhoods and 8-neighborhoods lead to ‘crossing line’ paradoxes which
complicate basic discrete geometry algorithms. However, there exist solutions
to these paradoxes for both binary and gray-level images.

— The distance transform of a binary image gives the distance from each pixel
to the nearest non-zero pixel. A two-pass algorithm can compute this, the
complexity of which depends linearly on the number of pixels.

— The brightness histogram is a global descriptor of the image giving the esti-
mate of the probability density that a pixel has a given brightness.

— Human visual perception is vulnerable to various illusions. Some of the prop-
erties of human perception of images as perceptual grouping are inspirations
for computer vision methods.

— Live images as any other measurements or observations are always prone to
noise. Noise can be quantitatively assessed using, e.g., signal-to-noise ratio.

— White, Gaussian, impulse, and salt-and-pepper noise are common models.
e Color images

— Human color perception is a subjective psycho-physical layer on top of under-
lying objective physical properties—the wavelength of electromagnetic radia-
tion.

— Humans have three types of sensors receptive to the wavelength of incoming
irradiation. Color sensitive receptors on the human retina are cones. The
retina also has rods which are dedicated to sensing monochromatically in low
ambient light conditions. Cones are categorized into three types based on the
sensed wavelength range, approximately corresponding to red, green and blue.

o Cameras
— Most cameras use either CCD or CMOS photosensitive elements, both using
photovoltaic principles. They capture brightness of a monochromatic image.

— Cameras are equipped with necessary electronics to provide digitized images.
Color cameras are similar to monochromatic ones and contain color filters.

2.7 Exercises

Short-answer questions
S2.1 Define, with diagrams, perspective projection and orthographic projection.
S2.2 Define:
e Spatial resolution
e Spectral resolution
e Radiometric resolution

e Time resolution
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S2.3 Why the analog television norms as NTSC, PAL (which are several decades old) use
interlaced image lines?

S2.4 Use Matlab or similar software to generate images of very low contrast: determine what
contrast is detectable by humans.

S2.5 Define:

« Additive noise

e Multiplicative noise
« Gaussian noise

e Impulsive noise

e Salt-and-pepper noise
S2.6 A photoreceptor or camera sensor can be modeled by the following equation:

A

4 = / I(M\) Ri(M\) S(X) dA (2.20)

A1

e Name/describe the individual variables.
e What is ¢;7

S2.7 Briefly describe the relationship between the color gamut perceivable by humans and
available in a typical CRT or LCD display.
Provide a rough sketch of each of these two gamuts in a single CIE chromaticity diagram.

S2.8 Explain the concept of color constancy. Why is it important for color image processing
and/or analysis?

Problems

P2.1 Discuss the various factors that influence the brightness of a pixel in an image.

P2.2 Develop a program that reads an input image and manipulates its resolution in the
spatial and gray domains; for a range of images (synthetic, of man-made objects, of
natural scenes ...) conduct experiments on the minimum resolution that leaves the
image recognizable. Conduct such experiments on a range of subjects.

P2.3 An interlaced television signal of 50 half-frames per second is sampled into the discrete
image (matrix) of 500 x 500 pixels in 256 gray levels. Calculate the minimal sampling
frequency in kHz (kiloHertz) which has to be used in the framegrabber performing
analog to digital conversion?

P2.4 Using software of your choice (Matlab or its equivalents are ideal) extract some ‘inter-
esting’ subimages and plot them in the manner of Figure 1.8. Observe for yourself the
difficulty in ‘translating’ between the visual sense and pixels.

P2.5 Acquire some RGB images. Develop software to convert them into YIQ and HSI rep-
resentations. Subject them to various degrees of noise (by, for example, Algorithm 2.3)
and convert back to RGB for display.

P2.6 Implement chamfering on a rectangular grid, and test it on a synthetic image consisting
of a (black) subset of specified shape on a (white) background. Display the results for
a range of shapes, basing the chamfering on:
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e The Euclidean metric
e The city block metric

e The chessboard metric

P2.7 Implement chamfering on a hexagonal grid and display the results.

P2.8 One solution to digitization paradoxes is to mix connectivities. Using 8-neighborhoods
for foreground and 4-neighborhoods for background, examine the paradoxes cited in
the text (Figure 2.7). Do new paradoxes occur? What might be the disadvantages of
such an approach?

P2.9 For each uppercase printed letter of the alphabet, determine the number of lakes and
bays it has. Derive a look-up table that lists the candidate letters, given the number of
lakes and bays. Comment on this quality of this feature as an identifier of letters.

P2.10 Write a program that computes an image histogram; plot the histogram of a range
of images. Plot also the histogram of the three components of a color image when
represented as

« RGB
e YIQ
e HSI

P2.11 Implement histogram smoothing; determine how much smoothing is necessary to sup-
press turning points in the histogram due to what you consider to be noise, or small-scale
image effects.

P2.12 Using gray level frequencies (from the histogram) as an estimate of p in Equation
2.7, compute the entropy of a range of images/subimages. What causes it to in-
crease/decrease?

P2.13 Implement Algorithm 2.3. For a range of images, plot the distribution of f(x,y)—g(z,y)
for various values of 0. Measure the deviation of this distribution from a ‘perfect’ zero
mean Gaussian.

P2.14 For a range of images and a range of noise corruption, compute the signal-to-noise ratio
(equation 2.13). Draw some subjective conclusions about what ‘bad’ noise is.

P2.15 Make yourself familiar with solved problems and Matlab implementations of selected
algorithms provided in the corresponding chapter of the Matlab Companion to this text
[Svoboda et al., 2008]. The Matlab Companion homepage http://visionbook.felk.cvut.cz
offers images used in the problems, and well-commented Matlab code is provided for
educational purposes.

P2.16 Use the Matlab Companion [Svoboda et al., 2008] to develop solutions to additional
exercises and practical problems provided there. Implement your solutions using Matlab
or other suitable programming languages.
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Chapter

The image, its mathematical and
physical background

3.1 Overview

This chapter considers various aspects of digital images in greater theoretical depth than
the last; we do not present all the necessary mathematics and physics since they are
considered in thorough detail in many more relevant places. Readers unfamiliar with
this background are recommended to consider the descriptive textual presentation only;
this chapter may be omitted without detriment to an understanding of the algorithms
that appear later in the book.

The chapter is divided into three parts: Section 3.2 is devoted to linear integral
transforms which provide a different insight into an image and are often used in analysis.
This material is usually taught in university mathematics or signal processing courses.

Section 3.3 overviews probabilistic methods necessary if images cannot be represented
deterministically. In this case, a more complicated approach is often needed in which
images are understood as a realization of stochastic processes.

Section 3.4 is an introduction to image formation physics—it is of advantage to
understand how an image is created before its computer analysis. The section begins
with basic geometric optics which illustrate how to realize an optical system which mimics
the pin-hole camera. Then radiometric and photometric concepts which explain image
formation from the point of view of physics are presented. In many practical cases, image
formation physics is not directly explored because it is too complicated to determine all
the parameters which describe a particular capture setting, and some related tasks are
ill-posed. Nevertheless, it is recommended the reader browse this material to understand
how physical knowledge of the image capturing process can contribute to analysis.

3.1.1 Linearity

The notion of linearity will occur frequently in this book: this relates to vector (lin-
ear) spaces where commonly matrix algebra is used. Linearity also concerns more
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3.1 Overview 51

general elements of vector spaces, for instance, functions. The linear combination is
a key concept in linear mathematics, permitting the expression of a new element of a
vector space as a sum of known elements multiplied by coefficients (scalars, usually real
numbers). A general linear combination of two vectors z,y can be written as ax + by,
where a, b are scalars.

Consider a mapping £ between two linear spaces. It is called additive if L(z +y) =
Lx + Ly and homogeneous if £ (ax) = aLx for any scalar a. From a practical point of
view, this means that the sum of inputs (respectively, multiple) results in the sum of the
respective outputs (respectively, multiple). This property is also called a superposition
principle. We call the mapping £ linear if it is additive and homogeneous (i.e., satisfies
the superposition principle). Equivalently, a linear mapping satisfies £(ax +by) = aLx +
bLy for all vectors x,y and scalars a, b, i.e., it preserves linear combinations.

3.1.2 The Dirac distribution and convolution

Some formal background on moving from the continuous to discrete domains will be of
help, as will a definition of convolution. These are fundamental motivators for appreci-
ating the use of linear algebra An ideal impulse is an important input signal; the ideal
impulse in the image plane is defined using the Dirac distribution 6(z,y),

/O; /O:O 5(z,y)dady =1, (3.1)

and d(x,y) =0 for all (z,y) # 0.
Equation (3.2) is called the ‘sifting property’ of the Dirac distribution; it provides
the value of the function f(z,y) at the point (A, u)

[ h [ T fny) 6 — Ay — w)dady = (M p). (3.2)

This ‘sifting’ equation can be used to describe the sampling process of a continuous image
function f(z,y). We may express the image function as a linear combination of Dirac
pulses located at the points a, b that cover the whole image plane; samples are weighted
by the image function f(z,y)

[ fansa-es—ydads =@y (3.3)

Convolution is an important operation in the linear approach to image analysis. It
is an integral which expresses the amount of overlap of one function f(t) as it is shifted
over another h(t). A 1D convolution f * h of functions f, h over a finite range [0,t] is
given by

(f=h)(t) = /0 fr)h(t—7)dr. (3.4)

To be precise, the convolution integral has bounds —oco, c0. Here we can restrict to the
interval [0, t], because we assume zero values for negative co-ordinates

(f*h)(t)z[o f(T)h(t—T)dT:/jo F(t— 1) h(r) dr (3.5)
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52 Chapter 3: The image, its mathematical and physical background

Let f, g, h be functions and a a scalar constant. Convolution satisfies the following

properties
fxh=hxf, (3.6)
#(gxh) = (fxg)x (3.7)
(g +h)=(f+* g) ( «h), (3.8)
a(frg)=(af)xg=[fx(ag). (3.9)
Taking the derivative of a convolution gives

d df
*x(f*h)

xh=fx (3.10)
This equation will later prove useful, e.g., in edge detection of images.

Convolution can be generalized to higher dimensions. Convolution of 2D functions
f and h is denoted by f * h, and is defined by the integral

Gemen=[ [ favhe-ay-bndea

:/ / f(x = a,y = b) h(a,b) dadd (3.11)
= (h* f)(z.y).

In digital image analysis, the discrete convolution is expressed using sums instead
of integrals. A digital image has a limited domain on the image plane. However, the
limited domain does not prevent us from using convolutions as their results outside the
image domain are zero. The convolution expresses a linear filtering process using the
filter h; linear filtering is often used in local image pre-processing and image restoration.

Linear operations calculate the resulting value in the output image pixel g(i,7) as
a linear combination of image intensities in a local neighborhood O of the pixel f(i,7)
in the input image. The contribution of the pixels in the neighborhood O is weighted by

coefficients h
f9)= > hi—m,j—n)g(mn). (3.12)
(m,n)eO

Equation (3.12) is equivalent to discrete convolution with the kernel h, which is called
a convolution mask. Rectangular neighborhoods O are often used with an odd number
of pixels in rows and columns, enabling specification of the neighborhood’s central pixel.

3.2 Linear integral transforms

Linear integral transforms are frequently employed in image processing. Using such
transforms, images are treated as linear (vector) spaces. As when dealing with 1D signals,
there are two basic and commonly used representations of image functions: the spatial
domain (pixels) and the frequency domain (frequency spectra). In the latter case, the
image is expressed as a linear combination of some basis functions of some linear integral
transform. For instance, the Fourier transform uses sines and cosines as basis functions.
If linear operations are involved in the spatial domain (an important example of such
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linear operation is convolution) then there is a one-to-one mapping between the spatial
and frequency representations of the image. Advanced signal/image processing goes
beyond linear operations, and these non-linear image processing techniques are mainly
used in the spatial domain.

3.2.1 Images as linear systems

Images and their processing can be modeled as superposition of point spread functions
which are represented by Dirac pulses ¢ (equation 3.1). If this image representation is
used, well-developed linear system theory can be employed.

An operator is a mapping from one vector space to another. A linear operator £
(also called linear system) has the property

L{afi +bfo} =aLl{fi} +bL{f2}. (3.13)

An image f can be expressed as a linear combination of point spread functions represented
by Dirac pulses . Assume that the input image f is given by equation (3.3). The response
g of the linear system L to the input image f is given by

o) = £} = [ [ jen i - ay -y} deas
PR (3.14)
:/_ /_ fla,b) h(z —a,y —b)dadb = (f = h)(x,y),

where h is the impulse response of the linear system L. In other words the output of
the linear system L is expressed as the convolution of the input image f with an impulse
response h of the linear system £. If the Fourier transform (explained in Sections 3.2.3
and 3.2.4) is applied to equation (3.14) and the Fourier images are denoted by the re-
spective capital letters then the following equation is obtained

G(u,v) = F(u,v) H(u,v) . (3.15)

Equation (3.15) is often used in image pre-processing to express the behavior of smoothing
or sharpening operations, and is considered further in Chapter 5.

It is important to remember that operations on real images are not in fact linear—
both the image co-ordinates and values of the image function (brightness) are limited.
Real images always have limited size, and the number of brightness levels is also finite.
Nevertheless, image processing can be approximated by linear systems in many cases.

3.2.2 Introduction to linear integral transforms

Linear integral transforms provide a tool which permits representations of signals and
images in a more suitable domain, where information is better visible and the solution
of related problems is easier. Specifically, we are interested in the ‘frequency domain’,
and where the inverse transform exists. In such a case, there is a one-to-one mapping
between the spatial and frequency domains. The most commonly used linear integral
transforms in image analysis are the Fourier, cosine, and wavelet transforms.

The usual application of a linear integral transform in image processing is image
filtering, a term which comes from signal processing—the input image is processed by
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54 Chapter 3: The image, its mathematical and physical background

some filter to get the output image. Filtering can be performed in either the spatial or
frequency domains, as illustrated in Figure 3.1. In the frequency domain, filtering can
be seen as boosting or attenuating specific frequencies.

: r—="—7
@ ____________ | spatial 'r ___________ @ Figure 3.1: The image can be
IEYS | fiter M3%€ /' processed in either spatial or

frequency domains. For lin-

ear operations, these two ways
direct frequency| | inverse should provide equivalent re-
transformation filter transformation sults. © Cengage Learning 2015.

We begin by reviewing the simpler 1D Fourier transform [Karu, 1999], and will then
proceed to the 2D Fourier transform, and mention briefly cosine and wavelet transforms.

3.2.3 1D Fourier transform

Developed by the French mathematician Joseph Fourier, the 1D Fourier transform JF
transforms a function f(t) (e.g., dependent on time) into a frequency domain represen-
tation, F{f(t)} = F(£), where ¢ [Hz=s"!] is a frequency and 27¢ [s~!] is an angular
frequency. The complex function F' is called the (complex) frequency spectrum in which
it is easy to visualize relative proportions of different frequencies. For instance, the sine
wave has a simple spectrum consisting of a double spike, symmetric around 0, for positive
frequencies, indicating that only a single frequency is present.

Let ¢ be the usual imaginary unit. The continuous Fourier transform F is given by

F{f(®) / f(t)e >t dt . (3.16)

The inverse Fourier transform F~! is then

o0

FHE(®©) / F(€&)e*™ist de (3.17)

The conditions for the existence of the Fourier spectrum of a function f are:

oo
SO ()] dE < oo,
f can have only a finite number of discontinuities in any finite interval.

The Fourier transform always exists for digital signals (including images) as they are
bounded and have a finite number of discontinuities. We will see later that if we use the
Fourier transform for images we have to adopt the assumption that they are periodic.
The fact that they typically are not presents problems which will be discussed later.

Attempting to understand what equation (3.16) means, it is useful to express the
inverse Fourier transform as a Riemannian sum

&)= (.4 F(&) ™00 + F(&) 2™ + 1) AL, (3.18)

where A = &1 — & for all k. The inverse formula shows that any 1D function can be
decomposed as a weighted sum (integral) of many different complex exponentials. These

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.
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exponentials can be decomposed into sines and cosines (also called harmonic functions)
because €’ = cosw+isinw. The decomposition of f(t) into sines and cosines starts with
some basic frequency &;. Other sines and cosines have frequencies obtained by multiplying
&o by increasing natural numbers. The coefficients F'(§) are complex numbers in general
and give both magnitude and phase of the elementary waves.

The Fourier transform exhibits predictable symmetries. Recall the notion of even,
odd, and conjugate symmetric function, illustrated in Table 3.1.

J0)

Even £() = f(—t) th

1
/1

odd || fO)=—f(-t | S

Table 3.1: Concepts of even, odd and
conjugate symmetric functions (de-
Conjugate £(6) = f5(—6) f( 5)=447i noted by a superscript *). © Cengage
symmetric f(=b)y=4-"1i Learning 2015.

Note that any 1D function f(¢) shape can always be decomposed into its even and
odd parts f.(t) and f,(¢)

f) + (=)

fe(t) = 9 ) (319)

The ability to form a function from its even and odd parts is illustrated in Figure 3.2.
1 1) 1)
Figure 3.2: Any 1D function can be
, — .+ ~ decomposed into its even and odd
‘ t ‘ t u t parts. © Cengage Learning 2015.

The symmetries of the Fourier transform and its values are summarized (without
proof) in Table 3.2.

real f(t) | values of F(§) symmetry of F(§)
general complex conjugate symmetric
even only real even Table 3.2: Fourier transform
) ) symmetries if f(t) is a real func-
odd only imaginary odd tion. © Cengage Learning 2015.

Table 3.3 summarizes some elementary properties of the transform, all easily obtained
by manipulation with the definitions of equation (3.16).

Some other properties are related to areas under the function f or its Fourier repre-
sentation F'. The DC offset (DC from Direct Current!) is F(0) and is given by the area

IThe 1D Fourier transform was first widely used in electrical engineering.
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Property f(t) F(¢)
Linearity afi(t) +bf2(t) | aFi(§) +bF()
Duality F(¢) f(=¢)
Convolution (fxg)(t) F(&)G(E)
Product f)g(t) (F+G)(&)
Time shift ft—to) e~ 2mith (¢)
Frequency shift e2mikol f(¢) F(&—¢&)
Differentiation %(tt) 2milF(€)
Multiplication by # tf(t) A rl) Table 3.3: Properties of the
Time scaling flat) \}T\F (¢/a) js;erfza:;;fjf;;f; oo
under the function f -
F(0) = / f)dt, (3.20)

and a symmetric property holds for the inverse formula. The value of f(0) is the area
under the frequency spectrum F'(§),

£(0) = / F(e)de . (3.21)

Parceval’s theorem equates the area under the squared magnitude of the frequency spec-
trum and squared function f(¢). It can be interpreted as saying that the signal ‘energy’
in the time domain is equal to the ‘energy’ in the frequency domain. The theorem states
(for a real function f, which is our case for images, the absolute value can be omitted)

/!f(t)fdt: / |F(€)|"de . (3.22)

Figures 3.3, 3.4 and 3.5 show some properties of transforms of simple signals.
Let Re(c) denote the real part of a complex number ¢ and Im(c) its imaginary part.
The formulas describing four function-spectrum definitions are as follows:

F(¢) =Re (F(§)) +ilm (F(¢)) ,

[F(©)] = /Re (F2(¢)) +Im (F2(¢)) |
6(&) = arctan (Im (F(€)) /Re (F(€))) ,  if defined,
P(&) = [FO)|" = Re(F(£))* + Im(F(€))° . (3.23)

It can be seen from Figures 3.4 and 3.5 that time signals of short duration or quick
changes have wide frequency spectra and vice versa. This is a manifestation of the

Complex spectrum

Amplitude spectrum
Phase spectrum

Power spectrum
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Figure 3.3: 1D Fourier transform of the Dirac pulse, constant value and infinite sequence of
Dirac pulses. © Cengage Learning 2015.

ft)=cos(2n&, 1) f)y=sin2ng,1)  fl)=cos(2n&,1) + cos(4n&,?)

w NN
YAVILAY \vAwM\f W/

F©) Im F(&) Re F(€)

S B AU B A N A

'&n 0 E.:u % l 0 &o }; 'ZE.m '§00 éo 2&0 é’;

Figure 3.4: 1D Fourier transform of the sine, cosine, and sum of two different cosines. © Cengage
Learning 2015.

J f(t)=(sin 2rE t)/nt SJW)=exp(-t)
1
i [ [ ] .
T 0 T ¢t VoV t 0 t
Re F(&)=(sin 2rET)/n&, Re F(€) Re F(E)=T exp(-n’E’)
1
o oo T
0 3 0& ¢& 0 g

Figure 3.5: 1D Fourier transform of the idealized rectangular pulse of length 27" in the time
domain gives the spectrum (2cos27¢T")/€. Symmetrically, the idealized rectangular spectrum
corresponds to an input signal of the form (2cos2méot)/t. The right column shows that a
Gaussian pulse has the same form as its Fourier spectrum. © Cengage Learning 2015.

uncertainty principle which states that it is impossible to have a signal which is
arbitrarily narrow in both time and frequency domains. If the duration of the signal in
the time domain and the bandwidth in the frequency domain were expressed as statistical
moments, then the following compact uncertainty principle can be proved,

1
‘signal duration’ - ‘frequency bandwidth’ > — . (3.24)
T

The uncertainty principle is also of theoretical importance, and has a relation to the
Heisenberg uncertainty principle from quantum mechanics [Barrett and Myers, 2004].
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There is also a related question of interest for practitioners: which function f has the
smallest duration-bandwidth product? It can be shown that such a function is Gaussian
in the form f(t) = exp(—t2). The uncertainty principle allows for qualitative questions,
such as which signal has the higher bandwidth in the frequency domain: sin(t)/t or
sin(3t)/3t? The answer is the latter, because it is narrower.

If we need to process a non-stationary signal, one option is to divide it into smaller
pieces (called often windows), and assume that outside these windows the signal is peri-
odic. This approach is called the short time Fourier transformation—STFT— and
was first introduced by Gabor in 1946. The STFT has been used in many disciplines,
such as speech recognition. Unfortunately, mere cutting of the signal by non-overlapping
rectangular windows is not good as it introduces discontinuities which induce wide band-
width in the frequency domain. This is why the signal at the bounds of the local window
is smoothly damped to zero by, e.g., a Gaussian or Hamming window. Any signal pro-
cessing textbook will provide a more detailed explanation of windowing.

The Fourier spectrum expresses global properties of the signal (as information of
the speed of signal changes) but it does not reveal in which time instant such a change
appears. On the other hand, the time domain represents precisely what happens at
certain instants but does not represent global properties of the signal. There are two ways
to step towards having a little of both—global frequency properties and localization. The
first is the STFT, and the second is the use of different basis functions in the linear integral
transformation which are less regular than sines and cosines. The wavelet transformation
is one example, see Section 3.2.7.

Computers deal with discrete signals: the discrete signal f(n), n =0...N — 1, is
obtained by equally spaced samples from a continuous function f. The Discrete Fourier
Transform (DFT) is defined as

N—-1
Fk) = % S f(n) exp <—27ri 7}5) (3.25)

n=0
and its inverse is defined as

N-1

F) =" F(k) exp (m?\f) . (3.26)

k=0

The spectrum F'(k) is periodically extended with period N.

Computational complexity is an issue with the Discrete Fourier Transform. We will
be interested in the time complexity as opposed to memory complexity—we would like to
know how many steps it takes to calculate the Fourier spectrum as a function of the size
of the input. The Discrete Fourier Transform (DFT), if computed from its definition for
the samples discretized into n samples, see equations (3.25), (3.26), has time complexity
O(n?). The result can be calculated much faster if the Fast Fourier Transformation
(FFT) algorithm is used. This algorithm depends on the number of samples used to
represent a signal being a power of two. The basic trick is that a DFT of length NV can
be expressed as a sum of two DFTs of length N/2 consisting of odd or even samples.
This scheme permits the calculation of intermediate results in a clever way. The time
complexity of the FFT is O(nlogn); any signal processing textbook will provide details.
The FFT is implemented in many software tools and libraries.
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3.2.4 2D Fourier transform

The 1D Fourier transform can be easily generalized to 2D [Bracewell, 2004]. An image
f is a function of two coordinates (x,y) in a plane. The 2D Fourier transform also
uses harmonic functions for spectral decomposition. The 2D Fourier transform for the
continuous image f is defined by the integral

F(u,v) = / / f(x,y) e 2 @utyo) g dy (3.27)

and its inverse transform is defined by
[z, y) = / / F(u,v) e?mi@uv) qy do . (3.28)

Parameters (u, v) are called spatial frequencies. The function f on the left-hand side of

equation (3.28) can be interpreted analogously to the 1D case (see equation (3.18)), ie.,

as a linear combination of simple periodic patterns e2™*(#4+¥v)  The real and imaginary

components of the pattern are cosine and sine functions. The complex spectrum F'(u,v)

is a weight function which represents the influence of the elementary patterns.
Equation (3.27) can be abbreviated to

]:{f(x,y)} = F(u,v).

From the image processing point of view, the following properties (corresponding to the
1D case) are easily derived:

e Linearity:
Fla fi(z,y) + b fo(z,y)} = a Fi(u,v) + b Fa(u,v) . (3.29)

o Shift of the origin in the image domain:

F{f(x—a,y—b)} = Fu,v) e~ 2milautby) (3.30)

o Shift of the origin in the frequency domain:

F{f(x, y) eQ-rri(uor+voy)} = F(u —up,v — 1) . (331)

o If f(x,y) is real-valued then
F(—u,—v) = F*(u,v) . (3.32)

The image function is always real-valued and we can thus use the results of its
Fourier transform in the first quadrant, i.e., u > 0, v > 0, without loss of generality.
If in addition the image function has the property f(x,y) = f(—z,—y) then the
result of the Fourier transform F'(u,v) is a real function.

o Duality of the convolution: Convolution, equation (3.11), and its Fourier transform
are related by

f{(f*h)(x,y)} = F(u,v) H(u,v) ,

This is the convolution theorem.

(3.33)
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The 2D Fourier transform can be used for discrete images too: integration is changed to
summation in the respective equations. The discrete 2D Fourier transform is defined as

1 == mu  nou
F(u,v) = M— ZO ) exp [ 271 (ﬁ + W)] , (3.30)
u=0,1, M 1, v=0,1,...,N -1,
and the inverse Fourier transform is given by
%éf'ng exp[2ﬂi(ﬂzf%-ﬂg)}
1=0 v=0 M N (3.35)

m=01,....M—1, n=01,...,N—1.

Considering implementation of the discrete Fourier transform, note that equation (3.34)
can be modified to

1 N 1 i —2minv —2mimu
o MZO[N,LZOQ (=7 )f“”’")] ()
u=0,1,.... M —1, v=0,1,...,N—1.

The term in square brackets corresponds to the one-dimensional Fourier transform of the
m*™ line and can be computed using standard fast Fourier transform (FFT) procedures
if N is a power of two. Each line is substituted with its Fourier transform, and the
one-dimensional discrete Fourier transform of each column is computed.

Periodicity is an important property of the discrete Fourier transform. A periodic
transform F' is derived and a periodic function f defined

F(u,—v) = F(u,N —v), f(=m,n) = f(M —m,n),
F(—’LL,’U) = F(M - uvv) ) f(ma —TL) = f(mvN - TL) ) (337)
and
F(aM + u,bN +v) = F(u,v), f(aM +m,bN +n) = f(m,n),  (3.38)

where a and b are integers.

The outcome of the 2D Fourier transform is a complex-valued 2D spectrum. Consider
the input gray-level image (before the 2D Fourier transform was applied) with intensity
values in the range, say, [0,...,255]. The 2D spectrum has the same spatial resolution.
However, the values in both real and imaginary part of the spectrum usually span a
bigger range, perhaps millions—this makes the spectrum difficult to visualize and also
to represent precisely in memory because too many bits are needed for it. For easier
visualization, the range of values is usually decreased by applying a monotonic function,

|F'(u,v)| or log | F(u,v)].

It is also useful to visualize a centered spectrum, i.e., with the origin of the coordinate
system (0,0) in the middle of the spectrum. This is because centering has the effect of
placing the low frequency information in the center and the high frequencies near the
corners—consider the definition given in equation (3.34).
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] =]
A | D C B Figure 3.6: Centering of the 2D Fourier spectrum
£ places the low frequencies around the coordinates ori-
B | C D A gin. (a) Original spectrum. (b) Centered spectrum
B = with the low frequencies in the middle. © Cengage
(a) (b) Learning 2015.

Assume the original spectrum is divided into four quadrants, see Figure 3.6a. The
small gray-filled squares in the corners represent positions of low frequencies. Due to the
symmetries of the spectrum the quadrant positions can be swapped diagonally and the
low frequencies locations appear in the middle of the image, see Figure 3.6b.

Figure 3.7 illustrates the spectrum of Figure 3.8. The left image demonstrates the
non-centered power spectrum and the right image the centered spectrum. The latter
option is used more often. The range of spectrum values has to be decreased to allow an
observer to perceive it better; log P(u,v) is used here. For illustration of the particular
range of this power spectrum, the pair of (minimum, maximum) for P(u,v) is (2.4 -
1071, 8.3 - 10%) and the (minimum, maximum) for log P(u,v) is (—0.62, 6.9). A quite
distinct light cross can be seen in the centered power spectrum on the right of Figure 3.9.
This is caused by discontinuities on the limits of the image while assuming periodicity.
These abrupt changes are easily visible in Figure 3.8.

The use of the Fourier transform in image analysis is pervasive. We will see in
Chapter 5 how it can assist in noise filtering; in the detection of edges by locating high
frequencies (sharp changes) in the image function; it also has applications in restoring
images from corruption (Section 5.4.2), fast matching using the convolution theorem (Sec-
tion 6.4.2), boundary characterization (Section 8.2.3), image compression (Chapter 14),
and several other areas.

Power spectrum log(module of the FFT) Power spectrum log(module of the FFT)
-100
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Figure 3.7: Power spectrum displayed as an intensity image. Lighter tones mean higher values.
(a) Non-centered. (b) Centered. © Cengage Learning 2015. A color version of this figure may be
seen in the color inset—Plate 5.
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62 Chapter 3: The image, its mathematical and physical background

Figure 3.8: Input image in the spatial domain
is assumed periodic. Notice induced discontinu-
ities on the borders of the image which mani-
fests badly in the Fourier spectrum. The image
is the Saint Vitus Cathedral, part of the Prague
Castle—the original is 256 x 256 pixels in 256
gray levels. © Cengage Learning 2015.
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Figure 3.9: Power spectrum displayed as height in a 3D mesh; lighter tones mean higher values.
(a) Non-centered. (b) Centered. © Cengage Learning 2015. A color version of this figure may be
seen in the color inset—Plate 6.

3.2.5 Sampling and the Shannon constraint

Equipped with understanding of the Fourier transform, we can now discuss more fully
the issues surrounding sampling. A continuous image function f(x,y) can be sampled
using a discrete grid of sampling points in the plane, but a second possibility is to expand
the image function using some orthonormal functions as a basis—the Fourier transform
is an example—and the coefficients of this expansion then represent the digitized image.

The image is sampled at points x = jAz, y = kAy, for j = 1,...,M and k =
1,...,N. Two neighboring sampling points are separated by distance Az along the x
axis and Ay along the y axis. Distances Az, Ay are called sampling intervals (on the
x,y axes), and the matrix of samples f(j Az, k Ay) constitutes the discrete image. The
ideal sampling s(x,y) in the regular grid can be represented using a collection of Dirac
distributions

N
s(z,y) = Z Z 0z —jAx, y—kAy). (3.39)

j=1 k=1
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The sampled image f5(z,y) is the product of the continuous image f(z,y) and the sam-
pling function s(z,y)

fs(x’y) = f(xay) S(x’y)

M N
= f(z,y) ZZéx—]Axy kAy) . (3.40)

We may consider an infinite sampling grid which is periodic with periods Az, Ay and
expand the sampling into a Fourier series. We obtain (see [Oppenheim et al., 1997])

F Z Z 0(x — jAx,y — k Ay) = Az Ay Z Z (5( x,v—ﬁy).

j=—00 k=—o00 Mm=—00 N=—00
(3.41)
Equation (3.40) can be expressed in the frequency domain using equation (3.41):

Fy(u,v) = MAyZ Z < x,vﬁy). (3.42)

m=—0o0 N=—0o0

Thus the Fourier transform of the sampled image is the sum of periodically repeated
Fourier transforms F'(u,v) of the image. We can demonstrate this effect in the 1D case:
assume that the maximal frequency of the signal is f,,, so the signal is band-limited
(so its Fourier transform F is zero outside a certain interval, |f| > fp,). The spectra
will be repeated as a consequence of discretization—see Figure 3.10. In the case of 2D
images, band-limited means that the spectrum F(u,v) =0 for | u |> U, | v |> V, where
U,V are maximal frequencies.

aYalalalalala¥

-3 -2 -1 0 ﬁ, 1 2 3, f[HZ]
Figure 3.10: Repeated spectra of the 1D signal due to sampling. Non-overlapped case when
fs > 2fm. © Cengage Learning 2015.

Periodic repetition of the Fourier transform result F'(u,v) may under certain condi-
tions cause distortion of the image, which is called aliasing; this happens when individual
digitized components F'(u,v) overlap. Overlapping of the periodically repeated results of
the Fourier transform F'(u,v) of an image with band-limited spectrum can be prevented
if the sampling interval is chosen such that

1 1
Ax < 577 Ay < Y (3.43)
This is Shannon’s sampling theorem, known from signal processing theory. It has
a simple physical interpretation in image analysis: The sampling interval should be chosen
such that it is less than half of the smallest interesting detail in the image.
The sampling function is not the Dirac distribution in real digitizers—limited im-
pulses (quite narrow ones with limited amplitude) are used instead. Assume a rectangular
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sampling grid which consists of M x N such equal and non-overlapping impulses h;(z, y)
with sampling period Az, Ay; this function realistically simulates real image sensors.
Outside the sensitive area of the sensor, hg(x,y) = 0. Values of image samples are
obtained by integration of the product fhs—in reality this integration is done on the
sensitive surface of the sensor element. The sampled image is then given by

N
Zfoy s(@—jAx,y—kAy). (3.44)
j=1 k=1

The sampled image fs is distorted by the convolution of the original image f and the
limited impulse hs;. The distortion of the frequency spectrum of the function Fy can be
expressed using the Fourier transform

Ru=ge Y Y Al pe-B)a (2 E). 6w

m=—0o0 N=—0o0

where Hy, = F{h}.

N i ...-_.n.n--ln

s

(d)

Figure 3.11: Digitizing. (a) 256 x 256. (b) 128 x 128. (c¢) 64 x 64. (d) 32 x 32. Images have
been enlarged to the same size to illustrate the loss of detail. © Cengage Learning 2015.
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In real image digitizers, a sampling interval about ten times smaller than that in-
dicated by the Shannon sampling theorem is used—this is because algorithms which
reconstruct the continuous image on a display from the digitized image function use only
a step function, i.e., a line in the image is created from pixels represented by individual
squares.

A demonstration with an image of 256 gray-levels will illustrate the effect of sparse
sampling. Figure 3.11a shows a monochromatic image with 256 x 256 pixels; Figure 3.11b
shows the same scene digitized into a reduced grid of 128 x 128 pixels, Figure 3.11c into
64 x 64 pixels, and Figure 3.11d into 32 x 32 pixels. Decline in image quality is clear in
these. Quality may be improved by viewing from a distance and with screwed-up eyes,
implying that the under-sampled images still hold substantial information. Much of this
visual degradation is caused by aliasing in the reconstruction of the continuous image
function for display. This can be improved by the reconstruction algorithm interpolating
brightness values in neighboring pixels and this technique is called anti-aliasing, often
used in computer graphics [Rogers, 1985]. If anti-aliasing is used, the sampling interval
can be brought near to the theoretical value of Shannon’s theorem. In real image pro-
cessing devices, anti-aliasing is rarely used because of its computational requirements.

3.2.6 Discrete cosine transform

The discrete cosine transform (DCT) is a linear integral transformation similar to
the discrete Fourier transform (DFT) [Rao and Yip, 1990]. In 1D, cosines with growing
frequencies constitute the basis functions used for function expansion: the expansion is a
linear combination of these basis cosines, and real numbers suffice for such an expansion
(the Fourier transform required complex numbers). The DCT expansion corresponds to
a DFT of approximately double length operating on a function with even symmetry.

Similarly to the DFT, the DCT operates on function samples of finite length, and
a periodic extension of this function is needed to be able to perform DCT (or DFT)
expansion. The DCT requires a stricter periodic extension (a more strict boundary
condition) than the DFT—it requires that the extension is an even function.

Two options arise in relation to boundary conditions for a discrete finite sequence.
The first one is whether the function is even or odd at both the left and right boundaries
of the domain, and the second is about which point the function is even or odd. As
illustration, consider an example sequence wzryz. If the data are even about sample w,
the even extension is zyzwzyz. If the sequence is even about the point halfway between
w and the previous point, the extension sequence is zyrwwzyz.

Consider the general case which covers both the discrete cosine transform (with even
symmetry) and the discrete sine transform (with odd symmetry). The first choice has
to be made about the symmetry at both left and right bounds of the signal, i.e., 2x2=4
possible options. The second choice is about which point the extension is performed, also
at both left and right bounds of the signal, i.e., an additional 2x2=4 possible options.
Altogether 4 x 4=16 possibilities are obtained. If we do not allow odd periodic extensions
then the sine transforms are ruled out and 8 possible choices remain yielding 8 different
types of DCT. If the same type of point is used for extension at left and right bounds
then only half the options remain, i.e., 8/2=4. This yields four basic types of DCT—they
are usually denoted by suffixing Roman numbers as DCT-I, DCT-II, DCT-III, DCT-IV.
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Figure 3.12: Illustration of the periodic extension used in DCT-II. The input signal of length
11 is denoted by squares. Its periodic extension is shown as circles. © Cengage Learning 2015.

The most commonly used variant of DCT in image processing, mainly in image
compression (Chapter 14) is DCT-II. The periodic extension is even at both left and right
bounds of the input sequence. The sequence is even about the point halfway between the
bound and the previous point: the periodic extension for the input sequence is illustrated
in Figure 3.12. The figure demonstrates the advantage of periodic extension used in DCT-
II—mirroring involved in periodic extension yields a smooth periodic function, which
means that fewer cosines are needed to approximate the signal.

The DCT can easily be generalized to two dimensions which is shown here for the
square image, M = N. The 2D DCT-II is [Rao and Yip, 1990]

Fu,v) = Wiz_l Ni F(m,n) cos (2”;; lm) cos (27;;%70 . (3.46)

=0 n=0

where u =0,1,...,N -1, v=0,1,..., N — 1 and the normalization constant c(k) is

L fork=0,
c(k) =4 V2

1 otherwise.

The inverse cosine transform is

N—1 N-1
2 2 1 2 1
flm,n) = ~ uz::o 2 c(u) e(v) F(u,v) cos < n;];i]— mr) cos < T;]—’\; vw) , (347

where m =0,1,...,N—1landn=0,1,..., N — 1.

There is a computational approach analogous to the FFT which yields computational
complexity in the 1D case of O(N log N), where N is the length of the sequence.

Efficacy of an integral transformation can be evaluated by its ability to compress
input data into as few coefficients as possible. The DCT exhibits excellent energy com-
paction for highly correlated images. This and other properties of the DCT have led
to its widespread deployment in many image/video processing standards, for example,
JPEG (classical), MPEG-4, MPEG-4 FGS, H.261, H.263 and JVT (H.26L).

3.2.7 Wavelet transform

The Fourier transform (Section 3.2.3) expands a signal as a possibly infinite linear com-
bination of sines and cosines. The disadvantage is that only information about the
frequency spectrum is provided, and no information is available on the time at which
events occur. In another words, the Fourier spectrum provides all the frequencies present
in an image but does not tell where they are present. We also know that the relation
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between the frequency and spatial resolutions is given by the uncertainty principle, equa-
tion (3.24).

One solution to the problem of localizing changes in the signal (image) is to use
the short time Fourier transform, where the signal is divided into small windows and
treated locally as it were periodic (see Section 3.2.3). The uncertainty principle provides
guidance on how to select the windows to minimize negative effects, i.e., windows have
to join neighboring windows smoothly. The window dilemma remains—a narrow window
yields poor frequency resolution, while a wide window provides poor localization.

The wavelet transform goes further than the short time Fourier transform. It also
analyzes the signal (image) by multiplying it by a window function and performing an
orthogonal expansion, analogously to other linear integral transformations. There are
two directions in which the analysis is extended.

In the first direction, the basis functions (called wavelets, meaning a small wave)
are more complicated than sines and cosines. They provide localization in space to a
certain degree, not entire localization due to the uncertainty principle. Five commonly
used ‘mother’ wavelets are illustrated in Figure 3.13 in a qualitative manner and in a
single of many scales.

— A =l Al A

(a) Haar ) Meyer (c) Morlet ) Daubechies-4 ) Mexican hat

Figure 3.13: Examples of mother wavelets. © Cengage Learning 2015.

In the second direction, the analysis is performed at multiple scales. To understand
this, note that modeling a spike in a function (a noise dot, for example) with a sum of a
huge number of functions will be hard because of the spike’s strict locality. Functions that
are already local will be better suited to the task. This means that such functions lend
themselves to more compact representation via wavelets—sharp spikes and discontinuities
normally take fewer wavelet bases to represent compared to sine-cosine basis functions.
Localization in the spatial domain together with the wavelet’s localization in frequency
yields a sparse representation of many practical signals. This sparseness opens the door to
successful applications in data/image compression, noise filtering and detecting features
in images.

We will start from the 1D, continuous case—the 1D continuous wavelet trans-
form. A function f(t) is decomposed into a set of basis functions U—wavelets

o(s,7) = /Rf(t) U (t)dt, seR* {0}, reR (3.48)

(complex conjugation is denoted by *). The new variables after transformation are s
(scale) and 7 (translation).

Wavelets are generated from the single mother wavelet U(t) by scaling s and
translation 7

U, (1) = % v (t - T) . (3.49)
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The factor 1/4/s is applied to normalize energy across different scales.
The inverse continuous wavelet transform serves to synthesize the 1D signal f(t) of
finite energy from wavelet coefficients c¢(s, 7)

f@) = /R+ /R c(s,7) W, -(t)dsdr. (3.50)

Equations (3.48)—(3.49) do not specify a mother wavelet: the user can select or design
the basis of the expansion according to application needs.

There are constraints which a function ¥, , must obey to be a wavelet, of which the
most important are admissibility and regularity. Admissibility requires that the wavelet
has a band-pass spectrum; consequently, the wavelet must be oscillatory—a wave. The
wavelet transform of a 1D signal is two dimensional as can be seen from equation (3.48),
and similarly, the transform of a 2D image is four dimensional. This is complex to deal
with, and the solution is to impose an additional constraint on the wavelet function
which secures fast decrease with decreasing scale. This is achieved by the regularity,
which states that the wavelet function should have some smoothness and concentration
in both time and frequency domains. A more detailed explanation can be found in, e.g.,
[Daubechies, 1992].

We illustrate scaling and shifting on the oldest and the simplest mother, the Haar
wavelet, which is a special case of the Daubechies wavelet. Scaling functions are denoted
by ®. Simple scaling functions used for Haar wavelets are given by the set of scaled and
translated ‘box’ functions

Dji(x) =272 022 —4), i=0,...,27 =1, where (3.51)
1 for0<z<1
®(x) = or 0 ix <1, (352)
0 otherwise.

and 27/2 is a normalization factor. An example of four instances of scaling function which
constitute a basis of the appropriate vector space are shown in Figure 3.14. Wavelets
corresponding to the box basis are called the Haar wavelets and are given by

Uyi(z) =212 W(2x —i), i=0,...,27 =1, where (3.53)

1 for0§x<%,
U(z)=¢ -1 fori<a<i, (3.54)

0 otherwise,

An example of Haar wavelets W11, Wqs is given in Figure 3.15. The transform which uses
Haar wavelets is called the Haar transform.

1 1 1 1
@, y D, D,
0 0 0 0
0 0.5 1 x 0 0.5 1 x 0 0.5 1x

o
0 0.5 1 x
Figure 3.14: ‘Box-like’ scaling functions ®. © Cengage Learning 2015.
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Figure 3.15: Haar wavelets Wi1, Uo.
© Cengage Learning 2015.

It is not practical to use equation (3.48) in the general case for three reasons:

e There is much redundancy because the calculation is performed by continuously
scaling the mother wavelet, shifting it and correlating it with the analyzed signal.

o The intention is to reduce the infinite number of wavelets taking part in calculations.

e The final result of the transform cannot be calculated analytically: further an
efficient numerical solution is needed of comparable complexity to, e.g., the FFT.

The solution is the discrete wavelet transform. If the scales and positions are based
on a power of two (dyadic scales and positions) then the wavelet analysis becomes much
more computationally efficient and just as accurate.

Mallat [Mallat, 1989] developed an efficient way to calculate the discrete wavelet
transform and its inverse. The scheme is actually a variant of the classical scheme—
a two-channel subband coder—known in signal processing. This method yields a fast
wavelet transform which can be imagined as a box into which a signal (an image)
enters and the wavelet coefficients ¢ appear quickly at its output.

Consider a discrete 1D signal s of length N which has to be decomposed into wavelet
coefficients c. The fast wavelet transform consists of logs N steps at most. The first
decomposition step takes the input and provides two sets of coefficients at level 1: ap-
proximation coefficients cA; and detail coefficients ¢D;. The vector s is convolved with
a low-pass filter for approximation and with a high-pass filter for detail. Dyadic deci-
mation follows which down-samples the vector by keeping only its even elements. Such
down-sampling will be denoted by (] 2) in block diagrams. The coefficients at level j + 1
are calculated from the coefficients at level j analogously, see Figure 3.16. This procedure
is repeated recursively to obtain approximation and detail coefficients at further levels.
The structure of coefficients for level j = 3 is illustrated in Figure 3.17.

The inverse discrete wavelet transform takes as input the approximation and detail
coefficients cAj,cD; and inverts the decomposition step. Vectors are extended (up-

CAf w ¢D,
low pass filter V2 " s > cD
CA/' —> —
: cA, R cD,
. cD 1 cA
high pass filter V2 LY
. . cA,
level j level j+1 L =5,
Figure 3.16: A single decomposition step of the 1D dis- Figure 3.17: Example illustrat-
crete wavelet transform consists of the convolution of co- ing the structure of approxima-
efficients from previous level j by a low/high pass filter tion and detail coefficients for lev-
and down-sampling by dyadic decimation. Approxima- els up to a level j = 3. © Cengage
tion and detail coefficients at level 57 + 1 are obtained. Learning 2015.

© Cengage Learning 2015.
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cA.
- 2 high pass filter
reconstruction _C’AH
filter
cD.
e r2 low pass filter
level j level j-1

Figure 3.18: 1D discrete inverse wavelet transformation. © Cengage Learning 2015.

sampled) to double length by inserting zeros at odd-indexed elements and convolving
the result with the reconstruction filters. Analogously to down-sampling, up-sampling is
denoted (1 2) in Figure 3.18, which illustrates the 1D inverse discrete wavelets transfor-
mation.

Similar wavelet decomposition and reconstruction algorithms were developed for 2D
signals (images). The 2D discrete wavelet transformation decomposes a single approx-
imation coefficient at level j into four components at level j + 1: the approximation
coefficient cA;11 and detail coefficients at three orientations—horizontal CD;L 1, vertical
¢Dj; and diagonal CD? 11— Figures 3.19 and 3.20 illustrate this. The symbol (col | 2)
represents down-sampling columns by keeping only even indexed columns. Similarly,

— columns N " c A/+/
low pass filter » co N
Tows R ‘
low pass filter > row V2 > | " |
columns | .
—’A 1 high pass filter colv2 +—»
c J
cD’
columns i
—
low pass filter colv2
rows
high pass filter row ¥2 > .
columns | ;
1 high pass filter colV2 ——»
e level j+1

Figure 3.19: 2D discrete wavelet transform. A decomposition step. © Cengage Learning 2015.

e N columns
—>»  colf2 "1 low pass filter

rows
h —>
cD" - row 12 low pass filter
/ N columns
—>» colM2 .
high pass filter cA
reconstruction J
v _>
cD',,, filter
’ columns

A 4

colf2 low pass filter

, rows
ch/_+ ; row 12 high pass filter

> | columns
colt2 "| high pass filter

level j+1 level j

Figure 3.20: 2D inverse discrete wavelet transform. A reconstruction step. © Cengage Learning
2015.
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(row | 2) means down-sampling rows by keeping only evenly indexed rows. (col 1 2)
represents up-sampling columns by inserting zeros at odd-indexed columns. Similarly,
(row 1 2) means up-sampling rows by inserting zeros at odd-indexed rows.

100

I

250 [

50 100 150 200 250 Decomposition at level 3

Figure 3.21: Decomposition to three levels by the 2D discrete Haar wavelet transform. Left is
the original 256 x 256 gray-scale image, and right four quadrants. The undivided southwestern,
southeastern and northeastern quadrants correspond to detailed coefficients of level 1 at reso-
lution 128 x 128 in vertical, diagonal and horizontal directions, respectively. The northwestern
quadrant displays the same structure for level 2 at resolution 64 x 64. The northwestern quad-
rant of level 2 shows the same structure at level 3 at resolution 32 x 32. The lighter intensity
32 x 32 image at top left corresponds to approximation coefficients at level 3. © Cengage Learning
2015.

i

Approximations Horizontal Details Diagonal Details Vertical Details

Figure 3.22: 2D wavelet decomposition; another view of the same data as Figure 3.21. © Cengage
Learning 2015.
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Figure 3.21 illustrates the decomposition of the previous example. The resolution
of levels 2 and 3 is insufficient qualitatively to see the character of wavelet coefficients.
Figure 3.22 shows the same data for all three levels in a different form.

The wavelet transform discussed thus far is a special case of a more versatile wavelet
packet transform. Wavelet packets are particular linear combinations of wavelets which
retain many of the localization, smoothness and orthogonality properties of their parent
wavelets. Linear combinations of coefficients are again calculated in a recursive way.
Using discrete wavelets, only the detail branch of the decomposition tree is split, but
both detail and approximation branches can be split in wavelet packet analysis.

Applications have proved the value of the approach. Wavelets have been used with
enormous success in data compression, feature detection and in image noise suppression—
it is possible to erase to zero the contribution of wavelet components that are ‘small’ and
correspond to noise without erasing the important small detail in the underlying image.
The interested reader is referred to specialized texts for a fuller exposition on this topic
[Chui, 1992; Daubechies, 1992; Meyer, 1993; Chui et al., 1994; Castleman, 1996].

3.2.8 Eigen-analysis

Many disciplines, including image analysis, seek to represent observations, signals, im-
ages and general data in a form that enhances the mutual independence of contributory
components. Linear algebra provides very good tools for such representations. One ob-
servation or measurement is assumed to be a point in a linear space; this space will have
some ‘natural’ basis vectors which allow data to be expressed as a linear combination
in a new coordinate system consisting of orthogonal basis vectors. These basis vectors
are the eigen-vectors, and the inherent orthogonality of eigen-vectors secures mutual
independence. For an n x n square regular matrix A, eigen-vectors are solutions of the
equation

Ax = Ax, (3.55)

where ) is called an eigen-value (which may be complex).

A system of linear equations can be expressed in a matrix form as Ax = b, where A is
the matrix of the system. The extended matrix of the system is created by concatenating
a column vector b to the matrix A, i.e., [A|b]. Frobenius’ theorem says that this system
has a unique solution if and only if the rank of the matrix A is equal to the rank of the
extended matrix [A[b].

If the system of equations is not degenerate then it has as many equations as unknown
variables X = (x1,...,2,)" and the system has a unique solution. Gaussian elimination
is the commonly used method to solve such a system. The method performs equivalent
transformations of [A|b] which do not change the solution of the system of equations, and
the extended matrix is finally expressed in upper triangular form. When the elimination
is finished, the last row of the matrix provides the solution value of x,. This solution
allows the stepwise calculation of x,,_1,...,x7.

There is another class of matrix transformation called similar transformations. If A
is a regular matrix, matrices A and B with real or complex entries are called similar if
there exists an invertible square matrix P such that P~'A P = B. Similar matrices share
many useful properties—they have the same rank, determinant, trace, characteristic
polynomial, minimal polynomial and eigen-values (but not necessarily the same eigen-
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vectors). Similarity transformations allow us to express regular matrices in several useful
forms.

Let I be the unit matrix (with 1’s on the main diagonal and zeros elsewhere). The
polynomial of degree n given by det(A — AI) is called the characteristic polynomial.
Then the eigen-equation (3.55) has nontrivial solutions if det(A — AI) = 0 and the
characteristic polynomial’s roots are the eigen-values A. Consequently, A has n eigen-
values which are not necessarily distinct—multiple eigen-values arise from multiple roots
of the polynomial.

Here we will be interested in the Jordan canonical form. Any Hermitian (in partic-
ular, symmetric) matrix is similar to a matrix in the Jordan canonical form

Ao 1 0
J1 0 .
) , where J; are Jordan blocks , (3.56)
0 J, 0 O 1
0 O A

and \; are the multiple eigen-values. The multiplicity of the eigen-value gives the size of
the Jordan block. If the eigen-value is not multiple then the Jordan block degenerates to
the eigen-value itself. This happens very often in practice.

Consider the case when the linear system is over-constrained, meaning that there are
more equations than variables to be determined; this case is very common in practice,
when abundant data comes from many observations or measurements. Strictly speaking,
the observations are likely to be in contradiction with respect to the system of linear
equations. In the deterministic world, the conclusion would be that the system of linear
equations has no solution, but the practical need is different. There is an interest in
finding the solution to the system which is in some sense ‘closest’ to the observations,
perhaps compensating for noise in observations. We will usually adopt a statistical
approach by minimizing the least square error. This leads to the principal component
analysis method, explained in Section 3.2.10.

Seeking roots of the characteristic polynomial is usually rather poor computationally,
and more effective methods such as singular value decomposition are used.

3.2.9 Singular value decomposition

Eigen-values and eigen-vectors are defined on square matrices; a generalization—singular
values—operates on rectangular matrices, and is approached via singular value decom-
position (SVD). A non-negative real number o is a singular value of a matrix A (not
necessarily square) if and only if there exist unit-length vectors u and v such that

Av=0cu and A"u=ov.

Note the similarity to the eigen-equation (3.55). The vectors uw and v are called left-
singular and right-singular vectors for o, respectively.

SVD is a powerful linear algebra factorization technique of a rectangular real or
complex matrix; it works even for singular or numerically near-singular matrices. It is
used with many applications for solving linear equations in the least-square sense, e.g.,
in signal processing and statistics. It can be viewed as a generalization of the transfor-
mation to the Jordan canonical form to arbitrary, not necessarily square, matrices. Basic
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information necessary to use SVD can be found in many texts: for example, [Press et al.,
1992], and a rigorous mathematical treatment is given in [Golub and Loan, 1989]. Most
software packages for numerical calculations such as Matlab contain SVD.

SVD proceeds by noting that any m x n matrix A, m > n, (with real or complex
entries) can be decomposed into a product of three matrices,

A=UDV*, (3.57)

where U is m x m with orthonormal columns and rows, D is a non-negative diagonal
matrix, and V* has orthonormal rows.

SVD can be understood as decoupling input of size m into output of size n. The
matrix V' contains a set of orthonormal ‘input’ or basis vector directions (left-singular
vectors) for the matrix A, and U contains a set of orthonormal ‘output’ basis vector
directions (right-singular vectors) for A. D contains the singular values, which can be
understood as scalar ‘gains’ by which each corresponding input is multiplied to give the
corresponding output.

It is conventional to reorder the input and output values to have the diagonal entries
of the diagonal matrix D non-increasing, making D unique for any given A. The matrices
U and V are not unique in general.

There is a relation between singular values and vectors, and eigen-values and vectors.
In the special case, when A is Hermitian (also self-adjoint, A = A*), all eigen-values of A
are real and non-negative. In this case, the singular values and singular vectors coincide
with the eigen-values and eigen-vectors, A =V D V*.

SVD can be used to find a solution of a set of linear equations corresponding to
a singular matrix that has no exact solution—it locates the closest possible solution in
the least-square sense. Sometimes it is required to find the ‘closest’ singular matrix to
the original matrix A—this decreases the rank from n to n — 1 or less. This is done by
replacing the smallest diagonal element of D by zero—this new matrix is closest to the
old one with respect to the Frobenius norm (calculated as a sum of the squared values
of all matrix elements). SVD is also very popular because of its numerical stability and
precision [Press et al., 1992].

3.2.10 Principal component analysis

Principal component analysis (PCA) is a powerful and widely used linear technique
in statistics, signal processing, image processing, and elsewhere. It appears under several
names: it is also called the (discrete) Karhunen-Loéve transform (after Kari Karhunen
and Michael Loeve) or the Hotelling transform (after Harold Hotelling).

In statistics, PCA is a method for simplifying a multidimensional dataset to lower
dimensions for analysis or visualization. It is a linear transform that represents the data
in a new coordinate system in which basis vectors follow modes of greatest variance in the
data: it is the optimal linear transformation which divides an observed space into orthog-
onal subspaces with the largest variance. Thus, new basis vectors are calculated for the
particular data set. One price to be paid for PCA’s flexibility is in higher computational
requirements as compared to, e.g., the fast Fourier transform.

As it reduces dimensionality, PCA can be used for lossy data compression while re-
taining those characteristics of the dataset which contribute most to its variance. PCA
transforms a number of possibly correlated variables into the same number of uncor-
related variables called principal components. The first principal component accounts
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for as much of the variability in the data as possible, and each succeeding component
accounts for as much of the remaining variability as possible. If the dataset has to be
approximated in a lower dimension then lower-order principal components are considered
and higher-order ones are omitted.

Suppose a data set comprises N observations, each of M variables (dimensions).
Usually N > M. The intention is to reduce the dimensionality of the data so that each
observation can be usefully represented with only L variables, 1 < L < M. Data are
arranged as a set of N column data vectors, each representing a single observation of M
variables: the n-th observations is a column vector x,, = (21,...,2p) ", n =1,...,N.
We thus have an M x N data matrix X. Such matrices are often huge because N may
be very large: this is in fact good, since many observations imply better statistics.

This procedure is not applied to the raw data R but to normalized data X as
follows. The raw observed data is arranged in a matrix R and the empirical mean is
calculated along each row of R to give a vector u, the elements of which are scalars

N
u(m) = %ZR(m,n) , wherem=1,...,M. (3.58)
n=1

The empirical mean is subtracted from each column of R: if e is a vector of size NV
consisting of ones only, we will write

X =R —ue.

If we approximate X in a lower dimensional space of dimension M by the lower
dimensional matrix Y (of dimension L), then the mean square error 2 of this approxi-
mation is given by

1 N L 1 N
€2 = ﬁZ'X"‘Q -3 b/ (Nzxnxg> b; (3.59)
n=1 i=1 n=1

where b;, i = 1,..., L are basis vector of the linear space of dimension L. If €2 is to be
minimized then the following term has to be maximized

L N
Z b, cov(x)b;, where cov(x) = Z Xp X,
i=1 n=1

is the covariance matrix.

The covariance matrix cov(x) has special properties: it is real, symmetric and positive
semi-definite and so can be guaranteed to have real eigen-values. Matrix theory tells us
that these may be sorted (largest to smallest) and the associated eigen-vectors taken
as the basis vectors that provide the maximum we seek. In the data approximation,
dimensions corresponding to the smallest eigen-values are omitted. The mean square
error £2 of equation (3.59) is given by

L M
e? = trace (cov(x)) — Z A = Z Ai s
i=L+1

=1

where trace(A) is the trace—sum of the diagonal elements—of the matrix A. The trace
equals the sum of all eigenvalues.
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As an example, consider the use of PCA on images—this approach was popularized by
its application to face recognition [Turk and Pentland, 1991]. The image is considered as
a very long 1D vector by concatenating image pixels column by column (or alternatively
row by row). Figure 3.23 is an example where the image is 321 x 261 = 83781 pixels
‘long’. In this example, we have just 32 examples of this vector (contrary to the discussion
above in which the number of examples is expected to exceed the dimensionality).

If we have fewer observations than unknowns, the system of linear equations is not
over-constrained but PCA is still applicable. The number of principal components is
less than or equal to the number of observations available; this is because the (square)
covariance matrix has a size corresponding to the number of observations (number of
observations minus one when doing PCA on centered data, which is usual). The eigen-
vectors we derive are called eigen-images, after rearranging back from the 1D vector to
a rectangular image.

One image is treated as a single point (a single observation) in a high-dimensional
feature space. The set of images analyzed populates only a tiny fraction of the feature
space. Considering Figure 3.23, note that the images were geometrically aligned; this
was done manually by cropping to 321 x 261 and approximately positioning the nose tip
to the same pixel. The reconstruction from four basis vectors is shown in Figure 3.24.
Note that basis vectors are images.

PCA applied to images has also drawbacks. By rearranging pixels column by column
to a 1D vector, relations of a given pixel to pixels in neighboring rows are not taken into
account. Another disadvantage is in the global nature of the representation; small change
or error in the input images influences the whole eigen-representation. However, this
property is inherent in all linear integral transforms. Section 10.4 illustrates a widespread
application of PCA, and a more detailed treatment of PCA applied to images can be
found in [Leonardis and Bischof, 2000].

l

Figure 3.23: 32 original images of a boy’s face, each 321 x 261 pixels. © Cengage Learning 2015.
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-

Figure 3.24: Reconstruction of the image from four basis vectors b;, ¢ = 1,...,4 which can be
displayed as images. The linear combination was computed as qibi + ¢2b2 + gsbs + qusbs =
0.078 b1 + 0.062bs — 0.182b3 + 0.179bs. © Cengage Learning 2015.

3.2.11 Radon transform

Projections of images prove to reveal many important properties, and can also be realized
by a number of physical processes. A complete (continuous) set of projections contains
the same amount of information as the original image, and is known as the Radon
transform [Barrett and Myers, 2004].

Formally, if f(z,y) is a 2D function that vanishes outside some disk, we consider the
set of lines L in 2D and define the Radon transform Ry as

RAD=Aj&WM-

It is common to parameterize lines by their distance from the origin and angle to the
Cartesian axes (see Figure 3.25)

((z(t),y(t)) = ((tsina + scosa), (—tcosa + ssina)) .

Then

Ryos) — [ffmmwwMt

/ f(tsina + scosa, —tcosa + ssina)dt . (3.60)

Conceptually, we are integrating the image function over every ray passed through the
image, at every angle; this is what CT image acquisition does with X-rays.

The inverse of the Radon transform is accessible via the Fourier techniques we have
seen, specifically the Fourier Slice Theorem. Informally, the 1D Fourier transform of

Figure 3.25: A straight line parameterized by its distance from
the origin s and angle a. © Cengage Learning 2015.
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78 Chapter 3: The image, its mathematical and physical background

Figure 3.26: (a) The iconic Chamberlin-Powell-Bon Computing building of the University of
Leeds. (b) Edge detection (see Section 5.3.2)—the straight lines are very evident. © R.D. Boyle
2015.

Figure 3.27: The Radon transform of Figure 3.26. The horizontal axis is 180 wide
(measured in degrees); the vertical is 751, being the ‘diameter’ of the original 394 x
640 image. The image has been contrast-stretched for display. With the origin at
the image center in Figure 3.26, the primary peaks are evident at (1,196), columns
at the image left; (—18,48), the oblique from upper left to center right, above a line
of windows; (—25,95), similarly, the floor above. © Cengage Learning 2015.

the Radon transform with respect to angle « delivers one line (slice) of the 2D Fourier
transform of f. Thus computing the set of 2D Fourier transforms of R ;(«, s) generates
the 2D Fourier transform of f, which may then be inverted using established techniques.
This is how ‘body slice’ images are derived from the raw output of a CT scanner.

In digital images, the transform is realized by summing across a set of rays cast
through an image; the dimensions of the transform depend on the maximal image diam-
eter and the granularity of the angle between rays. Figures 3.26 and 3.27 illustrate the
Radon transform of a Sobel edge detection (see Section 5.3.2) of an image with a number
of pronounced lines; the peaks locate these lines successfully. It will become clear that
the Radon transform has relationships with the Hough transform (see Section 6.2.6).

3.2.12 Other orthogonal image transforms

Many other orthogonal image transforms exist. The Hadamard-Haar transform is a
combination of the Haar and Hadamard transforms, and a modified Hadamard-Haar
transform is similar. The Slant transform and its modification the Slant-Haar trans-
form represent another transform containing sawtooth waveforms or slant base vectors;
a fast computational algorithm is also available. The discrete sine transform is very
similar to the discrete cosine transform. The Paley and Walsh transforms are both very
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similar to the Hadamard transform, using matrices consisting of +1 elements only. All
transforms mentioned here are discussed in detail in [Gonzalez and Woods, 1992; Barrett
and Myers, 2004], where references for computational algorithms can also be found.

3.3 Images as stochastic processes

Images are statistical in nature due to random changes and noise, and it is sometimes of
advantage to treat image functions as realizations of a stochastic process [Papoulis, 1991;
Barrett and Myers, 2004]. In such an approach, questions regarding image information
content and redundancy can be answered using probability distributions, and simplifying
probabilistic characterizations as the mean, dispersion, correlation functions, etc.

A stochastic process (random process, random field) is a generalization of the
random variable concept. We will constrain ourselves to stochastic processes of with two
variables x,y which are the coordinates in the image. We denote a stochastic process
by ¢ and ¢(x,y) is a random variable representing the gray-level at pixel (z,y). A specific
image is obtained as a realization of the stochastic process ¢ and is a real deterministic
function f which provides the gray-level values which the image finally has.

An example will illustrate: the original input is the image of Prague Castle, Fig-
ure 3.11(a). Figure 3.28 gives three of many possible realizations of a stochastic pro-
cess ¢. In this example, the realizations were generated artificially from the input image
by corrupting images with Gaussian noise with zero mean and standard deviation 0.1 in
the scale of [0,1]. The noise at each pixel is statistically independent of noise at other
pixels. After realizations are created, each image is deterministic. However, the corre-

Figure 3.28: Above: three 256 x 256 images are shown as realizations of a stochastic process
¢. The crop windows are marked by white squares in the images. Below: the content of these
windows is enlarged. Notice that pixels really differ in the same locations in three realizations.
© Cengage Learning 2015.
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sponding pixels in images are three different realizations of the same stochastic process.
There are dependencies among gray-level values of pixels in the same image. The exact
description of these dependencies would require a finite and extremely large number of
joint distribution functions.

A stochastic process ¢ is entirely described by a collection of k-dimensional distri-
bution functions Py, k = 1,2,.... The distribution function of k arguments z1,..., 2
is

Pi(z1, -2k @1, 01, - - T Yk) = PL{O(@1,11) < 21, 0(22,y2) < 22, ..., O, yk) < 21} ,

(3.61)
where P denotes the probability of the conjunction of events listed in the brackets.
This equation expresses the dependence of k pixels (1,y1),. .., (k, yx). For a complete

probabilistic description, we would need these joint distribution functions for k£ equal to
the number of pixels in the image.

The probability distributions of order k are not used in practice. They express
a complex relation among many events. These descriptors are of theoretical importance
and would need very many realizations (experiments) to be estimated. Most often, not
more than a pair of events is related.

The second-order distribution function is used to relate pairs of events. Even simpler
characterization of the stochastic process is the first-order distribution function which
expresses probabilistic properties of the gray-level value of a single pixel independently
of the others.

The probabilistic relations described by the distribution function Pj(z;x,y) can be
equivalently expressed using the probability density defined as

0Py (z;2,y)
0z

The distribution is often roughly represented by simple characteristics. The mean of the
stochastic process ¢ is defined using the first-order probability density by the equation

p1(z;2,y) = . (3.62)

oty = B{ow)} = [ T pi(zay)dz, (3.63)

where F is the mathematical expectation operator.

The autocorrelation and cross correlation functions [Papoulis, 1991] are often used
in searching for similarities in images or image parts. The autocorrelation function R4
of the random process ¢ is defined as a mean of the product of the random variables
¢(x1,91) and ¢(x2,y2)

Ry (1,91, 72, y2) = E{d(z1,11) d(22,92) } - (3.64)

The autocovariance function Cyy is defined as

O¢¢($17y1,$27y2) = R¢¢(x1,y1,x2,y2) - #¢($1vy1)ﬂ¢($27y2) . (3.65)

The cross correlation function R4, and cross covariance function Cy, use similar defini-
tions to equations (3.64) and (3.65). The only difference is that a point from one image
(process) ¢(x1,y1) is related to a point from another image (process) v(x2,y2). Two
stochastic processes are uncorrelated if their cross covariance function is zero for any two

points (z1,y1), (72,92)-
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A stationary process is a special stochastic process; its properties are independent
of absolute position in the image plane. The mean 1¢¢ of a stationary process is a constant.
The autocorrelation function Rgg of a stationary stochastic process is translation
invariant and depends only on the difference between co-ordinates a = x1—x3, b = y1 —yo:

R¢¢(x17y17x27y2) = R¢¢(a’v b7070) = R¢¢(a7b) )

Ryyp(a,b) = /:’0 /jo o(x+a,y+b)od(x,y)dedy . (3.66)

Similarly, the cross correlation function between samples of stationary processes ¢(x1,y1)
and (2, y2) is defined as

R‘b’Y(‘rlvylaanyQ) = R¢’Y(a7ba070) = R¢"/(a7b) )

Ry (a,b) = /jo /jo d(x+ a,y+b)y(z,y)dedy . (3.67)

Note that infinitely many functions have the same correlation function and therefore
the same power spectrum as well. If an image is shifted then its power spectrum remains
unchanged.

Let v(z,y) be the result of the convolution of the functions ¢(z,y) and n(zx,y),
Equation (3.11). Assume that ¢(x,y), v(x,y) are stationary stochastic processes and
S¢e, Sy are their corresponding power spectral densities. If the mean of the process
¢(x,y) is zero, then

Sy (1, 0) = Spe(u, v) Sy (u, v) (3.68)

where S, (u,v) is the power spectrum of the stochastic process n(z,y). Equation (3.68)
is used to describe spectral properties of a linear image filter 7.

The properties of correlation functions of stationary processes are interesting after
a transform into the frequency domain. The Fourier transform of the cross correlation
function of a stationary stochastic process can be expressed as the product of the Fourier
transforms of involved processes (images in image analysis),

F{R4y(a,0)} = F*(u,v) G(u,v) . (3.69)
Similarly, the autocorrelation function can be written as

F{R4p(a,b)} = F*(u,v) F(u,v) = | F(u,v)|’

(3.70)

The Fourier transform of the autocorrelation function, equation (3.66)—also called the
power spectrum? or spectral density— is given by

Spg(u,v) = / / Rys(a,b) e 2m@utbv) qq dp | (3.71)
—00 —00

where u, v are spatial frequencies. The power spectral density communicates how much
power the corresponding spatial frequency of the signal has.

2The concept of power spectrum can also be defined for functions for which the Fourier transform is
not defined.
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3.4 Image formation physics

Humans, using their eyes, comprehend intensities and colors in a relative sense, but the
camera can be used as a measuring device which is able to provide absolute measurements.
If we want to understand the quantities measured, then we have to look at the physical
principles of image formation. We will survey some basic principles to understand how
an image is created. These are straightforward and easy to explain; they are widely used
in computer graphics to create visually appealing 2D images from 3D models.

Unfortunately, the inverse task is under-constrained; having as input the observed
image intensities and aiming at determination of physical quantities such as light sources
(their types, radiance, direction), shapes of surfaces in the scene, surface reflectance,
and direction to the viewer is difficult. This inverse task is of prime interest in computer
vision. Because of its complexity, practitioners often try to avoid its solution by finding a
shortcut in segmenting objects corresponding to some semantically appealing entities in
the scene, but the price to pay for this approach is a loss of generality. The segmentation
usually works only in their application domain, image capturing setting, etc.

There are special cases, in which the inverse task to image formation is of practical
use. These application domains are mainly ‘shape from shading’ and ’photometric stereo’,
which we will explain in Chapter 11. Direct measurement of radiance-like quantities is
also used in quality control checks in industrial production, medical imaging, etc.

3.4.1 Images as radiometric measurements
Three types of emitted energy can be used to image objects:

1. Electromagnetic radiation including v rays, X-ray, ultraviolet radiation, visible
light, infrared radiation, microwaves, and radio waves. Radiation propagates in
vacuum at the speed of light, and through matter at lower speeds which also de-
pends on wavelength. In this book, we concentrate on the visible spectrum unless
said otherwise.

2. Radiation of particles, e.g., electrons or neutrons.

3. Acoustic waves in gases, liquids and solids. Only longitudinal waves are spread
in gases and liquids, and transverse waves may be evident in solids. The speed
at which such waves propagate is directly related to the elastic properties of the
medium which they traverse.

Radiation integrates with matter on the surface of objects or in its volume. The energy
(radiation) is sent out from objects either because of thermal motion of molecules (hot
radiant body) or because of external stimulation (e.g, reflected radiance, luminescence).
Radiation is accompanied by information which can be used to identify observed objects
and to assist in measurement of some of their properties. Examples are:

1. Frequency of radiation expressed by wavelength.
2. Amplitude, i.e., intensity of the radiation.
3. Polarization mode for transverse waves.

4. Phase which is accessible only if coherent imaging techniques are used, as in in-
terferometry or holography.
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3.4 Image formation physics 83

We will consider an explanation of image formation in the case of reflection of radiation
from the surface of nontransparent objects in the visible spectrum.

3.4.2 Image capture and geometric optics

We begin with a simple model of image capture in which geometric optics play a key
role. We consider a photographic or video camera—a device for capturing intensity
images. The camera consists of a lens, a photosensitive image sensor converting photons
to electrical signals, and electronics that will provide image data for further processing.

The lens concentrates incoming light to the image sensor. The physical quantity
measured is irradiance, often informally called brightness or intensity. We wish the
lens to mimic ideal perspective projection (a pin-hole model, see Figure 2.1), and will
use geometric optics which match the pin-hole model. The key concept of the pin-hole
model is that of a ray which is a straight line segment mapping a point on a scene to
a point on the image plane (or a photosensitive sensor of a camera). More complicated
phenomena, which require more sophisticated mathematical models of wave or quantum
optics, are not considered. Wave optics permit the explanation of phenomena such as
light diffraction, interference, and polarization—many texts will explain these topics in
depth to the interested reader (e.g., [Hecht, 1998] is recommended if the reader). Here,
we will follow conventions used in optical literature; light propagates from left to right.

The pin-hole model (camera obscura) is an unrealistic idealization because a very
small hole prevents energy passing through it. Wave properties of light cause another
deviation from the pin-hole model—diffraction. The direction of light propagation is
bent if the obstacles are of a size comparable to the wavelength. Strictly speaking, only
planar mirrors comply with the geometric optics model.

The ideal geometric pin-hole model is more or less valid for the ideal thin lens,
see Figure 3.29. A ray passing through the center of the lens (called the principal
point) does not change its direction. If the lens is focused, then incoming rays which
are not coincident with the optical axis refract. Incoming rays parallel with the optical
axis intersect the optical axis in a single point called the focal point. This process
is described by the thin lens equation which can be derived using similar triangles in
Figure 3.29. The lens equation in Newtonian form says

1 1 1
= — or in a simpler form zz' = f?, 3.72
il s p f (3.72)
|
} object plane i image plane |
image
focal point

d
| |
| object }
| focal point | } |
| | | |
| | r I
I I ) ! | v
| : DA P A P Figure 3.29: The thin lens.
|
|

<— principal plane © Cengage Learning 2015.
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84 Chapter 3: The image, its mathematical and physical background

where f is the focal length, the distance between the principal point and the (object,
image) focal point, z is the distance between the object plane and the object focal point,
and 2z’ is the distance between the object plane and the image focal point. Let X be the
size of the object (the length of the arrow in the object plane in Figure 3.29) and x be
the size of this object in the image plane. The magnification m of the optical system is

The disadvantage of the thin lens is that the only rays it maps sharply are those
starting from points in a plane perpendicular to the optical axis within a distance z of
the principal point.

aperture
stop

depth of focus
+—>

i image e
 focal point .

z’ ‘ Az
"""" Figure 3.30: Depth of focus in an
image space optical system. © Cengage Learn-

ing 2015.

object space

Consider what happens if the image plane is shifted off the focal point [Jahne, 1997];
imagine a bundle of rays intersecting in the image focal point. The point will be displayed
as a small circle (the circle of permitted defocus) with diameter e, see Figure 3.30. Az is
the distance between the shifted image plane and the image focal point, d is the diameter
of the aperture stop, f if the focal length of the lens, and f-+2’ is the distance between the
principal point and the image focal point. The diameter ¢ of the circle can be calculated
using similar triangles

d ¢ _ dAz
f+2 Az - E_erz"
ny = f/d is called the f-number of the lens-see Section 3.4.4.
The previous equation can be rewritten as
Az f Az
T e
The concepts depth of focus and depth of field are based on the understanding that
it is of advantage if the image is a little off-focus, as then the range of depth in the scene
which will be focused will be effectively bigger. It does not make sense to require € to be
zero—it is reasonable to be the size of a pixel. The smaller the pixels are, the smaller the
effect this improvement has. The depth of focus is the interval of permitted shifts of the
image plane [-Az, Az] for which the diameter of the circle ¢ is smaller than a predefined
value corresponding to pixel size. Az is calculated from the previous equation

/

Az:nf<1+§>s:nf(1+m)s, (3.73)
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3.4 Image formation physics 85

where m is the magnification of the lens. Equation (3.73) demonstrates an important
role played by the f-number. The smaller the diameter of the aperture stop, the bigger
the depth of focus is.

A more important concept from the user’s point of view is the depth of field on the
object side of the lens. This governs the permitted range of positions of observed objects
in the scene which will be effectively in focus; i.e., with allowed defocus of maximal &.
Depth of field is illustrated in Figure 3.31.

aperture stop

depth of field
circle of the
allowed defocus

Figure 3.31: Depth of field
on the object side of the lens.
© Cengage Learning 2015.

object space image space

Real lenses (objectives) are composed of several individual lenses and their model
in geometric optics is called a thick lens. It has two parallel principal axes and two
principal points, one on each side. The ray coming to the lens through the object principal
point, which passes the system of lenses, and leaves it from the image principal point
under the same angle. The distance between the object and the image principal points
gives the effective length of the thick lens. Otherwise, mathematical expressions for the
ray passing the lens remain almost the same.

In optical gauging, it is often difficult to guarantee that the measured object lies in
the object plane. If it comes closer to the lens it looks bigger and if it recedes then it
appears smaller. There is a practically useful optical trick which makes gauging easier—a
telecentric lens. A small aperture stop is positioned into the image focal point; in a
normal lens the aperture stop is in the principal point (Figure 3.32a). In a telecentric
lens the image is formed only by rays which are approximately collinear to the optical
axis; this is illustrated in Figure 3.32b. Only part of the rays and irradiation is passed
through the telecentric lens to its image side, and this energy reduction is the reason
why observed scenes have to be illuminated more strongly, which in industrial gauging
setting is usually not difficult to provide. The disadvantage of telecentric lenses is that
their diameter has to be greater than the measured distances. Telecentric lenses of
larger diameters (> 50mm, say) are expensive because they typically use the Fresnel
lens principle, used in lighthouses since the 1820s.

If the aperture stop is positioned between the image focal point and the image plane
then a hypercentric lens is obtained, Figure 3.32c.

The properties of normal, telecentric, and hypercentric lenses are illustrated by con-
sidering a tube viewed along its axis (Figure 3.33). A normal lens sees the cross section
of the tube and its inner surface due to divergent rays. The telecentric lens sees only the
cross section because only rays approximately parallel to the optical axis are selected.
The hypercentric lens sees the cross section and the outer surface of the tube, and not
the inner surface.
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a) normal lens
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b) telecentric lens
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aperture stop Figure 3.32: Normal, telecentric
I and hypercentric lens. The focal
point on the object side of the lens
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© Cengage Learning 2015.
inner tube surface cross section only outer tube surface . X .
and cross section and cross section Figure 3.33: Axial view of a tube

by a normal, a telecentric and a
hypercentric lens. The cross sec-
tion is shown in light gray, the in-
ner surface in dark gray and the
outer surface is hatched. © Cen-
normal lens telecentric lens hypercentric lens gage Learning 2015.

3.4.3 Lens aberrations and radial distortion

Lenses and other optical systems such as mirrors or prisms have defects which lead to
blur, color changes, geometric distortion from the ideal ray, etc. These errors are usually
called aberrations in optics. Rays have to pass through some medium, such as air, which
also causes blur. Sometimes, blur can be roughly modeled as a drop of high frequencies in
the Fourier spectrum, which can be approximately compensated by a high-pass frequency
filter.

In an ideal optical system, every point on the object will focus to a single point of zero
size on the image. In reality, a point on the object side is not a point in the image plane.
The result is a distribution of intensities in the volume which is not symmetrical in shape.
Blurring occurs because a lens is not a perfect image producer. The output is close to the
ideal mathematical model given by equation (3.72) for lenses having spherical surfaces
and for rays passing through its principal point and rays making only small angles with
the optical axis. Six main groups of aberrations can be distinguished: (1) spherical
aberration, (2) coma, (3) astigmatism, (4) curvature of field, (5) geometric distortion
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3.4 Image formation physics 87

(especially radial distortion), and (6) color aberration occurring for light mixed from
many wavelengths. The first five aberrations also occur for light of a single wavelength.

Spherical aberration prevents rays from meeting at the same image point. Rays passing
through the lens close to its center are focused farther away than rays passing its
rim.

Coma is produced when rays from an off-axis object point are imaged by different zones
of the lens. The name arises because a point on the object side of the lens is blurred
into a comet shape. In spherical aberration, images of an on-axis object point that
fall on a plane at right angles to the optical axis are circular in shape, of varying size,
and superimposed about a common center. In coma, images of an off-axis object
point are circular in shape, of varying size, but displaced with respect to each other.
Coma is usually reduced by a diaphragm which eliminates the outer cones of rays.

Astigmatism occurs when an optical system has different foci for rays that propagate in
two perpendicular planes. If such a system is used to form an image of a cross, the
vertical and horizontal lines will be in sharp focus at two different distances.

Curvature of field (which manifests in geometric distortion, both radial and tangen-
tial) refers to the location of image points with respect to one another. Geometric
distortion usually remains after the first three aberrations have been corrected by
lens designers. Curvature of field describes the phenomenon whereby the image of a
plane object perpendicular to the optical axis on the object side of the lens projects
to a paraboloidal surface called a Petzval surface3. Geometric distortion refers to
deformation of an image. If the object on the object side is a flat grid consisting
of squares then it is projected either as a barrel or pincushion, see Figure 3.34. In
barrel distortion, magnification decreases with distance from the axis. In pincushion
distortion, magnification increases with distance from the axis.

LT s {1@ . o
l_’ [ I Figure 3.34: Radial distortion il-
—— iR -+ lustrated on a 12 x 12 square grid.
' . : (a) Barrel distortion. (b) Undis-
[;— IEI ﬂ| - torted. (c) Pincushion distortion.
! - 11 I__EB © Cengage Learning 2015.
() (b) (c)

Chromatic aberration expresses the failure of a lens to focus all colors in the same plane.
Because the refractive index is least at the red end of the spectrum, the focal length
of a lens in air will be greater for red than blue.

Computer vision users of optical systems do not usually have any influence on aber-
rations beyond the right lens. The exception is radial distortion, which often has to be
estimated and corrected in computer vision applications, and which we will explain in
more detail. A typical lens performs distortion of several pixels which a human observer
does not notice while looking at a natural scene. However, when an image is used for
measurements, compensation for the distortion is necessary.

3Petzval surface—after Slovak mathematician Jozef Petzval, 1807-1891.
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Figure 3.36: Radial distortion illustrated on an image of a book shelf. (a) Barrel distortion.
(b) Undistorted. (c¢) Pincushion distortion. ® Cengage Learning 2015.

The practical model of lens geometric aberration includes two distortion components.
The first is radial distortion which is caused because the lens bends a ray more or less
than in the ideal case. The second is the shift of the principal point with respect to
the image midpoint. We will discuss the second component in Section 11.3.1 where the
intrinsic parameters of a single 3D camera will be explained.

It can be seen that the pincushion and barrel distortions in Figure 3.34 are centrally
(radially) symmetric. A simple mathematical model is used which approximates the nec-
essary correction by a low order polynomial depending on the distance r of the observed
point (z’,y’) from the principal point (zg,yo) of the image. The variables involved are
introduced in Figure 3.35. The coordinates of a pixel after the correction are x = '+ A,
and y =y + Ay

Radial distortion is approximated as a rotationally symmetric function with respect
to the principal point and dependent on the distance r of the measured pixel (z’,y") from
the principal point (zg, yo)

r=/(z—0)?+ (y — y0)? . (3.74)

Low order polynomials (usually with order at most six) with even order dependent only

on r are used to assure rotational symmetry. The approximation is
A, = (2 — x0) (k1 + kot + Kar) | (3.75)

Ay = (Y —yo) (/@11“2 + kort + 537‘6) . '
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3.4 Image formation physics 89

The distortion is represented by the coefficients k1, k2, k3 which are obtained experi-
mentally for a particular lens by observing a known calibration image, e.g., covered with
some regular pattern of blobs or lines. Often it is sufficient to use only one nonzero
coefficient k1 in the approximation.

The effect of the radial distortion model applied to a real image is illustrated in
Figure 3.36. More complicated lens models cover tangential distortions that model such
effects as lens de-centering. Full and alternative details may be found in [Tsai, 1987; Jain
et al., 1995; Prescott and McLean, 1997].

3.4.4 Image capture from a radiometric point of view

A TV camera and most other artificial vision sensors measure the amount of received
light energy in individual pixels as the result of interaction among various materials
and light source(s); the value measured is informally called a gray-level (or brightness).
Radiometry is a branch of physics that deals with the measurement of the flow and
transfer of radiant energy, and is the appropriate tool to consider the mechanism of image
creation. The gray-level corresponding to a point on a 3D surface depends informally
on the shape of the object, its reflectance properties, the position of the viewer, and
properties and position of the illuminants.

The radiometric approach to understanding gray-levels is very often avoided in prac-
tical applications because of its complexity and numerical instability. The gray-level
measured typically does not provide a precise quantitative measurement (one reason is
that commonly used cameras are much more precise geometrically than radiometrically;
another, more serious, reason is that the relation between the gray-level and shape is
too complex). One way to circumvent this is to use task-specific illumination that allows
the location of objects of interest on a qualitative level, and their separation from the
background. If this attempt is successful then an object/background separation task is
solved which is usually much simpler than a complete inversion of the image formation
task from a radiometric point of view. Of course, some information is lost which could
be provided by radiometric analysis of intensity changes.

Photometry is a discipline closely related to radiometry that studies the sensation
of radiant light energy in the human eye; both disciplines describe similar phenomena
using similar quantities.

Herein, we shall describe physical units using square brackets; when there is a danger
of confusion we shall denote photometric quantities using the subscript ,p, and leave
radiometric ones with no subscript.

The basic radiometric quantity is radiant flux ®[W], and its photometric counter-
part is luminous flux @, [Im (= lumen)]. For light of wavelength A = 555 um and
daylight vision, we can convert between these quantities with the relation 1 W = 680 lm.
Different people have different abilities to perceive light, and photometric quantities de-
pend on the spectral characteristic of the radiation source and on the sensitivity of the
photoreceptive cells of a human retina. For this reason, the international standardization
body Commission International de I'Eclairage (CIE) defined a ‘standard observer’ corre-
sponding to average abilities. Let K ()\) be the luminous efficacy [lm W], S(\) [W]
the spectral power of the light source, and A[m]|, the wavelength. Then luminous flux
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90 Chapter 3: The image, its mathematical and physical background

@y, is proportional to the intensity of perception and is given by
B — / K(\) S(A)dA. (3.76)
A

Since photometric quantities are also observer dependent, we shall consider radiometric
ones.

From a viewer’s point of view, the surface of an object can reflect energy into a half-
sphere, differently into different directions. The spatial angle is given by the area on
the surface of the unit sphere that is bounded by a cone with an apex in the center of the
sphere, so an entire half-sphere corresponds to a spatial angle of 27 [sr (= steradians)].
A small area A at distance R from the origin (i.e., R? > A) and with angle © between
the normal vector to the area and the radius vector between the origin and the area
corresponds to the spatial angle € [sr] (see Figure 3.37)

A cos©

Q= T2

(3.77)

Irradiance E [W m™?] describes the power of the light energy that falls onto a unit
area of the object surface, E = §®/J A, where § A is an infinitesimal element of the surface
area; the corresponding photometric quantity is illumination [Imm~2]. Radiance L
[Wm™2sr~!] is the power of light that is emitted from a unit surface area into some
spatial angle, and the corresponding photometric quantity is called brightness L,y
[lmm~2sr~!]. Brightness is used informally in image analysis to describe the quantity
that the camera measures.

Irradiance is given by the amount of energy that an image-capturing device gets
per unit of an efficient sensitive area of the camera [Horn, 1986]—then gray-levels of
image pixels are quantized estimates of image irradiance. The efficient area copes with
foreshortening that is caused by the mutual rotation between the elementary patch on
the emitting surface and the elementary surface patch of the sensor. We shall consider
the relationship between the irradiance E measured in the image and the radiance L
produced by a small patch on the object surface. Only part of this radiance is captured
by the lens of the camera.

The geometry of the setup is given in Figure 3.38. The optical axis is aligned with
the horizontal axis Z, and a lens with focal length f is placed at the co-ordinate origin

Radiance L of the Irradiation £
surface in the scene ¥ N X of the sensor

o 80 © image
o \ 7
“ln

o o1 ¢
0,0) :

Figure 3.37: Spatial angle for Figure 3.38: The relation between irradiance E and radi-
an elementary surface area. ance L. © Cengage Learning 2015.
© Cengage Learning 2015.
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3.4 Image formation physics 91

(the optical center). The elementary object surface patch 6O is at distance z. We are
interested in how much light energy reaches an elementary patch of the sensor surface
6I. The off-axis angle o spans between the axis Z and the line connecting 6O with d1;
as we are considering a perspective projection, this line must pass through the origin.
The elementary object surface patch 4O is tilted by the angle © measured between the
object surface normal n at the patch and a line between dO and §1.

Light rays passing through the lens origin are not refracted; thus the spatial angle
attached to the elementary surface patch in the scene is equal to the spatial angle cor-
responding to the elementary patch in the image. The foreshortened elementary image
patch as seen from the optical center is 61 cos «, and its distance from the optical center
is f/cosa. The corresponding spatial angle is

0l cosa
(F/cosa)®
Analogously, the spatial angle corresponding to the elementary patch 6O on the object
surface is
00 cos©
(z/cosa)?’

As the spatial angles are equal,

00 cosa 22

—_— = . 3.78
0  cos© f2 (3.78)
Consider how much light energy passes through the lens if its aperture has diameter d;

the spatial angle 1, that sees the lens from the elementary patch on the object is

7 d’cosa m (d\°
Qp=-——-=—|- 3a. )
P74 (z/cosa)? 4 (z) oS (3:79)

Let L be the radiance of the object surface patch that is oriented towards the lens. Then
the elementary contribution to the radiant flux ® falling at the lens is

2
d) cos® a cos ©

i (3.80)

0® =L600Q cos® =n7L350 (

z
The lens concentrates the light energy into the image. If energy losses in the lens are
neglected and no other light falls on the image element, we can express the irradiation
FE of the elementary image patch as

5D 6O7r(d

2
- = - — 3
E= 5T 5T 1 ) cos® a cos © . (3.81)

z

If we substitute for O /I from equation (3.78), we obtain an important equation that
explains how scene radiance influences irradiance in the image:

=1 (9 costa (3.82)
=23 (3 . :

The term cos® a describes a systematic lens optical defect called vignetting?, which
implies that optical rays with larger span-off angle a are attenuated more; this means

4One of the meanings of vignette is a photograph or drawing with edges that are shaded off.
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92 Chapter 3: The image, its mathematical and physical background

that pixels closer to image borders are darker. This effect is more severe with wide-angle
lenses than with tele-lenses. Since vignetting is a systematic error, it can be compensated
for with a radiometrically calibrated lens. The term d/f is called the f-number of the
lens and describes by how much the lens differs from a pinhole model.

3.4.5 Surface reflectance

In many applications, pixel gray-level is constructed as an estimate of image irradiance as
a result of light reflection from scene objects. Consequently, it is necessary to understand
different mechanisms involved in reflection. We will give a brief overview sufficient to
underpin the idea behind shape from shading, Section 11.7.1.

The radiance of an opaque object that does not emit its own energy depends on
irradiance caused by other energy sources. The illumination that the viewer perceives
depends on the strength, position, orientation, type (point or diffuse) of the light sources,
and ability of the object surface to reflect energy and the local surface orientation (given
by its normal vector).

An important concept is gradient space which describes surface orientations. Let
z(x,y) be the surface height; at nearly every point a surface has a unique normal n. The
components of the surface gradient

o
T Oz

Oz

and q= a—y

P (3.83)
can be used to specify the surface orientation. We shall express the unit surface normal
using surface gradient components; if we move a small distance dx in the x direction, the
change of height is 6z = péx. Thus the vector [1,0,p]" is the tangent to the surface,
and analogously [0,1,¢]" is too. The surface normal is perpendicular to all its tangents,
and may be computed using the vector product as

1 0 —p
0 x |1 = |—q]| . (3.84)
P q 1
The unit surface normal n can be written as
1 -p
n—-————|— . (3.85)

q
1+ p?+ g2 1

Here we suppose that the z component of the surface normal is positive.

Consider now spherical co-ordinates used to express the geometry of an infinitesimal
surface patch—see Figure 3.39. The polar angle (also called zenith angle) is © and the
azimuth is .

We wish to describe the ability of different materials to reflect light. The direction
towards the incident light is denoted by subscript 4 (i.e., ©; and ¢;), while subscript v
identifies the direction toward the viewer (0, and ¢, )—see Figure 3.40. The irradiance
of the elementary surface patch from the light source is dE(©;, ¢;), and the elementary
contribution of the radiance in the direction towards the viewer is dL(©,, ¢,). In general,
the ability of the body to reflect light is described using a bi-directional reflectance
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Figure 3.39: Spherical angles used to describe orien- Figure 3.40: Directions towards the
tation of a surface patch. © Cengage Learning 2015. viewer and the light source. © Cengage

Learning 2015.

distribution function f,. [sr~!], abbreviated BRDF [Nicodemus et al., 1977

_ dL(©y,9y)

The BRDF f, describes the brightness of an elementary surface patch for a specific
material, light source, and viewer direction. The domain of the BRDF is the Cartesian
product of all incident and reflected directions which are traditionally represented in
spherical coordinates.

Modeling of the BRDF is also important for realistic rendering in computer graph-
ics [Foley et al., 1990]. The BRDF in its full complexity (equation (3.86)) is used for
modeling reflection properties of materials with oriented microstructure (e.g., tiger’s
eye—a semi-precious golden-brown stone, a peacock’s feather, a rough cut of aluminum).

The extension of BRDF to color is straightforward. All quantities are expressed
‘per unit wavelength’ and the adjective ‘spectral’ is added. Radiance becomes spectral
radiance and is expressed in ‘watts per square meter, per steradian, per unit wavelength’.
Irradiance becomes spectral irradiance expressed in ‘watts per square meter, per unit
wavelength’ Dependence on wavelength A is introduced into spectral BRDF

dL(©;,®;, \)
BRDF = f(0;,9;,0.,®.,\) = (6., B\ (3.87)

The observed color depends on the power spectrum of the illuminant and reflectance
and/or transparency properties of objects in the scene. There is often more interest
in the relative spectral composition than in the absolute spectral radiation or spectral
irradiation. Instead of spectral BRDF, the reflectance or transparency properties are
modeled by wavelength-by-wavelength multiplication of the corresponding relative ener-
gies (intensities) in each surface point manifested in each pixel of the image.

Fortunately, for most practically applicable surfaces, the BRDF remains constant if
the elementary surface patch rotates along the normal vector to the surface. In this case
it is simplified and depends on ¢; — @, i.e., f, (@i, O, (p; — gav)). This simplification
holds for both ideal diffuse (Lambertian) surfaces and for ideal mirrors.

Let E;(\) denote the irradiance caused by the illumination of the surface element,
and E,.()) the energy flux per unit area scattered by the surface element back to the
whole half-space. The ratio

[r(©i, 915 4, 00) (3.86)

(3.88)
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is called the reflectance coefficient or albedo: this is the proportion of incident energy
reflected back to the half-space. For simplicity, assume that we may neglect color prop-
erties of the surface, and that albedo does not depend on wavelength A. This proportion
is then an integral of the surface radiance L over the solid angle 2 representing the
half-space

ET:/QL(Q)dQ. (3.89)

Now define a reflectance function R(2) that models the influence of the local surface
geometry onto the spatial spread of the reflected energy. Angle df) is an infinitesimal
solid angle around the viewing direction

/ R(Q)dQ = 1. (3.90)
Q

In general, surface reflectance properties depend on three angles between the direction to
the light source L, the direction towards the viewer V, and the local surface orientation
given by the surface normal n (recall Figure 3.40). The cosines of these angles can be
expressed as scalar products of vectors; thus the reflectance function is a scalar function
of the following three dot products

R=R(n-Ln-V,V-L). (3.91)

A Lambertian surface (also ideally opaque, with ideal diffusion) reflects light energy
in all directions, and thus the radiance is constant in all directions. The BRDF fambert
is constant:

p(N)

fLanlbert(®i7 @va Yi — (Pv) = ? . (392)

If albedo p(A) is assumed constant and unitary then the Lambertian surface reflectance
can be expressed as

1 1
R(n,L,V) = ;nL = —cos O;. (3.93)

Because of its simplicity, the Lambertian reflectance function has been widely accepted
as a reasonable reflectance model for shape from shading (Section 11.7.1). Notice that
the reflectance function for a Lambertian surface is independent of viewing direction V.

The dependence of the surface radiance on local surface orientation can be expressed
in gradient space, and the reflectance map R(p, q) is used for this purpose. The reflectance
map R(p,q) can be visualized in the gradient space as nested iso-contours corresponding
to the same observed irradiance.

Values of the reflectance map may be:

1. Measured experimentally on a device called a goniometer stage that is able to set
angles © and p mechanically. A sample of the surface is attached to the goniometer
and its reflectance measured for different orientations of viewer and light sources.

2. Set experimentally if a calibration object is used. Typically a half-sphere is used
for this purpose.

3. Derived from a mathematical model describing surface reflecting properties.
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The best-known surface reflectance models are the Lambertian model for ideal opaque
surfaces, the Phong model which models reflection from dielectric materials, the Torrance-
Sparrow model which describes surfaces as a collection of planar mirror-like micro-facets
with normally distributed normals, and the wave theory-based Beckmann-Spizzichino
model. A survey of surface reflection models from the point of view of computer vision
can be found in [Tkeuchi, 1994].

The irradiance E(z,y) of an infinitely small light sensor located at position z,y in
the image plane is equal to the surface radiance at a corresponding surface patch given by
its surface parameters u, v if the light is not attenuated in the optical medium between
the surface and the sensor. This important relation between surface orientation and
perceived image intensity is called the image irradiance equation

E(z,y) = p(u,v) R(N(u,v)L,N(u,v)V, VL) . (3.94)

In an attempt to reduce complexity, several simplifying assumptions [Horn, 1990] are
usually made to ease the shape from shading task. It is assumed that:

o The object has uniform reflecting properties, i.e. p(u,v) is constant.

o Light sources are distant; then both irradiation in different places in the scene and
direction towards the light sources are approximately the same.

e The viewer is very distant. Then the radiance emitted by scene surfaces does not
depend on position but only on orientation. The perspective projection is simplified
to an orthographic one.

We present the simplified version of the image irradiance equation for the Lambertian
surface, constant albedo, single distant illuminant, distant viewer in the same direction
as illuminant, and the reflectance function R expressed in gradient space (p, q)

E(z,y) = BR(p(z,y),q(z,y)) . (3.95)

R(p,q) gives the radiance of the corresponding point in the scene; the proportionality
constant 8 comes from equation (3.82) and depends on the f-number of the lens. The
vignetting degradation of the lens is negligible as the viewer is aligned to the illuminant.
The measured irradiance E can be normalized and the factor 8 omitted; this permits us
to write the image irradiance equation in the simplest form as

E(z,y) = R(p(x,y),q(z,y)) = R (gi» g;) : (3.96)

The image irradiance equation in its simplest form is a first-order differential equation. It
is typically nonlinear as the reflectance function R in most cases depends non-linearly on
the surface gradient. This is the basic equation that is used to recover surface orientation
from intensity images.

3.5 Summary

e The Dirac impulse is an idealized infinitely narrow impulse of a finite area. In
image processing, it helps to express image digitization in an elegant way.
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e Convolution is a linear operation often used in image processing. Convolution
expresses the relation between two overlapped images.

e Linear integral transforms

— Linear integral transforms provide a rich representations of signals in a fre-
quency domain, in which some application tasks are easier. The inverse trans-
forms permit the conversion of data back to signals or images.

— Commonly used transforms in image analysis are Fourier, cosine, wavelet,
Radon and PCA.

— The Fourier transform expands a periodic 1D or 2D function as a possibly
infinite linear combination of sines and cosines. The basis of the expansion
are waves with a basic frequency wg, and waves with growing frequencies
wo, 2wp, 2wo, 3w, etc. The complex frequency spectrum F(w) gives both
magnitude and phase of the elementary waves.

— The Shannon sampling theorem states that the necessary distance between
sampling points is at most half the smallest detail to be seen in the image.

— If the Shannon sampling theorem is violated then aliasing occurs.

— The wavelet transform analyzes a signal by multiplying it by a window function
and performing an orthogonal expansion with more complex basis functions,
allowing localization of events not only in frequency but also in time. The
expansion is performed at multiple scales.

— Principal Component Analysis (PCA) is the optimal linear transformation
which divides an observed space into orthogonal subspaces with the largest
variance. The new basis vectors are calculated for the particular data set.
PCA is used for dimensionality reduction of data.

o Images as a stochastic processes

— Images are statistical in nature due to random changes and noise. It is some-
times of advantage to treat image functions as realizations of a stochastic
process.

— Such analysis is performed using statistical descriptors as the mean, dispersion,
covariance function or correlation function.

e Image formation physics

— Image formation is well understood in radiometry. Observed irradiation from a
surface patch depends on light sources, surface reflectance, and mutual relation
between directions towards observer, towards the illuminator(s), the surface
patch normal and its reflectance. Computer vision is interested in the inverse
task which is ill-posed in many cases.

— Image formation physics is not directly explored in many applications because
it is too complicated to get all the parameters which describe the particular
image formation process. Instead, objects are segmented based on semantic
knowledge about a specific application.

— Geometric optics models lens systems used commonly in computer vision.
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3.6 Exercises

Short-answer questions
S3.1 Define photometry.

S3.2 Give the formulae for the Fourier transform and its inverse.

S3.3 Give a definition of: frequency spectrum, phase spectrum, power spectrum.
S3.4 State the convolution theorem.

S3.5 Determine the Fourier transform of the Dirac d(x,y) function.

S3.6 Explain how the Fourier transform can be used to remove periodic image noise.
S3.7 What do you understand by aliasing?

S3.8 Why are wavelets better suited to analyze image data in multiple scales than the Fourier
transform?

Problems

P3.1 Implement the 1D Fourier transform for yourself and study its output for some sample
digital functions.

P3.2 Many very efficient implementations of the Fourier transform can be freely found: seek
and download one if you do not already have one to hand. Run it on a range of
deliberately simple images and study its output. Given the transform of an image, can
you guess some features of the original?

P3.3 Why might high frequencies of an image function be of interest? Why would the Fourier
transform be of use in their analysis?

P3.4 Suppose a convolution of two finite digital functions is to be performed; determine how
many elemental operations (additions and multiplications) are required for given sized
domains. How many operations are required if the convolution theorem is exploited
(excluding the cost of the Fourier transform).

P3.5 Employing the two-dimensional Fourier transform, develop a program for high-pass,
low-pass, and band-pass image filtering.

P3.6 Explain the aliasing effect in terms of Fourier frequency overlaps.

P3.7 Locate a package that finds the eigen-system of a matrix (there are many freely avail-
able). For some matrices of your choice, look at the eigen-values and how they change
when you perturb a matrix, or one column of it, or just one term of it.

P3.8 Locate an implementation of the Radon transform and run it on some images with
pronounced straight lines (such as Figure 3.26). Extract the directional maxima it
suggests and compare them to the lines in the original.

P3.9 Better quality digital cameras permit manual setting of focus, aperture and exposure
time: if you can, experiment with these to see the effects of depth of focus on image
quality.

P3.10 Make yourself familiar with solved problems and Matlab implementations of selected
algorithms provided in the corresponding chapter of the Matlab Companion to this text
[Svoboda et al., 2008]. The Matlab Companion homepage http://visionbook.felk.cvut.cz
offers images used in the problems, and well-commented Matlab code is provided for
educational purposes.

P3.11 Use the Matlab Companion [Svoboda et al., 2008] to develop solutions to additional
exercises and practical problems provided there. Implement your solutions using Matlab
or other suitable programming languages.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



98 Chapter 3: The image, its mathematical and physical background
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Chapter

Data structures for image analysis

Data and an algorithm are the two essentials of any program. Data organization often
considerably affects the simplicity of the selection and the implementation of an algo-
rithm, and the choice of data structures is therefore a fundamental question when writing
a program [Wirth, 1976]. Representations of image data, and the data which can be de-
duced from them, will be introduced here before explaining different image processing
methods. Relations between different types of representations of image data will then be
clearer.

First we shall deal with basic levels of representation of information in image analysis
tasks; then with traditional data structures such as matrices, chains, and relational struc-
tures. Lastly we consider hierarchical data structures such as pyramids and quadtrees.

4.1 Levels of image data representation

The aim of computer visual perception is to find a relation between an input image and
models of the real world. During the transition from the raw input image to the model,
image information becomes denser and semantic knowledge about the interpretation of
image data is used more. Several levels of visual information representation are defined
on the way between the input image and the model; computer vision then comprises a
design of the:

o Intermediate representations (data structures).

e Algorithms used for the creation of representations and introduction of relations
between them.

The representations can be stratified in four levels [Ballard and Brown, 1982]—however,
there are no strict borders between them and a more detailed classification of the rep-
resentational levels is used in some applications. These four representational levels are
ordered from signals at a low level of abstraction to the description that a human can
perceive. The information flow between the levels may be bi-directional, and for some
specific uses, some representations can be omitted.
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4.2 Traditional image data structures 101

The lowest representational level—iconic images—consists of images containing
original data: integer matrices with data about pixel brightness. Images of this kind are
also outputs of pre-processing operations used for highlighting some aspects of the image
important for further treatment.

The second level is segmented images. Parts of the image are joined into groups
that probably belong to the same objects. For instance, the output of the segmentation of
a scene with polyhedra is either line segments coinciding with borders or two-dimensional
regions corresponding to faces of bodies. It is useful to know something about the
application domain while doing image segmentation; it is then easier to deal with noise
and other problems associated with erroneous image data.

The third level is geometric representations holding knowledge about 2D and 3D
shapes. Quantification of a shape is very difficult but also very important. Geometric
representations are useful while doing general and complex simulations of the influence
of illumination and motion in real objects. We also need them for the transition between
natural raster images acquired by a camera) and data used in computer graphics (CAD—
computer-aided design, DTP—desktop publishing).

The fourth representational level is relational models. They give us the ability to
treat data more efficiently and at a higher level of abstraction. A priori knowledge about
the case being solved is usually used in processing of this kind. Artificial intelligence (AI)
techniques are often explored; the information gained from the image may be represented
by semantic nets or frames [Nilsson, 1982].

An example will illustrate a priori knowledge. Imagine a satellite image of a piece of
land, and the task of counting planes standing at an airport; the a priori knowledge is
the position of the airport, which can be deduced, for instance, from a map. Relations
to other objects in the image may help as well, e.g., to roads, lakes, or urban areas.
Additional a priori knowledge is given by geometric models of planes for which we are
searching. Segmentation will attempt to identify meaningful regions such as runways,
planes and other vehicles, while third-level reasoning will try to make these identifications
more definite. Fourth-level reasoning may, for example, determine whether the plane is
arriving, departing or undergoing maintenance, etc.

4.2 Traditional image data structures

Traditional image data structures such as matrices, chains, graphs, lists of object prop-
erties, and relational databases are important not only for the direct representation of
image information, but also as a basis for more complex hierarchical methods of image
representation.

4.2.1 Matrices

A matrix is the most common data structure for low-level representation of an image.
Elements of the matrix are integer numbers corresponding to brightness, or to another
property of the corresponding pixel of the sampling grid. Image data of this kind are
usually the direct output of the image-capturing device. Pixels of both rectangular and
hexagonal sampling grids can be represented by a matrix. The correspondence between
data and matrix elements is obvious for a rectangular grid; with a hexagonal grid every
even row in the image is shifted half a pixel to the right.
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Image information in the matrix is accessible through the co-ordinates of a pixel that
correspond with row and column indices. The matrix is a full representation of the image,
independent of the contents of image data—it implicitly contains spatial relations
among semantically important parts of the image. The space is two-dimensional in the
case of an image. One very natural spatial relation is the neighborhood relation.

Some special images that are represented by matrices are:

e A binary image (an image with two brightness levels only) is represented by
a matrix containing only zeros and ones.

e Several matrices can contain information about one multispectral image. Each
single matrix contains one image corresponding to one spectral band.

o Matrices of different resolution are used to obtain hierarchical image data struc-
tures. Such hierarchical representations can be very convenient for parallel com-
puters with the ‘processor array’ architecture.

Most programming languages use a standard array data structure to represent a matrix.
Historically, memory limitations were a significant obstacle to image applications, but
this is no longer the case.

There is much image data in the matrix. Algorithms can be sped up if global in-
formation is derived from the original image matrix first—global information is more
concise and occupies less memory. We have already mentioned the most popular exam-
ple of global information—the histogram—in Section 2.3.2. Looking at the image from
a probabilistic point of view, the normalized histogram is an estimate of the probability
density of a phenomenon: that an image pixel has a certain brightness.

Another example of global information is the co-occurrence matrix [Pavlidis,
1982], which represents an estimate of the probability of two pixels appearing in a spatial
relationship in which a pixel (i1,7j1) has intensity z and a pixel (ig,j2) has intensity
y. Suppose that the probability depends only on a certain spatial relation r between
a pixel of brightness z and a pixel of brightness y; then information about the relation
r is recorded in the square co-occurrence matrix C,., whose dimensions correspond to
the number of brightness levels of the image. To reduce the number of matrices C,,
introduce some simplifying assumptions; first consider only direct neighbors, and then
treat relations as symmetrical (without orientation). The following algorithm calculates
the co-occurrence matrix C; from the image f(i,j).

Algorithm 4.1: Co-occurrence matrix C,.(z,y) for the relation r
1. Set Cy.(z,y) =0 for all z, y € [0, L], where L is the maximum brightness.

2. For all pixels (i1, j1) in the image, determine all (io, jo) which have the relation r
with the pixel (i1,71), and perform

Cr[f(ix,41), fliz, j2)] = Cr [f (i1, 1), [, J2)] + 1.
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If the relation r is to be a southern or eastern 4-neighbor of the pizel (i1, j1), or iden-
tity', elements of the co-occurrence matrix have some interesting properties. Diagonal
elements of the matrix C,.(k, k) are equal to the area of the regions in the image with
brightness k, and so correspond to the histogram. Off-diagonal elements C,.(k,j) are
equal to the length of the border dividing regions with brightnesses k and j, k # j. For
instance, in an image with low contrast, the elements of the co-occurrence matrix that
are far from the diagonal are equal to zero or are very small. For high-contrast images
the opposite is true.

The main reason for considering co-occurrence matrices is their ability to describe
texture: this approach is introduced in Chapter 15.

The integral image is another matrix representation that holds global image infor-
mation [Viola and Jones, 2001]. It is constructed so that its values ¢i(4, j) in the location
(i,7) represent the sums of all the original image pixel-values left of and above (i, j):

k<il<j

where f is the original image. The integral image can be efficiently computed in a single
image pass using recurrences:

Algorithm 4.2: Integral image construction
1. Let s(4,j) denote a cumulative row sum, and set s(i, —1) = 0.
2. Let 4i(Z, j) be an integral image, and set #i(—1,5) = 0.

3. Make a single row-by-row pass through the image. For each pixel (4, j) calculate
the cumulative row sums s(4, j) and the integral image value 4i(7, j) using

S(iuj) :8(i7j_1)+f(i7j)7 (42)

4. After completing a single pass through the image, the integral image i is con-
structed.

The main use of integral image data structures is in rapid calculation of simple
rectangle image features at multiple scales. This kind of features is used for rapid object
identification (Section 10.7) and for object tracking (Section 16.5).

Figure 4.1 illustrates that any rectangular sum can be computed using four array
references, and so a feature reflecting a difference between two rectangles requires eight
references. Considering the rectangle features shown in Figure 4.2a,b, the two-rectangle
features require only six array references since the rectangles are adjacent. Similarly,
the three- and four-rectangle features of Figure 4.2c,d can be calculated using eight and
nine references to the integral image values, respectively. Such features can be computed
extremely efficiently and in constant time once the integral image is formed.

IFor the purpose of co-occurrence matrix creation we need to consider the identity relation (i1,j1) =
(42, j2), or individual pixels would not contribute to the histogram.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



104 Chapter 4: Data structures for image analysis

A B

Figure 4.1: Calculation of rectangle features from an integral image. The sum of pixels within
rectangle D can be obtained using four array references. Dgym = 4(6) + ii(a) — (ii(8) + (7)),
where 7i(a) is the value of the integral image at point a (and similarly for 3,~,d). © Cengage
Learning 2015.

(a) (b) (c) ()

Figure 4.2: Rectangle-based features may be calculated from an integral image by subtraction of
the sum of the shaded rectangle(s) from the non-shaded rectangle(s). The figure shows (a,b) two-
rectangle, (c) three-rectangle, and (d) four-rectangle features. Sizes of the individual rectangles
can be varied to yield different features as well as features at different scales. Contributions
from the regions may be normalized to account for possibly unequal region sizes. © Cengage
Learning 2015.

4.2.2 Chains

Chains are used for the description of object borders in computer vision. One element
of the chain is a basic symbol; this approach permits the application of formal language
theory for computer vision tasks. Chains are appropriate for data that can be arranged
as a sequence of symbols, and the neighboring symbols in a chain usually correspond
to the neighborhood of primitives in the image. The primitive is the basic descriptive
element that is used in syntactic pattern recognition (see Chapter 9).

This rule of proximity (neighborhood) of symbols and primitives has exceptions—for
example, the first and the last symbol of the chain describing a closed border are not
neighbors, but the corresponding primitives in the image are. Similar inconsistencies
are typical of image description languages [Shaw, 1969], too. Chains are linear struc-
tures, which is why they cannot describe spatial relations in the image on the basis of
neighborhood or proximity.

Chain codes (and Freeman codes) [Freeman, 1961] are often used for the description
of object borders, or other one-pixel-wide lines in images. The border is defined by the
co-ordinates of its reference pixel and the sequence of symbols corresponding to the line
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of the unit length in several pre-defined orientations. Notice that a chain code is of a
relative nature; data are expressed with respect to some reference point. Figure 4.3 shows
an example of a chain code in which where 8-neighborhoods are used—4-neighborhoods
can be used as well. An algorithm to extract a chain code may be implemented as an
obvious simplification of Algorithm 6.6; chain codes and their properties are described
in more detail in Chapter 8.

VA

00

Figure 4.3: An example chain code; the reference pixel starting the chain is marked by an arrow:
00077665555556600000006444444442221111112234445652211. © Cengage Learning 2015.

If local information is needed from the chain code, then it is necessary to search
through the whole chain systematically. For instance, if we want to know whether the
border turns somewhere to the left by 90°, we must just find a sample pair of symbols
in the chain—it is simple. On the other hand, a question about the shape of the border
near the pixel (ig, jo) is not trivial. It is necessary to investigate all chain elements until
the pixel (g, jo) is found and only then we can start to analyze a short part of the border
that is close to the pixel (ig, jo)-

The description of an image by chains is appropriate for syntactic pattern recognition
based on formal language theory methods. When working with real images, the problem
of how to deal with uncertainty caused by noise arises, which is why several syntactic
analysis techniques with deformation correction have arisen [Lu and Fu, 1978]. Another
way to deal with noise is to smooth the border or to approximate it by another curve.
This new border curve is then described by chain codes [Pavlidis, 1977].

Run length coding has been used for some time to represent strings of symbols in
an image matrix. For simplicity, consider a binary image first. Run length coding records
only areas that belong to objects in the image; the area is then represented as a list of
lists. Various schemes exist which differ in detail—a representative one describes each row
of the image by a sublist, the first element of which is the row number. Subsequent terms
are co-ordinate pairs; the first element of a pair is the beginning of a run and the second
is the end (the beginning and the end are described by column coordinates). There can
be several such sequences in the row. Run length coding is illustrated in Figure 4.4. The
main advantage of run length coding is the existence of simple algorithms for intersections
and unions of regions in the image.

Run length coding can be used for an image with multiple brightness levels as well—
in this case sequences of neighboring pixels in a row that has constant brightness are
considered. In the sublist we must record not only the beginning and the end of the
sequence, but its brightness, too.
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0 1 2 3 4 5 6

HE | Figure 4.4: Run length coding; the code is ((11144)(214)(52355)).
© Cengage Learning 2015.
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4.2.3 Topological data structures

Topological data structures describe the image as a set of elements and their relations;
these relations are often represented using graphs. A graph G = (V, E) is an algebraic
structure which consists of a set of nodes V' = {vy,v9, ...,v,} and a set of arcs E =
{e1, €2, ..., ey }. Each arc ey is incident to an unordered (or ordered) pair of nodes
{vi, v;} which are not necessarily distinct. The degree of a node is equal to the number
of incident arcs of the node.

A weighted graph is a graph in which values are assigned to arcs, to nodes, or to
both—these values may, for example, represent weights, or costs.

The region adjacency graph is typical of this class of data structures, in which
nodes correspond to regions and neighboring regions are connected by an arc. The
segmented image (see Chapter 6) consists of regions with similar properties (brightness,
texture, color, ...) that correspond to some entities in the scene, and the neighborhood
relation is fulfilled when the regions have some common border. An example of an image
with areas labeled by numbers and the corresponding region adjacency graph is shown
in Figure 4.5; the label 0 denotes pixels out of the image. This label is used to indicate
regions that touch borders of the image in the region adjacency graph.

RS
0
4 1 2
The region adjacency graph has several attractive features. If a region encloses other

regions, then the part of the graph corresponding with the areas inside can be separated
by a cut in the graph. Nodes of degree 1 represent simple holes.

Figure 4.5: An example region adjacency graph.
© Cengage Learning 2015.

Arcs of the graph can include a description of relations between neighboring regions—
the relations to be to the left or to be inside are common. It can be used for matching
with a stored pattern for recognition purposes.

The region adjacency graph is usually created from the region map, which is a ma-
trix of the same dimensions as the original image matrix whose elements are identification
labels of the regions. To create the region adjacency graph, borders of all regions in the
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image are traced, and labels of all neighboring regions are stored. The region adjacency
graph can also easily be created from an image represented by a quadtree (Section 4.3.2).

The region adjacency graph stores information about the neighbors of all regions in
the image explicitly. The region map contains this information as well, but it is much
more difficult to recall from there. If we want to relate the region adjacency graph to the
region map quickly, it is sufficient for a node in the region adjacency graph to be marked
by the identification label of the region and some representative pixel (e.g., the top left
pixel of the region).

Construction of the boundary data structures that represent regions is not trivial,
and is considered in Section 6.2.3. Region adjacency graphs can be used to approach
region merging (where, for instance, neighboring regions thought to have the same image
interpretation are merged into one region)—this topic is considered in Section 10.10. In
particular, note that merging representations of regions that may border each other more
than once can be intricate, for example, with the creation of ‘holes’ not present before
the merge—see Figure 4.6.

Figure 4.6: Region merging may create
holes: (a) Before a merge. (b) After.
(a) (b) © Cengage Learning 2015.

4.2.4 Relational structures

Relational databases [Kunii et al., 1974] can also be used for representation of information
from an image; all the information is then concentrated in relations between semantically
important parts of the image—objects—that are the result of segmentation (Chapter 6).
Relations are recorded in the form of tables. An example of such a representation is shown
in Figure 4.7 and Table 4.1, where individual objects are associated with their names and
other features, e.g., the top-left pixel of the corresponding region in the image. Relations
between objects are expressed in the relational table. Here, such a relation is to be inside;
for example, the object 7 (pond) is situated inside the object 6 (hill).

Figure 4.7: Description of objects using relational structure. © Cengage Learning 2015.
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No. ‘ Object name ‘ Color Min. row | Min. col. | Inside
1 sun white ) 40 2
2 sky blue 0 0 —
3 | cloud gray 20 180 2
4 | tree trunk brown 95 75 6
5 | tree crown green 53 63 -
6 | hill light green 97 0 -
7 | pond blue 100 160 6

Table 4.1: Relational table. © Cengage Learning 2015.

Description by means of relational structures is appropriate for higher levels of image
understanding. In this case searches using keys, similar to database searches, can be used
to speed up the whole process.

4.3 Hierarchical data structures

Computer vision is by its nature very computationally expensive, if for no other reason
than the large amount of data to be processed. Usually a very quick response is expected
because video real-time or interactive systems are desirable. One of the solutions is to use
parallel computers (in other words brute force). Unfortunately there are many computer
vision problems that are very difficult to divide among processors, or decompose in
any way. Hierarchical data structures make it possible to use algorithms which decide
a strategy for processing on the basis of relatively small quantities of data. They work
at the finest resolution only with those parts of the image for which it is essential, using
knowledge instead of brute force to ease and speed up the processing. We are going to
introduce two typical hierarchical structures, pyramids and quadtrees.

4.3.1 Pyramids

Pyramids are among the simplest hierarchical data structures. We distinguish between
M-pyramids (matrix-pyramids) and T-pyramids (tree-pyramids).

A Matrix-pyramid (M-pyramid) is a sequence {Mp, M _1,..., My} of images,
where Mj has the same dimensions and elements as the original image, and M;_; is
derived from the M; by reducing the resolution by one-half. When creating pyramids, it
is customary to work with square matrices having dimensions equal to powers of 2—then
My corresponds to one pixel only.

M-pyramids are used when it is necessary to work with an image at different res-
olutions simultaneously. An image having one degree smaller resolution in a pyramid
contains four times less data, so it is processed approximately four times as quickly.

Often it is advantageous to use several resolutions simultaneously rather than choose
just one image from the M-pyramid. For such algorithms we prefer to use tree-pyramids,
a tree structure. Let 27 be the size of an original image (the highest resolution). A tree-
pyramid (T-pyramid) is defined by:

1. A set of nodes P = {p = (k,4, ) such that level k € [0, L]; i, j € [0,2% — 1]}
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4.3 Hierarchical data structures 109
2. A mapping F between subsequent nodes Py_1, Py of the pyramid

F(k,i,5) = (k — 1,floor(i/2), floor(5/2)) .

3. A function V that maps a node of the pyramid P to Z, where Z is the subset of
the whole numbers corresponding to the number of brightness levels, for example,
Z ={0,1,2,...,255}.

Nodes of a T-pyramid correspond for a given k with image points of an M-pyramid;
elements of the set of nodes P = {(k,4,j)} correspond with individual matrices in the
M-pyramid—¥% is called the level of the pyramid. An image P = {(k, 1, )} for a specific k
constitutes an image at the k" level of the pyramid. F is the so-called parent mapping,
which is defined for all nodes Py of the T-pyramid except its root (0,0,0). Every node
of the T-pyramid has four child nodes except leaf nodes, which are nodes of level L that
correspond to the individual pixels in the image.

Level 0

Level 1

Figure 4.8: T-pyramid.
Level 2 © Cengage Learning 2015.

Values of individual nodes of the T-pyramid are defined by the function V. Values
of leaf nodes are the same as values of the image function (brightness) in the original
image at the finest resolution; the image size is 2F. Values of nodes in other levels of
the tree are either an arithmetic mean of four child nodes or they are defined by coarser
sampling, meaning that the value of one child (e.g., top left) is used. Figure 4.8 shows
the structure of a simple T-pyramid.

The number of image pixels used by an M-pyramid for storing all matrices is given
by

N2 (1+1+1+...>;::1.33N2 (4.4)
4 16 ’
where N is the dimension of the original matrix (the image of finest resolution)—usually
a power of two, 2.

The T-pyramid is represented in memory similarly. Arcs of the tree need not be
recorded because addresses of the both child and parent nodes are easy to compute due
to the regularity of the structure. An algorithm for the effective creation and storing of
a T-pyramid is given in [Pavlidis, 1982].

4.3.2 Quadtrees

Quadtrees are modifications of T-pyramids. Every node of the tree except the leaves has
four children (NW, north-western; NE, north-eastern; SW, south-western; SE, south-
eastern). Similarly to T-pyramids, the image is divided into four quadrants at each
hierarchical level; however, it is not necessary to keep nodes at all levels. If a parent
node has four children of the same value (e.g., brightness), it is not necessary to record
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120 | 121

122 | 128

120 121 122 123 Figure 4.9: Quadtree. © Cengage
Learning 2015.

them. This representation is less expensive for an image with large homogeneous regions;
Figure 4.9 is an example of a simple quadtree.

An advantage of image representation by means of quadtrees is the existence of sim-
ple algorithms for addition of images, computing object areas, and statistical moments.
The main disadvantage of quadtrees and pyramid hierarchical representations is their
dependence on the position, orientation, and relative size of objects. Two similar images
with just very small differences can have very different pyramid or quadtree represen-
tations. Even two images depicting the same, slightly shifted scene, can have entirely
different representations.

These disadvantages can be overcome using a normalized shape of quadtree in which
we do not create the quadtree for the whole image, but for its individual objects. Geo-
metric features of objects such as the center of gravity and principal axis are used (see
Chapter 8); the center of gravity and principal axis of every object are derived first and
then the smallest enclosing square centered at the center of gravity having sides par-
allel with the principal axes is located. The square is then represented by a quadtree.
An object described by a normalized quadtree and several additional items of data (co-
ordinates of the center of gravity, angle of main axes) is invariant to shifting, rotation,
and scale.

Quadtrees are usually represented by recording the whole tree as a list of its individual
nodes, every node being a record with several items characterizing it. An example is given
in Figure 4.10. In the item Node type there is information about whether the node is
a leaf or inside the tree. Other data can be the level of the node in the tree, position in
the picture, code of the node, etc. This kind of representation is expensive in memory. Its
advantage is easy access to any node because of pointers between parents and children.

Node type

Pointer to the NW son

Pointer to the NE son

Pointer to the SW son

Pointer to the SE son

Pointer to the father

Figure 4.10: Record describing a quadtree node.
Other data © Cengage Learning 2015.
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It is possible to represent a quadtree with less demand on memory by means of a leaf
code. Any point of the picture is coded by a sequence of digits reflecting successive
divisions of the quadtree; zero means the NW (north-west) quadrant, and likewise for
other quadrants: 1-NE, 2-SW, 3-SE. The most important digit of the code (on the left)
corresponds to the division at the highest level, the least important one (on the right)
with the last division. The number of digits in the code is the same as the number of
levels of the quadtree. The whole tree is then described by a sequence of pairs—the leaf
code and the brightness of the region. Programs creating quadtrees can use recursive
procedures to advantage.

T-pyramids are very similar to quadtrees, but differ in two basic respects. A T-
pyramid is a balanced structure, meaning that the corresponding tree divides the image
regardless of the contents, which is why it is regular and symmetric. A quadtree is not
balanced. The other difference is in the interpretation of values of the individual nodes.

Quadtrees have seen widespread application, particularly in the area of Geographic
Information Systems (GIS) where, along with their three-dimensional generalization oc-
trees, they have proved very useful in hierarchical representation of layered data [Samet,
1989, 1990].

4.3.3 Other pyramidal structures

The pyramidal structure is widely used, and has seen several extensions and modi-
fications. Recalling that a (simple) M-pyramid was defined as a sequence of images
{Mp,Mp_1,...,Mp} in which M; is a 2 x 2 reduction of M; 1, we can define the notion
of a reduction window; for every cell ¢ of M;, the reduction window is its set of children
in M;y1, w(c). Here, a cell is any single element of the image M; at the corresponding
level of pyramidal resolution. If the images are constructed such that all interior cells
have the same number of neighbors (e.g., a square grid, as is customary), and they all
have the same number of children, the pyramid is called regular.

A taxonomy of regular pyramids may be constructed by considering the reduction
window together with the reduction factor A, which defines the rate at which the image
area decreases between levels;

A< J\i?””,izo,l,...,lz—l.

In the simple case, in which reduction windows do not overlap and are 2 x 2, we have
A = 4; if we choose to let the reduction windows overlap, the factor will reduce. The
notation used to describe this characterization of regular pyramids is (reduction win-
dow)/(reduction factor). Figure 4.11 illustrates some simple examples.

The reduction window of a given cell at level ¢ may be propagated down to higher
resolution than level i + 1. For a cell ¢; at level i, we can write w’(¢;) = w(c;), and then
recursively define

W)= | wha), (4.5)

g€w(ci)

wk(¢;) is the equivalent window that covers all cells at level i+k-+1 that link to the cell
¢;. Note that the shape of this window is going to depend on the type of pyramid—ifor
example, an n X n/2 pyramid will generate octagonal equivalent windows, while for an

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



112 Chapter 4: Data structures for image analysis

O O O O O O O O O OO0 O
[ ] [ ] [ ] [ ]
O O O O O O O O c/l®o|/®©°
[ ) O|lO0O| @] O] O
O O O O O O O O
° ° ° ° Ol @O | @| O
O O O O O O O O O OO0 O
(a) (b) (©

Figure 4.11: Several regular pyramid definitions. (a) 2 x 2/4. (b) 2 x 2/2. (c) 3 x 3/2. (Solid
dots are at the higher level, i.e., the lower-resolution level.) © Cengage Learning 2015.

n x n/4 pyramid they will be square. Use of non-square windows prevents domination
of square features, as is the case for simple 2 x 2/4 pyramids.

The 2 x 2/4 pyramid is widely used and is what is usually called an ‘image pyramid’;
the 2 x 2/2 structure is often referred to as an ‘overlap pyramid’. 5 x 5/2 pyramids have
been used [Burt and Adelson, 1983] in compact image coding, where the image pyramid
is augmented by a Laplacian pyramid of differences. Here, the Laplacian at a given
level is computed as the per-pixel difference between the image at that level, and the
image derived by ‘expanding’ the image at the next lower resolution. The Laplacian
may be expected to have zero (or close) values in areas of low contrast, and therefore be
amenable to compression.

Irregular pyramids are derived from contractions of graphical representations of
images (for example, region adjacency graphs). Here, a graph may be reduced to a
smaller one by selective removal of arcs and nodes. Depending on how these selections
are made, important structures in the parent graph may be retained while reducing
its overall complexity [Kropatsch, 1995]. The pyramid approach is quite general and
lends itself to many developments—for example, the reduction algorithms need not be
deterministic [Meer, 1989)].

4.4 Summary

e Level of image data representation
— Data structures together with algorithms are used to devise solutions to com-
putational tasks.
— Data structures for vision may be loosely classified as

Iconic
Segmented

*
*
x Geometric
*

Relational
Boundaries between these layers may not be well defined.
e Traditional image data structures

— The matrix (2D array) is the most common data structure used for low-level
representations, implemented as an array.
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— Matrices hold image data explicitly. Spatial characteristics are implicitly avail-
able.

— Binary images are represented by binary matrices; multispectral images are
represented by vectors of matrices; Hierarchical image structures are repre-
sented by matrices of different dimensions;

— The co-occurrence matriz is an example of global information derived from an
image matrix; it is useful in describing texture.

— Chains may be used to describe pixel paths, especially borders.
— Chain codes are useful for recognition based on syntactic approaches.
— Run length codes are useful for simple image compression.

— Graph structures may be used to describe regions and their adjacency. These
may be derived from a region map, a matrix of the same size as the image.

— Relational structures may be used to describe semantic relationships between
image regions.

+ Hierarchical data structures

— Hierarchical structures can be used to extract large-scale features, which may
be used to initialize analysis. They can provide significant computational
efficiency.

— M-pyramids and T-pyramids provide data structures to describe multiple im-
age resolutions.

— Quadtrees are a variety of T-pyramid in which selected areas of an image
are stored at higher resolution than others, permitting selective extraction of
detail.

— Many algorithms for manipulation of quadtrees are available. Quadtrees are
prone to great variation from small image differences.

— Leaf codes provide a more efficient form of quadtree.

— Many ways of deriving pyramids exist, dependent on choice of reduction win-
dow.

4.5 Exercises

Short-answer questions

S4.1 Determine the 4- and 8-neighborhood chain codes of the regions shown in Figure 4.12.

”+‘ ‘+’
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Figure 4.12: © Cengage Learning 2015.
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S4.2 Integral image
(a) What is an integral image?
(b) Describe a simple and efficient algorithm to construct an integral image.
S4.3 Define run length encoding.
S4.4 Determine the run length encoding of the images shown in Figure 4.12.
S4.5 Define a region adjacency graph.
S4.6 Draw the region adjacency graph for the image depicted in Figure 4.13.

Figure 4.13: © Cengage Learning 2015.

S4.7 Define M-pyramid.
S4.8 Define T-pyramid.

Problems

P4.1 Implement Algorithm 4.1. Run it on a variety of images for a variety of neighborhood
relations.

P4.2 Implement Algorithm 4.2. Run it on a range of inputs and plot/visualize the output
integral image. What relationships can you detect between input and output?

P4.3 Implement run length encoding, as described in Section 4.2.2. Run it on a range of
binary images and determine the compression ratio achieved (this is most usefully done
with the most compact possible representation of the run length code).

P4.4 Adapt the program written for Problem P4.3 to work for images which are not binary.
Test it on a range of synthetic and real images, computing each time the compression
ratio it provides.

P4.5 Write a program that computes the T-pyramid of an image.

P4.6 Write a program that derives the quadtree representation of an image using the homo-
geneity criterion of equal intensity.

P4.7 Make yourself familiar with solved problems and Matlab implementations of selected
algorithms provided in the corresponding chapter of the Matlab Companion to this text
[Svoboda et al., 2008]. The Matlab Companion homepage http://visionbook.felk.cvut.cz
offers images used in the problems, and well-commented Matlab code is provided for
educational purposes.

P4.8 Use the Matlab Companion [Svoboda et al., 2008] to develop solutions to additional
exercises and practical problems provided there. Implement your solutions using Matlab
or other suitable programming languages.
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Chapter

Image pre-processing

Pre-processing is the name used for operations on images at the lowest level of abstraction
—both input and output are intensity images. Such images are usually of the same kind
as the original data captured by the sensor, with an intensity image usually represented
by a matrix or matrices of brightness values.

Pre-processing does not increase image information content. If information is mea-
sured using entropy (Section 2.3.3), pre-processing typically decreases it. Thus from the
information-theoretic viewpoint the best pre-processing is no pre-processing: without
question, the best way to avoid (elaborate) pre-processing is to concentrate on high-
quality image acquisition. Nevertheless, pre-processing is very useful in a variety of
situations since it helps to suppress information irrelevant to the specific image process-
ing or analysis task. Therefore, the aim of pre-processing is an improvement of the image
data that suppresses undesired distortions or enhances some image features important for
further processing. Geometric transformations of images (e.g., rotation, scaling, trans-
lation) are also classified as pre-processing methods here since similar techniques are
used.

Here we classify image pre-processing methods into four categories according to the
size of the pixel neighborhood used for the calculation of a new pixel brightness. Sec-
tion 5.1 deals with pixel brightness transformations, Section 5.2 describes geometric
transformations, Section 5.3 considers methods that use a local neighborhood, and Sec-
tion 5.4 introduces image restoration that requires knowledge about the entire image.

Considerable redundancy of information in most images allows image pre-processing
methods to explore data to learn image characteristics in a statistical sense. These
characteristics are used either to suppress unintended degradations such as noise or to
enhance the image. Neighboring pixels corresponding to objects in real images usually
have the same or similar brightness value, so if a distorted pixel can be picked out from
the image, it may be restored as an average value of neighboring pixels.

If pre-processing aims to correct some degradation in the image, the nature of a priori
information is important:

e Some methods uses little or no knowledge about the nature of the degradation.
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5.1 Pixel brightness transformations 117

e Other methods assume knowledge of properties of the image acquisition device,
and conditions under which the image was obtained. The nature of noise (usually
its spectral characteristics) is sometimes known.

e A third approach uses knowledge about objects that are sought in the image. If
knowledge about objects is not available in advance, it can be estimated during the
processing.

5.1 Pixel brightness transformations

A brightness transformation modifies pixel brightness—the transformation depends on
the properties of a pixel itself. There are two classes of pixel brightness transformations:
brightness corrections and gray-scale transformations. Brightness correction mod-
ifies the pixel brightness taking into account its original brightness and its position in
the image. Gray-scale transformations change brightness without regard to position in
the image.

5.1.1 Position-dependent brightness correction

Ideally, the sensitivity of image acquisition and digitization devices should not depend
on position in the image, but this assumption is not valid in many practical cases. A lens
attenuates light more if it passes farther from the optical axis, and the photosensitive
part of the sensor is not of uniform sensitivity. Uneven object illumination is also a source
of degradation.

If degradation is systematic, it can be suppressed by brightness correction. A mul-
tiplicative error coefficient e(i, j) describes the change from the ideal. Assume g(i, ) is
the original undegraded image and f (i, j) is the degraded version. Then

[, 5) = e(i, 4) 9(i,j) - (5.1)

The error coeflicient e(4, j) can be obtained if a reference image ¢(¢, j) with known bright-
nesses is captured, the simplest being an image of constant brightness ¢. The degraded
result is the image f.(4,7). Then systematic brightness errors can be suppressed by

fg) _ cfij)

e(i,j)  fe(i,j)

This method can be used only if the image degradation process is stable.
This method implicitly assumes linearity of the transformation, which is not true

in reality because the brightness scale is limited to some interval. Equation (5.1) can

overflow, and the limits of the brightness scale are used instead, implying that the best

reference image has brightness that is far enough from both limits. If the gray-scale has

256 brightness levels, the ideal image has constant brightness values of 128.

9(i,j) = (5.2)

5.1.2 Gray-scale transformation

Gray-scale transformations do not depend on the position of the pixel in the image.
A transformation T of the original brightness p from scale [pg, px] into brightness ¢ from
a new scale [qo, gx] is given by

q="T(p). (5.3)
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118 Chapter 5: Image pre-processing

The most common gray-scale transformations are shown in Figure 5.1; the piecewise
linear function a enhances the image contrast between brightness values p; and ps. The
function b is called brightness thresholding and results in a black-and-white image;
the straight line ¢ denotes the negative transformation.

S
255 +«
- (@) contrast enhancement
- (b) threshold
(c) negative
8 .
; Figure 5.1: Some gray-scale transforma-
b b 255 tions. © Cengage Learning 2015.

Digital images have a limited number of gray-levels, so gray-scale transformations are
easy to realize both in hardware and software via a look-up table. Image signals usually
pass through a look-up table in image displays, enabling simple gray-scale transformation
in real time. The same principle can be used for color displays. A color signal consists of
three components—red, green, and blue; three look-up tables provide all possible color
scale transformations. (See Section 2.4 for more detail on color representation).

Gray-scale transformations are used mainly when an image is viewed by a human
observer, and contrast enhancement may be beneficial. A transformation for contrast
enhancement is usually found automatically using histogram equalization. The aim
is to create an image with equally distributed brightness levels over the whole brightness
scale (see Figure 5.2). Histogram equalization enhances contrast for brightness values
close to histogram maxima, and decreases contrast near minima.

H(p) G(q)

Figure 5.2: Histogram equalization.
p q © Cengage Learning 2015.

Denote the input histogram by H(p) and recall that the input gray-scale is [po, p]-
The intention is to find a monotonic pixel brightness transformation ¢ = 7 (p) such that
the desired output histogram G(q) is uniform over the whole output brightness scale

[q0, qr]-
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5.1 Pixel brightness transformations 119

The monotonic property of the transform 7 implies

k k
Z G(Qi) = ZH(pz) . (5-4)
i=0 i=0

The equalized histogram G(q) corresponds to the uniform probability density function f
whose function value is a constant
N2
f= . (5.5)
dr — qo
for an N x N image. For the ‘idealized’ continuous probability density, we can substitute
equation (5.5) into equation (5.4) and derive

“ N2(q— P
N? / s = Ve =a0) _ / H(s)ds (5.6)
q 9k — 4o dx — Qo Po
from which 7 can be derived as
_ P
0 =T() =25 [ Hes) ds v an. 6.7
Po

The integral in equation (5.7) is called the cumulative histogram, which is approxi-
mated by a sum in digital images, so the resulting histogram is not equalized ideally.
Of course, we are dealing with a discrete approximation, and seek a realization of
equation (5.7) that exploits as much of the available gray range as possible, and that gen-
erates a distribution invariant to reapplication of the procedure. Formally, the algorithm
is:
Algorithm 5.1: Histogram equalization
1. For an N x M image of G gray-levels, initialize an array H of length G to 0.
2. Form the image histogram: Scan every pixel p—if it has intensity g,, perform

Hlgp] = Hlgp] + 1.

Then let g, be the minimum g for which H[g] > 0 (the lowest occurring gray
level in the image).

3. Form the cumulative image histogram H.:

H.[0] = H[0],
Hc[g] = Hclg—1]+ H[g], g=12,...,G-1.
Let Hpnin = He[gmin)-
4. Set

155 = momrad <%(G _ 1)) .

5. Rescan the image and write an output image with gray-levels g4, setting

9q = T[gp] .
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120 Chapter 5: Image pre-processing

These results can be demonstrated on an X-ray CT image of a lung. An input image
and its equalization are shown in Figure 5.3; their respective histograms are shown in
Figure 5.4.

Figure 5.3: Histogram equalization. (a) Original image. (b) Equalized image. © Cengage
Learning 2015.
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Figure 5.4: Histogram equalization: Original and equalized histograms corresponding to Fig-
ure 5.3a,b. © Cengage Learning 2015.

The logarithmic gray-scale transformation function is another frequently used tech-
nique. It is also used to compensate for exponential y-correction used in cameras (see
Section 2.5.2).

Pseudo-color is another kind of gray-scale transform. where individual brightnesses
in the input monochromatic image are coded to some color. Since the human eye is very
sensitive to change in color, much more detail can be perceived in pseudo-colored images.

5.2 Geometric transformations

Geometric transforms permit elimination of the geometric distortion that occurs when
an image is captured, for example in an attempt to match remotely sensed images of the
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Y Y
T
—) . .
Figure 5.5: Geometric transform on a plane.
X x’ © Cengage Learning 2015.

same area taken a different times but from different positions: we will execute a geometric
transformation, and then subtract one image from the other. We consider geometric
transformations only in 2D, as this is sufficient for most digital images.

A geometric transform is a vector function T that maps the pixel (z,y) to a new
position (2/,y’)—an illustration of the whole region transformed on a point-to-point basis
is in Figure 5.5. T is defined by its two component equations

x’ = Tw(xay) ) y/ = Ty(xay) . (58)

The transformation functions 7, and T}, are either known in advance—for example, in
the case of rotation, translation, scaling—or can be determined from known original and
transformed images. Several pixels in both images with known correspondences are used
to derive the unknown transformation.

A geometric transform consists of two basic steps. First is the pixel co-ordinate
transformation, which maps the co-ordinates of the input image pixel to the point in
the output image. Output point co-ordinates will be continuous values (real numbers), as
position are unlikely to match the digital grid after the transform. The second step finds
the point in the digital raster which best matches the transformed point and determines
its brightness value. This is usually computed as an interpolation of the brightnesses
of several points in the neighborhood.

5.2.1 Pixel co-ordinate transformations

Equation (5.8) shows the general case of finding the co-ordinates of a point in the output
image after a geometric transform. It is usually approximated by a polynomial equation

m m-—nr m m-—r
x'zZZareryk, y'zZZkaxryk. (5.9)
r=0 k=0 r=0 k=0

This transform is linear with respect to the coeflicients a,x, b and so if pairs of corre-
sponding points (z,y), (2’,y’) in both images are known, it is possible to determine a,,
b, by solving a set of linear equations.

In the case where the geometric transform does not change rapidly depending on
position in the image, low-order polynomials, m = 2 or m = 3, are used, needing at least
6 or 10 pairs of corresponding points. Corresponding points should be distributed in the
image in a way that can express the geometric transformation—usually they are spread
uniformly.

Equation (5.8) is in practice approximated by a bilinear transform for which four
pairs of corresponding points are sufficient to find the transformation coefficients

¥ =agtarx+ayt+aszy,

' (5.10)
Yy =bg+bix+by+bsxy.
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122 Chapter 5: Image pre-processing

Even simpler is the affine transformation, for which three pairs of corresponding points
are sufficient to find the coefficients

/
r=at+art+axy,

, (5.11)
Y =by+biz+by.

The affine transformation includes typical geometric transformations such as rotation,
translation, scaling, and skewing.

A geometric transform applied to the whole image may change the co-ordinate sys-
tem, and a Jacobian determinant J provides information about how the co-ordinate

system changes
P@%ﬁ

(z,y)

If the transformation is singular (has no inverse), then J = 0. If the area of the image is
invariant under the transformation, then |J| = 1.
The Jacobian determinant for the bilinear transform (5.10) is

| 92’ /Ox 0O’ /Oy

= ‘ y'10x By /Oy (5:12)

J=uay1by—asb; + (a1 b3 —azby) x + (agby —az b3) y (5.13)
and for the affine transformation (5.11) it is
J=a1by—asby. (5.14)
Some important geometric transformations are:

e Rotation by the angle ¢ about the origin:

= zcosp+ysing,
!

y =—xsing+ycoso, (5.15)
J=1.

e Change of scale a in the x axis and b in the y axis:

a )
Yy =bx, (5.16)
J=ab
« Skewing by the angle ¢, given by:
¥ =x+ytang,
Y=y, (5.17)
J=1.

It is possible to approximate complex geometric transformations (distortion) by par-
titioning an image into smaller rectangular subimages; for each subimage, a simple ge-
ometric transformation is estimated using pairs of corresponding pixels. The geometric
transformation (distortion) is then repaired separately in each subimage.
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5.2.2 Brightness interpolation

Equation (5.8) provides new point co-ordinates (2’,y’) that do not in general fit the
discrete raster of the output image. Values on the integer grid are needed; each pixel
value in the output image raster can be obtained by brightness interpolation of some
neighboring non-integer samples [Moik, 1980].

The simpler the interpolation, the greater the loss in geometric and photometric ac-
curacy, but interpolation neighborhoods are often reasonably small due to computational
load. The three most common interpolation methods are nearest neighbor, linear, and
bi-cubic.

The interpolation problem is usually expressed in a dual way by determining the
brightness of the original point in the input image that corresponds to a point in the
output image lying on the raster. Assume we wish to compute the brightness value of the
pixel (z’,4') in the output image (integer numbers, illustrated by solid lines in figures).
The co-ordinates of the point (z,y) in the original image can be obtained by inverting
the planar transformation in equation (5.8):

(z,y) =T (2",y'). (5.18)

In general, the real co-ordinates after inverse transformation (dashed lines in figures)
do not fit the discrete raster (solid lines), and so the brightness is not known. The
only information available about the originally continuous image function f(z,y) is its
sampled version gs(I Az, k Ay). To get the brightness value of (x,y), the input image is
resampled.

Denote the result of the brightness interpolation by f,(x,y), where n distinguishes
different interpolation methods. The brightness can be expressed by the convolution
equation

folz,y) = i i gs(L Az, k Ay) hy(z — 1 Az, y — k Ay) . (5.19)

l=—0c0 k=—o0

The function h,, is called the interpolation kernel. Usually, only a small neighborhood
is used, outside which h,, is zero. Three examples of interpolation will illustrate this: for
clarity, the common simplification Ax = Ay = 1 is adopted.

Nearest-neighborhood interpolation assigns to the point (z,y) the brightness
value of the nearest point g in the discrete raster, see Figure 5.6. On the right side is the
interpolation kernel hy in the 1D case. The left side of Figure 5.6 shows how the new
brightness is assigned. Dashed lines show how the inverse planar transformation maps
the raster of the output image into the input image; full lines show the raster of the input

hl
e ‘
“’/f/ N ’I I/
II 1-- ®---- __.I__
': i I‘. Figure 5.6: Nearest-neighborhood
J‘f/‘ '-' \': interpolation. The discrete raster of
PR \® - the original image is depicted by the
' ' ! 205 0 05 «x solid line. @ Cengage Learning 2015.
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124 Chapter 5: Image pre-processing

image. Nearest-neighborhood interpolation is given by

fi(z,y) = gs(round(z), round(y)) . (5.20)

The position error of nearest-neighborhood interpolation is at most half a pixel. This
error is perceptible on objects with straight-line boundaries that may appear step-like
after the transformation.

Linear interpolation explores four points neighboring the point (z,y), and as-
sumes that the brightness function is linear in this neighborhood. Linear interpolation
is demonstrated in Figure 5.7, the left-hand side of which shows which points are used
for interpolation. Linear interpolation is given by the equation

fa(z,y) = (1 —a)(1 - b) gs(1, k)
+a(l-0)g(l+1,k)+b(1—a)gs(l,k+1)+abgs(l+1,k+1),

l=floor(z), a=xz-1, k=floor(y), b=y—k.

(5.21)

This can cause a small decrease in resolution and blurring due to its averaging nature
but the problem of step-like straight boundaries is reduced.

1T s - L ] h

' T -~ 2
1 ! 1
1 ! 1
IR RN
1 @ --]----
N /.’ \ H Figure 5.7: Linear interpolation.
\ : . The discrete raster of the original
IASEE N \ image is depicted by the solid line.
\» ' T -1 0 1 x © Cengage Learning 2015.

Bi-cubic interpolation improves the model of the brightness function by approx-
imating it locally by a bi-cubic polynomial surface; 16 neighboring points are used for
interpolation. The one-dimensional interpolation kernel (‘Mexican hat’) is shown in Fig-
ure 5.8 and is given by

1—2z? + |z for 0 <|z| <1,
hy=q4—8lz|+5[z*>— |z forl<|z|<2, (5.22)
0 otherwise.

Bi-cubic interpolation does not suffer from the step-like boundary problem of nearest-
neighborhood interpolation, and copes with linear interpolation blurring as well. Bi-
cubic interpolation is often used in raster displays that enable zooming with respect to
an arbitrary point. If the nearest-neighborhood method were used, areas of the same
brightness would increase. Bi-cubic interpolation preserves fine details in the image very
well.

Figure 5.8: Bi-cubic interpolation kernel.

0
—2.0\/ \,/20 © Cengage Learning 2015.
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5.3 Local pre-processing

Local pre-processing methods are divided into two groups according to the goal of the
processing. Smoothing aims to suppress noise or other small fluctuations in the image;
it is equivalent to the suppression of high frequencies in the Fourier transform domain.
Unfortunately, smoothing also blurs all sharp edges that bear important information
about the image. Gradient operators are based on local derivatives of the image func-
tion. Derivatives are bigger at locations of the image where the image function undergoes
rapid changes, and the aim of gradient operators is to indicate such locations in the im-
age. Gradient operators have a similar effect to suppressing low frequencies in the Fourier
transform domain. Noise is often high frequency in nature; unfortunately, if a gradient
operator is applied to an image, the noise level increases simultaneously. Clearly, smooth-
ing and gradient operators have conflicting aims. Some pre-processing algorithms solve
this problem and permit smoothing and edge enhancement simultaneously.

Another classification of local pre-processing methods is according to the transfor-
mation properties; linear and non-linear transformations can be distinguished. Linear
operations calculate the resulting value in the output image pixel f(, ) as a linear com-
bination of brightnesses in a local neighborhood O of the pixel g(4, j) in the input image.
The contribution of the pixels in the neighborhood O is weighted by coefficients h:

F,5) =Y h(i—m,j—n)g(m,n). (5.23)

(m,n)e0O

Equation (5.23) is equivalent to discrete convolution with the kernel h, which is called
a convolution mask. Rectangular neighborhoods O are often used with an odd number
of pixels in rows and columns, enabling specification of the central pixel of the neighbor-
hood.

The choice of the local transformation, size, and shape of the neighborhood O de-
pends strongly on the size of objects in the processed image. If objects are rather large,
an image can be enhanced by smoothing of small degradations.

5.3.1 Image smoothing

Image smoothing uses redundancy in image data to suppress noise, usually by some form
of averaging of brightness values in some neighborhood O. Smoothing poses the problem
of blurring sharp edges, and so we shall consider smoothing methods which are edge
preserving here, the average is computed only from points in the neighborhood which
have similar properties to the point being processed.

Local image smoothing can effectively eliminate impulse noise or degradations ap-
pearing as thin stripes, but does not work if degradations are large blobs or thick stripes.
Such problems may be addressed by image restoration techniques, described in Sec-
tion 5.4.

Averaging, statistical principles of noise suppression

Assume that the noise value v at each pixel is an independent random variable with zero
mean and standard deviation o. We might capture the same static scene under the same
conditions n times. From each captured image a particular pixel value ¢g;, i =1,...,n is
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126 Chapter 5: Image pre-processing

selected. An estimate of the correct value can be obtained as an average of these values,
with corresponding noise values vy, ..., v,
g1 +...+3gn Vi +...+U,

: 24
p + p (5.24)

The second term here describes the noise, which is again a random value with zero
mean and standard deviation o/y/n. Thus, if n images of the same scene are available,
smoothing can be accomplished without blurring the image by

n

Flind) = > aklind) (525)

k=1

This reasoning is a well-known statistical result: a random sample is taken from a pop-
ulation and the corresponding sample mean value is calculated. If random samples are
repeatedly selected and their sample mean values calculated, we would obtain a dis-
tribution of sample mean values. This distribution of sample means has some useful
properties:

e The mean value of the distribution of sample mean values is equal to the population
mean.

o The distribution of sample mean values has variance o/+/n, which is clearly smaller
than that of than the original population.

o If the original distribution is normal (Gaussian) then the distribution of sample
mean values is also normal. Better, the distribution of sample means converges to
normal whatever the original distribution. This is the central limit theorem.

e From the practical point of view, it is important that not too many random se-
lections have to be made. The central limit theorem tell us the distribution of
sample mean values without the need to create them. In statistics, usually about
30 samples are considered the lowest limit of the necessary number of observations.

Usually, only one noise corrupted is available, and averaging is then performed in a local
neighborhood. Results are acceptable if the noise is smaller in size than the smallest
objects of interest in the image, but blurring of edges is a serious disadvantage. Averaging
is a special case of discrete convolution [equation (5.23)]. For a 3 x 3 neighborhood, the
convolution mask A is

L
h=g |t 1 1. (5.26)
11 1

The significance of the pixel in the center of the convolution mask h or its 4-neighbors is
sometimes increased, as it better approximates the properties of noise with a Gaussian
probability distribution (Gaussian noise, see Section 2.3.6)

1 1

10

1

h = —
16

, h

— =
[ NS
— N =
DN = DN

1
2| . (5.27)
1 1

There are two commonly used smoothing filters whose coefficients gradually decrease to
have near-zero values at the window edges. This is the best way to minimize spurious
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(d)

Figure 5.9: Noise with Gaussian distribution and averaging filters. (a) Original image. (b) Su-
perimposed noise (random Gaussian noise characterized by zero mean and standard deviation
equal to one-half of the gray-level standard deviation of the original image). (c) 3 X 3 averaging.
(d) 7 x 7 averaging. © Cengage Learning 2015.

oscillations in the frequency spectrum (see the discussion of the uncertainty principle,
equation 3.24). These are the Gaussian and the Butterworth filters. Larger convolution
masks for averaging by Gaussian filter are created according to the Gaussian distribution
formula (equation 5.47) and the mask coefficients are normalized to have a unit sum. The
Butterworth filter will be explained in Section 5.3.8 dealing with local pre-processing in
the frequency domain.

An example will illustrate the effect of this noise suppression (low resolution im-
ages, 256 x 256, were chosen deliberately to show the discrete nature of the process).
Figure 5.9a shows an original image of Prague castle; Figure 5.9b shows the same image
with superimposed additive noise with Gaussian distribution; Figure 5.9¢ shows the result
of averaging with a 3 X 3 convolution mask (equation 5.27)—mnoise is significantly reduced
and the image is slightly blurred. Averaging with a larger mask (7 x 7) is demonstrated
in Figure 5.9d, where the blurring is much more serious.

Such filters can be very computationally costly, but this is considerably reduced in
the important special case of separable filters. Separability in 2D means that the
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convolution kernel can be factorized as a product of two one-dimensional vectors, and
theory provides a clue as to which convolution masks are separable.

As an example, consider a binomic filter. Its elements are binomic numbers which
are created as a sum of the corresponding two numbers in Pascal’s triangle. Consider
such a filter of size 5 x 5—it can be decomposed into a product of two 1D vectors, hy,

ho.
1 4 6 4 1 1
4 16 24 16 4 4
6 24 36 24 6| =[h|[ h ]=|6][1 4 6 4 1].
4 16 24 16 4 4
1 4 6 4 1 1

Suppose a convolution kernel is of size 2N + 1. Equation (5.23) allows the convolution
to be rewritten taking account of the special properties of separability

N N

N N
glz.y)= > Y h(mn) flz+my+n) = > hi(m) Y ho(n) fz+m,y+n).

m=—N n=—N m=—N n=—N

The direct calculation of the convolution according to equation (5.23) would need, in our
case of 5 x 5 convolution kernel, 25 multiplications and 24 additions for each pixel. If the
separable filter is used then only 10 multiplications and 8 additions suffice.

Averaging with limited data validity

Methods that average with limited data validity [McDonnell, 1981] try to avoid blurring
by averaging only those pixels which satisfy some criterion, the aim being to prevent
involving pixels that are part of a separate feature.

A very simple criterion is to define a brightness interval of invalid data [min, max]
(typically corresponding to noise of known image faults), and apply image averaging only
to pixels in that interval. For a point (m,n), the convolution mask is calculated in the
neighborhood O by the non-linear formula

N | for g(m +i,n + j) ¢ [min,max]
h(ig) = { 0 otherwise (5.28)
where (7,7) specify the mask element. Therefore, only values of pixels with invalid
gray-levels are replaced with an average of their neighborhoods, and only valid data
contribute to the averages. The power of this approach is illustrated in Figure 5.10—
with the exception of slight local blurring of the towers, the method successfully removes
significant image corruption.

A second method performs averaging only if the computed brightness change of
a pixel is in some pre-defined interval; this permits repair to large-area errors resulting
from slowly changing brightness of the background without affecting the rest of the image.

A third method uses edge strength (i.e., gradient magnitude) as a criterion. The
magnitude of some gradient operator (Section 5.3.2) is first computed for the entire image,
and only pixels with a small gradient are used in averaging. This method effectively
rejects averaging at edges and therefore suppresses blurring, but setting of the threshold
is laborious.
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Figure 5.10: Averaging with limited data validity. (a) Original corrupted image. (b) Result of
corruption removal. © Cengage Learning 2015.

Averaging according to inverse gradient

Within a convolution mask of odd size, the inverse gradient 6 of a point (4, j) with respect
to the central pixel (m,n) is defined as [Wang and Vagnucci, 1981]

1
lg(m,n) — g(i,5)|

If g(m,n) = g(i,7), then we define d(i,j) = 2, so 0 is in the interval (0,2], and is
smaller at the edge than in the interior of a homogeneous region. Weight coefficients in
the convolution mask h are normalized by the inverse gradient, and the whole term is
multiplied by 0.5 to keep brightness values in the original range: the mask coefficient
corresponding to the central pixel is defined as h(i,j) = 0.5. The constant 0.5 has the
effect of assigning half the weight to the central pixel (m,n), and the other half to its
neighborhood
8(i, j)

Z(m,n)eo 6(7”]) .

This method assumes sharp edges. When the convolution mask is close to an edge,
pixels from the region have larger coefficients than pixels near the edge, and it is not
blurred. Isolated noise points within homogeneous regions have small values of the inverse
gradient; points from the neighborhood take part in averaging and the noise is removed.

5(i, ) = (5.29)

h(i,j) = 0.5

(5.30)

Averaging using a rotating mask

The smoothing discussed thus far was linear, which has the disadvantage that edges in
the image are inevitably blurred. Alternative non-linear methods exist which reduce this.
The neighborhood of the current pixel is inspected and divided into two subsets by a
homogeneity criterion of the user’s choice. One set consists of all pixels neighboring the
current pixel or any pixel already included in this set, which satisfy the homogeneity
criterion. The second set is the complement. This selection operation is non-linear
and causes the whole filter to be non-linear. Having selected the homogeneous subset
containing the current pixel, the most probable value is sought in it by a linear or non-
linear technique.
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Averaging using a rotating mask is such a non-linear method that avoids edge blur-
ring, and the resulting image is in fact sharpened [Nagao and Matsuyama, 1980]. The
brightness average is calculated only within this region; a brightness dispersion o2 is used
as the region homogeneity measure. Let n be the number of pixels in a region R and g
be the input image. Dispersion ¢? is calculated as

2

=2 3 eid) -~ 3 el (5.31)

(i.)ER (i.)ER

Having computed region homogeneity, we consider its shape and size. The eight possible
3 x 3 masks that cover a 5 x 5 neighborhood of a current pixel (marked by the small
cross) are shown in Figure 5.11. The ninth mask is the 3 x 3 neighborhood of the current
pixel itself. Other mask shapes—Ilarger or smaller—can also be used.

Figure 5.11: Eight possible rotated
1 2 - 7 8 3x3 masks. © Cengage Learning 2015.

Algorithm 5.2: Smoothing using a rotating mask
1. Consider each image pixel (i, 7).

2. Calculate dispersion for all possible mask rotations about pixel (i, j) according
to equation (5.31).

3. Choose the mask with minimum dispersion.

4. Assign to the pixel f(i,7) in the output image f the average brightness in the
chosen mask.

Algorithm 5.2 can be used iteratively and the process converges quite quickly to a sta-
ble state. The size and shape of masks influence the convergence—the smaller the mask,
the smaller are the changes and more iterations are needed. A larger mask suppresses
noise faster and the sharpening effect is stronger. On the other hand, information about
details smaller than the mask may be lost. The number of iterations is also influenced
by the shape of regions in the image and noise properties.

Median filtering

In probability theory, the median divides the higher half of a probability distribution
from the lower half. For a random variable x, the median M is the value for which the
probability of the outcome x < M is 0.5. The median of a finite list of real numbers
is simply found by ordering the list and selecting the middle member. Lists are often
constructed to be odd in length to secure uniqueness.
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Median filtering is a non-linear smoothing method that reduces the blurring of
edges [Tyan, 1981], in which the idea is to replace the current point in the image by
the median of the brightnesses in its neighborhood. The median in the neighborhood
is not affected by individual noise spikes and so median smoothing eliminates impulse
noise quite well. Further, as median filtering does not blur edges much, it can be applied
iteratively. Clearly, performing a sort on pixels within a (possibly large) rectangular
window at every pixel position may become very expensive. A more efficient approach
[Huang et al., 1979; Pitas and Venetsanopoulos, 1990] is to notice that as the window
moves across a row by one column, the only change to its contents is to lose the leftmost
column and replace it with a new right column—for a median window of m rows and n
columns, mn — 2m pixels are unchanged and do not need re-sorting. The algorithm is as
follows:

Algorithm 5.3: Efficient median filtering

1. Set

t=—.
2

(We would always avoid unnecessary floating point operations: if m and n are
both odd, round ¢.)

2. Position the window at the beginning of a new row, and sort its contents. Con-
struct a histogram H of the window pixels, determine the median m, and record
Nm, the number of pixels with intensity less than or equal to m.

3. For each pixel p in the leftmost column of intensity p4, perform

Hipg] = H[pg] - 1.

Further, if p, < m, set
Ny, = Ny, — 1.

4. Move the window one column right. For each pixel p in the rightmost column
of intensity p,, perform

Hipg] = H[pg] + 1.

If py, < m, set
N = Ny + 1.

5. If n,, =t then go to (8).

6. If n,, >t then go to (7).
Repeat

m=m-++1,

Ny, = Ny, + H[m] ,

until n, > t. Go to (8).
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7. (We have n,, > t, if here). Repeat

Ny, = Ny, — H[m] ,

m=m—1,
until n,, <t.

8. If the right-hand column of the window is not at the right-hand edge of the
image, go to (3).

9. If the bottom row of the window is not at the bottom of the image, go to (2).

Median filtering is illustrated in Figure 5.12. The main disadvantage of median filter-
ing in a rectangular neighborhood is its damaging of thin lines and sharp corners—this can
be avoided if another shape of neighborhood is used. For instance, if horizontal /vertical
lines need preserving, a neighborhood such as that in Figure 5.13 can be used.

Median smoothing is a special instance of more general rank filtering techniques
[Rosenfeld and Kak, 1982; Yaroslavskii, 1987], the idea of which is to order pixels in some
neighborhood into a sequence. The results of pre-processing are some statistics over this
sequence, of which the median is one possibility. Another variant is the maximum or
the minimum values of the sequence. This defines generalizations of dilation and erosion
operators (Chapter 13) in images with more brightness values.

A similar generalization of median techniques is given in [Borik et al., 1983]. Their
method is called order statistics (OS) filtering. Values in the neighborhood are again
ordered into sequence, and a new value is given as a linear combination of the values of
this sequence.

Figure 5.12: Median filtering. (a) Image corrupted with impulse noise (14% of image area
covered with bright and dark dots). (b) Result of 3 x 3 median filtering. © Cengage Learning
2015.
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Figure 5.13: Horizontal/vertical line preserving neighbor-
hood for median filtering. © Cengage Learning 2015.

Non-linear mean filter

The non-linear mean filter is another generalization of averaging techniques [Pitas and
Venetsanopulos, 1986]; it is defined by

Z(i,j)EO a(ia ]) U(g(l, j)) )

(5.32)

m,n) =u"!
flm,m) ( > ieo alis )

where f(m,n) is the result of the filtering, g(¢,j) is the pixel in the input image, and O
is a local neighborhood of the current pixel (m,n). The function u of one variable has
an inverse function u~!; the a(i,j) are weight coefficients.

If the weights a(i, j) are constant, the filter is called homomorphic. Some homo-
morphic filters used in image processing are:

o Arithmetic mean, u(g) =g .
o Harmonic mean, u(g) = 1/g .

o Geometric mean, u(g) = logg .

5.3.2 Edge detectors

Edge detectors are a collection of very important local image pre-processing methods
used to locate changes in the intensity function; edges are pixels where this function
(brightness) changes abruptly.

Neurological and psychophysical research suggests that locations in the image in
which the function value changes abruptly are important for image perception. Edges
are to a certain degree invariant to changes of illumination and viewpoint. If only edge
elements with strong magnitude (edgels) are considered, such information often suffices
for image understanding. The positive effect of such a process is that it leads to sig-
nificant reduction of image data. Nevertheless such data reduction does not undermine
understanding the content of the image (interpretation) in many cases. Edge detection
provides appropriate generalization of the image data; for instance, line drawings per-
form such a generalization, see the example by the German painter Albrecht Diirer in
Figure 5.14.

We shall consider which physical phenomena in the image formation process lead to
abrupt changes in image values—see Figure 5.15. Calculus describes changes of continu-
ous functions using derivatives; an image function depends on two variables—co-ordinates
in the image plane—and so operators describing edges are expressed using partial deriva-
tives. A change of the image function can be described by a gradient that points in the
direction of the largest growth of the image function.
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Figure 5.14: Artist’s mother, year 1514.
Albrecht Diirer (1471-1528).

surface normal discontinuity
depth discontinuity
highlights

surface color/texture

shadow/illumination discontinuity

]

T g

Figure 5.15: Origin of edges, i.e., physical phenomena in image formation process which lead to
edges in images. At right, a Canny edge detection (see Section 5.3.5). @ Cengage Learning 2015.

An edge is a property attached to an individual pixel and is calculated from the
image function behavior in a neighborhood of that pixel. It is a vector variable with
two components, magnitude and direction. The edge magnitude is the magnitude of
the gradient, and the edge direction ¢ is rotated with respect to the gradient direction
by —90°. The gradient direction gives the direction of maximum growth of the function,
e.g., from black f(¢,7) = 0 to white f(¢,7) = 255. This is illustrated in Figure 5.16, in
which closed lines are lines of equal brightness. The orientation 0° points east.

Edges are often used in image analysis for finding region boundaries. Provided that
the region has homogeneous brightness, its boundary is at the pixels where the image
function varies and so in the ideal case without noise consists of pixels with high edge

gradient ¥

Figure 5.16: Gradient direction and
edge direction ® edge direction. © Cengage Learning
2015.
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magnitude. It can be seen that the boundary and its parts (edges) are perpendicular
to the direction of the gradient. Figure 5.17 shows examples of several standard edge
profiles. Edge detectors are usually tuned for some type of edge profile.

4 g 4 g

Step Roof Line ‘ ’ Noisy

X X x X
Figure 5.17: Typical edge profiles. © Cengage Learning 2015.

The gradient magnitude |grad g(«,y)| and gradient direction 1) are continuous image

functions calculated as
dg 2 g 2
}grad g(r,y)} = \/(8:5) + (8y ) (5.33)

s,

=g 5.34
oz’ Oy ( )
where arg(z,y) is the angle (in radians) from the z axis to (z,y). Sometimes we are
interested only in edge magnitudes without regard to their orientations—a linear differ-
ential operator called the Laplacian may then be used. The Laplacian has the same
properties in all directions and is therefore invariant to rotation. It is defined as
Pg(x.y)  Pg(z,y)
Vig(z,y) = ’ L 5.35
o(ey) = =50+ I8 (535)

Image sharpening [Rosenfeld and Kak, 1982] has the objective of making edges steeper—
the sharpened image is intended to be observed by a human. The sharpened output image
f is obtained from the input image g as

[, 5) = 9(i,5) = C5(, j) , (5.36)

where C' is a positive coefficient which gives the strength of sharpening and S(i, ) is
a measure of the image function sheerness, calculated using a gradient operator. The
Laplacian is very often used for this purpose. Figure 5.18 gives an example of image
sharpening using a Laplacian.

Image sharpening can be interpreted in the frequency domain as well. We know
that the result of the Fourier transform is a combination of harmonic functions. The
derivative of the harmonic function sin(nx) is n cos(nz); thus the higher the frequency,
the higher the magnitude of its derivative.

A similar image sharpening technique to that of equation (5.36), called unsharp
masking, is often used in printing industry applications [Jain, 1989]. A signal propor-
tional to an unsharp (e.g., heavily blurred by a smoothing operator) image is subtracted
from the original image. A digital image is discrete in nature and so equations (5.33) and
(5.34), containing derivatives, must be approximated by differences. The first differ-
ences of the image g in the vertical direction (for fixed ¢) and in the horizontal direction
(for fixed j) are given by

Aig(i,j) = gi,5) — g(i —n,j) ,
Ajg(i,g) = g(i,5) — g(i,5 —n) (5.37)

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



136 Chapter 5: Image pre-processing

(a)

Figure 5.18: Laplace gradient operator. (a) Laplace edge image using the 8-connectivity mask.
(b) Sharpening using the Laplace operator (equation 5.36, C = 0.7). Compare the sharpening
effect with the original image in Figure 5.9a. © Cengage Learning 2015.

where n is a small integer, usually 1. The value n should be chosen small enough to
provide a good approximation to the derivative, but large enough to neglect unimportant
changes in the image function. Symmetric expressions for the differences,
Ajgli,g) =g(i,j+n)—g(i,j—n),
are not usually used because they neglect the impact of the pixel (i, j) itself.
Gradient operators as a measure of edge sheerness can be divided into three cate-
gories:

1. Operators approximating derivatives of the image function using differences. Some
are rotationally invariant (e.g., Laplacian) and thus are computed from one convo-
lution mask only. Others, which approximate first derivatives, use several masks.
The orientation is estimated on the basis of the best matching of several simple
patterns.

2. Operators based on zero-crossings of the image function second derivative (e.g.,
Marr-Hildreth or Canny edge detectors).

3. Operators which attempt to match an image function to a parametric model of
edges.

The remainder of this section will consider some of the many operators which fall into
the first category, and the next section will consider the second. The last category is
briefly outlined in Section 5.3.6.

Edge detection is an extremely important step facilitating higher-level image analysis
and remains an area of active research. Examples of the variety of approaches found in
current literature are fuzzy logic, neural networks, or wavelets. It may be difficult to
select the most appropriate edge detection strategy; some comparisons of edge detec-
tion approaches and an assessment of their performance may be found in [Ramesh and
Haralick, 1994; Demigny et al., 1995; Senthilkumaran and Rajesh, 2009).
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Individual gradient operators that examine small local neighborhoods are in fact
convolutions (cf. equation 5.23), and can be expressed by convolution masks. Operators
which are able to detect edge direction are represented by a collection of masks, each
corresponding to a certain direction.

Roberts operator

The Roberts operator is one of the oldest [Roberts, 1965], and is very easy to compute
as it uses only a 2 x 2 neighborhood of the current pixel. Its masks are

1 0 0 1
hy = [0 _J , ho = [_1 0] , (5.39)
so the magnitude of the edge is computed as
|9(i,3) = 9(i+ 1,5+ )] + 96,5 +1) —gli+1,5)] - (5.40)

The primary disadvantage of the Roberts operator is its high sensitivity to noise, because
very few pixels are used to approximate the gradient.

Laplace operator

The Laplace operator V? is a very popular operator approximating the second derivative
which gives the edge magnitude only. The Laplacian, equation (5.35), is approximated in
digital images by a convolution sum. A 3 x 3 mask h is often used; for 4-neighborhoods
and 8-neighborhoods it is defined as

0 1 0] 1 1 1
h=|1 -4 1|, h=1|1 -8 1] . (5.41)
0 1 0 1 1 1

A Laplacian operator with stressed significance of the central pixel or its neighborhood
is sometimes used. In this approximation it loses invariance to rotation

2 -1 2] —1 2 -1
h=|-1 —4 -1, h=|2 —4 2|. (5.42)
2 -1 2] -1 2 -1

The Laplacian operator has a disadvantage—it responds doubly to some edges in the
image.

Prewitt operator

The Prewitt operator, similarly to the Sobel, Kirsch, and some other operators, approx-
imates the first derivative. The gradient is estimated in eight (for a 3 x 3 convolution
mask) possible directions, and the convolution result of greatest magnitude indicates the
gradient direction. Larger masks are possible. We present only the first three 3 x 3
masks for each operator; the others can be created by simple rotation.

1 1 1 0 1 1 10 1
hi=| 0 0 0|, ho=|-1 0 1|, hy=|-1 0 1|, ... (543)
1 -1 -1 1 -1 0 10 1

The direction of the gradient is given by the mask giving maximal response. This is also
the case for all the following operators approximating the first derivative.
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(b)
!
bl ﬁ . =
beie, =
.l.':”ﬂ." H iR
.Ill,li:'l -Hi‘l"' lh |J I'b |I R
] i i 1 e ¢
1'I" ‘It‘;{ f"{"‘."'! F’,'i H”'\l
dii ""‘qu la' Illlh

Figure 5.19: First-derivative edge detection using Prewitt operators. (a) North direction (the
brighter the pixel value, the stronger the edge). (b) East direction. (c) Strong edges from (a).
(d) Strong edges from (b). © Cengage Learning 2015.

Sobel operator

1 2 1 0 1 2 -1 0 1
hi=| 0 0 0|, ho=|-1 0 1|, hy=1[-2 0 2|, ... (5.44)
1 -2 -1 —2 —1 0 -1 0 1

The Sobel operator is often used as a simple detector of horizontality and verticality of
edges, in which case only masks h; and hgz are used. If the h; response is y and the hg
response z, we might then derive edge strength (magnitude) as

v x? + g2 or || + |y| (5.45)

and direction as arctan(y/x).
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Kirsch operator

3 3 3 3 33 -5 3 3
hi=|3 0 3|, ha=|-5 0 3|, hy=|-5 0 3|, ... (5.46)
-5 -5 -5 -5 -5 3 -5 3 3

To illustrate the application of gradient operators on real images, consider again the
image given in Figure 5.9a. The Laplace edge image calculated is shown in Figure 5.18a;
the value of the operator has been histogram equalized to enhance its visibility.

The properties of an operator approximating the first derivative are demonstrated
using the Prewitt operator—results of others are similar. The original image is again
given in Figure 5.9a; Prewitt approximations to the directional gradients are in Fig-
ures 5.19a,b, in which north and east directions are shown. Significant edges (those with
above-threshold magnitude) in the two directions are given in Figures 5.19¢,d.

5.3.3 Zero-crossings of the second derivative

In the 1970s, Marr’s theory (see Section 11.1.1) concluded from neurophysiological exper-
iments that object boundaries are the most important cues that link an intensity image
with its interpretation. Edge detection techniques existing at that time (e.g., the Kirsch,
Sobel, and Pratt operators) were based on convolution in very small neighborhoods and
worked well only for specific images. The main disadvantage of these edge detectors is
their dependence on the size of the object and sensitivity to noise.

An edge detection technique based on the zero-crossings of the second derivative
(in its original form, the Marr-Hildreth edge detector [Marr and Hildreth, 1980, 1991]
explores the fact that a step edge corresponds to an abrupt change in the image function.
The first derivative of the image function should have an extremum at the position
corresponding to the edge in the image, and so the second derivative should be zero at
the same position; however, it is much easier and more precise to find a zero-crossing
position than an extremum. In Figure 5.20 this principle is illustrated in 1D for the sake
of simplicity. Figure 5.20a shows step edge profiles of the original image function with
two different slopes, Figure 5.20b depicts the first derivative of the image function, and
Figure 5.20c illustrates the second derivative; notice that this crosses the zero level at
the same position as the edge.

Considering a step-like edge in 2D, the 1D profile of Figure 5.20a corresponds to
a cross section through the 2D step. The steepness of the profile will change if the

) WAL S
X

Ve

Jx) Sx) S
i Figure 5.20: 1D edge profile of the
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orientation of the cutting plane changes—the maximum steepness is observed when the
plane is perpendicular to the edge direction.

The crucial question is how to compute the second derivative robustly. One possi-
bility is to smooth an image first (to reduce noise) and then compute second derivatives.
When choosing a smoothing filter, there are two criteria that should be fulfilled [Marr
and Hildreth, 1980]. First, the filter should be smooth and roughly band limited in the
frequency domain to reduce the possible number of frequencies at which function changes
can take place. Second, the constraint of spatial localization requires the response of a
filter to be from nearby points in the image. These two criteria are conflicting, but they
can be optimized simultaneously using a Gaussian distribution. In practice, one has to
be more precise about what is meant by the localization performance of an operator, and
the Gaussian may turn out to be suboptimal. We shall consider this in the next section.

The 2D Gaussian smoothing operator G(z,y) (also called a Gaussian filter, or simply
a Gaussian) is given by

G(z,y) = e~ (@ Hv?)/20% (5.47)

where z, y are the image co-ordinates and o is a standard deviation of the associated
probability distribution. Sometimes this is presented with a normalizing factor

1 —(22+443?) /202 1 (22 402) /202
G(z,y) = 53¢ (@ +y7)/2 or  G(z,y) = e (@ +y*)/20°

The standard deviation ¢ is the only parameter of the Gaussian filter—it is proportional
to the size of the neighborhood on which the filter operates. Pixels more distant from
the center of the operator have smaller influence, and pixels farther than 30 from the
center have negligible influence.

Our goal is to obtain a second derivative of a smoothed 2D function f(x,y). We
have already seen that the Laplace operator V? gives the second derivative, and is non-
directional (isotropic). Consider then the Laplacian of an image f(z,y) smoothed by a
Gaussian (expressed using a convolution ). The operation is often abbreviated as LoG,
from Laplacian of Gaussian

v? [G’(x,y,a) * f(x,y)] ) (5.48)

The order of performing differentiation and convolution can be interchanged because of
the linearity of the operators involved

[V2G(x,y,0)]  f(2,y) . (5.49)

The derivative of the Gaussian filter V2G can be pre-computed analytically, since it is
independent of the image under consideration, and so the complexity of the composite
operation is reduced. From equation (5.47), we see

906G _ _ (i) o—(@+y?)/20?
Ox o? ’
and similarly for y. Hence

2 2 2 2
L R W AL A T N W e Yo
0x2 o2 ooy o2 \ o2
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and so ) )
1 [z +y —(2?40?) /202
V2G($,y70) — ; <0.2 — 2) e (z°+y~)/20 )
After introducing a normalizing multiplicative coefficient ¢, we get a convolution mask
of a LoG operator:

2 2 2
h(z,y) = c (x ty —20 ) e~ (@ H+v)/207 (5.50)

ot

where ¢ normalizes the sum of mask elements to zero. Because of its shape, the inverted
LoG operator is commonly called a Mexican hat. An example of a 5 x 5 discrete
approximation [Jain et al., 1995] (wherein a 17 x 17 mask is also given) is

0 0 -1 0 0

0 -1 -2 -1 0
-1 -2 16 -2 -1

0o -1 -2 -1

0 0 -1 0 0

Of course, these masks represent truncated and discrete representations of infinite con-
tinuous functions, and care should be taken in avoiding errors in moving to this repre-
sentation [Gunn, 1999].

Finding second derivatives in this way is very robust. Gaussian smoothing effectively
suppresses the influence of the pixels that are more than a distance 3o from the current
pixel; then the Laplace operator is an efficient and stable measure of changes in the
image.

After image convolution with V2@, the locations in the convolved image where the
zero level is crossed correspond to the positions of edges. The advantage of this approach
compared to classical edge operators of small size is that a larger area surrounding the
current pixel is taken into account; the influence of more distant points decreases accord-
ing to the o of the Gaussian. In the ideal case of an isolated step edge, the ¢ variation
does not affect the location of the zero-crossing.

Convolution masks become large for larger o; for example, o = 4 needs a mask about
40 pixels wide. Fortunately, there is a separable decomposition of the V2G operator
[Huertas and Medioni, 1986] that can speed up computation considerably.

The practical implication of Gaussian smoothing is that edges are found reliably.
If only globally significant edges are required, the standard deviation o of the Gaus-
sian smoothing filter may be increased, having the effect of suppressing less significant
evidence.

The V2G operator can be very effectively approximated by convolution with a mask
that is the difference of two Gaussian averaging masks with substantially different o—
this method is called the difference of Gaussians, abbreviated as DoG. The correct
ratio of the standard deviations o of the Gaussian filters is discussed in [Marr, 1982].

When implementing a zero-crossing edge detector, trying to detect zeros in the LoG
or DoG image will inevitably fail, while naive approaches of thresholding the LoG/DoG
image and defining the zero-crossings in some interval of values close to zero give piece-
wise disconnected edges at best. To create a well-functioning second-derivative edge
detector, it is necessary to implement a true zero-crossing detector. A simple detector
may identify a zero-crossing in a moving 2 x 2 window, assigning an edge label to any
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142 Chapter 5: Image pre-processing

one corner pixel, say the upper left, if LoG/DoG image values of both polarities occur
in the 2 x 2 window; no edge label would be given if values within the window are either
all positive or all negative. Another post-processing step to avoid detection of zero-
crossings corresponding to non-significant edges in regions of almost constant gray-level
would admit only those zero-crossings for which there is sufficient edge evidence from a
first-derivative edge detector. Figure 5.21 provides several examples of edge detection
using zero crossings of the second derivative.

Many other approaches improving zero-crossing performance can be found in the
literature [Qian and Huang, 1994; Mehrotra and Shiming, 1996]; some of them are used
in pre-processing [Hardie and Boncelet, 1995] or post-processing steps [Alparone et al.,
1996]. The traditional second-derivative zero-crossing technique has disadvantages as

SR

'-:,~r
@@r@@mmt’ﬁﬁ

Figure 5.21: Zero-crossings of the second derivative, see Figure 5.9a for the original image.
(a) DoG image (o1 = 0.10,02 = 0.09), dark pixels correspond to negative values, bright pixels
to positive. (b) Zero-crossings of the DoG image. (¢) DoG zero-crossing edges after removing
edges lacking first-derivative support. (d) LoG zero-crossing edges (o = 0.20) after removing
edges lacking first-derivative support—note different scale of edges due to different Gaussian
smoothing parameters. © Cengage Learning 2015.
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well. First, it smooths the shape too much; for example, sharp corners are lost. Second,
it tends to create closed loops of edges (nicknamed the ‘plate of spaghetti’ effect).
Neurophysiological experiments [Marr, 1982; Ullman, 1981] provide evidence that the
human eye retina in the form of the ganglion cells performs operations very similar to
the V2G operations. Each such cell responds to light stimuli in a local neighborhood
called the receptive field, which has a center-surround organization of two complemen-
tary types, off-center and on-center. When a light stimulus occurs, activity of on-center
cells increases and that of off-center cells is inhibited. The retinal operation on the image
can be described analytically as the convolution of the image with the V2@ operator.

5.3.4 Scale in image processing

Many image processing techniques work locally, theoretically at the level of individual
pixels—edge detection methods are an example. The essential problem in such computa-
tion is scale. Edges correspond to the gradient of the image function, which is computed
as a difference between pixels in some neighborhood. There is seldom a sound reason for
choosing a particular size of neighborhood, since the ‘right’ size depends on the size of
the objects under investigation. To know what the objects are assumes that it is clear
how to interpret an image, and this is not in general known at the pre-processing stage.
The solution to the problem formulated above is a special case of a general paradigm
called the system approach. This methodology is common in cybernetics or general
system theory to study complex phenomena.

The phenomenon under investigation is expressed at different resolutions of the de-
scription, and a formal model is created at each resolution. Then the qualitative behavior
of the model is studied under changing resolution of the description. Such a methodology
enables the deduction of meta-knowledge about the phenomenon that is not seen at the
individual description levels.

Different description levels are easily interpreted as different scales in the domain
of digital images. The idea of scale is fundamental to Marr’s edge detection technique,
introduced in Section 5.3.3, where different scales are provided by different sizes of Gaus-
sian filter masks. The aim was not only to eliminate fine scale noise but also to separate
events at different scales arising from distinct physical processes [Marr, 1982].

Assume that a signal has been smoothed with several masks of variable sizes. Every
setting of the scale parameters implies a different description, but it is not known which
one is correct; for many tasks, no one scale is categorically correct. If the ambiguity
introduced by the scale is inescapable, the goal of scale-independent description is to
reduce this ambiguity as much as possible. Here we shall consider just three examples of
the application of multiple scale description to image analysis.

The first approach [Lowe, 1989] aims to process planar noisy curves at a range of
scales—the segment of curve that represents the underlying structure of the scene needs
to be found. The problem is illustrated by an example of two noisy curves; see Figure
5.22. One of these may be interpreted as a closed (perhaps circular) curve, while the
other could be described as two intersecting straight lines.

Local tangent direction and curvature of the curve are significant only with some idea
of scale after the curve is smoothed by a Gaussian filter with varying standard deviations.

A second approach [Witkin, 1983], called scale-space filtering, tries to describe
signals qualitatively with respect to scale. The problem was formulated for 1D signals
f(x), but it can easily be generalized for 2D functions as images. The original 1D signal
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Figure 5.22: Curves that may be analyzed at multiple scales.
© Cengage Learning 2015.

f(x) is smoothed by convolution with a 1D Gaussian
G(z,0) = e /207 (5.51)
If the standard deviation o is slowly changed, the function
F(z,0) = f(z) * G(z,0) (5.52)

represents a surface on the (z, o) plane that is called the scale-space image. Inflexion
points of the curve F(x,0q) for a distinct value og

32F(x,ao) =0 and agF(an-O)

o3 o5 #0 (5.53)

describe the curve f(z) qualitatively. The positions of inflexion points can be drawn as
a set of curves in (z,0) co-ordinates (see Figure 8.16). Coarse to fine analysis of the
curves corresponding to inflexion points, i.e., in the direction of decreasing value of the
o, localizes large-scale events.

The qualitative information contained in the scale-space image can be transformed
into a simple interval tree that expresses the structure of the signal f(z) over all
observed scales. The interval tree is built from the root that corresponds to the largest
scale (omax), and then the scale-space image is searched in the direction of decreasing o.
The interval tree branches at those points where new curves corresponding to inflexion
points appear (see Chapter 8 and Section 8.2.4).

The third example of the application of scale is that used by the popular Canny
edge detector. Since the Canny detector is a significant and widely used contribution
to edge detection techniques, its principles will be explained in detail.

5.3.5 Canny edge detection

Canny proposed an approach to edge detection [Canny, 1986] that is optimal for step
edges corrupted by white noise. The optimality of the detector is related to three criteria.

e The detection criterion expresses the fact that important edges should not be
missed and that there should be no spurious responses.

e The localization criterion says that the distance between the actual and located
position of the edge should be minimal.

e The one response criterion minimizes multiple responses to a single edge. This is
partly covered by the first criterion, since when there are two responses to a single
edge, one of them should be considered as false. This third criterion solves the
problem of an edge corrupted by noise and works against non-smooth edge operators
[Rosenfeld and Thurston, 1971].
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Canny’s derivation is based on several ideas.

1. The edge detector was expressed for a 1D signal and the first two optimality criteria.
A closed-form solution was found using the calculus of variations.

2. If the third criterion (multiple responses) is added, the best solution may be found
by numerical optimization. The resulting filter can be approximated effectively
with error less than 20% by the first derivative of a Gaussian smoothing filter with
standard deviation o [Canny, 1986]; the reason for doing this is the existence of
an effective implementation. There is a strong similarity here to the LoG based
Marr-Hildreth edge detector [Marr and Hildreth, 1980], see Section 5.3.3.

3. The detector is then generalized to two dimensions. A step edge is given by its
position, orientation, and possibly magnitude (strength). It can be shown that
convolving an image with a symmetric 2D Gaussian and then differentiating in the
direction of the gradient (perpendicular to the edge direction) forms a simple and
effective directional operator (recall that the Marr-Hildreth zero-crossing operator
does not give information about edge direction, as it uses a Laplacian filter).
Suppose G is a 2D Gaussian [equation (5.47)] and assume we wish to convolve the
image with an operator GG,, which is a first derivative of G in some direction n

oG

G, =52 =nVG. (5.54)

We would like n to be perpendicular to the edge: this direction is not known in
advance, but a robust estimate of it based on the smoothed gradient direction is
available. If f is the image, the normal to the edge n is estimated as

N ((ES))

= N@ (5.55)

The edge location is then at the local maximum of the image f convolved with the
operator GG,, in the direction n

0

%Gn*f:O. (5.56)
Substituting in equation (5.56) for G,, from equation (5.54), we get

92

WG*f:O. (5.57)

This equation (5.57) illustrates how to find local maxima in the direction perpendic-
ular to the edge; this operation is often referred to as non-maximal suppression
(see also Algorithm 6.4).

As the convolution and derivative are associative operations in equation (5.57), we
can first convolve an image f with a symmetric Gaussian G and then compute
the directional second-derivative using an estimate of the direction n computed
according to equation (5.55). The strength of the edge (magnitude of the gradient
of the image intensity function f) is measured as

|G x f] = |V(G = f)]- (5.58)
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4. Spurious responses to a single edge caused by noise usually create a ‘streaking’
problem that is very common in edge detection in general. The output of an
edge detector is usually thresholded to decide which edges are significant, and
streaking may break up edge contours as the operator fluctuates above and below
the threshold. Streaking can be eliminated by thresholding with hysteresis,
employing a hard (high) threshold and a soft (lower) threshold—see Algorithm 6.5.
The low and high thresholds are set according to an estimated signal-to-noise ratio
[Canny, 1986].

5. The correct scale for the operator depends on the objects contained in the image.
The solution to this unknown is to use multiple scales and aggregate information
from them. Different scales for the Canny detector are represented by different
standard deviations o of the Gaussians. There may be several scales of operators
that give significant responses to edges (i.e., signal-to-noise ratio above the thresh-
old); in this case the operator with the smallest scale is chosen, as it gives the best
localization of the edge.

Canny proposed a feature synthesis approach. All significant edges from the
operator with the smallest scale are marked first, and the edges of a hypothetical
operator with larger o are synthesized from them (i.e., a prediction is made of how
the large o should perform on the evidence gleaned from the smaller c—see also
Section 5.3.4 and Figure 8.16). Then the synthesized edge response is compared
with the actual edge response for larger 0. Additional edges are marked only if they
have a significantly stronger response than that predicted from synthetic output.

This procedure may be repeated for a sequence of scales, a cumulative edge map
being built by adding those edges that were not identified at smaller scales.

Algorithm 5.4: Canny edge detector
1. Convolve an image f with a Gaussian of scale o.

2. Estimate local edge normal directions n using equation (5.55) for each pixel in
the image.

3. Find the location of the edges using equation (5.57) (non-maximal suppression).
4. Compute the magnitude of the edge using equation (5.58).

5. Threshold edges in the image with hysteresis (Algorithm 6.5) to eliminate spu-
rious responses.

6. Repeat steps (1) through (5) for ascending values of the standard deviation o.

7. Aggregate the final information about edges at multiple scale using the ‘feature
synthesis’ approach.

Figure 5.23a shows the edges of Figure 5.9a detected by a Canny operator with
o = 1.0. Figure 5.23b shows the edge detector response for o = 2.8 (feature synthesis
has not been applied here).
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Figure 5.23: Canny edge detection at two different scales. © Cengage Learning 2015.

Canny’s detector represents a complicated but major contribution to edge detection.
Its full implementation is unusual, it being common to find implementations that omit
feature synthesis—that is, just steps 1-5 of Algorithm 5.4.

5.3.6 Parametric edge models

Parametric models are based on the idea that the discrete image intensity function can be
considered a sampled and noisy approximation of an underlying continuous or piecewise
continuous image intensity function [Nevatia, 1977]. While this function is not known, it
can be estimated from the available discrete image intensity function and image properties
can be determined from this continuous estimate, possibly with subpixel precision. It is
usually impossible to represent image intensities using a single continuous function since
a single function leads to high-order intensity functions in x and y. Instead, piecewise
continuous function estimates called facets are used to represent (a neighborhood of)
each image pixel. Such an image representation is called a facet model [Haralick and
Watson, 1981; Haralick, 1984; Haralick and Shapiro, 1992].

The intensity function in a neighborhood can be estimated using models of different
complexity. The simplest one is the flat facet model that uses piecewise constants and
each pixel neighborhood is represented by a flat function of constant intensity. The
sloped model uses piecewise linear functions forming a sloped plane fitted to local image
intensities. Quadratic and bi-cubic facet models employ correspondingly more complex
functions.

Once the facet model parameters are available for each image pixel, edges can be
detected as extrema of the first directional derivative and/or zero-crossings of the second
directional derivative of the local continuous facet model functions.

A thorough treatment of facet models and their modifications for peak noise removal,
segmentation into constant-gray-level regions, determination of statistically significant
edges, gradient edge detection, directional second-derivative zero-crossing edge detection,
and line and corner detection is given in [Haralick and Shapiro, 1992]. Importantly,
techniques for facet model parameter estimation are given there.
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An example will illustrate: consider a bi-cubic facet model
g(i,j) =1 +C2$+03y+c41‘2+05$y+06y2+C7$3+C8$22U+0937y2+010y37 (5-59)

whose parameters are estimated from a pixel neighborhood (the co-ordinates of the cen-
tral pixel are (0,0)). This may be performed by, e.g., a least-squares method with SVD
(Section 3.2.9); alternatively, coefficients ¢; can be computed directly using a set of ten
5 x 5 kernels that are provided in [Haralick and Shapiro, 1992]. Once parameters are
available at each pixel, edges may be located as extrema of the first directional derivative,
or zero crossings of the second derivative, of the local facet model functions.

Edge detectors based on parametric models describe edges more precisely than con-
volution-based edge detectors. Additionally, they carry the potential for subpixel edge
localization. However, their computational requirements are much higher. Promising
extensions combine facet models with Canny’s edge detection criteria (Section 5.3.5) and
relaxation labeling (Section 6.2.2) [Matalas et al., 1997].

5.3.7 Edges in multi-spectral images

One pixel in a multi-spectral image is described by an n-dimensional vector, and bright-
ness values in n spectral bands are the vector components. There are several possibilities
for the detection of edges in multi-spectral images [Faugeras, 1993].

Trivially, we might detect edges separately in individual image spectral components
using the ordinary local gradient operators mentioned in Section 5.3.2. Individual images
of edges can be combined to get the resulting image, with the value corresponding to
edge magnitude and direction being a selection or combination of the individual edge
spectral components [Nagao and Matsuyama, 1980].

Alternatively, we may create a multi-spectral edge detector which uses brightness in-
formation from all n spectral bands; this approach is also applicable to multi-dimensional
images forming three- or higher-dimensional data volumes. An edge detector of this kind
was proposed in [Cervenka and Charvat, 1987]. The neighborhood used has size 2x 2 xn
pixels, where the 2 x 2 neighborhood is similar to that of the Roberts gradient, equation
(5.39). The coeflicients weighting the influence of the component pixels are similar to
the correlation coefficients. Let f(i,7) denote the arithmetic mean of the brightnesses
corresponding to the pixels with the same co-ordinates (7, j) in all n spectral component
images, and f,. be the brightness of the " spectral component. The edge detector result
in pixel (z, ) is given as the minimum of the following expression:

Sor_y [d@, )] [d(i+ 1,5+ 1)] Sy [di+1,5)] [di, 5+ 1)]
\/Zj;l [d(i,/)]* X, [di+ 1,5 + 1) \/ZZ:1 [d(i+1,5)]° X0, [dG,j + 1)

where d(k,1) = f,(k,1) — f(k,1) .

)

(5.60)

5.3.8 Local pre-processing in the frequency domain

Section 3.2.4 noted that the Fourier transform makes convolution of two images in the
frequency domain very easy, and it is natural to consider applying many of the filters
of Sections 5.3 in the frequency domain. Such operations are usually called spatial
frequency filtering.
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Assume that f is an input image and F' is its Fourier transform. A convolution filter h
can be represented by its Fourier transform H; h may be called the unit pulse response
of the filter and H the frequency transfer function, and either of the representations h or
H can be used to describe the filter. The Fourier transform of the filter output after an
image f has been convolved with the filter A can be computed in the frequency domain

G=Fux, (5.61)

where .* represents an element-by-element multiplication of matrices F' and H (not
matrix multiplication). The filtered image g can be obtained by applying the inverse
Fourier transform to G—equation (3.28).

Some basic examples of spatial filtering are linear low-pass, high-pass, and band-
pass frequency filters.

o A low-pass filter is defined by a frequency transfer function H (u,v) with small val-
ues at points located far from the co-ordinate origin in the frequency domain (that
is, small transfer values for high spatial frequencies) and large values at points close
to the origin (large transfer values for low spatial frequencies)—see Figure 5.24a. It
preserves low spatial frequencies and suppresses high spatial frequencies, and has
behavior similar to smoothing by standard averaging—it blurs sharp edges.

(a) (b)

Figure 5.24: Frequency filters displayed in 3D. (a) Low-pass filter. (b) High-pass filter. (c) Band-
pass filter. © Cengage Learning 2015.

e A high-pass filter is defined by small transfer function values located around the
frequency co-ordinate system origin, and larger values outside this area—larger
transfer coefficients for higher frequencies (Figure 5.24b).

e Band-pass filters, which select frequencies in a certain range for enhancement, are
constructed in a similar way, and also filters with directional response, etc. (Fig-
ure 5.24c).

The most common image enhancement problems include noise suppression, edge en-
hancement, and removal of noise which is structured in the frequency spectrum. Noise
represents a high-frequency image component, and it may be suppressed applying a
low-pass filter as shown in Figure 5.25, which demonstrates the principles of frequency
filtering on Fourier image spectra; the original image spectrum is multiplied by the filter
spectrum and a low-frequency image spectrum results. Unfortunately, all high-frequency
phenomena are suppressed, including high frequencies that are not related to noise (sharp
edges, lines, etc.). Low-pass filtering results in a blurred image.
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(©)

Figure 5.25: Low-pass frequency-domain filtering—for the original image and its spectrum
see Figure 3.7. (a) Spectrum of a low-pass filtered image, all higher frequencies filtered out.
(b) Image resulting from the inverse Fourier transform applied to spectrum (a). (c¢) Spectrum of
a low-pass filtered image, only very high frequencies filtered out. (d) Inverse Fourier transform
applied to spectrum (c). © Cengage Learning 2015.

Again, edges represent a high-frequency image phenomenon. Therefore, to enhance
them, low-frequency components of the image spectrum must be suppressed—to achieve
this, a high-frequency filter must be applied.

To remove noise which is structured in the frequency domain, the filter design must
include a priori knowledge about the noise properties. This knowledge may be acquired
either from the image data or from the corrupted image Fourier spectrum, where the
structured noise usually causes notable peaks.

Some examples of frequency domain image filtering are shown in Figures 5.25-5.28.
The original image was shown in Figure 3.8 and its frequency spectrum in Figure 3.7.
Figure 5.26 shows results after application of a high-pass filter followed by an inverse
Fourier transform. It can be seen that edges represent high-frequency phenomena in
the image. Results of band-pass filtering can be seen in Figure 5.27. Figure 5.28 gives
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Figure 5.26: High-pass frequency domain filtering. (a) Spectrum of a high-pass filtered image,
only very low frequencies filtered out. (b) Image resulting from the inverse Fourier transform
applied to spectrum (a). (c¢) Spectrum of a high-pass filtered image, all lower frequencies filtered
out. (d) Inverse Fourier transform applied to spectrum (c). © Cengage Learning 2015.

an even more powerful example of frequency filtering—removal of periodic noise. The
vertical noise lines in the original image are transformed into frequency spectrum peaks
after the transform. To remove these frequencies, a filter was designed which suppresses
the periodic noise in the image, which is visible as white circular areas.

There are several filters which prove useful for filtering in the frequency domain: two
important representatives of them are the Gaussian and Butterworth filters. Choose an
isotropic filter for simplicity, D(u,v) = D(r) = v/u? + v?, and let Dy be a parameter of
the filter called the cut-off frequency. For the Gaussian, Dy coincides with the dispersion
0. The Fourier spectrum of a low-pass Gaussian filter Gy is

2
Glow(u,v) = exp —%(%ﬁ) . (5.62)
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(a)

Figure 5.27: Band-pass frequency domain filtering. (a) Spectrum of a band-pass-filtered image,
low and high frequencies filtered out. (b) Image resulting from the inverse Fourier transform
applied to spectrum (a). © Cengage Learning 2015.

The Butterworth filter [Butterworth, 1930] is specified to have maximally flat frequency
response over a spectrum band, and is also called a ‘maximally flat magnitude filter’.
The frequency response of the 2D low-pass Butterworth filter By, of degree n is

1
1+ (22}

The usual Butterworth filter degree is n = 2, which will be used here. Figure 5.29
illustrates the shape of the Gaussian and Butterworth filters for Dy = 3 in 1D plots.

The high-pass filter is created easily from the low-pass filter. If the Fourier frequency
spectrum of a low-pass filter is H)oy, the high-pass filter can be created by just flipping
it vertically, Hhigh =1- Hlow-

Another useful pre-processing technique operating in the frequency domain is an in-
stance of homomorphic filtering, discussed at the end of Section 5.3.1. Homomorphic
filtering is used to remove multiplicative noise. The aim of the particular homomorphic
filtering to be discussed here is to simultaneously increase contrast and normalize image
intensity across the image.

The assumption is that the image function f(z,y) can be factorized as a product of
two independent multiplicative components in each pixel: illumination i(z,y) and the
reflectance r(z,y) at the point in the observed scene, f(z,y) = i(z,y) r(z,y). These two
components can be separated in some images because the illumination component tends
to vary slowly and the reflectance component varies more quickly.

The idea of the separation is to apply a logarithmic transform to the input image

Blow = (5.63)

2(z,y) = log f(z,y) = logi(x,y) +logr(z,y) . (5.64)

If the image z(z,y) is converted to Fourier space (denoted by capital letters) then its
additive components remain additive due to the linearity of the Fourier transform

Z(u,v) = I(u,v) + R(u,v) . (5.65)
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Figure 5.28: Periodic noise removal. (a) Noisy image. (b) Image spectrum used for image
reconstruction—note that the areas of frequencies corresponding with periodic vertical lines are
filtered out. (c) Filtered image. © Cengage Learning 2015.

Butterworth

e

Gaussian

Figure 5.29: Gaussian and Butter-
worth low-pass filters. © Cengage
Learning 2015.
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154 Chapter 5: Image pre-processing

Assume that the Fourier spectrum Z(u,v) is filtered by the filter H(u,v) and the spec-
trum S(u,v) is the result

S=HxZ=HxxI+HxR. (5.66)

Usually a high-pass filter is used for this purpose; assuming a high-pass Butterworth
filter, it has to be damped in order not to suppress low frequencies entirely as they bear
needed information too. The Butterworth filter modified by damping coefficient 0.5 is

shown in Figure 5.30.

0.4+

for homomorphic

filtration 0] Butterworth Figure 5.30: High-pass filter used in

’ homomorphic filtering. It is a But-

terworth filter damped by a 0.5 co-

RS A 5 " 5 AR efﬁcients to retain some low frequen-
— cies. © Cengage Learning 2015.

Having the filtered spectrum S(u,v), we can return to spatial coordinates using
the inverse Fourier transform, s(z,y) = F'S(u,v). Recall that the logarithm was
first applied to the input image f(x,y) in equation (5.64). Now the image has to be
transformed by the logarithm inverse function; this inverse function is the exponential.
The result—the image g(z,y) filtered by the homomorphic filter—is given by g(z,y) =
exp (s(z,y)).

An illustration of the effect of homomorphic filtering is in Figure 5.31, an image of
a person in a dark tunnel with strong illumination at the entrance. Detail of the tunnel
surface on the top and right side are not visible because the surface is too dark. The
result of homomorphic filtering is in Figure 5.31b. More details can be seen in this image.

(a) (b)

Figure 5.31: Illustration of homomorphic filtering. (a) Original image. (b) Homomorphic
filtering. Courtesy of T. Svoboda, Czech Technical University, Prague.
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5.3.9 Line detection by local pre-processing operators

Several other local operations exist which do not belong to the taxonomy given in Sec-
tion 5.3, as they are used for different purposes such as line finding, line thinning, and line
filling operators. Another group of operators finds ‘interest points’ or ‘locations of
interest’ in the image. Yet another class of local nonlinear operators are mathematical
morphology techniques, described in Chapter 13.

It is interesting to seek features richer than edges which can be reliably detected in the
image and which can outperform simple edge detectors in some classes of applications.
Line detectors and corner detectors are some such. Line detectors are used to detect
linear objects such as dimension lines in engineering drawings or railways or roads in
satellite images. Corner detectors and other interest point-like detectors are used mainly
to register two or more images one to the other (e.g, in stereo vision, motion analysis,
panorama stitching, object recognition from images) or to index the image or dominant
objects in it to an image database.

Line finding operators aim to find very thin curves in the image; it is assumed
that curves do not bend sharply. Such curves and straight lines are called lines for the
purpose of describing this technique. If a cross section perpendicular in direction to the
tangent of a line is examined, we get a roof profile (see Figure 5.17) when examining
edges. We assume that the width of the lines is approximately one or two pixels.

The presence of a line may be detected by local convolution of the image with con-
volution kernels which serve as line patterns [Vernon, 1991; Petrou, 1993]. The simplest
collection of four such patterns of size 3 x 3 is able to detect lines rotated modulo the
angle 45°. Three of four such convolution kernels are

1 -1 -1 2 -1 -1 -1 2 -1
=12 2 2|, hy=|-1 2 —1|, hy=|-1 2 —1|, ... (5.67)
-1 -1 -1 -1 -1 2 -1 2 -1

A similar principle can be applied to bigger masks. The case of 5 x 5 masks is common.

Such line detectors sometimes produce more lines than needed, and other non-linear
constraints may be added to reduce this number. More sophisticated approaches deter-
mine lines in images as ridges and ravines using the facet model [Haralick and Shapiro,
1992]. Line detection is frequently used in remote sensing and in document processing;
examples include [Venkateswar and Chellappa, 1992; Tang et al., 1997].

Local information about edges is the basis of a class of image segmentation techniques
that are discussed in Chapter 6. Edges which are likely to belong to object boundaries
are usually found by simple thresholding of the edge magnitude—such edge thresholding
does not provide ideal contiguous boundaries that are one pixel wide. Sophisticated
segmentation techniques that are dealt with in the next chapter serve this purpose.
Here, much simpler edge thinning and filling methods are described. These techniques
are based on knowledge of small local neighborhoods and are very similar to other local
pre-processing techniques.

Thresholded edges are usually wider than one pixel, and line thinning techniques
may give a better result. One line thinning method uses knowledge about edge orientation
and in this case edges are thinned before thresholding. Edge magnitudes and directions
provided by some gradient operator are used as input, and the edge magnitudes of two
neighboring pixels perpendicular to the edge direction are examined for each pixel in the
image. If at least one of these pixels has edge magnitude higher than the edge magnitude
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of the examined pixel, then the edge magnitude of the examined pixel is assigned a zero
value—see Algorithm 6.4.

There are many other line thinning methods. In most cases the best results are
achieved using mathematical morphology methods, explained in Chapter 13.

5.3.10 Detection of corners (interest points)

The location of points (rather than edges) in images is frequently useful, particularly
when seeking correspondence—or registration—between two views of the same scene.
We came across this fact in Section 5.2 when considering geometric transforms. Know-
ing point correspondences enables the estimation of parameters describing geometric
transforms from live data. We shall see later on that finding corresponding points is also
a core problem in the analysis of moving images (Chapter 16), and for recovering depth
information from pairs of stereo images (Section 11.5).

In general, all possible pairs of pixels should be examined to solve this correspon-
dence problem, and this is very computationally expensive. If two images have n pixels
each, the complexity is O(n?). This process might be simplified if the correspondence is
examined among a much smaller number of points, called interest points. An interest
point will have some local property [Ballard and Brown, 1982]. For example, if square
objects are present in the image, then corners are very good interest points.

Corners in images can be located using local detectors; input to the corner detector
is the gray-level image, and output is an image in which values are proportional to the
likelihood that the pixel is a corner. Interest points are obtained by thresholding the
result of the corner detector.

Corners serve better than lines when the correspondence problem is to be solved. This
is due to the aperture problem. If a moving line is seen through a small aperture,
only the motion vector perpendicular to the line can be observed, and the component
collinear with the line remains invisible. The situation is better with corners, which
provide ground for unique matching.

Edge detectors themselves are not stable at corners. This is natural as the gradient
at the tip of the corner is ambiguous. This is illustrated in Figure 5.32 in which a triangle
with a sharp corner is shown. Near the corner there is a discontinuity in the gradient
direction, and this observation is used in corner detectors.

?

// ,/’

s

[N ? Figure 5.32: Ambiguity of edge de-
\\\\\‘ n tector at the corner tip. © Cengage
Learning 2015.

\
\
<

A corner in an image can be defined as a pixel in whose immediate neighborhood
there are two dominant, different edge directions. This definition is not precise as an
isolated point of local intensity maximum or minimum, line endings, or an abrupt change
in the curvature of a curve gives a response similar to a corner. Nevertheless, such
detectors are named corner detectors in the literature and are widely used. If corners
have to be detected then some additional constraints have to be applied.

Corner detectors are not usually very robust. This deficiency is overcome either
by manual expert supervision or large redundancies introduced to prevent the effect
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of individual errors from dominating the task. This means that many more corners are
detected in two or more images than are necessary for estimating a transformation sought
between these images.

The simplest corner detector is the Moravec detector [Moravec, 1977] which is
maximal in pixels with high contrast, which are on corners and sharp edges. The Moravec
operator MO is given by

i+l j+1
MO }: S|k D) = £ 5)] - (5.68)
k: i—1 l=5—1

Better results are produced by computationally more expensive corner operators such as
those proposed by Zuniga—Haralick [Zuniga and Haralick, 1983; Haralick and Shapiro,
1992] or Kitchen—Rosenfeld [Huang, 1983] which are based on the facet model (Sec-
tion 5.3.6). The image function f is approximated in the neighborhood of the pixel (i, j)
by a cubic polynomial with coefficients cy:

fli,j)=ci+ertaytar®tearytey’+oa’+ar’y+eory®+eoy®. (5.69)
The Zuniga—Haralick operator ZH is given by

-9 2 _ : 2
ZH(, j) = —2\a —cacaco b cea) (5.70)

(3+3)*”

The Kitchen-Rosenfeld KR operator has the same numerator as equation (5.70), but the
denominator is (c3 + c3).

The Harris corner detector [Harris and Stephen, 1988] improved upon Moravec’s
by considering the differential of the corner score (sum of square differences). Consider
a 2D gray-scale image f. An image patch W € f is taken and is shifted by Az, Ay. The
sum of square differences S between values of the image f given by the patch W and its
shifted variant by Az, Ay is given by:

Sw(da,Ay) = 37 3 (flawy) = floi— Az = Ay)*. (5.71)

z, €W y;, €W

A corner point not suffering from the aperture problem must have a high response of
Sw (Ax, Ay) for all Az, Ay. If the shifted image patch is approximated by the first-order
Taylor expansion

[z — Ax,y; — Ay) = flag,y:) +

Of (s, y:) 8f(zi,yz‘>} {M} ’ (5.72)

oxr '’ Oy Ay
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then the minimum of Sy (Az, Ay) can be obtained analytically. Substitute this approx-
imation given by equation (5.72) into equation (5.71)

S = X3 (fown) - St - |28 2en)] Ay

z, €W y, €W
-y ¥ (_ [8f<xi7yi> af(xi7yi>] [A:cDQ
x, €W y, €W Ox ay Ay
-y ¥ ( [3f(xi7yi) 3f(xi,yi)] [AzDQ
z, €W y, €W Ox ay Ay
having in mind that u?> = u'u
of
_ oz | [af of Ax
-5, e ([f]1# )21
z, €W y,eW dy
at A
= oz | [af of x
=[Az, Ayl | Y Y [afl [% a*y} [Ay]
z, €Wy, €W Loy

~ (80, ) Awrla) |37

)

<
—

where the Harris matrix Ay (x,y) represents one half the second derivative of the image
patch W around the point (z,y) = (0,0). A is

2
of(xi,y; Of (xi,y:) Of (xi,y4
ST (f(axy)) D f(axy) f(ayy)

A(x y) —9. i, €W y, €W z, €W y, €W ) (5 73)
’ Of (wiy:) Of (ziyi) 8f (zi,u:) '
M T > ox (Y
z, €W y; €W ;€W y, €W

Usually an isotropic window is used, such as a Gaussian. The response will be isotropic
too.

The local structure matrix A represents the neighborhood—this Harris matrix is
symmetric and positive semi-definite. Its main modes of variation correspond to partial
derivatives in orthogonal directions and are reflected in its eigenvalues A1, Ao. Three
distinct cases can occur:

1. Both eigenvalues are small. This means that image f is flat at the examined
pixel—there are no edges or corners in this location.

2. One eigenvalue is small and the second large. The local neighborhood is ridge-
shaped. Significant change of f occurs if a small movement is made perpendicularly
to the ridge.

3. Both eigenvalues are rather large. A small shift in any direction causes significant
change of image f. A corner has been found.

Cases 2 and 3 are illustrated in Figure 5.33. An example of Harris corner detection
applied to a real scene is in Figure 5.34.
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Figure 5.33: The Harris corner detector according to
eigenvalues of the local structure matrix. (a), (b) Ridge
detected, no corner at this position. (c¢) Corner detected.
© Cengage Learning 2015.

Figure 5.34: Red crosses mark Harris corners. Courtesy of M. Urban, Czech Technical University,
Prague. A color version of this figure may be seen in the color inset—Plate 7.

Harris suggested that exact eigenvalue computation can be avoided by calculating
the response function R(A) = det(A) — & trace?(A), where & is a tunable parameter;
values from 0.04 to 0.15 were reported in literature as appropriate.

Algorithm 5.5: Harris corner detector
1. Filter the image with a Gaussian.

2. Estimate intensity gradient in two perpendicular directions for each pixel,

W, w. This is performed by twice using a 1D convolution with the

kernel approximating the derivative.
3. For each pixel and a given neighborhood window:

o Calculate the local structure matrix A.

o Evaluate the response function R(A).

4. Choose the best candidates for corners by selecting a threshold on the response
function R(A) and perform non-maximal suppression.

The Harris corner detector has proved very popular: it is insensitive to 2D shift
and rotation, to small illumination variations, to small viewpoint change, and has low
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computational requirements. On the other hand, it is not invariant to larger scale change,
viewpoint changes and significant changes in contrast.

Many more corner-like detectors exist, and the reader is referred to the overview
papers [Mikolajczyk and Schmid, 2004; Mikolajczyk et al., 2005].

5.3.11 Detection of maximally stable extremal regions

When effects of noise and discretization are negligible, the output of a Harris detector on
arotated and/or translated image is a rotated and/or translated set of points. However, if
the image is rescaled or transformed projectively, the output of a Harris detector changes
rapidly. Maximally Stable Extremal Regions (MSERs) [Matas et al., 2004] are an
example of an image structure that can be repeatably detected not only after translations
and rotations, but also after similarity and affine transforms.

~

- 23 - - - 1 T ] - P — <

Figure 5.35: MSERs: Red bordered regions are results of the algorithm on the increasingly
ordered list of intensities. Green bordered regions come from the list with decreasing ordering.
Courtesy of J. Matas, Czech Technical University, Prague. A color version of this figure may be seen
in the color inset—Plate 8.

Informally, MSERs can be explained by imagining all possible thresholdings of an
input gray-level image I. We will refer to the pixels below a threshold as ‘black’ and
to those above or equal as ‘white’. If we were shown a movie of thresholded images I,
with frame t corresponding to threshold ¢, we would see first a white image; black spots
corresponding to local intensity minima will appear and grow, and at some points regions
corresponding to two local minima will merge. Finally, the last image will be black. The
connected components in these frames are the set of mazimal regions; minimal regions
can be obtained by inverting the intensity of I and running the same process. In many
images one observes this local binarization is stable over a large range of thresholds in
certain regions. Such maximally stable extremal regions are of interest since they have
the following properties:
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e Invariance to monotonic transformations. The set of extremal regions is unchanged
after transformation M, I(p) < I(q) — M(I(p)) = I'(p) < I'(q) = M(I(q))
since M does not affect adjacency (and thus contiguity). The intensity ordering is
preserved.

o Invariance to adjacency preserving (continuous) transformations.

o Stability, since only extremal regions whose support is virtually unchanged over a
range of thresholds are selected.

o Multi-scale detection. Since no smoothing is involved, both very fine and very large
structure is detected.

o The set of all extremal regions can be enumerated in O(nloglogn), i.e., almost in
linear time for 8 bit images.

The algorithm is illustrated in Figure 5.35.

Algorithm 5.6: Enumeration of extremal regions.

1. Sort image pixels by intensity: this can be done efficiently by, e.g., binsort, in
O(n) time.

2. Starting at the minimum intensity gmin, iterate upward.

3. Consider pixels of the current intensity g¢; introduce the pixel and update the
connected component structure. This may be done using the efficient union-find
algorithm [Sedgewick, 1998].

4. If two regions merge, this is viewed as the death of the smaller component.

5. When all intensities have been processed, we have a data structure holding the
area of each connected component as a function of a threshold. If @Q1,... @; are
a sequence of nested extremal regions, so @y C Qg+1, then extremal region @,
is maximally stable iff ¢(g) = |Qg+a \ Qg—a|/|Qq| has a local minimum at g,
where |.| denotes cardinality and A is a parameter of the method.

Algorithm 5.6 and an efficient watershed algorithm (Sections 6.3.4 and 13.7.3) are
essentially identical. However, the structure of output of the two algorithms is different.
In watershed computation, the focus is on thresholds where regions merge and watershed
basins touch. Such thresholds are highly unstable—after a merge, the region area changes
abruptly. In MSER detection, a range of thresholds is sought that leaves the watershed
basin effectively unchanged.

Detection of MSERs is also related to thresholding. Every extremal region is a
connected component of a thresholded image. However, no global or ‘optimal’ threshold is
needed, all thresholds are tested and the stability of the connected components evaluated.

In empirical studies [Mikolajczyk et al., 2005; Frauendorfer and Bischof, 2005], the
MSER has shown the highest repeatability of affine-invariant detectors in a number of
experiments. MSER has been used successfully for challenging wide baseline matching
problems [Matas et al., 2004] and in state-of-the-art object recognition systems [Obdrza-
lek and Matas, 2002; Sivic and Zisserman, 2004].
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5.4 Image restoration

Pre-processing methods that aim to suppress degradation using knowledge about its
nature are called image restoration. Most image restoration methods are based on
convolution applied globally to the whole image. There is a wide literature on restoration
and only the basic principles and some simple degradations are considered here.

Image degradation can have many causes: defects of optical lenses, non-linearity
of the electro-optical sensor, graininess of the film material, relative motion between an
object and camera, wrong focus, atmospheric turbulence in remote sensing or astronomy,
scanning of photographs, etc. The objective of image restoration is to reconstruct the
original image from its degraded version.

Image restoration techniques can be classified as deterministic or stochastic. De-
terministic methods are applicable to images with little noise and a known degradation
function. The original image is obtained by applying the function inverse to the degraded
one. Stochastic techniques try to find the best restoration according to a particular sta-
tistical criterion, e.g., a least-squares method. There are three typical degradations with
a simple function: relative constant speed movement of the object with respect to the
camera, wrong lens focus, and atmospheric turbulence.

In most practical cases, there is insufficient knowledge about the degradation, and it
must be estimated and modeled. This may be done on an a priori or a posteriori basis:

o A priori knowledge about degradation is either known in advance or can be ob-
tained before restoration. For example, if it is known that the image was degraded
by relative motion of an object with respect to the sensor, then the modeling de-
termines only the speed and direction of the motion. Alternatively, we may seek to
to estimate parameters of a device such as a TV camera or digitizer, whose degra-
dation remains unchanged over a period of time and can be modeled by studying
a known sample image and its degraded version.

o A posteriori knowledge is that obtained by analyzing the degraded image. A typical
example is to find some interest points in the image (e.g., corners, straight lines)
and guess how they looked before degradation. Another possibility is to use spectral
characteristics of the regions in the image that are relatively homogeneous.

A degraded image g can arise from the original image f by a process which can be
expressed as

g(i,7) =s </ /(a,b)eo f(a,b) h(a,b,1,7) dadb) +v(i, j), (5.74)

where s is some non-linear function and v describes the noise. This is often simplified by
neglecting the non-linearity and assuming that the function h is invariant with respect
to position in the image, giving

9(i,3) = (f * h) (i, ) + v(i, j) - (5.75)

If the noise is not significant in this equation, then restoration equates to inverse convolu-
tion (also called deconvolution). If noise is not negligible, then the inverse convolution is
solved as an overdetermined system of linear equations. Methods based on minimization
of least square error such as Wiener filtering (off-line) or Kalman filtering (recursive,
on-line; see Section 16.6.1) are examples [Bates and McDonnell, 1986].
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5.4.1 Degradations that are easy to restore
In the Fourier domain, we can express equation (5.75) as
G=HF. (5.76)

Therefore, overlooking image noise v, knowledge of the degradation function fully facili-
tates image restoration by inverse convolution (Section 5.4.2).

Relative motion of camera and object

Relative motion of a camera with a mechanical shutter and the photographed object
during the shutter open time T' causes smoothing of the object in the image. Suppose V'
is the constant speed in the direction of the x axis; the Fourier transform H(u,v) of the
degradation caused in time T is given by [Rosenfeld and Kak, 1982]

sin(m VT u)

H(u,v) = v

(5.77)

Wrong lens focus

Image smoothing caused by imperfect focus of a thin lens can be described by the function
[Born and Wolf, 1969]

H(u,v) = J&éifq : (5.78)

where .J; is the Bessel function of the first order, r? = u? + v2, and a is the displacement—
the model is not space invariant.

Atmospheric turbulence

Atmospheric turbulence is degradation that needs to be restored in remote sensing and
astronomy. It is caused by temperature non-homogeneity in the atmosphere that deviates
passing light rays. One mathematical model [Hufnagel and Stanley, 1964] is

H(u,v) = e e+ (5.79)

where ¢ is a constant that depends on the type of turbulence which is usually found
experimentally. The exponent 5/6 is sometimes replaced by 1.

5.4.2 Inverse filtering

Inverse filtering assumes that degradation was caused by a linear function h(i, j) (cf.
equation 5.75) and considers the additive noise v as another source of degradation. It is
further assumed that v is independent of the signal. After applying the Fourier transform
to equation (5.75), we get

G(u,v) = F(u,v) H(u,v) + N(u,v) . (5.80)

The degradation can be eliminated using the restoration filter with a transfer function
that is inverse to the degradation h. We derive the original image F' (its Fourier transform
to be exact) from its degraded version G (equation 5.80), as

F(u,v) = G(u,v) H *(u,v) — N(u,v) H *(u,v) . (5.81)
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This shows that inverse filtering works well for images that are not corrupted by noise [not
considering possible computational problems if H (u, v) gets close to zero at some location
of the u, v space—fortunately, such locations can be neglected without perceivable effect
on the restoration result]. However, if noise is present, two problems arise. First, the
noise influence may become significant for frequencies where H (u, v) has small magnitude.
This situation usually corresponds to high frequencies w,v. In reality, H(u,v) usually
decreases in magnitude much more rapidly than N(u,v) and thus the noise effect may
dominate the entire restoration result. Limiting the restoration to a small neighborhood
of the u,v origin in which H(u,v) is sufficiently large overcomes this problem, and the
results are usually quite acceptable. Secondly, we usually do not have enough information
about the noise to determine N (u,v) sufficiently.

5.4.3 Wiener filtering

Wiener (least mean square) filtering [Wiener, 1942; Gonzalez and Woods, 1992; Castle-
man, 1996] attempts to take account of noise properties by incorporating a priori know-
ledge in the image restoration formula. Restoration by the Wiener filter gives an
estimate f of the original uncorrupted image f with minimal mean square error

e =& {(f(i.) - 16.9)’} . (5.82)

where £ denotes the mean operator. If no constraints are applied to the solution of
equation (5.82), then an optimal estimate f is the conditional mean value of the ideal
image f under the condition g. This approach is complicated from the computational
point of view. Moreover, the conditional probability density between the optimal image
f and the corrupted image ¢ is not usually known. The optimal estimate is in general a
non-linear function of the image g.

Minimization of equation (5.82) is easy if the estimate f is a linear combination
of the values in image g; the estimate f is then close (but not necessarily equal) to
the theoretical optimum. The estimate is equal to the theoretical optimum only if the
stochastic processes describing images f, g, and the noise v are homogeneous, and their
probability density is Gaussian [Andrews and Hunt, 1977]. These conditions are not
usually fulfilled for typical images.

Denote the Fourier transform of the Wiener filter by Hyy. Then, the estimate F' of
the Fourier transform F' of the original image f can be obtained as

A

F(u,v) = Hw (u,v) G(u,v) . (5.83)
Hyy is not derived here, but may be found elsewhere [Gonzalez and Woods, 1992] as
H*(u,v)

Hy (u,v) = .
W ’H(U7’l))‘2+ [Suu(uvv)/sff(uﬂv)]

(5.84)

where H is the transform function of the degradation, * denotes complex conjugate, S,
is the spectral density of the noise, and Sys is the spectral density of the undegraded
image.

If Wiener filtering is used, the nature of degradation H and statistical parameters
of the noise need to be known. Wiener filtering theory solves the problem of optimal
a posteriori linear mean square estimates—all statistics (for example, power spectrum)
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should be available in advance. Note the term Sy¢(u,v) in equation (5.84), which rep-
resents the spectrum of the undegraded image, which may be difficult to obtain with no
foreknowledge of the undegraded image.

Restoration is illustrated in Figure 5.36 where an image that was degraded by 5
pixels motion in the direction of the z axis: Figure 5.36b shows the result of restoration
by Wiener filtering.

Fw= YY mM=>
4 8 a1
L L
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i

(a) (b)

Figure 5.36: Restoration of motion blur using Wiener filtering. Courtesy of P. Kohout, Criminal-
istic Institute, Prague.

Despite its unquestionable power, Wiener filtering suffers several substantial limi-
tations. First, the criterion of optimality is based on minimum mean square error and
weights all errors equally, a mathematically fully acceptable criterion that unfortunately
does not perform well if an image is restored for human viewing. The reason is that
humans perceive the restoration errors more seriously in constant-gray-level areas and in
bright regions, while they are much less sensitive to errors located in dark regions and in
high-gradient areas. Second, spatially variant degradations cannot be restored using the
standard Wiener filtering approach, and these degradations are common. Third, most
images are highly non-stationary, containing large homogeneous areas separated by high-
contrast edges. Wiener filtering cannot handle non-stationary signals and noise. To deal
with real-life image degradations, more sophisticated approaches may be needed. Exam-
ples include power spectrum equalization and geometric mean filtering. These
and other specialized restoration techniques can be found in higher-level texts devoted
to this topic; [Castleman, 1996] is well suited for such a purpose.

5.5 Summary
e Image pre-processing
— Operations with images at the lowest level of abstraction are called pre-

processing. Both input and output are intensity images.

— Pre-processing aims to suppress unwanted distortions, or enhance some image
features important for further processing.

— Four basic types of pre-processing methods exist:
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Brightness transformations
Geometric transformations

*
*
* Local neighborhood pre-processing
*

Image restoration
e Pixel brightness transformations

— There are two classes of pixel brightness transformations:

* Brightness corrections

x Gray-scale transformations

— Brightness corrections modify pixel brightness taking into account its original
brightness and its position in the image.

Gray-scale transformations change brightness without regard to position.
— Frequently used brightness transformations include:

* Brightness thresholding

*x Histogram equalization

* Logarithmic gray-scale transforms

x Look-up table transforms

* Pseudo-color transforms

The goal of histogram equalization is to create an image with equally dis-
tributed brightness levels over the whole brightness scale.

e Geometric transformations
— Geometric transforms permit the elimination of the geometric distortions that
occur when an image is captured.
— A geometric transform typically consists of two basic steps:

x Pixel co-ordinate transformation
* Brightness interpolation

— Pixel co-ordinate transformations map the co-ordinates of the input image
pixel to a point in the output image; affine and bilinear transforms are fre-
quently used.

— Output point co-ordinates usually do not match the digital grid after the
transform; interpolation is employed to determine brightnesses of output pix-
els. Nearest-neighbor, linear, and bi-cubic interpolations are frequently used.

e Local pre-processing
— Local pre-processing methods use a small neighborhood of a pixel in an input
image to produce a new brightness value in the output image.
— Two groups are common in pre-processing: smoothing and edge detection.

— Smoothing aims to suppress noise or other small fluctuations in the image; it
is equivalent to suppressing high frequencies in the Fourier domain.

— Smoothing approaches based on direct averaging blur image edges. Improved
approaches reduce blurring by averaging in homogeneous local neighborhoods.
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— Median smoothing is a non-linear operation; it reduces blurring by replac-
ing the current point in the image by the median of the brightnesses in its
neighborhood.

— Gradient operators determine edges—locations in which the image function
undergoes rapid changes. Their effect is similar to suppressing low frequencies
in the Fourier domain.

— FEdge is a property attached to a pixel and has magnitude and direction.

— Most gradient operators can be expressed using convolution masks; examples
include Roberts, Laplace, Prewitt, Sobel, and Kirsch operators.

— The main disadvantage of convolution edge detectors is scale dependence and
noise sensitivity. Choice of best size of a local operator is not easy to deter-
mine.

— Zero-crossings of the second derivative are more robust than small-size gradi-
ent detectors and can be calculated as a Laplacian of Gaussians (LoG) or as
a difference of Gaussians (DoG).

— The Canny edge detector is optimal for step edges corrupted by white noise.
The optimality criterion is based on requirements of detecting important edges,
small localization error, and single-edge response. It convolves an image with
a symmetric 2D Gaussian and then differentiates in the direction of the gra-
dient; further steps include non-maximal edge suppression, hysteresis thresh-
olding, and feature synthesis.

— Edges can also be detected in multi-spectral images.

— Other local pre-processing operations include line finding, line thinning, line
filling, and interest point detection.

— Structures in an image such as corners and maximally stable extremal regions
are more information rich and more stable to detect than edges. They are
often used in image matching.

e Image restoration

— Image restoration methods aim to suppress degradation using knowledge about
its nature. Most image restoration methods are based on deconvolution ap-
plied globally to the entire image.

— Relative-constant-speed movement of the object with respect to the camera,
wrong lens focus, and atmospheric turbulence are three typical image degra-
dations with simple degradation functions.

— Inverse filtering assumes that degradation was caused by a linear function.

— Wiener filtering gives an estimate of the original uncorrupted image with min-
imal mean square error; it is in general a non-linear function of the corrupted
image.

5.6 Exercises

Short-answer questions

S5.1 What is the main aim of image pre-processing?
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S5.2 Give examples of situations in which brightness transformations, geometric transforma-
tions, smoothing, edge detection, and/or image restorations are typically applied.

S5.3 What is the main difference between brightness correction and gray-scale transforma-
tion?

S5.4 Explain the rationale of histogram equalization.
S5.5 Explain why the histogram of a discrete image is not flat after histogram equalization.

S5.6 Consider the image given in Figure 5.3a. After histogram equalization (Figure 5.3b),
much more detail is visible. Does histogram equalization increase the amount of infor-
mation contained in image data? Explain.

S5.7 What are the two main steps of geometric transforms?

S5.8 What is the minimum number of corresponding pixel pairs that must be determined if
the following transforms are used to perform a geometric correction?

(a) Bilinear transform

(b) Affine transform
S5.9 Give a geometric transformation equation for

(a) Rotation
(b) Change of scale
(¢) Skewing by an angle
S55.10 Consider brightness interpolation—explain why it is better to perform brightness inter-

polation using brightness values of neighboring points in the input image than interpo-
lating in the output image.

S5.11 Explain the principles of nearest-neighbor interpolation, linear interpolation, and bi-
cubic interpolation.

S5.12 Explain why smoothing and edge detection have conflicting aims.
S5.13 Explain why Gaussian filtering is often the preferred averaging method.
S5.14 Explain why smoothing typically blurs image edges.

S5.15 Name several smoothing methods that try to avoid image blurring. Explain their main
principles.

S5.16 Explain why median filtering performs well in images corrupted by impulse noise.

S5.17 Give convolution masks for the following edge detectors:

(a) Roberts

(b) Laplace

(c) Prewitt

(d) Sobel

(e) Kirsch

Which ones can serve as compass operators? List several applications in which deter-
mining edge direction is important.

S5.18 Explain why subtraction of a second derivative of the image function from the original
image results in the visual effect of image sharpening.

S5.19 What are LoG and DoG? How do you compute them? How are they used?

S5.20 Propose a robust way of detecting significant image edges using zero-crossings.
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S5.21 Explain why LoG is a better edge detector than Laplace edge detector.
S5.22 Explain the notion of scale in image processing.

S5.23 Explain the importance of hysteresis thresholding and non-maximal suppression in the
Canny edge detection process. How do these two concepts influence the resulting edge
image?

S5.24 Explain the principles of noise suppression, histogram modification, and contrast en-
hancement performed in adaptive neighborhoods.

S5.25 What is the aperture problem? How does it affect finding correspondence for line
features and corner features? Add a simple sketch to your answer demonstrating the
concept of aperture and the consequences for correspondence of lines and corners.

S5.26 Explain the principles of image restoration based on

(a) Inverse convolution
(b) Inverse filtration

(c) Wiener filtration

List the main differences among the above methods.

S5.27 Give image distortion functions for

(a) Relative camera motion
(b) Out-of-focus lens

(¢) Atmospheric turbulence

Problems

P5.1 Consider calibrating a TV camera for non-homogeneous lighting. Develop a program
that determines camera calibration coefficients after an image of a constant-gray-level
surface is acquired with this camera. After calibration, the program should perform
appropriate brightness correction to remove the effects of non-homogeneous lighting on
other images acquired using the same camera under the same lighting conditions. Test
the program’s functionality under several non-homogeneous lighting conditions.

P5.2 Determine a gray-scale transformation that maps the darkest 5% of image pixels to
black (0), the brightest 10% of pixels to white (255), and linearly transforms the gray-
levels of all remaining pixels between black and white.

P5.3 Develop a program for gray-scale transformations as described in Problem P5.2. De-
velop it in such a way that the percentages of dark and bright pixels mapped to pure
black and white are program parameters and can be modified by the operator.

P5.4 Develop programs for the three gray-scale image transforms given in Figure 5.1. Apply
them to several images and make a subjective judgment about the usefulness of the
transforms.

P5.5 Implement histogram equalization as described in Algorithm 5.1. Select several images
with a variety of gray-level histograms to test the method’s performance, include over-
and under-exposed images, low-contrast images, and images with large dark or bright
background regions. Compare the results.

P5.6 Apply histogram equalization to an already equalized image; compare and explain the
results of 1-step and 2-step histogram equalization.

P5.7 Write a program that performs histogram equalization on HSI images (see Section 2.4).
Verify visually that equalizing the I component alone has the desired effect, while
equalizing the others does not.
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P5.8 Develop programs for the following geometric transforms:

(a) Rotation
(b
(c
(d
(e

To avoid writing code for solving systems of linear equations, use a mathematical soft-
ware package (such as Matlab) to determine transformation coefficients for the affine
and bilinear transforms (d) and (e). For each of the above transforms, implement the
following three brightness interpolation approaches:

) Change of scale

) Skewing

) Affine transform calculated from three pairs of corresponding points
)

Bilinear transform calculated from four pairs of corresponding points

¢ Nearest-neighbor interpolation
¢ Linear interpolation

¢ Bi-cubic interpolation

To implement all possible combinations efficiently, design your programs in a modular
fashion with substantial code reuse. Compare the subjective image quality resulting
from the three brightness interpolation approaches.

P5.9 Develop a program for image convolution using a rectangular convolution mask of any
odd size. The mask should be input as an ASCII text file. Test your program using
the following convolution kernels:

(a
(b
(c
(d

3 X 3 averaging
7 X T averaging

11 x 11 averaging

)
)
)
) 5 x 5 Gaussian filtering (modification of equation 5.27)

P5.10 An imperfect camera is used to capture an image of a static scene:

(a) The camera is producing random noise with zero mean. Single images look quite
noisy.

(b) The camera has a dark spot in the middle of the image—the image is visible there,
but it is darker than the rest of the image.

What approaches would you choose to obtain the best possible image quality? You can
capture as many frames of the static scene as you wish; you may capture an image of a
constant gray-level; you may capture any other image with known gray-level properties.
Give complete step-by-step procedures including the associated mathematics for both
cases.

P5.11 Implement image averaging using a rotating mask as described in Algorithm 5.2. Use
the masks specified in Figure 5.11. Assess the amount of image blurring and sharpening
in comparison to standard image averaging.

P5.12 As an extension of Problem P5.11, consider iterative application of averaging using a
rotating mask until convergence. Assess the smoothing/sharpening effect of the iterative
approach in comparison to the single-step approach developed in Problem P5.11.

P5.13 Demonstrate the linear character of Gaussian averaging and the non-linear character
of median filtering: that is, show that med[fi(z) + f2(z)] # med[fi(z)] + med[f2(z)]
for an arbitrary region of pixels x and two image brightness functions fi; and fs.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



5.6 Exercises 171

P5.14 Consider the binary image given in Figure 5.37. Show the result of 3 x 3 median
filtering if the following masks are used (a ‘zero’ in a mask position means that the
corresponding pixel is not used for median calculation):

111 01 0 T0 0 0 111
(@ |1 1 1 ® |1 1 1 @ |1 1 1 (d |0 0 0
111 01 0 Lo 0o 000

Figure 5.37: © Cengage Learning 2015.

P5.15 Implement efficient median filtering as described in Algorithm 5.3. Compare the pro-
cessing efficiency in comparison with a ‘naive’ median filtering implementation. Use
median filter sizes ranging from 3 x 3 to 15 x 15 (odd sizes) for comparison.

P5.16 Median filtering that uses a 3 x 3 mask,

1 1 1
1 1 1
1 1 1

is damaging to thin lines and sharp corners. Give a 3 x 3 mask that can be used for
median filtering and does not exhibit this behavior.

P5.17 Continuing Problem P5.16, develop a program performing median filtering in neigh-
borhoods of any size and shape. To test the behavior of different sizes and shapes of
the median mask, corrupt input images with:

(a
(b
(c
(d

Impulse noise of varying severity
Horizontal lines of different width

Vertical lines of different width

Na NS N NG

Combinations of lines of different width and different direction

For each of these, determine the mask providing the subjectively best performance.

P5.18 Continuing Problem P5.17, consider the option of iteratively repeating median filtering
several times in a sequence. For each of the situations given in Problem P5.17, assess
the performance of the mask considered the best in Problem P5.17 in comparison to
some other mask applied iteratively several times. Determine the mask and the num-
ber of iterations providing the subjectively best pre-processing performance. Consider
the extent of removing the image corruption as well as the amount of image blurring
introduced.

P5.19 Develop a program performing averaging with limited data validity, as described by
equation (5.28). The program must allow averaging with square masks from 3x3 to
15x15 (odd sizes), the convolution kernel coefficients must be calculated in the program,
not listed as kernel values for each filter size. Averaging should only be done for pixels
(3, 7) with gray values g(i,j) from the interval of invalid data (min{invalid} < ¢(3,j) <
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max{invalid}) and only valid data should contribute to the average calculated. Test
your program on images corrupted by impulse noise and images corrupted by narrow
(several pixels wide) elongated objects of gray-levels from a narrow gray-level interval.
How does the effectiveness of your method compare to that of simple averaging and
median filtering?

P5.20 Create a set of noisy images by corrupting an image with
(a) Additive Gaussian noise of five different severity levels
(b) Multiplicative Gaussian noise of five different severity levels

(c) Impulse noise of five different severity levels

Apply
o Averaging filters of different sizes (equation 5.26)
e Gaussian filters of different standard deviations
e Median filters of different sizes and/or numbers of iterations
e Averaging with limited data validity
e Averaging according to inverse gradient

o Rotating mask averaging

to remove the superimposed noise as much as possible. Quantitatively compare the effi-
ciency of individual approaches by calculating a mean square error between the original
and pre-processed images. Formulate a general recommendation about applicability of
pre-processing techniques for removing specific types of noise.

P5.21 Using the program developed in Problem P5.9, implement the following edge detectors:

(a) Laplace in 4-neighborhood
(b) Laplace in 8-neighborhood

P5.22 Consider the binary image given in Figure 5.38. Show the resulting edge images (mag-
nitude and direction images where applicable) if the following edge detectors are used:

(a) Laplace in 4-neighborhood

(b) Prewitt
(c) Sobel
(d) Kirsch

Figure 5.38: © Cengage Learning 2015.

P5.23 Develop programs for determining magnitude and direction edge image pairs using each
of the Prewitt, Sobel and Kirsch compass edge detectors. The programs must display:
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e Magnitude edge image
e Direction edge image

e Magnitude edge image for edges of a specified direction

Use an image of a circle to demonstrate that your programs give correct results.

P5.24 Design a simple 5 x 5 detector (convolution mask) that is responsive to thin (1-3 pixel
wide) straight lines. How do you detect lines of all directions with such an operator?

P5.25 Develop a program for image sharpening as specified by equation (5.36). Use

(a) A non-directional Laplacian to approximate S(i,7)

(b) Unsharp masking

Experiment with the value of the parameter C' for both approaches and with the ex-
tent of smoothing for unsharp masking. Compare the sharpening effects of the two
approaches.

P5.26 Develop a program determining zero-crossing of the second derivative. Use the

(a) LoG definition
(b) DoG definition

Explain why borders are disconnected if only zero pixels are used for zero-crossing
definition. Propose and implement a modification providing contiguous borders. Is it
possible to use zero crossings to determine edge positions with subpixel accuracy? If
yes, how?

P5.27 Apply the LoG edge detector developed in Problem P5.26 with several values of the
smoothing parameter o. Explain the relationship between o and the scale of the re-
sulting edge image.

P5.28 Consider the double-step edge shown in Figure 5.39. Show that the locations of the
zero-crossing of the second derivative depend on o. Discuss the behavior of the zero-
crossings as o increases.

ftx)
C
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Figure 5.39: © Cengage Learning 2015.

P5.29 Implement the Canny edge detector as described by steps 1-5 of Algorithm 5.4 (imple-
menting feature synthesis is hard, therefore we recommend skipping step 7).

P5.30 Based on your theoretical understanding of Canny edge detector parameters of non-
maximal suppression and hysteresis thresholding, generate hypotheses of how changes
of these parameters will influence resulting edge images. Using the Canny detector
developed in Problem P5.29 (or one of many freely downloadable versions) prove the
validity of your hypotheses by experimenting.

P5.31 Design and implement at least one operator (different from those given in text) for each
of the following tasks:
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(a) Line finding
(b) Line thinning
(c)

(d) Corner detection

Line filling

Test your operators in artificially generated images using the program developed in
Problem P5.9

P5.32 Develop a program for image restoration using inverse convolution. Use the program
to restore images after the following degradations:

(a) Relative motion of the camera

(b) Wrong camera focus

Assume that the degradation parameters are known. Test the programs on artificially
degraded images. (Although not corresponding exactly to equation (5.77), camera
motion distortion can be modeled using a simple sinusoidal filter. Create a sinusoidal
image of the same size as your input image and use it as a sinusoidal filter in the
frequency domain. By changing the numbers of waves along width and height, you can
create a ‘double exposure’ image that may have resulted from abrupt camera motion.)

P5.33 Make yourself familiar with solved problems and Matlab implementations of selected
algorithms provided in the corresponding chapter of the Matlab Companion to this text
[Svoboda et al., 2008]. The Matlab Companion homepage http://visionbook.felk.cvut.cz
offers images used in the problems, and well-commented Matlab code is provided for
educational purposes.

P5.34 Use the Matlab Companion [Svoboda et al., 2008] to develop solutions to additional
exercises and practical problems provided there. Implement your solutions using Matlab
or other suitable programming languages.
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Chapter

Segmentation |

Image segmentation is one of the most important steps leading to the analysis of pro-
cessed image data—its main goal is to divide an image into parts that have a strong
correlation with objects or areas of the real world contained in the image. We may aim
for complete segmentation, which results in a set of disjoint regions corresponding
uniquely with objects in the input image, or for partial segmentation, in which regions
do not correspond directly with image objects. A complete segmentation of an image R

is a finite set of regions Ry, ..., Rg,
s
R=|JRi, RNR; =0, i#j. (6.1)
i=1

To achieve this, cooperation with higher processing levels which use specific knowledge of
the problem domain is usually necessary. However, there is a whole class of segmentation
problems that can be solved successfully using lower-level processing only. In this case,
the image commonly consists of contrasted objects located on a uniform background—
simple assembly tasks, blood cells, printed characters, etc. Here, a simple global approach
can be used and the complete segmentation of an image into objects and background can
be obtained. Such processing is context independent; no object-related model is used, and
no knowledge about expected segmentation results contributes to the final segmentation.

If partial segmentation is the goal, an image is divided into separate regions that
are homogeneous with respect to a chosen property such as brightness, color, reflectivity,
texture, etc. If an image of a complex scene is processed, for example, an aerial photo-
graph of an urban scene, a set of possibly overlapping homogeneous regions may result.
The partially segmented image must then be subjected to further processing, and the
final image segmentation may be found with the help of higher-level information.

Totally correct and complete segmentation of complex scenes usually cannot be
achieved in this processing phase, although an immediate gain is a substantial reduc-
tion in data volume. A reasonable aim is to use partial segmentation as an input to
higher-level processing.

Image data ambiguity is one of the main segmentation problems, often accompanied
by information noise. Segmentation methods can be divided into three groups according
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to the dominant features they employ: First is global knowledge about an image or
its part; this is usually represented by a histogram of image features. Edge-based seg-
mentations form the second group, and region-based segmentations the third—many
different characteristics may be used in edge detection or region growing, for example,
brightness, texture, velocity field, etc. The second and the third groups solve a dual prob-
lem. Each region can be represented by its closed boundary, and each closed boundary
describes a region. Because of the different natures of the various edge- and region-based
algorithms, they may be expected to give somewhat different results and consequently
different information. The segmentation results of these two approaches can therefore
be combined. A common example of this is a region adjacency graph, in which regions
are represented by nodes and graph arcs represent adjacency relations based on detected
region borders (Section 4.2.3).

6.1 Thresholding

Gray-level thresholding is the simplest segmentation process. Many objects or image re-
gions are characterized by constant reflectivity or light absorption of their surfaces; then
a brightness constant or threshold can be determined to segment objects and background.
Thresholding is computationally inexpensive and fast—it is the oldest segmentation
method and is still widely used in simple applications; it can easily be performed in
real time.

Thresholding is the transformation of an input image f to an output (segmented)
binary image g:

9(i.3) =1 for f(i.)> 1. 62)
=0 for f(i,j) < T, ‘
where T is the threshold, g(i,7) = 1 for image elements of objects, and ¢(i,j) = 0 for
image elements of the background (or vice versa).

Algorithm 6.1: Basic thresholding

1. Search all pixels f(i,7) of the image f. A pixel g(i,7) of the segmented image is
an object pixel if f(i,7) > T, and is a background pixel otherwise.

Complete segmentation can result from thresholding in simple scenes. If objects do
not touch each other, and if their gray-levels are clearly distinct from background gray-
levels, thresholding is a suitable segmentation method. Such an example is illustrated in
Figure 6.1.

Correct threshold selection is crucial for successful segmentation; this selection can be
determined interactively or it can be the result of some threshold detection method that
will be discussed in the next section. Onl