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Preface

This Handbook represents contributions from most of the
world’s leading educators and active research experts working
in the area of Digital Image and Video Processing. Such a volume
comes at a very appropriate time, since finding and applying
improved methods for the acquisition, compression, analysis,
and manipulation of visual information in digital format has
become a focal point of the ongoing revolution in information,
communication and computing. Moreover, with the advent of
the world-wide web and digital wireless technology, digital im-
age and video processing will continue to capture a significant
share of “high technology” research and development in the fu-
ture. This Handbook is intended to serve as the basic reference
point on image and video processing, both for those just enter-
ing the field as well as seasoned engineers, computer scientists,
and applied scientists that are developing tomorrow’s image and
video products and services.

The goal of producing a truly comprehensive, in-depth vol-
ume on Digital Image and Video Processing is a daunting one,
since the field is now quite large and multidisciplinary. Text-
books, which are usually intended for a specific classroom audi-
ence, either cover only a relatively small portion of the material,
or fail to do more than scratch the surface of many topics. More-
over, any textbook must represent the specific point of view of
its author, which, in this era of specialization, can be incomplete.
The advantage of the current Handbook format is that every topic
is presented in detail by a distinguished expert who is involved
in teaching or researching it on a daily basis.

This volume has the ambitious intention of providing a re-
source that covers introductory, intermediate and advanced top-
ics with equal clarity. Because of this, the Handbook can serve
equally well as reference resource and as classroom textbook. As
a reference, the Handbook offers essentially all of the material
that is likely to be needed by most practitioners. Those needing
further details will likely need to refer to the academic litera-
ture, such as the IEEE Transactions on Image Processing. As a
textbook, the Handbook offers easy-to-read material at different
levels of presentation, including several introductory and tuto-
rial chapters and the most basic image processing techniques.
The Handbook therefore can be used as a basic text in introduc-
tory, junior- and senior-level undergraduate, and graduate-level
courses in digital image and/or video processing. Moreover, the
Handbook is ideally suited for short courses taught in indus-
try forums at any or all of these levels. Feel free to contact the

Editor of this volume for one such set of computer-based lectures
(representing 40 hours of material).

The Handbook is divided into ten major sections covering
more than 50 Chapters. Following an Introduction, Section 2 of
the Handbook introduces the reader to the most basic methods of
gray-level and binary image processing, and to the essential tools
ofimage Fourier analysis and linear convolution systems. Section
3 covers basic methods for image and video recovery, including
enhancement, restoration, and reconstruction. Basic Chapters
on Enhancement and Restoration serve the novice. Section 4
deals with the basic modeling and analysis of digital images and
video, and includes Chapters on wavelets, color, human visual
modeling, segmentation, and edge detection. A valuable Chap-
ter on currently available software resources is given at the end.
Sections 5 and 6 deal with the major topics of image and video
compression, respectively, including the JPEG and MPEG stan-
dards. Sections 7 and 8 discuss the practical aspects of image and
video acquisition, sampling, printing, and assessment. Section 9
is devoted to the multimedia topics of image and video databases,
storage, retrieval, and networking. And finally, the Handbook
concludes with eight exciting Chapters dealing with applications.
These have been selected for their timely interest, as well as their
illustrative power of how image processing and analysis can be
effectively applied to problems of significant practical interest.

As Editor and Co-Author of this Handbook, 1 am very happy
that it has been selected to lead off a major new series of hand-
books on Communications, Networking, and Multimedia to be
published by Academic Press. 1 believe that this is a real testa-
ment to the current and growing importance of digital image
and video processing. For this opportunity I would like to thank
Jerry Gibson, the series Editor, and Joel Claypool, the Executive
Editor, for their faith and encouragement along the way.

Last, and far from least, I’d like to thank the many co-authors
who have contributed such a fine collection of articles to this
Handbook. They have been a model of professionalism, timeli-
ness, and responsiveness. Because of this, it was my pleasure to
carefully read and comment on every single word of every Chap-
ter, and it has been very enjoyable to see the project unfold. I feel
that this Handbook of Image and Video Processing will serve as an
essential and indispensable resource for many years to come.

Al Bovik
Austin, Texas
1999
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As we enter the new millennium, scarcely a week passes where
we do not hear an announcement of some new technological
breakthrough in the areas of digital computation and telecom-
munication. Particularly exciting has been the participation of
the general public in these developments, as affordable com-
puters and the incredible explosion of the World Wide Web
have brought a flood of instant information into a large and
increasing percentage of homes and businesses. Most of this in-
formation is designed for visual consumption in the form of
text, graphics, and pictures, or integrated multimedia presenta-
tions. Digital images and digital video are, respectively, pictures
and movies that have been converted into a computer-readable
binary format consisting of logical 0s and 1s. Usually, by an
image we mean a still picture that does not change with time,
whereas a video evolves with time and generally contains mov-
ing and/or changing objects. Digital images or video are usually
obtained by converting continuous signals into digital format,
although “direct digital” systems are becoming more prevalent.
Likewise, digital visual signals are viewed by using diverse display
media, included digital printers, computer monitors, and digi-
tal projection devices. The frequency with which information is

Copyright © 2000 by Academic Press.
All rights of reproduction in any form reserved,

transmitted, stored, processed, and displayed in a digital visual
format is increasing rapidly, and thus the design of engineering
methods for efficiently transmitting, maintaining, and even im-
proving the visual integrity of this information is of heightened
interest.

One aspect of image processing that makes it such an interest-
ing topic of study is the amazing diversity of applications that use
image processing or analysis techniques. Virtually every branch
of science has subdisciplines that use recording devices or sensors
to collect image data from the universe around us, as depicted
in Fig. 1. These data are often multidimensional and can be ar-
ranged in a format that is suitable for human viewing. Viewable
datasets like this can be regarded as images, and they can be
processed by using established techniques for image processing,
even if the information has not been derived from visible-light
sources. Moreover, the data may be recorded as they change over
time, and with faster sensors and recording devices, it is becom-
ing easier to acquire and analyze digital video datasets. By mining
the rich spatiotemporal information that is available in video,
one can often analyze the growth or evolutionary properties of
dynamic physical phenomena or of living specimens.
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FIGURE 1 Part of the universe of image processing applications.

Types of Images

Another rich aspect of digital imaging is the diversity of image
types that arise, and that can derive from nearly every type of
radiation. Indeed, some of the most exciting developments in
medical imaging have arisen from new sensors that record im-
age data from previously little-used sources of radiation, such as
PET (positron emission tomography) and MRI (magnetic reso-
nance imaging), or that sense radiation in new ways, as in CAT
(computer-aided tomography), where X-ray data are collected
from multiple angles to form a rich aggregate image.

There is an amazing availability of radiation to be sensed,
recorded as images or video, and viewed, analyzed, transmitted,
or stored. In our daily experience we think of “what we see” as
being “what is there,” but in truth, our eyes record very little of
the information that is available at any given moment. As with
any sensor, the human eye has a limited bandwidth. The band of
electromagnetic (EM) radiation that we are able to see, or “visible
light,” is quite small, as can be seen from the plot of the EM band
inFig. 2. Note that the horizontal axis is logarithmic! At any given
moment, we see very little of the available radiation that is going
on around us, although certainly enough to get around. From
an evolutionary perspective, the band of EM wavelengths that
the human eye perceives is perhaps optimal, since the volume
of data is reduced, and the data that are used are highly reliable
and abundantly available (the Sun emits strongly in the visible
bands, and the Earth’s atmosphere is also largely transparent
in the visible wavelengths). Nevertheless, radiation from other
bands can be quite useful as we attempt to glean the fullest pos-
sible amount of information from the world around us. Indeed,

radio ———

‘—
frequency
amma visible microwave
T DI
(I Y I O O O
0t 10t w10t 100 10 10° 10"

wavelength (angstroms)

FIGURE 2 The electromagnetic spectrum.

Handbook of Image and Video Processing

certain branches of science sense and record images from nearly
all of the EM spectrum, and they use the information to give a
better picture of physical reality. For example, astronomers are
often identified according to the type of data that they specialize
in, e.g., radio astronomers, X-ray astronomers, and so on. Non-
EM radiation is also useful for imaging. A good example are the
high-frequency sound waves (ultrasound) that are used to create
images of the human body, and the low-frequency sound waves
that are used by prospecting companies to create images of the
Earth’s subsurface.

One commonality that can be made regarding nearly all im-
ages is that radiation is emitted from some source, then interacts
with some material, and then is sensed and ultimately trans-
duced into an electrical signal, which may then be digitized. The
resulting images can then be used to extract information about
the radiation source, and/or about the objects with which the
radiation interacts.

We may loosely classify images according to the way in which
the interaction occurs, understanding that the division is some-
times unclear, and that images may be of multiple types. Figure 3
depicts these various image types.

Reflection images sense radiation that has been reflected from
the surfaces of objects. The radiation itself may be ambient or
artificial, and it may be from a localized source, or from multi-
ple or extended sources. Most of our daily experience of optical
imaging through the eye is of reflection images. Common non-
visible examples include radar images, sonar images, and some
types of electron microscope images. The type of information
that can be extracted from reflection images is primarily about
object surfaces, that is, their shapes, texture, color, reflectivity,
and so on.

Emission images are even simpler, since in this case the objects
being imaged are self-luminous. Examples include thermal or
infrared images, which are commonly encountered in medical,

ﬁ radiation source

rel‘le?twe /' radiation
object
reflected radiation
self- ear(c
luminous I sensor(s)
object \Q ~7 emited . electrical
- — radiation signal
7/ I T
altered
radiation
radiation /
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object

S
emitted
radiation

FIGURE 3 Recording the various types of interaction of radiation with matter.
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1.1 Introduction to Digital Image and Video Processing

astronomical, and military applications, self-luminous visible-
light objects, such aslight bulbs and stars,and MRl images, which
sense particle emissions. In images of this type, the information
to be had is often primarily internal to the object; the image may
reveal how the object creates radiation, and thence something
of the internal structure of the object being imaged. However,
it may also be external; for example, a thermal camera can be
used in low-light situations to produce useful images of a scene
containing warm objects, such as people.

Finally, absorption imagesyield information about the internal
structure of objects. In this case, the radiation passes through
objects and is partially absorbed or attenuated by the material
composing them. The degree of absorption dictates the level of
the sensed radiation in the recorded image. Examples include X-
ray images, transmission microscopic images, and certain types
of sonic images.

Of course, the preceding classification into types is informal,
and a given image may contain objects that interact with radia-
tion in different ways. More important is to realize that images
come from many different radiation sources and objects, and that
the purpose of imaging is usually to extract information about
either the source and/or the objects, by sensing the reflected or
transmitted radiation, and examining the way in which it has in-
teracted with the objects, which can reveal physical information
about both source and objects.

Figure 4 depicts some representative examples of each of the
preceding categories of images. Figures 4(a) and 4(b) depict re-
flection images arising in the visible-light band and in the mi-
crowave band, respectively. The former is quite recognizable; the
latter is a synthetic aperture radar image of DFW airport. Figs.
4(c) and 4(d) are emission images, and depict, respectively, a
forward-looking infrared (FLIR) image, and a visible-light im-
age of the globular star cluster Omega Centauri. Perhaps the
reader can probably guess the type of object that is of interest in
Fig. 4(c). The object in Fig. 4(d), which consists of over a million
stars, is visible with the unaided eye at lower northern latitudes.
Lastly, Figs. 4(e) and 4(f), which are absorption images, are of
a digital (radiographic) mammogram and a conventional light
micrograph, respectively.

Scale of Images

Examining the pictures in Fig. 4 reveals another image diver-
sity: scale. In our daily experience we ordinarily encounter and
visualize objects that are within 3 or 4 orders of magnitude of
1 m. However, devices for image magnification and amplifica-
tion have made it possible to extend the realm of “vision” into
the cosmos, where it has become possible to image extended
structures extending over as much as 10** m, and into the mi-
crocosmos, where it has become possible to acquire images of
objects as small as 10™'° m. Hence we are able to image from the
grandest scale to the minutest scales, over a range of 40 orders

of magnitude, and as we will find, the techniques of image and
video processing are generally applicable to images taken at any
of these scales.

Scale has another important interpretation, in the sense that
any given image can contain objects that exist at scales different
from other objects in the same image, or that even exist at mul-
tiple scales simultaneously. In fact, this is the rule rather than
the exception. For example, in Fig. 4(a), at a small scale of ob-
servation, the image contains the bas-relief patterns cast onto
the coins. At a slightly larger scale, strong circular structures
arose. However, at a yet larger scale, the coins can be seen to be
organized into a highly coherent spiral pattern. Similarly, exam-
ination of Fig. 4(d) at a small scale reveals small bright objects
corresponding to stars; at a larger scale, it is found that the stars
are nonuniformly distributed over the image, with a tight cluster
having a density that sharply increases toward the center of the
image. This concept of multiscale is a powerful one, and it is the
basis for many of the algorithms that will be described in the
chapters of this Handbook.

Dimension of Images

An important feature of digital images and video is that they
are multidimensional signals, meaning that they are functions of
more than a single variable. In the classic study of digital signal
processing, the signals are usually one-dimensional functions of
time. Images, however, are functions of two, and perhaps three
space dimensions, whereas digital video as a function includes
a third (or fourth) time dimension as well. The dimension of a
signal is the number of coordinates that are required to index a
given point in the image, as depicted in Fig. 5. A consequence
of this is that digital image processing, and especially digital
video processing, is quite data intensive, meaning that significant
computational and storage resources are often required.

Digitization of Images

The environment around us exists, at any reasonable scale of
observation, in a space/time continuum. Likewise, the signals
and images that are abundantly available in the environment
(before being sensed) are naturally analog. By analog, we mean
two things: that the signal exists on a continuous (space/time)
domain, and that also takes values that come from a continuum
of possibilities. However, this Handbook is about processing dig-
ital image and video signals, which means that once the image
or video signal is sensed, it must be converted into a computer-
readable, digital format. By digital, we also mean two things: that
thesignalis defined on a discrete (space/time) domain, and that it
takes values from a discrete set of possibilities. Before digital pro-
cessing can commence, a process of analog-to-digital conversion
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FIGURE 4 Examples of (a), (b), reflection; (c), (d), emission; and (e), (f) absorption image types.



1.1 Introduction to Digital Image and Video Processing

dimension 2

digital image

»
>

dimension 1

diny
e

4

dimension 2

digital video
sequence R

—
dimension 1

FIGURE 5 The dimensionality of images and video.

(A/D conversion) must occur. A/D conversion consists of two
distinct subprocesses: sampling and quantization.

Sampled Images

Sampling is the process of converting a continuous-space (or
continuous-space/time) signal into a discrete-space (or discrete-
space/time) signal. The sampling of continuous signals is a rich
topic that is effectively approached with the tools of linear sys-
tems theory. The mathematics of sampling, along with practical
implementations, are addressed elsewhere in this Handbook. In
this Introductory Chapter, however, it is worth giving the reader
a feel for the process of sampling and the need to sample a signal
sufficiently densely. For a continuous signal of given space/time
dimensions, there are mathematical reasons why there is a lower
bound on the space/time sampling frequency (which determines
the minimum possible number of samples) required to retain the
information in the signal. However, image processing is a visual
discipline, and it is more fundamental to realize that what is usu-
ally important is that the process of sampling does not lose visual
information. Simply stated, the sampled image or video signal
must “look good,” meaning that it does not suffer too much from
a loss of visual resolution, or from artifacts that can arise from
the process of sampling.

Figure 6 illustrates the result of sampling a one-dimensional
continuous-domain signal. It is easy to see that the samples col-
lectively describe the gross shape of the original signal very nicely,

v

Continuous-domain signal

0 5 10 15 20 25 30 35 40
Sampled signal indexed by discrete (integer) numbers

FIGURE 6 Sampling a continuous-domain one-dimensional signal.

but that smaller variations and structures are harder to discern
or may be lost. Mathematically, information may have been lost,
meaning that it might not be possible to reconstruct the original
continuous signal from the samples (as determined by the Sam-
pling Theorem; see Chapters 2.3 and 7.1). Supposing that the
signal is part of an image, e.g., is a single scan line of an image
displayed on a monitor, then the visual quality may or may not
be reduced in the sampled version. Of course, the concept of
visual quality varies from person to person, and it also depends
on the conditions under which the image is viewed, such as the
viewing distance.

Note that in Fig. 6, the samples are indexed by integer num-
bers. In fact, the sampled signal can be viewed as a vector of
numbers. If the signal is finite in extent, then the signal vector
can be stored and digitally processed as an array; hence the inte-
ger indexing becomes quite natural and useful. Likewise, image
and video signals that are space/time sampled are generally in-
dexed by integers along each sampled dimension, allowing them
to be easily processed as multidimensional arrays of numbers.
As shown in Fig. 7, a sampled image is an array of sampled im-
age values that are usually arranged in a row—column format.
Each of the indexed array elements is often called a picture ele-
ment, or pixel for short. The term pel has also been used, but has
faded in usage probably because it is less descriptive and not as

columns
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FIGURE 7 Depiction of a very small (10 x 10) piece of an image array.
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FIGURE 8 Examples of the visual effect of different image sampling densities.

catchy. The number of rows and columns in a sampled image
is also often selected to be a power of 2, because this simplifies
computer addressing of the samples, and also because certain
algorithms, such as discrete Fourier transforms, are particularly
efficient when operating on signals that have dimensions that
are powers of 2. Images are nearly always rectangular (hence in-
dexed on a Cartesian grid), and they are often square, although
the horizontal dimension is often longer, especially in video sig-
nals, where an aspect ratio of 4: 3 is common.

As mentioned in the preceding text, the effects of insufficient
sampling (“undersampling”) can be visually obvious. Figure 8
shows two very illustrative examples of image sampling. The two
images, which we call “mandrill” and “fingerprint,” both contain
asignificant amount of interesting visual detail that substantially
defines the content of the images. Each image is shown at three
different sampling densities: 256 x 256 (or 28 x 28 = 65,536
samples), 128 x 128 (or 27 x 27 = 16,384 samples), and 64 x 64
(or 26 x 28 = 4,096 samples). Of course, in both cases, all three
scales of images are digital, and so there is potential loss of in-

formation relative to the original analog image. However, the
perceptual quality of the images can easily be seen to degrade
rather rapidly; note the whiskers on the mandrill’s face, which
lose all coherency in the 64 x 64 image. The 64 x 64 fingerprint
is very interesting, since the pattern has completely changed! It
almost appears as a different fingerprint. This results from an
undersampling effect know as aliasing, in which image frequen-
cies appear that have no physical meaning (in this case, creating
a false pattern). Aliasing, and its mathematical interpretation,
will be discussed further in Chapter 2.3 in the context of the
Sampling Theorem.

Quantized Images

The other part of image digitization is quantization. The values
that a (single-valued) image takes are usually intensities, since
they are a record of the intensity of the signal incident on the
sensor, e.g., the photon count or the amplitude of a measured
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8-bit representation

Illustration of an 8-bit representation of a quantized pixel.

wave function. Intensity is a positive quantity. If the image is
represented visually, using shades of gray (like a black-and-white
photograph), then the pixel values are referred to as gray levels. Of
course, broadly speaking, an image may be multivalued at each
pixel (such as a color image), or an image may have negative
pixel values, in which case it is not an intensity function. In any
case, the image values must be quantized for digital processing.

Quantization is the process of converting a continuous-valued
image, which has a continuous range (set of values that it can
take), into a discrete-valued image, which has a discrete range.
This is ordinarily done by a process of rounding, truncation, or
some other irreversible, nonlinear process of information de-
struction. Quantization is a necessary precursor to digital pro-
cessing, since the image intensities must be represented with a
finite precision (limited by word length) in any digital processor.

When the gray level of an image pixel is quantized, it is as-
signed to be one of a finite set of numbers, which is the gray-
level range. Once the discrete set of values defining the gray-level
range is known or decided, then a simple and efficient method of
quantization is simply to round the image pixel values to the re-
spective nearest members of the intensity range. These rounded
values can be any numbers, but for conceptual convenience and
ease of digital formatting, they are then usually mapped by a
linear transformation into a finite set of nonnegative integers
{0, ..., K — 1}, where K is a power of 2: K = 28, Hence the
number of allowable gray levels is K, and the number of bits
allocated to each pixel’s gray level is B. Usually 1 < B < 8 with
B = 1 (for binary images) and B = 8 (where each gray level
conveniently occupies a byte) being the most common bit depths
(see Fig. 9). Multivalued images, such as color images, require

quantization of the components either individually or collec-
tively (“vector quantization”); for example, a three-component
color image is frequently represented with 24 bits per pixel of
color precision.

Unlike sampling, quantization is a difficult topic to analyze,
because it is nonlinear. Moreover, most theoretical treatments
of signal processing assume that the signals under study are not
quantized, because this tends to greatly complicate the analysis.
In contrast, quantization is an essential ingredient of any (lossy)
signal compression algorithm, where the goal can be thought of
as finding an optimal quantization strategy that simultaneously
minimizes the volume of data contained in the signal, while dis-
turbing the fidelity of the signal as little as possible. With simple
quantization, such as gray-level rounding, the main concern is
that the pixel intensities or gray levels must be quantized with
sufficient precision that excessive information is not lost. Unlike
sampling, there is no simple mathematical measurement of in-
formation loss from quantization. However, while the effects of
quantization are difficult to express mathematically, the effects
are visually obvious.

Each of the images depicted in Figs. 4 and 8 is represented
with 8 bits of gray-level resolution — meaning that bits less sig-
nificant than the eighth bit have been rounded or truncated.
This number of bits is quite common for two reasons. First, us-
ing more bits will generally not improve the visual appearance
of the image — the adapted human eye usually is unable to see
improvements beyond 6 bits (although the total range that can
be seen under different conditions can exceed 10 bits) — hence
using more bits would be wasteful. Second, each pixel is then
conveniently represented by a byte. There are exceptions: in cer-
tain scientific or medical applications, 12, 16, or even more bits
may be retained for more exhaustive examination by human or
by machine.

Figures 10 and 11 depict two images at various levels of gray-
level resolution. A reduced resolution (from 8 bits) was obtained
by simply truncating the appropriate number of less-significant
bits from each pixel’s gray level. Figure 10 depicts the 256 x 256
digital image “fingerprint” represented at 4, 2, and 1 bit of gray-
level resolution. At 4 bits, the fingerprint is nearly indistinguish-
able from the 8-bit representation of Fig. 8. At 2 bits, the image

FIGURE 10

Quantization of the 256 x 256 image “fingerprint.” Clockwise from left: 4, 2, and 1 bits per pixel.
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FIGURE 11

has lost a significant amount of information, making the print
difficult to read. At 1 bit, the binary image that results is likewise
hard to read. In practice, binarization of fingerprints is often
used to make the print more distinctive. With the use of simple
truncation—quantization, most of the print is lost because it was
inked insufficiently on the left, and to excess on the right. Gener-
ally, bit truncation is a poor method for creating a binary image
from a gray-level image. See Chapter 2.2 for better methods of
image binarization.

Figure 11 shows another example of gray-level quantization.
The image “eggs” is quantized at 8, 4, 2, and 1 bit of gray-level
resolution. At 8 bits, the image is very agreeable. At 4 bits, the
eggs take on the appearance of being striped or painted like
Easter eggs. This effect is known as “false contouring,” and re-
sults when inadequate gray-scale resolution is used to represent
smoothly varying regions of an image. In such places, the effects
of a (quantized) gray level can be visually exaggerated, leading to
an appearance of false structures. At 2 bits and 1 bit, significant
information has been lost from the image, making it difficult to
recognize.

Handbook of Image and Video Processing

Quantization of the 256 x 256 image “eggs.” Clockwise from upper left: 8, 4, 2, and 1 bits per pixel.

A quantized image can be thought of as a stacked set of single-
bit images (known as bit planes) corresponding to the gray-level
resolution depths. The most significant bits of every pixel com-
prise the top bit plane, and so on. Figure 12 depicts a 10 x 10
digital image as a stack of B bit planes. Special-purpose image
processing algorithms are occasionally applied to the individual
bit planes.

Color Images

Of course, the visual experience of the normal human eye is not
limited to gray scales— color is an extremely important aspect
of images. It is also an important aspect of digital images. In a
very general sense, color conveys a variety of rich information
that describes the quality of objects, and as such, it has much to
do with visual impression. For example, it is known that different
colors have the potential to evoke different emotional responses.
The perception of color is allowed by the color-sensitive neurons
known as cones that are located in the retina of the eye. The cones



1.1 Imtroduction to Digital Image and Video Processing

P oy F &  Payalyelded
LI T T T T 7
LTLT7LT7 LT LT L7 L7777
LT T L T T 87
M M LT LTLLTLT7 LT LT T
P & oyl oy 4 gl
LT T =&
P vy O O F go go 4
LT L7 L7 L7777 7 & BitPlane |
LT LT LTLT LT LT LT T

LTLT LT B S A & & &
v Vo P U PP Iy Pl
T B ST
Voo Yol ok Voded & 4
Yoo Yo Yol Vododad 4
MMM TS TS MST M
LT MLTLTLT LT M MM T
V F Y Joded Yudoded 4
LML T M T ST LT M Bit Plane 2
M TS TS TMLT

V' VO VIV IYD 4
Yo & o 2 Yo 4
V- ¥ Yo ¥ Yoy ¥ 4
V' Yo ¥ Vo Y
V- Yo Yy P 4
V- Y oYY P 4
Yool O VD F Vol e

Yordod Vol F Furd VoPard

T ML T T M7 &~ BitPlaneB
LTLT ML T LT ST LT T LT

FIGURE 12 Depiction of asmall (10 x 10) digital image as a stack of bit planes
ranging from most significant (top) to least significant (bottom),

are responsive to normal light levels and are distributed with
greatest density near the center of the retina, known as fovea
(along the direct line of sight). The rods are neurons that are
sensitive at low-light levels and are not capable of distinguishing
color wavelengths. They are distributed with greatest density
around the periphery of the fovea, with very low density near
the line of sight. Indeed, one may experience this phenomenon
by observing a dim point target (such as a star) under dark
conditions. If one’s gaze is shifted slightly off center, then the
dim object suddenly becomes easier to see.

In the normal human eye, colors are sensed as near-linear
combinations of long, medium, and short wavelengths, which
roughly correspond to the three primary colors that are used in
standard video camera systems: Red (R), Green (G), and Blue
(B). The way in which visible-light wavelengths map to RGB
camera color coordinates is a complicated topic, although stan-
dard tables have been devised based on extensive experiments.
A number of other color coordinate systems are also used in im-
age processing, printing, and display systems, such as the YIQ
(luminance, in-phase chromatic, quadratic chromatic) color co-
ordinate system. Loosely speaking, the YIQ coordinate system
attempts to separate the perceived image brightness (luminance)
from the chromatic components of the image by means of an
invertible linear transformation:

Y 0.299 0.587 0.114 R
I | =1[059% -0.275 —0.321 G |. (1)
Q 0.212 —-0.523 0.311 B
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The RGB system is used by color cameras and video display
systems, whereas the YIQ is the standard color representation
used in broadcast television. Both representations are used in
practical image and video processing systems, along with several
other representations.

Most of the theory and algorithms for digital image and video
processing have been developed for single-valued, monochro-
matic (graylevel), or intensity-only images, whereas color images
are vector-valued signals. Indeed, many of the approaches de-
scribed in this Handbook are developed for single-valued images.
However, these techniques are often applied (suboptimally) to
color image data by regarding each color component as a separate
image to be processed and by recombining the results afterward.
As seen in Fig. 13, the R, G, and B components contain a con-
siderable amount of overlapping information. Each of them is a
valid image in the same sense as the image seen through colored
spectacles, and can be processed as such. Conversely, however,
if the color components are collectively available, then vector
image processing algorithms can often be designed that achieve
optimal results by taking this information into account. For ex-
ample, a vector-based image enhancement algorithm applied to
the “cherries” image in Fig. 13 might adapt by giving less impor-
tance to enhancing the blue component, since the image signal
is weaker in that band.

Chromanance is usually associated with slower amplitude
variations than is luminance, since it usually is associated with
fewer image details or rapid changes in value. The human eye has
a greater spatial bandwidth allocated for luminance perception
than for chromatic perception. This is exploited by compression
algorithms that use alternate color representations, such as YIQ,
and store, transmit, or process the chromatic components using
a lower bandwidth (fewer bits) than the luminance component.
Image and video compression algorithms achieve increased ef-
ficiencies through this strategy.

Size of Image Data

The amount of data in visual signals is usually quite large, and
it increases geometrically with the dimensionality of the data.
This impacts nearly every aspect of image and video processing;
data volume is a major issue in the processing, storage, transmis-
sion, and display of image and video information. The storage
required for a single monochromatic digital still image that has
(row x column) dimensions N x Mand B bits of gray-level reso-
lution is NMB bits. For the purpose of discussion we will assume
that the image is square (N = M), although images of any aspect
ratio are common. Most commonly, B = 8 (1 byte/pixel) unless
the image is binary or is special purpose. If the image is vec-
tor valued, e.g., color, then the data volume is multiplied by the
vector dimension. Digital images that are delivered by commer-
cially available image digitizers are typically of an approximate
size of 512 x 512 pixels, which is large enough to fill much of a
monitor screen. Images both larger (ranging up to 4096 x 4096
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FIGURE 13 Color image of “cherries” (top left), and (clockwise) its red, green, and blue components.
(See color section, p. C-1.)

or more) and smaller (as small as 16 x 16) are commonly en-
countered. Table 1 depicts the required storage for a variety of

TABLE 1 Data-volume requirements for digital still images of various
sizes, bit depths, and vector dimension

Spatial Pixel Resolution Data Volume
Dimensions (bits) Image Type (bytes)
128 x 128 1 Monochromatic 2,048
256 x 256 1 Monochromatic 8,192
512 x 512 1 Monochromatic 32,768
1024 x 1024 1 Monochromatic 131,072
128 x 128 8 Monochromatic 16,384
256 x 256 8 Monochromatic 65,536
512 x 512 8 Monochromatic 262,144
1024 x 1024 8 Monochromatic 1,048,576
128 x 128 3 Trichromatic 6,144
256 x 256 3 Trichromatic 24,576
512 x 512 3 Trichromatic 98,304
1024 x 1024 3 Trichromatic 393,216
128 x 128 24 Trichromatic 49,152
256 x 256 24 Trichromatic 196,608
512 x 512 24 Trichromatic 786,432
1024 x 1024 24 Trichromatic 3,145,728

image resolution parameters, assuming that there has been no
compression of the data. Of course, the spatial extent (area) of
the image exerts the greatest effect on the data volume. A single
512 x 512 x 8 color image requires nearly a megabyte of digital
storage space, which only a few years ago was a lot. More recently,
even large images are suitable for viewing and manipulation on
home personal computers (PCs), although they are somewhat
inconvenient for transmission over existing telephone networks.

However, when the additional time dimension is introduced,
the picture changes completely. Digital video is extremely storage
intensive. Standard video systems display visual information at
a rate of 30 images/s for reasons related to human visual latency
(at slower rates, there is a perceivable “flicker”). A 512 x 512 x 24
color video sequence thus occupies 23.6 megabytes for each sec-
ond of viewing. A 2-hour digital film at the same resolution
levels would thus require ~85 gigabytes of storage at nowhere
near theatre quality. That is alot of data, even for today’s com-
puter systems. Fortunately, images and video generally contain
a significant degree of redundancy along each dimension. Tak-
ing this into account along with measurements of human vi-
sual response, it is possible to significantly compress digital im-
ages and video streams to acceptable levels. Sections 5 and 6
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of this Handbook contain a number of chapters devoted to these
topics. Moreover, the pace of information delivery is expected
to significantly increase in the future, as significant additional
bandwidths become available in the form of gigabit and ter-
abit Ethernet networks, digital subscriber lines that use existing
telephone networks, and public cable systems. These develop-
ments in telecommunications technology, along with improved
algorithms for digital image and video transmission, promise a
future that will be rich in visual information content in nearly
every medium.

Digital Video

A significant portion of this Handbook is devoted to the topic
of digital video processing. In recent years, hardware technolo-
gies and standards activities have matured to the point that it
is becoming feasible to transmit, store, process, and view video
signals that are stored in digital formats, and to share video sig-
nals between different platforms and application areas. This is
a natural evolution, since temporal change, which is usually as-
sociated with motion of some type, is often the most important
property of a visual signal.

Beyond this, there is a wealth of applications that stand to ben-
efit from digital video technologies, and it is no exaggeration to
say that the blossoming digital video industry represents many
billions of dollars in research investments. The payoff from this
research will be new advances in digital video processing theory,
algorithms, and hardware that are expected to result in many
billions more in revenues and profits. It is safe to say that dig-
ital video is very much the current frontier and the future of
image processing research and development. The existing and
expected applications of digital video are either growing rapidly
or are expected to explode once the requisite technologies be-
come available.

Some of the notable emerging digital video applications are
as follows:

» video teleconferencing

» video telephony

+ digital TV, including high-definition television (HDTV)
- internet video

+ medical video

» dynamic scientific visualization

» multimedia video

» video instruction

« digital cinema

Sampled Video

Of course, the digital processing of video requires that the video
stream be in a digital format, meaning that it must be sam-
pled and quantized. Video quantization is essentially the same
as image quantization. However, video sampling involves taking
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samples along a new and different (time) dimension. As such, it
involves some different concepts and techniques.

First and foremost, the time dimension has a direction asso-
ciated with it, unlike the space dimensions, which are ordinarily
regarded as directionless until a coordinate system is artificially
imposed upon it. Time proceeds from the past toward the future,
with an origin that exists only in the current moment. Video is
often processed in “real time,” which (loosely) means that the re-
sult of processing appears effectively “Instantaneously” (usually
in a perceptual sense) once the input becomes available. Such
a processing system cannot depend on more than a few future
video samples. Moreover, it must process the video data quickly
enough that the result appears instantaneous. Because of the vast
data volume involved, the design of fast algorithms and hardware
devices is a major priority.

In principle, an analog video signal I(x, y, t), where (x, y)
denote continuous space coordinates and t denotes continuous
time, is continuous in both the space and time dimensions, since
the radiation flux that is incident on a video sensor is continuous
at normal scales of observation. However, the analog video that
is viewed on display monitors is not truly analog, since it is sam-
pled along one space dimension and along the time dimension.
Practical so-called analog video systems, such as television and
monitors, represent video as a one-dimensional electrical signal
V(#). Prior to display, a one-dimensional signal is obtained by
sampling I(x, y, t) along the vertical (y) space direction and
along the time (t) direction. This is called scanning, and the re-
sult is a series of time samples, which are complete pictures or
frames, each of which is composed of space samples, or scan lines.

Two types of video scanning are commonly used: progres-
sive scanning and interlaced scanning. A progressive scan traces a
complete frame, line by line from top to bottom, at a scan rate
of At s/frame. High-resolution computer monitors are a good
example, with a scan rate of At = 1/72 s. Figure 14 depicts
progressive scanning on a standard monitor.

A description of interlaced scanning requires that some other
definitions be made. For both types of scanning, the refresh rate
is the frame rate at which information is displayed on a monitor.
It is important that the frame rate be high enough, since oth-
erwise the displayed video will appear to “flicker” The human
eye detects flicker if the refresh rate is less than ~50 frames/s.
Clearly, computer monitors (72 frames/s) exceed this rate by al-
most 50%. However, in many other systems, notably television,
such fast refresh rates are not possible unless spatial resolution
is severely compromised because of bandwidth limitations. In-
terlaced scanning is a solution to this. In P : 1 interlacing, every
Pth line is refreshed at each frame refresh. The subframes in in-
terlaced video are called fields; hence P fields constitute a frame.
The most common is 2 : | interlacing, which is used in standard
television systems, as depicted in Fig. 14. In 2 : 1 interlacing, the
two fields are usually referred to as the top and bottom fields. In
this way, flicker is effectively eliminated provided that the field
refresh rate is above the visual limit of ~50 Hz. Broadcast tele-
vision in the U.S. uses a frame rate of 30 Hz; hence the field rate
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FIGURE 14 Video scanning: (a) Progressive video scanning. At the end of a scan (1), the
electron gun spot snaps back to (2). A blank signal is sent in the interim. After reaching the
end of a frame (3), the spot snaps back to (4). A synchronization pulse then signals the start
of another frame. (b) Interlaced video scanning. Red and blue fields are alternately scanned
left to right and top to bottom. At the end of scan (1), the spot snaps to (2). At the end of the

blue field (3), the spot snaps to (4) (new field).

is 60 Hz, which is well above the limit. The reader may wonder
if there is a loss of visual information, since the video is being
effectively subsampled by a factor of 2 in the vertical space di-
mension in order to increase the apparent frame rate. In fact
there is, since image motion may change the picture between
fields. However, the effect is ameliorated to a significant degree
by standard monitors and TV screens, which have screen phos-
phors with a persistence (glow time) that just matches the frame
rate; hence each field persists until the matching field is sent.
Digital video is obtained either by sampling an analog video
signal V(#), orby directly samplingthe three-dimensional space—
time intensity distribution that is incident on a sensor. In either
case, what results is a time sequence of two-dimensional spatial
intensity arrays, or equivalently, a three-dimensional space—time
array. If a progressive analog video is sampled, then the sampling
is rectangular and properly indexed in an obvious manner, as il-
lustrated in Fig. 15. If an interlaced analog video is sampled, then
the digital video is interlaced also as shown in Fig. 16. Of course,
if an interlaced video stream is sent to a system that processes or
displays noninterlaced video, then the video data must first be
converted or deinterlaced to obtain a standard progressive video
stream before the accepting system will be able to handle it.

Video Transmission

The data volume of digital video is usually described in terms of
bandwidth orbit rate. As described in Chapter 6.1, the bandwidth
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FIGURE 15 A single frame from a sampled progressive video sequence.

of digital video streams (without compression) that match the
current visual resolution of current television systems exceeds
100 megabits/s (mbps). Proposed digital television formats such
as HDTV promise to multiply this by a factor of at least 4. By con-
trast, the networks that are currently available to handle digital
data are quite limited. Conventional telephone lines (POTS) de-
livers only 56 kilobits/s (kbps), although digital subscriber lines
(DSLs) promise to multiply this by a factor of 30 or more. Sim-
ilarly, ISDN (Integrated Services Digital Network) lines that are
currently available allow for data bandwidths equal to 64 p kbps,
where 1 < p < 30, which falls far short of the necessary data
rate to handle full digital video. Dedicated T1 lines (1.5 mbps)
also handle only a small fraction of the necessary bandwidth.
Ethernet and cable systems, which currently can handle as much
as 1 gigabit/s (gbps) are capable of handling raw digital video,
but they have problems delivering multiple streams over the
same network. The problem is similar to that of delivering large
amounts of water through small pipelines. Either the data rate
(water pressure) must be increased, or the data volume must be
reduced.

Fortunately, unlike water, digital video can be compressed very
effectively because of the redundancy inherent in the data, and
because of an increased understanding of what components in
the video stream are actually visible. Because of many years of
research into image and video compression, it is now possible to

time k =k, time k = ko +At/2
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FIGURE 16 A single frame (two fields) from a sampled 2: 1 interlaced video
sequence.
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transmit digital video data over a broad spectrum of networks,
and we may expect that digital video will arrive in a majority of
homes in the near future. Based on research developments along
these lines, a number of world standards have recently emerged,
or are under discussion, for video compression, video syntax,
and video formatting. The use of standards allows for a common
protocol for video and ensures that the consumer will be able to
accept the same video inputs with products from different man-
ufacturers. The current and emerging video standards broadly
extend standards for still images that have been in use for a num-
ber of years. Several chapters are devoted to describing these stan-
dards, while others deal with emerging techniques that may effect
future standards. It is certain, in any case, that we have entered a
new era in which digital visual data will play an important role
in education, entertainment, personal communications, broad-
cast, the Internet, and many other aspects of daily life.

Objectives of this Handbook

The goals of this Handbook are ambitious, since it is intended to
reach a broad audience that is interested in a wide variety of im-
age and video processing applications. Moreover, it is intended
to be accessible to readers that have a diverse background, and
that represent a wide spectrum of levels of preparation and en-
gineering or computer education. However, a Handbook format
is ideally suited for this multiuser purpose, since it allows for a
presentation that adapts to the reader’s needs. In the early part
of the Handbook we present very basic material that is easily
accessible even for novices to the image processing field. These
chapters are also useful for review, for basic reference, and as
support for later chapters. In every major section of the Hand-
book, basic introductory material is presented, as well as more
advanced chapters that take the reader deeper into the subject.

Unlike textbooks on image processing, the Handbook is there-
fore not geared toward a specified level of presentation, nor does
it uniformly assume a specific educational background. There
is material that is available for the beginning image processing
user, as well as for the expert. The Handbook is also unlike a
textbook in that it is not limited to a specific point of view given
by a single author. Instead, leaders from image and video pro-
cessing education, industry, and research have been called upon
to explain the topical material from their own daily experience.
By calling upon most of the leading experts in the field, we have
been able to provide a complete coverage of the image and video
processing area without sacrificing any level of understanding of
any particular area.

Because of its broad spectrum of coverage, we expect that the
Handbook of Image and Video Processing will serve as an excellent
textbook as well as reference. It has been our objective to keep
the student’s needs in mind, and we believe that the material
contained herein is appropriate to be used for classroom pre-
sentations ranging from the introductory undergraduate level,
to the upper-division undergraduate, to the graduate level. Al-
though the Handbook does not include “problems in the back,”
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this is not a drawback since the many examples provided in
every chapter are sufficient to give the student a deep under-
standing of the function of the various image and video pro-
cessing algorithms. This field is very much a visual science, and
the principles underlying it are best taught with visual examples.
Of course, we also foresee the Handbook as providing easy refer-
ence, background, and guidance for image and video processing
professionals working in industry and research.
Our specific objectives are to

« provide the practicing engineer and the student with
a highly accessible resource for learning and using im-
age/video processing algorithms and theory

+ provide the essential understanding of the various image
and video processing standards that exist or are emerging,
and that are driving today’s explosive industry

+ provide an understanding of what images are, how they are
modeled, and give an introduction to how they are perceived

+ provide the necessary practical background to allow the
engineer student to acquire and process his or her own
digital image or video data

+ provide a diverse set of example applications, as separate
complete chapters, that are explained in sufficient depth
to serve as extensible models to the reader’s own potential
applications

The Handbook succeeds in achieving these goals, primarily be-
cause of the many years of broad educational and practical ex-
perience that the many contributing authors bring to bear in
explaining the topics contained herein.

Organization of the Handbook

Since this Handbook is emphatically about processingimages and
video, the next section is immediately devoted to basic algo-
rithms for image processing, instead of surveying methods and
devices for image acquisition at the outset, as many textbooks
do. Section 2 is divided into three chapters, which respectively
introduce the reader to the most fundamental two-dimensional
image processing techniques. Chapter 2.1 lays out basic methods
for gray-level image processing, which includes point operations,
the image histogram, and simple image algebra. The methods
described there stand alone as algorithms that can be applied to
most images, but they also set the stage and the notation for the
more involved methods discussed in later chapters. Chapter 2.2
describes basic methods for image binarization and for binary
image processing, with emphasis on morphological binary im-
age processing. The algorithms described there are among the
most widely used in applications, especially in the biomedical
area. Chapter 2.3 explains the basics of the Fourier transform
and frequency-domain analysis, including discretization of the
Fourier transform and discrete convolution. Special emphasis is
placed on explaining frequency-domain concepts through visual
examples. Fourier image analysis provides a unique opportunity
for visualizing the meaning of frequencies as components of
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signals. This approach reveals insights that are difficult to cap-
ture in one-dimensional, graphical discussions.

Section 3 of the Handbook deals with methods for correcting
distortions or uncertainties in images and for improving image
information by combining images taken from multiple views.
Quite frequently the visual data that are acquired have been in
some way corrupted. Acknowledging this and developing algo-
rithms for dealing with it is especially critical since the human
capacity for detecting errors, degradations, and delays in digi-
tally delivered visual data is quite high. Image and video signals
are derived from imperfect sensors, and the processes of digitally
converting and transmitting these signals are subject to errors.
There are many types of errors that can occur in image or video
data, including, for example, blur from motion or defocus; noise
that is added as part of a sensing or transmission process; bit,
pixel, or frame loss as the data are copied or read; or artifacts that
are introduced by an image or video compression algorithm. As
such, it is important to be able to model these errors, so that nu-
merical algorithms can be developed to ameliorate them in such
a way as to improve the data for visual consumption. Section 3
contains three broad categories of topics. The first is image/video
enhancement, in which the goal is to remove noise from an im-
age while retaining the perceptual fidelity of the visual informa-
tion; these are seen to be conflicting goals. Chapters are included
that describe very basic linear methods; highly efficient nonlin-
ear methods; and recently developed and very powerful wavelet
methods; and also extensions to video enhancement. The sec-
ond broad category is image/video restoration, in which it is
assumed that the visual information has been degraded by a dis-
tortion function, such as defocus, motion blur, or atmospheric
distortion, and more than likely, by noise as well. The goal is
to remove the distortion and attenuate the noise, while again
preserving the perceptual fidelity of the information contained
within. And again, it is found that a balanced attack on conflict-
ing requirements is required in solving these difficult, ill-posed
problems. The treatment again begins with a basic, introductory
chapter; ensuing chapters build on this basis and discuss methods
for restoring multichannel images (such as color images); multi-
frame images (i.e., using information from multiple images taken
of the same scene); iterative methods for restoration; and exten-
sions to video restoration, Related topics that are considered are
motion detection and estimation, which is essential for handling
many problems in video processing, and a general framework for
regularizingill-posed restoration problems. Finally, the third cat-
egory involves the extraction of enriched information about the
environment by combining images taken from multiple views of
the same scene. This includes chapters on methods for computed
stereopsis and for image stabilization and mosaicking.

Section 4 of the Handbook deals with methods for image and
video analysis. Not all images or videos are intended for direct
human visual consumption. Instead, in many situations it is of
interest to automate the process of repetitively interpreting the
content of multiple images or video data through the use of an
image or video analysis algorithm. For example, it may be desired
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to classify parts of images or videos as being of some type, or
it may be desired to detect or recognize objects contained in the
data sets. If one is able to develop a reliable computer algorithm
that consistently achieves success in the desired task, and if one
has access to a computer that is fast enough, then a tremendous
savings in man hours can be attained. The advantage of such a
system increases with the number of times that the task must be
done and with the speed with which it can be automatically ac-
complished. Of course, problems of this type are typically quite
difficult, and in many situations it is not possible to approach,
or even come close to, the efficiency of the human visual system.
However, if the application is specific enough, and if the process
of image acquisition can be sufficiently controlled (to limit the
variability of the image data), then tremendous efficiencies can
be achieved. With some exceptions, image/video analysis sys-
tems are quite complex, but they are often composed at least in
part of subalgorithms that are common to other image/video
analysis applications. Section 4 of this Handbook outlines some
of the basic models and algorithms that are encountered in prac-
tical systems. The first set of chapters deals with image models
and representations that are commonly used in every aspect of
image/video processing. This starts with a chapter on models of
the human visual system. Much progress has been made in recent
years in modeling the brain and the functions of the optics and
the neurons along the visual pathway (although much remains to
be learned as well). Because images and videos that are processed
are nearly always intended for eventual visual consumption by
humans, in the design of these algorithms it is imperative that
the receiver be taken into account, as with any communication
system. After all, vision is very much a form of dense communi-
cation, and images are the medium of information. The human
eye—brain system is the receiver. This is followed by chapters on
wavelet image representations, random field image models, im-
age modulation models, image noise models, and image color
models, which are referred to in many other places in the Hand-
book. These chapters may be thought ofas a core reference section
of the Handbook that supports the entire presentation. Methods
for image/video classification and segmentation are described
next; these basic tools are used in a wide diversity of analysis
applications. Complementary to these are two chapters on edge
and boundary detection, in which the goal is finding the bound-
aries of regions, namely, sudden changes in image intensities,
rather than finding (segmenting out) and classifying regions di-
rectly. The approach taken depends on the application. Finally,
a chapter is given that reviews currently available software for
image and video processing.

As described earlier in this introductory chapter, image and
video information is highly data intensive. Sections 5 and 6 of
the Handbook deal with methods for compressing this data. Sec-
tion 5 deals with still image compression, beginning with several
basic chapters of lossless compression, and on several useful gen-
eral approaches for image compression. In some realms, these
approaches compete, but each has its advantages and subsequent
appropriate applications. The existing JPEG standards for both
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lossyand lossless compression are described next. Although these
standards are quite complex, they are described in sufficient de-
tail to allow for the practical design of systems that accept and
transmit JPEG data sets.

Section 6 extends these ideas to video compression, beginning
with an introductory chapter that discusses the basic ideas and
that uses the H.261 standard as an example. The H.261 standard,
which is used for video teleconferencing systems, is the starting
point for later video compression standards, such as MPEG. The
following two chapters are on especially promising methods for
future and emerging video compression systems: wavelet-based
methods, in which the video data are decomposed into multi-
ple subimages (scales or subbands), and object-based methods,
in which objects in the video stream are identified and coded
separately across frames, even (or especially) in the presence of
motion. Finally, chapters on the existing MPEG-I and MPEG-
I and emerging MPEG-IV and MPEG-VII standards for video
compression are given, again in sufficient detail to enable the
practicing engineer to put the concepts to use.

Section 7 deals with image and video scanning, sampling,
and interpolation. These important topics give the basics for
understanding image acquisition, converting images and video
into digital format, and for resizing or spatially manipulating
images. Section 8 deals with the visualization of image and video
information. One chapter focuses on the halftoning and display
of images, and another on methods for assessing the quality of
images, especially compressed images.
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With the recent significant activity in multimedia, of which
image and video is the most significant component, methods
for databasing, access/retrieval, archiving, indexing, networking,
and securing image and video information are of high interest.
These topics are dealt with in detail in Section 9 of the Handbook.

Finally, Section 10 includes eight chapters on a diverse set of
image processing applications that are quite representative of the
universe of applications that exist. Many of the chapters in this
section have analysis, classification, or recognition as a main goal,
but reaching these goals inevitably requires the use of a broad
spectrum of image/video processing subalgorithms for enhance-
ment, restoration, detection, motion, and so on. The work that is
reported in these chapters is likely to have significant impact on
science, industry, and even on daily life. It is hoped that readers
are able to translate the lessons learned in these chapters, and in
the preceding material, into their own research or product de-
velopment work in image and/or video processing. For students,
it is hoped that they now possess the required reference material
that will allow them to acquire the basic knowledge to be able to
begin a research or development career in this fast-moving and
rapidly growing field.
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1 Introduction

This Chapter, and the two that follow, describe the most com-
monly used and most basic tools for digital image process-
ing. For many simple image analysis tasks, such as contrast
enhancement, noise removal, object location, and frequency
analysis, much of the necessary collection of instruments can
be found in Chapters 2.1-2.3. Moreover, these chapters sup-
ply the basic groundwork that is needed for the more extensive
developments that are given in the subsequent chapters of the
Handbook.

In this chapter, we study basic gray-level digital image process-
ing operations. The types of operations studied fall into three
classes.

The first are point operations, or image processing operations
that are applied to individual pixels only. Thus, interactions and
dependencies between neighboring pixels are not considered,
nor are operations that consider multiple pixels simultaneously
to determine an output. Since spatial information, such as a
pixel’s location and the values of its neighbors, are not consid-
ered, point operations are defined as functions of pixel intensity
only. The basic tool for understanding, analyzing, and design-
ing image point operations is the image histogram, which will be
introduced below.

Copyright © 2000 by Academic Press.
All rights of reproduction in any form reserved.

The second class includes arithmetic operations between im-
ages of the same spatial dimensions. These are also point op-
erations in the sense that spatial information is not considered,
although information is shared between images on a pointwise
basis. Generally, these have special purposes, e.g., for noise re-
duction and change or motion detection.

The third class of operations are geometric image operations.
These are complementary to point operations in the sense that
they are not defined as functions of image intensity. Instead,
they are functions of spatial position only. Operations of this
type change the appearance of images by changing the coordi-
nates of the intensities. This can be as simple as image translation
or rotation, or it may include more complex operations that dis-
tort or bend an image, or “morph” a video sequence. Since our
goal, however, is to concentrate on digital image processing of
real-world images, rather than the production of special effects,
only the most basic geometric transformations will be consid-
ered. More complex and time-varying geometric effects are more
properly considered within the science of computer graphics.

2 Notation

Point operations, algebraic operations, and geometric oper-
ations are easily defined on images of any dimensionality,
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including digital video data. For simplicity of presentation, we
will restrict our discussion to two-dimensional images only. The
extensions to three or higher dimensions are not difficult, es-
pecially in the case of point operations, which are independent
of dimensionality. In fact, spatial/temporal information is not
considered in their definition or application.

We will also only consider monochromatic images, since ex-
tensions to color or other multispectral images is either trivial,
in that the same operations are applied identically to each band
(e.g., R, G, B), or they are defined as more complex color space
operations, which goes beyond what we want to cover in this
basic chapter.

Suppose then that the single-valued image f(n) to be consid-
ered is defined on a two-dimensional discrete-space coordinate
system n = (ny, np). The image is assumed to be of finite sup-
port, with image domain [0, N — 1] x [0, M — 1]. Hence the
nonzero image data can be contained in a matrix or array of
dimensions N x M (rows, columns). This discrete-space image
will have originated by sampling a continuous image f(x, y)
(see Chapter 7.1). Furthermore, the image f(n) is assumed to
be quantized to K levels {0, ..., K — 1}; hence each pixel value
takes one of these integer values (Chapter 1.1). For simplicity,
we will refer to these values as gray levels, reflecting the way in
which monochromatic images are usually displayed. Since f(n)
is both discrete-space and quantized, it is digital.

3 Image Histogram

The basic tool that is used in designing point operations on
digital images (and many other operations as well) is the image
histogram. The histogram Hy of the digital image f is a plot or
graphofthe frequency of occurrenceof each graylevelin f. Hence,
Hy is a one-dimensional function with domain {0, ..., K — 1}
and possible range extending from 0 to the number of pixels in
the image, NM.
The histogram is given explicitly by

Hp(k) =] (1)
if f contains exactly ] occurrences of gray level k, for each

k=0, ..., K — 1. Thus, an algorithm to compute the image his-
togram involves a simple counting of gray levels, which can be

H (k)

I : =

0 gray level k K-1

FIGURE 1

Handbook of Image and Video Processing

accomplished even as the image is scanned. Every image pro-
cessing development environment and software library contains
basic histogram computation, manipulation, and display rou-
tines (Chapter 4.12).

Since the histogram represents a reduction of dimensional-
ity relative to the original image f, information is lost — the
image f cannot be deduced from the histogram Hj except in
trivial cases (when the image is constant valued). In fact, the
number of images that share the same arbitrary histogram Hy
is astronomical. Given an image f with a particular histogram
Hy, every image that is a spatial shuffling of the gray levels of f
has the same histogram Hy.

The histogram Hy contains no spatial information about f —
it describes the frequency of the gray levels in f and nothing
more. However, this information is still very rich, and many use-
ful image processing operations can be derived from the image
histogram. Indeed, a simple visual display of Hy reveals much
about the image. By examining the appearance of a histogram, it
is possible to ascertain whether the gray levels are distributed pri-
marily at lower (darker) gray levels, or vice versa. Although this
can be ascertained to some degree by visual examination of the
image itself, the human eye has a tremendous ability to adapt
to overall changes in luminance, which may obscure shifts in
the gray-level distribution. The histogram supplies an absolute
method of determining an image’s gray-level distribution.

For example, the average optical density, or AOD, is the basic
measure of an image’s overall average brightness or gray level. It
can be computed directly from the image:

N-1 M—1

AOD(f) = < 3" 3 flm, m) @)

n; =0 n,=0

or it can be computed from the image histogram:

K—-1
AOD(f) = ﬁ 3" kHj(h). 3)
k=0

The AOD is a useful and simple meter for estimating the center
of an image’s gray-level distribution. A target value for the AOD
might be specified when designing a point operation to change
the overall gray-level distribution of an image.

Figure 1 depicts two hypothetical image histograms. The one
on the left has a heavier distribution of gray levels close to zero

Hy(k)

1 : 1 ’
K-1

0 gray level k

Histograms of images with gray-level distribution skewed toward darker (left) and brighter

(right) gray levels. It is possible that these images are underexposed and overexposed, respectively.
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FIGURE 2 The digital image “students” (left) and its histogram (right). The gray levels of this image are skewed
toward the left, and the image appears slightly underexposed.

(and a low AOD), while the one on the right is skewed toward
the right (a high AOD). Since image gray levels are usually dis-
played with lower numbers’ indicating darker pixels, the image
on the left corresponds to a predominantly dark image. This may
occur if the image f was originally underexposed prior to digi-
tization, or if it was taken under poor lighting levels, or perhaps
the process of digitization was performed improperly. A skewed
histogram often indicates a problem in gray-level allocation. The
image on the right may have been overexposed or taken in very
bright light.

Figure 2 depicts the 256 x 256 (N = M =256) gray-level
digital image “students” with a gray-scale range {0, ..., 255},
and its computed histogram. Although the image contains a
broad distribution of gray levels, the histogram is heavily skewed
toward the dark end, and the image appears to be poorly exposed.
It is of interest to consider techniques that attempt to “equalize”
this distribution of gray levels. One of the important applica-
tions of image point operations is to correct for poor exposures
like the one in Fig. 2. Of course, there may be limitations to the
effectiveness of any attempt to recover an image from poor ex-
posure, since information may be lost. For example, in Fig. 2,
the gray levels saturate at the low end of the scale, making it
difficult or impossible to distinguish features at low brightness
levels.

More generally, an image may have a histogram that reveals
a poor usage of the available gray-scale range. An image with a

Hy(k)

—= —>

0 gray level & K-1

H(k)

compact histogram, as depicted in Fig. 3, will often have a poor
visual contrast or a washed-out appearance. If the gray-scale
range is filled out, also depicted in Fig. 3, then the image tends
to have a higher contrast and a more distinctive appearance. As
will be shown, there are specific point operations that effectively
expand the gray-scale distribution of an image.

Figure 4 depicts the 256 x 256 gray-level image “books” and
its histogram. The histogram clearly reveals that nearly all of the
gray levels that occur in the image fall within a small range of
gray scales, and the image is of correspondingly poor contrast.

Itis possible that an image may be taken under correct lighting
and exposure conditions, but that there is still a skewing of the
gray-level distribution toward one end of the gray-scale or that
the histogram is unusually compressed. An example would be
an image of the night sky, which is dark nearly everywhere. In
such a case, the appearance of the image may be normal but the
histogram will be very skewed. In some situations, it may still be
of interest to attempt to enhance or reveal otherwise difficult-
to-see details in the image by the application of an appropriate
point operation.

4 Linear Point Operations on Images

A point operation on a digital image f(n) is a function h
of a single variable applied identically to every pixel in the

\ —>
0 gray level £ K-1

FIGURE 3 Histograms of images that make poor (left) and good (right) use of the available
gray-scale range. A compressed histogram often indicates an image with a poor visual contrast.
A well-distributed histogram often has a higher contrast and better visibility of detail.
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FIGURE 4 Digital image “books” (left) and its histogram (right). The image makes poor use of the available gray-scale

range.

image, thus creating a new, modified image g(n). Hence at each
coordinate n,

g(n) = hf(m)]. (4)

The form of the function k is determined by the task at hand.
However, since each output g(n) is a function of a single pixel
value only, the effects that can be obtained by a point opera-
tion are somewhat limited. Specifically, no spatial information
is utilized in Eq. (4), and there is no change made in the spatial
relationships between pixels in the transformed image. Thus,
point operations do not effect the spatial positions of objects
in an image, nor their shapes. Instead, each pixel value or gray
level is increased or decreased (or unchanged) according to the
relation in Eq. (4). Therefore, a point operation h does change
the gray-level distribution or histogram of an image, and hence
the overall appearance of the image.

Of course, there is an unlimited variety of possible effects that
can be produced by selection of the function h that defines the
point operation of Eq. (4). Of these, the simplest are the linear
point operations, where h is taken to be a simple linear function

Hy (k)

of gray level:
g(n)= Pf(n)+ L. (5)

Linear point operations can be viewed as providing a gray-level
additive offset L and a gray-level multiplicative scaling P of the
image f. Offset and scaling provide different effects, and so we
will consider them separately before examining the overall linear
point operation of Eq. (5).

The saturation conditions |g(n)| < 0 and |g(n)| > K — 1 are
to be avoided if possible, since the gray levels are then not prop-
erly defined, which can lead to severe errors in processing or
display of the result. The designer needs to be aware of this so
steps can be taken to ensure that the image is not distorted by
values falling outside the range. If a specific wordlength has been
allocated to represent the gray level, then saturation may result in
an overflow or underflow condition, leading to very large errors.
A simple way to handle this is to simply clip those values falling
outside of the allowable gray-scale range to the endpoint values.
Hence, if |g(ng)| < 0 at some coordinate ny, then set |g(np)| =0
instead. Likewise, if |g(ng)| > K — 1, then fix |g(ng)| = K — 1.

0 I

L>0

Hg (k) | I

K-1
L<0

¥
0 ! K-

Hg(k)T/l\f\
f | -
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FIGURE 5 Effect of additive offset on the image histogram. Top: original image histogram;
botton: positive (left) and negative (right) offsets shift the histogram to the right and to the

left, respectively.
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FIGURE 6 Left: Additive offset of the image of students in Fig. 2 by amount 60. Observe the clipping spike in the

histogram to the right at gray level 255.

Of course, the result is no longer strictly a linear point operation.
Care must be taken, since information is lost in the clipping op-
eration, and the image may appear artificially flat in some areas
if whole regions become clipped.

4.1 Additive Image Offset

Suppose P = 1and L is an integer satisfying [L| < K — 1. An
additive image offset has the form

gn)= f(m)+ L. (6)

Here we have prescribed a range of values that L can take. We
have taken L to be an integer, since we are assuming that images
are quantized into integers in the range {0, ..., K — 1}. We have
also assumed that | L| falls in this range, since otherwise all of the
values of g(n) will fall outside the allowable gray-scale range.
In Eq. (6), if L > 0, then g(n) will be a brightened version
of the image f(n). Since spatial relationships between pixels are
unaffected, the appearance of the image will otherwise be essen-
tially the same. Likewise, if L <0, then g(n) will be a dimmed
version of the f(n). The histograms of the two images have a

simple relationship:
Hy(k) = Hp(k— L). (7)

Thus, an offset L corresponds to a shift of the histogram by
amount L to the left or to the right, as depicted in Fig. 5.

Figures 6 and 7 show the result of applying an additive offset
to the images of students and books in Figs. 2 and 4, respectively.
In both cases, the overall visibility of the images has been some-
what increased, but there has not been an improvement in the
contrast. Hence, while each image as a whole is easier to see, the
details in the image are no more visible than they were in the orig-
inal. Figure 6 is a good example of saturation; a large number of
gray levels were clipped at the high end (gray-level 255). In this
case, clipping did not result in much loss of information.

Additive image offsets can be used to calibrate images to a
given average brightness level. For example, suppose we desire to
compare multiple images fi, f2, ..., f,of the same scene, taken
at different times. These might be surveillance images taken of a
secure area that experiences changes in overall ambient illumi-
nation. These variations could occur because the area is exposed
to daylight.
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FIGURE 7 Left: Additive offset of the image of books in Fig. 4 by amount 80.
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FIGURE 8 Effects of multiplicative image scaling on the histogram. If P > I,
the histogram is expanded, leading to more complete use of the gray-scale range.
If P <1, the histogram is contracted, leading to possible information loss and
(usually) a less striking image.

A simple approach to counteract these effects is to equalize
the AODs of the images. A reasonable AOD is the gray-scale
center K/2, although other values may be used depending on

the application. Letting L,, = AOD( f,,),form=1, ..., n, the
“AOD-equalized” images g1, £, . . ., gn are given by
gm(n) = fm(n) - Lm + K/2 (8)

The resulting images then have identical AOD K/2.

4.2 Multiplicative Image Scaling

Next we consider the scaling aspect of linear point operations.
Suppose that L =0and P > 0. Then, a multiplicative image scal-
ing by factor P is given by

gm) = Pf(n). 9

Here, P is assumed positive since g(n) must be positive. Note
that we have not constrained P to be an integer, since this would
usually leave few useful values of P; for example, even taking
P = 2 will severely saturate most images. If an integer result is
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required, then a practical definition for the output is to round
the result in Eq. (9):

g(m) = INT[P f(n) + 0.5], (10)
where INT[ R] denotes the nearest integer that is less than or
equal to R.

The effect that multiplicative scaling has on an image depends
onwhether P islargerorsmallerthanone.If P > 1, thenthegray
levels of g will cover a broader range than those of f. Conversely,
if P < 1, then g will have a narrower gray-level distribution than
f. In terms of the image histogram,

H{INT[Pk +0.5]} = Hy(k). (11)
Hence, multiplicative scaling by a factor P either stretches or
compresses the image histogram. Note that for quantized images,
it is not proper to assume that Eq. (11) implies H,(k) =
Hp(k/P), since the argument of Hy(k/P) may not be an integer.

Figure 8 depicts the effect of multiplicative scaling on a hypo-
thetical histogram. For P > 1, the histogram is expanded (and
hence, saturation is quite possible), while for P <1, the his-
togram is contracted. If the histogram is contracted, then mul-
tiple gray levels in f may map to single gray levels in g, since
the number of gray levels is finite. This implies a possible loss of
information. If the histogram is expanded, then spaces may ap-
pear between the histogram bins where gray levels are not being
mapped. This, however, does not represent a loss of information
and usually will not lead to visual information loss.

As a rule of thumb, histogram expansion often leads to a
more distinctive image that makes better use of the gray-scale
range, provided that saturation effects are not visually noticeable.
Histogram contraction usually leads to the opposite: an image
with reduced visibility of detail that is less striking. However,
these are only rules of thumb, and there are exceptions. An im-
age may have a gray-scale spread that is too extensive, and it may
benefit from scaling with P < 1.

Figure 9 shows the image of students following a multi-
plicative scaling with P =0.75, resulting in compression of the

2000

1000 (8

FIGURE 9 Histogram compression by multiplicative image scaling with P =0.75. The resulting image is less distinc-
tive. Note also the regularly spaced tall spikes in the histogram; these are gray levels that are being “stacked,” resulting in
a loss of information, since they can no longer be distinguished.
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FIGURE 10 Histogram expansion by multiplicative image scaling with P = 2.0. The resulting image is much more
visually appealing. Note the regularly spaced gaps in the histogram that appear when the discrete histogram values are
spread out. This does not imply a loss of information or visual fidelity.

histogram. The resulting image is darker and less contrasted.
Figure 10 shows the image of books followingscalingwith P = 2.
In this case, the resulting image is much brighter and has a bet-
ter visual resolution of gray levels. Note that most of the high
end of the gray-scale range is now used, although the low end
is not.

4.3 Image Negative

The first example of a linear point operation that uses both scal-
ing and offset is the image negative, which is given by P = —1
and L = K — 1. Hence

gm)=—f(m)+ (K1) (12)
and

Hy(k) = Hf(K — 1 —k). (13)

Scaling by P = —1 reverses (flips) the histogram; the additive
offset L = K — 1 is required so that all values of the result
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FIGURE 11

are positive and fall in the allowable gray-scale range. This op-
eration creates a digital negative image, unless the image is al-
ready a negative, in which case a positive is created. It should be
mentioned that unless the digital negative of Eq. (12) is being
computed, P > 0 in nearly every application of linear point
operations.

An important application of Eq. (12) occurs when a negative
is scanned (digitized), and it is desired to view the positive image.
Figure 11 depicts the negative image associated with “students.”
Sometimes, the negative image is viewed intentionally, when the
positive image itself is very dark. A common example of this is
for the examination of telescopic images of star fields and faint
galaxies. In the negative image, faint bright objects appear as
dark objects against a bright background, which can be easier
to see.

4.4 Full-Scale Histogram Stretch

We have already mentioned that an image that has a broadly
distributed histogram tends to be more visually distinctive. The
full-scale histogram stretch, which is also often called a contrast

1000 t

50 100

150 200 250

Example of an image negative with the resulting reversed histogram.
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FIGURE 12 Full-scale histogram stretch of the image of books.

stretch, is a simple linear point operation that expands the im-
age histogram to fill the entire available gray-scale range. This is
such a desirable operation that the full-scale histogram stretch
is easily the most common linear point operation. Every image
processing programming environment and library contains it as
a basic tool. Many image display routines incorporate it as a ba-
sic feature. Indeed, commercially availabie digital video cameras
for home and professional use generally apply a full-scale his-
togram stretch to the acquired image before being stored in cam-
era memory. It is called automatic gain control (AGC) on these
devices.

The definition of the multiplicative scaling and additive offset
factors in the full-scale histogram stretch depend on the image
f- Suppose that f has a compressed histogram with maximum
gray-level value B and minimum value A, as shown in Fig. 8

(top):

A=min{f@), B =max{f@)}, (14)
The goal is to find a linear point operation of the form of Eq. (5)
that maps gray levels Aand B in the original image to gray levels
0and K — 1 in the transformed image. This can be expressed in

two linear equations:

PA+L=0 (15)
and
PB+L=K-1 (16)
in the two unknowns (P, L), with solutions
K-1
P = 17
(B - A) (17)
and
K-1
L= ——A( ) (18)
B—-A

Hence, the overall full-scale histogram stretch is given by

—1

B—A (19)

¢(n) = FSHS[f (n)] = ( )[f(n) Al

We make the shorthand notation FSHS, since Eq. (19) will prove
to be commonly useful as an addendum to other algorithms.
The operation in Eq. (19) can produce dramatic improvements
in the visual quality of an image suffering from a poor (narrow)
gray-scale distribution. Figure 12 shows the result of applying the
FSHS to the images of books. The contrast and visibility of the
image was, as expected, greatly improved. The accompanying
histogram, which now fills the available range, also shows the
characteristics gaps of an expanded discrete histogram.

If the image f already has a broad gray-level range, then the
histogram stretch may produce little or no effect. For example,
the image of students (Fig. 2) has gray scales covering the en-
tire available range, as seen in the histogram accompanying the
image. Therefore, Eq. (19) has no effect on “students.” This is
unfortunate, since we have already commented that “students”
might benefit from a histogram manipulation that would re-
distribute the gray level densities. Such a transformation would
have to nonlinearly reallocate the image’s gray-level values. Such
nonlinear point operations are described next.

5 Nonlinear Point Operations on Images

We now consider nonlinear point operations of the form

g(n) = h{f(n)], (20)

where the function  is nonlinear. Obviously, this encompasses
a wide range of possibilities. However, there are only a few func-
tions h that are used with any great degree of regularity. Some
of these are functional tools that are used as part of larger, mul-
tistep algorithms, such as absolute value, square, and square-
root functions. One such simple nonlinear function that is very
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FIGURE 13 Logarithmic gray-scale range compression followed by FSHS applied to the image of students.

commonly used is the logarithmic point operation, which we
describe in detail.

5.1 Logarithmic Point Operations

Assuming that the image f(n) is positive valued, the logarithmic
point operation is defined by a composition of two operations: a
point logarithmic operation, followed by a full-scale histogram
stretch:

g(n) = FSHS(log[1 + f(n)]}. (21)
Adding unity to the image avoids the possibility of taking the
logarithm of zero. The logarithm itself acts to nonlinearly com-
press the gray-level range. All of the gray level is compressed
to the range [0, log(K)]. However, larger (brighter) gray levels
are compressed much more severely than are smaller gray lev-
els. The subsequent FSHS operation then acts to linearly expand
the log-compressed gray levels to fill the gray-scale range. In the
transformed image, dim objects in the original are now allo-
cated a much larger percentage of the gray-scale range, hence
improving their visibility.

The logarithmic point operation is an excellent choice for
improving the appearance of the image of students, as shown in
Fig. 13. The original image (Fig. 2) was not a candidate for FSHS
because of its broad histogram. The appearance of the original
suffers because many of the important features of the image are
obscured by darkness. The histogram is significantly spread at
these low brightness levels, as can be seen by comparing it to
Fig. 2, and also by the gaps that appear in the low end of the
histogram. This does not occur at brighter gray levels.

Certain applications quite commonly use logarithmic point
operations. For example, in astronomical imaging, a relatively
few bright pixels (stars and bright galaxies, etc.) tend to dominate
the visual perception of the image, while much of the interest-
ing information lies at low bright levels (e.g., large, faint neb-
ulae). By compressing the bright intensities much more heav-
ily, then applying FSHS, the faint, interesting details visually
emerge.

Later, in Chapter 2.3, the Fourier transforms of images will
be studied. The Fourier transform magnitudes, which are of the
same dimensionalities as images, will be displayed as intensity
arrays for visual consumption. However, the Fourier transforms
of most images are dominated visually by the Fourier coeffi-
cients of a relatively few low frequencies, so the coefficients of
important high frequencies are usually difficult or impossible to
see. However, a point logarithmic operation usually suffices to
ameliorate this problem, and so image Fourier transforms are
usually displayed following the application of Eq. (21), both in
this Handbook and elsewhere.

5.2 Histogram Equalization

One of the most important nonlinear point operations is histo-
gram equalization, also called histogram flattening. The idea be-
hind it extends that of FSHS: not only should an image fill the
available gray-scale range, but it should be uniformly distributed
over that range. Hence, an idealized goal is a flat histogram. Al-
though care must be taken in applying a powerful nonlinear
transformation that actually changes the shape of the image his-
togram, rather than just stretching it, there are good mathemati-
cal reasons for regarding a flat histogram as a desirable goal. In a
certain sense,! an image with a perfectly flat histogram contains
the largest possible amount of information or complexity.

In order to explain histogram equalization, it will be necessary
to make some refined definitions of the image histogram. For an
image containing N M pixels, the normalized image histogram is
given by

1
k) = — Hy(k 22
pr(k) = < Hy (k) (22)
fork =0, ..., K — 1. This function has the property that
K=1
> pr=1. (23)
k=0

'In the sense of maximum entropy; see Chapter 5.1.
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The normalized histogram py(k) has a valid interpretation as
the empirical probability density (mass function) of the gray-
level values of image f. In other words, if a pixel coordinate n is
chosen at random, then py (k) is the probability that f(n) = &:
pr(k) = Pr{f(n) = J.

We also define the cumulative normalized image histogram to
be

Pi(ry=)_psk); r=0,...,K—1 (24)
k=0

The function P(r) is an empirical probability distribution
function; hence it is a nondecreasing function, and also
Ps(K — 1) =1. It has the probabilistic interpretation that for
a randomly selected image coordinate n, Py(r) =Pr{f(n) <r}.
From Eq. (24) it is also true that

py(k) = Pr(k) — Pr(k — 1);

so Pr(k) and ps(k) can be obtained from each other. Both
are complete descriptions of the gray-level distribution of the
image f.

To understand the process of digital histogram equalization, we
first explain the process by supposing that the normalized and
cumulative histograms are functions of continuous variables. We
will then formulate the digital case of an approximation of the
continuous process. Hence, suppose that ps(x) and Ps(x) are
functions of a continuous variable x. They may be regarded as
image probability density function (pdf) and cumulative distri-
bution function (cdf), with relationship ps(x) = dPs(x)/dx.
We will also assume that P! exists. Since Py is nondecreasing,
this is either true or Pf_l can be defined by a convention. In this
hypothetical continuous case, we claim that the image

k=0,...,K—1, (25)

FSHS(g) (26)

where

g = Ps(f) (27)

has a uniform (flat) histogram. In Eq. (26), Ps(f) denotes that
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Py is applied on a pixelwise basis to f:

g(n) = Ps[f(n)] (28)
for all n. Since P is a continuous function, Egs. (26)—(28) rep-
resent a smooth mapping of the histogram of image f to an
image with a smooth histogram. At first, Eq. (27) may seem
confusing since the function Py that is computed from f is then
applied to f. To see that a flat histogram is obtained, we use the
probabilistic interpretation of the histogram. The cumulative
histogram of the resulting image g is

Py(x) = Pr{g < x} = Pr{P;(f) < x}

=Pr{f < P (0} = P{P7 (0} =x (29)
for 0 < x < 1. Finally, the normalized histogram of g is
pe(x) = dPy(x)/dx = 1 (30)

for 0 < x < 1. Since pg(x) is defined only for 0 < x < 1, the
ESHS in Eq. (26) is required to stretch the flattened histogram
to fill the gray-scale range.

To flatten the histogram of a digital image f, first compute the
discrete cumulative normalized histogram Py (k), apply Eq. (28)
at each n, and then Eq. (26) to the result. However, while an
image with a perfectly flat histogram is the result in the ideal
continuous case outlined herein, in the digital case the output
histogram is only approximately flat, or more accurately, more
flat than the input histogram. This follows since Eqs. (26)—(28)
collectively are a point operation on the image f, so every oc-
currence of gray level k maps to P¢(k) in g. Hence, histogram
bins are never reduced in amplitude by Egs. (26)—(28), although
they may increase if multiple gray levels map to the same value
(thus destroying information). Hence, the histogram cannot be
truly equalized by this procedure.

Figures 14 and 15 show histogram equalization applied to our
ongoing example images of students and books, respectively.
Both images are much more striking and viewable than the orig-
inal. As can be seen, the resulting histograms are not really flat;
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FIGURE 14 Histogram equalization applied to the image of students.
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FIGURE 15 Histogram equalization applied to the image of books.

it is flatter in the sense that the histograms are spread as much
as possible. However, the heights of peaks are not reduced. As is
often the case with expansive point operations, gaps or spaces
appear in the output histogram. These are not a problem unless
the gaps become large and some of the histogram bins become
isolated. This amounts to an excess of quantization in that range
of gray levels, which may result in false contouring (Chapter 1.1).

5.3 Histogram Shaping

In some applications, it is desired to transform the image into
one that has a histogram of a specific shape. The process of his-
togram shaping generalizes histogram equalization, which is the
special case in which the target shape is flat. Histogram shaping
can be applied when multiple images of the same scene, but taken
under mildly different lighting conditions, are to be compared.
This extends the idea of AOD equalization described earlier in
this chapter. When the histograms are shaped to match, the com-
parison may exclude minor lighting effects. Alternately, it may
be that the histogram of one image is shaped to match that of an-
other, again usually for the purpose of comparison. Or it might
simply be that a certain histogram shape, such as a Gaussian,
produces visually agreeable results for a certain class of images.

Histogram shaping is also accomplished by a nonlinear point
operation defined in terms of the empirical image probabili-
ties or histogram functions. Again, exact results are obtained in
the hypothetical continuous-scale case. Suppose that the target
(continuous) cumulative histogram function is Q(x), and that
Q7! exists. Then let

g= Q7 '[Py N (31)

where both functions in the composition are applied on a pixel-
wise basis. The cumulative histogram of g is then

Py(x) = Pr{g < x} = Pr{Q7'[Ps()] < x}

= Pr{Pf(f) < Q(®)} = Pr{f < P/ [Qx0)]}

= Pi{P/'Q0)]} = Qx), (32)

as desired. Note that the FSHS is not required in this instance. Of

course, Eq. (32) can only be approximated when the image f is
digital. In such cases, the specified target cumulative histogram
function Q(k) is discrete, and some convention for defining Q!
should be adopted, particularly if Q is computed from a target
image and is unknown in advance. One common convention is
to define

Q (k) = msin{s: Q(s) > k). (33)

As an example, Fig. 16 depicts the result of shaping the his-
togram of “books” to match the shape of an inverted “V” cen-
tered at the middle gray level and extending across the entire gray
scale. Again, a perfect V is not produced, although an image of
very high contrast is still produced. Instead, the histogram shape
that results is a crude approximation to the target.

6 Arithmetic Operations between Images

We now consider arithmetic operations defined on multi-
ple images. The basic operations are pointwise image addi-
tion/subtraction and pointwise image multiplication/division.
Since digital images are defined as arrays of numbers, these
operations have to be defined carefully.

Suppose we have n images of dimensions N x Mf,, f2, ...,
fa- It is important that they be of the same dimensions since
we will be defining operations between corresponding array el-
ements (having the same indices).

The sum of n images is given by

A+ A+t =D fm (34)
m=]
while for any two images f;, f; the image difference is
fr—fs (35)

The pointwise product of the n images fi, ..., f, is denoted

by

n

®L® @ fu= (36)

m=

s
1
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FIGURE 16 Histogram of the image of books shaped to match a “V”,

where in Eq. (36) we do not infer that the matrix product is
being taken. Instead, the product is defined on a pointwise basis.
Henceg= fi® L ®---® fyifand onlyif

gm) = fi(m) fo(n)--- fu(m) (37)

for every n. In order to clarify the distinction between matrix
product and pointwise array product, we introduce the special
notation ® to denote the pointwise product. Given two images
fr» fs the pointwise image quotient is denoted

8= frAfs (38)
if for every n it is true that f;(n) # 0 and
gm) = fr(n)/fs(n). (39)

The pointwise matrix product and quotient are mainly useful
when Fourier transforms of images are manipulated, as will be
seen in Chapter 2.3. However, the pointwise image sum and
difference, despite their simplicity, have important applications
that we will examine next.

6.1 Image Averaging for Noise Reduction

Images that occur in practical applications invariably suffer from
random degradations that are collectively referred to as noise.
These degradations arise from numerous sources, including ra-
diation scatter from the surface before the image is sensed; elec-
trical noise in the sensor or camera; channel noise as the image is
transmitted over a communication channel; bit errors after the
image is digitized, and so on. A good review of various image
noise models is given in Chapter 4.4 of this Handbook.
The most common generic noise model is additive noise, where
a noisy observed image is taken to be the sum of an original,
uncorrupted image g and a noise image g:
f=g+a (40)

where g is an two-dimensional N x M random matrix, with

elements g(n) that are random variables. Chapter 4.4 develops
the requisite mathematics for understanding random quantities
and provides the basis for noise filtering. In this basic chapter
we will not require this more advanced development. Instead,
we make the simple assumption that the noise is zero mean. If
the noise is zero mean, then the average (or sample mean) of

n independently occurring noise matrices 4, 4z, - . ., gn tends
toward zero as n grows large:’
1 n
(;)quzo, (41)
m=1

where 0 denotes the N x M matrix of zeros.

Now suppose that we are able to obtain nimages fi, f2, ..., fu
of the same scene. The images are assumed to be noisy versions
of an original image g, where the noise is zero mean and additive:

fm =g+9nm (42)
for m = 1, ..., n. Hence, the images are assumed either to be
taken in rapid succession, so that there is no motion between
frames, or under conditions where there is no motion in the
scene. In this way only the noise contribution varies from image
to image.

By averaging the multiple noisy images of Eq. (42), we find

(%) ; fm= (%) ;(ngm)
-Gz () Ee
e+ (5) Lo
~ g,

(43)

2More accurately, the noise must be assumed mean ergodic, which means
that the sample mean approaches the statistical mean over large sample sizes.
This assumption is usually quite reasonable. The statistical mean is defined in
Section 4.4.
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FIGURE 17 Example of image averaging for noise reduction. (a) Single noisy image; (b) average of four frames; (c) av-
erage of 16 frames. (Courtesy of Chris Neils of The University of Texas at Austin.)

using Eq. (41). If a large enough number of frames are aver-
aged together, then the resulting image should be nearly noise
free, and hence should approximate the original image. The
amount of noise reduction can be quite significant; one can ex-
pect a reduction in the noise variance by a factor n. Of course,
this is subject to inaccuracies in the model, e.g., if there is any
change in the scene itself, or if there are any dependencies be-
tween the noise images (in an extreme case, the noise images
might be identical), then the reduction in the noise will be
limited.

Figure 17 depicts the process of noise reduction by frame
averaging in an actual example of confocal microscope imag-
ing (Chapter 10.7). The image(s) are of Macroalga Valonia mi-
crophysa, imaged with a laser scanning confocal microscope
(LSCM). The dark ring is chlorophyll fluorescing under Ar laser
excitation. As can be seen, in this case the process of image av-
eraging is quite effective in reducing the apparent noise con-
tent and in improving the visual resolution of the object being
imaged.

6.2 Image Differencing for Change Detection

Often it is of interest to detect changes that occur in images
taken of the same scene but at different times. If the time in-
stantsare closely placed, e.g., adjacent frames in a video sequence,
then the goal of change detection amounts to image motion de-
tection (Chapter 3.8). There are many applications of motion
detection and analysis. For example, in video compression al-
gorithms, compression performance is improved by exploiting
redundancies that are tracked along the motion trajectories of
image objects that are in motion. Detected motion is also use-
ful for tracking targets, for recognizing objects by their motion,
and for computing three-dimensional scene information from
two-dimensional motion.

Ifthe time separation between frames is not small, then change
detection can involve the discovery of gross scene changes. This
can be useful for security or surveillance cameras, or in auto-
mated visual inspection systems, for example. In either case,
the basic technique for change detection is the image difference.
Suppose that f; and f, are images to be compared. Then the

absolute difference image

g=1fi— £ (44)
will embody those changes or differences that have occurred be-
tween the images. At coordinates n where there has been little
change, g(n) will be small. Where change has occurred, g(n)
can be quite large. Figure 18 depicts image differencing. In the
difference image, large changes are displayed as brighter inten-
sity values. Since significant change has occurred, there are many
bright intensity values. This difference image could be processed
by an automatic change detection algorithm. A simple series of
steps that might be taken would be to binarize the difference
image, thus separating change from nonchange, using a thresh-
old (Chapter 2.2), counting the number of high-change pixels,
and finally, deciding whether the change is significant enough
to take some action. Sophisticated variations of this theme are
currently in practical use. The histogram in Fig. 18(d) is instruc-
tive, since it is characteristic of differenced images; many zero
or small gray-level changes occur, with the incidence of larger
changes falling off rapidly.

7 Geometric Image Operations

We conclude this chapter with a brief discussion of geometric
image operations. Geometric image operations are, in a sense, the
opposite of point operations: they modify the spatial positions
and spatial relationships of pixels, but they do not modify gray-
level values. Generally, these operations can be quite complex
and computationally intensive, especially when applied to video
sequences. However, the more complex geometric operations
are not much used in engineering image processing, although
they are heavily used in the computer graphics field. The reason
for this is that image processing is primarily concerned with
correcting or improving images of the real world; hence complex
geometric operations, which distort images, are less frequently
used. Computer graphics, however, is primarily concerned with
creating images of an unreal world, or at least a visually modified
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Image differencing example. (a) Original placid scene; (b) a theft is occurring! (¢) the difference image with

brighter points’ signitying larger changes; (d) the histogram of (c).

reality, and subsequently geometric distortions are commonly
used in that discipline.

A geometric image operation generally requires two steps. The
first is a spatial mapping of the coordinates of an original image
f to define a new image g:

gm) = f(n) = fla(m)]. (45)
Thus, geometric image operations are defined as functions of
position rather than intensity. The two-dimensional, two-valued
mapping function a(n) = [a;(ny, ny), ax(n;, nz)] is usually de-
fined to be continuous and smoothly changing, but the coordi-
natesa(n) that are delivered are not generally integers. For exam-
ple, ifa(n) = (1n,/3, my/4), then g(n) = f(n, /3, ny/4), which is
not defined for most values of (n|, n;). The question then is,
which value(s) of f are used to define g(n), when the mapping
does not fall on the standard discrete lattice?

Thus implies the need for the second operation: interpolation
of noninteger coordinates a,(n,, nz) and az(n,, ny) to integer
values, so that g can be expressed in a standard row-column
format. There are many possible approaches for accomplishing

interpolation; we will look at two of the simplest: nearest neighbor
interpolation, and bilinear interpolation. The first of these is too
simplistic for many tasks, whereas the second is effective for
most.

7.1 Nearest-Neighbor Interpolation

Here, the geometrically transformed coordinates are mapped to
the nearest integer coordinates of f:

g(m) = f{INT[a,(n;, nz) +0.5], INT[az(ny, n2) + 0.5}, (46)

where INT[ R] denotes the nearest integer that is less than or
equal to R. Hence, the coordinates are rounded prior to assigning
them to g. This certainly solves the problem of finding integer
coordinates of the input image, but it is quite simplistic, and, in
practice, it may deliver less than impressive results. For example,
several coordinates to be mapped may round to the same values,
creating a block of pixels in the output image of the same value.
This may give an impression of “blocking,” or of structure that
is not physically meaningful. The effect is particularly noticeable
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along sudden changes in intensity, or “edges,” which may appear
jagged following nearest neighbor interpolation.

7.2 Bilinear Interpolation

Bilinear interpolation produces a smoother interpolation
than does the nearest-neighbor approach. Given four neigh-
boring image coordinates f(#10, 120), f(n11, 721)s f (112, 122,
and f(ny3, ny3) —these can be the four nearest neighbors of
fla(n)] — then the geometrically transformed image g(n;, 1,)
is computed as

g(m, my) = Ag + Army + Agmy + Asmyny, (47)
which is a bilinear function in the coordinates (n;, n,). The bi-
linear weights Ay, A;, A,, and A; are found by solving

-1

Ag 1 mgo mo niohy f(n10, m20)
Ay | _ |1 m onmn mnny f(m, may) (48)
A I np myp npnp f(n2, ny)
As I ms np msngs f(ms, ny3)

Thus, g(n;, ny) is defined to be a linear combination of the
gray levels of its four nearest neighbors. The linear combination
defined by Eq. (48) is in fact the value assigned to g(n;, n;) when
the best (least-squares) planar fit is made to these four neighbors.
This process of optimal averaging produces a visually smoother
result.

Regardless of the interpolation approach that is used, it is
possible that the mapping coordinates a,(n,, np), a,(n;, 1) do
not fall within the pixel ranges

0<a(n,m)< N-1

and/or (49)

0<a(n,m) =M-1,

in which case it is not possible to define the geometrically trans-
formed image at these coordinates. Usually a nominal value is
assigned, such as g(n) = 0, at these locations.

7.3 Image Translation

The most basic geometric transformation is the image transla-
tion, where

ay(n, m) = n — by, ay(ny, ) = ny — by, (50)
where (b, by) are integer constants. In this case g(n;, m) =
f(ny — by, 1y — by), which is a simple shift or translation of g
by an amount by in the vertical (row) direction and an amount
b, in the horizontal direction. This operation is used in image
display systems, when it is desired to move an image about, and
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it is also used in algorithms, such as image convolution (Chap-
ter 2.3), where images are shifted relative to a reference. Since
integer shifts can be defined in either direction, there is usually
no need for the interpolation step.

7.4 Image Rotation

Rotation of the image g by an angle 8 relative to the horizontal
(n1) axis is accomplished by the following transformations:

ai(ny, nmp) = nycos® — 1, sin 0,

ay(ny, np) = nysin® + n, cos 0. (51)
The simplest cases are: 6 = 90°, where [a; (1, 1), ay(ny, )] =
(—mp,n1);0 = 180°, where [a;(n1,12), a2 (n1, m2)] = (—n1, —m2);
and 6 = —90°, where [a, (1, 1), ax(n;, ny)] = (13, —n;). Since
the rotation point is not defined here as the center of the image,
the arguments of Eq. (51) may fall outside of the image domain.
This may be ameliorated by applying an image translation either
before or after the rotation to obtain coordinate values in the
nominal range.

7.5 Image Zoom

The image zoom either magnifies or minifies the input image
according to the mapping functions

ay(ny, m) = /e, a(n, m) = m/d, (52)
where ¢ > 1 and d > 1 to achieve magnification, and ¢ < 1 and
d <1 to achieve minification. If applied to the entire image,
then the image size is also changed by a factor ¢(d) along the
vertical (horizontal) direction. If only a small part of an im-
age is to be zoomed, then a translation may be made to the
corner of that region, the zoom applied, and then the image
cropped.

The image zoom is a good example of a geomeiric operation
for which the type of interpolation is important, particularly at
high magnifications. With nearest neighbor interpolation, many
values in the zoomed image may be assigned the same gray scale,
resulting in a severe “blotching” or “blocking” effect. Thebilinear
interpolation usually supplies a much more viable alternative.

Figure 19 depicts a 4x zoom operation applied to the image
in Fig. 13 (logarithmically transformed “students”). The image
was first zoomed, creating a much larger image (16 times as
many pixels). The image was then translated to a point of interest
(selected, e.g., by a mouse), and then it was cropped to size 256 x
256 pixels around this point. Both nearest-neighbor and bilinear
interpolation were applied for the purpose of comparison. Both
provide a nice close-up of the original, making the faces much
more identifiable. However, the bilinear result is much smoother,
and it does not contain the blocking artifacts that can make
recognition of the image difficult.
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(@) (b)
FIGURE 19 Example of (4x) image zoom followed by interpolation. (a) Nearest-neighbor interpolation; (b) bilinear
interpolation.

It is important to understand that image zoom followed by = Acknowledgment
interpolation does not inject arny new information into the im-

age, although the magnified image may appear easier to see and
interpret. The image zoom is only an interpolation of known Many thanks to Dr. Scott Acton for carefully reading and com-
menting on this chapter.

information.
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1 Introduction

In this second chapter on basic methods, we explain and demon-
strate fundamental tools for the processing of binary digital im-
ages. Binaryimage processing is of special interest, since an image
in binaryformat can be processed with very fastlogical (Boolean)
operators. Often, a binary image has been obtained by abstract-
ing essential information from a gray-level image, such as object
location, object boundaries, or the presence or absence of some
image property.

As seen in the previous two chapters, a digital image is an
array of numbers or sampled image intensities. Each gray level
is quantized or assigned one of a finite set of numbers repre-
sented by B bits. In a binary image, only one bit is assigned
to each pixel: B = 1, implying two possible gray-level values,
0 and 1. These two values are usually interpreted as Boolean;
hence each pixel can take on the logical values 0 or 1, or equiva-
lently, “true” or “false.” For example, these values might indicate
the absence or presence of some image property in an associated
gray-level image ofthe same size, where 1 at a given coordinate in-
dicates the presence of the property at that coordinate in the gray-
level image, and 0 otherwise. This image property is quite com-
monly a sufficiently high or low intensity (brightness), although
more abstract properties, such as the presence or absence of cer-
tain objects, or smoothness or nonsmoothness, etc., might be
indicated.

Since most image display systems and software assume images
of eight or more bits per pixel, the question arises as to how bi-
nary images are displayed. Usually, they are displayed using the
two extreme gray tones, black and white, which are ordinarily

Copyright © 2000 by Academic Press.
All rights of reproduction in any form reserved.

represented by 0 and 255, respectively, in a gray-scale display
environment, as depicted in Fig. 1. There is no established con-
vention for the Boolean values that are assigned to “black” and
to “white.” In this chapter we will uniformly use 1 to represent
black (displayed as gray-level 0) and 0 to represent white (dis-
played as gray-level 255). However, the assignments are quite
commonly reversed, and it is important to note that the Boolean
values 0 and 1 have no physical significance other than what the
user assigns to them.

Binary images arise in a number of ways. Usually, they are
created from gray-level images for simplified processing or for
printing (see Chapter 8.1 on image halftoning). However, certain
types of sensors directly deliver a binary image output. Such
devices are usually associated with printed, handwritten, or line
drawing images, with the input signal being entered by hand on
a pressure sensitive tablet, a resistive pad, or a light pen.

In such a device, the (binary) image is first initialized prior to
image acquisition:

gm) =0 (1

at all coordinates n. When pressure, a change of resistance, or
light is sensed at some image coordinate ng, then the image is
assigned the value 1:

gng) =1 (2)

This continues until the user completes the drawing, as depicted
in Fig. 2. These simple devices are quite useful for entering
engineering drawings, handprinted characters, or other binary
graphics in a binary image format.
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FIGURE 1 A 10 x 10 binary image.

2 Image Thresholding

Usually, a binary image is obtained from a gray-level image by
some process of information abstraction. The advantage of the
B-fold reduction in the required image storage space is offset
by what can be a significant loss of information in the resulting
binary image. However, if the process is accomplished with care,
then a simple abstraction of information can be obtained that
can enhance subsequent processing, analysis, or interpretation
of the image.

The simplest such abstraction is the process of image thresh-
olding, which can be thought of as an extreme form of gray-level
quantization. Suppose that a gray-level image f can take K pos-
sible gray levels 0, 1, 2, ..., K — 1. Define an integer threshold,
T, that lies in the gray-scalerangeof T € {0, 1,2, ..., K — 1}.
The process of thresholding is a process of simple comparison:
each pixel value in f is compared to T. Based on this com-
parison, a binary decision is made that defines the value of the
corresponding pixel in an output binary image g:

0 if fM=>T

W= i fmy<T (3)

Of course, the threshold T that is used is of critical importance,
since it controls the particular abstraction of information that
is obtained. Indeed, different thresholds can produce different
valuable abstractions of the image. Other thresholds may pro-
duce little valuable information at all. It is instructive to observe
the result of thresholding an image at many different levels in se-
quence. Figure 3 depicts the image “mandrill” (Fig. 8 of Chapter
1.1) thresholded at four different levels. Each produces different
information, or in the case of Figs. 3(a) and 3(d), very little use-

R

FIGURE 2 Simple binary image device.
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ful information. Among these, Fig. 3(c) probably contains the
most visual information, although it is far from ideal. The four
threshold values (50, 100, 150, and 200) were chosen without
the use of any visual criterion.

As will be seen, image thresholding can often produce a bi-
nary image result that is quite useful for simplified processing,
interpretation, or display. However, some gray-level images do
not lead to any interesting binary result regardless of the chosen
threshold T.

Several questionsarise: Given a gray-level image, how does one
decide whether binarization of the image by gray-level thresh-
olding will produce a useful result? Can this be decided automat-
ically by a computer algorithm? Assuming that thresholding is
likely to be successful, how does one decide on a threshold level
T? These are apparently simple questions pertaining to a very
simple operation. However, these questions turn out to be quite
difficult to answer in the general case. In other cases, the answer
is simpler. In all cases, however, the basic tool for understanding
the process of image thresholding is the image histogram, which
was defined and studied in Chapter 2.1.

Thresholding is most commonly and effectively applied to
images that can be characterized as having bimodal histograms.
Figure 4 depicts two hypothetical image histograms. The one on
the left has two clear modes; the one at the right either hasa single
mode, or two heavily overlapping, poorly separated modes.

Bimodal histograms are often (but not always) associated with
images that contain objects and backgrounds having a signifi-
cantly different average brightness. This may imply bright objects
on a dark background, or dark objects on a bright background.
The goal, in many applications, is to separate the objects from
the background, and to label them as object or as background. If
the image histogram contains well-separated modes associated
with an object and with a background, then thresholding can
be the means for achieving this separation. Practical examples
of gray-level images with well-separated bimodal histograms are
not hard to find. For example, an image of machine-printed
type (like that being currently read), or of handprinted char-
acters, will have a very distinctive separation between object
and background. Examples abound in biomedical applications,
where it is often possible to control the lighting of objects and
background. Standard bright-field microscope images of single
or multiple cells (micrographs) typically contain bright objects
against a darker background. In many industry applications, it
is also possible to control the relative brightness of objects of
interest and the backgrounds they are set against. For example,
machine parts that are being imaged (perhaps in an automated
inspection application) may be placed on a mechanical con-
veyor that has substantially different reflectance properties than
the objects.

Given an image with a bimodal histogram, a general strategy
for thresholding is to place the threshold T between the image
modes, as depicted in Fig. 4(a). Many “optimal” strategies have
been suggested for deciding the exact placement of the thresh-
old between the peaks. Most of these are based on an assumed
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FIGURE 3

statistical model for the histogram, and by posing the decision of
labeling a given pixel as “object” versus “background” as a statis-
tical inference problem. In the simplest version, two hypotheses
are posed:

Hy: The pixel belongs to gray level Population 0.
Hi: The pizxel belongs to gray level Population 1.

Here pixels from population 0 and 1 have conditional probability
density functions (pdf’s) ps(a | Hp) and p s(a | Hy), respectively,

Threshold T

Hy(k)

, —>

0 gray level &
(a)

()

Image “mandrill” thresholded at gray levels of (a) 50, (b) 100, (c) 150, and {d) 150.

under the two hypotheses. If it is also known (or estimated) that
Hjy is true with probability py and that H, is true with probability
p1(po + pi1 = 1), then the decision may be cast as a likelihood
ratio test. If an observed pixel has gray level f(n) = k, then the
decision may be rendered according to

pr(k|H) % po

. 4
pr(k|Ho) 5, pi @

The decision whether to assign logical 0 or 1 to a pixel can thus

Hi(k)

—
K-1

0 gray level k
(b)

FIGURE 4 Hypothetical histograms: (a) well-separated modes and {b) poorly separated or indistinct

modes.)



40

be regarded as applying a simple statistical test to each pixel. In
relation (4), the conditional pdf’s may be taken as the modes of a
bimodal histogram. Algorithmically, this means that they must
be fit to the histogram by using some criterion, such as least
squares. This is usually quite difficult, since it must be decided
that there are indeed two separate modes, the locations (centers)
and widths of the modes must be estimated, and a model for the
shape of the modes must be assumed. Depending on the assumed
shape of the modes (in a given application, the shape might be
predictable), specific probability models might be applied, e.g.,
the modes might be taken to have the shape of Gaussian pdf’s
(Chapter 4.5). The prior probabilities py and p, are often easier
to model, since in many applications the relative areas of object
and background can be estimated or given reasonable values
based on empirical observations.

A likelihood ratio test such as relation (4) will place the im-
age threshold T somewhere between the two modes of the im-
age histogram. Unfortunately, any simple statistical model of
the image does not account for such important factors as ob-
ject/background continuity, visual appearance to a human ob-
server, non-uniform illumination or surface reflectance effects,
and so on. Hence, with rare exceptions, a statistical approach
such as relation (4) will not produce as good a result as would a
human decision maker making a manual threshold selection.

Placing the threshold T between two obvious modes of a his-
togram may yield acceptable results, as depicted in Fig. 4(a).
The problem is significantly complicated, however, if the image
contains multiple distinct modes or if the image is nonmodal
or level. Multimodal histograms can occur when the image con-
tains multiple objects of different average brightness on a uni-
formbackground. In such cases, simple thresholding will exclude
some objects (Fig. 5). Nonmodal or flat histograms usually im-
ply more complex images, containing significant gray-level vari-
ation, detail, non-uniform lighting or reflection, etc. (Fig. 5).
Such images are often not amenable to a simple thresholding
process, especially if the goal is to achieve figure—ground sep-
aration. However, all of these comments are, at best, rules of
thumb. An image with a bimodal histogram might not yield
good results when thresholded at any level, while an image with
a perfectly flat histogram might yield an ideal result. It is a
good mental exercise to consider when these latter cases might
occur.

Hy (k)

0 gray level &
(a)
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Figures 6-8 shows several images, their histograms, and the
thresholded image results. In Fig. 6, a good threshold level for the
micrograph of the cellular specimens was taken to be T = 180.
This falls between the two large modes of the histogram (there
are many smaller modes) and was deemed to be visually op-
timal by one user. In the binarized image, the individual cells
are not perfectly separated from the background. The reason
for this is that the illuminated cells have non-uniform bright-
ness profiles, being much brighter toward the centers. Taking the
threshold higher (T = 200), however, does not lead to improved
results, since the bright background then begins to fall below
threshold.

Figure 7 depicts a negative (for better visualization) of a digi-
tized mammogram. Mammography is the key diagnostic tool for
the detection of breast cancer, and in the future, digital tools for
mammographic imaging and analysis will be used. The image
again shows two strong modes, with several smaller modes. The
first threshold chosen (T = 190) was selected at the minimum
point between the large modes. The resulting binary image has
the nice result of separating the region of the breast from the
background. However, radiologists are often interested in the
detailed structure of the breast and in the brightest (darkest in
the negative) areas, which might indicate tumors or microcal-
cifications. Figure 7(d) shows the result of thresholding at the
lower level of 125 (higher level in the positive image), successfully
isolating much of the interesting structure.

Generally, the best binarization results by means of thresh-
olding are obtained by direct human operator intervention.
Indeed, most general-purpose image processing environments
have thresholding routines that allow user interaction. How-
ever, even with a human picking a visually “optimal” value of T,
thresholding rarely gives perfect results. There is nearly always
some misclassification of object as background, and vice versa.
For example, in the image “micrograph,” no value of T is able
to successfully extract the objects from the background; instead,
most of the objects have “holes” in them, and there is a sprinkling
of black pixels in the background as well.

Because of these limitations of the thresholding process, it is
usually necessary to apply some kind of region correction algo-
rithms to the binarized image. The goal of such algorithms is
to correct the misclassification errors that occur. This requires
identifying misclassified background points as object points,

Hy(k)

1 T >
0 gray level k K-1
(b)

FIGURE 5 Hypothetical histograms: {a) Multimodal, showing the difficulty of threshold selection;
(b) nonmodal, for which the threshold selection is quite difficult or impossible.
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FIGURE 6 Binarization of “micrograph”: (a) Original (b) histogram showing two threshold locations (180 and 200),

and (c) and (d) resulting binarized images.

and vice versa. These operations are usually applied directly to
the binary images, although it is possible to augment the pro-
cess by also incorporating information from the original gray-
scale image. Much of the remainder of this chapter will be de-
voted to algorithms for region correction of thresholded binary
images.

3 Region Labeling

A simple but powerful tool for identifying and labeling the var-
ious objects in a binary image is a process called region labeling,
blob coloring, or connected component identification. It is useful
since once they are individually labeled, the objects can be sep-
arately manipulated, displayed, or modified. For example, the
term “blob coloring” refers to the possibility of displaying each
object with a different identifying color, once labeled.

Region labeling seeks to identify connected groups of pixels
in a binary image f that all have the same binary value. The sim-
plest such algorithm accomplishes this by scanning the entire
image (left to right, top to bottom), searching for occurrences

of pixels of the same binary value and connected along the hori-
zontal or vertical directions. The algorithm can be made slightly
more complex by also searching for diagonal connections, but
this is usually unnecessary. A record of connected pixel groups
is maintained in a separate label array r having the same dimen-
sionsas f,astheimage is scanned. The following algorithm steps
explain the process, in which the region labels used are positive
integers.

3.1 Region Labeling Algorithm

1. Given an N x M binary image f, initialize an associated
N x Mregion label array: r(n) = 0 for all n. Also initialize
a region number counter: k = 1.

Then, scanning the image from left to right and top to

bottom, for every n do the following:

2. If f(n) = 0 then do nothing.

3. If f(m)=1andalso f(n—(1,0)) = f(n—(0,1)) =0,
as depicted in Fig. 8(a), then set r(n) = 0and k = k + 1.
In this case the left and upper neighbors of f(n) do not
belong to objects.
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(©)

FIGURE 7 Binarization of “mammogram”: (a) Original negative mammogram; (b) histogram showing two threshold
locations (190 and 125), and (c) and (d) resulting binarized images.

4. If fm) =1, f(n — (1,0)) = 1, and f(n — (0, 1)) = 0,
Fig. 8(b), then set r(n) = r(n — (1, 0)). In this case the
upper neighbor f(n — (1, 0)) belongs to the same object
as f(n).

5. IF fm) =1, f(n — (1,0)) =0, and f(n — (0, 1)) =1,
Fig. 8(c), then set r(n) = r(n — (0, 1)). In this case the left
neighbor f(n — (0, 1)) belongs to the same objectas f(n).

6. If fn) = l,and f(n—(1,0)) = f(n—(0,1)) =1,
Fig. 8(d), thenset r(n) = r(n— (0, 1)). If r(n - (0, 1)) #
r(n — (1, 0)), then record the labels r(n — (0, 1)) and
r(n — (1, 0)) as equivalent. In this case both the left and
upper neighbors belong to the same object as f(n), al-
though they may have been labeled differently.

(a) (b) © (d)

FIGURE 8 Pixel neighbor relationships used in a region labeling algorithm.
In each of (a)—(d), f(n) is the lower right pixel.
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A simple application of region labeling is the measurement
of object area. This can be accomplished by defining a vector
¢ with elements c(k) that are the pixel area (pixel count) of
region k.

3.2 Region Counting Algorithm

Initialize ¢ = 0. For every n do the following:

1. If f(n) = 0 then do nothing.
2. If f(n) = 1, then ¢{r(n)] = ¢[r(n)] + 1.

Another simple but powerful application of region labeling is
the removal of minor regions or objects from a binary image.
The ways in which this is done depends on the application. It
may be desired that only a single object should remain (generally,
the largest object), or it may be desired that any object with a
pixel area less than some minimum value should be deleted. A
variation is that the minimum value is computed as a percentage
of thelargest object in the image. The following algorithm depicts
the second possibility.
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(b)

FIGURE 9 Result of applying the region labeling -— counting-removal algorithms to (a) the binar-
ized image in Fig. 6(c) and (b) then to the image in (a), but in the polarity-reversed mode.

3.3 Minor Region Removal Algorithm

Assume a minimum allowable object size of S pixels. For every
n do the following.

1. If f(n) = 0 then do nothing.
2. If f(n) =1and c[r(n)] < S, thenset f(n) = 0.

Of course, all of the above algorithms can be operated in re-
verse polarity, by interchanging 0 for 1 and 1 for 0 everywhere.

An important application of region labeling/region count-
ing/minor region removal is in the correction of thresholded
binary images. The application of a binarizing threshold to a
gray-level image inevitably produces an imperfect binary image,
with such errors as extraneous objects or holes in objects. These
can arise from noise, unexpected objects (such as dust on alens),
and generally, non-uniformities in the surface reflectances and
illuminations of the objects and background.

Figure 9 depicts the result of sequentially applying the region
labeling/region counting/minor region removal algorithms to
the binarized micrograph image in Fig. 6(c). The series of algo-
rithms was first applied to Fig. 6(c) as above to remove extraneous
small black objects, using a size threshold of 500 pixels as shown
in Fig. 9(a). It was then applied again to this modified image, but
in the polarity-reversed mode, to remove the many object holes,
this time using a threshold of 1000 pixels. The result shown in
Fig. 9(b) is a dramatic improvement over the original binarized
result, given that the goal was to achieve a clean separation of
the objects in the image from the background.

4 Binary Image Morphology

We next turn to a much broader and more powerful class of
binary image processing operations that collectively fall under
the name binary image morphology. These are closely related to
(in fact, are the same as in a mathematical sense) the gray-level

morphological operations described in Chapter 3.3. As the name
indicates, these operators modify the shapes of the objects in an
image.

4.1 Logical Operations

The morphological operators are defined in terms of simple log-
ical operations on local groups of pixels. The logical operators
that are used are the simple NOT, AND, OR, and MA] (major-
ity) operators. Given a binary variable x, NOT(x) is its logical
complement. Given a set of binary variables xi, . .., x,, the op-
eration AND(x;, ..., x,) returns value 1 if and only if x; =

- = x, = 1 and 0 otherwise. The operation OR(x;, ..., x,)
returns value 0 if and only if x;, = .-+ = x, = 0 and 1 other-
wise. Finally, if # is odd, the operation MA](xy, .. ., x,) returns
value 1 if and only if a majority of (x, ..., x,) equal 1 and 0
otherwise.

We observe in passing the DeMorgan’s Laws for binary arith-
metic, specifically

NOT[AND(xi, .. ., x,)] = OR[NOT(x)), ...,
NOT[OR(xi, ..., x4})] = AND[NOT(x,), ...,

NOT(x,)], (5)
NOT(x4)], (6)

which characterizes the duality of the basic logical operators
AND and OR under complementation. However, note that

NOT[MA](xy, ..., x,)] = MAJ[NOT(x;), ..., NOT(x,)].

(7)

Hence MA] is its own dual under complementation.

4.2 Windows

As mentioned, morphological operators change the shapes of
objects by using local logical operations. Since they are local
operators, a formal methodology must be defined for making
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the operations occur on a local basis. The mechanism for doing
this is the window.

A window defines a geometric rule according to which gray
levels are collected from the vicinity of a given pixel coordinate.
It is called a window since it is often visualized as a moving col-
lection of empty pixels that is passed over the image. A morpho-
logical operation is (conceptually) defined by moving a window
over the binary image to be modified, in such a way that it is
eventually centered over every image pixel, where a local logical
operation is performed. Usually this is done row by row, col-
umn by column, although it can be accomplished at every pixel
simultaneously, if a massively parallel-processing computer is
used.

Usually, a window is defined to have an approximate circu-
lar shape (a digital circle cannot be exactly realized) since it is
desired that the window, and hence, the morphological oper-
ator, be rotation invariant. This means that if an object in the
image is rotated through some angle, then the response of the
morphological operator will be unchanged other than also being
rotated. While rotational symmetry cannot be exactly obtained,
symmetry across two axes can be obtained, guaranteeing that
the response be at least reflection invariant. Window size also
significantly effects the results, as will be seen.

A formal definition of windowing is needed in order to define
the various morphological operators. A window B is a set of
2P + 1 coordinate shifts b; = (n;, m;) centered around (0, 0):

B={b, ..., bpp1} = {(m, m), ..., (map41, Mapy))}
Some examples of common one-dimensional (row and column)
windows are

B =ROW[2P +1] ={(0, m)ym=—P,..., P} (8)
B=COL[2P+1]={(n0);n=—P,..., P} 9)

and some common two-dimensional windows are

B = SQUARE[(2P + 1)*] = {(n, m);n,m= —P, ..., P}
(10)

B = CROSS[4P + 1] = ROW (2P + 1) UCOL(2P +1)
(11)
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FIGURE 10 Examples of windows: (a) one-dimensional, ROW(2P + 1) and
COL(22P + 1) for P = 1,2; (b) two-dimensional, SQUARE[(2P + 1)?]
and CROSS[4P + 1] for P = 1, 2. The window is centered over the shaded
pixel.

with obvious shape-descriptive names. In each of Egs. (8)—(11),
the quantity in brackets is the number of coordinates shifts in
the window, hence also the number of local gray levels that will
be collected by the window at each image coordinate. Note that
the windows of Eqs. (8)—(11) are each defined with an odd num-
ber 2P + 1 coordinate shifts. This is because the operators are
symmetrical: pixels are collected in pairs from opposite sides of
the center pixel or (0, 0) coordinate shift, plus the (0, 0) coordi-
nate shift is always included. Examples of each the windows of
Egs. (8)—(11) are shown in Fig. 10. The example window shapes
in Egs. (8)—(11) and in Fig. 10 are by no means the only possibil-
ities, but they are (by far) the most common implementations
because of the simple row—column indexing of the coordinate
shifts.

The action of gray-level collection by a moving window creates
the windowed set. Given a binary image f and a window B, the
windowed set at image coordinate n is given by

Bf(n) = {f(n —m);m € B}, (12)

which, conceptually, is the set of image pixels covered by B when
it is centered at coordinate n. Examples of windowed sets asso-
ciated with some of the windows in Eqs. (8)—(11) and Fig. 10 are
as follows:

B = ROW(3): Bf(n, m)={f(m,n—1), f(n, m), f(n, np+ 1)} (13)
B = COL(3): Bf(n,m)={f(m —1,m), f(m,n), f(m +1, m)} (14)
B = SQUARE9): Bf(m,m)={f(m—=1,nm—=1), f(m —1,nm), f(ny—1,m+1),

f(m, my = 1), f(my, mp), f(m, my+ 1),

fm+1Lm =1, fm+1,m), f(m+1,m+ 1)} (15)
B = CROSS(5): Bf(n, m)={f(m —1,m), f(m,mp = 1), f(m, m), f(m, m+1), f(m +1, m)} (16)
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where the elements of Egs. (13)—(16) have been arranged to show
the geometry of the windowed sets when centered over coordi-
nate n = (n,, n,). Conceptually, the window may be thought of
as capturing a series of miniature images as it is passed over the
image, row by row, column by column.

One last note regarding windows involves the definition of
the windowed set when the window is centered near the bound-
ary edge of the image. In this case, some of the elements of the
windowed set will be undefined, since the window will overlap
“empty space” beyond the image boundary. The simplest and
most common approach is to use pixel replication: set each un-
defined windowed set value equal to the gray level of the nearest
known pixel. This has the advantage of simplicity, and also the
intuitive value that the world just beyond the borders of the im-
age probably does not change very much. Figure 11 depicts the
process of pixel replication.

4.3 Morphological Filters

Morphological filters are Boolean filters. Given an image f, a
many-to-one binary or Boolean function h, and a window B,
the Boolean-filtered image g = h( f) is given by

g(m) = h(B f(n)] (17)
at every n over the image domain. Thus, at each n, the filter
collects local pixels according to a geometrical rule into a win-
dowed set, performs a Boolean operation on them, and returns
the single Boolean result g(n).

The most common Boolean operations that are used are AND,
OR, and MAJ. They are used to create the following simple, yet
powerful morphological filters. These filters act on the objects
in the image by shaping them: expanding or shrinking them,
smoothing them, and eliminating too-small features.

The binary dilation filter is defined by

g(n) = OR[B f(m)] (18)

FIGURE 11 Depiction of pixel replication for a window centered near the
(top) image boundary.
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dilate

FIGURE 12 Illustration of dilation of a binary 1-valued object; the smallest
hole and gap were filled.

and is denoted g = dilate( f, B). The binary erosion filter is de-
fined by

g(n) = AND[B f(n)] (19)
and is denoted g = erode( f, B). Finally, the binary majority filter
is defined by

g(n) = MAJ[B f(n)] (20)
andis denoted g = majority( f, B). Next we explain the response
behavior of these filters.

The dilate filter expands the size of the foreground, object,
or one-valued regions in the binary image f. Here the 1-valued
pixels are assumed to be black because of the convention we have
assumed, but this is not necessary. The process of dilation also
smoothes the boundaries of objects, removing gaps or bays of
too-narrow width and also removing object holes of too-small
size. Generally, a hole or gap will be filled if the dilation window
cannot fit into it. These actions are depicted in Fig. 12, while
Fig. 13 shows the result of dilating an actual binary image. Note
that dilation using B = SQUARE(9) removed most of the small
holes and gaps, while using B = SQUARE(25) removed nearly
all of them. It is also interesting to observe that dilation with
the larger window nearly completed a bridge between two of the
large masses. Dilation with CROSS(9) highlights an interesting
effect: individual, isolated 1-valued or BLACK pixels were dilated
into larger objects having the same shape as the window. This can
also be seen with the results using the SQUARE windows. This
effect underlines the importance of using symmetric windows,
preferably with near rotational symmetry, since then smoother
results are obtained.

The erode filter shrinks the size of the foreground, object, or 1-
valued regions in the binary image f. Alternately, it expands the
size of the background or 0-valued regions. The process of ero-
sion smoothes the boundaries of objects, but in a different way
than dilation: it removes peninsulas or fingers of too-narrow
width, and also it removes 1-valued objects of too-small size.
Generally, anisolated object will be eliminated if the dilation win-
dow cannot fit into it. The effects of erode are depicted in Fig. 14.
Figure 15 shows the result of applying the erode filter to the bi-
nary image “cell.” Erosion using B=SQUARE(9) removed many
of the small objects and fingers, while using B = SQUARE(25)
removed most of them. As an example of intense smoothing,
B = SQUARE(81), a 9 x 9 square window, was also applied.
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FIGURE 13 Dilation of a binary image. (a) Binarized image “cells.” Dilate with (b) B = SQUARE(9),

(c) B = SQUARE(25), and (d) B = CROSS(9).

Erosion with CROSS(9) again produced a good result, except at
a few isolated points where isolated 0-valued or WHITE pixels
were expanded into larger 4-shaped objects.

An important property of the erode and dilate filters is the
relationship that exists between them. In fact, in reality they are
the same operation, in the dual (complementary) sense. Indeed,
given a binary image f and an arbitrary window B, it is true that

dilate( f, B) = NOT {erode[NOT(f), B]}
erode(f, B) = NOT {dilate[NOT(f), B]}.

(21)
(22)

erode

FIGURE 14 Illustration of erosion of a binary 1-valued object. The smallest
objects and peninsula were eliminated.

Equations (21) and (22) are a simple consequence of the De-
Morgan’s Laws (5) and (6). A correct interpretation of this is
that erosion of the 1-valued or BLACK regions of an image is the
same as dilation of the 0-valued or WHITE regions — and vice
versa.

An important and common misconception must be men-
tioned. Erode and dilate filters shrink and expand the sizes of
1-valued objects in a binary image. However, they are not in-
verse operations of one another. Dilating an eroded image (or
eroding a dilated image) very rarely yields the original image. In
particular, dilation cannot recreate peninsulas, fingers, or small
objects that have been eliminated by erosion. Likewise, erosion
cannot unfill holes filled by dilation or recreate gaps or bays
filled by dilation. Even without these effects, erosion generally
will not exactly recreate the same shapes that have been modified
by dilation, and vice versa.

Before discussing the third common Boolean filter, the ma-
jority, we will consider further the idea of sequentially applying
erode and dilate filters to an image. One reason for doing this is
that the erode and dilate filters have the effect of changing the
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FIGURE 15 Erosion of the binary image “cells” Erode with (a) B = SQUARE(9), (b) B =
SQUARE(25), (¢) B=SQUARE(81), and (d) B = CROSS(9).

sizes of objects, as well as smoothing them. For some objects
this is desirable, e.g., when an extraneous object is shrunk to
the point of disappearing; however, often it is undesirable, since
it may be desired to further process or analyze the image. For
example, it may be of interest to label the objects and compute
their sizes, as in Section 3 of this chapter.

Although erode and dilate are not inverse operations of one
another, they are approximate inverses in the sense that if they are
performed in sequence on the same image with the same window
B, then object and holes that are not eliminated will be returned
to their approximate sizes. We thus define the size-preserving
smoothing morphological operators termed open filter and close
filter, as follows:

open(f, B) = dilate[erode(f, B), B]
close(f, B) = erodeldilate( f, B), B].

(23)
(24)
Hence, the opening (closing) of image f is the erosion (dilation)

with window B followed by dilation (erosion) with window B.
The morphological filters open and close have the same smooth-

ing properties as erode and dilate, respectively, but they do not
generally effect the sizes of sufficiently large objects much (other
than pixel loss from pruned holes, gaps or bays, or pixel gain
from eliminated peninsulas).

Figure 16 depicts the results of applying the open and
close operations to the binary image “cell,” using the windows
B = SQUARE(25) and B = SQUARE(81). Large windows were
used to illustrate the powerful smoothing effect of these mor-
phological smoothers. As can be seen, the open filters did an
excellent job of eliminating what might be referred to as “black
noise” — the extraneous 1-valued objects and other features —
leaving smooth, connected, and appropriately sized large objects.
By comparison, the close filters smoothed the image intensely
as well, but without removing the undesirable black noise. In
this particular example, the result of the open filter is probably
preferable to that of close, since the extraneous BLACK struc-
tures present more of a problem in the image.

It is important to understand that the open and close filters
are unidirectional or biased filters in the sense that they re-
move one type of “noise” (either extraneous WHITE or BLACK
features), but not both. Hence, open and close are somewhat
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FIGURE 16 Open and close filtering of the binary image “cells.” Open with (a) B = SQUARE(25),
(b) B = SQUARE(81); close with (c) B = SQUARE(25), (d) B = SQUARE(81).

special-purpose binary image smoothers that are used when
too-small BLACK and WHITE objects (respectively) are to be
removed.

1t is worth noting that the close and open filters are again in
fact the same filters, in the dual sense. Given a binary image f
and an arbitrary window B,

close( f, B) = NOT{open[NOT(f), B]}
open(f, B) = NOT{close[NOT(f), B]}.

(25)
(26)

In most binary smoothing applications, it is desired to create
an unbiased smoothing of the image. This can be accomplished
by a further concatenation of filtering operations, applying open
and close operations in sequence on the same image with the
same window B. The resulting images will then be smoothed
bidirectionally. We thus define the unbiased smoothing morpho-
logical operators close—open filter and open—close filter, as follows:

close—open( f, B) = close[open(f, B), B] (27)
open—lose( f, B) = open|close( f, B), B]. (28)

Hence, the close—open (open—close) of image f is the open

(close) of f with window B followed by the close (open) of the
result with window B. The morphological filters close—open and
open—close in Egs. (27) and (28) are general-purpose, bidirec-
tional, size-preserving smoothers. Of course, they may each be
interpreted as a sequence of four basic morphological operations
(erosions and dilations).

The close—open and open—close filters arc quite similar but are
not mathematically identical. Both remove too-small structures
without affecting size much. Both are powerful shape smoothers.
However, differences between the processing results can be easily
seen. These mainly manifest as a function of the first operation
performed in the processing sequence. One notable difference
between close—open and open—close is that close—open often
links together neighboring holes (since erode is the first step),
while open—close often links neighboring objects together (since
dilate is the first step). The differences are usually somewhat
subtle, yet often visible upon close inspection.

Figure 17 shows the result of applying the close—open and the
open—close filters to the ongoing binary image example. As can
be seen the results (for B fixed) are very similar, although the
close—open filtered results are somewhat cleaner, as expected.
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FIGURE 17 Close—open and open—lose filtering of the binary image “cells.” Close—open with
(a) B = SQUARE(25), (b) B = SQUARE(81); Open—close with (¢) B = SQUARE(25), (d) B =

SQUARE(81).

There are also only small differences between the results ob-
tained using the medium and larger windows, because of the in-
tense smoothing that is occurring. To fully appreciate the power
of these smoothers, compare it to the original binarized image
“cells” in Fig. 13(a).

The reader may wonder whether further sequencing of the
filtered responses will produce different results. If the filters are
properly alternated as in the construction of the close—open and
open—close filters, then the dual filters become increasingly sim-
ilar. However, the smoothing power can most easily be increased
by simply taking the window size to be larger.

Once again, the close-open and open—close filters are dual
filters under complementation.

We now return to the final binary smoothing filter, the majority
filter. The majority filter is also known as the binary median filter,
since it may be regarded as a special case (the binary case) of the
gray-level median filter (Chapter 3.2).

The majority filter has similar attributes as the close—open
and open—close filters: it removes too-small objects, holes, gaps,
bays and peninsulas (both 1-valued and 0-valued small features),

and it also does not generally change the size of objects or of
background, as depicted in Fig. 18. It is less biased than any of
the other morphological filters, since it does not have an initial
erode or dilate operation to set the bias. In fact, majority is its
own dual under complementation, since

majority(f, B) = NOT{majority[NOT(f), B]} (29)

The majority filter is a powerful, unbiased shape smoother.
However, for a given filter size, it does not have the same
degree of smoothing power as close—open or open—close.

majority

FIGURE 18  Effect of majority filtering. The smallest holes, gaps, fingers, and
extraneous objects are eliminated.
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FIGURE 19 Majority or median filtering of the binary image “cells” Majority with (a) B =
SQUARE(9), (b) B = SQUARE(25); Majority with (c} B = SQUARE(81), (d} B = CROSS(9).

Figure 19 shows the result of applying the majority or bi-
nary median filter to the image “cell.” As can be seen, the results
obtained are very smooth. Comparison with the results of open—
close and close—open are favorable, since the boundaries of the
major smoothed objects are much smoother in the case of the
median filter, for both window shapes used and for each size.
The majority filter is quite commonly used for smoothing noisy
binary images of this type because of these nice properties. The
more general gray-level median filter (Chapter 3.2) is also among
the most-used image processing filters.

4.4 Morphological Boundary Detection

The morphological filters are quite effective for smoothing bi-
nary images, but they have other important applications as well.
One such application is boundary detection, which is the binary
case of the more general edge detectors studied in Chapters 4.11
and 4.12.

At first glance, boundary detection may seem trivial, since the
boundary points can be simply defined as the transitions from
1 to 0 (and vice versa). However, when there is noise present,

boundary detection becomes quite sensitive to small noise arti-
facts, leading to many useless detected edges. Another approach
which allows for smoothing of the object boundaries involves
the use of morphological operators.

The “difference” between a binary image and a dilated (or
eroded) version of it is one effective way of detecting the object
boundaries. Usually it is best that the window B that is used be
small, so that the difference between image and dilation is not
too large (leading to thick, ambiguous detected edges). A simple
and effective “difference” measure is the two-input exclusive-
OR operator, XOR. The XOR takes logical value 1 only if its
two inputs are different. The boundary detector then becomes
simply

boundary(f, B) = XOR[{, dilate( f, B)]. (30)
The result of this operation as applied to the binary image “cells”
is shown in Fig. 20(a), using B = SQUARE(9). As can be seen,
essentially all of the BLACK-WHITE transitions are marked
as boundary points. Often, this is the desired result. However,
in other instances, it is desired to detect only the major object
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FIGURE 20 Object boundary detection. Application of boundary(f; B) to (a) the image “cells”;

(b) the majority-filtered image in Fig. 19(c).

boundary points. This can be accomplished by first smoothing
the image with a close—open, open—close, or majority filter. The
result of this smoothed boundary detection process is shown in
Fig. 20(b). In this case, the result is much cleaner, as only the
major boundary points are discovered.

5 Binary Image Representation
and Compression

In several later chapters, methods for compressing gray-level
images are studied in detail. Compressed images are representa-
tions that require less storage than the nominal storage. This is
generally accomplished by coding of the data based on measured
statistics, rearrangement of the data to exploit patterns and re-
dundancies in the data, and (in the case of lossy compression),
quantization of information. The goal is that the image, when
decompressed, either looks very much like the original despite a
loss of some information (lossy compression), or is not different
from the original (lossless compression).

Methods for lossless compression of images are discussed in
Chapter 5.1. Those methods can generally be adapted to both
gray-level and binary images. Here, we will look at two methods
for lossless binary image representation that exploit an assumed
structure for the images. In both methods the image data are
represented in a new format that exploits the structure. The first
method is run-length coding, which is so called because it seeks
to exploit the redundancy of long run lengths or runs of con-
stant value 1 or 0 in the binary data. It is thus appropriate for
the coding/compression of binary images containing large areas
of constant value 1 and 0. The second method, chain coding,
is appropriate for binary images containing binary contours,
such as the boundary images shown in Fig. 20. Chain coding
achieves compression by exploiting this assumption. The chain
code is also an information-rich, highly manipulable represen-
tation that can be used for shape analysis.

5.1 Run-Length Coding

The number of bits required to naively store an N x M binary
image is NM. This can be significantly reduced if it is known
that the binary image is smooth in the sense that it is composed
primarily of large areas of constant 1 and/or 0 value.

The basic method of run-length coding is quite simple. As-
sume that the binary image f is to be stored or transmitted on
a row-by-row basis. Then for each image row numbered m, the
following algorithm steps are used.

1. Store the first pixel value (0 or 1) in row 1 in a 1-bit buffer
as a reference.
2. Set the run counter ¢ = 1.
3. For each pixel in the row,
+ Examine the next pixel to the right.
« If it is the same as the current pixel, set ¢ = ¢ + 1.
« If different from the current pixel, store ¢ in a buffer of
length b and set ¢ = 1.
+ Continue until end of row is reached.

Thus, each run length is stored by using b bits. This requires that
an overall buffer with segments of lengths b be reserved to store
the run lengths. Run-length coding yields excellent lossless com-
pressions, provided that the image contains lots of constant runs.
Caution is necessary, since if the image contains only very short
runs, then run-length coding can actually increase the required
storage.

Figure 21 depicts two hypothetical image rows. In each case,
the first symbol stored in a 1-bit buffer will be logical 1. The
run-length code for Fig. 21(a) would be “1,” 7,5, 8, 3, 1. . ., with
symbols after the “1” stored with b bits. The first five runs in
this sequence have average length 24/5 = 4.8; hence if b < 4,
then compression will occur. Of course, the compression can be
much higher, since there may be runs of lengths in the dozens
or hundreds, leading to very high compressions.

In the worst-case example of Fig. 21(b), however, the storage
actually increases b-fold! Hence, care is needed when applying
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FIGURE 21 Example rows of a binary image, depicting (a) reasonable and
(b) unreasonable scenarios for run-length coding.

this method. The apparent rule of thumb, if it can be applied
a priori, is that the average run length L of the image should
satisfy L > b if compression is to occur. In fact, the compression
ratio will be approximately L /b.

Run-length coding is also used in scenarios other than binary
image coding. It can also be adapted to situations in which there
are run lengths of any value. For example, in the JPEG lossy
image compression standard for gray-level images (see Chapter
5.5), a form of run-length coding is used to code runs of zero-
valued frequency-domain coefficients. This run-length coding
is an important factor in the good compression performance
of JPEG. A more abstract form of run-length coding is also re-
sponsible for some of the excellent compression performance
of recently developed wavelet image compression algorithms
(Chapter 5.4).

5.2 Chain Coding

Chain codingis an efficient representation of binary images com-
posed of contours. We will refer to these as “contour images.” We
assume that contour images are composed only of single-pixel
width, connected contours (straight or curved). These arise from
processes of edge detection or boundary detection, such as the
morphological boundary detection method just described, or
the results of some of the edge detectors described in Chapters
4.11 and 4.12 when applied to gray-scale images.

The basic idea of chain coding is to code contour directions
instead of naive bit-by-bit binary image coding or even coor-
dinate representations of the contours. Chain coding is based
on identifying and storing the directions from each pixel to its
neighbor pixel on each contour. Before this process is defined, it
is necessary to clarify the various types of neighbors that are asso-
ciated with a given pixel in a binary image. Figure 22 depicts two
neighborhood systems around a pixel (shaded). To the left are
depicted the 4-neighbors of the pixel, which are connected along
the horizontal and vertical directions. The set of 4-neighbors of

FIGURE 22 Depiction of the 4-neighbors and the 8-neighbors of a pixel
(shaded).
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FIGURE 23 Representation of a binary contour by direction codes. (a) A con-
nected contour can be represented exactly by an initial point and the subsequent
directions. (b) Only 8 direction codes are required.

contour

a pixel located at coordinate n will be denoted Ny(n). To the
right are the 8-neighbors of the shaded pixel in the center of the
grouping. These include the pixels connected along the diagonal
directions. The set of 8-neighbors of a pixel located at coordinate
n will be denoted Nz(n).

If the initial coordinate ny of an 8-connected contour is
known, then the rest of the contour can be represented without
loss of information by the directions along which the contour
propagates, as depicted in Fig. 23(a). The initial coordinate can
be an endpoint, if the contour is open, or an arbitrary point, if
the contour is closed. The contour can be reconstructed from
the directions, if the initial coordinate is known. Since there are
only eight directions that are possible, then a simple 8-neighbor
direction code may be used. The integers {0, ..., 7} suffice for
this, as shown in Fig. 23(b). Of course, the direction codes 0, 1,
2,3, 4, 5, 6, 7 can be represented by their 3-bit binary equiva-
lents: 000, 001, 010, 011, 100, 101, 110, 111. Hence, each point
on the contour after the initial point can be coded by 3 bits. The
initial point of each contour requires [log,(MN)] bits, where
[] denotes the ceiling function: [x] = the smallest integer that
is greater than or equal to x. For long contours, storage of the
initial coordinates is incidental.

Figure 24 shows an example of chain coding of a short contour.
After the initial coordinate ny = (ng, my) is stored, the chain
code for the remainder of the contouris: 1,0, 1,1, 1, 1, 3, 3, 3,
4, 4, 5, 4 in integer format, or 001, 000, 001, 001, 001, 001, 011,
011,011, 100, 100, 101, 100 in binary format. Chain coding is an
efficient representation. For example, if the image dimensions
N = M = 512, then representing the contour by storing the
coordinates of each contour point requires six times as much
storage as the chain code.

11

o II H [ = initial point

mo

FIGURE 24 Depiction of chain coding.
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1 Introduction

In this third chapter on basic methods, the basic mathematical
and algorithmic tools for the frequency-domain analysis of digi-
tal images are explained. Also introduced is the two-dimensional
discrete-space convolution. Convolution is the basis for linear fil-
tering, which plays a central role in many places in this Handbook.
An understanding of frequency-domain and linear filtering con-
cepts is essential to be able to comprehend such significant topics
as image and video enhancement, restoration, compression, seg-
mentation, and wavelet-based methods. Exploring these ideas
in a two-dimensional setting has the advantage that frequency-
domain concepts and transforms can be visualized as images,
often enhancing the accessibility of ideas.

2 Discrete-Space Sinusoids

Before defining any frequency-based transforms, first we shall
explore the concept of image frequency, or more generally, of
two-dimensional frequency. Many readers may have a basic back-
ground in the frequency-domain analysis of one-dimensional
signals and systems. The basic theories in two dimensions are
founded on the same principles. However, there are some exten-

Copyright © 2000 by Academic Press,
All rights of reproduction in any form reserved.

sions. For example, a two-dimensional frequency component,
or sinusoidal function, is characterized not only by its location
(phase shift) and its frequency of oscillation, but also by its di-
rection of oscillation.

Sinusoidal functions will play an essential role in all of the
developments in this chapter. A two-dimensional discrete-space
sinusoid is a function of the form

sin[2m(Um+ Vn)]. (1)

Unlike a one-dimensional sinusoid, function (1) has two fre-
quencies, U and V (with units of cycles/pixel), which represent
the frequency of oscillation along the vertical (m) and horizon-
tal (n) spatial image dimensions. Generally, a two-dimensional
sinusoid oscillates (is nonconstant) along every direction except
for the direction orthogonal to the direction of fastest oscillation.
The frequency of this fastest oscillation is the radial frequency, i.e.,

Q=JU2+ V2, (2)

which has the same units as U and V, and the direction of this
fastest oscillation is the angle, i.e.,

6 =tan™! (%), (3)
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with units of radians. Associated with function (1) is the complex
exponential function

exp[j2n(Um + Vn)] = cos2mw(Um + Vn)]
+ jsin[2w(Um+ Vn)], (4)

where j = /=1 is the pure imaginary number.

In general, sinusoidal functions can be defined on discrete
integer grids; hence functions (1) and (4) hold for all integers
—o0 < m, n < 00. However, sinusoidal functions of infinite du-
ration are not encountered in practice, although they are useful
for image modeling and in certain image decompositions that
we will explore.

Inpractice, discrete-space images are confined to finite M x N
sampling grids, and we will also find it convenient to utilize finite-
extent (M x N two-dimensional discrete-space sinusoids, which
are defined only for integers

0<m<M-1, 0<n<N-1,

—

5)

(@)

N

SN

©
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and undefined elsewhere. A sinusoidal function that is confined
to domain (5) can be contained within an image matrix of di-
mensions M x N, and is thus easily manipulated digitally.

In the case of finite sinusoids defined on finite grids (5), it will
often be convenient to use the scaled frequencies

(u,v) = (MU, NV) (6)

which have the visually intuitive units of cycles/image. With this,
two-dimensional sinusoid (1) defined on finite grid (5) can be

Ie-CXpIeSSed as
sin (1) m " N n > 7

with similar redefinition of complex exponential (4).

Figure 1 depicts several discrete-space sinusoids of dimensions
256 x 256 displayed as intensity images after linear mapping the
gray scale of each to the range 0-255. Because of the nonlinear

FIGURE 1 Examples of finite two-dimensional discrete-space sinusoidal functions. The scaled frequencies of
Eq. (6) measured in cycles/image are (a} u=1,v = 4; (b) u=10,v=5; (¢) u=15,v=35; and (d) u=65, v = 35.
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response of the eye, the functions in Fig. 1 look somewhat more
like square waves than smoothly varying sinusoids, particularly
at higher frequencies. However, if any of the images in Fig. 1 is
sampled along a straight line of arbitrary orientation, the result
is an ideal (sampled) sinusoid.

A peculiarity of discrete-space (or discrete-time) sinusoids is
that they have a maximum possible physical frequency at which
they can oscillate. Although the frequency variables (u, v) or
(U, V) may be taken arbitrarily large, these large values do not
correspond to arbitrarily large physical oscillation frequencies.
The ramifications of this are quite deep and significant, and they
relate to the restrictions placed on sampling of continuous-space
images (the Sampling Theorem) and the Nyquist frequency. The
sampling of images and video is covered in Chapters 7.1 and 7.2.

As an example of this principle, we will study a one-di-
mensional example of a discrete sinusoid. Consider the finite
cosine function, cos{2m([(u/M)m + (v/N)n]}= cos[2mw(u/
16)m], which results by taking M= N =16, and v=0. This is
a cosine wave propagating in the m direction only (all columns
are the same) at frequency u (cycles/image).

Figure 2 depicts the one-dimensional cosine for various values
of u. As can be seen, the physical oscillation frequency increases
until ¥ = 8; for incrementally larger values of u, however, the
physical frequency diminishes. In fact, the function is period-16
in the frequency index u:

cos <2'n'i m) = cos I:nglii—m—k) m] (8)
16 16

for all integers k. Indeed, the highest physical frequency of
cos[2m(u/ M )m)] occurs at u = M/2 + kM, (for M even) for
all integers k. At these periodically placed frequencies, Eq. (8)
is equal to (—1)"; the fastest discrete-index oscillation is the

u=1l or u=15 u=2 or u=14
1 1
07 0
1o 2 46 8 10121416 0 2 4 6 8 1012 14 16
m m
u=4 or u=12 u=8
| 1
0 01
102 4 6 8 10121416 0 2 4 6 8 1012 14 16
m m
FIGURE 2 Illustration of physical versus numerical frequencies of dis-

crete-space sinusoids.
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alternating signal. This observation will be important next as
we define the various frequency-domain image transforms.

3 Discrete-Space Fourier Transform

The discrete-space Fourier transform, or DSFT, of a given discrete-
space image f is given by

o0

F(U, VY= D D flm,me 2mUmsVn  (g)

m=—0o0 n=—0¢

with the inverse discrete-space Fourier transform (IDSFT),

0.5 0.5
f(m, n)=f f F(U, V) UmtVnqudy.  (10)
—0.5/-0.5

When Egs. (9) and (10) hold, we will often make the notation
f S Fand say that f, F form a DSFT pair. The units of the
frequencies (U, V) in Eqs. (9) and (10) are cycles/pixel. It should
be noted that, unlike continuous Fourier transforms, the DSFT
is asymmetrical in that the forward transform F is continuous
in the frequency variables (U, V), while the image or inverse
transform is discrete. Thus, the DSFT is defined as a summation,
while the IDSFT is defined as an integral.

There are several ways of interpreting the DSFT in Eqs. (9) and
(10). The most usual mathematical interpretation of Eq. (10)
is as a decomposition of f(m, n) into orthonormal complex
exponential basis functions /2" (Um+V" that satisfy

0.5 0.5
/ / ejZ'n(Um+Vn)e—jZ'n(Up+Vq)dUdV
—0.5J-05

m=p,

I; n=gq
“lo; otherwise ’

(11)

Another (somewhat less precise) interpretation is the engineer-
ing concept of the transformation, without loss, of space-domain
image information into frequency-domain image information.
Representing the image information in the frequency domain
has significant conceptual and algorithmic advantages, as will
be seen. A third interpretation is a physical one, in which the
image is viewed as the result of a sophisticated constructive-
destructive interference wave pattern. By assigning each of
the infinite number of complex exponential wave functions
e/2m(Um+Vn the appropriate complex weights F (U, V), one can
recreate the intricate structure of any discrete-space image ex-
actly as an interference sum.

The DSFT possesses a number of important properties that
will be useful in defining applications. In the following, assume

3 Y 3

that f& F,g & G,and h & H.
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3.1 Linearity of DSFT

Given images f, g and arbitrary complex constants a, b, the
following holds:

af +bg S aF + bG. (12)
This property of linearity follows directly from Eq. (9), and it
can be extended to a weighted sum of any countable number
of images. It is fundamental to many of the properties of, and
operations involving, the DSFT.

3.2 Inversion of DSFT

The two-dimensional function F (U, V) uniquely satisfies rela-
tionships (9) and (10). That the inversion holds can be easily
shown by substituting Eq. (9) into Eq. (10), reversing the order
of sum and integral, and then applying Eq. (11).

3.3 Magnitude and Phase of DSFT

The DSFT F of animage f is generally complex valued. As such
it can be written in the form

where

R(U, V) = i i F(m, n)cos[2m(Um+ V)] (14)
and

I(U, V) = — i i F(m, nysin2m(Um+ V)] (15)

are the real and imaginary parts of F (U, V), respectively.
The DSFT can also be written in the often-convenient phasor
form

E(U, V) = |F(U, V)|/FOD, (16)

where the magnitude spectrum of image f is
[F(U, V)| = VREU, V) + I*(U, V) (17)
=/ F(U, VYF*(U, V) (18)

where the asterisk denotes the complex conjugation. The phase
spectrum of image f is

(19)

[F(U, V) = tan*'[ I, V)].

R(U, V)
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3.4 Symmetry of DSFT

If the image f is real, which is usually the case, then the DSFT is
conjugate syminetric:

F(U, V)= F*(~U,-V), (20)
which means that the DSFT is completely specified by its values
over any half-plane. Hence, if f is real, the DSFT is redundant.

From Eq. (20), it follows that the magnitude spectrum is even
symmetric:

|F(U, V)| = |F(=U, =V)|, 21
while the phase spectrum is odd symmetric:
(F(U, V)= —=LF(-U,-V), (22)

3.5 Translation of DSFT

Multiplying (or modulating) the discrete-space image f(m, n)
by a two-dimensional complex exponential wave function,
exp( 72w (Uym + Vyn)), results in a translation of the DSFT:

F(m, n) expl j2m(Uom + Vom)] & E(U = Uy, V= Vp).  (23)

Likewise, translating the image f by amounts #1y, ny produces a
modulated DSFT;

F(m—mog, n—1ng) & F(U, V) exp[—j2mUmy+ Vrg)]  (24)

3.6 Convolution and the DSFT

Given two images or two-dimensional functions f and A, their
two-dimensional discrete-space linear convolution is given by

g(m, n) = f(m, n)* h(m, n) = h(m, n) * f(m, n)
= Z Z f(p, Dh(m—p,n—q). (25)

p=—00 g=—00

The linear convolution expresses the result of passing an image
signal f through a two-dimensional linear convolution system k
(or vice versa). The commutativity of the convolution is easily
seen by making a substitution of variables in the double sum in
Eq. (25).
If g, f, and h satisfy spatial convolution relationship (25),
then their DSFTs satisfy
G(U, V) = F(U, VYH(U, V); (26)
hence convolution in the space domain corresponds directly to
multiplication in the spatial frequency domain. This important
property is significant both conceptually, as a simple and di-
rect means for effecting the frequency content of an image, and
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computatjonally, since the linear convolution has such a simple
expression in the frequency domain.

The two-dimensional DSFT is the basic mathematical tool
for analyzing the frequency-domain content of two-dimensional
discrete-space images. However, it has a major drawback for
digital image processing applications: the DSFT F (U, V) of a
discrete-space image f(m, n) is continuous in the frequency
coordinates (U, V); there are an uncountably infinite number
of values to compute. As such, discrete (digital) processing or
display in the frequency domain is not possible using the DSFT
unless it is modified in some way. Fortunately, this is possible
when theimage f is of finite dimensions. In fact, by sampling the
DSFT in the frequency domain we are able to create a computable
Fourier domain transform.

4 Two-Dimensional Discrete Fourier
Transform (DFT)

Now we restrict our attention to the practical case of discrete-
space images that are of finite extent. Hence assume that im-
age f(m, n); can be expressed as a matrix f=[f(m, n)0 <m <
M —1,0 < n < N—1]. As we will show, a finite-extent image
matrix f can be represented exactly as a finite weighted sum of
two-dimensional frequency components, instead of an infinite
number. This leads to computable and numerically manipula-
ble frequency-domain representations. Before showing how this
is done, we shall introduce a special notation for the complex
exponential that will simplify much of the ensuing development.
We will use

W, 2w 7
K = eXP[ J K] (27)
as a shorthand for the basic complex exponential, where K is
the dimension along one of the image axes (K = N or K = M).
The notation of Eq. (27) makes it possible to index the vari-
ous elementary frequency components at arbitrary spatial and
frequency coordinates by simple exponentiation:

u + v
M" TN
- jsin[an'(%m+ _I%In):|

This process of space and frequency indexing by exponentiation
greatly simplifies the manipulation of frequency components
and the definition of the DFT. Indeed, it is possible to develop
frequency-domain concepts and frequency transforms without
the use of complex numbers (and in fact some of these, such as
the discrete cosine transform, or DCT, are widely used, especially
in image/video compression; see Chapters 5.5, 5.6, 6.4, and 6.5
of this Handbook).

For the purpose of analysis and basic theory, it is much simpler
to use Wy" and WY" to represent finite-extent (of dimensions

Wa" WY = cos [211'(

(28)
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M and N) frequency components oscillating at # (cycles/image)
and v (cycles/image) in the m and »n directions, respectively.
Clearly,

Wy WYl =1 (29)

and

LWEm W = —27\'( (30)

oY
—m+ —n).
M N
Observe that the minimum physical frequency of W/ periodi-
cally occurs at the indices u = kM for all integers k
Wit =1 (31)
for any integer m; the minimum oscillation is no oscillation. If
M is even, the maximum physical frequency periodically occurs
at the indices u = kM + M/2:

—jTm

=le = (~-1", (32)

W$M+M/z)m
which is the discrete period-2 (alternating) function, the highest
possible discrete oscillation frequency.

The two-dimensional DFT of the finite-extent (M x N') image
f is given by

M—1 N-1

DN flm mywimwyr

m=0 n=0

ﬁ(u, V) = (33)

for integer frequencies 0 < u < M —1,0 < v < N — 1. Hence,
the DFT is also of finite extent M X N, and can be expressed as
a (generally complex-valued) matrix F = [f’(u, v); 0 < u<
M —1,0 < v < N — 1]. It has a unique inverse discrete Fourier
transform, or IDFT"

W um W—vn (34)

i 2 3

u=0 v=0

flm, n) =

for0 <m<M-—1,0 <n< N—1 WhenEgs. (33) and (34)
hold, it is often denoted f PLIN E, and we say that f, F form a DFT
pair.

A number of observations regarding the DFT and its rela-
tionship to the DSFT are necessary. First, the DFT and IDFT
are symmetrical, since both forward and inverse transforms are
defined as sums. In fact they have the same form, except for the
polarity of the exponents and a scaling factor. Secondly, both
forward and inverse transforms are finite sums; both F and f can
be represented uniquely as finite weighted sums of finite-extent
complex exponentials with integer-indexed frequencies. Thus,
for example, any 256 x 256 digital image can be expressed as the
weighted sum of 256° = 65,536 complex exponential (sinusoid)
functions, including those with real parts shown in Fig. 1. Note
that the frequencies (u, v) are scaled so that their units are in
cycles/image, as in Eq. (6) and Fig. 1.
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Most importantly, the DFT has a direct relationship to the
DSFT. In fact, the DFT of an M x N image f is a uniformly
sampled version of the DSFT of f:

Fu,v) = F(U, V)]s yo (35)
for integer frequency indices 0 < u < M—1,0<v < N—1.
Since f is of finite extent and contains MN elements, the DFT
F is conservative in that it also requires only MN elements to
contain complete information about f (to be exactly invertible).
Also, since F is simply evenly spaced samples of F, many of
the properties of the DSFT translate directly with little or no
modification to the DFT.

4.1 Linearity and Invertibility of DFT

The DFT is linear in the sense of formula (12). It is uniquely
invertible, as can be established by substituting Eq. (33) into
Eq. (34), reversing the order of summation, and using the fact
that the discrete complex exponentials are also orthogonal:

M~—1 N-—-1
DD (Wi Wi ) (Wi W)
u=0 v=0
_ JMN m=p, n=4q (36)
0; otherwise

The DFT matrix F is generally complex; hence it has an asso-
ciated magnitude spectrum matrix, denoted

[Fl={|Fu,»0<u<M-1,0<v<N~1], (37)
and phase spectrum matrix, denoted
ZF:[Zﬁ(u,v);OEu_<_M—1,0§v§N—l]. (38)

The elements of |F| and /F are computed in the same way as the
DSFT magnitude and phase of Egs. (16)—(19).

4.2 Symmetry of DFT

Like the DSFT, if fis real valued, then the DFT matrix is conjugate
symmetric, but in the matrix sense:
F(u,v)=F*(M—u, N=v) (39)
for0 < u < M—1,0 < v < N — 1. This follows easily
by substitution of the reversed and translated frequency indices
(M — u, N — v) into forward DFT Eq. (33). An apparent reper-
cussion of Eq. (39) is that the DFT F matrix is redundant and
hence can represent the M x N image with only approximately
MN/2 DFT coefficients. This mystery is resolved by realizing
that E is complex valued and hence requires twice the storage

for real and imaginary components. If f is not real valued, then
Eq. (39) does not hold.

Handbook of Image and Video Processing

Of course, Eq. (39) implies symmetries of the magnitude and
phase spectra:

|F(u, v)| = |F(M — u, N —v)]| (40)

and

LE(v) = —LF(M—u, N—v) (41)

for0<u<M-1,0<v<N-—1.

4.3 Periodicity of DFT

Another property of the DSFT that carries over to the DFT is
frequency periodicity. Recall that the DSFT F (U, V) has unit
period in U and V. The DFT matrix F was defined to be of
finite extent M x N. However, forward DFT Eq. (33) admits the
possibility of evaluating F (1, v) outside of the range 0 < u <
M—1,0 <v < N— 1.1t turns out that F (s, v) is period- M
and period-N along the u and v dimensions, respectively. For
any integers k, 1,

Fu+kM,v+IN) = F(u,v) (42)

for every 0<u< M—1,0<v < N—1. This follows easily by
substitution of the periodically extended frequency indices
(u+ kM, v + IN) into forward DFT Eq. (33). Interpretation
(42) of the DFT is called the periodic extension of the DFT. It is
defined for all integer frequencies u, v.

Although many properties of the DFT are the same, or similar
to those of the DSFT, certain important properties are different.
These effects arise from sampling the DSFT to create the DFT.

4.4 Image Periodicity Implied by DFT

A seemingly innocuous yet extremely important consequence of
sampling the DSFT is that the resulting DFT equations imply
that the image f is itself periodic. In fact, IDFT Eq. (34) implies
that for any integers k, /,

flm+ kM, n+IN)= f(m, n) (43)

for every 0 <m < M — 1,0 < n < N — 1. This follows easily
by substitution of the periodically extended space indices (m +
kM, n + IN) into inverse DFT Eq. (34).

Clearly, finite-extent digital images arise from imaging the
real world through finite field-of-view (FOV) devices, such as
cameras, and outside that FOV, the world does not repeat itself
periodically, ad infinitum. The implied periodicity of f is purely
a synthetic effect that derives from sampling the DSFT. Never-
theless, it is of paramount importance, since any algorithm that
is developed, and that uses the DFT, will operate as though the
DFT-transformed image were spatially periodic in the sense of
Eq. (43). One important property and application of the DFT
that is effected by this spatial periodicity is the frequency-domain
convolution property.
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4.5 Cyclic Convolution Property of the DFT

One of this most significant properties of the DSFT is the linear
convolution property, Egs. (25) and (26), which says that space-
domain convolution corresponds to frequency-domain multi-
plication:

frhS FH (44)

This useful property makes it possible to analyze and design
linear convolution-based systems in the frequency domain. Un-
fortunately, property (44) does not hold for the DFT; a product
of DFTs does not correspond (inverse transform) to the lin-
ear convolution of the original DFT-transformed functions or
images. However, it does correspond to another type of convolu-
tion, variously known as cyclic convolution, circular convolution,
or wraparound convolution.

We will demonstrate the form of the cyclic convolution by

. . . . DFT =
deriving it. Consider the two M x N image functions f «— F
DFT . .
and h «<— H. Define the pointwise matrix product!

G=Fon (45)

according to
G(u, v) = F(u, VWH(u, v) (46)

for0 < u< M-—1,0 <v < N — 1. Thus we are interested in
the form of g. Foreach0 < m < M—1,0 <n < N—1,we
have that

1 M-I N-1 "
g(m, n) = — G(u, v) Wy, W™
MN u=0 v=0
1 M-1 Nz—l ~
— F (u’ V) ‘/VA\;HM vv;\—rvn
MN u=0 v=0
1 lN 1 {M—1N-1
= f(p, Wy Wit
u v=0 | p=0 q=0

M—1N-1
J—Hr Vs —um —va
X [ h(r, s) Wy " Wy } Wy Wy

r=0 s=0

(47)

by substitution of the definitions of F(u, v) and H(u, v). Rear-
ranging the order of the summations to collect all of the complex
exponentials inside the innermost summation reveals that

M—1 N-1 M—1 N-1

2 2 f(p D Y D k)

y—o q=0 r=0 s=0
—1 N-1

u(p+r—m) ¢ v(g+s—n)
303w

u=0 v=0

gim, n) =

(48)

! As opposed to the standard matrix product.
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Now, from Eq. (36), the innermost summation
M—1N—
Z Z W\I:I(err—m) WK,(q+s—n)
u=0 v=| '
MN; r=m—p, s=n—q
N {0; otherwise (49)
hence
M—1 N—1
glmmy ="y f(p, Dhl(m— p)a (n— ] (50)
p=0 g=0
= f(m, n)@h(m, n) = h(m, n) ® f(m,n) (51)

where (x)y = x mod N and the symbol @ denotes the two-
dimensional cyclic convolution.? The final step of obtaining
Eq. (50) from Eq. (49) follows since the argument of the shifted
and twice-reversed (along each axis) function #(m — p, n — q)
finds no meaning whenever (m — p)¢{0,...,M — 1} or
(n—q) ¢ {0, ..., N— 1}, since h is undefined outside of those
coordinates. However, because the DFT was used to compute
g(m, n), then the periodic extension of h(m — p, n — g) is im-
plied, which can be expressed as h[(m — p)y, (n — q) n]. Hence
Eq. (50) follows. That & is commutative is easily established by
a substitution of variables in Eq. (50). It can also be seen that
cyclic convolution is a form of linear convolution, but with one
(either, but not both) of the two functions being periodically
extended. Hence

f(m, n) ® h(m, n) = f(m, n) « h[(m) m, (M) N]

= fl(m)u, (MN] * h(m, n).  (52)

This cyclic convolution property of the DFT is unfortunate,
since in the majority of applications it is not desired to compute
the cyclic convolution of two image functions. Instead, what is
frequently desired is the linear convolution of two functions, asin
the case of linear filtering. In both linear and cyclic convolution,
the two functions are superimposed, with one function reversed
along both axes and shifted to the point at which the convolution
is being computed. The product of the functions is computed at
every point of overlap, with the sum of products being the con-
volution. In the case of the cyclic convolution, one (not both) of
the functions is periodically extended, hence the overlap is much
larger and wraps around the image boundaries. This produces
a significant error with respect to the correct linear convolution
result. This error is called spatial aliasing, since the wraparound
error contributes false information to the convolution sum.

Figure 3 depicts the linear and cyclic convolutions of two hy-
pothetical M x N images f and h at a point (1, ny). From the
figure, it can be seen that the wraparound error can overwhelm

2Modular arithmetic is remaindering. Hence (x) v is the integer remainder of

(x/N).
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0,0) image f 0,0) image h
_ 9(mg, m)
(a)
0,0)
0. 70)
(b)
0,0
(o, 1o)

(¢}

FIGURE 3 Convolution of two images. (a) Images f and h. (b) Linear convolu-
tion result at (myg, np) is computed as the sum of products where f and h overlap.
(¢) Cyclic convolution result at (my, np) is computed as the sum of products
where f and the periodically extended h overlap.

the linear convolution contribution. Note in Fig. 3(b) that al-
though linear convolution sum (25) extends over the indices
0<m=< M—1and0 < n < N— 1, the overlap is restricted to
the indices.

4.6 Linear Convolution by Using the DFT

Fortunately, it turns out that it is possible to compute the lin-
ear convolution of two arbitrary finite-extent two-dimensional
discrete-space functions or images by using the DFT. The process
requires modifying the functions to be convolved prior to taking
the product of their DFTs. The modification acts to cancel the
effects of spatial aliasing. Suppose more generally that f and h
are two arbitrary finite-extent images of dimensions M x N and
P x Q, respectively. We are interested in computing the linear
convolution g = f*h using the DFT. We assume the general case
where the images, f, h do not have the same dimensions, since
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in most applications an image is convolved with a filter function
of different (usually much smaller) extent.
Clearly,

g(m, n) = f(m, n) x h(m, n)
M—1N—1

=33 f(p.him—p,n—q).

p=0 4=0

(53)

Inverting the pointwise products of the DFTs F ® H will not
lead to Eq. (53), since wraparound error will occur. To cancel
the wraparound error, the functions f and h are modified by
increasing their size by zero padding them. Zero padding means
that the arrays f and h are expanded into larger arrays, denoted f
and h, by filling the empty spaces with zeros. To compute the lin-
ear convolution, the pointwise product G =F®H of the DFTs of
the zero-padded functions f and h is computed. The inverse
DFT g of G then contains the correct linear convolution
result.

The question remains as to how many zeros are used to pad
the functions f and h. The answer to this lies in understand-
ing how zero padding works and how large the linear convo-
lution result should be. Zero padding acts to cancel the spa-
tial aliasing error (wraparound) of the DFT by supplying zeros
where the wraparound products occur. Hence the wraparound
products are all zero and contribute nothing to the convolu-
tion sum. This leaves only the linear convolution contribution
to the result. To understand how many zeros are needed, one
must realize that the resulting product DFT G corresponds to
a periodic function g. If the horizontal or vertical periods are
too small (not enough zero padding), the periodic replicas will
overlap (spatial aliasing). If the periods are just large enough,
then the periodic replicas will be contiguous instead of overlap-
ping; hence spatial aliasing will be canceled. Padding with more
zeros than this results in excess computation. Figure 4 depicts
the successful result of zero padding to eliminate wraparound
error.

The correct period lengths are equal to the lengths of the
correct linear convolution result. The linear convolution result
of two arbitrary M x Nand P x Qimage functions will generally
be (M+ P — 1) X (N+ Q — 1), hence we would like the DFT
G to have these dimensions. Therefore, the M x N function f
and the P x Q function h must both be zero padded to size
(M+ P —1) x (N+ Q —1). This yields the correct linear
convolution result:

g=f® h=rh (54)
In most cases, linear convolution is performed between an
image and a filter function much smaller than the image:
M > P and N>» Q. In such cases the result is not much larger
than the image, and often only the M x N portion indexed
0<m<M—1,0<n< N — lisretained. The reasoning behind
this is first, that it may be desirable to retain images of size MN
only, and second, that the linear convolution result beyond the
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FIGURE 4 Linear convolution of the same two images as Fig. 2 by zero
padding and cyclic convolution (via the DFT). (a) Zero-padded images f and h;
(b) Cyclic convolution at (myg, ng) computed as the sum of products where f
and the periodically extended h overlap. These products are zero except over the
range0 < p<mpand0 < g < ng.

borders of the original image may be of little interest, since the
original image was zero there anyway.

4.7 Computation of the DFT

Inspection of the DFT, relation (33) reveals that computation
of each of the MN DFT coefficients requires on the order
of MN complex multiplies/additions. Hence, of the order of
M?N? complex multiplies and additions are needed to com-
pute the overall DFT of an M x N image f. For example, if
M= N = 512, then of the order of 2°¢ =6.9 x 10'° complex
multiplies/additions are needed, which is a very large number.
Of course, these numbers assume a naive implementation with-
out any optimization. Fortunately, fast algorithms for DFT com-
putation, collectively referred to as fast Fourier transform (FFT)
algorithms, have been intensively studied for many years. We
will not delve into the design of these, since it goes beyond what
we want to accomplish in a Handbook and also since they are
available in any image processing programming library or de-
velopment environment (Chapter 4.13 reviews these) and most
math library programs.
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The FFT offers a computational complexity of order not
exceeding MN log,(MN), which represents a considerable
speedup. For example, if M= N =512, then the complexity is
of the order of 9 x 2!° = 4.7 x 10°. This represents a very typical
speedup of more than 14,500:1!

Analysis of the complexity of cyclic convolution is similar. If
two images of the same size M x N are convolved, then again,
the naive complexity is on the order of M2 N? complex multi-
plies and additions. If the DFT of each image is computed, the
resulting DFT's pointwise multiplied, and the inverse DFT of this
product calculated, then the overall complexity is of the order
of MN log,(2M?> N?). For the common case M= N=512, the
speedup still exceeds 4700:1.

If linear convolution is computed with the DFT, the compu-
tation is increased somewhat since the images are increased in
size by zero padding. Hence the speedup of DFT-based linear
convolution is somewhat reduced (although in a fixed hardware
realization, the known existence of these zeros can be used to
effect a speedup). However, if the functions being linearly con-
volved are both not small, then the DFT approach will always
be faster. If one of the functions is very small, say covering fewer
than 32 samples (such as a small linear filter template), then it
is possible that direct space-domain computation of the linear
convolution may be faster than DFT-based computation. How-
ever, there is no strict rule of thumb to determine this lower
cutoff size, since it depends on the filter shape, the algorithms
used to compute DFTs and convolutions, any special-purpose
hardware, and so on.

4.8 Displaying the DFT

It is often of interest to visualize the DFT of an image. This is
possible since the DFT is a sampled function of finite (periodic)
extent. Displaying one period of the DFT of image f reveals a pic-
ture of the frequency content of the image. Since the DFT is com-
plex, one can display either the magnitude spectrum |F| or the
phase spectrum /F as a single two-dimensional intensity image.

However, the phase spectrum /F is usually not visually re-
vealing when displayed. Generally it appears quite random, and
so usually the magnitude spectrum |E| only is absorbed visually.
This is not intended to imply that image phase information is
not important; in fact, it is exquisitely important, since it deter-
mines the relative shifts of the component complex exponen-
tial functions that make up the DFT decomposition. Modifying
or ignoring image phase will destroy the delicate constructive-
destructive interference pattern of the sinusoids that make up
the image.

As briefly noted in Chapter 2.1, displays of the Fourier trans-
form magnitude will tend to be visually dominated by the low-
frequency and zero-frequency coefficients, often to such an ex-
tent that the DFT magnitude appears as a single spot. This is
highly undesirable, since most of the interesting information
usually occurs at frequencies away from the lowest frequencies.
An effective way to bring out the higher-frequency coefficients
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FIGURE 5 Distribution of high- and low-frequency DFT coefficients.

for visual display is by means of a point logarithmic operation:
instead of displaying |F|, display

log,[1 + | E(, V] (55)

for0<u<M—1,0<v <N — 1. This has the effect of com-
pressing all of the DFT magnitudes, but larger magnitudes much
more so. Of course, since all of the logarithmic magnitudes will
be quite small, a full-scale histogram stretch should then be ap-
plied to fill the gray-scale range.

Another consideration when displaying the DFT of a discrete-
space image is illustrated in Fig. 5. In the DFT formulation, a
single M x N period of the DFT is sufficient to represent the im-
age information, and also for display. However, the DFT matrix
is even symmetric across both diagonals. More importantly, the
center of symmetry occurs in the image center, where the high-
frequency coefficients are clustered near (u, v) = (M/2, N/2).
This is contrary to conventional intuition, since in most en-
gineering applications, Fourier transform magnitudes are dis-
played with zero and low-frequency coefficients at the center.
This is particularly true of one-dimensional continuous Fourier
transform magnitudes, which are plotted as graphs with the zero
frequency at the origin. This is also visually convenient, since
the dominant lower frequency coefficients then are clustered to-
gether at the center, instead of being scattered about the display.

A natural way of remedying this is to instead display the shifted
DFT magnitude

|F(u— M/2,v— N/2)| (56)
for0 <u< M—1,0<v < N — 1. This can be accomplished
in a simple way by taking the DFT of

(=)™ f(m, n) &> E(u— M/2, v — N/2). (57)
Relation (57) follows since (—1)"t" = ¢J™0m+m. hence from

translation property (23) the DSFT is shifted by amount 1/2
cycles/pixel along both dimensions; since the DFT uses the scaled
frequencies of Eq. (6), the DFT is shifted by M/2 and N/2
cycles/image in the # and v directions, respectively.

Figure 6 illustrates the display of the DFT of the image “fin-
gerprint” image, which is Fig. 8 of Chapter 1.1. As can be seen,
the DFT phase is visually unrevealing, while the DFT magnitude
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is most visually revealing when it is centered and logarithmically
compressed.

5 Understanding Image Frequencies
and the DFT

It is sometimes easy to lose track of the meaning of the DFT and
of the frequency content of an image in all of the (necessary!)
mathematics. When using the DFT, it is important to remember
that the DFT is a detailed map of the frequency content of the im-
age, which can be visually digested as well as digitally processed.
It is a useful exercise to examine the DFT of images, particularly
the DFT magnitudes, since it reveals much about the distribution
and meaning of image frequencies. It is also useful to consider
what happens when the image frequencies are modified in cer-
tain simple ways, since this reveals further insights into spatial
frequencies, and it also moves toward understanding how im-
age frequencies can be systematically modified to produce useful
results.

In the following paragraphs we will present and discuss a
number of interesting digital images along with their DFT mag-
nitudes represented as intensity images. When examining these,
recall that bright regions in the DFT magnitude “image” cor-
respond to frequencies that have large magnitudes in the real
image. Also, in some cases, the DFT magnitudes have been loga-
rithmically compressed and centered by means of relations (55)
and (57), respectively, for improved visual interpretation.

Most engineers and scientists are introduced to Fourier do-
main concepts in a one-dimensional setting. One-dimensional
signal frequencies have a single attribute —that of being ei-
ther high or low frequency. Two-dimensional (and higher-
dimensional) signal frequencies have richer descriptions charac-
terized by both magnitude and direction,® which Jend themselves
well to visualization. We will seek intuition into these attributes
as we separately consider the granularity of image frequencies,
corresponding to the radial frequency of Eq. (2), and the ori-
entation of image frequencies, corresponding to the frequency
angle of Eq. (3).

5.1 Frequency Granularity

The granularity of an image frequency refers to its radial fre-
quency. Granularity describes the appearance of an image that
is strongly characterized by the radial frequency portrait of the
DFT. An abundance of large coefficients near the DFT origin
corresponds to the existence large, smooth, image components,
often of smooth image surfaces or background. Note that nearly
every image will have a significant peak at the DFT origin (unless
itis very dark), since from Eq. (33) it is the summed intensity of

3Strictly speaking, one-dimensional frequencies can be positive or negative
going. This polarity may be regarded as a directional attribute, without much
meaning for real-valued one-dimensional signals.



2.3 Basic Tools for Image Fourier Analysis

(a)
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(c)

(d)

FIGURE 6 Display of DFT of the image “fingerprint” from Chapter 1.1. (a) DFT magnitude (logarithmically compressed
and histogram stretched); (b) DFT phase; (¢) Centered DFT (logarithmically compressed and histogram stretched);

(d) Centered DFT (without logarithmic compression).

the image (integrated optical density):
B M—1N-1
FO,0=)_Y" f(mn.
m=0 n=0
The image “fingerprint” (Fig. 8 of Chapter 1.1) with the DFT
magnitude shown in Fig. 6(c) just above is an excellent example
of image granularity. The image contains relatively little low-
frequency or very high-frequency energy, but does contain an
abundance of midfrequency energy, as can be seen in the sym-
metrically placed half-arcs above and below the frequency origin.
The “fingerprint” image is a good example of an image that is
primarily bandpass.

(58)

Figure 7 depicts the image “peppers” and its DFT magnitude.
The image contains primarily smooth intensity surfaces sepa-
rated by abrupt intensity changes. The smooth surfaces con-
tribute to the heavy distribution of low-frequency DFT coef-
ficients, while the intensity transitions (“edges”) contribute a
noticeable amount of midfrequencies to higher frequencies over
a broad range of orientations.

Finally, Fig. 8, the image “cane,” depicts an image of a repeti-
tive weave pattern that exhibits a number of repetitive peaks in
the DFT magnitude image. These are harmonics that naturally
appear in signals (such as music signals) or images that contain
periodic or nearly periodic structures.
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FIGURE 7
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Image of peppers (left) and its DFT magnitude (right).

FIGURE 8

As an experiment toward understanding frequency content,
suppose that we define several zero—one image frequency masks,
as depicted in Fig. 9. By masking (multiplying) the DFT F of
an image f with each of these, one will produce, following an
inverse DFT, a resulting image containing only low, middle, or
high frequencies. In the following, we show examples of this op-
eration. The astute reader may have observed that the zero—one

low-frequency
mask

FIGURE 9 Image radial frequency masks. Black pixels take value 1, and white
pixels take value 0.

mid-frequency
mask

high-frequency
mask

Image cane (left) and its DFT magnitude (right).

frequency masks, which are defined in the DFT domain, may be
regarded as DFTs with IDFTs defined in the space domain. Since
we are taking the products of functions in the DFT domain, it
has the interpretation of cyclic convolution of Egs. (46)—(51)
in the space domain. Therefore the following examples should
not be thought of as low-pass, bandpass, or high-pass linear
filtering operations in the proper sense. Instead, these are in-
structive examples in which image frequencies are being directly
removed. The approach is not a substitute for a proper linear
filtering of the image by using a space-domain filter that has
been DFT transformed with proper zero padding. In particular,
the naive demonstration here does dictate how the frequencies
between the DFT frequencies (frequency samples) are effected,
as a properly designed linear filter does.

In all of the examples, the image DFT was computed, multi-
plied by a zero—one frequency mask, and inverse discrete Fourier
transformed. Finally, a full-scale histogram stretch was applied
to map the result to the gray-level range (0, 255), since otherwise
the resulting image is not guaranteed to be positive.
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FIGURE 10

In the first example, shown in Fig. 10, the image “fingerprint”
is shown following treatment with the low-frequency mask and
the midfrequency mask. The low-frequency result looks much
blurred, and there is an apparent loss of information. However,
the midfrequency result seems to enhance and isolate much of
the interesting ridge information about the fingerprint.

In the second example (Fig. 11), the image “peppers” was
treated with the midfrequency DFT mask and the high-frequency
DFT mask. The midfrequency image is visually quite interesting
since it is apparent that the sharp intensity changes were signifi-
cantly enhanced. A similar effect was produced with the higher-
frequency mask, but with greater emphasis on sharp details.

5.2 Frequency Orientation

The orientation of an image frequency refers to its angle. The
term orientation applied to an image or image component de-
scribes those aspects of the image that contribute to an appear-

FIGURE 11
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Image of fingerprint processed with the (left) low-frequency and the (right) midfrequency DFT masks.

ance that is strongly characterized by the frequency orientation
portrait of the DFT. If the DFT is brighter along a specific ori-
entation, then the image contains highly oriented components
along that direction.

The image of the fingerprint, with DFT magnitude in Fig. 6(c),
is also an excellent example of image orientation. The DFT con-
tains significant midfrequency energy between the approximate
orientations 45—135° from the horizontal axis. This corresponds
perfectly to the orientations of the ridge patterns in the finger-
print image.

Figure 12 shows the image “planks,” which contains a strong
directional component. This manifests as a very strong extended
peak extending from lower left to upper right in the DFT magni-
tude. Figure 13 (“escher”) exhibits several such extended peaks,
corresponding to strongly oriented structures in the horizontal
and slightly off-diagonal directions.

Again, an instructive experiment can be developed by defining
zero—one image frequency masks, this time tuned to different

Image of peppers processed with the (left) midfrequency and the (right) high-frequency DFT masks.
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FIGURE 12

FIGURE 13

orientation frequency bands instead of radial frequency bands.
Several such oriented frequency masks are depicted in Fig. 14A.

As a first example, the DFT of the image “planks” was modi-
fied by two orientation masks. In Figure 14B (left), an orientation
mask that allows the frequencies in the range 40—50° only (as well
as the symmetrically placed frequencies 220-230°) was applied.
This was designed to capture the bright ridge of DFT coefficients
easily seen in Fig. 12. As can be seen, the strong oriented informa-

FIGURE 14A Examples of image frequency orientation masks.

Image of planks (left) and DFT magnitude (right).

Image of escher (left) and DFT magnitude (right).

tion describing the cracks in the planks and some of the oriented
grain is all that remains. Possibly, this information could be used
by some automated process. Then, in Fig. 14B (right), the fre-
quencies in the much larger ranges 50-220° (and —130—40°)
were admitted. These are the complementary frequencies to the
first range chosen, and they contain all the other information
other than the strongly oriented component. As can be seen,
this residual image contains little oriented structure.

As a first example, the DFT of the image “escher” was also
modified by two orientation masks. In Fig. 15 (left), an orien-
tation mask that allows the frequencies in the range —25-25°
(and 155-205°) only was applied. This captured the strong hori-
zontal frequency ridge in the image, corresponding primarily to
the strong vertical (building) structures. Then, in Fig. 15 (right),
frequencies in the vertically oriented ranges 45-135° (and 225
315°) were admitted. This time completely different structures
were highlighted, including the diagonal waterways, the back-
ground steps, and the paddlewheel.
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FIGURE 14B
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Image of planks processed with oriented DFT masks that allow frequencies in the range (measured

from the horizontal axis) of (left) 40-50° (and 220-230°), and (right) 50-220° (and —130-40°).

6 Related Topics in this Handbook

The Fourier transform is one of the most basic tools for im-
age processing, or for that matter, the processing of any kind
of signal. It appears throughout this Handbook in various
contexts.

One topic that was not touched on in this basic chapter
is the frequency-domain analysis of sampling continuous im-
ages/video to create discrete-space images/video. Understanding
the relationship between the DSFT and the DFT (spectrum of
digital image signals) and the continuous Fourier transform of
the original, unsampled image is basic to understanding the in-
formation content, and possible losses of information, in digital
images. These topics are ably handled in Chapters 7.1 and 7.2 of
this Handbook. Sampling issues were not covered in this chapter,
since it was felt that most users deal with digital images that have
been already created. Hence, the emphasis is on the immedi-

FIGURE 15

ate processing, and sampling issues are offered as a background
understanding.

Fourier domain concepts and linear convolution pervade
most of the chapters in Section 3 of the Handbook, since linear fil-
tering, restoration, enhancement, and reconstruction all depend
on these concepts. Most of the mathematical models for images
and video in Section 4 of the Handbook have strong connections
to Fourier analysis, especially the wavelet models, which extend
the ideas of Fourier techniques in very powerful ways. Extended
frequency-domain concepts are also heavily utilized in Sections 5
and 6 (image and video compression) of the Handbook, although
the transforms used differ somewhat from the DFT.
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1 Introduction

Linear system theory and linear filtering play a central role in
digital image and video processing. Many of the most potent
techniques for modifying, improving, or representing digital vi-
sual data are expressed in terms of linear systems concepts. Lin-
ear filters are used for generic tasks such as image/video contrast
improvement, denoising, and sharpening, as well as for more
object- or feature-specific tasks such as target matching and fea-
ture enhancement.

Much of this Handbook deals with the application of linear
filters to image and video enhancement, restoration, reconstruc-
tion, detection, segmentation, compression, and transmission.
The goal of this chapter is to introduce some of the basic sup-
porting ideas of linear systems theory as they apply to digital
image filtering, and to outline some of the applications. Special
emphasis is given to the topic of linear image enhancement.

We will require some basic concepts and definitions in order
to proceed. The basic two-dimensional discrete-space signal is
the two-dimensional impulse function, defined by

1, m=pandn=gqg

d(m—p,n—gq)= {0, otherwise &

Thus, Eq. (1) takes unit value at coordinate (p, g) and is every-
where else zero. The function in Eq. (1) is often termed the
Kronecker delta function or the unit sample sequence [1]. It plays
the same role and has the same significance as the so-called

Copyright © 2600 by Academic Press.
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Dirac delta function of continuous system theory. Specifically, the
response of linear systems to Eq. (1) will be used to characterize
the general responses of such systems.

Any discrete-space image f may be expressed in terms of the
impulse function in Eq. (1):

3

oC

flm,n) = > flm—p,n—q)d(p, q)
p=—00g=-00
= > f(pe¥m-pn-g. (2
p=—00q=—0C

Expression (2), called the sifting property, has two meaning-
ful interpretations here. First, any discrete-space image can be
written as a sum of weighted, shifted unit impulses. Each
weighted impulse comprises one of the pixels of the image. Sec-
ond, the sum in Eq. (2) is in fact a discrete-space linear convolu-
tion. As is apparent, the linear convolution of any image f with
the impulse function 8 returns the function unchanged.

The impulse function effectively describes certain systems
known as linear space-invariant systems. We explain these terms
next.

A two-dimensional system L is a process of image transfor-
mation, as shown in Fig. 1.

We can write

g(m> n) =L[f(m) n)] (3)

The system L is linear if and only if for any fi(m, n), f2(m, n)

71
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FIGURE 1 Two-dimensional input—output system.

such that

gi(m, n) = L[ fi(m, n)}, g2(m, n) =L /h(m, m)] (4)

and any two constants a, b, then

agi(m, n) + bgy(m, n) =Llafi(m, n) +bfr(m, m)]  (5)

for every (m, n). This is often called the superposition property
of linear systems.

The system L is shift invariant if for every f(m, n) such that
Eq. (3) holds, then also

gm—p,n—q)=L[f(m— p,n—q)] (6)
forany (p, q). Thus, a spatial shift in the input to L produces no
change in the output, except for an identical shift.

The rest of this chapter will be devoted to studying systems that
are linear and shift invariant (LSI). In this and other chapters, it
will be found that LSI systems can be used for many powerful
image and video processing tasks. In yet other chapters, non-
linearity or space variance will be shown to afford certain ad-
vantages, particularly in surmounting the inherent limitations
of LSI systems.

2 Impulse Response, Linear Convolution,
and Frequency Response

The unit impulse response of a two-dimensional input—output
system L is

L[3(m — p, n— @)} = h(m, n; p, q). (7)

This is the response of system L, at spatial position (1, 1), to an
impulse located at spatial position (p, ). Generally, the impulse
response is a function of these four spatial variables. However, if
the system L is space invariant, then if

L[3(m, m)] = h(m, n) (8)

is the response to an impulse applied at the spatial origin, then
also

L[S(m - P) n— 4)] = h(m - P: n— q)> (9)

which means that the response to an impulse applied at any spa-
tial position can be found from the impulse response in Eq. (8).

As already mentioned, the discrete-space impulse response
h(m, n) completely characterizes the input—output response of
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LS] input—output systems. This means that if the impulse re-
sponse is known, then an expression can be found for the
response to any input. The form of the expression is two-
dimensional discrete-space linear convolution.

Consider the generic system L shown in Fig. 1, with input
f(m, n) and output g (i, n). Assume that the response is due to
the input f only (the system would be at rest without the input).
Then, from Eq. (2):

g(m, n) = L[ f(m, n)]

:L[Z Z f(p,q)ﬁ(m—p,n—q)} (10)

p=—0C 4=~20

If the system is known to be linear, then

o0

gmm= Y Y f(p@LBm—p,n—g] (11)

p=—00 g=—00
oC

=, f(p, Dh(m, n; p, q),

p=—00 g=—0c

(12)

which is all that generally can be said without further knowledge
of the system and the input. Ifit is known that the system is space
invariant (hence LSI), then Eq. (12) becomes

gmm =Y > f(p,him—pn—q) (13)

p=—0C g=—00

= f(m, n) x h(m, n), (14)
which is the two-dimensional discrete space linear convolution
of input f with impulse response h.

The linear convolution expresses the output of a wide va-
riety of electrical and mechanical systems. In continuous sys-
tems, the convolution is expressed as an integral. For example,
with lumped electrical circuits, the convolution integral is com-
puted in terms of the passive circuit elements (resistors, induc-
tors, and capacitors). In optical systems, the integral utilizes the
point-spread functions of the optics. The operations occur ef-
fectively instantaneously, with the computational speed limited
only by the speed of the electrons or photons through the system
elements.

However, in discrete signal and image processing systems, the
discrete convolutions are calculated sums of products. This con-
volution can be directly evaluated at each coordinate (i, n) by
a digital processor, or, as discussed in Chapter 2.3, it can be
computed by using the discrete cosine transform (DFT) using a
fast Fourier transform (FFT) algorithm. Of course, if the exact
linear convolution is desired, this means that the involved func-
tions must be appropriately zero padded prior to using the DFT,
as discussed in Chapter 2.3. The DFT/FFT approach is usually,
but not always faster. If an image is being convolved with a very
small spatial filter, then direct computation of Eq. (14) can be
faster.
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Suppose that the input to a discrete LSI system with impulse
response h(m, n) is a complex exponential function:

f(m, n) = ™ UMHVD
= cos[2m(Um+ V)] + jsin[2n(Um+ Vn)]. (15)
Then the system response is the linear convolution
(o8 oo
gmm= Y > h(pg)fim=pn—gq
P=—00 g=—00
o0 oC
— Z Z h(P’ q)eZTrj[U(m—p)+V(n—q)} (16)

p=—00 g=—00

o0 o0
=62'n'j(Um+Vn) Z Z h(P’ q)e—Z'n'j(Up+Vq)’ (17)

p=—00 g=—00

which is exactly the input f(m, n) = 2™ UV myltiplied by
a function of (U, V) only:

o0

Z i h(p, q)e-2ﬂi(UP+Vq)

p=—0C g=—00

= [H(U, V)|e/H 0D,

H(U, V)
(18)

The function H(U, V), which is immediately identified as the
discrete-space Fourier transform (or DSFT, discussed extensively
in Chapter 2.3) of the system impulse response, is called the
frequency response of the system.

From Eq. (17) it may be seen that that the response to any com-
plex exponential sinusoid function, with frequencies (U, V), is
the same sinusoid, but with its amplitude scaled by the system
magnitude response | H(U, V)| evaluated at (U, V) and with a
shift equal to the system phase response LH(U, V) at (U, V).
The complex sinusoids are the unique functions that have this
invariance property in LSI systems.

As mentioned, the impulse response h(m, n) of a LSI system
is sufficient to express the response of the system to any input.!
The frequency response H(U, V) is uniquely obtainable from
the impulse response (and vice versa) and so contains sufficient
information to compute the response to any input that has a
DSFT. In fact, the output can be expressed in terms of the fre-
quency response by G(U, V) = F(U, V)H(U, V) and by the
DFYT/FFT with appropriate zero padding. In fact, throughout
this chapter and elsewhere, it may be assumed that whenever a
DFT is being used to compute linear convolution, the appro-
priate zero padding has been applied to avoid the wrap-around
effect of the cyclic convolution.

IStrictly speaking, for any bounded input, and provided that the system is
stable. In practical image processing systems, the inputs are invariably bounded.
Also, almost all image processing filters do not involve feedback and hence are
naturally stable,

Usually, linear image processing filters are characterized in
terms of their frequency responses, specifically by their spectrum
shaping properties. Coarse common descriptions that apply
to two-dimensional image processing include low-pass, band-
pass, or high-pass. In such cases the frequency response is pri-
marily a function of radial frequency and may even be circu-
larly symmetric, viz., a function of U? + V2 only. In other cases
the filter may be strongly directional or oriented, with response
strongly depending on the frequency angle of the input, Of
course, the terms low pass, bandpass, high pass, and oriented
are only rough qualitative descriptions of a system frequency
response. Each broad class of filters has some generalized appli-
cations. For example, low-pass filters strongly attenuate all but
the “lower” radial image frequencies (as determined by some
bandwidth or cutoff frequency), and so are primarily smooth-
ing filters. They are commonly used to reduce high-frequency
noise, or to eliminate all but coarse image features, or to reduce
the bandwidth of an image prior to transmission through a low-
bandwidth communication channel or before subsampling the
image (see Chapter 7.1).

A (radial frequency) bandpass filter attenuates all but an inter-
mediate range of “middle” radial frequencies. This is commonly
used for the enhancement of certain image features, such as edges
(sudden transitions in intensity) or the ridges in a fingerprint. A
high-pass filter attenuates all but the “higher” radial frequencies,
or commonly, significantly amplifies high frequencies without
attenuating lower frequencies. This approach is often used for
correcting images that have suffered unwanted low-frequency
attenuation (blurring); see Chapter 3.5.

Oriented filters, which either attenuate frequencies falling
outside of a narrow range of orientations, or amplify a nar-
row range of angular frequencies, tend to be more specialized.
For example, it may be desirable to enhance vertical image
features as a prelude to detecting vertical structures, such as
buildings.

Of course, filters may be a combination of types, such as band-
passand oriented. In fact, such filters are the most common types
of basis functions used in the powerful wavelet image decompo-
sitions (Chapters 4.2) that have recently found so many appli-
catjons in image analysis (Chapter 4.4), human visual modeling
(Chapter 4.1), and image and video compression (Chapters 5.4
and 6.2).

In the remainder of this chapter, we introduce the sim-
ple but important application of linear filtering for linear
image enhancement, which specifically means attempting to
smooth image noise while not disturbing the original image
structure.”

2The term “image enhancement” has been widely used in the past to describe
any operation that improves image quality by some criteria. However, in recent
years, the meaning of the term has evolved to denote image-preserving noise
smoothing. This primarily serves to distinguish it from similar-sounding terms,
such as “image restoration” and “image reconstruction,” which also have taken
specific meanings.
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3 Linear Image Enhancement

The term “enhancement” implies a process whereby the visual
quality of the image is improved. However, the term “image en-
hancement” has come to specifically mean a process of smooth-
ing irregularities or noise that has somehow corrupted the image,
while modifying the original image information as little as pos-
sible. The noise is usually modeled as an additive noise or as
a multiplicative noise. We will consider additive noise now. As
noted in Chapter 4.5, multiplicative noise, which is the other
common type, can be converted into additive noise in a homo-
morphic filtering approach.

Before considering methods for image enhancement, we will
make a simple model for additive noise. Chapter 4.5 of this
Handbook greatly elaborates image noise models, which prove
particularly useful for studying image enhancement filters that
are nonlinear.

We will make the practical assumption that an observed noisy
image is of finite extent M X N: f = [f(m, n);0 < m <
M—1,0 < n < N—1]. We model f as a sum of an origi-
nal image o and a noise image q:

f=0+q (19)

where n = (m, n). The additive noise image q models an unde-
sirable, unpredictable corruption of 0. The process q is called a
two-dimensional random process or a random field. Random ad-
ditive noise can occur as thermal circuit noise, communication
channel noise, sensor noise, and so on. Quite commonly, the
noise is present in the image signal before it is sampled, so the
noise is also sampled coincident with the image.

In Eq. (19), both the original image and noise image are un-
known. The goal of enhancement is to recover an image g that
resembles o0 as closely as possible by reducing q. If there is an
adequate model for the noise, then the problem of finding g can
be posed as an image estimation problem, where g is found as
the solution to a statistical optimization problem. Basic meth-
ods for image estimation are also discussed in Chapter 4.5, and
in some of the following chapters on image enhancement using
nonlinear filters.

With the tools of Fourier analysis and linear convolution in
hand, we will now outline the basic approach of image enhance-
ment by linear filtering. More often than not, the detailed statis-
tics of the noise process q are unknown. In such cases, a simple
linear filter approach can yield acceptable results, if the noise
satisfies certain simple assumptions.

We will assume a zero-mean additive white noise model. The
zero-mean model is used in Chapter 2.1, in the context of frame
averaging. The process q is zero mean if the average or sample
mean of R arbitrary noise samples

1 R
(E) Z Q(mr) n,) = 0
r=I

(20)
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as R growslarge (provided that the noise process is mean ergodic,
which means that the sample mean approaches the statistical
mean for large samples).

The term white noise is an idealized model for noise that has,
on the average, a broad spectrum. It is a simplified model for
wideband noise. More precisely, if Q(U, V) is the DSFT of the
noise process g, then Q is also a random process. It is called the
energy spectrum of the random process q. If the noise process is
white, then the average squared magnitude of Q(U, V) is con-
stant over all frequencies in the range [—, 7). In the ensemble
sense, this means that the sample average of the magnitude spec-
tra of R noise images generated from the same source becomes
constant for large R:

(21)

1 R
<§) > 1QU, M > m
r=1

forall (U, V) as R grows large. The squarem? of the constant level
is called the noise power. Since q has finite extent M x N, ithasa
DFTQ = [Q(u, v): 0<u< M-—1,0<v=< N—1]. Onaverage,
the magnitude of the noise DFT Q will also be flat. Of course, it is
highly unlikely that a given noise DSFT or DFT will actually have
a flat magnitude spectrum. However, it is an effective simplified
model for unknown, unpredictable broadband noise.

Images are also generally thought of as relatively broadband
signals. Significant visual information may reside at mid-to-high
spatial frequencies, since visually significant image details such
as edges, lines, and textures typically contain higher frequencies.
However, the magnitude spectrum of the image at higher im-
age frequencies is usually low; most of the image power resides
in the low frequencies contributed by the dominant luminance
effects. Nevertheless, the higher image frequencies are visually
significant.

The basic approach to linear image enhancement is low-pass
filtering. There are different types of low-pass filters that can
be used; several will be studied in the following. For a given
filter type, different degrees of smoothing can be obtained by
adjusting the filter bandwidth. A narrower bandwidth low-pass
filter will reject more of the high-frequency content of a white
or broadband noise, but it may also degrade the image content
by attenuating important high-frequency image details. This is
a tradeoff that is difficult to balance.

Next we describe and compare several smoothing low-pass
filters that are commonly used for linear image enhancement.

3.1 Moving Average Filter

The moving average filter can be described in several equivalent
ways. First, with the use of the notion of windowing introduced
in Chapter 2.2, the moving average can be defined as an algebraic
operation performed on local image neighborhoods according
to a geometric law defined by the window. Given an image f to be
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filtered and a window B that collects gray-level pixels according
to a geometric rule (defined by the window shape), then the
moving average-filtered image g is given by
g(n) = AVE[B f(n)]. (22)
where the operation AVE computes the sample average of its
arguments. Thus, the local average is computed over each
local neighborhood of the image, producing a powerful smooth-
ing effect. The windows are usually selected to be symmetric,
as with those used for binary morphological image filtering
(Chapter 2.2).
Since the average is a linear operation, it is also true that
g(n) = AVE[Bo(n)] + AVE[Bg(n)]. (23)
Because the noise process q is assumed to be zero mean in the
sense of Eq. (20), then the last term in Eq. (23) will tend to zero
as the filter window is increased. Thus, the moving average fil-
ter has the desirable effect of reducing zero-mean image noise
toward zero. However, the filter also affects the original image
information. It is desirable that AVE[Bo(n)] & o(n) at each n,
but this will not be the case everywhere in the image if the filter
window is too large. The moving average filter, which is low pass,
will blur the image, especially as the window span is increased.
Balancing this tradeoff is often a difficult task.

The moving average filter operation, Eq. (22), is actually a
linear convolution. In fact, the impulse response of the filter is
defined as having value 1/ R over the span covered by the window
when centered at the spatial origin (0, 0), and zero elsewhere,
where R is the number of elements in the window.

For example, if the window is SQUARE [(2 P + 1)?], which is
the most common configuration (it is defined in Chapter 2.2},
then the average filter impulse response is given by

1/(2P + 1),
0, otherwise

—P<mn<?P

h(m, n) = { (24)

The frequency response of the moving average filter, Eq. (24),
is

sin[2QP + 1)wU] sin[(2P + )w V]

H(U, V) = QP+ Dsin(mU) CP + Dsin(m V)

(25)

The half-peak bandwidth is often used for image processing fil-
ters. The half-peak (or 3 dB) cutoff frequencies occur on the
locus of points (U, V) where | H(U, V)| falls to 1/2. For filter
(25), this locus intersects the U axis and V axis at the cutoffs
Uhalt-peaks> Vhalf-peak = 0.6/(2P + 1) cycles/pixel.

As depicted in Fig. 2, the magnitude response | H(U, V)| of
filter (25) exhibits considerable sidelobes. In fact, the number
of sidelobes in the range [0, 7] is P. As P is increased, the
filter bandwidth naturally decreases (more high-frequency at-

HU 0)
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FIGURE 2 Plotsof |[H(U, V){giveninEq. (25)along V=0,for P=1, 2, 3, 4.
As the filter span is increased, the bandwidth decreases. The number of sidelobes
in the range {0, w] is P.

tenuation or smoothing), but the overall sidelobe energy does
not, The sidelobes are in fact a significant drawback, since there
is considerable noise leakage at high noise frequencies. These
residual noise frequencies remain to degrade the image. Nev-
ertheless, the moving average filter has been commonly used
because of its general effectiveness in the sense of Eq. (23) and
because of its simplicity (ease of programming).

The moving average filter can be implemented either as a
direct two-dimensional convolution in the space domain, or
by use of DFTs to compute the linear convolution (see Chap-
ter 2.3). It should be noted that the impulse response of the
moving average filter is defined here as centered at the frequency
origin. If the DFT is to be used, then the impulse response
must be periodically extended, with the repetition period equal
to the span of the DFT. This will result in impulse response
coefficients’ being distributed at the corners of the impulse
response image, rather than being defined on negative space
coordinates.

Since application of the moving average filter balances a trade-
off between noise smoothing and image smoothing, the filter
span is usually taken to be an intermediate value. For images of
the most common sizes, e.g., 256 % 256 or 512 x 512, typical
(SQUARE) average filter sizes range from 3 x 3 to 15 x 15. The
upper end provides significant (and probably excessive) smooth-
ing, since 225 image samples are being averaged to produce each
new image value. Of course, if an image suffers from severe noise,
then a larger window might be warranted. A large window might
also be acceptable if it is known that the original image is very
smooth everywhere.

Figure 3 depicts the application of the moving average filter
to an image that has had zero-mean white Gaussian noise added
to it. In the current context, the distribution (Gaussian) of the
noise is not relevant, although the meaning can be found in
Chapter 4.5. The original image is included for comparison. The
image was filtered with SQUARE-shaped moving average filters
of spans 5 x 5 and 9 x 9, producing images with significantly
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(b)

(d)

FIGURE 3 Examples of applications of a moving average filter: (a) original image “eggs”; (b) image with additive
Gaussian white noise; moving average filtered image, using (¢) SQUARE(25) window (5 x 5) and (d) SQUARE(81)

window (9 x 9).

different appearances from each other as well as the noisy image.
With the 5 x 5 filter, the noise is inadequately smoothed, yet
the image has been blurred noticeably. The result of the 9 x 9
moving average filter is much smoother, although the noise in-
fluence is still visible, with some higher noise frequency compo-
nents managing to leak through the filter, resulting in a mottled
appearance.

3.2 Ideal Low-Pass Filter

As an alternative to the average filter, a filter may designed ex-
plicitly with no sidelobes by forcing the frequency response to
be zero outside of a given radial cutoff frequency €2,

1, JU?4+V2<Q
H(U, V) = s

. (26)
0, otherwise

or outside of a rectangle defined by cutoff frequencies along the
U and V axes,

L, Ul =U,
0, otherwise

Vi<V

HU, V) = (27)

Such a filter is called ideal low-pass filter (ideal LPF) because of
its idealized characteristic. We will study Eq. (27) rather than
Eq. (26) since it is easier to describe the impulse response of the
filter. If the region of frequencies passed by Eq. (26) is square,
then there is little practical difference in the two filters if U, =
V.= Q..

The impulse response of the ideal low-pass filter of Eq. (27) is
given explicitly by

h(m, n) = U_V, sinc(Qmw U.m) sinc(2w V.n), (28)
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where sinc(x) = (sin x/x). Despite the seemingly “ideal” na-
ture of this filter, it has some major drawbacks. First, it cannot
be implemented exactly as a linear convolution, since impulse
response (28) is infinite in extent (it never decays to zero). There-
fore it must be approximated. One way is to simply truncate
the impulse response, which in image processing applications
is often satisfactory. However, this has the effect of introducing
ripple near the frequency discontinuity, producing unwanted
noise leakage. The introduced ripple is a manifestation of the
well-known Gibbs phenomena studied in standard signal pro-
cessing texts [1]. The ripple can be reduced by using a tapered
truncation of the impulse response, e.g., by multiplying Eq. (28)
with a Hamming window [1]. If the response is truncated to
image size M x N, then the ripple will be restricted to the vicin-
ity of the locus of cutoff frequencies, which may make little
difference in the filter performance. Alternately, the ideal LPF
can be approximated by a Butterworth filter or other ideal LPF
approximating function. The Butterworth filter has frequency
response [2]

1

HU, V) = :
v 14+ (VU + V2)/(Q))*K

(29)

and, in principle, can be made to agree with the ideal LPF with ar-
bitrary precision by taking the filter order K large enough. How-
ever, Eq. (29) also has an infinite-extent impulse response with
no known closed-form solution. Hence, to be implemented it
must also be spatially truncated (approximated), which reduces
the approximation effectiveness of the filter [2].

It should be noted thatif a filter impulse response is truncated,
then it should also be slightly modified by adding a constant level
to each coefficient. The constant should be selected such that the
filter coefficients sum to unity. This is commonly done since it
is generally desirable that the response of the filter to the (0, 0)
spatial frequency be unity, and since for any filter

H(0,0) = Z > mp ).

p=~00 g=—00

(30)

The second major drawback of the ideal LPF is the phenom-
ena known as ringing. This term arises from the characteristic
response of the ideal LPF to highly concentrated bright spots in
an image. Such spots are impulselike, and so the local response
has the appearance of the impulse response of the filter. For the
circularly symmetric ideal LPF in Eq. (26), the response consists
ofa blurred version of the impulse surrounded by sinclike spatial
sidelobes, which have the appearances of rings surrounding the
main lobe.

In practical application, the ringing phenomenon creates
more ofa problem because of the edge response of the ideal LPF. In
the simplistic case, the image consists of a single one-dimensional
step edge: s(m, n) = s(n) = 1 for n > 0 and s(n) = 0, other-
wise. Figure 4 depicts the response of the ideal LPF with impulse

.....

.....

..........

FIGURE 4 Depiction of edge ringing. The step edge is shown as a continuous
curve; the linear convolution response of ideal LPF (28) is shown as a dotted
curve,

response (28) to the step edge. The step response of the ideal
LPF oscillates (rings) because the sinc function oscillates about
the zero level. In the convolution sum, the impulse response
alternately makes positive and negative contribution, creating
overshoots and undershoots in the vicinity of the edge profile.
Most digital images contain numerous steplike light-to-dark or
dark-to-light image transitions; hence, application of the ideal
LPF will tend to contribute considerable ringing artifacts to im-
ages. Since edges contain much of the significant information
about the image, and since the eye tends to be sensitive to ring-
ing artifacts, often theideal LPF and its derivatives are nota good
choice for image smoothing. However, if it is desired to strictly
bandlimit the image as closely as possible, then the ideal LPF is
a necessary choice.

Once an impulse response for an approximation to the ideal
LPF has been decided, then the usual approach to implementa-
tion again entails zero padding both the image and the impulse
response, using the periodic extension, taking the product of
their DFTs (using an FFT algorithm), and defining the result as
the inverse DFT. This was done in the example of Fig. 5, which
depicts application of the ideal LPF using two cutoff frequencies.
This was implemented by using a truncated ideal LPF without
any special windowing. The dominant characteristic of the fil-
tered images is the ringing, manifested as a strong mottling in
both images. A very strong oriented ringing can be easily seen
near the upper and lower borders of the image.

3.3 Gaussian Filter

As we have seen, filter sidelobes in either the space or spatial fre-
quency domain contribute a negative effect to the responses of
noise-smoothing linear image enhancement filters, Frequency-
domain sidelobes lead to noise leakage, and space-domain side-
lobes lead to ringing artifacts. A filter with sidelobes in neither
domain is the Gaussian filter, with impulse response

o= () /207

h(m, n) = (31)

2ma?
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(b)

FIGURE 5 Example of application of ideal low-pass filter to the noisy image in Fig. 3(b). The image is filtered with the
radial frequency cutoff of (a) 30.72 cycles/image and (b) 17.07 cycles/image. These cutoff frequencies are the same as the

half-peak cutoff frequencies used in Fig. 3.

Impulse response (31) is also infinite in extent, but it falls off peak radial frequency bandwidth of Eq. (32) is easily found

rapidly away from the origin. In this case, the frequency response
is closely approximated by
HU, V)~ e WYY o |UpL V] < 172, (32)
which is also a Gaussian function. Neither Eq. (31) nor Eq. (32)
shows any sidelobes; instead, both impulse and frequency
response decay smoothly. The Gaussian filter is noted for
the absence of ringing and noise leakage artifacts. The half-

(a)

to be

(33)

1 0.187

Q= Tm\/ln«/i»v o

If it is possible to decide an appropriate cutoff frequency €,
then the cutoff frequency may be fixed by setting o = 0.187/ Q.
pixels. The filter may then be implemented by truncating Eq.
(31) using this value of g, adjusting the coefficients to sum to
one, zero padding both impulse response and image (taking care

(b)

FIGURE 6 Example of the application of a Gaussian filter to the noisy image in Fig. 3(b). The image is filtered with
the radial frequency cutoff of (a) 30.72 cycles/image (o = 1.56 pixels) and (b) 17.07 cycles/image (o % 2.80 pixels). These
cutoff frequencies are the same as the half-peak cutoff frequencies used in Figs. 3 and 5.
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(a)

(b)

FIGURE 7 Depiction of the scale-space property of a Gaussian low-pass filter. In (b), the image in (a) is Gaussian filtered
with progressively larger values of o (narrower bandwidths), producing successively smoother and more diffuse versions
of the original. These are “stacked” to produce a data cube with the original image on top to produce the representation

shown in (b).

to use the periodic extension of the impulse response implied
by the DFT), multiplying DFTs, and taking the inverse DFT to
be the result. The results obtained (see Fig. 6) are much better
than those computed by using the ideal LPF, and they are slightly
better than those obtained with the moving average filter, because
of the reduced noise leakage.

Figure 7 shows the result of filtering an image with a Gaussian
filter of successively larger o values. As the value of o is increased,
small-scale structures such as noise and details are reduced to
a greater degree. The sequence of images shown in Fig. 7(b) is
a Gaussian scale space, where each scaled image is calculated by
convolving the original image with a Gaussian filter of increasing
o value [3].

The Gaussian scale space may be thought of as evolving over
time t. At time t, the scale space image g, is given by

g =ho xf, (34)
where h, is a Gaussian filter with scale factor o, and f is the
initial image. The time-scale relationship is defined by ¢ = /1.
As o is increased, less significant image features and noise begin
to disappear, leaving only large-scale image features.

The Gaussian scale space may also be viewed as the evolving
solution of a partial differential equation (3, 4]:

g,

= =V,
at B

(35)

where Vg, is the Laplacian of g;. For an extended discussion of
scale-space and partial differential equation methods, see Chap-
ter 4.12 of this Handbook.

4 Discussion

Linear filters are omnipresent in image and video processing.
Firmly established in the theory of linear systems, linear filters
are the basis of processing signals of arbitrary dimensions. Since
the advent of the fast Fourier transform in the 1960’s, the lin-
ear filter has also been an attractive device in terms of compu-
tational expense. However, it must be noted that linear filters
are performance limited for image enhancement applications.
From the several experiments performed in this chapter, it can
be seen that the removal of broadband noise from most images
by means of linear filtering is impossible without some degrada-
tion (blurring) of the image information content. This limitation
is due to the fact that complete frequency separation between
signal and broadband noise is rarely practicable. Alternative so-
lutions that remedy the deficiencies of linear filtering have been
devised, resulting in a variety of powerful nonlinear image en-
hancement alternatives. These are discussed in Chapters 3.2-3.4
of this Handbook.
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1 Introduction

Digital image enhancement and analysis have played, and will
continue to play, an important role in scientific, industrial, and
military applications. In addition to these applications, image
enhancement and analysis are increasingly being used in con-
sumer electronics. Internet Web users, for instance, not only rely
on built-in image processing protocols such as JPEG and in-
terpolation, but they also have become image processing users
equipped with powerful yet inexpensive software such as Pho-
toShop. Users not only retrieve digital images from the Web
but are now able to acquire their own by use of digital cam-
eras or through digitization services of standard 35-mm analog
film. The end result is that consumers are beginning to use home
computers to enhance and manipulate their own digital pictures.
Image enhancement refers to processes seeking to improve the
visual appearance of an image. As an example, image enhance-
ment might be used to emphasize the edges within the image.
This edge-enhanced image would be more visually pleasing to
the naked eye, or perhaps could serve as an input to a machine
that would detect the edges and perhaps make measurements of
shape and size of the detected edges. Image enhancement is im-
portant because of its usefulness in virtually all image processing
applications.
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Image enhancement tools are often classified into (a) point
operations, and (b) spatial operators. Point operations include
contrast stretching, noise clipping, histogram modification, and
pseudo-coloring. Point operations are, in general, simple non-
linear operations that are well known in the image processing
literature and are covered elsewhere in this Handbook. Spatial op-
erations used in image processing today are, in contrast, typically
linear operations. The reason for this is that spatial linear opera-
tions are simple and easily implemented. Although linear image
enhancement tools are often adequate in many applications, sig-
nificant advantages in image enhancement can be attained if
nonlinear techniques are applied [1]. Nonlinear methods effec-
tively preserve edges and details of images, whereas methods
using linear operators tend to blur and distort them. Addition-
ally, nonlinear image enhancement tools are less susceptible to
noise. Noise is always presentbecause of the physical randomness
of image acquisition systems. For example, underexposure and
low-light conditions in analog photography lead to images with
film-grain noise, which, together with the image signal itself, are
captured during the digitization process.

This article focuses on nonlinear and spatial image enhance-
ment and analysis. The nonlinear tools described in this arti-
cle are easily implemented on currently available computers.
Rather than using linear combinations of pixel values within a
local window, these tools use the local weighted median. In Sec-
tion 2, the principles of weighted medians (WMs) are presented.
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Weighted medians have striking analogies with traditional lin-
ear FIR filters, yet their behavior is often markedly different. In
Section 3, we show how WM filters can be easily used for noise
removal. In particular, the center WM filter is described as a tun-
able filter highly effective in impulsive noise. Section 4 focuses
on image enlargement, or zooming, using WM filter structures
that, unlike standard linear interpolation methods, provide lit-
tle edge degradation. Section 5 describes image sharpening al-
gorithms based on WM filters. These methods offer significant
advantages over traditional linear sharpening tools whenever
noise is present in the underlying images. Section 6 goes beyond
image enhancement and focuses on the analysis of images. In
particular, edge-detection methods based on WM filters are de-
scribed as well as their advantages over traditional edge-detection
algorithms.

2 Weighted Median Smoothers and Filters

2.1 Running Median Smoothers

The running median was first suggested as a nonlinear smoother
for time series data by Tukey in 1974 [2]. To define the running
median smoother, let {x(-)} be a discrete time sequence. The
running median passes a window over the sequence {x(-)} that
selects, at each instant #, a set of samples to comprise the ob-
servation vector x(n1). The observation window is centered at n,
resulting in

x(n) = [x(n— Np), ..., x(n), ..., x(n+ Np)]", (1)

where Ny and Ny may range in value over the nonnegative
integersand N = Np + Ng + 1 is the window size. The median
smoother operating on the input sequence {x(-)} produces the
output sequence {y}, where at time index n

y(n) = MEDIAN([x(n — N), ..., x(1), ..., x(n+ Nr)] (2)
= MEDIAN{x(n), ..., xy(1)], 3)

where x;(n) = x(n— Ny +1—i) fori = 1, 2, ..., N.Thatis, the
samples in the observation window are sorted and the middle,
or median, value is taken as the output. If x(), x2), ..., X
are the sorted samples in the observation window, the median
smoother outputs

X(N_+') if N is odd
=1 . (4)
y@ {M
2

otherwise

In most cases, the window is symmetric about x(n) and
Ny = Ng.

The input sequence {x(-)} may be either finite or infinite in
extent. For the finite case, the samples of {x(-)} can be indexed
as x(1), x(2), ..., x(L), where L is the length of the sequence.
Because of the symmetric nature of the observation window, the
window extends beyond a finite extent input sequence at both
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FIGURE 1 The operation of the window width 5 median smoother: o, ap-
pended points.

the beginning and end. These end effects are generally accounted
for by appending Ny samples at the beginning and Ny samples
at the end of {x(-)}. Although the appended samples can be
arbitrarily chosen, typically these are selected so that the points
appended at the beginning of the sequence have the same value
as the first signal point, and the points appended at the end of
the sequence all have the value of the last signal point.

To illustrate the appending of input sequence and the median
smoother operation, consider the input signal {x(-)} of Fig. 1. In
this example, {x(-)} consists of 20 observations from a six-level
process, {x: x(n) € {0, 1,...,5}, n=1,2, ..., 20}. The figure
shows the input sequence and the resulting output sequence for
awindow size 5 median smoother. Note that to account for edge
effects, two samples have been appended to both the beginning
and end of the sequence. The median smoother output at the
window location shown in the figure is

y(9) = MEDIANI[x(7), x(8), x(9), x(10), x(11)]
= MEDIAN[1, 1, 4, 3, 3] = 3.

Running medians can be extended to a recursive mode by
replacing the “causal” input samples in the median smoother
by previously derived output samples [3]. The output of the
recursive median smoother is given by

y(n) = MEDIAN[y(n — Np), ..., y(n — 1),

x(n), ..., x(n+ Np)]. (5)
In recursive median smoothing, the center sample in the obser-
vation window is modified before the window is moved to the
nextposition. In this manner, the output ateach windowlocation
replaces the old input value at the center of the window. With
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the same amount of operations, recursive median smoothers
have better noise attenuation capabilities than their nonrecursive
counterparts [4, 5]. Alternatively, recursive median smoothers
require smaller window lengths than their nonrecursive coun-
terparts in order to attain a desired level of noise attenuation.
Consequently, for the same level of noise attenuation, recursive
median smoothers often yield less signal distortion. In image
processing applications, the running median window spans a
local two-dimensional (2-D) area. Typically, an N x N area is
included in the observation window. The processing, however, is
identical to the one-dimensional (1-D) case in the sense that the
samples in the observation window are sorted and the middle
value is taken as the output.

The running 1-D or 2-D median, at each instant in time,
computes the sample median. The sample median, in many re-
spects, resemble the sample mean. Given N samples x;, .. ., xn,
the sample mean, x, and sample median, X, minimize the
expression

N
G®) =) Ix—BI” (6)
=1

for p = 2 and p = 1, respectively. Thus, the median of an odd
number of samples emerges as the sample whose sum of absolute
distances to all other samples in the set is the smallest. Likewise,
the sample mean is given by the value B whose square distance
to all samples in the set is the smallest possible. The analogy be-
tween the sample mean and median extends into the statistical
domain of parameter estimation, where it can be shown that the
sample median is the maximum likelihood (ML) estimator of
location of a constant parameter in Laplacian noise. Likewise,
the sample mean is the ML estimator of location of a constant
parameter in Gaussian noise [6]. This result has profound impli-
cations in signal processing, as most tasks where non-Gaussian
noise is present will benefit from signal processing structures us-
ing medians, particularly when the noise statistics can be charac-
terized by probability densities having tails heavier than Gaus-
sian tails (which leads to noise with impulsive characteristics)
{7-9].

2.2 Weighted Median Smoothers

Although the median is a robust estimator that possesses many
optimality properties, the performance of running medians is
limited by the fact that it is temporally blind. That is, all ob-
servation samples are treated equally regardless of their location
within the observation window. Much like weights can be in-
corporated into the sample mean to form a weighted mean, a
weighted median can be defined as the sample that minimizes
the weighted cost function

N
Go(B) =) Wilx —BI?, (7)
i=1
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FIGURE 2 The weighted median smoothing operation.

for p = 1. For p = 2, the cost function of Eq. (7) is quadratic
and the value  minimizing it is the normalized weighted mean

N N
A . i Wixi
B=argmin ) Wix —§)? = = ——,
= T W

with W; > 0. For p = 1, G,(B) is piecewise linear and convex
for W; > 0. The value § minimizing Eq. (7) is thus guaranteed
to be one of the samples xi, x,, . .., xy and is referred to as the
weighted median, originally introduced over a hundred years ago
by Edgemore [10]. After some algebraic manipulations, it can be
shown that the running weighted median output is computed as

(8)

y(n) = MEDIAN[W, ¢ x1(n), W2 0 xp(n), ..., Wy © xn(n)],

(9)

where W; >0 and ¢ is the replication operator defined as
W, times

W; o x; = X3, %, .. ., X;. Weighted median smoothers were in-

troduced in the signal processing literature by Brownigg in 1984

and have since received considerable attention [11-13]. The WM

smoothing operation can be schematically described as in Fig. 2.

Weighted Median Smoothing Computation

Consider the window size 5 WM smoother defined by the sym-
metric weight vector W = [1, 2, 3, 2, 1]. For the observation
x(n) = [12, 6, 4, 1, 9], the weighted median smoother output is
found as

y(n) = MEDIAN[1201,602,403,102,901]
= MEDIAN]J12, 6, 6, 4,4, 4, 1, 1, 9]
= MEDIAN]J1, 1,4,4,4,6,6,9,12] =4

(10)

where the median value is underlined in Eq. (10). The large
weighting on the center input sample results in this sample
being taken as the output. As a comparison, the standard median
output for the given input is y(n) = 6.

Although the smoother weights in the above example are inte-
ger valued, the standard WM smoother definition clearly allows
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for positive real-valued weights. The WM smoother output for
this case is as follows.

1. Calculate the threshold Tp = 1 >V, Wi

2. Sort the samples in the observation vector x(n).

3. Sum the weights corresponding to the sorted samples, be-
ginning with the maximum sample and continuing down
in order.

4. The output is the sample whose weight causes the sum to
become greater than or equal to Tp.

To illustrate the WM smoother operation for positive real-
valued weights, consider the WM smoother defined by W =
(0.1, 0.1, 0.2, 0.2, 0.1]. The output for this smoother operating
on x(n) = [12,6,4,1,9] is found as follows. Summing the
weights gives the threshold Ty = % 3, Wi = 0.35. The obser-
vation samples, sorted observation samples, their corresponding
weight, and the partial sum of weights (from each ordered sam-
ple to the maximum) are

observation samples 12, 6, 4, 1, 9

corresponding weights 0.1, 0.1, 0.2, 0.2, 0.1

sorted observation 1, 4, 6, 9, 12
sampies

corresponding weights 0.2, 0.2, 0.1, 0.1, 0.1

partial weight sums 0.7, 0.5, 03, 02, 0.1

1)
Thus, the output is 4 since when starting from the right (maxi-
mum sample) and summing the weights, the threshold Ty = 0.35
is not reached until the weight associated with 4 is added.

An interesting characteristic of WM smoothers is that the
nature of a WM smoother is not modified if its weights are mul-
tiplied by a positive constant. Thus, the same filter characteristics
can be synthesized by different sets of weights. Although the WM
smoother admits real-valued positive weights, it turns out that
any WM smoother based on real-valued positive weights has
an equivalent integer-valued weight representation [14]. Con-
sequently, there are only a finite number of WM smoothers for
a given window size. The number of WM smoothers, however,
grows rapidly with window size [13].

Weighted median smoothers can also operate on a recur-

sive mode. The output of a recursive WM smoother is given
by

y(n) = MEDIAN[W_y o y(n— Np), ..., W10 y(n—1),
%Ox(ﬂ),..., ‘/VNl <>x(71+ M)]) (12)

where the weights W; are as before constrained to be positive
valued. Recursive WM smoothers offer advantages over WM
smoothers in the same way that recursive medians have advan-
tages over their nonrecursive counterparts. In fact, recursive WM
smoothers can synthesize nonrecursive WM smoothers of much
longer window sizes [14].
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2.2.1 The Center Weighted Median Smoother

The weighting mechanism of WM smoothers allows for great
flexibility in emphasizing or deemphasizing specific input sam-
ples. In most applications, not all samples are equally important.
Because of the symmetric nature of the observation window, the
sample most correlated with the desired estimate is, in general,
the center observation sample. This observation leads to the
center weighted median (CWM) smoother, which is a relatively
simple subset of WM smoother that has proven useful in many
applications [12].

The CWM smoother is realized by allowing only the center
observation sample to be weighted. Thus, the output ofthe CWM
smoother is given by

y(n) = MEDIAN[xy, ..., xc—1, W, 0 X, Xetps -2 N1, (13)
where W, isan odd positive integerand ¢ = (N+1)/2 = N;+1
is the index of the center sample. When W, = 1, the operator is
a median smoother, and for W, > N, the CWM reduces to an
identity operation.

The effect of varying the center sample weight is perhaps best
seen by way of an example. Consider a segment of recorded
speech. The voiced waveform “a” noise is shown at the top
of Fig. 3. This speech signal is taken as the input of 