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Preface 

This Handbook represents contributions from most of the 
world’s leading educators and active research experts working 
in the area of Digital Image and Video Processing. Such a volume 
comes at a very appropriate time, since finding and applying 
improved methods for the acquisition, compression, analysis, 
and manipulation of visual information in digital format has 
become a focal point of the ongoing revolution in information, 
communication and computing. Moreover, with the advent of 
the world-wide web and digital wireless technology, digital im- 
age and video processing will continue to capture a significant 
share of “high technology” research and development in the fu- 
ture. This Handbook is intended to serve as the basic reference 
point on image and video processing, both for those just enter- 
ing the field as well as seasoned engineers, computer scientists, 
and applied scientists that are developing tomorrow’s image and 
video products and services. 

The goal of producing a truly comprehensive, in-depth vol- 
ume on Digital Image and Video Processing is a daunting one, 
since the field is now quite large and multidisciplinary. Text- 
books, which are usually intended for a specific classroom audi- 
ence, either cover only a relatively small portion of the material, 
or fail to do more than scratch the surface of many topics. More- 
over, any textbook must represent the specific point of view of 
its author, which, in this era of specialization, can be incomplete. 
The advantage ofthe current Handbook format is that everytopic 
is presented in detail by a distinguished expert who is involved 
in teaching or researching it on a daily basis. 

This volume has the ambitious intention of providing a re- 
source that covers introductory, intermediate and advanced top- 
ics with equal clarity. Because of this, the Handbook can serve 
equaIly well as reference resource and as classroom textbook. As 
a reference, the Handbook offers essentially all of the material 
that is likely to be needed by most practitioners. Those needing 
further details will likely need to refer to the academic litera- 
ture, such as the IEEE Transactions on Image Processing. As a 
textbook, the Handbook offers easy-to-read material at different 
levels of presentation, including several introductory and tuto- 
rial chapters and the most basic image processing techniques. 
The Handbook therefore can be used as a basic text in introduc- 
tory, junior- and senior-level undergraduate, and graduate-level 
courses in digital image and/or video processing. Moreover, the 
Handbook is ideally suited for short courses taught in indus- 
try forums at any or all of these levels. Feel free to contact the 

Editor ofthis volume for one such set of computer-based lectures 
(representing 40 hours of material). 

The Handbook is divided into ten major sections covering 
more than 50 Chapters. Following an Introduction, Section 2 of 
the Handbookintroduces the reader to the most basic methods of 
gray-level and binary image processing, and to the essential tools 
of image Fourier analysis and linear convolution systems. Section 
3 covers basic methods for image and video recovery, including 
enhancement, restoration, and reconstruction. Basic Chapters 
on Enhancement and Restoration serve the novice. Section 4 
deals with the basic modeling and analysis of digital images and 
video, and includes Chapters on wavelets, color, human visual 
modeling, segmentation, and edge detection. A valuable Chap- 
ter on currently available software resources is given at the end. 
Sections 5 and 6 deal with the major topics of image and video 
compression, respectively, including the JPEG and MPEG stan- 
dards. Sections 7 and 8 discuss the practical aspects of image and 
video acquisition, sampling, printing, and assessment. Section 9 
is devoted to the multimedia topics of image andvideo databases, 
storage, retrieval, and networking. And finally, the Handbook 
concludes with eight exciting Chapters dealing with applications. 
These have been selected for their timely interest, as well as their 
illustrative power of how image processing and analysis can be 
effectively applied to problems of significant practical interest. 

As Editor and Co-Author of this Handbook, I am very happy 
that it has been selected to lead off a major new series of hand- 
books on Communications, Networking, and Multimedia to be 
published by Academic Press. I believe that this is a real testa- 
ment to the current and growing importance of digital image 
and video processing. For this opportunity I would like to thank 
Jerry Gibson, the series Editor, and Joel CIaypool, the Executive 
Editor, for their faith and encouragement along the way. 

Last, and far from least, I’d like to thank the many co-authors 
who have contributed such a fine collection of articles to this 
Handbook. They have been a model of professionalism, timeli- 
ness, and responsiveness. Because of this, it was my pleasure to 
carefully read and comment on every single word of every Chap- 
ter, and it has been very enjoyable to see the project unfold. I feel 
that this Handbook o f h a g e  and Video Processingwill serve as an 
essential and indispensable resource for many years to come. 

Al Bovik 
Austin, Texas 

1999 
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As we enter the new millennium, scarcely a week passes where 
we do not hear an announcement of some new technological 
breakthrough in the areas of digital computation and telecom- 
munication. Particularly exciting has been the participation of 
the general public in these developments, as affordable com- 
puters and the incredible explosion of the World Wide Web 
have brought a flood of instant information into a large and 
increasing percentage of homes and businesses. Most of this in- 
formation is designed for visual consumption in the form of 
text, graphics, and pictures, or integrated multimedia presenta- 
tions. Digital images and digital video are, respectively, pictures 
and movies that have been converted into a computer-readable 
binary format consisting of logical Os and 1s. Usually, by an 
image we mean a still picture that does not change with time, 
whereas a video evolves with time and generally contains mov- 
ing and/or changing objects. Digital images or video are usually 
obtained by converting continuous signals into digital format, 
although “direct digital” systems are becoming more prevalent. 
Likewise, digital visual signals are viewed by using diverse display 
media, included digital printers, computer monitors, and digi- 
tal projection devices. The frequency with which information is 

transmitted, stored, processed, and displayed in a digital visual 
format is increasing rapidly, and thus the design of engineering 
methods for efficiently transmitting, maintaining, and even im- 
proving the visual integrity of this information is of heightened 
interest. 

One aspect of image processing that makes it such an interest- 
ing topic of study is the amazing diversity of applications that use 
image processing or analysis techniques. Virtually every branch 
of science has subdisciplines that use recording devices or sensors 
to collect image data from the universe around us, as depicted 
in Fig. 1. These data are often multidimensional and can be ar- 
ranged in a format that is suitable for human viewing. Viewable 
datasets like this can be regarded as images, and they can be 
processed by using established techniques for image processing, 
even if the information has not been derived from visible-light 
sources. Moreover, the data may be recorded as they change over 
time, and with faster sensors and recording devices, it is becom- 
ing easier to acquire and analyze digitalvideo datasets. By mining 
the rich spatiotemporal information that is available in video, 
one can often analyze the growth or evolutionary properties of 
dynamic physical phenomena or of living specimens. 

Copyright @ 2000 by Academic Press. 
AU rights of reproduction in any form resewed 3 

Administrator
高亮



4 

a-s 
rays +X-Ray+ w 

Handbook of Image and Video Processing 

- 
+IR+ 

meteorology 
astronomy 

radiology seismology 

- industrial “imaging” microscopy - 0, inspection 
robotguidance ’/, , ,\ oceanography 

autonomous 
navigation 

ultrasonic 
imaging \ 

surveillance aerial reconnaissance 
particle rempte radar &mapping 
physics sensing 

FIGURE 1 Part of the universe of image processing applications. 

Types of Images 

Another rich aspect of digital imaging is the diversity of image 
types that arise, and that can derive from nearly every type of 
radiation. Indeed, some of the most exciting developments in 
medical imaging have arisen from new sensors that record im- 
age data from previously little-used sources of radiation, such as 
PET (positron emission tomography) and MFU (magnetic reso- 
nance imaging), or that sense radiation in new ways, as in CAT 
(computer-aided tomography), where X-ray data are collected 
from multiple angles to form a rich aggregate image. 

There is an amazing availability of radiation to be sensed, 
recorded as images or video, and viewed, analyzed, transmitted, 
or stored. In our daily experience we think of “what we see” as 
being “what is there,” but in truth, our eyes record very little of 
the information that is available at any given moment. As with 
any sensor, the human eye has a limited bandwidth. The band of 
electromagnetic (EM) radiation that we are able to see, or “visible 
light,” is quite small, as can be seen from the plot of the EM band 
in Fig. 2. Note that the horizontal axis is logarithmic! At any given 
moment, we see very little of the available radiation that is going 
on around us, although certainly enough to get around. From 
an evolutionary perspective, the band of EM wavelengths that 
the human eye perceives is perhaps optimal, since the volume 
of data is reduced, and the data that are used are highly reliable 
and abundantly available (the Sun emits strongly in the visible 
bands, and the Earth‘s atmosphere is also largely transparent 
in the visible wavelengths). Nevertheless, radiation from other 
bands can be quite useful as we attempt to glean the fullest pos- 
sible amount of information from the world around us. Indeed, 

wavelength (angstroms) 

certain branches of science sense and record images from nearly 
all of the EM spectrum, and they use the information to give a 
better picture of physical reality. For example, astronomers are 
often identified according to the type of data that they specialize 
in, e.g., radio astronomers, X-ray astronomers, and so on. Non- 
EM radiation is also useful for imaging. A good example are the 
high-frequency sound waves (ultrasound) that are used to create 
images of the human body, and the low-frequency sound waves 
that are used by prospecting companies to create images of the 
Earth‘s subsurface. 

One commonality that can be made regarding nearly all im- 
ages is that radiation is emitted from some source, then interacts 
with some material, and then is sensed and ultimately trans- 
duced into an electrical signal, which may then be digitized. The 
resulting images can then be used to extract information about 
the radiation source, andlor about the objects with which the 
radiation interacts. 

We may loosely classify images according to the way in which 
the interaction occurs, understanding that the division is some- 
times unclear, and that images may be of multiple types. Figure 3 
depicts these various image types. 

Reflection images sense radiation that has been reflected from 
the surfaces of objects. The radiation itself may be ambient or 
artificial, and it may be from a localized source, or from multi- 
ple or extended sources. Most of our daily experience of optical 
imaging through the eye is of reflection images. Common non- 
visible examples include radar images, sonar images, and some 
types of electron microscope images. The type of information 
that can be extracted from reflection images is primarily about 
object surfaces, that is, their shapes, texture, color, reflectivity, 
and so on. 

Emission images are even simpler, since in this case the objects 
being imaged are self-luminous. Examples include thermal or 
infrared images, which are commonly encountered in medical, 

@ radiation source 

radiation 

sensor(s) %- signal 
electrical 

self- 
luminous 

transparenu 
translucent 

object 

radiation 

radiation 

- FIGURE 2 The electromagnetic spectrum. ,~ FIGURE 3 Recording the various m e s  of interaction of radiation with matter. 
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1.1 Introduction to Digital Image and Video Processing 5 

astronomical, and military applications, self-luminous visible- 
light objects, such as light bulbs and stars, and MRI images, which 
sense particle emissions. In images of this type, the information 
to be had is often primarily internal to the object; the image may 
reveal how the object creates radiation, and thence something 
of the internal structure of the object being imaged. However, 
it may also be external; for example, a thermal camera can be 
used in low-light situations to produce useful images of a scene 
containing warm objects, such as people. 

Finally, absorption images yield information about the internal 
structure of objects. In this case, the radiation passes through 
objects and is partially absorbed or attenuated by the material 
composing them. The degree of absorption dictates the level of 
the sensed radiation in the recorded image. Examples include X- 
ray images, transmission microscopic images, and certain types 
of sonic images. 

Of course, the preceding classification into types is informal, 
and a given image may contain objects that interact with radia- 
tion in different ways. More important is to realize that images 
come frommany different radiation sources and objects, and that 
the purpose of imaging is usually to extract information about 
either the source and/or the objects, by sensing the reflected or 
transmitted radiation, and examining the way in which it has in- 
teracted with the objects, which can reveal physical information 
about both source and objects. 

Figure 4 depicts some representative examples of each of the 
preceding categories of images. Figures 4(a) and 4(b) depict re- 
flection images arising in the visible-light band and in the mi- 
crowave band, respectively. The former is quite recognizable; the 
latter is a synthetic aperture radar image of DFW airport. Figs. 
4(c) and 4(d) are emission images, and depict, respectively, a 
forward-looking infrared (FLIR) image, and a visible-light im- 
age of the globular star cluster Omega Centauri. Perhaps the 
reader can probably guess the type of object that is of interest in 
Fig. 4(c). The object in Fig. 4(d), which consists of over amillion 
stars, is visible with the unaided eye at lower northern latitudes. 
Lastly, Figs. 4(e) and 4(f), which are absorption images, are of 
a digital (radiographic) mammogram and a conventional light 
micrograph, respectively. 

of magnitude, and as we will find, the techniques of image and 
video processing are generally applicable to images taken at any 
of these scales. 

Scale has another important interpretation, in the sense that 
any given image can contain objects that exist at scales different 
from other objects in the same image, or that even exist at mul- 
tiple scales simultaneously. In fact, this is the rule rather than 
the exception. For example, in Fig. 4(a), at a small scale of ob- 
servation, the image contains the bas-relief patterns cast onto 
the coins. At a slightly larger scale, strong circular structures 
arose. However, at a yet larger scale, the coins can be seen to be 
organized into a highly coherent spiral pattern. Similarly, exam- 
ination of Fig. 4(d) at a small scale reveals small bright objects 
corresponding to stars; at a larger scale, it is found that the stars 
are nonuniformly distributed over the image, with a tight cluster 
having a density that sharply increases toward the center of the 
image. This concept of multiscale is a powerful one, and it is the 
basis for many of the algorithms that will be described in the 
chapters of this Handbook 

Dimension of Images 

A n  important feature of digital images and video is that they 
are multidimensional signals, meaning that they are functions of 
more than a single variable. In the classic study of digital signal 
processing, the signals are usually one-dimensional functions of 
time. Images, however, are functions of two, and perhaps three 
space dimensions, whereas digital video as a function includes 
a third (or fourth) time dimension as well. The dimension of a 
signal is the number of coordinates that are required to index a 
given point in the image, as depicted in Fig. 5. A consequence 
of this is that digital image processing, and especially digital 
video processing, is quite data intensive, meaning that significant 
computational and storage resources are often required. 

Digitization of Images 

Scale of Images 

Examining the pictures in Fig. 4 reveals another image diver- 
sity: scale. In our daily experience we ordinarily encounter and 
visualize objects that are within 3 or 4 orders of magnitude of 
1 m. However, devices for image magnification and amplifica- 
tion have made it possible to extend the realm of “vision” into 
the cosmos, where it has become possible to image extended 
structures extending over as much as lo3” m, and into the mi- 
crocosmos, where it has become possible to acquire images of 
objects as small as m. Hence we are able to image from the 
grandest scale to the minutest scales, over a range of 40 orders 

The environment around us exists, at any reasonable scale of 
observation, in a space/time continuum. Likewise, the signals 
and images that are abundantly available in the environment 
(before being sensed) are naturally analog. By analog, we mean 
two things: that the signal exists on a continuous (space/time) 
domain, and that also takes values that come from a continuum 
of possibilities. However, this Handbook is about processing dig- 
ital image and video signals, which means that once the image 
or video signal is sensed, it must be converted into a computer- 
readable, digital format. By digital, we also mean two things: that 
the signal is defined on a discrete (space/time) domain, and that it 
takes values from a discrete set of possibilities. Before digital pro- 
cessing can commence, a process of analog-to-digital conversion 
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FIGURE 4 Examples of (a), (b), reflection; (c), (d), emission; and (e), (f) absorption image types. 
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FIGURE 5 The dimensionality of images and video. 

(A/D conversion) must occur. A/D conversion consists of two 
distinct subprocesses: sampling and quantization. 

Sampled Images 

Continuous-domain signal 

am@ @a 
a 
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Sampled signal indexed by discrete (integer) numbers 

FIGURE 6 Sampling a continuous-domain one-dimensional signal. 

Sampling is the process of converting a continuous-space (or 
continuous-spacehime) signal into a discrete-space (or discrete- 
spacehime) signal. The sampling of continuous signals is a rich 
topic that is effectively approached with the tools of linear sys- 
tems theory. The mathematics of sampling, along with practical 
implementations, are addressed elsewhere in this Handbook. In 
this Introductory Chapter, however, it is worth giving the reader 
a feel for the process of sampling and the need to sample a signal 
sufficiently densely. For a continuous signal of given spacehime 
dimensions, there are mathematical reasons why there is a lower 
bound on the spacehime sampling frequency (which determines 
the minimum possible number of samples) required to retain the 
information in the signal. However, image processing is a visual 
discipline, and it is more fundamental to realize that what is usu- 
ally important is that the process of sampling does not lose visual 
information. Simply stated, the sampled image or video signal 
must “look good,” meaning that it does not suffer too much from 
a loss of visual resolution, or from artifacts that can arise from 
the process of sampling. 

Figure 6 illustrates the result of sampling a one-dimensional 
continuous-domain signal. It is easy to see that the samples col- 
lectively describe the gross shape ofthe original signal very nicely, FIGURE 7 Depiction of a very small (10 x 10) piece of an image array. 

but that smaller variations and structures are harder to discern 
or may be lost. Mathematically, information may have been lost, 
meaning that it might not be possible to reconstruct the original 
continuous signal from the samples (as determined by the Sam- 
pling Theorem; see Chapters 2.3 and 7.1). Supposing that the 
signal is part of an image, e-g., is a single scan line of an image 
displayed on a monitor, then the visual quality may or may not 
be reduced in the sampled version. Of course, the concept of 
visual quality varies from person to person, and it also depends 
on the conditions under which the image is viewed, such as the 
viewing distance. 

Note that in Fig. 6, the samples are indexed by integer num- 
bers. In fact, the sampled signal can be viewed as a vector of 
numbers. If the signal is finite in extent, then the signal vector 
can be stored and digitally processed as an array; hence the inte- 
ger indexing becomes quite natural and useful. Likewise, image 
and video signals that are spacehime sampled are generally in- 
dexed by integers along each sampled dimension, allowing them 
to be easily processed as multidimensional arrays of numbers. 
As shown in Fig. 7, a sampled image is an array of sampled im- 
age values that are usually arranged in a row-column format. 
Each of the indexed array elements is often called a picture ele- 
ment, or pixel for short. The term pel has also been used, but has 
faded in usage probably because it is less descriptive and not as 
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256 x 256 128 x 128 64 x 64 

256 x 256 128 x 128 64 x 64 
FIGURE 8 Examples of the visual effect of different image sampling densities. 

catchy. The number of rows and columns in a sampled image 
is also often selected to be a power of 2, because this simplifies 
computer addressing of the samples, and also because certain 
algorithms, such as discrete Fourier transforms, are particularly 
efficient when operating on signals that have dimensions that 
are powers of 2. Images are nearly always rectangular (hence in- 
dexed on a Cartesian grid), and they are often square, although 
the horizontal dimension is often longer, especially in video sig- 
nals, where an aspect ratio of 4 : 3 is common. 

As mentioned in the preceding text, the effects of insufficient 
sampling (“undersampling”) can be visually obvious. Figure 8 
shows two very illustrative examples of image sampling. The two 
images, which we call “mandrill“ and “fingerprint,” both contain 
a significant amount of interesting visual detail that substantially 
defines the content of the images. Each image is shown at three 
different sampling densities: 256 x 256 (or 2’ x 2’ = 65,536 
samples), 128 x 128 (or 27 x Z7 = 16,384 samples), and 64 x 64 
(or 26 x 26 = 4,096 samples). Of course, in both cases, all three 
scales of images are digital, and so there is potential loss of in- 

formation relative to the original analog image. However, the 
perceptual quality of the images can easily be seen to degrade 
rather rapidly; note the whiskers on the mandrill’s face, which 
lose all coherency in the 64 x 64 image. The 64 x 64 fingerprint 
is very interesting, since the pattern has completely changed! It 
almost appears as a different fingerprint. This results from an 
undersampling effect know as aliasing, in which image frequen- 
cies appear that have no physical meaning (in this case, creating 
a false pattern). Aliasing, and its mathematical interpretation, 
will be discussed further in Chapter 2.3 in the context of the 
Sampling Theorem. 

Quantized Images 

The other part of image digitization is quantization. The values 
that a (single-valued) image takes are usually intensities, since 
they are a record of the intensity of the signal incident on the 
sensor, e.g., the photon count or the amplitude of a measured 
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a pixel 8-bit representation 
FIGURE 9 Illustration of an 8-bit representation of a quantized pixel. 

wave function. Intensity is a positive quantity. If the image is 
represented visually, using shades of gray (like a black-and-white 
photograph), then the pixel values are referred to as gray levels. Of 
course, broadly speaking, an image may be multivalued at each 
pixel (such as a color image), or an image may have negative 
pixel values, in which case it is not an intensity function. In any 
case, the image values must be quantized for digital processing. 

Quantization is the process of converting a continuous-valued 
image, which has a continuous range (set of values that it can 
take), into a discrete-valued image, which has a discrete range. 
This is ordinarily done by a process of rounding, truncation, or 
some other irreversible, nonlinear process of information de- 
struction. Quantization is a necessary precursor to digital pro- 
cessing, since the image intensities must be represented with a 
finite precision (limited by word length) in any digital processor. 

When the gray level of an image pixel is quantized, it is as- 
signed to be one of a finite set of numbers, which is the gray- 
level range. Once the discrete set of values defining the gray-level 
range is known or decided, then a simple and efficient method of 
quantization is simply to round the image pixel values to the re- 
spective nearest members of the intensity range. These rounded 
values can be any numbers, but for conceptual convenience and 
ease of digital formatting, they are then usually mapped by a 
linear transformation into a finite set of nonnegative integers 
{0, . . . , K - l), where K is a power of 2: K = 2B. Hence the 
number of allowable gray levels is K ,  and the number of bits 
allocated to each pixel’s gray level is B. Usually 1 5 B 5 8 with 
B = 1 (for binary images) and B = 8 (where each gray level 
conveniently occupies a byte) being the most common bit depths 
(see Fig. 9). Multivalued images, such as color images, require 

quantization of the components either individually or collec- 
tively (“vector quantization”); for example, a three-component 
color image is frequently represented with 24 bits per pixel of 
color precision. 

Unlike sampling, quantization is a difficult topic to analyze, 
because it is nonlinear. Moreover, most theoretical treatments 
of signal processing assume that the signals under study are not 
quantized, because this tends to greatly complicate the analysis. 
In contrast, quantization is an essential ingredient of any (lossy) 
signal compression algorithm, where the goal can be thought of 
as finding an optimal quantization strategy that simultaneously 
minimizes the volume of data contained in the signal, while dis- 
turbing the fidelity of the signal as little as possible. With simple 
quantization, such as gray-level rounding, the main concern is 
that the pixel intensities or gray levels must be quantized with 
sufficient precision that excessive information is not lost. Unlike 
sampling, there is no simple mathematical measurement of in- 
formation loss from quantization. However, while the effects of 
quantization are difficult to express mathematically, the effects 
are visually obvious. 

Each of the images depicted in Figs. 4 and 8 is represented 
with 8 bits of gray-level resolution - meaning that bits less sig- 
nificant than the eighth bit have been rounded or truncated. 
This number of bits is quite common for two reasons. First, us- 
ing more bits will generally not improve the visual appearance 
of the image - the adapted human eye usually is unable to see 
improvements beyond 6 bits (although the total range that can 
be seen under different conditions can exceed 10 bits) -hence 
using more bits would be wasteful. Second, each pixel is then 
conveniently represented by a byte. There are exceptions: in cer- 
tain scientific or medical applications, 12, 16, or even more bits 
may be retained for more exhaustive examination by human or 
by machine. 

Figures 10 and 11 depict two images at various levels of gray- 
level resolution. A reduced resolution (from 8 bits) was obtained 
by simply truncating the appropriate number of less-significant 
bits from each pixel’s gray level. Figure 10 depicts the 256 x 256 
digital image “fingerprint” represented at 4,2, and 1 bit of gray- 
level resolution. At 4 bits, the fingerprint is nearly indistinguish- 
able from the 8-bit representation of Fig. 8. At 2 bits, the image 

FIGURE 10 Quantization of the 256 x 256 image “fingerprint.” Clockwise from left 4,2, and 1 bits per pixel. 
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FIGURE 11 Quantization of the 256 x 256 image “eggs.” Clockwise from upper left: 8,4,2, and 1 bits per pixel. 

has lost a significant amount of information, making the print 
difficult to read. At 1 bit, the binary image that results is likewise 
hard to read. In practice, binarization of fingerprints is often 
used to make the print more distinctive. With the use of simple 
truncation-quantization, most of the print is lost because it was 
inked insufficiently on the left, and to excess on the right. Gener- 
ally, bit truncation is a poor method for creating a binary image 
from a gray-level image. See Chapter 2.2 for better methods of 
image binarization. 

Figure 11 shows another example of gray-level quantization. 
The image “eggs” is quantized at 8,4, 2, and 1 bit of gray-level 
resolution. At 8 bits, the image is very agreeable. At 4 bits, the 
eggs take on the appearance of being striped or painted like 
Easter eggs. This effect is known as “false contouring,” and re- 
sults when inadequate gray-scale resolution is used to represent 
smoothly varying regions of an image. In such places, the effects 
of a (quantized) gray level can be visually exaggerated, leading to 
an appearance of false structures. At 2 bits and 1 bit, significant 
information has been lost from the image, making it difficult to 
recognize. 

A quantized image can be thought of as a stacked set of single- 
bit images (known as bitplunes) corresponding to the gray-level 
resolution depths. The most significant bits of every pixel com- 
prise the top bit plane, and so on. Figure 12 depicts a 10 x 10 
digital image as a stack of B bit planes. Special-purpose image 
processing algorithms are occasionally applied to the individual 
bit planes. 

Color Images 

Of course, the visual experience of the normal human eye is not 
limited to gray scales - color is an extremely important aspect 
of images. It is also an important aspect of digital images. In a 
very general sense, color conveys a variety of rich information 
that describes the quality of objects, and as such, it has much to 
do with visual impression. For example, it is known that different 
colors have the potential to evoke different emotional responses. 
The perception of color is allowed by the color-sensitive neurons 
known as cones that are located in the retina of the eye. The cones 
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IL71I11C7ODL7 The RGB system is used by color cameras and video display 
systems, whereas the YIQ is the standard color representation 
used in broadcast television. Both representations are used in 
practical image and video processing systems, along with several 

Most of the theory and algorithms for digital image and video 
processing have been developed for single-valued, monochro- 
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matic (gray level), or intensity-onlyimages, whereas color images 
are vector-valued signals. Indeed, many of the approaches de- 
scribed in this Handbookare developed for single-valued images. 
However, these techniques are often applied (suboptimally) to 
color image data by regarding each color component as a separate 
image to be processed and by recombining the results afterward. 
As seen in Fig. 13, the R, G, and E components contain a con- 
siderable amount of overlapping information. Each of them is a 
valid image in the same sense as the image seen through colored 

I - - 
011~1l1011 1111111111 spectacles, and can be processed as such. Conversely, however, 

if the color components are collectively available, then vector 
image processing algorithms can often be designed that achieve 
optimal results by taking this information into account. For ex- 
ample, a vector-based image enhancement algorithm applied to 
the “cherries” image in Fig. 13 might adapt by giving less impor- 
tanCe to enhancing the blue component, Since the image Signal 
is weaker in that band. 

Chromanance is usually associated with slower amplitude 
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FIGURE 12 Depiction ofasmall (10 x 10) digitalimageas astackofbitplanes 
ranging from most significant (top) to least significant (bottom). 

are responsive to normal light levels and are hstributed with 
greatest density near the center of the retina, known as fovea 
(along the direct line of sight). The rods are neurons that are 
sensitive at low-light levels and are not capable of distinguishing 
color wavelengths. They are distributed with greatest density 
around the periphery of the fovea, with very low density near 
the line of sight. Indeed, one may experience this phenomenon 
by observing a dim point target (such as a star) under dark 
conditions. If one’s gaze is shifted slightly off center, then the 
dim object suddenly becomes easier to see. 

In the normal human eye, colors are sensed as near-linear 
combinations of long, medium, and short wavelengths, which 
roughly correspond to the three primary colors that are used in 
standard video camera systems: Red ( R ) ,  Green (G), and Blue 
(E). The way in which visible-light wavelengths map to RGB 
camera color coordinates is a complicated topic, although stan- 
dard tables have been devised based on extensive experiments. 
A number of other color coordinate systems are also used in im- 
age processing, printing, and display systems, such as the YIQ 
(luminance, in-phase chromatic, quadratic chromatic) color co- 
ordinate system. Loosely speaking, the YIQ coordinate system 
attempts to separate the perceived image brighhzess (luminance) 
from the chromatic components of the image by means of an 
invertible linear transformation: 

r ~1 r0.299 0.587 0.1141 r ~1 
0.596 -0.275 -0.321 (1) 1 = 10.212 -0.523 0.3111 1 1 . 

variations than is luminance, since it usually is associated with 
fewer image details or rapid changes in value. The human eye has 
a greater spatial bandwidth allocated for luminance perception 
than for chromatic perception. This is exploited by compression 
algorithms that use alternate color representations, such as YIQ, 
and store, transmit, or process the chromatic components using 
a lower bandwidth (fewer bits) than the luminance component. 
Image and video compression algorithms achieve increased ef- 
ficiencies through this strategy. 

Size of Image Data 

The amount of data in visual signals is usually quite large, and 
it increases geometrically with the dimensionality of the data. 
This impacts nearly every aspect of image and video processing; 
data volume is a major issue in the processing, storage, transmis- 
sion, and display of image and video information. The storage 
required for a single monochromatic digital still image that has 
(row x column) dimensions N x  Mand E bits ofgray-levelreso- 
lution is NMB bits. For the purpose of discussion we Will assume 
that the image is square ( N  = M), although images of any aspect 
ratio are common. Most commonly, B = 8 (1 byte/pixel) unless 
the image is binary or is special purpose. If the image is vec- 
tor valued, e.g., color, then the data volume is multiplied by the 
vector dimension. Digital images that are delivered by commer- 
cially available image digitizers are typically of an approximate 
size of 512 x 512 pixels, which is large enough to fill much of a 
monitor screen. Images both larger (ranging up to 4096 x 4096 
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FIGURE 13 
(See color section, p. C l . )  

Color image of “cherries” (top left), and (clockwise) its red, green, and blue components. 

or more) and smaller (as small as 16 x 16) are commonly en- 
countered. Table 1 depicts the required storage for a variety of 

TABLE 1 
sizes, bit depths, and vector dimension 

Data-volume requirements for digital still images of various 

Spatial Pixel Resolution Data Volume 
Dimensions (bits) Image Type (bytes) 

128 x 128 
256 x 256 
512 x 512 
1024 x 1024 
128 x 128 
256 x 256 
512 x 512 
1024 x 1024 
128 x 128 
256 x 256 
512 x 512 
1024 x 1024 
128 x 128 
256 x 256 
512 x 512 
1024 x 1024 

1 
1 
1 
1 
8 
8 
8 
8 
3 
3 
3 
3 

24 
24 
24 
24 

Monochromatic 
Monochromatic 
Monochromatic 
Monochromatic 
Monochromatic 
Monochromatic 
Monochromatic 
Monochromatic 
Trichromatic 
Trichromatic 
Trichromatic 
Trichromatic 
Trichromatic 
Trichromatic 
Trichromatic 
Trichromatic 

2,048 
8,192 

32,768 
131,072 
16,384 
65,536 

262,144 
1,048,576 

6,144 
24,576 
98,304 

393,216 
49,152 

196,608 
786,432 

3.145.728 

image resolution parameters, assuming that there has been no 
compression of the data. Of course, the spatial extent (area) of 
the image exerts the greatest effect on the data volume. A single 
5 12 x 5 12 x 8 color image requires nearly a megabyte of digital 
storage space, which only a few years ago was alot. More recently, 
even large images are suitable for viewing and manipulation on 
home personal computers (PCs), although they are somewhat 
inconvenient for transmission over existing telephone networks. 

However, when the additional time dimension is introduced, 
the picture changes completely. Digital video is extremely storage 
intensive. Standard video systems display visual information at 
a rate of 30 images/s for reasons related to human visual latency 
(at slower rates, there is aperceivable “flicker”). A 512 x 512 x 24 
color video sequence thus occupies 23.6 megabytes for each sec- 
ond of viewing. A 2-hour digital film at the same resolution 
levels would thus require -85 gigabytes of storage at nowhere 
near theatre quality. That is alot of data, even for today’s com- 
puter systems. Fortunately, images and video generally contain 
a significant degree of redundancy along each dimension. Tak- 
ing this into account along with measurements of human vi- 
sual response, it is possible to significantly compress digital im- 
ages and video streams to acceptable levels. Sections 5 and 6 
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of this Handbook contain a number of chapters devoted to these 
topics. Moreover, the pace of information delivery is expected 
to significantly increase in the future, as significant additional 
bandwidths become available in the form of gigabit and ter- 
abit Ethernet networks, digital subscriber lines that use existing 
telephone networks, and public cable systems. These develop- 
ments in telecommunications technology, along with improved 
algorithms for digital image and video transmission, promise a 
future that will be rich in visual information content in nearly 
every medium. 

Digital Video 

A significant portion of this Handbook is devoted to the topic 
of digital video processing. In recent years, hardware technolo- 
gies and standards activities have matured to the point that it 
is becoming feasible to transmit, store, process, and view video 
signals that are stored in digital formats, and to share video sig- 
nals between different platforms and application areas. This is 
a natural evolution, since temporal change, which is usually as- 
sociated with motion of some type, is often the most important 
property of a visual signal. 

Beyond this, there is a wealth of applications that stand to ben- 
efit from digital video technologies, and it is no exaggeration to 
say that the blossoming digital video industry represents many 
billions of dollars in research investments. The payoff from this 
research will be new advances in digital video processing theory, 
algorithms, and hardware that are expected to result in many 
billions more in revenues and profits. It is safe to say that dig- 
ital video is very much the current frontier and the future of 
image processing research and development. The existing and 
expected applications of digital video are either growing rapidly 
or are expected to explode once the requisite technologies be- 
come available. 

Some of the notable emerging digital video applications are 
as follows: 

video teleconferencing 
video telephony 
digital Tv, including high-definition television 
internet video 
medicalvideo 
dynamic scientific visualization 
multimedia video 
video instruction 
digital cinema 

samples along a new and different (time) dimension. As such, it 
involves some different concepts and techniques. 

First and foremost, the time dimension has a direction asso- 
ciated with it, unlike the space dimensions, which are ordinarily 
regarded as directionless until a coordinate system is artificially 
imposed upon it. Time proceeds from the past toward the future, 
with an origin that exists only in the current moment. Video is 
often processed in “real time,” which (loosely) means that the re- 
sult of processing appears effectively “instantaneously” (usually 
in a perceptual sense) once the input becomes available. Such 
a processing system cannot depend on more than a few future 
video samples. Moreover, it must process the video data quickly 
enough that the result appears instantaneous. Because of the vast 
datavolume involved, the design of fast algorithms and hardware 
devices is a major priority. 

In principle, an analog video signal I ( x ,  y ,  t), where ( x ,  y )  
denote continuous space coordinates and t denotes continuous 
time, is continuous in both the space and time dimensions, since 
the radiation flux that is incident on a video sensor is continuous 
at normal scales of observation. However, the analog video that 
is viewed on display monitors is not truly analog, since it is sam- 
pled along one space dimension and along the time dimension. 
Practical so-called analog video systems, such as television and 
monitors, represent video as a one-dimensional electrical signal 
V( t). Prior to display, a one-dimensional signal is obtained by 
sampling I ( x ,  y ,  t) along the vertical ( y )  space direction and 
along the time ( t )  direction. This is called scanning, and the re- 
sult is a series of time samples, which are complete pictures or 
fiames, each ofwhich is composed of space samples, or scan lines. 

Two types of video scanning are commonly used progres- 
sive scanning and interlaced scanning. A progressive scan traces a 
complete frame, line by line from top to bottom, at a scan rate 
of At  s/frame. High-resolution computer monitors are a good 
example, with a scan rate of At = 1/72 s. Figure 14 depicts 
progressive scanning on a standard monitor. 

A description of interlaced scanning requires that some other 
definitions be made. For both types of scanning, the refiesh rate 
is the frame rate at which information is displayed on a monitor. 
It is important that the frame rate be high enough, since oth- 
erwise the displayed video will appear to “flicker.” The human 
eye detects flicker if the refresh rate is less than -50 frames/s. 
Clearly, computer monitors (72 frames/s) exceed this rate by al- 
most 50%. However, in many other systems, notably television, 
such fast refresh rates are not possible unless spatial resolution 
is severely compromised because of bandwidth limitations. In- 
terlaced scanning is a solution to this. In P : 1 interlacing, every 
Pth line is refreshed at each frame refresh. The subframes in in- 
terlaced video are calledfields; hence P fields constitute a frame. 
The most common is 2 : 1 interlacing, which is used in standard 
television systems, as depicted in Fig. 14. In 2 : 1 interlacing, the 
two fields are usually referred to as the top and bottom fields. In 
this way, flicker is effectively eliminated provided that the field 
refresh rate is above the visual limit of -50 Hz. Broadcast tele- 
vision in the U.S. uses a frame rate of 30 Hz; hence the field rate 

Sampled Video 

Of course, the digital processing of video requires that the video 
stream be in a digital format, meaning that it must be Sam- 
pled and quantized. Video quantization is essentially the same 
as image quantization. However, video sampling involves taking 
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(a) (b) 

FIGURE 14 Video scanning: (a) Progressive video scanning. At the end of a scan (l), the 
electron gun spot snaps back to (2). A blank signal is sent in the interim. After reaching the 
end of a frame (3), the spot snaps back to (4). A synchronization pulse then signals the start 
of another frame. (b) Interlaced video scanning. Red and blue fields are alternately scanned 
left to right and top to bottom. At the end of scan (l), the spot snaps to (2). At the end ofthe 
blue field (3), the spot snaps to (4) (new field). 

is 60 Hz, which is well above the limit. The reader may wonder 
if there is a loss of visual information, since the video is being 
effectively subsampled by a factor of 2 in the vertical space di- 
mension in order to increase the apparent frame rate. In fact 
there is, since image motion may change the picture between 
fields. However, the effect is ameliorated to a significant degree 
by standard monitors and TV screens, which have screen phos- 
phors with a persistence (glow time) that just matches the frame 
rate; hence each field persists until the matching field is sent. 

Digital video is obtained either by sampling an analog video 
signal V( t ) ,  or by directly sampling the three-dimensional space- 
time intensity distribution that is incident on a sensor. In either 
case, what results is a time sequence of two-dimensional spatial 
intensity arrays, or equivalently, a three-dimensional space-time 
array. If a progressive analog video is sampled, then the sampling 
is rectangular and properly indexed in an obvious manner, as il- 
lustrated in Fig. 15. If an interlaced analog video is sampled, then 
the digital video is interlaced also as shown in Fig. 16. Of course, 
if an interlaced video stream is sent to a system that processes or 
displays noninterlaced video, then the video data must first be 
converted or deinterlaced to obtain a standard progressive video 
stream before the accepting system will be able to handle it. 

Video Transmission 

of digital video streams (without compression) that match the 
current visual resolution of current television systems exceeds 
100 megabitds (mbps). Proposed digital television formats such 
as HDTV promise to multiply this by a factor of at least 4. By con- 
trast, the networks that are currently available to handle digital 
data are quite limited. Conventional telephone lines (POTS) de- 
livers only 56 kilobitds (kbps), although digital subscriber lines 
(DSLs) promise to multiply this by a factor of 30 or more. Sim- 
ilarly, ISDN (Integrated Services Digital Network) lines that are 
currently available allow for data bandwidths equal to 64p kbps, 
where 1 5 p 5 30, which falls far short of the necessary data 
rate to handle full digital video. Dedicated T1 lines (1.5 mbps) 
also handle only a small fraction of the necessary bandwidth. 
Ethernet and cable systems, which currently can handle as much 
as 1 gigabit/s (gbps) are capable of handling raw digital video, 
but they have problems delivering multiple streams over the 
same network. The problem is similar to that of delivering large 
amounts of water through small pipelines. Either the data rate 
(water pressure) must be increased, or the data volume must be 
reduced. 

Fortunately, unlike water, digital video can be compressed very 
effectively because of the redundancy inherent in the data, and 
because of an increased understanding of what components in 
the video stream are actually visible. Because of many years of 
research into image and video compression, it is now possible to 

The data volume of digital video is usually described in terms of 
bandwidth or bit rate. As described in Chapter 6.1, the bandwidth 
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FIGURE 15 A single frame from a sampled progressive video sequence. 
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FIGURE 16 A single frame (two fields) from a sampled 2 : 1 interlaced video 
sequence. 
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transmit digital video data over a broad spectrum of networks, 
and we may expect that digital video will arrive in a majority of 
homes in the near future. Based on research developments along 
these lines, a number of world standards have recently emerged, 
or are under discussion, for video compression, video syntax, 
and video formatting. The use of standards allows for a common 
protocol for video and ensures that the consumer will be able to 
accept the same video inputs with products from different man- 
ufacturers. The current and emerging video standards broadly 
extend standards for still images that have been in use for a num- 
ber ofyears. Several chapters are devoted to describingthese stan- 
dards, while others deal with emerging techniques that may effect 
future standards. It is certain, in any case, that we have entered a 
new era in which digital visual data will play an important role 
in education, entertainment, personal communications, broad- 
cast, the Internet, and many other aspects of daily life. 

Objectives of this Handbook 

The goals of this Handbook are ambitious, since it is intended to 
reach a broad audience that is interested in a wide variety of im- 
age and video processing applications. Moreover, it is intended 
to be accessible to readers that have a diverse background, and 
that represent a wide spectrum of levels of preparation and en- 
gineering or computer education. However, a Handbook format 
is ideally suited for this multiuser purpose, since it dows for a 
presentation that adapts to the reader’s needs. In the early part 
of the Handbook we present very basic material that is easily 
accessible even for novices to the image processing field. These 
chapters are also useful for review, for basic reference, and as 
support for later chapters. In every major section of the Hand- 
book, basic introductory material is presented, as well as more 
advanced chapters that take the reader deeper into the subject. 

Unlike textbooks on image processing, the Handbook is there- 
fore not geared toward a specified level of presentation, nor does 
it uniformly assume a specific educational background. There 
is material that is available for the beginning image processing 
user, as well as for the expert. The Handbook is also unlike a 
textbook in that it is not limited to a specific point of view given 
by a single author. Instead, leaders from image and video pro- 
cessing education, industry, and research have been called upon 
to explain the topical material from their own daily experience. 
By calling upon most of the leading experts in the field, we have 
been able to provide a complete coverage of the image and video 
processing area without sacrificing any level of understanding of 
any particular area. 

Because of its broad spectrum of coverage, we expect that the 
Handbook oflmage and Video Processingwill serve as an excellent 
textbook as well as reference. It has been our objective to keep 
the student’s needs in mind, and we believe that the material 
contained herein is appropriate to be used for classroom pre- 
sentations ranging from the introductory undergraduate level, 
to the upper-division undergraduate, to the graduate level. Al- 
though the Handbook does not include “problems in the back,” 

this is not a drawback since the many examples provided in 
every chapter are sufficient to give the student a deep under- 
standing of the function of the various image and video pro- 
cessing algorithms. This field is very much a visual science, and 
the principles underlying it are best taught with visual examples. 
Of course, we also foresee the Handbook as providing easy refer- 
ence, background, and guidance for image and video processing 
professionals working in industry and research. 

Our specific objectives are to 

provide the practicing engineer and the student with 
a highly accessible resource for learning and using im- 
agehideo processing algorithms and theory 
provide the essential understanding of the various image 
and video processing standards that exist or are emerging, 
and that are driving today’s explosive industry 
provide an understanding of what images are, how they are 
modeled, and give an introduction to how they are perceived 
provide the necessary practical background to allow the 
engineer student to acquire and process his or her own 
digital image or video data 
provide a diverse set of example applications, as separate 
complete chapters, that are explained in sufficient depth 
to serve as extensible models to the reader’s own potential 
applications 

The Handbook succeeds in achieving these goals, primarily be- 
cause of the many years of broad educational and practical ex- 
perience that the many contributing authors bring to bear in 
explaining the topics contained herein. 

Organization of the Handbook 

Since this Handbook is emphatically about processingirnages and 
video, the next section is immediately devoted to basic algo- 
rithms for image processing, instead of surveying methods and 
devices for image acquisition at the outset, as many textbooks 
do. Section 2 is divided into three chapters, which respectively 
introduce the reader to the most fundamental two-dimensional 
image processing techniques. Chapter 2.1 lays out basic methods 
for gray-level image processing, which includes point operations, 
the image histogram, and simple image algebra. The methods 
described there stand alone as algorithms that can be applied to 
most images, but they also set the stage and the notation for the 
more involved methods discussed in later chapters. Chapter 2.2 
describes basic methods for image binarization and for binary 
image processing, with emphasis on morphological binary im- 
age processing. The algorithms described there are among the 
most widely used in applications, especially in the biomedical 
area. Chapter 2.3 explains the basics of the Fourier transform 
and frequency-domain analysis, including discretization of the 
Fourier transform and discrete convolution. Special emphasis is 
placed on explaining frequency-domain concepts through visual 
examples. Fourier image analysis provides a unique opportunity 
for visualizing the meaning of frequencies as components of 
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signals. This approach reveals insights that are difficult to cap- 
ture in one-dimensional, graphical discussions. 

Section 3 of the Handbook deals with methods for correcting 
distortions or uncertainties in images and for improving image 
information by combining images taken from multiple views. 
Quite frequently the visual data that are acquired have been in 
some way corrupted. Acknowledging this and developing algo- 
rithms for dealing with it is especially critical since the human 
capacity for detecting errors, degradations, and delays in digi- 
tally delivered visual data is quite high. Image and video signals 
are derived from imperfect sensors, and the processes of digitally 
converting and transmitting these signals are subject to errors. 
There are many types of errors that can occur in image or video 
data, including, for example, blur from motion or defocus; noise 
that is added as part of a sensing or transmission process; bit, 
pixel, or frame loss as the data are copied or read; or artifacts that 
are introduced by an image or video compression algorithm. As 
such, it is important to be able to model these errors, so that nu- 
merical algorithms can be developed to ameliorate them in such 
a way as to improve the data for visual consumption. Section 3 
contains three broad categories of topics. The first is imagelvideo 
enhancement, in which the goal is to remove noise from an im- 
age while retaining the perceptual fidelity of the visual informa- 
tion; these are seen to be conflicting goals. Chapters are included 
that describe very basic linear methods; highly efficient nonlin- 
ear methods; and recently developed and very powerful wavelet 
methods; and also extensions to video enhancement. The sec- 
ond broad category is imagelvideo restoration, in which it is 
assumed that the visual information has been degraded by a dis- 
tortion function, such as defocus, motion blur, or atmospheric 
distortion, and more than likely, by noise as well. The goal is 
to remove the distortion and attenuate the noise, while again 
preserving the perceptual fidelity of the information contained 
within. And again, it is found that a balanced attack on conflict- 
ing requirements is required in solving these difficult, ill-posed 
problems. The treatment again begins with a basic, introductory 
chapter; ensuing chapters build on this basis and discuss methods 
for restoring multichannel images (such as color images); multi- 
frameimages (i.e., usinginformationfiommultipleimagestaken 
of the same scene); iterative methods for restoration; and exten- 
sions to video restoration. Related topics that are considered are 
motion detection and estimation, which is essential for handling 
many problems in video processing, and a general framework for 
regularizing ill-posed restoration problems. Finally, the third cat- 
egory involves the extraction of enriched information about the 
environment by combining images taken from multiple views of 
the same scene. This includes chapters on methods for computed 
stereopsis and for image stabilization and mosaicking. 

Section 4 of the Handbook deals with methods for image and 
video analysis. Not all images or videos are intended for direct 
human visual consumption. Instead, in many situations it is of 
interest to automate the process of repetitively interpreting the 
content of multiple images or video data through the use of an 
image or video analysis algorithm. For example, it may be desired 

to classifi parts of images or videos as being of some type, or 
it may be desired to detect or recognize objects contained in the 
data sets. If one is able to develop a reliable computer algorithm 
that consistently achieves success in the desired task, and if one 
has access to a computer that is fast enough, then a tremendous 
savings in man hours can be attained. The advantage of such a 
system increases with the number of times that the task must be 
done and with the speed with which it can be automatically ac- 
complished. Of course, problems of this type are typically quite 
difficult, and in many situations it is not possible to approach, 
or even come close to, the efficiency of the human visual system. 
However, ifthe application is specific enough, and if the process 
of image acquisition can be sufficiently controlled (to limit the 
variability of the image data), then tremendous efficiencies can 
be achieved. With some exceptions, imagelvideo analysis sys- 
tems are quite complex, but they are often composed at least in 
part of subalgorithms that are common to other imagelvideo 
analysis applications. Section 4 of this Handbook outlines some 
of the basic models and algorithms that are encountered in prac- 
tical systems. The first set of chapters deals with image models 
and representations that are commonly used in every aspect of 
imagelvideo processing. This starts with a chapter on models of 
the human visual system. Much progress has been made in recent 
years in modeling the brain and the functions of the optics and 
the neurons along the visual pathway (although much remains to 
be learned as well). Because images and videos that are processed 
are nearly always intended for eventual visual consumption by 
humans, in the design of these algorithms it is imperative that 
the receiver be taken into account, as with any communication 
system. After all, vision is very much a form of dense communi- 
cation, and images are the medium of information. The human 
eye-brain system is the receiver. This is followed by chapters on 
wavelet image representations, random field image models, im- 
age modulation models, image noise models, and image color 
models, which are referred to in many other places in the Hand- 
book. These chapters maybe thought of as a core reference section 
of the Handbook that supports the entire presentation. Methods 
for imagehide0 classification and segmentation are described 
next; these basic tools are used in a wide diversity of analysis 
applications. Complementary to these are two chapters on edge 
and boundary detection, in which the goal is finding the bound- 
aries of regions, namely, sudden changes in image intensities, 
rather than finding (segmenting out) and classifying regions di- 
rectly. The approach taken depends on the application. Finally, 
a chapter is given that reviews currently available software for 
image and video processing. 

As described earlier in this introductory chapter, image and 
video information is highly data intensive. Sections 5 and 6 of 
the Handbook deal with methods for compressing this data. Sec- 
tion 5 deals with still image compression, beginning with several 
basic chapters oflossless compression, and on several useful gen- 
eral approaches for image compression. In some realms, these 
approaches compete, but each has its advantages and subsequent 
appropriate applications. The existing JPEG standards for both 
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lossy and lossless compression are described next. Although these 
standards are quite complex, they are described in sufficient de- 
tail to allow for the practical design of systems that accept and 
transmit JPEG data sets. 

Section 6 extends these ideas to video compression, beginning 
with an introductory chapter that discusses the basic ideas and 
that uses the H.261 standard as an example. The H.261 standard, 
which is used for video teleconferencing systems, is the starting 
point for later video compression standards, such as MPEG. The 
following two chapters are on especially promising methods for 
future and emerging video compression systems: wavelet-based 
methods, in which the video data are decomposed into multi- 
ple subimages (scales or subbands), and object-based methods, 
in which objects in the video stream are identified and coded 
separately across frames, even (or especially) in the presence of 
motion. Finally, chapters on the existing MPEG-I and MPEG- 
I1 and emerging MPEG-IV and MPEG-VI1 standards for video 
compression are given, again in sufficient detail to enable the 
practicing engineer to put the concepts to use. 

Section 7 deals with image and video scanning, sampling, 
and interpolation. These important topics give the basics for 
understanding image acquisition, converting images and video 
into digital format, and for resizing or spatially manipulating 
images. Section 8 deals with the visualization of image and video 
information. One chapter focuses on the halftoning and display 
of images, and another on methods for assessing the quality of 
images, especially compressed images. 

With the recent significant activity in multimedia, of which 
image and video is the most significant component, methods 
for databasing, accesslretrieval, archiving, indexing, networking, 
and securing image and video information are of high interest. 
These topics are dealt with in detail in Section 9 of the Handbook. 

Finally, Section 10 includes eight chapters on a diverse set of 
image processing applications that are quite representative of the 
universe of applications that exist. Many of the chapters in this 
section have analysis, classification, or recognition as a main goal, 
but reaching these goals inevitably requires the use of a broad 
spectrum of imagelvideo processing subalgorithms for enhance- 
ment, restoration, detection, motion, and so on. The work that is 
reported in these chapters is likely to have significant impact on 
science, industry, and even on daily life. It is hoped that readers 
are able to translate the lessons learned in these chapters, and in 
the preceding material, into their own research or product de- 
velopment workin image and/or video processing. For students, 
it is hoped that they now possess the required reference material 
that will d o w  them to acquire the basic knowledge to be able to 
begin a research or development career in this fast-moving and 
rapidly growing field. 
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1 Introduction 
This Chapter, and the two that follow, describe the most com- 
monly used and most basic tools for digital image process- 
ing. For many simple image analysis tasks, such as contrast 
enhancement, noise removal, object location, and frequency 
analysis, much of the necessary collection of instruments can 
be found in Chapters 2.1-2.3. Moreover, these chapters sup- 
ply the basic groundwork that is needed for the more extensive 
developments that are given in the subsequent chapters of the 
Handbook. 

In this chapter, we study basic gray-level digital image process- 
ing operations. The types of operations studied fall into three 
classes. 

The first are point operations, or image processing operations 
that are applied to individual pixels only. Thus, interactions and 
dependencies between neighboring pixels are not considered, 
nor are operations that consider multiple pixels simultaneously 
to determine an output. Since spatial information, such as a 
pixel’s location and the values of its neighbors, are not consid- 
ered, point operations are defined as functions of pixel intensity 
only. The basic tool for understanding, analyzing, and design- 
ing image point operations is the image histogram, which will be 
introduced below. 
Copyright @ ZOO0 by AcademicPress. 
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The second class includes arithmetic operations between im- 
ages of the same spatial dimensions. These are also point op- 
erations in the sense that spatial information is not considered, 
although information is shared between images on a pointwise 
basis. Generally, these have special purposes, e.g., for noise re- 
duction and change or motion detection. 

The third class of operations are geometric image operations. 
These are complementary to point operations in the sense that 
they are not defined as functions of image intensity. Instead, 
they are functions of spatial position only. Operations of this 
type change the appearance of images by changing the coordi- 
nates of the intensities. This can be as simple as image translation 
or rotation, or it may include more complex operations that dis- 
tort or bend an image, or “morph” a video sequence. Since our 
goal, however, is to concentrate on digital image processing of 
real-world images, rather than the production of special effects, 
only the most basic geometric transformations will be consid- 
ered. More complex and time-varying geometric effects are more 
properly considered within the science of computer graphics. 

2 Notation 

Point operations, algebraic operations, and geometric oper- 
ations are easily defined on images of any dimensionality, 

21 
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including digital video data. For simplicity of presentation, we 
will restrict our discussion to two-dimensional images only. The 
extensions to three or higher dimensions are not difficult, es- 
pecially in the case of point operations, which are independent 
of dimensionality. In fact, spatialhemporal information is not 
considered in their definition or application. 

We will also only consider monochromatic images, since ex- 
tensions to color or other multispectral images is either trivial, 
in that the same operations are applied identically to each band 
(e.g., R, G, B), or they are defined as more complex color space 
operations, which goes beyond what we want to cover in this 
basic chapter. 

Suppose then that the single-valued image f(n) to be consid- 
ered is defined on a two-dimensional discrete-space coordinate 
system n = (nl, nz). The image is assumed to be of finite sup- 
port, with image domain [0, N - 11 x [0, M - 11. Hence the 
nonzero image data can be contained in a matrix or array of 
dimensions N x M (rows, columns). This discrete-space image 
will have originated by sampling a continuous image f ( x ,  y) 
(see Chapter 7.1). Furthermore, the image f(n) is assumed to 
be quantized to K levels {0, . . . , K - 1); hence each pixel value 
takes one of these integer values (Chapter 1.1). For simplicity, 
we will refer to these values as gray levels, reflecting the way in 
which monochromatic images are usually displayed. Since f(n) 
is both discrete-space and quantized, it is digital. 

3 Image Histogram 

The basic tool that is used in designing point operations on 
digital images (and many other operations as well) is the image 
histogram. The histogram Hf of the digital image f is a plot or 
graph ofthefrequency ofoccurrenceofeachgraylevelin f. Hence, 
Hf is a one-dimensional function with domain (0, . . . , K - 1) 
and possible range extending from 0 to the number of pixels in 
the image, NM. 

The histogram is given explicitly by 

i f f  contains exactly J occurrences of gray level k, for each 
k = 0, . . . , K - 1. Thus, an algorithm to compute the image his- 
togram involves a simple counting of gray levels, which can be 

accomplished even as the image is scanned. Every image pro- 
cessing development environment and software library contains 
basic histogram computation, manipulation, and display rou- 
tines (Chapter 4.12). 

Since the histogram represents a reduction of dimensional- 
ity relative to the original image f ,  information is lost - the 
image f cannot be deduced from the histogram Hf except in 
trivial cases (when the image is constant valued). In fact, the 
number of images that share the same arbitrary histogram Hf 
is astronomical. Given an image f with a particular histogram 
Hf, every image that is a spatial shuffling of the gray levels of f 
has the same histogram Hf. 

The histogram Hf contains no spatial information about f - 
it describes the frequency of the gray levels in f and nothing 
more. However, this information is still very rich, and many use- 
ful image processing operations can be derived from the image 
histogram. Indeed, a simple visual display of Hf reveals much 
about the image. By examining the appearance of a histogram, it 
is possible to ascertain whether the gray levels are distributed pri- 
marily at lower (darker) gray levels, or vice versa. Although this 
can be ascertained to some degree by visual examination of the 
image itself, the human eye has a tremendous ability to adapt 
to overall changes in luminance, which may obscure shifts in 
the gray-level distribution. The histogram supplies an absolute 
method of determining an image’s gray-level distribution. 

For example, the average optical density, or AOD, is the basic 
measure of an image’s overall average brightness or gray level. It 
can be computed directly from the image: 

or it can be computed from the image histogram: 

0 gray level k K-1 

K-1 

NM k=O 
AOD(f) = - kHf(k). (3) 

The AOD is a useful and simple meter for estimating the center 
of an image’s gray-level distribution. A target value for the AOD 
might be specified when designing a point operation to change 
the overall gray-level distribution of an image. 

Figure 1 depicts two hypothetical image histograms. The one 
on the left has a heavier distribution of gray levels close to zero 

gray level k K- 1 

FIGURE 1 
(right) gray levels. It is possible that these images are underexposed and overexposed, respectively. 

Histograms of images with gray-level distribution skewed toward darker (left) and brighter 
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FIGURE 2 
toward the left, and the image appears slightly underexposed. 

The digital image “students” (left) and its histogram (right). The gray levels of this image are skewed 

(and a low AOD), while the one on the right is skewed toward 
the right (a high AOD). Since image gray levels are usually dis- 
played with lower numbers’ indicating darker pixels, the image 
on the left corresponds to a predominantly dark image. This may 
occur if the image f was originally underexposed prior to digi- 
tization, or if it was taken under poor lighting levels, or perhaps 
the process of digitization was performed improperly. A skewed 
histogram often indicates a problem in gray-level allocation. The 
image on the right may have been overexposed or taken in very 
bright light. 

Figure 2 depicts the 256 x 256 (N= M =  256) gray-level 
digital image “students” with a gray-scale range {0, . . . ,255}, 
and its computed histogram. Although the image contains a 
broad distribution of gray levels, the histogram is heavily skewed 
toward the dark end, and the image appears to be poorly exposed. 
It is of interest to consider techniques that attempt to “equalize” 
this distribution of gray levels. One of the important applica- 
tions of image point operations is to correct for poor exposures 
like the one in Fig. 2. Of course, there may be limitations to the 
effectiveness of any attempt to recover an image from poor ex- 
posure, since information may be lost. For example, in Fig. 2, 
the gray levels saturate at the low end of the scale, making it 
difficult or impossible to distinguish features at low brightness 
levels. 

More generally, an image may have a histogram that reveals 
a poor usage of the available gray-scale range. An image with a 

compact histogram, as depicted in Fig. 3, will often have a poor 
visual contrast or a washed-out appearance. If the gray-scale 
range is filled out, also depicted in Fig. 3, then the image tends 
to have a higher contrast and a more distinctive appearance. As 
will be shown, there are specific point operations that effectively 
expand the gray-scale distribution of an image. 

Figure 4 depicts the 256 x 256 gray-level image “books” and 
its histogram. The histogram clearly reveals that nearly all of the 
gray levels that occur in the image fall within a small range of 
gray scales, and the image is of correspondingly poor contrast. 

It is possible that an image may be taken under correct lighting 
and exposure conditions, but that there is still a skewing of the 
gray-level distribution toward one end of the gray-scale or that 
the histogram is unusually compressed. An example would be 
an image of the night sky, which is dark nearly everywhere. In 
such a case, the appearance of the image may be normal but the 
histogram will be very skewed. In some situations, it may still be 
of interest to attempt to enhance or reveal otherwise difficult- 
to-see details in the image by the application of an appropriate 
point operation. 

4 Linear Point Operations on Images 

A point operation on a digital image f(n) is a function h 
of a single variable applied identically to every pixel in the 

0 gray level k K- 1 0 gray level k K-1 

FIGURE 3 Histograms of images that make poor (left) and good (right) use of the available 
gray-scale range. A compressed histogram often indicates an image with a poor visual contrast. 
A well-distributed histogram often has a higher contrast and better visibility of detail. 
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FIGURE 4 
range. 

Digital image “books” (left) and its histogram (right). The image makes poor use ofthe available gray-scale 

image, thus creating a new, modified image g(n). Hence at each 
coordinate n, 

of gray level: 

The form of the function h is determined by the task at hand. 
However, since each output g(n) is a function of a single pixel 
value only, the effects that can be obtained by a point opera- 
tion are somewhat limited. Specifically, no spatial information 
is utilized in Eq. (4), and there is no change made in the spatial 
relationships between pixels in the transformed image. Thus, 
point operations do not effect the spatial positions of objects 
in an image, nor their shapes. Instead, each pixel value or gray 
level is increased or decreased (or unchanged) according to the 
relation in Eq. (4). Therefore, a point operation h does change 
the gray-level distribution or histogram of an image, and hence 
the overall appearance of the image. 

Of course, there is an unlimited variety of possible effects that 
can be produced by selection of the function h that defines the 
point operation of Eq. (4). Of these, the simplest are the linear 
point operations, where h is taken to be a simple linear function 

Linear point operations can be viewed as providing a gray-level 
additive offset L and a gray-level multiplicative scaling P of the 
image f .  Offset and scaling provide different effects, and so we 
will consider them separately before examining the overall linear 
point operation of Eq. ( 5 ) .  

The saturation conditions Ig(n)l < 0 and 1g(n)l > K - 1 are 
to be avoided if possible, since the gray levels are then not prop- 
erly defined, which can lead to severe errors in processing or 
display of the result. The designer needs to be aware of this so 
steps can be taken to ensure that the image is not distorted by 
values falling outside the range. If a specific wordlength has been 
allocated to represent the gray level, then saturation may result in 
an overflow or underflow condition, leading to very large errors. 
A simple way to handle this is to simply clip those values falling 
outside of the allowable gray-scale range to the endpoint values. 
Hence, if Ig(no) I < 0 at some coordinate no, then set Ig(n0) I = 0 
instead. Likewise, if Ig(no)l > K - 1, then fix Ig(no)l= K - 1. 

FIGURE 5 Effect of additive offset on the image histogram. Top: original image histogram; 
bottom: positive (left) and negative (right) offsets shift the histogram to the right and to the 
left, respectively. 
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FIGURE 6 
histogram to the right at gray level 255. 

Left: Additive offset of the image of students in Fig. 2 by amount 60. Observe the dipping spike in the 

Of course, the result is no longer strictly a linear point operation. 
Care must be taken, since information is lost in the clipping op- 
eration, and the image may appear artificially 
if whole regions become clipped. 

4.1 Additive Image Offset 
Suppose P = 1 and L is an integer satisfying 
additive image ofset has the form 

lat in some areas 

Here we have prescribed a range of values that L can take. We 
have taken L to be an integer, since we are assuming that images 
are quantized into integers in the range {0, . . . , K - 1). We have 
also assumed that I L I falls in this range, since otherwise all of the 
values of g(n) will fall outside the allowable gray-scale range. 

In Eq. (6 ) ,  if L > 0, then g(n) will be a brightened version 
of the image f(n). Since spatial relationships between pixels are 
unaffected, the appearance of the image will otherwise be essen- 
tially the same. Likewise, if L < 0, then g(n) will be a dimmed 
version of the f(n). The histograms of the two images have a 

simple relationship: 

Thus, an offset L corresponds to a shift of the histogram by 
amount L to the left or to the right, as depicted in Fig. 5. 

Figures 6 and 7 show the result of applying an additive offset 
to the images of students and books in Figs. 2 and 4, respectively. 
In both cases, the overall visibility of the images has been some- 
what increased, but there has not been an improvement in the 
contrast. Hence, while each image as a whole is easier to see, the 
details in the image are no morevisible than they were in the orig- 
inal. Figure 6 is a good example of saturation; a large number of 
gray levels were clipped at the high end (gray-level 255). In this 
case, clipping did not result in much loss of information. 

Additive image offsets can be used to calibrate images to a 
given average brightness level. For example, suppose we desire to 
compare multiple images fi, f2, . . . , fn of the same scene, taken 
at different times. These might be surveillance images taken of a 
secure area that experiences changes in overall ambient illumi- 
nation. These variations could occur because the area is exposed 
to daylight. 
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FIGURE 7 Left: Additive offset of the image of books in Fig. 4 by amount 80. 
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FIGURE 8 Effects of multiplicative image scaling on the histogram. If P > 1, 
the histogram is expanded, leading to more complete use of the gray-scale range. 
If P < 1, the histogram is contracted, leading to possible information loss and 
(usually) a less striking image. 

A simple approach to counteract these effects is to equalize 
the AODs of the images. A reasonable AOD is the gray-scale 
center K / 2 ,  although other values may be used depending on 
the application. Letting L ,  = AOD( f,), for m = 1, . . . , n, the 
“AOD-equalized” images g1,g2, . . . , gn are given by 

gm(n) = f m ( n >  - L m  + K / 2 .  ( 8 )  

The resulting images then have identical AOD K / 2 .  

4.2 Multiplicative Image Scaling 
Next we consider the scaling aspect of linear point operations. 
Suppose that L = 0 and P > 0. Then, a multiplicative image scal- 
ing by factor P is given by 

Here, P is assumed positive since g ( n )  must be positive. Note 
that we have not constrained P to be an integer, since this would 
usually leave few useful values of P; for example, even taking 
P = 2 will severely saturate most images. If an integer result is 

4000 
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0 

required, then a practical definition for the output is to round 
the result in Eq. (9): 

(10) g(n> = INT[Pf(n) + 0.51, 

where INT[ R ]  denotes the nearest integer that is less than or 
equal to R. 

The effect that multiplicative scaling has on an image depends 
on whether P is larger or smaller than one. If P > 1, then the gray 
levels of g will cover a broader range than those of f. Conversely, 
if P < 1, then g will have a narrower gray-level distribution than 
f. In terms of the image histogram, 

Hg{INTIPk + 0.5 ] }  = Hf(k). (11) 

Hence, multiplicative scaling by a factor P either stretches or 
compresses the image histogram. Note that for quantized images, 
it is not proper to assume that Eq. (11) implies Hg(k) = 
Hf(k/P), since the argument of Hf(k/P) may not be an integer. 

Figure 8 depicts the effect of multiplicative scaling on a hypo- 
thetical histogram. For P > 1, the histogram is expanded (and 
hence, saturation is quite possible), while for P < 1, the his- 
togram is contracted. If the histogram is contracted, then mul- 
tiple gray levels in f may map to single gray levels in g ,  since 
the number of gray levels is finite. This implies a possible loss of 
information. If the histogram is expanded, then spaces may ap- 
pear between the histogram bins where gray levels are not being 
mapped. This, however, does not represent a loss of information 
and usually will not lead to visual information loss. 

As a rule of thumb, histogram expansion often leads to a 
more distinctive image that makes better use of the gray-scale 
range, provided that saturation effects are not visually noticeable. 
Histogram contraction usually leads to the opposite: an image 
with reduced visibility of detail that is less striking. However, 
these are only rules of thumb, and there are exceptions. An im- 
age may have a gray-scale spread that is too extensive, and it may 
benefit from scaling with P < 1. 

Figure 9 shows the image of students following a multi- 
plicative scaling with P = 0.75, resulting in compression of the 

FIGURE 9 Histogram compression by multiplicative image scaling with P = 0.75. The resulting image is less distinc- 
tive. Note also the regularly spaced tall spikes in the histogram; these are gray levels that are being “stacked,” resulting in 
a loss of information, since they can no longer be distinguished. 
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FIGURE 10 Histogram expansion by multiplicative image scaling with P = 2.0. The resulting image is much more 
visually appealing. Note the regularly spaced gaps in the histogram that appear when the discrete histogram values are 
spread out. This does not imply a loss of information or visual fidelity. 

histogram. The resulting image is darker and less contrasted. 
Figure 10 shows the image of books following scaling with P = 2. 
In this case, the resulting image is much brighter and has a bet- 
ter visual resolution of gray levels. Note that most of the high 
end of the gray-scale range is now used, although the low end 
is not. 

4.3 Image Negative 
The first example of a linear point operation that uses both scal- 
ing and offset is the image negative, which is given by P = - 1 
and L = K - 1. Hence 

and 

Scaling by P = -1 reverses (flips) the histogram; the additive 
offset L = K - 1 is required so that all values of the result 

are positive and fall in the allowable gray-scale range. This op- 
eration creates a digital negative image, unless the image is al- 
ready a negative, in which case a positive is created. It should be 
mentioned that unless the digital negative of Eq. (12) is being 
computed, P > 0 in nearly every application of linear point 
operations. 

An important application of Eq. (12) occurs when a negative 
is scanned (digitized), and it is desired to view the positive image. 
Figure 11 depicts the negative image associated with “students.” 
Sometimes, the negative image is viewed intentionally, when the 
positive image itself is very dark. A common example of this is 
for the examination of telescopic images of star fields and faint 
galaxies. In the negative image, faint bright objects appear as 
dark objects against a bright background, which can be easier 
to see. 

4.4 Full-scale Histogram Stretch 
We have already mentioned that an image that has a broadly 
distributed histogram tends to be more visually distinctive. The 
full-scale histogram stretch, which is also often called a contrast 
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FIGURE 11 Example of an image negative with the resulting reversed histogram. 
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FIGURE 12 Full-scale histogram stretch of the image of books. 

stretch, is a simple linear point operation that expands the im- 
age histogram to fill the entire available gray-scale range. This is 
such a desirable operation that the full-scale histogram stretch 
is easily the most common linear point operation. Every image 
processing programming environment and library contains it as 
a basic tool. Many image display routines incorporate it as a ba- 
sic feature. Indeed, commercially available digital video cameras 
for home and professional use generally apply a full-scale his- 
togram stretch to the acquired image before being stored in cam- 
era memory. It is called automatic gain control (AGC) on these 
devices. 

The definition of the multiplicative scaling and additive offset 
factors in the full-scale histogram stretch depend on the image 
f. Suppose that f has a compressed histogram with maximum 
gray-level value B and minimum value A, as shown in Fig. 8 
(top): 

A = min{f(n)}, n B = max{f(n)}. n (14) 

The goal is to find a linear point operation of the form of Eq. (5) 
that maps gray levels A and B in the original image to gray levels 
0 and K - 1 in the transformed image. This can be expressed in 
two linear equations: 

P A + L = O  (15) 

and 

P B +  L = K - 1 (16) 

in the two unknowns (P, L ) ,  with solutions 

p =  (E) 
B - A  

and 

L = - A ( - )  K - 1  
B - A  

Hence, the overall full-scale histogram stretch is given by 

We make the shorthand notation FSHS, since Eq. (19) will prove 
to be commonly useful as an addendum to other algorithms. 
The operation in Eq. (19) can produce dramatic improvements 
in the visual quality of an image suffering from a poor (narrow) 
gray-scale distribution. Figure 12 shows the result of applying the 
FSHS to the images of books. The contrast and visibility of the 
image was, as expected, greatly improved. The accompanying 
histogram, which now fills the available range, also shows the 
characteristics gaps of an expanded discrete histogram. 

If the image f already has a broad gray-level range, then the 
histogram stretch may produce little or no effect. For example, 
the image of students (Fig. 2) has gray scales covering the en- 
tire available range, as seen in the histogram accompanying the 
image. Therefore, Eq. (19) has no effect on “students.” This is 
unfortunate, since we have already commented that “students” 
might benefit from a histogram manipulation that would re- 
distribute the gray level densities. Such a transformation would 
have to nonlinearly reallocate the image’s gray-level values. Such 
nonlinear point operations are described next. 

5 Nonlinear Point Operations on Images 

We now consider nonlinear point operations of the form 

where the function h is nonlinear. Obviously, this encompasses 
a wide range of possibilities. However, there are only a few func- 
tions h that are used with any great degree of regularity. Some 
of these are functional tools that are used as part of larger, mul- 
tistep algorithms, such as absolute value, square, and square- 
root functions. One such simple nonlinear function that is very 
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FIGURE 13 Logarithmic gray-scale range compression followed by FSHS applied to the image of students. 

commonly used is the logarithmic point operation, which we 
describe in detail. 

5.1 Logarithmic Point Operations 
Assuming that the image f(n) is positive valued, the logarithmic 
point operation is defined by a composition of two operations: a 
point logarithmic operation, followed by a full-scale histogram 
stretch 

Adding unity to the image avoids the possibility of taking the 
logarithm of zero. The logarithm itself acts to nonlinearly com- 
press the gray-level range. All of the gray level is compressed 
to the range [0, log(K)]. However, larger (brighter) gray levels 
are compressed much more severely than are smaller gray lev- 
els. The subsequent FSHS operation then acts to linearly expand 
the log-compressed gray levels to fill the gray-scale range. In the 
transformed image, dim objects in the original are now allo- 
cated a much larger percentage of the gray-scale range, hence 
improving their visibility. 

The logarithmic point operation is an excellent choice for 
improving the appearance of the image of students, as shown in 
Fig. 13. The original image (Fig. 2) was not a candidate for FSHS 
because of its broad histogram. The appearance of the original 
suffers because many of the important features of the image are 
obscured by darkness. The histogram is significantly spread at 
these low brightness levels, as can be seen by comparing it to 
Fig. 2, and also by the gaps that appear in the low end of the 
histogram. This does not occur at brighter gray levels. 

Certain applications quite commonly use logarithmic point 
operations. For example, in astronomical imaging, a relatively 
fewbright pixels (stars and bright galaxies, etc.) tend to dominate 
the visual perception of the image, while much of the interest- 
ing information lies at low bright levels (e.g., large, faint neb- 
ulae). By compressing the bright intensities much more heav- 
ily, then applying FSHS, the faint, interesting details visually 
emerge. 

Later, in Chapter 2.3, the Fourier transforms of images will 
be studied. The Fourier transform magnitudes, which are of the 
same dimensionalities as images, will be displayed as intensity 
arrays for visual consumption. However, the Fourier transforms 
of most images are dominated visually by the Fourier coeffi- 
cients of a relatively few low frequencies, so the coefficients of 
important high frequencies are usually difficult or impossible to 
see. However, a point logarithmic operation usually suffices to 
ameliorate this problem, and so image Fourier transforms are 
usually displayed following the application of Eq. (21), both in 
this Handbook and elsewhere. 

5.2 Histogram Equalization 
One of the most important nonlinear point operations is histo- 
gram equalization, also called histogram flattening. The idea be- 
hind it extends that of FSHS: not only should an image fill the 
available gray-scale range, but it should be uniformly distributed 
over that range. Hence, an idealized goal is a flat histogram. Al- 
though care must be taken in applying a powerful nonlinear 
transformation that actually changes the shape of the image his- 
togram, rather than just stretching it, there are good mathemati- 
cal reasons for regarding a flat histogram as a desirable goal. In a 
certain sense,' an image with a perfectly flat histogram contains 
the largest possible amount of information or complexity. 

In order to explain histogram equalization, it will be necessary 
to make some refined definitions of the image histogram. For an 
image containing NM pixels, the normalized image histogram is 
given by 

for k = 0, . . . , K - 1. This function has the property that 

p f ( k )  = 1. 
k=O 

'In the sense of maximum entropy; see Chapter 5.1. 
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The normalized histogram p f ( k )  has a valid interpretation as 
the empirical probability density (mass function) of the gray- 
level values of image f .  In other words, if a pixel coordinate n is 
chosen at random, then pf(k) is the probability that f(n) = k: 

We also define the cumulative normalized image histogram to 
P f W  = Prtf(n) = kl.  

be 
r 

P f ( r )  = p f ( k ) ;  r = 0, . . . , K - 1. (24) 
k=O 

The function P f ( r )  is an empirical probability distribution 
function; hence it is a nondecreasing function, and also 
P f ( K  - 1) = 1. It has the probabilistic interpretation that for 
a randomly selected image coordinate n, P f ( r )  = Pr{ f (n) 5 r } .  
From Eq. (24) it is also true that 

~ f ( k )  = Pf(k) - Pf(k - 1); k = 0, . . . , K - 1, (25) 

so Pf(k) and pf(k) can be obtained from each other. Both 
are complete descriptions of the gray-level distribution of the 
image f .  

To understand the process of digital histogram equalization, we 
first explain the process by supposing that the normalized and 
cumulative histograms are functions of continuous variables. We 
will then formulate the digital case of an approximation of the 
continuous process. Hence, suppose that p f ( x )  and P f ( x )  are 
functions of a continuous variable x .  They may be regarded as 
image probability density function (pdf) and cumulative distri- 
bution function (cdf), with relationship p f ( x )  = dPf(x)/dx. 
We will also assume that Pyl exists. Since Pf is nondecreasing, 
this is either true or Pj-' can be defined by a convention. In this 
hypothetical continuous case, we claim that the image 

FSHS(g) (26) 

where 

g = Pf(f) (27) 

has a uniform (flat) histogram. In Eq. (26), Pf(f) denotes that 

Pf is applied on a pixelwise basis to f :  

for all n. Since Pf is a continuous function, Eqs. (26)-(28) rep- 
resent a smooth mapping of the histogram of image f to an 
image with a smooth histogram. At first, Eq. (27) may seem 
confusing since the function Pf that is computed from f is then 
applied to f .  To see that a flat histogram is obtained, we use the 
probabilistic interpretation of the histogram. The cumulative 
histogram of the resulting image g is 

P g ( x )  = Prig 5 XI = Pr{Pf(f) i 4 
= Pr{f 5 Pj-'(x)} = Pf{Pj-'(x)} = x 

for 0 5 x 5 1. Finally, the normalized histogram of g is 

(29) 

p g ( x )  = dPg(x)/dx = 1 (30) 

for 0 i x 5 1. Since p g ( x )  is defined only for 0 i x i 1, the 
FSHS in Eq. (26) is required to stretch the flattened histogram 
to fill the gray-scale range. 

To flatten the histogram of a digital image f ,  first compute the 
discrete cumulative normalized histogram Pf (k) , apply Eq. (28) 
at each n, and then Eq. (26) to the result. However, while an 
image with a perfectly flat histogram is the result in the ideal 
continuous case outlined herein, in the digital case the output 
histogram is only approximately flat, or more accurately, more 
flat than the input histogram. This follows since Eqs. (26)-(28) 
collectively are a point operation on the image f ,  so every oc- 
currence of gray level k maps to Pf(k) in g .  Hence, histogram 
bins are never reduced in amplitude by Eqs. (26)-(28), although 
they may increase if multiple gray levels map to the same value 
(thus destroying information). Hence, the histogram cannot be 
truly equalized by this procedure. 

Figures 14 and 15 show histogram equalization applied to our 
ongoing example images of students and books, respectively. 
Both images are much more striking and viewable than the orig- 
inal. As can be seen, the resulting histograms are not really flat; 
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FIGURE 14 Histogram equalization applied to the image of students. 
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FIGURE 15 Histogram equalization applied to the image of books. 

it is flatter in the sense that the histograms are spread as much 
as possible. However, the heights of peaks are not reduced. As is 
often the case with expansive point operations, gaps or spaces 
appear in the output histogram. These are not a problem unless 
the gaps become large and some of the histogram bins become 
isolated. This amounts to an excess of quantization in that range 
of gray levels, which may result in false contouring (Chapter 1.1). 

5.3 Histogram Shaping 
In some applications, it is desired to transform the image into 
one that has a histogram of a specific shape. The process of his- 
togram shaping generalizes histogram equalization, which is the 
special case in which the target shape is flat. Histogram shaping 
can be applied when multiple images of the same scene, but taken 
under mildly different lighting conditions, are to be compared. 
This extends the idea of AOD equalization described earlier in 
this chapter. When the histograms are shaped to match, the com- 
parison may exclude minor lighting effects. Alternately, it may 
be that the histogram of one image is shaped to match that of an- 
other, again usually for the purpose of comparison. Or it might 
simply be that a certain histogram shape, such as a Gaussian, 
produces visually agreeable results for a certain class of images. 

Histogram shaping is also accomplished by a nonlinear point 
operation defined in terms of the empirical image probabili- 
ties or histogram functions. Again, exact results are obtained in 
the hypothetical continuous-scale case. Suppose that the target 
(continuous) cumulative histogram function is Q(x), and that 
Q-’ exists. Then let 

where both functions in the composition are applied on a pixel- 
wise basis. The cumulative histogram of g is then 

as desired. Note that the FSHS is not required in this instance. Of 

0 

course, Eq. (32) can only be approximated when the image f is 
digital. In such cases, the specified target cumulative histogram 
function Q(k) is discrete, and some convention for defining Q-‘ 
should be adopted, particularly if Q is computed from a target 
image and is unknown in advance. One common convention is 
to define 

(33) 

As an example, Fig. 16 depicts the result of shaping the his- 
togram of “books” to match the shape of an inverted “V” cen- 
tered at the middle gray level and extending across the entire gray 
scale. Again, a perfect V is not produced, although an image of 
very high contrast is still produced. Instead, the histogram shape 
that results is a crude approximation to the target. 

Q-’(k) = min(s: Q(s) 1 k}. 

6 Arithmetic Operations between Images 

We now consider arithmetic operations defined on multi- 
ple images. The basic operations are pointwise image addi- 
tionlsubtraction and pointwise image multiplicationldivision. 
Since digital images are defined as arrays of numbers, these 
operations have to be defined carefully. 

Suppose we have n images of dimensions N x M f i ,  f i ,  . . . , 
fn. It is important that they be of the same dimensions since 
we will be defining operations between corresponding array el- 
ements (having the same indices). 

The sum of n images is given by 
n 

(34) 
m=l 

while for any two images fr, fs the image difference is 

fr - fs. (35) 

The pointwise product of the n images f1, . . . , fn is denoted 

(36) 

bY 
n 

fi 8 f i  8 ... 8 fn = n fm, 
m=l 
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FIGURE 16 Histogram of the image of books shaped to match a "V". 

where in Eq. (36) we do not infer that the matrix product is 
being taken. Instead, the product is defined on a pointwise basis. 
Hence g = f1 63 fi 63. 63 fn ifand onlyif 

g(n) = fi(n)fi(n)*** f"W (37) 

for every n. In order to clarify the distinction between matrix 
product and pointwise array product, we introduce the special 
notation 63 to denote the pointwise product. Given two images 
fr, fs the pointwise image quotient is denoted 

g = fTAfS (38) 

if for every n it is true that 5 (n) # 0 and 

The pointwise matrix product and quotient are mainly useful 
when Fourier transforms of images are manipulated, as will be 
seen in Chapter 2.3. However, the pointwise image sum and 
difference, despite their simplicity, have important applications 
that we will examine next. 

6.1 Image Averaging for Noise Reduction 
Images that occur in practical applications invariably suffer from 
random degradations that are collectively referred to as noise. 
These degradations arise from numerous sources, including ra- 
diation scatter from the surface before the image is sensed; elec- 
trical noise in the sensor or camera; channel noise as the image is 
transmitted over a communication channel; bit errors after the 
image is digitized, and so on. A good review of various image 
noise models is given in Chapter 4.4 of this Handbook. 

The most common generic noise model is additive noise, where 
a noisy observed image is taken to be the sum of an original, 
uncorrupted image g and a noise image q: 

f = g + q ,  (40) 

where q is an two-dimensional N x M random matrix, with 

elements q (n) that are random variables. Chapter 4.4 develops 
the requisite mathematics for understanding random quantities 
and provides the basis for noise filtering. In this basic chapter 
we will not require this more advanced development. Instead, 
we make the simple assumption that the noise is zero mean. If 
the noise is zero mean, then the average (or sample mean) of 
n independently occurring noise matrices 41, q2, . . . , qn tends 
toward zero as n grows large:2 

where 0 denotes the N x M matrix of zeros. 
Now suppose that we are able to obtain n images fi , fi, . . . , fn 

of the same scene. The images are assumed to be noisy versions 
of an original image g ,  where the noise is zero mean and additive: 

for m = 1, . . . , n. Hence, the images are assumed either to be 
taken in rapid succession, so that there is no motion between 
frames, or under conditions where there is no motion in the 
scene. In this way only the noise contribution varies from image 
to image. 

By averaging the multiple noisy images of Eq. (42), we find 

g ,  (43) 

*More accurately, the noise must be assumed mean ergodic, which means 
that the sample mean approaches the statistical mean over large sample sizes. 
This assumption is usually quite reasonable. The statistical mean is defined in 
Section 4.4. 
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(a) (b) (c )  

FIGURE 17 
erage of 16 frames. (Courtesy of Chris Neils of The University of Texas at Austin.) 

Example of image averaging for noise reduction. (a) Single noisy image; (b) average of four frames; (c) av- 

using Eq. (41). If a large enough number of frames are aver- 
aged together, then the resulting image should be nearly noise 
free, and hence should approximate the original image. The 
amount of noise reduction can be quite significant; one can ex- 
pect a reduction in the noise variance by a factor n. Of course, 
this is subject to inaccuracies in the model, e.g., if there is any 
change in the scene itself, or if there are any dependencies be- 
tween the noise images (in an extreme case, the noise images 
might be identical)' then the be 
limited. 

Figure 17 depicts the process of noise reduction by frame 
averaging in an actual example of confocal microscope imag- 
ing (Chapter 10.7). The image(s) are of Macroalga Valonia mi- 
crophysa, imaged with a laser scanning confocal microscope 

excitation. As can be seen, in this case the process of image av- 
eraging is quite effective in reducing the apparent noise con- 
tent and in improving the visual resolution of the object being 
imaged. 

6.2 Image Differencing for Change Detection 
Often it is of interest to detect changes that occur in images 
taken of the same scene but at different times. If the time in- 
stants are closely placed, e.g., adjacent frames in avideo sequence, 
then the goal of change detection amounts to image motion de- 
tection (Chapter 3.8). There are many applications of motion 
detection and analysis. For example, in video compression al- 
gorithms, compression performance is improved by exploiting 
redundancies that are tracked along the motion trajectories of 
image objects that are in motion. Detected motion is also use- 
ful for tracking targets, for recognizing objects by their motion, 
and for computing three-dimensional scene information from 
two-dimensional motion. 

If the time separation between frames is not small, then change 
detection can involve the discovery of gross scene changes. This 
can be useful for security or surveillance cameras, or in auto- 
mated visual inspection systems, for example. In either case, 
the basic technique for change detection is the image difference. 
Suppose that fi and fi are images to be compared. Then the 

absolute difference image 

g = Ifi - fil 

will embody those changes or differences that have occurred be- 
tween the images. At coordinates n where there has been little 
change, g(n)  will be small. Where change has occurred, g ( n )  
can be quite large. Figure 18 depicts image differencing. In the 
difference image, large changes are displayed as brighter inten- 
sity values. Since significant change has occurred, there are many 
bright intensity values. This difference image could be processed 
by an automatic change detection algorithm. A simple series of 
steps that might be taken would be to binarize the difference 
image, thus separating change from nonchange, using a thresh- 

and finally, deciding whether the change is significant enough 
to take some action. Sophisticated variations of this theme are 
currently in practical use. The histogram in Fig. 18(d) is instruc- 
tive, since it is characteristic of differenced images; many zero 
or small gray-level changes occur, with the incidence of larger 
changes falling off rapidly. 

in the noise 

(LSCM)' The dark ring is chlOroPhY' fluorescing under Ar laser old (Chapter 2.2), counting the number of high-change pixels, 

7 Geometric Image Operations 

(44) 

We conclude this chapter with a brief discussion of geometric 
image operations. Geometric image operations are, in a sense, the 
opposite of point operations: they modify the spatial positions 
and spatial relationships of pixels, but they do not modify gray- 
level values. Generally, these operations can be quite complex 
and computationally intensive, especially when applied to video 
sequences. However, the more complex geometric operations 
are not much used in engineering image processing, although 
they are heavily used in the computer graphics field. The reason 
for this is that image processing is primarily concerned with 
correcting or improving images of the real world; hence complex 
geometric operations, which distort images, are less frequently 
used. Computer graphics, however, is primarily concerned with 
creating images of an unreal world, or at least a visually modified 
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FIGURE 18 
brighter points’ signifying larger changes; (d) the histogram of (c). 

Image differencing example. (a) Original placid scene; (b) a theft is occurring! (c) the difference image with 

reality, and subsequently geometric distortions are commonly 
used in that discipline. 

A geometric image operation generally requires two steps. The 
first is a spatial mapping of the coordinates of an original image 
f to define a new image g: 

Thus, geometric image operations are defined as functions of 
position rather than intensity. The two-dimensional, two-valued 
mappingfunctiona(n) = [al(nl ,  n2), a2(nl, n2)l isusuallyde- 
fined to be continuous and smoothly changing, but the coordi- 
nates a(n) that are delivered are not generally integers. For exam- 
ple, ifa(n) = (n1 /3 ,  n2/4), then g(n) = f (n1/3, n2/4), which is 
not defined for most values of ( n l ,  n2) .  The question then is, 
which value(s) of f  are used to define g(n), when the mapping 
does not fall on the standard discrete lattice? 

Thus implies the need for the second operation: interpolation 
of noninteger coordinates a1 ( n l ,  n2) and az(nl, n2) to integer 
values, so that g can be expressed in a standard row-column 
format. There are many possible approaches for accomplishing 

interpolation; wewilllookat two of thesimplest: nearestneighbor 
interpolation, and bilinear interpolation. The first of these is too 
simplistic for many tasks, whereas the second is effective for 
most. 

7.1 Nearest-Neighbor Interpolation 
Here, the geometrically transformed coordinates are mapped to 
the nearest integer coordinates of f: 

where INT[ R ]  denotes the nearest integer that is less than or 
equal to R. Hence, the coordinates are rounded prior to assigning 
them to g. This certainly solves the problem of finding integer 
coordinates of the input image, but it is quite simplistic, and, in 
practice, it may deliver less than impressive results. For example, 
several coordinates to be mapped may round to the same values, 
creating a block of pixels in the output image of the same value. 
This may give an impression of “blocking,” or of structure that 
is not physically meaningful. The effect is particularly noticeable 
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along sudden changes in intensity, or “edges,” which may appear 
jagged following nearest neighbor interpolation. 

7.2 Bilinear Interpolation 
Bilinear interpolation produces a smoother interpolation 
than does the nearest-neighbor approach. Given four neigh- 
boring image coordinates f h o ,  n20), f(n11, m), fh, n22>, 
and f(n13, n23) -these can be the four nearest neighbors of 
f[a(n)] -then the geometrically transformed image g(n1, n2) 
is computed as 

which is a bilinear function in the coordinates (nl, n2). The bi- 
linear weights b, AI, Az, and A3 are found by solving 

Thus, g(n1, n2) is defined to be a linear combination of the 
gray levels of its four nearest neighbors. The linear combination 
defined by Eq. (48) is in fact the value assigned to g(n1, n2) when 
the best (least-squares) planar fit is made to these four neighbors. 
This process of optimal averaging produces a visually smoother 
result. 

Regardless of the interpolation approach that is used, it is 
possible that the mapping coordinates a1 (nl , nz), a2 (nl , n2) do 
not fall within the pixel ranges 

in which case it is not possible to define the geometrically trans- 
formed image at these coordinates. Usually a nominal value is 
assigned, such as g ( n )  = 0, at these locations. 

7.3 Image Translation 
The most basic geometric transformation is the image transla- 
tion, where 

where (b l ,  b2) are integer constants. In this case g(n l ,  n2) = 
f(n1 - bl, n2 - b2), which is a simple shift or translation of g 
by an amount bl in the vertical (row) direction and an amount 
b2 in the horizontal direction. This operation is used in image 
display systems, when it is desired to move an image about, and 

it is also used in algorithms, such as image convolution (Chap- 
ter 2.3), where images are shifted relative to a reference. Since 
integer shifts can be defined in either direction, there is usually 
no need for the interpolation step. 

7.4 Image Rotation 
Rotation of the image g by an angle 8 relative to the horizontal 
(nl)  axis is accomplished by the following transformations: 

al (nl, n2) = nl COS 8 - n2 sin 8, 

a2(nl, n2) = nl sine + n2  COS^. (51) 

Thesimp1estcasesare:O =90”,where [al(nl, n2), a2(nl,  n2)] = 
(-n2,n1);8 = 180”,where [al(nl,nz),u2(n1,n2>1= (-1, -n2>; 
and8=-9Oo,where[a1(nl, n2), az(n1, n2>]=(n2, -#&Since 
the rotation point is not defined here as the center of the image, 
the arguments of Eq. (51) may fall outside of the image domain. 
This may be ameliorated by applying an image translation either 
before or after the rotation to obtain coordinate values in the 
nominal range. 

7.5 Image Zoom 
The image zoom either magnifies or minifies the input image 
according to the mapping functions 

where c 2 1 and d 2 1 to achieve magnification, and t < 1 and 
d < 1 to achieve minification. If applied to the entire image, 
then the image size is also changed by a factor c(d) along the 
vertical (horizontal) direction. If only a small part of an im- 
age is to be zoomed, then a translation may be made to the 
corner of that region, the zoom applied, and then the image 
cropped. 

The image zoom is a good example of a geometric operation 
for which the type of interpolation is important, particularly at 
high magnifications. With nearest neighbor interpolation, many 
values in the zoomed image may be assigned the same gray scale, 
resultingin a severe “blotching” or “blocking” effect. The bilinear 
interpolation usually supplies a much more viable alternative. 

Figure 19 depicts a 4x zoom operation applied to the image 
in Fig. 13 (logarithmically transformed “students”). The image 
was first zoomed, creating a much larger image (16 times as 
many pixels). Tne image was then translated to a point of interest 
(selected, e.g., by a mouse), and then it was cropped to size 256 x 
256 pixels around this point. Both nearest-neighbor and bilinear 
interpolation were applied for the purpose of comparison. Both 
provide a nice close-up of the original, making the faces much 
more identifiable. However, the bilinear result is much smoother, 
and it does not contain the blocking artifacts that can make 
recognition of the image difficult. 
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(a) (b) 
FIGURE 19 
interpolation. 

Example of (4x)  image zoom followed by interpolation. (a) Nearest-neighbor interpolation; (b) bilinear 

It is important to understand that image zoom followed by 
interpolation does not inject any new information into the im- 
age, although the magnified image may appear easier to see and 
interpret. The image zoom is only an interpolation of known 
information. menting on this chapter. 
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In this second chapter on basic methods, we explain and demon- 
strate fundamental tools for the processing of binary digital im- 
ages. Binary image processing is of special interest, since an image 
in binary format can be processed with very fast logical (Boolean) 
operators. Often, a binary image has been obtained by abstract- 
ing essential information from a gray-level image, such as object 
location, object boundaries, or the presence or absence of some 
image property. 

As seen in the previous two chapters, a digital image is an 
array of numbers or sampled image intensities. Each gray level 
is quantized or assigned one of a finite set of numbers repre- 
sented by B bits. In a binary image, only one bit is assigned 
to each pixel: B = 1, implying two possible gray-level values, 
0 and 1. These two values are usually interpreted as Boolean; 
hence each pixel can take on the logical values 0 or 1, or equiva- 
lently, “true” or “false.” For example, these values might indicate 
the absence or presence of some image property in an associated 
gray-level image ofthe same size, where 1 at a given coordinate in- 
dicates the presence ofthe property at that coordinate in thegray- 
level image, and 0 otherwise. This image property is quite com- 
monly a sufficiently high or low intensity (brightness), although 
more abstract properties, such as the presence or absence of cer- 
tain objects, or smoothness or nonsmoothness, etc., might be 
indicated. 

Since most image display systems and software assume images 
of eight or more bits per pixel, the question arises as to how bi- 
nary images are displayed. Usually, they are displayed using the 
two extreme gray tones, black and white, which are ordinarily 

represented by 0 and 255, respectively, in a gray-scale display 
environment, as depicted in Fig. 1. There is no established con- 
vention for the Boolean values that are assigned to “black” and 
to “white.” In this chapter we will uniformly use 1 to represent 
black (displayed as gray-level 0) and 0 to represent white (dis- 
played as gray-level 255). However, the assignments are quite 
commonly reversed, and it is important to note that the Boolean 
values 0 and 1 have no physical significance other than what the 
user assigns to them. 

Binary images arise in a number of ways. Usually, they are 
created from gray-level images for simplified processing or for 
printing (see Chapter 8.1 on image halftoning). However, certain 
types of sensors directly deliver a binary image output. Such 
devices are usually associated with printed, handwritten, or line 
drawing images, with the input signal being entered by hand on 
a pressure sensitive tablet, a resistive pad, or a light pen. 

In such a device, the (binary) image is first initialized prior to 
image acquisition: 

at all coordinates n. When pressure, a change of resistance, or 
light is sensed at some image coordinate no, then the image is 
assigned the value 1: 

g@o> = 1 (2) 

This continues until the user completes the drawing, as depicted 
in Fig. 2. These simple devices are quite useful for entering 
engineering drawings, handprinted characters, or other binary 
graphics in a binary image format. 

Copyright @ 2000 by Academic Press. 
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2 Image Thresholding 

Usually, a binary image is obtained from a gray-level image by 
some process of information abstraction. The advantage of the 
B-fold reduction in the required image storage space is offset 
by what can be a significant loss of information in the resulting 
binary image. However, if the process is accomplished with care, 
then a simple abstraction of information can be obtained that 
can enhance subsequent processing, analysis, or interpretation 
of the image. 

The simplest such abstraction is the process of image thresh- 
olding, which can be thought of as an extreme form of gray-level 
quantization. Suppose that a gray-level image f can take K pos- 
sible gray levels 0, 1,2, . . . , K - 1. Define an integer threshold, 
T, that lies in the gray-scale range of T E (0, 1,2, . . . , K - 1). 
The process of thresholding is a process of simple comparison: 
each pixel value in f is compared to T. Based on this com- 
parison, a binary decision is made that defines the value of the 
corresponding pixel in an output binary image g:  

0 if f(n) 2 T 
1 if f (n )  < T g(n> = (3) 

Of course, the threshold T that is used is of critical importance, 
since it controls the particular abstraction of information that 
is obtained. Indeed, different thresholds can produce different 
valuable abstractions of the image. Other thresholds may pro- 
duce little valuable information at all. It is instructive to observe 
the result of thresholding an image at many different levels in se- 
quence. Figure 3 depicts the image “mandrill“ (Fig. 8 of Chapter 
1.1) thresholded at four different levels. Each produces different 
information, or in the case of Figs. 3(a) and 3(d), very little use- 

L 

FIGURE 2 Simple binary image device. 

h l  information. Among these, Fig. 3(c) probably contains the 
most visual information, although it is far from ideal. The four 
threshold values (50, 100, 150, and 200) were chosen without 
the use of any visual criterion. 

As will be seen, image thresholding can often produce a bi- 
nary image result that is quite useful for simplified processing, 
interpretation, or display. However, some gray-level images do 
not lead to any interesting binary result regardless of the chosen 
threshold T. 

Several questions arise: Given a gray-level image, how does one 
decide whether binarization of the image by gray-level thresh- 
olding will produce a useful result? Can this be decided automat- 
ically by a computer algorithm? Assuming that thresholding is 
likely to be successful, how does one decide on a threshold level 
T? These are apparently simple questions pertaining to a very 
simple operation. However, these questions turn out to be quite 
difficult to answer in the general case. In other cases, the answer 
is simpler. In all cases, however, the basic tool for understanding 
the process of image thresholding is the image histogram, which 
was defined and studied in Chapter 2.1. 

Thresholding is most commonly and effectively applied to 
images that can be characterized as having bimodal histograms. 
Figure 4 depicts two hypothetical image histograms. The one on 
the left has two clear modes; the one at the right either has a single 
mode, or two heavily overlapping, poorly separated modes. 

Bimodal histograms are often (but not always) associated with 
images that contain objects and backgrounds having a signifi- 
cantly different average brightness. This may imply bright objects 
on a dark background, or dark objects on a bright background. 
The goal, in many applications, is to separate the objects from 
the background, and to label them as object or as background. If 
the image histogram contains well-separated modes associated 
with an object and with a background, then thresholding can 
be the means for achieving this separation. Practical examples 
of gray-level images with well-separated bimodal histograms are 
not hard to find. For example, an image of machine-printed 
type (like that being currently read), or of handprinted char- 
acters, will have a very distinctive separation between object 
and background. Examples abound in biomedical applications, 
where it is often possible to control the lighting of objects and 
background. Standard bright-field microscope images of single 
or multiple cells (micrographs) typically contain bright objects 
against a darker background. In many industry applications, it 
is also possible to control the relative brightness of objects of 
interest and the backgrounds they are set against. For example, 
machine parts that are being imaged (perhaps in an automated 
inspection application) may be placed on a mechanical con- 
veyor that has substantially different reflectance properties than 
the objects. 

Given an image with a bimodal histogram, a general strategy 
for thresholding is to place the threshold T between the image 
modes, as depicted in Fig. 4(a). Many “optimal” strategies have 
been suggested for deciding the exact placement of the thresh- 
old between the peaks. Most of these are based on an assumed 
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(4 
FIGURE 3 Image “mandrill” thresholded at gray levels of (a) 50, (b) 100, (c) 150, and (d) 150. 

statistical model for the histogram, and by posing the decision of 
labeling a given pixel as “object” versus “background” as a statis- 
tical inference problem. In the simplest version, two hypotheses 
are posed 

Hi,: The pixel belongs to gray level Population 0. 
H1 : The pixel belongs to gray level Population 1. 

under the two hypotheses. If it is also known (or estimated) that 
Ho is true with probability po and that HI is true with probability 
p1 (po + p1 = I),  then the decision may be cast as a likelihood 
ratio test. If an observed pixel has gray level f(n) = k, then the 
decision may be rendered according to 

Here pixels from population 0 and 1 have conditional probability 
(4) 

density functions (pdf‘s) p f ( a  I Ha) and p j ( a  I HI),  respectively, The decision whether to assign logical 0 or 1 to a pixel can thus 

Threshold T 
H/ ( k )  

0 gray level k K-I 0 gray level k K- 1 
(a) (b) 

FIGURE 4 Hypothetical histograms: (a) well-separated modes and (b) poorly separated or indistinct 
modes.) 
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be regarded as applying a simple statistical test to each pixel. In 
relation (4), the conditional pdf‘s may be taken as the modes of a 
bimodal histogram. Algorithmically, this means that they must 
be fit to the histogram by using some criterion, such as least 
squares. This is usually quite difficult, since it must be decided 
that there are indeed two separate modes, the locations (centers) 
and widths of the modes must be estimated, and a model for the 
shape of the modes must be assumed. Depending on the assumed 
shape of the modes (in a given application, the shape might be 
predictable), specific probability models might be applied, e.g., 
the modes might be taken to have the shape of Gaussian pdf‘s 
(Chapter 4.5). The prior probabilities po and p1 are often easier 
to model, since in many applications the relative areas of object 
and background can be estimated or given reasonable values 
based on empirical observations. 

A likelihood ratio test such as relation (4) will place the im- 
age threshold T somewhere between the two modes of the im- 
age histogram. Unfortunately, any simple statistical model of 
the image does not account for such important factors as ob- 
ject/background continuity, visual appearance to a human ob- 
server, non-uniform illumination or surface reflectance effects, 
and so on. Hence, with rare exceptions, a statistical approach 
such as relation (4) will not produce as good a result as would a 
human decision maker making a manual threshold selection. 

Placing the threshold T between two obvious modes of a his- 
togram may yield acceptable results, as depicted in Fig. 4(a). 
The problem is significantly complicated, however, if the image 
contains multiple distinct modes or if the image is nonmodal 
or level. Multimodal histograms can occur when the image con- 
tains multiple objects of different average brightness on a uni- 
form background. In such cases, simple thresholding will exclude 
some objects (Fig. 5). Nonmodal or flat histograms usually im- 
ply more complex images, containing significant gray-level vari- 
ation, detail, non-uniform lighting or reflection, etc. (Fig. 5). 
Such images are often not amenable to a simple thresholding 
process, especially if the goal is to achieve figure-ground sep- 
aration. However, all of these comments are, at best, rules of 
thumb. An image with a bimodal histogram might not yield 
good results when thresholded at any level, while an image with 
a perfectly flat histogram might yield an ideal result. It is a 
good mental exercise to consider when these latter cases might 
occur. 

Figures 6-8 shows several images, their histograms, and the 
thresholded image results. In Fig. 6, a good threshold level for the 
micrograph of the cellular specimens was taken to be T = 180. 
This falls between the two large modes of the histogram (there 
are many smaller modes) and was deemed to be visually op- 
timal by one user. In the binarized image, the individual cells 
are not perfectly separated from the background. The reason 
for this is that the illuminated cells have non-uniform bright- 
ness profiles, being much brighter toward the centers. Taking the 
threshold higher ( T = 200), however, does not lead to improved 
results, since the bright background then begins to fall below 
threshold. 

Figure 7 depicts a negative (for better visualization) of a digi- 
tized mammogram. Mammography is the key diagnostic tool for 
the detection of breast cancer, and in the future, digital tools for 
mammographic imaging and analysis will be used. The image 
again shows two strong modes, with several smaller modes. The 
first threshold chosen ( T  = 190) was selected at the minimum 
point between the large modes. The resulting binary image has 
the nice result of separating the region of the breast from the 
background. However, radiologists are often interested in the 
detailed structure of the breast and in the brightest (darkest in 
the negative) areas, which might indicate tumors or microcal- 
cifications. Figure 7(d) shows the result of thresholding at the 
lower level of 125 (higher level in the positive image), successfully 
isolating much of the interesting structure. 

Generally, the best binarization results by means of thresh- 
olding are obtained by direct human operator intervention. 
Indeed, most general-purpose image processing environments 
have thresholding routines that allow user interaction. How- 
ever, even with a human picking a visually “optimal” value of T, 
thresholding rarely gives perfect results. There is nearly always 
some misclassification of object as background, and vice versa. 
For example, in the image “micrograph:’ no value of T is able 
to successfully extract the objects from the background; instead, 
most of the objects have “holes” in them, and there is a sprinkling 
of black pixels in the background as well. 

Because of these limitations of the thresholding process, it is 
usually necessary to apply some kind of region correction algo- 
rithms to the binarized image. The goal of such algorithms is 
to correct the misclassification errors that occur. This requires 
identifying misclassified background points as object points, 

FIGURE 5 
(b) nonmodal, for which the threshold selection is quite difficult or impossible. 

Hypothetical histograms: (a) Multimodal, showing the difficulty of threshold selection; 
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FIGURE 6 
and (c) and (d) resulting binarized images. 

Binarization of “micrograph”: (a) Original (b) histogram showing two threshold locations (180 and ZOO), 

and vice versa. These operations are usually applied directly to 
the binary images, although it is possible to augment the pro- 
cess by also incorporating information from the original gray- 
scale image. Much of the remainder of this chapter will be de- 
voted to algorithms for region correction of thresholded binary 
images. 

of pixels of the same binary value and connected along the hori- 
zontal or vertical directions. The algorithm can be made slightly 
more complex by also searching for diagonal connections, but 
this is usually unnecessary. A record of connected pixel groups 
is maintained in a separate label array r having the same dimen- 
sions as f ,  as the image is scanned. The following algorithm steps 
explain the process, in which the region labels used are positive 
integers. 

3 Region Labeling 

A simple but powerful tool for identifying and labeling the var- 
ious objects in a binary image is a process called region labeling, 
blob coloring, or connected component identification. It is useful 
since once they are individually labeled, the objects can be sep- 
arately manipulated, displayed, or modified. For example, the 
term “blob coloring” refers to the possibility of displaying each 
object with a different identifying color, once labeled. 

Region labeling seeks to identify connected groups of pixels 
in a binary image f that all have the same binary value. The sim- 
plest such algorithm accomplishes this by scanning the entire 
image (left to right, top to bottom), searching for occurrences 

3.1 Region Labeling Algorithm 
1. Given an N x M binary image f, initialize an associated 

N x M region label array: r (n) = 0 for all n. Also initialize 
a region number counter: k = 1. 

Then, scanning the image from left to right and top to 
bottom, for every n do the following: 

2. If f(n) = 0 then do nothing. 
3. If f(n) = 1 and also f(n - (1,O)) = f(n - (0, 1)) = 0, 

as depicted in Fig. 8(a), then set r(n) = 0 and k = k + 1. 
In this case the left and upper neighbors of f(n) do not 
belong to objects. 
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FIGURE 7 
locations (190 and 125), and ( c )  and (d) resulting binarized images. 

Binarization of “mammogram”: (a) Original negative mammogram; (b) histogram showing two threshold 

4. If f(n) = 1, f(n - (1,O)) = 1, and f(n - (0, 1)) = 0, 
Fig. 8(b), then set r(n) = r(n - (1,O)). In this case the 
upper neighbor f(n - (1,O)) belongs to the same object 
as f (n). region k. 

5. If f(n) = 1, f(n - (1,O)) = 0, and f(n - (0, 1)) = 1, 

A simple application of region labeling is the measurement 
of object area. This can be accomplished by defining a vector 
c with elements c ( k )  that are the pixel area (pixel count) of 

Fig. 8(c), thenset r(n) = r(n - (0, 1)):In thiscasetheleft 
neighbor f(n - (0, 1)) belongs to the same object as f(n). Region Counting Algorithm 

6. If f(n) = 1, and f(n - (1,O)) = f(n - (0, 1)) = 1, 
Fig. 8(d), then set r(n) = r(n - (0, 1)). If r(n - (0,  1)) # 
r(n - (1, O)), then record the labels r(n - (0, 1)) and 
r(n - (1,O)) as equivalent. In this case both the left and 
upper neighbors belong to the same object as f(n), al- 
though they may have been labeled differently. 

(a) (b) ( c )  (4 
FIGURE 8 
In each of (a)-(d), f(n) is the lower right pixel. 

Pixel neighbor relationships used in a region labeling algorithm. 

Initialize c = 0. For every n do the following: 

1. If f(n) = 0 then do nothing. 
2. If f(n) = 1, then c[r(n)] = c[r(n)] + 1. 

Another simple but powerful application of region labeling is 
the removal of minor regions or objects from a binary image. 
The ways in which this is done depends on the application. It 
maybe desired that only a single object should remain (generally, 
the largest object), or it may be desired that any object with a 
pixel area less than some minimum value should be deleted. A 
variation is that the minimum value is computed as a percentage 
ofthe largest object in the image. The following algorithm depicts 
the second possibility. 
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(a) (b) 
PIGURE 9 
ized image in Fig. 6(c)  and (b) then to the image in (a), but in the polarity-reversed mode. 

Result of applying the region labeling --counting-removal algorithms to (a) the binar- 

3.3 Minor Region Removal Algorithm 
Assume a minimum allowable object size of S pixels. For every 
n do the following. 

1. If f(n) = 0 then do nothing. 
2. If f(n) = 1 and c[r(n)] < S, then set f(n) = 0. 

Of course, all of the above algorithms can be operated in re- 
verse polarity, by interchanging 0 for 1 and 1 for 0 everywhere. 

An important application of region labelingregion count- 
ingminor region removal is in the correction of thresholded 
binary images. The application of a binarizing threshold to a 
gray-level image inevitably produces an imperfect binary image, 
with such errors as extraneous objects or holes in objects. These 
can arise from noise, unexpected objects (such as dust on a lens), 
and generally, non-uniformities in the surface reflectances and 
illuminations of the objects and background. 

Figure 9 depicts the result of sequentially applying the region 
labelinghegion countingminor region removal algorithms to 
the binarized micrograph image in Fig. 6(c). The series of algo- 
rithms was first applied to Fig. 6( c) as above to remove extraneous 
small black objects, using a size threshold of 500 pixels as shown 
in Fig. 9(a). It was then applied again to this modified image, but 
in the polarity-reversed mode, to remove the many object holes, 
this time using a threshold of 1000 pixels. The result shown in 
Fig. 9(b) is a dramatic improvement over the original binarized 
result, given that the goal was to achieve a clean separation of 
the objects in the image from the background. 

4 Binary Image Morphology 

We next turn to a much broader and more powerful class of 
binary image processing operations that collectively fall under 
the name binary image morphology. These are closely related to 
(in fact, are the same as in a mathematical sense) the gray-level 

morphological operations described in Chapter 3.3. As the name 
indicates, these operators modify the shapes of the objects in an 
image. 

4.1 Logical Operations 
The morphological operators are defined in terms of simple log- 
ical operations on local groups of pixels. The logical operators 
that are used are the simple NOT, AND, OR, and MAJ (major- 
ity) operators. Given a binary variable x, NOT( x) is its logical 
complement. Given a set of binary variables XI, . . . , x,, the op- 
eration AND(x1, . . . , x,) returns value 1 if and only if x1 = 
. . . = x, = 1 and 0 otherwise. The operation OR(x1, . . . , x,) 
returns value 0 if and only if x1 = . . . = x, = 0 and 1 other- 
wise. Finally, if n is odd, the operation MAJ( xl, . . . , x,) returns 
value 1 if and only if a majority of (XI, . . . , x,) equal 1 and 0 
otherwise. 

We observe in passing the DeMorgan’s Laws for binary arith- 
metic, specifically 

NOT[AND(xl, . . . , x,)] = OR[NOT(xl), . . . , NOT(x,)], 

NOT[OR(xl, . . . , x,)] = AND[NOT(xl), . . . , NOT(x,)], 

(5) 

(6) 

which characterizes the duality of the basic logical operators 
AND and OR under complementation. However, note that 

NOT[MAJ(xl, . . . , x, ) ]  = MAJ[NOT(xl), . . . , NOT(x,)]. 
(7) 

Hence MAJ is its own dual under complementation. 

4.2 Windows 
As mentioned, morphological operators change the shapes of 
objects by using local logical operations. Since they are local 
operators, a formal methodology must be defined for making 
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the operations occur on a local basis. The mechanism for doing 
this is the window. 

A window defines a geometric rule according to which gray 
levels are collected from the vicinity of a given pixel coordinate. 
It is called a window since it is often visualized as a moving col- 
lection of empty pixels that is passed over the image. A morpho- 
logical operation is (conceptually) defined by moving a window 
over the binary image to be modified, in such a way that it is 
eventually centered over every image pixel, where a local logical 
operation is performed. Usually this is done row by row, col- 
umn by column, although it can be accomplished at every pixel 
simultaneously, if a massively parallel-processing computer is 
used. 

Usually, a window is defined to have an approximate circu- 
lar shape (a digital circle cannot be exactly realized) since it is 
desired that the window, and hence, the morphological oper- 
ator, be rotation invariant. This means that if an object in the 
image is rotated through some angle, then the response of the 
morphological operator will be unchanged other than also being 
rotated. While rotational symmetry cannot be exactly obtained, 
symmetry across two axes can be obtained, guaranteeing that 
the response be at least reflection invariant. Window size also 
significantly effects the results, as will be seen. 

A formal definition of windowing is needed in order to define 
the various morphological operators. A window B is a set of 
2P + 1 coordinate shifts bi = (ni, mi) centered around (0,O): 

Some examples of common one-dimensional (row and column) 
windows are 

B = ROW[2P + 11 = {(O, m); rn = -P, . . . , P} 

B = COL[2P + 11 = { (n ,  0); n = -P, . . . , P} 
(8) 

(9) 

and some common two-dimensional windows are 

B = SQUARE[(2P + 1)2] = { (n ,  m); n, rn = -P, . . . , P) 
(10) 

(11) 
B = CROSS[4P + 11 = ROW (2P + 1) U COL(2P + 1) 

COL(3) COL(5) 

ROW(3) ROW(5) 

(a) 

SQUARE(9) CROSS(5) 

SQUARE(Z5) CROSS(9) 

(b) 
FIGURE 10 Examples of windows: (a) one-dimensional, ROW(2P + 1) and 
COL(2P + 1) for P = 1,2; (b) two-dimensional, SQUARE[(2P + l)’] 
and CROSS[4P + 11 for P = 1,2. The window is centered over the shaded 
pixel. 

with obvious shape-descriptive names. In each of Eqs. (8)-( 1 l), 
the quantity in brackets is the number of coordinates shifts in 
the window, hence also the number of local gray levels that will 
be collected by the window at each image coordinate. Note that 
the windows of Eqs. (8)-( 11) are each defined with an odd num- 
ber 2 P + 1 coordinate shifts. This is because the operators are 
symmetrical: pixels are collected in pairs from opposite sides of 
the center pixel or (0,O) coordinate shift, plus the (0,O) coordi- 
nate shift is always included. Examples of each the windows of 
Eqs. (8)-( 11) are shown in Fig. 10. The example window shapes 
in Eqs. (8)-( 11) and in Fig. 10 are by no means the onlypossibil- 
ities, but they are (by far) the most common implementations 
because of the simple row-column indexing of the coordinate 
shifts. 

The action of gray-level collection by a moving window creates 
the windowed set. Given a binary image f and a window B, the 
windowed set at image coordinate n is given by 

(12) 

which, conceptually, is the set of image pixels covered by B when 
it is centered at coordinate n.  Examples of windowed sets asso- 
ciated with some of the windows in Eqs. (8)-( 11) and Fig. 10 are 
as follows: 

Bf(n)  = ( f<n  - m); m E B), 
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dilate 

where the elements ofEqs. (13)-( 16) have been arranged to show 
the geometry of the windowed sets when centered over coordi- 
nate n = ( n l ,  n2). Conceptually, the window may be thought of 
as capturing a series of miniature images as it is passed over the 
image, row by row, column by column. 

One last note regarding windows involves the definition of 
the windowed set when the window is centered near the bound- 
ary edge of the image. In this case, some of the elements of the 
windowed set will be undefined, since the window will overlap 
“empty space” beyond the image boundary. The simplest and 
most common approach is to use pixel replication: set each un- 
defined windowed set value equal to the gray level of the nearest 
known pixel. This has the advantage of simplicity, and also the 
intuitive value that the world just beyond the borders of the im- 
age probably does not change very much. Figure 11 depicts the 
process of pixel replication. 

4.3 Morphological Filters 
Morphological filters are Boolean filters. Given an image f, a 
many-to-one binary or Boolean function h, and a window B, 
the Boolean-filtered image g = h( f )  is given by 

at every n over the image domain. Thus, at each n, the filter 
collects local pixels according to a geometrical rule into a win- 
dowed set, performs a Boolean operation on them, and returns 
the single Boolean result g(n). 

The most common Boolean operations that are used are AND, 
OR, and MAT. They are used to create the following simple, yet 
powerful morphological filters. These filters act on the objects 
in the image by shaping them: expanding or shrinking them, 
smoothing them, and eliminating too-small features. 

The binary dilation filter is defined by 

0 . .  0 . 0  

0 
0 0 

FIGURE 11 
(top) image boundary. 

Depiction of pixel replication for a window centered near the 

FIGURE 12 
hole and gap were filled. 

Illustration of dilation of a binary 1-valued object; the smallest 

and is denoted g = dilate( f, B). The binary erosion filter is de- 
fined by 

and is denoted g = erode( f, B). Finally, the binary majorityfilter 
is defined by 

and is denoted g = majority( f, B). Next we explain the response 
behavior of these filters. 

The dilate filter expands the size of the foreground, object, 
or one-valued regions in the binary image f. Here the 1-valued 
pixels are assumed to be black because of the convention we have 
assumed, but this is not necessary. The process of dilation also 
smoothes the boundaries of objects, removing gaps or bays of 
too-narrow width and also removing object holes of too-small 
size. Generally, a hole or gap will be filled if the dilation window 
cannot fit into it. These actions are depicted in Fig. 12, while 
Fig. 13 shows the result of dilating an actual binary image. Note 
that dilation using B = SQUARE(9) removed most of the small 
holes and gaps, while using B = SQUARE(25) removed nearly 
all of them. It is also interesting to observe that dilation with 
the larger window nearly completed a bridge between two of the 
large masses. Dilation with CROSS( 9) highlights an interesting 
effect: individual, isolated 1 -valued or BLACK pixels were dilated 
into larger objects having the same shape as the window. This can 
also be seen with the results using the SQUARE windows. This 
effect underlines the importance of using symmetric windows, 
preferably with near rotational symmetry, since then smoother 
results are obtained. 

The erode filter shrinks the size of the foreground, object, or 1- 
valued regions in the binary image f. Alternately, it expands the 
size of the background or 0-valued regions. The process of ero- 
sion smoothes the boundaries of objects, but in a different way 
than dilation: it removes peninsulas or fingers of too-narrow 
width, and also it removes 1-valued objects of too-small size. 
Generally, an isolated object will be eliminated ifthe dilation win- 
dow cannot fit into it. The effects of erode are depicted in Fig. 14. 
Figure 15 shows the result of applying the erode filter to the bi- 
nary image “cell.” Erosion using B = SQUARE(9) removed many 
of the small objects and fingers, while using B = SQUARE(25) 
removed most of them. As an example of intense smoothing, 
B = SQUARE(81), a 9 x 9 square window, was also applied. 
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(c )  (d) 

FIGURE 13 
(c) E = SQUARE(25), and (d) B = CROSS(9) 

Dilation of a binary image. (a) Binarized image “cells.” Dilate with (b) B = SQUARE(9), 

Erosion with CROSS(9) again produced a good result, except at 
a few isolated points where isolated 0-valued or WHITE pixels 
were expanded into larger +-shaped objects. 

An important property of the erode and dilate filters is the 
relationship that exists between them. In fact, in reality they are 
the same operation, in the dual (complementary) sense. Indeed, 
given a binary image f and an arbitrary window B, it is true that 

dilate(f, B) = NOT {erode[NOT(f), B]} (21) 

(22) erode(f, B) = NOT {dilate[NOT(f), B]}. 

FIGURE 14 
objects and peninsula were eliminated. 

Illustration of erosion of a binary 1-valued object. The smallest 

Equations (21) and (22) are a simple consequence of the De- 
Morgan’s Laws (5) and (6). A correct interpretation of this is 
that erosion of the 1 -valued or BLACK regions of an image is the 
same as dilation of the 0-valued or WHITE regions - and vice 
versa. 

An important and common misconception must be men- 
tioned. Erode and dilate filters shrink and expand the sizes of 
1-valued objects in a binary image. However, they are not in- 
verse operations of one another. Dilating an eroded image (or 
eroding a dilated image) very rarely yields the original image. In 
particular, dilation cannot recreate peninsulas, fingers, or small 
objects that have been eliminated by erosion. Likewise, erosion 
cannot u n a  holes filled by dilation or recreate gaps or bays 
filled by dilation. Even without these effects, erosion generally 
will not exactly recreate the same shapes that have been modified 
by dilation, and vice versa. 

Before discussing the third common Boolean filter, the ma- 
jority, we will consider further the idea of sequentially applying 
erode and dilate filters to an image. One reason for doing this is 
that the erode and dilate filters have the effect of changing the 
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FIGURE 15 
SQUARE(25), ( c )  B = SQUARE(Rl), and (d) B = CROSS(9). 

Erosion of the binary image “cells.” Erode with (a) B = SQUARE(9), (b) B = 

sizes of objects, as well as smoothing them. For some objects 
this is desirable, e.g., when an extraneous object is shrunk to 
the point of disappearing; however, often it is undesirable, since 
it may be desired to further process or analyze the image. For 
example, it may be of interest to label the objects and compute 
their sizes, as in Section 3 of this chapter. 

Although erode and dilate are not inverse operations of one 
another, they are approximate inverses in the sense that if they are 
performed in sequence on the same image with the same window 
B, then object and holes that are not eliminated will be returned 
to their approximate sizes. We thus define the size-preserving 
smoothing morphological operators termed open filter and close 
filter, as follows: 

open(f, B) = dilate[erode(f, B), B] 

close(f, B) = erode[dilate(f, B), Bl. 

(23) 

(24) 

Hence, the opening (closing) of image f is the erosion (dilation) 
with window B followed by dilation (erosion) with window B. 
The morphological filters open and close have the same smooth- 

ing properties as erode and dilate, respectively, but they do not 
generally effect the sizes of sufficiently large objects much (other 
than pixel loss from pruned holes, gaps or bays, or pixel gain 
from eliminated peninsulas). 

Figure 16 depicts the results of applying the open and 
close operations to the binary image “cell:) using the windows 
B = SQUARE(25) and B = SQUARE(81). Large windows were 
used to illustrate the powerful smoothing effect of these mor- 
phological smoothers. As can be seen, the open filters did an 
excellent job of eliminating what might be referred to as “black 
noise” -the extraneous 1-valued objects and other features - 
leaving smooth, connected, and appropriately sizedlarge objects. 
By comparison, the close filters smoothed the image intensely 
as well, but without removing the undesirable black noise. In 
this particular example, the result of the open filter is probably 
preferable to that of close, since the extraneous BLACK struc- 
tures present more of a problem in the image. 

It is important to understand that the open and close filters 
are unidirectional or biased filters in the sense that they re- 
move one type of “noise” (either extraneous WHITE or BLACK 
features), but not both. Hence, open and close are somewhat 
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FIGURE 16 
(b) B = SQUARE(81); close with (c) B = SQUARE(25), (d) B = SQUARE(81). 

Open and dose filtering of the binary image ‘‘cells.’’ Open with (a) B = SQUARE(25), 

special-purpose binary image smoothers that are used when 
too-small BLACK and WHITE objects (respectively) are to be 
removed. 

It is worth noting that the close and open filters are again in 
fact the same filters, in the dual sense. Given a binary image f 
and an arbitrary window B, 

close(f, B) = NOT{open[NOT(f), B]} 

open(f, B) = NOT{close[NOT(f), B]}. 

( 2 5 )  

(26) 

In most binary smoothing applications, it is desired to create 
an unbiased smoothing of the image. This can be accomplished 
by a further concatenation of filtering operations, applying open 
and close operations in sequence on the same image with the 
same window B. The resulting images will then be smoothed 
bidirectionally. We thus define the unbiased smoothing morpho- 
logical operators close-openfilter and open-closefilter, as follows: 

(27) 

(28) 

Hence, the close-open (open-close) of image f is the open 

close-open(f, B) = close[open(f, B),  B] 

open-close(f, B) = open[close(f, B), B]. 

(close) of f with window B followed by the close (open) of the 
result with window B. The morphological lilters close-open and 
open-close in Eqs. (27) and (28) are general-purpose, bidirec- 
tional, size-preserving smoothers. Of course, they may each be 
interpreted as a sequence of four basic morphological operations 
(erosions and dilations). 

The close-open and open-close filters are quite similar but are 
not mathematically identical. Both remove too-small structures 
without affecting size much. Both are powerful shape smoothers. 
However, differences between the processing results can be easily 
seen. These mainly manifest as a function of the first operation 
performed in the processing sequence. One notable difference 
between close-open and open-close is that close-open often 
links together neighboring holes (since erode is the first step), 
while open-close often links neighboring objects together (since 
dilate is the first step). The differences are usually somewhat 
subtle, yet often visible upon close inspection. 

Figure 17 shows the result of applying the close-open and the 
open-close filters to the ongoing binary image example. As can 
be seen the results (for B fixed) are very similar, although the 
close-open filtered results are somewhat cleaner, as expected. 
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FIGURE 17 Close-open and open-close filtering of the binary image “cells.” Close-open with 
(a) B = SQUARE(25), (b) B = SQUARE(81); Open-close with (c) B = SQUAFE(25), (d) B = 
SQUARE(8 1). 

There are also only small differences between the results ob- 
tained using the medium and larger windows, because of the in- 
tense smoothing that is occurring. To fully appreciate the power 
of these smoothers, compare it to the original binarized image 
“cells” in Fig. 13 (a). 

The reader may wonder whether further sequencing of the 
filtered responses will produce different results. If the filters are 
properly alternated as in the construction of the closeopen and 
open-close filters, then the dual filters become increasingly sim- 
ilar. However, the smoothing power can most easily be increased 
by simply taking the window size to be larger. 

Once again, the close-open and open-close filters are dual 
filters under complementation. 

We now return to the final binary smoothing filter, the majority 
filter. The majority filter is also known as the binary medianfilter, 
since it may be regarded as a special case (the binary case) of the 
gray-level median filter (Chapter 3.2). 

The majority filter has similar attributes as the close-open 
and open-close filters: it removes too-small objects, holes, gaps, 
bays and peninsulas (both 1-valued and 0-valued small features), 

and it also does not generally change the size of objects or of 
background, as depicted in Fig. 18. It is less biased than any of 
the other morphological filters, since it does not have an initial 
erode or dilate operation to set the bias. In fact, majority is its 
own dual under complementation, since 

majority(f, B) = NOT{majority[NOT(f), B]} (29) 

The majority filter is a powerful, unbiased shape smoother. 
However, for a given filter size, it does not have the same 
degree of smoothing power as close-open or open-close. 

I I I 

- I I 

FIGURE 18 
extraneous objects are eliminated. 

Effect of majority filtering. The smallest holes, gaps, fingers, and 
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(c)  (d) 

FIGURE 19 
SQUARE(9), (b) B = SQUARE(25); Majoritywith (c) B = SQUARE(81), (d) B = CROSS(9). 

Majority or median filtering of the binary image “cells.” Majority with (a) B = 

Figure 19 shows the result of applying the majority or bi- 
nary median filter to the image “cell.” As can be seen, the results 
obtained are very smooth. Comparison with the results of open- 
close and close-open are favorable, since the boundaries of the 
major smoothed objects are much smoother in the case of the 
median filter, for both window shapes used and for each size. 
The majority filter is quite commonly used for smoothing noisy 
binary images of this type because of these nice properties. The 
more general gray-level median filter (Chapter 3.2) is also among 
the most-used image processing filters. 

4.4 Morphological Boundary Detection 
The morphological filters are quite effective for smoothing bi- 
nary images, but they have other important applications as well. 
One such application is boundary detection, which is the binary 
case of the more general edge detectors studied in Chapters 4.11 
and 4.12. 

At first glance, boundary detection may seem trivial, since the 
boundary points can be simply defined as the transitions from 
1 to 0 (and vice versa). However, when there is noise present, 

boundary detection becomes quite sensitive to small noise arti- 
facts, leading to many useless detected edges. Another approach 
which allows for smoothing of the object boundaries involves 
the use of morphological operators. 

The “difference” between a binary image and a dilated (or 
eroded) version of it is one effective way of detecting the object 
boundaries. Usually it is best that the window B that is used be 
small, so that the difference between image and dilation is not 
too large (leading to thick, ambiguous detected edges). A simple 
and effective “difference” measure is the two-input exclusive- 
OR operator, XOR. The XOR takes logical value 1 only if its 
two inputs are different. The boundary detector then becomes 
simply 

boundary(f, B) = XOR[f, dilate(f, B)]. (30) 

The result of this operation as applied to the binary image “cells” 
is shown in Fig. 20(a), using B = SQUARE(9). As can be seen, 
essentially all of the BLACK-WHITE transitions are marked 
as boundary points. Often, this is the desired result. However, 
in other instances, it is desired to detect only the major object 
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(a) (b) 

FIGURE 20 
(b) the majority-filtered image in Fig. 19(c). 

Object boundary detection. Application of boundary($ B) to (a) the image “cells”; 

boundary points. This can be accomplished by first smoothing 
the image with a close-open, open-close, or majority filter. The 
result of this smoothed boundary detection process is shown in 
Fig. 20(b). In this case, the result is much cleaner, as only the 
major boundary points are discovered. 

5 Binary Image Representation 
and Compression 

In several later chapters, methods for compressing gray-level 
images are studied in detail. Compressed images are representa- 
tions that require less storage than the nominal storage. This is 
generally accomplished by coding of the data based on measured 
statistics, rearrangement of the data to exploit patterns and re- 
dundancies in the data, and (in the case of lossy compression), 
quantization of information. The goal is that the image, when 
decompressed, either looks very much like the original despite a 
loss of some information (lossy compression), or is not different 
from the original (lossless compression). 

Methods for lossless compression of images are discussed in 
Chapter 5.1. Those methods can generally be adapted to both 
gray-level and binary images. Here, we will look at two methods 
for lossless binary image representation that exploit an assumed 
structure for the images. In both methods the image data are 
represented in a new format that exploits the structure. The first 
method is run-length coding, which is so called because it seeks 
to exploit the redundancy of long run lengths or runs of con- 
stant value 1 or 0 in the binary data. It is thus appropriate for 
the codinglcompression of binary images containing large areas 
of constant value 1 and 0. The second method, chain coding, 
is appropriate for binary images containing binary contours, 
such as the boundary images shown in Fig. 20. Chain coding 
achieves compression by exploiting this assumption. The chain 
code is also an information-rich, highly manipulable represen- 
tation that can be used for shape analysis. 

5.1 Run-Length Coding 
The number of bits required to naively store an N x M binary 
image is NM. This can be significantly reduced if it is known 
that the binary image is smooth in the sense that it is composed 
primarily of large areas of constant 1 and/or 0 value. 

The basic method of run-length coding is quite simple. As- 
sume that the binary image f is to be stored or transmitted on 
a row-by-row basis. Then for each image row numbered m, the 
following algorithm steps are used. 

1. Store the first pixel value (0 or 1) in row m in a 1-bit buffer 
as a reference. 

2. Set the run counter c = 1. 
3. For each pixel in the row, 

Examine the next pixel to the right. 
If it is the same as the current pixel, set c = c + 1. 
If different from the current pixel, store c in a buffer of 
length b and set c = 1. 
Continue until end of row is reached. 

Thus, each run length is stored by using b bits. This requires that 
an overall buffer with segments of lengths b be reserved to store 
the run lengths. Run-length coding yields excellent lossless com- 
pressions, provided that the image contains lots of constant runs. 
Caution is necessary, since if the image contains only very short 
runs, then run-length coding can actually increase the required 
storage. 

Figure 21 depicts two hypothetical image rows. In each case, 
the first symbol stored in a 1-bit buffer will be logical 1. The 
run-length code for Fig, 21(a) would be “1,” 7,5,8,3,1. , . , with 
symbols after the “1” stored with b bits. The first five runs in 
this sequence have average length 24/5 = 4.8; hence if b 5 4, 
then compression will occur. Of course, the compression can be 
much higher, since there may be runs of lengths in the dozens 
or hundreds, leading to very high compressions. 

In the worst-case example of Fig. 21(b), however, the storage 
actually increases b-fold! Hence, care is needed when applying 
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(b) 

FIGURE 21 
(b) unreasonable scenarios for run-length coding. 

Example rows of a binary image, depicting (a) reasonable and 

this method. The apparent rule of thumb, if it can be applied 
a priori, is that the average run length L of the image should 
satisfy L > b if compression is to occur. In fact, the compression 
ratio will be approximately L/b.  

Run-length coding is also used in scenarios other than binary 
image coding. It can also be adapted to situations in which there 
are run lengths of any value. For example, in the JPEG lossy 
image compression standard for gray-level images (see Chapter 
5.5), a form of run-length coding is used to code runs of zero- 
valued frequency-domain coefficients. This run-length coding 
is an important factor in the good compression performance 
of JPEG. A more abstract form of run-length coding is also re- 
sponsible for some of the excellent compression performance 
of recently developed wavelet image compression algorithms 
(Chapter 5.4). 

5.2 Chain Coding 
Chain coding is an efficient representation ofbinary images com- 
posed of contours. We will refer to these as “contour images.” We 
assume that contour images are composed only of single-pixel 
width, connected contours (straight or curved). These arise from 
processes of edge detection or boundary detection, such as the 
morphological boundary detection method just described, or 
the results of some of the edge detectors described in Chapters 
4.1 1 and 4.12 when applied to gray-scale images. 

The basic idea of chain coding is to code contour directions 
instead of naive bit-by-bit binary image coding or even coor- 
dinate representations of the contours. Chain coding is based 
on identifying and storing the directions from each pixel to its 
neighbor pixel on each contour. Before this process is defined, it 
is necessary to clarify the various types of neighbors that are asso- 
ciated with a given pixel in a binary image. Figure 22 depicts two 
neighborhood systems around a pixel (shaded). To the left are 
depicted the 4-neighbors of the pixel, which are connected along 
the horizontal and vertical directions. The set of 4-neighbors of 

FIGURE 22 
(shaded). 

Depiction of the 4-neighbors and the 8-neighbors of a pixel 

I A 3\ I 

/ 5  t 
-..---_ 

and directions 

fl‘ 

Cnntnllr initial point 
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FIGURE 23 Representation of a binary contour by direction codes. (a) A con- 
nected contour can be represented exactly by an initial point and the subsequent 
directions. (b) Only 8 direction codes are required. 

a pixel located at coordinate n will be denoted N4(n). To the 
right are the 8-neighbors of the shaded pixel in the center of the 
grouping. These include the pixels connected along the diagonal 
directions. The set of 8-neighbors of a pixel located at coordinate 
n will be denoted Ns(n). 

If the initial coordinate no of an 8-connected contour is 
known, then the rest of the contour can be represented without 
loss of information by the directions along which the contour 
propagates, as depicted in Fig. 23(a). The initial coordinate can 
be an endpoint, if the contour is open, or an arbitrary point, if 
the contour is closed. The contour can be reconstructed from 
the directions, if the initial coordinate is known. Since there are 
only eight directions that are possible, then a simple 8-neighbor 
direction code may be used. The integers {0, . . . , 7} suffice for 
this, as shown in Fig. 23(b). Of course, the direction codes 0, 1, 
2,3,4, 5, 6, 7 can be represented by their 3-bit binary equiva- 
lents: 000,001,010,011, 100, 101, 110, 111. Hence, each point 
on the contour after the initial point can be coded by 3 bits. The 
initial point of each contour requires [log, (MN)1 bits, where 
[-1 denotes the ceiling function: rxl = the smallest integer that 
is greater than or equal to x. For long contours, storage of the 
initial coordinates is incidental. 

Figure 24 shows an example of chain coding of a short contour. 
After the initial coordinate no = (no, m) is stored, the chain 
code for the remainder of the contour is: 1, 0, 1, 1, 1, 1,3,3,3, 
4,4,5,4 in integer format, or 001,000,001,001,001,001,011, 
011,011,100,100,101,100 in binary format. Chain coding is an 
efficient representation. For example, if the image dimensions 
N = M = 512, then representing the contour by storing the 
coordinates of each contour point requires six times as much 
storage as the chain code. 

no = initial point 

mo 

FIGURE 24 Depiction of chain coding. 
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In this third chapter on basic methods, the basic mathematical 
and algorithmic tools for the frequency-domain analysis of digi- 
tal images are explained. Also introduced is the two-dimensional 
discrete-space convolution. Convolution is the basis for linear fil- 
tering, which plays a central role in many places in this Handbook. 
An understanding of frequency-domain and linear filtering con- 
cepts is essential to be able to comprehend such significant topics 
as image and video enhancement, restoration, compression, seg- 
mentation, and wavelet-based methods. Exploring these ideas 
in a two-dimensional setting has the advantage that frequency- 
domain concepts and transforms can be visualized as images, 
often enhancing the accessibility of ideas. 

2 Discrete-Space Sinusoids 

sions. For example, a two-dimensional frequency component, 
or sinusoidal function, is characterized not only by its location 
(phase shift) and its frequency of oscillation, but also by its di- 
rection of oscillation. 

Sinusoidal functions will play an essential role in all of the 
developments in this chapter. A two-dimensional discrete-space 
sinusoid is a function of the form 

sin[21~(Um + Vn)] .  (1) 

Unlike a one-dimensional sinusoid, function (1) has two fre- 
quencies, U and V (with units of cycles/pixel), which represent 
the frequency of oscillation along the vertical (m) and horimn- 
tal ( n )  spatial image dimensions. Generally, a two-dimensional 
sinusoid oscillates (is nonconstant) along every direction except 
for the direction orthogonal to the direction of fastest oscillation. 
The frequency ofthis fastest oscillation is the radialfiequency, i.e., 

~~ 

Before defining any frequency-based transforms, first we shall 
explore the concept of image frequency or more generally, of 
two-dimensionalfiequency. Many readers may have a basic back- 
ground in the frequency-domain analysis of one-dimensional 
signals and systems. The basic theories in two dimensions are 
founded on the same principles. However, there are some exten- 

s2 = Ju2 + v2, ( 2 )  

which has the same units as U and V, and the direction of this 
fastest oscillation is the angle, i.e., 

e = tan-' (5). (3) 

Copyright @ 2000 by Academic Press 
All righu of reproduction in any form reserved. 53 



54 Handbook of lmage and Video Processing 

with units of radians. Associatedwith function (1) is the complex and undefined elsewhere. A sinusoidal function that is confined 
exponential function to domain (5) can be contained within an image matrix of di- 

mensions M x N, and is thus easily manipulated digitally. 
In the case of finite sinusoids defined on finite grids (5), it will 

often be convenient to use the scaled frequencies 

exp[j21~(Um + Vn)] = cos[21~(Um + Vn)] 
j sin[2n(Um -I- Vn)], (4) 

(6)  where j = f l  is the pure imaginary number. (u, v )  = ( M U ,  NV) 
In general, sinusoidal functions can be defined on discrete 

integer grids; hence functions (1) and (4) hold €or all integers which have the visually intuitive units of cycleslimage. With this, 
-00 < m, n < 00. However, sinusoidal functions of infinite du- two-dimensional sinusoid (1) defined on finite grid (5) can be 
ration are not encountered in practice, although they are useful 
for image modeling and in certain image decompositions that 
we will explore. 

In practice, discrete-space images are confined to finite M x N 
sampling grids, and we will also find it convenient to utilizefinite- 
extent (M x N) two-dimensional discrete-space sinusoids, which 
are defined only for integers 

O l m s M - 1 ,  O s n l N - 1 ,  (5) 

re-expressed as 

(7) 

with similar redefinition of complex exponential (4). 
Figure 1 depicts several discrete-space sinusoids of dimensions 

256 x 256 displayed as intensity images after linear mapping the 
gray scale of each to the range 0-255. Because of the nonlinear 

FIGURE 1 Examples of finite two-dimensional discrete-space sinusoidal functions. The scaled frequencies of 
Eq. ( 6 )  measured in cycleslimage are (a) u = 1, v = 4; (b) u = 10, v = 5; (c) u = 15, Y = 35; and (d) u = 65, v = 35. 
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response of the eye, the functions in Fig. 1 look somewhat more 
like square waves than smoothly varying sinusoids, particularly 
at higher frequencies. However, if any of the images in Fig. 1 is 
sampled along a straight line of arbitrary orientation, the result 
is an ideal (sampled) sinusoid. 

A peculiarity of discrete-space (or discrete-time) sinusoids is 
that they have a maximum possible physical frequency at which 
they can oscillate. Although the frequency variables (u, v )  or 
(U,  V) may be taken arbitrarily large, these large values do not 
correspond to arbitrarily large physical oscillation frequencies. 
The ramifications of this are quite deep and significant, and they 
relate to the restrictions placed on sampling of continuous-space 
images (the Sampling Theorem) and the Nyquist frequency. The 
sampling of images and video is covered in Chapters 7.1 and 7.2. 

As an example of this principle, we will study a one-di- 
mensional example of a discrete sinusoid. Consider the finite 
cosine function, cos{21~[(u/M)m + (v/N)n]} = COS[~IT(U/  
16)m], which results by taking M =  N= 16, and v =O. This is 
a cosine wave propagating in the m direction only (all columns 
are the same) at frequency u (cycledimage). 

Figure 2 depicts the one-dimensional cosine for various values 
of u. As can be seen, the physical oscillation frequency increases 
until u = 8; for incrementally larger values of u, however, the 
physical frequency diminishes. In fact, the function is period- 16 
in the frequency index u: 

alternating signal. This observation will be important next as 
we define the various frequency-domain image transforms. 

3 Discrete-Space Fourier Transform 

cos(2nGm) = c o s [ Z ~ ( ~ +  16 16k)m] (8) 

for all integers k. Indeed, the highest physical frequency of 
cos[21~(u/M)m] occurs at u = M/2 + kM, (for M even) for 
all integers k. At these periodically placed frequencies, Eq. (8) 
is equal to (-I)#; the fastest discrete-index oscillation is the 

1; m = p ,  n = q  
0; otherwise = I  

Another (somewhat less precise) interpretation is the engineer- 
ing concept of the transformation, without loss, of space-domain 
image information into frequency-domain image information. 
Representing the image information in the frequency domain 
has significant conceptual and algorithmic advantages, as will 
be seen. A third interpretation is a physical one, in which the 
image is viewed as the result of a sophisticated constructive- 
destructive interference wave pattern. By assigning each of 
the infinite number of complex exponential wave functions 
ej2p(Um+Vn) the appropriate complex weights F (U,  V), one can 
recreate the intricate structure of any discrete-space image ex- 

The DSFT possesses a number of important properties that m 

Crete-space sinusoids. 

m 
FIGURE 2 Illustration of physical versus numerical frequencies of dis- be in defining In the following, 

3 that f t, F ,  g & G ,  and h & H. 

~ ~~ 

The discrete-spaceFourier transform, or DSFT, of a given discrete- 
space image f is given by 

with the inverse discrete-space Fourier transform (IDSFT), 

f ( m ,  n) = [ 0 ' 5  F(U,  V)ej2P(um+vn)dUdV. (10) 
J-0.5 J-0.5 

When Eqs. (9) and (10) hold, we will often make the notation 
f & F and say that f ,  F form a DSFT pair. The units of the 
frequencies (U,  V) in Eqs. (9) and (10) are cycledpixel. It should 
be noted that, unlike continuous Fourier transforms, the DSFT 
is asymmetrical in that the forward transform F is continuous 
in the frequency variables (U,  V), while the image or inverse 
transform is discrete. Thus, the DSFT is defined as a summation, 
while the IDSFT is defined as an integral. 

There are several ways ofinterpreting the DSFT in Eqs. (9) and 
(10). The most usual mathematical interpretation of Eq. (10) 
is as a decomposition of f ( m ,  n) into orthonormal complex 
exponential basis functions ej2r(Um+Vn) that satisfy 
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3.1 Linearity of DSFT 3.4 Symmetry of DSFT 
Given images f ,  g and arbitrary complex constants a,  b, the 
following holds: 

a f +  bg&aaF + bG. (12) 

This property of linearity follows directly from Eq. (9), and it 
can be extended to a weighted sum of any countable number 
of images. It is fundamental to many of the properties of, and 
operations involving, the DSFT. 

3.2 Inversion of DSFT 
The two-dimensional function F (U, V )  uniquely satisfies rela- 
tionships (9) and (10). That the inversion holds can be easily 
shown by substituting Eq. (9) into Eq. (lo), reversing the order 
of sum and integral, and then applying Eq. (1  1). 

3.3 Magnitude and Phase of DSFT 
The DSFT F of an image f is generally complex valued. As such 
it can be written in the form 

where 

m b c  

R(U, V) = 1 f(m, n)cos[2.rr(Urn+ Vn)]  (14) 

and 

are the real and imaginary parts of F (U, V ) ,  respectively. 

form 
The DSFT can also be written in the often-convenient phasor 

where the magnitude spectrum of image f is 

where the asterisk denotes the complex conjugation. The phase 
spectrum of image f is 

If the image f is real, which is usually the case, then the DSFT is 
conjugate symmetric: 

which means that the DSFT is completely specified by its values 
over any half-plane. Hence, if f is real, the DSFT is redundant. 
From Eq. (20),  it follows that the magnitude spectrum is even 
symmetric: 

while the phase spectrum is odd symmetric: 

LF(U, V )  = -LF(-U,  -V) ,  (22) 

3.5 Translation of DSFT 
Multiplying (or modulating) the discrete-space image f(m, n) 
by a two-dimensional complex exponential wave function, 
exp [ j 2 ~ (  UO m + V, n) 1, results in a translation of the DSFT 

f(m, n) exp[ j2.rr(U,m+ V,n)] .& F ( U -  UO, V- V,). (23) 

Likewise, translating the image f by amounts m, 
modulated DSFT: 

f ( m -  mo, n -  no) e F(U, V )  exp[-j2.rr(Umo + Vno)] (24) 

produces a 

9 

3.6 Convolution and the DSFT 
Given two images or two-dimensional functions f and h, their 
two-dimensional discrete-space linear convolution is given by 

The linear convolution expresses the result of passing an image 
signal f through a two-dimensional linear convolution system h 
(or vice versa). The commutativity of the convolution is easily 
seen by making a substitution of variables in the double sum in 
Eq. (25). 

If g, f ,  and h satisfy spatial convolution relationship (25), 
then their DSFTs satisfy 

hence convolution in the space domain corresponds directly to 
multiplication in the spatial frequency domain. This important 
property is significant both conceptually, as a simple and di- 
rect means for effecting the frequency content of an image, and 
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computationally, since the linear convolution has such a simple 
expression in the frequency domain. 

The two-dimensional DSFT is the basic mathematical tool 
for analyzing the frequency-domain content oftwo-dimensional 
discrete-space images. However, it has a major drawback for 
digital image processing applications: the DSFT F (V, V) of a 
discrete-space image f(m, n) is continuous in the frequency 
coordinates (V, V); there are an uncountably infinite number 
of values to compute. As such, discrete (digital) processing or 
display in the frequency domain is not possible using the DSFT 
unless it is modified in some way. Fortunately, this is possible 
when the image f is of finite dimensions. In fact, by sampling the 
DSFT in the frequency domain we are able to create acomputable 
Fourier domain transform. 

M and N) frequency components oscillating at u (cycleshnage) 
and v (cycleshmage) in the rn and n directions, respectively. 
Clearly, 

and 

Observe that the minimum physical frequency of WMm periodi- 
cally occurs at the indices u = kM for all integers k: 

(31) WkMm = 1 
M 

for any integer m; the minimum oscillation is no oscillation. If 
M is even, the maximum physical frequency periodicalIy occurs 
at the indices u = k M  + M/2: 

4 Two-Dimensional Discrete Fourier 
Transform (DFT) 

Now we restrict our attention to the practical case of discrete- 
space images that are of finite extent. Hence assume that im- 
age f(m, n); can be expressed as a matrix f = [f(m, n)O 5 m 5 
M - 1 , O  4 n 4 N - 11. As we will show, a finite-extent image 
matrix f can be represented exactly as a finite weighted sum of 
two-dimensional frequency components, instead of an infinite 
number. This leads to computable and numerically manipula- 
ble frequency-domain representations. Before showing how this 
is done, we shall introduce a special notation for the complex 
exponential that will simplify much of the ensuing development. 

We will use 

W, = exp[-j$] 

as a shorthand for the basic complex exponential, where K is 
the dimension along one of the image axes ( K  = Nor  K = M). 
The notation of Eq. (27) makes it possible to index the vari- 
ous elementary frequency components at arbitrary spatial and 
frequency coordinates by simple exponentiation: 

- jsin 2n -m+-n . (28) [ (L ;)I 
This process of space and frequency indexing by exponentiation 
greatly simplifies the manipulation of frequency components 
and the definition of the DFT. Indeed, it is possible to develop 
frequency-domain concepts and frequency transforms without 
the use of complex numbers (and in fact some of these, such as 
the discrete cosine transform, or DCT, are widely used, especially 
in imagehide0 compression; see Chapters 5.5, 5.6, 6.4, and 6.5 
of this Handbook). 

For the purpose ofanalysis and basic theory, it is much simpler 
to use WGm and W z  ro represent finite-extent (of dimensions 

which is the discrete period-2 (alternating) function, the highest 
possible discrete oscillation frequency. 

The two-dimensional DFTof the finite-extent ( M  x N) image 
f is given by 

for integer frequencies 0 4 u 5 M - 1,O I v 5 N - 1. Hence, 
the DFT is also of finite extent M x N, and can be expressed as 
a (generally complex-valued) matrix I? = [ @(u, v ) ;  0 5 u 5 
M - 1,O 5 v 5 N - 11. It has a unique inverse discrete Fourier 
transform, or IDFT: 

for 0 5 m 5 M - 1 , O  5 n < N - 1. When Eqs. (33) and (34) 
hold, it is often denoted f * F, and we say that f, 6 form a DFT 
pair. 

A number of observations regarding the DFT and its rela- 
tionship to the DSFT are necessary. First, the DFT and IDFT 
are symmetrical, since both forward and inverse transforms are 
defined as sums. In fact they have the same form, except for the 
polarity of the exponents and a scaling factor. Secondly, both 
forward and inverse transforms are h i t e  sums; both 6 and f can 
be represented uniquely as finite weighted sums of finite-extent 
complex exponentials with integer-indexed frequencies. Thus, 
for example, any 256 x 256 digital image can be expressed as the 
weighted sum of 256* = 65,536 complex exponential (sinusoid) 
functions, including those with real parts shown in Fig. 1. Note 
that the frequencies (u, v )  are scaled so that their units are in 
cycles/image, as in Eq. (6) and Fig. 1. 

DFT- - 
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Most importantly, the DFT has a direct relationship to the 
DSFT. In fact, the DFT of an M x N image f is a uniformly 
sampled version of the DSFT of E 

Of course, Eq. (39) implies symmetries of the magnitude and 
phase spectra: 

I ~ ( u ,  v)l = IF(M- U, N- v)l (40) 

and (35) 

for integer frequency indices 0 5 u 5 M - 1, 0 5 v 5 N - 1. 
Since f is of finite extent and contains M N  elements, the DFT 
@ is conservative in that it also requires only M N  elements to 
contain complete information about f (to be exactly invertible). 
ASO, since @ is simply evenly spaced samples of F, many of 
the properties of the DSFT translate directly with little or no 
modification to the DFT. 

4.1 Linearity and Invertibility of DFT 
The DFT is linear in the sense of formula (12). It is uniquely 
invertible, as can be established by substituting Eq. (33) into 
Eq. (34), reversing the order of summation, and using the fact 
that the discrete complex exponentials are also orthogonal: 

LF(u, Y )  = -LF(M - U, N- V )  (41) 

for 0 5 u 5 M - 1 , O  5 v 5 N - 1. 

4.3 Periodicity of DFT 
Another property of the DSFT that carries over to the DFT is 
frequency periodicity. Recall that the DSFT F (U, V) has unit 
period in U and V. The DFT matrix 6 was defined to be of 
finite extent A4 x N. However, forward DFT Eq. (33) admits the 
possibility of evaluating (u, V )  outside of the range 0 5 u 5 
M - 1, 0 5 v 5 N - 1. It turns out that F(u ,  v) is period-M 
and period-N along the u and v dimensions, respectively. For 
any integers k, I ,  

F ( u  + kM, v + l N )  = F ( u ,  v) (42) 

for every 0 5 u 5 M- I, 0 5 v 5 N- 1. This follows easily by 
MN, m=p,  n = q  substitution of the periodically extended frequency indices 

0; otherwise (36) (u  + kM, v + 1N) into forward DFT Eq. (33). Interpretation 
(42) of the DFT is called the periodic extension of the DFT. It is 
defined for 

Although many properties of the DFT are the same, or similar 
to those of the DSFT, certain important properties are different. 
These effects arise from sampling the DSFT to create the DFT. 

1M-1 N-1 
)i y (w;m w;”) ( w; q v q )  
u=o v=o 

= (  

The DFT matrix @ is generally complex; hence it has an asso- integer u, v. 
ciated magnitude spectrum matrix, denoted 

= [I F ( u ,  v) l ;  0 5 u 5 M - 1,o  5 v 5 N - 11, (37) 

4.4 Image Periodicity Implied by DPT and phase spectrum matrix, denoted 

Lg = [LF(u, v) ;  0 5 u 5 M -  1 , O  5 v 5 N -  11. (38) Aseeminglyinnocuousyetextremelyimportantconsequenceof 
sampling the DSFT is that the resulting DFT equations imply 
that the image f is itself periodic. In fact, IDFT Eq. (34) implies 
that for any integers k, 1, 

The elements of 161 and Lg are computed in the same way as the 
DSFT magnitude and phase of Eqs. (16)-( 19). 

4.2 Symmetry of DFT 
Like the DSFT, iff is real valued, then the DFT matrix is conjugate 
symmetric, but in the matrix sense: 

P(u, v) = F*(M- U, N- v) (39) 

for 0 5 u 5 M - 1,0 5 v 5 N - 1. This follows easily 
by substitution of the reversed and translated frequency indices 
(M - u, N - Y )  into forward DFT Eq. (33). An apparent reper- 
cussion of Eq. (39) is that the DFT 6 matrix is redundant and 
hence can represent the M x N image with only approximately 
MN/2 DFT coefficients. This mystery is resolved by realizing 
that @ is complex valued and hence requires twice the storage 
for real and imaginary components. Iff is not real valued, then 
Eq. (39) does not hold. 

f < m +  kM,  n+ ZN) = f(m, n) (43) 

for every 0 5 m  5 M - 1 , O  5 n I N - 1. This follows easily 
by substitution of the periodically extended space indices (m + 
kM, n + IN)  into inverse DFT Eq. (34). 

Clearly, finite-extent digital images arise from imaging the 
real world through finite field-of-view (FOV) devices, such as 
cameras, and outside that FOV, the world does not repeat itself 
periodically, ad infinitum. The implied periodicity off is purely 
a synthetic effect that derives from sampling the DSFT. Never- 
theless, it is of paramount importance, since any algorithm that 
is developed, and that uses the DFT, will operate as though the 
DFT-transformed image were spatially periodic in the sense of 
Eq. (43). One important property and application of the DFT 
that is effected by this spatial periodicity is the frequency-domain 
convolution property. 
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4.5 Cyclic Convolution Property of the DFT 
One of this most significant properties of the DSFT is the linear 
convolution property, Eqs. (25) and (26), which says that space- 
domain convolution corresponds to frequency-domain multi- 
plication: 

f * h - & F H .  (44) 

This useful property makes it possible to analyze and design 
linear convolution-based systems in the frequency domain. Un- 
fortunately, property (44) does not hold for the DFT; a product 
of DFTs does not correspond (inverse transform) to the lin- 
ear convolution of the original DFT-transformed functions or 
images. However, it does correspond to another type of convolu- 
tion, variously known as cyclic convolution, circular convolution, 
or wraparound convolution. 

We will demonstrate the form of the cyclic convolution by 
deriving it. Consider the two M x N image functions f tf F 
and h k% 8. Define the pointwise matrix product' 

DFT - 

G = i ? @ H  (45) 

according to 

G(u, v )  = G(u, v )H(u ,  v )  (46) 

for 0 5 u 5 M - 1 , O  5 v 5 N - 1. Thus we are interested in 
theformofg .ForeachO(m5 M - l , O l n l  N-1,we 
have that 

- M-1 AT-1 f M-1 N-1 I 

(47) 

by substitution of the definitions of $(u, v )  and I?(u, v ) .  Rear- 
ranging the order of the summations to collect all of the complex 
exponentials inside the innermost summation reveals that 

u=o v=o 

As opposed to the standard matrix product. 

Now, from Eq. (36), the innermost summation 

hence 

p=o q=o 

= f(m, n) @h(m, n) = h(m, n) 8 f ( m ,  n) (51) 

where ( X ) N  = x mod N and the symbol 8 denotes the two- 
dimensional cyclic convolution.2 The final step of obtaining 
Eq. (50) from Eq. (49) follows since the argument of the shifted 
and twice-reversed (along each axis) function h(m - p ,  n - q )  
finds no meaning whenever ( m  - p )  4 (0, . . . , M - 1) or 
( n  - q )  4 (0, . . . , N - l } ,  since h is undefined outside of those 
coordinates. However, because the DFT was used to compute 
g(m,  n), then the periodic extension of h(m - p ,  n - q )  is im- 
plied, which can be expressed as h [ ( m  - p )  M ,  ( n  - q ) N ] .  Hence 
Eq. (50) follows. That 8 is commutative is easily established by 
a substitution of variables in Eq. (50). It can also be seen that 
cyclic convolution is a form of linear convolution, but with one 
(either, but not both) of the two functions being periodically 
extended. Hence 

This cyclic convolution property of the DFT is unfortunate, 
since in the majority of applications it is not desired to compute 
the cyclic convolution of two image functions. Instead, what is 
frequently desired is the linear convolution of two functions, as in 
the case of linear filtering. In both linear and cyclic convolution, 
the two functions are superimposed, with one function reversed 
along both axes and shifted to the point at which the convolution 
is being computed. The product of the functions is computed at 
every point of overlap, with the sum of products being the con- 
volution. In the case of the cyclic convolution, one (not both) of 
the functions is periodically extended, hence the overlap is much 
larger and wraps around the image boundaries. This produces 
a significant error with respect to the correct linear convolution 
result. This error is called spatial aliasing, since the wraparound 
error contributes false information to the convolution sum. 

Figure 3 depicts the linear and cyclic convolutions of two hy- 
pothetical M x N images f and h at a point (mo, no). From the 
figure, it can be seen that the wraparound error can overwhelm 

2Modular arithmetic is remaindering. Hence ( x ) ~  is the integer remainder of 
(%IN). 
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(0,O) imagef 
b .  

(0,O) image h - ~- 

4 

( c )  
FIGURE 3 Convolution oftwo images. (a) Images f and h. (b) Linear convolu- 
tion result at (m, r ~ )  is computed as the sum of products where f and h overlap. 
(c) Cyclic convolution result at (m, no) is computed as the sum of products 
where f and the periodically extended h overlap. 

the linear convolution contribution. Note in Fig. 3(b) that al- 
though linear convolution sum (25) extends over the indices 
0 5 m 5 M - 1 and 0 5 n 5 N - 1, the overlap is restricted to 
the indices. 

4.6 Linear Convolution by Using the DFT 
Fortunately, it turns out that it is possible to compute the lin- 
ear convolution of two arbitrary finite-extent two-dimensional 
discrete-space functions or images by using the DFT. The process 
requires modifying the functions to be convolved prior to taking 
the product of their DFTs. The modification acts to cancel the 
effects of spatial aliasing. Suppose more generally that f and h 
are two arbitrary finite-extent images of dimensions M x Nand 
P x Q, respectively. We are interested in computing the linear 
convolution g = f* h using the DFT. We assume the general case 

in most applications an image is convolved with a filter function 
of different (usually much smaller) extent. 

Clearly, 

p=o q=o 

Inverting the pointwise products of the DFTs 63 H will not 
lead to Eq. (53), since wraparound error will occur. To cancel 
the wraparound error, the functions f and h are modified by 
increasing their size by zero padding them. Zero padding means 
that the arrays f and h are expanded into larger arrays, denoted f 
and h, by filling the empty spaces with zeros.Jo compute the lin- 
ear convolution, the pointwise product & = ofthe DFTs of 
the zero-padded functions and h is computed. The inverse 
DFT g of 6 then contains the correct linear convolution 
result. 

The question remains as to how many zeros are used to pad 
the functions f and h. The answer to this lies in understand- 
ing how zero padding works and how large the linear convo- 
lution result should be. Zero padding acts to cancel the spa- 
tial aliasing error (wraparound) of the DFT by supplying zeros 
where the wraparound products occur. Hence the wraparound 
products are all zero and contribute nothing to the convolu- 
tion sum. This leaves only the linear convolution contribution 
to the result. To understand how many zeros are needed, one 
must realize that the resulting product DFT & corresponds to 
a periodic function g. If the horizontal or vertical periods are 
too small (not enough zero padding), the periodic replicas will 
overlap (spatial aliasing). If the periods are just large enough, 
then the periodic replicas will be contiguous instead of overlap- 
ping; hence spatial aliasing will be canceled. Padding with more 
zeros than this results in excess computation. Figure 4 depicts 
the successful result of zero padding to eliminate wraparound 
error. 

The correct period lengths are equal to the lengths of the 
correct linear convolution result. The linear convolution result 
of two arbitrary M x Nand P x Q image functions will generally 
be (M + P - 1) x ( N  + Q - l), hence we would like the DFT 
& to have these dimensions. Therefore, the M x N function f 
and the P x Q function h must both be zero padded to size 
(M + P - 1) x ( N  + Q - 1). This yields the correct linear 
convolution result: 

g = f @ = f*h. (54) 

In most cases, linear convolution is performed between an 
image and a filter function much smaller than the image: 
M >> P and N >> Q. In such cases the result is not much larger 
than the image, and often only the M x N portion indexed 
0 5 m 5 M - 1,0 5 n 5 N - 1 is retained. The reasoning behind 
this is first, that it may be desirable to retain images of size MN - 

where the images, f, h do not have the same dimensions, since only, and second, that the linear convolution result beyond the 
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zero-padded zero-padded 
image i. image ii 

(4 

FIGURE 4 Linear convolution of the same two images as Fig. 2 ,bv zero 
padding and cyclic convolution (via the DFT). (a) Zero-padded images f and h- 
(b) Cyclic convolution at (mi no) computed as the sum of products where f 
and the periodically extended h overlap. These products are zero except over the 
range 0 5 p 5 m~ and 0 5 q 5 no. 

borders of the original image may be of little interest, since the 
original image was zero there anyway. 

4.7 Computation of the DFT 
Inspection of the DFT, relation (33) reveals that computation 
of each of the M N  DFT coefficients requires on the order 
of M N  complex multiplies/additions. Hence, of the order of 
M 2  N2 complex multiplies and additions are needed to com- 
pute the overall DFT of an M x N image f. For example, if 
M= N = 512, then of the order of 236 = 6.9 x 10'' complex 
multiplies/additions are needed, which is a very large number. 
Of course, these numbers assume a nalve implementation with- 
out any optimization. Fortunately, fast algorithms for DFT com- 
putation, collectively referred to as fast Fourier transform (FFT) 
algorithms, have been intensively studied for many years. We 
will not delve into the design of these, since it goes beyond what 
we want to accomplish in a Handbook and also since they are 
available in any image processing programming library or de- 
velopment environment (Chapter 4.13 reviews these) and most 
math library programs. 

The FFT offers a computational complexity of order not 
exceeding M N  log,( M N ) ,  which represents a considerable 
speedup. For example, if M = N =  512, then the complexity is 
of the order of 9 x 219 = 4.7 x lo6. This represents avery typical 
speedup of more than 14,500: 1 ! 

Analysis of the complexity of cyclic convolution is similar. If 
two images of the same size M x N are convolved, then again, 
the ndive complexity is on the order of M 2  N 2  complex multi- 
plies and additions. If the DFT of each image is computed, the 
resulting DFTs pointwise multiplied, and the inverse DFT of this 
product calculated, then the overall complexity is of the order 
of M N  log,(2M3 N3) .  For the common case M = N = 512, the 
speedup still exceeds 4700: 1. 

If linear convolution is computed with the DFT, the compu- 
tation is increased somewhat since the images are increased in 
size by zero padding. Hence the speedup of DFT-based linear 
convolution is somewhat reduced (although in a fixed hardware 
realization, the known existence of these zeros can be used to 
effect a speedup). However, if the functions being linearly con- 
volved are both not small, then the DFT approach will always 
be faster. If one of the functions is very small, say covering fewer 
than 32 samples (such as a small linear filter template), then it 
is possible that direct space-domain computation of the linear 
convolution may be faster than DFT-based computation. How- 
ever, there is no strict rule of thumb to determine this lower 
cutoff size, since it depends on the filter shape, the algorithms 
used to compute DFTs and convolutions, any special-purpose 
hardware, and so on. 

4.8 Displaying the DFT 
It is often of interest to visualize the DFT of an image. This is 
possible since the DFT is a sampled function of finite (periodic) 
extent. Displaying one period of the DFT of image f reveals a pic- 
ture of the frequency content of the image. Since the DFT is com- 
plex, one can display either the magnitude spectrum 1fiI or the 
phase spectrum L f i  as a single two-dimensional intensity image. 

However, the phase spectrum Lf i  is usually not visually re- 
vealing when displayed. Generally it appears quite random, and 
so usually the magnitude spectrum 1fi1 only is absorbed visually. 
This is not intended to imply that image phase information is 
not important; in fact, it is exquisitely important, since it deter- 
mines the relative shifts of the component complex exponen- 
tial functions that make up the DFT decomposition. Modifying 
or ignoring image phase will destroy the delicate constructive- 
destructive interference pattern of the sinusoids that make up 
the image. 

As briefly noted in Chapter 2.1, displays of the Fourier trans- 
form magnitude will tend to be visually dominated by the low- 
frequency and zero-frequency coefficients, often to such an ex- 
tent that the DFT magnitude appears as a single spot. This is 
highly undesirable, since most of the interesting information 
usually occurs at frequencies away from the lowest frequencies. 
An effective way to bring out the higher-frequency coefficients 
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FIGURE 5 Distribution of high- and low-frequency DFT coefficients. 

for visual display is by means of a point logarithmic operation: 
instead of displaying I GI, display 

log*[1 + I&, 4 1 1  (55) 

for 0 5 u s  M - 1,O 5 v 5 N - 1. This has the effect of com- 
pressing all of the DFT magnitudes, but larger magnitudes much 
more so. Of course, since all of the logarithmic magnitudes will 
be quite small, a full-scale histogram stretch should then be ap- 
plied to fill the gray-scale range. 

Another consideration when displaying the DFT of a discrete- 
space image is illustrated in Fig. 5. In the DFT formulation, a 
single M x Nperiod of the DFT is sufficient to represent the im- 
age information, and also for display. However, the DFT matrix 
is even symmetric across both diagonals. More importantly, the 
center of symmetry occurs in the image center, where the high- 
frequency coefficients are clustered near (u, v )  = (M/2, N/2). 
This is contrary to conventional intuition, since in most en- 
gineering applications, Fourier transform magnitudes are dis- 
played with zero and low-frequency coefficients at the center. 
This is particularly true of one-dimensional continuous Fourier 
transform magnitudes, which are plotted as graphs with the zero 
frequency at the origin. This is also visually convenient, since 
the dominant lower frequency coefficients then are clustered to- 
gether at the center, instead of being scattered about the display. 

A natural way of remedying this is to instead display the shifted 
DFT magnitude 

IF(u - M/2, v - N/2)I (56) 

for 0 5 u 5 M - 1,0 5 v 5 N - 1. This can be accomplished 
in a simple way by taking the DFT of 

(-l)m+nf(m, n) a P ( u  - M/2, v - N/2). (57) 

Relation (57) follows since (-1)"+" = ejn(*n); hence from 
translation property (23) the DSFT is shifted by amount 1/2 
cycles/pixel along both dimensions; since the DFT uses the scaled 
frequencies of Eq. (6 ) ,  the DFT is shifted by M/2 and N / 2  
cycleslimage in the u and v directions, respectively. 

Figure 6 illustrates the display of the DFT of the image "fin- 
gerprint" image, which is Fig. 8 of Chapter 1.1. As can be seen, 
the DFT phase is visually unrevealing, while the DFT magnitude 

is most visually revealing when it is centered and logarithmically 
compressed. 

5 Understanding Image Frequencies 
and the DFT 

It is sometimes easy to lose track of the meaning of the DFT and 
of the frequency content of an image in all of the (necessary!) 
mathematics. When using the DFT, it is important to remember 
that the DFT is a detailed map of the frequency content of the im- 
age, which can be visually digested as well as digitally processed. 
It is a useful exercise to examine the DFT of images, particularly 
the DFT magnitudes, since it reveals much about the distribution 
and meaning of image frequencies. It is also useful to consider 
what happens when the image frequencies are modified in cer- 
tain simple ways, since this reveals further insights into spatial 
frequencies, and it also moves toward understanding how im- 
age frequencies can be systematically modified to produce useful 
results. 

In the following paragraphs we will present and discuss a 
number of interesting digital images along with their DFT mag- 
nitudes represented as intensity images. When examining these, 
recall that bright regions in the DFT magnitude '(imagen cor- 
respond to frequencies that have large magnitudes in the real 
image. Also, in some cases, the DFT magnitudes have been loga- 
rithmically compressed and centered by means of relations (55) 
and (57), respectively, for improved visual interpretation. 

Most engineers and scientists are introduced to Fourier do- 
main concepts in a one-dimensional setting. One-dimensional 
signal frequencies have a single attribute-that of being ei- 
ther high or low frequency. Two-dimensional (and higher- 
dimensional) signal frequencies have richer descriptions charac- 
terized by both magnitude and direction? which lend themselves 
well to visualization. We will seek intuition into these attributes 
as we separately consider the granularity of image frequencies, 
corresponding to the radial frequency of Eq. (2), and the ori- 
entation of image frequencies, corresponding to the frequency 
angle of Eq. (3). 

5.1 Frequency Granularity 
The granularity of an image frequency refers to its radial fre- 
quency. Granularity describes the appearance of an image that 
is strongly characterized by the radial frequency portrait of the 
DFT. A n  abundance of large coefficients near the DFT origin 
corresponds to the existence large, smooth, image components, 
often of smooth image surfaces or background. Note that nearly 
every image will have a significant peak at the DFT origin (unless 
it is very dark), since from Eq. (33) it is the summed intensity of 

3Strictly speaking, one-dimensional frequencies can be positive or negative 
going. This polarity may be regarded as a directional attribute, without much 
meaning for real-valued one-dimensional signals. 
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FIGURE 6 Display of DFT ofthe image “fingerprint” from Chapter 1.1. (a) DFT magnitude (logarithmically compressed 
and histogram stretched); (b) DFT phase; (c) Centered DFT (logarithmically compressed and histogram stretched); 
(d) Centered DFT (without logarithmic compression). 

the image (integrated optical density): 
M-1 N-1 m, 0) = f (m n>. (58) 
m=O n=O 

The image “fingerprint” (Fig. 8 of Chapter 1.1) with the DFT 
magnitude shown in Fig. 6(c) just above is an excellent example 
of image granularity. The image contains relatively little low- 
frequency or very high-frequency energy, but does contain an 
abundance of midfrequency energy, as can be seen in the sym- 
metrically placed half-arcs above and below the frequency origin. 
The “fingerprint” image is a good example of an image that is 
primarily bandpass. 

Figure 7 depicts the image “peppers” and its DFT magnitude. 
The image contains primarily smooth intensity surfaces sepa- 
rated by abrupt intensity changes. The smooth surfaces con- 
tribute to the heavy distribution of low-frequency DFT coef- 
ficients, while the intensity transitions (“edges”) contribute a 
noticeable amount of midfrequencies to higher frequencies over 
a broad range of orientations. 

Finally, Fig. 8, the image “cane,” depicts an image of a repeti- 
tive weave pattern that exhibits a number of repetitive peaks in 
the DFT magnitude image. These are harmonics that naturally 
appear in signals (such as music signals) or images that contain 
periodic or nearly periodic structures. 
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FIGURE 7 Image ofpeppers (left) and its DFT magnitude (right). 

FIGURE 8 Image cane (left) and its DFT magnitude (right). 

As an experiment toward understanding frequency content, 
suppose that we define several zeroone image frequency masks, 
as depicted in Fig. 9. By masking (multiplying) the DFT of 
an image f with each of these, one will produce, following an 
inverse DFT, a resulting image containing only low, middle, or 
high frequencies. In the following, we show examples of this op- 
eration. The astute reader may have observed that the zero-one 

low-frequency mid-frequency high-frequency 
mask mask mask 

FIGURE 9 
pixels take value 0. 

Image radial frequency masks. Black pixels take value 1, and white 

frequency masks, which are defined in the DFT domain, may be 
regarded as DFTs with IDFTs defined in the space domain. Since 
we are taking the products of functions in the DFT domain, it 
has the interpretation of cyclic convolution of Eqs. (46)-(51) 
in the space domain. Therefore the following examples should 
not be thought of as low-pass, bandpass, or high-pass linear 
filtering operations in the proper sense. Instead, these are in- 
structive examples in which image frequencies are being directly 
removed. The approach is not a substitute for a proper linear 
filtering of the image by using a space-domain filter that has 
been DFT transformed with proper zero padding. In particular, 
the nake demonstration here does dictate how the frequencies 
between the DFT frequencies (frequency samples) are effected, 
as a properly designed linear filter does. 

In all of the examples, the image DFT was computed, multi- 
plied by a zeroone frequency mask, and inverse discrete Fourier 
transformed. Finally, a full-scale histogram stretch was applied 
to map the result to the gray-level range (0,255), since otherwise 
the resulting image is not guaranteed to be positive. 
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FIGURE 10 Image of fingerprint processed with the (left) low-frequency and the (right) midfrequency DFT masks. 

In the first example, shown in Fig. 10, the image “fingerprint” 
is shown following treatment with the low-frequency mask and 
the midfrequency mask. The low-frequency result looks much 
blurred, and there is an apparent loss of information. However, 
the midfrequency result seems to enhance and isolate much of 
the interesting ridge information about the fingerprint. 

In the second example (Fig. l l ) ,  the image “peppers” was 
treatedwiththe midfrequency DFTmaskand the high-frequency 
DFT mask. The midfrequency image is visually quite interesting 
since it is apparent that the sharp intensity changes were signifi- 
cantly enhanced. A similar effect was produced with the higher- 
frequency mask, but with greater emphasis on sharp details. 

5.2 Frequency Orientation 
The orientation of an image frequency refers to its angle. The 
term orientation applied to an image or image component de- 
scribes those aspects of the image that contribute to an appear- 

ance that is strongly characterized by the frequency orientation 
portrait of the DFT. If the DFT is brighter along a specific ori- 
entation, then the image contains highly oriented components 
along that direction. 

The image ofthe fingerprint, with DFT magnitude in Fig. 6(c), 
is also an excellent example of image orientation. The DFT con- 
tains significant midfrequency energy between the approximate 
orientations 45-135” from the horizontal axis. This corresponds 
perfectly to the orientations of the ridge patterns in the finger- 
print image. 

Figure 12 shows the image “planks,” which contains a strong 
directional component. This manifests as a very strong extended 
peak extending from lower left to upper right in the DFT magni- 
tude. Figure 13 (“escher”) exhibits several such extended peaks, 
corresponding to strongly oriented structures in the horizontal 
and slightly off-diagonal directions. 

Again, an instructive experiment can be developed by defining 
zero-one image frequency masks, this time tuned to different 

?IGURE 11 Image of peppers processed with the (left) midfrequency and the (right) high-frequency DFT masks. 
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FIGURE 12 Image of planks (left) and DFT magnitude (right). 

FIGURE 13 Image of escher (left) and DFT magnitude (right). 

orientation frequency bands instead of radial frequency bands. 
Several such oriented frequency masks are depicted in Fig. 14A. 

As a first example, the DFT of the image "planks" was modi- 
fied by two orientation masks. In Figure 14B (left), an orientation 
mask that allows the frequencies in the range 40-50" only (as well 
as the symmetrically placed frequencies 220-230") was applied. 
This was designed to capture the bright ridge of DFT coefficients 
easily seen in Fig. 12. As can be seen, the strong oriented informa- 

FIGURE 14A Examples of image frequency orientation masks. 

tion describing the cracks in the planks and some of the oriented 
grain is all that remains. Possibly, this information could be used 
by some automated process. Then, in Fig. 14B (right), the fre- 
quencies in the much larger ranges 50-220" (and -130-40') 
were admitted. These are the complementary frequencies to the 
first range chosen, and they contain all the other information 
other than the strongly oriented component. As can be seen, 
this residual image contains little oriented structure. 

As a first example, the DFT of the image "escher" was also 
modified by two orientation masks. In Fig. 15 (left), an orien- 
tation mask that allows the frequencies in the range -25-25' 
(and 155-205") only was applied. This captured the strong hori- 
zontal frequency ridge in the image, corresponding primarily to 
the strong vertical (building) structures. Then, in Fig. 15 (right), 
frequencies in the vertically oriented ranges 45-135" (and 225- 
3 15") were admitted. This time completely different structures 
were highlighted, including the diagonal waterways, the back- 
ground steps, and the paddlewheel. 
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FIGURE 14B 
from the horizontal axis) of (left) 40-50" (and 220-230°), and (right) 50-220" (and -130-40"). 

Image of planks processed with oriented DFT masks that allow frequencies in the range (measured 

6 Related Topics in this Handbook 

The Fourier transform is one of the most basic tools for im- 
age processing, or for that matter, the processing of any kind 
of signal. It appears throughout this Handbook in various 
contexts. 

One topic that was not touched on in this basic chapter 
is the frequency-domain analysis of sampling continuous im- 
ageslvideo to create discrete-space imageslvideo. Understanding 
the relationship between the DSFT and the DFT (spectrum of 
digital image signals) and the continuous Fourier transform of 
the original, unsampled image is basic to understanding the in- 
formation content, and possible losses of information, in digital 
images. These topics are ably handled in Chapters 7.1 and 7.2 of 
this Handbook. Sampling issues were not covered in this chapter, 
since it was felt that most users deal with digital images that have 
been already created. Hence, the emphasis is on the immedi- 
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ate processing, and sampling issues are offered as a background 
understanding. 

Fourier domain concepts and linear convolution pervade 
most ofthe chapters in Section 3 of the Handbook, since linear fil- 
tering, restoration, enhancement, and reconstruction all depend 
on these concepts. Most of the mathematical models for images 
and video in Section 4 of the Handbook have strong connections 
to Fourier analysis, especially the wavelet models, which extend 
the ideas of Fourier techniques in very powerful ways. Extended 
frequency-domain concepts are also heavily utilized in Sections 5 
and 6 (image and video compression) ofthe Handbook, although 
the transforms used differ somewhat from the DFT. 
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FIGURE 15 
the horizontal axis) of (left) -25-25' (and 155-205"), and (right) 45-135' (and 225-315"). 

Image of escher processed with oriented DFT masks that allow frequencies in the range (measured from 





I11 
Image and Video 
Processing 

3.1 

3.2 

3.3 

3.4 

3.5 

3.6 

3.7 

3.8 

3.9 

3.10 

3.11 

Image and Video Enhancement and Restoration 

Basic Linear Filtering with Application to Image Enhancement Alan C. Bovik and Scott ?: Acton.. ...... 
Introduction Impulse Response, Linear Convolution, and Frequency Response Linear Image Enhancement 
Discussion - References 

Nonlinear Filtering for Image Analysis and Enhancement Gonzalo R. Arce, JosC L. Paredes, and 
John Mullan ................................................................................................................ 
Introduction Weighted Median Smoothers and Filters Image Noise Cleaning Image Zooming Image 
Sharpening Edge Detection Conclusion Acknowledgment References 

Morphological Filtering for Image Enhancement and Detection Petros Maragos and Lhcio E C. Pessoa 
Introduction Morphological Image Operators - Morphological Filters for Enhancement 
for Detection Optimal Design of Morphological Filters for Enhancement Acknowledgment References 

Wavelet Denoising for Image Enhancement Dong Wei and Alan C. Bovik.. .................................. 
Introduction Wavelet Shrinkage Denoising Image Enhancement by Means of Wavelet Shrinkage Examples 
Summary References 

Basic Methods for Image Restoration and Identification Reginald L. Lagendijk and Jan Biemond.. ...... 
Introduction Blur Models Image Restoration Algorithms Blur Identification Algorithms References 

Regularization in Image Restoration and Reconstruction William C. Karl.. ................................. 
Introduction Direct Regularization Methods - Iterative Regularization Methods Regularization Parameter Choice 
Summary Further Reading 

Multichannel Image Recovery Nikolas I? Galatsanos, Miles N. Wernick and Aggelos R Katsaggelos.. ...... 
Introduction Imaging Model Multichannel Image Estimation Approaches Explicit Multichannel Recovery 
Approaches Implicit Approach to Multichannel Image Recovery Acknowledgments References 

Introduction Mathematical Models The Restoration F’roblem - Nuisance Parameters and Blind Restoration 
Applications References 

Iterative Image Restoration 
Introduction Iterative Recovery Algorithms Spatially Invariant Degradation Matrix-Vector Formulation 
Use of Constraints Discussion References 

Morphological Filters 

Acknowledgments References 

Multiframe Image Restoration Timothy J. Schulz.. ............................................................... 

Aggelos K. Katsaggelos and Chun-Jen Tsai.. ....................................... 

Motion Detection and Estimation Janusz Konrad.. ............................................................... 
Introduction Notation and Preliminaries Motion Detection Motion Estimation Practical Motion Estimation 
Algorithms Perspectives References 

Video Enhancement and Restoration Reginald L. Lagendijk, Peter M. B. van Roosmalen 
and Jan Biemond.. ........................................................................................................ 
Introduction Spatiotemporal Noise Filtering - Blotch Detection and Removal Intensity Flicker Correction 
Concluding Remarks References 

71 

81 

101 

117 

125 

141 

161 

175 

191 

207 

227 



Reconstruction from Multiple Images 

3.12 3-D Shape Reconstruction from Multiple Views Huaibin Zhao, J. K. Aggarwal, Chandomay Mandal and 
Baba C. Vemuri ............................................................................................................ 243 
Problem Definition and Applications a Preliminaries: The Projective Geometry of Cameras Matching 
3-D Reconstruction Experiments Conclusions Acknowledgments References 

Image Sequence Stabilization, Mosaicking, and Superresolution 
Introduction * Global Motion Models Algorithm TLvo-Dimensional Stabilization Mosaicking - 
Motion Superresolution Three-Dimensional Stabilization Summary Acknowledgment References 

3.13 S. Srinivasan and R. Chellappa.. . . . . . . 259 



3.1 
Basic Linear Filtering 

with Application to Image 
Enhancement 

Alan C. Bovik 
The University of Texas 

at Austin 

Scott T. Acton 
Oklahoma State University 

1 Introduction 

Introduction .................................................................................... 71 
Impulse Response, Linear Convolution, and Frequency Response ..................... 72 
Linear Image Enhancement .................................................................. 74 
3.1 Moving Average Filter 3.2 Ideal Low-Pass Filter - 3.3 Gaussian Filter 
Discussion ...................................................................................... 79 
References ....................................................................................... 79 

~~ 

Linear system theory and linear filtering play a central role in 
digital image and video processing. Many of the most potent 
techniques for modifying, improving, or representing digital vi- 
sual data are expressed in terms of linear systems concepts. Lin- 
ear filters are used for generic tasks such as imagefvideo contrast 
improvement, denoising, and sharpening, as well as for more 
object- or feature-specific tasks such as target matching and fea- 
ture enhancement. 

Much of this Handbook deals with the application of linear 
filters to image and video enhancement, restoration, reconstruc- 
tion, detection, segmentation, compression, and transmission. 
The goal of this chapter is to introduce some of the basic sup- 
porting ideas of linear systems theory as they apply to digital 
image filtering, and to outline some of the applications. Special 
emphasis is given to the topic of linear image enhancement. 

We will require some basic concepts and definitions in order 
to proceed. The basic two-dimensional discrete-space signal is 
the two-dimensional impulse function, defined by 

. (1) 
1, m = p a n d n = q  
0, otherwise S(m - p ,  n - q )  = 

Thus, Eq. (1) takes unit value at coordinate ( p ,  q )  and is every- 
where else zero. The function in Eq. (1) is often termed the 
Kronecker delta function or the unit sample sequence [ 11. It plays 
the same role and has the same significance as the so-called 

Dirac deltafinction of continuous system theory. Specifically, the 
response of linear systems to Eq. (1) will be used to characterize 
the general responses of such systems. 

Any discrete-space image f may be expressed in terms of the 
impulse function in Eq. (1): 

Expression (2), called the sifting property, has two meaning- 
ful interpretations here. First, any discrete-space image can be 
written as a sum of weighted, shifted unit impulses. Each 
weighted impulse comprises one of the pixels of the image. Sec- 
ond, the sum in Eq. (2) is in fact a discrete-space linear convolu- 
tion. As is apparent, the linear convolution of any image f with 
the impulse function 6 returns the function unchanged. 

The impulse function effectively describes certain systems 
known as linear space-invariant systems. We explain these terms 
next. 

A two-dimensional system L is a process of image transfor- 
mation, as shown in Fig. 1. 

We can write 

g(m,  n) = L [ f ( m ,  41. 
The system L is linear if and only if for any 

Copyright @ 2000 byllcademic Press. 
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f(m n)* g(m n) 

FIGURE 1 Two-dimensional input-output system. 

and any two constants a,  b, then 

for every (m, n). This is often called the superposition property 
of linear systems. 

The system L is shifi invariant if for every f (m, n) such that 
Eq. (3) holds, then also 

for any ( p ,  4). Thus, a spatial shift in the input to L produces no 
change in the output, except for an identical shift. 

The rest ofthis chapter will be devoted to studying systems that 
are linear and shift invariant (LSI). In this and other chapters, it 
will be found that LSI systems can be used for many powerful 
image and video processing tasks. In yet other chapters, non- 
linearity or space variance will be shown to afford certain ad- 
vantages, particularly in surmounting the inherent limitations 
of LSI systems. 

2 Impulse Response, Linear Convolution, 
and Frequency Response 

The unit impulse response of a two-dimensional input-output 
system L is 

This is the response of system L, at spatial position (m, n), to an 
impulse located at spatial position ( p ,  4 ) .  Generally, the impulse 
response is a function of these four spatial variables. However, if 
the system L is space invariant, then if 

is the response to an impulse applied at the spatial origin, then 
also 

which means that the response to an impulse applied at any spa- 
tial position can be found from the impulse response in Eq. (8). 

As already mentioned, the discrete-space impulse response 
h(m, n) completely characterizes the input-output response of 

LSI input-output systems. This means that if the impulse re- 
sponse is known, then an expression can be found for the 
response to any input. The form of the expression is two- 
dimensional discrete-space linear convolution. 

Consider the generic system L shown in Fig. 1, with input 
f(m, n) and output g(m, n). Assume that the response is due to 
the input f only (the system would be at rest without the input). 
Then, from Eq. (2): 

g(m, n) = L[f(m, n)l 

If the system is known to be linear, then 

which is all that generally can be said without further knowledge 
of the system and the input. If it is known that the system is space 
invariant (hence LSI), then Eq. (12) becomes 

which is the two-dimensional discrete space linear convolution 
of input f with impulse response h. 

The linear convolution expresses the output of a wide va- 
riety of electrical and mechanical systems. In continuous sys- 
tems, the convolution is expressed as an integral. For example, 
with lumped electrical circuits, the convolution integral is com- 
puted in terms of the passive circuit elements (resistors, induc- 
tors, and capacitors). In optical systems, the integral utilizes the 
point-spread functions of the optics. The operations occur ef- 
fectively instantaneously, with the computational speed limited 
onlybythe speed ofthe electrons or photons through the system 
elements. 

However, in discrete signal and image processing systems, the 
discrete convolutions are calculated sums of products. This con- 
volution can be directly evaluated at each coordinate (m, n) by 
a digital processor, or, as discussed in Chapter 2.3, it can be 
computed by using the discrete cosine transform (DFT) using a 
fast Fourier transform (FFT) algorithm. Of course, if the exact 
linear convolution is desired, this means that the involved func- 
tions must be appropriately zero padded prior to using the DFT, 
as discussed in Chapter 2.3. The DFT/FFT approach is usually, 
but not always faster. If an image is being convolved with a very 
small spatial filter, then direct computation of Eq. (14) can be 
faster. 
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Suppose that the input to a discrete LSI system with impulse 
response h(m, n)  is a complex exponential function: 

= cos[2n(Um+ V n ) ]  + jsin[2n(Um+ V n ) ] .  (15) 

Then the system response is the linear convolution 

M M  

0 0 0 0  

which is exactly the input f (m, n) = ez.rrj(ffm+vn) multiplied by 
a function of (U, V )  only: 

The function H( U, V), which is immediately identified as the 
discrete-space Fourier transform (or DSFT, discussed extensively 
in Chapter 2.3) of the system impulse response, is called the 
fiequency response of the system. 

From Eq. ( 17) it maybe seen that that the response to any com- 
plex exponential sinusoid function, with frequencies (V, V), is 
the same sinusoid, but with its amplitude scaled by the system 
magnitude response I H( U, V) I evaluated at (U, V) and with a 
shift equal to the system phase response L H (  U, V) at (U, V). 
The complex sinusoids are the unique functions that have this 
invariance property in LSI systems. 

As mentioned, the impulse response h(m, n) of a LSI system 
is sufficient to express the response of the system to any input.’ 
The frequency response H (  U, V) is uniquely obtainable from 
the impulse response (and vice versa) and so contains sufficient 
information to compute the response to any input that has a 
DSFT. In fact, the output can be expressed in terms of the fre- 
quency response by G(U, V) = F (U, V ) H ( U ,  V) and by the 
DFT/FFT with appropriate zero padding. In fact, throughout 
this chapter and elsewhere, it may be assumed that whenever a 
DFT is being used to compute linear convolution, the appro- 
priate zero padding has been applied to avoid the wrap-around 
effect of the cyclic convolution. 

‘Strictly speaking, for any bounded input, and provided that the system is 
stable. In practical image processing systems, the inputs are invariably bounded. 
Also, almost all image processing filters do not involve feedback and hence are 
naturally stable. 

Usually, linear image processing filters are characterized in 
terms of their frequency responses, specifically by their spectrum 
shaping properties. Coarse common descriptions that apply 
to two-dimensional image processing include low-pass, band- 
pass, or high-pass. In such cases the frequency response is pri- 
marily a function of radial frequency and may even be circu- 
larly symmetric, viz., a function of U2 + V2 only. In other cases 
the filter may be strongly directional or oriented, with response 
strongly depending on the frequency angle of the input. Of 
course, the terms low pass, bandpass, high pass, and oriented 
are only rough qualitative descriptions of a system frequency 
response. Each broad class of filters has some generalized appli- 
cations. For example, low-pass filters strongly attenuate all but 
the “lower” radial image frequencies (as determined by some 
bandwidth or cutoff frequency), and so are primarily smooth- 
ing filters. They are commonly used to reduce high-frequency 
noise, or to eliminate all but coarse image features, or to reduce 
the bandwidth of an image prior to transmission through a low- 
bandwidth communication channel or before subsampling the 
image (see Chapter 7.1). 

A (radial frequency) bandpass filter attenuates all but an inter- 
mediate range of “middle” radial frequencies. This is commonly 
used for the enhancement of certain image features, such as edges 
(sudden transitions in intensity) or the ridges in a fingerprint. A 
high-pass filter attenuates all but the “higher” radial frequencies, 
or commonly, significantly amplifies high frequencies without 
attenuating lower frequencies. This approach is often used for 
correcting images that have suffered unwanted low-frequency 
attenuation (blurring); see Chapter 3.5. 

Oriented filters, which either attenuate frequencies falling 
outside of a narrow range of orientations, or amplify a nar- 
row range of angular frequencies, tend to be more specialized. 
For example, it may be desirable to enhance vertical image 
features as a prelude to detecting vertical structures, such as 
buildings. 

Of course, filters may be a combination of types, such as band- 
pass and oriented. In fact, such filters are the most common types 
of basis functions used in the powerful wavelet image decompo- 
sitions (Chapters 4.2) that have recently found so many appli- 
cations in image analysis (Chapter 4.4), human visual modeling 
(Chapter 4.1), and image and video compression (Chapters 5.4 
and 6.2). 

In the remainder of this chapter, we introduce the sim- 
ple but important application of linear filtering for linear 
image enhancement, which specifically means attempting to 
smooth image noise while not disturbing the original image 
structure.2 

’The term Yrnage enhancement” has been widely used in the past to describe 
any operation that improves image quality by some criteria. However, in recent 
years, the meaning of the term has evolved to denote image-preserving noise 
smoothing. This primarily serves to distinguish it from similar-sounding terms, 
such as “image restoration” and “image reconstruction,” which also have taken 
specific meanings. 
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3 Linear Image Enhancement 

The term “enhancement” implies a process whereby the visual 
quality of the image is improved. However, the term “image en- 
hancement” has come to specifically mean a process of smooth- 
ing irregularities or noise that has somehow corrupted the image, 
while modifying the original image information as little as pos- 
sible. The noise is usually modeled as an additive noise or as 
a multiplicative noise. We will consider additive noise now. As 
noted in Chapter 4.5, multiplicative noise, which is the other 
common type, can be converted into additive noise in a homo- 
morphic filtering approach. 

Before considering methods for image enhancement, we will 
make a simple model for additive noise. Chapter 4.5 of this 
Handbook greatly elaborates image noise models, which prove 
particularly useful for studying image enhancement filters that 
are nonlinear. 

We will make the practical assumption that an observed noisy 
image is of finite extent M x N: f = [ f ( m ,  n);O 5 m 5 
M - 1,0 5 n 5 N - 11. We model f as a sum of an origi- 
nal image o and a noise image q: 

f = o + q ,  (19) 

where n = (m, n). The additive noise image q models an unde- 
sirable, unpredictable corruption of 0. The process q is called a 
two-dimensional random process or a random field Random ad- 
ditive noise can occur as thermal circuit noise, communication 
channel noise, sensor noise, and so on. Quite commonly, the 
noise is present in the image signal before it is sampled, so the 
noise is also sampled coincident with the image. 

In Eq. (19), both the original image and noise image are un- 
known. The goal of enhancement is to recover an image g that 
resembles o as closely as possible by reducing q. If there is an 
adequate model for the noise, then the problem of tinding g can 
be posed as an image estimation problem, where g is found as 
the solution to a statistical optimization problem. Basic meth- 
ods for image estimation are also discussed in Chapter 4.5, and 
in some of the following chapters on image enhancement using 
nonlinear filters. 

With the tools of Fourier analysis and linear convolution in 
hand, we will now outline the basic approach of image enhance- 
ment by linear filtering. More often than not, the detailed statis- 
tics of the noise process q are unknown. In such cases, a simple 
linear filter approach can yield acceptable results, if the noise 
satisfies certain simple assumptions. 

We will assume a zero-mean additive white noise model. The 
zero-mean model is used in Chapter 2.1, in the context of frame 
averaging. The process q is zero mean if the average or sample 
mean of R arbitrary noise samples 

as R growslarge (provided that the noise process is mean ergodic, 
which means that the sample mean approaches the statistical 
mean for large samples). 

The term white noise is an idealized model for noise that has, 
on the average, a broad spectrum. It is a simplified model for 
wideband noise. More precisely, if Q(U, V) is the DSFT of the 
noise process q, then Q is also a random process. It is called the 
energy spectrum of the random process q. If the noise process is 
white, then the average squared magnitude of Q( U, V) is con- 
stant over all frequencies in the range [ -T, I T ] .  In the ensemble 
sense, this means that the sample average of the magnitude spec- 
tra of R noise images generated from the same source becomes 
constant for large R: 

for all ( U, V) as R grows large. The square $ of the constant level 
is called the noise power. Since q has finite extent M x N, it has a 
DFTQ= [@u,v>: 0 5 u l  ~ - 1 , 0 ( ~ ~ ~ - 1 ] . o n a v e r a g e ,  
the magnitude of the noise DFT Q will also be flat. Of course, it is 
highly unlikely that a given noise DSFT or DIT will actually have 
a flat magnitude spectrum. However, it is an effective simplified 
model for unknown, unpredictable broadband noise. 

Images are also generally thought of as relatively broadband 
signals. Significant visual information may reside at mid-to-high 
spatial frequencies, since visually significant image details such 
as edges, lines, and textures typically contain higher frequencies. 
However, the magnitude spectrum of the image at higher im- 
age frequencies is usually low; most of the image power resides 
in the low frequencies contributed by the dominant luminance 
effects. Nevertheless, the higher image frequencies are visually 
significant. 

The basic approach to linear image enhancement is low-pass 
filtering. There are different types of low-pass filters that can 
be used; several will be studied in the following. For a given 
filter type, different degrees of smoothing can be obtained by 
adjusting the filter bandwidth. A narrower bandwidth low-pass 
filter will reject more of the high-frequency content of a white 
or broadband noise, but it may also degrade the image content 
by attenuating important high-frequency image details. This is 
a tradeoff that is difficult to balance. 

Next we describe and compare several smoothing low-pass 
filters that are commonly used for linear image enhancement. 

3.1 Moving Average Filter 
The moving average filter can be described in several equivalent 
ways. First, with the use of the notion of windowing introduced 
in Chapter 2.2, the moving average can be defined as an algebraic 
operation performed on local image neighborhoods according 
to a geometric law defined bvthe window. Given an image fto be 
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filtered and a window B that collects gray-level pixels according 
to a geometric rule (defined by the window shape), then the 
moving average-filtered image g is given by 

where the operation AVE computes the sample average of its 
arguments. Thus, the local average is computed over each 
local neighborhood of the image, producing a powerful smooth- 
ing effect. The windows are usually selected to be symmetric, 
as with those used for binary morphological image filtering 
(Chapter 2.2). 

Since the average is a linear operation, it is also true that 

Because the noise process q is assumed to be zero mean in the 
sense of Eq. (20), then the last term in Eq. (23) will tend to zero 
as the filter window is increased. Thus, the moving average fil- 
ter has the desirable effect of reducing zero-mean image noise 
toward zero. However, the filter also affects the original image 
information. It is desirable that AVE[Bo(n)] o(n) at each n, 
but this will not be the case everywhere in the image if the filter 
window is too large. The moving average filter, which is low pass, 
will blur the image, especially as the window span is increased. 
Balancing this tradeoff is often a difficult task. 

The moving average filter operation, Eq. (22), is actually a 
linear convolution. In fact, the impulse response of the filter is 
defined as havingvalue 1/R over the span covered by the window 
when centered at the spatial origin (0, 0), and zero elsewhere, 
where R is the number of elements in the window. 

For example, if the window is SQUARE [ (2 P + l)'], which is 
the most common configuration (it is defined in Chapter 2.2), 
then the average filter impulse response is given by 

pH(uSOI 
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FIGURE 2 PIotsoflH(U, V)lgiveninEq.(25)alongV=O,forP= 1,2,3,4.  
As the filter span is increased, the bandwidth decreases. The number of sidelobes 
in the range [0, n] is P. 

tenuation or smoothing), but the overall sidelobe energy does 
not. The sidelobes are in fact a significant drawback, since there 
is considerable noise leakage at high noise frequencies. These 
residual noise frequencies remain to degrade the image. Nev- 
ertheless, the moving average filter has been commonly used 
because of its general effectiveness in the sense of Eq. (23) and 
because of its simplicity (ease of programming). 

The moving average filter can be implemented either as a 
direct two-dimensional convolution in the space domain, or 
by use of DFTs to compute the linear convolution (see Chap- 
ter 2.3). It should be noted that the impulse response of the 
moving average filter is defined here as centered at the frequency 
origin. If the DFT is to be used, then the impulse response 
must be periodically extended, with the repetition period equal 
to the span of the DFT. This will result in impulse response 
coefficients' being distributed at the corners of the impulse 
response image, rather than being defined on negative space 
coordinates. 

Since application ofthe moving average filter balances a trade- 
off between noise smoothing and image smoothing, the filter 
span is usually taken to be an intermediate value. For images of 
the most common sizes, e.g., 256 x 256 or 512 x 512, typical 
(SQUARE) average filter sizes range from 3 x 3 to 15 x 15. The 
upper end provides significant (and probably excessive) smooth- 
ing, since 225 image samples are being averaged to produce each 
new image value. Of course, if an image suffers from severe noise, 
then a larger window might be warranted. A large window might 
also be acceptable if it is known that the original image is very 
smooth everywhere. 

Figure 3 depicts the application of the moving average filter 
to an image that has had zero-mean white Gaussian noise added 
to it. In the current context, the distribution (Gaussian) of the 
noise is not relevant, although the meaning can be found in 
Chapter 4.5. The original image is included for comparison. The 
image was filtered with SQUARE-shaped moving average filters 
of mans 5 x 5 and 9 x 9. Droducine images with sienificantlv 

The frequency response of the moving average filter, Eq. (24), 
is 

The half-peak bandwidth is often used for image processing fil- 
ters. The half-peak (or 3 dB) cutoff frequencies occur on the 
locus of points (U,  V) where 1H(U, V)l falls to 1/2. For filter 
(25), this locus intersects the U axis and V axis at the cutoffs 
Uhalf-peak, % 0.6/(2P + 1) cycles/pixel. 

As depicted in Fig. 2, the magnitude response I H (U, V) 1 of 
filter (25) exhibits considerable sidelobes. In fact, the number 
of sidelobes in the range [0, IT] is P. As P is increased, the - 
filter bandwidth naturally decreases (more high-frequency at- _ _  .=. .~~ . , I  v u  " 
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FIGURE 3 Examples of applications of a moving average filter: (a) original image “eggs”; (b) image with additive 
Gaussian white noise; moving average filtered image, using (c) SQUARE(25) window (5 x 5) and (d) SQUARE(81) 
window (9 x 9). 

different appearances from each other as well as the noisy image. 
With the 5 x 5 filter, the noise is inadequately smoothed, yet 
the image has been blurred noticeably. The result of the 9 x 9 
moving average filter is much smoother, although the noise in- 
fluence is still visible, with some higher noise frequency compo- 
nents managing to leak through the filter, resulting in a mottled 
appearance. 

3.2 Ideal Low-Pass Filter 
As an alternative to the average filter, a filter may designed ex- 
plicitly with no sidelobes by forcing the frequency response to 
be zero outside of a given radial cutoff frequency a,, 

or outside of a rectangle defined by cutoff frequencies along the 
U and V axes, 

1, IUI 5 Uc, IVI 5 v, 
0, otherwise . (27) I H(U,  v) = 

Such a filter is called ideal low-passjilter (ideal LPF) because of 
its idealized characteristic. We will study Eq. (27) rather than 
Eq. (26) since it is easier to describe the impulse response of the 
filter. If the region of frequencies passed by Eq. (26) is square, 
then there is little practical difference in the two filters if Uc = 
v, = ac. 

The impulse response of the ideal low-pass filter of Eq. (27) is 
given explicitly by 

h(m, n) = UcV,sinc(2.rrUcrn) sinc(2rV,n), (28) 
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where sinc(x) = (sin x / x ) .  Despite the seemingly “ideal” na- 
ture of this filter, it has some major drawbacks. First, it cannot 
be implemented exactly as a linear convolution, since impulse 
response (28) is infinite in extent (it never decays to zero). There- 
fore it must be approximated. One way is to simply truncate 
the impulse response, which in image processing applications 
is often satisfactory. However, this has the effect of introducing 
ripple near the frequency discontinuity, producing unwanted 
noise leakage. The introduced ripple is a manifestation of the 
well-known Gibbs phenomena studied in standard signal pro- 
cessing texts [ 11. The ripple can be reduced by using a tapered 
truncation of the impulse response, e.g., by multiplying Eq. (28) 
with a Hamming window [ 11. If the response is truncated to 
image size M x N, then the ripple will be restricted to the vicin- 
ity of the locus of cutoff frequencies, which may make little 
difference in the filter performance. Alternately, the ideal LPF 
can be approximated by a Butterworth filter or other ideal LPF 
approximating function. The Butterworth filter has frequency 
response [2] 

i 

and, in principle, can be made to agree with the ideal LPF with ar- 
bitrary precision by taking the filter order K large enough. How- 
ever, Eq. (29) also has an infinite-extent impulse response with 
no known closed-form solution. Hence, to be implemented it 
must also be spatially truncated (approximated), which reduces 
the approximation effectiveness of the filter [2]. 

It should be noted that if a filter impulse response is truncated, 
then it should also be slightly modified by adding a constant level 
to each coefficient. The constant should be selected such that the 
filter coefficients sum to unity. This is commonly done since it 
is generally desirable that the response of the filter to the (0, 0) 
spatial frequency be unity, and since for any filter 

The second major drawback of the ideal LPF is the phenom- 
ena known as ringing. This term arises from the characteristic 
response of the ideal LPF to highly concentrated bright spots in 
an image. Such spots are impulselike, and so the local response 
has the appearance of the impulse response of the filter. For the 
circularly symmetric ideal LPF in Eq. (26), the response consists 
of a blurredversion of the impulse surrounded by sinclike spatial 
sidelobes, which have the appearances of rings surrounding the 
main lobe. 

In practical application, the ringing phenomenon creates 
more of aproblem because ofthe edge responseofthe ideal LPF. In 
the simplistic case, the image consists of asingle one-dimensional 
step edge: s(m, n) = s(n) = 1 for n 2 0 and s(n) = 0, other- 
wise. Figure 4 depicts the response of the ideal LPF with impulse 

..”.. . . _e.. ..... : ...*..’ - 

_.....- t.’-‘.. ; .... - .. . .... . .  
PIGURE 4 Depiction of edge ringing. The step edge is shown as a continuous 
curve; the linear convolution response of ideal LPF (28) is shown as a dotted 
curve. 

response (28) to the step edge. The step response of the ideal 
LPF oscillates (rings) because the sinc function oscillates about 
the zero level. In the convolution sum, the impulse response 
alternately makes positive and negative contribution, creating 
overshoots and undershoots in the vicinity of the edge profile. 
Most digital images contain numerous steplike light-to-dark or 
dark-to-light image transitions; hence, application of the ideal 
LPF will tend to contribute considerable ringing artifacts to im- 
ages. Since edges contain much of the significant information 
about the image, and since the eye tends to be sensitive to ring- 
ing artifacts, often the ideal LPF and its derivatives are not a good 
choice for image smoothing. However, if it is desired to strictly 
bandlimit the image as closely as possible, then the ideal LPF is 
a necessary choice. 

Once an impulse response for an approximation to the ideal 
LPF has been decided, then the usual approach to implementa- 
tion again entails zero padding both the image and the impulse 
response, using the periodic extension, taking the product of 
their DFTs (using an FFT algorithm), and defining the result as 
the inverse DFT. This was done in the example of Fig. 5, which 
depicts application of the ideal LPF using two cutoff frequencies. 
This was implemented by using a truncated ideal LPF without 
any special windowing. The dominant characteristic of the fil- 
tered images is the ringing, manifested as a strong mottling in 
both images. A very strong oriented ringing can be easily seen 
near the upper and lower borders of the image. 

3.3 Gaussian Filter 
As we have seen, filter sidelobes in either the space or spatial fre- 
quency domain contribute a negative effect to the responses of 
noise-smoothing linear image enhancement filters. Frequency- 
domain sidelobes lead to noise leakage, and space-domain side- 
lobes lead to ringing artifacts. A filter with sidelobes in neither 
domain is the Gaussianfilter, with impulse response 
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FIGURE 5 Example of application of ideal low-pass filter to the noisy image in Fig. 3(b). The image is filtered with the 
radial frequency cutoff of (a) 30.72 cycleslimage and (b) 17.07 cycleslimage. These cutoff frequencies are the same as the 
half-peak cutoff frequencies used in Fig. 3. 

Impulse response (31) is also infinite in extent, but it falls off 
rapidly away from the origin. In this case, the frequency response 
is closely approximated by 

peak radial frequency bandwidth of Eq. (32) is easily found 
to be 

(33) 
H(U,  v) x e-zTr~oz(u~+v~) for I Ut, I VI < 1/2, (32) 

If it is possible to decide an appropriate cutoff frequency G?,, 
then the cutoff frequency may be fixed by setting u = 0.187/ G?, 
pixels. The filter may then be implemented by truncating Eq. 
(31) using this value of u, adjusting the coefficients to sum to 
one, zero padding both impulse response and image (taking care 

which is also a Gaussian function. Neither Eq. (31) nor Eq. (32) 
shows any sidelobes; instead, both impulse and frequency 
response decay smoothly. The Gaussian filter is noted for 
the absence of ringing and noise leakage artifacts. The half- 

FIGURE 6 Example of the application of a Gaussian filter to the noisy image in Fig. 3(b). The image is filtered with 
the radial frequency cutoff of (a) 30.72 cycleslimage (u E 1.56 pixels) and (b) 17.07 cycleslimage (a % 2.80 pixels). These 
cutoff frequencies are the same as the half-peak cutoff frequencies used in Figs. 3 and 5. 
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FIGURE 7 Depiction of the scale-space property of a Gaussian low-pass filter. In (b), the image in (a) is Gaussian filtered 
with progressively larger values of u (narrower bandwidths), producing successively smoother and more diffuse versions 
of the original. These are “stacked” to produce a data cube with the original image on top to produce the representation 
shown in (b). 

to use the periodic extension of the impulse response implied 
by the DFT), multiplying DFTs, and taking the inverse DFT to 
be the result. The results obtained (see Fig. 6 )  are much better 
than those computed by using the ideal LPF, and they are slightly 
better than those obtainedwith the moving average filter, because 
of the reduced noise leakage. 

Figure 7 shows the result of filtering an image with a Gaussian 
filter of successively larger u values. As the value of u is increased, 
small-scale structures such as noise and details are reduced to 
a greater degree. The sequence of images shown in Fig. 7(b) is 
a Gaussian scale space, where each scaled image is calculated by 
convolving the original image with a Gaussian filter of increasing 
u value [ 31. 

The Gaussian scale space may be thought of as evolving over 
time t. At time t, the scale space image gt is given by 

where h, is a Gaussian filter with scale factor u, and f is the 
initial image. The time-scale relationship is defined by u = 4. 
As u is increased, less significant image features and noise begin 
to disappear, leaving only large-scale image features. 

The Gaussian scale space may also be viewed as the evolving 
solution of a partial differential equation [3,4]: 

32 = vzg,, 
a t  

(35) 

where V2gt is the Laplacian of gt. For an extended discussion of 
scale-space and partial differential equation methods, see Chap- 
ter 4.12 of this Handbook. 

4 Discussion 

Linear filters are omnipresent in image and video processing. 
Firmly established in the theory of linear systems, linear filters 
are the basis of processing signals of arbitrary dimensions. Since 
the advent of the fast Fourier transform in the 1960’s, the lin- 
ear filter has also been an attractive device in terms of compu- 
tational expense. However, it must be noted that linear filters 
are performance limited for image enhancement applications. 
From the several experiments performed in this chapter, it can 
be seen that the removal of broadband noise from most images 
by means of linear filtering is impossible without some degrada- 
tion (blurring) of the image information content. This limitation 
is due to the fact that complete frequency separation between 
signal and broadband noise is rarely practicable. Alternative so- 
lutions that remedy the deficiencies of linear filtering have been 
devised, resulting in a variety of powerful nonlinear image en- 
hancement alternatives. These are discussed in Chapters 3.2-3.4 
of this Handbook. 
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Digital image enhancement and analysis have played, and will 
continue to play, an important role in scientific, industrial, and 
military applications. In addition to these applications, image 
enhancement and analysis are increasingly being used in con- 
sumer electronics. Internet Web users, for instance, not only rely 
on built-in image processing protocols such as JPEG and in- 
terpolation, but they also have become image processing users 
equipped with powerful yet inexpensive software such as Pho- 
toshop. Users not only retrieve digital images from the Web 
but are now able to acquire their own by use of digital cam- 
eras or through digitization services of standard 35-mm analog 
film. The end result is that consumers are beginning to use home 
computers to enhance and manipulate their own digital pictures. 
Image enhancement refers to processes seeking to improve the 
visual appearance of an image. As an example, image enhance- 
ment might be used to emphasize the edges within the image. 
This edge-enhanced image would be more visually pleasing to 
the naked eye, or perhaps could serve as an input to a machine 
that would detect the edges and perhaps make measurements of 
shape and size of the detected edges. Image enhancement is im- 
portant because of its usefulness in virtually all image processing 
applications. 

JosC L. Paredes is also with the University of Los Andes, MCrida-Venezuela. 
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Image enhancement tools are often classified into (a) point 
operations, and (b) spatial operators. Point operations include 
contrast stretching, noise clipping, histogram modification, and 
pseudo-coloring. Point operations are, in general, simple non- 
linear operations that are well known in the image processing 
literature and are covered elsewhere in this Handbook. Spatial op- 
erations used in image processing today are, in contrast, typically 
linear operations. The reason for this is that spatial linear opera- 
tions are simple and easily implemented. Although linear image 
enhancement tools are often adequate in many applications, sig- 
nificant advantages in image enhancement can be attained if 
nonlinear techniques are applied [ 11. Nonlinear methods effec- 
tively preserve edges and details of images, whereas methods 
using linear operators tend to blur and distort them. Addition- 
ally, nonlinear image enhancement tools are less susceptible to 
noise. Noise is always present because of the physical randomness 
of image acquisition systems. For example, underexposure and 
low-light conditions in analog photography lead to images with 
film-grain noise, which, together with the image signal itself, are 
captured during the digitization process. 

This article focuses on nonlinear and spatial image enhance- 
ment and analysis. The nonlinear tools described in this arti- 
cle are easily implemented on currently available computers. 
Rather than using linear combinations of pixel values within a 
local window, these tools use the local weighted median. In Sec- 
tion 2, the principles ofweighted medians (WMs) are presented. 

81 
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Weighted medians have striking analogies with traditional lin- 
ear FIR filters, yet their behavior is often markedly different. In 
Section 3, we show how WM filters can be easily used for noise 
removal. In particular, the center WM filter is described as a tun- 
able filter highly effective in impulsive noise. Section 4 focuses 
on image enlargement, or zooming, using WM filter structures 
that, unlike standard linear interpolation methods, provide lit- 
tle edge degradation. Section 5 describes image sharpening al- 
gorithms based on WM filters. These methods offer significant 
advantages over traditional linear sharpening tools whenever 
noise is present in the underlying images. Section 6 goes beyond 
image enhancement and focuses on the analysis of images. In 
particular, edge-detection methods based on WM filters are de- 
scribed as well as their advantages over traditional edge-detection 
algorithms. 

2 . 
Filter Motion 

- 
V 

- - - - - 1 
2 Weighted Median Smoothers and Filters 0 

2.1 Running Median Smoothers 
The running median was first suggested as a nonlinear smoother 
for time series data by Tukey in 1974 [ 21. To define the running 
median smoother, let {x(.)} be a discrete time sequence. The 
running median passes a window over the sequence { x(-)} that 
selects, at each instant n, a set of samples to comprise the ob- 
servation vector x(n). The observation window is centered at n, 
resulting in 

X(E) = [X(n - NL), . . . , X(n), . . . , X ( n  + N R ) ] ~ ,  (1) 

FIGURE 1 
pended points. 

The operation of the window width 5 median smoother: 0, ap- 

the beginning and end. These end effects are generally accounted 
for by appending NL samples at the beginning and NR samples 
at the end of {x ( . ) } .  Although the appended samples can be 
arbitrarily chosen, typically these are selected so that the points 
appended at the beginning of the sequence have the same value 
as the first signal point, and the points appended at the end of 
the sequence all have the value of the last signal point. 

To illustrate the appending of input sequence and the median 
smoother operation, consider the input signal {x(-)} of Fig. 1. In 
this example, {x(.)} consists of 20 observations from a six-level 
process, { x  : x(n)  E {0,1, . . . , 5 } ,  n = 1,2, . , . ,20}. The figure 
shows the input sequence and the resulting output sequence for 
a window size 5 median smoother. Note that to account for edge 

where NL and NR may range in value over the nonnegative 
integers and N = NL + NR + 1 is the window size. The median 
smoother operating on the input sequence { x ( - ) }  produces the 
output sequence { y } ,  where at time index n 

effects, two samples have been appended to both the beginning 
and end of the sequence. The median smoother output at the ~ ( n )  = MEDIAN[x(n - NL), . . . , x(n) ,  . . . , x(n 4- NR)] (2) 

= MEDIAN[xi(n), . . ., X N ( ~ ) ] ,  (3) window location shown in the figure is 

whereq(n) = x(n-  N ~ + l - i )  for i = 1,2, . . . , N. Thatis,the 
samples in the observation window are sorted and the middle, 
or median, value is taken as the output. If ql), qz), . .., q ~ )  
are the sorted samples in the observation window, the median 
smoother outputs 

if N is odd 

otherwise 
(4) 

In most cases, the window is symmetric about x(n)  and 

The input sequence { x ( . ) }  may be either finite or infinite in 
extent. For the finite case, the samples of {x(.)} can be indexed 
as x(l), x(2), . . . , x(L), where L is the length of the sequence. 
Because of the symmetric nature of the observation window, the 
window extends beyond a finite extent input sequence at both 

NL = NR. 

y(9) = MEDIANIx(71, x(8), x(9), x(10), x(1l)l 

= MEDIAN[l, 1,4,3,3] = 3. 

Running medians can be extended to a recursive mode by 
replacing the “causal” input samples in the median smoother 
by previously derived output samples [ 31. The output of the 
recursive median smoother is given by 

In recursive median smoothing, the center sample in the obser- 
vation window is modified before the window is moved to the 
next position. In this manner, the output at each windowlocation 
replaces the old input value at the center of the window. With 
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the same amount of operations, recursive median smoothers 
have better noise attenuation capabilities than their nonrecursive 
counterparts [4, 51. Alternatively, recursive median smoothers 
require smaller window lengths than their nonrecursive coun- 
terparts in order to attain a desired level of noise attenuation. 
Consequently, for the same level of noise attenuation, recursive 
median smoothers often yield less signal distortion. In image 
processing applications, the running median window spans a 
local two-dimensional (2-D) area. Typically, an N x N area is 
included in the observation window. The processing, however, is 
identical to the one-dimensional (1-D) case in the sense that the 
samples in the observation window are sorted and the middle 
value is taken as the output. 

The running 1-D or 2-D median, at each instant in time, 
computes the sample median. The sample median, in many re- 
spects, resemble the sample mean. Given Nsamples x ~ ,  . . . , XN, 

the sample mean, 2, and sample median, 2, minimize the 
expression 

i=l 

for p = 2 and p = 1, respectively. Thus, the median of an odd 
number of samples emerges as the sample whose sum of absolute 
distances to all other samples in the set is the smallest. Likewise, 
the sample mean is given by the value P whose square distance 
to all samples in the set is the smallest possible. The analogy be- 
tween the sample mean and median extends into the statistical 
domain of parameter estimation, where it can be shown that the 
sample median is the maximum likelihood (ML) estimator of 
location of a constant parameter in Laplacian noise. Likewise, 
the sample mean is the ML estimator of location of a constant 
parameter in Gaussian noise [6]. This result has profound impli- 
cations in signal processing, as most tasks where non-Gaussian 
noise is present will benefit from signal processing structures us- 
ing medians, particularlywhen the noise statistics can be charac- 
terized by probability densities having tails heavier than Gaus- 
sian tails (which leads to noise with impulsive characteristics) 
[ 7-91. 

2.2 Weighted Median Smoothers 
Although the median is a robust estimator that possesses many 
optimality properties, the performance of running medians is 
limited by the fact that it is temporally blind. That is, all ob- 
servation samples are treated equally regardless of their location 
within the observation window. Much like weights can be in- 
corporated into the sample mean to form a weighted mean, a 
weighted median can be defined as the sample that minimizes 
the weighted cost function 

N 

(7) 

- y ( )  

FIGURE 2 The weighted median smoothing operation. 

for p = 1. For p = 2, the cost function of Eq. (7) is quadratic 
and the value p minimizing it is the normalized weighted mean 

with W;: > 0. For p = 1, GI (p) is piecewise linear and convex 
for 2 0. The value p minimizing Eq. (7) is thus guaranteed 
to be one of the samples X I ,  x2, . . . , x~ and is referred to as the 
weighted median, originally introduced over a hundred years ago 
by Edgemore [ 101. After some algebraic manipulations, it can be 
shown that the running weighted median output is computed as 

~ ( n )  = MEDIAN[ W1 0 xi(n), wz 0 x ~ ( n ) ,  . . . , WN 0 xN(n)], 

(9) 

where W;: > O  and o is the replication operator defined as 

W;: o xi = xi, xi, . . . , xi. Weighted median smoothers were in- 
troduced in the signal processing literature by Brownigg in 1984 
and have since received considerable attention [ 11-13]. The WM 
smoothing operation can be schematically described as in Fig. 2. 

Wi times - 
Weighted Median Smoothing Computation 
Consider the window size 5 WM smoother defined by the sym- 
metric weight vector W = [I, 2,3,2, 11. For the observation 
x(n) = [ 12,6,4, 1, 91, the weighted median smoother output is 
found as 

y(n)  = MEDIAN[12 o 1,6 o 2,4 o 3 , l  o 2,9 0 11 

= MEDIANI12, 6, 6, 4,4, 4, 1, 1, 91 (10) 
= MEDIAN[I, 1,4,4,4,6,6, 9, 121 = 4 

where the median value is underlined in Eq. (10). The large 
weighting on the center input sample results in this sample 
being taken as the output. As acomparison, the standard median 
output for the given input is y(n)  = 6. 

Although the smoother weights in the above example are inte- 
ger valued, the standard WM smoother definition clearly allows 
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for positive real-valued weights. The WM smoother output for 
this case is as follows. 

1. Calculate the threshold TO = 
2. Sort the samples in the observationvector x(n). 
3. Sum the weights corresponding to the sorted samples, be- 

ginningwith the maximum sample and continuing down 
in order. 

4. The output is the sample whose weight causes the sum to 
become greater than or equal to To. 

EL, W;. 

To illustrate the WM smoother operation for positive real- 
valued weights, consider the WM smoother defined by W = 
[0.1, 0.1,0.2,0.2,0.1]. The output for this smoother operating 
on x(n) = [ 12, 6,4, 1, 93 is found as follows. Summing the 
weights gives the threshold TO = $ E;=, W;. = 0.35. The obser- 
vation samples, sorted observation samples, their corresponding 
weight, and the partial sum of weights (from each ordered sam- 
ple to the maximum) are 

observationsamples 12, 6, 4, 1, 9 
correspondingweights 0.1, 0.1, 0.2, 0.2, 0.1 
sorted observation 1, 4, 6, 9, 12 

corresponding weights 0.2, 0.2, 0.1, 0.1, 0.1 
partialweightsums 0.7, 0.5, 0.3, 0.2, 0.1 (11) 

samples 

Thus, the output is 4 since when starting from the right (maxi- 
mum sample) and summingthe weights, the threshold = 0.35 
is not reached until the weight associated with 4 is added. 

An interesting characteristic of WM smoothers is that the 
nature of a WM smoother is not modified if its weights are mul- 
tiplied by a positive constant. Thus, the same filter characteristics 
can be synthesized by different sets ofweights. Although the WM 
smoother admits real-valued positive weights, it turns out that 
any WM smoother based on real-valued positive weights has 
an equivalent integer-valued weight representation [ 141. Con- 
sequently, there are only a finite number of WM smoothers for 
a given window size. The number of WM smoothers, however, 
grows rapidly with window size [ 131. 

Weighted median smoothers can also operate on a recur- 
sive mode. The output of a recursive WM smoother is given 
bY 

y(n)  = MEDIAN[ W-N, O y(n  - Nl), . . . , W-1 O y(n  - l), 

WO o 4 n > ,  . . . , Wk, 0 x ( n  + Nd1, (12) 

where the weights W;. are as before constrained to be positive 
valued. Recursive WM smoothers offer advantages over WM 
smoothers in the same way that recursive medians have advan- 
tages over their nonrecursive counterparts. In fact, recursive WM 
smoothers can synthesize nonrecursive WM smoothers of much 
longer window sizes [ 141. 

2.2.1 The Center Weighted Median Smoother 
The weighting mechanism of WM smoothers allows for great 
flexibility in emphasizing or deemphasizing specific input sam- 
ples. In most applications, not all samples are equally important. 
Because of the symmetric nature of the observation window, the 
sample most correlated with the desired estimate is, in general, 
the center observation sample. This observation leads to the 
center weighted median (CWM) smoother, which is a relatively 
simple subset of WM smoother that has proven useful in many 
applications [ 121. 

The CWM smoother is realized by allowing only the center 
observation sample to beweighted. Thus, theoutput ofthe CWM 
smoother is given by 

where W, is an odd positive integer and c = (Nf 1)/2 = N1+ 1 
is the index of the center sample. When W, = 1, the operator is 
a median smoother, and for W, 2 N, the CWM reduces to an 
identity operation. 

The effect of varying the center sample weight is perhaps best 
seen by way of an example. Consider a segment of recorded 
speech. The voiced waveform “a” noise is shown at the top 
of Fig. 3. This speech signal is taken as the input of a CWM 
smoother of window size 9. The outputs of the CWM, as the 
weight parameter W, = 2w + 1 for w = 0, . . . ,3, are shown 
in the figure. Clearly, as W, is increased less smoothing occurs. 
This response of the CWM smoother is explained by relating 
the weight W, and the CWM smoother output to select order 
statistics (OS). 

The CWM smoother has an intuitive interpretation. It turns 
out that the output of a CWM smoother is equivalent to com- 
puting 

where k = (N + 2 - W,)/2 for 1 5  Wc 5 N, and k = 1 for 
W, 7 N [ 121. Since x(n)  is the center sample in the observation 
window, i.e., x, = x( n), the output of the smoother is identical to 
theinputaslongasthex(n)liesintheinterval [x(k), q ~ + I - k ) ] ,  If 
the center input sample is greater than X Q J + ~ - ~ )  then the smooth- 
ing outputs x ( ~ + I - k ) ,  guarding against a high rank order (large) 
aberrant data point being taken as the output. Similarly, the 
smoother’s output is qk) if the sample x ( n )  is smaller than this 
order statistic. This CWM smoother performance characteristic 
is illustrated in Figs. 4 and 5. Figure 4 shows how the input sam- 
ple is left unaltered if it is between the trimming statistics x(k) 
and x(N+1-k) and mapped to one ofthese statistics ifit is outside 
this range. Figure 5 shows an example of the CWM smoother 
operating on a constant-valued sequence in additive Laplacian 
noise. Along with the input and output, the trimming statistics 
are shown as an upper and lower bound on the filtered signal. 
It is easily seen how increasing k will tighten the range in which 
the input is passed directly to the output. 
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FIGURE 3 Effects of increasing the center weight of a CWM smoother of window size N = 9 
operating on the voiced speech “a”. The CWM smoother output is shown for W, = 2w + 1, with 
w = 0, 1,2,3.  Note that for W, = 1 the CWM reduces to median smoothing, and for W, = 9 it 
becomes the identity operator. 

2.2.2 Permutation Weighted Median Smoothers 
The principle behind the CWM smoother lies in the ability to 
emphasize, or deemphasize, the center sample of the window by 
tuning the center weight, while keeping the weight values of all 
other samples at unity. In essence, the value given to the cen- 
ter weight indicates the “reliability” of the center sample. If the 
center sample does not contain an impulse (high reliability), it 
would be desirable to make the center weight large such that no 
smoothing takes place (identity filter). In contrast, if an impulse 
was present in the center of the window (low reliability), no 
emphasis should be given to the center sample (impulse), and 
the center weight should be given the smallest possible weight, 
i.e. W, = 1, reducing the CWM smoother structure to a sim- 
ple median. Notably, this adaptation of the center weight can be 
easily achieved by considering the center sample’s rank among 
all pixels in the window [ 15, 161. More precisely, denoting the 
rank of the center sample of the window at a given location 
as R,(n), then the simplest permutation WM smoother is de- 
fined by the following modification of the CWM smoothing 

XU) xW X ( N + l - k )  X f N )  

FIGURE 4 CWM smoothing operation. The center observation sample is 
mapped to the order statistic y k ) ( q ~ + l - k ) )  if the center sample is less (greater) 
than x ( ~ ) ( Y N + ~ - L ) )  and left unaltered otherwise. 

operation: 

where N is the window size and 1 5  TL 5 TU i N are two 
adjustable threshold parameters that determine the degree of 
smoothing. Note that the weight in Eq. (15) is data adaptive and 
may change between two values with n. The smaller (larger) the 
threshold parameter TL (Tu) is set to, the better the detail preser- 
vation. Generally, TL and TU are set symmetrically around the 
median. If the underlying noise distribution was not symmetric 
about the origin, a nonsymmetric assignment of the thresholds 
would be appropriate. 

The data-adaptive structure of the smoother in Eq. (15) can be 
extended so that the center weight is not only switched between 
two possible values, but can take on N different values: 

Thus, the weight assigned to x, is drawn from the center 
weight set { Wc(l), Wc(2), . . . , W,(N}. With an increased num- 
ber of weights, the smoother in Eq. (16) can perform better 
although the design of the weights is no longer trivial and opti- 
mization algorithms are needed [ 15,161. A further generalization 
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FIGURE 5 Example of the CWM smoother operating on a Laplacian distributed sequence with unit 
variance. Shown are the input (- . -. -) and output (-) sequences as well as the trimming statistics 
X(k) andYN+I-k).Thewindowsizeis25and k =  7. 

of Eq. (16) is feasible when weights are given to all samples in the 
window, but when the value of each weight is data dependent 
and determined by the rank of the corresponding sample. In this 
case, the output of the permutation WM smoother is found as 

by 

1 i f x i z m  
-1 ifxi < m' (18) xim = T"(Xi) = 

where W(R, )  is the weight assigned to xi(n) and selected ac- 
cording to the sample's rank Ri. The weight assigned to xi is 
drawn from the weight set { 14$1), Q2), . . . , Wcw}. Having N 
weights per sample, a total of N2 samples need to be stored in 
the computation of Eq. (17). In general, optimization algorithms 
are needed to design the set of weights although in some cases 
the design is simple, as with the smoother in Eq. (15). Permu- 
tation WM smoothers can provide significant improvement in 
performance at the higher cost of memory cells [ 151. 

2.2.3 Threshold Decomposition and 
Stack Smoothers 
An important tool for the analysis and design of weighted me- 
dian smoothers is the threshold decomposition property [ 171. 
Given an integer-valued set of samples XI, x2, . . . , XN form- 
ing the vector x = [xl, x2, . . . , XN] T, where xi E { - M ,  . . . , 
-1,O, . . . , M ) ,  the threshold decomposition of x amounts 
to decomposing this vector into 2 M  binary vectors 
xbM+', . . . , xo, . . . , xM, where the ith element of xm is defined 

where T m ( . )  is referred to as the thresholding operator. With 
the use of the sgn function, the above can be written as x,!" = 
sgn (xi - m-), where rn- represents a real number approach- 
ing the integer rn from the left. Although defined for integer- 
valued signals, the thresholding operation in Eq. (18) can be 
extended to noninteger signals with a finite number of quan- 
tization levels. The threshold decomposition of the vector x = 
[ O , O ,  2, -2, 1, 1,0, -1, -1IT with M = 2, for instance, leads 
to the 4 binary vectors 

92 = [-1, -1, 1, -1, -1, -1, -1, -1, -1]T, 

x1 = [-1, -1, 1, -1, 1, 1, -1, -1, -1]T, 

xa = [ 1, 1, 1, -1, 1, 1, 1, -1, -1]T, 
x-1 = [ 1, 1, 1, -1, 1, 1, 1, 1, 1]T. 

(19) 

Threshold decomposition has several important properties. 
First, threshold decomposition is reversible. Given a set of thresh- 
olded signals, each of the samples in x can be exactly recon- 
structed as 
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Thus, an integer-valued discrete-time signal has a unique thresh- 
old signal representation, and vice versa: 

where denotes the one-to-one mapping provided by the 
threshold decomposition operation. 

The set of threshold decomposed variables obey the following 
set of partial ordering rules. For all thresholding levels m > .l, 
it can be shown that xi" 5 xi". In particular, if xi" = 1 then 
xi" = 1 for all a < rn. Similarly, if x," = -1 then xi" = -1, for 
all m > e. The partial order relationships among samples across 
the various thresholded levels emerge naturally in thresholding 
and are referred to as the stacking constraints [ 181. 

Threshold decomposition is of particular importance in 
weighted median smoothing since they are commutable op- 
erations. That is, applying a weighted median smoother to a 
2M + 1 valued signal is equivalent to decomposing the signal 
to 2 M binary thresholded signals, processing each binary sig- 
nal separately with the corresponding WM smoother, and then 
adding the binary outputs together to obtain the integer-valued 
output. Thus, the weighted median smoothing of a set of samples 
x1, x2, . . . , XN is related to the set of the thresholded weighted 
median smoothed signals as [ 14, 171 

Weighted MEDIAN(x1, . . . , X N )  

= 1 2 WeightedMEDIAN(xY, . . . , xg). (21) 
m=-M+l 

T.D. Since xi ={xi"} and Weighted MEDIAN (xilEl)* 
(Weigthed MEDIAN(x?lE,>}, the relationship in Eq. (21) es- 
tablishes a weak superposition property satisfied by the nonlin- 
ear median operator, which is important because the effects of 
median smoothing on binary signals are much easier to analyze 
than those on multilevel signals. In fact, the weighted median 
operation on binary samples reduces to a simple Boolean opera- 
tion. The median of three binary samples x1, xz, x3, for example, 
is equivalent to x1 x2 + x2 x3 + x1 x3, where the + (OR) and xixj 
(AND) Boolean operators in the {-1, 1) domain are defined as 

xi + Xj = m a ( % ,  xj), 
X i x j  = min(G, xj). 

Note that the operations in Eq. (22) are also valid for the standard 
Boolean operations in the {0, 1) domain. 

The framework of threshold decomposition and Boolean op- 
erations has led to the general class of nonlinear smoothers re- 
ferred here to as stack smoothers [ 181, whose output is defined by 

where f(-) is a Boolean operation satisfying Eq. (22) and 

the stacking property. More precisely, if two binary vec- 
tors u ~ { - l ,  l}N and v ~ { - l ,  l}N stack, i.e., ui ?vi for all 
3 E { 1, . . . , N), then their respective outputs stack, i.e., f(u) >_ 
f(v). A necessary and sufficient condition for a function to pos- 
sess the stacking property is that it can be expressed as a Boolean 
function that contains no complements of input variables [ 191. 
Such functions are known as positive Boolean functions (PBFs). 

Given a positive Boolean function f(x;", . . . , x;) that char- 
acterizes a stack smoother, it is possible to find the equivalent 
smoother in the integer domain by replacing the binary AND 
and OR Boolean functions acting on the xi 's with max and 
min operations acting on the multilevel xi samples. A more in- 
tuitive class of smoothers is obtained, however, if the positive 
Boolean functions are further restricted [ 141. When self-duality 
and separability is imposed, for instance, the equivalent inte- 
ger domain stack smoothers reduce to the well-known class of 
weighted median smoothers with positive weights. For example, 
if the Boolean function in the stack smoother representation is 
selected as f(xl, x2, x3, xq) = xlx3x4 + ~ 2 x 4  + x2x3 + ~1x2, 
the equivalent WM smoother takes on the positive weights 
(W1, W2, W,, W,) = (1,2,1, 1). The procedure of how to ob- 
tain the weights W from the PBF is described in [ 141. 

2.3 Weighted Median Filters 
Admitting only positive weights, WM smoothers are severely 
constrained as they are, in essence, smoothers having low-pass 
type filtering characteristics. A large number of engineering 
applications require bandpass or high-pass frequency filtering 
characteristics. Linear FIR equalizers admitting only positive fil- 
ter weights, for instance, would lead to completely unaccept- 
able results. Thus, it is not surprising that weighted median 
smoothers admitting only positive weights lead to unacceptable 
results in a number of applications. 

Much like the sample mean can be generalized to the rich class 
of linear FIR filters, there is alogical way to generalize the median 
to an equivalently rich class of weighted median filters that admit 
both positive and negative weights [ 201. It turns out that the ex- 
tension is not only natural, leading to a significantly richer filter 
class, but is simple as well. Perhaps the simplest approach to de- 
rive the class of weighted median filters with real-valued weights 
is by analogy. The sample mean p = MEAN(x1, x2, . . . , XN> 
can be generalized to the class of linear FIR filters as 

(24) p = MEAN(Wixi, W2x2, . . . , WNXN), 

where xi E R. In order for the analogyto be applied to the median 
filter structure, Eq. (24) must be written as 

= MEAN(lWIsgn(Wx1, IW2lsgn(Wzh, ..., 
1 WNl sgn(wN)xN) (25) 

where the sgn of the weight affects the corresponding input 
sample and the weighting is constrained to be nonnegative. 
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By analogy, the class of weighted median filters admitting real- 
valued weights emerges as [20] 

b = MEDIANIWI o s g n ( W h  IWl osgn(Wx2, 

* .  > 1 WNl 0 sgn(wN)xN], (26) 

with W E R for i = 1,2, . . . , N. Again, the weight sgns are 
uncoupled from the weight magnitude values and are merged 
with the observation samples. The weight magnitudes play the 
equivalent role of positive weights in the framework of weighted 
median smoothers. It is simple to show that the weighted mean 
(normalized) and the weighted median operations shown in Eqs. 
(25) and (26) respectively minimize 

N 

Gz(P) = IWl(sgn(W)xi - PI2. 
(27) 

i=l 

N 
Gl(P) = C l w l l s g n ( w ) x i  -PI.  

i=l 

While G2 (P) is a convex continuous function, G1 (p) is a convex 
but piecewise linear function whose minimum point is guaran- 
teed to be one of the sgned input samples, i.e., sgn( w)xi. 

Weighted Median Filter Computation 
The WM filter output for noninteger weights can be determined 
as follows [20]. 

1. Calculate the threshold 
2. Sort the sgned observation samples sgn(4)xi. 
3. Sum the magnitude of the weights corresponding to the 

sorted sgned samples beginning with the maximum and 
continuing down in order. 

4. The output is the sgned sample whose magnitude weight 
causes the sum to become greater than or equal to To. 

= 5 ELl I w(. 
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The following example illustrates this  procedure. Consider 
the window size 5 WM filter defined by the real valued 
weights [W,, W2, W3, W4, W5IT = [0.1,0.2,0.3, -0.2, O.1lT. 
The output for this filter operating on the observation set 
[XI, x2, x3, x4, XS]' = [-2,2, -1,3, 6IT is found as follows. 
Summing the absolute weights gives the threshold T,  = 
f E t l  I w I = 0.45. The sgned observation samples, sorted ob- 
servation samples, their corresponding weight, and the partial 
sum ofweights (from each ordered sample to the maximum) are. 

observation samples -2, 2, -1, 3, 6 
correspondingweights 0.1, 0.2, 0.3, -0.2, 0.1 

sortedsignedobservation -3, -2, -1, 2, 6 

corresponding absolute 0.2, 0.1, 0.3, 0.2, 0.1 

partial weight sums 0.9, 0.7, 0.6, 0.3, 0.1 

samples 

weights 

Thus, the output is - 1 since when starting from the right (maxi- 
mum sample) andsummingtheweights, the threshold T,  = 0.45 
is not reached until the weight associated with - 1 is added. The 
underlined sum value above indicates that this is the first sum 
which meets or exceeds the threshold. 

The effect that negative weights have on the weighted me- 
dian operation is similar to the effect that negative weights have 
on linear FIR filter outputs. Figure 6 illustrates this concept, 
where G2(P) and GI(@), the cost functions associated with lin- 
ear FIR and weighted median filters, respectively, are plotted as 
a function of p. Recall that the output of each filter is the value 
minimizing the cost function. The input samples are again se- 
lected as [XI, x ~ ,  x3, xq, x ~ ]  = [-2,2, -1,3, 61, and two sets 
of weights are used. The first set is [ W,, W2, W3, W,, Ws] = 
[0.1,0.2,0.3,0.2,0.1], where all the coefficients are positive, 
and the second set is [0.1,0.2,0.3, -0.2, 0.11, where W4 has 
been changed, with respect to the first set of weights, from 

FIGURE 6 Effects of negative weighting on the cost functions Gz@) and GI(@). The input sam- 
ples are [ x i ,  xz, x3, xn, x;lT = [-2,2, -1,3, 61T, which are filtered by the two set of weights 
[0.1,0.2,0.3, 0.2,0.1IT and [0.1,0.2,0.3, -0.2, O.l]T,respectively. 
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FIGURE 7 Center WM filter applied to each component independently. (See color section, p. C-2.) 

0.2 to -0.2. Figure 6(a) shows the cost functions Gz(P) of the 
linear FIR filter for the two sets of filter weights. Notice that by 
changing the sgn of W4, we are effectively moving ~4 to its new 
location sgn(W4)x, = -3. This, in turn, pulls the minimum 

these to produce theentire color spectrum. The weightedmedian 
filtering operation of a color image can be achieved in a number 
of ways [22-26,291, two of which we summarize below. 

of the cost function toward the relocated sample sgn( W4)xq. 
Negatively weighting x4 on GI@) has a similar effect, as shown 
in Fig. 6(b). In this case, the minimum is pulled toward the new 
location of sgn( W4)q. The minimum, however, occurs at one 
of the samples sgn( W)q .  More details on WM filtering can be 
found in [20,21]. 

2.4.1 Marginal WM filter 
The simplest approach to WM filtering a color image is to pro- 
cess each component independently by a scalar WM filter. This 
operation is depicted in Fig. 7, where the green, blue, and red 
components of a color image are filtered independently and 
then combined to produce the filtered color image. A draw- 
back associated with this method is that different components 
can be strongly correlated and, if each component is processed 
separately, this correlation is not exploited. In addition, since 
each component is filtered independently, the filter outputs 

2.4 Vector Weighted Median Filters 
The extension of the weighted median for use with color images 
is straightforward. Although sorting multicomponent (vector) can combine to produce colors not present in the im- 
Pixel values and the value is not defined age. The advantage of marginal processing is the computational 
[22-261, as in the scalar case, the WM operation acting on mul- 
ticomponent pixels resorts to the least absolute deviation sum 
definition of the WM operation [27]. Thus, the filter output is 
defined as the vector-valued sample that minimizes a weighted 
cost function. 

Although we concentrate on the filtering of color images, the 
concepts defined in this section can also be applied to the filtering 
of N-component imagery [ 281. Color images are represented by 
three components: red, green, and blue, with combinations of 

simplicity. 

2.4.2 Vector WM filter 
A more logical extension, yet significantly more computationally 
expensive approach, is found through the minimization of a 
weighted cost function that takes into .account the multicom- 
ponent nature of the data. Here, the filtering operation pro- 
cesses all components jointly such that the cross-correlations 

Vector 
u?M filter 

I I 

FIGURE 8 Center vector WM filter applied in the three-dimensional space. (See color section, p. C-2.) 
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between components are exploited. As is shown in Fig. 8, the 
three components are jointly filtered by a vector WM filter lead- 
ing to a filtered color image. Vector WM filtering requires the 
extension of the original WM filter definition as follows. Define 

= [xi’, $, x:]’ as a three-dimensional vector, where xi, xi” 
and xi’ are respectively the red, green, and blue components of 
the ith pixel in a color image, and recall that the weighted median 
of a set of one-dimensional samples xi i = 1, . . . , N is given by 

Extending this definition to a set of three-dimensional vectors 
- for i = 1, . . . , Nleads to 

- 1  4 2  A 3  
where 6 = [p , p , p IT ,  si = sgn(W)zi, and I( . I1 is the L 2  

norm &fined as 

The definition ofthe vector weighted median filter isvery similar 
to that of the vector WM smoother introduced in [ 271. Unlike the 
one-dimensional case, 6 is not generally one of the si; indeed, 
there is no closed form-solution for 0. Moreover, solving Eq. 
(29) involves a minimization problem in a three-dimensional 
space that can be computationally expensive. To overcome these 
shortcomings, a suboptimal solution for Eq. (29) is found if @ 
is restricted to be one of the sgned samples gi. This leads to thx 
following definition: 

The vector WM filter output of g,, . . . , gN is the value of P, 
with - 6 E {gl, . . .,gN} such that 

- 

N 

i=l i=l 
(31) 

This definition can be implemented as follows. 

For each signed sample g j ,  compute the distances to all the 
other sgned samples (Ilgj - sill) for i = 1, . . . , N using 
Eq. (30). 
Compute the sum of the weighted distances given by the 
right side ofEq. (31). 
Choose as filter output the sample si that produces the 
minimum sum of the weighted distances. 

Although vector WM filter, as presented above, is defined for 
color images, these definitions are readily adapted to filter any 
N-component imagery. 

3 Image Noise Cleaning 
~ ~ ~ ~~~~~ 

Median smoothers are widely used in image processing to clean 
images corrupted by noise. Median filters are particularly effec- 
tive at removing outliers. Often referred to as “salt-and-pepper’’ 
noise, outliers are often present because of bit errors in transmis- 
sion, or they are introduced during the signal acquisition stage. 
Impulsive noise in images can also occur as a result to dam- 
age to analog film. Although a weighted median smoother can 
be designed to “best” remove the noise, CWM smoothers often 
provide similar results at a much lower complexity [ 12 J. By sim- 
ply tuning the center weight, a user can obtain the desired level of 
smoothing. Of course, as the center weight is decreased to attain 
the desired level of impulse suppresion, the output image will 
suffer increased distortion, particularly around the image’s fine 
details. Nonetheless, CWM smoothers can be highly effective in 
removing salt-and-pepper noise while preserving the fine image 
details. Figures 9(a) and 9(b) depict a noise-free gray-scale image 
and the corresponding image with salt-and-pepper noise. Each 
pixel in the image has a 10% probability of being contaminated 
with an impulse. The impulses occur randomly and were gener- 
ated by MATLAB’S imnoise function. Figures 9(c) and 9(d) depict 
the noisy image processed with a 5 x 5 window CWM smoother 
with center weights 15 and 5, respectively. The impulse-rejection 
and detail-preservation tradeoff in CWM smoothing is clearly 
illustrated in Figs. 9(c) and 9(d). A color version of the “por- 
trait” image was also corrupted by salt-and-pepper noise and 
filtered using CWM. Marginal CWM smoothing was performed 
in Fig. 10. The differences between marginal and vector WM 
processing will be illustrated shortly. 

At the extreme, for W, = 1, the CWM smoother reduces to 
the median smoother, which is effective at removing impulsive 
noise. It is, however, unable to preserve the image’s fine details 
[ 301. Figure 1 1 shows enlarged sections of the noise-free image 
(left), and of the noisy image after the median smoother has been 
applied (center). Severe blurring is introduced by the median 
smoother and readily apparent in Fig. 11. As a reference, the 
output of a running mean of the same size is also shown in 
Fig. 11 (right). The image is severly degraded as each impulse is 
smeared to neighboring pixels by the averaging operation. 

Figures 9 and 10 show that CWM smoothers can be effective 
at removing impulsive noise. If increased detail preservation is 
sought and the center weight is increased, CWM smoothers be- 
gin to breakdown and impulses appear on the output. One simple 
way to ameliorate this limitation is to employ a recursive mode of 
operation. In essence, past inputs are replaced by previous out- 
puts as described in Eq. (12), with the only difference being that 
only the center sample is weighted. All the other samples in the 
window are weighted by one. Figure 12 shows enlarged sections 
of the nonrecursive CWM filter (left) and of the correspond- 
ing recursive CWM smoother, both with the same center weight 
( W, = 15). This figure illustrates the increased noise attenuation 
provided by recursion without the loss of image resolution. 
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FIGURE 9 
(b) image with salt-and-pepper noise, (c) CWM smoother with W, = 15, (d) CWM smoother with W, = 5. 

Impulse noise cleaning with a 5 x 5 CWM smoother: (a) original gray-scale “portrait” image, 

Both recursive and nonrecursive CWM smoothers, can pro- 
duced outputs with disturbing artifacts, particularly when the 
center weights are increased in order to improve the detail- 
preservation characteristics of the smoothers. The artifacts are 
most apparent around the image’s edges and details. Edges at the 
output appear jagged, and impulsive noise can break through 

next to the image detail features. The distinct response of the 
CWM smoother in different regions of the image is due to the 
fact that images are nonstationary in nature. Abrupt changes 
in the image’s local mean and texture carry most of the visual 
information content. CWM smoothers process the entire image 
with fixed weights and are inherently limited in this sense by their 
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FIGURE 10 Impulse noise cleaning with a 5 x 5 CWM smoother: (a) original ‘‘portrait’’ image, (b) image with 
salt- and-pepper noise, (c) CWM smoother with W, = 16, (d) CWM smoother with W, = 5. (See color section, 
p. C-3.) 

static nature. Although some improvement is attained by intro- 
ducing recursion or by using more weights in a properly designed 
WM smoother structure, these approaches are also static and do 
not properly address the nonstationarity nature of images. 

Significant improvement in noise attenuation and detail 
preservation can be attained if permutation WM filter structures 
are used. Figure 12 (right) shows the output of the permutation 
CWM filter in Fq. (15) when the salt-and-pepper degraded Upor- 

trait” image is inputted. The parameters were given the values 
TL = 6 and Tu = 20. The improvement achieved by switching 
W, between just two different values is significant. The impulses 
are deleted without exception, the details are preserved, and the 
jagged artifacts typical of CWM smoothers are not present in 
the output. 

Figures 1&12 depict the results of marginal component filter- 
ing. Figure 13 illustrates the differences between marginal and 



3.2 Nonlinear Filtering for Image Analysis and Enhancement 93 

1 

FIGURE 11 
smoother (right). (See color section, p. C-4.) 

(Enlarged) Noise-free image (left), 5 x 5 median smoother output (center), and 5 x 5 mean 

FIGURE 12 
mutation CWM smoother output (right). Window size is 5 x 5. (See color section, p. C-4.) 

(Enlarged) CWM smoother output (left), recursive CWM smoother output (center), and per- 
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FIGURE 13 
filter. (See color section, p. C4.) 

(a) Original image, (b) filtered image using a marginal WM filter, (c) filtered image using a vector WM 

vector processing. Figure 13(a) shows the original image, Fig. 
13(b) shows the filtered image using marginal filtering, and Fig. 
13(c) shows the filtered image using vector filtering. As Fig. 13 
shows, the marginal processing of color images removes more 
noise than in the vector approach; however, it can introduce new 
color artifacts to the image. 

4 Image Zooming 

Zooming an image is an important task used in many applica- 
tions, including the World Wide Web, digital video, DVDs, and 
scientific imaging. When zooming, pixels are inserted into the 
image in order to expand the size of the image, and the major 
task is the interpolation of the new pixels from the surrounding 
original pixels. Weighted medians have been applied to similar 
problems requiring interpolation, such as interlace to progres- 
sive video conversion for television systems [ 131. The advantage 
of using the weighted median in interpolation over traditional 
linear methods is better edge preservation and less of a “blocky” 
look to edges. 

To introduce the idea of interpolation, suppose that a small 
matrix must be zoomed by a factor of 2, and the median of the 
closest two (or four) original pixels is used to interpolate each 
new pixel: 

1 7 8 5  , 
6 0 1 0 0 9 0  
0 0 0 0 0 0  

1 Median 7 7.5 8 6.5 5 5 
6.5 7.5 9 8.5 7 7 
6 8 10 9.5 9 9 ![ 6 8 10 9.5 9 9 

Interpolation 

Zooming commonly requires a change in the image dimen- 
sions by a noninteger factor, such as a 50% zoom where the 
dimensions must be 1.5 times the original. Also, a change in the 

length-to-width ratio might be needed if the horizontal and ver- 
tical zoom factors are different. The simplest way to accomplish 
zooming of arbitrary scale is to double the size of the original as 
many times as needed to obtain an image larger than the target 
size in all dimensions, interpolating new pixels on each expan- 
sion. Then the desired image can be attained by subsampling 
the larger image, or taking pixels at regular intervals from the 
larger image in order to obtain an image with the correct length 
and width. The subsampling of images and the possible filtering 
needed are topics well known in traditional image processing; 
thus we will focus on the problem of doubling the size of an 
image. 

A digital image is represented by an array of values, each value 
defining the color of a pixel of the image. Whether the color is 
constrained to be a shade of gray, in which case only one value is 
needed to define the brightness of each pixel, or whether three 
values are needed to define the red, green, and blue compo- 
nents of each pixel does not affect the definition of the tech- 
nique of weighted median interpolation. The only difference be- 
tween gray-scale and color images is that an ordinary weighted 
median is used in gray-scale images whereas color requires a 
vector weighted median. 

To double the size of an image, first an empty array is con- 
structed with twice the number of rows and columns as the 
original [Fig. 14(a)], and the original pixels are placed into al- 
ternating rows and columns [the “00” pixels in Fig. 14(a)]. To 
interpolate the remaining pixels, the method known as polyphase 
interpolation is used. In the method, each new pixel with four 
original pixels at its four corners [the “1 1” pixels in Fig. 14(b)] is 
interpolated first by using the weighted median of the four near- 
est original pixels as the value for that pixel. Since all original 
pixels are equally trustworthy and the same distance from the 
pixel being interpolated, a weight of 1 is used for the four nearest 
original pixels. The resulting array is shown in Fig. 14(c). The 
remaining pixels are determined by taking a weighted median of 
the four closest pixels. Thus each ofthe “01” pixels in Fig. 14(c) is 
interpolated by using two original pixels to the left and right and 
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FIGURE 14 The steps of polyphase interpolation. 

two previously interpolated pixels above and below. Similarly, 
the “10” pixels are interpolated with original pixels above and 
below and interpolated pixels (‘‘1 1” pixels) to the right and left. 

Since the “1 1” pixels were interpolated, they are less reliable 
than the original pixels and should be given lower weights in 
determining the “01” and “10” pixels. Therefore the “1 1” pixels 
are given weights of 0.5 in the median to determine the “01” 
and “10” pixels, while the “00” original pixels have weights of 1 
associated with them. The weight of 0.5 is used because it implies 
that when both “1 1” pixels have values that are not between the 
two “00” pixel values then one of the “00” pixels or their average 
will be used. Thus “11” pixels differing from the “00” pixels do 
not greatly affect the result of the weighted median. Only when 
the “1 1” pixels lie between the two “00” pixels, they have a direct 
effect on the interpolation. The choice of 0.5 for the weight is 
arbitrary, since any weight greater than 0 and less than 1 will 
produce the same result. When the polyphase method is im- 
plemented, the “01” and “10” pixels must be treated differently 
because the orientation of the two closest original pixels is dif- 
ferent for the two types of pixels. Figure 14(d) shows the final 
result of doubling the size of the original array. 

To illustrate the process, consider an expansion of the gray- 
scale image represented by an array of pixels, the pixel in the ith 
row and j th column having brightness ai, j . The array %, j will be 
interpolated into the array $4, with p and q taking values 0 or 
1, indicating in the same way as above the type of interpolation 
required 

a3,1 a3,2 a3,3 

The pixels are interpolated as follows: 

An example of median interpolation compared with bilinear 
interpolation is given in Fig. 15. Bilinear interpolation uses the 
average of the nearest two original pixels to interpolate the “01” 
and “10” pixels in Fig. 14(b) and the average of the nearest four 
original pixels for the “1 1” pixels. The edge-preserving advantage 
of the weighted median interpolation is readily seen in the figure. 

5 Image Sharpening 

Human perception is highly sensitive to edges and fine details 
of an image, and since they are composed primarily by high- 
frequency components, the visual quality of an image can be 
enormously degraded if the high frequencies are attenuated or 
completely removed. In contrast, enhancing the high-frequency 
components of an image leads to an improvement in the visual 
quality. Image sharpening refers to any enhancement technique 
that highlights edges and fine details in an image. Image sharp- 
ening is widely used in printing and photographic industries 
for increasing the local contrast and sharpening the images. In 
principle, image sharpening consists of adding to the original 
image a signal that is proportional to a high-pass filtered version 
of the original image. Figure 16 illustrates this procedure, often 
referred to as unsharp maskmg [31,32], on a one-dmensional 
signal. As shown in Fig. 16, the original image is first filtered by 
a high-pass filter that extracts the high-frequency components, 
and then a scaled version of the high-pass filter output is added 
to the original image, thus producing a sharpened image of the 
original. Note that the homogeneous regions of the signal, i.e., 
where the signal is constant, remain unchanged. The sharpening 
operation can be represented by 

(32) 

where xi, j is the original pixel value at the coordinate (i, j ) ,  F(.) 
is the high-pass filter, X is a tuning parameter greater than or 
equal to zero, and si, is the sharpened pixel at the coordinate 
(i, j). The value taken by X depends on the grade of sharpness 
desired. Increasing X yields a more sharpened image. 

If color images are used G, j , si, I ,  and h are three-component 
vectors, whereas if gray-scale images are used xi, j ,  si,,, and X are 
single-component vectors. Thus the process described here can 
be applied to either gray-scale or color images, with the only dif- 
ference being that vector filters have to be used in sharpening 
color images whereas single-component filters are used with 
gray-scale images. 

5 .  1.1 . - - xi, j + u(xi,1),  
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FIGURE 15 
the lower left is the bilinear interpolation of the area, and on the lower right the WM interpolation. 

Example of zooming. Original is at the top with the area of interest outlined in white. On 

The key point in the effective sharpening process lies in the 
choice of the high-pass filtering operation. Traditionally, linear 
filters have been used to implement the high-pass filter; how- 
ever, linear techniques can lead to unacceptable results if the 
original image is corrupted with noise. A tradeoff between noise 
attenuation and edge highlighting can be obtained if a weighted 

FIGURE 16 Image sharpening by high-frequency emphasis. 

median filter with appropriated weights is used. To illustrate 
this, consider a WM filter applied to a gray-scale image where 
the following filter mask is used 

-1 -1 1 

w = -  3 [ -1  -1 -; 3 (33) 

Because of the weight coefficients in Eq. (33), for each position 
of the moving window, the output is proportional to the differ- 
ence between the center pixel and the smallest pixel around the 
center pixel. Thus, the filter output takes relatively large values 
for prominent edges in an image, and small values in regions that 
are fairly smooth, being zero only in regions that have a constant 
gray level. 

Although this filter can effectively extract the edges contained 
in an image, the effect that this filtering operation has over 
negative-slope edges is different from that obtained for positive- 
slope edges.' Since the filter output is proportional to the 

'A change from a gray level to a lower gray level is referred to as a negative- 
slope edge, whereas a change from a gray level to a higher gray level is referred 
to as a positive-slope edge. 
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FIGURE 17 Image sharpening based on the weighted median filter. 

difference between the center pixel and the smallest pixel around 
the center, for negative-slope edges, the center pixel takes small 
values producing small values at the filter output. Moreover, 
the filter output is zero if the smallest pixel around the center 
pixel and the center pixel have the same values. This implies 
that negative-slope edges are not extracted in the same way as 
positive-slope edges. To overcome this limitation the basic im- 
age sharpening structure shown in Fig. 16 must be modified 
such that positive-slope edges as well as negative-slope edges are 
highlighted in the same proportion. A simple way to accomplish 
that is: (a) extract the positive-slope edges by filtering the orig- 
inal image with the filter mask described above; (b) extract the 
negative-slope edges by first preprocessing the original image 
such that the negative-slope edges become positive-slope edges, 
and then filter the preprocessed image with the filter described 
above; (c) combine appropriately the original image, the filtered 
version of the original image, and the filtered version of the pre- 
processed image to form the sharpened image. 

Thus both positive-slope edges and negative-slope edges are 
equally highlighted. This procedure is illustratedin Fig. 17, where 
the top branch extracts the positive-slope edges and the middle 
branch extracts the negative-slope edges. In order to understand 
the effects of edge sharpening, a row of a test image is plotted 
in Fig. 18 together with a row of the sharpened image when 
only the positive-slope edges are highlighted, Fig. 18(a), only 

the negative-slope edges are highlighted, Fig. 18(b), and both 
positive-slope and negative-slope edges are jointly highlighted, 
Fig. 18(c). 

are tuning parameters that control the 
amount of sharpness desired in the positive-slope direction and 
in the negative-slope direction, respectively. The values of hl and 
X2 aregenerally selected to be equal. The output ofthe prefiltering 
operation is defined as 

In Fig. 17, XI and 

with M equal to the maximum pixel value of the original image. 
This prefiltering operation can be thought of as a flipping and a 
shifting operation of the values of the original image such that 
the negative-slope edges are converted in positive-slope edges. 
Since the original image and the pre-filtered image are filtered by 
the same WM filter, the positive-slope edges and negative-slopes 
edges are sharpened in the same way. 

In Fig. 19, the performance of the WM filter image sharpening 
is compared with that of traditional image sharpening based on 
linear FIR filters. For the linear sharpener, the scheme shown 
in Fig. 16 was used. The parameter X was set to 1 for the clean 
image and to 0.75 for the noise image. For the WM sharpener, 
the scheme of Fig. 17 was used with h1 = X2 = 2 for the clean 
image, and X1 = h2 = 1.5 for the noise image. The filter mask 
given by Eq. (33) was used in both linear and median image 
sharpening. As before, each component of the color image was 
processed separately. 

6 Edge Detection 

Edge detection is an important tool in image analysis, and it 
is necessary for applications of computer vision in which ob- 
jects have to be recognized by their outlines. A n  edge-detection 
algorithm should show the locations of major edges in the im- 
age while ignoring false edges caused by noise. The most com- 
mon approach used for edge detection is illustrated in Fig. 20. A 

(a) (b) (C) 

FIGURE 18 
edges, (b) only negative-slope edges, and (c) both positive and negative-slope edges. 

Original row of a test image (solid curve) and row sharpened (dotted curve) with (a) only positive-slope 
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FIGURE 19 
added Gaussian noise sharpened with (e) the FIR sharpener, and (f) the Wh4 sharpener. (See color section, p. C-5.) 

(a) Original image sharpened with (b) the FIR sharpener, and (c) with the WM sharpener. (d) Image with 

high-pass filter is applied to the image to obtain the amount of 
change present in the image at every pixel. The output of the filter 
is thresholded to determine those pixels that have a high enough 
rate of change to be considered lying on an edge; i.e., all pixels 
with filter output greater than some value T are taken as edge 
pixels. The value of T is a tunable parameter that can be adjusted 
to give the best visual results. High thresholds lose some of the 
real edges, while low values result in many false edges; thus a 
tradeoff has to be made to get the best results. Other techniques 
such as edge thinning can be applied to further pinpoint the 
location of the edges in an image. 

The most common linear filter used for the initial high-pass 
filtering is the Sobel operator, which uses the following 3 x 3 
masks: 

-2 -1 -1  0 1 [-i ; :][I: : :] 
O r i g i n d + ~ ~ ~  Edge 
Image Filter as threshold j Thinning +Map 

FIGURE 20 The process of edge detection. 

These two masks, called Sobel masks, are convolved with the 
image separately to measure the strength of horizontal edges 
and vertical edges, respectively, present at each pixel. Thus if the 
amount to which a horizontal edge is present at the pixel in the 
ith row and j th  column is represented as E t  j, and if the vertical 
edge indicator is E{ j ,  then the values are: 

The two strengths are combined to find the total amount to 

This value is then compared to the threshold T to determine the 
existence of an edge. 

In place of the use of linear high-pass filters, weighted median 
filters can be used. To apply weighted medians to the high-pass 
filtering, the weights from the Sobel masks can be used. The 
Sobel linear high-pass filters take a weighted difference between 
the pixels on either side of xi,j. In contrast, if the same weights 
are used in a weighted median filter, the value returned is the 
difference between the lowest-valued pixels on either side of xj, j . 

which any edge exists at the pixel: E?:’ = JW. 
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FIGURE 21 (a) Original image, (b) edge detector using linear method, and (c) median method. 

If the pixel values are then flipped about some middle value, the 
difference between the highest pixels on either side can also be 
obtained. The flipping can be achieved by finding some maxi- 
mum pixel value M and using xi, = M - xi, j as the “flipped” 
value of xi, j, thus causing the highest values to become the low- 
est. The lower of the two differences across the pixel can then be 
used as the indicator of the presence of an edge. If there is a true 
edge present, then both differences should be high in magnitude, 
while if noise causes one of the differences to be too high, the 
other difference is not necessarily affected. Thus the horizontal 
and vertical edge indicators are: 

1 
I) [ -1 0 x:+1,j-p 1 0 Xi+l,j+l 

[-: ; ;][I1 -; :I. 

-1 0 xi-1, j-1, 1 0 xi-1, j+l, 
El’ = min MEDIAN -2 o Xi,j-l, 2 O Xi, j+l, , 

-1 0 Xi+l,j-l, 1 0  xi+l,j+l, 

-1 0 x;-l,j-p 1 0  x;-1,j+p 

( [  
MEDIAN -2 o x;, j-l, 2 O x;, j+l, 

and the strength of horizontal and vertical edges E:;) is 
determined in the same way as the linear case: Et;= 

Another addition to the weighted median method is necessary 
in order to detect diagonal edges. Horizontal and vertical indica- 
tors are not sufficient to register diagonal edges, so the following 
two masks must also be used 

-2 -1 0 1 2  

JW. 

These masks can be applied to the image just as the Sobel masks 
above. Thus the strengths of the two types of diagonal edges are 

E;; ior diagonal edges going from the bottom left of the image 
to the top right (using the mask on the left above) and E$ for 
diagonal edges from top left to bottom right (the mask on the 
right), and the values are given by 

A diagonal edge strength is determined in the same way 
as the horizontal and vertical edge strength above: JW. The indicator of all edges in any direc- 
tion is the maximum of the two strengths Et; and Ei,j . 
Eto@= ‘.I max(Eh’r, ‘.I As in the linear case, this value is 
compared to the threshold T to determine whether a pixel lies 
on an edge. Figure 21 shows the results of calculating E r r ’  for 
an image. The results of the median edge detection are similar to 
the results of using the Sobel linear operator. Other approaches 
for edge detector based on median filter can be found in [33-361. 

dl,d2. 

7 Conclusion 

The principles behind WM smoothers and WM filters have been 
presented in this article, as well as some of the applications of 
these nonlinear signal processing structures in image enhance- 
ment. It should be apparent to the reader that many similarities 
exist between linear and median filters. As illustrated in this 
article, there are several applications in image enhancement were 
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WM filters provide significant advantages over traditional image 
enhancement methods using linear filters. The methods pre- 
sented here, and other image enhancement methods that can 
be easily developed using WM filters, are computationally sim- 
ple and provide significant advantages, and consequently can be 
used in emerging consumer electronic products, PC and internet 
imaging tools, med id  and biomedical imaging systems, and of 
course in military applications. 
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2.2 Morphological Filters for Gray-Level 

1 Introduction 
The goals of image enhancement include the improvement of 
the visibility and perceptibility of the various regions into which 
an image can be partitioned and of the detectability of the image 
features inside these regions. These goals include tasks such as 
cleaning the image from various types of noise; enhancing the 
contrast among adjacent regions or features; simplifying the im- 
age by means of selective smoothing or elimination of features 
at certain scales; and retaining only features at certain desirable 
scales. While traditional approaches for solving these above tasks 
have used mainly tools of linear systems, there is a growing un- 
derstanding that linear approaches are not well suitable or even 
fail to solve problems involving geometrical aspects ofthe image. 
Thus there is a need for nonlinear approaches. A powerful non- 
linear methodology that can successfully solve these problems is 
mathematical morphology. 

Mathematical morphology is a set- and lattice-theoretic 
methodology for image analysis, which aims at quantitatively 
describing the geometrical structure of image objects. It was 

Copyright @ 2000byAQdernic F‘ress 
All rights of reproduction m any form reserved 

initiated 1171 in the late 1960’s to analyze binary images from 
geological and biomedical data as well as to formalize and ex- 
tend earlier or parallel work [ 12,13 ] on binary pattern recogni- 
tion based on cellular automata and Booleadthreshold logic. In 
the late 1970’s it was extended to gray-level images [ 171. In the 
mid-1980’s it was brought to the mainstream of imagekignal 
processing and related to other nonlinear filtering approaches 
[7,8]. Finally, in the late 1980’s and 1990’s it was generalized to 
arbitrarylattices [2,18]. The above evolution ofideas has formed 
what we call nowadays the field of morphological imageprocess- 
ing, which is a broad and coherent collection of theoretical con- 
cepts, nonlinear filters, design methodologies, and applications 
systems. Its rich theoretical framework, algorithmic efficiency, 
easy implementability on special hardware, and suitability for 
many shape-oriented problems have propelled its widespread 
usage and further advancement by many academic and indus- 
try groups working on various problems in image processing, 
computer vision, and pattern recognition. 

This chapter provides a brief introduction to the application 
of morphological image processing to image enhancement and 

101 
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detection. There are several motivations for using morphological 
filters for such problems. First, it is of paramount importance to 
preserve, uncover, or detect the geometric structure of image ob- 
jects. Thus, morphological filters, which are more suitable than 
linear filters for shape analysis, play a major role for geometry- 
based enhancement and detection. Further, they offer efficient 
solutions to other nonlinear tasks such as non-Gaussian noise 
suppression. This task can also be accomplished (with similar 
performance) by a closely related class of nonlinear systems, the 
median, rank, and stack filters, which also outperform linear fil- 
ters in non-Gaussian noise suppression. Finally, the elementary 
morphological operators’ are the building blocks for large classes 
of nonlinear image processing systems, which include rank and 
stack filters. 

2 Morphological Image Operators 

2.1 Morphological Filters for Binary Images 

vector y. Likewise, if By s { x  : --x E B }  is the reflection of B 
with respect to the origin, the Boolean AND transformation of 
X by B‘ is equivalent to the Minkowski set subtraction e, also 
called erosion, of X by B: 

X e  B { x :  B+, E XI = nx-,. (3) 
VE B 

Cascading erosion and dilation creates two other operations, 
the opening, X o B (X e B )  63 B,  and the closing, X 0 B = 
(X @ B )  e B,  of X by B. In applications, B is usually called a 
structuring elementand has a simple geometrical shape and a size 
smaller than the image X. If B has a regular shape, e.g., a small 
disk, then both opening and closing act as nonlinear filters that 
smooth the contours of the input image. Namely, if X is viewed 
as a flat island, the opening suppresses the sharp capes and cuts 
the narrow isthmuses of X, whereas the closing fills in the thin 
gulfs and small holes. 

There is a dualitybetween dilation and erosion since X@ B = 

where b(vl, . . . , vn) is a Boolean function of n variables. The 
mapping f H \Ir b ( f )  is called a Booleanfilter. When the Boolean 
function b is varied, a large variety of Boolean filters can be ob- 
tained. For example, choosing a Boolean AND for b would shrink 
the input image object, whereas a Boolean OR would expand it. 
Numerous other Boolean filters are possible, since there are 22“ 
possible Boolean functions of n variables. The main applications 
ofsuch Boolean image operations have been in biomedical image 
processing, character recognition, object detection, and general 
two-dimensional (2-D) shape analysis [ 12, 131. 

Among the important concepts offered by mathematical mor- 
phology was to use sets to represent binary images and set op- 
erations to represent binary image transformations. Specifically, 
given a binary image, let the object be represented by the set X 
and its background by the set complement Xc .  The Boolean OR 
transformation of X by a (window) set B is equivalent to the 
Minkowski set addition 63, also called dilation, of X by B: 

x63 B E { x + y  : x E x, y E B )  = u x+y ( 2 )  

where X+, = { x  + y : x E X }  is the translation of X along the 

Y E B  

2.2 Morphological Filters for Gray-Level Images 
Extending morphological operators from binary to gray-level 
images can be done by using set representations of signals and 
transforming these input sets by means of morphological set 
operations. Thus, consider an image signal f ( x )  defined on the 
continuous or discrete plane ID = lR2 or Z2 and assumingvalues 
in E = lR U (-00, 00). Thresholding f at all amplitude levels 
v produces an ensemble of binary images represented by the 
threshold sets, 

O,(f) = { x  E ID : f ( x )  2 Y}, -00 < v < +0O. (4) 

The image can be exactly reconstructed from all its threshold 
sets since 

f(X) = sup{v E R : x E O,(f)}, (5) 

where “sup’’ denotes s~premurn.~ Transforming each threshold 
set of the input signal f by a set operator and viewing the 
transformed sets as threshold sets of a new image creates [ 7, 171 
a flat image operator + , whose output signal is 

For example, if 9 is the set dilation and erosion by B,  the above lThe term “morphological operator,” which means a morphological signal 
transformation, s h d  be used interchangeably with “morphological filter,” in 
analogy to the terminology “rank or h e a r  filter.” 

2Si~~sofacont~uousvariab1ex E R d  areusuallYdenotedbY f(x),whereas 
for signals with discrete variable x E z we write f[xl. z and 1 denote, respec- 
tively, the set of  reds and integers. 

Procedure creates the two elementarymorpholo~cd image 

3Given aset Xofrealnumbers, the supremumofxis itslowest upperbound. 
If X is finite (or infinite but closed from above), its supremum coincides with its 
maximum. 
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operators: the dilation and erosion of f ( x )  by a set B: 

(f @ B)(x)  = v f(x - Y )  

(f e ~)(x) = A f(x + Y )  

( 7 )  

(8) 

where V denotes supremum (or maximum for finite B )  and A 
denotes infimum (or minimum for finite B) .  Flat erosion (dila- 
tion) of a function f by a small convex set B reduces (increases) 
the peaks (valleys) and enlarges the minima (maxima) of the 
function. The flat opening f o B = (f e B )  0 B of f by B 
smooths the graph of f from below by cutting down its peaks, 
whereas the closing f 0 B = ( f @ B )  e B smooths it from above 
by filling up its valleys. 

The most general translation-invariant morphological dila- 
tion and erosion of a gray-level image signal f ( x )  by another 
signal g are: 

(9) 

(10) 

Y E B  

Y E B  

(f G3 g>(x) = v f<x  - Y )  + g(y>, 

(f e g)(x> = A f<x + r) - g(y>. 

Y E D  

Y G D  

Note that signal dilation is a nonlinear convolution where the 
sum of products in the standard linear convolution is replaced 
by a max of sums. 

2.3 Universality of Morphological Operators4 
Dilations or erosions can be combined in many ways to create 
more complex morphological operators that can solve a broad 
variety of problems in image analysis and nonlinear filtering. 
Their versatility is further strengthened by a theory outlined 
in [7, 81 that represents a broad class of nonlinear and linear 
operators as a minimal combination of erosions or dilations. 
Here we summarize the main results of this theory, restricting 
our discussion only to discrete 2-D image signals. 

Any translation-invariant set operator Q is uniquely charac- 
terized by its kernel, Ker(Q) = {X E Z2 : 0 E Q(X)}. The 
kernel representation requires an infinite number of erosions 
or dilations. A more efficient (requiring less erosions) represen- 
tation uses only a substructure of the kernel, its basis, Bas(@), 
defined as the collection of kernel elements that are minimal 
with respect to the partial ordering G. If Q is also increasing(i.e., 
X E Y e @(X) @ ( Y ) )  and upper semicontinuous (i.e., 
Q(nSxn) = n,@(X,) for any decreasing set sequence X n ) ,  
then \I' has a nonempty basis and can be represented exactly as 
a union of erosions by its basis sets: 

Q(X)= u X 0 A .  (11) 
A E Bas(q) 

4This is a section for mathematically inclined readers, and it can be skipped 
without significant loss of continuity. 

The morphological basis representation has also been ex- 
tended to gray-level signal operators. As a special case, if + is 
a flat signal operator as in Eq. (6) that is translation invariant 
and commutes with thresholding, then + can be represented as 
a supremum of erosions by the basis sets of its corresponding set 
operator CP: 

Mf,= A f e A .  (12) 
A E Bas(@) 

By duality, there is also an alternative representation where 
a set operator Q satisfying the above three assumptions can be 
realized exactly as the intersection of dilations by the reflected 
basis sets of its dual operator Q d ( X )  = [ @ ( X c ) I c .  There is also 
a similar dual representation of signal operators as an infimum 
of dilations. 

Given the wide applicability of erosionsldilations, their par- 
allellism, and their simple implementations, the morphological 
representation theory supports a general purpose image pro- 
cessing (software or hardware) module that can perform ero- 
sionsldilations, based on which numerous other complex image 
operations can be built. 

2.4 Median, Rank, and Stack Filters 
Flat erosion and dilation of a discrete image signal f [ x ]  by a 
finite window W = ( y l ,  . . . , yn} Z2 is a moving local min- 
imum or maximum. Replacing min/max with a more general 
rank leads to rank filters. At each location x E Z2, sorting the 
signal values within the reflected and shifted n-point window 
( W)+x in decreasing order and picking the pth largest value, 
p = 1,2, . . . , n, yields the output signal from the pth rankfilter: 

For odd n and p = (n + 1)/2 we obtain the median filter. Rank 
filters and especially medians have been applied mainly to sup- 
press impulse noise or noise whose probability density has heav- 
ier tails than the Gaussian for enhancement of image and other 
signals, since they can remove this type of noise without blurring 
edges, as would be the case for linear filtering. A discussion of 
median-type filters can be found in Chapter 3.2. 

If the input image is binary, the rank filter output is also binary 
since sorting preserves a signal's range. Rank filtering of binary 
images involves only counting of points and no sorting. Namely, 
if the set S 5 Z2 represents an input binary image, the output 
set produced by the pth rank setfilter is 

(14) 

where card( X) denotes the cardinality (i.e., number of points) 
of a set X. 

S0,W = { x  : card(( W)+x  n S) 2 p}, 

All rank operators commute with thresholding; i.e., 
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where Ov( f )  is the binary image resulting from thresholding 
f at level Y. This property is also shared by all morphological 
operators that are finite compositions or maxima/minima of flat 
dilations and erosions by finite structuring elements. All such sig- 
nal operators J! that have a corresponding set operator \I/ and 
commute with thresholding can be alternatively implemented 
by means of threshold superposition as in Eq. (6). Further, since 
the binary version of all the above discrete translation-invariant 
finite-window operators can be described by their generating 
Boolean function as in Eq. (l), all that is needed in synthesizing 
their corresponding gray-level image filters is knowledge of this 
Boolean function. Specifically, let fy [ x ]  be the binary images 
represented by the threshold sets Ov( f )  of an input gray-level 
image f [ x] . Transformingall f v  with an increasing (i.e., contain- 
ingno complementedvariables) Boolean function b(u1, . . . , u,) 
in place of the set operator \I/ in Eq. (6) creates a class of nonlin- 
ear signal operators by means of threshold superposition, called 
stack filters [ 1,7] : 

The use of Boolean functions facilitates the design of such 
discrete flat operators with determinable structural properties. 
Since each increasing Boolean function can be uniquely repre- 
sented by an irreducible sum (product) of product (sum) terms, 
and each product (sum) term corresponds to an erosion (dila- 
tion), each stack filter can be represented as a finite maximum 
(minimum) of flat erosions (dilations) [ 71. Because of their rep- 
resentation by means of erosions/dilations (which have a geo- 
metric interpretation) and Boolean functions (which are related 
to mathematical logic), stack filters can be analyzed or designed 
not only in terms of their statistical properties for image denois- 
ing but also in terms of their geometric and logic properties for 
preserving selected image structures. 

2.5 Morphological Operators and Lattice Theory 
A more general formalization [ 2,181 ofmorphological operators 
views them as operators on complete lattices. A complete lattice 
is a set C equipped with a partial ordering 5 such that (C, 5) 
has the algebraic structure of a partially ordered set where the 
supremum and infimum of any of its subsets exist in C. For any 
subset K: 5 C, its supremum V K: and infimum A lC are defined 
as the lowest (with respect to 5)  upper bound and greatest lower 
bound of lC, respectively. The two main examples of complete 
lattices used in morphological image processing are: (i) the space 
of all binary images represented by subsets of the plane ID where 
the V/A lattice operations are the set uniodintersection, and 
(ii) the space of all gray-level image signals f : ID -+ E, where 
the V/A lattice operations are the supremum/infimum of sets 
of real numbers. An operator 9 on C is called increasing if it 
preserves the partial ordering, i.e., f 5 g implies $( f ) >_ $(g). 
Increasing operators are of great importance, and among them 

four fundamental examples are as follows: 

(18) 

a is opening a is increasing, idempotent, 
and antiextensive, (19) 

p is closing e p is increasing, idempotent, 
and extensive, (20) 

where I is an arbitrary index set, idempotence means that 
a(a( f)) = a( f), and (anti-)extensivity of (a)P means that 

These definitions allow broad classes of signal operators to be 
grouped as lattice dilations, or erosions, or openings, or closings 
and their common properties to be studied under the unifjmg 
lattice framework. Thus, the translation-invariant morphologi- 
cal dilations @, erosions 0, openings 0, and closings 0 are simple 
special cases of their lattice counterparts. 

a<f> 5 f 5 P( f )  for all f. 

3 Morphological Filters for Enhancement 

3.1 Image Smoothing or Simplification 
3.1.1 Lattice Opening Filters 
The three types ofnonlinear filters defined below are lattice open- 
ings in the sense of operation (19) and have proven to be very 
useful for image enhancement. 

If a 2-D image f contains one-dimensional (I-D) objects, 
e.g. lines, and B is a 2-D disklike structuring element, then the 
simple opening or closing of f by B will eliminate these 1-D 
objects. Another problem arises when f contains large-scale ob- 
jects with sharp corners that have to be preserved; in such cases 
opening or closing f by a disk B will round these comers. These 
two problems could be avoided in some cases if we replace the 
conventional opening with a radial opening, 

where the sets Le are rotated versions of a line segment L at 
various angles 8 E [0,2n). This has the effect of preserving an 
object in f if this object is left unchanged after the opening by 
Le in at least one of the possible orientations 8. See Fig. 1 for 
examples. 

There are numerous image enhancement problems in which 
what is needed is suppression of arbitrarily shaped connected 
components in the input image whose areas (number of pixels) 
are smaller than a certain threshold n. This can be accomplished 
by the area opening of size n, which, for binary images, keeps 
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Original 

Morphological Clos-Openings 

Morphological Radial Clos-Openings 

xphological Clos-Opc enings by Reconstruction 
w 

scale=4 scale=8 scale= 16 scale=32 
FIGURE 1 Linear and morphological multiscale image smoothers. (The scale parameter was defined as the variance of 
the Gaussians for linear convolutions; the radius of the structuring element for clos-openings; and the scale of the marker 
for the reconstruction filters.) 
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only the connected components whose area is 2 n and eliminates 
the rest. The area opening can also be extended to gray-level 
images. 

Consider now a set X = Ui Xi as a union of disjoint connected 
components Xi and let M C Xj be a marker in the jth com- 
ponent; i.e., M could be a single point or some feature set in X 
that lies only in X j .  Let us define the opening by reconstrum'on 
as the operator 

MRx(M) 3 connected component of X containing M. (22) 

This is a lattice opening that from the input set M yields as out- 
put exactly the component X j  containing the marker. Its output 
is called the morphological reconstruction of the component from 
the marker. It can extract large-scale components of the image 
from knowledge only of a smaller marker inside them. An algo- 
rithm to implement the opening by reconstruction is based on 
the conditionaI dilation of M by B within X: 

If B is a disk with a radius smaller than the distance between X j  
and any of the other components, then by iterating this condi- 
tional dilation we can obtain in the limit 

the whole component Xi. Replacing the binary with gray-level 
images, the set dilation with function dilation, and n with A 
yields the gray-level opening by reconstruction. Openings (and 
closings) by reconstruction have proven to be extremely useful 
for image simplification because they can suppress small features 
and keep only large-scale objects without any smoothing of their 
boundaries. Examples are shown in Fig. 1. 

3.1.2 Multiscale Morphological Smoothers 
Multiscale image analysis has recently emerged as a useful frame- 
work for many computer vision and image processing tasks, 
including (i) noise suppression at various scales and (ii) fea- 
ture detection at large scales followed by refinement of their 
location or value at smaller scales. Most of the previous work 
in this area was based on a linear multiscale smoothing, i.e., 
convolutions with a Gaussian with a variance proportional to 
scale. However, these linear smoothers blur or shift image edges, 
as shown in Fig. 1. In contrast, there is a variety of nonlinear 
smoothing filters, including the morphological openings and 
closings that can provide a multiscale image ensemble [8, 171 
and avoid the above shortcomings of linear smoothers. For ex- 
ample, Fig. 1 shows three types of clos-openings (i.e., cascades 
of openings followed by closings): (1) flat clos-openings by a 
2-D disklike structuring element that preserve the vertical image 

structuring element; (2) radial flat clos-openings that preserve 
both the vertical edges as well as any line features along the direc- 
tions (O", 45", go", 135") of the four line segments used as struc- 
turing elements; (3) gray-level clos-openings by reconstruction, 
which are especially useful because they can extract the exact 
outline of a certain object by locking on it while smoothing out 
all its surroundings. The marker for the opening (closing) by 
reconstruction was an erosion (dilation) of the original image 
by a disk of radius equal to scale. 

The required building blocks for the above morphological 
smoothers are the multiscale dilations and erosions. The simplest 
multiscale dilation and erosion of an image f ( x )  at scales t > 0 
are the flat dilationslerosions of f by scaled versions tB = { t z  : 
z E B }  of a unit-scale planar compact convex set B (e.g., a disk, 
a rhombus, and a square), 

which apply both to gray-level and binary images. One discrete 
approach to implement multiscale dilations and erosions is to 
use scale recursion, i.e., f @ (n  + 1) B = (f @ nB) @ B, where 
n = 0, 1,2, . . . , and nB denotes the n-fold dilation of B with 
itself. An alternative and more recent approach that uses con- 
tinuous models for multiscale smoothing is based on partial 
diferential equations (PDEs). This was inspired by the modeling 
of linear multiscale image smoothing by means of the isotropic 
heat diffusion PDE a U / a t  = V2 U, where U(x,  t) is the convo- 
lution of the initial image f ( x )  = U(x ,  0) with a Gaussian at 
scale t. Similarly, the multiscale dilation S(x, t) of f by a disk 
of radious (scale) t can be generated as a weak solution of the 
following nonlinear PDE 

as 
- = IIV~11, a t  

with initial condition S(x,  0) = f ( x ) ,  where V denotes the spa- 
tial gradient operator and ( 1  . (( is the Euclidean norm. The gen- 
erating PDE for the erosion is as/at = --l]VcIl. A review and 
references of the PDE approach to multiscale morphology can 
be found in [ 6 ] .  In general, the PDE approach yields very close 
approximations to Euclidean multiscale morphology with arbi- 
trary subpixel accuracy. 

3.1.3 Noise Suppression by Median and Alternating 
Sequential Filters 
In their behavior as nonlinear smoothers, as shown in Fig. 2, 
the medians act similarly to an open-closing (f o B )  B by a 
convex set B of diameter approximately half the diameter of the 
median window [ 71. The open-closing has the advantages over 
the median that it requires less computation and decomposes 
the noise suppression task into two independent steps, i.e., sup- 
pressing positive spikes via the opening and negative spikes via 

edges but may distort horizontal edges by fitting the shape of tce the closing. 
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(c )  (4 
FIGURE 2 (a) Original clean image. (b) Noisy image obtained by corruptingthe original with two-level salt and pepper 
noise occuring with probability 0.1 (peak signal-to-noise ratio or PSNR = 18.9 dB). (c) Open-closing of noisy image by 
a 2 x 2-pel square (PSNR = 25.4 dB). (d) Median of noisy image by a 3 x 3-pel square (PSNR = 25.4 dB). 

The popularity and efficiency of the simple morphological 
openings and closings to suppress impulse noise is supported by 
the following theoretical development [ 191. Assume a class of 
sufficiently smooth random input images that is the collection 
of all subsets of a finite mask W that are open(or closed) with 
respect to a set B and assign a uniform probability distribution 
on this collection.Then, a discrete binary input image Xis a ran- 
dom realization from this collection; i.e., use ideas from random 
sets [ 171 to model X. Further, X is corrupted by a union (or 
intersection) noise N, which is a 2-D sequence of independent 
identically distributed (i.i.d.) binary Bernoulli random variables 
with probability p E [0, 1) of occurrence at each pixel. The ob- 
served image is the noisy version Y = X U N (or Y = X n N). 

Then, the maximum a posteriori estimate [ 191 of the original 
X given the noisy image Y is the opening (or closing) of the 
observed Y by B. 

Another useful generalization of openings and closings 
involves cascading open-closings Ptar at multiple scales 
t = 1, . . . , r ,  where at( f )  = f o tB and Pt( f )  = f 0 tB. This 
generates a class of efficient nonlinear smoothing filters 

called alternating sequential filters, which smooth progressively 
from the smallest scale possible up to a maximum scale r and 



108 Handbook of Image and Video Processing 

have a broad range of applications [ 181. Their optimal design is 
addressed in [ 161. 

nonlinear (shock-wave) PDE proposed in [ 101 to deblur im- 
ages and/or enhance their contrast by edge sharpening. For 1-D 
images such a PDE is 

3.2 Edge or Contrast Enhancement 
3.2.1 Morphological Gradients 
Consider the difference between the flat dilation and erosion of 
an image f by a symmetric disklike set B containing the origin 
whose diameter diam ( B )  is very small: 

If f is binary, edge( f) extracts its boundary. If f is gray level, 
the above residual enhances its edges [9,17] by yielding an ap- 
proximation to 11 V f 11, which is obtained in the limit of Eq. (27) 
as diam(B) + 0 (see Fig. 3). Further, thresholding this mor- 
phological gradient leads to binary edge detection. 

The symmetric morphological gradient (27) is the average of 
two asymmetric ones: the erosion gradient f - ( f 8 B )  and the 
dilation gradient ( f 63 B) - f. The symmetric or asymmetric 
morphological edge-enhancing gradients can be made more ro- 
bust for edge detection by first smoothing the input image with a 
linear blur [4]. These hybrid edge-detection schemes that largely 
contain morphological gradients are computationally more ef- 
ficient and perform comparably or in some cases better than 
several conventional schemes based only on linear filters. 

3.2.2 Toggle Contrast Filter 
Consider a gray-level image f[x] and a small-size symmetric 
disklike structuring element B containing the origin. The fol- 
lowing discrete nonlinear filter [ 3) can enhance the local contrast 
of f by sharpening its edges: 

Starting at t = 0, with the blurred image u(x ,  0) = f(x) as the 
initial data, and running the numerical algorithm implement- 
ing this PDE until some time t yields a filtered image u(x, t). 
Its goal is to restore blurred edges sharply, accurately, and in a 
nonoscillatory way by propagating shocks (i.e., discontinuities 
in the signal derivatives). Steady state is reached as t + GO. Over 
convex regions (a2u/ax? > 0) this PDE acts as a 1-D erosion 
PDE au/at  = -Iau/axl, which models multiscale erosion of 
f ( x )  by the horizontal line segment [-t, t] and shifts parts of 
the graph of u(x, t) with positive (negative) slope to the right 
(left) but does not move the extrema or inflection points. Over 
concave regions (a2u/ax2 -= 0) it acts as a 1-D dilation PDE 
au/at  = Iau/ax(, which models multiscale dilation of f(x) 
by the same segment and reverses the direction of propagation. 
For certain piecewise-constant signals blurred by means of lin- 
ear convolution with finite-window smooth tapered symmetric 
kernels, the shock filtering u(x, 0) 13 u(x, w) can recover the 
original signal and thus achieve an exact deconvolution [lo]; an 
example of such a case is shown in Fig. 4. 

4 Morphological Filters for Detection 

4.1 Morphological Correlation 
Consider two real-valued discrete image signals f[x] and g[x]. 
Assume that g is a signal pattern to be found in f . To find which 
shifted version of g “best” matches f ,  a standard approach has 
been to search for the shift lag y that minimizes the mean squared 
error E z [ y ]  = ~ x , , < f [ x  + y] - g [ ~ ] ) ~  over some subset 
W of Z2. Under certain assumptions, this matching criterion is 
equivalent to maximizing the linear cross-correlation L fg [ y ]  = 
cxEw f [ x  + y]g[x] between f and g. A discussion of linear 
template matching can be found in Chapter 3.1. 

Although less mathematical tractable than the mean squared 
At each Pixel x, the Output value Of this toggles between the criterion, a statistic-y robust criterion is to mini- value of the dilation of f by B (Le., the maximum of f inside the 
moving window B centered) at x and the value of its erosion by 

mize the mean absolute e ~ o T  

B (i.e., the minimum of f within the same window) according to 
which is closer to the input value f[x]. The toggle filter is usually 
applied not only once but is iterated. The more iterations, the 

E1tyl= C l f t X + Y l  -gtxll. 
X€W 

more contrast enhancement. Further, the iterations converge to 
a limit (fixedpoint) [3] reached after a finite number ofiterations. 
Examples are shown in Figs. 4 and 5 .  

As discussedin [6,15], the above discrete toggle filter is closely 
related to the operation and numerical algorithm behind a 

This mean absolute error criterion corresponds to a nonlinear 
signal correlation used for signal matching; see [ 81 for a review. 
Specifically, since Iu - bJ = a + b - 2 min(a, b), under cer- 
tain assumptions (e.g., if the error norm and the correlation is 
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FIGURE 3 
where B is a small discrete disklike set. (c) Peaks: f - f o B. (d) Valleys: f B - f. 

Morphological edge and blob detectors. (a) Image f .  (b) Edges: morphological gradient f @ B - f e B ,  

normalized by dividing it with the average area under the signals 
f and g), minimizing E l  [ y] is equivalent to maximizing the 
morphological cross-correlation 

products) correlation. These two advantages of the morpholog- 
ical correlation coupled with the relatiye robustness of the mean 
absolute error criterion make it promising for general signal 
matching. 

Mfg[Yl = min(f[x + VI, g[xl>. (30) 
X€W 

4.2 Binary Object Detection and Rank Filtering It can be shown experimentally and theoretically that the de- 
tection of g in f is indicated by a sharper matching peak 
in M f g  [y] than in L fg [ y]. In addition, the morphological 
(sum of minima) correlation is faster than the linear (sum of 

Let us approach the problem of binary image object detection in 
the presence of noise from the viewpoint of statistical hypothesis 
testing and rank filtering. Assume that the observed discrete 
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FIGURE 4 (a) Original signal (dashed curve) and its blurring (solid curve) by means of convolution with a finite positive 
symmetric tapered impulse response. (b) Filteredversions ofthe blurred signal in (a) produced by iterating the 1-D toggle 
filter, with B = {-1, 0, l}, until convergence to the limit signal, reached at 125 iterations; the displayed filtered signals 
correspond to iteration indexes that are multiples of 20. 

binary image f [ x ]  within a mask W has been generated under 
one of the following two probabilistic hypotheses: 

&: f [ x ]  = e[x], x E W. 

HI: f [ x ]  = lg[x - y ]  - e [ x ] l ,  x E W. 

Hypothesis HI (6) stands for “object present” (object not 
present) at pixel location y. The object g[x] is a deterministic 
binary template. The noise e[x] is a stationary binary random 
field, which is a 2-D sequence of i.i.d. random variables taking 
value 1 with probability p and 0 with probability 1 - p ,  where 
0 p < 0.5. The mask W = G+Y is a finite set of pixels equal 
to the region G of support of g shifted to location y at which 
the decision is taken.(For notational simplicity, G is assumed to 
be symmetric, i.e., G = Gr.) The absolute-difference superpo- 
sition between g and e under HI forces f to always have values 
0 or 1. Intuitively, such a signal-to-noise superposition means 
that the noise e toggles the value of g from 1 to 0 and from 0 
to 1 with probability p at each pixel. This noise model can be 
viewed either as the common binary symmetric channel noise in 
signal transmission or as a binary version of the salt and pepper 
noise. To decide whether the object g occurs at y we use a Bayes 
decision rule that minimizes the total probability of error and 
hence leads to the likelihood ratio test: 

where P r (  f/Hi) are the likelihoods of Hi with respect to the 
observed image f ,  and P r ( H i )  are the a priori probabilities. 

This is equivalent to 

10 

Thus, the selected statistical criterion and noise model lead to 
compute the morphological (or equivalently linear) binary cor- 
relation between a noisy image and a known image object and 
compare it to a threshold for deciding whether the object is 
present. 

Thus, optimum detection in a binary image f of the presence 
of a binary object g requires comparing the binary correlation 
between f and g to a threshold 8. This is equivalene to perform- 
ing a rth rank filtering on f by a set G equal to the support of 
g, where 1 5 r 5 card( G) and r is related to 8. Thus, the rank 
r reflects the area portion of (or a probabilistic confidence score 
for) the shifted template existing around pixel y .  For example, 
if Pr(&) = P r ( H l ) ,  then r = 8 = card (G) /2 and hence the 
binary median filter by G becomes the optimum detector. 

4.3 Hit-Miss Filter 
The set erosion (3) can also be viewed as Boolean template 
matching since it gives the center points at which the shifted 

’An alternative implementation and view of binary rank filtering is by means 
of thresholded convolutions, in which a binary image is linearly convolved with 
the indicator function of a set G with n = card( G) pixels and then the result is 
thresholded at an integer level r between 1 and n; this yields the output of the 
rth rank filter by G acting on the input image. 
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a m . . -  

FIGURE 5 (a) Original image f. (b) Blurred image g obtained by an out-of-focus camera digitizing f .  (c) Output of 
the 2-D toggle filter acting on g ( B  was a small symmetric disklike set containing the origin). (d) Limit of iterations of 
the toggle filter on g (reached at 150 iterations). 

structuring element fits inside the image object. If we now con- 
sider a set A probing the image object X and another set B prob- 
ing the background X c ,  the set of points at which the shifted pair 
(A, B) fits inside the image X is the hit-miss transformation of 
X by (A, B): 

X @  (A, B )  E { X  : A+x C X ,  B+, C X c } .  (33) 

In the discrete case, this can be represented by a Boolean prod- 
uct function whose uncomplemented (complemented) variables 
correspond to points of A( B). It has been used extensively for 
binary feature detection [ 171. It can actually model all binary 
template matching schemes in binary pattern recognition that 
use a pair of a positive and a negative template [ 131. 

In the presence of noise, the hit-miss filter can be made more 
robust by replacing the erosions in its definitions with rank filters 

that do not require an exact fitting of the whole template pair 
(A, B) inside the image but only a part of it. 

4.4 Morphological Peak/Valley 
Feature Detection 
Residuals between openings or closings and the original image 
offer an intuitively simple and mathematically formal way for 
peak or valley detection. Specifically, subtracting from an input 
image f its opening by a compact convex set B yields an output 
consisting of the image peaks whose support cannot contain B. 
This is the top-hat transformation [9], 

which has found numerous applications in geometric feature 
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detection [ 171. It can detect bright blobs, i.e., regions with sig- 
nificantly brighter intensities relative to the surroundings. The 
shape of the detected peak’s support is controlled by the shape 
of B,  whereas the scale of the peak is controlled by the size of 
B. Similarly, to detect dark blobs, modeled as image intensity 
valleys, we can use the valley detector 

strategies. Thus, hybrid systems, composed by linear and non- 
linear (rank-type) subsystems, have frequently been proposed 
in the research literature. A typical example is the class of L fil- 
ters that are linear combinations of rank filters. Several adaptive 
algorithms have also been developed for their design, which illus- 
trated the potential of adaptive hybrid filters for image processing 
applications, especially in the presence of non-Gaussian noise. 

Given the applicabilityofhybrid systems and the relativelyfew 
existing ideas to design their nonlinear part, in this section we 

valley(f) = (f 0 B) - f. (35) 

See Fig. 3 for examples. 
The morphological peak/valley detectors are simple, efficient, 

and have some advantages over curvature-based approaches. 
Their applicability in situations in which the peaks or valleys are 
not clearly separated from their surroundings is further strength- 
ened by generalizing them in the following way. The conventional 
opening in Eq. (34) is replaced by a general lattice opening such as 
an area opening or opening by reconstruction. This generaliza- 
tion allows a more effective estimation of the image background 
surroundings around the peak and hence a better detection of 
the peak. 

5 Optimal Design of Morphological 
Filters for Enhancement 

5.1 Brief Survey of Existing Design Approaches 
Morphological and rank/stack filters are useful for image en- 
hancement and are closely related since they can all be repre- 
sented as maxima of morphological erosions 171. Despite the 
wide application of these nonlinear filters, very few ideas ex- 
ist for their optimal design. The current four main approaches 
are (a) designing morphological filters as a finite union of ero- 
sions [ 51 based on the morphological basis representation theory 
(outlined in Section 2.3); (b) designing stack filters by means of 
threshold decomposition and linear programming [ 11; (c) de- 
signing morphological networks, using either voting logic and 
rank tracing learning or simulated annealing [20]; and (d) de- 
signing morphological/rank filters by means of a gradient-based 
adaptive optimization [ 141. Approach (a) is limited to binaryin- 
creasing filters. Approach (b) is limited to increasing filters pro- 
cessing nonnegative quantized signals. Approach (c) requires a 
long time to train and convergence is complex. In contrast, ap- 
proach (d) is more general since it applies to both increasing 
and nonincreasing filters and to both binary and real-valued 
signals. The major difficulty involved is that rank functions are 
not differentiable, which imposes a deadlock on how to adapt 
the coefficients of morphological/rank filters using a gradient- 
based algorithm. The methodology described in this section is 
an extension and improvement to the design methodology (d), 
leading to a new approach that is simpler, more intuitive, and 
numerically more robust. 

For various signal processing applications it is sometimes use- 
ful to mix in the same system both nonlinear and linear filtering 

present a general class of nonlinear systems, called morphologi- 
cul/runk/linear ( M U )  filters [ll],  that contains as special cases 
morphological, rank, and linear filters, and we develop an effi- 
cient method for their adaptive optimal design. MRL filters con- 
sist of a linear combination between a morphological/rank filter 
and a linear FIR filter. Their nonlinear component is based on 
a rank function, from which the basic morphological operators 
of erosion and dilation can be obtained as special cases. 

5.2 MRL Filters 
Weshalluseavectornotationto representthevalues ofthe 1-Dor 
2-D sampled signal (after some enumeration of the signal sam- 
ples) insideann-pointmovingwindow.Lets = ( X I ,  x2, . . . , h) 
in Rn represent the input signal segment and y be the output 
value from the filter. The MRL filter is defined as the shift- 
invariant system whose local signal transformation rule s H y 
is given by 

where h E R,g,b E R”, and (.)T denotes transposition. 
R,(t) is the rth rank function of tERn. It is evaluated by 
sorting the components of _t = (tl, tz, . . . , t,) in decreasing 
order, tCl) >_ t(2) . . - 3 t(,), and picking the rth element of the 
sorted list; i.e., R,(_t) = qr), r = 1, 2, . . . , n. The vector 
- b = (bl, bz, . . . , b,) corresponds to the coefficients of the lin- 
ear FIR filter, and the vector g = (al, a2, . . . , a,) represents 
the coefficients of the morphologicalhank filter. We call the 
“structuring element” because for r = 1 and r = n the rank filter 
becomes the morphological dilation and erosion by a structur- 
ing function equal to kg within its support. For 1 < r -= n, we 
use g to generalize the standard unweighted rank operations to 
filters with weights. The median is obtainedwhen r = Ln/2+ 11. 
Besides these two sets of weights, the rank r and the mixing pa- 
rameter X will also be included in the training process for the 
filter design. If h E [0,1], the MRL filter becomes a convex 
combination of its components, so that when we increase the 
contribution of one component, the other one decreases. From 
Eq. (36) it follows that computing each output sample requires 
2n + 1 additions, n + 2 multiplications, and an n-point sorting 
operation. 
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Because of the use of a gradient-based adaptive algorithm, 
derivatives of rank functions will be needed. Since these func- 
tions are not differentiable in the common sense, we will pro- 
pose a simple design alternative using ‘(rank indicator vectors” 
and “smoothed impulses.” We define the unit sample function 
q(v), v E R, as 

1, i fv=O 
0, otherwise’ q(”) = (37) 

Applying q to all components of a vector 
unit sample function 

E R” yields a vector 

Given a vector 1 = (t l ,  t2,  . . ., tJ in R”, and a rank r E 
{ 1 , 2 ,  . . . , n},  the rth rank indicator vector 4 o f t  is defined by 

where 1 = (1, 1, . . . , 1). Thus, the rank indicator vector marks 
the locations in t where the z value occurs. It has many inter- 
esting properties [ 111, which include the following. It has unit 
area: 

It yields an inner-product representation of the rank function: 

Further, for r fixed, if is constant in a neighborhood of some 
-0 t , then the rth rank function R,(t) is differentiable at to 
and 

(39) 

At points in whose neighborhood c is not constant, the rank 
function is not differentiable. 

At points where the function z = R, ( _t ) is not differentiable, a 
possible design choice is to assign the vector c as a one-sided value 
of the discontinuous az/at. Further, since the rank indicator 
vector will be used to estimate derivatives and it is based on 
the discontinuous unit sample function, a simple approach to 
avoid abrupt changes and achieve numerical robustness is to 
replace the unit sample function by a smoothed impulse qm(v)  
that depends on a scale parameter u >_ 0 and has at least the 
following required properties: 

Functions like exp [ - ( v / ~ ) ~ ]  or sech2(v/o) are natural cho- 
ices for qu(v). 

From the filter definition (36), we see that our design goal is 
to specify a set of parameters a, b, r ,  and h in such away that 
some design requirement is met. However, instead of using the 
integer rank parameter r directly in the training equations, we 
work with a real variable p implicitly defined by the following 
rescaling: 

r =  n -  + O S ] ,  p ER, (41) 

where L. + 0.51 denotes the usual rounding operation and n is 
the dimension of the input signal vector g inside the moving 
window. Thus, the weight vector to be used in the filter design 
task is defined by 

n - 1  L 1+exP(-P) 

but any of its components may be fixed during the process. 

5.3 Least-Mean-Square Approach to Designing 
Optimal MRL Filters 
Our framework for adaptive design is related to adaptive filtering, 
in which the design is viewed as a learning process and the filter 
parameters are iteratively adapted until convergence is achieved. 
The usual approach to adaptively adjust the vector E, and there- 
fore design the filter, is to define a cost function J( E), estimate 
its gradient V J (  E), and update g by the iterative (recursive) 
formula 

so that the value of the cost function tends to decrease at each 
step. The positive constant po is usually called the step size and 
regulates the tradeoffbetween stability and speed of convergence 
of the iterative procedure. Iteration (43) starts with an initial 
guess ~ ( 0 )  and is terminated when some desired condition is 
reached. This approach is commonly known as the method of 
steepest descent. 

As cost function J ,  for the ith update E ( i )  of the weight 
vector, we use 

(44) 

where M = 1,2, . . . is a memory parameter, and the instanta- 
neous error 

is the difference between the desired output signal d(k)  and the 
actual filter output y ( k )  for the training sample k. The memory 
parameter M controls the smoothness of the updating process. If 
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we are processing noiseless signals, it is sometimes better to sim- 
ply set M = 1 (minimum computational complexity). In con- 
trast, if we are processing noisy signals, we should use M > 1 
and sufficiently large to reduce the noise influence during the 
training process. Further, it is possible to make a training pro- 
cess convergent by using a larger value of M. 

Hence, the resulting adaptation algorithm, called the averaged 
least-mean-square (LMS) algorithm, is 

transformed signals, and three parameters (sets) of the original 
- w* = (&+, p*, r, X*) used to transform the input signal, we 
will use Eq. (46) to track only the fourth unknown parameter 
(set) of E* in a noiseless environment. If training process (46) is 
convergent, then Ilw(i) - w* 11 = 0, where 11 11 is some 
error norm. By analyzing the behavior of IJw(i) - x*II, under 
the above assumptions, conditions for convergence have been 
foundin [Ill.  

5.4 Application of Optimal MRL Filters w ( i +  1) =w(i>+- P 2 e(kl-1 aY(k) , - 
k=i-M+l 'K - w=E(i) to Enhancement 

i = 0, 1 ,2 , .  .., (46) 

where = 2p0. From Eqs. (42) and (36), 

(47) 

According to Eq. (39) and our design choice, we set 

The final unknown is s = aa/ap, which will be one more design 
choice. Notice from Eqs. (41) and (36) that s 2 0. If all the 
elements of _t = + g are identical, then the rank r does not 
play any role, so that s = 0 whenever this happens. In contrast, if 
only one element of: is equal to a, then variations in the rank r 
can drastically modify the output a; in this case s should assume 
a maximum value. Thus, a possible simple choice for s is 

T aa 1 
aP n - = s = 1 - -Q(al-x-uJ .A , a = Rr&+aJ, (49) 

where n is the dimension of 3. 
Finally, to improve the numerical robustness of the training 

algorithm, we will frequently replace the unit sample function 
by smoothed impulses, obeying Eq. (40), in which case an app- 
ropriate smoothing parameter u should be selected. A natu- 
ral choice of a smoothed impulse is q,,(v) = exp[-~(v/a)*], 
u > 0. The choice of this nonlinearity will affect only the gra- 
dient estimation step in design procedure (46). We should use 
small values of u such that q,, (v )  is close enough to q(v ) .  A pos- 
sible systematic way to select the smoothing parameter u could 
be to set lqo(v) I I E for JvI 2 6, so that, for some desired E and 

Theoretical conditions for convergence of training process 
(46) can be derived under the following considerations. The 
goal is to find upper bounds pw to the step size p, such that 
Eq. (46) can converge if 0 < p < F,,,. We assume the framework 
of system identification with noiseless signals, and we consider 
the training process of only one element of E at a time, while the 
others are optimally fixed. This means that given the original and 

6, u = s / d m j .  

The proper operation of training process (46) has been verified 
in [ 111 through experiments confirming that, if the conditions 
for convergence are met, our design algorithm converges fast to 
the real parameters of the MRL filter within small error distances. 

We illustrate its applicability to image enhancement by an 
experiment: The goal here it to restore an image corrupted by 
non-Gaussian noise. Hence, the input signal is a noisy image, and 
the desired signal is the original (noiseless) image. The noisy im- 
age for training the filter was generated by first corrupting the 
original image with a 47-dB additive Gaussian white noise, and 
then with a 10% multivalued impulse noise. After the MRL filter 
is designed, another noisy image (with similar type of pertur- 
bation) is used for testing. The optimal filter parameters were 
estimated after scanning the image twice during the trainingpro- 
cess. We used training algorithm (46) with M = 1 and p = 0.1, 
and we started the process with an unbiased combination be- 
tween a flat median and the identity, i.e., 

g o = k  0 0 0  0 0 1 ,  &,=E 0 0 0  1 0 1 ,  po=O, X,=O.5. 

0 0 0  0 0 0  

The final trained parameters of the filter were 

0.01 0.19 -0.01 

-0.09 -0.02 -0.51 0.00 0.13 -0.02 
::;?I, b =  1 . 1 3  0.86 0.071, 

r = 5, h = 0.98, 

which represents a biased combination between a nonflat median 
filter and a linear FIR filter, where some elements of a and b 
present more influence in the filtering process. 

Figure 6 shows the results of using the designed MRL filter 
with a test image, and its comparison with a flat median filter of 
the same window size. The noisy image used for training is not 

61mplementation details: The images are scanned twice during the training 
process, following a zig-zag path from top to bottom, and then from bottom 
to top. The local input vector x is obtained at each pixel by column-by-column 
indexing of the image values inside an n-point square window centered around 
the pixel. The vectors a andb are indexed the same way. The unit sample function 
q ( v )  isapproximatedbyq,(v) = exp[-f(v/~)~] ,withu = 0.001.Theimage 
values are normalized to be in the range [O, 11. 
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ORIGINAL TFBT (19.3dB) 

(4 
MEDIANFILTER (25.7dB) 

(c )  

SPATIAL ERROR / MEDIAN 

(4 
SPATIAL ERROR / MRL-FILTER 

(e)  (f) 

FIGURE 6 (a) Original clean texture image (240 x 250). (b) Noisy image: image (a) corrupted by a hybrid 
47-dB additive Gaussian white noise and 10% multivalued impulse noise (PSNR = 19.3 dB). (c) Noisy image 
restored by a flat 3 x 3 median filter (PSNR= 25.7 dB). (d) Noisy image restored by the designed 3 x 3 
MRL filter (PSNR = 28.5 dB). (e) Spatial error map of the flat median filter; lighter areas indicate higher 
errors. (f) Spatial error map of the MRL filter. 
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included there because the (noisy) images used for training and 
testing are simply different realizations of the same perturbation 
process. Observe that the MRL filter outperformed the median 
filter by approximately 3 dB. Spatial error plots are also included, 
which show that the optimal MRL filter preserves better the 
image structure since its corresponding spatial error is more 
uncorrelated than the error of the median filter. 

For the type of noise used in this experiment, we must have at 
least part of the original (noiseless) image; otherwise, we would 
not be able to provide a good estimate to the optimal filter 
parameters during training process (46). In order to validate 
this point, we repeated the above experiment with 100 x 100 
subimages of the training image (only 17% of the pixels), and 
the resulting MRL filter still outperformed the median filter by 
approximately 2.3 dB. There are situations, however, in which 
we can use only the noisy image together with some filter con- 
straints and design the filter that is closest to the identity [ 141. 
But this approach is only appropriate for certain types of impulse 
noise. 

An exhaustive comparison of different filter structures for 
noise cancellation is beyond the scope of this chapter. Never- 
theless, this experiment was extended with the adaptive design 
of a 3 x 3 L filter under the same conditions. Starting the L fil- 
ter with a flat median, even after scanning the image four times 
during the training process, we found the resulting L filter was 
just 0.2 dB better than the (flat) median filter. 
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2.2 The Donoho-Johnstone Method 

1 Introduction 

Image processing is a science that uncovers information about 
images. Enhancement of an image is necessary to improve ap- 
pearance or to highlight some aspect of the information con- 
tained in the image. Whenever an image is converted from 
one form to another, e.g., acquired, copied, scanned, digitized, 
transmitted, displayed, printed, or compressed, many types of 
noise or noiselike degradations can be present in the image. 
For instance, when an analog image is digitized, the result- 
ing digital image contains quantization noise; when an im- 
age is halftoned for printing, the resulting binary image con- 
tains halftoning noise; when an image is transmitted through 
a communication channel, the received image contains chan- 
nel noise; when an image is compressed, the decompressed 
image contains compression errors. Hence, an important sub- 
ject is the development of image enhancement algorithms 
that remove (smooth) noise artifacts while retaining image 
structure. 

Digital images can be conveniently represented and manipu- 
lated as matrices containing the light intensity or color infor- 
mation at each spatially sampled points. The term monochrome 
digital image, or simply digital image, refers to a two-dimensional 
lightintensityfunction f(n1, n2), where n1 and n2 denotespatial 
coordinates, the value of f(n1, n2) is proportional to the bright- 
ness (or gray level) of the image at that point, and n1, nz, and 
f(nl, nz) are integers. 

The problem of image denoising is to recover an image 
f(n1, n2) from the observation g(nl, nz), which is distorted by 
noise (or noiselike degradation) q(nl, n2); i.e., 

Chapter 3.1 considers methods for linear image restoration. The 
classical image denoising techniques are based on jiltering, which 
can be classified into two categories: linear filtering and nonlin- 
ear filtering. Linear filtering-based denoising is based on low- 
pass filtering to suppress high-frequency noise. The simplest 
low-pass filter is spatial averaging. Linear filtering can be im- 
plemented in either the spatial domain or the frequency do- 
main (usually by means of fast Fourier transforms). Nonlinear 
filters used in denoising include order statistic filters and mor- 
phological filters. The most popular nonlinear filter is the me- 
dian filter, which is a special type of order statistic filter. For 
detailed discussions of these nonlinear filters, see Chapters 3.2 
(medianfilters), 3.3 (morphological filters), and4.4 (orderstatis- 
tic filters). 

The basic difficulty with these filtering-based denoising tech- 
niques is that, if applied indiscriminately, they tend to blur the 
image, which is usually objectionable. In particular, one usually 
wants to avoid blurring sharp edges or lines that occur in the 
image. 

Recently, wavelet-based denoising techniques have been rec- 
ognized as powerful tools for denoising. Different from those 
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filtering-based classical methods, wavelet-based methods can be 
viewed as transform-domain point processing. 

2 Wavelet Shrinkage Denoising 

2.1 The Discrete Wavelet Transform 
Before introducing wavelet-based denoising techniques, we first 
briefly review relevant basics of the discrete wavelet transform 
(See Chapter 4.1 for a fuller introduction to wavelets). 

The discrete wavelet transform (DWT) is a multiresolution (or 
multiscale) representation. The DWT is implemented by means 
of multirate filterbanks. 

Figure 1 shows an implementation of a three-level forward 
DWT based on a two-channel recursive filterbank, where ho(n) 
and hi (n) arelow-pass and high-pass analysis filters, respectively, 
and the block -1 2 represents the downsampling operator by a 
factor 2. The input signal x ( n )  is recursively decomposed into 
a total of four subband signals: a coarse signal, c3(n), and three 
detail signals, dl(n), d2(n), and d3(n), ofthree resolutions. 

Figure 2 plots an implementation of a three-level inverse 
DWT based on a two-channel recursive filterbank, where &O (n)  
and &I (n) are low-pass and high-pass synthesis filters, respec- 
tively, and the block 2 represents the upsampling operator by a 
factor 2. The four subbandsignals c3(n), d3(n), d2(n), and d , ( n )  
are recursively combined to reconstruct the output signal x(  n). 
The four finite impulse response filters satisfy 

hi (n) = (- 1) ho (n), 

&o(n) = ho(1 - n), 

&&z) = (-l)"ho(l - n), 

(2) 

(3) 

(4) 

so that the output of the inverse DWT is identical to the input 
of the forward DWT and the resulting DWT is an orthonormal 
transform. 

For a signal of length N, the computational complexity of its 
DWT is O(N), provided that the length of the filter ho(n) is 
negligible compared to N. 

The two-dimensional (2-D) DWT of a 2-D signal can be im- 
plemented by using the one-dimensional (1-D) DWT in a sep- 
arable fashion. At each level of decomposition (or reconstruc- 
tion), the 1-D forward DWT (or inverse DWT) is first applied to 
every row of the signal and then applied to every column of the 

dl (n) 

FIGURE 2 
bank 

A three-level inverse DWT based on a two-channel iterative filter- 

resulting data. For an image of size N x M, the computational 
complexity of its 2-D DMT is O( NM), provided that the length 
of the filter ho (n)  is negligible compared to both N and M. 

2.2 The Donoho-Johnstone Method 
The method of wavelet shrinkage denoising was developed prin- 
cipally by Donoho and Johnstone [l-31. Suppose we want to 
recover a one-dimensional signal f from a noisy observation 
g; i.e., 

for n = 0, 1, . . . , N - 1, where q is additive noise. The method 
attempts to reject noise by damping or thresholding in the 
wavelet domain. The estimate of the signal f is given by 

where the operators W and W-' stand for the forward and 
inverse discrete wavelet transforms, respectively, and is a 
wavelet-domain pointwise thresholding operator with a thresh- 
old X. 

The key idea of wavelet shrinkage is that the wavelet represen- 
tation can separate the signal and the noise. The DWT compacts 
the energy of the signal into a small number of DWT coefficients 
having large amplitudes, and it spreads the energy of the noise 
over a large number of DWT coefficients having small ampli- 
tudes. Hence, a thresholding operation attenuates noise energy 
by removing those small coefficients while maintaining signal 
energy by keeping these large coefficients unchanged. 

There are two types of basic thresholding rules. For a given 
function p (  y), the hard thresholding operator is defined as 

FIGURE 1 
filterbank. 

A three-level forward DWT based on a two-channel iterative 
Since both hard thresholding and soft thresholding are nonlinear 
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been proposed for selecting the threshold h. The simplest are 
VisuShrink [ 11 and Sureshrink, which is based on Stein’s Unbi- 
ased Risk Estimate (SURE). 

Both soft thresholding and hard thresholding require that the 
energy of the reconstructed signal f is lower than the energy of 
the noisy observation g .  If an appropriate threshold is chosen, 
then the energy suppressed in wavelet shrinkage is mostly cor- 
responding to the noise q. Therefore, the true signal f is not 
weakened after denoising. 

x(n) - 
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One disadvantage of the DWT is that it is not a shift-invariant] 
transform. For instance, the DWT of x(n  - 1) is not a shifted 
version of the DWT of x(n).  Such a shift variance is caused 
by the downsampling and upsampling operations. It has been 
argued [4] that DWT-based wavelet shrinkage sometimes pro- 
duces visual artifacts such as the “pseudo-Gibbs phenomena” in 
the neighborhood of discontinuities in the signal due to the lack 
of shift invariance of the DWT. In order to avoid the problem 
caused by the DWT, Coifman and Donoho and Lang et al. inde- 
pendently proposed to use the undecimated DWT (UDWT) in 
wavelet shrinkage to achieve shift invariance [4,5]. 

Figure 3 illustrates an implementation of a two-level forward 
UDWT based on a two-channel recursive filterbank. At each 
level of decomposition, both odd-indexed and even-indexed 
samples at the outputs of the filters ho(n) and hl(n) are main- 
tained without decimation. Since there is no downsampler in 
the forward UDWT, the transform is a shift-invariant represen- 
tation. 

Since the number of UDWT coefficients is larger than the sig- 
nal length, the inverse UDWT is not unique. In Fig. 3, if the 
filterbank satisfies Eqs. ( 2 ) ,  (3) ,  and (4), then the signal x(n)  can 
be exactly reconstructed from each of the four sets of UDWT 
coefficients: IC;”( n) ,  d,””(n), d,“ (n)) ,  { cie (n) ,  die (n),  di’(n)}, 
{c;’(n), e’(n), df(n)} ,  and {cT(n) ,  d;“‘(n), d,“(n)}. For denois- 
ing applications, it is appropriate to reconstruct x(n)  by averag- 
ing all possible reconstructions. 

It has been demonstrated in [4] and [5] that the UDWT- 
based denoising achieves considerably better performance than 
the DWT-based denoising. The cost of such an improvement in 
performance is the increase in computational complexity. For 
a length-N signal, if the length of the filter ho(n) is negligible 

’Since we deal with signals of finite support, by sh@ we really mean circular 
shift. 

‘ - - - I  I I m d q ( n )  

y even dy (n) 

FIGURE 3 A two-level forward UDWT based on a two-channel iterative fil- 
terbank (the “odd” and “even” blocks stand for the downsamplers that sample 
odd-indexed and even-indexed outputs from the preceding filter, respectively). 

compared to N, then the computational complexity of the 
UDWT is O(Nlog, N), which is higher than that of the 
DWT. 

3 Image Enhancement by Means 
of Wavelet Shrinkage 

3.1 Suppression of Additive Noise 
Although wavelet shrinkage was originally proposed for remov- 
ing noise in 1-D signals, it can be straightforwardly extended to 
images and other 2-D signals. Replacing the 1-D DWT by the 
2-D DWT, we can apply directly the thresholding operation on 
the 2-D DWT coefficients. Hence, the computational complex- 
ity of the 2-D DWT-based wavelet shrinkage is O(NM) for an 
image of size N x M. 

The 2-D version of the Donoho-Johnstone method has been 
extended to more sophisticated variations. Xu et al. proposed 
a wavelet-domain adaptive thresholding scheme to better pre- 
serve significant image features, which were identified by the spa- 
tial correlation of the wavelet coefficients at different scales [6]. 
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Thresholding was performed only on the wavelet coefficients 
that do not correspond to any image features. A similar method 
was proposed by Hilton and Ogden in [7], where the signifi- 
cant wavelet coefficients were determined by recursive hypoth- 
esis tests. Malfait and Roose combined the wavelet representa- 
tion and a Markov random field image model to incorporate a 
Bayesian statistical description for manipulating the wavelet co- 
efficients of the noisy image [ 81. Weyrich and Warhola applied 
the method of generalized cross validation to determine shrink- 
age parameters [9]. In [lo], Chambolle et  al. provided sharp 
estimates of the best wavelet shrinkage parameter in removing 
Gaussian noise from images. 

Successful applications of denoising by wavelet shrinkage in- 
clude the reduction of speckles in radar images [ll] and the 
removal of noise in magnetic resonance imaging (MRI) data 
[6,12,13]. 

3.2 Removal of Blocking Artifacts 
in DCT-Coded Images 
Lossy image coding is essential in many visual communications 
applications because a limited transmission bandwidth or stor- 
age space often does not permit lossless image coding, where 
compression ratios are typically low. However, the quality of 
lossy-coded images can be severely degraded and unacceptable, 
especially at low bit rates. The distortion caused by compression 
usually manifests itself as various perceptually annoying arti- 
facts. This problem calls for postprocessing or enhancement of 
compressed images [ 141. 

Most current image and video compression standards, such 
as JPEG (Chapter 5.5), H.261 (Chapter 6.1), MPEG-1, and 
MPEG-2 (Chapter 6.4), adopt the block discrete cosine trans- 
form (DCT). At the encoder, an image, a video frame, or a 
motion-compensated residual image is first partitioned into 
8 x 8 nonoverlapping blocks of pixels. Then, an 8 x 8 DCT is 
performed on each block and the resulting transform coeffi- 
cients are quantized and entropy coded. This independent pro- 
cessing of blocks does not take into account the between-block 
pixel correlations. Therefore, at low bit rates, such an encod- 
ing scheme typically leads to blocking artifacts, which manifest 
themselves as artificial discontinuities between adjacent blocks. 
In general, blocking artifacts are the most perceptually annoying 
distortion in images and video compressed by the various stan- 
dards. The suppression of blocking artifacts has been studied 
as an image enhancement problem and as an image restora- 
tion problem. A n  overview of various approaches can be found 
in [14]. 

Though wavelet shrinkage techniques were originally pro- 
posed for the attenuation of signal-independent Gaussian noise, 
they work as well for the suppression of other types of distor- 
tion. In particular, wavelet shrinkage has been successful in re- 
moving coding artifacts in compressed images. Gopinath et al. 
first applied the Donoho-Johnestone method to attenuate block- 
ing artifacts and obtained considerable improvement in terms 

of both the objective and subjective image quality [15]. The 
success of wavelet shrinkage in the enhancement of compressed 
images is a result ofthe compressionproperty ofwavelet bases [ 161. 
In a compressed image, the remaining important features (e.g., 
edges) after compression are typically dominant and global, and 
the coding artifacts are subdominant and local (e.g., the block- 
ing artifacts in block DCT-coded images). The wavelet trans- 
form compacts the energy of those features into a small number 
of wavelet coefficients having large magnitude, and spreads the 
energy of the coding error into a large number of wavelet co- 
efficients having small magnitude; i.e., the image features and 
the coding artifacts are well separated in the wavelet domain. 
Therefore, among the wavelet coefficients of a compressed im- 
age, those large coefficients very likely correspond to the original 
image, and those small ones very likely correspond to the coding 
artifacts. Naturally, keeping large coefficients and eliminating 
small ones (i.e., setting them to zero), or thresholding, will re- 
duce the energy of the coding error. 

Better enhancement performance can be achieved by using the 
UDWT-based shrinkage [ 17,181 at the expense of increasing the 
postprocessing complexityfrom O(NM)  to O ( N M  log,(NM)) 
for an N x M image. For image coding applications in which 
fast decoding is desired, it is appropriate to use low-complexity 
postprocessing methods. In [ 191, the optimal shift-invariant 
wavelet packet basis is searched at the encoder and the basis 
is used at the decoder to attenuate the coding artifacts. Such 
a scheme achieves comparable enhancement performance with 
the UDWT-based method and possesses a low post-processing 
complexity O(NM). The expenses are twofold increase of en- 
coding complexity, which is tolerable in many applications, and 
overhead bits required to code the optimal basis, which have a 
negligible effect on compression ratio. 

4 Examples 
~ ~~~ 

In our simulations, we choose 512 x 512 8-bit gray-scale test 
images. We apply two wavelet shrinkage methods based on the 
DWT and the UDWT, respectively, to the distorted images and 
compare their enhancement performance in terms of both ob- 
jective and subjective quality. 

We use peak signal-to-noise ratio (PSNR) as the metric for 
objective image quality. The PSNR is defined as 

(9) 

where f h ,  n2) and f(n1, n2), 1 I nl I N, 1 p n2 I M, are 
the original image and the noisy image (or the enhanced image) 
with size N x M,  respectively. 

We choose Daubechies’ eight-tap orthonormal wavelet fdter- 
bank for both the DWT and the UDWT [20]. We perform five- 
level wavelet decomposition and reconstruction. We apply soft 
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FIGURE 4 Enhancement of a noisy “Barbara” image: (a) the original Barbara image; (b) image corrupted by 
Gaussian noise; (c) image enhanced with the DWT-based method; (d) image enhanced with the UDWT-based 
method. 

thresholding and hard thresholding for the DWT-based shrink- 
age and the UDWT-based shrinkage, respectively. 

4.1 Gaussian Noise 
Figure 4 illustrates an example of removing additive white Gaus- 
sian noise by means of wavelet shrinkage. Figures 4(a) and 4(b) 
display the original “Barbara” image and a noisy version, respec- 
tively. The PSNR of the noisy image is 24.6 dB. Figures 4(c) and 
4(d) show the images enhanced by means of wavelet shrinkage 
based on the DWT and the UDWT, respectively. The PSNRs of 
the two enhanced images are 28.3 and 30.1 dB, respectively. Com- 
paring the four images, we conclude that the perceptual quality 
of the enhanced images are significantly better than the noisy im- 
age: noise is greatly removed while sharp image features are well 
preserved without noticeable blurring. Although both methods 
improve the objective and subjective quality of the distorted 

image, the UDWT-based method achieves better performance, 
i.e., higher PSNR and better subjective quality, than the DWT- 
based method. 

4.2 Blocking Artifacts 
Figure 5 illustrates an example of suppressing blocking artifacts 
in JPEG-compressed images. Figure 5(a) is a part of the original 
“Lena” image. Figure 5(b) is the same part of a JPEG-compressed 
version at 0.25 bit per pixel (bpp), where blocking artifacts are 
clearly visible. The PSNR of the compressed image is 30.4 dB. 
Figures 5(c) and 5(d) are the corresponding parts in the images 
enhanced by means of DWT-based shrinkage and UDWT-based 
shrinkage, respectively. The PSNRs of the two enhanced images 
are 3 1.1 and 3 1.4 dB, respectively; i.e., the UDWT-based shrink- 
age achieves better objective quality. Although both of them have 
better visual quality than the JPEG-compressed one, the artifacts 
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FIGURE 5 Enhancement of a JPEG-compressed “Lena” image: (a) a region of the original Lena image; 
(b) JPEG-compressed image; (c) image postprocessed by the DWT-based method; (d) image postprocessed 
by the UDWT-based method. 
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3 
3.4 Boundary Value 

1 Introduction 

Images are produced to record or display useful information. 
Because of imperfections in the imaging and capturing process, 
however, the recorded image invariably represents a degraded 
version of the original scene. The undoing of these imperfections 
is crucial to many of the subsequent image processing tasks. 
There exists a wide range of different degradations that have to 
be taken into account, covering for instance noise, geometrical 
degradations (pin-cushion distortion), illumination and color 
imperfections (under- or overexposure, saturation), and blur. 
This chapter concentrates on basic methods for removing blur 
from recorded sampled (spatially discrete) images. There are 
many excellent overview articles, journal papers, and textbooks 
on the subject of image restoration and identification. Readers 
interested in more details than given in this chapter are referred 
to [2,3,9, 11, 141. 

Blurring is a form of bandwidth reduction of an ideal im- 
age caused by the imperfect image formation process. It can be 
caused by relative motion between the camera and the origi- 
nal scene, or by an optical system that is out of focus. When 
aerial photographs are produced for remote sensing purposes, 
blurs are introduced by atmospheric turbulence, aberrations in 
the optical system, and relative motion between the camera and 
the ground. Such blurring is not confined to optical images; 
for example, electron micrographs are corrupted by spherical 

aberrations of the electron lenses, and CT scans suffer from X- 
ray scatter. 

In addition to these blurring effects, noise always corrupts 
any recorded image. Noise may be introduced by the medium 
through which the image is created (random absorption or scat- 
ter effects), by the recording medium (sensor noise), by mea- 
surement errors due to the limited accuracy of the recording 
system, and by quantization of the data for digital storage. 

The field of image restoration (sometimes referred to as im- 
age deblurring or image deconvolution) is concerned with the 
reconstruction or estimation of the uncorrupted image from a 
blurred and noisy one. Essentially, it tries to perform an opera- 
tion on the image that is the inverse of the imperfections in the 
image formation system. In the use of image restoration meth- 
ods, the characteristics of the degrading system and the noise are 
assumed to be known u priori. In practical situations, however, 
one may not be able to obtain this information directly from 
the image formation process. The goal of blur identification is to 
estimate the attributes of the imperfect imaging system from the 
observed degraded image itself prior to the restoration process. 
The combination of image restoration and blur identification is 
often referred to as b l i ~ d  image deconvolution [ 111. 

Image restoration algorithms distinguish themselves from im- 
age enhancement methods in that they are based on models 
for the degrading process and for the ideal image. For those 
cases in which a fairly accurate blur model is available, powerful 
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restoration algorithms can be arrived at. Unfortunately, in nu- 
merous practical cases of interest the modeling of the blur is 
unfeasible, rendering restoration impossible. The limited valid- 
ity of blur models is often a factor of disappointment, but one 
should realize that if none of the blur models described in this 
chapter are applicable, the corrupted image may well be beyond 
restoration. Therefore, no matter how powerful blur identifica- 
tion and restoration algorithms are, the objective when captur- 
ing an image undeniably is to avoid the need for restoring the 
image. 

The image restoration methods that are described in this chap- 
ter fall under the class of linear spatially invariant restoration 
filters. We assume that the blurring function acts as a convo- 
lution kernel or point-spread function d(n1, n2) that does not 
vary spatially. It is also assumed that the statistical properties 
(mean and correlation function) of the image and noise do not 
change spatially. Under these conditions the restoration process 
can be carried out by means of a linear filter of which the point- 
spread function is spatially invariant, i.e., is constant throughout 
the image. These modeling assumptions can be mathematically 
formulated as follows. If we denote by f (nl ,  nz) the desired 
ideal spatially discrete image that does not contain any blur or 
noise, then the recorded image g(n1, n2) is modeled as [see also 

Here ~ ( 1 1 1 ,  nz) is the noise that corrupts the blurred image. 
Clearly the objective of image restoration is to make an estimate 
f(n1, n2) of the ideal image f(n1, nz), given only the degraded 
image g(n1, nz), the blurring function d(n1, nz) and some in- 
formation about the statistical properties of the ideal image and 
the noise. 

A n  alternative way of describing Eq. (1) is through its spectral 
equivalence. By applying discrete Fourier transforms to Eq. ( l ) ,  
we obtain the following representation [see also Fig. l(b)]: 

where (u, v )  are the spatial frequency coordinates, and capi- 
tals represent Fourier transforms. Either Eq. (1) or (2) can be 
used for developing restoration algorithms. In practice the spec- 
tral representation is more often used since it leads to efficient 
implementations of restoration filters in the (discrete) Fourier 
domain. 

In Eqs. (1) and (2), the noise w(n1, nz) is modeled as an 
additive term. Typically the noise is considered to have a zero 
mean and to be white, i.e., spatially uncorrelated. In statistical 
terms this can be expressed as follows [ 151 : 

ifkl = k2 = 0 
elsewhere 

Here 0; is the variance or power of the noise and E [ ] refers to 
the expected value operator. The approximate equality indicates 
that on the average Eq. (3) should hold, but that for a given 
image Eq. (3) holds only approximately as a result of replacing 
the expectation by a pixelwise summation over the image. Some- 
times the noise is assumed to have a Gaussian probability density 
function, but for none of the restoration algorithms described 
in this chapter is this a necessary condition. 

In general the noise w(nl ,  n2) may not be independent of 
the ideal image f (nl, n2). This may happen, for instance, if the 
image formation process contains nonlinear components, or if 
the noise is multiplicative instead of additive. Unfortunately, this 
dependency is often difficult to model or to estimate. Therefore, 
noise and ideal image are usually assumed to be orthogonal, 
which is - in this case - equivalent to being uncorrelated be- 
cause the noise has zero mean. In statistical terms expressed, the 
following condition holds: 

(b) Models (1)-(4) form the foundations for the class of linear 
spatially invariant image restoration and accompanying blur 
identification algorithms. In particular these models apply to 

FIGURE Image formation model in the (a) domain and 
(b) Fourier domain. 
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monochromatic images. For color images, two approaches can 
be taken. In the first place one can extend Eqs. (1)-(4) to incor- 
porate multiple color components. In many practical cases of 
interest this is indeed the proper way of modeling the problem of 
color image restoration, since the degradations of the different 
color components (such as the tristimulus signals red-green- 
blue, luminance-hue-saturation, or Iuminance-chrominance) 
are not independent. This leads to a class of algorithms known 
as “multiframe filters” [ 5, 91. A second, more pragmatic way 
of dealing with color images is to assume that the noises and 
blurs in each of the color components are independent. The 
restoration of the color components can then be carried out 
independently as well, meaning that one simply regards each 
color component as a monochromatic image by itself, forgetting 
about the other color components. Though obviouslythis model 
might be in error, acceptable results have been achieved in this 
way. 

The outline of this chapter is as follows. In Section 2, we first 
describe several important models for linear blurs, namely mo- 
tion blur, out-of-focus blur, and blur due to atmospheric tur- 
bulence. In Section 3, three classes of restoration algorithms are 
introduced and described in detail, namely the inverse filter, 
the Wiener and constrained feast-squares filter, and the itera- 
tive restoration filters. In Section 4, two basic approaches to blur 
identification will be described briefly. 

2 Blur Models 
~~ ~ 

The blurring of images is modeled in Eq. (1) as the convolution 
of an ideal image with a two-dimensional (2-D) point-spread 
function (PSF), d(n1, n2). The interpretation of Eq. (1) is that 
ifthe ideal image f(n1, nz) would consist of a single intensity 
point or point source, this point would be recorded as a spread- 
out intensity pattern’ d(n1, nz); hence the name point-spread 
function. 

It is worth noticing that point-spread functions in this chapter 
are not a function ofthe spatiallocation under consideration, i.e., 
they are spatially invariant. Essentially this means that the image 
is blurred in exactly the same way at every spatial location. Point- 
spread functions that do not follow this assumption are, for 
instance, due to rotational blurs (turning wheels) or local blurs 
(a person out of focus while the background is in focus). The 
modeling, restoration, and identification of images degraded by 
spatially varying blurs is outside the scope of this chapter and is 
actually still a largely unsolved problem. 

In most cases the blurring of images is a spatially contin- 
uous process. Since identification and restoration algorithms 
are always based on spatially discrete images, we present the 
blur models in their continuous forms, followed by their dis- 
crete (sampled) counterparts. We assume that the sampling rate 
of the images has been chosen high enough to minimize the 

‘Ignoring the noise for a moment. 

(aliasing) errors involved in going from the continuous to dis- 
crete models. 

The spatially continuous PSF d(x, y) of any blur satisfies three 
constraints, namely: 

d(x ,  y)  takes on nonnegative values only, because of the 
physics of the underlying image formation process; 
when real-valued images are dealt with the point-spread 
function d(x ,  y )  is real-valued too; 
the imperfections in the image formation process are mod- 
eled as passive operations on the data, Le., no “energy” is ab- 
sorbed or generated. Consequently, for spatially continuous 
blurs and for spatially discrete blurs the PSF is constrained 
to satisfy 

respectively. In the following paragraphs we present four com- 
mon point-spread functions, which are encountered regularly in 
practical situations of interest. 

2.1 NoBlur 
In case in which the recorded image is imaged perfectly, no blur 
will be apparent in the discrete image. The spatially continuous 
PSF can then be modeled as a Dirac delta function: 

and the spatially discrete PSF as a unit pulse: 

Theoretically, Eq. (6a) can never be satisfied. However, as long 
as the amount of “spreading” in the continuous image is smaller 
than the sampling grid applied to obtain the discrete image, Eq. 
(6b) will be arrived at. 

2.2 Linear Motion Blur 
Many types of motion blur can be distinguished, all of which 
are due to relative motion between the recording device and 
the scene. This can be in the form of a translation, a rotation, 
a sudden change of scale, or some combinations of these. Here 
onlythe important case of a global translation will be considered. 

When the scene to be recorded translates relative to the camera 
at a constant velocity vrel,ive under an angle of + radians with 
the horizontal axis during the exposure interval [ 0, the 
distortion is one dimensional. Defining the “length of motion” 
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FIGURE 2 
(a) L = 7.5 and 4 = 0; (b) L = 7.5 and 4 = ~ / 4  

PSF of motion blur in the Fourier domain, showing I D(u, v)l,  for FIGURE 3 (a) Fringe elements of discrete out-of-focus blur that are calcu- 
lated by integration; (b) PSF in the Fourier domain, showing ID(u, v) l ,  for 
R = 2.5. 

by L = vrelative bo,,, we find the PSF is given by 
PSF of this uniform out-of-focus blur with radius R is given by 

(84  
if Jw I R~ 

0 elsewhere 

The discrete version of Eq. (7a) is not easily captured in a closed 
form expression in general. For the special case that + = 0, an 
appropriate approximation is 

Also for this PSF the discreteversion d(nl, n2) is not easilyarrived 
at. A coarse approximation is the following spatially discrete PSF 

Figure 2(a) shows the modulus of the Fourier transform of the 
PSF of motion blur with L = 7.5 and + = 0. This figure illus- 
trates that the blur is effectively a horizontal low-pass filtering 
operation and that the blur has spectral zeros along characteristic 
lines. The interline spacing of these characteristic zero pattern is 
(for the case that N = M) approximately equal to N/ L. Figure 
2(b) shows the modulus of the Fourier transform for the case of 
L = 7.5 and + = ~ / 4 .  

2.3 Uniform Out-of-Focus Blur 
When a camera images a three-dimensional (3-D) scene onto a 
2-D imaging plane, some parts of the scene are in focus while 
other parts are not. If the aperture of the camera is circular, the 
image of any point source is a small disk, known as the circle of 
confusion (COC). The degree of defocus (diameter ofthe COC) 
depends on the focal length and the aperture number of the 
lens, and the distance between camera and object. An accurate 
model not only describes the diameter of the COC, but also 
the intensity distribution within the COC. However, if the degree 
of defocusing is large relative to the wavelengths considered, a 
geometrical approach can be followed resulting in a uniform 
intensity distribution within the COC. The spatially continuous 

where C is a constant that must be chosen so that Eq. (5b) is sat- 
isfied. Approximation (8b) is incorrect for the fringe elements of 
the point-spread function. A more accurate model for the fringe 
elements would involve the integration of the area covered by 
the spatially continuous PSF, as illustrated in Fig. 3. Figure 3(a) 
shows the fringe elements that have to be calculated by integra- 
tion. Figure 3(b) shows the modulus of the Fourier transform 
of the PSF for R = 2.5. Again, a low-pass behavior can be ob- 
served (in this case both horizontally and vertically), as well as a 
characteristic pattern of spectral zeros. 

2.4 Atmospheric Turbulence Blur 
Atmospheric turbulence is a severe limitation in remote sensing. 
Although the blur introduced by atmospheric turbulence de- 
pends on a variety of factors (such as temperature, wind speed, 
and exposure time), for long-term exposures the point-spread 
function can be described reasonably well by a Gaussian func- 
tion: 

d ( x ,  y; c r ~ )  = C exp (94  

Here UG determines the amount of spread of the blur, and the 
constant C is to be chosen so that Eq. (sa) is satisfied. Since 
Eq. (sa) constitutes a PSF that is separable in a horizontal and 
a vertical component, the discrete version of Eq. (9a) is usually 
obtained by first computing a one-dimensional (1-D) discrete 
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t 
In image restoration the improvement in quality of the re- 

stored image over the recorded blurred one is measured by the 
signal-to-noise ratio improvement. The signal-to-noise-ratio of 
the recorded (blurred and noisy) image is defined as follows in 
decibels: 

SNR, 
variance ofthe ideal image f(n1, nz) 

variance ofthe difference image g(n1, nz) - f(n1, nz) 
= lologlo( ) ( W .  

(1la) 

The signal-to-noise ratio of the restored image is similarly de- 
fined as 

FIGURE 4 Gaussian PSF in the Fourier domain (UG = 1.2). 

Gaussian PSF a”(n). This 1-D PSF is found by a numerical dis- 
cretization of the continuous PSF. For each PSF element d”(n), 
the 1-D continuous PSF is integrated over the area covered by 
the 1-D sampling grid, namely [n - 1/2, n + 1/21: 

SNRf 
variance of the ideal image f(n1, nz) 

variance ofthe difference image f(n1, nz) - f(n1, nz) 
= io,og,,( ) (dB). 

(1lb) 
n+1/2 

J(n;uG) = C J  exp(-<)dx. (9b) Then, the improvement in signal-to-noise ratio (SNR) is given 
bY n-112 2UG 

Since the spatially continuous PSF does not have a finite support, 
it has to be truncated properly. The spatially discrete approxi- 
mation of Eq. (sa) is then given by 

ASNR = sNRf - SNR, 

variance ofthe difference image g(n1, nz) - f(n1, nz) 

variance ofthe difference image f(n1, nz) - f (nl ,  nz) = lologlo( )(dB). 

Figure 4 shows this PSF in the spectral domain ( u ~  = 1.2). Ob- 
serve that Gaussian blurs do not have exact spectral zeros. 

3 Image Restoration Algorithms 

In this section we will assume that the PSF of the blur is satis- 
factorily known. A number of methods will be introduced for 
removing the blur from the recorded image g(nl, n2) using a 
linear filter. If the point-spread function of the linear restora- 
tion filter, denoted by h(n1, n2), has been designed, the restored 
image is given by 

or in the spectral domain by 

F ( u ,  V )  = H(u,  v)G(u, v ) .  (lob) 

The objective of this section is to design appropriate restoration 
filters h(n1, n2) or H(u, v )  for use in Eq. (10). 

The improvement in SNR is basically a measure that expresses the 
reduction of disagreement with the ideal image when comparing 
the distorted and restored image. Note that all of the above signal- 
to-noise measures can only be computed in the case in which 
the ideal image f(n1, n2) is available, i.e., in an experimental 
setup or in a design phase of the restoration algorithm. When 
restoration filters are applied to real images for which the ideal 
image is not available, often only the visual judgment of the 
restored image can be relied upon. For this reason it is desirable 
for a restoration filter to be somewhat “tunable” to the liking of 
the user. 

3.1 Inverse Filter 
An inverse filter is a linear filter, whose point-spread function 
hh(n1, n2) is the inverse of the blurring function d(n1, nz), in 
the sense that 

N-I M-I 

= 7 -7; hhv(kl, k2)d(nl - kl, n2 - k2) 
kl =O k2 =O 

When formulated as in Eq. (12), inverse filters seem difficult to 
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FIGURE 5 (a) Image out-of-focus with SNRg = 10.3 dB (noise variance = 0.35). 
(b) Inverse filtered image. (c) Magnitude of the Fourier transform of the restored image. 
The DC component lies in the center of the image. The oriented white lines are spectral 
components of the image with large energy. (d) Magnitude of the Fourier transform of 
the inverse filter response. 

design. However, the spectral counterpart of Eq. (12) immedi- 
ately shows the solution to this design problem [ 11: 

The advantage of the inverse filter is that it requires only the 
blur PSF as a priori knowledge, and that it allows for perfect 
restoration in the case that noise is absent, as one can easily see 
by substituting Eq. (13) into Eq. (lob): 

If the noise is absent, the second term in Eq. (14) disappears 
so that the restored image is identical to the ideal image. Unfor- 
tunately, several problems exist with Eq. (14). In the first place 
the inverse filter may not exist because D( u, v )  is zero at selected 

frequencies (u, v ) .  This happens for both the linear motion blur 
and the out-of-focus blur described in the previous section. 
Second, even if the blurring function’s spectral representation 
D(u, v )  does not actually go to zero but becomes small, the 
second term in Eq. (14) -known as the inverse filtered noise - 
will become very large. Inverse filtered images are therefore often 
dominated by excessively amplified noise.2 

Figure 5(a) shows an image degraded by out-of-focus blur 
(R = 2.5) and noise. The inverse filtered version is shown in 
Fig. 5(b), clearly illustrating its uselessness. The Fourier trans- 
forms of the restored image and of flnv(u, Y )  are shown in 
Figs. 5(c) and 5(d), respectively, demonstrating that indeed the 
spectral zeros of the PSF cause problems. 

3.2 Least-Squares Filters 
For the noise sensitivity of the inverse filter to be overcome, 
a number of restoration filters have been developed; these are 
collectively called least-squares filters. We describe the two most 

21n the literature, this effect is commonly referred to as the ill-conditionedness 
or ill-posedness of the restoration problem. 
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commonly used filters from this collection, namely the Wiener 
filter and the constrained least-squares filter. 

The Wiener filter is a linear spatially invariant filter of the 
form of Eq. (loa), in which the point-spread function h(n1, n2) 
is chosen such that it minimizes the mean-squared error (MSE) 
between the ideal and the restored image. This criterion attempts 
to make the difference between the ideal image and the restored 
one - i.e., theremainingrestoration error - as small as possible 
on the uveruge : 

n, =o n*=0 

where f(q, n2) is given by Eq. (loa). The solution of this min- 
imization problem is known as the Wienerfilter, and it is easiest 
defined in the spectral domain: 

Here D* (u, v )  is the complex conjugate of D( u, Y ) ,  and S f (  u, v )  
and S,(u, v )  are the power spectrum of the ideal image and 
the noise, respectively. The power spectrum is a measure for 
the average signal power per spatial frequency (u, Y )  carried 
by the image. In the noiseless case we have S ,  (u, v )  = 0, so that 
the Wiener filter approximates the inverse filter: 

For the more typical situation in which the recorded image 
is noisy, the Wiener filter trades off the restoration by inverse 
filtering and suppression of noise for those frequencies where 
D(u, v )  + 0. The important factors in this tradeoff are the 
power spectra of the ideal image and the noise. For spatial 
frequencies where S,(u, v )  << Sf (u ,  v) ,  the Wiener filter ap- 
proaches the inverse filter, while for spatial frequencies where 
S,(u, v )  >> S f ( u ,  v )  the Wiener filter acts as a frequencyrejec- 
tion filter, i.e., Hiqimer(tl, v )  -+ 0. 

If we assume that the noise is uncorrelated (white noise), its 
power spectrum is determined by the noise variance only: 

Thus, it is sufficient to estimate the noise variance from the 
recorded image to get an estimate of S,(u, v ) .  The estimation 
of the noise variance can also be left to the user of the Wiener 
filter as if it were a tunable parameter. Small values of U: will 
yield a result close to the inverse filter, whereas large values will 
oversmooth the restored image. 

The estimation of Sf (u ,  v )  is somewhat more problematic 
since the ideal image is obviously not available. There are three 

possible approaches to take. In the first place, one can replace 
S f ( y  v )  by an estimate of the power spectrum of the blurred 
image and compensate for the variance of the noise u:: 

2 S~(U, V )  X S,(U, V )  - U: * -G”(u, 1 v)G(u, Y )  - u,. 
N M  

The above used estimator for the power spectrum S,(u, Y )  of 
g(n1, n2) is known as the periodogram. This estimator requires 
little u priori knowledge, but it is known to have several short- 
comings. More elaborate estimators for the power spectrum ex- 
ist, but these require much more u priori knowledge. 

A second approach is to estimate the power spectrum Sf (u ,  v )  
from a set of representative images. These representative images 
are to be taken from a collection of images that have a content 
“similar” to the image that has to be restored. Of course, one still 
needs an appropriate estimator to obtain the power spectrum 
from the set of representative images. 

The third and final approach is to use a statistical model for 
the ideal image. Often these models incorporate parameters that 
can be tuned to the actual image being used. A widely used image 
model - not only popular in image restoration but also in image 
compression - is the following 2-D causal autoregressive model 
PI: 

In this model the intensities at the spatial location (nl , n2) are 
described as the sum of weighted intensities at neighboring spa- 
tial locations and a small unpredictable component v(n1, n2). 

The unpredictable component is often modeled as white noise 
with variance 0,”. Table 1 gives numerical examples for mean- 
square error estimates of the prediction coeficients ai,j for some 
images. For the mean-square error estimation of these parame- 
ters, first the 2-D autocorrelation function has been estimated, 
which is then used in the Yule-Walker equations [ 81. Once the 
model parameters for Eq. (20a) have been chosen, the power 
spectrum can be calculated to be equal to 

TABLE 1 Prediction coefficients and variance of v ( q ,  nz) 
for four imagesa 

Cameraman 0.709 -0.467 0.739 231.8 
Lena 0.511 -0.343 0.812 132.7 
Trevor White 0.759 -0.525 0.764 33.0 
White noise -0.008 -0.003 -0.002 5470.1 

a These are computed in the MSE optimal sense by the Yule-Walker equations. 
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FIGURE 6 (a) Wiener restoration of image in Fig. 5(a) with assumed noise variance equal to 
35.0 (ASNR = 3.7 dB). (b) Restoration using the correct noise variance of 0.35 (ASNR = 8.8 dB). 
(c) Restoration assuming the noise variance is 0.0035 (ASNR = 1.1 dB). (d) Magnitude of the 
Fourier transform of the restored image in (b). 

The tradeoff between noise smoothing and deblurring that 
is made by the Wiener filter is illustrated in Fig. 6. Going from 
6(a) to 6(c), the variance of the noise in the degraded image, 
i.e., u:, has been estimated too large, optimally, and too small, 
respectively. The visual differences, as well as the differences in 
improvement in SNR (ASNR) are substantial. The power spec- 
trum of the original image has been calculated from model (20a). 
From the results it is clear that the excessive noise amplification 
of the earlier example is no longer present because of the mask- 
ing of the spectral zeros [see Fig. 6(d)]. Typical artifacts of the 
Wiener restoration - and actually of most restoration filters - 
are the residual blur in the image and the “ringing” or “halo” 
artifacts present near edges in the restored image. 

The constrained least-squaresfilter [ 71 is another approach for 
overcoming some of the difficulties of the inverse filter (excessive 
noise amplification) and of the Wiener filter (estimation of the 
power spectrum of the ideal image), while still retaining the 
simplicity of a spatially invariant linear filter. If the restoration 
is a good one, the blurred version of the restored image should 

be approximately equal to the recorded distorted image. That is, 

4 n 1 ,  n2) * f<.l, n2) = g(n1, n2). (21) 

With the inverse filter the approximation is made exact, which 
leads to problems because a match is made to noisy data. A more 
reasonable expectation for the restored image is that it satisfies 

There are potentially many solutions that satisfy relation (22). 
A second criterion must be used to choose among them. A 
common criterion, acknowledging the fact that the inverse fil- 
ter tends to amplify the noise w(n1, nz), is to select the solu- 
tion that is as “smooth” as possible. If we let c(n1, n2) represent 
the point-spread function of a 2-D high-pass filter, then among 



3.5 Basic Methods for Image Restoration and Identification 133 

IC(u,v)l in the discrete Fourier domain: 

(a) (b) 

FIGURE 7 lko-dimensional discrete approximation of the second derivative 
operation: (a) PSF c(n1, nz), and (b) spectral representation. 

the solutions satisfying relation (22) the solution is chosen that 
minimizes 

&,=0 &*=O 

The interpretation of S2( f(k1, k2)) is that it gives a measure for 
the high-frequency content of the restored image. Minimizing 
this measure subject to the constraint of Eq. (22) will give a 
solution that is both within the collection of potential solutions 
of Eq. (22) and has as little high-frequency content as possible 
at the same time. A typical choice for c(nl, nz) is the discrete 
approximation of the second derivative shown in Fig. 7, also 
known as the 2-D Laplacian operator. For more details on the 
subject of discrete derivative operators, refer to Chapter 4.10 of 
this Handbook. 

The solution to the above minimization problem is the con- 
strained least-squares filter I&( u, v )  that is easiest formulated 

Here a is a tuning or regularization parameter that should be cho- 
sen such that Eq. (22) is satisfied. Though analytical approaches 
exist to estimate OL [9], the regularization parameter is usually 
considered user tunable. 

It should be noted that although their motivations are quite 
different, the formulation of the Wiener filter, Eq. (16), and con- 
strained least-squares filter, Eq. (24), are quite similar. Indeed 
these filters perform equally well, and they behave similarly in 
the case that the variance of the noise, u;, approaches zero. 
Figure 8 shows restoration results obtained by the constrained 
least-squares filter using three different values of a. A final re- 
mark about S2 ( f (n1 ,  n2)) is that the inclusion of this criterion is 
strongly related to the use of an image model. A vast amount of 
literature exists on the usage of more complicated image models, 
especially the ones inspired by 2-D autoregressive processes [ 171 
and the Markov random field theory [6]. 

3.3 Iterative Filters 
The filters formulated in the previous two sections are usually 
implemented in the Fourier domain using Eq. (lob). Compared 
to the spatial domain implementation in Eq. (loa), the direct 
convolution with the 2-D point-spread function h(n1, n2) can 
be avoided. This is a great advantage because h(n1, n2) has a 
very large support, and typically contains NM nonzero filter 
coefficients even if the PSF of the blur has a small support that 
contains only a few nonzero coefficients. There are, however, two 
situations in which spatial domain convolutions are preferred 
over the Fourier domain implementation, namely: 

in situations in which the dimensions of the image to be 
restored are very large, and 

FIGURE 8 
(b) a = 2 x 

(a) Constrained least-squares restoration of image in Fig. 5(a) with a = 2 x 10W2 (ASNR = 1.7 dB), 
(ASNR = 6.9 dB), (c) a = 2 x (ASNR = 0.8 dB). 
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in cases in which additional knowledge is available about 
the restored image, especially if this knowledge cannot be 
cast in the form of Eq. (23). An example is the a priori 
knowledge that image intensities are always positive. Both 
in the Wiener and the constrained least- squares filter the 
restored image may come out with negative intensities, sim- 
ply because negative restored signal values are not explicitly 
prohibited in the design of the restoration filter. 

Iterative restoration filters provide ameans to handle the above 
situations elegantly [3,10,14]. The basic formofiterative restora- 
tion filters is the one that iteratively approaches the solution of 
the inverse filter, and it is given by the following spatial domain 
iteration: 

$+l<nl, n2) = $(ni, n2) 

-I- P[g(ni ,  n2) - d(ni, n2) * $(ni, %)I. (25) 

Here $ (nl, nz) is the restoration result after i iterations. Usually 
in the first iteration h ( n l ,  n2) is chosen to be identical to zero 
or identical to g(n1, n2). Iteration (25) has been independently 
discovered many times, and is referred to as the van Cittert, Bially, 
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or Landweber iteration. As can be seen from Eq. (25), during the 
iterations the blurred version of the current restoration result 
$(nl ,  nz) is compared to the recorded image g(n l ,  nz). The 
difference between the two is scaled and added to the current 
restoration result to give the next restoration result. 

With iterative algorithms, there are two important con- 
cerns-does it converge and, if so, to what limiting solution? 
Analyzing Eq. (25) shows that convergence occurs if the conver- 
gence parameter p satisfies 

Using the fact that I D( u, Y) I I 1, this condition simplifies to 

0 < p < 2, D(u, v )  > 0. (26b) 

If the number of iterations becomes very large, then fi(n1, n2) 

approaches the solution of the inverse filter: 
,. 

lim fi(n1, n2) = hinv(n1, n2> * g h ,  n2). (27) 

Figure 9 shows four restored images obtained by iteration (25). 

i-tcc 

FIGURE 9 Iterative restoration (p = 1.9) of the image in Fig. 5(a) after (a) 10 iterations 
(ASNR = 1.6 dB), (b) 100 iterations (ASNR = 5.0 dB), (c) 500 iterations (ASNR = 6.6 dB), 
(d) 5000 iterations (ASNR = -2.6 dB). 
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Clearly, as the iteration progresses, the restored image is domi- 
nated more and more by inverse filtered noise. 

Iterative scheme (25) has several advantages and disadvan- 
tages that we discuss next. The first advantage is that Eq. (25) 
does not require the convolution of images with 2-D PSFs con- 
taining many coefficients. The only convolution is that of the 
restored image with the PSF of the blur, which has relatively few 
coefficients. 

The second advantage is that no Fourier transforms are re- 
quired, making Eq. (25) applicable to images of arbitrary size. 
The third advantage is that although the iteration produces the 
inverse filteredimage as aresult ifthe iteration is continuedindef- 
initely, the iteration can be terminated whenever an acceptable 
restoration result has been achieved. Starting off with a blurred 
image, the iteration progressively deblurs the image. At the same 
time the noise will be amplified more and more as the iteration 
continues. It is now usually left to the user to trade off the degree 
of restoration against the noise amplification, and to stop the 
iteration when an acceptable partially deblurred result has been 
achieved. 

The fourth advantage is that the basic form of Eq. (25) can 
be extended to include all types of a priori knowledge. First all 
knowledge is formulated in the form of projective operations on 
the image [4]. After applying a projective operation the (restored) 
image satisfies the a priori knowledge reflected by that operator. 
For instance, the fact that image intensities are always positive 
can be formulated as the following projective operation P: 

By inclusion of this projection P in the iteration, the final image 
after convergence of the iteration and all of the intermediate im- 
ages will not contain negative intensities. The resulting iterative 
restoration algorithm now becomes 

The requirements on p for convergence as well as the proper- 
ties of the final image after convergence are difficult to analyze 
and fall outside the scope of this chapter. Practical values for p 
are typically around 1. Further, not all projections P can be used 
in iteration (29)) but only convex projections. A loose definition 
of a convex projection is the following. If two images f(’) (nl , n2) 

and f”) (nl , n2) both satisfy the a priori information described 
by the projection P ,  then also the combined image 

fc)(ni, n2) = ~f (” (n1 ,  n2) + (1 - E) f2)(n1, n2) (30) 

must satisfy this a priori information for all values of E between 
0 and 1. 

A final advantage of iterative schemes is that they are easily 
extended for spatially variant restoration, i.e., restoration where 

either the PSF of the blur or the model of the ideal image (for 
instance, the prediction coefficients in Eq. (20)) vary locally 
19,141. 

On the negative side, the iterative scheme of Eq. (25) has two 
disadvantages. In the first place the second requirement in Eq. 
(26b), namely that D(u, v )  > 0, is not satisfied by many blurs, 
like motion blur and out-of-focus blur. This causes Eq. (25) to 
diverge for these types of blur. In the second place, unlike the 
Wiener and constrained least-squares filter the basic scheme does 
not include any knowledge about the spectral behavior of the 
noise and the ideal image. Both disadvantages can be corrected 
by modifying the basic iterative scheme as follows: 

Here a and c( n1 n2) have the same meaning as in the constrained 
least-squares filter. Though the convergence requirements are 
more difficult to analyze, it is no longer necessary for D(u, v )  to 
be positive for all spatial frequencies. Ifthe iteration is continued 
indefinitely, Eq. (31) will produce the constrained least-squares 
filtered image as result. In practice the iteration is terminated 
long before convergence. The precise termination point of the 
iterative scheme gives the user an additional degree of freedom 
over the direct implementation of the constrained least-squares 
filter. It is noteworthy that although Eq. (31) seems to involve 
many more convolutions than Eq. (25), a reorganization of terms 
is possible, revealing that many of those convolutions can be 
carried out once and off line, and that only one convolution is 
needed per iteration: 

where the image gd(nl, n2) and the fixed convolution kernel 
k(n1, nz) are given by 

A second- and very significant - disadvantage of iterations 
(25) and (29)-(32) is the slow convergence. Per iteration the 
restored image $(nl, 112) changes only a little. Many iteration 
steps are therefore required before an acceptable point for ter- 
mination of the iteration is reached. The reason is that the above 
iteration is essentially a steepest descent optimization algorithms, 
which are known to be slow in convergence. It is possible to 
reformulate the iterations in the form of, for instance, a conjugate 
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(a) (b) 

FIGURE 10 (a) Restored image illustrating the effect of the boundary value problem. The image 
was blurred by the motion blur shown in Fig. 2(a) and restored by using the constrained least-squares 
filter. (b) Preprocessed blurred image at its borders such that the boundary value problem is solved. 

gradient algorithm, which exhibits a much higher convergence 
rate [ 141. 

3.4 Boundary Value Problem 
Images are always recorded by sensors of finite spatial extent. 
Since the convolution of the ideal image with the PSF of the blur 
extends beyond the borders of the observed degraded image, part 
of the information that is necessary to restore the border pixels is 
not available to the restoration process. This problem is known 
as the boundary value problem, and it poses a severe problem to 
restoration filters. Although at first glance the boundary value 
problem seems to have a negligible effect because it affects only 
border pixels, this is not true at all. The point-spread function of 
the restoration filter has a very large support, typically as large as 
the image itself. Consequently, the effect of missing information 
at the borders of the image propagates throughout the image, in 
this way deteriorating the entire image. Figure lO(a) shows an 
example of a case in which the missing information immediately 
outside the borders of the image is assumed to be equal to the 
mean value of the image, yielding dominant horizontal oscilla- 
tion patterns caused by the restoration of the horizontal motion 
blur. 

Two solutions to the boundary value problem are used in 
practice. The choice depends on whether a spatial domain or 
a Fourier domain restoration filter is used. In a spatial domain 
filter, missing image information outside the observed image 
can be estimated by extrapolating the available image data. In 
the extrapolation, a model for the observed image can be used, 
such as the one in Eq. (20), or more simple procedures can be 
used, such as mirroring the image data with respect to the image 
border. For instance, image data missing on the left-hand side of 
the image could be estimated as follows: 

E 

In case Fourier domain restoration filters are used, such as the 
ones in Eqs. (16) or (24), one should realize that discrete Fourier 
transforms assume periodicity of the data to be transformed. 
Effectively in 2-D Fourier transforms this means that the left- 
and right-hand sides of the image are implicitly assumed to be 
connected, as well as the top and bottom part of the image. 
A consequence of this property - implicit to discrete Fourier 
transforms - is that missing image information at the left-hand 
side of the image will be taken from the right-hand side, and vice 
versa. Clearly in practice this image data may not correspond to 
the actual (but missing data) at all. A common way to fix this 
problem is to interpolate the image data at the borders such that 
the intensities at the left- and right-hand side as well as the top 
and bottom of the image transit smoothly. Figure 10(b) shows 
what the restored image looks like if a border of five columns or 
rows is used for linearly interpolating between the image bound- 
aries. Other forms of interpolation could be used, but in practice 
mostly linear interpolation suffices. All restored images shown 
in this chapter have been preprocessed in this way to solve the 
boundary value problem. 

4 Blur Identification Algorithms 

In the previous section it was assumed that the point-spread 
function d(n l ,  n2) of the blur was known. In many practical 
cases the actual restoration process has to be preceded by the 
identification of this point-spread function. If the camera mis- 
adjustment, object distances, object motion, and camera motion 
are known, we could, in theory, determine the PSF analytically. 
Such situations are, however, rare. A more common situation is 
that the blur is estimated from the observed image itself. 

The blur identification procedure starts out with the choice of 
a parametric model for the point-spread function. One category 
of parametric blur models has been given in Section 2. As an 
example, if the blur were known to be caused by motion, the blur 
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FIGURE 11 I G( u, v )  I of 2 blurred images. 

identification procedure would estimate the length and direction 
of the motion. 

A second category of parametric blur models is the one that 
describes the point-spread function a( nl , n2) as a (small) set of 
coefficients within a given finite support. Within this support the 
value of the PSF coefficients has to be estimated. For instance, 
if an initial analysis shows that the blur in the image resembles 
out-of-focus blur, which, however, cannot be described para- 
metrically by Eq. (8b), the blur PSF can be modeled as a square 
matrix of, say, size 3 by 3, or 5 by 5. The blur identification then 
requires the estimation of 9 or 25 PSF coefficients, respectively. 
This section describes the basics of the above two categories of 
blur estimation. 

4.1 Spectral Blur Estimation 
In Figs. 2 and 3 we have seen that two important classes of blurs, 
namely motion and out-of-focus blur, have spectral zeros. The 
structure of the zero patterns characterizes the type and degree 
of blur within these two classes. Since the degraded image is 
described by Eq. (2), the spectral zeros of the PSF should also 
be visible in the Fourier transform G(u, v ) ,  albeit that the zero 
pattern might be slightly masked by the presence of the noise. 

Figure 11 shows the modulus of the Fourier transform of 
two images, one subjected to motion blur and one to out-of- 
focus blur. From these images, the structure and location of 
the zero patterns can be estimated. In the case in which the 
pattern contains dominant parallel lines of zeros, an estimate of 
the length and angle of motion can be made. In case dominant 
circular patterns occur, out-of-focus blur can be inferred and 
the degree of out of focus (the parameter R in Eq. (8)) can be 
estimated. 

An alternative to the above method for identifying motion 
blur involves the computation of the two-dimensional cepstrum 
of g(n1, nz).  The ceptrum is the inverse Fourier transform of the 

logarithm of I G (u, v )  I. Thus, 

where F-' is the inverse Fourier transform operator. If the noise 
can be neglected, t( nl,  n2) has a large spike at a distance L from 
the origin. Its position indicates the direction and extent of the 
motion blur. Figure 12 illustrates this effect for an image with 
the motion blur from Fig. 2(b). 

4.2 Maximum-Likelihood Blur Estimation 
In case the point-spread function does not have characteris- 
tic spectral zeros or in case a parametric blur model such as 
motion or out-of-focus blur cannot be assumed, the individ- 
ual coefficients of the point-spread function have to be esti- 
mated. To this end maximum-likelihood estimation procedures 
for the unknown coefficients havebeen developed [9,12,13,18]. 
Maximum-likelihood estimation is a well-known technique for 
parameter estimation in situations in which no stochastic knowl- 
edge is available about the parameters to be estimated [ 151. 

Most maximum-likelihood identification techniques begin by 
assuming that the ideal image can be described with the 2-D 
autoregressive model, Eq. (20a). The parameters of this image 
model - that is, the prediction coefficients ai, j and the variance 
a: of the white noise v (  nl , n2) - are not necessarily assumed to 
be known. 

Ifwe can assume that both the observation noise w ( nl , n2) and 
the image model noise v(nl ,  722) are Gaussian distributed, the 
log-likelihood function of the observed image, given the image 
model and blur parameters, can be formulated. Although the 
log-likelihood function can be formulated in the spatial domain, 
its spectral version is slightly easier to compute [ 131: 



138 

spikes 
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FIGURE 12 
appear as bright spots around the center of the image. (b) Cepstrum is shown as a surface plot. 

Cepstrum for motion blur from Fig. 2(c). (a) Cepstrum is shown as a 2-D image. The spikes 

where 8 symbolizes the set of parameters to be estimated, i.e., 
8 = {ai,j, a:, d(n1, nz), ai}, and P ( u ,  v )  is defined as 

Here A(u, v )  is the discrete 2-D Fourier transform of a , j .  
The objective of maximum-likelihood blur estimation is now 

to find those values for the parameters ai, j ,  a:, d(n,  n2), and 
a: that maximize the log-likelihood function L(8) .  From the 
perspective of parameter estimation, the optimal parameter 
values best explain the observed degraded image. A careful 
analysis of Eq. (35) shows that the maximum likelihood blur 
estimation problem is closely related to the identification of 
2-D autoregressive moving-average (ARMA) stochastic pro- 
cesses [ 13, 161. 

The maximum likelihood estimation approach has several 
problems that require nontrivial solutions. Actually the differen- 
tiation between state-of-the-art blur identification procedures 
is mostly in the way they handle these problems [ l l ] .  In the 
first place, some constraints must be enforced in order to ob- 
tain a unique estimate for the point-spread function. Typical 

constraints are: 

the energy conservation principle, as described by Eq. (Sb), 
symmetry of the point-spread function of the blur, i.e., 
d(-n1, -n2) = d(n1, n2). 

Second, log-likelihood function (35) is highly nonlinear and 
has many local maxima. This makes the optimization of Eq. 
(35) difficult, no matter what optimization procedure is used. 
In general, maximum-likelihood blur identification procedures 
require good initializations of the parameters to be estimated in 
order to ensure converge to the global optimum. Alternatively, 
multiscale techniques could be used, but no ready-to-go or best 
approach has been agreed upon so far. 

Given reasonable initial estimates for 8, various approaches 
exist for the optimization of L(8) .  They share the property 
of being iterative. Besides standard gradient-based searches, 
an attractive alternative exists in the form of the expectation- 
minimization (EM) algorithm. The EM algorithm is a gen- 
eral procedure for finding maximum-likelihood parameter es- 
timates. When applied to the blur identification procedure, an 
iterative scheme results that consists of two steps [ 12, 181 (see 
Fig. 13). 

Initial estimate for 
image model and 



3.5 Basic Methods for Image Restoration and Identification 139 

Expectation step 
Given an estimate of the parameters 6, a restored image 
f~ (nl ,  nz) is computed by the Wiener restoration filter, Eq. (1 6). 
The power spectrum is computed by Eq. (20b), using the given 
image model parameter ui,j and 0,”. 

Maximization step 
Given the image restored during the expectation step, a new 
estimate of 8 can be computed. First, from the restored image 
f~ (nl , n2) the image model parameters ui, j ,  u,” can be estimated 
directly. Second, from the approximate relation 

g(nl, n2) d(nl, n2) * fE(a1, 122) (36) 

and the constraints imposed on d(nl, 4, the coefficients of 
the point-spread function can be estimated by standard system 
identification procedures [ 141. 

By alternating the E step and the M step, one achieves con- 
vergence to a (local) optimum of the log-likelihood function. A 
particular attractive property of this iteration is that although 
the overall optimization is nonlinear in the parameters 8, the 
individual steps in the EM algorithm are entirely linear. Further- 
more, as the iteration progresses, intermediate restoration re- 
sults are obtained that allow for monitoring of the identification 
process. 

As conclusion we observe that the field of blur identification 
has been significantly less thoroughly studied and developed 
than the classical problem of image restoration. Research in im- 
age restoration continues with a focus on blur identification, 
using for instance cumulants and generalized cross-validation 
D11. 
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1 Introduction 1.1 Image Restoration and 
Reconstruction Problems 

This chapter focuses on the need for and use of regularization 
methods in the solution of image restoration and reconstruction 
problems. The methods discussed here are applicable to a variety 
of such problems. These applications to specific problems, in- 
cluding implementation specifics, are discussed in greater detail 
in the other chapters of the Handbook. Our aim here is to pro- 
vide a unifylng view of the difficulties that arise, and the tools 
that are used, in the analysis and solution of these problems. 
In the remainder of this section a general model for common 

getherwith the standardleast-squares approach taken for solving 
these problems. A discussion of the issues leading to the need 
for regularization is provided. In Section 2, so-called direct reg- 
ularization methods are treated; in Section 3, iterative methods 
of regularization are discussed. In Section 4 an overview is given 
of the important problem of parameter choice in regularization. 
Section 5 concludes the chapter. 

image restoration and reconstruction problems is presented, to- 
0 0 0 0  

g(x, y )  = l, 1, h(x, y; y’) f ( X ’ ,  y’) &’ df, (1)  

where h(x, y; 2, y’) is the kernel or response function of the 
distortingsystem, often termed the point-spread function (PSF). 
Such a relationship is called a Fredholm integral equation of 
the first kind [I] and captures most situations of engineering 

Image restoration and reconstruction problems have as their goal 
the recovery of a desired, unknown, image of interest f ( x ,  y )  
basedontheobservation ofarelatedset ofdistorteddatag(x, y). 
These problems are generally distinguished from image enhance- 
ment problems by their assumed knowledge and use of a distor- 
tion modelrelatingtheunknown f(x, y) to theobservedg(x, y). 
In particular, we focus here on distortion models captured by a 
linear integral equation of the following form: 

copyright @ 2000 by Academic Press. 
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interest. Note that Eq. ( I ) ,  while linear, allows for the possibility 
of shift-variant system functions. 

Examples of image restoration problems that can be captured 
by distortion model (1) are discussed in Chapter 3.5 and include 
compensation for incorrect camera focus, removal of uniform 
motion blur, and correction of blur caused by atmospheric tur- 
bulence. All these examples involve a spatially invariant PSF; that 
is, h(x,  y x ’ ,  y’) isonlyafunctionofx-x’andy-y’.Oneofthe 
most famous examples of image restoration involving a spatially 
varying point-spread function is provided by the Hubble Space 
Telescope, where a flaw in the main mirror resulted in a spatially 
varying distortion of the acquired images. 

Examples of image reconstruction problems fitting into the 
framework of Eq. (1) include those involving reconstruction 
based on projection data. Many physical problems can be cast 
into this or a very similar tomographic type of framework, 
including the following: medical computer-aided tomography, 
single photon emission tomography, atmospheric tomography, 
geophysical tomography, radio astronomy, and synthetic aper- 
ture radar imaging. The simplest model for these types of prob- 
lems relates the observed projection g(t,  6) at angle 8 and offset 
t to the underlying field f ( x ,  y)  through a spatially varying PSF 
given by [ 21 : 

h(t, 0 ; x ‘ ,  /) = 8 ( t -  x’cos(6) - y’sin(6)) (2) 

The set of projected data g( t ,  0) is often called a sinogram. See 
Chapter 10.2 for more detail. 

Even when the unknown field is modeled as continuous, the 
data, of necessity, are often discrete because of the nature of 
the sensor. Assuming there are Ng observations, Eq. (1) can be 
written as 

where hi($, y’) = h ( ~ ,  yi; x’, y’) denotes the kernel corre- 
sponding to the ith observation. In Eq. (3) the discrete data 
have been described as simple samples of the continuous obser- 
vations. This can always be done, since any averaging induced 
by the response function of the instrument can be included in 
the specification of hi(x’, y’). 

Finally, the unknown image f (x ,  y) itself is commonly de- 
scribed in terms of a discrete and finite set of parameters. In par- 
ticular, assume that the image can be adequately represented by 
a weighted sum of N f  basis functions +j(x, y), j = 1, . . . , N f  
as follows: 

Nf 

(4) 

For example, the basis functions r+j ( x ,  y) are commonly chosen 

to be the set of unit height boxes corresponding to array of 
square pixels, though other bases (e.g., wavelets; see Chapter 4.1) 
have also found favor. Given the expansion in Eq. (4), the im- 
age is then represented by the collection of N f  coefficients 
fj. For example, if a square N x M pixel array is used, then 
iVf = NM and the f j  simply become the values of the pixels 
themselves. 

Substituting Eq. (4) into Eq. ( 3 )  and simplifying yields the 
following completely discrete relationship between the set of 
observations gi and the collection of unknown image coefficients 
fj: 

( 5 )  

where Hij is given by 

and represents the inner product of the ith Observation ker- 
nel hi(x,  y) with the jth basis function +j(x, y) .  Collecting all 
the observations gj and image unknowns f j  into a single ma- 
trix equation yields a matrix equation capturing the observation 
process: 

where the length Ng vector g, the length N f  vector f, and the 
Ng x N f  matrix H follow naturally from Eqs. (4), (5), and (6 ) .  
When a rectangular pixel basis is used for +j (x, y) and the system 
is shift invariant, so that h(x,  y; x’, y’) = h(x  - x’, y - y’), the 
resulting matrix H will exhibit a banded block-Toeplitz structure 
with Toeplitz blocks - that is, the structure of H is of the form 

where the blocks Hi themselves internally exhibit the same 
banded Toeplitz structure. This structure is just a reflection of the 
linear convolution operation underlying the problem. Such lin- 
ear convolutional problems can be represented by equivalent cir- 
cular convolutional problems through appropriate zero padding. 
When this circulant embedding is done, the corresponding ma- 
trix H will then possess a block-circulant structure with circulant 
blocks [3]. In this case the structure of the associated H will be 
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(a) (b) 

FIGURE 1 
30-dB SNR additive noise. 

(a) Original cameraman image (256 x 256). (b) Image distorted by 7-pixel horizontal motion blur and 

of the form 

where the block rows are simple circular shifts of each other 
and each block element itself possesses this structure. The sig- 
nificance of the block-circulant form is that there exist efficient 
computational approaches for problems with such structure in 
H ,  corresponding to the application of Fourier-based, frequency 
domain techniques. 

In practice, our measured data are corrupted by inevitable 
perturbations or noise, so that our unknown image f is actually 
related to our data through 

where q is a vector of perturbation or noise samples. In what 
follows, the focus will be on the discrete or sampled data case as 
represented by Eq. (7) or ( 10). 

For purposes of illustration throughout the coming discus- 
sion, two example problems will be considered. The first example 
is an image restoration problem involving restoration of an im- 
age distorted by spatially invariant horizontal motion blur. The 
original 256 x 256 image is shown in Fig. l(a). The distorted 
data, corresponding to application of a length 7-pixel horizontal 
motion blur followed by the addition of white Gaussian noise 
for an SNR’ of 30 dB, is shown in Fig. I(b). 

‘SNR (dB) = 10 log,, [Var(Hf)/Var(q)], where Var(z) denotes the variance 
of 2. 

The second example problem is an image reconstruction prob- 
lem, involving reconstruction of an image from noisy tomo- 
graphic data. The original 50 x 50 phantom image is shown in 
Fig. 2(a). The noisy projection data are shown in Fig. 2(b), with 
the horizontal axis corresponding to angle 0 and the vertical axis 
corresponding to projection offset t. These data corresponds 
to application of Eq. (2) with 20 angles evenly spaced between 
0 = 0” and 8 = 180” and 125 samples in t per angle followed 
by addition of white Gaussian noise for an SNR of 30 dB. This 
example represents a challenging inversion problem that might 
arise in nondestructive testing. 

1.2 Least-Squares and Generalized Solutions 
The image restoration or reconstruction problem can be seen to 
be equivalent to one of solving for the unknown vector f given 
knowledge of the data vector g and the distorting system matrix 
H. At first sight, a simple matrix inverse would seem to provide 
the solution, but this approach does not lead to usable solutions. 
There are four basic issues that must be dealt with in inverting the 
effects of H to find an estimate f of f .  First, there is the problem 
of solution existence. Given an observation g in Eq. (7) there may 
not exist any f that solves this equation with equality, because 
of the presence of noise. Second, there is the problem of solution 
uniqueness. If the null space of H is nonempty, then there are 
objects or images that are “unobservable” in the data. The null 
space of H is the collection of all input images that produce zero 
output. An example would be the set of DC or constant images 
when H is a high-pass filter. Such components may exist in the 
true scene, but they do not appear in the observations. In these 
cases, there will be many choices of f that produce the same set 
of observations, and it must be decided which is the “right one.” 
Such a situation arises, for example, when H represents a filter 
whose magnitude goes to zero for some range of frequencies, in 
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( : I )  (12) 

FIGURE 2 
per angle corrupted by additive noise, 30-dB SNR. 

(a) Original tomographic phantom image (50 x 50). (b) Projection data with 20 angles and 125 samples 

which case images differing in these bands will produce identical 
observations. Third, there is the problem of solution stability. It 
is desired that the estimate of f remain relatively the same in the 
face of perturbations to the observations (either caused by noise, 
uncertainty, or numerical roundoff). These first three elements 
are the basis of the classic Hadamard definition of an ill-posed 
problem [4,5]. In addition to these problems, a final issue exists. 
Equation (7) only represents the observations and says nothing 
about any prior knowledge about the solution. In general, more 
information will be available, and a way to include it in the 
solution is needed. Regularization will prove to be the means to 
deal with all these problems. 

The standard approach taken to inverting Eq. (7) will now 
be examined and its weaknesses explained in the context of the 
above discussion. The typical (and reasonable) solution to the 
first problem of solution existence is to seek a least-squares solu- 
tion to the set of inconsistent equations represented by Eq. (7). 
That is, the estimate is defined as the least-squares fit to the 
observed data: 

where llzllt = xi z‘ denotes the Lz norm and arg denotes the 
argument producing the minimum (as opposed to the value of 
the minimum itself). A weighted error norm is also sometimes 
used in the specification of Eq. ( 1  1) to give certain observa- 
tions increased importance in the solution: llg - Hfllk = Ci 
wi [g - Hf]:. If H has full column rank, the null space of H is 
empty, and the estimate is unique and is obtained as the solution 
to the following set of normal equations [ 41 : 

When the null space of H is not empty, the second inversion 
difficulty of non-uniqueness, caused by the presence of unob- 
servable images, must also be dealt with. What is typically done 
in these situations is to seek the unique solution of minimum 
energy or norm among the collection of least-squares solutions. 
This generalized solution is usually denoted by f^+ and defined as: 

f^+ = argminll f l l 2  subject to minllg - Hf 112. (13) 
f 

The generalized solution is often expressed as f^+ = H+g, where 
H+ is called the generalized inverse of H (note that H+ is 
defined implicitly through Eq. (13)). Thus generalized solutions 
are least-squares solutions of minimum size or energy. Since 
components of the solution f that are unobservable do not im- 
prove the fit to the data, but only serve to increase the solution 
energy, the generalized solution corresponds to the least-squares 
solution with no unobservable components, Le., with no com- 
ponent in the null space of H. Note that when the null space of 
H is empty (for example, when we have at least as many inde- 
pendent observations gi as unknowns fj), the generalized and 
least-squares solutions are the same. 

To understand how the generalized solution functions, con- 
sider a simple filtering situation in which the underlying PSF is 
shift invariant (such as our deblurring problem) and the cor- 
responding H is a circulant matrix. In this shift-invariant, fil- 
tering context the generalized solution method is sometimes 
referred to as “inverse filtering” (see Chapter 3.5). In this case, 
H can be diagonalized by the matrix F, which performs the 
two-dimensional (2-D) discrete Fourier transform (DFT) on an 
image (represented as a vector) [3]. In particular, letting tildes 
denote transform quantities, we have 
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where E? is a diagonal matrix and I?* denotes the complex 
conjugate of 12. The diagonal elements of 12 are just the 
2-D DFT coefficients 6i of the PSF of this circulant problem; 
diag[ I?] = 6 = F h, where h is given by, for example, the first 
column of H. Applyingthese relationships to Eq. (12), we obtain 
the following frequency domain characterization of the gener- 
alized solution: 

where f+ is a vector of the 2-D DFT coefficients of the gener- 
alized solution, and i is a vector of the 2-D DFT coefficients of 
the data. This set of equations is diagonal, so each component 
of the solution may be solved for separately: 

Thus, the generalized solution performs simple inverse filtering 
where the frequency response magnitude is nonzero, and sets 
the solution to zero otherwise. 

For general, nonconvolutional problems (e.g., for tomo- 
graphic problems) the 2-D DFT matrix F does not provide 
a diagonalizing decomposition of H as in Eq. (14). There is, 
however, a generalization of this idea to arbitrary, shift-varying 
PSF system matrices called the singular value decomposition 
(SVD) [6]. The SVD is an important tool for understanding and 
analyzing inverse problems. The SVD of an Ng x Nf matrix H 
is a decomposition of the matrix H of the following form: 

where U is an Ng x Ng matrix, V is an Nf x Nf matrix, and 
S is an Ng x Nf diagonal matrix with the values u1,02, . . . , up 
arranged on its main diagonal and zeros elsewhere, where p = 
min(N,, Nf). The orthonormal columns ui of U are called the 
left singular vectors, the orthonormal columns vi of V are called 
the right singular vectors, the ai are called the singular values, 
and the set of triples {ui, ui, vi}, 1 4 i I p is called the singular 
system of H. Further, if r is the rank of H, then the ui satisfy: 

The calculation of the entire SVD is too computationally expen- 
sive for general problems larger than modest size, though the 
insight it provides makes it a useful conceptual tool nonethe- 
less. It is possible, however, to efficiently calculate the SVD for 
certain structured problems (such as for problems with a sepa- 
rable PSF [3]) or to calculate only parts of the SVD for general 
problems. Such calculations of the SVD can be done in a nu- 
merically robust fashion, and many software tools exist for this 
purpose. 

The SVD allows the development of an analysis similar to 
Eq. (16) for general problems. In particular, the generalized so- 
lution can be expressed in terms of the elements of the SVD as 
follows: 

This expression, valid for any H, whether convolutional or not, 
may be interpreted as follows. The observed data g are decom- 
posedwith respect to the set ofbasis images { ui} (yieldingthe co- 
efficients urg).  The coefficients of this representation are scaled 
by l/ui and then used as the weights of an expansion of f + with 
respect to the new set of basis images {vi}. Note, in particular, 
that the sum only runs up to r .  The components vi of the re- 
construction for i > r correspond to uj = 0 and are omitted 
from the solution. These components correspond precisely to 
images that will be unobserved in the data. For example, if H 
were a low-pass filter, DC image components would be omitted 
from the solution. Note that for alinear shift-invariant problem, 
where frequency domain techniques are applicable, solution (19) 
is equivalent to inverting the system frequency response at those 
frequencies where it is nonzero, and setting the solution to zero 
at those frequencies where it is zero, as previously discussed. 

1.3 The Need for Regularization 
A number of observations about the drawbacks of generalized 
solution (13) or (19) maybe made. First, the generalized solution 
makes no attempt to reconstruct components of the image that 
are unobservable in the data (i.e. in the null space of H). For 
example, if a given pixel is obscured from view, the generalized 
solution will set its value to zero despite the fact that all values 
near it might be visible (and hence, despite the fact that a good 
estimate as to its value may be made). Second, and perhaps more 
seriously, the generalized solution is “unstable” in the face of 
perturbations to the data - that is, small changes in the data - 
lead to large changes to the solution. To understand why this is so, 
note that most physical PSF system matrices H have the property 
that their singular values ai tend gradually to zero as i increases 
and, further, the singular image vectors ui and vi corresponding 
to these small ai are high-frequency in nature. The consequences 
of this behavior are substantial. In particular, the impact of the 
data on the ith coefficient of generalized solution (19) can be 
expressed as 

(20) - = v T f + - .  U T g  4 - q  
ui gi 

There are two terms on the right-hand side of Eq. (20): the first 
term is due to the true image and the second term is due to the 
noise. For large values of the index i, these terms are like high- 
frequency Fourier coefficients of the respective elements (since Ui 

and vi are t y p i d y  high frequency). The high-frequency contri- 
bution from the true *mage vT f will generally be much smaller 
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FIGURE 3 Generalized solutions f' corresponding to data in Figs. l(b) (left) and 2(b) (right). 

than that due to the noise uTq, since images tend to be lower 
frequency than noise. Further, the contribution from the noise 
is then ampl+ed by the large factor l/q. Overall then, the solu- 
tion will be dominated by very large, oscillatory terms that are 
due to the noise. Another way of understanding this undesir- 
able behavior follows from the generalized solution's insistence 
on reducing the data fit error above all else. If the data have 
noise, the solution f+ will be distorted in an attempt to fit to the 
noise components. Figure 3 shows the generalized solutions cor- 
responding to the motion-blur restoration example of Fig. 1 and 
the tomographic reconstruction example of Fig. 2. The solutions 
have been truncated to the original range of the images in each 
case, either [0,255] for the motion-blur example or [O, 11 for the 
tomographic example. Clearly these solutions are unacceptable. 

The above insight provides not only a way of understanding 
why it is likely that the generalized inverse solution will have dif- 
ficulties, but also a way of analyzing specific problems. In partic- 
ular, since the generalized solution fails because of the explosion 
of the coefficients u'g/ui in the sum of Eq. (19), potential in- 
version difficulties can be seen by plotting the quantities I uTgl, 
ai and the ratio lurgl/ui versus i [7]. Demonstrations of such 
plots for the two example problems are shown in Fig. 4. In both 
cases, for large values of the index i the coefficients I u'gl level 
off because of noise while the associated q continue to decrease, 
and thus the corresponding reconstruction coefficients in this 
range become very large. 

It is for these reasons that the generalized solution is an un- 
satisfactory approach to the problems of image restoration and 
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FIGURE 4 Plots of the components comprising the generaliked solution for the problem in Figs. 1 (left) and 2 (right). 
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reconstruction in all but the lowest noise situations. These dif- 
ficulties are generally a reflection of the ill-posed nature of the 
underlying continuous problem, as reflected in ill-conditioning 
of the system PSF matrix H. The answer to these difficulties is 
found through what is known as regularization. The purpose of 
regularization is to allow the inclusion of prior knowledge to 
stabilize the solution in the face of noise and allow the identi- 
fication of physically meaningful and reasonable estimates. The 
basic idea is to constrain the solution in some way so as to avoid 
the oscillatory nature of the noise dominated solution observed 
in Fig. 3 [4]. 

A regularization method is often formally defined as an inver- 
sion method depending on a single real parameter a 3 0, which 
yields a family of approximate solutions f (a) with the following 
two properties: first, for large enough a the regularized solution 
?(a) isstableinthe faceofperturbations or noiseinthedata (un- 
like the generalized solution) and, second, as a goes to zero the 
unregularized generalized solution is recovered: f(a) + f f  as 
a + 0. The parameter a is called the “regularization parameter” 
and controls the tradeoff between solution stability (Le., noise 
propagation) and nearness of the regularized solution f(a) to 
the unregularized solution f+ (i.e., approximation error in the 
absence of noise). Since the generalized solution represents the 
highest possible fidelity to the data, another way of viewing the 
role of a is in controlling the tradeoff between the impact of data 
and the impact of prior knowledge on the solution. There are a 
wide array of regularization methods, and an exhaustive treat- 
ment is beyond the scope of this chapter. The aim of this chapter 
is to provide a summary of the main approaches and ideas. 

2 Direct Regularization Methods 

In this section what are known as “direct” regularization meth- 
ods are examined. These methods are conceptually defined by 
a direct computation, though they may utilize, for example, it- 
erative methods in the computation of a practical solution. In 
Section 3 the use of iterative methods as a re,darization ap- 
proach in their own right is discussed. 

2.1 Truncated SVD Regularization 
From the discussion in Section 1.3, it can be seen that the stability 
problems of the generalized solution are associated with the large 
gain given the noise that is due to the smallest singular values 
ai. A logical remedy is to simply truncate small singular values 
to zero. This approach to regularization is called truncated SVD 
(TSVD) or numerical filtering [4,7]. Indeed, such truncation 
is almost always done to some extent in the definition of the 
numerical rank of a problem, so TSVD simply does this to a 
greater extent. In fact, one interpretation of TSVD is as defining 
the rank of H rehtive to the noise in the problem. The TSVD 
regularized solution can be usefully defined based on Eq. (19) in 

the following way: 

where wi,& is a set of weights or filter factors given by 

1 i 5 k(a) 
0 i > k ( a ) ’  Wi,a = 

with the positive integer k(a) = La-lJ, where LxJ denotes x 
rounded to the next smaller integer. Defined in this way, TSVD 
has the properties of a formal regularization method. TSVD 
simplythrows the offending components of the solution out, but 
it does not introduce any new components. As a result, TSVD 
solutions, although stabilized against noise, make no attempt 
to include image components that are unobservable in the data 
(like the original generalized solution). 
AnotherwayofunderstandingtheTSVD solutionisasfollows. 

If Hk denotes the closest rank-k approximation to H, then, by 
analogy to Eq. (13), the TSVD solution f&)(a) in Eq. (21) is 
also given by 

f & v ~ ( a )  = argminll f l l2  subject to minJJg - H k f l J 2 ,  (23) 

which shows that the TSVD method can be thought of as directly 
approximating the original problem H by a nearby Hk that is 
better conditioned and less sensitive. In terms of its impact on 
reconstruction coefficients, the TSVD method corresponds to 
the choice of an ideal step weighting function wi,& applied to the 
coefficients of the generalized solution. Certainly other weight- 
ing functions could and have been applied [4]. Indeed, some 
regularization methods are precisely interpretable in this way, as 
will be discussed. 

Figure 5 shows truncated SVD solutions corresponding to the 
motion-blur restoration example of Fig. 1 and the tomographic 
reconstruction problem of Fig. 2. For the motion-blur restora- 
tion problem, the solution used only approximately40,OOO of the 
over 65,000 singular values of the complete generalized recon- 
struction, whereas for the tomographic reconstruction problem 
the solution used only -800 of the full 2500 singular values. 
As can be seen, the noise amplification of the generalized re- 
construction has indeed been controlled in both cases. In the 
motion-blur example some vertical ringing caused by edge ef- 
fects can be seen. 

2.2 Tikhonov Regularization 
Perhaps the most widely referenced regularization method is the 
Tikhonov method. The key idea behind the Tikhonov method 
is to directly incorporate prior information about the image f 
through the inclusion of an additional term to the original least- 
squares cost function. In particular, the Tikhonov regularized 
estimate is defined as the solution to the following minimization 
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FIGURE 5 Truncated SVD solutions corresponding to data in Figs. l(b) (left) and 2(b) (right). 

problem: expressed as 

Comparing this expression to Eq. (19), one can define an asso- 
ciated set of weight or filter factors ~ i , ~  for Tikhonov regular- 
ization with L = I as follows: 

The first term in Eq. (24) is the same t 2  residual norm appear- 
ing in the least-squares approach and ensures fidelity to data. 
The second term in Eq. (24) is called the “regularizer” or “side 
constraint” and captures prior knowledge about the expected be- 
havior of f through an additional t z  penalty term involving just 

U; 
a; + a 2 ’  

Wi,a = - (27) 
the image. The regularization parameter a controls the tradeoff 
between the two terms. The minimizer of Eq. (24) is the solution 
to the following set of normal equations: 

In contrast to the ideal step behavior of the TSVD weights in 
Eq. (21), the Tikhonov weights decay like a “double-pole” low- 
pass filter, where the “pole” occurs at ai = a. Thus, Tikhonov 

This set of linear equations can be compared to the equivalent 
set of Eq. (12) obtained for the unregularized least-squares so- 
lution. A solution to Eq. (25) exists and will be unique if the 
null spaces of H and L are distinct. There are a number of ways 
to obtain the Tikhonov solution from Eq. (25), including ma- 
trix inversion, iterative methods, and the use of factorizations 
like the SVD (or its generalizations) to diagonalize the system of 
equations. 

To gain a deeper appreciation of the functioning of Tikhonov 
regularization, first consider the case when L = I, a diago- 
nal matrix of ones. The corresponding side constraint term in 
Eq. (24) then simply measures the “size” or energy of f and 
thus, by inclusion in the overall cost function, directly prevents 
the pixel values of f from becoming too large (as happened in 
the unregularized generalized solution). The effect of a in this 
case is to trade off the fidelity to the data with the energy in 
the solution. With the use of the definition of the SVD com- 
bined with Eq. (25), the Tikhonov solution when L = I can be 

regularization with L = I can be seen to function similarly to 
TSVD, in that the impact of the higher index singular values on 
the solution is attenuated. Another consequence of this similar- 
ity is that when L = I, the Tikhonov solution again makes no 
attempt to reconstruct image components that are unobservable 
in the data. 

The case when L # I is more interesting. Usually L is chosen 
as a derivative or gradient operator so that 11 Lfll is a measure 
of the variability or roughness of the estimate. Common choices 
for L include discrete approximations to the 2-D gradient or 
Laplacian operators, resulting in measures of image slope and 
curvature, respectively. Such operators are described in Chap- 
ter 4.10. Inclusion of such terms in Eq. (24) forces solutions 
with limited high-frequency energy and thus captures a prior 
belief that solution images should be smooth. An expression for 
the Tikhonov solution when L # I that is similar in spirit to 
Eq. (26) can be derived in terms of the generalized SVD of the 
pair (H, L )  [ 6,7], but this is beyond the scope of this chapter. 
Interestingly, it can be shown that the Tikhonov solution when 
L # I does contain image components that are unobservable in 
the data, and thus allows for extrapolation from the data. Note, it 
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FIGURE 6 Tikhonov regularized solutions when L is a gradient operator Corresponding to the data in Figs. l(b) 
(left) and (b) (right). 

is also possible to consider the addition of multiple terms of the 
form 11 Li f l lz ,  to create weighted derivative penalties of multiple 
orders, such as arise in Sobolev norms. 

Figure 6 shows Tikhonov regularized solutions for both the 
motion-blur restoration example of Fig. 1 and the tomographic 
reconstruction example of Fig. 2 when L = D is chosen as a 
discrete approximation of the gradient operator, so that the 
elements of Df are just the brightness changes in the im- 
age. The additional smoothing introduced through the use of 
a gradient-based L in the Tikhonov solutions can be seen 
in the reduced oscillation or variability of the reconstructed 
images. 

Before leaving Tikhonov regularization it is worth noting that 
the following two inequality constrained least-squares problems 
are essentially the same as the Tikhonov method 

f^ = argminllg - H f 1 2  subject to IILfl12 5 l / A l ,  

f^ = argminllLf112 subject to llg - Hfl12 5 X2. 

(28) 

(29) 

The nonnegative scalars X1 and h2 play the roles of regularization 
parameters. The solution to each of these problems is the same 
as that obtained from Eq. (24) for a suitably chosen value of OL 

that depends in a nonlinear way on A1 or h2. The latter approach 
is also related to a method for choosing the regularization pa- 
rameter called the “discrepancy principle,” which we discuss in 

even when this is not the case, the set of equations in (25) pos- 
sess a sparse and banded structure and may be efficiently solved 
by using iterative schemes, such as preconditioned conjugate 
gradient. 

2.3 Nonquadratic Regularization 
The basic Tikhonov method is based on the addition of a 
quadratic penalty ( 1  Lfll2 to the standard least-squares (and 
hence quadratic) data fidelity criterion, as shown in Eq. (24). The 
motivation for this addition was the stabilization of the gener- 
alized solution through the inclusion of prior knowledge in the 
form of a side constraint. The use of such quadratic, &based 
criteria for the data and regularizer leads to linear problem (25) 
for the Tikhonov solution, and thus results in an inverse filter 
that is a linear function of the data. While such linear process- 
ing is desirable, since it leads to straightforward and reasonably 
efficient computation methods, it is also limiting, in that far 
more powerful results are possible if nonlinear methods are al- 
lowed. In particular, when used for suppressing the effect of 
high-frequency noise, such linear filters, by their nature, also re- 
duce high-frequency energy in the true image and hence blur 
edges. For this reason, the generalization of the Tikhonov ap- 
proach through the inclusion of certain nonquadratic criteria is 
now considered. To this end, consider estimates obtained as the 
solution of the following generalized formulation: 

Section 4. 

plicit expression for the Tikhonov solution in terms of the SVD, 
for large problems computation of the SVD may not be practical 
and other means must be sought to solve Eq. (25). When H and 
L have circulant structure (corresponding to a shift-invariant 
filter), these equations are diagonalized by the DFT matrix and 
the problem can be easily solved in the frequency domain. Often, 

f(4 = argmin Jl(f, g) + a2J2(f) ,  (30) 

where 11 ( f, g) represents ageneral distance measure between the 
data and its prediction based on the estimated f and J 2 (  f )  is a 
general regularizing penalty. Both costs may be a nonquadratic 
function of the elements of f. Next, a number of popular and 
interesting choices for J1 ( f, g) and J 2  ( f )  are examined. 

While Eq. (26), and its generalization when L # I, gives an ex- f 
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Maximum Entropy Regularization 
Perhaps the most widely used nonquadratic regularization ap- 
proach is the maximum entropy method. The entropy of a pos- 
itive valued image in the discrete case may be defined as 

Nr 

i=l 

and can be taken as a measure of the uncertainty in the image. 
This interpretation follows from information theoretic consid- 
erations when the image is normalized so that zzl fi = 1, and 
may thus be interpreted as a probability density function [SI. In 
this case, it can be argued that the maximum entropy solution 
is the most noncommittal with respect to missing information. 
A simpler motivation for the use of the entropy criterion is that 
it ensures positive solutions. Combining entropy cost (31) with 
a standard quadratic data fidelity term for JI ( f, g )  yields the 
maximum entropy estimate as the soIution of 

N r  

I i=l 

There are a number ofvariants on this idea involving related defi- 
nitions of entropy, cross-entropy, and divergence [ 51. Experience 
has shown that this method provides image reconstructions with 
greater energy concentration (i.e., most coefficients are small and 
a few are very large) relative to quadratic Tikhonov approaches. 
For example, when the fi represent pixel values, the approach 
has resulted in sharper reconstructions of point objects, such as 
star fields in astronomical images. The difficulty with formula- 
tion (32) is that it leads to a nonlinear optimization problem for 
the solution, which must be solved iteratively. 

Figure 7 shows maximum entropy solutions corresponding 
to both the motion-blur restoration example of Fig. 1 and the 

tomographic reconstruction example of Fig. 2. Note that these 
two examples are not particularly well matched to the maximum 
entropy approach, since in both cases the true image is not com- 
posed of pointlike objects. Still, the maximum entropy side con- 
straint has again succeeded in controlling the noise amplification 
observed in the generalized reconstruction. For the tomography 
example, note that small variations in the large background re- 
gion have been supressed and the energy in the reconstruction 
has been concentrated within the reconstructed object. In the 
motion-blur example, the central portion of the reconstruction 
is sharp, but the edges again show some vertical ringing caused 
by boundary effects. 

Total Variation Regularization 
Another nonquadratic side constraint that has achieved popu- 
larity in recent years is the total variation measure: 

where IIzll1 denotes the C1 norm (i.e., the sum of the absolute 
value of the elements), and D is a discrete approximation to the 
gradient operator described in Chapter 4.10, so that the elements 
of Df are just the brightness changes in the image. The total 
variation estimate is obtained by combining Eq. (33) with the 
standard quadratic data fidelity term for J1 ( f, g )  to yield 

Nf 
fw(4 = a r g m y g  - Wll; + a2 I [Dfli I. (34) 

i=l 

The total variation of a signal is just the total amount of 
change the signal goes through and can be thought of as a 
measure of signal variability. Thus, it is well suited to use 
as a side constraint and seems similar to standard Tikhonov 

FIGURE 7 Maximum entropy solutions corresponding to the data in Figs. l(b) (left) and 2(b) (right). 
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regularization with a derivative constraint. But, unlike standard 
quadratic Tikhonov solutions, total variation regularized an- 
swers can contain localized steep gradients, so that edges are 
preserved in the reconstructions. For these reasons, total vari- 
ation has been suggested as the “right” regularizer for image 
reconstruction problems [ 81. 

The difficulty with formulation (34) is that it again leads to 
a challenging nonlinear optimization problem that is caused by 
the nondifferentiability of the total variation cost. One approach 
to overcoming this challenge leads to an interesting formulation 
of the total variation problem. It has been shown that the total 
variation estimate is the solution of the following set of equations 
in the limit as p + 0: 

where the diagonal weight matrix Wp ( f )  depends on f and p 
and is given by 

with p > 0 a constant. Equation (35) is obtained by smooth- 
ly approximatin the . t l  norm of the derivative: IIDfII1 % 

Formulation (36) is interesting in that it gives insight into the 
difference between total variation regularization and standard 
quadratic Tikhonov regularization with L = D. Note that the 
latter case would result in a set of equations similar to Eq. (35) 
but with W = I. Thus, the effect ofthe change to a total variation 
cost is the incorporation of a spatially varying weighting of each 
derivative penalty term by 1/Jl[Df]i12 + p. When the local 
derivative I [ D f ]  i l 2  is small, the weight goes to a large value, 
imposing greater smoothness to the solution in these regions. 
When the local derivative 1 [of] i l 2  is large, the weight goes to a 

CL d&,. 

small value, allowing large gradients in the solution coefficients 
at these points. 

Computationally, Eq. (35) is still nonlinear, since the weight 
matrix depends on f .  However, it suggests a simple fixed point 
iteration for f ,  only requiring the solution of a standard linear 
problem at each step: 

(HTH+a2DTWp( f ( k ) )D) f ( k+’ )  = H T  g> (37) 

where f3 is typically set to a small value. 
With the use of the iterative approach of Eq. (37), total varia- 

tion solutions to the motion-blur restoration example of Fig. 1 
and the tomographic reconstruction example of Fig. 2 were gen- 
erated. Figure 8 shows these total variation solutions. In addition 
to suppressing excessive noise growth, total variation achieves ex- 
cellent edge preservation and structure recovery in both cases. 
These results are typical of total variation reconstructions and 
have led to the great popularity of this and similar methods in 
recent years. 

Other Nonquadratic Regularization 
More generally, a variety of nonquadratic choices for Jl ( f, g) 
and J 2  ( f )  have been considered. In general, these measures have 
the characteristic that they do not penalize large values of their 
argument as much as the standard quadratic l 2  penalty does. In- 
deed, maximum entropy and total variation can both be viewed 
in this context, in that both are simple changes of the side con- 
straint to a size or energymeasure that is less drastic than squared 
energy. Another choice with these properties is the general family 
of l p  norms: 

with 1 5 p 5 2. With p chosen in this range, these norms are 

FIGURE 8 Total variation solutions corresponding to the data in Figs. l(b) (left) and 2(b) (right). 
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less severe in penalizing large values than the norm, yet they 
are still convex functions of the argument (and so still result in 
tractable algorithms). 

Measures with even more drastic penalty “attenuation” based 
on nonconvex functions have been considered. An example is 
the so called weak-membrane cost: 

tion into Eq. (40) we obtain 

fiw = argminllg - H ~ I I ~ , ~  + II ~ I I ; ? ~ .  (43) 

The corresponding set of normal equations defining the MAP 
estimate are given by 

f 

(39) 

When used in the data fidelity term 11 ( f, g), these measures are 
related to notions of robust estimation [9 ]  and provide robust- 
ness to outliers in the data and also to model uncertainty. When 
used in a side constraint Jz( f) on the gradient of the image 
D f, these measures preserve edges in regularized reconstruc- 
tions and produce results similar in quality to the total variation 
solution discussed previously. The difficulty with the use of such 
nonconvex costs is computational, though the search for effi- 
cient approaches to such problems has been the subject of active 
study [ 101. 

2.4 Statistical Methods 

(H~A;’ H + A?’) f- = H T A, -1 g 

The solution of Eq. (44) is also the linear minimum mean square 
error (MMSE) estimate in the general (i.e.,Fon-Gaussian) case. 
The MMSE estimate minimizes E [  11 f - flit], where E [z] de- 
notes the expected value of z. 

A particularly interesting prior model for f corresponds to 

where D is a discrete approximation of the gradient operator de- 
scribed in Chapter 4.10. Equation (45) implies a Gaussian prior 
model for f with covariance A f = h,(DTD)-’ (assuming, for 
convenience, that D is invertible). Prior model (45) essentially 
says that the incrementsof fare uncorrelatedwithvariance X, - 
that is, that f itself corresponds to a Brownian motion type of 
model. Clearly, real images are not Brownian motions, yet the 
continuity of Brownian motion models suggest this model may 
be reasonable for image restoration. 

age model of Eq. (45) is combined with an uncorrelated ob- 
servation noise model A, = h,I in Eq. (41) to obtain MAP 

We now discuss a statistical view of regularization. If the noise 
q and the unknown image f are viewed as random fields, then 
we may seek the maximum a posteriori (MAP) estimate of f as 

Bayes rule and the monotonicity properties of the logarithm, we 
obtain 

that value which maximizes the posterior density P(f I g)’ Using To demonstrate this insight, the Brownian motion prior im- 

(40) 

Notice that this cost function has two terms: a data-dependent 
term In p(g 1 f), called the log-likelihood function, and a term 
In p( f), dependent only on f, termed the prior model. These 
two terms are similar to the two terms in the Tikhonov func- 
tional, Eq. (24). The likelihood function captures the depen- 
dence of the data on the field and enforces fidelity to data in 
Eq. (40). The prior model term captures OUT apriori knowledge 
about f in the absence of data, and it allows incorporation of 
this information into the estimate. 

To be concrete, consider the widely used case of Gaussian 
statistics: 

where f - N(m, A) denotes that f is a Gaussian random 
vector with mean m and covariance matrix A, as described 
in Chapter 4.4. Under these assumptions In p ( g  I f) 0: -: 
llg - HflliT, and lnp( f )  c( - ~ l l f l l ~ 7 , ,  and upon substitu- 

estimates for both the motion-blur restoration example of Fig. 1 
and the tomographic reconstruction example of Fig. 2. In each 
case, the variance h, is set to the variance of the derivative image 
Df and the variance X, is set to the additive noise variance. In 
Fig. 9 the resulting MAP-based solutions for the two examples 
are shown. 

In addition to an estimate, the statistical framework also pro- 
vides an expression for an associated measure of estimate un- 
certainty through the error covariance matrix A, = E[eeT], 
where e = f - f. For the MAP estimate in Eq. (43), the error 
covariance is given by 

A, = (HTAil H + 
The diagonal entries of A, are the variances of the individual 
estimation errors and have a natural use for estimate evalu- 
ation and data fusion. Note also that the trace of A, is the 
mean square error of the estimate. In practice, A, is usually 
a large, full matrix, and the calculation of all its elements is im- 
practical. There are methods, however, to estimate its diagonal 
elements [ 111. 

In the stationary case, the matrices in Eq. (44) possess a 
block-circulant structure and the entire set of equations can be 
solved on an element-by-element basis in the discrete frequency 
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FIGURE 9 
(right), 

Brownian motion prior-based MAP solutions corresponding to the data in Figs. l(b) (left) and 2(b) 

domain, as was done, c.f. Eq. (16). The MAP estimator then 
reduces to the Wiener filter: 

(47) 

where * denotes complex conjugate, Zi denotes the ith coefficient 
of the 2-D DIT of the corresponding image z, and Sz, denotes 
the ith element of the power spectral density of the random 
image z. The power spectral density is the 2-D DFT of the cor- 
responding covariance matrix. The Wiener filter is discussed in 
Chapter 3.9. 

Before proceeding, it is useful to consider the relationship 
between Bayesian MAP estimates and Tikhonov regularization. 
From Eqs. (43) and (44) we can see that in the Gaussian case (or 
linear MMSE case) the MAP estimate is essentially the same as 
a general Tikhonov estimate for a particular choice of weighting 
matrices. For example, suppose that both the noise model and 
the prior model correspond to uncorrelated random variables 
so that A, = A, I and Af = AfI. Then Eq. (43) is equivalent 
to 

which is precisely the Tikhonov estimate when L = I and the 
regularization parameter a2 = A, /A f. This association provides 
a natural interpretation to the regularization parameter as a mea- 
sure of the relative uncertainty between the data and the prior. 
As another example, note that the MAP estimate corresponding 
to prior model (45) coupled with observation model (42) with 
A, = A, I will be the same as a standard Tikhonov estimate with 
L = D and a2 = h,/A,. 

While so far the MAP estimate has been interpreted in the 
Tikhonov context, it is also possible to interpret particular cost 
choices in the Tikhonov formulation as statistical models for the 
underlying field and noise. For example, consider the total vari- 
ation formulation in Eq. (34). Comparing this cost function to 
Eq. (40), we find it reasonable to make the following probabilistic 
associations: 

Nt 

(49) 

which is consistent with the following statistical observation and 
prior models for the situation: 

g = H f + q ,  q - N(0, 0, (50) 
Nf 

p ( f )  - n e-a21[DfIiI. (51) 
i=l 

The statistical prior model for f has increments [ Dfli that 
are independent identically distributed (IID) according to a 
Laplacian density. In contrast, standard Tikhonov regularization 
with L = D corresponds to the Brownian motion-type prior 
model, Eq. (45), with increments that are also IID but Gaussian 
distributed. 

Finally, while we have emphasized the similarity of the MAP 
estimate to Tikhonov methods, there are, of course, situations 
particularly well matched to a statistical perspective. A very im- 
portant example arises in applications such as in low-light-level 
imaging on CCD arrays, compensating for film grain noise, and 
certain types of tomographic imaging (e.g., PET and SPECT). 
In these applications, the discrete, counting nature of the imag- 
ing device is important and the likelihood term p(g I f )  is well 
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modeled by a Poisson density function, leading to a signal- 
dependent noise model. The estimate resulting from use of such 
a model will be different from a standard Tikhonov solution, 
and in some instances can be significantly better. More gener- 
ally, if a statistical description of the observation process and 
prior knowledge is available through physical modeling or first 
principle arguments, then the MAP formulation provides a ra- 
tional way to combine this information together with measures 
of uncertainty to generate an estimate. 

2.5 Parametric Methods 
Another direct method for focusing the information in data and 
turning an ill-conditioned or poorly posed problem into a well- 
conditioned one is based on changing the parameterization of 
the problem. The most common representational choice for the 
unknown image, as mentioned previously, is to parameterize the 
problem in terms of the values of a regular grid of rectangular 
pixels. The difficulty with such a parameterization is that there 
are usually a large number of pixel values, which must then 
be estimated from the available data. For example, an image 
represented on a 512 x 512 square pixel array has over 250,000 
unknowns to estimate! 

Perhaps the simplest change in parameterization is a change 
in basis. An obvious example is provided by the SVD. By pa- 
rameterizing the solution in terms of a reduced number of sin- 
gular vectors, we saw that regularization of the resulting solu- 
tion could be obtained (for example, through TSVD). The SVD 
is based completely on the distorting operator H ,  and hence 
contains no information about the underlying image f or the 
observed data g. By using parameterizations better matched to 
these other pieces of the problem it is reasonable to expect better 
results. This insight has resulted in the use of other decomposi- 
tions and expansions [ 121 in the solution of image restoration 
and reconstruction problems, including the wavelet representa- 
tions discussed in Chapter 4.1. These methods share the aim of 
using bases with parsimonious representations of the unknown 
f ,  which thus serve to focus the information in the data into a 
few, robustly estimated coefficients. 

Generalizing such changes of basis, prior information can be 
used to construct a representation directly capturing knowledge 
of the structure or geometry of the objects in the underlying 
image f.  For example, the scene might be represented as being 
composed of a number of simple geometric shapes, with the pa- 
rameters of these shapes taken as the unknowns. For example, 
such approaches have been taken in connection with problems 
of tomographic reconstruction. The advantage of such repre- 
sentations is that the number of unknowns can be dramatically 
reduced to, say, tens or hundreds rather than hundreds of thou- 
sands, thus offering the possibility of better estimation of these 
fewer unknowns. The disadvantage is that the resulting opti- 
mization problems are generally nonlinear, can be expensive, and 
require good initializations to avoid converging to local minima 
of the cost. 

3 Iterative Regularization Methods 

One reason for an interest in iterative methods in association 
with regularization is purely computational. These methods pro- 
vide efficient solutions of the Tikhonov or MAP normal equa- 
tions, Eq. (25) or (44). Their attractions in this regard are several. 
First, reasonable approximate solutions can often be obtained 
with few iterations, and thus with far less computation than 
required for exact solution of these equations. Second, iterative 
approaches avoid the memory intensive factorizations or explicit 
inverses required for exact calculation of a solution, which is crit- 
ical for very large problems. Finally, many iterative schemes are 
naturally parallelizable, and thus can be easily implemented on 
parallel hardware for additional speed. 

Interestingly, however, when applied to the unregularized 
problem, Eq. (12), and terminated long before convergence, it- 
erative methods provide a smoothing effect to the correspond- 
ing solution. As a result, they can be viewed as a regularization 
method in their own right [13]. Such use is examined in this 
section. More detail on various iterative algorithms for restora- 
tion can be found in Chapter 3.10. The reason the regularization 
behavior of iterative algorithms occurs is that the low-frequency 
(i.e., smooth) components of the solution tend to converge faster 
than the high-frequency (i.e., rough) components. Hence, for 
such iterative schemes, the number of iterations plays the role of 
the inverse of the regularization parameter a, so fewer iterations 
corresponds to greater regularization (and larger a). 

To gaininsight into the regularizingbehavior ofiterative meth- 
ods, consider a simple Landweber fixed point iteration for the 
solution of Eq. (12). This basic iterative scheme appears under 
a variety of names in different disciplines (e.g., the Van Cittert 
iteration in image reconstruction or the Gerchberg-Papoulis al- 
gorithm for bandwidth extrapolation). The iteration is given 
bY 

where y is a real relaxation parameter satisfying 0 < y < 2/ui, 
and a,, is the maximum singular value of H. If the iteration 
is started with fz = 0, then the estimate after k steps is given 
by [5,13]: 

where {ai, ui, vi} is the singular system of H. Comparing this 
expressionwithEq. (21) or (26),wefindtheeffect oftheiterative 
scheme is again to weight or filter the coefficients of unregular- 
ized generalized solution (19), where the weight or filter function 
is now given by 

(54) Wi,k = 1 - (1 - yo, 2.k ) . 
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FIGURE 10 Plots of the Landweber weight function wi,k of Eq. (54) vcrsus singular value ui for various numbers 
of iterations k. 

This function is plotted in Fig. 10 for y = 1 for a variety of values 
of iteration count k. As can be seen, it has a steplike behavior as 
a function of the size of ai, where the location of the transition 
depends on the number of iterations [7], so the iteration count 
of the iterative method does indeed play the role of the (inverse 
of the) regularization parameter. 

An implication of this behavior is that, to obtain reasonable 
estimates from such an iterative method applied to the unregu- 
larized normal equations, a stopping rule is needed, or the gen- 
eralized inverse will ultimately be obtained. This phenomenon 
is known as "semiconvergence" [ 51. Figure 1 1 shows Landweber 
iterative solutions corresponding to the motion-blur restora- 
tion example of Fig. 1 after various numbers of iterations, and 
Fig. 12 shows the corresponding solutions for the tomographic 
reconstruction problem of Fig. 2. In both examples, when too 
few iterations are performed the resulting solution is overregu- 
larized, blurred, and missing significant image structure. Con- 
versely, when too many iterations are performed, the corre- 
sponding solutions are underregularized and begin to display 
the excessive noise amplification characteristic of the generalized 
solution. 

While Landweber iteration (52) is simple to understand and 
analyze, its convergence rate is slow, which motivates the use 
of other iterative methods in many problems. One example is 
the conjugate gradient (CG) method, which is one of the most 

powerful and widely used methods for the solution of symmet- 
ric, sparse linear systems of equations [ 141. It has been shown 
that when CG is applied to the unregularized normal equations, 
Eq. (12), the corresponding estimate f&z after k iterations is 
given by the solution to the following problem: 

where K k ( H T H ,  H T g )  =span{H*g, ( H T H ) H T g ,  . . . , ( H T  
mk-' H T g }  is called the Krylov subspace associated to the nor- 
mal equations. Thus, k iterations of CG again regularize the 
problem, this time through the use of a Krylov subspace con- 
straint on the solution [instead of a quadratic side constraint 
as in Eq. (28)]. The regularizing effect arises from the prop- 
erty that the Krylov subspace &( H T  H, H r g )  approximates 
the subspace span{ V I ,  . . . , vk} spanned by the first k right sin- 
gular vectors. While the situation is more complicated than 
in the Landweber iteration case, weight or filter factors Wi,k 

that depend on k can also be defined for the CG method. 
These weight factors are observed to have a similar attenuat- 
ing behavior for the large singular values as for the Landweber 
case, with a rolloff that is also dependent on the number of 
iterations. 
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FIGURE 11 
with (a) five, (b) 50, (c) 500, and (d) 5,000 iterations. 

Iterative Landweber solution of the unregularized normal equations for the example of Fig. 1, 

4 Regularization Parameter Choice 

Regularization, by stabilizing the estimate in the face of noise 
amplification, inherently involves a tradeoff between fidelity to 
the data and fidelity to some set of prior information. These 
two components are generally measured through the residual 
norm llg - Hfll,pr more generally JI ( f ,  g), and the side con- 
straint norm I( L f 11, or more generally J z (  f). The regulariza- 
tion parameter a controls this tradeoff, and an important part 
of the solution of any problem is finding a reasonable value 
for a. 

In this section, five methods for choosing the regularization 
parameter will be discussed choice based on visual criterion; the 
discrepancy principle, based on some knowledge of the noise; 
the L-curve criterion based on a plot of the residual norm versus 
the side constraint norm; generalized cross-validation, based on 
minimizing prediction errors; and statistical parameter choice, 
based on modeling the underlying processes. 

4.1 Visual Inspection 
Often the main tradeoff dealt with in regularization is between 
the excessive noise amplification that occurs in the absence of 
regularization and oversmoothing of the solution if too much 
is used. Further, there may be considerable prior knowledge on 
the part of the viewer about the characteristics of the under- 
lying scene-as arises in the restoration of images of natural 
scenes. In such cases, it may be entirely reasonable to choose 
the regularization parameter through simple visual inspection 
of regularized images as the regularization parameter is varied. 
This approach is well suited, for example, to iterative methods, 
in which the number of iterations effectively sets the regular- 
ization parameter. Since iterative methods are terminated long 
before convergence is achieved when they are used as a form of 
regularization, the intermediate estimates are simply monitored 
as the iteration proceeds and the iteration is stopped when noise 
distortions are observed to be entering the solution. This pro- 
cess can be seen in the examples of Figs. 11 and 12; when few 
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FIGURE 12 
(a) five, (b) 50, (c) 500, and (d) 50,000 iterations. 

Iterative Landweber solution of the unregularized normal equations for the example of Fig. 2, with 

iterations have been performed, the solution appears overregu- 
larized. As more iterations are done the detail in the solution is 
recovered. Finally, as too many iterations are performed the so- 
lution becomes corrupted by noise effects. This visual approach 
to choosing a is clearly problematic in cases in which the viewer 
.has little prior understanding of the structure of the scene be- 
ing imaged or in cases in which the reconstructed field itself is 
very smooth, making it difficult to visually evaluate over- from 
underregularized solutions. 

4.2 The Discrepancy Principle 

knowledge about the size or energy of the perturbation: 

This knowledge provides a bound on the residual norm IJg - 
Hfllz 5 8,. In a stochastic setting, such information can take 
the form of knowledge of the noise variance A,. 

Since the price for overfitting the solution to the data (i.e., for 
underregularizing) is excessive noise amplification (as seen in 
the generalized solution), it makes sense to choose the regular- 
ization parameter large enough that the data fit error achieves 
this bound, but no larger (to avoid overregularizing). This idea 

If there is knowledge about the perturbation or noise q in 
Eq. (lo), then it makes sense to use it in choosing a. When 
viewed deterministically, this information is often in the form of 

is behind the discrepancy principal approach to choosing the 
regularization parameter, attributed to Morozov. Formally, the 
regularization parameter a is chosen as that value for which 
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log/llfj@ Ik 

the residual norm achieves the equality 

A where H‘y denotes the linear operator that generates the regu- 
a too small larized solution when applied to data, so that f(a) = P g .  The 

value of a that minimizes the cost V(a)  in Eq. (59) is also an 
estimate of the value of a that minimizes the mean square error 

Note that only the data are used in the calculation of V (a) and 
no prior knowledge of, e.g., the noise amplitude, is required. 
However, there are also a number of difficulties related to the 
computation of the GCV cost in Eq. (59). First, the operator 
HH* must be found. While specifying this quantity is straight- 

E [ I IW - H~^(~)II : I  1151. 

,-a* 
-1 

I 

or, in the stochastic setting, where the residual norm equals A,. 
There also exist generalized versions of the discrepancy principle 
that incorporate knowledge of perturbations to the model H as 
well. Finally, note that in the deterministic case the value of a 
provided by the discrepancy principle generally leads to some 
overregularization, since the actual perturbation may be smaller 
than the given bound. Conversely, specification of a bound in 
Eq. (56) that is too small can lead to undesirable noise growth 
in the solution. 

Use of the discrepancy principle requires knowledge of the per- 
turbation bound 8, or noise variance A,. Sometimes this quan- 
tity may be obtained from physical considerations, prior knowl- 
edge, or direct estimation fromthe data. When this is not the case, 
parameter choice methods are required which avoid the need €or 
such knowledge. Two such approaches are examined next. 

4.3 The L-Curve 
Since all regularization methods involve a tradeoff between fi- 
delity to the data, as measured by the residual norm, and the 
fidelity to some prior information, as measured by the side con- 
straint norm, it would seem natural to choose a regularization 
parameter based on the behavior of these two terms as a is var- 
ied. Indeed, a graphical plot of )I L f(a) 112 versus ))g - Hf(a)112 
on a log-log scale as a is varied is called the L-curve and has 
been proposed as a means to choose the regularization param- 
eter [7]. Note, especially, that a is a parameter along this curve. 
The L-curve, shown schematically in Fig. 13 (c.f. [7]) has a char- 
acteristic “L” shape (hence its name), which consists of a verti- 
cal part and a horizontal part. The vertical part corresponds to 
underregularized estimates, where the solution is dominated by 
the amplified noise. In this region, small changes to a have a large 
effect on the size or energy of f, but a relatively small impact 
on the data fit. The horizontal part of the L-curve corresponds 

to oversmoothed estimates, where the solution is dominated by 
residual fit errors. In this region changes to a affect the size of f 
weakly, but produce a large change in the fit error. 

The idea behind the L-curve approach for choosing the reg- 
ularization parameter is that the corner between the horizontal 
and vertical portions of the curve defines the transition between 
over- and underregularization, and thus represents a balance be- 
tween these two extremes and the best choice of a. The point on 
the curve corresponding to this a is shown as a* in Fig. 13. While 
the notion of choosing a to correspond to the corner of the L- 
curve is natural and intuitive, there exists the issue of defining 
exactly what is meant by the “corner” of this curve. A number 
of definitions have been proposed, including the point of max- 
imum curvature, the point closest to a reference location, and 
the point of tangencywith a line of slope -1. The last definition 
is especially interesting, since it can be shown that the optimal 
a for this criterion must satisfy 

The right hand side of Eq. (58) can be loosely interpreted as 
the ratio of an estimated noise variance to an estimated signal 
variance for zero-mean images with L = I ,  and thus appears 
similar in spirit to Eq. (48). 

4.4 Generalized Cross-Validation 
Another popular method for choosing the regularization param- 
eter that does not require knowledge of the noise properties is 
generalized cross-validation (GCV) . The basic idea behind cross- 
validation is to minimize the set of prediction errors- that is, 
to choose a so that the regularized solution obtained with a data 
point removed predicts this missing point well when averaged 
over all ways of removing a point. This viewpoint leads to min- 
imization with respect to a of the following GCV function: 

V ( a )  = llg - Hf(4112, 
[trace (I -  HIP)]^' (59) 
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for iterative methods; though see [7], Sec. 7.4). Finally, in some 
cases the GCV cost curve is quite flat, leading to numerical 
problems in finding the minimum of Y(a) ,  which can result 
in overly small values of a. 

4.5 Statistical Approaches 
Our last method of parameter choice is not really a parameter 
choice technique per say, but rather an estimation approach. As 
discussed in Section 2.4, given a statistical model of the obser- 
vation process through p ( g  I f) and of the prior information 
about f through p (  f), the MAP estimate is obtained by solving 
optimization problem (40). Note that there are no undetermined 
parameters to set in this formulation. In the statistical view, the 
problem of regularization parameter determination is exchanged 
for a problem of statistical modelingthrough the specification of 
p(g I f) andp(f).Thetradeoffbetweendataandpriorinherent 
in the choice of the regularization parameter a is captured in the 
modeling of the relative uncertainties in the processes g and f. 
Sometimes the densities p(g I f) and p (  f) follow from physical 
considerations or direct experimental investigation. Such is the 
case in the Poisson observation model for p(g I f) often used in 
tomographic and film-based imaging problems [ 2,3]. In such 
cases, the Bayesian point of view provides a natural and rational 
way of balancing data and prior. 

For many problems, however, the specification of the densities 
p ( g  I f) and p (  f) may appear to be a daunting task. For exam- 
ple, what is the “right” prior density p(f) for the pixels in an 
image of a natural scene? I d e n e n g  such a density at first seems 
a much more difficult undertaking than finding a good value of 
the single scalar parameter a. Fortunately, from an engineering 
standpoint, the goal is usually not to most accurately model the 
field f or observation g, but rather to find a reusonablestatistical 
model that leads to tractable computation of a good estimate. In 
this regard, relatively simple statistical models may suffice for the 
purposes of image restoration and reconstruction. Further, the 
statistical nature of these models may suggest rational choices of 
their parameters not obvious from the Tikhonov point of view. 
For example, as discussed c.f. Eq. (48), under a white Gaussian 
assumption for both the observation noise and the prior, the reg- 
ularization parameter a2 can be identifiedwiththe variance ratio 
h,/hf, where hf corresponds to the variance of the underlying 
image and X, is the variance of the noise. Another example is 
provided by the Brownian motion image model of Eq. (45). This 
case corresponded to Tikhonov regularization with L = D and 
a2 = h,/X,, where now X, isthevariance ofthe derivativeimage. 

5 Summary 

In this chapter we have discussed the need for regularization 
in problems of image restoration and reconstruction. We have 
given an overview of the issues that arise in these problems and 

the means to deal with them. The two driving forces in the need 
for regularization are noise amplification and lack of data. The 
primary idea behind regularization is the inclusion of prior 
knowledge to counteract these effects. Though there are a large 
variety of ways to view both these problems and their solution, 
there is also a great amount of commonality in their essence. 
In applying such methods to image processing problems (as 
opposed to one-dimensional signals), all these approaches lead 
to optimization problems requiring considerable computation. 
Fortunately, powerful computational resources are becoming 
available on the desktop of nearly all engineers, and there is 
a wealth of complementary s o h a r e  tools to aid in their appli- 
cation; see, e.g., [ 161. The goal ofthis chapter has been to provide 
a unifying view of this area. 

Throughout the chapter, we have assumed that the distortion 
model, as captured by H ,  is perfectly known and the only un- 
certainty is due to noise q in the observations g. Often, however, 
the knowledge of H is not perfect, and in such cases the un- 
certainty in this model must be dealt with as well. Sometimes it 
is sufficient to simply treat such model uncertainty as a larger 
effective observation noise. Alternatively, the uncertainty in H 
may be explicitly included in the formulation of the inversion 
problem. Such an approach leads naturally to a method known 
as total least squares (TLS) [ 6 ] ,  which is simply the extension 
of the least-squares idea to include minimization of the square 
error in both the model and data. Regularized versions of TLS 
also exist [ 171 and have shown improved results over the basic 
least-squares methods. 

Further Reading 

Chapter 3.5 discusses the basics of image restoration. Chapter 3.6 
presents problems arising in multichannel image restoration. 
Chapter 3.7 treats multiframeimagerestoration, and Chapter 3.9 
is focused on video restoration. In Chapter 3.10 there is a more 
in-depth discussion of iterative methods of image restoration. 
Chapter 10.2 examines image reconstruction from projections 
and its application. There are also a number of accessible, yet 
more extensive, treatments of this material in the general litera- 
ture. A readable engineering treatment of discrete inverse prob- 
lems is given in [ 71, and an associated package of numerical tools 
is presented in [ 161. A deeper theoretical treatment of the topic 
of data inversion can be found in [4,5]. The iterative approach to 
image restoration is studied in [13]. Iterative solution methods 
in general are discussed in depth in [ 141. 
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Color images, video images, medical images obtained by multi- 
ple scanners, and multispectral satellite images consist of mul- 
tiple image frames or channels (Fig. l). These image channels 
depict the same scene or object observed either by different sen- 
sors or at different times, and thus have substantial commonality 
among them. We use the term multichannel image to refer to any 
collection of image channels that are not identical but that ex- 
hibit strong between-channel correlations. 

In this chapter we focus on the problem of image recovery as it 
applies specifically to multichannel images. Image recovery refers 
to the computation of an image from observed data that alone 
do not uniquely define the desired image. Important examples 
are image denoising, image deblurring, decoding of compressed 
images, and medical image reconstruction. 

In image recovery, ambiguities in inferring the desired image 
from the observations usually arise from uncertainty produced 
by noise. These ambiguities can only be reduced if, in addi- 
tion to information provided by the observed data, one also has 
prior knowledge about the desired image. In many applications 
the most powerful piece of prior information is that the de- 
sired image is smooth (spatially correlated), whereas the noise 
is not. Multichannel images offer the possibility of exploiting 

correlations between the channels in addition to those within 
each channel. By utilizing this extra information, multichan- 
nel image recovery can yield tremendous benefits over separate 
recovery of the component channels. 

In a broad category of image recovery techniques, the image 
is computed by optimizing an objective function that quanti- 
fies correspondence of the image to the observed data as well 
as prior knowledge about the true image. Two frameworks have 
been developed to describe the use of prior information as an 
aid in image recovery: the deterministic formulation with regu- 
larization [7] and the statistical formulation [4]. Conceptually, 
these frameworks are quite different, but in many applications 
they lead to identical algorithms. 

In the deterministic formulation, the problem is posed in 
terms of inversion of the observation model, with regularization 
used to improve the stability of the solution (for more details see 
Chapter 3.1 1). In the statistical formulation, the statistics of the 
noise and the desired image are incorporated explicitly, and they 
are used to describe the desired characteristics of the image. In 
principle, these formulations apply equally well to multichannel 
images and single-channel images, but in practice two significant 
problems must be addressed. 

First, an appropriate model must be developed to express 
the relationships among the image channels. Regularization 

Copyright @ 2000 by Academic Press 
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FIGURE 1 Example of a multichannel image. A color image consists of three 
color components (channels) that are highly correlated with one another. Sim- 
ilarly, a video image sequence consists of a collection of closely related images. 
(See color section, p. C-5.) 

and statistical methods reflecting within-channel relationships 
are much better developed than those describing between- 
channel relationships, and they are often easier to work with. 
For example, while the power spectrum (the Fourier trans- 
form of the autocorrelation) is a useful statistical descriptor 
for one channel, the cross power spectrum (the Fourier trans- 
form of the cross-correlation) describing multiple channels 
is less tractable because it is complex. Second, a multichan- 
nel image has many more pixels than each of its channels, 
so approaches that minimize the computations are typically 
sought. Several such approaches are described in the following 
sections. 

The goal of this chapter is to provide a concise summary of the 
theory of multichannel image recovery. We classify multichannel 
recovery methods into two broad approaches, each of which is 
illustrated through a practical application. In the first, which we 
term the explicit approach, all the channels of the multichannel 
image are processed collectively, and regularization operators or 
prior distributions are used to express the between- and within- 
channel relationships. In the second, which we term the implicit 
approach, the same effect is obtained indirectly by (1) applying 
a Karhunen-Loeve (KL) transform that decorrelates the chan- 
nels, (2) recovering the channels separately in a single-channel 
fashion, and (3) inverting the KL transform. This approach 
has a substantial computational advantage over the explicit ap- 
proach, as we explain later, but it can only be applied in certain 
situations. 

The rest of this chapter is organized as follows. In Section 2 we 
present the multichannel observation model, and we review basic 
image recovery approaches in Section 3. In Section 4 we describe 
the explicit approach and illustrate it by using the example of 
restoration of video image sequences. In Section 5, we explain 
the implicit approach and illustrate it by using the example of 
reconstruction of time-varying medical images. We conclude 
with a summary in Section 6. 

Throughout this chapter we use symbols in boldface type to de- 
note multichannel quantities. We assume the following discrete 
model for multichannel imaging: 

where g, f, and n are vectors representing the observed (de- 
graded) multichannel data, the true multichannel image, and 
random noise, respectively, and matrix H denotes the linear mul- 
tichannel degradation operator. Lexicographic ordering is used 
to represent the images as vectors by stacking all their rows or 
columns in one long vector. Then, each multichannel image is a 
concatenation of its K component channels, i.e., 

where gk, f k ,  and nk denote individual channels of the observa- 
tions, the true image, and noise, respectively. In its most general 
form, the linear multichannel degradation operator can be writ- 
ten as 

H l K  1 
H2l H22 . * .  . . . . . . . . . . . . (3) 

where the diagonal blocks represent within-channel degrada- 
tions, and the off-diagonal blocks represent between-channel 
degradations. We will assume that each source channel fi has 
N x M pixels and that each channel of the observations gi 
has L x P pixels. Therefore, fi is a MN x 1 vector and gi is 
a LP x 1 vector; consequently, HQ is a LP x MN matrix and H 
is a KLP x KMN matrix. If the degradation is shift invariant 
the product Hg f j  should in principle represent an ordinary lin- 
ear convolution operation. However, we would like to use the 
discrete Fourier transform (DFT) to compute the convolutions 
rapidly, and this can be done only for circular convolutions. For- 
tunately, circular convolution and linear convolution produce 
the same result if we first embed each image in a larger array of 
zeros (see [8], p. 145). A matrix Hij that, when multiplied by an 
image f j ,  produces the effect of circular convolution has what 
is known as a block-circulunt structure. Block-circulant matri- 
ces are diagonalized by the DFT [ 81, thus leading to simplified 
calculations. 

For purposes of notational simplicity, we assume throughout 
that the multichannel source image f and noise n have zero mean. 
The source image usually does not obey this assumption in re- 
ality, but the equations can easily be modified to accommodate 
a nonzero mean by the introduction of appropriate corrections. 
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3 Multichannel Image 
Estimation Approaches 

Image recovery is most often achieved by constructing an ob- 
jective function to quantify the quality of an image estimate, 
then optimizing that function to obtain the desired result. Some 
important objective functions and solutions from estimation 
theory are reviewed in this section. 

3.1 Linear Minimum Mean Square 
Error Estimation 
The mean square error (MSE), defined as 

is a measure of the quality of the image estimate i. Here, E{.} 
denotes the expectation operator. Among the images that are a 
linear function of the data (i.e., 1 = Ag where A is a matrix), the 
image that minimizes the MSE is known as the linear minimum 
mean square error (LMMSE) estimate, fmMsE. Assumingf andn 
are uncorrelated [ 111, the LMMSE solution is found by finding 
the matrix A that minimizes the MSE. The resulting LMMSE 
solution is 

where C, is the covariance matrix of the multichannel noise 
vector n, and Cf is the KNM x KNM covariance matrix of the 
multichannel image vector f, defined as 

C2K I 
(6) 

c 2 2  
. . . . . . . . . 

where Cij = E {  f j  A'}. 
With use of the matrix inversion lemma [ 111 it is easy to show 

that 

C~H'(HC~H + c,)-l = (H'C;'H + C ? ~ ) - ~ H ~ C ; ~  

Thus, we can also write 

fLmsE = (HTCilH + Cf')-'H'C,lg. 

3.2 Regularized Weighted Least-Squares 
Estimation 
The weighted least-squares (WLS) estimate off is 

fms = argmp{(Hf - g)TC,l(Hf - g)}, 

where argminf{J (f)} denotes the vector f that minimizes J (f). 
Here, C, is the covariance matrix of the noise, which in this 
context is assumed to be diagonal. In the presence of noise, 
the WLS solution will usually be very noisy. This occurs be- 
cause the matrix H is often ill conditioned or singular; therefore 
some of its singular values are close to or equal to zero. In this 
case, the solution is unstable and highly sensitive to noise. Reg- 
ularization is a well-known solution to this instability, in which 
the ill-posed problem is replaced by a well-posed problem for 
which the solution is an acceptable approximation (see [4,5] 
and Chapter 3.11). 

In the WLS formulation, regularization can be achieved by 
adding to the WLS functional a term that takes on large values if 
the image is noisy. A term that achieves this is (1 Qf 11 2, where Q is a 
high-pass filter operator. Incorporating this term, the regularized 
WLS (RWLS) estimate is obtained as follows: 

in which X, known as the regularization parameter, controls the 
tradeoff between fidelity to the data (reflected by the first term 
of the objective function) and smoothness of the estimate (re- 
flected by the second term) [7]. Solving for f R m u  we obtain 

Note that the RWLS and the LMMSE estimates are equivalent 
when Cj' = XQ'Q. 

A special case of RWLS estimation occurs if the noise is white, 
i.e., if C, = a21. In this case the RWLS functional reduces to the 
regularized least-squares (RLS) functional: 

3.3 Multichannel Regularization 
In multichannel image recovery, the operator Q enforces 
smoothness not only within each image channel, but also be- 
tween the channels, thus achieving an additional measure of 
noise suppression, and often producing dramatically better im- 
ages. In ordinary single-channel recovery of two-dimensional 
(2-D) images, one can define Q as a discrete two-dimensional 
Laplacian operator, which represents 2-D convolution with the 
following mask 

For multichannel recovery, one can use the three-dimensional 
(3-D) Laplacian Q, which implies correlations between channels. 
The 3-D Laplacian [7] can be performed as a 3-D convolution, 
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which can be written in equation form for the Ith channel 
as 

Though they would yield excellent results, the closed-form 
solutions given in the previous section usually cannot be com- 
puted directly because of the large number of dimensions of 
multichannel images. For example, to restore a three-channel 
color image having 512 x 512 pixels per channel, direct com- 
putation of fLMMsE using Eq. (5) would require the inver- 
sion of matrices of dimension 786, 432 x 786,432. To sidestep 
this dimensionality problem, computationally efficient algo- 
rithms must be designed. Next, we present two such ap- 
proaches that lead to practical multichannel image recovery 
techniques. 

4 Explicit Multichannel 
Recovery Approaches 

4.1 Space-Invariant Multichannel Recovery 
The difficulty of directly implementing the solutions reviewed in 
the previous section lies in the complexity of inverting large ma- 
trices. In this section we show that, if the multichannel imaging 
system is space invariant and the noise and signal are station- 
ary, then the required inversion is easily performed by using the 
fact that block-circulant matrices are diagonalized by the dis- 
crete Fourier transform [ 81. To simplify our discussion of space- 
invariant multichannel imaging, we assume in this section that 
the observed and true image channels are square and have the 
same number of pixels, i.e., M = N = L = P. 

Let us assume that the imaging system is space invariant and 
that the channels of the source image f are jointly stationary, 
i.e., 

where f i ( x ,  y) denotes pixel ( x ,  y)  of image channel fi, and 
[CfIij is the covariance matrix of fi and fj. Let us make the 
same assumption about the noise channels ni. In this case the 
covariance matrices [CfJij and [C,]ij can be approximated by 
M2 x M2 block-circulant matrices. The matrices H, Cf, and Cn 
are composed of M2 x M2 block-circulant blocks, but they are 
not themselves block circulant. 

Now let us define the multichannel DFT as W = diag 
{ W, W, . . . , W}, where W is a M2 x M2 matrix representing 
the two-dimensional DFT, and W has K blocks. Using W to 

transform the LMMSE solution in Eq. (5), we obtain 

or, equivalently, 

where 

and h denotes the Hermitian of a matrix.. The KM2 x 1 vec- 
tors P L ~ S E  and G are the DFTs of the multichannel vectors 
fLMMsE and g, respectively. The matrices Dc,, Dc,, and DH are 
obtained by using W to transform Cf, C,, and H, respectively 
(e.g., Dc, = W-'CfW). The matrix A has a special form that 
allows the inversion to be readily performed; thus the difficulty 
of computing f L m $ , E  has been eliminated. 

Any matrix C having block-circulant blocks Cij can be trans- 
formed with the multichannel DFT into a matrix D having di- 
agonal blocks as follows: 

Although the blocks of D are diagonal, D is not itself diagonal. 
Any matrix having this property is termed a nondiugonal block- 
diagonal (NDBD) matrix. Matrices Dc,, Dc,,, and DH are also 
NDBD [5,6]. 

NDBD matrices have two useful properties that lead to a 
tractable method for inverting A and thus obtaining the LMMSE 
solution in Eq. (17). First, the set of NDBD matrices is closed 
under addition, multiplication, and inversion [ 561. Therefore, 
because DH and Dc, are NDBD matrices, so is A. Second, a 
KM x KM NDBD matrix such as A can be rearranged into a 
matrix having M nonzero K x K blocks along its diagonal by 
applying a row operation transformation T [6, 101 to obtain 
T A T T  = diag(R1, R2,. . . , Rw), where each R j  is a general 
K x K matrix 

Once transformed, the originally intractable problem of in- 
verting the KM x KM matrix (HCfHT + C,) in Eq. (5) is re- 
duced to one of separately inverting the K x K blocks Rj, 
j = 1, . . . , M ,  of T A T T .  Because the number of channels 
K is usually much smaller than the number pixels M in each 
channel, the inversion problem is greatly simplified. 
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FIGURE 2 Example of a multichannel LMMSE restoration: original (upper left), degraded 
(upper right), restored single-channel statistics obtained from original (middle left), restored 
single-channel statistics obtained from degraded original (middle right), restored multichannel 
statistics obtained from original (lower left), restored multichannel statistics obtained from de- 
graded (lower right). (See color section, p. G6.) 

4.2 Numerical Experiment 
A numerical experiment with color images is shown to demon- 
strate the improvement that results from the application of mul- 

For this experiment different distortions were applied to each 
of the red (R), green (G), and blue (B) channels of the original 
image, which is shown at the upper-left side of Fig. 2. The red 

green channel by horizontal blur over 9 pixels, and the blue chan- 
ne1 by a 7 x 7 pill-box blur. In all cases the blurs were symmetric 
around the origin. 

The variance of the noise added to the blurred data is defined 
tichannel as to LMMSE restoration’ by using the blurred signal-to-noise ratio (BSNR) metric. These 

metrics are given per channel i, 

channel was blurred by vertical motion blur over 7 pixels, the BSNR = 10 log,,- (20) 
Mu2 
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where M is the total number of pixels in fi and cr2 is the variance 
of the additive noise. 

Noise was added to all three channels with corresponding 
BSNRs of 20,30, and 40 dB. The degraded image is shown in the 
upper-right side of Fig. 2. The degraded image was restored by 
using a single-channel LMMSE filter to restore each channel in- 
dependently, and the multichannel LMMSE filter. In both cases 
the required power spectra and cross-power spectra were eval- 
uated by using the original image, to establish the upper bound 
of perfomance, as well as the available noisy-blurred image, as 
a more realistic scenario. They were computed in all cases with 
Daniell’s Periodogram (the regular periodogram was spatially 
averaged using a 5 x 5 window). 

The results of the single-channel LMMSE restoration are 
shown in the middle of Fig. 2, left (use of original image for 
power spectra estimation) and right (use of degraded image for 
power spectra estimation). 

The results of the multichannel LMMSE restoration are shown 
in Fig. 2 at the bottom, left (use of original image for cross-power 
spectra estimation) and left (use of degraded image for cross- 
power spectra estimation). From these experiments it is clear 
that multichannel restoration produces visually more pleasing 
results than single-channel restoration. 

4.3 Space-Variant Multichannel 
Recovery Approaches 
In many cases the degradation andlor the regularization1 
covariance matrix may not be space invariant. In such cases 
the frequency-domain approach described in the previous sec- 
tion cannot be applied because the matrices involved are not 
NDBD and thus direction inversion of A in Eq. (17) is not pos- 
sible. Instead, the RLS solution 4 that minimizes Eq. (12) must 
be computed iteratively. Taking the gradient of J (f) in Eq. (12) 
yields 

(HTH + hQTQ)f = HTg. (21) 

This equation can be solved by using the method of successive 
approximations [ 141, which yields the following iteration: 

l ( 0 )  = 0 

f(k+l) = p ( k )  + a [ H T g  - (HTH + hQTQ)f(k)], (22) 

where fk is the image estimate at iteration k, and a, known as 
the relaxation parameter, is a scalar that controls the convergence 
properties of the iteration. It is easy to verify that a stationary 
point of this iteration satisfies Eq. (21). 

4.4 Application to Restoration of Moving 
Image Sequences 
With the recent explosion of multimedia applications, the 
restoration of image sequences is becoming an increasingly 

important problem. The purpose of image-sequence restora- 
tion is to recover information lost during image sensing, record- 
ing, transmission, and storage. Usually, image sequences consist 
of image frames of the same object or scene taken at closely 
spaced time intervals; therefore, they often exhibit a high degree 
of between-frame correlation. In the context of multichannel 
image recovery, we refer to the image frames as channels. 

The correlation structure in an image sequence is often much 
more complicated than in a still color image because there is 
motion between frames. The dispZacementvector (DV) represents 
the motion of an image patch from one frame to the next, and the 
displacement vector field (DVF), which describes the motion of 
various pixels, is indispensable for describing the between-frame 
correlations; for details on DIT estimation for this application 
see Ref. [ 11. For example, ifthe image patch occupyingpixel (i, j) 
in frame 1 has displacement vector (m, n), it appears in pixel 
(i + m, j + n) in frame I + 1. Thus, there will be strong between- 
frame correlation between fi(i, j) and fi+l ( i  + m, j + n). The 
correlation structure described by the DVF is not space invari- 
ant in most situations; therefore, in these cases, the frequency- 
domain approach described previously cannot be applied. 

To accommodate motion in the RLS formulation, the regu- 
larization operator must be modified to reflect the fact that a 
pixel in frame 1 is not necessarily correlated with the same pixel 
in frames 1 + 1 and I - I, but rather with pixels that are offset 
by the corresponding displacement vectors. To express this, we 
modify the 3-D Laplacian operator Q defined in Eq. (14) to ob- 
tain the 3-D motion-compensated Laplacian (3DMCL), defined 
bY 

where (m$’i,l), nt’i,l)), k = -1, 1 represents the DV between 
frames 1 and ( I  + k) for pixel (i, j ) .  It is easy to generalize this 
operator to capture the temporal correlation between more than 
three channels. 

The iterative algorithm in Eq. (22) is easily implemented 
by using the regularization operator Q 3 ~ ~ c ~  because it is as- 
sumed symmetric, i.e., Q~DMCL = QTDMc~. Therefore, in Eq. (22) 
QTDMCLQ~DMCL~ is computed by applying Q~DMCL twice; for 
more details, see [ 11. Integer DVs are used in the example 
shown in this section. The generalization of this approach to 
noninteger DVs for recovery of compressed video is presented 
in [16]. 

The application of multichannel image restoration to image 
sequences with motion is demonstrated by the following exper- 
imental example. Ten frames (each of size 256 x 256) from the 
“Trevor White” sequence were usedas test images. The results ob- 
tained by multichannel restoration are compared with the results 
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obtained by restoring each frame separately (henceforth referred 
to as Model 0), using an independent-channel version of Eq. (22) 
in which the regularization operator is Q = diag{ Q, Q, . . . , Q}, 
where Q represents the convolution with the 2-D Laplacian ker- 
nel defined in Eq. (13). 

To apply the iteration in Eq. (22) the DVF must first be es- 
timated. Four approaches were used for this task. We refer to 
these approaches, combined with the iteration in Eq. (22), as 
Models 1-4, which are defined as follows. In Model 1 the DVF 
is estimated directly from the degraded images. In Model 2 the 
DVF is estimated from the images restored by Model 0. In Model 
3 the DVF is estimated from the images restored by Model 2. In 
Model 4 the original image sequence is used to obtain the DVFs. 
Model 4 is used to test the upper bound of performance of the 
proposed multichannel restoration algorithm. 

In Models 1 4  the DVF is computed from either the degraded, 
the restored, or the source image. A block-search algorithm 
(BSA) was used to estimate the between channel DVFs. The 
motion vector at pixel (i, j) between frames 1 and k was found 
by matching a 5 x 5 window centered at pixel (i, j) of frame 
1 to a 5 x 5 window in frame k. A n  exhaustive search over a 
31 x 3 1 area centered at pixel (i, j) of frame k was used, and the 
matching metric was the sum of the squared errors. 

Two experiments are summarized here (more are described 
in [ l]), in which all five models were tested and compared. The 
variance of the noise added to the blurred data is defined by using 
the blurred BSNR metric that was defined in Eq. (20). As an 
objective measure of performance of the restoration algorithms, 
the improvement signal-to-noise ratio (ISNR) metric was used. 
This metric is given by 

Model3 

/Mode= 
--- z - 

where the vectors fi, gj ,  and are the ith channel of the origi- 
nal image, the degraded image, and the restored image, respec- 
tively. 

In both experiments the relaxation parameter cc was obtained 
numerically by using a method, based on the Rayleigh quotient, 
described in [ 11. The value of the regularization parameter X was 
chosentobeequalto (10%) [6].Torestoreall loframesofthe 
image sequence, six five-channel multichannel filters were used 
in which a five-channel multichannel regularization operator 
similar to the one in Eq. (23) was used. Except for the first two 
and last two frames of the sequence, a five-channel noncausal 
filter was used to restore each frame. This filter used both the 
two previous and the two following frames of the frame being 
restored. 

Ten frames (frames 41-50) of the Trevor White sequence were 
blurred by an 11 x 11 uniform blur. The point-spread function 
of this blur is given by 

BSUR -1 
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FIGURE 3 
a = 0.1, and A = 0.1. 

ISNRplotsforExperimentI,case(i):BSNR = 10dB,11 x 11 blur, 

Cases (i) and (ii) corresponding, respectively, to 10 and 30 dB 
BSNR of additive white Gaussian noise were examined. Plots of 
the ISNR are shown in Figs. 3 and 4. In Figs. 5, 6, and 7 the 
8th frame of this experiment is shown for cases (i) and (ii). 

14 

0 

FIGURE 4 
blur, OL = 2.0, and A = 0.001. 

ISNR plots for Experiment I, case (ii): BSNR = 30 dB, 11 x 11 
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FIGURE 5 Original Image twyO48 (top). Experiment I case (i) (bottom left): degraded image, 
with 11 x 11  blur and 10 dB of BSNR additive noise. Experiment I case (ii) (bottom right): degraded 
image, with 11 x 11 blur and 30 dB of BSNR additive noise. 

The original and the degraded images are shown in Fig. 5. 
In Figs. 6 and 7 the restored images from this experiment are 
shown. 

Both the visual and the PSNR results of this experiment 
demonstrate that ( 1) the multichannel regularization greatlyim- 
proves the restored images, and (2) the accuracy of the between- 
channel knowledge that is incorporated is crucial to the quality 
of the results. 

5 Implicit Approach to Multichannel 
Image Recovery 

The purpose of multichannel image recovery is to make use of 
the correlations between channels of the source image for pur- 
poses of noise suppression. Unfortunately, the between-channel 
smoothing required to exploit this information can greatly in- 
crease the computational cost. In the implicit approach, the 
computational burden is dramatically reduced by applying a KL 

transformation to the observed data prior to processing. For a 
review of the KL transform see [9], p. 163. 

The computational savings result from two important func- 
tions of the KL transform: decorrelation and compression. Be- 
cause the KL transform decorrelates the source channels, it elimi- 
nates the need for cross-channel smoothing. In addition, because 
the KL transform compresses the significant signal information, 
it effectively reduces the number of channels that must be pro- 
cessed. For example, a 50-channel source image with highly cor- 
related channels might be described almost perfectly by only 
five KL channels, with the remaining 45 channels dominated by 
noise. In such an example, only five channels of data would have 
to be processed instead of the original 50. 

The basic steps of the implicit approach to multichannel im- 
age recovery are as follows: (1) apply a KL transformation to 
the data; (2) discard the channels of the KL-transformed data 
that are dominated by noise; (3) recover an image channel from 
each of the remaining KL-domain data channels separately; and 
(4) apply an inverse KL transform to the recovered channels to 
convert them back to the original domain. 
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FIGURE 6 
Model 3 (lower left), and Model 4 (lower right). 

Experiment I case (i): restored images using Model 0 (upper left), Model 1 (upper right), 

Having outlined the steps of the basic algorithm, let us now 
explain and justify it. In this section, N denotes the total number 
of pixels in each image, M denotes the total number of elements 
in each observation, and K represents the number of channels. 
The implicit approach is based on the assumption that the mul- 
tichannel covariance matrix C f  in Eq. (6) is separable into a 
spatial part Cy) of dimension K x K and a temporal part Cy’ 
of dimension N x N as follows: 

where 8 denotes the Kronecker product. In the recovery algo- 
rithm this calls for separate temporal and spatial regularization 
operations. This separability assumption is best suited for imag- 
ing of motion-free objects or scenes; however, it has been shown 
in [ 131 to workextremelywell in reconstructing image sequences 
of the beating heart, as we will show later. 

Decorrelation of the channels of the source image is achieved 
by application of a KL transformation a, which is the transpose 

of the eigenvector matrix of Cy), i.e., 

cy@ = @D, (27) 

where D = diag{ dl,  . . . , d K }  and dl is the 2th eigenvalue of Cy’. 
The limitation of the implicit approach is that it involves, in 

addition to the separability condition in Eq. (26), the following 
assumptions, which may not hold in some applications. 

1. The system matrix must be of the form H = diag 
{ H, H, . . . , H }  = I @  H. Each block H in the multichan- 
nel system matrix H denotes the system matrix describing 
the degradation of one image channel. This form for H 
represents the situation in which every image channel is 
degraded in the same way, and the channels are degraded 
independently of one another. 

2. The multichannel noise covariance must be of the form 
C ,  = diag{C,, C,, . . . , C,} = I @ C,. This means that 
every channel of the multichannel observations must be 
have the same noise covariance matrix and that the noise 
channels must be uncorrelated. 
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FIGURE 7 
Model 3 (lower left), and Model 4 (lower right). 

Experiment I case (ii): restored images using Model 0 (upper left), Model 1 (upper right), 

5.1 KL Transformation of the Multichannel 
Imaging Model 
The values of pixel i in the multichannel image and pixel m in the 
multichannel observations form, respectively, the K x 1 vectors 

In terms of these vectors, the form of C f  in Eq. (26)  can be 
written as 

E{f(i)fT(j)} = [Cy)IijC:f), i, j = 1, ..., N. (29) 

Ifwe define the KL-domain quantity f(i) = @f(i), then 

Equation (30) indicates that the transformed vector f(i) does 
not exhibit any between-channel correlations. Thus, if recovery 
is performed in the KL domain, the need for between-channel 
smoothing is eliminated. As applied to the multichannel vector 
f, the KL transform is represented by a multichannel transfor- 
mation matrix AM, defined as 

where IM denotes the M x M identity matrix. Applying AM 
to both sides of the multichannel imaging model in Eq. ( l ) ,  
we obtain 

where E{-} denotes expectation with respect to the noise n. 
Using properties of the Kronecker product, we rewrite AMH 
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as follows: Using Eq. (38), distributing the transpose operations, and fac- 
toring out the transformation matrices, we obtain 

A ~ H  = (Q 8 I ~ )  uK 8 H> = 8 (w-o 
1 @) = (g - H ~ ~ A ~ C ; ~ A L ( ~  - H?, = (I1(@) 8 ( H I N )  = ( I K  8 H) (@ @ IN) = m N .  

(33) + hjT{A~[Cy' @ Cy']-'A;}i. (39) 

Interchanging the transformation matrix and the expectation 
operator in Eq. (32), using the result in Eq. (33), and defining 
the transformed quantities g =  AM-^ and = ANf yields the 
following transformed imaging model: 

Using Eq. (31), we rewrite the term in curly braces as follows: 

@ CF)]-'A; = D-' @ [Cy)]-', (40) 

E { g }  = HT. 
where D is the eigenvalue matrix defined in Eq. (27). It is easy 

(34) to show that 

Note that Eq. (34) has precisely the same form as the original 
linear imaging model; thus a solution in the KL domain can be 
accomplished by use of existing recovery approaches. 

5.2 KL Transformation of the RWLS 
Cost Functional 
We define a more general version of the multichannel RWLS 
functional introduced in Eq. (12) as follows: 

1 (f) = (g - Hf)TC,l(g - Hf) + MTCf'f. (35) 

In this section we show that this RWLS functional is simplified 
greatly by the KL transformation under the conditions described 
previously. In a statistical interpretation of this functional, C f  
should be chosen to be the covariance matrix of the multichannel 
image fi therefore, CF) and C(') should be chosen to be the 

channel covariances, respectively. As described earlier, we choose 

approximation of the 2-D Laplacian operator. 
To transform the multichannel RWLS cost functional, we 

begin by writing the quantities of interest in terms of their 
KL-domain counterparts (identified with a tilde) as follows: 

covariance matrices expressing t6 e between-channel and within- 

c(') - - (XQT Q)-l, where Q is a matrix representing a discrete 

Note that AN and AM are orthogonal matrices, so A& = A;' 
and AL = A:. Substituting for these quantities in Eq. (35), we 
obtain 

In a manner similar to that used to derive Eq. (33), it can be 
shown that 

where Cz is the covariance matrix of the observations in the KL 
domain. With use of Eqs. (40) and (41), Eq. (39) becomes 

Using the assumption C i l  = I 8 Ct)-', since H and C,' 
are block diagonal, and D and I are diagonal, Eq. (42) re- 
duces to 

K 

(43) 

in which 

where f; and gl are the Zth KL components off, and g, respec- 
tively, and dl is the eigenvalue associated with the lth IU basis 
vector. 

5.3 Space-Invariant Image Restoration 
by the Implicit Approach 
Image restoration (deblurring) problems can be solved especially 
easily when the degradation operator H and the covariance ma- 
trices CF) and C,, are circulant. As in the general case, appli- 
cation of the implicit approach begins with computation of the 
covariance matrix Cy) and its eigenvectors in Q, which are used 
to transform the observed multichannel image to the KL do- 
main. Then conventional Wiener filters [ 81 can be implemented 
in the DFT domain in dosed form, and applied one by one to 
the significant KL-domain channels to restore them. Finally, the 
multichannel image is obtained by inverting the KL transform. 
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FIGURE 8 Example frames (numbers 1,2,3,10,20,  and 40) from a sequence of 44 frames of dynamic PET data. 
In dynamic PET the object typically is stationary, but is changing in time (data courtesy of Jogeshwar Mukherjee). 

FIGURE 9 
look similar to the sixth and are dominated by noise. Only the first three contain significant signal information. 

First six Karhunen-Loeve components ofthe dynamic PET data in Fig. 8. The remaining 38 components 

5.4 Space-Variant Image Recovery 
by the Implicit Approach 
When the degradation is not shift invariant andlor the statistics 
are not stationary, the recovered KL-domain channels must be 
computed iteratively. The RWLS functional J (f) can be mini- 
mized by minimizing 11 ( $) separately in Eq. (44). Since JI ( $) is 
quadratic with respect to $, a number of iterative minimization 
methods, including the conjugate gradient algorithm [ 31, can be 
used to find $. Theoretically, the conjugate gradient method is 
guaranteed to converge in Nsteps (the dimension of each image 
channel), but a much smaller number of iterations is sufficient 
for good results in practice. 

5.5 Multichannel Reconstruction of Medical 
Image Sequences 
In this section we describe an application of the implicit multi- 
channel recovery approach to an important problem in medical 
imaging, namely the reconstruction of time sequences of im- 
ages. We focus specifically on two emission tomography meth- 
ods: positron emission tomography (PET) and single-photon 
emission computed tomography (SPECT) [ 21. 

For purposes of computation, the imaging model for PET 
and SPECT sequences can be approximated by the set of matrix 
equations 

E ( g k }  = Hfk ,  k =  1,2, .. ., K. (45) 

This corresponds exactly to the previously discussed multi- 
channel linear imaging model for the special case in which 
H = diag{ H, H, . . . , H). In this application, H represents a 
tomographic projection operator that is not shift invariant. In 
an idealized model, the projection operator is the discrete Radon 
transform [ 81 but more-realistic models include blur caused by 
various physical factors in the imaging process. 

In dynamic PET, one obtains a time sequence of data g k ,  k = 
1, . . . , K, from which an image sequence fk, k = 1, . . . , K is to 
be reconstructed. Usually the reconstruction is performed image 

by image, but recent research [9,12,13,16,17] has shown that 
it is preferable to reconstruct all of the images collectively as a 
multichannel image f from all of the data in the multichannel 
observation vector g. The following example from PET brain 
imaging illustrates this principle. The images shown depict slices 
of the brain of a monkey; the bright areas indicate tissues rich 
in dopamine receptors, which are part of the brain’s chemical 
communication system. 

In the implicit approach, one begins by applying a KL trans- 
formation along the time axis of the data (across the chan- 
nels of g). Figure 8 shows example frames from a time se- 
quence of 44 frames of tomographic projection data; Fig. 9 
shows the first six frames following the KL transformation. The 
KL transform eliminates redundancy in the observations and 
compresses the useful information into the first three frames. 
The remaining frames, which all look similar, are dominated by 
noise and can be discarded. The importance of the first three 
frames is depicted quantitatively by the eigenvalue spectrum 
shown in Fig. 10. Figure 11 shows the result of reconstruct- 
ing images from the first three KL-domain observations. The 
inverse KL transform is applied to these three KL-domain im- 
ages to obtain a sequence of images. Examples of these results 
are shown in Fig. 12, where they are compared with the results 
obtained by more-conventional approaches. Note that, not only 
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FIGURE 10 Spectrum of eigenvalues showing the dominance of the first two 
KL components. Usually the next component contains significant signal content 
as well. 
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FIGURE 11 
are dominated by noise and can be omitted from the computations. 

Images reconstructed from the first six KL components of the data (see Fig. 9). AU but the first three 

FIGURE 12 Example frames from the sequence of dynamic PET images re- 
constructed by the implicit approach (left column), by separate single-channel 
reconstruction by PWLS (center column), and filtered backprojection (right 
column). Because of the high noise level, single-channel PWLS fails to produce 
significantly better results than filtered back projection, but multichannel regu- 
larization, provided by the implicit approach, yields more-accurate images. 

FIGURE 13 Example frames from a sequence of gated SPECT images of the 
heart. Images reconstructed by the implicit multichannel approach (left column) 
are less noisy than those obtained by single-channel reconstruction (right col- 
umn). These images were obtained without accounting for blur in the system 
matrkH, so no deblurring effect is apparent. (Image results courtesy ofV. Manoj 
Naryanan and Michael A. King.) 

are the images obtained by the implicit multichannel approach 
superior to the others, but they were obtained in less time because 
only three KL frames required reconstruction instead of 44 time- 
domain image frames. Quantitative performance evaluations of 
the implicit approach for image reconstruction can be found 
in [9,17]. 

Figure 13 shows another application of the implicit approach 
to cardiac SPECT imaging. Two example frames are shown, each 
reconstructed by both a single-channel approach and by the 
implicit approach. Image features that are normally obscured 
by noise are clearly visible when reconstructed by the implicit 
approach. Because of the separability assumption in Eq. (26), 
one might expect the implicit approach to perform poorly when 
there is motion; however, these images of the beating heart show 
that the KL decomposition can capture motion information in 
some cases. 
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Multiframe image restoration is concerned with the improve- 
ment of imagery acquired in the presence of varying degrada- 
tions. The degradations can arise from a variety of factors- 
common examples include undersampling of the image data, 
uncontrolled platform or scene motion, system aberrations and 
instabilities, and wave propagation through atmospheric turbu- 
lence. In a typical application, a sequence of images (frames) is 
recorded and a restored image is extracted through analog or 
digital signal processing. In most situations digital data are ac- 
quired, and the restoration processing is carried out by a general- 
or special-purpose digital computer. The general idea is depicted 
in Fig. 1, and the following examples illustrate applications for 
which multiframe restoration is utilized. 

Example 1.1 (Resolution Improvement in Undersampled Sys- 
tems) A critical factor in the design of visible and infrared 
imaging systems is often the tradeoff between field of view and 
pixel size. The pixel size for a fixed detector array becomes larger 
as the field of view is increased, and the need for a large field of 
view can result in undersampled imagery. This phenomenon is 
illustrated in Fig. 2. One way to overcome the effects of larger 
pixels while preserving field of view is to utilize controlled or 
uncontrolled pointing jitter. In the presence of subpixel transla- 
tions, a sequence of image frames can be processed to estimate 
the image values on a grid much smaller than the physical size 
of the detector pixels. Uncontrolled motion, however, presents 

the additional challenge of motion identification or the deter- 
mination of optical flow [ 11. Often referred to as microscanning 
[2], the idea of processing a sequence of undersampled image 
frames to restore resolution has received attention in a variety of 
applications [ 3,4]. 

Example 1.2 (Imaging ThroughTurbulence) Spatial and tem- 
poral variations in the temperature of the Earth‘s atmosphere 
cause the refractive index at optical wavelengths to vary in a 
random and unpredictable manner. Because of this, imagery ac- 
quired with ground-based telescopes can exhibit severe, time- 
varying distortions [5]. A sequence of short exposure image 
frames will exhibit blurs such as those shown in Fig. 3, and 
the goal of a multiframe image restoration procedure is to form 
a fine-resolution estimate of the object’s reflectance from the 
noisy, blurred frames. Because the point-spread functions are 
not easily measured or predicted, this problem is often referred 
to as one of multiframe blind deconvolution 161. 

Many methods have been proposed and studied for solving 
multiframe restoration problems - see, for example, Refs. [ 7- 
161 and those cited within. Well-established restoration meth- 
ods exist for situations in which all sources of blur and degra- 
dation are known or easily predicted. Some of the more pop- 
ular techniques include regularized least squares and Wiener 
methods [12, 13, 171, and multiframe extensions of the itera- 
tive Richardson-Lucy method [ 18-21]. When some of the sys- 
tem parameters are unknown, however, the problem becomes 
much more difficult. In this situation, the recovery of the object 
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FIGURE 1 
restored image is produced through digital image processing. 

A general scenario in which multiframe data are recorded and a 

intensity can be called a multiframe blind restoration problem, 
because, in addition to the object intensity, the unknown system 
parameters must also be estimated [ 3,4,6,22-271. 

In the remainder of this chapter, we will develop mathematical 
models for the multiframe imaging process, pose the multiframe 
restoration problem as one of numerical optimization, provide 
an overview of restoration methods and illustrate the methods 
with some current examples. 

2 Mathematical Models 

The imaging problems discussed in this chapter all involve the 
detection and processing of electromagnetic fields after reflec- 
tion or emission from a remote object or scene. Furthermore, 
the applications considered here are all examples of planar inco- 
herent imaging, wherein the object or scene is characterized by 
its incoherent reflectance or emission function f(x), x E R2. 
Throughout this chapter we will refer to f as the image intensity 
- a nonnegative function that represents an object’s ability to 

original scene 

large field of view - coarse pixels small field of view - finer pixels 

FIGURE 2 An illustration of the tradeoff between field of view and pixel size. For a fixed number of pixels, the larger 
field of view results in coarse sampling - finer sampling leads to a smaller field of view. 
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FIGURE 3 Imagery ofthe Hubble Space Telescope as acquired by a 1.6-m telescope at the Air Force Maui Optical Station. 

reflect or emit light (or other electromagnetic radiation). The 
central task of a multiframe image restoration problem, then, 
is the estimation of this intensity function from a sequence of 
noisy, blurred images. 

2.1 Image Blur and Sampling 
As illustrated in Fig. 4, the need for image restoration is, in 
general, motivated by two factors: i) system and environmental 
blur; and ii) detector sampling. In the absence of noise, these 
two stages of image formation are described as follows. 

System and Environmental Blur 
In all imaging applications, the signal available for detection is 
not the image intensity f.  Instead, f is blurred by the imaging 
system, and the observable signal is 

gc@; 0,) = 1 h@, x; 0,) f<x> dx, (1) 

where he, x; 0,) denotes the (time-varying) system and envi- 
ronmental point-spread function, gc@; 0,) denotes the (time- 
varying) continuous-domain intensity that results because of 
the blur, x and y are continuous-domain spatial coordinates, 
and 0, denotes a set of time-varying parameters that determine 
the form of the point-spread function. The role of these pa- 
rameters is discussed in more detail later in this chapter. Many 
applications involve space-invariant blurs for which the point- 
spread function depends only on the spatial difference y - x, 
and not on the absolute positions y and x. When this occurs the 

point spread is written as a function of only one spatial vari- 
able, and the continuous-domain intensity is formed through a 
convolution relationship with the image intensity: 

Diffraction is the most common form of image blur, and its 
effects are present in every application involving remotely sensed 
image data. For narrow-band, incoherent imaging systems such 
as telescopes, microscopes, and infrared or visible cameras, the 
point-spread function for diffraction is modeled by the space- 
invariant function: 

(3) 

where A(u) is the system's aperture function, u is a two- 
dimensional spatial variable in the aperture plane, A is the nomi- 
nal wavelength ofthe detected radiation, and f is the system focal 
length [28]. The notation u . y denotes the inner product oper- 
ation, and it is defined for two-dimensional spatial variables as 

The use of this model for diffraction implicitly requires that 
the image intensity be spatially magnified by the factor - f / r ,  
where r is the distance from the object or scene to the sensor. 
For a circular aperture of diameter D, the diffraction-limited 
point-spread function is the isotropic Airy pattern whose one- 

Ax) 9,(.Y;et 1 gd(n;et 1 
FIGURE 4 Pictorial representation of the image degradations caused by systedenvironmental blur and detector 
sampling. 
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FIGURE 5 Cross section ofthe Airy diffraction pattern for a circular aperture. 

dimensional cross section is shown in Fig. 5. As a result of the 
location of the first zero relative to the central peak, the resolution 
of a diffraction-limited system with a circular aperture is often 
cited as 1.22rh/ D. This definition of resolution is, however, very 
arbitrary. Nevertheless, decreasing the wavelength, increasing 
the aperture diameter, or decreasing the distance to the scene 
will result in a narrowing of the point-spread function and an 
improvement in imaging resolution. 

Imaging systems often suffer from various types of optical 
aberrations -imperfections in the figure of the system’s focus- 
ing element (usually a mirror or lens). When this happens, the 
point-spread function takes the form 

(5) 

where e(u) is the aberration function, often measured in units 
of waves.’ Here, the notation h ( y ;  8) explicitly shows the depen- 
dence of the aberrated point-spread function on the aberration 
function 8. An out-of-focus blur induces a quadratic aberration 

where r is the distance to the scene, d is the focal setting, and 
f is the focal length. This blur is reduced to diffraction when 
the “imaging equation” is satisfied and the system is in focus: 
1 r + 1 d - f  - 1. Spherical aberration, such as that present in the 
Hubble Space Telescope’s infamous primary mirror [ 291, induces 
a fourth-order aberration function: 

where the constant B determines the strength of the aberration. 
By setting the aberration to 

one can also use this model to represent a tilt or pointing error 
A, so that 

Wave propagation through an inhomogeneous medium such as 
the Earth’s atmosphere can induce additional distortions. These 
distortions are due to temperature-induced variations in the at- 
mosphere’s refractive index, and they are frequently modeled in 
a manner similar to that used for system aberrations: 

where the aberration function O,(u) can now vary with time [5]. 
A typical diffraction-limited point-spread function along with 
a sequence of turbulence degraded point-spread functions are 
shown in Fig. 6. 

Another interesting perturbation to the diffraction-limited 
point-spread function can arise because of time-varying trans- 
lations and rotations between the sensor and scene. In this case, 

diffraction point spread turbulence-induced point spreads 

FIGURE 6 
functions. 

Diffraction-limited point-spread function and a typical sequence of turbulence-induced point-spread 

’One wave of aberration corresponds to O(u) = 2a. 
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the continuous-domain intensity is modeled as The combined effects of blur and sampling are modeled as 

where A, represents a two-dimensional, time-varying transla- 
tion, and 

r 

h d ( %  x; et) = W ( %  y)h(y, X; et)dy (18) s is a time-varying rotation matrix (at angle &). A simple change 
of variables leads to 

so that the shift variant point-spread function can be written as 

and the parameters characterizing the point-spread function are 

Without loss of generality, we will model the system and 
environmental point-spread function as the (possibly) space- 
variant function h(y, x; e,), and note that this model captures 
diffraction, system aberrations, time-varying translations and 
rotations, and environmental distortions such as atmospheric 
turbulence. The parameter 8, may be a simple vector parameter, 
or a more complicated parameterization of a two-dimensional 
function. Many times 8, will not be well known or predicted, 
and the identification of this parameter can be one of the most 
challenging aspects of a multiframe image restoration problem. 

then 8, = (A,, +A. 

Sampling 
The detection of imagery with discrete detector arrays results in 
the measurement of the (time-varying) sampled intensity: 

where w(n, y )  is the response function for the nth pixel in the 
image detector array, n is a discrete-domain spatial coordinate, 
and gd(n; e,) is the discrete-domain intensity that results due 
to sampling of the continuous-domain, blurred intensity. The 
response function for an incoherent detector element is often of 
the form 

where Y,  denotes the spatial region of integration for the nth 
detector element. The regions of integration for most detectors 
are typically square or rectangular regions centered about the 
detector locations {yn}. 

denotes the mixed-domain (continuousldiscrete) point-spread 
function. These equations establish the linear relationship be- 
tween the unknown intensity function f and the multiframe, 
sampled image intensities gd(n; e,). 

Throughout this chapter we will focus on applications for 
which the data collection interval for each frame is short com- 
pared with the fluctuation time for the parameter et, so that a 
sequence of image frames 

is available for detection. Each frame is recorded at the time 
t = t k ,  and the blur parameter takes the value 8k = 8, during 
the frame so that we write 

and 

2.2 Noise Models 
Electromagnetic waves such as light interact with matter in a fun- 
damentally random way, and quantum electrodynamics (QED) 
is the most sophisticated theory available for describing the de- 
tection of electromagnetic radiation. In most imaging applica- 
tions, however, the semiclassical theory for the detection of ra- 
diation is sufficient for the development of practical and useful 
models. In accordance with this theory, electromagnetic energy 
is transported according to the classical theory of wave propaga- 
tion, and the field energy is quantized only during the detection 
process [30]. 

When an optical field interacts with a photodetector, a quan- 
tum of energy is absorbed in the form of a photon and the ab- 
sorption of this photon gives rise to the release of an excited 
electron. This interaction is referred to as a photoevent, and the 
number of photoevents occurring within a photodetector ele- 
ment during a collection interval is referred to as a photocount. 
Most detectors of light record these photocounts, and the num- 
ber of photocounts recorded during an exposure interval is a 
fundamentally random quantity. The utilization of this theory 



180 Handbook of Image and Video Processing 

leads to a statistical model for image detection in which the pho- 
tocounts for each recorded frame are modeled as independent 
Poisson random variables, each with a conditional mean that 
is proportional to the sampled image intensity gd(n; k) for the 
frame. Specifically, the expected photocount for the nth detector 
during the kth frame is: 

(22) E[Nd(n; k) 1 gd(n; k)] = akgd(n; k), 

where the scale factor olk is proportional to the frame exposure 
time. Because the variance of a Poisson variable is equal to its 
mean, the image contrast (mean-squared to variance ratio) for 
photon noise increases linearly with the exposure time. 

The data recorded by charge coupled devices (CCD) and other 
detectors of optical radiation are usually subject to other forms 
of noise. The most common - read-out noise - is induced by 
the electronics used for the data acquisition. This noise is often 
modeled by additive, zero-mean Gaussian random variables so 
that the recorded data are modeled as 

where v(n; k) represents the read-out noise at the nth detector 
for the kth frame. The read-out noise is usually statistically in- 
dependent across detectors and frames, but the variance may be 
different for each detector element. 

3 The Restoration Problem 

=Ehd(n ,m;k) fd(m) ,  k = l , 2  ,..., K, (25) 
rn 

where 

is the discrete-domain impulse response for the kth frame. This 
impulse response (or point-spread function) defines a linear re- 
lationship between the discrete-domain images {gd(n; k)} and 
the discrete-domain intensity fd(m). For shift-invariant appli- 
cations, hd is a function of only the difference n - m. With a 
little thought on notation, the discrete-domain imaging equa- 
tions can be written in matrix-vector form as 

and when the point-spread functions are shift-invariant, the 
measurement matrices {Hd(k), k = 1,2, . . . , K} are Toeplitz. 
One potential advantage of multiframe restoration methods 
arises when the eigensystems for the measurement matrices are 
sufficiently different. In this situation, each image frame records 
different information about the object, and the system of multi- 
frame measurements can be used to estimate more detail about 
the object than can a single image frame. 

rn 

where the basis functions {+ ,(x)} are selected in a manner that is 
appropriate for the application. Expression ofthe object function 
on a predetermined grid of pixels, for example, might require 
I)~(X) to be an indicator function that denotes the location and 
spatial support of the mth pixel. Alternatively, the basis functions 
might be selected as two-dimensional impulses colocated with 
the center of each pixel. Other basis sets are possible, and a clever 
choice here can have a great effect on estimator performance. 

Using a basis as described in (24) results in the following 
approximation to the imaging equation: 

gd(n; k) = / hcd(n, x; k) f(x> dx 

zz / k d ( %  X; k) fd(m)$,(X)dX 
m 

~ ~ ~~~~ 

Stated simply, the restoration problem is one of estimat- 
ing the image intensity f data 
{d(n;  k), k = 1,2, . . . , K). The intensity function f is, how- 
ever, an infinite-dimensional parameter, and its estimation from 

come this problem, it is common to approximate the intensity 
function in terms of a finite-dimensional basis set: 

3.1 Restoration as an Optimization Plddem 
the In this section we focus on restoration problems for which 

the point-spread parameters {ek} are well b o w n  or easily 
determined. In the following section we will address the ch& 

tified from the 
Statistical inference problems such as those encountered in 

multiframe image restoration are frequently classified as ill- 
posed problems [ 3 1 ], and, because of this, regularization meth- 
ods play an important role in the estimation process. A n  image- 
restoration problem is ill posed if it is not well posed, and a 
problem is well posed in the classical sense of Hadamard if it 
has a unique solution and the solution varies continuously with 
the data. Multiframe image restoration problems that are for- 
mulated on infinite-dimensional parameter spaces are almost 
always ill posed, and their ill-posed nature is usually due to the 
discontinuity of the solution. Problems that are formulated on 
finite-dimensional spaces (as ours is here) are frequently well 
posed in the classical sense - they have a unique solution and 
the solution is continuous in the data. However, these problems 
are usually ill conditioned or badly behaved and are frequently 
classified as ill posed even though they are technically well posed. 

For problems that are ill posed or practically ill posed, the 
original problem's solution is often replaced by the solution to a 
well-posed (or well-behaved) problem. This process is referred 

finite data is aterriblY ill-conditioned Problem* As to Over- lenges that are presented when these parameters must be iden- 
data. 
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to as regularization, and the basic idea is to change the problem in 
a manner such that the solution is still meaningful but no longer 
badlybehaved [32]. The consequence for multiframe restoration 
problems is that we do not seek to match the measured data 
perfectly. Instead, we settle for a more stable - but inherently 
biased - image estimate. 

Most approaches to regularized image restoration are induced 
through attempts to solve an optimization problem of the fol- 
lowing form: 

where D(gd, d )  is a discrepancy measure between the estimated 
image intensities {gd(n; k), k = 1,2, . . . , K }  and the measured 
data { d ( n ;  k), k = 1,2,  . . . , K } ,  $(fd) is a penalty (or prior) 
function that penalizes undesirable attributes of the object esti- 
mate fd(m) (or rewards desirable ones), y is a scale factor that 
determines the degree to which the penalty influences the es- 
timate, and T is a constraint set of allowable object estimates. 
Methods that are covered by this general framework include the 
following. 

Maximum-Likelihood Estimation 
For maximum-likelihood estimation the penalty is not used 
(y =O), the constraint set is typically the set of nonnegative 
functions F = { fd : fd p O}, and the discrepancy measure is 
induced by the statistical model that is used for the data col- 
lection process. Discrepancy measures that result from various 
noise models are illustrated in the following examples. 

Example 3.1 (Maximum-Likelihood for Gaussian Noise) 
When the measured data are corrupted only by additive, in- 
dependent Gaussian noise of variance u2, the data are modeled 
as 

and the log-likelihood function [ 331 is of the form 

The discrepancy measure can then be selected as 

k n  

where the scale factor 1/2u2 is omitted without affecting the 
optimization. 

Example 3.2 (Maximum-Likelihood for Poisson Noise) 
When the measured data are corrupted onlyby Poisson (photon) 

noise, the log-likelihood function is of the form 

and the discrepancy measure is selected as 

Example 3.3 (Maximum-Likelihood for Poisson and Gaussian 
Noise) When the measured data are corrupted by both Poisson 
(photon) noise and additive Gaussian (read-out) noise as in 
Eq. (23), then the likelihood has a complicated form involving 
an infinite summation [34]. When the variance for the Gaussian 
noise is the same for all detector elements and sufficiently large 
(greater than 50 or so), however, the modified data, 

2(n; k) = d ( n ;  k) + u2, (34) 

have an approximate log-likelihood of the form [34] 

k n  

The discrepancy measure is then 

k n  

k n  

Sieve-Constrained Maximum-Likelihood Estimation 
For sieve-constrained maximum-likelihood estimation [ 351, the 
discrepancy measure is again induced bythe statistical model that 
is used for the data collection process and the penalty is not used 
(y = 0). However, the constraint set is selected to be a “smooth” 
subset of nonnegative functions. A Gaussian kernel sieve 1361, 
for example, is defined as 

(37) 

where the parameter a determines the width of the Gaus- 
sian kernel and the smoothness of the sieve. Selection of this 
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parameter for a particular application is part of the art of per- 
forming sieve-constrained estimation. 

Penalized Maximum-Likelihood Estimation 
For penalized maximum-likelihood estimation [ 371, the discrep- 
ancy measure is induced by the statistical model that is used for 
the data collection, and the constraint set is typically the set 
of nonnegative functions. However, the function JI is chosen 
to penalize undesirable properties of the object estimate. Com- 
monly used penalties include the weighted quadratic roughness 
penalty, 

where N, denotes a neighborhood about the mth pixel and 
w(m, m’) is a nonnegative weighting function, and the diver- 
gence penalty, 

(39) 

where Nm is again a neighborhood about the mth pixel. As 
shown in Ref. [38], this penalty can also be viewed as a discretiza- 
tion of the roughness measure proposed by Good and Gaskins 
[391. 

Many other roughness penalties are possible [38], and the 
proper choice can depend largely on the application. In all 
cases, selection of the parameter y for a perticular applica- 
tion is part of the art of using penalized maximum-liklihood 
methods. 

Maximum a Posteriori Estimation 
For maximum a posteriori ( M A P )  estimation, the discrepancy 
measure is induced by the statistical model for the data collec- 
tion, and the constraint set is typically the set of nonnegative 
functions. However, the penalty term JI ( fd) and scale factor y 
are induced by a prior statistical model for the unknown ob- 
ject intensity. MAP methods are mathematically, but not always 
philosophically, equivalent to penalty methods. Markov random 
fields [40] are commonly used for image priors, and, within this 
framework, Bouman and Sauer [41] have proposed and investi- 
gated the use of a generalized Gauss-Markov random field model 
for images: 

m 

where p E [ l ,  21, and a(m) and b(m, m’) are nonnegative pa- 
rameters. A detailed discussion of the effect of p, a, and b on 
estimator performance is provided in Ref. [41]. 

Regularized Least-Squares Estimation 
For regularized least-squares estimation, the discrepancy mea- 
sure is selected as: 

k n  

the constraint set is typically the set of nonnegative functions, 
and the penalty is selected and used as discussed for penalized 
maximum-likelihood estimation. For additive, white Gaussian 
noise, the regularized least-squares and penalized maximum- 
likelihood methods are mathematically equivalent. 

Minimum I-Divergence Estimation 
For problems involving nonnegative image measurements, the I 
divergence has also received attention as a discrepancy measure: 

k n  

For problems in which the noise is Poisson, the minimum I- 
divergence and maximum-likelihood methods are mathemati- 
cally equivalent. 

After selecting an appropriate estimation methodology, multi- 
frame image restoration - as we have posed the problem here- 
is a problem of constrained optimization. For most situations 
this optimization must be performed numerically, but in some 
cases adirect-form linear solution can be obtained. In these situa- 
tions, however, the physical constraint that the intensity function 
f must be nonnegative is usually ignored. 

3.2 Linear Methods 
Linear methods for solving multiframe restoration problems 
are usually derived as solutions to the regularized least-squares 
problem: 

k) - gd(n; k)I2 

(43) 

where C is called the regularizing operator. A common choice 
for this operator is the two-dimensional Laplacian: 

s = m  I ’  -1/4 s = m+ (0,l)  
-1/4 s = m + (0, -1) 
-1/4 s =  m+(1,0)  ’ (44) C(S, m) = 

[ - y 4  s=m+(-1 ,O)  
otherwise 
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5 Applications where Ak denotes the two-dimensional translation, and 
~ ~ 

We conclude this chapter by presenting an overview of three 
applications of multiframe blind restoration. 

5.1 Fine-Resolution Imaging from 
Undersampled Image Sequences 
For problems in which an image is undersampled by the system’s 
detector array, multiframe restoration methods can be used to 
obtain a fine-resolution object estimate provided that a sequence 
of translated (or microscanned) images is obtained. An example 
considered by Hardie et  al. [3,49] concerns image formation 
with a forward-looking infrared (FLIR) imaging system. This 
system’s continuous-domain point-spread function caused by 
diffraction is modeled as 

where A(u) denotes the system’s pupil function as determined 
by the physical dimensions of the camera’s lens, A is the opera- 
tional wavelength, and f is the system focal length. Accordingly, 
the continuous-domain intensity caused only by diffraction is 
modeled as 

( 5 2 )  gc9) = 1 h(Y - f(x) dx. 

For a circular lens of diameter D, the highest spacial frequency 
present in the continous-domain image is D/(A f), so that crit- 
ical sampling of the image is obtained on a grid whose spacing 
is Afl(2D). 

The sampling operator for FLIR cameras is typically of the 
form 

(53) 

where Y,, is a rectangular neighborhood around the center ofthe 
nth detector element yn. For a circular aperture of radius D, if the 
spacing between detector elements is greater than Xf/(2D), as is 
often the case for current FLIR systems, then the image data will 
be undersampled and the full resolving power of the system will 
not be utilized. Frame-to-frame motion or camera jitter in con- 
junction with multiframe image restoration methods can, how- 
ever, be used to restore resolution to an undersampled system. 

Frame-to-frame motion or camera jitter, in the form of 
translations and rotations, can be modeled by modifying the 
continuous-domain imaging equation according to 

g c b ;  e k )  = 1 hb’ - x) f[A(+kk)x - Akl dx 

= / b‘ - A-’ (+k> (x -k A k )  1 f<x) dx 

(55) 

is the rotation matrix (at angle &) associated with the kth 
frame. These parameters, { e k  = (Ak, +k)}, are often unknown 
at the time of data collection, and the accurate estimation of their 
values is essential for fine-resolution enhancement ofmultiframe 
FLIR imagery. 

Hardie et al. [ 31 have addressed this problem for an application 
using a FLIR camera with an Amber AE-4 infrared focal plane 
array. The nominal wavelength for this system is A = 4 pm, 
and the aperture diameter is D = 100 mm. With a focal length 
of 300 mm, the required sample spacing for critical sampling is 
Af/(2 D) = 6 pm; however, the detector spacing for the Amber 
focal plane array is 50 pm with integration neighborhoods that 
are 40 pm square. This results in undersampling by a factor 
of 8.33. 

Using an object expansion of the form 

where the basis functions { ~ $ ~ ( x ) }  represent square indicator 
functions with spatial support that is five times smaller than 
the detector elements (10 prn x 10 pm), Hardie et al. used the 
method of Irani and Peteg [50] to estimate the frame-to-frame 
rotations and shifts { e k  = (A(+k), Ak)) followed by a regu- 
larized least-squares method to restore a fine-resolution scene 
estimate from a multiframe sequence of noisy microscanned 
images. This is the two-step procedure as described by Eq. (49). 
The regularization operator was the discretized Laplacian from 
Eq. (44), and the smoothingparameter y was tunedin a heuristic 
manner. A conjugate-gradient approach, based on the Fletcher- 
Reeves method, was used to solve the multiframe optimization 
problem. A typical image frame is displayed in Fig. 7(a), show- 
ing a FLIR image of buildings and roads in the Dayton, Ohio 
area.2 A multiframe image restoration obtained from 20 such 
frames, each with unknown translations and rotations, is shown 
in Fig. 7(b). Clearly, resolution has been improved in the imagery. 

5.2 Ground-Based Imaging through 
Atmospheric Turbulence 
The distorting effects of atmospheric turbulence give rise to 
continuous-domain point-spread functions of the form 

where 8 k  represents the turbulence-induced aberrations for the 
kth frame. The discrete-domain point-spread function is then 

2ThesedatawerecollectedcourtesyoftheInfraredThreat WarninaLaboratom 
Threat Detection Branch at Wright Laboratory (WL/AAJP). 

” 

J 
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(21) (b )  

FIGURE 7 
image frame from the FLIR imagery; (b) the restored image from 20 undersampled image frames. 

Demonstration of multiframe image restoration for undersampled FLIR images: (a) an undersampled 

of the form gorithm. The discrete-domain imaging equations are then 

= 11 w(n, y)h@ - X; k)JIm(X)dydx, (58) and the joint estimation of the unknown object and the turbu- 
lence parameters in the presence of Poisson (photon) noise can 
be accomplished by solving the following maximum-likelihood 
problem: and, if the spatial support for the detector elements w(n, y) and 

basis functions JIm(x) are sufficiently small, then the discrete- 
domain point spread can be reasonable approximated as 

(fd, 6) = arg min 
hd(n, m;  k) 2: h@n - Xm; k), (59) 

where yn is the spatial location of the nth detector element and 
Xm is the spatial location of the mth object pixel. If the detec- 
tor elements and object pixels are furthermore on the same grid 
(Ax = A,,), then the discrete-domain point spread can be fur- 
ther approximated as 

where A,, is the pupil-plane discretization grid spacing. If the 
aperture and image planes are discretized on a grid of size N x 
Nand if AuAx/(Af> = 1/N, then the discrete-domain point 
spread can be approximated by the space-invariant function: 

The generalized expectation-maximization method has been 
used to derive an iterative solution to this joint-estimation prob- 
lem. The algorithm derivation, and extensions to problems in- 
volving Gaussian (read-out) noise and nonuniform detector gain 
and bias, are presented in Refs. [6,51]. The use of this method 
on real data is illustrated in Fig. 8. The four image frames of the 
Hubble Space Telescope were acquired by a 1.6-m telescope at 
the Air Force Maui Optical Station. The nominal wavelength for 
these images was 750 nm and the exposure time for each frame 
was 8 ms. The object estimate was obtained by processing 16 of 
these frames. 

2 

hd(m; k) 2: 1 A(I)ejek(oe-j%l’m 1 , (61) 5.3 Ground-Based Solar Imaging 
I with Phase Diversity 

where A(I) = A(A,I) and € ) & ( I )  = €)k(A,l). Using these approx- 
imations, one can compute the discrete-domain point spread 
easily and efficiently by means of the fast Fourier transform al- 

Phase-diverse speckle is a measurement and processing method 
for the simultaneous estimation of an object and the atmo- 
spheric phase aberrations from multiframe imagery acquired 
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Multiframe imagery of the Hubble Space Telescope 

Restored image estimate 

FIGURE 8 
telescope at the Air Force Maui Optical Station. 

Multiframe imagery and restored image estimate of the Hubble Space Telescope as acquired by a 1.6-m 

in the presence of turbulence-induced aberrations. By modify- 
ing a telescope to simultaneously record both an in-focus and 
out-of-focus image for each exposure frame, the phase-diverse 
speckle method records a sequence of discrete-domain images 
that are formed according to 

and 

where hd(m; k) is the point-spread function for turbulence and 
diffraction, parameterized by the turbulence-induced aberra- 
tion parameters 8k for the kth frame as defined in Eq. (61), and 
hd(m; k, 8df) is the out-of-focus point-spread function for the 
same frame. The additional aberration that is due to the known 
defocus error 8df is usually well modeled as a quadratic function 

following optimization problem: 

where d(n; k, 1) and d(n; k, 2) are the the in-focus and out- 
of-focus images for the kth frame, respectively. Although the 
formation of two images for each frame generally leads to less 
light and an increased noise level in each recorded image, the ad- 
dition of the defocused diversity channel can result in significant 
improvements in the ability to restore fine-resolution imagery 
from turbulence degraded imagery[ 521. 

Paxman, Seldin, et al. [24,53-561 have applied this method 
with great success to a problem in solar imaging by using a 
quasi-Newton method for the optimization of Eq. (68). Within 
their estimation procedure, they have modified the measure- 
ment model to account for nonuniform detector gain and bias, 
included a Gaussian-kernel sieve constraint for the object [as 
in Eq. (37)], and incorporated a polynomial expansion for the 
phase aberrations: 

0 = & ( I )  = Caki~i(Z/R),  k = 1 , 2 , .  . . , K , (69) I so that 

2 { i  
~ ( ~ ) ~ j [ e ~ ( r ) + a ~ ~ ~ ~ ~ * I , - j ~ ~ . m  I 

* (67) hd(m; k, edf) = 
I 2  where R is the radius of the telescope’s aperture, and the poly- 

nomical functions { zi ( I ) }  are the circle polynomials of Zernike, 
which are orthonormal over the interior of a unit circle [57]. 
These polynomials have found widespread use in optics because 

For Poisson (photon) noise, the maximum-likelihood estima- 
tion of the object and aberrations is accomplished by solving the 
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1 

(i) 

FIGURE 9 Phase diverse speckle: (a)-(d) in-focus image frames; (e)-(h) defocus image frames; 
(i) restoration from 10 in-focus and defocus image frames; (j) large field of view obtained from 35 
small field-of-view restorations on a 5 x 7 grid. 

they represent common aberration modes such as defocus, coma, 
and spherical aberration, and because they form a good approxi- 
mation to the Karhunen-Loeve expansion for atmospheric aber- 
rations that obey Kolmogorov statistics [ 5,301. 

The top row of Fig. 9 shows four in-focus image frames that 
were acquired by Dr. Christoph Keller, using a 76-cm vacuum 
tower telescope at the National Solar Observatory on Sacramento 
Peak, NM. Many processes in the solar atmosphere have typical 
spatial scales that are much smaller than the resolution of these 

blurred images, and because of this, important solar features can- 
not be observed without some form of image restoration. The 
second row of Fig. 9 shows the corresponding out-of-focus image 
frames that were acquired for use with the phase-diverse speckle 
method. Using in-focus and defocused image pairs from 10 
frames, Paxman and Seldin obtained the restored image shown 
in Fig. 9(i). The restored image for this field ofview was blended 
with 34 others on a 5 x 7 grid across the solar surface to create the 
large field-of-view restoration shown in Fig. 9(j). By using the 
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phase diversity method, the resolution of the large field-of-view 
restoration is now sufficient to perform meaningful inferences 
about solar processes. 
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1 Introduction 

In this chapter we consider a class of iterative image restoration 
algorithms. Let g be the observed noisy and blurred image, D the 
operator describing the degradation system, f the input to the 
system, and v the noise added to the output image. The input- 
output relation of the degradation system is then described 
by PI 

g = D f + v .  (1) 

The image restoration problem therefore to be solved is the in- 
verse problem of recovering f from knowledge of g, D, and v. 

There are numerous imaging applications which are described 
by (1) [2,3,15]. D, for example, might represent a model of 
the turbulent atmosphere in astronomical observations with 
ground-based telescopes, or a model of the degradation intro- 
duced by an out-of-focus imaging device. D might also represent 
the quantization performed on a signal or a transformation of 
it, for reducing the number of bits required to represent the 
signal. 

The success in solving any recovery problem depends on the 
amount of the available prior information. This information 
refers to properties of the original image, the degradation system 
(which is in general onlypartially known), and the noise process. 
Such prior information can, for example, be represented by the 
fact that the original image is a sample of a stochastic field, 
or that the image is “smooth,” or that it takes only nonnegative 
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values. Besides defining the amount of prior information, equally 
critical is the ease of incorporating it into the recovery algorithm. 

After the degradation model is established, the next step is 
the formulation of a solution approach. This might involve the 
stochastic modeling of the input image (and the noise), the de- 
termination of the model parameters, and the formulation, of 
a criterion to be optimized. Alternatively, it might involve the 
formulation of a functional that is to be optimized subject to 
constraints imposed by the prior information. In the simplest 
possible case, the degradation equation defines directly the solu- 
tion approach. For example, if D is a square invertible matrix, and 
the noise is ignored in Eq. (l), f = D-’g is the desired unique 
solution. In most cases, however, the solution of Eq. (1) repre- 
sents an ill-posed problem [ 191. Application of regularization 
theory transforms it to a well-posed problem, which provides 
meaningful solutions to the original problem. 

There are a large number of approaches providing solutions 
to the image restoration problem. For recent reviews of such ap- 
proaches refer, for example, to [3,15]. This chapter concentrates 
on a specific type of iterative algorithms, the successive approxi- 
mations algorithm, and its application to the image restoration 
problem. 

2 Iterative Recovery Algorithms 

Iterative algorithms form an important part of optimization the- 
ory and numerical analysis. They date back to Gauss’s time, but 

191 
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they also represent a topic of active research. A large part of any 
textbook on optimization theory or numerical analysis deals 
with iterative optimization techniques or algorithms [ 171. 

Out of all possible iterative recovery algorithms, we concen- 
trate on the successive approximations algorithms, which have 
been successfully applied to the solution of a number of in- 
verse problems ( [ 181 represents a very comprehensive paper on 
the topic). The basic idea behind such an algorithm is that the 
solution to the problem of recovering a signal that satisfies cer- 
tain constraints from its degraded observation can be found by 
the alternate implementation of the degradation and the con- 
straint operator. Problems reported in [ 181 that can be solved 
with such an iterative algorithm are the phase-only recovery 
problem, the magnitude-only recovery problem, the bandlim- 
ited extrapolation problem, the image restoration problem, and 
the filter design problem [ 61. Reviews of iterative restoration al- 
gorithms are also presented in [4,12,16]. There are a number 
of advantages associated with iterative restoration algorithms, 
among which [ 12,181: (i) there is no need to determine or im- 
plement the inverse of an operator; (ii) knowledge about the 
solution can be incorporated into the restoration process in a rel- 
atively straightforward manner; (iii) the solution process can be 
monitored as it progresses; and (iv) the partially restored signal 
can be utilized in determining unknown parameters pertaining 
to the solution. 

In the following we first present the development and analysis 
of two simple iterative restoration algorithms. Such algorithms 
are based on a linear and spatially invariant degradation, when 
the noise is ignored. Their description is intended to provide 
a good understanding of the various issues involved in deal- 
ing with iterative algorithms. We adopt a “how-to” approach; 
it is expected that no difficulties will be encountered by any- 
body wishing to implement the algorithms. We then proceed 
with the matrix-vector representation of the degradation model 
and the iterative algorithms. The degradation systems described 
now are linear but not necessarily spatially invariant. The re- 
lation between the matrix-vector and scalar representation of 
the degradation equation and the iterative solution is also pre- 
sented. Experimental results demonstrate the capabilities of the 
algorithms. 

3 Spatially Invariant Degradation 

3.1 Degradation Model 
Let us consider the following degradation model, 

where g(nl, n2) and f(n1, n2) represent respectively the ob- 
served degraded and original image, d(nl, n2) represents the 
impulse response of the degradation system, and * denotes two- 
dimensional (2-D) convolution. It is mentioned here that the 

arrays d(n1, n2) and f(n1, n2) are appropriately padded with 
zeros, so that the result of 2-D circular convolution equals the 
result of 2-D linear convolution in Eq. (2) (see Chapter 2.3). 
Henceforth, in the following all the convolutions involved are 
circular convolutions and all the shifts are circular shifts. 

We rewrite Eq. (2) as follows: 

Therefore, the restoration problem of finding an estimate of 
f(n1, n2) given g(n1, n2) and d(n1, n2), becomes the problem 
of finding a root of Q(f(n1, n2)) = 0. 

3.2 Basic Iterative Restoration Algorithm 
The following identity holds for any value of the parameter p: 

Equation (4) forms the basis of the successive approximations 
iteration, by interpreting f ( nl , n2) on the left-hand side as the 
solution at the current iteration step, and f (nl, n2) on the right- 
hand side as the solution at the previous iteration step. That is, 
with fo(nl, n2) = 0, 

where fk(n1, n2) denotes the restored image at the kth iteration 
step, 6(nl ,  n2) denotes the discrete delta function, and P denotes 
the relaxation parameter that controls the convergence as well 
as the rate of convergence of the iteration. Iteration (5) is the 
basis of a large number of iterative recovery algorithms, and it 
is therefore analyzed in detail. Perhaps the earliest reference to 
iteration (5) with p = 1 was by Van Cittert [20] in the 1930’s. 

3.3 Convergence 
Clearly if a root of Q (f(n1, n2)) exists, this root is afixedpointof 
iteration(5),thatis,apointforwhich fi+l(nl, n2> = fk(n1, n2). 

It is not guaranteed, however, that iteration (5) wiU converge, 
even if Eq. (3) has one or more solutions. Let us, therefore, ex- 
amine under what condition (sufficient condition) iteration (5) 
converges. Let us first rewrite it in the discrete frequency do- 
main, by taking the 2-D discrete Fourier transform (DFT) of 
both sides. It then becomes 

where Fk(u, Y ) ,  G(u, Y) ,  and D(u, Y )  represent respectivelythe 
2-DDFTof fk(n1, n~) ,g(nl ,  n2),andd(nl, n2). Weexpressnext 
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t 

We therefore see that the restoration filter at the kth iteration 
step is given by 

k- 1 

Hk(U, v )  = p C ( 1  - p m u ,  (8) 
e=o 

The obvious next question is, under what conditions does the 
series in Eq. (8) converge, and what is this convergence filter 
equal to? Clearly, if 

I 

Geometric interpretation of the sufficient condition for conver- FIGURE 1 
gence of the basic iteration, where c = (1/p, 0). 

the case, such as the degradation that is due to motion, iteration 
(5) is not guaranteed to converge. 

The following form of Eq. (12) results when Im{ D(u, v ) )  = 
0, which means that d ( n l ,  nz) is symmetric, 

where Dmax(u, v )  denotes the maximumvalue of D( u, v )  over all 
frequencies (u,  v).Ifwenowalso takeintoaccountthat d ( n l ,  n2)  
istypicallynormalized, i.e., E,,,,, d(n1, n2) = 1, and represents 
a low-pass degradation, then D(0,O) = Drnax(u, v )  = 1. In this 
case Eq. (12) becomes 

then 

1 
lim Hk(u, v )  = lim p -- - 1 - (1 - PD(U, v))k 

k+ 00 k+w 1 - (1 - PD(U, v ) )  D(u, v ) ’  

(10) 

Notice that Eq. (9) is not satisfied at the frequencies for which 
D(u, v )  = 0. At these frequencies 

and therefore, in the limit Hk( u, v )  is not defined. However, since 
the number of iterations run is always finite, Hk(u, v)  is a large 
but finite number. 

Having a closer look at the sufficient condition for conver- 
gence, we see that Eq. (9) can be rewritten as 

11 - p Re{D(u, v ) }  - j P  Im{D(u, v)} I2  < 1 

==+ (1  - PRe(D(u, v) ) ) ’+  (PIm{D(u, v)})’ < 1.  (12) 

Inequality (12) defines the region inside a circle of ra- 
dius l /p centered at c=( l /p ,  0) in the (Re{D(u, v ) ) ,  
Im{D(u, v ) ) )  domain, as shown in Fig. 1. From this figure it 
is clear that the left half-plane is not included in the region of 
convergence. That is, even though by decreasing p the size of 
the region of convergence increases, if the real part of D(u, v )  
is negative, the sufficient condition for convergence cannot be 
satisfied. Therefore, for the class of degradations for which this is 

o < p < 2 .  (14) 

From the above analysis, when the sufficient condition for con- 
vergence is satisfied, the iteration converges to the original sig- 
nal. This is also the inverse solution obtained directly from the 
degradation equation. That is, by rewriting Eq. (2) in the discrete 
frequency domain, 

we obtain 

which represents the pseudo-inverse or generalized inverse 
solution. 

An important point to be made here is that, unlike the iter- 
ative solution, the inverse solution of Eq. (16) can be obtained 
without imposing any requirements on D( u, v) .  That is, even if 
Eq. (2) or Eq. (15) has a unique solution, that is, D(u, v )  # 0 
for all (u, v),  iteration (5) may not converge, if the sufficient 
condition for convergence is not satisfied. It is therefore not the 
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a 

FIGURE 2 (a) Blurred image by an I-D motion blur over 8 pixels and the corresponding magnitude 
of the frequency response of the degradation system; (b)-(d) images restored by iteration (18), after 
20 iterations (ISNR = 4.03 dB), 50 iterations (ISNR = 6.22 dB), and at convergence after 221 iterations 
(ISNR=9.92dB),andthecorrespondingmagnitudeof Hk(u, 0) inEq. (19); (e) imagerestored bythedirect 
implementation of the generalized inverse filter in Eq. (16) (ISNR = 15.50dB), and the corresponding 
magnitude of the frequency response of the restoration filter. (Continues.) 

is used for terminating the iteration. Notice that Eq. (5) is not 
guaranteed to converge for this particular degradation since 
D(u, v )  takes negative values. The restored image of Fig. 2(e) 
is the result of the direct implementation of the pseudo-inverse 
filter, which can be thought ofas the result ofthe iterative restora- 
tion algorithm after infinitely many iterations, assuming infinite 
precision arithmetic. The corresponding ISNRs are as follows: 

4.03 dB, Fig. 2(b); 6.22 dB, Fig. 2(c); 9.92 dB, Fig. 2(d); and 
15.50 dB, Fig. 2(e). Finally, the normalized residual error shown 
in Eq. (25) versus the number of iterations is shown in Fig. 3. 
The iteration steps at which the restored images are shown in the 
previous figure are indicated by circles. 

We repeat the same experiment when noise is added to the 
blurred image, resulting in a BSNR of 20 dB, as shown in 
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FIGURE 2 (Continued ). 

Fig. 4(a). The restored images after 20 iterations (ISNR= 1.83 
dB), 50 iterations (ISNR= -0.40 dB), and at convergence 
after 1712 iterations (ISNR= -9.43 dB) are shown respec- 
tively in Figs. 4(b), 4(c), and 4(d). Finally, the restoration 
based on the direct implementation of the pseudo-inverse filter 
(ISNR = -12.09 dB) is shown in Fig. 4(e). The iterative algo- 
rithm converges slower in this case. 

FIGURE 3 Normalized residual error as a function ofthenumber ofiterations. 

What becomes evident from these experiments is the follow- 
ing. 

1. As expected, for the noise-free case the visual quality as 
well as the objective quality, in terms of the ISNR, of 
the restored images increase as the number of iterations 
increases. 

2. For the noise-free case the inverse filter outperforms the 
iterative restoration filter. Based on this experiment there 
is no reason to implement this particular filter iteratively, 
except possibly for computational reasons. 

3. For the noisy-blurred image the noise is amplified and the 
ISNR decreases as the number of iterations increases. Noise 
completely dominates the image restored by the pseudo- 
inverse filter. In this case, the iterative implementation of 
the restoration filter offers the advantage that the number 
of iterations can be used to control the amplification of 
the noise, which represents a form of regularization. The 
restored image, for example, after 50 iterations (Fig. 4(c)) 
represents a reasonable restoration. 

4. The iteratively restored image exhibits noticeable ringing 
artifacts, which will be further analyzed below. Such arti- 
facts can be masked by noise, as demonstrated, for example, 
with the image in Fig. 4( d) . 
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FIGURE 4 (a) Noisy-blurred image; 1-D motion blur over 8 pixels, BSNR = 20 dB (b)-(d) images restored by it- 
eration (18), after 20 iterations (ISNR = 1.83 dB), 50 iterations (ISNR = -0.30 dB), and at convergence after 1712 
iterations (ISNR = -9.43 dB); (e) image restored by the direct implementation of the generalized inverse filter in Eq. (16) 
(ISNR = -12.09 dB). 

Ringing Artifacts 
Let us compare the magnitudes of the frequency response of 
the restoration filter after 221 iterations (Fig. 2(d)) and the in- 
verse filter (Fig. 2(e)). First of all, it is clear that the existence 
of spectral zeros in D(u, v )  does not cause any difficulty in the 
determination of the restoration filter in both cases, since the 
restoration filter is also zero at these frequencies. The main dif- 
ference is that the values of I H(u,  v )  1, the magnitude of the 
frequency response of the inverse filter, at frequencies close to 
the zeros of D(u, v )  are considerably larger than the correspond- 
ing values of I &( u, v )  I. This is because the values of &( u, v )  
are approximated by a series according to Eq. (19). The impor- 
tant term in this series is (1 - p I D( u, v )  I*), since it determines 
whether the iteration converges or not (sufficient condition). 
Clearly, this term for values of D(u, v )  close to zero is close 
to one, and therefore, it approaches zero much slower when 
raised to the power of k, the number of iterations, than the 
terms for which D(u, v )  assumes larger values and therefore the 
term ( 1  - p I D( u, v )  12) is close to zero. This means that each fre- 
quency component is restored independently and with different 
convergence rates. Clearly, the larger the values of 6, the faster the 
convergence, it is mentioned here that the quality of the restored 

image at convergence depends on the value of p; in other words, 
two images restored with different p’s but satisfying the same 
convergence criterion might differ considerably in terms of both 
visual quality and ISNR. 

Let us denote by h( nl , n2) the impulse response of the restora- 
tion filter and detine 

Ideally, hd(n1,  n2) should be equal to an impulse, or its DFT 
&(u, v )  should be a constant, that is, the restoration filter 
is precisely undoing what the degradation system did. Because 
of the spectral zeros, however, in D(u, v ) ,  &(u, v )  deviates 
from a constant. For the particular example under considera- 
tion IHd(u, 0)l is shown in Figs. 5(a) and 5(c), for the inverse 
filter and the iteratively implemented inverse filter by Eq. (18), 
respectively. In Figs. 5(b) and 5(d) the corresponding impulse 
responses are shown. Because of the periodic zeros of D(u, v )  in 
this particular case, hd (nl , n2) consists of the sum of an impulse 
and an impulse train (of period 8 samples). The deviation from 
a constant or an impulse is greater with the iterative restoration 
filter than with the direct inverse filter. 
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(a) IHal(u, 0)I for direct implementation of the inverse filter; (c) J&(u, 0)l for the iterative 

Now, in the absense of noise the restored image f(n1, nz)  is 
given by 

f(nl ,  nz> = hdl(n1, nz) * f(n1, nz>. (27) 

Clearly, because of the shape of hd(n1, nz) shown in Figs. 5(b) 
and 5(d) (only hd(nl, 0) is shown, since it is zero for the rest of 
the values of n2), the existence of the periodic train of impulses 
gives rise to ringing. In the case of the inverse filter (Fig. 5(b)) 
the impulses of the train are small in magnitude and therefore 
ringing is not visible. In the case of the iterative filter, however, the 
few impulses close to zero have larger amplitude and therefore 
ringing is noticeable in this case. 

4 Matrix-Vector Formulation 

The presentation so far has followed a rather simple and intuitive 
path. We hope that it demonstrated some of the issues involved 
in developing and implementing an iterative algorithm. In this 
section we present the matrix-vector formulation of the degra- 
dation process and the restoration iteration. More general results 
are therefore obtained, since now the degradation can be spa- 
t i dy  varying, while the restoration filter maybe spatially varying 
as well, but even nonlinear. The degradation actually can be non- 

linear as well (of course it is not represented by a matrix in this 
case), but we do not focus on this case, although most of the 
iterative algorithms discussed below would be applicable. 

What became clear from the previous sections is that in ap- 
plying the successive approximations iteration, the restoration 
problem to be solved is brought first into the form of finding the 
root of a function (see Eq. (3)). In other words, a solution to the 
restoration problem is sought that satisfies 

where f E RN is the vector representation of the signal resulting 
from the stacking or ordering of the original signal, and @(f) 
represents a nonlinear in general function. The row by row, from 
left-to-right stacking of an image is typically referred to as lexi- 
cographic ordering. For a 256 x 256 image, for example, vector f 
is of dimension 64K x 1. 

Then the successive approximations iteration that might pro- 
vide us with a solution to Eq. (28) is given by 

with fo = 0. Clearlyiff’ is a solution to @(f) = 0, i.e., @(f’) = 0, 
then f’ is also a fixed point of the above iteration, that is, 
fk+l = fk = f’. However, as was discussed in the previous sec- 
tion, even iff‘ is the unique solution to Eq. (28), this does not 
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imply that iteration (29) will converge. This again underlines 
the importance of convergence when dealing with iterative al- 
gorithms. The form iteration (29) takes for various forms of the 
function Q, (f) is examined next. 

4.1 Basic Iteration 
From Eq. (1) when the noise is ignored, the simplest possible 
form Q, (f) can take is 

Then Eq. (29) becomes 

where I is the identity operator. 

4.2 Least-Squares Iteration 
According to the least-squares approach, a solution to Eq. (1) is 
sought by minimizing 

A necessary condition for M(f) to have a minimum is that its 
gradient with respect to f is equal to zero. That is, in this case 

(33) 
1 
2 

@(f) = -VfM(f) = DT(g - Df), 

where 
of iteration (29) then results in 

denotes the transpose of a matrix or vector. Application 

4.3 Constrained Least-Squares Iteration 
The image restoration problem is an ill-posed problem, which 
means that matrix D is ill conditioned. A regularization method 
replaces an ill-posed problem by a well-posed problem, whose 
solution is an acceptable approximation to the solution of the ill- 
posed problem [ 191. Most regularization approaches transform 
the original inverse problem into a constrained optimization 
problem. That is, a functional has to be optimized with respect 
to the original image, and possibly other parameters. By using 
the necessary condition for optimality, the gradient of the func- 
tional with respect to the original image is set equal to zero, 
therefore determining the mathematical form of Q, (f). The suc- 
cessive approximations iteration becomes in this case a gradient 
method with a fixed step (determined by p). 

As an example, a restored image is sought as the result of the 
minimization of [9] 

subject to the constraint that 

Operator C is a high-pass operator. The meaning then of the 
minimization of I[ Cfl12 is to constrain the high-frequency energy 
of the restored image, therefore requiring that the restored image 
is smooth. In contrast, by enforcing inequality (36) the fidelity 
to the data is preserved. 

Following the Lagrangian approach that transforms the con- 
strained optimization problem into an unconstrained one, the 
following functional is minimized 

The necessary condition for a minimum is that the gradient of 
M(a,  f )  is equal to zero. That is, in this case 

fk+l = f3DTg+ (I - PDTD)fk. (34) 

It is mentioned here that the matrix-vector representation of 
an iteration does not necessarily determine the way the iteration 
is implemented. In other words, the pointwise version of the 
iteration may be more efficient, from the implementation point 
of view, than the matrix-vector form of the iteration. Now when 
Eq. (2) is used to form the matrix-vector equation g = Df, matrix 
D is a block-circulant matrix 121. A square matrix is circulant 
when a circular shift of one row produces the next row, and 
the circular shift of the last row produces the first row. A square 
matrix is block circulant when it consists of circular submatrices, 
which when circularly shifted produce the next row of circulant 
matrices. The singular values of the block circulant matrix D are 
theDFTvaluesof d(n1, nz),andtheeigenvectorsarethecomplex 
exponential basis functions of the DFT. Iterations (31) and (34) 
can therefore be written in the discrete frequency domain, and 
they become identical to iteration (6) and the frequency domain 
version of iteration (18), respectively [ 12,161. 

1 
2 

@(f) = -V~M(CX, f )  = (DTD + aCTC)f - DTg, (38) 

is used in iteration (29). The determination of the value of 
the regularization parameter ci is a critical issue in regularized 
restoration, since it controls the tradeoff between fidelity to the 
data and smoothness of the solution, and therefore the quality 
of the restored image. A number of approaches for determining 
its value are presented and compared in [ 81. 

Since the restoration filter resulting from Eq. (38) is widely 
used, it is worth looking further into its properties. When the 
degradation matrices D and C are block circulant, Eq. (381, the 
resulting successive approximations iteration can be written in 
the discrete frequency domain. The iteration takes the form 
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where C(u, v )  represents the 2-D DFT of the impulse response 
of a high-pass filter, such as the 2-D Laplacian. Following steps 
similar to the ones presented in Section 3.3, we find it straight- 
forward to verify that in this case the restoration filter at the kth 
iteration step is given by 

k-1 

M u ,  = FEU- P(ID(u, v)I2+cxlC(u, v>12))'D*(u, v ) .  

(40) l = O  

Notice that condition (41) is not satisfied at the fre- 
quencies for which &(u ,v )  = /D(u,v)I2 + cxlC(u,v)I2 
= 0. It is therefore now not the zeros of the degradation ma- 
trix that have to be considered, but the zeros of the regularized 
matrix, with DFT values Hd(u, v) .  Clearly if &(u, v )  is zero at 
certain frequencies, this means that both D(u, v )  and C(u, v )  
are zero at these frequencies. This demonstrates the purpose of 
regularization, which is to remove the zeros of D(u, v )  without 
altering the rest of its values, or in general to make the matrix 
DTD + cxCTC better conditioned than the matrix DTD. 

For the frequencies at which Hd (u, v )  = 0, 

lim Hk(#, v )  = lim k p D * ( ~ ,  v )  = 0, (43) k+cc k+cc 

since D* (u, v )  = 0. 

4.3.1 Experimental Results 
The noisy and blurred image of Fig. $(a) (1-D motion blur over 
8 pixels, BSNR = 20 dB) is now restored using iteration (39), 
with cx = 0.01, p = 1.0, and C as the 2-D Laplacian oper- 
ator. It is mentioned here that the regularization parameter is 
chosen to be equal to as determined by a set theoretic 
restoration approach presented in [la]. The restored images af- 
ter 20 iterations (ISNR = 2.12 dB), 50 iteration (ISNR = 0.98 
dB), and at convergence after 330 iterations (ISNR = -1.01 
dB) with the corresponding 1 H k ( U ,  0)( in Eq. (40), are shown 
respectivelyin Figs. 6(a), 6(b), and 6(c). In Fig. 6(d) the restored 
image (ISNR = - 1.64 dB) by the direct implementation of the 
constrained least-squares filter in Eq. (42) is shown, along with 
the magnitude of the frequency response of the restoration filter. 
It is clear now by comparing the restoration filters of Figs. 2(d) 
and 6(c) and 2(e) and 6(d) that the high frequencies have been 

the denominator of the filter of the term cxlC(u, v)I2. Because 
of the iterative approximation of the constrained least-squares 
filter, however, the two filters shown in Figs. 6(c) and 6(d) differ 
primarily in the vicinity of the low-frequency zeros of D( u, v )  . 
Ringing is still present, as it can be primarily seen in Figs. 6(a) 
and6(b), althoughisnotasvisibleinFigs. 6(c) and6(d). Because 
of regularization the results in Figs. 6(c) and 6(d) are preferred 
over the corresponding resultswith no regularization (01 = O.O), 
shown in Figs. 4(d) and 4(e). 

It is emphasized here that, unlike the previous experiments, 
the magnitude of the frequency response of the restoration filter 
shown in Fig. 6 at zero vertical frequency, Le., I H(u,  0) I is not the 
same for all vertical frequencies v .  This is because the Laplacian 
operator is two-dimensional, unlike the degradation operator, 
which is one-dimensional. To further illustrate this 1 D(u, v)I2,  
IC(u, v) I2 ,  and IH,(u, v)12 in Eq. (42), are shown respectively 
in Figs. 7(a), 7(b), and 7(c). 

The value of the regularization parameter is very critical for 
the quality of the restored image. The restored images with three 
different values of the regularization parameter are shown in 
Figs. 8(a)-S(c), corresponding to cx = 1.0 (ISNR = 2.4 dB), 
cx = 0.1 (ISNR = 2.96 dB), and 01 = 0.01 (ISNR = -1.80 
dB). The corresponding magnitudes of the error images, i.e., 
(original-restored(, scaledlinearlyto the 32-255 range, are shown 
in Figs. 8(d)-8(f). What is observed is that for large values of (Y 

the restored image is "smooth" while the error image contains 
the high-frequency information of the original image (large bias 
of the estimate), while as cx decreases the restored image becomes 
more noisy and the error image takes the appearance of noise 
(large variance of the estimate). It has been shown in [8] that the 
bias of the constrained least-squares estimate is a monotonically 
increasing function of the regularization parameter, while the 
variance of the estimate is a monotonically decreasing function 
of the estimate. This implies that the mean-squared error (MSE) 
of the estimate, the sum of the bias and the variance, has a unique 
minimum for a specific value of cx. 

4.4 Spatially Adaptive Iteration 
Spatially adaptive image restoration is the next natural step in 
improving the quality of the restored images. There are various 
ways to argue the introduction of spatial adaptivity, the most 
commonly used ones being the nonhomogeneity or nonstation- 
arity of the image field and the properties of the human visual 
system. In either case, the functional to be minimized takes the 
form [4,12] 

wcx, f> = IIDf- gII&, + cxIICfll&*, (44) 

in which case 
1 
2 

@(f) = -vfM((Y, f )  

= (D T T  W, WID + UC T T  W, W2C)f - DTWTWlg. 

suppressed, because of regularization, that is, the addition in (45) 
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FIGURE 6 Restoration of the noisy-blurred image in Fig. 4(a) (motion over 8 pixels, BSNR = 20 dB), 
(a)-(c): images restored by iteration (391, after 20 iterations (ISNR = 2.12 dB), 50 iterations (ISNR = 0.98 
dB) and at convergence after 330 iterations (ISNR = -1.01 dB), andthe corresponding IHk(u, 0)l in Eq. (40); 
(d) image restored by the direct implementation of the constrained least-squares filter (ISNR = - 1.64 dB), 
and the corresponding magnitude of the frequency response of the restoration filter (Eq. (42)). 
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(b) 

FIGURE 7 
2-D Laplacian operator; (c) IH,(u, v)I2 in Eq. (42). (Continues.) 

(a) I D(u,  v)I2 for horizontal motion blur over 8 pixels; (b) IC(u, v)I2 for the 
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(c) 

FIGURE 7 (Continued ). 

(4 (e) (f) 

FIGURE 8 Direct constrained least-squares restorations of the noisy-blurred image in Fig. 4(a) (motion over 8 pixels, 
BSNR = 20 dB) with ct equal to (a) 1, (b) 0.1, (c) 0.01. (d)-(f) Corresponding [original-restoredl linearly mapped to the 
range [32,255]. 
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FIGURE 9 Restoration of the noisy-blurred image in Fig. 4(a) (motion over 8 pixels, 
BSNR = 20 dB), using (a) the adaptive algorithm of Eq. (45); (b) the nonadaptive algorithm 
ofiterationEq. (39); (c) valuesoftheweight matrixin Eq. (46); (d) amplitude ofthedifference 
between (a) and (b) linearly mapped to the range [32,255]. 

The choice ofthe diagonal weighting matrices W1 and W2 can be 
justified in various ways. In [ 121 both matrices are determined 
by the diagonal noise visibility matrix V [ 11. That is, W2 = V 
and W1 = 1 - W2. The entries of V take values between 0 and 1. 
They are equal to 0 at the edges (noise is not visible and therefore 
smoothing is disabled), equal to 1 at the flat regions (noise is 
visible and therefore smoothing is fullyenforced), and takevalues 
in between at the regions with moderate spatial activity. A study 
of the mapping between the level of spatial activity and the values 
of the visibility function appears in [ 71. 

4.4.1 Experimental Results 
The resulting successive approximations iteration from the use 
of @ (f) in Eq. (45) has been tested with the noisy and blurred im- 
age we have been using so far in our experiments, which is shown 
in Fig. 4(a). It should be emphasized here that although matri- 
ces D and C are block circulant, the iteration cannot be imple- 
mented in the discrete frequency domain, since the weight ma- 
trices W1 and W2, are diagonal but not circulant. Therefore, the 
iterative algorithm is implemented exclusively in the spatial do- 
main, or by switching between the frequency domain (where the 

convolutions are implemented) and the spatial domain (where 
the weighting takes place). Clearly, from an implementation 
point of view the use of iterative algorithms offers a distinct 
advantage in this particular case. 

The iteratively restored image with W1 = 1 - W2, cx = 0.01, 
and p = 0.1 is shown in Fig. 9(a), at convergence after 381 iter- 
ations and ISNR = 0.61 dB. The entries of the diagonal matrix 
W2, denoted by wz(i), are computed according to 

where u2 (i) is the local variance at the ordered ith pixel location, 
and 0 is a tuning parameter. The resulting values of w2(i) are 
linearly mapped into the [0, 11 range. These weights computed 
from the degraded image are shown in Fig. 9(c), linearly mapped 
to the [32,255] range, using a 3 x 3 window to find the local 
variance and 8 = 0.001. The image restored by the nonadaptive 
algorithm, that is, W1 = W2 = I and the rest of the parameters 
the same, is shown in Fig. 9(b) (ISNR = -0.20 dB). The absolute 
value of the difference between the images in Figs. 9(a) and 9(b), 
linearly mapped in the [32, 2551 range, is shown in Fig. 9(d). It 
is clear that the two algorithms differ primarily at the vicinity of 



3.9 Iterative Image Restoration 

2.5 

2 

1.5 

1 

0.5 

0 -  

205 

......................... j . . . . . . . . . .  :.,. .......... i ............... : .............. i ..... 

.......... .< .............. i ....... 

........... .+... ...................... + .............. ; .............. i .............. i ..... 

3 ;  

+ ............................. 2 .............. i ..... 

. . . . .  .; . . .  z . . . .  i .............. ................. 

............ j ........... ..i ......... i ........................... L .............. ; ..... 

edges, where the smoothing is downweighted or disabled with 
the adaptive algorithm. Spatially adaptive algorithms in general 
can greatly improve the restoration results, since they can adopt 
to the local characteristics of each image. 

5 Use of Constraints 

Iterative signal restoration algorithms regained popularity in the 
1970's because of the realization that improved solutions can be 
obtained by incorporating prior knowledge about the solution 
into the restoration process. For example, we may know in ad- 
vance that f is bandlimited or space limited, or we may know 
on physical grounds that f can only have nonnegative values. A 
convenient way of expressing such prior knowledge is to define 
a constraint operator C, such that 

f = Cf, (47) 

if and only iff satisfies the constraint. In general, C represents 
the concatenation of constraint operators. With the use of con- 
straints, iteration (29) becomes [ 181 
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As already mentioned, a number of recovery problems, such as 
the bandlimited extrapolation problem, and the reconstruction 
from phase or magnitude problem, can be solved with the use of 
algorithms of the form of Eq. (48), by appropriately describing 
the distortion and constraint operators [ 181. 

The contraction mapping theorem [ 171 usually serves as a basis 
for establishing convergence of iterative algorithms. Sufficient 
conditions for the convergence of the algorithms presented in 
Sec. 4 are presented in [ 12,161. Such conditions become identi- 
cal to the ones derived in Sec. 3, when all matrices involved are 
block circulant. When constraints are used, the sufficient con- 
dition for convergence of the iteration is that at least one of the 
operators C and \I, is contractive while the other is nonexpansive 
(C is nonexpansive, for example, when it represents a projection 
onto a convex set operator). Usually, it is harder to prove con- 
vergence and determine the convergence rate of the constrained 
iterative algorithm, taking also into account that some ofthe con- 
straint operators are nonlinear, such as the positivity constraint 
operator. 

5.1 Experimental Results 
We demonstrate the effectiveness ofthe positivity constraint with 
the use of a simple example. A one-dimensional impulsive sig- 
nal is shown in Fig. 10(a). Its degraded version by a motion 
blur over 8 samples is shown in Fig. 10(b). The blurred sig- 
nal is restored by iteration (18) (p = 1.0) with the use of the 
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FIGURE 10 
by iteration (18); (c) with positivity constraint; (d) without positivity constraint. 

(a) original signal; (b) blurred signal by motion blur over 8 samples; signals restored 
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are 

* algorithms with higher rates of convergence [ 131; . algorithms with a relaxation parameter which depends on 
the iteration step (steepest descent and conjugate gradient 
algorithms are examples of this); 

that use a regu1arization parameter which de- 
pends on the partially restored image [ 111; 
algorithms that use a different regularization parameter for 
each discrete frequency component (which can also be it- 
eration dependent) [ lo] ;  and 
algorithms that depend on more than one previous restora- 
tion step (multistep algorithms) [ 121. 
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It is our hope and expectation that the presented material will 
form a good introduction to the topic for the engineer or the 
student who would like to work in this area. 
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1 Introduction 
A video sequence is a much richer source of visual information 
than a still image. This is primarily due to the capture of motion; 
while a single image provides a snapshot of a scene, a sequence 
of images registers the dynamics in it. The registered motion is a 
very strong cue for human vision; we can easily recognize objects 
as soon as they move even if they are inconspicuous when still. 
Motion is equally important for video processing and compres- 
sion for two reasons. First, motion carries a lot of information 
about spatiotemporal relationships between image objects. This 
information can be used in such applications as traffic moni- 
toring or security surveillance, for example to identify objects 
entering or leaving the scene or objects that just moved. Sec- 
ondly, image properties, such as intensity or color, have a very 
high correlation in the direction of motion, i.e., they do not 
change significantly when tracked in the image (the color of a 
car does not change as the car moves across the image). This can 
be used for the removal of temporal video redundancy; in an 
ideal situation only the first image and the subsequent motion 
have to be transmitted. It can be also used for general tempo- 
ral filtering of video. In this case, one-dimensional temporal 
filtering along a motion trajectory, e g ,  for noise reduction or 

temporal interpolation, does not affect the spatial detail in the 
image. 

The above applications require that image points be identi- 
fied as moving or not (surveillance), or that it be measured how 
they move (compression, filtering). The first task is often re- 
ferred to as motion detection, whereas the latter is referred to as 
motion estimation. The goal of this chapter is to present today’s 
most promising approaches to solving both. Note that only two- 
dimensional (2-D) motion of intensity patterns in the image 
plane, often referred to as apparent motion, will be considered. 
Three-dimensional (3-D) motion of objects will not be treated 
here. Motion segmentation, i.e., the identification of groups of 
image points moving similarly, is treated in Chapter 4.9. 

The discussion of motion in this chapter will be carried out 
from the point of view of video processing and compression. 
Necessarily, the scope of methods reported will not be complete. 
To present the methods in a consistent fashion, a classification 
will be made based on models, estimation criteria, and search 
strategies used. This classification will be introduced for two rea- 
sons. First, it is essential for the understanding of methods de- 
scribed here and elsewhere in the literature. Second, it should 
help the reader in the development of his or her own motion 
detection or estimation method. 

Copyright @ 2wO b y h d e m i c  hers. 
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Although motion detection and estimation still require spe- 
cialized hardware for real-time execution, the present rapid 
growth of CPU power available in a personal computer will soon 
allow execution of motion-related tasks in software on a general 
CPU. This will certainly spawn new applications and an even 
greater need for robust, flexible, and fast motion detection and 
estimation algorithms. Hopefully, in designing a new algorithm 
or understanding an existing one, the reader will be able to ex- 
ploit the variety of tools presented here. 

The chapter is organized as follows. In the next section, the 
notation is established, followed by a brief review of some tools 
needed. Then, in Section 3, motion detection is discussed from 
the point of view of hypothesis testing and maximum aposteriori 
probability (MAP) detection. In Section 4, motion estimation is 
described in two parts. First, models, estimation criteria, and 
search strategies are discussed. Then, five motion estimation al- 
gorithms are described in more detail, of which three are based 
on models supported by the current video compression stan- 
dards. Both motion detection and estimation are illustrated by 
numerous experimental results. 

2 Notation and Preliminaries 

corresponding probability densities p y ( y  I ffo) and p r ( y  I HI), 
respectively. The goal is to decide from which of the two den- 
sities a given y is more likely to have been drawn. Clearly, 
four possibilities exist (hypothesis/decision): Ho/ Ho, Ho/ff1, 
.Hl/Ho, ffl/Hl.Whereas H o / H o  and &/HI correspondto cor- 
rect choices, ffo/Hl and Hl/Ho are erroneous. In order to make 
a decision, a decision criterion is needed that attaches some rela- 
tive importance to the four possible scenarios. 

Under the Bayes m'terion, two a priori probabilities Po and 
Pl = 1 - Po are assigned to the two hypotheses ffo and Hl, 
respectively, and a cost is assigned to each of the four scenarios 
listed above. Naturally, one would like to design a decision rule so 
that on average the cost associated with making a decision based 
on y is minimal. By computing an average risk and by assuming 
that costs associated with erroneous decisions are higher than 
those associated with the corresponding correct decisions, one 
can show that an optimal decision can be made according to the 
following rule [24, Chapter 21: 

The quantity on the left is called the likelihood ratio and 0 is a 
constant dependent on the costs ofthe four scenarios. Since these 
costs are determined in advance, 8 is a fixed threshold. If PO and 
PI are predetermined as well, the above hypothesis test com- 
pares the likelihood ratio with a given threshold. Alternatively, 
the prior probabilities can be made variable; variable-threshold 
hypothesis testing results. 

2.2 Markov Random Fields 

In this chapter, both continuous and discrete representations of 
motion and images will be used, with bold characters denoting 
vectors. Let x = ( x ,  y )T  be a spatial position of a pixel in con- 
tinuous coordinates, i.e., x E R2 within image limits, and let 1, 
denote image intensity at time t. Then, It(x) E R is limited by the 
dynamic range of the sensing device (e.g., vidicon, CCD). Before 
images can be manipulated digitally, they have to be sampled and 
quantized. Let n = (n l ,  112) be a discretized spatial position in 
the image that corresponds to x. Similarly, let k be a discretized A Markov random field (MRF) is a random 
position in time, also denoted t k .  The trip1et ( n l ,  n2> k)T be- process that the notion ofa  one-dimensiond (1-D) 
longs to a 3-D a 3-D lattice (Chapter Markov process. Below, Some essential properties of MRFs are 
7.2). It is assumed here that images are either continuous Or described; for more details the reader is referred to Chapter 4.3 

grid, for 

discrete simultaneously in position and in amplitude. Conse- 
quently, the same symbol I will be used for continuous and 
quantized intensities; the nature of I can be inferred from its 
argument (continuous-valued for x and quantized for n). 

and to the literature (e.gm, [91 and references therein). 
Let be a grid in R~ and let q(n) be a neigh- 

borhood of * E i,e., a set of such n,s that * $ q(n) and 
n E q(I)  + I E q(n). The first-order neighborhood consists of 

Motion in continuous images can be described a velOcitY the immediate top, bottom, left, and right neighbors of n. Let 
vector = (W, uz)T.  Whereas (x) is a at 'Patid POsi- be a neighborhood system, i.e., a collection of neighborhoods of 
tion x, vt will denote a velocityfield or motionfield, i.e., the set of 
all velocityvectors within the image, at time t. Often the compu- random pro- 
tation ofthis dense representation is replaced bythe computation cess such that each site E * is assigned a random variable. A 
of a small number of motion parameters b, with the benefit of 
reduced computational complexity. Then, vt is approximated by 
b, by means of a known transformation. For discrete images, the 
notion of velocity is replaced by displacement d. 

all E A. 
A random field over is a 

random field with the following properties, 

P(T =v) =. 0, V u  E r, and 

p(r, = u, I rr = Vz, vz + 
2.1 Hypothesis Testing = P ( Y , = U , ( Y Z = U Z , V I E ~ ( ~ ) ) ,  V n E A ,  VV ~ r ,  
Let y be an observation and let Y be the associated random vari- 
able. Suppose that there are two hypotheses HO and Hl with 

where P is a probability measure, is called a Markov random 
field with state space r. 
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Inorderto definetheGibbs distribution,the concepts ofclique 
and potential function are needed. A clique c defined over A with 
respect to N is a subset of A such that either c consists of a single 
site or every pair of sites in c are neighbors, i.e., belong to q. The 
set of all cliques is denoted by C. Examples of a two-element 
spatial clique {n, I ]  are two immediate horizontal, vertical, or 
diagonal neighbors. A Gibbs distribution with respect to A and 
N is a probability measure T on r such that 

where the constants Z and T are called the partition function 
and temperature, respectively, and the energyfinction U is of the 
form 

V(W) = V(w, c). 
C€C 

V(w , c) is called a potential function, and depends only on the 
value of u at sites that belong to the clique c. 

The equivalence between Markov random fields and Gibbs 
distributions is provided through the important Hammersley- 
Cliford theorem, which states that T is a MRF on A with respect 
to JU if and only if its probability distribution is a Gibbs dis- 
tribution with respect to A and N.  The equivalence between 
MRFs and Gibbs distributions results in a straightforward re- 
lationship between qualitative properties of a MRF and its pa- 
rameters by means of the potential functions V. Extension of 
the Hammersley-Clifford theorem to vector MRFs is straight- 
forward (a new definition of a state is needed). 

2.3 MAP Estimation 
Let Y be a random field of observations and let T be a random 
field that we want to estimate based on Y. Let y, w be their respec- 
tive realizations, For example, y could be a difference between 
two images while w could be a field of motion detection labels. 
In order to compute w based on y, a powerful tool is the MAP 
estimation, expressed as follows: 

3 = argmaxP(T = u  1 y )  
U 

= argm,aP(Y = yJw)P(T =w), (2) 

where m a ,  P (T = w 1 y )  denotes the maximum of the posterior 
probability P(T = w I y )  with respect to v and arg denotes the 
argument of this maximum, i.e., such .G that P(T = 3 Iy) > 
P (Y = w I y )  for any u . Above, the Bayes rule was used and 
P(Y = y) was omitted since it does not depend on w . If 
P (T = w ) is the same for all realizations w , then only the like- 
lihood P(Y = y I u) is maximized, resulting in the maximum 
likelihood (ML) estimation. 

3 Motion Detection 

Motion detection is, arguably, the simplest of the three motion- 
related tasks, i.e., detection, estimation, and segmentation. Its 
goal is to identify which image points, or more generally which 
regions, of the image have moved between two time instants. As 
such, motion detection applies only to images acquired with a 
static camera. However, if camera motion can be counteracted, 
e.g., by global motion estimation and compensation, then the 
method equally applies to images acquired with a moving camera 
[ 14, Chapter 8 J. 

It is essential to realize that the motion of image points is not 
perceived directly but rather through intensity changes. How- 
ever, such intensity changes over time may be also induced by 
camera noise or illumination changes. Moreover, object mo- 
tion itself may induce small intensity variations or even none 
at all. The latter will happen in the rare case of exactly con- 
stant luminance and color within the object. Clearly, motion 
detection from time-varying images is not as easy as may seem 
initially. 

3.1 Hypothesis Testing with a Fixed Threshold 
Fixed-threshold hypothesis testing belongs to the simplest mo- 
tion detection algorithms, as it requires very few arithmetic op- 
erations. Several early motion detection methods belong to this 
class, although originally they were not developed as such. 

Let H,u and H s  betwo hypotheses declaringanimagepoint at 
n as moving ( M )  and stationary (S), respectively. Let us assume 
that Ik(n) = Ik-l(n) + q and that q is a noise term (Chapter 
4.3, zero-mean Gaussian with variance u2 in stationary areas 
and zero-mean uniformly distributed in [- L, L ]  in moving ar- 
eas. The motivation is that in stationary areas only camera noise 
will distinguish same-position pixels at tk-1 and t k ,  while in mov- 
ing areas this difference is attributed to motion and therefore is 
unpredictable. Then, let 

be an observation [Eq. (I)] upon which we intend to select one 
of the two hypotheses. With the above assumptions and after 
taking the natural logarithm of both sides of Eq. (l), we can 
write the hypothesis test as follows: 

where the threshold 0 equals 2a2 ln[(2LPs)/(d%?P,~)]. A 
similar test can be derived for a Laplacian-distributed noise term 
q;  in Eq. (3) pt(n) is replaced by Ipk(n)l and 0 is computed 
accordingly. Such a test was used in the early motion detection 
algorithms. Note that both the Laplacian and Gaussian cases 
are equivalent under the appropriate selection of e. Although 8 



210 Handbook of Image and Video Processing 

includes the prior probabilities, they are usually fixed in advance 
as is the noise variance, and thus the test is parameterized by one 
constant. 

The above pixel-based hypothesis test is not robust to noise 
in the image; for small 0’s “noisy” detection masks result (many 
isolated small regions or even pixels), whereas for large 0’s only 
object boundaries and the most textured parts are detected. To 
attenuate the impact of noise, the method can be extended by 
measuring the temporal differences over a spatial window W 
with N points: 

This approach exploits the fact that typical variations of camera 
characteristics, such as camera noise, can be closely approxi- 
mated by an addtive white noise model; by averaging over W 
the noise impact is reduced. Still, the method is not very robust 
and therefore is usually followed by some postprocessing (such as 
median filtering, suppression of small regions, etc.). Moreover, 
since the classification at position n is done based on all pixels 
within W ,  the resolution of the method is reduced; a moving 
image point affects the decision of many of its neighbors. This 
method can be further improved by modeling the intensities 
Ik-1 and Ik within W by a polynomial function, e.g., linear or 
quadratic [ 111. 

The methods discussed thus far cannot deal with illumina- 
tion changes between tk-1 and t k ;  any intensity change caused 
by illumination variation is interpreted as motion. In the case 
of a global illumination change (across the whole image) a nor- 
malization of intensities can be used to match the second-order 
statistics in Ik-1 and Ik. By allowing a linear transformation 
&( n) = a I k  (n) + b, one can find coefficients a and b so that such 
statistics at t k  and tk-l are equal, i.e., hk = pk-1 and 6; = 
where 1; and 15 are, respectively, mean and variance of the nor- 
malized image and p and u are those for the original image. 
Solving for a and b yields 

This transformation helps in the case of global or almost- 
global illumination change only. However, a typical illumination 
change varies with n and moreover is often localized. The above 
normalization can be made adaptive on a region-by-region ba- 
sis, but for fixed regions (e.g., blocks) the improvements are 
marginal and it is unclear how to adapt the region shape. 

A different approach to handling illumination change is to 
compare intensity gradients rather than intensities themselves, 
Le., to construct the following test: 

where V = (a/ax, a/ay)T is the spatial gradient and 11 . 11 is a 
suitable norm, e.g., Euclidean or city-block distance. This ap- 
proach, applied to the polynomial-based intensity model [ 111, 
has been shown to increase robustness in the presence of illu- 
mination changes [HI. However, the method can handle the 
multiplicative nature of illumination only approximately (the 
intensity gradient above is not invariant under intensity scal- 
ing). To address this issue in more generality, shading models 
extensively used in computer graphics must be employed [ 181. 

3.2 Hypothesis Testing with Adaptive Threshold 
The motion detection methods presented thus far were based 
solely on image intensities and made no a priori assumptions 
about the nature of moving areas. However, moving 3-D objects 
usually create compact, closed boundaries in the image plane, 
i.e., if an image point is declared moving, it is likely that its 
neighbor is moving as well (unless the point is on a boundary) 
and the boundaryis smooth ratherthan rough. To take advantage 
of this apriori information, hypothesis testing can be combined 
with Markov random field models. 

Let E k  be a MRF of all labels assigned at time t k ,  and let f?k 

be its realization. Let us assume for the time being that ek(n) is 
known for all n except 1. Since the estimation process is itera- 
tive, this assumption is not unreasonable; previous estimates are 
known at n # 1. Thus, the estimation process is reduced to a 
decision between e k ( 1 )  = M and ek(2) = S. Let the label field 
resulting from e k ( I )  = M be denoted by e? and that produced 
by ek(1) = S be e:. Then, based on Eq. (1) the decision rule for 
e k  ( I ) can be written as follows: 

(4) 

where P is a probability distribution governing the MRF Ek. 
By making the simplifjmg assumption that the temporal dif- 
ferences pk(n) are conditionally independent, i.e., p ( p k  I e k )  = 
nn p(pk(n) I ek(n)) ,  we can further rewrite Eq. (4) as 

The hypothesis H,v means that e k ( 2 )  = M and H s  means that 
e k ( 2 )  = S. All constituent probability densities from the lefi- 
hand side of Eq. (4), except at 1, cancel out since ef’ and e; differ 
only at 1. Although the conditional independence assumption is 
reasonable in stationary areas (temporal differences are mostly 
due to camera noise), it is less so in the moving areas. However, a 
convincing argument based on experimental results can be made 
in favor of such independence [ 11. 

To increase the detection robustness to noise, the temporal 
differences should be pooled together, for example within a spa- 
tial window Wz centered at 1. This leads to the evaluation of 



3.10 Motion Detection and Estimation 21 1 

the likelihood for all pk within Wi given the hypothesis HM or 
HS at 2. Under the assumption of zero-mean Gaussian density 
p with variances wh and cri for HM and Hs, respectively, and 
assuming that crh >> u;, the final hypothesis becomes: 

criterion (Section 2.3). To find the MAP estimate of the label field 
Ek, wemust maximizetheposteriorprobability P(Ek = e k  I Pk), 
or its Bayes equivalent p(pk I e k ) P ( E k  = ek). 

Let us consider the likelihood p(pk(ek). One of the question- 
able assumptions made in the previous section was the condi- 
tional independence of the pk given ek [ E q .  (5)]. To alleviate 

pz(n) $ 2 ~ 2  (- In 6 + N In % + In P ( E k  = ef) , this problem, let I &(n) - Ik-1 (n) I be an observation modeled 
ne Wr S P ( E k  = ei') as pk(n) = t(ek(n)) + q(n) where q is zero-mean uncorrelated 

( 6 )  Gaussian noise with variance u2 and 

where N is the number ofpixels in Wl. In case the aprioriproba- 
bilities are identical or fixed (independent of the realization ek), 
the overall threshold depends only on model variances. Then, for 
increasing a& the overall threshold rises as well, thus discour- 
aging M labels (as camera noise increases only large temporal 
differences should induce moving labels). Conversely, for de- 
creasing cr& the threshold falls, thus biasing the decision toward 
moving labels. In the limit, as cri -+ 0, the threshold becomes 
0; for a noiseless camera even the slightest temporal difference 
will induce a moving label. 

By suitably defining the u priori probabilities one can adapt 
the threshold in response to the properties of ek. Since the re- 
quired properties are object compactness and smoothness of 
its boundaries, a simple MRF model supported on a first-order 
neighborhood [9] with two-element cliques c = {n, 2) and the 

if ek(n) = S 
ifek(n) = M' 

Above, ci is considered to be an average of the observations in 
moving areas. For example, OL could be computed as an average 
temporal difference for previous-iteration moving labels ek or 
previous-time moving labels ek-l. Clearly, .$ attempts to closely 
model the observations since for a static image point it is zero, 
while for a moving point it tracks average temporal intensity 
mismatch; the uncorrelated q should be a better approximation 
here than in the previous section. 

Under the uncorrelated Gaussian assumption for the likeli- 
hood p(pk I ek) and a Gibbs distribution for the u priori proba- 
bility P ( E k  = ek), the overall energy function can be written as 
follows: 

is appropriate. Whenever a neighbor of n has a different label 
than ek (n), a penalty p > 0 is incurred; summed over the whole 
field it is proportional to the length of the moving mask bound- 
ary. Thus, the resulting prior (Gibbs) probability The first term measures how well the current label ek(rz) explains 

the observation pk(n). The other terms measure how contigu- 

will increase for configurations with smooth boundaries and will 
reduce for those with rough boundaries. More advanced models, 
for example, based on second-order neighborhood systems with 
diagonal cliques, can be used similarly [ 11. 

Note that the MRF model facilitates the use of adaptive thres- 
holds: if P(Ek = e;) > P ( E k  = e), the fixed part of the 
threshold in Eq. ( 6 ) ,  Le., the first two terms, will be augmented 
by a positive number, thus biasing the decision toward a static 
label. Conversely, for P ( E k  = e;) 4 P(Ek = ep), the bias is 
in favor of a moving label. 

3.3 MAP Detection 

ous are the labels in the image plane ( V, ) and in time ( V,) . Both 
V, and V, are specified similarly to Eq. (7), thus favoring spatial 
and temporal similarity of the labels [ 6 ] .  This basic model can 
be enhanced by selecting a more versatile model for E [6] or a 
more complete prior model for including spatiotemporal, as op- 
posed to purely spatial and temporal, cliques [ 151. The above cost 
function can be optimized by using various approaches, such as 
those discussed in Section 4.3: simulated annealing, iterated con- 
ditional modes, or highest confidence first. The latter method, 
based on an adaptive selection of visited labels according to their 
impact on the energy U (most influential visited first), gives the 
best compromise between performance (final energy value) and 
computing time. 

3.4 Experimental Comparison of Motion 
Detection Methods 

The MRF label model introduced in the previous section can 
be combined with another Bayesian criterion, namely the NAP 

Figure 1 shows the original images as well as the binary label fields 
obtained by using the MAP detection mechanism discussed in 
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FIGURE 1 Motion detection results for two frames of a road traffic sequence of images: (a) frame 137; (b) MAP-detected 
motion for frame 137; (c) motion in frame 137 detected by the fixed-threshold hypothesis test; (d) frame 143; (e) 
MAP-detected motion for frame 143. (From Bouthemy and Lalande [6] .  Reproduced with permission of the SPIE.) 

Section 3.3, as well as those obtained by using the fixed-threshold 
hypothesis test Eq. (3). Note the compactness of the detection 
mask and the smoother boundary in case of the MAP estimate as 
opposed to the noisy detection result obtained by thresholding. 
The improvement is due primarily to the a priori knowledge 
incorporated into the algorithm. 

4 Motion Estimation 

As mentioned in the introduction, knowledge of motion is es- 
sential for both the compression and processing of image se- 
quences. Although compression is often considered to be en- 
compassed by processing, a clear distinction between these two 
terms will be made here. Methods explicitly reducing the num- 
ber of bits needed to represent a video sequence will be clas- 
sified as video compression techniques. For example, motion- 
compensated hybrid (predictive/DCT) coding is exploited today 
in all video compression standards, Le., H.261, H.263, MPEG-1, 
MPEG-2, MPEG-4 (Chapters 6.4 and 6.5). In contrast, meth- 
ods that do not attempt such a reduction but transform the 
video sequence, e.g., to improve quality, will be considered to 
belong to video processing methods. Examples ofvideo process- 
ing are motion-compensated noise reduction (Chapter 3.1 l), 

motion-compensated restoration (Chapter 3.1 l ) ,  and motion- 
based video segmentation (Chapter 4.9). 

The above classification is important from the point of view 
of the goals of motion estimation, which in turn influence the 
choice of models and estimation criteria. In the case of video 
compression, the estimated motion parameters should lead to 
the highest compression ratio possible (for a given video qual- 
ity). Therefore, the computed motion need not resemble the 
true motion of image points as long as some minimum bit rate 
is achieved. In video processing, however, it is the true mo- 
tion of image points that is sought. For example, in motion- 
compensated temporal interpolation (Fig. 2) the task is to com- 
pute new images located between the existing images of a video 
sequence (e.g., video frame rate conversion between NTSC and 
PAL scanning standards). In order for the new images to be con- 
sistent with the existing ones, image points must be displaced 
according to their true motion, as otherwise a “jerky” motion of 
objects would result. This is a very important difference that in- 
fluences the design of motion estimation algorithms and, most 
importantly, that usually precludes a good performance of a 
compression-optimized motion estimation algorithm in video 
processing and vice versa. 

In order to develop a motion estimation algorithm, three 
important elements have to be considered: models, estimation 



3. IO Motion Detection and Estimation 213 

For an orthographic projection and arbitrary 3-D surface under- 
going 3-D translation, the resulting 2-D instantaneous velocity 
at position x in the image plane is described by a 2-D vector: 

r--------- 

v(x) = (;;) 9 (8) 

where parameters b = (bl, b2) = (111, 112) depend on camera 
geometry and 3-D translation parameters. This 2-D translational 
model has proven very powerful in practice, especially in video 
compression, since locally it provides a close approximation for 
most natural images. 

The second powerful, yet simple, parametric model is that of 
orthographic Projection combined with 3-D affine motion of 
a planar surface. It leads to the following six-parameter afine 
model [22, Chapter 61: 

I __________________. 

t k ,  = I L -  A I  

FIGURE 2 Motion-compensated interpolation betweenimagesat time &-At 
and Q. Motion compensation is essential for smooth renditionofmovingobjects. 
Shownarethreemotionvectors that map thecorrespondingimagepointsat time 
Q -AtandQontoimageattimeT. 

criteria, and search strategies. They will be discussed next, but 
no attempt will be made to include an exhaustive list pertaining 
to each of them. Clearly, this cannot be considered a universal 
classification scheme of motion estimation algorithms, but it is 
very useful in understanding the properties and merits ofvarious 
approaches. Then, five practical motion estimation algorithms 
will be discussed in more detail. 

4.1 Motion Models 
There are two essential models in motion estimation: a motion 
model, i.e., how to represent motion in an image sequence, and 
a model relating motion parameters to image intensities, called 
an observation model. The latter model is needed since, as men- 
tioned before, the computation of motion is carried out indi- 
rectly by the examination of intensity changes. 

(9) 

where, again, b = (bl , . . . , b6) is a vector of parameters related 
to the camera as well as 3-D surface and motion parameters. 
Clearly, the translational model above is a special case of the 
affine model. More complex models have been proposed as well 
but, depending on the application, they do not always improve 
the precision of motion estimates. In general, the higher the 
number of motion parameters, the more precise the description 
of motion. However, an excessive number of parameters may be 
detrimental to the performance. This depends on the number of 
degrees of freedom, i.e., model complexity (dimensionality of b 
and the functional dependence of v on x ,  y )  versus the size of 
the region of support (see below). A complex model applied to 
a small region of support may lead to an actual increase in the 
estimation error compared to a simpler model such as in Eq. (9). 

Spatial Motion Models Temporal Motion Models 
The goal is to estimate the motion of image points, i.e., the 2 - 0  
motion or apparent motion. Such a motion is a combination of 
projections of the motion of objects in a 3-D scene and of 3-D 
camera motion. Whereas camera motion affects the movements 
of all or almost all image points, the motion of 3-D objects 
only affects a subset of image points corresponding to objects’ 
projections. Since, in principle, the camera-induced motion can 
be compensated for by either estimating it (Section 5.1) or by 
physically measuring it at the camera, we need to model the 
object-induced motion only. Such a motion depends on 

the image formation model, e.g., perspective, orthographic 

the motion model of the 3-D object, e.g., rigid-body with 

the surface model of the 3-D object, e.g., planar, parabolic. 

projection [23], 

3-D translation and rotation, 3-D affine motion, and 

The trajectories of individual image points drawn in the ( x ,  y, t )  
space of an image sequence can be fairly arbitrary since they de- 
pend on object motion. In the simplest case, trajectories are 
linear, such as the ones shown in Fig. 2. Assuming that the ve- 
locity v t ( x )  is constant between t = tkW1 and T (r > t), a linear 
trajectory can be expressed as follows: 

(10) 

where dt,T (x) = v t ( x )  . (T - t )  is a displacement vector’ mea- 
sured in the positive direction of time, i.e., from t to r . Conse- 
quently, for linear motion the task is to find the two components 
of the velocity v or displacement d for each x. This simple 
motion model embedding the two-parameter spatial model of 
Eq. (8) has proven to be a powerful motion estimation tool in 
practice. 

x ( T )  = x(t) + vt(%)(T - t )  = x(t) + d,T(x), 

In general these relationships are fairly complex, but two cases 
are relatively simple and have been used extensively in practice. 

‘In the sequel, the dependence of d on t and T will be dropped whenever it is 
dear between what time instants d applies. 
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A natural extension of the linear model is a quadratic trajec- 
tory model, accounting for acceleration of image points, which 
can be described by 

The model is based on two velocity (linear) variables and two ac- 
celeration (quadratic) variables a = (a l ,  u2)T, thus accounting 
for second-order effects. This relatively new model has recently 
been demonstrated to greatly benefit such motion-critical tasks 
as frame rate conversion [7] because of its improved handling 
of variable-speed motion present in typical videoconferencing 
images (e.g., hand gestures, facial expressions). 

The above models require two [Eq. (lo)] or four [Eq. (ll)] 
parameters at each position x. To reduce the computational bur- 
den, parametric (spatial) motion models can be combined with 
the temporal models above. For example, the affine model [Eq. 
(9)] can be used to replace ut [Eq. (10) J and then applied over a 
suitable region of support. This approach has been successfully 
used in various region-based motion estimation algorithms. Re- 
cently, a similar parametric extension of the quadratic trajectory 
model (v, and at replaced by affine expressions) has been pro- 
posed [14, Chapter 41, but its practical importance remains to 
be verified. 

Region of Support 
The set ofpoints x to which a spatial and temporal motion model 
applies is called a region ofsupport, denoted R. The selection of 
a motion model and a region of support is one of the major fac- 
tors determining the precision of the resulting motion parameter 
estimates. Usually, for a given motion model, the smaller the re- 
gion of support R, the better the approximation of motion. This 
is because over a larger area, motion may be more complicated 
and thus require a more complex model. For example, the trans- 
lational model of Eq. (8) can fairly well describe the motion of 
one car in a highway scene, while this very model would be quite 
poor for the complete image. Typically, the region of support for 
a motion model belongs to one of the four types listed below. 
Figure 3 shows schematically each type of region. 

1. R = the whole image: A single motion model applies to 
all image points. This model is suitable for the estima- 
tion of camera-induced motion (Section 5.1) as very few 
parameters describe the motion of all image points. This 
is the most constrained model (a relatively small number 
of motion fields can be represented), but with the fewest 
parameters to estimate. 

2. R = one pixel: This model applies to a single image point 
(position x). Typically, the translational spatial model 
[Eq. (S)] is used jointly with the linear [Eq. (lo)] or the 
quadratic temporal model [Eq. (ll)]. This pixel-based or 
dense motion representation is the least constrained one 
since at least two parameters describe the movement of 
each image point. Consequently, a very large number of 
motion fields can be represented by all possible combina- 
tions of parameter values, but computational complexity 
is, in general, high. 

3. R = rectangular block of pixels: This motion model ap- 
plies to a rectangular (or square) block of image points. 
In the simplest case the blocks are nonoverlapping and 
their union covers the whole image. A spatially transla- 
tional [Eq. (S)] and temporally linear [Eq. (10) J motion of 
a rectangular block of pixels has proven to be a very pow- 
erful model and is used today in all digital video compres- 
sion standards, i.e., €3.261, H.263, MPEG-1 and MPEG-2 
(Chapters 6.4 and 6.5). It can be also argued that a spatially 
translational but temporally quadratic [Eq. (1 l)] motion 
has been implicitly exploited in the MPEG standards since 
in the B frames two independent motion vectors are used 
(two noncollinear motion vectors starting at x can describe 
both velocity and acceleration). Although very successful 
in hardware implementations, because of its simplicity, the 
translational model lacks precision for images with rota- 
tion, zoom, deformation, and is often replaced by the affine 
model [Eq. (9)]. 

4. R = irregularly shaped region: This model applies to all 
pixels in a region R of arbitrary shape. The reasoning is 
that for objects with a sufficiently smooth 3-D surface and 
3-D motion, the induced 2-D motion can be closely ap- 
proximated by the affine model [Eq. (9)] applied linearly 

FIGURE 3 Schematic representation ofmotion for the four regions of support R: (a) whole image, (b) pixel, (c) block, 
and (d) arbitrarily shaped region. The implicit underlying scene is “head and shoulders” as captured by the region-based 
model in (d). 
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over time [Eq. (lo)] to the image area arising from object 
projection. Thus, regions R are expected to correspond 
to object projections. This is the most advanced motion 
model that has found its way into standards; a square block 
divided into arbitrarily shaped parts, each with indepen- 
dent translational motion, is used in the MPEG-4 standard 
(Chapter 6.5). 

Observation Models 
Since motion is estimated (and observed by the human eye) 
based on the variations of intensity, color, or both, the assumed 
relationship between motion parameters and image intensity 
plays a very important role. The usual, and reasonable, assump- 
tion made is that image intensity remains constant along a mo- 
tion trajectory, i.e., that objects do not change their brightness 
and color when they move. For temporally sampled images, this 
means that Ik (x ( tk ) )  = Ik-1 (x( tk- l ) ) .  Usingthe relationship [Eq. 
(lo)] with t = tk-l and 7 = tk, and assuming spatial sampling 
of the images, we can express this condition as follows: 

Equation (12), however, cannot be used directly to solve for d 
since in practice it does not hold exactly because of noise q ,  
aliasing, etc., present in the images, i.e., Ik(n) = Ik-l(n - d )  + 
q(n) .  Therefore, d must be found by minimizing a function of 
the error between Ik(n) and Ik-l(n - d ) .  Moreover, Eq. (12) 
applied to a single image point n is insufficient since d contains 
at least two unknowns. Both issues will be treated in depth in 
the next section. 

Let us consider now the continuous case. Let s be a variable 
along a motion trajectory. Then, the constant-intensity assump- 
tion translates into the following constraint equation: 

d I  - = 0, 
ds 

i.e., the directional derivative in the direction of motion is zero. 
By applying the chain rule, one can write the above equation as 
the well-known motion constraint equation [ 101, 

(14) ar a i  a i  T a' 
-VI + -u2 + - = (VI) v + - = 0, 
ax ay a t  a t  

where V = (a/ax, a/ay)T denotes the spatial gradient and 
v = (ul, u2)T is thevelocityto be estimated. The above constraint 
equation, whether in the above continuous form or as a discrete 
approximation, has served as the basis for many motion estima- 
tion algorithms. Note that, similarlyto Eq. (12), Eq. (14) applied 
at single position ( x ,  y> is underconstrained (one equation, two 
unknowns) and allows to determine the component ofvelocity v 
in the direction of the image gradient V I  only [lo]. Thus, addi- 
tional constraints are neededin order to uniquely solve forv [ lo]. 
Also, Eq. (14) does not hold exactly for real images and usually 
a minimization of a function of (VI) + a I /a  t is performed. 

Since color is a very important attribute of images, a possible 
extension of the above models would be to include chromatic im- 
age components into the constraint equation. The assumption is 
that in the areas of uniform intensitybut substantial color detail, 
the inclusion of a color-based constraint could prove beneficial. 
In such a case, Eqs. (13) and (14) would hold with a multicom- 
ponent (vector) function replacing I .  

The assumption about intensity constancy is usually only ap- 
proximately satisfied, but it is particularly violated when scene 
illumination changes. As an alternative, a constraint based on 
the spatial gradient's constancy in the direction of motion can 
be used [2]: 

dVI - 
- 0. -- 

ds 

This equation can be rewritten as follows: 

It relaxes the constant-intensity assumption but requires that the 
amount of dilation or contraction, and rotation in the image be 
negligible: a limitation often satisfied in practice. Although both 
Eqs. (15) and (16) are linear vector equations in two unknowns, 
in practice they do not lend themselves to the direct computa- 
tion of motion, but need to be further constrained by a motion 
model. The primary reason for this is that Eq. (16) holds only 
approximately. Furthermore, it is based on second-order image 
derivatives that are difficult to compute reliably as a result of the 
high-pass nature of the operator; usually image smoothing must 
be performed first. 

The constraints discussed above find different applications in 
practice. A discrete version of the constant-intensity constraint 
[Eq. (14)] is often applied in video compression since it yields 
small motion-compensated prediction error. Although motion 
can be computed also based on color using avector equivalent of 
Eq. (14), experience shows that the small gains achieved do not 
justify the substantial increase in complexity. However, motion 
estimation from color data is useful in video processing tasks 
(e.g., motion-compensated filtering, resampling), in which mo- 
tion errors may result in visible distortions. Moreover, the mul- 
ticomponent (color) constraint is interesting for estimating mo- 
tion from multiple data sources (e.g., range and intensity data). 

4.2 Estimation Criteria 
The models discussed have to be incorporated into an estima- 
tion criterion that will be subsequently optimized. There is no 
unique criterion for motion estimation since its choice depends 
on the task at hand. For example, in compression an average per- 
formance (prediction error) of a motion estimator is important, 

2Even when the constant-intensity assumption is valid, the intensity gradient 
changes its amplitude under dilation or contraction and its direction under 
rotation. 
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FIGURE 4 
and (b) truncated-quadratic functions. 

Comparison of estimation criteria: (a) quadratic, absolute value, Lorentzian functions (two different 0’s); 

whereas in motion-compensated interpolation the worst case 
performance (maximum interpolation error) may be of con- 
cern. Moreover, the selection of a criterion may be guided by the 
processor capabilities on which the motion estimation will be 
implemented. 

Pixel-Domain Criteria 
Most of the criteria arising from the constant-intensity assump- 
tion [Eq. (12)] aim at the minimization of a function (e.g., ab- 
solute value) of the following error: 

~ ( n )  = ~ k ( n )  - Ik(n), Vn  E A (17) 

where fk(n) = ( n  - d(n))  is called a motion-compensated 
prediction of Ik(n). Since, in general, d is real valued, intensities 
at positions n - d outside of the sampling grid A must be recov- 
ered by a suitable interpolation. For estimation methods based 
on matching, Co interpolators that ensure continuous interpo- 
lated intensity (e.g., bilinear) are sufficient, whereas for methods 
based on gradient descent, C1 interpolators giving both continu- 
ous intensity andits derivative are preferable for stability reasons. 

Motion fields calculated solely by the minimization of the 
prediction error are sensitive to noise if the number of pixels in 
R is not large compared to the number of motion parameters 
estimated or if the region is poorly textured. However, such a 
minimization may yield good estimates for parametric motion 
models with few parameters and reasonable region size. 

Acommon choice for the estimation criterion is the following 
sum: 

~ ( d )  = W M ~ )  - k)), (18) 
neR 

where @ is a nonnegative real-valued function. The often- 

used quadratic function CP (E) = E’ is not a good choice since 
a single large error c (an outlier) overcontributes to I and 
biases the estimate of d. A more robust function is the abso- 
lute value @(E) = a ( ~ l ,  since the cost grows linearly with er- 
ror [Fig. 4(a)]. Since it does not require multiplications, it is 
the criterion of choice in practical video encoders today. An 
even more robust criterion is based on the Lorentzian function 
@(E) = log(1 + ~ ~ / 2 o ~ )  that grows slower than 1x1 for large er- 
rors. The growth of the cost for increasing errors E is adjusted by 
the parameter o [a Lorentzian function for two different values 
of o is shown in Fig. 4(a)]. 

Since for matching algorithms the continuity of @ is not im- 
portant (no gradient computations), non-continuous functions 
based on the concept of the truncated quadratic, 

areoftenused [Fig.4(b)].Ifp = 02,  theusualtruncatedquadratic 
results, fixing the cost of outliers at e2. ~n alternative is to set 
p = 0 with the consequence that the outliers have zero cost and do 
not contribute to the overall criterion E .  In other words, the cri- 
terion is defined only for nonoutlier pixels, and therefore the es- 
timate of d will be computed solely on the basis of reliable pixels. 

The similarity between Ik(n) and its prediction &(n) can be 
also measured by a cross-correlation function: 

C ( 4  = Ik(n).lk-l(n - 4n)). (20) 
n 

Although more complex computationally than the absolute 
value criterion because of the multiplications, this criterion is an 
interesting and practical alternative to the prediction error-based 



3.10 Motion Detection and Estimation 21 7 

criteria (Section 5.3). Note that a cross-correlation criterion re- 
quires maximization, unlike the prediction-based criteria. 

For a detailed discussion of robust estimation criteria in the 
context of motion estimation, the reader is referred to the liter- 
ature (e.g., [ 5 ] and references therein). 

Frequency-Domain Criteria 
Although the frequency-domain criteria are less used in prac- 
tice today than the spacehime-domain methods, they form an 
important alternative. Let &(U) = F[Ik(n)] be a spatial (2-D) 
discrete Fourier transform (DFT) of the intensity signal Ik(n), 
where u = (u ,  v ) ~  is a 2-D discrete frequency (see Chapter 2.3). 
Suppose that the image 1k-l has been uniformly shifted to create 
the image Ik, i.e., that Ik(n) = Ik-1 ( n  - 2). This means that only 
translational global motion exists in the image and all boundary 
effects are neglected. Then, by the shift property of the Fourier 
transform, 

where uT denotes a transposed vector u. Since the amplitudes of 
both Fourier transforms are independent ofz while the argument 
difference 

depends linearly on z, the global motion can be recovered by 
evaluating the phase difference over a number of frequencies and 
solving the resulting overconstrained system of linear equations. 
In practice, this method will workonly for single objects moving 
across a uniform background. Moreover, the positions of image 
points to which the estimated displacement z applies are not 
known; this assignment must be performed in some other way. 
Also, care must be taken of the non-uniqueness of the Fourier 
phase function, which is periodic. 

A Fourier-domain representation is particularly interesting 
for the cross-correlation criterion [Eq. (20)]. Based on the 
Fourier transform properties (Chapter 2.3) and under the as- 
sumption that the intensity function I is real valued, it is easy to 
show that: 

Ik(n)Ik-l(n - d )  = fk(u)$-1(u), (22) 1 
where the transform is applied in spatial coordinates only and 
9 is the complex conjugate of i. This equation expresses spatial 
cross-correlation in the Fourier domain, where it can be effi- 
ciently evaluated by using the DFT. 

Regularization 
The criteria described thus far deal with the underconstrained 
nature of Eq. (14) by applying the motion measurement to ei- 
ther a region, such as a block of pixels, or to the whole image 

(frequency-domain criteria). In consequence, resolution of the 
computed motion may suffer. 

To maintain motion resolution at the level of original images, 
the pixelwise motion constraint equation, Eq. (14), can be used, 
but to address its underconstrained nature, we must combine it 
with another constraint. In typical real-world images the moving 
objects are close to being rigid. Upon projection onto the image 
plane this induces very similar motion of neighboring image 
points within the object's projection area. In other words, the 
motion field is locally smooth. Therefore, a motion field vr must 
be sought that satisfies the motion constraint of Eq. (14) as 
closely as possible and simultaneously is as smooth as possible. 
Since gradient is a good measure of local smoothness, this may 
be achieved by minimizing the following criterion [lo]: 

where 2) is the domain of the image. This formulation is often 
referred to as regularization [2] (see also the discussion of regu- 
larized image recoveryin Chapter 3.6). Note that the smoothness 
constraint may be also viewed as an alternative spatial motion 
model to those described in Section 4.1. 

Bayesian Criteria 
Bayesian criteria form avery powerful probabilistic alternative to 
the deterministic criteria described thus far. If motion field dk is 
a realization of avector random field Dk With a given aposteriori 
probability distribution, and image Ik  is a realization of a scalar 
random field Zk, then the MAP estimate of (Section 2.3) can 
be computed as follows [ 121: 

dk = argmax P(& = dk = Ik ;  Ik -1 )  
d 

d 
= argmax P(Zk = I k  I Dk = dk; Ikk-l)P(Dk = dk; Ik-1). 

(241 

In this notation, the semicolon indicates that subsequent vari- 
ables are only deterministic parameters. The first (conditional) 
probability distribution denotes the likelihood of image I k  given 
displacement field dk and the previous image Ik-1, and therefore 
it is closely related to the observation model. In other words, this 
term quantifies how well amotion field dk explains the change be- 
tween the two images. The second probability P (& = dk; I k - l )  

describes the prior knowledge about the random field Dk, such 
as its spatial smoothness, and therefore can be thought of as a 
motion model. It becomes particularly interesting when Dk is a 
MRF. By maximizing the product of the likelihood and the prior 
probabilities, one attempts to strike a balance between motion 
fields that give a small prediction error and those that are smooth. 
It will be shown in Section 5.5 that maximization [Eq. (24)] is 
equivalent to an energy minimization. 
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4.3 Search Strategies 
Once models have been identified and incorporated into an es- 
timation criterion, the last step is to develop an efficient (com- 
plexity) and effective (solution quality) strategy for finding the 
estimates of motion parameters. 

For a small number of motion parameters and a small state 
space for each of them, the most common search strategy 
when minimizing a prediction error, like Eq. (17), is matching. 
In this approach, motion-compensated predictions &( n) = 
Ik--l ( n  - d(n))  for various motion candidates d are compared 
(matched) with the original images Ik(n) within the region of 
support of the motion model (pixel, block, etc.). The candidate 
yielding the best match for a given criterion becomes the optimal 
estimate. For small state spaces, as is the case in block-constant 
motion models used in today's video coding standards, the full 
state space ofeach motion vector can be examined (an exhaustive 
search), but a partial search often gives almost as good results 
(Section 5.2). 

As opposed to matching, gradient-based techniques require an 
estimation criterion E that is differentiable. Since this criterion 
depends on motion parameters by means of the image func- 
tion, as in Ik-l(n - d(n)),  to avoid nonlinear optimization I 
is usually linearized by using a Taylor expansion with respect to 
d(n) . Because of the Taylor approximation, the model is applica- 
ble only in a small vicinity of the initial d. Since initial motion is 
usually assumed to be zero, it comes as no surprise that gradient- 
based estimation is reported to yield accurate estimates only in 
regions of small motion; the approach fails if motion is large. 
This deficiency is usually compensated for by a hierarchical or 
multiresolution implementation [ 17, Chapter 11, (Chapter 4.2). 
An example of hierarchical gradient-based method is reported 
in Section 5.1. 

For motion fields using a spatial noncausal model, such as that 
based on a MRF, the simultaneous optimization of thousands 
of parameters may be computationally pr~hibitive.~ Therefore, 
relaxation techniques are usually employed to construct a series 
of estimates such that consecutive estimates differ in one variable 
at most. In case of estimating a motion field d, a series of motion 
fields do), dl), . . . is constructed so that any two consecutive 
estimates dCk) differ at most at a single site n. At each step 
of the relaxation procedure the motion vector at a single site is 
computed; vectors at other sites remain unchanged. Repeating 
this process results in a propagation of motion properties, such 
as smoothness, that are embedded in the estimation criterion. 
Relaxation techniques are most often used in dense motion field 

criterion; variables are updated one after another and the cri- 
terion is monotonically improved step by step. Deterministic 
relaxation techniques are capable of correcting spurious motion 
vectors in the initial state do), but they often get trapped in a 
local optimum near do). Therefore, the availability of a good 
initial state is crucial. 

The highest confidencefirst (HCF) algorithm [8] is an interest- 
ing variant of deterministic relaxation that is insensitive to the 
initial state. The distinguishing characteristic ofthe method is its 
site visiting schedule, which is not fixed but driven by the input 
data. Without going into the details, the HCF algorithm initially 
selects motion vectors that have the largest potential for reduc- 
ing the estimation criterion E. Usually, these arevectors in highly 
textured parts of an image. Later, the algorithm includes more 
and more motion vectors from low-texture areas, thus building 
on the neighborhood information of sites already estimated. By 
the algorithm's construction, the final estimate is independent 
of the initial state. The HCF is capable of finding close to opti- 
mal MAP estimates at a fraction of the computational cost of the 
globally optimal methods. 

A deterministic algorithm specifically developed to deal with 
MRF formulations is called iterated conditional modes (ICMs) 
131. Although it does not maximize the a posteriori probability, 
it finds reasonably close approximations. The method is based 
on the division of sites of a random field into N sets such that 
each random variable associated with a site is independent of 
other random variables in the same set. The number of sets and 
their geometry depend on the selected cliques of the MRF. For 
example, for the first-order neighborhood system (Section 2.2), 
N = 2 and the two sets look like a chess board. First, all the sites 
of one set are updated to find the optimal solution. Then, the 
sites of the other set are examined with the state of the first set 
already known. The procedure is repeated until a convergence 
criterion is met. The method converges quicklybut does not lead 
to as good solutions as the HCF approach. 

The dependence on a good initial state is eliminated in stochm- 
tic relaxation. In contrast to the deterministic relaxation, the mo- 
tion vector v under consideration is selected randomly (both its 
location x and parameters b),  thus allowing (with a small prob- 
ability) a momentary deterioration of the criterion [ 121. In the 
context of minimization, such as in simulated annealing [ 9 ] ,  this 
allows the algorithm to "climb" out of local minima and eventu- 
ally reach the global minimum. Stochastic relaxation methods, 
although easy to implement and capable of finding excellent so- 
lutions, are very slow in convergence. 

estimation, but they equally apply to block-based methods. 
In deterministic relaxation, such as Jacobi or Gauss-Seidel, 

each motion vector is computed with probability 1, i.e., there 
is no uncertainty in the computation process. For example, 
a new local estimate is computed by minimizing the given 

5 Practical Motion 
Estimation Algorithms 

5.1 Global Motion Estimation 
discussed in Section 4.1 camera motion induces motion of 

all image points and therefore is often an obstacle to solving 

3There exist methods basedon causal motion models that are computationally 
inexpensive, e.g., pel-recursive motion estimation, but their accuracy is usually 
lower than that of methods based on noncausal motion models. 
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various video processing problems. For example, for motion 
to be detected in images obtained by a mobile camera, camera 
motion must be compensated first [ 14, Chapter 81. Global mo- 
tion compensation (GMC) plays also an important role in video 
compression, since only a few motion parameters are sufficient 
to greatly reduce the prediction error when images to be encoded 
are acquired, for example, by a panning camera. GMC has been 
included in version 2 of the MPEG-4 video compression stan- 
dard (Chapter 6.5). 

Since camera motion is limited to translation and rotation, 
and affects all image points, a spatially parametric, e.g., affine 
[Eq. (9)] and temporally linear [Eq. (lo)] motion model sup- 
ported on the whole image is appropriate. Under the constant- 
intensityobservationmodel [Eq. (12)], the pixel-based quadratic 
criterion [Eq. (IS)] leads to the following minimization: 

E(#) = Ik(n) - Ik-l(n - v(n)(tk - tk-I)), (25) 

where the dependence of v on b is implicit [ Eq. (9)] and tk - tk-1 

is usually assumed to equal 1. As a way to perform the above 
minimization, gradient descent can be used. However, since this 
method gets easily trapped in local minima, an initial search 
for approximate translation components bl and b2 [Eq. (9)], 
which can be quite large, has to be performed. This search can 
be executed, for example, by using the three-step block matching 
(Section 5.2). 

Since the dependence of the cost function E on b is nonlinear, 
an iterative procedure is typically used: 

where b” is the parameter vector b at iteration n, H is a K x K 
matrix equal to 1/2 of the Hessian matrix of E (i.e., matrix 
with elements a2E/i3bkabl), c is a K-dimensional vector equal 
to - 112 of VE, and K is the number ofparameters in the motion 
model (six for affine). The above equation can be equivalently 
written as El Hkl Ab[ = C k ,  where A b  = bnfl - b” and 

The‘approximation above is due to dropping the second-order 
derivatives; see [ 16, page 6831 for justification. 

In order to handle large velocities and to speed up computa- 
tions, the method has to be implemented hierarchically. Thus, 
an image pyramid is built with spatial prefiltering and subsam- 
pling applied between each two levels. The computation starts 
at the top level of the pyramid (lowest resolution) with bl and b2 
estimated in the initial step and the other parameters set to zero. 
Then, gradient descent is performed by solving for Ab, e.g., us- 
ing singular value decomposition, and updating bn+l = b” + A & 
until a convergence criterion is met. The resulting motion pa- 
rameters are projected onto a lower level of the pyramid4 and 
the gradient descent is repeated. This cycle is repeated until the 
bottom of the pyramid is reached. 

Since the global motion model applies to all image points, it 
cannot account for local motion. Thus, points moving indepen- 
dently of the global motion may generate large errors E(#) and 
thus bias an estimate of the global motion parameters. The cor- 
responding pixels are called outliers and, ideally, should be elim- 
inated from the minimization [Eq. (25)]. This can be achieved 
by using a robust criterion (Fig. 4) instead of the quadratic. For 
example, a Lorentzian function or a truncated quadratic can be 
used, but both provide a nonzero cost for outliers. This reduces 
the impact of outliers on the estimation but does not eliminate it 
completely. To exclude the impact of outliers altogether, a mod- 
ified truncated quadratic should be used such as atg(&, €40) 
defined in Eq. (19). This criterion effectively limits the sum- 
mation in Eq. (25) to the nonoutlier pixels and is used only in 
the gradient descent part of the algorithm. The threshold 0 can 
be fixed or it can be made adaptive, e.g., by limiting the false 
alarm rate. 

Figure 5 shows outlier pixels for two images “Foreman” and 
“Coastguard” declared by using the above method based on 
thhight-parameter perspective motion model [22, Chapter 61. 
Note the clear identification of outliers in the moving head, 
on the boats, and in the water. The outliers tend to appear 
at intensity transitions since it is there that any inaccuracy in 
global motion caused by a local (inconsistent) motion will in- 
duce large error E; in uniform areas of local motion the error 
E remains small. By the exclusion of the outliers from the es- 
timation, the accuracy of computed motion parameters is im- 
proved. Since the true camera motion is not known for these 
two sequences, the improvement was measured in the con- 
text of the GMC mode of MPEG-4 compression.’ In compari- 
son with nonrobust global motion estimation (atq(&, m, e)), 

the robust method presented resulted in a bit rate reduc- 
tion of 8% and 15% for “Foreman” and “Coastguard,” respec- 
tively [ 131. 

4The projection is performed by scaling the translation parameters bl and bz 
by 2 and leaving the other four parameters unchanged. 

jMPEG-4 encoder (version 2) can send parameters of global motion for each 
frame. Consequently, for each macroblock it can make a decision as to whether 
to perform the temporal prediction based on the global motion parameters 
or the local macroblock motion. The benefit of GMC is that only few motion 
parameters (e.g., eight) are sent for the whole frame. The GMCmode is beneficial 
for sequences with camera motion or zoom. 
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FIGURE 5 
outliers (black) according to a global motion estimate. 

(a), (b) Original images from CIF sequences “Foreman” and “Coastguard,” and (c), (d) pixels declared as 

5.2 Block Matching 
Block matching is the simplest algorithm for the estimation of 
local motion. It uses a spatially constant [Eq. (S)] and temporally 
linear [Eq. ( lo)]  motion model over a rectangular region of 
support. Although, as explained in Section 4.1, the translational 
2-D motion is only valid for the orthographic projection and 
3-D object translation, this model applied locally to a small block 
of pixels is quite accurate for a large variety of 3-D motions. It 
has proven accurate enough to serve as a basis for most of the 
practical motion estimation algorithms used today. Because of 
its simplicity and regularity (the same operations are performed 
for each block of the image), block matching can be relatively 
easily implemented in VLSI. Today, block matching is the only 
motion estimation algorithm massively implemented in VLSI 
and used for encoding within all video compression standards 
(see Chapters 6.4 and 6.5). 

In video compression, motion vectors d are used to eliminate 
temporal video redundancy by means of motion-compensated 
prediction [Eq. (17)]. Hence, the goal is to achieve as low 
prediction error ~ k ( n )  as possible, which is equivalent to the 
constant-intensity observation model. By applying this model 
within a pixel-based criterion, we can describe the method by the 

following minimization: 

min €(d,,,), 
d , e P  

where P is the search area to which d ,  belongs, defined as fol- 
lows: 

and L3, is an M x N block of pixels with the top-left corner 
coordinate at m = ( m,, m2). The goal is to find the best, in the 
sense of the criterion 0, displacement vector d ,  for each block 
a,. This is illustrated graphically in Fig. 6(a); a block is sought 
within image Ik-1 that best matches the current block in Ik. 

Estimation Criterion 
Although an average error is used in Eq. (26) ,  other measures 
are possible, such as a maximum error (min-max estimation). 
To fully define the estimation criterion, the function @ must 
be established. Originally, @(x) = x2 was often used in block 
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FIGURE 6 (a) Block matching between block 23, at time & (current image) and all possible blocks in the search area P 
at time &-I. (b) Three-step search method. Large circles denote level 1 (PI), squares denote level 2 (Pz), and small circles 
denote level 3 (P3). The filled-in elements denote the best match found at each level. The final vector is (2,5). 

matching, but it was soon replaced by an absolute error criterion 
Q> ( x )  = 1 X I  for its simplicity (no multiplications) and robustness 
in the presence of outliers. Other improved criteria have been 
proposed, such as those based on the median of squared errors; 
however, their computational complexity is significantly higher. 

Also, simplified criteria have been proposed to speed up the 
computations, for example, based on adaptive quantization to 2 
bits or on pixel subsampling [4]. Usually, a simplification of the 
original criterion CP leads to a suboptimal performance. How- 
ever, with an adaptive adjustment of the criterion’s parame- 
ters (e.g., quantization levels, decimation patterns) a close-to- 
optimal performance can be achieved at significantly reduced 
complexity. 

Search Methods 
An exhaustive search for d,,, E P that gives the lowest error E 
is computationally costly. An “intelligent” search, whereby only 
the more likely candidates from P are evaluated, usually results 
in substantial computational savings. One popular technique 
for reducing the number of candidates is the logarithmic search. 
Assumingthat P = zk - 1 and denoting Pi = ( P  + 1)/2’, where 
k and 1 are integers, we establish the new reduced-size search area 
as follows: 

Pl = { n  : n = (&Pi, &Pi) or 

n = (&Pi, 0) or n = (0, &Pl) or n = (0, O ) } ,  

i.e., Pi is reduced to the vertices, midway points between vertices, 
and the central point of the half-sized original rectangle P. For 
example, for P = 7, PI consists of the following candidates: 

(-4, -41, (-4,4), (4, -% (4,4), (-4, O), (4701, (0, -41, (0,4), 
and (0,O). The search starts with the candidates from PI. Once 
the best match is found, the new search areaP2 is centered around 
this match and the procedure is repeated for candidates from ‘pz. 
Note that the error E does not have to be evaluated for the (0,O) 
candidate since it had been evaluated at the previous level. The 
procedure is cantinuedwith subsequently reduced search spaces. 
Since typically only three levels ( I  = 1,2,3) are used, such a 
method is often referred to as the three-step search [Fig. 6(b)]. 

In the search above, at each step a 2-D search is performed. An 
alternative approach is to perform 1 -D searches only, usually in 
orthogonal directions. Examples of block matching algorithms 
based on 1-D search methods are as follows. 

One-at-a-time search [19]: In this method, first a mini- 
mum of & is sought in one, for example, the horizontal, 
direction. Then, given the horizontal estimate, a vertical 
search is performed. Subsequently, a horizontal search is 
performed given the previous vertical estimate, and so on. 
In the original proposal, 1-D minima closest to the origin 
were examined only, but later a 1-D full seatch was used to 
avoid the problem of getting trapped close to the origin. 
Note that the searches are not independent since each relies 
on the result of the previous one. 
Parallel hierarchical one-dimensional search [4]: This 
method also performs 1-D searches in orthogonal direc- 
tions (usually horizontal and vertical) but independently 
of each other, i.e., the horizontal search is performed simul- 
taneously with the vertical search since it does not depend 
on the outcome of the latter. In addition, the 1-D search 
is implemented hierarchically. First, every Kth location 
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from P is taken as a candidate for a 1-D search. Once the 
minima in both directions are identified, new 1 -D searches 
begin with every K/2th location from P ,  and SO on. Typi- 
cally, horizontal and vertical searches using every 8th, 4th, 
2nd and fmally every pixel (within the limits of P) are 
performed. 

A remark is in order at this point. All the fast search methods are 
based on the assumption that the error E has a single minimum 
for all d, E P, or in other words, that E increases monotonically 
when moving away from the best-match position. In practice this 
is rarely true since E depends on 4 by means of the intensity I ,  
which can be arbitrary. Therefore, multiple local minima often 
exist within P and a fast search method can be easily trapped in 
anyone ofthem, whereas an exhaustive search will always find the 
“deepest” minimum. This is not a very serious problem in video 
coding since a suboptimal motion estimate translates into an 
increased prediction error [Eq. (17) J that will be entropy coded 
and at most will result in a rate increase. It is a serious problem, 
however, in video processing, in which true motion is sought 
and any motion errors may result in uncorrectable distortions. 
A good review of block matching algorithms can be found in [4 J . 

5.3 Phase Correlation 
As discussed above, block matching can precisely estimate 
local displacement but must examine many candidates. At the 
same time methods based on the frequency-domain criteria 
(Section 4.2) are capable of identifying global motion but can- 
not localize it in the spacehime domain. By combining the two 
approaches, the phase correlation method [21] is able to exploit 
advantages of both approaches. First, likely candidates are com- 
puted by using a frequency-domain approach, and then they are 
assigned a spatial location by local block matching. 

Recall the cross-correlation criterion C ( d )  expressed in the 
Fourier domain [Eq. (22)l. By normalizing .F[C(d) J and taking 
the inverse transform, one obtains 

Here Qk-l,k(n) is a normalized correlation computed between 
two images I k  and 4-1. In the special case of a global translation 
(Ik(n) = Ik-l(n - z)), by using transformation [Eq. (21)] one 
can easily show that the correlation surface becomes a Kronecker 
delta function @(x) equals 0 for x # 0 and 1 for x = 0): 

qk-l,k(n)lik(n)=Ik_l(n-r) = F{e- ’znw} = B(n - 2). 

In practice, when neither the global translation nor intensity 
constancy hold, q k - 1 , k  is a surface with numerous peaks. These 
peaks correspond to dominant displacements between Ik-1 and 
Ik, and, if identified, are very good candidates for fine tuning 
by, for example, block matching. Note that no explicit motion 
model has been used thus far, while the observation model, as 

usual, is that of constant intensity and the estimation criterion 
is the cross-correlation function. In practice, the method can be 
implemented as follows [ 2 1 1. 

Divide Ik-1 and Ik into large blocks, e.g., 64 x 64 (motion 
range of 132  pixels), and take a fast Fourier transform 
(FFT) of each block. 
Compute q k - l > k ,  using same-position blocks in Ik-1 and 

Take the inverse FFT Of Qk-l ,k  and identify most dominant 
peaks. 
Use the coordinates of the peaks as the candidate vectors 
for block matching of 16 x 16 blocks. 

r k *  

The phase correlation can also initialize pixel-based based es- 
timation. Moreover, the correlation over a large area (64 x 64) 
permits the recovery of subpixel displacements by interpolat- 
ing the correlation surface. Note that since the discrete Fourier 
transform (implemented by means of FFT) assumes signal pe- 
riodicity, intensity discontinuities between left and right and be- 
tween top and bottom block boundaries may introduce spurious 
peaks. 

The phase correlation method is basically an efficient max- 
imization of a correlation-based error criterion. The shape of 
the maxima of the correlation surface is weakly dependent on 
the image content, and the measurement of their locations is 
relatively independent of illumination changes. This is due, pre- 
dominantly, to the normalization in Eq. (27). However, rotations 
and zooms cannot be easily handled since the peaks in q k - l , k  

are hard to distinguish as a result of the spatial smoothness of 
the corresponding motion fields. 

5.4 Optical Flow by Means of Regularization 
Recall the regularized estimation criterion Eq. (23). It uses 
a translational/linear motion model at each pixel under the 
constant-intensity observation model and a quadratic error 
criterion. 

To find the functions v1 and v2,  implicitly dependent on x ,  
the functional has to be minimized, which is a problem in the 
calculus of variations. The Euler-Lagrange equations yield [ 101 

a r  ar 

where V2 = a2/ax2 + a2/ay2 is the Laplacian operator. This 
pair of elliptic partial differential equations can be solved itera- 
tively by using finite-difference or finite-element discretization 
(see Chapter 3.6 for other examples of regularization). 

An alternative is to formulate the problem directly in the dis- 
crete domain. Then, the integral is replaced by a summation 
while the derivatives are replaced by finite differences. In [ 101, 
for example, an average of first-order differences computed over 
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a 2 x 2 x 2 cube was used. By differentiation of this discrete 
cost function, a system of equations can be computed and sub- 
sequently solved by Jacobi or Gauss-Seidel relaxation. This dis- 
crete approach to regularization is a special case of the MAP 
estimation presented next. 

5.5 MAP Estimation of Dense Motion 
The MAP formulation (24) is very general and requires further 
assumptions. The likelihood relates one image to another by 
means of dk. Since &(n) = Ik-l(n - d(n)) + ~ ( n ) ,  the char- 
acteristics of this likelihood reside in ~ k .  It is clear that for good 
displacement estimates &k should behave like a noise term. It can 
be shown that the statistics of ~k are reasonably close to those 
of a zero-mean Gaussian distribution, although a generalized 
Gaussian is a better fit [20]. Therefore, assuming no correlation 
among ~ ( n )  for different n, P(& = Ik 1 Dk = dk; I k -1 )  can be 
fairly accurately modeled by a product of zero-mean Gaussian 
distributions. 

The prior probability is particularly flexible when Dk is as- 
sumed to be a MRF. Then, P(Dk = dk; 4-1) is a Gibbs dis- 
tribution (Section 2.2) uniquely specified by cliques and a po- 
tential function. For example, for two-element cliques { n, I} the 
smoothness of Dk can be expressed as follows: 

v,(dtn), 40)  = I l m  - d(l)l12, VI% 0 E c. 

where I x ,  I Y ,  and I t  are discrete approximations to horizontal, 
vertical, and temporal derivatives, respectively. This constraint 
is not satisfied exactly, and as it turns out Ixdl + IYd2 + I tAt  
is a noiselike term with similar characteristics to the prediction 
error ~ k .  This is not surprising since both originate from the 
same constant-intensity hypothesis. By replacing the prediction 
error in Eq. (28) with this new term, one obtains a cost function 
equivalent to the discrete formulation of the optical flow problem 
(Section 5.4) [lo]. 

Minimization (28) leads to smooth displacement fields dk, also 
at object boundaries, which is undesirable. To relax the smooth- 
ness constraint at object boundaries, explicit models of motion 
discontinuities (line field) [ 121 or of motion segmentation la- 
bels (segmentation field) [lo] can be easily incorporated into the 
MRF formulation, although their estimation is far from trivial. 

5.6 Experimental Comparison of Motion 
Estimation Methods 
To demonstrate the impact of various motion models, Fig. 7 
shows results for the QCIF sequence “Carphone.” Both the es- 
timated displacements and the resulting motion-compensated 
prediction errors are shown for pixel-based (dense), block- 
based, and segmentation-based motion models. The latter mo- 
tion estimate was obtained by minimizing the mean squared er- 
ror (@((E) = in Eq. (18)) within each region R from Fig. 7(c) 
for the affine motion model, Eq. (9). 

Note the lack of detail caused by the low resolution (16 x 16 
blocks) of the block-based approach, but the approximately cor- 
rect motion of objects. The pixel-based model results in a smooth 
estimate with more spatial detail but at the cost of reduced preci- 
sion. The segmentation-based motion estimate shows both bet- 
ter accuracy and detail. Although the associated segmentation 
[Fig. 7(c)] does not correspond exactlyto the objects as perceived 
by humans, it nevertheless closely matches object boundaries. 
The motion of the head and of the upper body is well captured, 
but the motion of landscape in the car window is exaggerated 
because of the lack of image detail. As for the prediction error, 
note the blocking artifacts for the block-based motion model 
(31.8 dB6) but avery small error for the pixel-based model (35.9 
dB). The region-based model results in a slightly higher predic- 
tion error (35.5 dB) than the pixel-based model, but one that is 
significantly lower than that of the block model. 

Clearly, for similar d(n) and d ( l )  the potential V, is small and 
thus the prior probability is high, whereas for dissimilar vectors 
this probability is small. 

Since both likelihood and prior probability distributions are 
exponential in this case, the MAP estimation (24) can be rewrit- 
ten as energy minimization: 

The above energy can be minimized in various ways. To attain 
the global minimum, simulated annealing (Section 4.3) should 
be used. Given sufficiently many iterations, the method is the- 
oretically capable of finding the global minimum, although at 
considerable computational cost. In contrast, the method is easy 
to implement [ 121. A faster alternative is the deterministic ICM 
method that does not find a true MAP estimate, although usu- 
ally finds a close enough solution in a fraction of time taken 
by simulated annealing. An even more effective method is the 
HCF method, although its implementation is a little bit more 
complex 

It is worth noting that formulation (28) comprises, as a special 
case, the discrete formulation of the optical flow computation 
described in Section 5.4. Consider constraint (14). Multiplying 
bothsidesbyat = tk-tk-1,itbecomes IXd1+IYd2+IfAt = 0, 

6 Perspectives 
~~ ~~ 

In the past two decades, motion detection and estimation have 
moved from research laboratories to specialized products. This 
has been made possible by two factors. First, enormous ad- 
vances in VLSI have facilitated practical implementation of CPU- 

6The prediction error is defined as follows: 10 log(255*/€(d)) [dB] for E from 
Eq. (18), with quadratic @ and R being the whole image. 



224 Handbook of Image and Video Processing 

........._... ......................... ...................................... ........_............... .............. .........__......... .................. ........____........ .................. ......._-............. ............... .......__............ ................. .......__.............. ............... ......._.._.......... ................ .--.------------. ................ 
---------,\\,,\\ \. ............. -. ___-_-__-.,... \.. ...............- ----.----- _ _ _  ---_-\ &y;::$#::::: : : : :: : : I:::: 
.......--... ....................- 

.......... ......... ......... ......... ......... ......... ......... ......... ......... ............... .-..................... ...................................... ...................................... 

__............. .......... 
....... 

........... 

PIGURE 7 Original frames (a) 168 and (b) 171 from QCIF sequence “CarphoneY (c) Motion-based segmentation of 
frame 171. Motion estimates (subsampled by four) and the resulting motion-compensated prediction error (magnified 
by two) at frame 171 for: (d), (g) dense-field MAP estimation; (e), (h) 16 x 16 block matching; (f), (i) region-based 
estimation for segments from (c). (From Konrad and Stiller [ 14, Chapter 41. Reproduced with permission of Kluwer.) 

hungry motion algorithms. Second, new models and estimation 
algorithms have lead to an improved reliability and accuracy of 
the estimated motion. With the continuing advances in VLSI, the 
complexity constraints plaguing motion algorithms will become 
less of an issue. This should allow practical implementation of 
more advanced motion models and estimation criteria, and, in 
turn, further improve the accuracy of the computed motion. 
One of the promising approaches studied today is the joint mo- 
tion segmentation and estimation that effectively combines the 
detection and estimation discussed separately in this chapter. 
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Even with the advancing camera and digital recording tech- 
nology, there are many situations in which recorded image se- 
quences - or video for short - may suffer from severe degrada- 
tions. The poor quality of recorded image sequences may be 
due to, for instance, the imperfect or uncontrollable record- 
ing conditions such as one encounters in astronomy, foren- 
sic sciences, and medical imaging. Video enhancement and 
restoration has always been important in these application 
areas, not only to improve the visual quality but also to in- 
crease the performance of subsequent tasks such as analysis and 
interpretation. 

Another important application of video enhancement and 
restoration is that of preserving motion pictures and video- 
tapes recorded over the last century. These unique records of 
historic, artistic, and cultural developments are deteriorating 
rapidly because of aging effects of the physical reels of film 
and magnetic tapes that carry the information. The preserva- 
tion of these fragile archives is of interest not only to profes- 
sional archivists, but also to broadcasters as a cheap alternative 
to fill the many television channels that have come available 
with digital broadcasting. Reusing old film and video material 
is, however, only feasible if the visual quality meets the stan- 
dards of today. First, the archived film and video is transferred 
from the original fdm reels or magnetic tape to digital media. 
Then, all kinds of degradations are removed from the digitized 
image sequences, in this way increasing the visual quality and 

commercial value. Because the objective of restoration is to re- 
move irrelevant information such as noise and edges, it restores 
the original spatial and temporal correlation structure of digital 
image sequences. Consequently, restoration may also improve 
the efficiency of the subsequent MPEG compression of image 
sequences. 

An important difference between the enhancement and 
restoration of two-dimensional (2-D) images and of video is 
the amount of data to be processed. Whereas for the quality 
improvement of important images elaborate processing is still 
feasible, this is no longer true for the absolutely huge amounts 
of pictorial information encountered in medical sequences and 
film/video archives. Consequently, enhancement and restoration 
methods for image sequences should be fit for - at least par- 
tial- implementation in hardware, should have a manageable 
complexity, and should be semiautomatic. The term semiauto- 
matic indicates that in the end professional operators control the 
visual quality of the restored image sequences by selecting values 
for some of the critical restoration parameters. 

The most common artifact encountered in the above- 
mentioned applications is noise. Over the past two decades an 
enormous amount of research has focused on the problem of 
enhancing and restoring 2-D images. Clearly, the resulting spa- 
tial methods are also applicable to image sequences, but such 
an approach implicitly assumes that the individual pictures of 
the image sequence, or frames, are temporally independent. By 
ignoring the temporal correlation that exists, one may obtain 
suboptimal results, and the spatial intrafiume filters tend to 
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introduce temporal artifacts in the restored image sequences. In 
this chapter we focus our attention specifically on exploiting tem- 
poral dependencies, yielding interframe methods. In this respect 
the material offered in this chapter is complementary to that on 
image enhancement in Chapters 3.1 to 3.4 ofthis Handbook. The 
resulting enhancement and restoration techniques operate in the 
temporal dimension by definition, but they often have a spatial 
filtering component as well. For this reason, video enhancement 
and restoration techniques are sometimes referred to as spa- 
tiotemporal filters or three-dimensional (3-D) filters. Section 2 
of this chapter presents three important classes of noise filters for 
video frames, namely linear temporalfilters, order-statistic filters, 
and multiresolu tion filters. 

In forensic sciences and in film and video archives, a large 
variety of artifacts are encountered. Besides noise, we discuss 
the removal of two other important impairments that rely on 
temporal processing algorithms, namely blotches (Section 3) 
and intensity flicker (Section 4). Blotches are dark and bright 
spots that are often visible in damaged film image sequences. 
The removal of blotches is essentially a temporal detection and 
interpolation problem. Intensity flicker refers to variations in 
intensity in time, caused by aging of film, by copying and for- 
mat conversion (for instance, from film to video), and-in the 
case of earlier film-by variations in shutter time. Whereas 
blotches are spatially highly localized artifacts in video frames, 
intensity flicker is usually a spatially global, but not stationary, 
artifact. 

In practice, image sequences may be degraded by multiple 
artifacts. In principle, a single method for restoring all of the 
artifacts simultaneously is conceivable. More usual is, however, 
to follow a sequential procedure, in which artifacts are removed 
one by one. As an example, Fig. 1 illustrates the order in which the 
removal of flicker, blotches, and noise takes place. The reasons 
for this modular approach are the necessity to judge the success 
of the individual steps (for instance, by an operator), and the 
algorithmic and implementation complexity. 

As already suggested in Fig. 1, most temporal iiltering tech- 
niques require an estimate of the motion in the image sequence. 
Motion estimation has been discussed in detail in Chapters 3.7 
and 6.1 of this Handbook. The estimation of motion from de- 
graded image sequences is, however, problematic. We are faced 
with the problem that the impairments of the video disturb the 
motion estimator, but that at the same time correct motion esti- 
mates are assumed in developing enhancement and restoration 
algorithms. In this chapter we will not discuss the design of new 

motion estimators that are robust to the various artifacts, but 
we will assume that existing motion estimators can be modified 
appropriately such that sufficiently correct and smooth motion 
fields are obtained. The reason for this approach is that even 
under ideal conditions, motion estimates are never perfect. In- 
correct or unreliable motion vectors are dealt with in two ways. 
In the first place, clearly incorrect or unreliable motion vectors 
can be repaired. In the second, the enhancement and restoration 
algorithms should be robust against the less obviously incorrect 
or unreliable motion vectors. 

2 Spatiotemporal Noise Filtering 

Any recorded signal is affected by noise, no matter how precise 
the recording equipment. The sources of noise that can cor- 
rupt an image sequence are numerous (see Chapter 4.4 of this 
Handbook). Examples ofthe more prevalent ones include camera 
noise, shot noise originating in electronic hardware and the stor- 
age on magnetic tape, thermal noise, and granular noise on film. 
Most recorded and digitized image sequences contain a mixture 
of noise contributions, and often the (combined) effects of the 
noise are nonlinear of nature. In practice, however, the aggre- 
gated effect of noise is modeled as an additive white (sometimes 
Gaussian) process with zero mean and variance ui  that is in- 
dependent from the ideal uncorrupted image sequence f(n, k). 
The recorded image sequence g(n, k )  corrupted by noise w(n, k )  
is then given by 

where n = (n, ,  n2) refers to the spatial coordinates and k to the 
frame number in the image sequence. More accurate models are 
often much more complex but lead to little gain compared to 
the added complexity. 

The objective ofnoise reduction is to make an estimate f(n, k )  
of the original image sequence given only the observed noisy im- 
age sequence g (n, k) .  Many different approaches toward noise 
reduction are known, including optimal linear filtering, nonlin- 
ear filtering, scale-space processing, and Bayesian techniques. In 
this section we discuss successively the class of linear image se- 
quence filters, order-statistic filters, and multiresolution filters. 
In all cases the emphasis is on the temporal filtering aspects. 
More rigorous reviews of noise filtering for image sequences are 
given in [2,3, 151. 

I 

FIGURE 1 Some processing steps in the removal of noise, blotches, and intensity flicker from video. 
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2.1 Linear Filters 
Temporally Averaging Filters 
The simplest temporal filter carries out a weighted averaging of 
successive frames. That is, the restored image sequence is ob- 
tained by [6] 

Were h(2) arethetemporal filter coefficients used toweight2KSl 
consecutive frames. In case the frames are considered equally 
important we have h(Z) = 1/(2K + 1). Alternatively, the filter 
coefficients can be optimized in a minimum mean-squared error 
fashion, 

h(0  + ?FE[(fh k) - i(n, k)YI, (3) 

yielding the well-known temporal Wiener filtering solution: 

f Rgg(0) . . .  Rgg( -K)  . . '  

(4) 

where Rgg(m) is the temporal autocorrelation function de- 
fined as Rgg(m) =E[g(n, k)g(n, k - m)] ,  and Rfg(m)  is 
the temporal cross-correlation function defined as R f g  (m)  = 
E[ f(n, k)g(n, k - m)]. The temporal window length, i.e., the 
parameter K ,  determines the maximum degree by which the 
noise power can be reduced. The larger the window the greater 
the reduction of the noise; at the same time, however, the 
more visually noticeable the artifacts resulting from motion be- 
tween the video frames. A dominant artifact is blur of mov- 
ing objects caused by the averaging of object and background 
information. 
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FIGURE 2 Noise filter operating along the motion trajectory of the picture 
element (n, k). 

The motion artifacts can greatly be reduced by operating the 
filter, Eq. ( 2 ) ,  along the picture elements (pixels) that lie on 
the same motion trajectory [ 5 ] .  Equation (2) then becomes a 
motion-compensated temporal filter (see Fig. 2):  

Here d(n; k, 1) = (dx(nl, nz;  k, 1) ,  dy (n l ,  n2;  k, 1)) is the mo- 
tion vector for spatial coordinate (nl ,  n2) estimated between the 
frames k and 1. It is pointed out here that the problems of noise 
reduction and motion estimation are inversely related as far as 
the temporal window length K is concerned. That is, as the 
length of the filter is increased temporally, the noise reduction 
potential increases, but so are the artifacts caused by incorrectly 
estimated motion between frames that are temporally far apart. 

In order to avoid the explicit estimation of motion, which 
might be problematic at high noise levels, two alternatives are 
available that turn Eq. (2) into a motion-adaptive filter. In the 
first place, in areas where motion is detected (but not explicitly 
estimated) the averaging offrames should be kept to a minimum. 
Different ways exist to realize this. For instance, temporal filter 
(2) can locally be switched off entirely, or it can locally be limited 
to using only future or past frames, depending on the tempo- 
ral direction in which motion was detected. Basically the fdter 
coefficients h(2) are spatially adapted as a function of detected 
motion between frames. Second, filter ( 2 )  can be operated along 
M u  priori selected motion diredions at each spatial coordinate. 
The finally estimated value f(n, k) is subsequently chosen from 
the M partial results according to some selection criterion, for 
instance as the median 161: 
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FIGURE 3 Examples of spatiotemporal windows to collect data for noise 
filtering of the picture element (n, k). 

Clearly cascading Eqs. (6a) and (6b) turns the overall estimation 
procedure into a nonlinear one, but the partial estimation results 
are still obtained by the linear filter operation [Eq. (sa)]. 

It is easy to see that filter (2) can be extended with a spatial 
filtering part. There exist many variations to this concept, basi- 
cally as many as there are spatial restoration techniques for noise 
reduction. The most straightforward extension of Eq. (2) is the 
following 3-D weighted averaging filter [ 151: 

f(n, k) = h(m, l)g(n - m, k - 1) (7) 
(m, IN S 

Here S is the spatiotemporal support or window of the 3-D filter 
(see Fig. 3). The filter coefficients h(m, 1) can be chosen to be 
all equal, but a performance improvement is obtained if they 
are adapted to the image sequence being filtered, for instance 
by optimizing them in the mean-squared error sense of Eq. (3). 
In the latter case, Eq. (7) becomes the theoretically optimal 3-D 
Wiener filter. 

There are, however, two disadvantages with the 3-D Wiener 
filter. The first is the requirement that the 3-D autocorrelation 
function for the original image sequence is known a priori. The 
second is the 3-D wide-sense stationarity assumptions, which are 
virtually never true because of moving objects and scene changes. 
These requirements are detrimental to the performance of the 
3-D Wiener filter in practical situations of interest. For these 
reasons, simpler ways of choosing the 3-D filter coefficients are 
usually preferred, provided that they allow for adapting the filter 
coefficients. One such choice for adaptive filter coefficients is the 
following [ 101 : 

C 
h(m, 1; n, k) = 

1 + max(a, (g(n, k) - g(n - m, k - 1))2) * 
( 8 )  

Here h(m, 1; n, k) weights the intensity at spatial location n - m 
in frame k - 1 for the estimation of the intensity f(n, k). The 
adaptive nature of the resulting filter can immediately be seen 
from Eq. (8). If the difference between the pixel intensity g(n, k) 
being filtered and the intensity g(n - m, k - 1) for which the 
filter coefficient is calculated is less than a, this pixel is included 
in the filteringwith weight c / l  +a; otherwise it is weighted with 
a much smaller factor. In this way, pixel intensities that seem to 
deviate too much from g(n, k) -for instance, due to moving 

objects within the spatiotemporal window S - are excluded 
from Eq. (7). As with temporal filter (2), spatiotemporal filter (7) 
can be carried out in a motion-compensated way by arranging 
the window S along the estimated motion trajectory. 

Temporally Recursive Filters 
A disadvantage of temporal filter (2) and spatiotemporal filter 
(7) is that they have to buffer several frames of an image sequence. 
Alternatively, a recursive filter structure can be used that gener- 
ally has to buffer fewer (usually only one) frames. Furthermore, 
these filters are easier to adapt since there are fewer parameters 
to control. The general form of a recursive temporal filter is as 
follows: 

f ~ n ,  k) = fh k) + a(n, k)[g(n, k) - fdn, MI. (9) 

Here fb(n, k) is the prediction of the original kth frame on the 
basis of previously filtered frames, and a(n, k) is the filter gain for 
updating this prediction with the observed kth frame. Observe 
that for a(n, k) = 1 the filter is switched off, i.e., f(n, k) = 
g(n, k). Clearly, a number of different algorithms can be derived 
from Eq. (9) depending on the way the predicted frame fb(n, k) 
is obtained and the gain a(n, k) is computed. A popular choice 
for the prediction fa(., k) is the previouslyrestored frame, either 
in direct form 

(loa) f&n, k) = f b ,  k - 1) 

or in motion-compensated form: 

fb(n, k) = f(n - d(n; k, k - l), k - 1). (lob) 

More elaborate variations of Eq. (10) make use of a local es- 
timate of the signals mean within a spatiotemporal neighbor- 
hood. Furthermore, Eq. (9) can also be cast into a formal 3-D 
motion-compensated Kalman estimator structure [ 161. In this 
case the prediction &(n, k) depends directly on the dynamic 
spatiotemporal state-space equations used for modeling the im- 
age sequence. 

The simplest case for selecting a(n, k) is by using a globally 
fixed value. As with the filter structures of Eqs. (2) and (7), it is 
generally necessary to adapt a(n, k) to the presence or correct- 
ness of the motion in order to avoid filtering artifacts. Typical 
artifacts of recursive filters are “comet tails” that moving objects 
leave behind. 

A switchingfilter is obtained if the gain takes on the values 
a and 1, depending on the difference between the prediction 
fb(n, k) and the actually observed signal value g(n, k): , 

For areas that have a lot of motion [if prediction (loa) is used] or 
for which the motion has been estimated incorrectly [if predic- 
tion (lob) is used], the difference between the predicted intensity 
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value and the noisy intensity value is large, causing the filter to 
switch off. For areas that are stationary or for which the motion 
has been estimated correctly, the prediction differences are small, 
yielding the value a for the filter coefficient. 

A finer adaptation is obtained if the prediction gain is op- 
timized to minimize the mean-squared restoration error (3), 
yielding 

Here ul(n, k) is an estimate of the image sequence variance in a 
local spatiotemporal neighborhood of (n, k). If this variance is 
high, it indicates large motion or incorrectly estimated motion, 
causing the noise filter to switch off, i.e., a(n, k) = 1. If $(n, k) 
is of the same order of magnitude as the noise variance u;, the 
observed noisy image sequence is obviously very unreliable so 
that the predicted intensities are used without updating it, i.e., 
a(n, k) = 0. The resulting estimator is known as the local linear 
minimum mean-squared error (LLMMSE) estimator. A draw- 
back of Eq. (12)) as with any noise filter that requires the calcula- 
tion of ui(n, k), is that outliers in the windows used to calculate 
this variance may cause the filter to switch off. Order-statistic 
filters are more suitable for handling data in which outliers are 
likely to occur. 

2.2 Order-Statistic Filters 
Order-statistic (OS) filters are nonlinear variants of weighted- 
averaging filters. The distinction is that in OS filters the ob- 
served noisy data - usually taken from a small spatiotemporal 
window-are ordered before being used. Because of the or- 
dering operation, correlation information is ignored in favor 
of magnitude information. Examples of simple OS filters are 
the minimum operator, maximum operator, and median oper- 
ator. OS filters are often applied in directionalfiltering. In di- 
rectional filtering, different filter directions are considered that 
correspond to different spatiotemporal edge orientations. Effec- 
tively this means that the filtering operation takes place along the 
spatiotemporal edges, avoiding the blurring of moving objects. 

The directional filtering approach may be superior to adaptive or 
switching filters, since noise around spatiotemporal edges can ef- 
fectively be eliminated by filtering along those edges, as opposed 
to turning off the filter in the vicinity of edges [ 151. 

The general structure of an OS restoration filter is as 
follows: 

IS1 
f<n, k) = = h(r)(n, k)g(r)(n, k). (13) 

r=l  

Here g(,)(n, k) are the ordered intensities, or ranks, of the cor- 
rupted image sequence, taken from a spatiotemporal window S 
with finite extent centered around (n, k) ; see Fig. 3. The num- 
ber of intensities in this window is denoted by I SI. As with linear 
filters, the objective is to choose appropriate filter coefficients 
h(rl (n, k) for the ranks. 

The most simple order-statistic filter is a straightforward tem- 
poral median, for instance taken over three frames: 

f(n, k) = median(g(n, k - 11, g(n, k), g(n, k + 1)). (14) 

Filters of this type are very suitable for removing shot noise. 
In order to avoid artifacts at the edges of moving objects, Eq. 
(14) is normally applied in a motion-compensated way. A more 
elaborate OS filter is the multistage median filter (MMF) [ 11. 
In the MMF the outputs of basic median filters with differ- 
ent spatiotemporal support are combined. An example of the 
spatiotemporal supports is shown in Fig. 4. The outputs of 
these intermediate median filter results are then combined as 
follows: 

The advantage of this class of filters is that although it does 
not incorporate motion estimation explicitly, artifacts on edges 
of moving objects are significantly reduced. Nevertheless, the 
intermediate medians can also be computed in a motion- 
compensated way by positioning the spatiotemporal windows 
in Fig. 4 along motion trajectories. 

FIGURE 4 Spatiotemporal windows used in the multistage median filter. 
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FIGURE 5 Overall filtering structure combining Eqs. (9) and (16) and an outlier-removing rank order test. 

The filter coefficients h(,)(n, k) in Eq. (13) can also be statis- 
tically designed, as described in Chapter 4.4 of this Handbook. If 
the coefficients are optimized in the mean-squared error sense, 
the following general solution for the restored image sequence 
is obtained [ 71 : 

This expression formulates the optimal filter coefficients 
ho)(n, k) in terms of a matrix product involving the I SI x I SI 
autocovariance matrix of the ranks of the noise, denoted by C(w), 
and a matrix A defined as 

Here E [ w ( ~ )  (n, k)] denotes the expectation of the ranks of the 
noise. The result in Eq. (16a) gives an estimate not only of the 
filtered image sequence, but also for the local noise variance. This 
quantity is of use by itself in various noise filters to regulate the 
noise reduction strength. In order to calculate E [ w(,) (n, k)] and 
C(,), the probability density function of the noise has to be as- 
sumedknown. In case the noise w (n, k) is uniformly distributed, 
Eq. (16a) becomes the average of the minimum and maximum 
observed intensity. For Gaussian distributed noise, Eq. (16a) de- 
generates to Eq. (2) with equal weighting coefficients. 

An additional advantage of ordering the noisy observation 
prior to filtering is that outliers can easily be detected. For in- 
stance, with a statistical test, such as the rank order test [7], 
the observed noisy values within the spatiotemporal window S 
that are significantly different from the intensity g(n, k) can be 
detected. These significantly different values originate usually 
from different objects or different motion patterns in the image 
sequence. By letting the statistical test reject these values, filters 
(13) and(l6) uselocallyonlydatafromtheobservednoisyimage 
sequence that are close - in intensity- to g(n, k). This further 
reduces the sensitivity of noise filter (13) to outliers that are due 
to motion or incorrectly compensated motion. 

Estimator (16) can also be used in a recursive structure such 
as the one in Eq. (9). Essentially (16) is then interpreted as an 
estimate for the local mean of the image sequence, and the fil- 
tered value resulting from Eq. (16) is used as the predicted value 
$,(n, k) in Eq. (9). Furthermore, instead of using only noisy 
observations in the estimator, previously filtered frames can be 
used by extending the spatiotemporal window S over the current 
noisyframeg(n, k) and thepreviouslyfilteredframe f(n, k- 1). 
The overall filter structure thus obtained is shown in Fig. 5. 

2.3 Multiresolution Filters 
The multiresolution representation of 2-D images has become 
quite popular for analysis and compression purposes. This sig- 
nal representation is also useful for image sequence restoration. 
The fundamental idea is that if an appropriate decomposition 
into bands of different spatial and temporal resolutions and ori- 
entations is carried out, the energy of the structured signal will 
locally be concentrated in selected bands whereas the noise is 
spread out over all bands. The noise can therefore effectively be 
removed by mapping all small (noise) components in all bands 
to zero, while leaving the remaining larger components relatively 
unaffected. Such an operation on signals is also known as cor- 
ing [4]. Figure 6 shows two coring functions, namely soft and 
hard thresholding. Chapter 3.4 of this Handbook discusses 2-D 
wavelet-based thresholding methods for image enhancement. 
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FIGURE 6 Coring functions: (a) soft thresholding, 6) hard thresholding. 
Here x is a signal amplitude taken from one of the spatiotemporal bands (which 
carry different resolution and orientation information), and 4 is the resulting 
signal amplitude after coring. 

The discrete wavelet transform has been widely used for 
decomposing one-dimensional and multidimensional signals 
into bands. A problem with this transform for image sequence 
restoration is, however, that the decomposition is not shift in- 
variant. Slightly shifting the input image sequence in spatial or 
temporal sense can cause significantly different decomposition 
results. For this reason, in [ 141 a shift-invariant, but overcom- 
plete, decomposition was proposed, known as the Simoncelli 
pyramid. Figure 7(a) shows the 2-D Simoncelli pyramid de- 
composition scheme. The filters Lj(o) and Hi(o) are linear 
phaselow- and high-pass filters, respectively. The filters Fi (0) are 
fanfilters that decompose the signal into four directional bands. 
The resulting spectral decomposition is shown in Fig. 7(b). From 
this spectral tessellation, the different resolutions and orienta- 
tions of the spatial bands obtained by Fig. 7(a) can be inferred. 
The radial bands have a bandwidth of 1 octave. 

The Simoncelli pyramid gives a spatial decomposition of each 
frame into bands of different resolution and orientation. The 
extension to temporal dimension is obtained by temporally de- 
composing each of the spatial resolution and orientation bands 
using a regular wavelet transform. The low-pass and high-pass 
filters are operated along the motion trajectory in order to avoid 
blurring of moving objects. The resulting motion-compensated 
spatiotemporal wavelet coefficients are filtered by one of the cor- 
ing functions, followed by the reconstruction of the video frame 
by an inverse wavelet transformation and Simoncelli pyramid 
reconstruction. Figure 8 shows the overall scheme. 

Though multiresolution approaches have been shown to out- 
perform the filtering techniques described in Sections 2.1 and 
2.2 for some types of noise, they generally require much more 
processing power because of the spatial and temporal decom- 
position, and - depending on the temporal wavelet decompo- 
sition - they require a significant number of frame stores. 

3 Blotch Detection and Removal 

Blotches are artifacts that are typically related to film. Dirt 
particles covering film introduce bright or dark spots on the 

FIGURE 7 (a) Simoncelli pyramid decomposition scheme. (b) Resultingspec- 
tral decomposition, illustrating the spectral contents carried by the different 
resolution and directional bands. 

frames, and the mishandling or aging of film causes loss of 
gelatin covering the film. Figure 1 l(a) on page 235 shows a film 
frame containing dark and bright spots: the blotches. A model 
for this artifact is the following [ 111: 

Here b(n, k) is a binary mask that indicates for each spatial lo- 
cation in each frame whether or not it is part of a blotch. The 
(more or less constant) intensity values at the corrupted spatial 
locations are given by c(n, k). Though noise is not considered 
to be the dominant degrading factor in the section, it is still in- 
cluded in Eq. (17) as the term w(n, k). The removal of blotches 
is a two-step procedure. In the first, most complicated step, the 
blotches have to be detected; i.e., an estimate for the mask b(n, k) 
is made [8]. In the second step, the incorrect intensities c(n, k) 
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FIGURE 8 Overall spatiotemporal multiresolution filtering, using coring. 

at the corrupted locations are spatiotemporally interpolated [9]. 
In case a motion-compensated interpolation is carried out, the 
second step also involves the local repair of motion vectors es- 
timated from the blotched frames. The overall blotch detection 
and removal scheme is shown in Fig. 9. 

3.1 Blotch Detection 
Blotches have three characteristic properties that are exploited 
by blotch detection algorithms. In the first place, blotches are 
temporally independent and therefore hardly ever occur at the 
same spatial location in successive frames. In the second, the 
intensity of a blotch is significantly different from its neighboring 
uncorrupted intensities. Finally, blotches form coherent regions 
in a frame, as opposed to, for instance, spatiotemporal shot noise. 

There are various blotch detectors that exploit these charac- 
teristics. The first is a pixel-based blotch detector known as the 
spike-detector index (SDI). This method detects temporal dis- 
continuities by comparing pixel intensities in the current frame 
with motion-compensated reference intensities in the previous 
and following frame: 

SDI(n, k) = min((g(n, k) - g(n - d(n; k, k - l), k - 1))2, 

(g(n, k) - g(n - d(n; k, k + 11, k + 1))2) (18) 

Since blotch detectors are pixel oriented, the motion field 
d(n; k; I) should have a motion vector per pixel; i.e., the motion 
field is dense. Observe that any motion-compensation procedure 
must be robust against the presence of intensity spikes; this will 

FIGURE 9 Blotch detection and removal system. 

be discussed later in this Section. A blotch pixel is detected if 
SDI(n, k) exceeds a threshold: 

1 ifSDI(n, k) > T 
0 otherwise 

b(n, k) = 

Since blotch detectors are essentially searching for outliers, 
order-statistic-based detectors usually perform better. The rank- 
order difference (ROD) detector is one such method. It takes 
I SI reference pixel intensities from a motion-compensated spa- 
tiotemporal window S (see, for instance, Fig. lo), and finds the 
deviation between the pixel intensity g(n, k) and the reference 
pixel rj ranked by intensity value as follows: 

Ti - g(n, k) if g(n, k) 5 median(ri) I g(n, k) - rj if g(n, k) > median(ri) 
RODj(n, k) = 

I SI fori = 1,2, .  . ., -. (20) 
2 

A blotch pixel is detected if any of the rank order differences 
exceeds a specific threshold Tj: 

1 

0 otherwise 
if RODj(n, k) > Ti 

(21) I b(n, k) = 

FIGURE 10 
obtaining reference intensities in the ROD detector. 

Example of motion-compensated spatiotemporal window for 
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The sROD basically looks at the range of the reference pixel 
intensities obtained from the motion-compensated window, and 
it compares the range with the pixel intensity under investigation. 
A blotch pixel is detected if the intensity of the current pixel 
g(n, k) lies far enough outside that range. 

The performance of even this simple pixel-based blotch de- 
tector can be improved significantly by exploiting the spa- 
tial coherence of blotches. This is done by postprocessing the 
blotch mask in Fig. 11 (c) in two ways, namely by removing 
small blotches and by completing partially detected blotches. 
We first discuss the removal of small blotches. Detector out- 
put (22a) is not only sensitive to intensity changes caused 
by blotches corrupting the image sequence, but also to noise. 
If the probability density function of the noise - denoted by 
fw(w) -is known, the probability of false detection for a sin- 
gle pixel can be calculated. Namely, if the sROD uses IS1 ref- 
erence intensities in evaluating Eq. (22a), the probability that 
sROD(n, k) for a single pixel is larger than T due to noise only is 
[ll]: 

P(sROD(n, k) > T I no blotch) 

= 2P(g(n, k) - max(ri) > T I no blotch) 

= 2 1: [[iT fw(w)dw] fw(u)du. 
S 

(23) 

In the detection mask b(n, k) blotches may consist of sin- 
gle pixels or of multiple connected pixels. A set of connected 
pixels that are all detected as (being part of a) blotch is called 
a spatially coherent blotch. If a coherent blotch consists of N 
connected pixels, the probability that this blotch is due to noise 

only is 

P(sROD(n, k) > T for N connected pixels 1 no blotch) 

= (P(sROD(n, k) > T I no blotch))? (24) 

When this false detection probability is bounded to a certain 
maximum, the minimum number of pixels identified by the 
sROD detector as being part of a blotch can be computed. Con- 
sequently, coherent blotches consisting of fewer pixels than this 
minimum are removed from the blotch mask b(n, k). 

A second postprocessing technique for improving the detector 
performance is hysteresis thresholding. First a blotch mask is 
computed by using a very low detection threshold T, for instance 
T = 0. From the detection mask the small blotches are removed 
as described above, yielding the mask bo(n, k). Nevertheless, 
because of the low detection threshold this mask still contains 
many false detections. Then a second detection mask bl (n, k) 
is obtained by using a much higher detection threshold. This 
mask contains fewer detected blotches and the false detection 
rate in this mask is small. The second detection mask is now 
used to validate the detected blotches in the first mask: only those 
spatially coherent blotches in bo(n, k) that have a corresponding 
blotch in bl(n, k) are preserved; all others are removed. The 
result of the above two postprocessing techniques on the frame 
shown in Fig. ll(a) is shown in Fig. 12(a). In Fig. 12(b) the 
detection and false detection probabilities are shown. 

3.2 Motion Vector Repair and Interpolating 
Corrupted Intensities 
Block-based motion estimators will generally find the correct 
motion vectors even in the presence of blotches, provided that 
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(b) 
FIGURE 12 
sROD with postprocessing (top curve), compared to results from Fig. Il(b). 

(a) Blotch detection mask after postprocessing. (b) Correct detection versus false detections obtained for 
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the blotches are small enough. The disturbing effect of blotches 
is usually confined to small areas of the frames. Hierarchical mo- 
tion estimators will experience little influence of the blotches at 
the lower resolution levels. At higher resolution levels, blotches 
covering larger parts of (at those levels) small blocks will signifi- 
cantly influence the motion estimation result. If the blotch mask 
b(n, k) has been estimated, it is also known which estimated 
motion vectors are unreliable. 

There are two strategies in recovering motion vectors that are 
known to be unreliable. The first approach is to take an average of 
surrounding motion vectors. This process - known as motion 
vector interpolation or motion vector repair-can be realized by 
using, for instance, the median or average of the motion vectors 
of uncorrupted regions adjacent to the corrupted blotch. Though 
simple, the disadvantages of averaging are that motion vectors 
may be created that are not present in the uncorrupted part of 
the image and that no validation of the selected motion vector 
on the actual frame intensities takes place. 

The second, more elaborate, approach circumvents this dis- 
advantage by validating the corrected motion vectors using in- 
tensity information directly neighboring the blotched area. As a 
validation criterion the motion-compensated mean squared in- 
tensity difference can be used [ 31. Candidates for the corrected 
motion vector can be obtained either from motion vectors taken 
from adjacent regions or by motion reestimation using a spa- 
tial window containing only uncorrupted data such as the pixels 
directly bordering the blotch. 

The estimation of the frame intensities labeled by the mask 
as being part of a blotch can be done either by a spatial or tem- 
poral interpolation, or a combination of both. We concentrate 
on spatiotemporal interpolation. Once the motion vector for a 
blotched area has been repaired, the correct temporally neigh- 
boring intensities can be obtained. In a multistage median inter- 
polation filter, five interpolated results are computed by using the 
(motion-compensated) spatiotemporal neighborhoods shown 
in Fig. 13. Each of the five interpolated results is computed as 
the median over the corresponding neighborhood Si: 

A(., k) = median({n E Sf-'[ f(n, k - l)}, 

s; s;" Slk+l  &k-I S: &k+I S3k4 s3k s3k+l 

FIGURE 13 
in Eq. (25). 

Five spatiotemporal windows used to compute the partial results 

The final result is computed as the median over the five inter- 
mediate results: 

The multistage median filter does not rely on any model for 
the image sequence. Though simple, this is at the same time a 
drawback of median filters. If a model for the original image 
sequence can be assumed, it is possible to find statistically opti- 
mal values for the missing intensities. For the sake of complete- 
ness we mention here that if one assumes the popular Markov 
random field, the following complicated expression has to be 
optimized: 

p(f(n, k)l f(n - d(n; k, k - l), k - l), f(n, k), 

f(n - d(n; k, k + 11, k + 1)) 

The first term on the right-hand side of Eq. (27) forces the 
interpolated intensities to be spatially smooth, while the sec- 
ond and third term enforce temporal smoothness. The sets 
Sk-', Sk, and Sk+' denote appropriately chosen spatial win- 
dows in the frames k - 1, k, and k + 1. The temporal smooth- 
ness is calculated along the motion trajectory using the re- 
paired motion vectors. The optimization of Eq. (27) requires 
an iterative optimization technique. If a simpler 3-D autore- 
gressive model for the image sequence is assumed, the in- 
terpolated values can be calculated by solving a set of linear 
equations. 

Instead of interpolating the corrupted intensities, it is also 
possible to directly copy and paste intensities from past or future 
frames. The simple copy-and-paste operation instead of a full 
spatiotemporal data regeneration is motivated by the observa- 
tion that, at least on local and motion-compensated basis, image 
sequences are heavily correlated. Furthermore, straightforward 
interpolation is not desirable in situations in which part of the 
information in the past and future frames itself is unreliable, 
for instance if it was part of a blotch itself or if it is situated in 
an occluded area. The objective is now to determine - for each 
pixel being part of a detected blotch - if intensity information 
from the previous or next frame should be used. This decision 
procedure can again be cast into a statistical framework [ 111. 
As an illustration, Fig. 14 shows the interpolated result of the 
blotched frame in Fig. 11 (a). 
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FIGURE 14 Blotch-corrected frame resulting from Fig. l l (a) .  

4 Intensity Flicker Correction 

Intensity flicker is defined as unnatural temporal fluctuations of 
frame intensities that do not originate from the original scene. 
Intensity flicker is a spatially localized effect that occurs in regions 
of substantial size. Figure 15 shows three successive frames from 
a sequence containing flicker. A model describing the intensity 
flicker is the following: 

Here, a(n, k) and P(n, k) are the multiplicative and additive 
unknown flicker parameters, which locally scale the intensi- 
ties of the original frame. The model includes a noise term 
w(n, k) that is assumed to be flicker independent. In the ab- 
sence of flicker we have a(n, k) = 1 and P(n, k) = 0. The 
objective of flicker correction is the estimation of the flicker 
parameters, followed by the inversion of Eq. (28). Since flicker 
always affects fairly large areas of a frame in the same way, the 
flicker parameters a(n, k) and P(n, k) are assumed to be spa- 
tially smooth functions. Temporally the flicker parameters in one 

frame may not be correlated at all with those in a subsequent 
frame. 

The earliest attempts to remove flicker from image sequences 
applied intensity histogram equalization or mean equalization 
on frames. These methods do not form a general solution to 
the problem of intensity flicker correction because they ignore 
changes in scene contents, and they do not appreciate that in- 
tensity flicker is a localized effect. In Section 4.1 we show how 
the flicker parameters can be estimated on stationary image se- 
quences. Section 4.2 addresses the more realistic case of param- 
eter estimation on image sequences with motion [ 121. 

4.1 Flicker Parameter Estimation 
When removing intensity flicker from an image sequence, we 
essentially make an estimate of the original intensities, given the 
observed image sequence. Note that the undoing of intensity 
flicker is onlyrelevant for image sequences, since flicker is a tem- 
poral effect by definition. From a single frame intensity flicker 
cannot be observed nor be corrected. 

If the flicker parameters were known, then one could form an 
estimate of the original intensity from a corrupted intensity by 
using the following straightforward linear estimator: 

In order to obtain estimates for the coefficients hi(n, k), the 
mean-squared error between f(n, k) and f(n, k) is minimized, 
yielding the following optimal solution: 

If the observed image sequence does not contain any noise, then 
Eq. (30) degenerates to the obvious solution: 

FIGURE 15 Three successive frames that contain intensity flicker. 
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In the extreme situation that the variance of the corrupted im- 
age sequence is equal to the noise variance, the combination of 
Eqs. ( 2 9 )  and (30) shows that the estimated intensity is equal to 
the expected value of the original intensities E [ f(n, k)]. 

In practice, the true values for the intensity- flicker parameters 
a(n, k) and P(n, k) are unknown and have to be estimated from 
the corrupted image sequence itself. Since the flicker parameters 
are spatially smooth functions, we assume that they are locally 
constant: 

where S, indicates a small frame region. This region can, in prin- 
ciple, be arbitrarily shaped, but in practice rectangular blocks are 
chosen. By computing the averages and variances of both sides 
of Eq. ( 2 8 ) ,  one can obtain the following analytical expressions 
for the estimates of h ( k )  and Pm(k): 

To solve Eq. (33) in a practical situation, the mean and vari- 
ance of g(n, k )  are estimated within the region S,. The only 
quantities that remain to be estimated are the mean and vari- 
ance ofthe original image sequence f(n, k). Ifwe assume that the 
flicker correction is done frame by frame, we can estimate these 
values from the previous corrected frame k - 1 in the temporally 
corresponding frame region &,: 

There are situations in which the above estimates are unreliable. 
The first case is that of uniform intensity areas. For any original 
image intensity in auniform regions, there are an infinite number 
of combinations of am(k)  and k ( k )  that lead to the observed 
intensity. The estimated flicker parameters are also potentially 
unreliable because of ignoring the noise w(n, k) in Eqs. (33) and 
(34). The reliability of the estimated flicker parameters can be 
assessed by the following measure: 

The threshold T depends on the noise variance. Large values of 
Wm(k) indicate reliable estimates, whereas for the most unreli- 
able estimates Wm(k) = 0. 

4.2 Estimation on Sequences with Motion 
Results (33) and (34) assume that the image sequence intensities 
do not change significantly over time. Clearly, this is an incorrect 
assumptionifmotion occurs. The estimation ofmotion on image 
sequences that contain flicker is, however, problematic because 
virtually all motion estimators are based on the constant lumi- 
nance constraint. Because of the intensity flicker this assumption 
is violated heavily. The only motian that can be estimated with 
sufficient reliability is global motion such as camera panning or 
zooming. In the following we assume that in the evaluation of 
Eqs. (34) and (35), possible global motion is compensated for. 
At that point we still need to detect areas with any remaining- 
and uncompensated- motion, and areas that were previously 
occluded. For both of these cases the approximation in Eq. (34) 
leads to incorrect estimates, which in turn lead to visible artifacts 
in the corrected frames. 

There are various approaches for detecting local motion. One 
possibility is the detection of large differences between the cur- 
rent and previously (corrected) frame. If local motion occurs, 
the frame differences will be large. Another possibility to de- 
tect local motion is to compare the estimated intensity-flicker 
parameters to threshold values. If disagreeing temporal infor- 
mation has been used for computing Eq. (34), we will locally 
find flicker parameters that do not correspond with the spatial 
neighbors or with the a priori expectations of the range of the 
flicker parameters. An outlier detector can be used to localize 
these incorrectly estimated parameters. 

For frame regions S, where the flicker parameters could not 
be estimated reliably from the observed image sequence, the pa- 
rameters are estimated on the basis of the results in spatially 
neighboring regions. At the same time, for the regions in which 
the flicker parameters could be estimated, a smoothing postpro- 
cessing step has to be applied to avoid sudden parameter changes 
that lead to visible artifacts in the correctedimage sequence. Such 
an interpolation and smoothing postprocessing step may exploit 
the reliability of the estimated parameters, as for instance given 
by Eq. (35). Furthermore, in those frame regions where insuffi- 
cient information was available for reliably estimating the flicker 
parameters, the flicker correction should switch off itself. There- 
fore, smoothed and interpolated parameters are biased toward 
am(k) = 1 and pm(k) = 0. 

In Fig. 16 below, an example of smoothing and interpolating 
the estimated flicker parameter for a m ( k )  is shown as a 2-D 
matrix [ 121. Each entry in this matrix corresponds to a 30 x 30 
pixel region Qm in the frame shown in Fig. 15. The interpolation 
technique used is successive overrelaxation (SOR). Successive 
overrelaxation is a well-known iterative interpolation technique 
based on repeated low-pass filtering. Starting off with an initial 
estimate G(k) found by solving Eq. (33), at each iteration a new 
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FIGURE 16 (a) Estimated intensity flicker parameter a,(k), using Eq. (33) 
and local motion detection. (b) Smoothed and interpolated a,,,(k), using SOR. 

estimate is formed as follows: 

Here W,(k) is the reliability measure, computed by Eq. (35), 
and C(a,,,(k)) is a function that measures the spatial smooth- 
ness of the solution a,,, (k) . The convergence of iteration (36)  is 
determined by the parameter o, while the smoothness is de- 
termined by the parameter A. For those estimates that have 
a high reliability, the initial estimates amo(k) are emphasized, 
whereas for the initial estimates that are deemed less reliable, 
i.e., A >> W,,,(k), emphasis is on achieving a smooth solution. 
Other smoothing and interpolation techniques include dilation 
and 2-D polynomial interpolation. The smoothing and interpo- 
lation has to be applied not only to the multiplicative parameter 
am(k), but also to the additive parameter & ( I C ) .  

1600, I . , . , , , , , 
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FIGURE 17 
Variance of the corrupted and corrected image sequence. 

(a) Mean of the corrupted and corrected image sequence. (b) 

As an example, Fig. 17 shows the mean and variance as a 
function of the frame index k of the corrupted and corrected 
image sequence, "Tunnel." Clearly, the temporal fluctuations of 
the mean and variance have been greatly reduced, indicating the 
suppression of flicker artifacts. An assessment of the resulting vi- 
sual quality, as with most results of video processing algorithms, 
has been done by actuallyviewing the corrected image sequences. 
Although the original sequence cannot be recovered, the flicker- 
corrected sequences have a much higher visual quality and they 
are virtually without any remaining visible flicker. 

5 Concluding Remarks 

This chapter has described methods for enhancing and restor- 
ing corrupted video and film sequences. The material that was 
offered in this chapter is complementary to the spatial enhance- 
ment and restoration techniques described in other chapters of 
the Handbook. For this reason, the algorithmic details concen- 
trated on the temporal processing aspects of image sequences. 
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Although the focus has been on noise removal, blotch detection 
and correction, and flicker removal, the approaches and tools de- 
scribed in this chapter are of a more general nature, and they can 
be used for developing enhancement and restoration methods 
for other types of degradation. 
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1 Problem Definition and Applications 
One of the recurring problems in computer vision is the inference 
of the three-dimensional (3-D) structure of an object or a scene 
from its two-dimensional (2-D) projections. Analysis ofmultiple 
images of the same scene taken from different viewpoints has 
emerged as an important method for extractingthe 3-D structure 
of a scene. Generally speaking, extracting structure from multiple 
views of a scene involves determination of the 3-D shape of 
visible surfaces in the static scene from images acquired by two or 
more cameras (stereo sequences) or from one camera at multiple 
positions (monocular sequences). That is, we identify the 3-D 
description of a scene through images of the scene obtained 
from different viewpoints. With this 3-D description, we can 
create models of terrain and other natural environments for use 
in robot navigation, flight simulation, virtual reality, human- 
computer interactions, stereomicroscopy, and so on. 

In the classical stereo problem [ 1,2], after the initial camera 
calibration, correspondence is found among a set of points in 
the multiple images by using either a flow-based or a feature- 
based approach. Disparity computation for the matched points is 
then performed, followed by interpolation to produce piecewise 
smooth surfaces. Establishing correspondences between point 
locations in images acquired from multiple views (matching) is 
the key problem in reconstruction from multiple view images 
as well as in stereo image analysis. Two types of approaches are 

used for the computation of correspondences from a sequence 
of frames - the optical flow-based approach and the feature- 
based approach. The flow-based approach uses the brightness 
constancy assumption to find a transformation between the im- 
ages that maps corresponding points in these images into one 
another. The feature-based approach involves detecting the fea- 
ture points and tracking their positions in multiple views of the 
scene. Dhond and Aggarwal [ 11 presented an excellent review 
of the problem in which they discussed the developments in es- 
tablishing stereo correspondence for the extraction of the 3-D 
structure of a scene up to the end ofthe 1980’s. A few well-known 
algorithms representing widely different approaches were pre- 
sented. The focus of the review was stereo matching. 

In this chapter, we will present a state of the art review of 
the major developments and techniques that have evolved in the 
past decade for recovering depth by using images from multiple 
views. We will not only include the stereo computation meth- 
ods developed in this decade, but also describe a self-contained 
procedure to reconstruct a 3-D scene from multiple images of a 
scene acquired from different views taken by either calibrated or 
uncalibrated cameras. Our purpose is to guide those readers who 
are setting up their own 3-D environment from multiple view 
images, as well as to present a critical overview of the current 
stereo and multiview image analysis techniques. 

The rest of the chapter is organized as follows. Section 2 
briefly reviews the algebraic projective geometry of cameras, 
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which is the foundation for the rest of the chapter. Knowing the 
projective geometry among various coordinate systems (world 
coordinate system, camera coordinate systems, and image co- 
ordinate systems), we can calculate the 3-D information from 
accurate correspondences between the images. In Section 3, we 
discuss optic flow-based as well as feature-based matching tech- 
niques. We present reconstruction techniques, including cam- 
era calibration, and an uncalibrated stereo analysis in Section 
4. After demonstrating a simple example to show the perfor- 
mance of a stereo reconstruction process, we finally conclude in 
Section 6. 

2 Preliminaries: The Projective 
Geometry of Cameras 

In this section, we briefly review the basic geometric material 
that is essential for stereo and multiview image analysis. The 
reader is referred to the book by Faugeras [3] for a detailed 
introduction. We assume the pinhole camera model, which can 
ideallybe modeled as alinear projection from 3-D space into each 
2-D image. Consider four coordinate systems: the fixed refer- 
ence coordinate system (the world coordinate system), the cam- 
era coordinate system, the ideal image coordinate system, and 
the real image coordinate system, shown in Fig. 1. The camera 
coordinate system ( C, X’, Y‘, 2’) is centered at the optical center 
C, and the 2 axis coincides with the optical axis of the camera. 
The ideal image coordinate system (c, x, y )  is defined such that 
the origin c (called the principal point) is at the intersection of 
the optical axis with the image plane and that the X and Y axes 
are aligned with the axes of the camera-centered coordinate sys- 
tem. For a 3-D point M, its coordinates M, = [X’, Y’, 2’1 in 
the camera coordinate system and the coordinates m = [x ,  y ]  
of its projection in the ideal image coordinate system can be 
related by 

s y = o  [;I [‘ f 0 0  O O “1 (1) 
0 0 1 0  

s m  = PM,, (2 )  

where m = [x ,  y, 1IT and M, = [ X ,  Y, 2, 1IT are the aug- 
mented vector of m and M, by adding 1 as the last element. The 
3 x 4 matrix P is called the cameraperspectiveprojection matrix, 
which is determined by the camera focal length f. Here s repre- 
sents the depth, Le., 5 = Z’, and therefore cannot be determined 
from a single image. 

In practice, we usually express a 3-D point in a fixed 3-D co- 
ordinate system referred to as the world coordinate system or the 
reference coordinate system. For a single point M, the relation be- 
tween its coordinates in the camera system M, = [ X’, Y’, 2‘1 

FIGURE 1 Coordinate systems and camera extrinsic and intrinsic parameters: 
(0, X ,  Y, Z), worldcoordinatesystem; (C, X’, Y ‘, Z’), camera coordinatesys- 
tem; (c,  x, y), ideal image coordinate system; (0, u, v) ,  real image coordinate 
system. 

and in the world system M, = [ X ,  Y, Z] can be written as 

M, = DMw, (3) 

The 4 x 4 matrix D is called the extrinsic matrix, which is speci- 
fied by the 3 x 3 rotation matrix R and 3 x 1 translation vector 
t. R gives axis orientations of the camera in the reference coordi- 
nate system; t gives the pose of the camera center in the reference 
coordinate system. 

In practical applications, the image coordinate system 
(0, u, v )  in which we address the pixels in an image is decided 
by the camera sensing array and is usually not the same as the 
ideal image coordinate system (c, x, y). The origin o of the ac- 
tual image plane generally does not coincide with the optical 
principle point C, because of possible misalignment of the sens- 
ing array. Determined by the sampling rates of the image ac- 
quisition devices, the scale factors of the image coordinate axes 
are not necessarily equal. Additionally, the two axes of the real 
image may not form a right angle as a result of the lens dis- 
tortion. The following transformation is used to handle these 
effects : 

[U v 1IT =H[x y 1IT, 

(5) 

H is composed of the parameters characterizing the inherent 
properties of the camera and optics: the coordinates of the point 
c(u0, vo) in the real image coordinate system (o, u, v ) ,  the scale 
factors k, and k, along the u and v axes with respect to the 
units used in (c ,  x, y),  and the angle 0 between the u and v 
axes caused by nonperpendicularity of axes. These parameters 
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FIGURE 3 Parallel axes stereo imaging system. 
FIGURE 2 Epipolar geometry. 

do not depend on the position and orientation of the cameras, 
and are thus called the camera intrinsic or internal parameters. 

vector t = [ tl, t2 ,  t3]  T ,  

H the is perspective thus called the projection intrinsic matrix or internal P is matrix. integrated More into generally, H with 
[ t Ix= [a].= [: -; 3. 

- t2 a, = fk, ,  a, = f k y .  
Combining Eqs. (2) ,  (3), and (5) leads to the 

= [’, ‘1 
ex- 

With the 3-D 
H and H’ are the intrinsic matrices of 
2, respectively. R3x3 and [t] 

1 and Pression that the Pixel Position are the rotation and translation 
transformations between the two camera coordinate systems. world coordinates M = [ X, Y, 21 T: 

Clearly, Eq. (6) indicates that from a point in one image 
plane, only a 3-D location up to an arbitrary scale can be com- 
puted. 

The geometric relationship between two projections of the 
same physical point can be expressed by means of the epipolar 
geometry [4], which is the only geometric constraint between a 
stereo pair of images of a single scene. Let us consider the case of 
two cameras as shown in Fig. 2. Let C and C’ be the optical centers 
of the first and second camera, and let plane I and I’ be the first 
and second image plane. According to the epipolar geometry, 
for a given image point m in the first image, its corresponding 
point m’ in the second image is constrained to lie on a line 
1’. This line is called the epipolar line of m. The line I’ is the 
intersection ofthe epipolarplaneI1, defined by m, C,  and C‘, with 
the second image plane 1’. This epipolar constraint can be for- 
mulated as 

Observe that all epipolar lines of the points in the first im- 
age pass through a common point e’ on the second image. This 
point is called the epipole of the first image, which is the inter- 
section of the line CC’ with the second image plane 1’. Similarly, 
e on the first image plane I is the epipole of the second image 
through which all epipolar lines of points in the second image 
pass through. For the epipole e’, the epipolar geometry suggests 

Fe’ = 0. (9) 

As shown in Fig. 3, when the two image planes are parallel to 
each other, the epipoles are at infinity, and the geometric rela- 
tionship between the two projections becomes very simple - 
the well-known parallel axes stereo system. The optical axes of 
the pair of cameras are mutually parallel and are separated by 
a horizontal distance known as the stereo baseline. The optical 
axes are perpendicular to the stereo baseline, and the image scan- 
lines are parallel to the horizontal baseline. In the conventional 
parallel-axis geometry, all epipolar planes intersect the image 
planes along horizontal lines, i.e., yr = x. 

i s m ’  = 0, 
‘ ’ j  3 Matching 

where is the firndamenta1 matrix It is a matrix’ As mentioned earlier, computing the correspondence among a 
determined by the intrinsic matrix of the two cameras and the given set of images is one of the important issues in 3-D 
relative position of the two cameras (explicit or extrinsic param- shape reconstruction from multiple views. Establishing corre- 

spondence between two views of a scene involves either finding eters), and it can be written as 
a match between the location of points in the two images or 
finding a transformation between the two images that maps cor- 
responding points between the two images into one another. The 
former is known as feature- based matching technique, whereas 

F = H-T[t]xR3x3H’-1, (8) 

where tx is a skew symmetric matrix defined by the translation 
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the latter is known as the direct method of finding correspon- 
dences from raw images. In the following, we will first pose the 
problem of direct image matching as one of determining the op- 
timal transformation between the two images, and then discuss 
the feature-based matching techniques. 

3.1 Optical Flow-Based Matching Techniques 
The problem’ of finding the transformation between two images 
is equivalent to estimating the motion between them. There are 
numerous motion estimation algorithms in the computer vision 
literature [6-91 that are relevant in this context. We draw upon 
this large body of literature of motion estimation techniques for 
making the problem formulation, and we present a numerical 
algorithm for robustly and efficiently computing the motion pa- 
rameters. Among motion estimation schemes, the most general 
is the optical flow formulation. We therefore treat the problem of 
finding the transformation between the two images as equivalent 
to computing the flow between the data sets. There are numerous 
techniques for computing the optical flow from a pair of images. 
Readers are referred to Chapter 3.10 (“Motion Detection and 
Estimation”) in this handbook for more details. 

The motion model proposed by Szeliski etal. [ 91 can be used to 
compute the interframe registration transformation to establish 
the correspondence. This model consists of globally parameter- 
ized motion flow models at one end of the “spectrum”and a 
local motion flow model at the other end. The global motion 
model is defined by associating a single global motion model 
with each patch of a recursively subdivided input image. The 
flow field corresponding to the displacement at each pixel/voxel 
is represented by a B-spline basis. Using this spline-based repre- 
sentation of the flow field (ui, vi) in the popular sum of squared 
differences (SSD) error term, i.e., 

one may estimate the unknown flow field at each pixel/voxel by 
means of the numerical iterative minimization of ESSD. Here Iz 
and Il denote the target and initial reference images, respectively. 
In the local flow model, the flow field is not parameterized. It 
may be noted that the sum of squared differences error term 
gets simplified to Ess~(di)  = C i [ l ~ ( x i  + di, yi) - IR(x~, yi)J2 
when the two given images are in stereo geometry. We present 
a formulation of the global/local flow field computation model 
and the development of a robust numerical solution technique 
[ 51 in the following sections. 

3.1.1 Local/Global Motion Model 
Optical flow computation has been a very active area of com- 
puter vision research for over 15 years. This model of motion 

’The material in this section was originallypublishedin [SI. Copyright Oxford 

computation is very general, especially when set in a hierarchical 
framework. In this framework, at one extreme, each pixel/voxel 
is assumed to undergo an independent displacement. This is 
considered as a local motion model. At the other extreme, we 
have global motion wherein the flow field model is expressed 
parametrically by a small set of parameters e.g., rigid motion, 
affine motion, and so on. 

A general formulation of the image registration problem can 
be posed as follows: Given a pair of images (possibly from a 
sequence) I1 and 12, we assume that 12 was formed by locally 
displacing the reference image I1 as given by I2 (x + u, y + v) = 
Il(x, y). The problem is to recover the displacement field (u, v )  
for which the maximum likelihood solution is obtained by min- 
imizing the error given by Eq. (lo), which is popularly known 
as the sum of squared differences formula. In this motion model, 
the key underlying assumption is that intensity at corresponding 
pixels in 11 and 12 is unchanged and that 11 and 12 differ by local 
displacements. Other error criteria that take into account global 
variations in brightness and contrast between the two images 
and that are nonquadratic can be designed, as in Szeliski et al. 
[91, 

where b and c are the intensity and uniform contrast correction 
terms per frame, which have to be recovered concurrently with 
the flow field. The just-described objective function has been 
minimized in the past by several techniques, some of them using 
regularization on (u, Y )  [ 8, lo]. We subdivide a single image into 
several patches, each of which can be described by either a local 
motion or a global parametric motion model. The tiling process 
is made recursive. The decision to tile a region further is made 
based on the error in computed motion or registration. 

2-0 Locd How. We represent the displacement fields u(x, y )  
and v ( x ,  y )  by B splines with a small number of control points 
hj and ;j as in Szeliski et aZ. [ 91. Then the displacement at a pixel 
location i is given by 

wherewij = Bj(.?ci, vi) arethe basisfirnctionswithfinitesupport. 
In our implementation, we have used bilinear basis B(x, y )  = 
(1 - Ixl)(l- I yl) for ( x ,  y )  in [ - 1, 11’ as shown in Fig. 4, and we 
also assumed that the spline control grid is a subsampled version 
of the image pixel grid (2j = mxi, yj = my;), as in Fig. 5. This 
spline-based representation of the motion field possesses several 
advantages. First, it imposes a built-in smoothness on the motion 
field and thus removes the need for further regularization. Sec- - .  - .  - - - . _  

University Press, 1998. Used with permission. ond, it eliminates the need for correlation windows centered at 
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+ + + + + + + +  

be the error criterion J { E s ~ ( f ) )  
~ 

FIGURE 4 Bilinear basis function. (See color section, p. G7.) 

I J { E ~ D ( B I  = E{(Irn(Xi, f)  - 12(xi>)~} (14) 

2-0 Global How. When a global motion model is used to 
model the motion between Il and 12, it is possible to parameter- 
ize the flow by a small set of parameters describing the motion 
for rigid, affine, quadratic, and other types of transformations. 
The affine flow model is defined in the following manner: 

where the parameters T = (to, . . . , ts) are called global motion 
parameters. To compute an estimate of the global motion, we 
first define the spline control vertices iij = (Gj, Cj) in terms of 
the global motion parameters: 

each pixel, which are computationally expensive. In this scheme, 
the flow field (2 j ,  Cj) is estimated by a weighted sum from all the 
pixels beneath the support of its basis functions. In the correla- 
tion window-based scheme, each pixel contributes to m2 over- 
lapping windows, where m is the size of the window. However, 
in the spline-based scheme, each pixel contributes its error only 
to its four neighboring control vertices, which influence its dis- 
placement. Therefore, the latter achieves computation savings of 
O( w?) over the correlation window-based approaches. 

We use a slightly different error measurement from the one 
described herein. Given two gray-level images I l ( x ,  y) and 
12(x, y), where I1 is the model and I2 is the target, to com- 
pute an estimate f = (21, $1, . . . , Gn, Cn) of the true flow field 
T = (u1, V I ,  . . . , un, v , ) ~  at n control points, first an interme- 
diate image I,,, is introduced and the motion is modeled in terms 
of the B-spline control points as 

where Xi = (xi, yi) and wij are the basis functions as before. 
The expectation E of the squared difference, E ~ D ,  is chosen to 

+ + + + + + + +  
+ + + + + + + +  
+ + + + + + + +  

(u 1, VI) 

+ + + + + + + +  ~ 

fi. ' -  - [;j 0 jjj 0 0 1 jzj jjj o ] T - k ] ,  1 

= SjT - Aj. (16) 

where Sj is the 2 x 6 matrix shown earlier. We then define the flow 
at each pixel by interpolation, using our spline representation. 
The error criterion J { Es~("f)} becomes 

J { E s ~ ( " f > }  

3.1.2 Numerical Solution 
We now describe a novel adaptation of an elegant numerical 
method by Burkardt and Diehl [ 111 that is a modification of the 
standard Newton method for solving a system of nonlinear equa- 
tions. The modification involves precomputation of the Hessian 
matrix at the optimum without starting the iterative minimiza- 
tion process. Our adaptation of this idea to the framework of 
optical flow computation with spline-based flow field represen- 
tations leads to a very efficient and robust flow computation 
technique. 

We present the modified Newton method based on the work of 
Burkardt and Diehl [ 111 to minimize the error term J { E s ~ ( f ) } .  
In the following, we will essentially adopt the notation from 
Burkardt and Diehl [ 1 11 to derive the modified Newton iteration 
and develop new notation as necessary. The primary structure 
of the algorithm is given in the following iteration formula: 

fk+' = f k  - H-'(f = e)g( fk) ,  (17) 

where H is the Hessian matrix and g is the gradient vector of 
the objective function J { EsD(f)}. Unlike in a typical Newton 
iteration, in Eq. (17) the Hessian matrix is always computed at 
the optimum f = = T instead of the iteration point fk. So, 
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one of the key problems is how to calculate the Hessian at the 
optimum prior to beginning the iteration, i.e., without actually 
knowing the optimum. 

Let the vector X denote the coordinates ( x ,  y )  in any image 
and h : X + X' denote a transformation from X to another 
set of coordinates X', characterized by a set of parameters col- 
lected into a vector T, i.e., X' = h(X, T). The parameter vector 
T can represent any of rigid, &ne, shearing, and projective 
(etc.) transformations. Normally the Hessian at the optimum 
will explicitly depend on the optimum motion vector and hence 
cannot be computed directly. However, a clever technique was 
introduced in Burkhardt et al. [ 111, involving a moving coordi- 
nate system {Xk} and an intermediate motion vector? to develop 
the formulas for precomputing the Hessian. This intermediate 
motion vector gives the relationship between {Xk} of iteration 
step k and {Xk+l} of iteration step k + 1: 

Xk = h(X, f k )  (18) 

= h(X, Pfl) (19) 

Xkfl = h(Xk, ?k+l) = h[h(X, F), P + l ]  

After some tedious derivations, it can be shown [5] that the 
Hessian at the optimum is given by 

whereas, the gradient vector with respect to is given by: 

where e = Im(X, fk) - Iz(X). 

iteration: 
Thus the modified Newton algorithm consists of the following 

and the estimate at step k + 1 is given by 

where f is a function that depends on the type of motion model 
used. One of the advantages of the modified Newton method 
is an increase in the size of the region of convergence. Note 
that normally the Newton method requires that the initial guess 
for starting the iteration be reasonably close to the optimum. 
However, in all our experiments - described in Vemuri et aL [ 51 
-with the modified Newton scheme described here, we always 
used the zero vector as the initial guess for the motion vector to 

start the iterations. For more details on the convergence behavior 
of this method, we refer the reader to Burkardt and Diehl [ 111. 

In the following sections, we describe a reliable way of pre- 
computing the Hessian matrix and the gradient vector at the 
optimum for the local and global motion models. 

Hessian Matrix and Gradient Vector Computation for 2-0 
Local Flow. Let kj, ( j  = 1,2, . . . , n) be the control points. 
Then the flow vector T is (21, $1, . . . , Gn, C,)T. Actually, local 
flow is equivalent to pure translation at each pixel, and hence the 
Hessian at the optimum is only related to the derivatives with 
respect to the original coordinates and does not depend on the 
flow vector. Therefore, it can be calculated without introducing 
? as shown below. 

Let 

a a = wl- ,  wl- ,  ..., ( aan ay 

The Hessian at the optimum is then given by 

H:j = H j j  = 2E{aill(X)ajIl(X)}, 

whereas the gradient vector is 

where the matrices M and N are given by 

and 

respectively. We can now substitute Eqs. (25) and (26) into 
Eq. (22)) yielding Tkfl which upon substitution into Eq. (23) 
results in Hence, numerical iterative formula (23) used in 
computing the local motion becomes 

The size of H is determined by how many control points are 
used in representing the flow field (u, v) .  For 3-D problems, H is 
(3n x 372) where n is the number of control points. For such large 
problems, numerical iterative solvers are quite attractive and we 
use a preconditioned conjugate gradient (PCG) algorithm [8,9] 
to solve the linear system H-'g(fk). The specific precondition- 
ing we use in our implementation of the local flow is a simple 
diagonal Hessian preconditioning. More sophisticated precon- 
ditioners can be used in place of this simple preconditioner, and 
the reader is referred to Lai et aL [8 ]  for the source. 
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Hessian Matrix and Gradient Vector Computation for 2-0 
Rigid Flow. We now derive the Hessian matrix and the gra- 
dient vector for the case in which the flow field is expressed by 
using a global parametric form, specifically, a rigid motion pa- 
rameterization, i.e., T = (4, dl, d2)T, with + being the rotation 
angle and dl, dz being the components of the translation in the 
x and y direction, respectively. 

Let kj, ( j  = 1,2, . . . , n) be the control points and let 

The Hessian at the optimum can then be written as 

The gradient vector g(’ fk)  at the optimum is given by 

g(‘ fk)  = 2E ( I ,  - 12)NIKT- I 
where the matrices M and N are 

and 

respectively. The basic steps in our algorithm for computing the 
global rigid flow are as follows. 

1. Precompute the Hessian at the optimum H by using 

2. At iteration k, compute the gradient vector by using 

3. Compute the innovation Tkfl by using Eq. (22). 
4. Update the motion parameter ‘fk+’ by using the following 

Eq. (30). 

Eq. (31). 

equation: 

Once the transformation between the images is known, one can 
set up the n point matches and reconstruct the 3-D geometry 

from this information. The details of this reconstruction process 
will be discussed in detail in a subsequent section. 

3.2 Feature-Based Matching Techniques 
Feature-based matching techniques establish correspondences 
among homologous features, i.e., features that are projections 
of the same physical entity in each view. It is a difficult task 
to decide which features can be used to effectively represent the 
projection of a point or an area, and how to find their correspon- 
dences in different images. Generally speaking, the feature-based 
stereo matching approach is divided into two steps. The first 
step is to extract a set of salient 2-D features from a sequence of 
frames. Commonly used features include points, lines, or curves 
corresponding to corners, boundaries, region marks, occluding 
boundaries of surfaces, or shadows of objects in 3-D space. The 
second step is to find correspondences between features, usually 
called the correspondence problem; i.e., find the points in the im- 
ages that are the projections of the same physical point in the real 
world. This problem is recognized as being difficult and contin- 
ues to be the bottleneck in most stereo applications. In the later 
parts of this section, we review the commonly used matching 
strategies for iinding unique correspondences. 

3.2.1 Feature Extraction 
In this stage, image locations satisfying certain well-defined fea- 
ture characteristics are identified in each image. The choice of 
features is very important because the subsequent matching 
strategy will be based on and make extensive use of these char- 
acteristic features. 

Low-level tokens such as edge points have been used for 
matching in early work in stereo vision [ 121. Feature points based 
on gray level, intensity gradient, disparity, and so on are extracted 
and later used as attributes for point-based matching. Marr and 
Poggio [13] used 12 filters in different orientations to extract 
the zero-crossing points and recorded their contrast sign and 
orientation as attributes. Lew et al. [ 141 used intensity, gradient 
in both x and y directions, gradient magnitude, gradient orien- 
tation, Laplacian of intensity, and curvature as the attributes for 
each edge point. 

There are some intrinsic disadvantages in using solely point- 
based matching. It demands very large computational resources 
and usually results in a large number of ambiguous candidate 
matches that must be explored further. Because of these prob- 
lems, edge segments are used as primitives more prevalently, 
especially in applications in structured indoor or urban scenes. 
Compared with edge points, edge segments are fewer and are 
able to provide rich attribute information, such as length, ori- 
entation, middle and end points, contrast, and so on. Hence, 
matching based on edge segments is expected to be much more 
stable than point-based matching in the presence of changes 
in contrast and ambient lighting. There is abundant literature 
on stereo matching based on edge segments, including but not 
limited to [15,16]. 
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3.2.2 Feature Matching 
The task offeature matching is to identify correspondences byan- 
alyzing extracted primitives from two or more images captured 
from multiple viewpoints. The simplest method for identifymg 
matches is merely to test the similarity of the attributes of the 
matched tokens, and accept the match if the similarity probabil- 
ity is greater than some threshold. However, since tokens rarely 
contain sufficiently unique sets of token attributes, a simple com- 
parison strategy is unlikely to lead to a unique correspondence 
for every image token, particularly for less complex features, 
such as edge points. Some more complicated constraints and 
searching strategies have to be exploited to limit the matching 
candidates, thereby reducing the matching numbers and possi- 
bly the ambiguity. In the following paragraphs, we summarize 
the most common constraints and the integrating strategies used 
for finding the matches. 

Similarity constraints: Certain geometric similarity con- 
straints, such as similarity of edge orientation or edge 
strength, are usually used to find the preliminary matches. 
For example, in Marr and Poggio’s original paper [ 131 on a 
feature-point-based computational model of human stere- 
opis, similarity of zero crossings is defined based on them 
having the same contrast sign and approximately the same 
orientation. More generally, the Similarity constraint (as 
well as the other constraints stated later) is formulated in a 
statistical framework; i.e., a similarity measure is exploited 
to quantify the confidence of a possible match. For each 
attribute, a probability density function p(lak - ail )  can 
be empirically derived and parameterized by attribute dis- 
parities luk - ail [ 171. A similarity measure is defined as 
a weighted combination (e.g., an average) of multiple at- 
tributes 

(m, m’) = of(a, a’), (35) 

where (m, m‘) are candidate match token pairs (edge points, 
line segments, etc.) from two images, such as the left 
and right images in the binocular case. Attribute vector 
a = ( a l ,  a2, . . .) is composed of the attributes of the to- 
ken features such as line length, grey level, curvature, etc. 
Here fis a similarity function vector, which normalizes each 
disparity component relative to some explicit or implicit 
disparity variance. Weight wi defines the relative influence 
of each attribute on the similarity score. Provided that the 
values taken by token attributes are independent, a match 
confidence based on similarity may be computed [18] as 
S(m, m‘) = psim(m, m’) = nk=, p(aklai), where given M 
attributes, p(ak I a;) is a conditional probability relating the 
kth attribute value of a token in the second image to the 
attribute value of the first. The values of these conditional 
probabilities are usually determined from a training data 
set. For instance, Boyer and Kak [ 191 measure the informa- 
tion content (entropy) of feature attributes from training 
data, and determine the relative influence of each attribute. 

M 

Epipolar constraint: The only geometric constraint be- 
tween two stereo images of a single scene is the epipolar con- 
straint. Specifically, the epipolar constraint implies that the 
epipolar line in the second image corresponding to a point m 
in the first image defines the search space within which the 
corresponding match point m‘ should lie in the second image, 
and vice versa. When the projection (epipolar) geometry is 
known, epipolar constraints (formulated by Eq. (7)) can be 
used to limit the search space of correspondence. 

In the conventional parallel-axis geometry shown in 
Fig. 3, for each feature point m(x, y)  in the left image, pos- 
sible candidate matches m’(x’, y’) can be searched for along 
the horizontal scan line (epipolar line) in the right image 
such that 

x + ~ - u ~ x ’ ~ x + ~ + u ,  y ’ = y ,  (36)  

where d is the estimated disparity and 2a + 1 is the width 
of the search region. However, local distortions due to per- 
spective effects, noise in early processing, and digitization 
effects can cause deterioration in matching performance 
at finer resolutions. To consider this distortion, the second 
equation in Eq. (36) can be modified to y - E 5 y‘ 5 y + E 
to include the vertical disparity, where ( 2 ~  + 1) is the height 
of the search space in the vertical direction. The epipolar 
search for matching edge points is usually aided by certain 
geometric similarity constraints, e.g., the similarity of edge 
orientation or edge strength. 
Disparity gradient limit Constraint: The image disparity 
of matched pointsfline segments is the difference in their 
respective features, such as the difference of their positions, 
the difference between their orientations, etc. For any pair 
of matches, the disparity gradient is defined as the ratio of 
the difference in disparity of the two matches to the average 
separation of the tokens in each image or local area. It is sug- 
gested that for most natural scene surfaces, including jagged 
ones, the disparitygradientbetween correct matches is usu- 
ally tl, whereas it is very rare among incorrect matches 
obtained for the same set of images or areas. 

The above-mentioned constraints (similarity, epipolar con- 
straint and disparity constraints) are often called local constraints 
or unary constraints since they are specific to each individual 
match. They are usually applied in the first matching stage and 
used to identify the set of candidate matches. The global consis- 
tency of the local matches is then tested by figural continuity or 
other global constraints. In the following, we describe the differ- 
ent types of global constraints and cite examples from pertinent 
literature. 

Uniqueness constraint: This constraint requires each item 
in an image to be assigned to one and only one disparity 
value. It is a very simple but general constraint used in many 
matching strategies. 
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Continuity constraints: The continuity constraints depend 
on the observation that points adjacent in 3-D space remain 
adjacent in each image projection. They would be used to 
determine the consistency of the disparities obtained as a 
result of the local matching or to guide the local searching 
to avoid inconsistent or false matches by supporting com- 
patible or inhibiting incompatible matches. In practice, this 
observation of the nature of the surface in the 3-D scene can 
be formulated in a number of different ways. For example, 
Horaud and Skordas [20] impose a continuity constraint on 
edges (edge connechity constraint), which states that con- 
nected edge points in one image must match to connected 
edge points in the other image. Prazdny [21] suggested a 
Gaussian similarity function s(i ,  j) = l /(cll i  - j[l&) 
exp[(-[l4 - dj112)/(2~211i - j [ I 2 ) ] ,  which quantifies the 
similarity between neighboring disparities. When counting 
on the various continuity constraints, a measure of support 
from neighboring matches is computed from the compati- 
bility relations and used to m o d e  the match probability. 
Topological constraints: The most popular topological 
constraint is the relative position constraint, which assumes 
that the relative positions of tokens remain similar between 
images. The Left-of and Right-of relations applied by Ho- 
raud and Skordas [20] is a simple but popular form of 
this kind of topology constraint. For horizontally mounted 
cameras, near-horizontal lines have a very narrow disparity 
distribution, whereas vertical lines have a greater disparity 
distribution. 

Both continuity and topological constraints are usually called 
compatibility constraints [lS],  since they are used to decide the 
mutual Compatibility among the matches and their neighbors. 
Until now, we introduced several of the most common con- 
straints imposed on extracted tokens to limit the correspondence 
search space. A single constraint is usually not powerful enough 
to locate all the matches uniquely and correctly. Almost all cur- 
rent algorithms use a combination of two or more constraints 
to extract a final set of matches. These can be classified into two 
categories: relaxation labeling and hierarchical schemes. Relax- 
ation labeling groups neighbor information iteratively to update 
the match probability, while the hierarchical methods usually 
follow a coarse-to-fine procedure. Typical methods from these 
categories will be described next. A feature-based matching ex- 
ample integrating several of the above mentioned constraints is 
presented in Section 5. 

3.2.3 Relaxation Labeling Algorithms 
Relaxation labeling, also called graph matching, is a fairly gen- 
eral model proposed for scene labeling. It has often been em- 
ployed to solve correspondence problems, whether in stereo, 
image registration, or object recognition. The basic structure of 
the relaxation labeling algorithm is illustrated in Fig. 6.2 In the 

'From Chang and Aggarwal's paper [ 151. 
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PIGURE 6 Basic structure of the relaxation labeling algorithm. 

paradigm of matching a stereo pair of images by using relax- 
ation labeling, a set of feature points (nodes) are identified in 
each image, and the problem involves assigning unique labels 
(or matches) to each node out of a discrete space (list of pos- 
sible matches). For each candidate pair of matches, a matching 
probability is updated iteratively depending upon the matching 
probabilities of neighboring nodes so that stronger neighboring 
matches improve the chances of weaker matches in a globally 
consistent manner. At the end of iteration, the node assign- 
ments with the highest score are chosen as the matched tokens. 
This interaction between neighboring matches is motivated by 
the existence of cooperative processes in the biological vision 
systems. 

A general matching score update formula presented in h a d e  
and Rosenfeld [22] is given by 

where C ( q ,  N;; y, y) = 1 if j = n and 0 otherwise. In 
their relaxation technique, the initial score So is updated by the 
maximum support from neighboring pair of nodes. For each 
node f i ,  its node assignment score is updated; only the nodes 
that form a node assignment that are within a distance of K pixels 
from it can contribute to its node assignment score. The pair of 
nodes that have the same disparity will contribute significantly, 
whereas the nodes that have different disparities will contribute 
very little. As the iteration progresses, the node assignment score 
is decreased; however, the score decreases faster for the less likely 
matches than for the most likely ones. 

Despite differences in terminology, most methods are highly 
similar but often offer novel developments in some aspect of 
the correspondence process. We refer the reader to Dhond and 
Aggarwal's review paper [ 11 and the references contained therein 
for the details. 
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3.2.4 Hierarchical Schemes 
The objective of ahierarchical computational structure for stereo 
matching is to reduce the complexity of matching by using a 
coarse-to-fine strategy. Matching is performed at each level in 
the hierarchy consecutively from the top down. Coarse features 
are matched first, and the results are used to converge and guide 
the matching of finer features. 

Basically, there are two ways used to extract the coarser and 
finer features. One popular way is to use several filters to extract 
features in different resolutions, like the Laplacian of Gaussian 
(V2G) operators usedby Marr etal. [ 131 andNasrabadi (231, the 
spatial-frequency-tuned channels of Mayhew and Frisby [ 241, 
and so on. Another way is to choose 2-D structural-description 
tokens with different complexity, such as Lim and Binford's 
from-objects-to-surfaces-to-edges method [ 251. The imposed 
requirement that if any two tokens matched, then the subcom- 
ponents of these tokens are also matched, is also called the hier- 
archical constraint. Dhond and Aggarwal [26] employed hierar- 
chical matching techniques in the presence of narrow occluding 
objects to reduce false-positive matches. A comprehensive review 
of hierarchical matching is given in Jones [ 181. 

4 3-D Reconstruction 

In this section, we will discuss how to reconstruct the 3-D ge- 
ometry once the matching (correspondence) problem is solved. 
The reconstruction strategies usually fall into two categories. 
One is based on traditional camera calibration, which usually 
assumes that the camera geometry is known or starts from the 
computation of the projection matrix for well-controlled cam- 
era systems. The projective geometry is obtained by estimat- 
ing the perspective projection matrix for each camera, using 
an apparatus with a known shape and size, and then comput- 
ing the epipolar geometry from the projection matrices [ 3,271. 
Another technique is called uncalibrated stereo analysis, which 
reconstructs the perspective structure of a 3-D scene without 
knowing the camera positions. After presenting the simple idea 
of triangulation, we will introduce the camera calibration tech- 
niques that are used by the traditional calibrated stereo recon- 
struction to establish the camera models. At the end of this sec- 
tion, we will discuss the uncalibrated stereo analysis for 3-D 
reconstruction. 

4.1 3-D Reconstruction Geometry 
The purpose of structure analysis in stereo is to find the ac- 
curate 3-D location of those image points. Assuming we have 
full knowledge of the perspective projection matrix Q, for a 
point m = [ u, v] in image 1, which corresponds to the point 
M = [ X ,  Y, Z] in the real world, we can rewrite Eq. (6 )  as 

whereqj is the ith rowvector in the perspective projectionmatrix 
Q. The scalar 5 can be obtained from Eq. (37) as 

s =q3M=q3[X Y z l]? 

Eliminating s from Eq. (37) gives 

We get a similar equation for the corresponding point m' = 
[u', v']  in the second image, which is given by 

Combining these two equations, we get 

Aia = 0, (38) 

where, A = [q1 - q3u q2 - q3v qi - &u' 6 - &v'IT is a 
4 x 4 matrix that depends only on the camera parameters and 
the coordinates of the image points. M = [X Y Z 11 is the 
unknown 3-Dlocation ofthe point M, which has to be calculated. 
Here Eq. (38) indicates that the vector M should be in the null 
space of A or the symmetric matrix ATA. Practically, this can be 
solved by singular value decomposition. In detail, [ X Y Z 11 
can be calculated as the eigenvector corresponding to the least 
eigenvalue of ATA. Let ATA = USVT be the SVD of matrix 
ATA, where S = diag(u1, UZ, u3) satisfying ul > a2 > 03 > 
u4, UT = V = [VI vz v3 v4] are orthogonal matrices, and vi 
are eigenvectors corresponding to eigenvalues ai. The coordinate 
vector can be computed as [ X Y Z 11 = v4/v44, where v44 is 
the last element in vector v4. 

Particularly, in the conventional baseline stereo system 
(Fig. 3), the reconstruction mathematics becomes more sim- 
ple. Suppose the axes are parallel between the camera coordi- 
nate systems and the reference coordinate system. The origin of 
the reference coordinate system is right at the midway between 
the focal centers of the left and right cameras. Ignoring the in- 
trinsic distortion of the cameras, one can find the object space 
coordinates from the following: 

where d = (XI - x,) is referred to as disparity and b is the base- 
line. 

Since a point in 3-D space and its projections in two images 
always compose a triangle, the reconstruction problem, which 
is to estimate the position of a point in 3-D space, given its 
vroiections and camera eeometrv. is referred to as triandation. 
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4.2 Camera Calibration 
Camera calibration is the problem of determining the elements 
that govern the relationship between the 2-D image that a cam- 
era perceives and the 3-D information of the imaged object. In 
other words, the task of camera calibration is to estimate the 
intrinsic and extrinsic parameters of a camera. This problem 
has been a major issue in photogrammetry and computer vision 
for many years. The main reason for such an interest is that the 
knowledge of the imaging parameters allows one to relate the im- 
age measurements to the spatial structure of the observed scene. 
Although the intrinsic camera parameters are known from the 
manufacturer’s specifications, it is advisable to estimate them 
from images of known 3-D points in a scene. This is primarily 
to account for a variety of aberrations sustained by the camera 
during use. 

There are six extrinsic parameters, describing the orientation 
and position of a camera with respect to the world coordinate 
system, and five intrinsic parameters that depend on the pro- 
jection of the camera optical axis on the real image and the 
sampling rates of imaging devices. One can reduce the num- 
ber of parameters by a specially set up camera system, such as 
the conventional parallel binocular stereo system whose imag- 
ing geometry is shown in Fig. 3. But this mechanical setup is a 
tedious task, and no matter how carefully it is set up, there is 
no guarantee that it will be error free. To eliminate expensive 
system setup costs and image feature extraction, most 

camera calibration processes proceed by analyzing an 
image of one or several reference obje& whose geometry is ac- 
curat+ known. ~i~~~ shows a &bration pattern3 

that is often used for calibration and testing by the stereo vision 
community. Many other also be used as 

the calibration pattern, as long as the image coordinates of the 

4.3 Uncalibrated Stereo Analysis 
Although camera calibration is widely used in the fields of pho- 
togrammetry and computer vision, it is a very tedious task and is 
sometimes unfeasible. In many applications, on-line calibration 
is required, a calibration pattern may not be available, or both. 
For instance, in the reconstruction of a scene from a sequence 
of video images where the parameters of the video lens are sub- 
ject to continuous change, camera calibration in the classical 
sense is not possible. Faugeras [30] pointed out that, from point 
correspondences in pairs of images when no initial assumption 
is made about either the intrinsic or extrinsic parameters of the 
camera, it is possible to compute a projective representation of the 
world. This representation is defined up to certain transforma- 
tions of the environment, which we assume is 3-D and Euclidean. 
This concept of constructing the projective representation of a 
3-D object instead of an Euclidean projection is called uncali- 
brated stereo. Since the work reported by Faugeras [30], several 
approaches for uncalibrated stereo have been proposed that per- 
mit projective reconstructions from multiple views. These ap- 
proaches use weak calibration, which is represented by the epipo- 
lar geometry, and hence requires no knowledge of the intrinsic or 
extrinsic camera parameters. Faugeras et al. [31] recovered a re- 
alistic texture model of an urban scene from a sequence of video 
images, using uncalibrated stereo technique, without any prior 
knowledge of the camera parameters or camera motion. The 
structure of their vision system is shown in Fig. 8. In the follow- 
ing sections, we introduce the basic ideas of uncalibrated stereo 
and present a technique for deriving 3-D scene structure from 
video sequences or a number of snapshots. First we introduce the 
results of weak calibration, which refers to algorithms that find 

shapes 

FIGURE 7 Example of calibration pattern: a flat plate with rectangle 
on it. 

3Copyright, Institute National de Recherche en Informatique et Autom 
1994,1995, 1996. 

marks 

iatique, 

projected reference points canbe measured with great accuracy. 
These pattern-based approaches proceed in two steps. First, 

some features, generally points or lines, are extracted from the 
image by means of standard image analysis techniques. Then, 
these features are used as input to an optimization process that 
searches for the projection parameters P that best project the 
3-D model onto them. The solution to the optimization pro- 
cess can be achieved by means of a nonlinear iterative min- 
imization process or in a closed form based on the camera 
model considered. A general criterion to be minimized is the dis- 
tance (e.g., mean square discrepancy) between the observed im- 
age points and their inferred image projections computed with 
the estimated calibration parameters, i.e., minp d(P(A3), A’), 
where A’ is a set of calibration features extracted from the 
images, A3 is the set of known 3-D model features, and P 
is the estimated projection matrix. One typical and popular 
camera calibration method proposed by Tsai [28] is imple- 
mented by R. Willson and and can be downloaded from the 
web (http://www.cs.cmu.edu/afs/cs.cmu.edu/user/rgw/www/ 
TsaiCode.html). Detailed reviews of the main existing ap- 
proaches can be found in Tsai [27] and Weng et al. [29]. 
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multiviews. 

General paradigm of 3-D reconstruction from uncalibrated 

the projective structure of the scene with a given epipolar geom- 
etry (fundamental matrix) between cameras. Then, the theory 
for constructing the fundamental matrix from correspondences 
in multiple images will be presented. 

4.3.1 Weak Calibration: Projective Reconstruction 
Projective reconstruction algorithms can be classified into two 
distinct classes: explicit strategies and implicit strategies that are 
due to the way in which the 3-D projective coordinates are com- 
puted. Explicit algorithms are essentially similar to traditional 
stereo algorithms in the sense that the explicit estimation of cam- 
eraprojectivematricesis alwaysinvolvedintheinitialphase ofthe 
processing. Implicit algorithms are based on implicit image mea- 
surements, which are used to compute projective invariants from 
image correspondences. The invariants are functionally depen- 
dent on the 3-D coordinates, for example, the projective depth, 
the Cayley algebra or Double algebra invariants, cross ratios, etc. 

Rothwell et al. [ 321 compared three explicit weak calibration 
methods (pseudo-inverse-based, singular value decomposition- 
based, and intersecting ray-based algorithms) and two im- 
plicit methods (Cayley algebra-based and cross ratio-based 
approaches). They found that the singular value decomposition- 
based approach provides the best results. Here, we will only 
present the principle of the explicit weak calibration method 
based on singular value decomposition. 

Given the fundamental matrix F for the two cameras there 
are an infinite number of projective bases, which all satisfy the 
epipolar geometry. Luong and Vieville [33] derive a canonical 
solution set for the cameras projective matrix that is consistent 
with the epipolar geometry, 

r ,  1 

where e, is a skew symmetric matrix defined by the epipole e = 
[el ,  e2, e31T. 

According to Eq. (9), the epipole e can be computed by the 
eigenvector of the matrix FFT associated with the smallest eigen- 
value. A detailed robust procedure is provided in Xu et al. [34] 
to compute the epipole from fundamental matrix. 

The projective matrices Q and Q’ allow us to triangulate 
3-D structure from image correspondences from Eq. (38), up 
to a projective transformation G. Here, G defines a transforma- 
tion from a three-dimensional virtual coordinate system to the 
image planes. 

4.3.2 Recovery of the Fundamental Matrix 
The fundamental matrix was first described in Longuet-Higgins 
141 for uncalibrated images. It determines the positions ofthe two 
epipoles and the epipolar transformation mapping an epipolar 
line from the first image to its counterpart in the second image. 
It is the key concept in the case of two uncalibrated cameras, 
because it contains all the geometrical information relating two 
images of a single object. The fundamental matrix can be com- 
puted from a certain number ofpoint correspondences obtained 
from a pair of images without using the camera calibration pro- 
cess. Correspondences in stereo sequences can be established by 
using methods demonstrated in Section 3 as well as correspon- 
dences from motion techniques such as tracking methods. In 
this section, we will specify a method to estimate the fundamen- 
tal matrix from point correspondences. For fundamental matrix 
recovery from line segments, we refer the reader to Xu et al. [ 341. 

The basic theory of recovering the epipolar geometry is es- 
sentially given in Eq. (7). If we are given n point matches 
(mi, mi), mi = (ui, v i ) ,  rn; = (ui, v i ) ,  then using Eq. (7) ,  
we get the following linear system to solve: 

U,f = 0, (42) 

where 

u, = [UT ... u,T] T, 

Here, Fij is the element of fundamental matrix F at row i and 
column j .  These sets oflinear homogeneous equations, together 
with the rank constraint of the matrix F (i.e., rank(F) = 2) ,  lead 
to epipolar geometry estimation. 

Given eight or more matches, from Eq. ( 7 )  we can write down 
a set of linear equations in the nine unknown elements of matrix 
F. In general, we will be able to determine a unique solution for 
F, defined up to a scaZe factor. For example, the singular value 
decomposition technique can be used for this purpose. 

The simplest way to solve Eq. (42) under the rank-2 constraint 
is to use the linear least-squares technique. The entire problem 
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(a) (b) 

FIGURE 9 Stereo pair: (a) left and (b) right views. 

can be transformed to a minimization problem: 

where 

4~ (f, A) = IIUnfI12 + ~ ( 1  - I I ~ I I ~ ) .  (44) 

It can be shown that the solution is the unit eigenvector of matrix 
UIUn associated with the smallest eigenvalue. Several natural 
nonlinear minimization criteria are discussed in Xu and Zhang's 
book [34]. 

5 Experiments 

In this section, we demonstrate the performance of the feature 
detection and matching algorithms and 3-D recovery on two 
synthetic images. Figure 9 shows the original images acquired 

Q .- 

(a) 

from left and right cameras! All intrinsic and extrinsic param- 
eters of both cameras are known. The center of the left camera 
is coincident with the origin of the reference coordinate system. 
The right camera has a slight rotation and translation in the x 
axis with respect to the left camera. Corner points with high 
curvature are located as feature primitives, marked with "+" in 
left and right views shown in Fig. 10. Geometry ordering, inten- 
sity similarity, and epipolar constraints (by thresholding the dis- 
tance from the corresponding epipolar line) are employed con- 
secutively to narrow the correspondence search space. The final 
decision on correspondence is made by applying a uniqueness 
constraint that selects the candidate match point with the high- 
est window-based correlation [35]. As an exercise, readers can 
formulate these matching constraints and the confidence of cor- 
rect matching to a statistic framework as described in Eq. (35). 
Figure 11 shows all the reported correspondence pairs in left 
and right views. Most of the significant token pairs (e.g., the 
corners of the furniture) are successfully identified. By using the 

FIGURE 10 Stereo pair with detected corners: (a) left and (b) right views. 

4Copyright, Institute National de Recherche en Informatique et Automatique, 
1994,1995,1996. 
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(4 (b) 

FIGURE 11 Stereo pair with established correspondences: (a) left and (b) right views. 

triangulation method introduced in Section 4.1, we can recover 
the 3-D description of those feature points. Figure 12(a) shows 
the result to reproject those recovered 3-D points to the left 
camera, while Fig. 12(b) shows the mapping of those points to 
a camera slightly rotating from the Y axis of the left camera. 
The projection of each corner point is marked with "+," over- 
lapping on the original image taken by the left camera. Note 
that there is no significant vertical translation while remarkable 
horizontal disparities are produced as a result of the rotation 
of the camera. We actually succeed in a good reconstruction 
for those important corner points. In this example, we consid- 
ered only individual points. If we can combine the connectivity 
and coplanarity information from those feature points (obtained 
from segmentation or from the prior knowledge of the scene 
structure), a more accurate and reliable understanding of the 
3-D geometry in the scene can be recovered. Reconstruction us- 
ing line segments is expected to achieve a more robust scene 
reconstruction. 

6 Conclusions 

In this chapter, we have discussed in detail how to reconstruct 
3-D shapes from multiple 2-D images taken from different view- 
points. The most important step in solving this problem is 
matching, i.e., finding the correspondence among multiple im- 
ages. We have presented various optic flow-based and feature- 
based techniques used for the purpose of matching. Once the 
correspondence problem is solved, we can reconstruct the 3-D 
shape by using a calibrated or uncalibrated stereo analysis. 

Acknowledgments 

H. B. Zhao and J. K. Aggarwal were supported in part by 
the U.S. Army Research Office under contracts DAAH04-95-1- 
0494 and DAAG55-98-1-0230, and the Texas Higher Education 
Coordinating Board Advanced Research Project 97-ARP-275. 

FIGURE 12 
camera with slight rotation from the left camera. 

Reprojections from two different viewpoints; projected (a) to the left camera and (b) to a 



3.12 3 - 0  Shape Reconstruction from Multiple Views 25 7 

C .  Mandal and B. C. Vemuri were supported in part by the NSF 
9811042 & NIH R01-RR13197 grants. Special thanks go to Ms. 
Debi Paxton and Mr. Umesh Dhond for their generous help and 
suggestions in editing and commenting on the paper. 

References 
111 U. R. Dhond andJ. K.Aggarwal, “Structure from stereo-areview,” 

IEEE Trans. Syst. Man Cybernet. 19,1489-1510 (1989). 
[2] S. D. Cochran and G. Medioni, “3-D surface description from 

binocular stereo,” IEEE Trans. Pattern Anal. Machine Intell. 14,981- 
994 (1992). 

[3] 0. D. Faugeras, Three-Dimensional Computer Vision: A Geometric 
Viewpoint (MIT Press, Cambridge, MA, 1993). 

[4] H. C. Longuet-Higgins, “A computer algorithm for reconstructing 
a scene from two projections,” Nature293,133-135 (1981). 

[5] B. C. Vemuri, S. Huang, S. Sahni, C. M. Leonard, C. Mohr, 
R. Gilmore, and J. Fitzsimmons, “An efficient motion estimator 
with application to medical image registration,” Med. Image Anal. 
2,79-98 (1998). 

[6] J. K. Aggarwal and N. Nandhakumar, “On the computation of 
motion from sequences of images - a review,” Proc. IEEE76,917- 
935 (1988). 

[7] J. L. Barron, D. J. Fleet, and S. S. Beauchemin, “Performance of 
optical flow techniques,” Int. J. Comput. Vis. 12,43-77 (1994). 

[8] S. H. Lai and B. C. Vemuri, “Reliable and efficient computation of 
optical flow,” Int. J. Comput. Vis. 29,87-105 (1998). 

[9] R. Szeliski and J. Coughlan, “Hierarchical spline-based image reg- 
istration,” IEEE Con! Comput. Vis. Pattern Recog. 1,194-201 (Los 
Alamitos, 1994). 

[ 101 B. K. I? Horn and B. G. Schunk, “Determining optical flow,” Arti- 
ficial Intell. 17, 185-203 (1981). 

[ 111 H. Burkhardt and N. Diehl, “Simultaneous estimation of rotation 
and translation in image sequences,” in Proceedings of the Euro- 
pean Signal Processing Conference (Elsevier Science Publishers, The 
Hague, Netherlands 1986), pp. 821-824. 

[ 121 Y. C. Kim and J. K. Aggarwal, “Finding range from stereo images,” 
in Proc. IEEE Comput. SOL. Con$ Comput. Vis. Pattern Recog. 1, 

[13] D. MarrandT. A, Poggio,“Acomputationaltheoryofhumanstereo 
vision,” Proc. Royal SOC. London B204,301-328 (1979). 

[ 141 M. S. Lew, T. S. Huang, and K. Wong, “Learning and feature selec- 
tion in stereo matching,” IEEE Trans. Pattern Anal. Machine Intell. 
16,869-881 (1994). 

[15] Y. L. Chang and J. K. A g g a d ,  “Line correspondences from 
cooperating spatial and temporal grouping processes for a se- 
quence of images,” Comput. Vis. Image Undewtanding67,186-201 
(1997). 

[ 161 W. J. Christmas, J. Kittler, and M. Petrou, “Structural matching in 
computer vision usingprobabilistic relaxation,” IEEE Trans. Pattern 
Anal. Machine Intell. 17,749-764 (1995). 

[17] P. Fornland, G.  A. Jones, G. Matas, and J. Kittler, “Stereo corre- 
spondence from junction,” in Proceedings of the 8th Scandinavians 

289-294, (1985). 

ConferenceonImageAnaZysis(NOB1M-Nonvegian SOC. Image Pro- 
cess. Pattern Recognitions, 1, 1993), 449-455. 

[ 181 G. A. Jones, “Constraint, optimization, and hierarchy: Reviewing 
stereoscopic correspondence of complex features,” Comput. Vis. 
Image Understanding65,57-78 (1997). 

[ 191 K. L. Boyer and A. C. Kak, ”Structural stereopsis for 3-D vision,” 
IEEE Trans. Punern Anal. Machine Intell. 10(2), 144-166 (1988). 

[20] R Horaud and T. Skordas, “Stereo correspondences through fea- 
ture grouping and maximal cliques,” IEEE Trans. Pattern AnaZ. 
Machine Intell. 11,1168-1180 (1989). 

[21] K. Prazdny, “Detection of binocular disparities,” Biol. Cybernetics 

[22] S. Ranade and A. Rosenfeld, “Point pattern matching by relax- 
ation,” Pattern Recog. 12,269-275 (1980). 

[23] N. M. Nasrabadi, “A stereo vision technique using curve-segments 
and relaxation matching,” IEEE Trans. Pattern Anal. Machine Intell. 
14,566-572 (1992). 

[24] J. E. W. Mayhew and J. P. Frisby, “Psychophysical and compu- 
tational studies towards a theory of human stereopsis,” Artificial 
Intell. 17,349-385 (1981). 

(251 H. S. Lim and T. 0. Binford, “Stereo correspondence: A hierarchi- 
cal approach,” in Proceedings of the DARPA Image Understanding 
Workshop (Los Altos. CA, 1987), pp. 234-241. 

[26] U. R. Dhond and J. K. Aggarwal, “Stereo matching in the presence 
of narrow occluding objects using dynamic disparity search,” IEEE 
Trans. Pattern Anal. Machine Intell. 17,719-724 (1995). 

[27] R. Tsai, “Synopsis of recent progress on camera calibration for 3-D 
machine vision,” in The Robotics Review (MIT Press, Cambridge, 

[28] R. Y. Tsai, ‘X versatile camera calibration technique for high- 
accuracy 3-D machine vision metrology using off-the-shelf TV 
cameras and lenses,” IEEE J. Robot. Automat. 3,323-344 (1987). 

[29] J. Weng, P. Cohen, and M. Herniou, “Camera calibration with 
distortion models and accuracy evaluation,” IEEE Trans. Pattern 
Anal. MachineIntell. 14,965-980 (1992). 

[30] 0. D. Faugeras, “What can be seen in three dimensions with an un- 
calibrated stereo rig,” in Proceedings of ECCV92 (Santa Margherita 
Ligure, Italy, 1992), pp. 563-578. 

[31] 0. Faugeras, L. Robert, S. Laveau, G. Csurka, C. Zeller, C. Gau- 
din, and I. Zoghlami, “3-D reconstruction of urban scenes from 
image sequences,” Comput. Vis. Image Understanding 69,292-309 
(1998). 

[32] C. Rothwell, 0. Faugeras, and G. Csurka, ‘X comparison of pro- 
jective reconstruction methods for pairs of views,” Comput. Vis. 
Image Understanding68,37-58 (1997). 

1331 Q. T. Luong and T. Vieville, “Canonical representations for the 
geometries of multiple projective views,” Comput. Vis. Image Un- 
derstanding64,193-229 (1996). 

[34] G. Xu and Z. Y. Zhang, Epipolar Geometry in Stereo, Motion and 
Object Recognition, Vol. 6 (Kluwer, The Netherlands, 1996). 

[35] C. M. Sun, “A fast stereo matching method,” in Digital Image Com- 
puting: Techniques and Applications (Massey U. Press, Auckland, 
New Zdand, 1997), pp. 95-100. 

52,93-99 (1985). 

MA, 1989), pp. 147-159. 





3.13 

S. Srinivasan 

R. Chellappa 

Sensar Corporation 

University of Maryland 

1 Introduction 

Image Sequence Stabilization, 
Mosaicking, and Superresolution 

Introduction ................................................................................... 259 
Global Motion Models ....................................................................... 260 
Algorithm ...................................................................................... 262 
Two-Dimensional Stabilization ............................................................. 263 
Mosaicking.. ................................................................................... 264 
Motion Superresolution ..................................................................... 264 
Three-Dimensional Stabilization ........................................................... 267 
Summary ....................................................................................... 267 
Acknowledgment ............................................................................. 267 
References. ..................................................................................... 267 

A sequence of temporal images gathered from a single sensor 
adds a whole new dimension to two-dimensional image data. 
Availability of an image sequence permits the measurement of 
quantities such as subpixel intensities, camera motion and depth, 
and detection and tracking of moving objects that is not pos- 
sible from any single image. In turn, the processing of image 
sequences necessitates the development of sophisticated tech- 
niques to extract this information. With the recent availability 
of powerful yet inexpensive computing equipment, data storage 
systems, and imagery acquisition devices, image sequence anal- 
ysis has moved from an esoteric research domain to a practical 
area with significant commercial interest. 

Motion problems in which the scene motion largely conforms 
to a smooth, low-order motion model are termed global mo- 
tion problems. Electronically stabilizing video, creating mosaics 
from image sequences, and performing motion superresolution 
are examples of global motion problems. Applications of these 
processes are often encountered in surveillance, navigation, tele- 
operation of vehicles, automatic target recognition (ATR), and 
forensic science. Reliable motion estimation is critical to these 
tasks, which is particularly challenging when the sequences dis- 
play random as well as highly structured systematic errors. The 
former is primarily a result of sensor noise, atmospheric tur- 
bulence, and lossy compression, whereas the latter is caused by 

occlusion, shadows, and independently moving foreground ob- 
jects. The goal in global motion problems is to maintain the 
integrity of the solution in the presence of both types of errors. 

Temporal variation in the image luminance field is caused by 
several factors, including camera motion, rigid object motion, 
nonrigid deformation, illumination and reflectance change, and 
sensor noise. In several situations, it can be assumed that the im- 
aged scene is rigid, and temporal variation in the image sequence 
is only due to camera and object motion. Classical motion es- 
timation characterizes the local shifts in the image luminance 
patterns. The global motion that occurs across the entire im- 
age frame is typically a result of camera motion and can often 
be described in terms of a low-order model whose parameters 
are the unknowns. Global motion analysis is the estimation of 
these model parameters. 

The computation of global motion has seldom attained the 
center stage of research as a result of the (often incorrect) as- 
sumption that it is a linear or otherwise well-conditioned prob- 
lem. In practice, an image sequence displays phenomena that 
voids the assumption of Gaussian noise in the motion field data. 
The presence of moving foreground objects or occlusion locally 
invalidates the global motion model, giving rise to outliers. Ro- 
bustness to such outliers is required of global motion estimators. 
Researchers [4-191 have formulated solutions to global motion 
problems, usually with an application perspective. These can 
be broadly classified as feature-based and flowbased techniques. 
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Feature-based methods extract and match discrete features be- 
tweenframes, and the trajectories ofthese features is fit to a global 
motion model. In flow-based algorithms, the optical flow of the 
image sequence is an intermediate quantity that is used in de- 
termining the global motion. Chapter 3.8 provides an extended 
discussion of optical flow. 

The focus of this chapter is a flow-based solution to the global 
motion problem. First, the optical flow field of the image se- 
quence is modeled in terms of a linear combination of basis 
functions. Next, the model weights that describe the flow field 
are computed. Finally, these weights are combined by using an it- 
erative refinement mechanism to identify outliers, and they pro- 
vide a robust global motion estimate. This algorithm is described 
in Section 3. The three primary applications of this procedure 
are two-dimensional (2-D) stabilization, mosaicking, and mo- 
tion superresolution. These are described in Sections 4,5, and 6. 
A related but theoretically distinct problem, three-dimensional 
(3-D) stabilization, is introduced in Section 7. 

Prior to examining solutions to the global motion problem, it 
is advisable to verify whether the apparent motion on the image 
plane induced by camera motion can indeed be approximated 
by a global model. This study takes into consideration the 3-D 
structure ofthe scene being viewed, and its corresponding image. 
The moving camera has 6 degrees of freedom, determining its 
three translational and three rotational velocities. It remains to 
be seen whether the motion field generated by such a system can 
be parametrized in terms of a global model largely independent 
of scene depth. This is analyzed in Section 2. 

2 Global Motion Models 

The imaging geometry of a perspective camera is shown in Fig. 1. 
The origin of the 3-D coordinate system (X, Y, Z) lies at the op- 
tical center C of the camera. The retinal plane or image plane 
is normal to the optical axis Z and is offset from C by the 
focal length f .  Images of unoccluded 3-D objects in front of 

objectl(", 

1 

FIGURE 1 3-D imaging geometry. 

the camera are formed on the image plane. The 2-D image plane 
coordinate system (x, y )  is centered at the principal point, which 
is the intersection of the optical axis with the image plane. The 
orientation of (x, y )  is flipped with respect to (X, Y )  in Fig. 1, 
because of an inversion caused by simple transmissive optics. 
For this system, the image plane coordinate (xi, y i )  of the image 
of the unoccluded 3-D point (Xi, K, Zi) is given by 

K y -  1 -  f-. Xi 
xi = f-, zi Zi 

Projective relation (1) assumes a rectilinear system, with an 
isotropic optical element. In practice, the plane containing the 
sensor elements may be misaligned from the image plane, and 
the camera lens may suffer from optical distortions, including 
nonisotropy. However, these effects can be compensated for by 
calibrating the camera or remapping the image. In the remainder 
of this chapter, it is assumed that linear dimensions are normal- 
ized to the focal length, i.e., f = 1. 

When a 3-D scene is imaged by a moving camera, with trans- 
lation t = (tx, ty, t,) and rotation w = (wx, my, w,), the optical 
flow of the scene (Chapter 3.8) is given by 

for small w. Here, g ( x ,  y) = l/Z(x, y) is the inverse scene 
depth. Clearly, the optical flow field can be arbitrarily complex 
and does not necessarily obey a low-order global motion model. 
However, several approximations to Eq. (2) exist that reduce the 
dimensionality of the flow field. One possible approximation is 
to assume that translations are small compared to the distance of 
the objects in the scene from the camera. In this situation, image 
motion is caused purely by camera rotation and is given by 

Equation (3) represents a true global motion model, with 3 de- 
grees of freedom (wx, w,,, w,). When the field of view (FOV) 
of the camera is small, i.e., when 1x1, IyI << 1, the second- 
order terms can be neglected, giving a further simplified three- 
parameter global motion model: 

Alternatively, the 3-D world being imaged can be assumed to 
be approximately planar. It can be shown that the inverse scene 
depth for an arbitrarily oriented planar surface is a planar func- 
tion of the image coordinates (x, y), 
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Substituting Eq. (5) into Eq. (2) gives the eight-parameter global 
motion model: 

u(x, y )  = a0 + alx + azy + a62 + a7xy, 
( 6 )  

V ( X ,  y) = a3 + ~ 4 x  + a j y  + a6xy + a7y2, 

for appropriately computed {ai, i = 0, . . . , 7). Equation (6) is 
called the pseudo-perspective model or transformation. 

Equation ( 2 )  relating the optical flow with structure and mo- 
tion assumes that the interframe rotation is small. If this is not 
the case, the effect of camera motion must be computed by using 
projective geometry [ 1,2]. Assume that an arbitrary point in the 
3-D scene lies at ( X O ,  YO, 20) in the reference frame of the first 
camera and moves to ( X I ,  Y1, 2 1 )  in the second. The effect of 
camera motion relates the two coordinate systems according to 

where the rotation matrix [ri j]  is a function of o. Combining 
Eqs. (1) and (7) permits the expression of the projection of the 
point in the second image in terms of that in the first as 

rXx% + r,yo + rxz + tXlZo 
rzx% + r,yo + rzz + tZ/zo ' 
ryx% + ryyyo + ryz + t y / &  

rZx% + rzyyo + rzz + tz/& ' 

x1 = 

(8 )  

y1 = 

Assuming either that (a) points are distant compared to the inter- 
frame translation, i.e., neglecting the effect of translation, or (b) 
a planar embedding of the real world of Eq. (5), the perspective 
transformation is obtained 

P X X %  + p x y y o  + P x z  

P Z X %  + PzyYO + Pzz ' 

Pyx% + PyyYo  + P y z  

P Z X %  f PzyYo + Pzz 

x1 = 

(9) 
y1 = 

The flow field (u, Y )  is the difference between image plane co- 
ordinates ( X I  - %, y1 - yo) across the entire image. When the 
FOV is small, it can be assumed that I pzx% I ,  I pzyyo I << I PzZ 1. 
Under this assumption, the flow field, as a function of image 
coordinate, is given by 

4% y )  = 

v ( x ,  y )  = 

( P X X  - p z z b  + P x y Y  + P x z  

P t x X  + p z y y  + Pzz 

P y x X  + ( P y y  - Pzz)Y + P Y Z  

pzxx + PzyY 4- Pzz 

, 
(10) 

3 

which is also a perspective transformation, albeit with different 
parameters. Here pzz = 1, without loss of generality, giving 8 
degrees of freedom for the perspective model. 

Other popular global deformations mapping the projection 
of a point between two frames are the similarity and affine trans- 
formations, which are given by 

respectively. Free parameters for the similarity model are the 
scale factor s, image plane rotation 8, and translation (bo, bI). 
Taking the difference between interframe coordinates of the sim- 
ilarity transform gives the optical flow field model of Eq. (4) with 
one constraint on the free parameters. The affine transforma- 
tion is a superset of the similarity operator, and it incorporates 
shear and skew as well. The optical flow field corresponding to 
the coordinate affine transform, Eq. (12), is also a 6 degrees of 
freedom affine model. The perspective operator is a superset of 
the afiine, as can be readily verified by setting pzx = pzy = 0 in 

The similarity, affine, and perspective transformations are 
group operators, which means that each family of transformations 
constitutes an equivalence class. The following four properties 
define group operators. 

Eq. (9). 

1. Closure: if A, B E 6 where B is a group, then the compo- 

2. Associativity: for all A, B, C E B, ( A B ) C  = A(BC). 
3. Identity: 31 E B such that AI = 1 A = A. 
4. Inverse: for each operator A E B, there exists an inverse 

A-' E 6 such that AA-l = A-' A = I .  

sition AB E 8. 

The utility of the closure property is that a sequence of images 
can be rewarped to an arbitrarily chosen "origin" frame by using 
any single class of operators, and flows computed only between 
adjacent frames. Since the inverse of each transformation ex- 
ists, the origin need not necessarily be the first frame of the 
sequence. Note that pseudo-perspective transformation (6) is 
not a group operator. Therefore, in order to warp an image un- 
der a pseudo-perspective global deformation, one must register 
each new image directly to the origin.'This can get tricky when 
the displacement between them is large, and worse yet when the 
overlap between them is small. 

In the process of global motion estimation, each data point 
is the optical flow at a specified pixel, described by the data 
vector (u ,  v ,  x ,  y). For the affine and pseudo-perspective trans- 
formations, it is obvious that the unknowns form a set of linear 
equations with coefficients that are functions of the data vector 
components. The same is true for the perspective and similar- 
ity operators, although not obvious. For the perspective trans- 
form, the denominators of Eq. (10) are multiplied out, while 
for the similarity transform, the substitutions 50 = s cos 8 and 
51 = s sin e give rise to linear equations. In particular, the coeffi- 
cients of the unknowns in the linear equations for the similarity, 
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affine, and pseudo-perspective models are functions of the coor- 
dinate (x, y )  of the data point. With the assumption that errors 
in data are present only in u, v ,  this implies that errors in the 
linear system for the similarity, affine, and pseudo-perspective 
transforms are present only on the “right-hand side.” In con- 
trast, errors exist in all terms for the perspective model. When 
errors in u, v are Gaussian, the least-squares (LS) solution of a 
system of equations of the form of Eqs. (6), (1 l ) ,  or (12) yields 
the minimum mean-squared error estimate. For the perspective 
case, the presence of errors on the “left-hand side” calls for a total 
least-squares (TLS) [ 3 ]  approach. In practice, errors in u, v are 
seldom Gaussian, and simple linear techniques are not sufficient. 

3 Algorithm 

The computation of optical flow by using image derivatives 
hinges on the preservation of the image luminance pattern 
+ (x, y, t )  over time. This translates into the gradient constraint 
equation (Chapter 3.8 and [21]), 

(13) 
a+ a+ a* 
- + u- + v -  = 0, at  a x  ay vx, y, t, 

in the first-order approximation. The flow field (u,  v )  is a func- 
tion of location (x, y ) .  For smooth motion fields encountered in 
typical global motion problems, it is meaningful to model (u,  v )  
as a weighted sum of basis functions: 

K-1 K-1 

(14) 
k=O k=O 

The basis function & ( X ,  y )  is typically a locally supported in- 
terpolator generated by shifts of a prototype function +o(x, y )  
along a square grid of spacing w. An example of linear basis 
function modeling in one dimension is shown in Example 1. 
Additional requirements are imposed on $0,  to ensure compu- 
tational ease and an intuitive appeal for modeling a flow field. 
These are: 

1. 
2. 
3. 
4. 
5. 

Separability: +o@, y )  = + O ( ~ ) + O ( Y > .  
Differentiability: [d+o(x)/dx] exists Vx. 
Symmetry about the origin: +o(x) = +o(-x). 
Peak at the origin: I+o(x)l I +o(O) = 1. 
Compact support: +o(x) = 0 ‘41x1 > w. 

EXAMPLE 1 Function (left) and its modeled version (right). The model is 
the linear interpolator or triangle function; the contribution of each model basis 
function is denoted by the dotted curves. 

The cosine window, 

+O(X)= l [ l + c o s ( y ) ] ,  2 X E  [ - w , w ] ,  (15) 

is one such choice of basis that has been shown to accurately 
model typical optical flow fields associated with global motion 
problems. A useful range for w is between 8 and 32. 

It can be shown that an unbiased estimate for the basis func- 
tion model parameters { U k ,  V k }  is obtained by solving the fol- 
lowing 2 K equations [ 191: 

Each pair of equations of the type of Eq. (16) characterizes the 
solution around the image area covered by the basis function +l .  

The dominant unknowns, which are the corresponding model 
weights, are U I ,  V I .  The finite support requirement on basis func- 
tion $1 ensures that only the center weights u ~ ,  V I  and their im- 
mediate neighbors in the cardinal and diagonal directions enter 
each equation. In practice, sampled differentiations and inte- 
grations are performed on the sequence. Each equation pair is 
computed as follows. 

1. 

2. 

3. 

4. 

5. 
6. 

First, the X, Y and temporal gradients are computed for the 
observed frame of the sequence. Smoothing is performed 
prior to gradient estimation, if the images are dominated 
by sharp edges. 
Three templates, each of size 2w x 2w, are formed. The 
first template is the prototype function $0 ,  with its support 
coincident with the template. The other two are its X and 
Y gradients. Knowledge of the analytical expression for $0 

means that its gradients can be determined with no error. 
Next, a square tile of size 2w x 2w of the original and spa- 
tiotemporal gradient images, coincident with the support 
of 4, is extracted. 
The 18 left-hand-side terms of each equation, and one 
right-hand-side term, are computed by overlaying the tem- 
plates as necessary and computing the sum of products. 
Steps 3 and 4 are repeated for all K basis functions. 
Since the interactions are only between spatially adjacent 
basis function weights, the resulting matrix is sparse, block 
tridiagonal, with tridiagonal submatrices, each entry of 
which is a 2 x 2 matrix. This permits convenient storage 
of the left-hand-side matrix. 
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7. The resulting sparse system is solved rapidly by using the 
preconditioned biconjugate gradients algorithm [ 22,231. 

The procedure described above produces a set of model pa- 
rameters { uk, vk} that largely conforms to the appropriate global 
motion model, where one exists. In the second phase, these pa- 
rameters are simultaneously fit to the global motion model while 
outliers are identified, using the iterated weighted LS technique 
outlined below. 

1. Initialization: 
(a) All flow field parameters whose support regions show 

a sufficiently large high-frequency energy (quantified 
in terms of the determinant and condition number of 
the covariance matrix of the local spatial gradient) are 
flagged as valid data points. 

(b) A suitable global motion model is specified. 
2. Model fitting: 

If there are an insufficient number ofvalid data points, 
the algorithm signals an inability to compute the 
global motion. In this event, a more restrictive mo- 
tion model must be specified. 
If there are sufficient data points, model parameters 
are computed to be the LS solution ofthe linear system 
relating observed model parameters with the global 
motion model of choice. 
When a certain number of iterations of this step are 
complete, the LS solution ofvalid data points is output 
as the global motion model solution. 

3. Model consistency check 
(a) The compliance of the global motion model to the 

overlapped basis flow vectors is computed at all grid 
points flagged as valid, using a suitable error metric. 

(b) The mean error E is computed. For a suitable multi- 
plier f, all grid points with errors larger than fC are 
declared invalid. 

(c) Step 2 is repeated. 

Typically, three to four iterations are sufficient. Since this system 
is open loop, small errors do tend to build up over time. It is 
also conceivable to use a similar approach to refine the global 
motion estimate by registering the current image with a suitably 
transformed origin frame. 

4 Two-Dimensional Stabilization 

Image stabilization is a differential process that compensates for 
the unwanted motion in an image sequence. In typical situa- 
tions, the term “unwanted” refers to the motion in the sequence 
resulting from the kinematic motion of the camera with re- 
spect to an inertial frame of reference. For example, consider 
high-magnification handheld binoculars. The jitter introduced 
by an unsteady hand causes unwanted motion in the scene be- 
ing viewed. Although this jitter can be eliminated by anchoring 
the binoculars on a tripod, this is not always feasible. Gyro- 

EXAMPLE 2 The first sequence was gathered by a Texas Instruments infrared 
camera with a relatively narrow field of view. The scene being imaged is a road 
segment with a car, a cyclist, two pedestrians and foliage. The car, cyclist, and 
pedestrians move across the scene, and the foliage ruffles mildly. The camera is 
fixated on the cyclist, throwingthe entire background into motion. It is difficult 
for a human observer to locate the cyclist without stabilizing for camera motion. 
The camera undergoes panning with no rotation about the optical axis, and 
no translation. The first and forty-second frames are shown in (a) and (b). 
The difference between these frames with no stabilization is shown in (c), with 
the zero difference offset to 50% gray intensity. Large difference magnitudes 
can be seen for several foreground and background objects in the scene. In 
contrast, the cyclist disappears in the difference image. The same difference, 
after stabilization, is shown in (d). Background areas disappear almost entirely, 
and all moving foreground objects including the evasive cyclist appear in the 
stabilized difference. The position of the cyclist in the first and forty-second 
frames is indicated by the white and black arrows, respectively. 

scopic stabilizers are employed by professional videographers, 
but their bulk and cost are a deterrent to several users. Simpler 
inertial mechanisms are often found in cheaper “image stabi- 
lizing” optical equipment. These work by perturbing the optical 
path of the device to compensate for unsteady motion. The same 
effect can be realized in electronic imaging systems by rewarping 
the generated sequence in the digital domain, with no need for 
expensive transducers or moving parts. 

The unwanted component of motion does not carry any in- 
formation of relevance to the observer, and is often detrimental 
to the image understanding process. For general 3-D motion of a 
camera imaging a 3-D scene, the translational component of the 
velocity cannot be annulled because of motion parallax. Com- 
pensating for 3-D rotation of the camera or components thereof 
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5 Mosaicking 

EXAMPLE 3 The second image sequence (b) portrays a navigation scenario 
where a forward-looking camera is mounted on a vehicle. The platform trans- 
lates largely along the optical axis of the camera and undergoes pitch, roll, 
and yaw. The camera has a wide FOV, and the scene shows significant depth 
variation. The lower portion of the image is the foreground, which diverges 
rapidly as the camera advances. The horizon and distantly situated hills remain 
relatively static. The third and twentieth frames of this sequence are shown in 
(a) and (b). Clearly, forward translation of the camera is not insignificant and 
full stabilization is not possible. However, the affine model performs a satis- 
factory job of stabilizing for pitch, roll, and yaw. This is verified by looking 
at the unstabilized and stabilized frame differences, shown in (c) and (d). In 
(d), the absolute difference around the hill areas is visibly very small. The fore- 
ground does show change caused by forward translation parallax that cannot 
be compensated for. (Courtesy of Martin Marietta.) 

is referred to as 3-D stabilization and is discussed in Section 7. 
More commonly, the optical flow field is assumed to obey a global 
model, and the rewarping process using computed global mo- 
tion model parameters is known as em 2-D stabilization. Under 
certain conditions, for example when there is no camera trans- 
lation, the 2-D and 3-D stabilization processes produce identical 
results. 

The similarity, affine, and perspective models are commonly 
used in 2-D stabilization. Algorithms, such as the one described 
in Section 3, compute the model unknowns. The interframe 
transformation parameters are accumulated to estimate the 
warping with respect to the first or arbitrarily chosen origin 
frame. Alternatively, the registration parameters of the current 
frame with respect to the origin frame can be directly estimated. 
For smooth motion, the former approach allows the use of 
gradient-based flow techniques for motion computation. How- 
ever, the latter approach usually has better performance since 
errors in the interframe transformation tend to accumulate in 
the former. Two sequences, reflecting disparate operating con- 
ditions, are presented here for demonstrating the effect of 2-D 
stabilization. It must be borne in mind that the output of a stabi- 
lizer is an image sequence whose full import cannot be conveyed 
by means of still images. 

Mosaicking is the process of compositing or piecing together suc- 
cessive frames of an image sequence so as to virtually increase 
the FOV of the camera [24]. This process is especially important 
for remote surveillance, tele-operation of unmanned vehicles, 
rapid browsing in large digital libraries, and in video compres- 
sion. Mosaics are commonly defined only for scenes viewed by 
a panhilt camera. However, recent studies look into qualitative 
representations, nonplanar embeddings, [ 251 and layered mod- 
els [26]. The newer techniques permit camera translation and 
gracefully handle the associated parallax. Mosaics represent the 
real world in two dimensions, on a plane or other manifold like 
the surface of a sphere or “pipe.” Mosaics that are not true pro- 
jections of the 3-D world, yet present extended information on 
a plane, are referred to as qualitative mosaics. 

Several options are available while building a mosaic. A simple 
mosaic is obtained by compositing several views of a static 3-D 
scene from the same view point and different view angles. Two 
alternatives exist, when the imaged scene has moving objects, or 
when there is camera translation. The static mosaic is generated 
by aligning successive images with respect to the first frame of 
a batch, and performing a temporal filtering operation on the 
stack of aligned images. Typical filters are the pixelwise mean and 
median over the batch of images, which have the effect ofblurring 
out moving foreground objects. Alternatively, the mosaic image 
can be populated with the first available information in the batch. 

Unlike the static mosaic, the dynamic mosaic is not a batch 
operation. Successive images of a sequence are registered to 
either a fixed or a changing origin, referred to as the backward 
and forward stabilized mosaics, respectively. At any time instant, 
the mosaic contains all the new information visible in the most 
recent input frame. The fixed coordinate system generated by a 
backward stabilized dynamic mosaic literally provides a snap- 
shot into the transitive behavior of objects in the scene. This 
finds use in representing video sequences using still frames. The 
forward stabilized dynamic mosaic evolves over time, providing 
a view port with the latest past information supplementing the 
current image. This procedure is useful for virtual field of view 
enlargement in the remote operation of unmanned vehicles. 

In order to generate a mosaic, the global motion of the scene is 
first estimated. This information is then used to rewarp each in- 
coming image to a chosen frame of reference. Rewarped frames 
are combined in a manner suitable to the end application. The 
algorithm presented in Section 3 is an efficient means of com- 
puting the global motion model parameters. Results using this 
algorithm are presented in the following examples. 

6 Motion Superresolution 
~~ ~~ ~ 

Besides being used to eliminate foreground objects, data redun- 
dancy in avideo sequence can be exploited for enhancing the res- 
olution of an image mosaic, especially when the overlap between 
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EXAMPLE 4 Images (a) and (b) show the first and 180th frames of the Predator F sequence. The vehicle near the 
center moves as the camera pans across the scene in the same general direction. Poor contrast is evident in the top 
right of (a) and in most of (b). The use ofbasis functions for computing optical flow pools together information across 
large areas of the sequence, thereby mitigating the effect of poor contrast. Likewise, the iterative process of obtaining 
model parameters successfully eliminates outliers caused by the moving vehicle. The mosaic constructed from this 
sequence is shown in (c). 

frames is significant. This process is known as motion super- 
resolution. Each frame of the image sequence is assumed to rep- 
resent a warped subsampling of the underlying high-resolution 
original. In addition, blur and noise effects can be incorporated 
into the image degradation model. Let IJJ,, represent the un- 

derlying image, and K(xu ,  yu, x ,  y)  be a multirate kernel that 
incorporates the effect of global deformation, subsampling, and 
blur. The observed low resolution image + is given by 

(17) 31(x, y)  = 31&, yu)K(xu, yu, x ,  y) + q(x, y), 
X.>Y" 

where q is a noise process. 

c Example 1 To illustrate the operation of Eq. (17), consider 
a simple example. Let the observed image be a 4: 1 downsampled 
representation ofthe original, with a global translation of (2, -3) 
pixels and no noise. Also assume that the downsampling kernel 
is a perfect anti-aliasing filter. The observed image formed by 
this process is given by 

*4(xu, v u )  = * u ( x u ,  v u )  * KO(%, - 2, yu + 3), 

* ( x ,  VI  = *4(4x, 4Y)> 
d 

with KO being the anti-aliasing filter and 9( KO) its Fourier trans- 
form. The process defined in ways, 
the worst-case scenario. For this case, it can be shown that the 
original high-pass frequencies can never be estimated, since they 
are perfectly filtered out in the image degradation process. Thus, 

EXAMPLE 5 The TI car sequence is reintroduced here to demonstrate the 
generation of static mosaics. After realignment with the first frame of the se- 
quence, a median filter is applied to the stack of stabilized images, generating the 
static mosaic shown above. Moving objects, e.g., the car, cyclist, and pedestrians, 
are virtually eliminated, giving a pure background image. 

(18) represents, in 
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EXAMPLE 6 A demonstration of the ability of this relatively simple approach for performing motion superresolution 
is presented here. The Predator B sequence data are gathered from an aerial platform (the predator unmanned air vehicle) 
and compressed with loss. One frame of this sequence is shown in (a). Forty images of this sequence are coregistered 
by using an affine global motion model, upsampled by a factor of 4, and are combined and sharpened to generate the 
superresolved image. (b) and (d) show the car and truck present in the scene, at the original resolution; (e) shows the truck 
image upsampled by a factor of 4, using a bilinear interpolator. The superresolved images of the car and truck are shown 
in (c) and (f), respectively. The significant improvement in visual quality is evident. It must be mentioned here that for 
noisy input imagery, much of the data redundancy is expended in combating compression noise. More dramatic results 
can be expected when noise-free input data are available to the algorithm. 

on one hand, multiple high-resolution images produce the same 
low-resolution images after Eq. (18). On the other hand, when 
the kernel K is a finite support filter, the high-frequencyinforma- 
tion is attenuated but not eliminated. In theory it is now possible 
to restore the original image content, at almost all frequencies, 
given sufficient low-resolution frames. 

Motion superresolution algorithms usually comprise three 
distinct stages of processing - (a) registration, (b) blur esti- 
mation, and (c) refinement. Registration is the process of com- 
puting and compensating for image motion. More often than 
not, the blur is assumed to be known, although in theory the 
motion superresolution problem can be formulated to perform 
blind deconvolution. The kernel K is specified given the motion 
and blur. The process of reconstructing the original image from 
this information and the image sequence data is termed as re- 
finement. Often, these stages are performed iteratively and the 
high-resolution image estimate evolves over time. 

The global motion estimation algorithm outlined in Section 3 
can be used to perform rapid superresolution. It can be shown 

that superresolution can be approximated by first constructing 
an upsampled static mosaic, followed by some form of inverse 
filtering to compensate for blur. This approximation is valid 
when the filter K has a high attenuation over its stopband, and 
thereby minimizes aliasing. Moreover, such a procedure is highly 
efficient to implement and provides reasonably detailed superre- 
solved frames. Looking into the techniques used in mosaicking, 
the median filter emerges as an excellent procedure for robustly 
combining a sequence of images prone to outliers. The super- 
resolution process is defined in terms of the following steps. 

1. 
2. 

3. 

4. 

5. 

Compute the global motion for the image sequence. 
For an upsampling factor M ,  scale up the relevant global 
motion parameters. 
Using a suitable interpolation kernel and scaled motion 
parameters, generate a stabilized, upsampled sequence. 
Build a static mosaic by using a robust temporal operator 
such as the median filter. 
Apply a suitable sharpening operator to the static mosaic. 
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7 Three-Dimensional Stabilization 

Three-Dimensional stabilization is the process of compensat- 
ing an image sequence for the true 3-D rotation of the camera. 
Extracting the rotation parameters for the image sequence un- 
der general conditions involves solving the structurefiom motion 
(SFM) problem, which is the simultaneous recovery of full 3-D 
camera motion and scene structure. A mathematical analysis of 
SFM shows the nonlinear interdependence of structure and mo- 
tion given observations on the image plane. Solutions to SFM are 
based on elimination of the depth field by cross multiplication 
[ 1,7,29-321, differentiation offlow fields [33,34],nonlinear op- 
timization [4,35], and other approaches. For a comprehensive 
discussion of SFM algorithms, the reader is encouraged to refer 
to [ 1,2,19,36]. Alternatively, camera rotation can be measured 
by using transducers. 

Upon computation of the three rotation angles, i.e., the pitch, 
roll, and yaw of the camera, the original sequence can be re- 
warped to compensate for these effects. Alternatively, one can 
perform selective stabilization, by compensating the sequence for 
only one or two of these components. Extending this concept, 
one can selectively stabilize for certain frequencies of motion 
so as to eliminate handheld jitter, while preserving deliberate 
camera pan. 

8 Summary 

Image stabilization, mosaicking, and motion superresolution are 
processes operating on a temporal sequence of images of a largely 
static scene viewed by a moving camera. The apparent motion 
observed in the image can be approximated to comply with a 
global motion model under a variety of circumstances. A simple 
and efficient algorithm for recovering the global motion param- 
eters is presented here. The 2-D stabilization, mosaicking, and 
superresolution processes are described, and experimental re- 
sults are demonstrated. The estimation of 2-D and 3-D motion 
has been studied for over two decades now, and the following ref- 
erences provide a useful set of starting material for the interested 
reader. 

Acknowledgment 

R. Chellappa is supported in part by the MURI ONR grant 
N00014-95- 1-052 1. 

References 
[ 11 A. Mitiche, ComputationalAnalysis ofvisual Motion (Plenum, New 

York, 1994). 
[2] 0. D. Faugeras, Three-Dimenn’onal Computer Vision (MIT Press, 

Cambridge, MA, 1993). 
[3] S. V. Huffel and J. Vandewalle, The Total Least Squares Prob- 

lem - Computational Aspects and Analysis (SIAM, Philadelphia, 
PA, 1991). 

[4] G. Adiv, “Determining 3-D motion and structure from optical flow 
generated by several moving objects,” IEEE Trans. Pattern Anal. 
Machine Intell. 7,384-401 (1985). 

[5] M. Hansen, P. Anandan, P. J. Burt, K. Dana, and G. van der 
Wal, “Real-time scene stabilization and mosaic construction,” in 
DARPA Image Understanding Workshop (Morgan Kaufmann, San 
Francisco, CA, 1994), pp. 1457465. 

[6] S. Negahdaripour and B. K. P. Horn, “Direct passive navi- 
gation,” IEEE Trans. Pattern Anal. Machine Intell. 9, 168-176 
(1987). 

[ 71 N. C. Gupta and L. N. Kanal, “3-D motion estimation from motion 
field,” Art$ Intell. 78,45-86 (1995). 

[ 8 ]  R. Szeliski and J. Coughlan, “Spline-based image registration,” Int. 
J. Comput. Vis. 22,199-218 (1997). 

[9] Y. S. Yao, “Electronic stabilization and feature tracking in long im- 
age sequences,” PhD. dissertation (University of Maryland, 1996), 
available as Tech. Rep. CAR-TR-790. 

[ 101 C. Morimoto and R. Chellappa, “Fast 3-D stabilization and mosaic 
construction,” in IEEE Conference on Computer Vision and Pattern 
Recognition (IEEE, New York, 1997), pp. 660-665. 

[ll] H. Y. Shum and R Szeliski, “Construction and refinement of 
panoramic mosaics with global and local alignment,” in Interna- 
tional Conference on Computer Vision (Narosa Publishing House, 
New Delhi, India, 1998), pp. 953-958. 

[ 121 D. Cape1 and A. Zisserman, “Automated mosaicing with super- 
resolution zoom,” in IEEE Computer Vision and Pattern Recognition 
(IEEE, NewYork, 1998), pp. 885-891. 

[ 131 M. Irani and S. Peleg, “Improving resolution by image registration,” 
Graph. Models Image Process. 53,231-239 (1991). 

[ 141 M. S. Ham, et aL, “High-resolution infrared image reconstruction 
using multiple randomly shifted low-resolution aliased frames,” in 
Roc.  SPIE 3063, (1997). 

[ 151 R. C. Hardie, K. J. Barnard, and E. E. Armstrong, “Joint map reg- 
istration and high resolution image estimation using a sequence 
of undersampled images,” IEEE Trans. ImageProcess. 6,1621-1633 
(1997). 

[ 161 M. Irani, B. Rousso, and S. Peleg, “Recovery of ego-motion using 
region alignment,” IEEE Trans. Pattern Anal. Machine Intell. 19, 

[ 171 S. Peleg and J. Herman, “Panoramic mosaics with videobrush,” in 
DARPA Image Understanding Workshop (Morgan Kaufmann, San 
Francisco, CA, 1997), pp. 261-264. 

[ 181 M. Irani and P. Anandan, “Robust multi-sensor image alignment,” 
in International Conference on Computer Vision (Narosa Publishing 
House, New Delhi, India, 1998), pp. 959-966. 

[ 191 S. Srinivasan, “Image sequence analysis: estimation of o p t i d  flow 
and focus ofexpansion, with applications,” Ph.D. dissertation (Uni- 
versity of Maryland, 1998), available as Tech. Rep. CAR-TR-893, 
www.cfar.umd.edu/-‘shridhar/Research. 

[20] A. K. Jain, Fundamentals ofDigital ImageProcessing(Prentice-Hall, 
Englewood Cliffs, NJ, 1989). 

[21] C. L. Fennema and W. B. Thompson, “Velocity determination in 
scenes containing several moving objects,” Comput. Graph. Image 
Process. 9, 301-315 (1979). 

[22] 0. Axelsson, Iterated Solution Methods (Cambridge University 
Press, Cambridge, UK, 1994). 

[23] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, 
Numerical Recipes in C, 2nd ed. (Cambridge University Press, Cam- 
bridge, UK, 1992). 

268-272 (1997). 



268 Handbook of Image and Video Processing 

[24] M. Irani, P. Anandan, and S. Hsu, “Mosaic based representations of 
video sequences and their applications, in International Conference 
on Computer Vision (IEEE Computer Society Press, Washington, 
D.C., 1995), pp. 605-611. 

[25] B. Rousso, S. Peleg, I. Finci, and A. Rav-Acha, “Universal mosaic- 
ing using pipe projection,” in International Conference on Com- 
puter Vision (Narosa Publishing House, New Delhi, India, 1998), 

[26] J. Y. A. Wang and E. H. Adelson, “Representing moving images 
with layers,” IEEE Trans. Image Process., 3,625-638 (1994). 

[27] S. Kim, N. Bose, and H. Valenzuela, “Recursive reconstruction 
of high resolution image from noisy undersampled multiframes,” 
IEEE Trans. Acoust. Speech Signal Process. 38, 1013-1027 (1990). 

1281 S. Kim and W. Y. Su, “Recursive high resolution reconstruction of 
blurred multiframe images,” IEEE Trans. Image Process. 2,534539 
(1993). 

[29] R. Y. Tsai and T. S. Huang, “Estimating 3-D motion parameters of 
a rigid planar patch I,” IEEE Trans. Acoust. Speech Signal Process. 

pp. 945-952. 

29,1147-1152 (1981). 

[ 301 X. Zhuang, T. S. Huang, N. Ahuja, and R. M. Haralick, ‘X simplified 
linear optical flow-motion algorithm,” Comput. Vis. Graph. Image 
Process. 42,334344 (1988). 

[ 31 J X. Zhuang, T. S. Huang, N. Ahuja, and R. M. Haralick, ‘‘ Rigid body 
motion and the optic flow image,” in First IEEE Conference on AI 
Applications (IEEE, New York, 1984), pp. 366-375. 

[32] A. M. Waxman, B. Kamgar-Parsi, and M. Subbarao, “Closed-form 
solutions to image flow equations for 3D structure and motion,” 
Int. J. Comput. Vis. 1,239-258 (1987). 

[33] H. C. Longuet-Higgins and K. Prazdny, “The interpretation of a 
moving retinal image,” Proc. Roy. SOC. London 33. 208, 385-397 
(1980). 

[34] A. M. Waxman and S. Ullman, “Surface structure and three- 
dimensional motion from image flow kinematics,” Int. J. Robot. 

[35] A. R. Bruss and B. K. P. Horn, “Passive navigation,” Comput. Vis. 

[36] J. Weng, T. S. Hwang, and N. Ahuja, Motion and Structure from 

Res. 4,72-94 (1985). 

Graph. Image Process. 21, 3-20 (1983). 

Image Sequences (Springer-Verlag, Berlin, 1991). 



IV 
Image and Video 
Analysis 

Image Representations and Image Models 

4.1 Computational Models of Early Human Vision Lawrence K. Cormack.. ...................................... 271 
Introduction The Front End Early Filtering and Parallel Pathways The Primary Visual Cortex and Fundamental 
Properties of Vision Concluding Remarks References 

Overview Pyramid Representations Wavelet Representations Other Multiscale Decompositions 
Acknowledgments References 

Introduction Random Fields: Overview 

4.2 Multiscale Image Decompositions and Wavelets Pierre Moulin.. .............................................. 289 
Conclusion 

4.3 Random Field Models J. Zhang, l? Fieguth and D. Wang.. ....................................................... 301 
Multiscale Random Fields Wavelet Multiresolution Models References 

4.4 ImageModulationModels J. l? HavlicekandA. C. Bovik ........................................................ 313 
Introduction Single-Component Demodulation Multicomponent Demodulation Conclusion References 

Introduction Preliminaries 
References 

4.5 Image Noise Models Charles Boncelet.. ............................................................................. 325 
Elements of Estimation Theory Types of Noise and Where They Might Occur Conclusions 

4.6 Color and Multispectral Image Representation and Display H. J. Trussell.. ................................. 337 
Introduction Preliminary Notes on Display of Images Notation and Prerequisite Knowledge Analog Images as 
Physical Functions Colorimetry Sampling of Color Signals and Sensors Color I/O Device Calibration Summary and 
Future Outlook Acknowledgments References 

Image and Video Classification and Segmentation 

4.7 Statistical Methods for Image Segmentation Sridhar Lakshmanan ............................................ 355 
Introduction Image Segmentation: The Mathematical Problem Image Statistics for Segmentation - Statistical Image 
Segmentation Discussion Acknowledgment References 

Multiband Techniques for Texture Classification and Segmentation 
and W k: Ma ................................................................................................................ 367 
Introduction Gabor Functions Microfeature Representation The Texture Model Experimental Results Image 
Segmentation Using Texture Image Retrieval Using Texture Summary Acknowledgment References 

Introduction Change Detection Dominant Motion Segmentation Multiple Motion Segmentation Simultaneous 
Estimation and Segmentation Semantic Video Object Segmentation Examples Acknowledgment References 

Introduction Artificial Neural Networks * Perceptual Grouping and Edge-Based Segmentation Adaptive Multichannel 
Modeling for Texture-Based Segmentation 
Clustering Oscillation-Based Segmentation Integrated Segmentation and Recognition - Concluding Remarks 
Acknowledgments References 

4.8 B. S. Manjunath, G. M. Haley 

4.9 Video Segmentation A. Murat Tekalp ............................................................................... 383 

4.10 Adaptive and Neural Methods for Image Segmentation J v d e e p  Ghosh.. ..................................... 401 

An Optimization Framework Image Segmentation by Means of Adaptive 



Edge and Boundary Detection in Images 

4.1 1 Gradient and Laplacian-me Edge Detection Phillip A. Mlsna and Jefiey J. Rodriguez.. ................... 415 
Introduction Gradient-Based Methods * Laplacian-Based Methods Canny’s Method 
Multispectral Images Summary References 

Introduction and Motivation Background on Diffusion Implementation of Diffusion * Application of Anisotropic 
Diffusion to Edge Detection Conclusions and Future Research References 

Approaches for Color and 

4.12 Diffusion-Based Edge Detectors Scott ?: Acton.. .................................................................. 433 

Algorithms for Image Processing 

4.13 Software for Image and Video Processing K. Clint Slatton and Brian L. Evans.. ............................. 449 
Introduction Algorithm Development Environments Compiled Libraries Source Code Specialized Processing and 
Visualization Environments Other Software Conclusion References 



4.1 
Computational Models 
of Early Human Vision 

Lawrence K. Cormack 
The University of Texas 

at  Austin 

Introduction.. ................................................................................. 271 
1.1 Aim and Scope 1.2 A Brief History 1.3 A Short Overview 
The Front End ................................................................................. 272 
2.1 Optics 2.2 Sampling 2.3 Ideal Observers 
Early Filtering and Parallel Pathways.. ..................................................... 276 
3.1 Spatiotemporal Filtering 3.2 Early Parallel Representations 

4.1 Neurons ofthe Primary Visual Cortex 4.2 Motion and Cortical Cells 4.3 Stereopsisand 
Cortical Cells 
Concluding Remarks ......................................................................... 286 
References ...................................................................................... 287 

The Primary Visual Cortex and Fundamental Properties of Vision ................... 279 

“The nature of things, hidden in darkness, is revealed only 
by analogizing. This is achieved in such a way that by means 
of simpler machines, more easily accessible to the senses, 
we lay bare the more intricate.” Marcello Malpighi, 1675 

1 Introduction 
~~ 

1.1 Aim and Scope 
The author of a short chapter on computational models of hu- 
man vision is faced with an embarras de richesse. One wishes to 
make a choice between breadth and depth, but even this is virtu- 
ally impossible within a reasonable space constraint. It is hoped 
that this chapter will serve as a brief overview for engineers inter- 
ested in processing done by the early levels of the human visual 
system. We will focus on the representation of luminance infor- 
mation at three stages: the optics and initial sampling, the repre- 
sentation at the output ofthe eyeball itself, and the representation 
at primary visual cortex. With apologies, I have allowed us a very 
brief foray into the historical roots of the quantitative analysis of 
vision, which I hope may be of interest to some readers. 

1.2 A Brief History 
The first known quantitative treatment of image formation in the 
eyeball by Alhazan predated the Renaissance by four centuries. 

In 1604, Kepler codified the fundamental laws of physiological 
optics, including the then-controversial inverted retinal image, 
which was then verified by direct observation of the image in situ 
by Pater Scheiner in 16 19 and later (and more famously) by Rene 
Descarte. Over the next two centuries there was little advance- 
ment in the study of vision and visual perception per se, with 
the exception of Newton’s formulation of laws of color mixture, 
However, Newton’s seemingly innocuous suggestion that “the 
Rays to speak properly are not coloured [ 1 J anticipated the core 
feature of modern quantitative models of visual perception: the 
computation of higher perceptual constructs (e.g., color) based 
upon the activity of peripheral receptors differentially sensitive 
to a physical dimension (e.g., wavelength).’ 

In 1801, Thomas Young proposed that the eye contained but 
three classes of photoreceptor, each of which responded with 
a sensitivity that varied over a broad spectral range [2]. This 
theory, including its extensions by Helmholtz, was arguably the 
first modern computational theory of visual perception. The 
Young/Helmholtz theory explicitly proposed that the properties 
of objects in the world are not sampled directly, but that certain 
properties of light are encoded by the nervous system, and that 

‘Newton was pointing out that colors must arise in the brain, because a given 
color can arise from many wavelength distributions, and some colors can only 
arise from multiple wavelengths. The purples, for example, and even unique red 
(red that observers judge as tinged with neither orange nor violet), are colors 
that cannot be experienced by viewing a monochromatic light. 

Gpyright @ 2000 by Academic Press. 
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the resulting neural activity was transformed and combined by 
the nervous system to result in perception. Moreover, the neural 
activity was assumed to be quantifiable in nature, and thus the 
output of the visual system could be precisely predicted by a 
mathematical model, In the case of color, it could be firmly 
stated that sensation “may always be represented as simply a 
function of three variables” [3]. While not a complete theory of 
color perception, this has been borne out for a wide range of 
experimental conditions. 

Coincident with the migration of trichromatic theory from 
England to Central Europe, some astronomical data made the 
same journey, and this resulted in the first applied model of 
visual processing. The data were observations of stellar transit 
times from the Greenwich Observatory taken in 1796. There was 
a half-second discrepancy between the observations by Maske- 
lyne (the director) and Kinnebrook (his assistant), and for this 
Kinnebrook lost his job. The observations caught the notice of 
Bessel in Prussia at a time when the theory of variability was 
being given a great deal of attention because of the work of 
Laplace, Gauss, and others. Unable to believe that such a large, 
systematic error could be due to sloppy astronomy, Bessel de- 
veloped a linear model of observers’ reaction times to visual 
stimuli (i.e., stellar transits) relative to one another. These mod- 
els, which Bessel called “personal equations,” could then be 
used to correct the data for the individual making the obser- 
vations. 

It was no accident that the nineteenth century saw the genesis 
of models of visual behavior, for it was at that time that several 
necessary factors came together. First, it was realized that an 
understanding of the eyeball itself begged rather than yielded an 
explanation of vision. 

Second, the brain had be to viewed as explainable, that is, 
viewed in a mechanistic fashion. While this was not entirely new 
to the nineteenth century, the measurement of the conduction 
velocity of a neural impulse by Helmholtz in 1850 probably did 
more than any other single experiment to demonstrate that the 
senses did not give rise to immediate, qualitative (and therefore 
incalculable) impressions, but rather transformed and conveyed 
information by means that were ultimately quantifiable. 

Third, the stimulus had to be understood to some degree. 
To make tangible progress in modeling the early levels of the 
visual system, it was necessary to think not in terms of objects 
and meaningful structures in the environment, but in terms of 
light, of wavelength, of intensity, and its spatial and temporal 
derivatives. The enormous progress in optics in the nineteenth 
century created a climate in which vision could be thought of 
quantitatively; light was not understood, but its veils of magic 
were quickly falling away. 

Finally, theories of vision would have to constrained and 
testable in a quantitative manner. Experiments would have to 
be done in which observers made well-defined responses to 
well-controlled stimuli in order to establish quantitative input- 
output relationships for the visual system, which could then 
in turn be modeled. This approach, called psychophysics, was 

born with the publication of Elernente der Psychophysik by Gustav 
Fechner in 1860. 

With the historical backdrop painted, we can now proceed 
to a selective survey of quantitative treatments of early human 
visual processing. 

1.3 A Short Overview 
Figure 1 shows a schematic overview of the major structures 
of the early visual system and some of the functions they per- 
form. We start with the visual world, which varies with space, 
time, and wavelength, and which has an amplitude spectrum 
roughly proportional to l/f, where f is the spatial frequency 
of luminance variation. The first major operations by the visual 
system are passive: low-pass filtering by the optics and sampling 
by the receptor mosaic, and both of these operations, and the 
relationship between them, vary with eccentricity. 

The retina of the eyeball filters the image further. The photore- 
ceptors themselves filter along the dimensions of time and wave- 
length, and the details of the filtering varies with receptor type. 
The output cells of the retina, the retinal ganglion cells, synapse 
onto the lateral geniculate nucleus of the thalamus (known as 
the LGN). We will consider the LGN primarily as a relay station 
to cortex, and the properties of retinal ganglion cells and LGN 
cells will be treated as largely interchangeable. 

LGN cells come in two major types in primates, magnocellular 
(“M”) and parvocellular (“P”); the terminology was adopted for 
morphological reasons, but important functional properties dis- 
tinguishthe cell types. To grossly simplify, M cells are tuned to low 
spatial frequencies and high temporal frequencies, and they are 
insensitive to wavelength variation. In contrast, P cells are tuned 
to high spatial frequencies and low temporal frequencies, and 
they encode wavelength information. These two cell types work 
independently and in parallel, emphasizing different aspects of 
the same visual stimuli. In the two-dimensional (2-D) Fourier 
plane, both are essentially circularly-symmetric bandpass filters. 

In the primary visual cortex, several properties emerge. Cells 
become tuned to orientation; they now inhabit something like 
a Gaussian blob on the spatial Fourier plane. Cells also become 
tuned to direction of motion (displacement across time) and 
binocular disparity (displacement across eyeballs). A new di- 
chotomy also emerges, that between so-called simple and com- 
plex cells. Simple cells behave much as wavelet-like linear filters, 
although they demonstrate some response nonlinearities critical 
to their function. The complex cells are more difficult to model, 
as their sensitivity shows no obvious spatial structure. 

We will now explore the properties of each of these functional 
divisions, and their consequences, in turn. 

2 The ]Front End 

A scientist in biological vision is likely to refer to anything be- 
tween the front of the cornea and the area on which he or she is 



FIGURE 1.13 Color image of “cherries” (top left), and (clockwise) its red, green, and blue components. 
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FIGURE 3.2.7 Center WM filter applied to each component independently. 
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FIGURE 3.2.8 Center vector WM filter applied in the three-dimensional space. 



FIGURE 3.2.10 Impulse noise deanhgwith a 5 x 5 CWM smoother: (a) original uportrait” image, 
(b) image with salt- and-pepper noise, (c) CWM smoother with W, = 16, (d) CWM smoother with 
w, = 5. 
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FIGURE 3.2.1 1 
and 5 x 5  mean smoother (right). 

(Enlarged) Noise-free image (left), 5 x 5 median smoother output (center), 
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FIGURE 3.2.12 
(center), and permutation CWM smoother output (right). Window size is 5 x 5. 

(Enlarged) CWh4 smoother output (left), recursive CWM smoother output 
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FIGURE 3.2.13 
(c) filtered image using a vector WM filter. 

(a) Original image, (b) filtered image using a marginal WM filter, 
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FIGURE 3.2.19 
Gaussian noise sharpened with (e) the FIR sharpener, and (f) the WM sharpener. 

(a) Original image sharpened with (b) the FIR sharpener, and (c) with the WM sharpener. (d) Image with added 
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FIGURE 3.7.1 Example of a multichannel image. A color image consists of 
three color components (channels) that are highly correlated with one another. 
Similarly, a video image sequence consists of a collection of closely related images. 
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FIGURE 3.7.2 Example of a multichannel LMMSE restoration: original (upper 
left), degraded (upper right), restored single-channel statistics obtained from origi- 
nal (middle left), restored single-channel statistics obtained from degraded original 
(middle right), restored multichannel statistics obtained from original (lower left), 
restored multichannel statistics obtained from degraded (lower right). 
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FIGURE 3.12.4 Bilinear basis function. 
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FIGURE 4.1.3 (a) The Retinal sampling grid near the center of the visual field of two living human eyeballs. The different cone types 
are color coded (from Roorda and Waiams, 1999, reprinted with permission). (b) The density of various cell types in the human retina. 
The rods and cones are the photoreceptors that do the actual sampling in dim and bright light, respectively. The ganglion cells pool 
the photoreceptor responses and transmit information out of the eyeball (from Geisler and Banks, 1995) reprinted with permission. 
(c) The dendritic field size (assumed to be roughly equal to the receptive field she) of the two main types of ganglion cell in the human 
retina (redrawn from Dacy, 1993). The gray shaded region shows the parasol (or M) cells, and the green region shows the midget (or P) 
cells. The two cell types seem to independently and completely tile the visual world. The functional properties of the two cell types are 
summarized in Table 1. 
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FIGURE 1.13 Left column: the upper panel shows a spatial frequency tuning profile typical of cell such as shown in Fig. 5; the middle and lower panels show 
distribution estimates of the two parameters of peak sensitivity (middle) and half-bandwidth in octaves (lower) for cells in macaque visual cortex. Middle column: 
same as the left column, but showing the temporal frequency response. As the response is asymmetric in octave bandwidth, the lower figure shows separate 
distributions for the upper and lower half-bandwidths (blue and green, respectively). Right column: the upper panel shows the response of a typical cortical cell to 
the orientation of a drifting Sinusoidal grating. The ratio of responses between the optimal direction and its reciprocal is taken as an index of directional selectivity; 
the estimated distribution of this ratio is plotted in the middle panel (the index cannot exceed unity by definition). The estimate of half-bandwidth for Macaque 
cortical cells is shown in the lower panel. 
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Structure Operations 
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2 D  Fourier Plane 

World 

Optics 

Photoreceptor 
Array 

LGN Cells 

Primary Visual Cortical 
Neurons: 

Simple & Complex 

Low-pass spatial filtering 

Sampling, more low-pass 
filtering, temporal lowhandpass 
filtering, h filtering, gain control, 
response compression 

Spatiotemporal bandpass 
filtering, h filtering, multiple 
parallel representations 

Simple cells: orientation, 
phase, motion, binocular 
disparity, & h filtering 

Complex cells: no phase 
filtering (contrast energy 
detection) 

FIGURE 1 Schematic overview of the processing done by the early visual system. On the left, are some of the major 
structures to be discussed; in the middle, are some of the major operations done at the associated structure; in the right, 
are the 2-D Fourier representations of the world, retinal image, and sensitivities typical of a ganglion and cortical cell. 

working as “the front end.” Herein, we use the term to refer to the 
optics and sampling of the visual system and thus take advantage 
of the natural division between optical and neural events. 

2.1 Optics 
The optics of the eyeball are characterized by its 2-D spatial 
impulse response function, the point-spread function [4]: 

image formation in the human eyeball. For most purposes, how- 
ever, the point-spread function may be simply convolved with 
an input image, 

to compute the central retinal image for an arbitrary stimulus, 
and thus derive the starting point of vision. 

2.2 Sampling 
in which r is the radial distance in minutes of arc from the center 
of the image. 

This function, plotted in Fig. 2 (or its Fourier transform, the 
modulation-transfer function), completely characterizes the op- 
tics of the eye within the central visual field. The optics deteri- 
orate substantially in the far periphery, so a spatially variant 
point-spread function is actually required to fully characterize 

While sampling by the retina is a complex spatiotemporal neu- 
ral event, it is often useful to consider the spatial sampling to 
be a passive event governed only by the geometry of the re- 
ceptor grid and the stationary probability of a single receptor 
absorbing a photon. In the human retina, there are two parallel 
sampling grids to consider, one comprising the rod photorecep- 
tors and operating in dim light, and the other comprising the 
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FIGURE 2 Point-spread function of the human eyeball. The x and y axes are in minutes of arc, and the z axis is in 
arbitrary units. The spacing of the grid lines is equal to the spacing of the photoreceptors in the central visual field of the 
human eyeball, which is approximately 30 arc sec. 

cone photoreceptors (on which we concentrate) and operating 
in bright light. Shown in Fig. 3(a) are images of the cone sam- 
pling grid 1" from the center of the fovea taken in two living, hu- 
man eyes, using aberration-correcting adaptive optics (similar to 
those used for correcting atmospheric distortions for terrestrial 
telescopes) [5]. The short-, medium-, and long-wavelength sen- 
sitive cones have been pseudo-colored blue, green, and red, re- 
spectively. At the central fovea, the average interreceptor distance 
is -2.5 Fm, which is -30 arc sec in the human eyeball. Locally, 
the lattice is roughly hexagonal, but it is irregular over large areas 
and seems to become less regular as eccentricity increases. The- 
oretical performance has been compared in various visual tasks 
using both actual foveal receptor lattices taken from anatomical 
studies of the macaque' retina and idealized hexagonal lattices of 
the same receptor diameter, and little difference was found [ 6 ] .  

While the use of a regular hexagonal lattice is convenient for 
calculations in the space domain, it is often more efficient to 
work in the frequency domain. In the central retina, one can 
take the effective sampling frequency to be times the av- 
erage interreceptor distance (due to the hexagonal lattice), and 
then treat the system as sampling with an equivalent 2-D comb 

(sampling) function. In the peripheral retina, where the optics 
of the eye pass frequencies above the theoretical sampling limits 
of the retina, it is possible that the irregular nature of the array 
helps prevent some of the effects of aliasing. However, visual 
discriminations in the periphery can be made above the Nyquist 
frequency by the detection of aliasing [ 71, so a 2-D comb func- 
tion of appropriate sampling density can probably suffice for 
representing the peripheral retina under some conditions. 

The photoreceptor density as a function of eccentricity for 
the rod and cone receptor types in the human eye is shown in 
Fig. 3(b). The cone lattice is foveated, peaking in density at a 
central location and dropping off rapidly away from this point. 
Also shown is the variation in the density of retinal ganglion cells 
that transmit the information out of the eyeball. The ganglion 
cells effectively sample the photoreceptor array in receptivefields, 
whose size also varies with eccentricity. This variation for the two 
main types of ganglion cells (which will be discussed below) is 
shown in Fig. 3(c). The ganglion cell density falls more rapidly 
than cone density, indicating that ganglion cell receptive fields in 
the periphery summate over a larger number of receptors, thus 
sacrificing spatial resolution. This is reflected in measurements 
of visual acuity as a function of eccentricity, which fall in accord 
with the ganglion cell data. 

The Other main factor to consider is the probability Of given 
receptor absorbing a photon, which is governed by the area of 

2The macaque is an old-world monkey, rnacacafascicularis, commonly used in 
vision research because of the great similarity between the macaque and human 
visual systems. 
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FIGURE 3 (a) The Retinal sampling grid near the center of the visual field of 
two living human eyeballs. The different cone types are color coded (from Roorda 
and Williams, 1999, reprinted with permission). (b) The density ofvarious cell 
types in the human retina. The rods and cones are the photoreceptors that do 
the actual sampling in dim and bright light, respectively. The ganglion cells pool 
the photoreceptor responses and transmit information out of the eyeball (from 
Geisler and Banks, 1995) reprinted with permission. (c) The dendritic field size 
(assumed to be roughly equal to the receptive field size) of the two main types of 
ganglion cell in the human retina (redrawn from Dacy, 1993). The gray shaded 
region shows the parasol (or M) cells, and the green region shows the midget 
(or P) cells. The two cell types seem to independently and completely tile the 
visual world. The functional properties of the two cell types are summarized in 
Table 1. (See color section, p. C-7.) 

the effective aperture of the photoreceptor and the probability 
that a photon entering the aperture will be absorbed. This latter 
probability is obtained from Beer's Law, which gives the ratio of 
radiant flux reaching the back of the receptor outer segment to 
that entering the front [ 81 : 

v(h)  = 10-'ce(X) (3) 

in which 1 is the length of the receptor outer segment, c is the 
concentration of unbleached photopigment, and &(A)  is the ab- 
sorption spectrum of the photopigment. 

For many modeling tasks, it is most convenient to express the 
stimulus in terms of n(X), the number of quanta per second as a 
function of wavelength. This is given by [ 91 

L ( A )  
V(W 

n(X) = 2.24 x 1O3A-t(X)h, (4) 

in which A is area ofthe entrance pupil, L (A) is the spectral lumi- 
nance distribution of the stimulus, V(X) is the standard spectral 
sensitivity of human observers, and t(A) is the transmittance of 
the ocular media. Values of these functions are tabulated in [ 81. 

Thus, for any receptor, the number of absorptions per second, 
N, is given approximately by 

N = 1 a ( l  - v(h))n(h)  dh (5) 

in which a is the receptor aperture. 
These equations are of fundamental import because they de- 

scribe the data that the visual system collects about the world. 
Any comprehensive model of the visual system must ultimately 
use these data as input. In addition, since these equations specify 
the information available to the visual system, they allow us to 
specify how well a particular visual task could be done in princi- 
ple. This specification is done with a special type of model called 
an ideal observer. 

2.3 Ideal Observers 
An ideal observer is a mathematical model that performs a given 
task as well as possible given the information in the stimulus. 
It is included in this section because it was traditionally used to 
assess the visual system in terms of quantum efficiency, f ,  which 
is the ratio of the number of quanta theoretically required to do 
a task to the number actually required [e.g., 101. It is therefore 
more natural to introduce the topic in terms of optics. However, 
ideal observers have been used to assess the information loss at 
various neurophysiological sites in the visual system [6,  111; the 
only requirement is that the information present at a given site 
can be quantitatively expressed. 

An ideal observer performs a given task optimally (in the 
Bayesian sense), and it thus provides an absolutetheoretical limit 
on performance in any given task (it thus gives to psychophysics 
and neuroscience what absolute zero gives to thermodynamics: a 
fundamental baseline). For example, the smallest offset between 
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a pair of abutting lines (such as on a vernier scale on a pair of 
calipers) that a human observer can reliably discriminate (75% 
correct, say) from a stimulus with no offset is almost unbeliev- 
ably low - a few seconds of arc. Recalling from above that foveal 
cone diameters and receptor spacing are of the order of a half 
a minute of arc, such performance seems rather amazing. But 
amazing relative to what? The ideal observer gives us the an- 
swer by defining what the best possible performance is. In our 
example, a human observer would be less than 1% efficient as 
measured at the level of the photoreceptors, meaning that the 
human observer would require of the order of lo3 more quanta 
to achieve the same level of discrimination performance. In this 
light, human Performance ceases to appear quite so amazing, and 
attention can be directed toward determining how and where the 
information loss is occurring. 
An ideal observer consists of two main parts, a model of the 

visual system and a Bayesian classifier. The latter is usually ex- 
pressed as a likelihood ratio: 

in which the numerator and denominator are the conditional 
probabilities of making observations given that the stimulus was 
actually a or b, respectively. If the likelihood ratio, or more com- 
monly its logarithm, exceeds a certain amount, stimulus a is 
judged to have occurred. For a simple discrimination, s would 
be a vector containing observed quantum catches in a set of 
photoreceptors, and the probability of this observation given 
hypotheses a and b would be calculated with the Poisson distri- 
bution of light and the factors described above in Sections 2.1 
and 2.2. 

The beauty of the ideal observer is that it can be used to parse 
the visual system into layers, and to examine the information 
loss at each layer. Thus, it becomes a tool by which we can learn 
which patterns of behavior result from the physics of the stim- 
ulus and the structure of the early visual system, and which 
patterns of behavior result from nonoptimal strategies or al- 
gorithms employed by the human visual system. For example, 
there exists an asymmetry in visual search in which a patch of 
low-frequency texture in a background of high-frequency tex- 
ture is much easier to find than when the figure and ground are 
reversed. It is intuitive to think that if only low-level factors were 
limiting performance, detecting A on a background of B should 
be equivalent to detecting B on a background of A (by almost 
any measure, the contrast of A on B would be equal to that of 
B on A). However, an ideal-observer analysis proves this intu- 
ition false, and an ideal-observer based model of visual search 
produces the aforementioned search asymmetry [ 121. 

3 Early Filtering and Parallel Pathways 

In this section, we discuss the nature of the information that 
serves as the input to visual cortex This information is contained 

in the responses of the retinal ganglion cells (the output of the 
eyeball) and the LGN.3 Arguably, this is the last stage that can be 
comfortably modeled as a strictly data-driven system in which 
neural responses are independent of activity from other cells in 
the same or subsequent layers. 

3.1 Spatiotemporal Filtering 
One difficulty with modeling neural responses in the visual sys- 
tem, particularly for someone new to reading the physiology 
literature, is that people have an affinity for dichotomies. This 
is especially evident from a survey of the work on retinogenicu- 
late processing. Neurons have been dichotomized a number of 
dimensions. In most studies, only one or perhaps two ofthese di- 
mensions are addressed, which leaves the relationships between 
the various dimensions somewhat unclear. 

With that caveat in mind, the receptive field shown in Fig. 4 
is fairly typical of that encountered in retinal ganglion cells or 
cells of the lateral geniculate nucleus. Figure 4(a) shows the hy- 
pothetical cell’s sensitivity as a function of spatial position. The 
receptive field profile shown is a difference of Gaussians, which 
agrees well with physiological recordings of the majority of gan- 
glion cell receptive field profiles [ 13, 141, and it is given by 

in which ul and a2 normalize the areas, and SI and s2 are space 
constants in a ratio of about 1:1.6. Their exact values will vary 
as a function of eccentricity as per Fig. 3(c). 

This representation is fairly typical of that seen in the early 
work on ganglion cells [e.g., 151, in which the peak response of 
a neuron to a small stimulus at a given location in the receptive 
field was recorded, but the location in time of this peak response 
was somewhat indefinite. Thus, a receptive field profile as shown 
represents a slice in time of the neuron’s response some tens of 
milliseconds after stimulation and, further, the slice of time rep- 
resented in one spatial location isn’t necessarily the same as that 
represented in another (although for the majority of ganglion 
cells, the discrepancy would not be too large). 

Since the receptive field is spatially symmetric, we can get a 
more complete picture by looking at a plot of one spatial dimen- 
sion against time. Such an x-tplot is shown in Fig. 4(b), in which 
the x dimension is in arcminutes and the t dimension is in mil- 
liseconds. The response is space-time separable; the value at any 
given point is simply the value of the spatial impulse response at 
that spatial location scaled by the value of the temporal impulse 
response at that point in time. Thus, the response is given by 

r ( x ,  t) = DOG(x)[h(t)]  (8) 

’Thus we regrettabIy omit a discussion of the response properties of the 
photoreceptors per se and of the circuitry of the retina. These are fascinating 
topics - the retina is a marvelous computational structure - and interested 
readers are referred to [ 401. 
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FIGURE 4 (a) Receptive field profile of a retinal ganglion cell modeled as a 
difference of Gaussians. The x and y axes are in minutes of arc, so this cell would 
be typical of an M cell near the center of the retina, or a P cell at an eccentricity of 
10’ to 15’ (see Fig. 2). (b) Space-time plot ofthe same receptive field, illustrating 
its biphasic temporal impulse response. (The x-axis is in minutes of arc, and the 
y-axis is in milliseconds). 

in which h( t )  is a biphasic temporal impulse response function. 
This response function, h( t) ,  was constructed by subtracting two 
cascaded low-pass filters of different order [cf. 161. These low- 
pass filters are constructed by successive autocorrelation of an 
impulse response function of the form 

in which H (  t) is the Heaviside unit step: 

1, t > O  

0, t t o ’  
H ( t )  = 

A succession of n autocorrelations gives 

~ ( t )  (t/7 )” e-‘/‘ 
m! h “ ( t )  = , 

which is a monophasic (low-pass) filter of order n. A difference 
of two filters of different orders produces the biphasic bandpass 
response function, and the characteristics of the filter can be 
adjusted by using component filters of various orders. 

The most important implication of this receptive field struc- 
ture, obvious from the figure, is that the cell is bandpass in both 
spatial and temporal frequency. As such, the cell discards infor- 
mation about absolute luminance and emphasizes change across 
space (likely to denote the edge of an object) or change across 
time (likely to denote the motion of an object). Also obvious 
from the receptive field structure is that the cell is not selec- 
tive for orientation (the direction of the spatial change) or the 
direction of motion. 

The cell depicted in the figure is representative in terms of its 
qualitative characteristics, but the projection from retina to cor- 
tex comprises of the order of lo6 such cells that vary in their spe- 
cific spatiotemporal tuning properties. Rather than being con- 
tinuously distributed, however, the cells seem to form functional 
subgroups that operate on the input image in parallel. 

3.2 Early Parallel Representations 
The early visual system carries multiple representations of the 
visual scene. The earliest example of this is at the level of the 
photoreceptors, where the image can be sampled by rods, cones, 
or both (at intermediate light levels). An odd aspect of the rod 
pathway is that it ceases to exist as a separate entityat the output of 
the retina; there is no such thing as a “rod retinal ganglion cell.” 
This is an interesting example of a need for a separate sensor 
system for certain conditions combined with a need for neural 
economy. The pattern analyzing mechanisms in primary visual 
cortex and beyond are used for both rod and cone signals with 
(probably) no information about which system is providing the 
input. 

Physiologically, the most obvious example of separate, paral- 
lel projections from the retina to the cortex is the presence of 
the so-called ON and OFF pathways. All photoreceptors have 
the same sign of response. In the central primate retina, how- 
ever, each photoreceptor makes direct contact with at least two 
bipolar cells - cells intermediate between the receptors and the 
ganglion cells - one of which preserves the sign of the photore- 
ceptor response, and the other of which inverts it. Each of these 
bipolar cells in turn serves as the excitatory center of a ganglion 
cell receptive field, thus forming two parallel pathways: an ON 
pathway, which responds to increases in light in the receptive 
field center, and an OFF pathway, which responds to decreases 
in light in the receptive field center. Each system forms an inde- 
pendent tiling of the retina, resulting in two complete, parallel 
neural images being transmitted to the brain. 

Another fundamental dichotomy is between midget (or “P” 
for reasons to become clear in a moment) and parasol (or “M”) 
ganglion cells. Like the ON-OFF subsystems, the midget and 
parasol ganglion receptive fields perform a separate and parallel 
tiling of the retina. On average, the receptive fields of parasol 
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TABLE 1 Important properties of the two major cell types providing input to the visual cortex 

Property P cells M cells Comments 

Percent of cells 80 

Receptive field size relatively small, single cone 
center in fovea, increases 
with eccentricity (see Fig. 3) 

poor (factor of 8-10 lower than 
for M cells), driven by high 
contrast 

Contrast sensitvity 

Contrast gain low 
Spatial frequency peak and high-frequency 

response cutoff at relatively low 
spatial frequency 

temporal frequency 

Spatial linearity 

low-pass, fall off at 20-30 Hz. 

almost all have linear 
response 

summation 

Wavelength opponency yes 
Conduction velocity slow (6 m/s) 

10 

Relatively large, -3 x larger 
than P cells at any given 
eccentricity 

contrasts 
good, saturation at high 

high (-6x higher) 
Peak and high-frequency 

cutoff at relatively high 
spatial frequency 

bandpass, peaking at or 

most have linear summation, 
above 20 Hz 

some show marked 
nonlinearities 

no 
fast (15 m/s) 

The remainder project to subcortical 

RF modeled well by a difference of 
streams. 

Gaussians. 

Possible gain control in M cells. 
Unclear dichotomy. physiological 

differences tend to be less 
pronounced than predicted by 
anatomy. 

Estimated proportion of nonlinear 
neurons depends on how the 
distinction is made. 

ganglion cells are about a factor of 3 larger than those of midget 
ganglion cells at any given eccentricity, as shown in Fig. 3(c), 
so the two systems can be thought of as operating in parallel at 
different spatial scales. This separation is strictly maintained in 
the projection to the LGN, which is layered like a wedding cake. 
The midget cells project exclusively to what are termed the par- 
vocellularlayers ofthe LGN (the dorsalmost four layers), and the 
parasol cells project exclusively to the magnoceElular layers (the 
ventralmost two layers). Because of this separation and the im- 
portant physiological distinctions that exist, visual scientist now 
generally speak in terms of the parvocellular (or “P”) pathway, 
and the magnocellular (or “M”) pathway. 

There is a reliable difference in the temporal frequency re- 
sponse between the cells of the M and P pathways [ 171. In gen- 
eral, the parvocellular cells peak at a lower temporal frequency 
than magnocellular cells (e10 Hz vs. 10-20 Hz), have a lower 
high-frequency cutoff (-20 Hz vs. -60 Hz), and shallower low- 
frequency rolloff (with many P cells showing a DC response). 
The temporal frequency response envelopes of both cell types 
can be functionally modeled as a difference of exponentials in 
the frequency domain. 

Another prevalent distinction is based upon linear versus non- 
linear summation within a cell’s receptive field. Two major classes 
of retinal ganglion cell have been described in the cat, termed 
X and Y cells, based on the presence or absence of a null phase 
when stimulated with a sinusoidal grating [ 151. The response of 
a cell such as shown in Fig. 4 will obviously depend strongly on 
the spatial phase of the stimulus. For such a cell, a spatial phase 
of a grating can be found such that the grating can be exchanged 
with a blank field of equal mean luminance with no effect on 

the output of the cell. These X cells compose the majority. For 
other cells, termedY cells, no such null phase can be found, indi- 
cating that something other than linear summation across space 
occurs. 

In the primate, nonlinear spatial summation is much less 
prevalent at the level of the E N  although nonlinear cells do 
exist, and are more prevalent in M cells than in P cells [ 171. It 
may be that nonlinear processing, which is very important, has 
largely shifted to the cortex in primates, just as have other impor- 
tant functions such as motion processing, which occurs much 
earlier in the visual systems of more phylogenically-challanged 
species. 

At this point, there is a great body of evidence suggesting that 
the M-P distinction is a fundamental one in primates, and that 
most of the above dichotomies are either an epiphenomenon 
of it, or at least best understood in terms of it. We can sum- 
marize the important parameters of M and P cells as follows. 
Table 1 (cf. [ 181) provides a fairly comprehensive, albeit qualita- 
tive, overview of what we could term the magnocellular and 
parvocellular “geniculate transforms” that serve as the input 
to the cortex. If, in fact, work on the visual cortex continues 
to show effects such as malleability of receptive fields, it may 
be that models of geniculate function will actually increase in 
importance, because it may be the last stage at which we can 
confidently rely on a relatively linear transform-type model. 
Attempts in this direction have been made [19, 201 but most 
modeling efforts seem to have been concentrated on either cor- 
tical cells or psychophysical behavior (i.e., modeling the output 
of the human as a whole, e.g., contrast threshold in response to 
some stimulus manipulation). 
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4 The Primary Visual Cortex 
and Fundamental Properties of Vision 

4.1 Neurons of the Primary Visual Cortex 
The most striking feature of neurons in the visual cortex is the 
presence of several emergent properties. We begin to see, for 
example, orientation tuning, binocularity, and selectivity for the 
direction of motion. The distinction between the magnocellular 
and parvocellular pathways remains - they synapse at different 
input layers in the visual cortex-but interactions between them 
begin to occur. 

Perhaps the most obvious and fundamental physiological dis- 
tinction in the cortex is between so-called simple and complex 
cells [21,22]. This terminology was adopted (prior to wide ap- 
plication of linear systems analysis in vision) because the simple 
cells made sense. Much as with ganglion cells, mapping the re- 
ceptive field was straightforward and, once the receptive field 
was mapped, the response of the cell to a variety of patterns 
could be intuitively predicted. Complex cells, in contrast, were 
more complex. The simple/complex distinction seems to have no 
obvious relationship with the magnocellularlparvocellular dis- 
tinction, but it seems to be a manifestation of a computational 
scheme used within both processing streams. 

The spatial receptive field of a generic simple cell is shown 
in Fig. 5(a). The cell is modeled as a Gabor function, in which 
sensitivity is given by 

s(x, y )  = .e-(~/+~z/+ Sin(2TOX + c+) (12) 

As the axes are in arcminutes, the cell is most sensitive to hori- 
zontal Fourier energy at -3 cycleddeg. In this case, the cell is odd 
symmetric. While it would be elegant if cells were always even or 
odd symmetric, it seems that phase is continuously represented 
[23, 241, although this certainly does not preclude the use of 
pairs of cells in quadrature phase in subsequent processing. 

As in Fig. 4, Fig. 5(b) shows the spatiotemporal receptive field 
ofthe model cell: the cell's sensitivity at y = 0 plottedas a function 
of x and t. Notice that, in this case, the cell is spatiotemporally 
inseparable; it is oriented in space-time and is directionally se- 
lective [25, 261. Thus, the optimal stimulus would be drifting 
sinusoidal grating, in this case a 3 cycle/deg grating drifting at 
approximately 5 deg/s. Many, but not all, cortical cells are direc- 
tionally selective (see below). 

Cells in the primary visual cortex can be thought of as a bank 
or banks of spatiotemporal filters that tile the visual world on 
several dimensions and, in so doing, determine the envelope of 
information to which we have access. We can get a feel for this 
envelope by looking at the distribution of cell tuning along var- 
ious dimensions. This is done in Fig. 6 using data from cells in 
the Macaque primary visual cortex reported in Geisler and Al- 
brecht [27]. In the upper row, the response of a typical cell is 
shown as a function of the spatial frequency of a counterphasing 
grating (left column), the temporal frequency of same stimulus 

at optimal spatial frequency (middle column), or the orientation 
of a drifting grating of optimal spatiotemporal frequency (right 
column). The middle and lower rows show the normalized fre- 
quency distributions of the parameters of the tuning functions 
for the population of cells surveyed ( n  = 71)? 

At this point, we can sketch a sort of standard model of the 
spatial response properties of simple and complex cortical cells 
[e.g., 27, 281. The basic elements of such a model are illus- 
trated in Fig. 7(a). The model comprises four basic components, 
the first of which is a contrast gain control, which causes a re- 
sponse saturation to occur (see below). Typically, it takes the 
form of 

C" 
r(c) = ~ 

C" + c&' (13) 

in which c is the image contrast, ~ 5 0  is the contrast at which 
half the maximum response is obtained, and n is the response 
exponent, which averages -2.5 for Macaque cortical cells. 

Next is the sampling of the image by a Gabor or Gabor-like 
receptive field, which is a linear spatial summation: 

in which h(x, y)  is the spatial receptive field profile, and c(x ,  y) 
is the effective contrast of the pixel at ( x ,  y), i.e., the departure 
of the pixel value from the average pixel value in the image. 

The third stage is a half-wave rectification (unlike ganglion 
cells, cortical cells have a low maintained discharge and thus 
can signal in only one direction) and an expansive nonlinearity, 
which serves to enhance the response disparity between optimal 
and nonoptimal stimuli. Finally, Poisson noise is incorporated, 
which provides a good empirical description of the response 
variability of cortical cells. The variance of the response of a 
cortical cell is proportional to the mean response with an average 
constant of proportionality of -1.7. 

A model complex cell is adequately constructed by summing 
(or averaging) the output of two quadrature pairs of simple cells 
with opposite sign, as shown in Fig. 7(b) [ e.g., 281. Whether com- 
plex cells are actually constructed out of simple cells this way in 
primary visual cortex is not known; they could be constructed 
directly from LGN input. For modeling purposes, using simple 
cells to construct them is simply convenient. The important as- 
pect is that their response is phase independent, and thus they 
behave as detectors of local contrast energy. 

The contrast response of cortical cells deserves a little addi- 
tional discussion. At first glance, the saturating contrast response 
function described above seems to be a rather mundane response 
limit, perhaps imposed by metabolic constraints. However, a 
subtle but key feature is that the response of a given cortical 

4Whiie these distributions are based on real data, they are schematized using 
a Gaussian assumption, which is probably not strictly valid. They do, however, 
convey a fairly accurate portrayal of the variability of the various parameters. 
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FIGURE 5 Receptive field profile of a cortical simple cell modeled as Gabor function: (a) spatial 
receptive field profile with the x and y axes in minutes of arc, and the z axis in arbitrary units of 
sensitivity; (b) space-time plot of the same receptive field with the x axis in minutes of arc and the 
y axis in milliseconds. The receptive field is space-time inseparable and the cell would be sensitive to 
rightward motion. 

neuron saturates at the same contrast, regardless of overall re- 
sponse level (as opposed to saturating at some given response 
level). Why is this important? Neurons have a multidimensional 
sensitivity manifold, but a unidimensional output. Thus, if the 
output of a neuron increases from 10 to 20 spikes per second, 

say, then any number of things could have occurred to cause this. 
The contrast may have increased, the spatial frequency may have 
shifted to a more optimal one, etc., or any combination of such 
factors may have occurred. There is no way to identify which 
may have occurred from the output of the neuron. 
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FIGURE 6 Left column: the upper panel shows a spatial frequency tuning profile typical of cell such as shown in Fig. 5; the 
middle and lower panels show distribution estimates ofthe two parameters ofpeak sensitivity (middle) and half-bandwidth 
in octaves (lower) for cells in macaque visual cortex. Middle column: same as the left column, but showing the temporal 
frequency response. As the response is asymmetric in octave bandwidth, the lower figure shows separate distributions for 
the upper and lower half-bandwidths (blue and green, respectively). Right column: the upper panel shows the response 
of a typical cortical cell to the orientation of a drifting sinusoidal grating. The ratio of responses between the optimal 
direction and its reciprocal is taken as an index of directional selectivity; the estimated distribution of this ratio is plotted 
in the middle panel (the index cannot exceed unity by definition). The estimate of half-bandwidth for Macaque cortical 
cells is shown in the lower panel. (See color section, p. C-8.) 

But now consider the effect of the contrast saturation on the 
output of the neuron for both an optimal and a nonoptimal 
stimulus. Since the optimal stimulus is much more effective at 
driving the neuron, the saturation will occur at a higher re- 
sponse rate for the optimal stimulus. This effectively defeats the 
response ambiguity: because of the contrast saturation, only an 
optimal stimulus is capable of driving the neuron to its maximum 
output. Thus, if a neuron is firing at or near its maximum output, 
the stimulus is specified fairly precisely. Moreover, the expansive 
nonlinearity magnifies this by enhancing small differences in 
output. Thus, 95% confidence regions for cortical neurons on, 
for example, the contrasthpatial frequency plane are much nar- 
rower than the spatial frequency tuning curves themselves [ 291. 

This suggests that it is important to rethink the manner in which 
subsequent levels of the visual system may use the information 
conveyed by neurons in primary visual cortex. Over the past 
2l/2 decades, linear system analysis has dominated the thinking 
in vision science. It has been assumed that the act of perception 
would involve a large-scale comparison of the outputs of many 
linear filters, outputs which would individually be very ambigu- 
ous. While such across-filter comparison is certainly necessary, 
it may be that the filters of primary visual cortex behave much 
more like “feature detectors” than we have been assuming. 

I doubt that anyone reading a volume on image processing 
could look at receptive profiles in the cortex (such as shown 
in Fig. 5) and not be reminded of schemes such as a wavelet 
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FIGURE 7 (a) Overview of a model neuron similar to that proposed by Heeger and colleagues (1991, 1996) and 
Geisler and Albrecht (1997). An early contrast saturation precedes linear spatial summation across the Gabor-like 
receptive field; the contrast saturation ensures that only optimal stimuli can maximally stimulate the cell (see text). An 
expansive nonlinearity such as half-squaring enhances small differences in output. Multiplicative noise is then added; 
the variance of cortical cell output is proportional to the mean response (with the constant ofproportionality-1.7), so 
the signal-to-noise ratio grows as the square root of output. (b) Illustration ofthe construction ofa phase-independent 
(i.e., energy detecting) complex cell from simple cell outputs. 

transform or Laplacian pyramid. Not surprisingly, then, most 
models of the neural image in primary visual cortex share the 
property of encoding the image in parallel at multiple spatial 
scales, and several such models have been developed. One model 
that is computationally very efficient and easy to implement 
is the cortex transform [30]. The cortex transform is not, nor 
was it meant to be, a full model of the cortical representation. 
For example, response nonlinearities, the importance of which 
were discussed above, are omitted. It does, however, produce a 
simulated neural image that shares many of the properties of the 
simple cell representation in primary visual cortex. Models such 
as this have enormous value in that they give vision scientists a 
sort of testbed that can be used to investigate other aspects of 
visual function, e.g., possible interactions between the different 
frequency and orientation bands, in subsequent visual processes 
such as the computation of depth from stereopsis. 

4.2 Motion and Cortical Cells 

As mentioned previously, ganglion cell receptive fields are space- 
time separable. The resulting symmetry around a constant-space 
axis [Fig. 4(b)] makes them incapable of coding the direction 
of motion. Many cortical cells, in contrast, are directionally 
selective. 

In the analysis of motion, a representation in space-time is 
often most convenient. Figure 8 (top) shows three frames of 
a moving spot. The continuous space-time representation is 
shown beneath, and it is simply an oriented bar in space-time. 
The next row of the figure shows the space-time representa- 
tion of both a rightward and leftward moving bar. The third 
row of the figure shows a space-time receptive field of a typ- 
ical cortical cell as was also shown in Fig. 5 (for clarity, it is 
shown enlarged relative to the stimulus). The orientation of the 
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FIGURE 8 Three x-y slices are shown of a spot moving from left to right, and directly below is the continuous x-t 
representation: a diagonal bar. Below this are the space-time representations of a leftward and rightward moving bar, 
the receptive field of a directionally selective cortical cell (shown enlarged for clarity), and the response of the cell to the 
leftward and rightward stimuli. 

receptive field in space-time gives it a fairly well defined velocity 
tuning; it effectively performs an autocorrelation along a space- 
time diagonal. Such space-time inseparable receptive fields are 
easily constructed from ganglion cell inputs by summing pairs of 
space-separable receptive fields (such as those shown in Fig. 4), 

which are in quadrature in both the space and time domains 
[ 2 5 , 2 6 ] .  

The bottom row of the figure shows the response of such cells 
to the stimuli shown in the second row obtained by convolution. 
In these panels, each column represents the output of a cell as a 
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function oftime (row), and each cell has a receptive field centered 
at the spatial location represented by its column. Clearly, each cell 
produces vigorous output modulation in response to motion in 
the preferred direction (with a relative time delay proportional to 
its spatial position, obviously), and almost no output in response 
to motion in the opposite direction. 

For most purposes, it would be desirable to sense “motion 
energy.” That is, one desires units that would respond to motion 
in one direction regardless of the sign of contrast or the phase of 
the stimulus. Indeed, such motion energy units may be thought 
of as the spatiotemporal equivalent ofthe complexcells described 
above. Similar to the construction of complex cells, such energy 
detectors are easily formed by, for example, summing the squared 
output of quadrature pairs of simple velocity sensitive units. Such 
a model captures many of the basic attributes of human motion 
perception, as well as a some common motion illusions [ 251. 

Motion sensing is vital. If nothing else, a primitive organism 
asks its visual system to sense moving things, even if it is only 
the change in a shadow which triggers a sea scallop to close. It is 
perhaps not surprising, then, that there seems to be a specialized 
cortical pathway, an extension of the magnocellular pathway an 
earlier levels, for analyzing motion in the visual field. A review 
of the physiology and anatomy of this pathway is clearly beyond 
the scope of this chapter. One aspect of the pathway worth men- 
tioning here, however, is the behavior of neurons in an area of 
the cortex known as MT, which receives input from primary vi- 
sual cortex (it also receives input from other areas, but for our 
purposes, we can consider only its V1 inputs). 

Consider a “plaid” stimulus, as illustrated in Fig. 9(a) com- 
posed of two drifting gratings differing in orientation by 90” - 
one drifting up and to the right and the other up and to the left. 
When viewing such a stimulus, a human observer sees an array 
of alternating dark and light areas - the intersections of the 
plaid - drifting upward. The response of cells such as pictured 
in Fig. 5, however, would be quite different. Such cells would re- 
spond in a straightforward way according to the Fourier energy in 
the pattern, and would thus signal a pair of motion vectors corre- 
sponding to the individual grating components of the stimulus. 
Obviously, then, the human visual system incorporates some 
mechanism that is capable of combining motion estimates from 
filters such as the cells in primary visual cortex to yield estimates 
of motion for more complex structures. These mechanisms, cor- 
responding to cells in area MT, can be parsimoniously modeled 
by combining complex cell outputs in manner similar to that by 
which complex cells can be constructed from simple cell outputs 
[3 1,321. These cells effectively perform a local sum over the set 
of cells tuned to the appropriate orientation and spatiotemporal 
frequency combinations consistent with a real object moving in 
a given direction at a given rate. In effect, then, these cells are a 
neural implementation of the intersection-of-constraints solu- 
tion to the aperture problem of edge (or grating) motion [33]. 
This problem is illustrated in Figs. 9(b) and 9(c). In Fig. 9(b), 
an object is shown moving to the right with some velocity. Var- 
ious edges along the object will stimulate receptive fields with 
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FIGURE 9 (a) Two gratings drifting obliquely (dashed arrows) generate a per- 
cept of a plaid pattern moving upward (solid arrow). (b) Illustration of the aper- 
tureproblem and the ambiguityofmotion sensitive cells inprimaryvisualcortex. 
Each cell is unable to distinguish a contour moving rapidly to the right from a 
contour moving more slowly perpendicular to its orientation. (c) Intersection 
of constraints that allows cells that integrate over units such as in (b) to resolve 
the motion ambiguity. 

the appropriate orientation. Clearly, these individual cells have 
no way of encoding the true motion of the object. All they can 
sense is the motion of the edge, be it almost orthogonal to the 
motion of the object at a relatively low speed, or in the direction 
of the object at a relatively high speed. The set of motion vectors 
generated by the edges, however, must satisfy the intersection of 
motion constraint as illustrated in Fig. 9(c). The endpoints of 
the motion vectors generated by the moving edges lie on a pair 
of lines that intersect at the true motion of the object. Thus, a 
cell summing (or averaging) the outputs of receptive fields of 
the appropriate orientation and spatiotemporal frequency (i.e., 
speed) combinations will effectively be tuned to a particular 
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velocity and largely independent of the structure moving at that 
velocity. 

4.3 Stereopsis and Cortical Cells 
Stereopsis refers to the computation of depth from the image 
displacements that result from the horizontal separation of the 
eyeballs. Computationally, stereopsis is closely related to motion, 
the former involving displacements across viewpoint rather than 
across time. For this reason, the development of models in the 
two domains has much in common. Early models tended to 
focus on local correlations between the images, and excitatory 
or inhibitory interactions in order to filter out false matches 
(spurious correlations). 

As with motion, however, neurophysiological and psycho- 
physical findings [e.g., 341 have served to concentrate efforts 
on models based on receptive field structures similar to those 
found in Fig. 5 .  Of course, this is not incompatible with dis- 
parity domain interactions, but ambiguity is more commonly 
eliminated via interactions between spatial scales. 

The primary visual cortex is the first place along the visual 
system in which information from the two eyes converges on 
single cells; as such, it represents the beginning of the binocular 
visual processing stream. Traditionally, it has been assumed that 
in order to encode horizontal disparities, these binocular cells 
received monocular inputs from cells with different receptive 
field locations in the two eyes, thus being maximally stimulated 
by an object off the plane of fixation. It is now clear, however, 
that binocular simple cells in the primary visual cortex often 
have receptive fields like that shown in Fig. 5,  but with different 
phasesbetween the two eyes [35] .5 The relative phase relation be- 
tween the receptive fields in the two eyes is distributed uniformly 
(not in quadrature pairs) for cells tuned to vertical orientations, 
whereas there is little phase difference for cells tuned to hori- 
zontal orientations, indicating that these phase differences are 
almost certainly involved in stereopsis. Just as in motion, how- 
ever, these simple cells have many undesirable properties, such 
as phase sensitivity and phase ambiguity (a phase disparity kn 
being indistinguishable from a phase disparities of 2 n k ~ r ,  where 
n is an integer). 

To obviate the former difficulty, an obvious solution would 
be to build a binocular version of the complex cell by sum- 
ming across simple cells with the same disparity tuning but var- 
ious monocular phase tunings [e.g., 361. Such construction is 
analogous to the construction of phase-independent, motion- 
sensitive complex cells discussed earlier, except that the dis- 
placement of interest is across eyeballs instead of time. This 
has been shown to occur in cortical cells and, in fact, these 
cells show more precise disparity tuning than 2-D position 
tuning [37]. 

5Manyrecent studies have not measured the absolute receptive field position in 
the two eyes, as it is very difficult to do. Thus, the notion that absolute monocular 
receptive field position plays a role in stereopsis cannot be rejected. 

Yet, because these cells are tuned to a certain phase disparity 
of a given spatial frequency, there remains an ambiguity con- 
cerning the absolute dispaxity of a stimulus. This can be seen in 
Fig. 10, which plots the output (as brightness) of a hypothetical 
collection of cells tuned to various values of phase disparity, ori- 
entation, and spatial frequency. The tuning of the cellis given by 
its position in the volume; in Fig. lO(a) orientation is ignored, 
and only a single spatial frequency/disparity surface is shown. In 
Fig.lO(a), note that the output of cells tuned to a single spatial 
frequency contains multiple peaks along the dimension of dis- 
parity, indicating the phase ambiguity of the output. It has been 
suggested that this ambiguity could be resolved by units that sum 
the outputs of disparity units across spatial frequency and ori- 
entation [e.g., 361. Such units would solve the phase ambiguity 
in a manner very analogous to the intersection-of-constraints 
solution to motion ambiguity described above. In the case of 
disparity, as a broadband stimulus is shifted along the disparity 
axis, it yields a sinusoidal variation in output at all spatial fre- 
quencies, but the frequency of modulation is proportional to the 
spatial frequency to which the cells are tuned. The resolution to 
the ambiguity lies in the fact that there is only one disparity at 
which peak output is obtained at all spatial frequencies, and that 
is the true disparity of the stimulus. This is shown in Fig. 10( a) by 
the white ridge running down the spatial frequency - disparity 
plane. 

The pattern of outputs of cells tuned to a single spatial fre- 
quency but to a variety of orientations as a function of disparity 
is shown on the floor of Fig. 10(b). Summing across cells tuned 
to different orientations will also disambiguate disparity infor- 
mation because a Fourier component at an oblique orientation 
will behave as a vertical component with a horizontal frequency 
proportional to the cosine of the angle of its orientation from 
the vertical. 

Figure 10(b) is best thought of as a volume of cells whose 
sensitivity is given by their position in the volume (for visual- 
ization convenience, the phase information is repeated for the 
higher spatial frequencies, so the phase tuning is giving by the 
position on the disparity axis modulo 2n). The combined spa- 
tial frequency and disparity information results in a surface of 
maximum activity at the true disparity of a broadband stimu- 
lus, so a cell that sums across surfaces in this space will encode 
for physical disparity independent of spatial frequency and 
orientation. 

Very recent work indicates that cells in MT might perform 
just such a task [ 381. Recall from above that cells in MT decouple 
velocity information from the spatial frequency and orientation 
sensitivity of motion selective cells. DeAngelis et al. [38] have 
discovered a patterned arrangement of disparity sensitive cells 
in the same area and have demonstrated their consequence in 
perceptual judgments. Given the conceptually identical nature 
of the ambiguities to be resolved the domains of motion and 
disparity, it would seem likely that the disparity-sensitive cells 
in MT perform role in stereopsis analogous to that which the 
velocity-sensitive cells play in motion perception. 
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FIGURE 10 (a) Output of cortical cells on the spatial-frequency/disparity plane. The output of any one 
cell uniquely specifies only a phase disparity, but summation across spatial frequencies at the appropriate 
phase disparities uniquely recovers absolute disparity. (b) Orientation is added to this representation. 

5 Concluding Remarks carrying too much theory, often implicitly, into an analysis ofthe 
visual system. This is particularly true in the case of modeling, 
because a model must have a quantitative output and thus must 
be specified, whether intentionally or not, at what Marr called 
the level of computational theory [ 71. Tools, like categories, make 
wonderful servants but horrible masters. 

Yet without quantitative models, it would be almost impossi- 
ble to compare psychophysics (human behavior) and physiology 

Models are wonderful tools and have an indispensable role in 
vision science. Neuroscientists must reverse-engineer the brain, 
and for this the methods of engineering are required. But the 
tools themselves can lead to biases (when all you have is a ham- 
mer, everything looks like a nail). There is always a danger of 
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except in trivial ways.6 This may seem like a strong statement, but 
there are subtle flaws in simple comparisons between the results 
of human experiments and single-cell response profiles. Con- 
sider an example taken from 1391. The experiment was designed 
to reveal the underlying mechanisms of disparity processing. A 
“mechanism” is assumed to comprise many neurons with similar 
tuning properties (peak location and bandwidth) on the dimen- 
sion of interest working in parallel to encode that dimension. The 
tuning of the mechanism then reflects the tuning of the under- 
lying neurons. This experiment used the typical psychophysical 
technique of adaptation. In this technique, one first measures 
the sensitivity of human observers along a dimension; in this 
case, we measured the sensitivity to the interocular correlation 
of binocular white noise signals as a function of binocular dis- 
parity. Following this, the subjects adapted to a signal at a given 
disparity. This adaptation fatigues the neurons sensitive to this 
disparity and therefore reduces the sensitivity of any mechanism 
comprising these neurons. Retesting sensitivity, we found that 
it was systematically elevated in the region of the adaptation, 
and a difference between the pre- and postadaptation sensitivity 
yielded a “tuning profile” of the adaptation, for which a peak 
location, bandwidth, etc. can be defined. 

But what is this tuning profile? In these types of experiments, 
it is tempting to assume that it directly reflects the sensitivity 
profile of an underlying mechanism, but this would be a danger- 
ous and generally wrong assumption. The tuning profile actually 
reflects the combined outputs of numerous mechanisms in re- 
sponse to the adaptation. The degree to which the tuning profile 
itself resembles any one of the individual underlying mecha- 
nisms depends on a number of factors involving the nature of 
the mechanisms themselves, their interaction, and how they are 
combined at subsequent levels to determine overall sensitivity. 

If one cannot get a direct glimpse of the underlying mecha- 
nisms using psychophysics, how does one reveal them? This is 
where computational models assert their value. We constructed 
various models incorporating different numbers of mechanisms, 
different mechanism characteristics, and different methods of 
combining the outputs of mechanisms. We found that with a 
small number of disparity-sensitive mechanisms (e.g., three, as 
had been proposed by earlier theories of disparity processing) 
we were unable to simulate our psychophysical data. With a 
larger number of mechanisms, however, we able to reproduce 
our data rather precisely, and the model became much less sen- 
sitive to the manner in which the outputs ofthe mechanisms were 
combined. 

So although we are unable to get a direct glimpse at under- 
lying mechanisms using psychophysics, models can guide us 

6Psychophysicists, such as myself, attempt to quantify the performance ofhu- 
man sensory and perceptual systems. Psychophysics encompasses a host of ex- 
perimental techniques used to determine the ability of sensory systems (e.g., the 
visual system) to detect, disuiminate, and/or identify well-defined and tightly- 
controlled input stimuli. These techniques share a general grounding in signal 
detection theory, which itself grew out of electronic communication theory and 
statistical decision theory. 

in determining what kinds of mechanisms can and cannot be 
used to produce sets of psychophysical data. As more physio- 
logical data become available, more precise models of the neu- 
rons themselves can be constructed, and these can be used, in 
turn, within models of psychophysical behavior. It is thus that 
models sew together psychophysics and physiology, and I would 
argue that without them the link could never be but tenuously 
established. 
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1 Overview 

The concept of scale, or resolution of an image, is very intuitive. 
A person observing a scene perceives the objects in that scene 
at a certain level of resolution that depends on the distance to 
these objects. For instance, walking toward a distant building, 
she or he would first perceive a rough outline of the building. The 
main entrance becomes visible only in relative proximity to the 
building. Finally, the doorbell is visible only in the entrance area. 
As this example illustrates, the notions of resolution and scale 
loosely correspond to the size of the details that can be perceived 
by the observer. It is of course possible to formalize these intuitive 
concepts, and indeed signal processing theory gives them a more 
precise meaning. 

These concepts are particularly useful in image and video pro- 
cessing and in computer vision. A variety of digital image pro- 
cessing algorithms decompose the image being analyzed into 
several components, each of which captures information present 
at a given scale. While the main purpose of this chapter is to 
introduce the reader to the basic concepts of multiresolution 
image decompositions and wavelets, applications will also be 
briefly discussed throughout the chapter. The reader is referred 
to other chapters of this book for more details. 

Throughout, let us assume that the images to be analyzed are 
rectangular with N x M pixels. While there exist several types 

of multiscale image decompositions, we consider three main 
methods [ 1-61. 

1. In a Gaussian pyramid representation of an image 
[Fig. l(a)], the original image appears at the bottom of a 
pyramidal stack of images. This image is then low-pass fil- 
tered and subsampled by a factor o f2  in each coordinate. 
The resulting Nj2 x Mj2 image appears at the second 
level of the pyramid. This procedure can be iterated sev- 
eral times. Here resolution can be measured by the size of 
the image at any given level of the pyramid. The pyramid in 
Fig. 1 (a) has three resolution levels, or scales. In the origi- 
nal application ofthis method to computer vision, thelow- 
pass filter used was often a Gaussian filter'; hence the ter- 
minology Gaussianpyramid. We shall use this terminology 
even when a low-pass filter is not a Gaussian filter. Another 
possible terminology in that case is simply low-pass pyra- 
mid. Note that the total number of pixels in a pyramid rep- 

This is said to be an overcomplete representation of the orig- 
inal image, caused by an increase in the number of pixels. 

2. The Laplacian pyramid representation of the image is 
closely related to the Gaussian pyramid, but here the 

resentation is N M +  NMj4 + NM/16 + ... % 4j3NM. 

'This design was motivated by analogies to the Human Visual System; see 
Section 3.6. 
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FIGURE 1 
(c) wavelet representation. 

Three multiscale image representations applied to Lena: (a) Gaussian pyramid, (b) Laplacian pyramid, 
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* Nn) is computed and displayed for different scales; see Fig. 1 (b). 

wavelet decomposition is only N M .  As we shall soon see, 
the signal processing operations involved here are more so- 
phisticated than those for pyramid image representations. 

The downsampler discards every other sample of its input 
y(n>. Its output is given by 

The pyramid and wavelet decompositions are presented in 
more detail in Sections 2 and 3, respectively. The basic concepts 
underlying these techniques are applicable to other multiscale 
decomposition methods, some of which are listed in Section 4. 

Hierarchical image representations such as those in Fig. 1 are 
useful in many applications. In particular, they lend themselves 
to effective designs of reduced-complexity algorithms for tex- 
ture analysis and segmentation, edge detection, image analysis, 
motion analysis, and image understanding in computer vision. 
Moreover, the Laplacian pyramid and wavelet image representa- 
tions are sparse in the sense that most detail images contain few 
significant pixels (little significant detail). This sparsity prop- 
erty is very useful in image compression, as bits are allocated 
only to the few significant pixels; in image recognition, because 
the search for significant image features is facilitated; and in the 
restoration of images corrupted by noise, as images and noise 
possess rather distinct properties in the wavelet domain. 

z(n) = y(2n). 

Combining these two operations, we obtain 

Z(M) = h(k)x(2n - k). 
k 

Downsampling usually implies a loss of information, as the 
original signal x(n)  cannot be exactly reconstructed from its 
decimated version z(n). The traditional solution for reducing 
this information loss consists in using an “ideal” digital anti- 
aliasing filter h(n) with cutoff frequency w, = ~ / 2  [712. How- 
ever such “ideal” filters have infinite length. In image process- 
ing, short finite impulse response (FIR) filters are preferred for 
obvious computational reasons. Furthermore, approximations 
to the ideal filters herein have an oscillating impulse response, 
which unfortunately results in visually annoying ringing artifacts 
in the vicinity of edges. The FIR filters typically used in image 
processing are symmetric, with a length between three and 20 
taps. Two common examples are the three-tap FIR filter h(n) = 
(1/4,1/2, 1/4), and the length-(21 + 1) truncated Gaussian, 
h(n) = Ce-n2/(2uZ), In1 5 L, where C = 1/C n j L  e-n2/(2uz). 
The coefficients of both filters add up to one: E,, h(n) = 1, 
which implies that the DC response of these filters is unity. 

Another common image processing operation is interpolation, 
which increases the sample rate of a signal. Signal processing 
theory tells us that interpolation may be performed by cascading 
two basic signal processing operations: upsampling and low-pass 

2 Pyramid Representations 

In this section, we shall explain how the Gaussian and Laplacian 
pyramid representations in Fig. 1 can be obtained from a few 
basic signal processing operations. To this end, we first describe 
these operations in Section 2.1 for the case of one-dimensional 
(1-D) signals. The extension to two-dimensional (2-D) signals 
is presented in Sections 2.2 and 2.3 for Gaussian and Laplacian 
pyramids, respectively. 

2.1 Decimation and Interpolation 
filtering (see Fig. 3). The upsampler inserts a zero between every 

ZTne paper [8] derives the filter that actually minimizes this information loss Consider the problem of decimating a 1-D signal by a factor of2, 
namely, reducing the sample rate by a factor of 2. This operation in the mean-square sense, under some assumptions on the input signal. 
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other sample of the signal x(n):  

x(n/2) neven 
{CI n o d d '  y(n> = 

The upsampled signal is then filtered by using a low-pass filter 
h( n) . The interpolated signal is given by z( a )  = h( n) * y( n) or, 
in terms of the original signal x ( n ) ,  

z(n)  = h(K)x(n - 2k). (2) 
k 

The so-called ideal interpolation filters have infinite length. 
Again, in practice, short FIR filters are used. 

2.2 Gaussian Pyramid 
The construction of a Gaussian pyramid involves 2-D low-pass 
filtering and subsampling operations. The 2-D filters used in 
image processing practice are separable, which means that they 
can be implemented as the cascade of 1-D filters operating along 
image rows and columns. This is a convenient choice in many 
respects, and the 2-D decimation scheme is then separable as 
well. Specifically, 2-D decimation is implemented by applying 
1-D decimation to each row of the image [using Eq. (l)] fol- 
lowed by 1-D decimation to each column of the resulting image 
[using Eq. (1) again]. The same result would be obtained by first 
processing columns and then rows. Likewise, 2-D interpolation 
is obtained by first applying Eq. ( 2 )  to each row of the image, 
and then again to each column of the resulting image, or vice 
versa. 

This technique was used at each stage ofthe Gaussian pyramid 
decomposition in Fig. l(a). The low-pass filter used for both 
horizontal and vertical filtering was the three-tap filter h(n) = 
U/4, 112, 1/41. 

Gaussian pyramids have found applications to certain types 
of image storage problems. Suppose for instance that remote 
users access a common image database (say an Internet site) 
but have different requirements with respect to image resolu- 
tion. The representation of image data in the form of an image 
pyramid would allow each user to directly retrieve the image 
data at the desired resolution. While this storage technique en- 
tails a certain amount of redundancy, the desired image data are 
available directly and are in a form that does not require further 
processing. This technique has been used in the Kodak CD-I 
application, where image data are transferred from a CD-ROM 
and displayed on a television set at a user-specified resolution 
level [91. Another application of Gaussian pyramids is in mo- 
tion estimation for video [ l ,  21: in a first step, coarse motion 

estimates are computed based on low-resolution image data, 
and in subsequent steps, these initial estimates are refined based 
on higher-resolution image data. The advantages of this mul- 
tiresolution, coarse-to-fine approach to motion estimation are 
a significant reduction in algorithmic complexity (as the crucial 
steps are performed on reduced-size images) and the generally 
good quality of motion estimates, as the initial estimates are pre- 
sumed to be relatively close to the ideal solution. Another closely 
related application that benefits from a multiscale approach is 
pattern matching [ 11. 

2.3 Laplacian Pyramid 
We define a detail image as the difference between an image 
and its approximation at the next coarser scale. The Gaussian 
pyramid generates images at multiple scales, but these images 
have different sizes. In order to compute the difference between 
a N x A4 image and its approximation at resolution N / 2  x MJ2, 
one should interpolate the smaller image to the Nx Mresolution 
level before performing the subtraction. This operation was used 
to generate the Laplacian pyramid in Fig. 1 (b). The interpolation 
filter used was the three-tap filter h(n) = (1 /2 ,  1,1/2). 

As illustrated in Fig. l(b), the Laplacian representation is 
sparsein the sense that most pixel values are zero or near zero. The 
significant pixels in the detail images correspond to edges and 
textured areas such as Lena's hair. Just like the Gaussian pyramid 
representation, the Laplacian representation is also overcomplete, 
as the number of pixels is greater (by a factor of =%Yo) than in 
the original image representation. 

Laplacian pyramid representations have found numerous ap- 
plications in image processing, and in particular in texture analy- 
sis and segmentation [ 11. Indeed, different textures often present 
very different spectral characteristics which can be analyzed at 
appropriate levels of the Laplacian pyramid. For instance, a 
nearly uniform region such as the surface of a lake contributes 
mostly to the coarse-level image, whereas a textured region like 
grass often contributes significantly to other resolution levels. 
Some of the earlier applications of Laplacian representations in- 
clude image compression [ 10,111, but the emergence of wavelet 
compression techniques has made this approach somewhat less 
attractive. However, a Laplacian-type compression technique 
was adopted in the hierarchical mode of the lossy JPEG image 
compression standard [ 121; also see Chapter 5.5. 

3 Wavelet Representations 

Although the sparsity of the Laplacian representation is use- 
ful in many applications, overcompleteness is a serious dis- 
advantage in applications such as compression. The wavelet 
transform offers both the advantages of a sparse image rep- 
resentation and a complete representation. The development 
of this transform and its theory has had a profound impact 
on a variety of applications. In this section, we first describe 
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bank, with low-pass filter Go(ej") and high-pass filter G1 (e'"). 

(a) Analysis filter bank, with low-pass filter &(ejm) and high-pass filter Hl(ej").  (b) Synthesis filter 

the basic tools needed to construct the wavelet representation 
of an image. We begin with filter banks, which are elemen- 
tary building blocks in the construction of wavelets. We then 
show how filter banks can be cascaded to compute a wavelet 
decomposition. We then introduce wavelet bases, a concept that 
provides additional insight into the choice of filter banks. We 
conclude with a discussion of the relation of wavelet representa- 
tions to the human visual system, and a brief overview of some 
applications. 

3.1 Filter Banks 
Figure 4( a) depicts an analpisfilter bank, with one input x (  n) and 
two outputs %(n) and x1 (n).  The input signal x(n)  is processed 
through two paths. In the upper path, x ( n )  is passed through 
a low-pass filter &(e'") and decimated by a factor of 2. In the 
lower path, x ( n )  is passed through a high-pass filter Hl (ej") and 
also decimated by a factor of 2. For convenience, we make the 
following assumptions. First, the number Nof available samples 
of x( n) is even. Second, the filters perform a circular convolution 
(see Chapter 2.3), which is equivalent to assuming that x(n) is 
a periodic signal. Under these assumptions, the output of each 
path is periodic with period equal to N / 2  samples. Hence the 
analysis filter bank can be thought of as a transform that maps 
theoriginalset { x ( n ) }  of Nsamplesintoanewset {xo(n), xl(n)} 
of N samples. 

Figure 4(b) shows a synthesis filter bank Here there are two 
inputs yo(n) and yl(n),  and one single output y(n).  The input 
signal yo(n) (resp. yl(n)) is upsampled by a factor of 2 and 
filtered by using a low-pass filter Go(ej") (resp. high-pass filter 
GI(&')). The output y(n) is obtained by summing the two 
filtered signals. We assume that the input signals yo (n) and y1 (n) 
are periodic with period N/2. This implies that the output y(n)  
is periodic with period equal to N. Thus the synthesis filter bank 
can also be thought of as a transform that maps the original 
set of N samples {yo(n), y l (n)}  into a new set of N samples 

What happens when the output q ( n ) ,  xl(n) of an analysis 
filter bank is applied to the input of a synthesis filter bank? As 
it turns out, under some specific conditions on the four filters 

{y(n)) .  

&(do), Hl(ej"), Go(&'), and GI(&'), theoutput y(n)  ofthe 
resulting analysis/synthesis system is identical (possibly up to a 
constant delay) to its input x(n) .  This condition is known as 
perfect reconstruction. It holds, for instance, for the following 
trivial set of one-tap filters: ho(n) and gl(n)  are unit impulses, 
and hl (n)  and go(n) are unit delays. In this case, the reader can 
verify that y(n)  = x ( n  - 1). In this simple example, all four 
filters are all pass. It is, however, not obvious to design more 
useful sets of FIR filters that also satisfy the perfect reconstruc- 
tion condition. A general methodology for doing so was discov- 
ered in the mid-1980s. We refer the reader to [4,5] for more 
details. 

Under some additional conditions on the filters, the trans- 
forms associated with both the analysis and the synthesis filter 
banks are orthonormal. Orthonormality implies that the energy 
of the samples is preserved under the transformation. If these 
conditions are met, the filters possess the following remarkable 
properties: the synthesis filters are a time-reversed version of the 
analysis filters, and the high-pass filters are modulated versions 
of the low-pass filters, namely, go(n) = (-l)*hl(n), gl(n) = 
(-l)*+'h(n), and hl(n) = (-1)-"ho(K - n), where K is an 
integer delay. Such filters are often known as quadrature mirror 
filters (QMFs), or conjugate quadrature filters (CQFs), or power- 
complementary filters [ 51, because both low-pass (resp. high- 
pass) filters have the same frequency response, and the frequency 
responses of the low-pass and high-pass filters are related by the 
power-complementary property I &(ej")12 + 1 ~ 1 ( e j " ) l ~  = 2, 
valid at all frequencies. The filter ho(n) is viewed as a prototype 
filter, because it automatically determines the other three filters. 

Finally, if the prototype low-pass filter &(elw) has a zero at 
frequencyo = T, the filters are said to be regularfilters, or wavelet 
filters. The meaning of this terminology will become apparent 
in Section 3.4. Figure 5 shows the frequency responses of the 
four filters generated from a famous four-tap filter designed by 
Daubechies [4, p. 1951: 

A, 1- 

This filter is the first member of a family of FIR wavelet filters that 
has been constructed by Daubechies and possess nice properties 
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FIGURE 5 Magnitude frequency response of the four subband filters for a 
QMF filter bank generated from the prototype Daubechies' four-tap low-pass 
filter. 

(such as shortest support size for a given number of vanishing 
moments; see Section 3.4). 

There also exist biorthogonal wavezetfilters, a design that sets 
aside degrees of freedom for choosing the synthesis low-pass 
filter hl(n)  given the analysis low-pass filter ho(n). Such filters 
are subject to regularity conditions [4]. The transforms are no 
longer orthonormal, but the filters can have linear phase (unlike 
nontrivial QMF filters). 

3.2 Wavelet Decomposition 
An analysis filter bank decomposes 1 -D signals into low-pass and 
high-pass components. One can perform a similar decomposi- 
tion on images by first applying 1-D filtering along rows of the 
image and then along columns, or vice versa [ 131. This operation 
is illustrated in Fig. 6(a). The same filters &(ej") and Hl (ej") 
are used for horizontal and vertical filtering. The output of the 
analysis system is a set of four N/2 x M/2 subimages: the so- 
calledLL (lowlow),LH (lowhigh),HL(highlow),andHH (high 
high) subbands, which correspond to different spatial frequency 
bands in the image. The decomposition of Lena into four such 
subbands is shown in Fig. 6(b). Observe that the LL subband is 
a coarse (low resolution) version of the original image, and that 
the HL, LH, and HH subbands respectively contain details with 
vertical, horizontal, and diagonal orientations. The total number 
of pixels in the four subbands is equal to the original number of 
pixels, NM. 

In order to perform the wavelet decomposition of an image, 
one recursively applies the scheme of Fig. 6(a) to the LL sub- 
band. Each stage of this recursion produces a coarser version of 
the image as well as three new detail images at that particular 
scale. Figure 7 shows the cascaded filter banks that implement 

this wavelet decomposition, and Fig. l(c) shows a three-stage 
wavelet decomposition of Lena. There are seven subbands, each 
corresponding to a different set of scales and orientations (dif- 
ferent spatial frequency bands). 

Both the Laplacian decomposition in Fig. 1 (b) and the wavelet 
decomposition in Fig. 1 (c) provide a coarse version of the image 
as well as details at different scales, but the wavelet representation 
is complete and provides information about image components 
at different spatial orientations. 

3.3 Discrete Wavelet Bases 
So far we have described the mechanics of the wavelet decompo- 
sition in Fig. 7, but we have yet to explain what wavelets are, and 
how they relate to the decomposition in Fig. 7. In order to do so, 
we first introduce discrete wavelet bases. Consider the following 
representation of a signal x ( t )  defined over some (discrete or 
continuous) domain I: 

x(t> = akcpk(t), t E 7.  (3) 
k 

Here cpk( t)  are termed basis finctions, and ak are the coeffi- 
cients of the signal x ( t )  in the basis B = {cpk-t)). A familiar 
example of such signal representations is the Fourier series ex- 
pansion for periodic real-valued signals with period T ,  in which 
case the domain 7 is the interval [0, T ) ,  c p k ( t )  are sines and 
cosines, and k represents frequency. It is known from Fourier 
series theory that a very broad class of signals x (  t) can be repre- 
sented in this fashion. 

For discrete N x M images, we let the variable t in Eq. (3) 
be the pair of integers ( n l ,  n2), and the domain of x be 7 = 
{0, 1, . . . , N- 1) x {0, 1, . . . , M- 1). The basis B is then said to 
be discrete. Note that the wavelet decomposition of an image, as 
described in Section 3.2, can be viewed as a linear transformation 
of the original NM pixel values x ( t )  into a set of NM wavelet 
coefficients ak. Likewise, the synthesis of the image x ( t )  from 
its wavelet coefficients is also a linear transformation, and hence 
x ( t )  is the sum of contributions of individual coefficients. The 
contribution of a particular coefficient ak is obtained by setting 
all inputs to the synthesis filter bank to zero, except for one single 
sample with amplitude ak, at a location determined by k. The 
output is ak times the response of the synthesis filter bank to a 
unit impulse at location k. We now see that the signal x (  t)  takes 
the form (3), where qk ( t )  are the spatial impulse responses above. 

The index k corresponds to a given location of the wavelet 
coefficient within a given subband. The discrete basis functions 
cpk (t)  are translates of each other for all k within a given subband. 
However, the shape of qk( t )  depends on the scale and orientation 
of the subband. Figures 8(a)-8(d) show discrete basis functions 
in the four coarsest subbands. The basis function in the LL sub- 
band [Fig. 8(a)] is characterized by a strong central bump, while 
the basis functions in the other three subbands (detail images) 
have zero mean. Notice that the basis functions in the HL and 
LH subbands are related through a simple 90" rotation. The 
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FIGURE 6 
(b) application to Lena, using Daubechies’ four-tap wavelet filters. 

Decomposition of N x M image into four N / 2  x M/2 subbands: (a) basic scheme, 

orientation of these basis functions makes them suitable to rep- 
resent patterns with the same orientation. For reasons that will 
become apparent in Section 3.4, the basis functions in the low 
subband are called discrete scalingfunctions, while those in the 
other subbands are called discrete wavelets. The size of the sup- 
port set of the basis functions is determined by the length of the 

wavelet filter, and essentially quadruples from one scale to the 
next. 

3*4 Continuous 
Basis functions corresponding to different subbands with the 
same orientation have a similar shape. This is illustrated in 

Bases 
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FIGURB 7 Implementation of wavelet image decomposition using cascaded filter banks: (a) wavelet decompo- 
sition of input image x(n1, nz); (b) reconstruction of x(n1, n2) from its wavelet coefficients; (c) nomenclature of 
subbands for a three-level decomposition. 

Fig. 9, which shows basis functions corresponding to two sub- 
bands with vertical orientation [Figs. 9(a)-9(c)]. The shape of 
the basis functions converges to a limit [Fig. 9(d)] as the scale 
becomes coarser. This phenomenon is due to the regularity of 
the wavelet filters used (Section 3.1). One of the remarkable re- 
sults of Daubechies' wavelet theory [4] is that under regularity 
conditions, the shape of the impulse responses corresponding 
to subbands with the same orientation does converge to a limit 
shape at coarse scales. Essentially the basis functions come in 
four shapes, which are displayed in Figs. 10(a)-10(d). The limit 
shapes corresponding to the vertical, horizontal, and diagonal 
orientations are called wavelets. The limit shape corresponding 
to the coarse scale is called scalingfunction. The three wavelets 
and the scaling function depend on the wavelet filter ho(n) used 
(in Fig. 10, Daubechies' four-tap filter). The four functions in 
Figs. 10(a)-10(d) are separable and are respectively of the form 

+ W + ( Y h  +(XI N Y ) ,  * ( X I + ( Y ) ,  and *(x>*(y>. Here ( x ,  y> are 
horizontal and vertical coordinates, and +(x)  and + ( x )  are re- 
spectively the 1-D scaling function and the I-D wavelet gen- 
erated by the filter ho(n). These two functions are shown in 
Fig. 1 1, respectively. While the aspect of these functions is some- 
what rough, Daubechies' theory shows that the smoothness of 
the wavelet increases with the number K of zeros of .&(ej") at 
o = T.  In this case, the first K moments of the wavelet +(x) are 

x k + ( x ) d x  = 0, 0 5 k < K .  s 
The wavelet is then said to possess K vanishing moments. 

3.5 More on Wavelet Image Representations 
The connection between wavelet decompositions and bases 
for image representation shows that images are sparse linear 
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FIGURE 8 Discrete basis functions for image representation: (a) discrete scaling function from LLLL subband; (b)-(d) 
discrete wavelets from LHLL, LLLH, and LHLH subbands. These basis functions are generated from Daubechies' four-tap 
filter. (See color section, p. C-9.) 

combinations of elementary images (discrete wavelets and scal- 
ing functions) and provide valuable insights for selecting the 
wavelet filter. Some wavelets are better able to compactly rep- 
resent certain types of images than others. For instance, images 
with sharp edges would benefit from the use of short wavelet 

filters, because of the spatial localization of such edges. Con- 
versely, images with mostly smooth areas would benefit from 
the use of longer wavelet filters with several vanishing moments, 
as such filters generate smooth wavelets. See [ 141 for a perfor- 
mance comparison of wavelet filters in image compression. 

4 

(4 (4 
FIGURE 9 Discrete wavelets with vertical orientation at three consecutive scales: (a) in HL band; (b) in LHLL band 
(c) in LLHLLL band. (d) Continuous wavelet is obtained as a limit of (normalized) discrete wavelets as the scale becomes 
coarser. (See color section, p. (2-9.) 
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FIGURE 10 Basis functions for image representation: (a) scaling function; (b)-(d) wavelets with horizontal, vertical, 
and diagonal orientations. These four functions are tensor products of the 1-D scaling function and wavelet in Fig. 11.  
The horizontal wavelet has been rotated by 180" so that its negative part is visible on the display. (See color section, 
p. C-10.) 

3.6 Relation to Human Visual System 

Experimental studies of the human visual system (HVS) have 
shown that the eye's sensitivity to a visual stimulus strongly de- 
pends upon the spatial frequency contents of this stimulus. Sim- 
ilar observations have been made about other mammals. Sim- 
plified linear models have been developed in the psychophysics 
community to explain these experimental findings. For instance, 
the modulation transfer function describes the sensitivity of the 
HVS to spatial frequency; see Chapter 1.2. Additionally, several 

experimental studies have shown that images sensed by the eye 
are decomposed into bandpass channels as they move toward and 
through the visual cortex of the brain [ 151. The bandpass com- 
ponents correspond to different scales and spatial orientations. 
Figure 5 in [ 161 shows the spatial impulse response and spatial 
frequency response corresponding to a channel at a particular 
scale and orientation. While the Laplacian representation pro- 
vides a decomposition based on scale (rather than orientation), 
the wavelet transform has a limited ability to distinguish between 
patterns at different orientations, as each scale comprises three 

I 

0 

-1.5 
(a) 

FIGURE 11 (a) 1-D scaling function and (b) 1-D wavelet generated from Daubechies' D4 filter. 
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channels that are respectively associated with the horizontal, 
vertical, and diagonal orientations. This may not be not sufficient 
to capture the complexity of early stages of visual information 
processing, but the approximation is useful. Note there exist 
linear multiscale representations that more closely approximate 
the response of the HVS. One of them is the Gabor transform, for 
which the basis functions are Gaussian functions modulated by 
sine waves [ 171. Another one is the cortical transform developed 
by Watson [ 181. However, as discussed by Mallat [ 191, the goal 
of multiscale image processing and computer vision is not to 
design a transform that mimics the H V S .  Rather, the analogy to 
the H V S  motivates the use of multiscale image decompositions 
as a front end to complex image processing algorithms, as nature 
already contains successful examples of such a design. 

constitute relatively narrow-band bandpass components of the 
image. An even sparser representation of such images can be 
obtained by recursively splitting the appropriate subbands (in- 
stead of systematically splitting the low-frequency band as in a 
wavelet decomposition). This scheme is simply termed subband 
decomposition. This approach was already developed in signal 
processing during the 1970s [ 51. In the early 1990s, Coifman and 
Wickerhauser developed an ingenious algorithm for finding the 
subband decomposition that gives the sparsest representation 
of the input signal (or image) in a certain sense [26]. The idea 
has been extended to find the best subband decomposition for 
compression of a given image [ 271. 

5 Conclusion 
3.7 Applications 
We have already mentioned several applications in which a 
wavelet decomposition is useful. This is particularly true of ap- 
plications in which the completeness of the wavelet represen- 
tation is desirable. One such application is image and video 
compression; see Chapters 5.4 and 6.2. Another one is image 
denoising, as several powerful methods rely on the formulation 
of statistical models in an orthonormal transform domain [20]; 
also see Chapter 3.4. There exist other applications in which 
wavelets present a plausible (but not necessarily superior) alter- 
native to other multiscale decomposition techniques. Examples 
include texture analysis and segmentation [3,21,22] which is 
also discussed in Chapter 4.7, recognition of handwritten char- 
acters [ 231, inverse image halftoning [24], and biomedical image 
reconstruction [25]. 

4 Other Multiscale Decompositions 

For completeness, we also mention two useful extensions of the 
methods covered in this chapter. 

4.1 Undecimated Wavelet Transform 
The wavelet transform is not invariant to shifts of the input 
image, in the sense that an image and its translate will in general 
produce different wavelet coefficients. This is a disadvantage in 
applications such as edge detection, pattern matching, and image 
recognition in general. The lack of translation invariance can be 
avoided if the outputs of the filter banks are not decimated. The 
undecimated wavelet transform then produces a set of bandpass 
images that have the same size as the original dataset (N x M).  

4.2 Wavelet Packets 
Although the wavelet transform often provides a sparse rep- 
resentation of images, the spatial frequency characteristics of 
some images may not be best suited for a wavelet representa- 
tion. Such is the case of fingerprint images, as ridge patterns 

We have introduced basic concepts of multiscale image decom- 
positions and wavelets. We have focused on three main tech- 
niques: Gaussian pyramids, Laplacian pyramids, and wavelets. 
The Gaussian pyramid provides a representation of the same im- 
age at multiple scales, using simple low-pass filtering and dec- 
imation techniques. The Laplacian pyramid provides a coarse 
representation of the image as well as a set of detail images 
(bandpass components) at different scales. Both the Gaussian 
and the Laplacian representation are overcomplete, in the sense 
that the total number of pixels is approximately 33% higher than 
in the original image. 

Wavelet decompositions are a more recent addition to the arse- 
nal of multiscale signal processing techniques. Unlike the Gaus- 
sian and Laplacian pyramids, they provide a complete image rep- 
resentation and perform a decomposition according to both scale 
and orientation. They are implemented using cascaded filter 
banks in which the low-pass and high-pass filters satisfy certain 
specific constraints. While classical signal processing concepts 
provide an operational understanding of such systems, there ex- 
ist remarkable connections with work in applied mathematics 
(by Daubechies, Mallat, Meyer and others) and in psychophysics, 
which provide a deeper understanding of wavelet decomposi- 
tions and their role in vision. From a mathematical standpoint, 
wavelet decompositions are equivalent to signal expansions in 
a wavelet basis. The regularity and vanishing-moment proper- 
ties of the low-pass filter affect the shape of the basis functions 
and hence their ability to efficiently represent typical images. 
From a psychophysical perspective, early stages of human visual 
information processing apparently involve a decomposition of 
retinal images into a set of bandpass components corresponding 
to different scales and orientations. This suggests that multi- 
scale/multiorientation decompositions are indeed natural and 
efficient for visual information processing. 
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Random fluctuations in intensity, color, texture, object bound- 
ary or shape can be seen in most real-world images, as shown in 
Fig. 1. The causes for these fluctuations are diverse and complex, 
and they are often due to factors such as non-uniform lighting, 
random fluctuations in object surface orientation and texture, 
complex scene geometry, and noise.' Consequently, the process- 
ing of such images becomes a problem of statistical inference [ 1 ], 
which requires the definition ofa statistical model corresponding 
to the image pixels. 

Although simple image models can be obtained from image 
statistics such as the mean, variance, histogram, and correla- 
tion function (e+, see [2,3]), a more general approach is to 
use randomfields. Indeed, as a two-dimensional extension of the 
one-dimensional random process, a random field model pro- 
vides a complete statistical characterization for a given class of 
images - all statistical properties of the images can, in princi- 
ple, be derived from this random field model. Combined with 
various frameworks for statistical inference, such as maximum- 
likelihood (ML) and Bayesian estimation, random field models 
have in recent years led to significant advances in many statisti- 
cal image processing applications. These include image restora- 
tion, enhancement, classification, segmentation, compression, 
and synthesis. 

Early studies of random fields can be traced to the 1970s, 
with many of the results summarized in [4]. Among the wide 

'Chapter 4.5 of this book by Boncelet is devoted to noise and noise models. 

variety of proposed models, the most used is perhaps the AR 
(autoregressive) model and its various extensions (e.g., [3]). A 
landmark paper by Geman and Geman [5] in 1984 addressed 
Markov random field (MRF) models and has attracted great 
attention and invigorated research in image modeling; indeed 
the MRF, coupled with the Bayesian framework, has been the 
focus of many studies [6,7]. Section 2 will introduce notation 
and provide an overview of random field models, emphasizing 
the autoregressive and Markov fields. 

With the advent of multiresolution processing techniques, 
such as the pyramid 181 and wavelets [9], much of the current 
research in random field models focuses on multiscale mod- 
els [10-22]. This interest has been motivated by the significant 
advantages they may have in computational power and repre- 
sentationalpower over the single-resolution/single-scale models. 
Specifically, multiresolution/muItiscale processing can provide 
drastic computation reduction and represent a highly compli- 
cated model by a set of simpler models. 

Multiresolution/multiscale models that aim at computation 
reduction include various multiresolution/multiscale MRFs 
[14-161 and multiscale tree models [ll-131. Through their 
connection to multigrid methods [26], these models often 
can improve convergence in iterative procedures. The mul- 
tiscale tree model is described in more detail in Section 3. 
Multiresolution/multiscale models that aim at representing 
highly complicated random fields (e.g., those with high- 
order and nonlinear interactions) include various hierarchi- 
cal/multiresolution/multiscale texture models [ 18-23]. Section 
4 describes a wavelet-based nonlinear texture model. 

Copyright 0 2000 by Academic Pres. 
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FIGURE 1 
nature. 

Typical image (left), two rows of which are plotted (right); the fine-scale details appear nearly “random” in 

2 Random Fields: Overview 

A random field x is a collection of random variables arranged 
on a lattice L:  

In principle the lattice can be any (possibly irregular) collection 
of discrete points; however it is most convenient and intuitive to 
visualize the lattice as a rectangular, regular array of sites: 

in which case a random field is just a set of random pixels 

x = {x i , j ,  (i, j )  E L } .  ( 3 )  

As with random variables or random vectors, any random field 
can, in principle, be completely characterized by its associated 
probability measure px(x ) .  The detailed form of p( . )  will depend 
on whether the elements xi,j are discrete, in which case p, (x)  
denotes a probability distribution, or continuous, in which case 
p x ( x )  denotes a probability density function. 

However, suppose we take an image of modest size, say 
N= M = 256; this implies that p ( . )  must explicitly characterize 
the joint statistics of 65,536 elements. Often the function p ( . )  is 
a cumbersome and computationally inefficient means of defin- 
ing the statistics of the random field. Indeed, a great part of the 
research into random fields involves the discovery or definition 
of implicit statistical forms that lead to effective or faithful repre- 
sentations of the true statistics, while admitting computationally 
efficient algorithms. 

Broadly speaking, there are five typical problems associated 
with random fields. 

1. Representation: how is the random field represented and 
parameterized? In general the probability distribution p(  .) 
is not computable for large fields, except in pathological 
cases, for example, in which all of the elements are inde- 
pendent: 

2.  Synthesis: generate “typical” realizations, known as sam- 
ple paths, of the random field (e.g., used in stochastic im- 
age compression, random texture synthesis, lattice-physics 
simulations). That is, generate fields y1, y2, . . . , statisti- 
cally sampled from p ( . ) ,  such that the probability of gen- 
erating y is P(y).’ 

3. Parameter estimation: given a parameterized statistical 
model (e.g., of the form p ( x  10)) and sample image y, 
estimate the parameters 0. Typically we are interested in 
the ML estimates 

This can be used to estimate any continuous parameter on 
which the field statistics depend; for example, correlation 
length, temperature, or ambient color. 

2Assuming that y is discrete. If y is continuous, sample paths still exist and are 
intuitively the same as in the discrete case; however, a more careful formulation 
is required. 
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FIGURE 2 
tions of the field are conditionally independent. 

The Markov property: given a boundary, the two separated por- 

4. 

5. 

2.1 

Least-squares estimation: given a statistical model p ( x )  
and observations of the random field 

where v is a noise signal with known statistics, find the 
least-squares estimate 

Least-squares estimates are of interest in reconstruction 
or inference problems; for example, denoising images or 
interpolation. 
More general versions of the above; for example, Bayesian 
estimation of x subject to a criterion other than least 
squares, or the deduction of expectations E [ g ( x ) ]  by 
Monte Carlo sampling of synthesized fields. 

Markov Random Fields 
The fundamental notion associated with Markovianity is one 
of conditional independence: a one-dimensional process xn is 
Markovian (Fig. 2) if the knowledge of the process at some point 
x,, decouples the “past” x p  and the “future” x f :  

The decoupling extends perfectly into two dimensions, except 
that the natural concepts of “past” and “future” are lost, since 
there is no natural ordering of the elements in a grid; instead, a 
random field xis Markov (Fig. 2) if the knowledge of the process 
on a boundary set b decouples the inside and outside of the set: 

This boundary concept, although elegantly intuitive, is lacking 
in details (e.g., how “thick” does the boundary have to be?). It 
is often simpler, and more explicit, to talk about separating a 
single element xi, j from the entire field x conditioned on a local 
neighborhood Ni, j [ 5,6]: 

303 

FIGURE 3 
hoods of the shaded element. 

Regions of support for causal (left) and acausal (right) neighbor- 

The shape and extent of Ni, j is one aspect that characterizes the 
nature of the random field. 

Causal/acausal: A neighborhood structure is causal (Fig. 3) 
if all elements of the neighborhood live in one half of the 
plane; e.g., 

( k ,  I )  E Ni,, I < j ,  or I = j ,  k < i .  (11) 

That is, if the field can be reordered into a one-dimensional 
random vector which is Markov, satisfying Eq. (8). Other- 
wise, more typically, the neighborhood is acausal (Fig. 3). 
Order: The order of a neighborhood reflects its extent. A 
first-order neighborhood is shown in Fig. 4, which also il- 
lustrates the pattern followed by higher-order neighbor- 
hoods. 

The above discussion is entirely formulated in terms of the 
joint probability density p ( x ) ,  which is often impractical for 
large random fields; the following sections summarize the two, 
broad alternatives that have been developed. 

1. Gauss-Markov random fields: x is Gaussian, in which case 
the field can be characterized explicitly in terms of expec- 
tations rather than probability densities. 

2. Gibbs random fields: an energy E ( x )  is associated with 
each possible field x;  a probability density is then cons- 
tructed implicitly from E ( x )  in such a way that p ( x )  sat- 
isfies Eqs. (9) and (10). 

I I I  I 

FIGURE 4 
Right: Neighborhood size as a function of model order. 

Left The region of support of a first-order neighborhood. 
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2.2 Gauss-Markov Random Fields 1 
When the random field x is Gaussian [ 61, then conditional in- 
dependence is equivalent to conditional uncorrelatedness, so in- 
stead of Eq. (2.1) we write 

I 

I '  

where %, j is the estimated value of xi,, . However if x is Gaussian 
the expectation is known to be linear, so the right side ofEq. (12) 
can be rewritten as 

FIGURE 5 Causal model produces a reasonable sample (left), but shows ob- 
vious limitations when computing estimates (right) from sparse observations 
(circled). 

N x M field therefore takes the form 
(13) 

Alternatively, we can describe the field elements directly, instead E[xi,jxi+Ai,j+Ajl = E[%,OxAi mod N,Aj  mod M I .  (16) 
of their estimates: 

The significance of this stationarity is that any such covariance 

extremely fast algorithms. Specifically, let A be the correlation 
structure of the field, 

x . .  - 2 .  - . + w . .  - - ai, j,k,lxk,l + wi, j ,  (14) (matrix) is diagonalized by the two-dimensional FFT, leading to 
(kJ) E N , , ,  

where wi, j is the estimation error process. If the random field is 
stationary then the coefficients simplify as h i , j  = E[%,oxi,j] 1 5  i 5 N, 1 5  j 5 M. (17) 

ai, j ,k,l = ai-k, j - l -  (15) Then sample paths may be computed as 

Causal GMRFs s = IFFT2{sqrt(FFT2(A)) FFTz(q)} (18) 
If a random field x is causal, each neighborhood Ni, j must limit 
its support to one-half of the plane, as sketched in Fig. 3. These 
are known as nonsymmetric half-plane (NSHP) models, and 
they lead to very simple, c3( N M )  autoregressive equations for 
sample paths and estimation. 

Specifically, there must exist an ordering of the field ele- 
ments into a vector x' such that each element depends only on 
the values of elements lying earlier in the ordering, in which 
case Eq. (14) is the autoregressive equation to generate sam- 
ple paths and the Kalman filter can be used for estimation. 
These models have limited applicability, since most random 
fields are not well represented causally. The limitations of the 
causal model are most obvious when computing estimates from 
sparse observations, as shown in Fig. 5,  since the arrangement 
of the estimates is obviously asymmetric with respect to the 
observations. 

Toroidally Stationary GMRFs 
A second special case is that of toroidally stationary fields; that is, 
rectangular fields in which the left and right edges are considered 
adjacent, as are the top and b ~ t t o m . ~  In other words, the field 
is periodic. The correlation structure of a toroidally stationary 

3That is, topologically, the wrapping of a rectangular sheet onto a torus or 
doughnut. 

where sqrt( ) and. are element-by-element operations, and q is 
an array of unit variance, independent Gaussian samples. Simi- 
larly, given a set of observations with Gaussian error, 

y = x + v, cov(v) = u2 I ,  (19) 

the least-squares estimates may be computed as 

2 = IFFT2{FFTz(A) . FFT~(Y)/(FFT~(A) + a2)} (20) 

where again and / are performed element-by-element. 
In general the circumstances of Eqs. (16) and (19) are restric- 

tive: the field must be toroidally stationary, regularly sampled, 
and densely measured with constant error variance; however, 
the FFT approach is fast, O(NMlog(NM)), when these cir- 
cumstances are satisfied (for example, texture synthesis, image 
denoising). The FFT was used to generate the "wood" texture of 
Fig. 6. 

Acausal GMRFs 
In general, we can rewrite Eq. (14), stacking the random field 
into a vector x' (by rows or by columns): 

Gx'= G. (21) 
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FIGURE 6 
method, based on the coefficients4 a,,,. 

Fourth-order stationary MRF, synthesized by using the FFT 

If the field is small (a few thousand elements) and A is invertible 
we can, in principle, solve for the covariance P of the entire field: 

(22)  Gx' = $ GPGT = W- P = G-' WG-T.  

Sample paths can be computed using the Cholesky decom- 
position5 of P ,  and least-squares estimates computed by invert- 
ing P ;  however, neither of these operations is practical for large 
fields. 

Instead, methods of domain decomposition (e.g., nested- 
dissection or Marching methods) [ 11,26281 are often used. 
The goal is to somehow break a large field into smaller pieces. 
Suppose we have a first-order GMRF; although the individual 
field elements cannot be ordered causally, if we divide the field 
into columns 

then the sequence of columns is a one-dimensional first-order 
Markov process; that is, 

Since the field is Gaussian, we can express x'i by means of a linear 
model, 

x'i+l = Aix'i + Biwi. (25)  

The estimates ?i still have to be computed acausally; however, 
this can be accomplished efficiently, O(min(NM)3), using the 
RTS smoother [ 401. A tremendous number of variations exist: 
different decomposition schemes, approximate or partial matrix 
inversion, reduced update, etc. 

2.3 Gibbs Random Fields 
Gibbs random fields (GRFs) are random fields characterized 
by neighboring-site interactions. These were originally used in 

4The coefficients in the figure are rounded; the exact values may be found 

5A common matrix operation, available in standard mathematics packages 
in [13]. 

such as MATLAB. 

statistical physics [ 24,301 to study the thermodynamic proper- 
ties of interacting particle systems, such as lattice gases, and their 
use in image processing was popularized by papers of Geman and 
Geman [ 5 ]  and Besag [31 ,32] .  The neighboring interactions in 
GRFs lead to effective and intuitive image models - for example, 
to assert the piecewise-continuity of image intensity. Hence, the 
GRF is often used as a prior model in a Bayesian formulation to 
enforce image constraints. 

Mathematically, a GRF x is described or defined by a Gibbs 
distribution: 

1 
Z p ( x >  = -e-PE(%). (26)  

Here E(%), the energyfunction, is a sum of neighboring-inter- 
action terms, called clique potentials, i.e., 

where c is a clique, i.e., either a single site or a set of sites that 
are all neighbors of each other; & ( a )  is the clique potential, a 
function of the random variables associated with c; and C is the 
set of all possible cliques. Finally, p > 0 is a constant, also known 
as the temperature parameter, and 

is a normalization constant, known as the partition function. 

which has the following energy function: 
As an example of the GRF, consider a binary king model [ 3 0 ] ,  

where a,  b l ,  bz are model parameters, hi,j are constants some- 
times called the external field and q , j  = +1 or - 1. In this 
example, a clique is either a single site { ( i ,  j ) } ,  or two neighbor- 
ing sites { ( i ,  j ) ,  ( i ,  j - 1 ) } ,  { ( i ,  j ) ,  (i - 1 ,  j ) } ,  with respective 
clique potentials ahi, j xi, j , bl xi, j xi, j P 1 ,  and b2 xi, j q- 1 ,  j . Typical 
realizations of this GRF are shown in Fig. 7 .  

Given this brief introduction to GRFs, it is natural to ask 
how they relate to the MRFs and how to address the basic 
random field problems (Section 2 ) .  First, according to the 
Hammersley-Clifford theorem [ 3 1 ] ,  the GRF and MRF are 
equivalent. As a result, the king model described above is an 
MRF. Similarly, the Gauss-Markov models described in Sec- 
tion 2.2 have associated the energy functions and clique poten- 
tials; for example, the energy function for a first-order acausal 
GMRF model is [38]  

r 7 2  
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FIGURE 7 
-0.4; Right, a = 0, bl = b2 = -1.0. [See Eq. (29)l. 

Typical sample paths of the king model. left, a = O, bl = b2 = 

from which one can identify the clique potentials, which are of 
the form x; j /2a2 and -ak,lxi,jxk,r/a2. 

Second, of the basic random field problems, the most impor- 
tant in the GRF context are parameter estimation and sample 
generation. In terms of parameter estimation, the typical ML 
approach 

A 

O M L  = argmax p ( x  IO)  e 

is impractical for GRFs, because evaluating p ( x  I 0) requires the 
calculation of 2 in Eq. (28), which sums over all possible realiza- 
tions of the GRF. As an alternative, Besag proposed to maximize 
the pseudo-likelihood [ 3 11, 

q ( x  I 0) = n p(xi ,  j I ~ x k , l ,  ( k ,  1 )  E N ,  j } ,  e>, (30) 
i, j 

which is made up by a set of conditional probabilities, with re- 
spect to 8. These conditional probabilities, also called the local 
characteristics, are easily calculated since the partition function 
no longer appears and each term in Eq. (30) can be evaluated 
locally: 

Step 1: Scan the image from left to right, top to bottom. At each 
site ( i ,  j ) ,  sample xi, j from p(xi, j I {xk,l ,  ( k ,  1 )  E Ni, j ) . ) a 6  

Step 2: Repeat Step 1 many times; after many iterations x is a 
statistical sample of the random field [ 51. 

Optimization Problem 
The optimization problem is closely related to the synthesis 
problem. Rather than sampling the individual local elements 
xi, j at random, we want to bias our selection in the direction of 
maximizing p ( x ) .  Define T = 1/p to be the temperature; then 
the Gibbs sampler for optimization is as follows. 

Step 0 Start with an i.i.d. sample image and an initial tem- 

Step 1: Perform one iteration of the Gibbs Sampler for Syn- 

Step 2: Lower the temperature T and repeat Step 1 till con- 

perature T = To. 

thesis (see Synthesis Problem). 

vergence. 

Because of its close relation to the original simulated anneal- 
ing algorithm, this algorithm is called the simulated annealing 
algorithm for GRFs/MRFs. Theoretically, it produces a global 
optimum when k - 00 and T + 0 [5], where k is the num- 
ber of iterations. In practice, however, to achieve good results, 
the temperature has to be lowered very slowly, e.g., according 
to T ( k )  = C/  log( 1 + k) .  This is usually computation intensive. 
Hence, suboptimal techniques are often used. Among them are 
Besag's iterative conditional mode (ICM) [ 321 and the mean field 
theory [ 35,361. 

Finally, we provide an example of how the GRF can be used 
in a Bayesian formulation. Specifically, consider the problem of 
segmenting an image into two types of image regions, labeled - 1 
and + 1. Suppose the true labels are described by binary field x, 
and we are given corrupted measurements r = mx + v, where 
v is an additive zero-mean white Gaussian noise. The problem 
of segmentation, then, is to label each pixel of r to either -1 
or +1; that is, we seek to estimate x. In a Bayesian formulation, 
we find x as 

Finally, in the problem of producing samples of a GRF, we 
need to differentiate two cases: (1) to produce a sample according 
to the Gibbs distribution p ( x ) ,  a synthesis problem; and (2) 
to produce a sample that will maximize p ( x ) ,  an optimization 
problem. 

Synthesis Problem 
A number of techniques have been developed for the syn- 
thesis problem, such as the Metropolis algorithm [37] or the 
Gibbs sampler [5]. The Gibbs sampler is summarized here for 
the discrete binary-valued case (for the continuous case, see 
[381). 

Step 0: Start with a sample from an i.i.d binary random field 
with p ( x i , j )  = 1/2. 

If an Ising model is adopted for p ( x )  to enforce the region con- 
tinuity constraint (i.e., neighboring pixels are likely to be in the 
same region), it can be shown easily that p ( x  I r) is also an king 
model (with an external field) and the segmentation can be ob- 
tained by simulated annealing (Fig. 8) or ICM or the MFT. For 
more details and more realistic examples, see [ 361. 

6This can be implemented as follows: generate a random number, r,  from 
a uniform pdf over [0, 11. If r i p(xj,j = -ll[xk,i, (k, 2) E Ni,j]), assign 
xj,j = -1; otherwise, xi,]  = +l .  
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Input Image 

Initial Segmentation 

True Region Map 

Final Segmentation 

FIGURE 8 Segmentation by simulated annealing. 

3 Multiscale Random Fields 

This section will discuss the multiscale statistical modeling of 
random fields based on a particular multiscale tree structure 
that has been the focus of research for several years [IO-131. 
The motivations driving this research are broad, including l/f 
processes, stochastic realization theory, and a variety of applica- 
tion areas (computer vision, synthetic aperture radar, ground- 
water hydrology, ocean altimetry, and hydrography). Although 
the method is applicable more broadly, we will focus on the 
GMRF case. 

A statistical characterization of a random field in multiscale 
form (detailed below) possesses the following attributes. 

an efficient least-squares estimation algorithm [i.e., com- 
puting 2 in Eq. (7)] 

. 

. 

3.1 

an efficient likelihood calculation algorithm (i.e., comput- 
ing pcV I e) in Eq. ( 5 ) )  
the ability to accommodate nonlocal or distributed mea- 
surements 
computational complexity is unaffected by nonstationari- 
ties in the random field or in the measurements (compare 
with the FFT, Section 2.2). 

GMRF Models on Trees 
Multiscale models for GMRFs can be developed as a straight 
forward, recursive extension of the discussion in Section 2.2. 
Specifically, consider the generalization of the boundary in Fig. 2 
to the boundary %b shown in Fig. 9. From Eq. (9) we see that 
each of the quadrant fields xi satisfies 

That is, the effect of the rest of the field on x i  is captured by %be 

If we stack each field into a vector, the Gaussianity of the field 
allows us to write 

In other words, 

where 3i is uncorrelated with L j j  for i # j. There is, however, 
no reason to content ourselves with limiting the decomposition 
of the field into four quadrants. We can proceed further, creating 
a boundary %bi within quadrant i ;  from Eq. (35) it follows that 
we can write the boundary as 

We can continue the successive subdivision of the field into 
smaller pieces; Fig. 9 shows such a set of boundaries organized 
onto a tree structure. Now everyvector on our tree is a boundary; 

Scale 2 

A& 

FIGURE 9 
to decorrelate the four quadrants represented by that node. 

A quad tree (left) can be used to model an MRF, if the state at each node (right) is chosen 
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that is, our random field is described in terms of a set of hierar- 
chical boundaries, terminating with an individual pixel at each 
tree element at the finest level of the tree. 

Let Zs,i be the ith boundary at scale s on the tree; then 

(37) 2 . - A  .Z  
s , i  - s , i  s - l , p ( i )  + Bs,iGs,i, 

where p(i) represents the “parent” of the ith boundary, and G 
is a white-noise process. 

Having developed a multiscale model, Eq. (37), for a random 
field, we can also introduce measurements 

where ; is a white-noise process. Local point measurements are 
normally associated with the individual pixels at the finest level 
of the tree; however, with the appropriate definition of Zs,i  at 
coarser levels of the tree, nonlocal measurements can also be 
accommodated. 

It is Eqs. (37) and (38) that form the basis for the multiscale 
environment; any random field (whether Markov or not) that 
can be written in this form leads to efficient algorithms for sam- 
ple paths, estimation, and likelihood calculations, as mentioned 
earlier. 

It should be noted that Eq. (37) is essentially a distributed 
marching algorithm, here marching over boundaries on a tree 
rather than across space (Section 2.2). Indeed, the marching 
principle applies to determining AS,i ,Bs, i :  if we write each 
boundary as zs,i = L, , iZ  where 2 is the original random field 
with covariance P ,  then 

(39) 

(40) 

1 
As,i = { Ls, iPLs-I ,p( i )}{  Ls-l ,p(i)PLs-l ,p(i)}-  

&,i = {Ls, iPLs, iI  - As , i ILs - l , p ( i )pLs - l , p ( i ) } - lA~i .  

With the determination of the parameters AS,i, BS, i ,  above, 
the definition of the multiscale random-field is complete. There 
are three issues to address before such a model can be put into 
practice. 

How does the structure of Eqs. (37) and (38) lead to an 
efficient estimator? The Kalman filter and Rauch-Tung- 
Striebel smoother [40] can be applied to Eq. (37) to compute 
estimates; however since every state xs,i is a boundary - 
only a small subset of the random field - the matrices 
operations at each tree node are modest. Algorithms have 
been published and are available on the Internet [ 11,121. 
How are the boundaries Ls,i determined? For Gauss- 
Markov random fields 2, Section 2.2 discusses the criteria 
for a boundary to conditionally decorrelate subsets of the 
field. For non-Markov fields the “optimal” choice of Ls,i is 
much more complicated; further discussion may be found 
in [ 131. 
Can further computational efficiency be gained by use of 
approximations? For large random fields (lo6 pixels), an 
“exact” solution may require orders of magnitude more 

FIGURE 10 
model with texture artifacts; right, overlapped multiscale model. (From [22] ). 

Multiscale estimation of random-field textures: left, reducedorder 

memory and computational effort than an approximate 
method yielding essentially the same estimates. This is typi- 
cally accomplished by selecting Ls,  i to very nearly, although 
not perfectly, decorrelate subsets of the field. Such approx- 
imations, and methods of dealing with possible resulting 
artifacts, are discussed at length in [ 131. 

3.2 Examples 
We will briefly survey three examples; many more are available 
in the literature. Our first example [ 11,131 continues with the 
MRF texture of Fig. 6 .  Figure 10 shows two estimates of this tex- 
ture based on noisy measurements: using a reduced-order mul- 
tiscale model, which illustrates the artifacts that may be present 
with poorly approximated models, and using an overlapped 
multiscale model, having the same computational complexity, 
but free of artifacts. 

Figure 11 shows a related example, which illustrates the abil- 
ity to estimate nonstationary random fields with the multiscale 
approach, not possible using the FFT. 

Finally, Fig. 12 highlights two random fields of significant 
interest in oceanography [ 121 and remote sensing: the estima- 
tion of ocean height (altimetry) and temperature (hydrography) 
fields from sparse, nonstationary, noisy measurements. 

4 Wavelet Multiresolution Models 

Many real-world images, especially textures, contain long range 
and nonlinear spatial interactions (correlations) that can only 

FIGURE 11 
fields: left, observations; right, estimates. 

Overlapped multiscale estimation of nonstationary random 
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be adequately captured by high-order nonlinear models [ 171. 
In such cases, the AR and MRF, like many others, may run into 
difficulties. Specifically, high-order models require large neigh- 
borhood structures and a large number of parameters, and this 
makes parameter estimation and applications computation in- 
tensive, if not impossible. Similarly, linear models, such as the 
AR and GMM, tend to have trouble capturing nonlinear interac- 
tions (e.g., patterns containing sharp intensity changes). In this 
section, we describe wavelet-based multiresolution models that 
may overcome these problems. The basic idea here is that a high- 
order, and possibly nonlinear, model can be constructed through 
a set of low-order models living in the subbands of a wavelet de- 
composition. Related work can also be found in [ 17-23]. 

We assume that the reader is familiar with the theory of or- 
thonormal wavelets (see, e.%., [39] ). Let L be a square lattice and 
x = (q,j, (i, j )  E L )  be a random field used to model a class of 
images. Suppose L represents the finest resolution and denote x 
by xo, Suppose that for some positive integer M, xo has a wavelet 
expansion 

xo - {w-l, w-2,. . . , w-M, x - q .  (41) 

As shown in Fig. 13, wm, m = - 1, -2, . . . , -Mare the wavelet 
coefficients at various levels, obtained from bandpass filtering 

LL LH 

and subsampling. Each w"' contains three subsets w r ,  w?, w? 
corresponding to LH, HL, and HH components, and x - ~  con- 
tains the scaling function coefficients at level M, obtained by 
lowpass filtering and subsampling. The - sign denotes equiv- 
alence in the sense that the wavelet coefficients can be used to 
reconstruct xo. 

4.1 TheModel 
Since x is completely determined from its wavelet coefficients, 
we can model x by modeling the wavelet coefficients. In other 
words, x can be modeled by specifymg the joint probability 
density: 

p(xO)  - p(w-I, w-2, .  . ., w-M, X-M), 

= p(w-1 I w-2, .  . . , w-M, x-M) 

= p(w-' I x- ' )p(w-2 I x-2) * * . p ( x - M ) ,  

x p W 2  I w-3, . . . , w-M, x-M) ' p(x-M),  

(42) 

where we have used the fact that (w", . . . , w - ~ ,  x - ~ )  - x("+l) 
for -M < m < -1. Now, the problem of specifylng p(xo)  be- 
comes that of specifymg densities p ( ~ - ~ )  and p(w" I x"), for 
m = - 1, -2, . . . , - M. As described previously, the complexity 
(e.g., model order) for these latter models can be considerably 
lower than that for the fine resolution model. 

Suppose parametric models are used. Then, 

where a,,, and O-M are parameter vectors. Generally, the model 
for x-M is similar to that ofx' but at alower order. The models for 
p(w" I x", @"), on the other hand, are different from that ofxO. 
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Furthermore, since it is well known that the wavelet transform re- 
duces correlation within and between resolutions, two assump- 
tions can be made to simplify the modeling of p(w" I x", am): 

Assumption 1 (Interband Conditional Independence): w:, 

Assumption 2 (Interband Independence): w r ,  n = 1,2,3 
n = 1,2,3 are independent given xm. 

are independent to each other as well as to x". 

Assumption 2 is stronger than assumption 1 and seems to work 
well for textures that are characterized by random microstruc- 
tures. However, when the texture contains long range correlation 
and large structural elements, the weaker and more realistic as- 
sumption 1 is needed [22]. 

4.2 Wavelet AR and Wavelet RBF 
In this section, we provide two examples. The first is a wavelet- 
AR model. Here, assumption 2 is used and wm's and x - ~  are AR 
models with the nonsymmetrical half-plane (NSHP) neighbor- 
hood system shown in (Fig. 14). For example, a first-order AR 
model can be used for x - ' ~  with 

X:M = eo, x:M + el , l~;~j- l  + el,ox;:j 
1, I 

+eI,-lx;:j+l + u?Mni,r, (45) 

where n;; is a zero-mean white Gaussian noise. Similar first- 
order A h  can be used for the wm's, completing perhaps the 
simplest nontrivial wavelet multiresolution model. 

In the second example, the random field at each resolution is 
an MRF characterized by its conditional densities. For example, 
xPM can be described by p(xlyjw I {xi:, (k, I )  E Nzj]), where 
N:j can either be a NSHP (Fig. 3), or a noncausal (Fig. 3) neigh- 
borhood of order 4. In general, p(xiFy I {xi:, (k, Z) E q!j}) 
is a high-dimensional function in xi;;l" and xk,f/l, (k, I )  E $:j, 

and the learning of a high-dimensional function is a difficult 
problem. Among various proposed learning techniques, neural 

k 

2 / conditioned on 

FIGURE 14 Neighborhood system for the LH band. (Adapted from [22].) 

network based techniques, in particular the radial basis function 
(RBF) network [42], have been shown to be competitive. Us- 
ing this technique, we first specify the joint density as a mixture 
density 

K 

where put.) are individual density functions, e.g., Gaussians, 
and T~ are positive weights that sum to one [42]. The condi- 
tional density p(x;jW I {xi?, (k, I )  E can be derived by 
applying Bayes's formula to Eq. (46). 

For wm's, the conditional densities can be obtained in a similar 
way. The derivation is slightly more involved because of the pos- 
sible interband conditioning of Eq. (44). Specifically, suppose as- 
sumption 1 is adopted to increase representation power. Without 
loss of generality, consider w r ,  the LH band, and suppose a causal 
neighborhood system is used. Since w;" is obtained by horizontal 
lowpass and vertical bandpass filtering, it is reasonable to assume, 
as a first-order approximation, that w r  and xrn are similar along 
horizontal directions, i.e., 

where N:; is the combined neighborhood of Fig. 14. Notice 
that the horizontal coefficients of X" are dropped since they are 
redundant given the horizontal coefficients of w;". The condi- 
tional density of Eq. (47) can be derived from the joint density 
p(wrj ,  w t l ,  x;,~,, ((k, 11, (k', 1')) EN:;), which, like Eq. (46), 
is assumed to be a mixture distribution. Finally, the wavelet RBF 
model introduced above has an intuitive interpretation: a com- 
plicated random field can be represented by a set spatially corre- 
lated patterns, each characterized by the individual densities in 
the mixture densities [e.g., Eq. (46)]. 

4.3 Examples in Texture Synthesis 
The efficacy of the wavelet AR and RBF models is illustrated 
through the texture synthesis in Figs. 15 and 16, where model 
parameters were estimated from texture images and then used 
to generate "copies" of the originals. In all cases, the images are 
of size 128 x 128 and the original textures are from Brodatz [41]. 
The techniques for parameter estimation and sample synthesis 
for the wavelet AR and RBF models are relatively straightforward 
and are described in detail in [21,223. 

Figure 15 shows the wood grain texture that contains long- 
range correlation in both horizontal and vertical directions. As 
a result, a single-scale AR model, even with a high model order, 
does not capture the correlation well. A wavelet AR model with 
low model orders in the subbands, on the other hand, provides 
a good correlation match. 
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The wavelet AR model, however, does not work well when the 
texture contains nonlinear interaction (e.g., when pixels “switch” 
quickly from black to white). This is illustrated in Fig. 16. In 
this case, better results can be obtained by using the wavelet RBF 
model, which is nonlinear and has higher complexity. Finally, we 
would like to point out that, in addition to texture synthesis, the 
wavelet AR and RBF models can also be used for other random 
field problems described in Section 2. 

Aluminium Texture Wavelet AR Synthesis 

1 

Causal Wavelet RBF Synthesis Non-Causal Wavelet RBF Synthesis 

FIGURE 16 Texture synthesis using the wavelet RBF model. 
(Adapted from [22].) 
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1 Introduction 

In this chapter we describe image modulation models that may 
be used to represent a complicated image with spatially vary- 
ing amplitude and frequency characteristics as a sum of joint 
amplitude-frequency modulated AM-FM components. Ideally, 
each AM-FM component has an instantaneous amplitude (AM 
function) and an instantaneous frequency (FM function) that are 
locally smooth but may contain substantial, wideband variations 
on a global scale. Intuitively, the AM function of a component 
may be interpreted as the instantaneous envelope, which carries 
image contrast information, while the FM function is the vector- 
valued derivative of the instantaneous phase and describes the 
local texture orientation and granularity. 

For a given image, demodulation is concerned with comput- 
ing estimates of the AM and FM functions for one or more 
components. In one-dimensional (1-D) cases, such computed 
modulations are used for time-frequency analysis and in the 
study of nonlinear air flow in human speech [1-4]. In two- 
dimensional (2-D) cases, the computed modulations provide 
a rich description of the local texture structure. They can be 
used for analysis [5,6], for texture segmentation and classifica- 
tion [7,8], for edge detection and image enhancement [9], for 
estimating three-dimensional (3-D) shape from texture [7, lo], 
and for performing texture-based computational stereopsis [ 1 11. 
Techniques for computing AM-FM image representations and 
for reconstructing an image from its computed representation 
have also emerged recently [ 12-14]. 

Although this article is primarily concerned with discrete 
2-D techniques and algorithms, we temporarily focus on the 1-D 
case for simplicity in motivating the use of modulation models. 

Consider the discrete-time 1-D chirp signal 

0 . 4 ~  
f(k) = cos (E.), 

defined for 0 5 k < 512. The graph of this signal appears in 
Fig. l(a). With the discrete Fourier transform (DFT), the signal 
can be represented as a weighted sum of 512 complex exponen- 
tials with frequencies uniformly spaced between -0.5 and f0.5 
cycles per sample (cps). The magnitude of the DFT is shown 
in Fig. l(b) and provides little intuition about the nature of 
the signal. In the Fourier representation, signal structure with 
time-varying frequency content is created by constructive and 
destructive interference between Fourier components that each 
have a constant frequency. Often, this interference can be both 
complicated and subtle. A modulation model for the signal of 
Eq. (1) computed with the algorithms described in [ 151 is shown 
in Figs. l(c) and l(d). In contrast to the DFT, the modulation 
model is both easy to interpret and intuitively appealing. It in- 
dicates that the signal is a single-component AM-FM function 
with constant amplitude and a frequency that increases linearly 
from DC to 0.4 cps. A similar modulation model could have 
been obtained using the discrete Teager-Kaiser Energy Operator 
and energy separation algorithm described in [ 11. 

A n  interesting aspect of discrete modulation models is that 
they depend on the notion that the discrete signal being mod- 
eled was obtained, or at least in theory could have been obtained, 
by sampling a continuous-time signal. In cases in which the con- 
tinuous signal does not actually exist, one may assume without 
loss of generality that the sampling was done with respect to 
a unity sampling interval. Thus, if we let a(k) denote the AM 
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FIGURE 1 1-D chirp example: (a) signal, (b) DFT magnitude, (c) computed AM function, (d) computed FM function. 

function in Fig. l(c) and let +(k) denote the FM function in 
Fig. l(d), then we assume that these discrete modulating func- 
tions contain the samples of their continuous counterparts a, (t) 
and+,(t), where +,(t) = (d/dt)cp,(t). Wealso assume that cp(k) 
contains the samples of cp, (t). The relationship between the dis- 
crete signal of Eq. (1) and the computed modulation model of 
Figs. 1 (c) and 1 (d) is then given by 

In theory, any signal can be modeled as a single AM-FM func- 
tion like the one appearing on the right-hand side of Eq. (2). 
There is a problem with doing this in practice, however. Single- 
component AM-FM models for the types of complicated sig- 
nals that are often encountered in real-world applications gen- 
erally require AM and FM functions that are not locally smooth. 
All AM-FM demodulation algorithms akin to those given in 
[ 1-3,5,7,9,12-16] are based on approximations of one form 
or another, and they can suffer from large approximation errors 
when the modulations are not locally smooth. Thus, while single- 
component models theoretically exist for complicated real-world 
signals, they generally cannot be computed. For this reason, it is 
preferable to model such signals as a sum of AM-FM compo- 
nents wherein each component has AM and FM functions that 
are locally smooth. Models of this type, which involve multiple 

AM-FM components, are referred to as multicomponent models. 
Bandpass filtering, be it explicit or implicit as in [4], is generally 
used to isolate the multiple AM-FM components in the signal 
from one another on a pointwise basis prior to computation of 
the individual component modulating functions. 

For a 2-D image with N rows and M columns, the DFT is a 
trivial multicomponent modulation model with NM AM-FM 
components that each have constant AM and FM functions (see 
Chapter 2.3 for a discussion ofthe 2-D DFT). The goal of general 
AM-FM modeling is to compute alternative modulation mod- 
els involving fewer than NM components, where each compo- 
nent has spatially varying modulating functions that are locally 
smooth. In contrast to the DFT, such models provide alocal char- 
acterization of the image texture structure. The dominant modu- 
lations can be extracted on a spatially local basis and used to solve 
a variety of classical machine vision problems, including texture 
segmentation, 3-D surface reconstruction, and stereopsis [ 7-1 11. 

The organization of the article is as follows. In Section 2, we 
examine the discrete single-component demodulation problem 
in some detail. Demodulation algorithms based on the Teager- 
Kaiser energy operator and the complex-valued analytic image 
are presented in Sections 2.2 and 2.3, respectively. In Section 3, 
these algorithms are extended to the general multicomponent 
case. A technique called dominant component analysis for ex- 
tracting the dominant modulations on a spatially local basis is 
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described in Section 3.1, and the channelized components anal- 
ysis paradigm for computing multicomponent AM-FM repre- 
sentations is presented in Section 3.2. Finally, conclusions appear 
in Section 4. 

2 Single-Component Demodulation 

In this section we describe demodulation algorithms applicable 
to an image that is modeled as a single AM-FM component. 
As we mentioned in Section 1, single-component modulation 
models are rarely appropriate for images encountered in real- 
world applications. Nevertheless, single-component demodula- 
tion techniques are important because they form the foundation 
upon which the multicomponent techniques to be presented in 
Section 3 are based. Suppose that f(nl, nz) is an N x Mimage, 
where nl and nz are integer indices satisfying 0 5 nl < N and 
0 5 n2 < M. Suppose further that f(n1, n2) takes real floating 
point values. We model the image according to 

where we assume that a(n1, nz) 2: 0. With this assumption, the 
AM function a(nl, nz) maybe interpreted as the image contrast 
function. An example of the type of image that can be modeled 
well by Eq. (3) is the fingerprint image in Fig. 8 of Chapter 1.1. 

We assume that f(n1, nz) contains the samples of a continu- 
ous image 

by setting a(nl ,  nz)  = maxIf(nl, n2)l and q(n1, nz) = 
arccos [ f(n1, nz)/a(nl, nz)]. Equally extreme, we might take 
a(ni, n2) = If(n1, n2)I and d n l ,  nz) = arccos [sgnf(nl, n2)], 
in which case we would interpret the variations in the image ex- 
clusively as amplitude modulations. In either case, f(n1, n2) = 
a(n1, n2) cos [q(nl ,  nz)]. Moreover, an infinite set of possible 
choices for a(n1, nz) and q(n1, n2) exist between these two ex- 
tremes. To disambiguate the demodulation problem, we consider 
two approaches. Both are based on the fact that demodulating a 
real-valued image is precisely equivalent to adding an imaginary 
part to create a complex-valued image. Indeed, for anycomplex- 
valued image z(n1, nz), the modulating functions a(n1, nz) and 
Vq(n1, n2) are unique. 

The first approach is to demodulate f(nl, nz) by speci- 
fying a well-defined algorithm that uses the real values of 
the image to calculate estimates of a particular pair of AM 
and FM functions. This approach is used by the demodu- 
lation algorithms described in Section 2.2. Any such tech- 
nique that associates aparticular a(nl, n2) and Vq(n1, n2) with 
f (nl , n2) implicitly specifies a complex image z( nl , nz) with real 
part f(n1, nz) = a(nl, nz) cos [q(nl, nz)]  and imaginary part 
g(n1, n2) = a(n1, nz) sin[q(nl, nz)]. The second approach is to 
disambiguate the demodulation problem by specifying a well- 
defined algorithm that uses the real values of f(n1, n2) to cal- 
culateacomplexextension z(n1, n2) = f(n1, 712) + jg(n1, nz). 
Estimates of a(nl, n2) and V q ( n l ,  nz) can then be computed 
from z(n1, n2). This latter approach is used by the demodula- 
tion algorithms described in Section 2.3. 

(4) 2.2 Multidimensional Energy Separation 
where a(n1, n2) and cp(nl, nz) in Eq. (3) contain the samples 
of their continuous counterparts in Eq. (4). The instantaneous 
frequency of f c (x ,  y) is given by Vq,(x, y). This quantity is 
a vector having components aqc(x, y ) / a x  and aqc(x, y) /ay,  
which are referred to respectively as the horizontal and vertical 
(instantaneous) frequencies. By definition, Vqc(x, y)  is the FM 
function of f c ( x ,  y) in Eq. (4). The FM function of f(n1, n2) 
in (3) is Vq(n1, nz), which contains the samples of Vq,(x, y). 
Given the image f(n1, n2), the single-component demodulation 
problemis tocomputeestimatedAMandFMfunctions ii(n1, n2) 
andV@(nl, n2)suchthat f(n1, nz) x 2(nl, n2)cos[@(nl, nz)]. 
As we shall see in Section 2.1, this problem does not have a unique 
solution. Henceforth, we will write Uc(x, y)  for the horizontal 
frequencies dqc(x, y) /ax and &(x, y) for the vertical frequen- 
cies 8qC(x, y)/dy.Thesamplesofthesefunctionswillbe denoted 
U(ni, nz) and V(ni, n2). 

2.1 Resolving Ambiguities in the Model 
For any given image f(n1, nz), there are infinitely many 
distinct pairs of functions {a(nl, n2), q(n1, n2)) that satisfy 
Eq. (3) exactly. As an extreme example, we could interpret the 
variations in f(n1, n2) exclusively as frequency modulations 

For a 1-D signal f(k), the discreteTeager-Kaiser energyoperator 
(TKEO) is defined by [ 171 

Whenappliedto thepurecosinesignal f ( k )  = Acos(wOk++), 
the TKEO yields \u[f(k)] = A%:, a quantity that is propor- 
tional to the energy required to generate the displacement f(k) 
in a mass-spring harmonic oscillator. For many locally smooth 
signals such as chirps, damped sinusoids, and human speech 
formants, the TKEO delivers 

where Z(k) and +(k) are good estimates of an intuitively 
appealing and physically meaningful pair of modulations 
{a(k), +(k)}satisfying f(k) = a ( k )  cos[cp(k)] [2,17].Thequan- 
tity a2(k)d2(k) is known as the Teager energy ofthe signal f(k). 
One-dimensional energy separation algorithms (ESAs) for ob- 
taining estimates of the magnitudes of the individual AM and 
FM functions from the Teager energy were described in [ 11. 

By applying Eq. ( 5 )  independently to the rows and columns of 
an image and summing the results, one obtains the 2-D discrete 
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FIGURE 2 
(FM function) obtained with the TKEO and ESA; (c) estimated AM function. 

Energy separation example: (a) synthetic single-component AM-FM image; (b) estimated frequency vectors 

TKEO [5]: 

For a particular pair of modulating functions (a(n1, nz),  
(nl, ndvqlsatisfylng f(n1, n2> = a(n1, n d  cos[q(nl, ndl,the 
operator aJ [ f( nl, n2)] approximates the multidimensional 
Teager energy a2( nl, n2) I Vq( nl, n2) 1'. For images that are rea- 
sonably locally smooth, the modulating functions selected by 
the 2-D TKEO are generally consistent with intuitive expecta- 
tions [ 51. With the TKEO, the magnitudes of the individual am- 
plitude and frequency modulations can be estimated using the 
ESA [5] 

Algorithms (8)-( 10) are straightforward to implement digi- 
tally, either in software or in hardware. Furthermore, these algo- 
rithms are well localized spatially, which makes them particularly 
suitable for implementation in sections or on a parallel comput- 
ing engine. Two additional comments are in order. First, all three 
of these algorithms involve square root operations that are sub- 
ject to failure if the corresponding TKEO outputs are negative at 

some image pixels. Estimates ofthe modulating functions at such 
points can be obtained by simple spatial interpolation. Condi- 
tions for positivity of the energy operator were studied in [ 181. 
Second, Eqs. (8) and (9) deliver estimates of the magnitudes 
of the horizontal and vertical frequencies. Thus some auxiliary 
technique must generally be used to determine the relative signs 
of U(n1, n2) and V( nl, n2), which embody local orientation in 
the image. One such technique will be examined in Section 3. 

An example ofapplying the ESA of Eqs. (8)-( 10) to a synthetic 
single-component AM-FM image is shown in Fig. 2. The original 
image, which is shown in Fig. 2(a), had 256 x 256 pixels, each 
taking an integer value in the range [0,255]. Note that image 
model (3) is the product of a nonnegative Ah4 function with 
a cosine that oscillates between -1 and +l. For accordance to 
be achieved with this model, it is generally necessary to rescale 
the pixel values so that the mean of the image is zero. Prior to 
application of the ESA, the image of Fig. 2(a) was converted to 
a zero-mean floating point image. The ESA was applied at every 
pixel, and edge effects were handled by replication. 

Thecomputedfrequencyestimates Vi$(nl, n2) aredepictedin 
the needle diagram of Fig. 2(b), where one needle is displayed for 
each block of 12 x 12 pixels. Each needle points in the direction 
arctan[ c(n1, nz)/fi(nl, nz)], wherethepositive Uaxispointsto 
the right and the positive V axis points down. With this conven- 
tion, needles are normal to the corresponding wavefronts in the 
image. The lengths of the needles are proportional to the mag- 
nitudes of the instantaneous frequency vectors. The frequency 
vectors shown in Fig. 2(b) generally agree with our intuitive ex- 
pectations, except for one notable exception. In the leftmost re- 
gion of the image, many of the actual frequency vectors lie in the 
second or third quadrants of the U-V plane, where U(n1, n2) 
and V(n1, n2) have different signs. Because of the inability of 
the ESA to estimate signed frequency, the orientations of the 
estimated frequency vectors are incorrect in these instances. 

The computed AM function 6(nl, n2) is shown in Fig. 2(c), 
and it is nearly constant over much of the image. The large spikes 
visible in the outermost three rows and columns of Fig. 2(c) are 
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7-1(u,v)=. 

edge effects that occur because the spatial support of the ESA is 
5 x 5 pixels. Amplitude spikes appearing elsewhere in Fig. 2(c) 
are a consequence of approximation errors in the ESA. In fact, 
the raw floating point AM estimate delivered by Eq. (8) had a 
maximum exceeding 2 x lo6, and was clipped for display. The 
main advantages to using the ESA are that it is computationally 
efficient and that it estimates the AM and FM functions from 

inability of the ESA to estimate signed frequency. 

Estimates of the magnitudesand signs of the FM functions can 
then be obtained by using [ 161 

A 

(13) 

4% + 1, n2) + z(n1 - 1, n2) I U(n1, n2)l = arccos 

the values of the real image alone. The main disadvantage is the .. d n l +  1, n2) - z(n1 - 1, n2) sgn U(n1, n2) = sgn arcsin 

- - j ,  u = 1 , 2  ,..., $ - I  
j, u = $ + 1 , 7 + 2  N ,..., N-1 

M -j,  u=O, v = l , 2  ,..., 7 - 1  

-j, N u = ~ ,  v = 1 , 2  ,..., g-1 2 

M M j, u=O,  v = T + 1 , 7 + 2  ,..., M - 1  
N M M j ,  U = Y ,  ~ = T + 1 , , + 2 ,  ..., M - 1  

0, otherwise 

Thus, z(nl, nz) may be computed by the following straightfor- 
ward procedure. First, the DFT is used to obtain $(u, v )  from 
f(n1, n2). Second, G(u, v) is computed by taking the point- 
wise product of j ( u ,  v )  with ‘Fl(u, v )  as given in Eq. (11). 
Third, the DFT of z(nl, n2) is computed according to Z(u, v) = 
g(u,  v )  + j&u, v ) .  Finally, z(n1, n2) is obtained by taking the 
inverse DFT of z (u ,  v). A more efficient algorithm for calcu- 
lating z (u ,  v )  may be derived by realizing that, for each u and 
each v, z ( u ,  v) assumes one of only three possible values: zero, 
22(u, v), or $(u,  v). However, the details of this derivation are 
beyond the scope of the present chapter. 

Once z( n1, nZ) has been calculated, the AM function a (  nl, n2) 

can easily be estimated by using the algorithm [ 161 

(12) qn1, n2) = Iz(n1, n2)I. 

Like the FSA of Section 2.2, demodulation algorithms (12)- 
(16) are easily implemented in hardware or software and are 
well suited for implementation in sections or on a parallel pro- 
cessor. Two comments are in order concerning frequency algo- 
rithms (13)-(16). First, these algorithms cannot be applied at 
pixels where z(n1, n2) = 0. At such pixels, frequency estimates 
may be obtained by interpolating the frequency estimates from 
neighboringpixels. Second, the arguments ofthe transcendentah 
in Eqs. (13)-( 16) are guaranteed to be real up to approximation 
errors; any nonzero imaginary component should be discarded 
prior to the evaluation of the arccos and arcsin functions. 

Figure 3 shows an example in which the analytic image-based 
demodulation technique was applied to the synthetic single- 
component AM-FM image of Fig. 2(a), which appears again in 
Fig. 3(a). As before with the TKEO, the image was converted to 
floating point and normalized to have zero mean. Equation (1 1) 
was used to generate the complex-valued analytic image, and 
demodulation algorithms (12)-( 16) were applied at every pixel, 
where edge effects were handled by replication. 

The computed frequency estimates Vi$(nl, n2) are shown in 
the needle diagram of Fig. 3(b), where one needle is shown for 
each block of 12 x 12 pixels. These frequency estimates are gen- 
erally in good agreement with those obtained with the ESA, as 
shown in Fig. 2(b). Note, however, that the estimated frequency 
vectors in the leftmost region of Fig. 3(b), which were obtained 
by using the signed frequency algorithms (13)-( 16), agree with 
intuitive expectations and do not suffer from the orientation er- 
rors clearlyvisible in Fig. 2(b). The amplitude estimates li(n1, n ~ )  
deliveredby Eq. (12) appear in Fig. 3(c), whereno postprocessing 
was applied in this case. The main advantages of using the ana- 
lytic image-based technique described in this section are that it is 
computationally efficient and that it estimates signed frequency. 
The main disadvantage is that the complex image z(n1, n2) must 
be calculated explicitly. 
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FIGURE 3 
(b) estimated frequency vectors (FM function); (c) estimated AM function. 

Demodulation example using an explicit complex extension: (a) synthetic single-component AM-FM image; 

3 Multicomponent Demodulation 

In this section we will analyze real-valued images f (n1 ,  122) 

against the multicomponent modulation model 

q=l  

(17) 

where f q ( n l ,  n2) = a,(nl, n2) cos[(pq(nl, nz)] isoneof QAM- 
FM image components. There are two main reasons for con- 
sidering such multicomponent models. First, for many signals, 
intuitively satisfying and physically meaningful interpretations 
in terms of a single pair of amplitude and frequency modulation 
functions simply do not exist. Second, even in cases in which such 
a single-component interpretation does exist, there is no guaran- 
tee in general that the single-component modulating functions 
will be locally smooth. Thus, the single-component demodula- 
tion algorithms presented in Section 2 may suffer from large 
approximation errors that render the computed modulating 
function estimates meaningless. For many images of practi- 
cal interest, however, it is possible to compute a multicompo- 
nent model wherein each individual component has modulating 
functions that are locally smooth almost everywhere. 

For any given image f ( n l ,  n2), note that the componentwise 
decomposition indicated in Eq. (17) could be done in many 
different ways. Each different decomposition into components 
would yield different solutions for Gq(nl, 712) and VGq(n1, 7121, 

and would therefore lead to a different multicomponent inter- 
pretation of the image. One popular approach for estimating the 
modulating functions of the individual components is to pass 
the image f (  n l ,  n2) or its complex extension z( nl, 722) through 
a bank of bandpass linear Gabor filters [ l ,  3,5,7, 10-12,201. 
This bank of filters, orfilterbank, produces filter outputs that are 
similar to a wavelet decomposition using Gabor functions for 
the wavelet filters (see Chapter 4.1). Each filter in the filterbank 
is called a channel, and, for a given input image, each channel 

produces a filtered output called the channel response. With this 
approach, the structure of the filterbank determines the multi- 
component interpretation of the image. Provided that they are 
modified to account for the scaling effects incurred during filter- 
ing, the single-component demodulation algorithms presented 
in Section 2 can be applied directly to the channel responses to 
estimate the component modulating functions. 

Suppose that hi(n1, n2) and H;(U, V) are, respectively, the 
unit pulse response and frequency response of a particular one 
of the filterbank channels. Under mild and realistic assump- 
tions, one may show that, at pixels where the channel response 
y;(nl ,  n2) is dominated by a particular AM-FM component 
f, (nl, nz), the output of the TKEO is well approximated by [3] 

Note that the energy operator appears in both the numerators 
and denominators of Eqs. (8) and (9). If these frequency demod- 
ulation algorithms are applied to yi (nl, nz), then the scaling by 
I fi  [Vqq (n l ,  nz)] l 2  indicated in Eq. (18) is approximately can- 
celed by division. Thus, Eqs. (8) and (9) may be applied directly 
to a channel response to estimate the FM function of the com- 
ponent that dominates that response at any given pixel. 

Moreover, the multiband filtering provides a means of ap- 
proximating the relative signs of the frequency estimates of 
Eqs. (8) and (9). Suppose that Ifiq(nl, n2)l and I$(nl, n2)l 

are the magnitude frequency estimates obtained by demod- 
ulating yi(n1, n2). Since hi(n1, n2) will be real valued in this 
case, the frequency response Hi (U ,  V) will be conjugate sym- 
metric. Hence, the bandpass characteristic I Hi (U ,  V) I will have 
two main lobes with center frequencies located either in quad- 
rants one and three or in quadrants two and four of the 
2-D frequency plane. If the signs of the horizontal and verti- 
cal components of these center frequencies agree, then we take 
sgn Uq(nl,  n2) = sgn Vq(nl, n2) = +l. Otherwise, we set 
sgn fiq(nl,  n2) = +1 andsgn eq(nl ,  n2) = -1.Thisadmittedly 

A 
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simplistic approach often works well enough to be effective in 
practical implementations. 

For the demodulation algorithms described in Section 2.3, 
similar arguments can be used to establish the validity of ap- 
plying frequency estimation algorithms (13)-( 16) directly to 
the filterbank channel responses as well [ 14161. Note that the 
Hilbert transform described in Section 2.3 is a linear operator; 
therefore, the complex-valued analytic image z(n1, n2) associ- 
ated with f(nl, 712) in Eq. (17) may be expressed as 

- 
q = l  q = l  

(19) 

Thus, when z(n1, nz) is input to the filterbank, the channel 
responses are given by yi(n1, nz) = z(n1, n2) * hj(n1, n2) FZ 

zq (nl, n2) * hi (nl ,  n2), where filterbank channel i is dominated 
by component zq (nl , 712). However, since the Hilbert transform 
is implemented by using spectral multiplier (1 1) and since 2-D 
multiband linear filtering is almost always implemented by using 
pointwise multiplication of DFTs, great computational savings 
can be realized by combining the linear filtering and analytic im- 
age generation into a single operation. If f i i  (u, v )  is the DFT of 
hj(n1, n2), then the channel response yj(n1, nz)  can be obtained 
by taking the inverse DFT of 

$(u,  v )  = G ( u ,  v)&, v )  [1+ jW(u,  v ) ] .  (20) 

Since halfofthe frequencysamplesin z(u ,  v )  are identically zero, 
Eq. (20) actually saves half of the complex multiplies required 
to implement the convolution performed by each filterbank 
channel. 

Unlike the frequency algorithms discussed above, the ampli- 
tude demodulation algorithms, Eqs. (10) and (12), require ex- 
plicit modification before they can be applied directly to the 
filterbank channel responses. This is because the image compo- 
nents in models (17) and (19) are individually scaled as they 
pass through the filterbank. In particular, the amplitude esti- 
mates obtained by applying Eq. (10) or (12) to yi(n1, n2) must 
be divided by IH;[V@,(nl, n2)]1, where VGq(n1, n2) is the 
FM estimate obtained by performing frequency demodulation 
on yi(n1, n2). Thus, the modified amplitude estimation algo- 
rithms for the ESA-based approach and the analytic image-based 
approach are given by 

Gabor filters are a common choice for the channel filters 
Hj(U, V). These filters have Gaussian spectra that fall rapidly 
toward zero away from the center frequency. Consequently, mod- 
erate to severe approximation errors in the estimated frequen- 
cies cq (nl, n2) and e(n1,  nz) can cause the denominators of 
Eqs. (21) and (22) to approach zero. This often produces large- 
scale errors in the amplitude estimates and can lead to numerical 
instability in the amplitude estimation algorithms. Similar prob- 
lems can also occur at pixels where the image f(n1, n2) contains 
phase discontinuities. In the neighborhoods of such pixels, the 
FM functions Vq,(nl, 122) may contain large-scale frequency 
excursions that lie far outside the filter passband. A popular 
approach for mitigating these effects is to postprocess the fre- 
quency estimates with a low-pass filter such as a Gaussian (see 
Chapter 4.4) or an order statistic filter such as a median filter 
(see Chapter 3.1) [ l ,  131. The smoothed frequencyestimates can 
then be used in Eqs. (21) and (22). It is often beneficial to subse- 
quently apply the same type of post processing to the amplitude 
estimates themselves. 

3.1 Dominant Component Analysis 
In this section, we describe a multicomponent computational 
technique called dominant component analysis, or DCA, which 
at every pixel delivers modulating function estimates i i ~  (nl ,  n2) 

and V @ D  (nl, nz) corresponding to the AM-FM component that 
is locally dominant at that pixel [S ,  14,201. The dominant fre- 
quency vectors V+D(nl, 122) are often referred to as the emer- 
gentfiequencies of the image. Generally, different components in 
sums (17) and (19) are expected to be dominant in different im- 
age regions. A block diagram of DCA is shown in Fig. 4. The real 
image f(n1, n2) or the analyticimage z(n1, n2) is passed through 
a multiband linear filterbank. Demodulation algorithms (8), (9), 
and (21) or (13)-(16) and (22) are then applied to the response 
of every filterbank channel in the blocks labeled “DEMOD” in 
Fig. 4. 

The dominant component at each pixel is defined as the one 
that dominates the response of the channel that maximizes a 
channel selection criterion rr(nl ,  n2). For the ESA-based and 
analytic image-based demodulation approaches, ri (nl , n2) is 
given respectively by 

respectively. 
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i ~ (  nl,  n2) and V$o( nl,  n2) are extracted from the channel that 
maximizes ri (nl ,  nz) on a pointwise basis. 

The dominant modulations provide a rich description of the 
local texture structure ofthe image, and, as we pointed out in Sec- 
tion 1, they can be used for a number of important applications 
including texture segmentation, 3-D surface reconstruction, and 
stereopsis [7-111. An example of DCA is shown in Fig. 5. The 
ESA-based and analytic image-based demodulation algorithms 
were both applied to the 256 x 256 texture image Tree shown in 
Fig. 5(a). Prior to analysis, the image was converted to a zero- 
mean floating point image. A bank of 43 Gabor filters was used 
to isolate components from one another, as depicted in the 2-D 
frequency plane in Fig. 5(d). Detailed descriptions of this filter- 
bank are given in [7] and [20]. Since most natural images are 

Channel dominated by low frequencies that describe large-scale shading 
and contrast variations rather than local texture features, the re- 
sponse of the baseband filter appearing at the center of Fig. 5(d) 
was not considered in the dominant component analysis. Also, 
for the ESA-based approach, the imaginary components of the 
channel filter unit pulse responses were set to zero, producing 
frequency responses that were both real valued and even sym- 
metric. For postprocessing, median filters of sizes 5 x 5 and 7 x 7 
pixels were applied to the frequency and amplitude estimates of 

Select 

FIGURE 4 Block diagram of DCA. 

lYi(n1, n2>l 
ri(n1, n2) = (24) 

where V$q (nl, n2) in Eq. (23) is the frequency estimate obtain- 
ed by demodulating yi(n1, n2).  Modulating function estimates 

m=v,v IHt(U, VI' 

I 1 

FIGURE 5 DCA example. (a) Texture image Tree. (b), (c) Dominant FM function V @ D ( n l ,  n2) and AM function 
i?,(nl, n2) estimated by the TKEO and ESA. (d) Frequency response of multiband Gabor filterbank; for DCA, the 
baseband channel was not used. (e), (f) Dominant FM function and AM function estimated by the analytic image-based 
approach. 
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the ESA, respectively. The modulating functions estimated by 
the analytic image-based approach were smoothed with low- 
pass Gaussian filters having linear bandwidths identical to the 
corresponding channel filters. 

The dominant amplitude and frequency modulations esti- 
mated by the ESA are shown in Figs. 5(b) and 5(c), while those 
obtained using Eqs. (13)-( 16) and (22) are shown in Figs. 5(e) 
and S(f). Although the interpretations delivered by the two ap- 
proaches are different, they are in good qualitative agreement. 
The lengths ofthe needles in Figs. 5(b) and 5(e) are inverselypro- 
portional to the magnitudes of the dominant frequency vectors, 
so that longer needles correspond to larger features in the image, 
while shorter needles correspond to smaller features. Additional 
nonlinear scaling has been applied for display to accentuate the 
differences between the highest and lowest frequencies. Note that 
the relative signs of the frequency vectors delivered by the ESA in 
Fig. 5(b) have been corrected by setting them equal to the relative 
signs of the appropriate channel filter center frequencies. 

Figure 6 shows three examples illustrating how the dominant 
modulations computed by DCA can be used to perform tex- 
ture segmentation. The 256 x 256 image Paper-Burlap shown 
in Fig. 6(a) was created by removing the central region from 
one texture image and replacing it with the corresponding re- 
gion from another image. DCA was applied to this image, and 
the computed dominant component AM function i iD(nl ,  nz) is 
shown in Fig. 6(b). A Laplacian-of-Gaussian (LOG) edge detec- 
tion filter with space constant CJ = 46.5 pixels was applied to 
the dominant AM image. The resulting edge map contained only 
one closed contour. This contour, which effectively segments the 
image, is shown overlayed on the original image in Fig. 6(c). 

DCA was also applied to the Mica-Burlap image shown in 
Fig. 6(d). In this case, a LOG edge detector with gradient mag- 
nitude thresholding and a space constant of u = 15 pixels was 
applied to the emergent frequency magnitudes I V @ D ( n l ,  %)I, 
which are displayed as a gray-scale image in Fig. 6(e). The thresh- 
old value was adjusted until the resulting edge map contained 
only one closed contour, which is shown overlayed on the origi- 
nal image in Fig. 6(f). Finally, the Wood- Wood image of Fig. 6(g) 
was obtained by rotating the central portion of a texture image 
counterclockwise by 45". The emergent frequency orientations 
delivered by DCA are shown as a gray-scale image in Fig. 6(h). 
The contour that is shown overlayed on the image in Fig. 6(i) 
was obtained by applying a LOG edge detector with space con- 
stant CJ = 14 pixels to the emergent frequency orientations and 
adjusting the gradient magnitude threshold value until only a 
single closed contour remained. 

3.2 Channelized Component Analysis 
One of the most exciting emerging application areas of multidi- 
mensional AM-FM modeling lies in the development of modu- 
lation domain image representations, which are similar in many 
respects to 2-D time-frequency distributions. While the DFT is 
a trivial example of such a representation, the objective of more 

general AM-FM representations is to capture the essential struc- 
ture of an image using a relatively small number of components 
by allowing each component to have spatially varying but locally 
smooth amplitude and frequency modulations. 

Channelized components analysis, or CCA, is perhaps the 
simplest approach for computing general AM-FM image rep- 
resentations [ 13,14,20]. In CCA, the image is passed through a 
bank of bandpass filters such as the one depicted in Fig. 5( d). The 
componentwise decomposition of the image is carried out by as- 
suming that the filterbank isolates components on a global scale, 
so that demodulating each channel response delivers modulating 
function estimates for one component in sums (17) and (19). 
Thus, CCA representations provide a dense description char- 
acterizing not only the dominant image structures, but subtle 
subemergent texture features as well. 

Under the assumption that each filterbank channel is glob- 
ally dominated by a single AM-FM component, a CCA image 
representation computed using the filterbank of Fig. 5(d) will 
necessarily comprise 43 components. Since the Gabor filters that 
are fi-equently used for the filterbank are not orthogonal, such 
representations are not invertible in general. In fact, adjacent fil- 
ters in Fig. 5(d) intersect at frequencies where each is at precisely 
half-peak. Nevertheless, reasonably high-quality image recon- 
structions can often be obtained by substituting the modulating 
function estimates in a computed CCA representation back into 
models (17) and (19). 

Three examples of CCA image representations are presented 
in Fig. 7. The original images Peppers, Salesman, and Mandrill 
appear in Figs. 7(a)-7(c), respectively. Each was converted to 
a floating point zero-mean complex-valued analytic image and 
passed through the 43-channel Gabor filterbank of Fig. 5(d). De- 
modulation algorithms (13)-( 16) and (22) were applied to each 
channel response to compute modulating function estimates for 
a single AM-FM image component. Gaussian postfilters were 
used to smooth the estimated frequencies prior to application 
of Eq. (22), and the amplitude estimates were then postfiltered. 
The linear bandwidth of each postfilter was identical to that of 
the corresponding channel filter. 

For each CCA component, phase reconstruction was per- 
formed by using the simple algorithm [ 121 

In order to reduce the propagation of frequency estimation er- 
rors, phase reconstruction was carried out independently on 
blocks of 4 x 4 pixels. Within each block, Eq. (25) was initialized 
by savingthe phaseofthe pixellocatedin theupper left-handcor- 
ner of the block. This approach is straightforward to implement, 
since Gabor filters have real-valued spectra. Thus, for any given 
channel, the phase of the channel response is equal to the phase of 
the input image component that dominates that channel. When 
this approach is used to reconstruct the phase of an image block 
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FIGURE 6 DCA texture segmentation examples: (a) Paper-Burlap image; (b) estimated dominant AM function; (c) 
segmentation obtained by applying a LOG edge detector to the image in (b); (d) Mica-Burlap image; (e) magnitude of 
estimated dominant FM function; (f) segmentation obtained by applying a LOG edge detector to the image in (e); (g) 
Wood- Wood image; (h) orientations of estimated dominant frequency vectors; (i) segmentation obtained by applying a 
LOG edge detector to the image in (h). 

independently from the other blocks, note that Eq. (25) cannot 
be applied on the top row and leftmost column of the block. 
Instead, Eq. (25) should be replaced by @,(nl, nz)  = Gq(nl - 
1, n2) + fi, (nl - 1, n2) along the top row of each block. Simi- 
larly, the equation @ q  ( nl,  n2) = @ q  ( nl,  n2 - 1) + ?, ( nl,  n2 - 1) 
should be used along the first column of each block. 

Subsequent to phase reconstruction, the amplitude and phase 
estimates for the channelized components of the images in 
Figs. 7(a)-7(c) weresubstitutedinto Eq. (19) to obtain theimage 
reconstructions shown in Figs. 7(d)-7(f). In each case, the recon- 
structions are of remarkably high quality for such a small num- 
ber of AM-FM components. Reconstructions of one individual 
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FIGURE 7 
constructions; (g)-(i) reconstructions of one channelized component from each image. 

CCA examples: (a)-(c) Original Peppers, Salesman, and Mandrill images; (d)-(f) 43-component CCA re- 

channelized AM-FM component from each image are shown in 
Figs. 7(g)-7(i). 

functions having spatially varying but locally smooth ampli- 
tude and frequency modulations. Computed estimates of the 
component modulating functions can be used with great suc- 
cess in a wide variety of applications, including analysis, image 
enhancement, edge detection, segmentation and classification, 
shape from texture, and stereopsis. 

The Teager-Kaiser energy operator and its associated energy 
separation algorithm operate on the real values of the image 

4 Conclusion 

In this article we have presented two recently developed ap- 
proaches for demodulating images modeled as sums of AM-FM 
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alone to estimate a unique pair of modulating functions for each 
image component, while the approach based on the analytic 
image estimates the component modulating functions from an 
explicit complex extension of the image. Although the modu- 
lating functions delivered by the ESA also implicitly determine 
a unique complex-valued image, the imaginary components of 
these two complex images generally differ. However, for a given 
filterbank used to effect the separation into components, the in- 
terpretations delivered by the two approaches are often in close 
agreement for image components that are reasonably locally 
smooth. Perhaps the most notable difference between the ESA 
and the analytic image-based approach is that the latter estimates 
the magnitudes and relative signs of the horizontal and vertical 
frequencies, whereas the ESA estimates only the frequency mag- 
nitudes. Thus, the ESA must generally be supplemented with 
auxiliary techniques to estimate the relative signs of the horizon- 
tal and vertical frequencies, which characterize the local texture 
orientation in an image. 

Multidimensional modulation modeling is a relatively new 
area, and a veritable wealth of open problems remain to be in- 
vestigated. Particularly exciting among these are the design of 
new efficient, quasi-invertible multicomponent AM-FM image 
representations and the development of general theories for im- 
age processing in the modulation domain 
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1 Introduction 

This chapter reviews some of the more commonly used image 
noise models. Some of these are naturally occurring, e.g., Gaus- 
sian noise; some are sensor induced, e.g., photon counting noise 
and speckle; and some result fromvarious processing, e.g., quan- 
tization and transmission. 

2 Preliminaries 

2.1 What Is Noise? 
Just what is noise, anyway? Somewhat imprecisely, we will define 
noise as an unwanted component of the image. Noise occurs in 
images for many reasons. Gaussian noise is a part of almost any 
signal. For example, the familiar white noise on a weak television 
station is well modeled as Gaussian. Since image sensors must 
count photons - especially in low light situations - and the 
number of photons counted is a random quantity, images often 
have photon counting noise. The grain noise in photographic 
films is sometimes modeled as Gaussian and sometimes as Pois- 
son. Many images are corrupted by salt and pepper noise, as if 
someone had sprinkled black and white dots on the image. Other 
noises include quantization noise and speckle in coherent light 
situations. 

Let f (e )  denote an image. We will decompose the image into 
a desired component, g ( - ) ,  and a noise component, q(.). The 
most common decomposition is additive: 

f (*)  = g(->  + q(*) (1) 

For instance, Gaussian noise is usually considered to be an ad- 
ditive component. 

The second most common is multiplicative: 

An example of a noise often modeled as multiplicative is 
speckle. 

Note, the multiplicative model can be transformed into the 
additive model by taking logarithms and the additive model into 
the multiplicative one by exponentiation. For instance, Eq. (1) 
becomes 

Similarly, Eq. (2) becomes 

log f = log(gq) = log g + log q. (4) 

If the two models can be transformed into one another, what is 
the point? Why do we bother? The answer is that we are looking 
for simple models that properly describe the behavior of the 
system. The additive model, Eq. (I), is most appropriate when 
the noise in that model is independent of f .  There are many 
applications of the additive model. Thermal noise, photographic 
noise, and quantization noise, for instance, obey the additive 
model well. 

The multiplicative model is most appropriate when the noise 
in that model is independent of f .  One common situation in 
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The expected value of a function, +(a), is 

Note for discrete distributions the integral is replaced by the 
corresponding sum: 

The mean is ka = Ea (i.e., +(a) = a), the variance of a single 
random variable is ut = E (a - pa)', and the covariance matrix 
of a random vector Ea = E(a - pa)(a - pa)T. 

Related to the covariance matrix is the correlation matrix, 

Ra = EaaT. (7) 

FIGURE 1 Original picture of the San Francisco skyline. 
The various moments are related by the well-known relation, 

The characteristic function, @*(u)  = E(exp( jua)), has two 
main uses in analyzing probabilistic systems: calculating mo- 
ments and calculating the properties of sums of independent 
random variables. For calculating moments, consider the power 
series of exp( jua): 

E=R-ppT.  

which the multiplicative model is used is for speckle in coherent 
imagery. 

Finally, there important situations in which neither the ad- 
ditive nor the multiplicative model fits the noise well. Pois- 
son counting noise and salt and pepper noise fit neither model 
well. 

The questions about noise models one might ask include the 
following: What are the properties of q(-)? Is q related to g or 
are they independent? Can q(.) be eliminated or at least mit- 
igated? As we will see in this chapter and in others, it is only 
occasionally true that q(-) will be independent of g ( . ) .  Further- 
more, it is usually impossible to remove all the effects of the 
noise. 

Figure 1 is a picture of the San Francisco, California skyline. 
It will be used throughout this chapter to illustrate the effects of 
various noises. The image is 432 x 512,8 bits per pixel, gray scale. 
The largest value (the whitest pixel) is 220 and the minimum 
value is 32. This image is relatively noise free with sharp edges 
and clear details. 

After taking expected values, one finds 

(ju)*Ea' ( j ~ ) ~ E a ~  
+ * e * .  (9) 

+ 3! 
Eejua = 1 + j u E a +  

2! 

One can isolate the kth moment by taking k derivatives with 
respect to u and then setting u = 0: 

Consider two independent random variables, a and b, and 
their sum c. Then, 

2.2 Notions of Probability 
The various noises considered in this chapter are random in na- 
ture. Their exact values are random variables whose values are 
best described by using probabilistic notions. In this section, we 
will review some of the basic ideas of probability. A fuller treat- 
ment can be found in many texts on probability and randomness, 
including Feller [6], Billingsley [ 21, and Woodroofe [ 161. 

Let a E R" be an n-dimensional random vector and a E R" 
be a point. Then the distributionfimction of a (also known as the 
cumulative distribution function) will be denoted as Pa(a) = 
Pr(a 5 a) and the corresponding densityfunction as pa(a) = 
dPa(a)/da . Probabilities of events will be denoted as Pr(A). 

where Eq. (14) used the independence of a and b. Since the 
characteristic function is the (complex conjugate of the) Fourier 
transform of the density, the density of c is easily calculated by 
taking an inverse Fourier transform of @',(u). 
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3 Elements of Estimation Theory 

As we said in the Introduction, noise is generally an unwanted 
component in an image. In this section, we review some of the 
techniques to eliminate - or at least minimize - the noise. 

The basic estimation problem is to find a good estimate of the 
noise-free image, g ,  given the noisy image, f. Some authors refer 
to this as an estimationproblem, whereas others say it is ajltering 
problem. Let the estimate be denoted = g(Q. The most com- 
mon performance criterion is the mean-squared error (MSE): 

(16) MSE(g, g> = E(g - el2 
The estimator that minimizes the MSE is called the minimum 
mean-squared errur estimator (MMSE). Many authors prefer to 
measure the performance in a positive way using the peak signal- 
tu-noise ratio (PSNR) measured in dB: 

max2 
PSNR = lOlog,, (E) 

where maxis the maximum pixel value, e.g., 255 for 8-bit images. 
Although the MSE is the most common error criterion, it is 

by no means the only one. Many researchers argue that MSE 
results are not well correlated with the human visual system. For 
instance, the mean absolute error (MAE) is often used in motion 
compensation in video compression. Nevertheless, MSE has the 
advantages of easy tractablility and intuitive appeal since MSE 
can be interpreted as “noise power.” 

Estimators can be classified in many different ways. The pri- 
mary division we will consider here is into linear versus nonlinear 
estimators. 

The linear estimators form estimates by taking linear combi- 
nations of the sample values. For example, consider a small re- 
gion of an image modeled as a constant value plus additive noise: 

A linear estimate of c1. is 

An estimator is called unbiased if E (p  - P) = 0. In this case, 
assuming Eq = 0, unbiasedness requires &, a ( x ,  y) = 1. If 
the q(x, y )  are independent and identically distributed (i.i.d.), 
meaning that the random variables are independent and each has 
the same distribution function, then the MMSE for this example 
is the sample mean: 

where M is the number of samples averaged over. 

Linear estimators in image filtering get more complicated pri- 
marily for two reasons: First, the noise may not be i.i.d., and, 
second and more commonly, the noise-free image is not well 
modeled as a constant. If the noise-free image is Gaussian and 
the noise is Gaussian, then the optimal estimator is the well- 
known Weiner filter [ 101. 

In many image filtering applications, linear filters do not per- 
form well. Images are not well modeled as Gaussian, and linear 
filters are not optimal. In particular, images have small details 
andsharp edges. These areblurred by linear filters. It is often true 
that the filtered image is more objectionable than the original. 
The blurriness is worse than the noise. 

Largely because of the blurring problems of linear filters, non- 
linear filters have been widely studied in image filtering. While 
there are many classes of nonlinear filters, we will concentrate 
on the class based on order statistics. Many of these filters were 
invented to solve image processing problems. 

Order statistics are the result of sorting the observations from 
smallest to largest. Consider an image window (a small piece of 
an image) centered on the image to be estimated. Some windows 
are square, some are “X” shaped, some are “+” shaped, and some 
more oddly shaped. The choice of a window size and shape is 
usually up to the practitioner. Let the samples in the window be 
denoted simply as fi for i = 1, . . . , N. The order statistics are 
denotedf(i1 fori = 1, . . . , Nand obeythe orderingf(1) 5 f(2) 5 

The simplest order statistic based estimator is the sample me- 
dian, f ( (~+l)p) .  For example, if N = 9, the median is f(5). The me- 
dian has some interesting properties. Its value is one of the sam- 
ples. The median tends to blur images much less than the mean. 
The median can pass an edge without any blurring at all. 

Some other order statistic estimators are the following. 

* * ’ 5 f(N). 

Linear combinations of order statistics, p = ELl aif(i): The 
ai determine the behavior of the filter. In some cases, the 
coefficients can be determined optimally; see Lloyd [14] 
and Bovik et al. [ 51. 

Weighted medians and the LUM filter: Another way to weight 
the samples is to repeat certain samples more than once 
before the data are sorted. The most common situation is 
to repeat the center sample more than once. The center 
weighted median does “less filtering” than the ordinary 
median and is suitable when the noise is not too severe. 
(See Salt and Pepper noise below.) The LUM filter [9] is 
a rearrangement of the center weighted median. It has the 
advantages of being easy to understand and extensible to 
image sharpening applications. 

Iterated and recursive forms: The various filtering operations 
can be combined or iterated upon. One might first filter 
horizontally, then vertically. One might compute the out- 
puts of three or more filters and then use “majority rule” 
techniques to choose between them. 

To analyze or optimally design order statistics filters, we 
need descriptions of the probability distributions of the order 
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statistics. Initially, we will assume the fi are i.i.d. Then the 
Pr(f(i) 5 x )  equals the probability that at least i of the fi are 
less than or equal to x. Thus, 

is the covariance matrix We will use the notation a - N(p ,  E) 
to denote that a is Gaussian (also known as normal) with mean 
p and covariance C. 

The Gaussian characteristic function is also Gaussian in shape: 

We see immediately that the order statistic probabilities are re- 
lated to the binomial distribution. 

Unfortunately, Eq. (22) does not hold when the observations 
are not i.i.d. In the special case in which the observations are 
independent (or Markov), but not identically distributed, there 
are simple recursive formulas to calculate the probabilities [3,4]. 
For example, even if the additive noise in Eq. (1)  is i.i.d, the 
image may not be constant throughout the window. One may be 
interested in how much blurring ofan edge is done by a particular 
order statistics filter. 

4 Types of Noise and Where They 
Might Occur 

In this section, we present some of the more common image 
noise models and show sample images illustrating the various 
degradations. 

4.1 Gaussian Noise 
Probably the most frequently occurring noise is additive Gaus- 
sian noise. It is widely used to model thermal noise and, under 
some often reasonable conditions, is the limiting behavior of 
other noises, e.g., photon counting noise and film grain noise. 
Gaussian noise is used in many places in this book. 

The density function of univariate Gaussian noise, q, with 
mean p and variance u2 is 

for -cc < x < 00. Notice that the support, which is the range 
of values of x where the probability density is nonzero, is infinite 
in both the positive and negative directions. But, if we regard an 
image as an intensity map, then the values must be nonnegative. 
In other words, the noise cannot be strictly Gaussian. If it were, 
there would be some nonzero probability of having negative 
values. In practice, however, the range of values of the Gaussian 
noise is limited to approximately f 3 o  and the Gaussian density 
is a useful and accurate model for many processes. If necessary, 
the noise values can be truncated to keep f > 0. 

In situations in which a is a random vector, the multivariate 
Gaussian density becomes 

where p = Ea is the mean vector and C = E(a - p)(a - p)= 

The Gaussian distribution has many convenient mathematical 
properties - and some not so convenient ones. Certainly the 
least convenient property of the Gaussian distribution is that the 
cumulative distribution function cannot be expressed in closed 
form by using elementary functions. However, it is tabulated 
numerically. See almost any text on probability, e.g., [ 151. 

Linear operations on Gaussian random variables yield 
Gaussian random variables. Let a be N(p, E) and b = Ga + h. 
Then a straightforward calculation of @b(U) yields 

3 (26) 

which is the characteristic function of a Gaussian random vari- 
able with mean, G p + h, and covariance, G C G T .  

Perhaps the most significant property of the Gaussian distri- 
bution is called the Central Limit Theorem, which states that the 
distribution of a sum of a large number of independent, small 
random variables has a Gaussian distribution. Note the individ- 
ual random variables do not have to have a Gaussian distribution 
themselves, nor do they even have to have the same distribution. 
For a detailed development, see, e.g., Feller [ 6 ]  or Billingsley [2]. 
A few comments are in order. 

= ejuT(Gp+h)-uTG.ZGTu/2 

1. There must be a large number of random variables that 
contribute to the sum. For instance, thermal noise is the 
result of the thermal vibrations of an astronomically large 
number of tiny electrons. 

2. The individual random variables in the sum must be in- 
dependent, or nearly so. 

3. Each term in the sum must be small, negligible compared 
to the sum. 

As one example, thermal noise results from the vibrations of a 
very large number of electrons, the vibration of any one electron 
is independent of that of another, and no one electron con- 
tributes significantly more than the others. Thus, all three con- 
ditions are satisfied and the noise is well modeled as Gaussian. 
Similarly, binomial probabilities approach the Gaussian. A bi- 
nomial random variable is the sum of N independent Bernoulli 
(0 or 1 )  random variables. As N gets large, the distribution of 
the sum approaches a Gaussian distribution. 

In Fig. 2 we see the effect of a small amount of Gaussian noise 
(a = 10). Notice the “fuzziness” overall. It is often counterpro- 
ductive to try to use signal processing techniques to remove this 
level of noise; the filtered image is usually visually less pleasing 
than the original noisy one. 

InFig. 3,thenoisehasbeenincreasedbyafactorof3 (u = 30). 
The degradation is much more objectionable. Various filtering 
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1 

1 

FIGURE 2 
the standard deviation equal to 10. 

San Francisco image corrupted by additive Gaussian noise, with 

techniques can improve the quality, though usually at the expense 
of some loss of sharpness. 

4.2 Heavy-Tailed Noises 
In many situations, the conditions of the Central Limit Theorem 
are almost, but not quite, true. There may not be a large enough 
number of terms in the sum, or the terms may not be sufficiently 
independent, or a small number of the terms may contribute a 
disproportionate amount to the sum. In these cases, the noise 
may only be approximately Gaussian. One should be careful. 

P.. 

FIGURE 3 
the standard deviation equal to 30. 

San Francisco image corrupted by additive Gaussian noise, with 

6 

TABLE 1 Comparison of tail probabilities for the 
Gaussian and Double Exponential distributions‘ 

xo Gaussian Double Exponential 

1 0.32 0.37 
2 0.046 0.14 
3 0.0027 0.050 

‘Specifically, the values of Pr(lxl>Q) are listed for both 
distributions. 

Even when the center of the density is approximately Gaussian, 
the tails may not be. 

The tails of a distribution are the areas of the density corre- 
sponding to large x, i.e., as 1x1 + 00. A particularly interesting 
case is that in which the noise has heavy tails. “Heavy tails” means 
that for large values of x, the density, pa(x), approaches 0 more 
slowly than the Gaussian. For example, for large values of x, the 
Gaussian density goes to 0 as exp(-x2/2a2); the double expo- 
nential density (described below) goes to 0 as exp( - I x I /a). The 
double exponential density is said to have heavy tails. 

In Table 1, we present the tail probabilities, Pr( 1x1 > Q), for the 
Gaussian and double exponential distributions (both with mean 
0 and variance 1). Note the probability of exceeding 1 is approx- 
imately the same for both distributions, while the probability of 
exceeding 3 is -20 times greater for the double exponential than 
for the Gaussian. 

An interesting example of heavy tailed noise that should be 
familiar is static on a weak, broadcast AM radio station dur- 
ing a lightning storm. Most of the time, the conditions of the 
Central Limit Theorem are well satisfied and the noise is Gaus- 
sian. Occasionally, however, there may be a lightning bolt. The 
lightning bolt overwhelms the tiny electrons and dominates the 
sum. During the time period of the lightning bolt, the noise is 
non-Gaussian and has much heavier tails than the Gaussian. 

Some of the heavy-tailed models that arise in image processing 
include the following. 

Double exponentid 

The mean is p, and the variance a2. The double exponential 
is interesting in that the best estimate of p, is the median, 
not the mean, of the observations. 

Negative exponential: 

for x > 0 and Ea = p, > 0 and variance, p,2. The negative 
exponential is used to model speckle, for example, in S A R  
systems (Chapter 10.1). 

Alpha stable: In this class, appropriately normalized sums 
of independent and identically distributed random vari- 
ables have the same distribution as the individual random 
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variables. We have already seen that sums of Gaussian ran- 
dom variables are Gaussian, so the Gaussian is in the class 
of alpha-stable distributions. In general, these distributions 
have characteristic functions that look like exp(-lul") for 
0 < a 5 2. Unfortunately, except for the Gaussian (a = 2) 
and the Cauchy (a = I), it is not possible to write the 
density functions of these distributions in closed form. 

As a + 0, these distributions have very heavy tails. 
Gaussian mixture models: 

where po(x)  and p1 ( x )  are Gaussian densitieswith differing 
means, p.0 and p.1, or variances, a; and a:. In modeling 
heavy-tailed distributions, it is often true that a is small, 
saya = 0.05, p.0 = p.1, and a: >> at. 

In the "static in the AM radio" example above, at any 
given time, a would be the probability of a lightning strike, 
at the average variance of the thermal noise, and a: the 
variance of the lightning induced signal. Sometimes this 
model is generalized further and p l ( x )  is allowed to be 
non-Gaussian (and sometimes completely arbitrary). See 
Huber [ 111. 

One should be careful to use estimators that behave well in 
heavy-tailed noise. The sample mean, optimal for a constant 
signal in additive Gaussian noise, can perform quite poorly in 
heavy-tailed noise. Better choices are those estimators designed 
to be robust against the occasional outlier [ 111. For instance, the 
median is only slightly worse than the mean in Gaussian noise, 
but can be much better in heavy-tailed noise. 

4.3 Salt and Pepper Noise 
Salt and pepper noise refers to a wide variety of processes that 
result in the same basic image degradation: only a few pixels are 
noisy, but they are very noisy. The effect is similar to sprinkling 
white and black dots - salt and pepper - on the image. 

One example where salt and pepper noise arises is in transmit- 
ting images over noisy digital links. Let each pixel be quantized to 
B bits in the usual fashion. The value of the pixel can be written 
as X = EL'' bi2'. Assume the channel is a binary symmetric 
one with a crossover probability of E. Then each bit is flipped 
with probability E. Call the received value Y .  Then 

Pr(lX - Y I  = 2') = E (30) 

for i = 0,1, . . . , B - 1. The MSE due to the most significant 
bit is compared to ~ ( 4 ~ - '  - 1)/3 for all the other bits 
combined. In other words, the contribution to the MSE from 
the most significant bit is approximately 3 times that of all the 
other bits. The pixels whose most significant bits are changed 
will likely appear as black or white dots. 

Salt and pepper noise is an example of (very) heavy-tailed 
noise. A simple model is the following. Let f(x, y )  be the original 
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FIGURE 4 
probability of occurrence of 0.05. 

San Francisco image corrupted by salt and pepper noise, with a 

image and q(x, y)  be the image after it has been altered by salt 
and pepper noise: 

Pr(q = f )  = 1 - a, (31) 

(32) 

(33) 

Pr(q = max) = a/2, 

Pr(q = min) = 4 2 ,  

where max and min are the maximum and minimum image 
values, respectively. For %bit images, min = 0 and max = 255. 
The idea is that with probability 1 - (Y the pixels are unaltered; 
with probability a the pixels are changed to the largest or smallest 
values. The altered pixels looklike black and white dots sprinkled 
over the image. 

Figure 4 shows the effect of salt and pepper noise. Approxi- 
mately 5% of the pixels have been set to black or white (95% are 
unchanged). Notice the sprinkling of the black and white dots. 
Salt and pepper noise is easily removed with various order statis- 
tic filters, especially the center weighted median and the LUM 
filter [ 11. 

Salt and pepper noise appears in Chapter 3.2. 

4.4 Quantization and Uniform Noise 
Quantization noise results when a continuous randomvariable is 
converted to a discrete one or when a discrete random variable 
is converted to one with fewer levels. In images, quantization 
noise often occurs in the acquisition process. The image may be 
continuous initially, but to be processed it must be converted to 
a digital representation. 

As we shall see, quantization noise is usually modeled as uni- 
form. Various researchers use uniform noise to model other 
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impairments, e.g., dither signals. Uniform noise is the oppo- 
site of the heavy-tailed noises just discussed. Its tails are very 
light (zero!). 

Let b = Q(a) = a + q, where -A12 5 q 5 A/2 is the 
quantization noise and b is a discrete random variable usually 
represented with p bits. In the case in which the number of 
quantization levels is large (so A is small), q is usually modeled 
as being uniform between -A /2 and A /2 and independent of 
a. The mean and variance of q are 

sds = 0, (34) 

E(q- Eq)’ = - s2ds = A2/12. (35) 
A Sal2 -A12 

Since A - 2-p, u: - 22p. The signal-to-noise ratio increases by 
6 dB for each additional bit in the quantizer. 

When the number of quantization levels is small, the quanti- 
zation noise becomes signal dependent. In an image ofthe noise, 
signal features can be discerned. Also, the noise is correlated on 
a pixel-by-pixel basis and is not uniformly distributed. 

The general appearance of an image with too few quan- 
tization levels may be described as “scalloped.” Fine gradu- 
ations in intensities are lost. There are large areas of con- 
stant color separated by clear boundaries. The effect is 
similar to transforming a smooth ramp into a set of discrete 
steps. 

In Fig. 5, the San Francisco image has been quantized to only 
4 bits. Note the clear “stair stepping” in the sky. The previously 
smooth gradations have been replaced by large constant regions 
separated by noticeable discontinuities. 

4.5 Photon Counting Noise 
Fundamentally, most image acquisition devices are photon 
counters. Let a denote the number of photons counted at some 
location (a pixel) in an image. Then, the distribution of a is usu- 
ally modeled as Poisson with parameter, A. This noise is also 
called Poisson noise or Poisson counting noise. Poisson noise in 
the human visual system is discussed in Chapter 1.2. 

P(a = k) = e-‘Xk/k! (36) 

f o r k = 0 , 1 , 2  , . . . .  
The Poisson distribution is one for which calculating moments 

by using the characteristic function is much easier than by the 
usual sum. 

(38) 

(39) 

(40) 

Although this characteristic function does not look simple, it 
does yield the moments: 

’ Similarly, Ea2 = A + A2 and u2 = (A + A’) - A’ = A. We see 
one ofthe most interesting properties of the Poisson distribution, 
that the variance is equal to the expected value. 

Consider two different regions of an image, one brighter than 
the other. The brighter one has a higher A and therefore a higher 
noise variance. 

As another example of Poisson counting noise, consider the 
1 following. 

._ 
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Example: Effect of Shutter Speed on Image Quality Consider 
two pictures of the same scene, one taken with a shutter speed of 
1 unit time and the other with A > 1 units of time. Assume that 
an area of an image emits photons at the rate A per unit time. 
The first camera measures a random number of photons, whose 
expected value is A and whose variance is also A. The second, 
however, has an expected value and variance equal to AA. When 
time averaged (divided by A), the second now has an expected 
value of A and a variance of A/A < A. Thus, we are led to the 

f 
I 

FIGURE 5 San Francisco image quantized to 4 bits. 
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FIGURE 6 San Francisco image corrupted by Poisson noise. 

intuitive conclusion: all other things being equal, slower shutter 
speeds yield better pictures. 

For example, astrophotographers traditionally used long ex- 
posures to average over a long enough time to get good pho- 
tographs of faint celestial objects. Today’s astronomers use CCD 
arrays and average many short photographs, but the principal is 
the same. 

Figure 6 shows the image with Poisson noise. It was con- 
structed by taking each pixel value in the original image and 
generating a Poisson random variable with A equal to that value. 
Careful examination reveals that the white areas are noisier than 
the dark areas. Also, compare this image with Fig. 2, which shows 
Gaussian noise of almost the same power. 

4.6 Photographic Grain Noise 
Photographic grain noise is a characteristic of photographic 
films. It limits the effective magnification one can obtain from 
a photograph. A simple model of the photography process is as 
follows: 

A photographic film is made up from millions of tiny grains. 
When light strikes the film, some of the grains absorb the pho- 
tons and some do not. The ones that do change their appearance 
by becoming metallic silver. In the developing process, the un- 
changed grains are washed away. 

We will make two simplifymg assumptions: ( 1 )  the grains are 
uniform in size and character and ( 2 )  the probability that a grain 
changes is proportional to the number of photons incident upon 
it. Both assumptions can be relaxed, but the basic answer is the 
same. In addition, we will assume the grains are independent of 
each other. 

Slow film has a large number of small fine grains, whereas fast 
film has a smaller number of larger grains. The small grains give 
slow film a better, less grainy picture; the large grains in fast film 
cause a grainier picture. 

In a given area, A, assume there are L grains, with the prob- 
ability of each grain changing, equal to p .  Then the number of 
grains that change, N, is binomial: 

Pr(N = k) = p k ( l  - p ) L - k  (3 (44) 

Since L is large, when p small but A = Np = EN moderate, 
this probability is well approximated by a Poisson distribution 

Pr(N = k) = -, k! 

and by a Gaussian when p is larger: 

(45) 

(47) 

The probability interval on the right-hand side of Eq. (46) is 
exactly the same as that on the left except that it has been nor- 
malized by subtracting the mean and dividing by the standard 
deviation. Equation (47) results from Eq. (46) by an application 
ofthe Central Limit Theorem. In other words, the distribution of 
grains that change is approximately Gaussian with mean L p  and 
variance Lp(1  - p ) .  This variance is maximized when p = 0.5. 
Sometimes, however, it is sufficiently accurate to ignore this vari- 
ation and model grain noise as additive Gaussian with a constant 
noise power. 

4.7 Speckle in Coherent Light Imaging 
Speckle is one of the more complex image noise models. It is 
signal dependent, non-Gaussian, and spatially dependent. Much 
of this discussion is taken from [8,12]. We will first discuss the 
origins of speckle, then derive the first-order density of speckle, 
and conclude this section with a discussion of the second-order 
properties of speckle. 

In coherent light imaging, an object is illuminated by a co- 
herent source, usually a laser or a radar transmitter. For the 
remainder of this discussion, we will consider the illuminant to 
be a light source, e.g., a laser, but the principles apply to radar 
imaging as well. 

When coherent light strikes a surface, it is reflected back. Be- 
cause of the microscopic variations in the surface roughness 
within one pixel, the received signal is subjected to random 
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variations in phase and amplitude. Some of these variations in 
phase add constructively, resulting in strong intensities, and oth- 
ers add deconstructively, resulting in low intensities. This varia- 
tion is called speckle. 

Of crucial importance in the understanding of speckle is the 
point-spread function of the optical system. There are three 
regimes. 

The point-spread function is so narrow that the individ- 
ual variations in surface roughness can be resolved. The 
reflections off the surface are random (if, indeed, we can 
model the surface roughness as random in this regime), 
but we cannot appeal to the central limit theorem to argue 
that the reflected signal amplitudes are Gaussian. Since this 
case is uncommon in most applications, we will ignore it 
further. 
The point-spread function is broad compared to the feature 
size of the surface roughness, but small compared to the 
features of interest in the image. This is a common case and 
leads to the conclusion, presented below, that the noise is 
exponentially distributed and uncorrelated on the scale of 
the features in the image. Also, in this situation, the noise is 
often modeled as multiplicative. 
The point-spread function is broad compared to both the 
feature size of the object and the feature size of the surface 
roughness. Here, the speckle is correlated and its size distri- 
bution is interesting and is determined by the point-spread 
function. 

The development will proceed in two parts. First we will derive 
the first-order probability density of speckle and, second we will 
discuss the correlation properties of speckle. 

In any given macroscopic area, there are many microscopic 
variations in the surface roughness. Rather than trying to char- 
acterize the surface, we will content ourselves with finding a 
statistical description of the speckle. 

We will make the (standard) assumptions that the surface is 
very rough on the scale of the optical wavelengths. This rough- 
ness means that each microscopic reflector in the surface is at a 
random height (distance from the observer) and a random ori- 
entation with respect to the incoming polarization field. These 
random reflectors introduce random changes in the reflected 
signal's amplitude, phase, and polarization. Further, we assume 
these variations at any given point are independent from each 
other and independent from the changes at any other point. 

These assumptions amount to assuming that the system can- 
not resolve the variations in roughness. This is generally true in 
optical systems, but may not be so in some radar applications. 

The above assumptions on the physics of the situation can be 
translated to statistical equivalents: the amplitude ofthe reflected 
signal at any point, ( x ,  y), is multiplied by a random amplitude, 
denoted a(x, y), and the polarization, $(x ,  y), is uniformly dis- 
tributed between 0 and 2 ~ .  

Let u(x, y)  be the complex phasor of the incident wave at a 
point (x, y), v(x, y)  be the reflected signal, and w(x, y )  be the 
received phasor. From the above assumptions, 

and, letting k(., e )  denote the two-dimensional point-spread 
function of the optical system, 

One can convert the phasors to rectangular coordinates: 

Since the change in polarization is uniform between 0 and 2n, 
VR(X, y )  and VI(X, y) are statistically independent. Similarly, 
WR(X, y) and WI(X, y) are statistically independent. Thus, 

3 0 0 0  

WR(% = 1, L, k('% p ) V R ( x  - '% y - p) d a d h  (52) 

and similarly for wy ( x ,  y)  . 
The integral in Eq. (52) is basically a sum over many tiny 

increments in x and y. By assumption, the increments are inde- 
pendent of one another. Thus, we can appeal to the Central Limit 
Theorem and conclude that the distributions of w ~ ( x ,  y) and 
WI(X, y) are each Gaussian with mean 0 and variance c2. Note, 
this conclusion does not depend on the details of the roughness, 
as long as the surface is rough on the scale of the wavelength 
of the incident light and the optical system cannot resolve the 
individual components of the surface. 

The measured intensity, F(x, y),  is the squared magnitude of 
the received phasors: 

The distribution of F can be found by integrating the joint 
density of wR and WI over a circle of radius f 0.5: 

The corresponding density is pf( f): 

where we have taken the liberty to introduce the mean intensity, 
g = g(x, y) = 2c2(x ,  y). Alitde rearrangement can put this into 
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where q has a exponential density 

The mean of q is 0 and the variance is 1. 
The exponential density is much heavier tailed than the Gaus- 

sian density, meaning that much greater excursions from the 
mean occur. In particular, the standard deviation off equals Ef, 
i.e., the typical deviation in the reflected intensity is equal to the 
typical intensity. It is this large variation that causes speckle to 
be so objectionable to human observers. 

It is sometimes possible to obtain multiple images of the same 
scene with independent realizations of the speckle pattern, i.e., 
the speckle in any one image is independent of the speckle in the 
others. For instance, there may be multiple lasers illuminating 
the same object from different angles or with different optical 
frequencies. One means of speckle reduction is to average these 
images: 

(59) 

Now, the average of the negative exponentials has mean 1 (the 
same as each individual negative exponential) andvariance 1 / M. 
Thus, the average of the speckle images has a mean equal to 
g(x ,  y )  and variance g(x, y ) / M .  

Figure 7 shows an uncorrelated speckle image of San 
Francisco. Notice how severely degraded this image is. Careful 

FIGURE 7 San Francisco image with uncorrelated speckle. 

FIGURE 8 San Francisco image with correlated speckle. 

examination will show that the light areas are noisier than the 
dark areas. This image was created by generating an “image” of 
exponential variates and multiplying each by the corresponding 
pixel value. Intensity values beyond 255 were truncated to 255. 

See also Fig. 4(b) of Chapter 1.1 for an example of a SAR image 
with speckle. 

The correlation structure of speckle is largely determined by 
the width of the point-spread function. As above, the real and 
imaginary components (or, equivalently, the X and Y compo- 
nents) of the reflected wave are independent Gaussian. These 
components (wR and wI above) are individually filtered by the 
point-spread function of the imaging system. The intensity im- 
age is formed by taking the complex magnitude of the resulting 
filtered components. 

Figure 8 shows a correlated speckle image of San Francisco. 
The image was created by filtering WR and WI with a 2-D square 
filter of size 5 x 5. This size filter is too big for the fine details in 
the original image, but it is convenient to illustrate the correlated 
speckle. As above, intensity values beyond 255 were truncated to 
255. Notice the correlated structure to the “speckles.” The image 
has a pebbly appearance. 

We will conclude this discussion with a quote from Goodman 
[71: 

The general conclusions to be drawn from these ar- 
guments are that, in any speckle pattern, large-scale- 
size fluctuations are the most populous, and no scale 
sizes are present beyond a certain small-size cutoff. 
The distribution of scale sizes in between these limits 
depends on the autocorrelation function of the object 
geometry, or on the autocorrelation function of the 
pupil function of the imaging system in the imaging 
geometry. 
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4.8 Atmospheric Speckle 
The twinkling of stars is similar in cause to speckle in coherent 
light but has important differences. Averaging multiple frames 
of independent coherent imaging speckle results in an image es- 
timate whose mean equals the underlying image and whose vari- 
ance is reduced by the number of frames averaged over. However, 
averaging multiple images of twinkling stars results in a blurry 
image of the star. 

Fromthe Earth, stars (except the Sun!) are point sources. Their 
light is spatially coherent and planar when it reaches the atmo- 
sphere. Because of thermal and other variations, the diffusive 
properties of the atmosphere changes in an irregular way. This 
causes the index of refraction to change randomly. The star ap- 
pears to twinkle. If one averages multiple images of the star, one 
obtains a blurry image. 

Until recent years, the preferred way to eliminate atmospheric 
induced speckle (the “twinkling”) was to move the observer to 
a location outside the atmosphere, i.e., in space. In recent years, 
new techniques to estimate and track the fluctuations in atmo- 
spheric conditions have allowed astronomers to take excellent 
pictures from the earth. One class is called “speckle interferom- 
etry” [ 131. It uses multiple short duration (typically less than 1 s 
each) images and a nearby star to estimate the random speckle 
pattern. Once estimated, the speckle pattern can be removed, 
leaving the unblurred image. 
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7.5 Calibration Example 

One of the most fundamental aspects of image processing is 
the representation of the image. The basic concept that a digital 
image is a matrix of numbers is reinforced by virtually all forms 
of image display. It is another matter to interpret how that value 
is related to the physical scene or object that is represented by the 
recorded image and how closely displayed results represent the 
data obtained from digital processing. It is these relationships to 
which this chapter is addressed. 

Images are the result of a spatial distribution of radiant en- 
ergy. The most common images are two-dimensional (2-D) 
color images seen on television. Other everyday images in- 
clude photographs, magazine and newspaper pictures, com- 
puter monitors, and motion pictures. Most of these images rep- 
resent realistic or abstract versions of the real world. Medical 
and satellite images form classes of images for wluch there is 
no equivalent scene in the physical world. Because of the lim- 
ited space in this chapter, we will concentrate on the pictorial 
images. 

The representation of an image goes beyond the mere desig- 
nation of independent and dependent variables. In that limited 
case, an image is described by a function 

where x, y are spatial coordinates (angular coordinates can also 
be used), A indicates the wavelength of the radiation, and t repre- 
sents time. It is noted that images are inherently two-dimensional 
spatial distributions. Higher dimensional functions can be repre- 
sented by a straightforward extension. Such applications include 
medical CT and MRI, as well as seismic surveys. For this chap- 
ter, we will concentrate on the spatial and wavelength variables 
associated with still images. The temporal coordinate will be left 
for another chapter. 

In addition to the stored numerical values in a discrete co- 
ordinate system, the representation of multidimensional in- 
formation includes the relationship between the samples and 
the real world. This relationship is important in the determi- 
nation of appropriate sampling and subsequent display of the 
image. 
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All rights of reproduction in any form reserved. 33 7 



338 Handbook of Image and Video Processing 

Before the fundamentals of image presentation are presented, 
it necessary define our notation and to review the prerequisite 
knowledge that is required to understand the following mate- 
rial. A review of rules for the display of images and functions is 
presented in Section 2, followed by a review of mathematical pre- 
liminaries in Section 3. Section 4 will cover the physical basis for 
multidimensional imaging. The foundations of colorimetry are 
reviewed in Section 5. This material is required to lay a founda- 
tion for a discussion of color sampling. Section 6 describes mul- 
tidimensional sampling with concentration on sampling color 
spectral signals. We will discuss the fundamental differences be- 
tween sampling the wavelength and spatial dimensions of the 
multidimensional signal. Finally, Section 7 contains a mathe- 
matical description of the display of multidimensional data. This 
area is often neglected by many texts. The section will emphasize 
the requirements for displaying data in a fashion that is both 
accurate and effective. The final Section briefly considers future 
needs in this basic area. 

2 Preliminary Notes on Display of Images 

One difference between one-dimensional (1-D) and 2-D func- 
tions is the way they are displayed. One-dimensional functions 
are easily displayed in a graph where the scaling is obvious. The 
observer need only examine the numbers that label the axes 
to determine the scale of the graph and get a mental picture 
of the function. With two-dimensional scalar-valued functions 
the display becomes more complicated. The accurate display 
of vector-valued two-dimensional functions, e.g., color images, 

will be discussed after the necessary material on sampling and 
colorimetery is covered. 

Two-dimensional functions can be displayed in several dif- 
ferent ways. The most common are supported by MATLAB [ 11. 
The three most common are the isometric plot, the gray-scale 
plot, and the contour plot. The user should choose the right dis- 
play for the information to be conveyed. Let us consider each 
of the three display modalities. As simple example, consider the 
two-dimensional Gaussian functional form 

where, for the following plots, a = 1 and b = 2. 
The isometric or surface plots give the appearance of a three- 

dimensional (3-D) drawing. The surface can be represented as 
a wire mesh or as a shaded solid, as in Fig. 1. In both cases, 
portions of the function will be obscured by other portions; for 
example, one cannot see through the main lobe. This represen- 
tation is reasonable for observing the behavior of mathematical 
functions, such as point-spread functions, or filters in the space 
or frequency domains. An advantage of the surface plot is that 
it gives a good indication of the values of the function since a 
scale is readily displayed on the axes. It is rarely effective for the 
display of images. 

Contour plots are analogous to the contour or topographic 
maps used to describe geographical locations. The sinc function 
is shown using this method in Fig. 2. All points that have a 
specific value are connected to form a continuous line. For a 
continous function the lines must form closed loops. This type 
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FIGURE 1 Shaded surface plot. 
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of plot is useful in locating the position of maxima or minima 
in images or two-dimensional functions. It is used primarily 
in spectrum analysis and pattern recognition applications. It is 
difficult to read values from the contour plot and it takes some 
effort to determine whether the functional trend is up or down. 
The filled contour plot, available in MATLAB, helps in this last 
task. 

Most monochrome images are displayed by using the gray- 
scale plot, in which the value of a pixel is represented by it relative 
lightness. Since in most cases, high values are displayed as light 
and low values are displayed as dark, it is easy to determine 
functional trends. It is almost impossible to determine exact 
values. For images, which are nonnegative functions, the display 
is natural; but for functions, which have negative values, it can 
be quite artificial. 

In order to use this type of display with functions, the repre- 
sentation must be scaled to fit in the range of displayable gray 
levels. This is most often done using a min/max scaling, in which 
the function is linearly mapped such that the minimum value 
appears as black and the maximum value appears as white. This 
method was used for the sinc function shown in Fig. 3. For 
the display of functions, the min/max scaling can be effective 
to indicate trends in the behavior. Scaling for images is another 
matter. 

Let us consider a monochrome image that has been digitized 
by some device, e.g., a scanner or camera. Without knowing 
the physical process of digitization, it is impossible to determine 
the best way to display the image. The proper display of images 
requires calibration of both the input and output devices. For 

now, it is reasonable to give some general rules about the display 
of monochrome images. 

1. For the comparison of a sequences of images, it is imper- 
ative that all images be displayed with the same scaling. 

sinc function, gray scale plot 
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FIGURE 3 Gray-scale plot. 
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It is hard to emphasize this rule sufficiently and hard to 
count all the misleading results that have occurred when 
it has been ignored. The most common violation of this 
rule occurs when comparing an original and processed 
image. The user scales both images independently, using 
min/max scaling. In many cases the scaling can produce a 
significant enhancement of low contrast images, which can 
be mistaken for improvements produced by an algorithm 
under investigation. For example, consider an algorithm 
designed to reduce noise. The noisy image modelled by 

g = f + n .  

Since the noise is both positive and negative, the noisy im- 
age, g, has a larger range than the clean image, f. Almost 
any noise reduction method will reduce the range of the 
processed image; thus, the output image undergoes addi- 
tional contrast enhancement if min/max scaling is used. 
The result is greater apparent dynamic range and a better 
looking image. 

There are several ways to implement this rule. The most 
appropriate way will depend on the application. The scal- 
ing may be done using the min/max of the collection of 
all images to be compared. In some cases, it is appropriate 
to truncate values at the limits of the display, rather than 
force the entire range into the range of the display. This 
is particularly true of images containing a few outliers. It 
may be advantageous to reduce the region of the image to 
a particular region of interest, which will usually reduce 
the range to be reproduced. 

2. Display a step wedge, a strip of sequential gray levels from 
minimum to maximum values, with the image to show 
how the image gray levels are mapped to brightness or 
density. This allows some idea of the quantitative values 
associatedwith the pixels. This is routinely done on images 
that are used for analysis, such as the digital photographs 
from space probes. 

3. Use a graytone mapping, which allows a wide range of 
gray levels to be visually distinguished. In software such 
as MATLAB, the user can control the mapping between 
the continuous values of the image and the values sent to 
the display device. For example, consider the CRT moni- 
tor as the output device. The visual tonal qualities of the 
output depend on many factors, including the brightness 
and contrast setting of the monitor, the specific phosphors 
used in the monitor, the linearity of the electron guns, and 
the ambiant lighting. It is recommended that adjustments 
be made so that a user is able to distinguish all levels of a 
step wedge of -32 levels from min black to m a  white. 

Most displays have problems with gray levels at the ends 
ofthe range being indistinguishable. This can be overcome 
by proper adjustment of the contrast and gain controls and 
an appropriate mapping from image values to display val- 
ues. For hardcopy devices, the medium should be taken 

into account. For example, changes in paper type or man- 
ufacturer can results in significant tonal variations. 

3 Notation and Prerequisite Knowledge 

In most cases, the multidimensional process can be represented 
as a straightforward extension of one-dimensional processes. 
Thus, it is reasonable to mention the one-dimensional opera- 
tions that are prerequisite to the chapter and will form the basis 
of the multidimensional processes. 

3.1 Practical Sampling 
Mathematically, ideal sampling is usually represented with the 
use of a generalized function, the Dirac delta function, 6( t) [2]. 
The entire sampled sequence can be represented using the comb 
function. 

00 

comb(t) = S(t- n), 

where the sampling interval is unity. The sampled signal is ob- 
tained by multiplication: 

00 

S d ( t )  = s(t)comb(t) = s ( t )  6 ( t  - n) 
n=--ao 

= 2 s ( t ) 6 ( t -  n). (3) 
n=-co 

It is common to use the notation of {s(n)) or s(n) to represent G- 

the collection of samples in discrete space. The arguments n and 
twill serve to distinguish the discrete or continuous space. 

Practical imaging devices, such as video cameras, CCD arrays, 
and scanners, must use a finite aperture for sampling. The comb 
function cannot be realized by actual devices. The finite aperture 
is required to obtain a fmite amount of energy from the scene. 
The engineering tradeoff is that large apertures receive more 
light and thus willhave higher signal-to-noise ratios (SNRs) than 
smaller apertures, while smaller apertures have a higher spatial 
resolution than larger ones. This is true for apertures larger than 
the order of the wavelength of light. Below that point, diffraction 
limits the resolution. 

The aperture may cause the light intensity to vary over the 
finite region of integration. For a single sample of a one- 
dimensional signal at time, n T,  the sample value can be obtained 
bY 

n T  

s(n> = in-l)T s(t)a(nT - t) dt, (4) 

where a( t )  represents the impulse response (or light variation) 
of the aperture. This is simple convolution. The sampling of the 
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signal can be represented by 

s (n)  = [s(t) * a(t)]comb(t/ T ) ,  ( 5 )  

where the asterisk represents convolution. This model is rea- 
sonably accurate for the spatial sampling of most cameras and 
scanning systems. 

The sampling model can be generalized to include the case 
in which each sample is obtained with a different aperture. For 
this case, the samples, which need not be equally spaced, are 
given by 

where the limits of integration correspond to the region of sup- 
port for the aperture. While there may be cases in which this 
form is used in spatial sampling, its main use is in sampling the 
wavelength dimension of the image signals. That topic will be 
covered later. The generalized signal reconstruction equation has 
the form 

M 

(7) 
n=-m 

where the collection of functions, {gn( t )} ,  provide the interpola- 
tion from discrete to continuous space. The exact form of {gn( t)} 
depends on the form of {a,(t)}. 

3.2 One-Dimensional Discrete 
System Representation 
Linear operations on signals and images can be represented as 
simple matrix multiplications. The internal form of the ma- 
trix may be complicated, but the conceptual manipulation of 
images is very easy. Let us consider the representation of a one- 
dimensional convolution before going on to multidimensions. 
Consider the linear, time-invariant system 

bo 

g ( t )  = l, h(u ) s ( t  - U) du. 

The discrete approximation to continuous convolution is given 
bY 

L-1 

g(n) = h(k)s(n - k), (8) 
k=O 

where the indices IZ and k represent sampling of the analog sig- 
nals, e.g., s (n)  = s ( n  T) .  Since it is assumed that the signals under 
investigation have finite support, the summation is over a finite 
number of terms. If s(n) has M nonzero samples and h(n) has 
L nonzero samples, then g(n)  can have at most N = M + L - 1 
nonzero samples. It is assumed the reader is familiar with what 
conditions are necessary so that we can represent the analog 
system by discrete approximation. Using the definition of the 

signal as a vector, s = [s(O), s(l), . . . , s ( M  - l)], we can write 
the summation of Eq. (8) as 

g = Hs, (9 )  

where the vectors s and g are of length M and N, respectively 
and the N x M matrix H accordingly [3]. It is often desirable 
to work with square matrices. In this case, the input vector can 
be padded with zeros to the same size as g and the matrix H 
modified to produce an N x N Toeplitz form. It is often useful, 
because of the efficiency of the FFT, to approximate the Toeplitz 
form by a circulant form by forcing appropriate elements into the 
upper-right region of the square Toeplitz matrix. This approxi- 
mation works well with impulse responses of short duration and 
autocorrelation matrices with small correlation distances. 

3.3 Multidimensional System Representation 
The images of interest are described by two spatial coordinates 
and a wavelength coordinate, f ( x ,  y, h). This continuous im- 
age will be sampled in each dimension. The result is a function 
defined on a discrete coordinate system, f(m, n, I ) .  This would 
usually require a three-dimensional matrix. However, to allow 
the use of standard matrix algebra, it is common to use stacked 
notation [3]. Each band, defined by wavelength hr or simply 1, 
of the image is a P x P image. Without loss of generality, we 
will assume a square image for notational simplicity. This image 
can be represented as a P 2  x 1 vector. The Q bands of the image 
can be stacked in a like manner forming a Q P 2  x 1 vector. 

Optical blurring is modeled as convolution of the spatial im- 
age. Each wavelength of the image may be blurred by a slightly 
different point-spread function (PSF). This is represented by 

where the matrix H has a block form 

The submatrix Hij is of dimension P2 x P2 and represents the 
contribution of the jth band of the input to the ith band of the 
output. Since an optical system does not modify the frequency 
of an optical signal, H will be block diagonal. There are cases, 
e.g., imaging using color filter arrays, in which the diagonal as- 
sumption does not hold. 

Algebraic representation using stacked notation for 2-D sig- 
nals is more difficult to manipulate and understand than for 
1-D signals. An example of this is illustrated by considering the 
autocorrelation of multiband images that are used in multispec- 
tral restoration methods. This is easily written in terms of the 
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matrix notation reviewed earlier: 

Rff = E M T } ,  

where f is a Q P 2  x 1 vector. In order to compute estimates we 
must be able to manipulate this matrix. While the Q P2 x Q P 2  
matrix is easily manipulated symbolically, direct computation 
with the matrix is not practical for realistic values of P and 
Q, e.g. Q = 3, P = 256. For practical computation, the ma- 
trix form is simplified by using various assumptions, such as 
separability, circularity, and independence of bands. These as- 
sumptions result in block properties of the matrix that reduce 
the dimension of the computation. A good example is shown in 
the multidimensional restoration problem [4]. 

4 Analog Images as Physical Functions 

The image that exists in the analog world is a spatiotemporal 
distribution of radiant energy. As mentioned earlier, this chap- 
ter will not discuss the temporal dimension but will concentrate 
on the spatial and wavelength aspects of the image. The func- 
tion is represented by f ( x ,  y, X). While it is often overlooked 
by students eager to process their first image, it is fundamental 
to define what the value of the function represents. Since we are 
dealing with radiant energy, the value of the function represents 
energy flux, exactly like electromagnetic theory. The units will 
be energy per unit area (or angle) per unit time per unit wave- 
length. From the imaging point ofview, the function is described 
by the spatial energy distribution at the sensor. It does not matter 
whether the object in the image emits light or reflects light. 

T~ obtain a sample of the analog image we must integrate To understand the fundamental difference in the wavelength do- 
over space, time, and wavelength to obtain a finite amount of main, we must describe some of the fundamentals of color vision 
energy* since we have time from the description, we and color measurement. What is presented here is only a brief 
can have watts per unit area per unit wavelength. T~ obtain over- description that will allow us to proceed with the description of 

lightness, the wavelength dimension is integrated out using the sampling and mathematical representation of color images. 
the luminous efficiency function discussed in the following set- A more complete description of the human color visual system 
tion on colorimetry. The common units of light intensity are can be found in r7, 
l u ~  (lumens/m2) or footcandles. See [ 51 for an exact definition The retina contains two types of light sensors, rods and cones. 
of radiometric quantities. A table of typical light levels is given The rods are used for monochrome vision at low light levels; 
in Table 1. The most common instrument for measuring light the cones are used for color vision at higher light levels. There 
intensity is the light meter used in professional and amateur are three types of cones. Each type is maximally sensitive to 

photography. a different part of the spectrum. They are often referred to as 
In order to sample an image correctly, we must be able to long, medium, and short wavelength regions. A common de- 

characterize its energy distribution in each of the dimensions. scription refers to them as red, green, and blue cones, although 
their maximal sensitivity is in the yellow, green, and blue regions 
of the spectrum. Recall that the visible spectrum extends from 
-400 nm (blue) to -700 nm (red). Cones sensitivities are related 
to the absorption sensitivity of the pigments in the cones. The 
absorption sensitivity of the different cones has been measured 
by several researchers. An example of the curves is shown in 
Fig. 4. Long before the technology was available to measure the 
curves directly, they were estimated from a clever color matching 
experiment. A description of this experiment, which is still used 
today, can be found in [ 8,5]. 

TABLE 1 Qualitative description of luminance levels 

Description LUX (cum2) 

Moonless night -10-6 
Full moon night -10-3 
Restaurant -100 
Office -350 
Overcast day -5000 
Sunnv dav -200.000 

Footcandles 

-10-7 
-10-4 
-9 
-33 
-465 
-18600 

There is little that can be said about the spatial distribution of 
energy. From experience, we know that images vary greatly in 
spatial content. Objects in an image usually may appear at any 
spatial location and at any orientation. This implies that there 
is no reason to vary the sample spacing over the spatial range 
of an image. In the cases of some very restricted ensembles of 
images, variable spatial sampling has been used to advantage. 
Since these examples are quite rare, they will not be discussed 
here. 

Spatial sampling is done by using a regular grid. The grid is 
most often rectilinear, but hexagonal sampling has been thor- 
oughly investigated [ 61. Hexagonal sampling is used for effi- 
ciency when the images have a natural circular region of support 
or circular symmetry. All the mathematical operations, such as 
Fourier transforms and convolutions, exist for hexagonal grids. 
It is noted that the reasons for uniform sampling of the temporal 
dimension follow the same arguments. 

The distribution of energy in the wavelength dimension is not 
as straightforward to characterize. In addition, we are often not as 
interested in reconstructing the radiant spectral distribution as 
we are the spatial distribution. We are interested in constructing 
an image that appears to the human to have the same colors as the 
original image. In this sense, we are actually using color aliasing 
to our advantage. Because of this aspect of color imaging, we 
need to characterize the color vision system of the eye in order 
to determine proper sampling of the wavelength dimension. 
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Cane Sensitivities 

Wavelength (nm) 

FTGURE 4 Cone sensitivities. 

Grassmann formulated a set of laws for additive color mixture 
in 1853 [9, 10, 51. Additive in this sense refers to the addition 
of two or more radiant sources of light. In addition, Grassmann 
conjectured that any additive color mixture could be matched 
by the proper amounts of three primary stimuli. Considering 
what was known about the physiology of the eye at that time, 
these laws represent considerable insight. It should be noted 
that these “laws” are not physically exact but represent a good 
approximation under a wide range of visibility conditions. There 
is current research in the vision and color science community 
on the refinements and reformulations of the laws. 

Grassmann’s laws are essentially unchanged as printed in re- 
cents texts on color science [ 51. With our current understanding 
of the physiology of the eye and a basic background in linear 
algebra, Grassmann’s laws can be stated more concisely. Further- 
more, extensions of the laws and additional properties are easily 
derived by using the mathematics of matrix theory. There have 
been several papers that have taken a linear systems approach to 
describing color spaces as defined by a standard human observer 
[ 11,12, 13,141. This section will briefly summarize these results 
and relate them to simple signal processing concepts. For the 
purposes of this work, it is sufficient to note that the spectral 
responses of the three types of sensors are sufficiently different 
so as to define a three-dimensional vector space. 

5.1 Color Sampling 
The mathematical model for the color sensor of a camera or the 
human eye can be represented by 

where r a ( X )  is the radiant distribution of light as a function of 
wavelength and mk(X) is the sensitivity of the kth color sensor. 
The sensitivity functions of the eye were shown in Fig. 4. 

Note that sampling ofthe radiant power signal associated with 
a color image can be viewed in at least two ways. If the goal of the 
sampling is to reproduce the spectral distribution, then the same 
criteria for sampling the usual electronic signals can be directly 
applied. However, the goal of color sampling is not often to repro- 
duce the spectral distribution but to allow reproduction of the 
color sensation. This aspect of color sampling will be discussed 
in detail below. To keep this discussion as simple as possible, we 
will treat the color sampling problem as a subsampling of a high 
resolution discrete space; that is, the N samples are sufficient to 
reconstruct the original spectrum, using the uniform sampling 
of Section 3. 

It has been assumed in most research and standards work that 
the visual frequency spectrum can be sampled fmely enough to 
allow the accurate use of numerical approximation of integra- 
tion. A common sample spacing is 10 nm over the range 400- 
700 nm, although ranges as wide as 360-780 nm have been used. 
This is used for many color tables and lower priced instrumen- 
tation. Precision color instrumentation produces data at 2-nm 
intervals. Finer sampling is required for some illuminants with 
line emitters. Reflective surfaces are usually smoothly varying 
and can be accurately sampled more coarsely. Sampling of color 
signals is discussed in Section 6 and in detail in [ 151. 

Proper sampling follows the same bandwidth restrictions that 
govern all digital signal processing. Following the assumption 
that the spectrum can be adequately sampled, the space of all 
possible visible spectra lies in an N-dimensional vector space, 
where N = 31 is the range if 400-700 nm is used. The spectral 
response of each of the eye’s sensors can be sampled as well, 
giving three linearly independent Nvectors that define thevisual 
subspace. 

Under the assumption of proper sampling, the integral of 
Eq. (12) can be well approximated by a summation 

where Ah represents the sampling interval and the summation 
limits are determined by the region of support of the sensitivity 
of the eye. This equation can be generalized to represent any 
color sensor by replacing s k (  e )  with mk ( e ) .  This discrete form is 
easily represented in matrixhector notation. This will be done 
in the following sections. 

5.2 Discrete Representation of Color Matching 
The response of the eye can be represented by a matrix, S = 
[SI, s2, sg], where the N vectors, si, represent the response of 
the ith type sensor (cone). Any visible spectrum can be repre- 
sented by an N vector, f. The response of the sensors to the input 
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spectrum is a three vector, t, obtained by 

t = STf. (14) 

Two visible spectra are said to have the same color if they appear 
the same to the human observer. In our linear model, this means 
that iff and g are two N vectors representing different spectral 
distributions, they are equivalent colors if 

STf = S T g .  (15) 

It is clear that there may be many different spectra that appear 
to be the same color to the observer. Two spectra that appear 
the same are called metamers. Metamerism (meh.tam.er.ism) 
is one of the greatest and most fascinating problems in color 
science. It is basically color "aliasing" and can be described by 
the generalized sampling described earlier. 

It is difficult to find the matrix, S ,  that defines the response of 
the eye. However, there is a conceptually simple experiment that 
is used to define the human visual space defined by S .  A detailed 
discussion of this experiment is given in [ 8,5]. Consider the set of 
monochromatic spectra e{ ,  for i = 1,2, . . . , N. The Nvectors, 
ei, have a one in the ith position and zeros elsewhere. The goal of 
the experiment is to match each of the monochromatic spectra 
with a linear combination of primary spectra. Construct three 
lighting sources that are linearly independent in N space. Let the 
matrix, P = [PI, pz, p3], represent the spectral content of these 
primaries. The phosphors of a color television are a common 
example (Fig. 5). 

An experiment is conducted in which a subject is shown one 
of the monochromactic spectra, ei, on one-half of a visual field. 
On the other half of the visual field appears a linear combination 
of the primary sources. The subject attempts to visually match 
an input monochromatic spectrum by adjusting the relative in- 

FIGURE 5 CRT monitor phosphors. 

tensities of the primary sources. Physically, it may impossible to 
match the input spectrum by adjusting the intensities of the pri- 
maries. When this happens, the subject is allowed to change the 
field of one of the primaries so that it falls on the same field as the 
monochromatic spectrum. This is mathematically equivalent to 
subtracting that amount of primary from the primary field. De- 
noting the relative intensities of the primaries by the three vector 

= [a i l ,  uj2, ais] T, we write the match mathematically as 

Combining the results of all N monochromatic spectra, we can 
write Eq. ( 5 )  as 

where I = [eI, e2, . . . , e ~ ]  is the N x N identity matrix. 
Note that because the primaries, P, are not metameric, the 

product matrix is nonsingular, i.e., (STP)-' exists. The human 
visual subspace ( H V S S )  in the N-dimensional vector space is 
defined by the column vectors of S; however, this space can be 
equally well defined by any nonsingular transformation of those 
basis vectors. The matrix, 

is one such transformation. The columns of the matrix A are 
called the color matching functions associated with the pri- 
maries P. 

To avoid the problem of negative values that cannot be real- 
ized with transmission or reflective filters, the CIE developed a 
standard transformation of the color matching functions that 
yields no negative values. This set of color matching functions is 
known as the standard observer, or the CIE XYZ color matching 
functions. These functions are shown in Fig. 6. For the remainder 
of this chapter, the matrix, A, can be thought of as this standard 
set of functions. 

5.3 Properties of Color Matching Functions 
Having defined the human visual subspace, we find it worthwhile 
to examine some ofthe common properties ofthis space. Because 
of the relatively simple mathematical definition of color match- 
ing given in the last section, the standard properties enumerated 
by Grassmann are easily derived by simple matrix manipulations 
[ 131. These properties play an important part in color sampling 
and display. 

Property 1 (Dependence of Color on A) 
Two visual spectra, f and g, appear the same if and only if 
ATf = ATg. Writing this mathematically, we have STf = STg iff 
ATf = ATg. Metamerism is color aliasing. Two signals f and g are 
sampled by the cones or equivalently by the color matching func- 
tions and produce the same tristimulus values. The importance 
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FIGURE 6 CIE XYZ color matching functions. 
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of this property is that any linear transformation of the sensitiv- 
ities of the eye or the CIE color matching functions can be used 
to determine a color match. This gives more latitude in choosing 
color filters for cameras and scanners as well as for color mea- 
surement equipment. It is this property that is the basis for the 
design of optimal color scanning filters [ 16, 171. 

A note on terminology is appropriate here. When the color 
matching matrix is the CIE standard [ 5 ] ,  the elements of the 
three vector defined by t = ATf are called tristimulus values 
and usually denoted by X, Y, Z; i.e., tT = [ X, Y, 21. The chro- 
maticityofa spectrum is obtained by normalizing the tristimulus 
values, 

x = X/(X f Y + a, 
y = Y / ( X + Y + z ) ,  

z = Z / ( X + Y + Z ) .  

Since the chromaticity coordinates have been normalized, any 
two of them are sufficient to characterize the chromaticity of a 
spectrum. The x and y terms are the standard for describing 
chromaticity. It is noted that the convention of using different 
variables for the elements of the tristimulus vector may make 
mental conversion between the vector space notation and nota- 
tion in common color science texts more difficult. 

The CIE has chosen the a2 sensitivity vector to correspond 
to the luminance efficiency function of the eye. This function, 
shown as the middle curve in Fig. 6, gives the relative sensitivity 
of the eye to the energy at each wavelength. The Y tristimulus 
value is called luminance and indicates the perceived brightness 
of a radiant spectrum. It is this value that is used to calculate the 
effective light output of light bulbs in lumens. The chromaticities 
x and y indicate the hue and saturation of the color. Often the 
color is described in terms of [ x ,  y, Y ]  because of the ease of 

Property 2 (Transformation of Primaries) 
If a different set of primary sources, Q, are used in the color 
matching experiment, a different set of color matching functions, 
B, are obtained. The relation between the two color matching 
matrices is given by 

The more common interpretation ofthe matrixATQ is obtained 
by a direct examination. The jth column of Q, denoted qj,  is 
the spectral distribution of the jth primary of the new set. The 
element [ATQ] j ,  j is the amount of the primary pi required to 
match primary qj. It is noted that the above form of the change of 
primaries is restricted to those that can be adequatelyrepresented 
under the assumed sampling discussed previously. In the case 
that one of the new primaries is a Dirac delta function located 
between sample frequencies, the transformation ATQ must be 
found by interpolation. The CIE RGB color matching functions 
are defined by the monochromatic lines at 700 nm, 546.1 nm, 
and 435.8 nm and shown in Fig. (7). The negative portions of 
these functions are particularly important, since they imply that 
all color matching functions associated with realizable primaries 
have negative portions. 

One of the uses of this property is in determining the filters 
for color television cameras. The color matching functions as- 
sociated with the primaries used in a television monitor are the 
ideal filters. The tristimulus values obtained by such filters would 
directly give the values to drive the color guns. The NTSC stan- 
dard [R, G, B] are related to these color matching functions. For 
coding purposes and efficient use of bandwidth, the RGB values 
are transformed toYIQvalues, where Yis the CIE Y (luminance) 

CIE RGE Color Matching Functions 
0.35 n 
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and land Qcarry the hue and saturation information. The trans- 
formation is a 3 x 3 matrix multiplication [3] (see property 3 
below). 

Unfortunately, since the TV primaries are realizable, the color 
matching functions which correspond to them are not. This 
means that the filters which are used in TV cameras are only 
an approximation to the ideal filters. These filters are usually 
obtained by simply clipping the part of the ideal filter that falls 
below zero. This introduces an error which cannot be corrected 
by any postprocessing. 

Property 3 (Transformation of Color Vectors) 
If c and d are the color vectors in three space associated with the 
visible spectrum, f, under the primaries P and Q respectively 
then 

where A is the color matching function matrix associated with 
primaries P. This states that a 3 x 3 transformation is all that is 
required to go from one color space to another. 

Property 4 (Metamers and the Human 
Visual Subspace) 
The N-dimensional spectral space can be decomposed into a 
3-D subspace known as the HVSS and an N-3-D subspace known 
as the black space. All metamers of aparticular visible spectrum, 
f, are given by 

where P, = A(ATA)-'AT is the orthogonal projection operator 
to the visual space, Pb = [I - A(ATA)-'AT] is the orthogonal 
projection operator to the black space, and g is any vector in N 
space. 

It should be noted that humans cannot see (or detect) all 
possible spectra in the visual space. Since it is a vector space, 
there exist elements with negative values. These elements are 
not realizable and thus cannot be seen. All vectors in the black 
space have negative elements. While the vectors in the black space 
are not realizable and cannot be seen, they can be combined with 
vectors in the visible space to produce a realizable spectrum. 

wavelength, g = Lr. The tristimulus values associated with this 
emitted spectrum are obtained by 

t = ATg = ATLr = ATr. (23)  

The matrix Al will be called the color matching functions under 
illuminant 1. 

Metamerism under different illuminants is one of the greatest 
problems in color science. A common imaging example occurs 
in making a digital copy of an original color image, e.g., a color 
copier. The user will compare the copy to the original under the 
light in the vicinity of the copier. The copier might be tuned to 
produce good matches under the fluorescent lights of a typical 
office but may produce copies that no longer match the original 
when viewed under the incandescent lights of another office or 
viewed near a window that allows a strong daylight component. 

A typical mismatch can be expressed mathematically by rela- 
tions 

where Lf and Ld are diagonal matrices representing standard 
fluorescent and daylight spectra, respectively, and rl and r2 rep- 
resent the reflectance spectra of the original and copy respec- 
tively. The ideal images would have 1-2 matching rl under a l l  
illuminations, which would imply they are equal. This is vir- 
tually impossible since the two images are made with different 
colorants. The conditions for obtaining a match are discussed 
next. 

5.4 Motes on Sampling for Color Aliasing 
Sampling of the radiant power signal associated with a color 
image can be viewed in at least two ways. If the goal of the 
sampling is to reproduce the spectral distribution, then the same 
criteria for sampling the usual electronic signals can be directly 
applied. However, the goal of color sampling is not often to 
reproduce the spectral distribution but to allow reproduction of 
the color sensation. To illustrate this problem, let us consider the 
case of a television system. The goal is to sample the continuous 
color spectrum in such a way that the color sensation of the 
spectrum can be reproduced by the monitor. 

A scene is captured with a television camera. We will consider 
onlythe color aspects of the signal, i.e., a single pixel. The camera 
uses three sensors with sensitivities M to samde the radiant 

Property 5 (Effect of Illumination) 
The effect of an ihm.hation spectrum, represented by the N 
vector 1, is to transform the color matching matrix A by spectrum. The measurements are given by 

(22) v = MTr, (26) A1 =LA, 

where L is a diagonal matrix defined by setting the diagonal ele- 
ments ofL to the elements ofthe vector 1. The emitted spectrum 
for an object with reflectance vector, r, under illumination, 1, is 
given by multiplying the reflectance by the illuminant at each 

where r is a high-resolution sampled representation of the ra- 
diant spectrum and M = [ml, m2, m3] represent the high- 
resolution sensitivities of the camera. The matrix M includes 
the effects of the filters, detectors, and optics. 
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These values are used to reproduce colors at the television 
receiver. Let us consider the reproduction of color at the re- 
ceiver by a linear combination of the radiant spectra of the three 
phosphors on the screen, denoted P = [pl, p2, p3], where pk 
represent the spectra of the red, green, and blue phosphors. We 
will also assume that the driving signals, or control values, for 
the phosphors to be linear combinations of the values measured 
by the camera, c = Bv. The reproduced spectrum is 3 = Pc. 

The appearance of the radiant spectra is determined by the 
response of the human eye, 

(27) T t = S  r, 

where S is defined by Eq. (14). The tristimulus values of the 
spectrum reproduced by the TV are obtained by 

? = ST? = STPBMTr. (28) 

If the sampling is done correctly, the tristimulus values can be 
computed, that is, B can be chosen so that t = ?. Since the three 
primaries are not metameric and the eye’s sensitivities are linearly 
independent, (STP)-l exists and from the equality we have 

(sTp)-lsT = B M ~ ,  (29) 

Since equality of tristimulus values holds for all r. This means 
that the color spectrum is sampled properly if the sensitivities of 
the camera are within a linear transformation of the sensitivities 
of the eye, or equivalently the color matching functions. 

Considering the case in which the number of sensors, Q, in 
a camera or any color measuring device is larger than three, 
the condition is that the sensitivities of the eye must be linear 
combination of the sampling device sensitivities. In this case, 

There are still only three types of cones that are described by S. 
However, the increase in the number of basis functions used in 
the measuring device allows more freedom to the designer of 
the instrument. From the vector space viewpoint, the sampling 
is correct if the three-dimensional vector space defined by the 
cone sensitivity functions lies within the N-dimensional vector 
space defined by the device sensitivity functions. 

Let us now consider the sampling of reflective spectra. Since 
color is measured for radiant spectra, a reflective object must 
be illuminated to be seen. The resulting radiant spectra is the 
product of the illuminant and the reflection of the object, 

r = Lro, (31) 

where L is diagonal matrix containing the high resolution sam- 
pled radiant spectrum of the illuminant and the elements of the 
reflectance of the object are constrained, 0 5 ro(k) 5 1. 

To consider the restrictions required for sampling a reflective 
object, we must account for two illuminants: the illumination 

under which the object is to be viewed, and the illumination 
under which the measurements are made. The equations for 
computing the tristimulus values of reflective objects under the 
viewing illuminant L, are given by 

t = ATL,ro, (32) 

where we have used the CIE color matching functions in- 
stead of the sensitivities of the eye (Property 1). The equa- 
tion for estimating the tristimulus values from the sampled data 
is given by 

where Ld is a matrk containing the illuminant spectrum of the 
device. The sampling is proper if there exists a B such that 

It is noted that in practical applications the device illuminant 
usually places severe limitations on the problem of approximat- 
ing the color matching functions under the viewing illuminant. 
In most applications the scanner illumination is a high-intensity 
source, so as to minimize scanning time. The detector is usu- 
ally a standard CCD array or photomultiplier tube. The design 
problem is to create a filter set M that brings the product of the 
filters, detectors, and optics to within a linear transformation of 
AI. Since creating a perfect match with real materials is a prob- 
lem, it is of interest to measure the goodness of approximations 
to a set of scanning filters that can be used to design optimal 
realizable filter sets [ 16, 171. 

5.5 A Note on the Nonlinearity of the Eye 
It is noted here that most physical models of the eye include 
some type of nonlinearity in the sensing process. This nonlin- 
earity is often modelled as a logarithm; in any case, it is always 
assumed to be monotonic within the intensity range of interest. 
The nonlinear function, v = V(c), transforms the three vector 
in an element independent manner; that is, 

Since equality is required for a color match by Eq. (2), the func- 
tion V(-) does not affect our definition of equivalent colors. 
Mathematically, 

is true if, and only if, STf = S T g .  This nonlinearity does have 
a definite effect on the relative sensitivity in the color match- 
ing process and is one of the causes of much searching for the 
“uniform color space” discussed next. 
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5.6 Uniform Color SDaces malized values be greater than 0.01 is an attempt to account for 
the fact that at low illumination the cones become less sensitive 
and the rods (monochrome receptors) become active. A linear 
model is used at low light levels. The exact form of the linear 
portion of CIELAB and the definition of the CIELUV (see-luv) 
transformation can be found in [9, 171. 

The color error between two colors cl and c2 are measured in 
terms of 

It has been mentioned that the psychovisual system is known 
to be nonlinear. The problem of color matching can be treated 
by linear systems theory since the receptors behave in a linear 
mode and exact equality is the goal. In practice, it is seldom that 
an engineer can produce an exact match to any specification. 
The nonlinearities of the visual system play a critical role in 
the determination of a color sensitivity function. Color vision is 
too complex to be modeled by a simple function. A measure of 
sensitivity that is consistent with the observations of arbitrary 
scenes is well beyond present capability. However, much work 
has been done to determine human color sensitivity in matching 
two color fields that subtend only a small portion of the visual 
field. 

Some of the first controlled experiments in color sensitivity 
were done by MacAdam [ 181. The observer viewed a disk made 
of two semicircles of different colors on a neutral background. 
One color was fixed; the other could be adjusted by the user. Since 
MacAdam's pioneering work, there have been many additional 
studies of color sensitivity. Most of these have measured the 
variability in three dimensions that yields sensitivity ellipsoids 
in tristimulus space. The work by Wyszecki and Felder [ 191 is of 
particular interest, as it shows the variation between observers 
and between a single observer at different times. The large vari- 
ation of the sizes and orientation of the ellipsoids indicates that 
mean square error in tristimulus space is a very poor measure of 
color error. A common method oftreating the nonuniform error 
problem is to transform the space into one where the Euclidean 
distance is more closely correlated with perceptual error. The 
CIE recommended two transformations in 1976 in an attempt 
to standardize measures in the industry. 

Neither of the CIE standards exactly achieve the goal of a 
uniform color space. Given the variability of the data, it is un- 
reasonable to expect that such a space could be found. The trans- 
formations do reduce the variations in the sensitivity ellipses by 
a large degree. They have another major feature in common: the 
measures are made relative to a reference white point. By using 
the reference point the transformations attempt to account for 
the adaptive characteristics of the visual system. The CIELAB 
(see-lab) space is defined by 

1/3 
L* = 116(:) - 16, (37) 

for X/X , ,  Y/Y, ,  Z/Z,  > 0.01. The values X,, Y,, 2, are the 
tristimulus values of the reference white under the reference il- 
lumination, and X ,  Y ,  2 are the tristimulus values that are to 
be mapped to the Lab color space. The restriction that the nor- 

where ci = [ Lf, a:, bf 1. A useful rule ofthumb is that two colors 
cannot be distinguished in a scene iftheir A Eab  value is less than 
3.  The AEab threshold is much lower in the experimental setting 
than in pictorial scenes. It is noted that the sensitivities discussed 
above are for flat fields. The sensitivity to modulated color is a 
much more difficult problem. 

6 Sampling of Color Signals and Sensors 

It has been assumed in most of this chapter that the color signals 
of interest can be sampled sufficiently well to permit accurate 
computation by using discrete arithmetic. It is appropriate to 
consider this assumption quantitatively. From the previous sec- 
tions, it is seen that there are three basic types of color signals 
to consider: reflectances, illuminants, and sensors. Reflectances 
usually characterize everyday objects, but occasionally manmade 
items with special properties such as filters and gratings are of 
interest. Illurninants vary a great deal from natural daylight or 
moonlight to special lamps used in imaging equipment. The 
sensors most often used in color evaluation are those of the hu- 
man eye. However, because of their use in scanners and cameras, 
CCDs and photomultiplier tubes are of great interest. 

The most important sensor characteristics are the cone sensi- 
tivities of the eye or, equivalently, the color matching functions, 
e.g., Fig. 6. It is easily seen that functions in Figs. 4, 6, and 7 
are very smooth functions and have limited bandwidths. A note 
on bandwidth is appropriate here. The functions represent con- 
tinuous functions with finite support. Because of the finite sup- 
port constraint, they cannot be bandlimited. However, they are 
clearly smooth and have very low power outside of a very small 
frequency band. With the use of 2-nm representations of the 
functions, the power spectra of these signals are shown in Fig. 8. 
The spectra represent the Welch estimate in which the data are 
first windowed, and then the magnitude of the DFT is computed 
[2]. It is seen that IO-nm sampling produces very small aliasing 
error. 

In the context of cameras and scanners, the actual photoelec- 
tric sensor should be considered. Fortunately, most sensors have 
very smooth sensitivity curves that have bandwidths comparable 
to those of the color matching functions. See any handbook on 
CCD sensors or photomultiplier tubes. Reducing the variety of 
sensors to be studied can also be justified by the fact that flters 



4.6 Color and Multispectral Image Representation and Display 349 

2.5 

2 -  

% 
.$ 1.5 

0 

-10 

-7.n 

-30 

9 -40 

-50 

60 

-70 

-80 

- 

- 

-I 

Y _ _ _ _  
.......... z 

cycledm 

FIGURE 8 Power spectrum of CIE XYZcolor matching functions. 

can be designed to compensate for the characteristics of the sen- 
sor and bring the combination within a linear combination of 
the CMFs. 

The function r (I), which is sampled to give the vector r used 
in the Colorimetry section, can represent either reflectance or 
transmission. Desktop scanners usuallywork with reflective me- 
dia. There are, however, several €dm scanners on the market that 
are used in this type of environment. The larger dynamic range 
of the photographic media implies a larger bandwidth. For- 
tunately, there is not a large difference over the range of ev- 
eryday objects and images. Several ensembles were used for a 
study in an attempt to include the range of spectra encountered 
by image scanners and color measurement instrumentation 
[20]. The results showed again that IO-nm sampling was suffi- 
cient [15]. 

There are three major types of viewing illuminants of inter- 
est for imaging: daylight, incandescent, and fluorescent. There 
are many more types of illuminants used for scanners and mea- 
surement instruments. The properties of the three viewing il- 
luminants can be used as a guideline for sampling and signal 
processing, which involves other types. It has been shown that 
the illurninant is the determining factor for the choice of sam- 
pling interval in the wavelength domain [ 151. 

Incandescent lamps and natural daylight can be modeled as fil- 
tered blackbody radiators. The wavelength spectra are relatively 
smooth and have relatively small bandwidths. As with previ- 
ous color signals, they are adequately sampled at 10 nm. Office 
lighting is dominated by fluorescent lamps. Typical wavelength 
spectra and their frequency power spectra are shown in Figs. 9 
and 10. 

It is with the fluorescent lamps that the 10-nm sampling be- 
comes suspect. The peaks that are seen in the wavelength spectra 
are characteristic of mercury and are delta function signals at 
404.7,435.8,546.1, and 578.4 nm. The fluorescent lamp can be 
modeled as the sum of a smoothly varying signal produced by 
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FIGURE 9 Cool white fluorescent and warm white fluorescent. 

the phosphors and a delta function series: 

where &k represents the strength ofthe spectral h e  at wavelength 
I k .  The wavelength spectra of the phosphors is relatively smooth, 
as seen from Fig. 9. 

From Fig. 10, it is clear that the fluorescent signals are not 
bandlimited in the sense used previously. The amount of power 
outside of the band is a function of the positions and strengths 
of the line spectra. Since the lines occur at known wavelengths, it 
remains only to estimate their power. This can be done by signal 
restoration methods, which can use the information about this 
specific signal. With the use of such methods, the frequencyspec- 
trum of the lamp may be estimated by combining the frequency 
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spectra of its components 

where ho is an arbritrary origin in the wavelength domain. The 
bandlimited spectra L ~ ( o )  can be obtained from the sampled 
restoration and is easily represented by IO-nm sampling. 

7 Color I/O Device Calibration 

In Section 2, we briefly discussed control of gray-scale output. 
Here, a more formal approach to output calibration will be given. 
We can apply this approach to monochrome images by consid- 
ering only a single band, corresponding to the CIE Y channel. 
In order to mathematically describe color output calibration, we 
need to consider the relationships between the color spaces de- 
fined by the output device control values and the colorimetric 
space defined by the CIE. 

7.1 Calibration Definitions and Terminology 
A device-independent color space is defined as any space that has 
a one-to-one mapping onto the CIE XYZ color space. Examples 
of CIE device-independent color spaces include XYZ, LAB, LUV, 
and Yxy. Current image format standards, such as JPEG, support 
the description of color in LAB. By definition, a device-dependent 
color space cannot have a one-to-one mapping onto the CIE XYZ 
color space. In the case of a recording device (e.g., scanners), the 
device-dependent values describe the response of that particular 
device to color, For a reproduction device (e.g., printers), the 
device dependent values describe only those colors the device 
can produce. 

The use of device dependent descriptions of color presents 
a problem in the world of networked computers and printers. 
A single RGB or CMYK vector can result in different colors on 
different display devices. Transferring images colorimetrically 
between multiple monitors and printers with device dependent 
descriptions is difficult since the user must know the character- 
istics of the device for which the original image is defined, in 
addition to those of the display device. 

It is more efficient to define images in terms of a CIE color 
space and then transform these data to device-dependent de- 
scriptors for the display device. The advantage of this approach 
is that the same image data are easily ported to a variety of 
devices. To do this, it is necessary to determine a mapping, 
F&~e(.), from device-dependent control values to a CIE color 
space. 

Modern printers and display devices are limited in the colors 
they can produce. This limited set of colors is defined as the 
gamut of the device. If is the range of values in the selected 
CIE color space and QPrht is the range of the device control 

values, then the set 

defines the gamut of the color output device. For colors in the 
gamut, there will exist a mapping between the device-dependent 
control values and the CIE XYZ color space. Colors that are 
in the complement, GC, cannot be reproduced and must be 
gamut-mapped to a color that is within G. The gamut map- 
ping algorithm 2) is a mapping from s 2 a  to G, that is, D(t) E 
G Vt E A more detailed discussion of gamut mapping is 
found in [21]. 

The mappings Fdevice,  ciice, and D make up what is defined 
as a device profile. These mappings describe how to transform 
between a CIE color space and the device control values. The 
International Color Commission (ICC) has suggested a standard 
format for describing a profile. This standard profile can be based 
on a physical model (common for monitors) or a look-up table 
(LUT) (common for printers and scanners) [22]. In the next 
sections, we will mathematically discuss the problem of creating 
a profile. 

7.2 CRT Calibration 
A monitor is often used to provide a preview for the printing 
process, as well as comparison of image processing methods. 
Monitor calibration is almost always based on a physical model 
of the device [ 23-25]. A typical model is 

where t is the CIE value produced by driving the monitor with 
control value c = [ r, g ,  b] '. The value of the tristimulus vector 
is obtained by using a colorimeter or spectrophotometer. 

Creating a profile for a monitor involves the determination of 
these parameters where rm,, gma, bm, are the maximum values 
of the control values (e.g., 255). To determine the parameters, 
a series of color patches is displayed on the CRT and measured 
with a colorimeter, which will provide pairs of CIE values { t k }  
and control values {ck}, k = 1, . . . , M.  

Values for yr, yg, Yb, ro, go, and bo are determined such that 
the elements of [r ' ,  g', b'] are linear with respect to the elements 
ofXYZand scaled between the range [0,1]. The matrixH is then 
determined from the tristimulus values of the CRT phosphors 
at maximum luminance. Specifically, the mapping is given by 

XR max XR max 

ZBmax ZBmax ZBmax 
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where [ X R  Y R ~ ~  ZR ,] is the CIE XYZ tristimulus value 
of the red phosphor for control value c = [ r,,, 0, 01 T .  

This standard model is often used to provide an approxima- 
tion to the mapping Fmonitor(C) = t. Problems such as spatial 
variation of the screen or electron gun dependence are typically 
ignored. A LUT can also be used for the monitor profile in a 
manner similar to that described below for the scanner cali- 
bration. 

7.3 Scanners and Cameras 
Mathematically, the recording process of a scanner or camera 
can be expressed as 

where the matrix M contains the spectral sensitivity (including 
the scanner illuminant) of the three (or more) bands of the de- 
vice, ri is the spectral reflectance at spatial point i ,  7-l models any 
nonlinearities in the scanner (invertible in the range of interest), 
and zi is the vector of recorded values. 

We define colorimetric recording as the process of recording an 
image such that the CIE values of the image can be recovered 
from the recorded data. This reflects the requirements of ideal 
sampling in Section 5.4. Given such a scanner, the calibration 
problem is to determine the continuous mapping Fsc, that will 
transform the recorded values to a CIE color space: 

Unfortunately, most scanners and especially desktop scanners 
are not colorimetric. This is caused by physical limitations on 
the scanner illuminants and filters that prevent them from be- 
ing within a linear transformation of the CIE color matching 
functions. Work related to designing optimal approximations is 
found in [26,27]. 

For the noncolorimetric scanner, there will exist spectral re- 
flectances that look different to the standard human observer but 
when scanned produce the same recorded values. These colors 
are defined as being metameric to the scanner. This cannot be 
corrected by any transformation Fscan. 

Fortunately, there will always (except for degenerate cases) 
exist a set of reflectance spectra over which a transformation 
from scan values to CIE XYZvalues will exist. Such a set can be 
expressed mathematically as 

where Fsan is the transformation from scanned values to col- 
orimetric descriptors for the set of reflectance spectra in &can. 

This is a restriction to a set of reflectance spectra over which the 
continuous mapping Fscm exists. 

Look-up tables, neural nets, and nonlinear and linear models 
for FSan have been used to calibrate color scanners [28-31,321. 

In all of these approaches, the first step is to select a collection of 
color patches that span the colors of interest. These colors should 
not be metameric to the scanner or to the standard observer un- 
der the viewing illuminant. This constraint ensures a one-to-one 
mapping between the scan values and the device-independent 
values across these samples. In practice, this constraint is easily 
obtained. The reflectance spectra of these Mq color patches will 
be denoted by {q}k for 1 5 k 5 Mq. 

These patches are measured by using a spectrophotometer or 
a colorimeter, which will provide the device-independent values 

{tk = ATqd for 1 5 k p Mq. 

Without loss of generality, {tk} could represent any colorimet- 
ric or device-independent values, e.g., CIE LAB, CIE LUV in 
which case {tk = C(ATqk)} where L(.) is the transforma- 
tion from CIE XYZ to the appropriate color space. The patches 
are also measured with the scanner to be calibrated providing 
{zk = %(MTqk)) for 1 5 k 5 Mq. Mathematically, the calibra- 
tion problem is to find a transformation FSa, where 

and I ]  . ] I 2  is the error metric in the CIE color space. In practice, 
it may be necessary and desirable to incorporate constraints on 
Fscan [31l. 

7.4 Printers 
Printer calibration is difficult because of the nonlinearity of 
the printing process, and the wide variety of methods used for 
color printing (e.g., lithography, inkjet, dye sublimation, etc.). 
Thus, printing devices are often calibrated with an LUT with the 
continuum of values found by interpolating between points in 
the LUT [28,33]. 

For a profile of a printer to be produced, a subset of values 
spanning the space of allowable control values, ck for 1 I k 5 
Mp, for the printer is first selected. These values produce a set of 
reflectance spectra that are denoted by pk for 1 5 k p Mp.  

The patches Pk are measured by using a colorimetric device 
that provides the values 

{ t k  = ATpk} for 1 5 k 5 Mp.  

The problem is then to determine a mapping Fprint, which is the 
solution to the optimization problem 
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where as in the scanner calibration problem, there may be con- 
straints which Fprint must satisfy. 

7.5 Calibration Example 
Before an example of the need for calibrated scanners and dis- 
plays is presented, it is necessary to state some problems with the 
display to be used, i.e., the color printed page. Currently, printers 
and publishers do not use the CIE values for printing but judge 
the quality of their prints by subjective methods. Thus, it is im- 
possible to numerically specify the image values to the publisher 
of this book. We have to rely on the experience of the company 
to produce images that faithfully reproduce those given them. 
Every effort has been made to reproduce the images as accurately 
as possible. The tiff image format allows the specification of CIE 
values, and the images defined by those values can be found on 
the ftp site, ftp.ncsu.edu in directory pub/hjt/calibration. Even 
in the tiff format, problems arise because of quantization to 
8 bits. 

The original color “Lena” image is available in many places 
as an RGB image. The problem is that there is no standard to 
which the RGB channels refer. The image is usually printed to 
an RGB device (one that takes RGB values as input) with no 
transformation. An example of this is shown in Fig. 11. This 
image compares well with current printed versions of this image, 
e.g., those shown in papers in the special issue on color image 
processing of the IEEE Transactions on Image Processing [34]. 
However, the displayed image does not compare favorably with 
the original. An original copy of the image was obtained and 
scanned by using a calibrated scanner, and then printed by using 
a calibrated printer. The result, shown in Fig. 12, does compare 
well with the original. Even with the display problem mentioned 
above, it is clear that the images are sufficiently different to make 
the point that calibration is necessary for accurate comparisons 
of any processing method that uses color images. To complete the 
comparison, the RGB image that was used to create the corrected 
image shown in Fig. 12 was also printed directly on the RGB 
printer. The result, shown in Fig. 13, further demonstrates the 
need for calibration. A complete discussion of this calibration 
experiment is found in [ 2 11. 

8 Summary and Future Outlook 

FIGURE 13 New scan Lena. (See color section, p. C-12.) 

The major portion of the chapter emphasized the problems and 
differences in treating the color dimension of image data. Un- 
derstanding of the basics of uniform sampling is required to 
proceed to the problems of sampling the color component. The 
phenomenon of aliasing is generalized to color sampling by not- 
ing that the goal of most color sampling is to reproduce the 
sensation of color and not the actual color spectrum. The cali- 
bration of recording and display devices is required for accurate 
representation of images. The proper recording and display out- 
lined in Section 7 cannot be overemphasized. 
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Although the fundamentals of image recording and display 
are well understood by experts in that area, they are not well 
appreciated by the general image processing community. It is 
hoped that future work will help widen the understanding of 
this aspect of image processing. At present, it is fairly difficult 
to calibrate color image I/O devices. The interface between the 
devices and the interpretation of the data is still problematic. 
Future work can make it easier for the average user to obtain, 
process, and display accurate color images. 
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Segmentation is a fundamental low-level operation on images. 
If an image is already partitioned into segments, where each seg- 
ment is a “homogeneous” region, then a number of subsequent 
image processing tasks become easier. A homogeneous region 
refers to a group of connected pixels in the image that share a 
common feature. This feature could be brightness, color, texture, 
motion, etc. (see Fig. 1). References [ 1-51 contain exploratory 
articles on image segmentation, and they provide an excellent 
place to start for any newcomer researching this topic. 

Boundary detection is the dual goal of image segmenta- 
tion. After all, if the boundaries between segments are spec- 
ified then it is equivalent to identi@ng the individual seg- 
ments themselves. However, there is one important difference. 
In the process of image segmentation, one obtains regionwise 
information regarding the individual segments. This informa- 
tion can then be subsequently used to classify the individual 
segments. Unfortunately, detection of the boundaries between 
segments does not automatically yield regionwise information 
about the individual segments. So, further image analysis is 
necessary before any segment-based classification can be at- 
tempted. Since segmentation, and not classification, is the focus 
of this chapter, from here on image segmentation is meant to 
include the dual problem of boundary detection as well. Note 

that boundary detection is distinctly different from edge de- 
tection. Edges are typically detected by examining the local 
variation of image intensity or color. Edge detection is cov- 
ered in two separate chapters, Chapters 4.11 and 4.12, of this 
handbook. 

The importance of segmentation is dear by the central role it 
plays in a number of applications that involve image and video 
processing - remote sensing, medical imaging, intelligent ve- 
hicles, video compression, and so on. The success or failure of 
segmentation algorithms in any of these applications is heav- 
ily dependent on the type of feature(s) used,l the reliability with 
which these features are extracted, and the criteria used for merg- 
ing pixels based on the similarity of their features. 

As one can gather from [ 1-51, there are many ways to seg- 
ment an image. So, the question is, Why statistical methods? 
Statistical methods are a popular choice for image segmentation 
because they involve image features that are simple to inter- 
pret by using a model, features that are easy to compute from 
a given image, and merging methods that are firmly rooted in 
statistical/mathematical inference. Although there is no explicit 
consensus in the image processing community that statistical 
methods are the way to go as far image segmentation is con- 
cerned, the volume and diversity of publications certainly seem 

‘Features refer to image attributes such brightness, color, texture, motion, etc. 

Copyright @ 2000 bykademic Press. 
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FIGURE 2 
tion, p. C-14.) 

Collection of images; in each there are four clearly distinguishable segments. (See color sec- 

2 Image Segmentation: 
The Mathematical Problem 

Let 52 = {(m, n): 1 5 m 5 M and 1 5 n 5 denote an 
M x N lattice of points (m, n). An observed image f is a func- 
tion defined on this domain 52, and for any given point (m, n) 
the observation f (m, n) at that point takes a value from a set A. 
Two common examples for the set A are A = {A: 0 p A p 255) 
for black-white images, and A = {(Al, Az, As): 0 5 A1 
255,O I A2 I 255, and 0 p A3 p 255) for color (red, 
green, and blue channel) images. A segmented image g is also 
a function on the same domain 52, but for any given point 
(m, n) the segmentation g(m, n) at that point takes a value 
from a different set r. Two common examples for the set r 
are: r = {y: y = 0 or l}, denoting the two segments in a 
binary segmentation, and r = {y: y = 1 ,2 ,3 ,4 ,  . . . , k}, de- 
noting the k different segments in the case of a multiclass seg- 
mentation. Of course, g could also denote a boundary image. 
For any given point (m, n),  g(m, n) = 1 could denote the 
presence of a boundary at that point and g(m, n) = 0 the 
absence. 

Given a particular realization of the observed image f = fo, 
the problem of image segmentation is one of estimating the 
corresponding segmented image using go = h( fo). Statistical 
methods for image segmentation provide a coherent derivation 
of this estimator function /I(.). 

3 Image Statistics for Segmentation 

To understand the role of statistics in image segmentation, let 
us examine some preliminary functions that operate on images. 
Given an image fo that is observed over the lattice 52, suppose 
that 5 2 1  G 52 and fi is a restriction of fo to only those pixels 
that belong to 521. Then, one can define a variety of statistics 
that capture the spatial continuity of the pixels that comprise fi . 
Here are some common examples. 

3.1 Gaussian Statistics 
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measures the amount of variability in the pixels that comprise fi 
along the ( p ,  q)th direction. For a certain fi, if Tfi (0, 1) is very 
small, for example, then that implies that fi has a little or no 
variability along the (0,l)th (i.e., horizontal) direction. Compu- 
tation of this statistic is straightforward, as it is merely a quadratic 
operation on the difference between intensity values of adjacent 
(neighboring) pixels. Tf, ( p ,  q )  and minor variation thereof is re- 
ferred to as the Gaussian statistic and is widely used in statistical 
methods for segmentation of gray-tone images; see [6,7]. 

3.2 Fourier Statistics 

measures the amount of energy in frequency bin (a, p) that the 
pixelsthat comprise fi possess. For acertain fi, if F f i  ( 0 , 2 0 ~ / N )  
has a large value, for example, then that implies that fi has a sig- 
nificant cyclical variation of the (0,20 ? T I N )  (i.e., horizontally 
every 10 pixels) frequency. Computation of this statistic is more 
complicated that the Gaussian one. The use of fast Fourier trans- 
form algorithms, however, can significantly reduce the associated 
burden. F f i  (a, p), called the periodogram statistic, is also used 
in statistical methods for segmentation of textured images; see 
[8,91. 

measures the amount of homogeneity in the pixels that comprise 
gl along the ( p ,  q)th direction. For a certain gl, if L,, (1, 1) is 
very large, for example, then that implies that gl has a little or 
no variability along the (1, 1)th (i.e., 135" diagonal) direction. 
Computation of this statistic is straightforward, as it is merely 
an indicator operation on the difference between label values 
of adjacent (neighboring) pixels. L,, ( p ,  q )  and minor variation 
thereof is referred to as the label statistic and is widely used 
in statistical methods for restoration of gray-tone images; see 
[ 12, 131. 

4 Statistical Image Segmentation 

Computation of image statistics of the type defined in Section 3 
tremendously facilitates the task of image segmentation. As a way 
to illustrate their utility, three image segmentation problems that 
arise in three distinctly different applications are presented in the 
paragraphs that follow. In each case, a description of the how a 
solution was arrived at using statistical methods is given. 

4.1 Vehicle Segmentation 
Today, there is a desire among consumers worldwide for auto- 
motive accessories that make their driving experience safer and 
more convenient. Studies have shown that consumers believe 
that safety and convenience accessories are important in their 
new-car purchasing decision. In response to this growing mar- 
ket, the automotive industry, in cooperation with government 
agencies, has embarked on programs to develop new safety and 
convenience technologies. These include, but are not limited to, 
collision warning (CW) systems, lane departure warning (LDW) 3.3 Covariance Statistics 
systems, and intelligent cruise control (ICC) systems. These sys- 
tems and others comprise an area of study referred to as intelli- 
gent transportation systems (ITS), or more broadly, intelligent 

An important image segmentation problem within ITS is one 

Kfi = (fi(m n) - P f i m l ( m  f l )  - PfA where 
(m,n)eQl 

Pfi = f 1 ( m  n) (3) vehicle highway systems (IVHS). 
(m,n)EQl 

of segmenting vehicles from their background; see [ 141. Figure 3 
contains a typical image in which a vehicle has to be segmented measures the correlation between the various components that 

comprise each pixel of fi . If K fi is a 3 x 3 matrix and Kfi  (1,2) has 
large value, for example, then that means that components 1 and 
2 (could be the red and green channels) ofthe pixels that make up 
fi are highly correlated. Computation ofthis statistic is very time 
consuming, even more so than the Fourier one, and there are no 
known methods to alleviate this burden. Kf i  is called the covari- 
ance matrix of fi, and this too has played a substantial role in 
statistical methods for segmentation of color images; see [ 10,111. 

3.4 Label Statistics 

I 

L g l ( m  = Q[gl(m,  n>, gl (m + p ,  n + 411, where I 

I -_- - 
i i  ' 

1 i f a = b  
-1 i f a # b  

FIGURE 3 Typical image in which a vehicle has to be segmented from the { Q(u, b) = 

for(p, 4) E 11, (1, o), (1, 11, (1, -11, . . (4) background. (Seecolorsection,p. C-14.) 



4.7 Statistical Methods for Image Segmentation 359 

s r a 

FIGURE 4 Fisher color distance between pixels inside and outside of a square template placed on top of the 
image in Fig. 3. The template hypothesis on the right has higher merit than the one on the left. (See color section, 
p. C-15.) 

from its background. In the following paragraphs, a statistical 
method for this segmentation is described. The vehicle of inter- 
est, it is a~sumed ,~  is merely a square that is described by three 
parameters (Vj, V;, V,) corresponding to the bottom edges, left 
edges, and width of the square. Different values of these three 
parameters yield vehicles of different sizes and positions within 
the image. 

Vehicles seldom tend to be too big or small: and so depending 
on the distance of the vehicle from the camera, it is possible to 
expect the width of the vehicle to be within a certain range. 
Suppose that Wmin and W,, denote this range; then 

is a probability density function (pdf) that enforces the strict 
constraint that V, be between Wmin and Wm,. Since it is a 
probability over (one of) the quantities being estimated, it is 
commonly referred to as a prior pdf, or simply a prior. 

Let ( v j ,  V I ,  v,) denote a specific hypothesis of the unknown 
vehicle parameters (Vj, v, V,). The merit of this hypothesis 
is decided by another probability, called the likelihood pdf, or 
simply the likelihood. In this application, it is appealing to de- 
cide the merit of a hypothesis by evaluating the difference in 
color between pixels that are inside the square (i.e., the pixels 
that are hypothesized to be the vehicle) and those that imme- 
diately surround the square (i.e., the pixels that are in the im- 
mediate background of the hypothesized vehicle). The specific 
color difference evaluator that is employed is called the Fisher 
distance: 

where p1 and K1 are the mean and covariance of the pixels 

3This is a valid assumption when the rear view of the vehicle is obtained from 

4Even accounting for the variations in the actual physical dimensions of the 
a camera placed at ground level. 

vehicle. 

that are inside the hypothesized square - computed by using 
Eq. (3) - and p.2 and K2 are the mean and covariance of pixels 
that are immediately surrounding the hypothesized square. Hy- 
potheses corresponding to a large color difference between pixels 
inside and immediately surrounding the square have more merit 
(and hence a higher probability of occurrence) than those with 
smaller color difference; see Fig. 4. 

The problem of segmenting a vehicle from its background 
boils down to estimating the three parameters (vb, V;, V,) from 
the given color image. An optimal5 estimate of these parameters 
is the one that maximizes the product of the prior and likelihood 
probabilities in Eqs. (5) and (6), respectively - the so-called 
maximum a posteriori (MAP) estimate. Figure 5 shows a few 
examples of estimating the correct (Vb, V;, V,) by using this 
procedure. This same procedure can also be adapted to segment 
images in other applications. Figure 6 shows a few examples in 
which the procedure has been used to segment images that are 
entirely different from those in Figs. 3-5. 

4.2 Aerial Image Segmentation 
Accurate maps have widespread uses in modern day-to-day liv- 
ing. Maps of urban and rural areas are regularly used in an entire 
spectrum of civilian and military tasks, starting from simple ones 
like obtaining driving directions all the way to complicated ones 
like highway planning. Maps themselves are just a portion of the 
information, and they are typically used to index other impor- 
tant geophysical attributes such as weather, traffic, population, 
size, and so on. Large systems called geographical information 
systems (GISs) collate, maintain, and deliver maps, weather, pop- 
ulation, and the like on demand. 

Image segmentation is a tool that finds widespread use in the 
creation and maintenance of a GIS. One example pertains to the 
operator-assisted updating of old maps by using aerial images, 
in which segmentation is used to supplement or complement 
the human operator; see [ 151. Shown in Fig. 7 is an aerial image 

50ptimal in the sense that among all estimates of the parameters, this is the 
one that minimizes the probability of making an error. 
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FIGURE 5 Correct estimation of the vehicle ahead, using the MAP procedure. (See color section, p. C 1 5 . )  

i 
'1 

FIGURE 6 Segmentation of other images, using the same Fisher color distance. Top: A segmentation that yields 
all segments that contains the color white. Bottom: A segmentation that yields all segments that do not contain the 
color green. (See color section, p. C-16.) 
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FIGURE 7 Updating old maps using image segmentation. (a) Aerial image of Eugene, Oregon in 1993. (b) Map 
of the same area in 1987. (c) Operator-assisted segmentation of the 1993 aerial image. (d) Updated map in 1993. 
(See color section, p. C-16 and 17.) 

of the Eugene, Oregon area taken in 1993. Accompanying the 
aerial image is an old (1987) map of the same area that indicates 
what portion of that area contains brown crops (in red), grass (in 
green), development (in blue), forest (in yellow), major roads (in 
gray), and everything else (in black). The aerial image indicates 
a significant amount of change in the area's composition from 
the time the old map was constructed. Especially noticeable is 
the new development of a road network south of the highway, in 
an area that used to be a large brown field of crops. The idea is to 
use the new 1993 aerial image in order to update or correct the 
old 1987 map. The human operator examines the aerial image 
and chooses a collection of polygons corresponding to various 
homogeneous segments of the image. By use of the pixels with 
these polygons as a training sample, a statistical segmentation of 
the aerial image is effected; the segmentation result is also shown 
in Fig. 7. Regions in the old map are compared to segments of the 
new image, and where they are different, the old map is updated 
or corrected. The resulting new map is shown Fig. 7 as well. 

The segmentation procedure used for this map updating ap- 
plication is based on Gaussian statistics; see Eq. ( 1 ) .  Specifically, 
for each homogeneous polygonal region selected in the aerial 
image by the human operator, the Gaussian statistics for that 
polygon are automatically computed. With these statistics, a 

model of probable variation in the pixels' intensities within the 
polygon is subsequently created? 

where f! denotes the pixels within the lth polygon, Z(8,)  is 
a normalizing constant that makes Cfi P(fi I 8,) = 1, and 
@ ( p ,  q )  are parameters chosen so that P(fi I 8,) 2 P(fi I +) 
for all + # e,. Equation (7) forms the basis for segmenting the 
aerial &age in Fig. 7. Suppose that there are k distinctly differ- 
ent polygonal segments, corresponding to k distinctly different 
- 8, values; then each pixel (rn, n) in the aerial image is classified 
according to a maximum likelihood rule. The probability of how 
likely f (  rn, n) is if it were classified as belonging to the Zth class is 
assessed according to Eq. (7), and the pixel is classified as belong- 
ingtoclasslifP(f(rn,n)18,) ? P(f(rn,n)le,)forallr # 1. 
Shown in Fig. 8 is another example of segmenting an aerial image 
by using this same maximum likelihood statistical procedure. 

6This model is referred to as the Gaussian Markov random field model; 
see [6-91. 
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FIGURE 8 
maximum likelihood procedure employed in Fig. 7. (See color section, p. C17.) 

Segmentation of another aerial image, this time of a rural crop field area, using the same texture-based 

4.3 Segmentation for Image Compression 

The enormous amount of image and video data that typifies 
many modern multimedia applications mandates the use of en- 
coding techniques for their efficient storage and transmission. 

I‘ 
i 

I r; 
1’. 

.“ 

The use of such encoding is standard in new personal computers, 
video games, digital video recorders, players, and disks, digital 
television, and so on. Image and video encoding schemes that 
are object based are most efficient (i.e., achieve the best compres- 
sion rates), and they also facilitate many advanced multimedia 

J’ 

1 

I 

1 

FIGURE 9 
method that employs Fourier statistics. 

Block-based segmentation of images into large “homogeneous” objects, using a MAP estimation 
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hnctionalities. Object-based encoding of images and video, 
however, requires that the objects be delineated a priori. An 
obvious method for extracting objects in an image is by seg- 
menting it. 

Reference [ 161 describes a statistical image segmentation 
method that is particularly geared for object-based encoding 
of images and video. A given image is first divided into 8 x 8 
blocks of pixels, and for each block, the Fourier statistics of the 
pixels in that block is computed. If the pixels fi within a single 
block have little or no variation, then F f i  (0, 0) will have a very 
large value; similarly, if the block contains a vertical edge, then 
CP Ffi  (0, p) will have a very large value, and so on. There are six 
such categories, corresponding to uniform/monotone, vertical 
edge, horizontal edge, 45" diagonal edge, 135" diagonal edge, and 
texture (randomly oriented edge). Let th (I), tfi (2), . . . , tfi (6), 
be the Fourier statistics-based quantities - one of their values 
will be large, corresponding to which of these six categories fi 

belongs. 
If g denotes the collection of unknown block labels, then an 

estimate of g from f would correspond to an object-based seg- 
mentation of f. Reference [16] pursues a MAP estimate of g 
from f ,  where the prior pdf 

and the likelihood pdf 

(9)  

Here 2 and C(g0) are the normalizing constants for the prior 
and the likelihood pdfs, respectively, the index (m,  n) denotes 
the 8 x 8 blocks, and L,, ( p ,  q )  is the label statistic defined in 
Eq. (4). Figure 9 shows a few examples of image segmentation 
using this procedure. 

5 Discussion 

The previous four sections provide a mere sampling of the var- 
ious statistical methods that are employed for image segmen- 
tation. References [17-201 contain some of the other meth- 
ods. The main differences between those and the methods de- 
scribed in this chapter lie in the type of prior or likelihood pdfs 
employed. 

In particular, [20] contains a method for image segmentation 
that is based on elastic deformation of templates. Rather than 
specify a prior pdf as probability over the space of all images, 
[ 201 specifies a prior pdf over the space of all deformations of a 
prototypical image. The space of deformation of the prototype 
image is a very rich one and even includes images that are 
quite distinctly different from the original. More importantly, - 

FIGURE 10 Segmentingobjects out ofimages whenthey"resemb1e" thequery. the deformation space's dimension is significantly smaller than 
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I ‘  

FIGURE 11 
deformation method described in [20]. (See color section, p. C-18.) 

Tracking an object of interest, in this case a human heart, from frame to frame by using the elastic 

the conventional space of all images that “resemble” the proto- 
type. This smaller dimension pays tremendous dividends when 
it comes to image segmentation. 

A query of image databases provides an important application 
where a prototype of an object to be segmented from a given 
image is readily available. A user may provide a typical object of 
interest - its approximate shape, color, and texture - and ask 
to retrieve all database images that contain objects similar to the 
one of interest. Figure 10 shows a few examples of the object(,) 
of interest being segmented out of a given image by using the 
elastic deformation method described in [ 201. Figure 1 1 shows 
an example of tracking an object from frame to frame, using the 
same method. 

As one can gather from this chapter, when statistical meth- 
ods are employed for image segmentation, there is always an 
associated multivariate optimization problem. The number of 
variables involved in the problem varies according to the di- 
mensionality of the prior pdfs domain space. For example, the 
MAP estimation procedure in the vehicle segmentation applica- 
tion has an associated three-parameter optimization problem, 
whereas the MAP estimation procedure in the segmentation for 
image compression application has an associated 64 x 64 pa- 
rameter optimization problem. The functions that have to be 
maximized with respect to these variables are typically noncon- 
cave and contain many local maxima. This implies that simple 
gradient-based optimization algorithms cannot be employed, as 
they are prone to converge to a local (as opposed to the global) 
maxima. Statistical methods for image segmentation abound 

with a wide variety of algorithms to address such multivariate 
optimization problems. The reference list that follows this sec- 
tion contains several distinct examples: [ 121 contains the greedy 
iterated conditional maximum (ICM) algorithm; [9,13,18] con- 
tain a stochastic algorithm called Gibbs sampler (a simulated an- 
nealing .procedure); [ 21 contains a randomized jump-diffusion 
algorithm; and finally, [ 201 contains a multiresolution algorithm. 
For a given application, there always appears to be a “most ap- 
propriate’’ algorithm, although any of the existing global opti- 
mization algorithms can conceptually be employed. 
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1.1 Image Texture 

Texture as an image feature is very useful in many image pro- 
cessing and computer vision applications. There is extensive 
research on texture analysis in the image processing literature 
where the primary focus has been on classification, segmen- 
tation, and synthesis. Texture features have been used in di- 
verse applications such as satellite and aerial image analysis, 
medical image analysis for the detection of abnormalities, and 
more recently, in image retrieval, using texture as a descrip- 
tor. In this chapter, we present an approach to characteriz- 
ing texture by using a multiband decomposition of the im- 
age with application to classification, segmentation, and image 
retrieval. 

In texture classification and segmentation, the objective is to 
partition the given image into a set of homogeneous textured 
regions. Aerial images are excellent examples of textured regions 
where different areas such as water, sand, vegetation, etc. have 
distinct texture signatures. In many other cases, such as in the 
classification of tissues in the magnetic resonance images of the 
brain, homogeneity is not that well defined. If an image consists 
of multiple textured regions, as is the case with most natural 
imagery, segmentation can be achieved through classification. 
This, however, is a chicken-and-egg problem, as classification 
requires an estimate ofthe region boundaries- note that texture 
is a region property and individual pixels are labeled based on 
information in a small neighborhood around the pixels. This 
may lead to problems near region boundaries, as the computed 
texture descriptors are corrupted from pixels that do not belong 
to the same region. 
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Early work on texture classification focused on spatial image 
statistics. These include image correlation [9], energy features 
[27], features from co-occurrence matrices [22], and run- 
length statistics [19]. During the past 15 years, much atten- 
tion has been given to generative models, such as those us- 
ing the Markov random fields (MRF) [7, 8, 11, 12, 15, 16, 
23-26, 331; also see Chapter 4.2 on MRF models. MRF-based 
methods have proven to be quite effective for texture synthe- 
sis, classification, and segmentation. Since general MRF mod- 
els are inherently dependent on rotation, several methods have 
been introduced to obtain rotation invariance. Kashyap and 
Khotanzad [24] developed the “circular autoregressive” model 
with parameters that are invariant to image rotation. Choe and 
Kashyap [ 101 introduced an autoregressive fractional differ- 
ence model that has rotation (as well as tilt and slant) invari- 
ant parameters. Cohen, Fan, and Pate1 [ 111 extended a likeli- 
hood function to incorporate rotation (and scale) parameters. 
To classify a sample, an estimate of its rotation (and scale) is 
required. 

Much of the work in MRF models uses the image intensity as 
the primary feature. In contrast, spatial filtering methods derive 
the texture descriptors by using the filtered coefficient values. 
A compact representation of the filtered outputs is needed for 
classification or segmentation purposes. The first few moments 
of the filtered images are often used as feature vectors. For seg- 
mentation, one may consider abrupt transitions in the filtered 
image space or transformations of the filtered images. Malik and 
Perona [ 3 11, for example, argue that a nonlinear transforma- 
tion of the filtered coefficients is necessary to model preattentive 
segmentation by humans. 

Laws [27] is perhaps among the first to propose the use of 
energy features for texture classification. In recent years, mul- 
tiscale decomposition of the images has been extensively used 
in deriving image texture descriptors and for segmentation [3, 
4,6, 17,20,21,28,34,35,38-40,42]. Orthogonal wavelets (see 
Chapter 4.1) and Gabor wavelets have been widely used for com- 
puting such multiscale decompositions. Gabor functions are 
modulated Gaussians, and Section 2 describes the design of 
Gabor filters in detail. 

For feature-based approaches, rotation invariance is achieved 
by using anisotropic features. Porat and Zeevi [40] use first- and 
second-order statistics based upon three spatially localized fea- 
tures, two of which (dominant spatial frequency and orientation 
of dominant spatial frequency) are derived from a Gabor-filtered 
image. Leung and Peterson [28] present two approaches, one 
that transforms a Gabor-filtered image into rotation-invariant 
features and the other ofwhich rotates the image before filtering; 
however, neither utilizes the spatial resolving capabilities of the 
Gabor filter. You and Cohen [43] use filters that are tuned over a 
training set to provide high discrimination among its constituent 
textures. Greenspan et al. [20] use rotation-invariant structural 
features obtained by multiresolution Gabor filtering. Rotation 
invariance is achieved by using the magnitude of a DFT in the 
rotation dimension. 

Many researchers have used the Brodatz album [5] for eval- 
uating the performance of their texture classification and seg- 
mentation schemes. However, there is such a large variance in 
the actual subsets of images used and in the performance evalua- 
tion methodology that it is practically impossible to compare the 
evaluations presented in various papers. For example, Porter and 
Canagarajah [41] discuss several schemes for rotation-invariant 
classification using wavelets, Gabor filters, and GMW models. 
They conclude, based on experiments on 16 images from the 
Brodatz set, that the wavelet features provide better classification 
performance compared with the other two texture features. A 
similar study by Manian and Vasquez [32] also conclude that or- 
thogonal wavelet features provide better invariant descriptors. A 
different study, by Pichler etal. [ 371, from an image segmentation 
point of view, concludes that Gabor features provide better seg- 
mentation results compared with orthogonal wavelet features. 
Perhaps the most comprehensive study to date on evaluating 
different texture descriptors is provided by Manjunath and Ma 
1351, in the context of image retrieval. They use the entire Brodatz 
texture set and compare features derived from wavelet decom- 
position, tree-structured decomposition, Gabor wavelets, and 
multiresolution simultaneous autoregressive (MRSAR) models. 
They conclude that Gabor features and MRSAR model features 
outperform features from orthogonal or tree-structured wavelet 
decomposition. More recently, the study presented by Haley 
and Manjunath [21] indicates that the rotation-invariant fea- 
tures from Gabor filtering compare favorablywith GMRF based 
schemes. They also provide results on the entire Brodatz dataset. 

1.2 Gabor Features for Texture Classification 
and Image Segmentation 
The following sections describe this rotation-invariant texture 
feature set, and for detailed experimental results, we refer the 
reader to [ 2 11. The texture feature set is derived by filtering the 
image through a bank of modified Gabor kernels. The partic- 
ular set of filters forms a multiresolution decomposition of the 
image. While there are several viable options, including orthog- 
onal wavelet transforms, Gabor wavelets were chosen for their 
desirable properties. 

Gabor functions achieve the theoretical minimum space- 
frequency bandwidth product [ 13,14, 181; that is, spatial 
resolution is maximized for a given bandwidth. 
A narrow-band Gabor function closely approximates an 
analytic (frequency causal) function (see also Chapter 4.3 
for a discussion on analytic signals). Signals convolvedwith 
an analytic function are also analytic, allowing separate 
analysis of the magnitude (envelope) and phase character- 
istics in the spatial domain. 
The magnitude response of a Gabor function in the fre- 
quency domain is well behaved, having no sidelobes. 
Gabor functions appear to share many properties with the 
human visual system [ 361. 
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While Gabor functions are a good choice, the standard forms 
can be further improved. Under certain conditions, very low 
frequency effects (e.g., caused by illumination and shading 
variations) can cause a significant response in a Gabor filter, lead- 
ing to misclassification. An analytic form is introduced (see 
Section 2.2) to minimize these undesirable effects. When the cen- 
ter frequencies are evenly spaced on concentric circles, the polar 
form of the 2-D Gabor function allows for superior frequency 
domain coverage, improves rotation invariance, and simplifies 
analysis, compared with the standard 2-D form. 

1.3 Chapter Organization 
This chapter is organized as follows: In Section 2 we introduce 
an analytic Gabor function and a polar representation for the 
2-D Gabor filters. A multiresolution representation of the im- 
age samples using Gabor functions is presented. In Section 3, 
the Gabor space samples are then transformed into a microfea- 
ture space, where a rotation-independent feature set is identified. 
Section 4 describes a texture model based on macrofeatures that 
are computed from the texture microfeatures. These macrofea- 
tures provide a global description of the image sample and are 
useful for classification and segmentation. Section 5 gives ex- 
perimental results on rotation-invariant texture classification. 
Section 6 outlines a new segmentation scheme, called EdgeFlow 
[29], that uses the texture energy features to partition the image. 
Finally, Section 7 gives an application of using texture descrip- 
tors to image retrieval [30, 351. Some retrieval examples in the 
context of aerial imagery are shown. 

2 Gabor Functions 

2.1 One-Dimensional Gabor Function 
A Gabor function is the product of a Gaussian function and a 
complex sinusoid. Its general one-dimensional form is 

Thus, Gabor functions are bandpass filters. Gabor functions are 
used as complete, albeit nonorthogonal, basis sets. It has been 
shown that a function i ( x )  is represented exactly [ 181 as 

( 3 )  

where hn,k(x) = gs(x - nX, kS2, a), and a, X, and S2 are all 
parameters and XQ = 2 ~ .  

2.2 Analytic Gabor Function 
Gs(w, oc, a) exhibitsapotentiallysignificantresponseatw = 0 
and at very low frequencies. The response to a constant-valued 
input (i.e., o = 0) relative to the response to an input of equal 
magnitude at w = wc can be computed as a function of octave 
bandwidth [ 31 : 

IGs(O>I/IGs(oc)l = 2-y, (4) 

wherey = (2B+l)/(2B-l)and B = log,((wc+S)/(oc-S)) 
and 6 is the half-bandwidth. It is interesting to note that the re- 
sponse at o=O depends upon B but not oc. This behavior 
manifests itself as an undesirable response to interimage and in- 
traimage variations in contrast and intensity as a result of factors 
unrelated to the texture itself, potentially causing misclassifica- 
tion. Cases include 

sample images of a texture with differences in average in- 
tensity 
images with texture regions having differences in contrast or 
intensity (Bovik [3] has demonstrated that region bound- 
aries defined in segmentation using unmodified Gabor fil- 
ters vary according to these differences between the regions) 

There are two approaches to avoiding these problems: prepro- 
cessing the image or modifying the Gabor function. Normalizing 
each image to have a standard average intensity and contrast cor- 
rects for interimage, but not intraimage, variations. Alternative 
methods of image preprocessing are required to compensate for 
intraimage variations, such as point logarithmic processing [ 31 
or local normalization. 

An equally effective and more straightforward approach is to 
modify the Gabor function to be analytic' (see also Chapter 4.3 
on analytic signals) by forcing the real and imaginary parts to 
become a Hilbert transform pair. This is accomplished by re- 
placing the real part of gs(x), gs,Re(x), with the inverse Hilbert 
transform of the imaginary part, - i s , ~ ~ ( x ) :  

(5) 

images with uneven illumination 

gA(X) = -~?s,I&) + j g s d x ) .  

The Fourier transforms of the real and imaginary parts of gs ( x )  
are respectively conjugate symmetric and conjugate antisym- 
metric, resulting in cancellation for o 5 0: 

Because it is analytic, GA(w) possesses several advantages over 
for Gs(w) for many applications including texture analysis: 

improvedlowfrequencyresponsesince I GA(w)I c I Gs(o)l 
forsmalloand IGA(O)I = O  

'Since G ,  (w) # 0 for o 5 0, a Gabor function only approximates an analytic 
function. 
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simplified frequency domain analysis since GA(o) = 0 for 

reduced frequency domain computations since G A(O) = 0 
0 5 0  

fo ro  5 0 

These advantages are achieved without requiring additional pro- 
cessing. Thus, it is an attractive alternative for most texture anal- 
ysis applications. 

2.3 Two-Dimensional Gabor Function: 
Cartesian Form 
The Gabor function is extended into two dimensions as follows. 
In the spatial frequency domain, the Cartesian form is a 2-D 
Gaussian formed as the product of two 1-D Gaussians from 
Eq. (2): 

G c ( ~ x ,  ~ y ,  ~ x ’ i  U C ~ ,  0, 

= G ( ~ Y >  WX’ ,  ad> )G(wf, W C ~ ,  cy), (7) 

where 0 is the orientation angle of Gc, x’ = x cos 0 + y sin 0, and 
y’ = -x sin 0 + y cos 0. In the spatial domain, Gc is separable 
into two orthogonal 1-D Gabor functions from Eq. (1) that are 
respectively aligned to the x‘ and y’ axes: 

As in Eq. (3), an image is represented exactly [l, 212 as 

00 

k,=-m 

2.4 Two-Dimensional Gabor Function: 
Polar Form 
An alternative approach to extending the Gabor function into 
two dimensions is to form, in the frequency domain, the product 
of a 1-D analytic Gabor function G(o)  (the subscript is omitted 

’The proofs in the references are based on the standard, not analytic, form of 
the Gabor function. 

to indicate that the concepts are generally applicable to the stan- 
dard form as well) of radial frequency o and a Gaussian function 
of orientation 0: 

~ ~~~ 

where o = ,/mi + o$ and tan(0) = oy/o,. Thus, Q. (11) 
is a 2-D Gaussian in the polar, rather than Cartesian, spatial 
frequency domain. The frequency domain regions of both polar 
and Cartesian forms of Gabor functions are compared in Fig. 1. 

In the Cartesian spatial frequency domain, the -3 dB con- 
tour of the Cartesian form is an ellipse, while the polar form has 
a narrower response at low o and a wider response at high o. 
When arranged as “flower petals” (equally distributed along a 
circle centered at the origin), the polar form allows for more uni- 
form coverage of the frequency domain, with less overlap at low 
frequencies and smaller gaps at high frequencies. The polar form 
is more suited for rotation-invariant analysis since the response 
always varies as a Gaussian with rotation. The Cartesian form 
varies with rotation in a more complex manner, introducing an 
obstacle to rotation invariance and complicating analysis. 

2.5 Multiresolution Representation 
with Gabor Wavelets 
The Gabor function is used as the basis for generating a wavelet 
family for multiresolution analysis (see Chapter 4.1 on wavelets). 
Wavelets have two salient properties: the octave bandwidth B 
and the octave spacing A = log,(o,+l/w,) are both constant, 
where o, is the center frequency. The filter spacing is achieved 
by defining 

(13) o, = ~ ~ 2 - ~ ~ ,  s E IO, i ,2 ,  . . . I  

where wo is the highest frequency in the wavelet family. Constant 
bandwidth requires that up be inversely proportional to os: 

where 
2 B  - 1 

K =  m ( 2 B  + 1) 

is a constant. The orientations of the wavelets are defined as 

2nr 
R or = e, + -, 
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FIGURE 1 
of the polar Gabor functions is 45'. 

-3 dB contours of Cartesian and polar Gabor functions ofvarying bandwidths. The angular -3 dB width 

where 00 is the starting angle, the second term is the angular 
increment, and r and R are both integers such that 0 5 r < R. 
Using Eqs. (13), (14) and (15) in Eq. ( l l ) ,  we define the 2-D 
Gabor wavelet family as 

Z - , r ( u x ,  my) 

1 
KO, 

= ~p (J;.:..:. tan-'(uy/ux), os, or, -, ue) 

where X S  and Ys, the sampling intervals, are inversely propor- 
tional to the bandwidths corresponding to s. As in Eq. (9), an 
image is represented by using the polar wavelet form of the Gabor 
function from Eq. (17): 

- 
n,=-cc ny=-oo s=O r=O 

and parameters X,, Y,, wo, K, and a0 are chosen pproprk ._ - ely. 
Instead of a rectangular lattice, a polar Gabor wavelet represen- 
tation has the shape of a cone. 

3 Microfeature Representation 

3.1 Transformation into Gabor Space 
As described in Section 2, a set of two-dimensional Gabor 
wavelets can represent an image. Assuming that the image is 
spatially limited to 0 5 x < NxXs,  0 5 y < NyYs, where 
Nx and N, represent the number of samples in their respective 
dimensions, and is bandlimited to 0 < w 5  OH,^ the num- 
ber of Gabor wavelets needed to represent the image is finite. 
Substituting B,,,,,,,, from Eq. (19) for Ps,r,n,,n, in Eq. (181, 
we approximately represent a texture image by using the polar 
wavelet form of the Gabor function as 

3For sampled texture images, the upper frequencybound is enforced, although 
aliasing may be present since natural textures are generally not bandlimted. It is 
both reasonable and convenient to assume that, for textures of interest, a lower 
frequency bound OL > 0 exists below which there is no useful discriminatory 
information. 
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where parameters S, R, X,, Y,, 00, K and are chosen appro- 
priately. Note that the s subscript is added to N, and N, to 
indicate their dependencies on X s  and Y,. Thus, a texture im- 
age is represented with relatively little information loss by the 
coefficients p,,, ,,,, I l y .  

Following Bovik etal. [4], ~ , , r , , , , , ,  is interpreted as a channel 
or band bs,r(nx, n,) of the image i(x, y) tuned to the carrier 
frequency w, = 002-~*, Eq. (13), oriented at angle 8, = 80 + 
2 m /  R, Eq. (15), and sampled in the spatial domain at intervals 
of X ,  and K.  Since &(nX,  n,) is formed by convolution with 
a narrow band, analytic function, Eq. (19), bsJnx,  n,) is also 
narrow band and analytic and is therefore decomposable into 
amplitude and phase components that can be independently 
analyzed 

A 

where as,r(nx, ny) = b s , r ( n x >  n,) and +s,r(nx, n,) = arg 
( b s , r ( n x ,  n,)). Here as,r(nx, n,) contains information about the 
amplitude and amplitude modulation (AM) characteristics of 
the texture's periodic features within the band, and +,,, (nx,  n,) 
contains information about the phase, frequency, and frequency 
modulation (FM) characteristics (see Chapter 4.3 for a discus- 
sion on AM/FM signals). For textures with low AM in band 
(s, r), U s , r ( n x ,  n,) is approximately constant over (nx ,  n,). For 
textures with low FM in band s, r ,  the slope of +s,r(nx, n,) with 
respect to ( n x ,  n,) is nearly constant. 

Both as,r(n,, n,) and +s,r (nx ,  n,) are rotation dependent and 
periodic in r such that 

where V,() and V,() are gradient estimation functions, 8, 
is the orientation of the Gabor function, and eV = tan-' 
(VY(+S,r(nx, Y Z ~ ) ) / V ~ ( + , , ~ ( ~ ~ ,  n,))) is the direction of the gra- 
dient vector. Here us,r (nx, n,) is a spatially localized estimate of 
the frequency along the direction C+r, and c$,,~ (nx ,  n,> is the direc- 
tion of maximal phase change rate, i.e., highest local frequency. 

3.3 Transformation into Microfeatures 
To facilitate discrimination between textures, b5,r(nx, n,) is fur- 
ther decomposed into microfeaturesthat contain local amplitude, 
frequency, phase, direction, and directionality characteristics. In 
the following, for simplicity, R is assumed to be even. The mi- 
crofeatures are defined to be as follows. 

q = 1 , 3 ,  ..., R-1; (29) 

R/2--1 

Rotatingi(x, y)byO"producesacircularshiftinr of-R8/180" f ~ ~ s , q ( n x ,  ny) = arg[ 

3.2 Local Frequency Estimation 
While +5,r(nx,  n,) contains essential information about a tex- 
ture, it is not directly usable for classification. However, local 
frequency information can be extracted from +s,r(flx> n,) as 
follows: 

Ms,r(nx ,  n,) exp(-%)] , 
for us,r(nx, n,) and -R0/36Oo for + s , r ( n x ,  n,). r=O 

1 F q 5 R/4; (31) 

27ijrq 
fDYs,q(% ny> = arg f l y ) ) e X P ( - ~ ) ] ,  

q = l , 3  ,..., R - 1 .  (32) 

Here f ~ ~ , ~ ( n ~ ,  nu) contains the amplitude envelope informa- 
tion from bs,r(nx, n,). Because of the R/2 periodicity of as,r 
(22), only R/2 components are needed in the sum in Eq. (27). 
Eliminating the redundant components from the circular auto- 
correlation allows complete representation by the 0 5 p 5 R/4 
components of f ~ ~ , ~ ( n ~ ,  n,). It is rotationinvariant because the 
autocorrelation operation eliminates the dependence on r, and 
thus on 8. 

We see that f p s , q  (ax, n,) contains the frequency envelope in- 
formation from bs,r(nx, n,). Similarto as,r(nx, n,), u,,(n,, nr) 

1 %  -Sol 5 90' { :'+ 180", . 18, - > 90"' 
(25) +s,r(nx, n y )  = 

U s , r ( n x ,  f l y )  = J v ; L ( + s , r ( n x ,  n y ) )  + V;(+s,r(nm f l y ) )  

x cos(% - +s,r(nx> n,)) 

= f i ; ($s , r (nm n y > )  + V;(+s,r(nx, ny)) 

x I cos(% - % ) I >  (26) 
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has R/2 periodicity. Since us,r(nx,  n,) is real, f&(n,, nu) is 
conjugate symmetric in q ,  and consequently, its 0 5 q 5 R/4 
components are sufficient for complete representation. It is 
rotation invariant because the DFT operation maps rotationa- 
Ily induced shifts into the complex numbers’ phase compo- 
nents, which are removed when the magnitude operation is per- 
formed. f&, ( ax, n,) contains the directionality information 
from M n x ,  nr>. Since +s , (r+~/2)R(nx,  n,> = + J n x ,  nr) + 
180”, only the components with odd q are nonzero. For 
the same reason as fFs,q(nx, n,), f&(nX, n,) is rotation 
invariant. 

contain the direction information from l ~ ~ , ~ ( n ~ ,  n,). Because 
~DA~,~(Y~,, n,) and (nx ,  ny) are conjugate symmetricin q ,  
they are represented completely by their 0 5 q 5 R/4 compo- 
nents. However, the q = 0 component is always zero since the 
DFTs are on real sequences in both cases. Here f ~ y ~ , ~ ( n ~ ,  ny)  
has the same nonzero indexes as f ~ ~ , ~ ( n ~ ,  a,). Furthermore, 
~ D A S , ~  (nx, n,), ~ D F S , ~  (nx, ny),  and f ~ ~ ~ , ~ ( n ~ ,  n,) are inherently 
rotation variant since the phases of the DIT contain all of the 
direction information. 

Since all transformations in this decomposition are invert- 
ible (assuming boundary conditions are available), it is possi- 
ble to exactly reconstruct &(nX, n,) from their microfeatures. 
Thus, f ~ ~ , p ( n ~ ,  BY), f ~ s , q ( n x ,  n,), f ~ r , q ( n x ,  n y ) ,  f~~s ,q(nx ,  ny), 
f ~ ~ s , q ( n x ,  ny),  and f~y~,~(n,, ny) provide a nearly exact repre- 
sentation of i ( x ,  y). 

We see that fDAs,q(nm ny), fDFs,q(nx, f l y ) ,  and fDYs,q(nx, n y )  

4 The Texture Model 
~~ 

4.1 The Texture Micromodel 
A texture may be modeled as a vector-valued random field 

are vectors containing the microfeature components for all s and 
p or q indexes. It is assumed that f is stationary. Accurate mod- 
eling of f  is not practical from a computational point of view. 
Such modeling is also not needed if the objective is only texture 
classification (and not synthesis). Further, we assume a Gaussian 
distribution off strictly for mathematical tractability and sim- 
plicity, although many sample distributions were observed to be 
very non-Gaussian. 

Given these assumptions, the micromodel for texture t is 
stated as the multivariate Gaussian probability distribution 
function: 

f = [fA fF fY fDA fDF fDYIT, where fA, fF, fY, fDA, fDF and fDY 

(33) 

whereyf, = E{fl t}andCft = E{f.fT 1 t}-E{fl t}-E{fT I t}are 
the mean and covariance off, respectively, and Nf is the number 
of microfeatures. 

Texture A Texture B 

Textures with similar microfeatures. FIGURE 2 

4.2 Macrofeatures 
While microfeatures can be used to represent a texture sam- 
ple, microfeatures are spatially localized and do not characterize 
global attributes oftextures. For instance, consider the textures in 
Fig. 2. Most of the spatial samples in the upper-right and lower- 
left quadrants of texture A would be classified as texture B based 
on microfeatures alone. Furthermore, fDA, fDF, and fDy are rota- 
tion dependent, making them unsuitable for rotation-invariant 
classification. 

For classification, a better texture model is derived from the 
micromodel parameters, Pft and Gt. For instance, for the two 
textures shown in Fig. 2, the standard deviations of fDA, fDF, 
and fDy provide exceuent discrimination information not 
available in the microfeatures themselves. A texture t ’s  macro- 
features are defined to be F = [FCA FCF Fm PAM FFM FylM 
FDMA FDMF FDMY 1 T, where 

, (34) 

where f 2  = ( f > f )  = [(fCAO,O * fCA0,O) (fCA0,I fCA0,l) 
(fms-i,R-i *~DY~-I ,R-I ) ]~ ,  For a texture t, F a ,  FCF, and FCY 
describe amplitude, frequency, and directionality charac- 
teristics, respectively, of the “carrier.” FM, &M, and FylM 
describe a texture’s amplitude modulation, frequency modula- 
tion, and directionality modulation characteristics, respectively. 
F a ,  FCF, F c ~ ,  F N ,  FFM, and F y M  are all rotation invariant be- 
cause the microfeatures upon which they are based are rotation 
invariant. &MA, FDMF, and FDMY capture the directional mod- 
ulation characteristics. While fDA, fDF, and fDy are rotation de- 
pendent, their variances are not. Means of fDA, fDF, and fDy are 
directional in nature and are not used as classification features. 
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For simplicity, off-diagonal covariances are not used, although 
they may contain useful information. 

The expected values off are estimated by using the mean and 
variance of a texture sample's microfeatures. 

4.3 The Texture Macromodel 
For purposes of classification, a texture tis modeled as a vector- 
valued Gaussian random vector F with the conditional proba- 
bility density function 

(35) 

wherepFt= E { F l t } a n d C ~ ~ =  E{F.FT[t}-E{FIt}.E{FTIt} 
are the mean and covariance of F, respectively, NF is the number 
of macrofeatures, and is an estimate of F based on a sample of 
texture t. This is the texture macromodel. 

The parameters pFt and CF, are estimated from statistics over 
M samples for each texture t: 

1 "  kFt = and 
m=l 

where km is the estimate of F based on sample rn of texture t. 

5 Experimental Results 

Experiments were performed on two groups of textures. The 
first group comprises 13 texture images [44] digitized from the 
Brodatz album [ 5 ]  and other sources. Each texture was digitized 
at rotations ofO, 30,60,90,120, and 150" as 512 x 512pixels, each 
of which was then subdivided into sixteen 128 x 128 subimages. 
Figure 3 presents the 120" rotations of these images. The second 
group comprises 109 texture images from the Brodatz album 
digitized at 0" with 512 x 512 pixels at a 300 DPI resolution, each 
ofwhichwas then subdividedinto sixteen 128 x 128 subimages. A 
polar, analytic Gabor transform was used with parameter values 
of 00 = 0.8.n, 0, = 0", S = 4, R = 16, K = 0.283 (B  = 1 
octave), and ue = 0.0523/"(-3 dB width of 90'). 

Classification performance was demonstrated with both 
groups of textures. Half of the subimages (separated in a checker- 
board pattern) were used to estimate the model parameters 
(mean and covariance of the macrofeatures) for each type of 
texture, while the other half were used as test samples. Features 
were extracted from all of the subimages in an identical man- 
ner. To reduce filter sampling effects at high frequencies caused 
by rotation, the estimation of model parameters was based on 

TABLE 1 
Classification performance for the first 
group of textures 

Sample type %Classified correctly 

Bark 87.5 
Sand 97.9 
Pigskin 95.8 
Bubbles 100 
Grass 95.8 
Leather 93.8 
Wool 91.7 
Raffia 100 
Weave 100 
Water 97.9 
Wood 97.9 
Straw 100 
Brick 100 

the features from subimages at all rotations in the first group of 
images. 

5.1 Classification 
A model of each type of texture was established by using half 
of its samples to estimate mean and covariance, the parameters 
required by Eq. (34). For the other half of the samples, each 
was classified as the texture t that maximized p ( F  It). Because 
of rank deficiency problems in the covariance matrix that were 
due to high interfeature correlation, off-diagonal terms in the 
covariance matrix were set to zero. 

The classification performance for the first group of textures is 
summarized in Table 1. Out of a total of 624 sample images, 604 
were correctly classified (96.8%). The misclassification rate per 
competing texture type is (100-96.8%)/12 = 0.27%. Barkwas 
misclassified as brick, bubbles, pigskin, sand, and straw; sand as 
bark; pigskin as bark and wool; grass as leather; leather as grass 
and straw; wool as bark and pigskin; water as straw; and wood 
as straw. 

The classification performance for the second group of tex- 
tures (the complete Brodatz album) was as follows. Out of a to- 
tal of 872 sample images, 701 were classified correctly (80.4%). 
The misclassification rate per competing texture type is (100%- 
80.4%)/108 = 0.18%. Perhaps some comments are in order re- 
garding the classification rate. Many ofthe textures in the Brodatz 
album are not homogeneous. Although one can use a selected 
subset of textures, it will make comparisons between different 
algorithms more difficult. Finally, for comparison purposes, 
when using the same subset of the Brodatz album used by Chang 
and Kuo [6], 100% of the samples were correctly classified. 

6 Image Segmentation Using Texture 

Image segmentation can be achieved either by classification or 
by considering the gradient in the texture feature space. Here we 
outline a novel technique, called EdgeFlow, that uses the texture 
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wool 
FIGURE 3 
summarizes the results for rotation-invariant classification for these textures. 

Textures from the first group. Each texture was digitized at rotations of 0,30,60,90, 120, and 150". Table 1 

feature as input to partition the image. A detailed description of 
this technique can be found in [29]. 

The EdgeFZow method utilizes a predictive coding model to 
identify and integrate the direction of change in a given set of 
image attributes, such as color and texture, at each image pixel 

puted: E (x, e), which measures the edge energy at pixel x along 
the orientation e; P(x, e), which is the probability of finding an 
edge in the direction 8 from x; and P(x, 8 + IT), which is the 

probability of finding an edge along 0 + 1~ from x. These edge 
energies and the associated probabilities are computed by using 
the features of interest. 

Consider the Gabor filtered outputs represented by Eq. (21): 

location. Toward this objective, the following values are com- bs,r (XI = as, r (x) exp(l4~ s, r (x>>. 

By taking the amplitude of the filtered output across different 
filters at the location represented by x, a texture feature vector 
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characterizing the local spectral energies in different spatial fre- 
quency bands is formed 

where, for simplicity, the combination of s and r indices is num- 
bered from 1 through N. The texture edge energy, which is used 
to measure the change in local texture, is computed as 

where GD is the first derivative of the Gaussian along the 
orientation e. The weights wi normalize the contribution of 
edge energy from the various frequency bands. The error in 
predicting the texture energies in the neighboring pixel loca- 
tions is used to compute the probabilities ( P ( s ,  e)]. For ex- 
ample, a large prediction error in a certain direction implies a 
higher probability of finding the region boundary in that di- 
rection. Thus, at each location x we have ([ E(x, e), P(x, e), 
P(x ,  8 +  IT)]^^^^^^}. From these measurements, an edgeflow 
vector is constructed whose direction represents the flow direc- 
tion along which a boundary is likely to be found, and whose 
magnitude is an estimate of the total edge energy along that 
direction. 

The distribution of the edge flow vectors in the image forms 
a flow field that is allowed to propagate. At each pixel location 
the flow is in the estimated direction of the boundary pixel. A 
boundary location is characterized by flows in opposing direc- 
tions toward it. On a discrete image grid, the flow typically takes 
a few iterations to converge. 

Figure 4 shows two images, one with different textures and 
another with an illusory boundary. For the textured image, the 
edge flow vectors are constructed at each location as outlined 
above, and the final segmentation result is shown in the figure. 
It turns out that the phase information in the filtered outputs 
is quite useful in detecting illusory contours, as illustrated. The 
details of computing the phase discontinuities can be found in 
[29] .  Figure 5 shows another example of texture based segmen- 
tation, illustrating the results at two different choices for the scale 
parameter that controls the EdgeFlow segmentation. A few other 
examples of using color, texture, and phase in detecting image 
boundaries are shown in Fig. 6. 

7 Image Retrieval Using Texture 

In recent years, texture descriptor has emerged as an impor- 
tant visual feature for content-based image retrieval. In [30] we 
present an image retrieval system for browsing a collection of 
large aerial imagery using texture. Texture turns out to be a sur- 
prisingly powerful descriptor for aerial imagery, and many of the 
geographically salient features, such as vegetation, water, urban 

(‘1) ( I > )  

FIGURE 4 Segmentation using EdgeFZow. From top to bottom are the original 
image, edge flow vectors, and detected boundaries: (a) texture image example; 
(b) an illusory boundary detected by using the texture phase component from 
the Gabor filtered images. 

development, parking lots, airports, etc., are well characterized 
by their texture signature. The particular texture descriptor used 
in [30] was based on the mean and standard deviation of A(x)  
computed in Eq. (37). Measuring the similaritybetween two pat- 
terns in the texture feature space is an important issue in image 
retrieval. A hybrid neural network algorithm was used to learn 
this similarity and thus construct a texture thesaurus that would 
facilitate fast search and retrieval. Figures 7 and 8 show two query 
by example results, wherein the input to the search engine was 
an image region, and the system was asked to retrieve similarly 
looking patterns in the image database. 

8 Summary 

We have presented schemes for texture classification and seg- 
mentation using features computed from Gabor-filtered images. 
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c 

FIGURE 5 
shown above are the result of two different choices for the scale parameter in the algorithm. 

The choice of scale plays a critical role in the EdgeFlowsegmentation. Two different segmentation results 

Image texture research has seen much progress during the past 
two decades, and both random field model-based approaches 
and multiband filtering methods will have applications to tex- 
ture analysis. Model-based methods are particularly useful for 
synthesis and rendering. Filtering methods compare favorably 
to the random field methods for classification and segmenta- 
tion, and they can be efficiently implemented on dedicated hard- 
ware. Finally, texture features appear quite promising for image 
database applications such as search and retrieval, and the cur- 
rent MPEG-7 documents list texture as among the normative 
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. . . . . . . . . . . . . . . . . . . .  

components of the standard feature set that the MPEG plans to 
standardize. 
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FIGURE 6 
the EdgeFlow algorithm, and (c) segmentation using color and texture energy. (See color section, p. C-18.) 

Two other examples of segementation: (a) an illusory boundary, (b) segementation using texture phase in 
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FIGURE 7 Example of a texture-based search, using a dataset of aerial photographs of the Santa Barbara area taken 
over a 30-y period. Each photograph is approximately 5,000 x 5,000 pixels in size. (a) The downsampled version of 
the aerial photograph from which the query is derived. (b) A full-resolution detail ofthe region used for the query. The 
region contains a housing development. (c)-(e) The ordered three best results of the query. The black line indicates 
the boundaries of the regions that were retrieved. The results come from three different aerial photographs that were 
taken the same year as the photograph used for the query. 
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FIGURE 8 Another example of a texture based search. (a) The downsampled version of the aerial photograph from 
which the query is derived. (b) A full-resolution detail of the region used for the query. The region contains aircraft, 
cars, and buildings. (c)-(e) The ordered three top matching retrievals. Once again, the results come from three different 
aerial photographs. This time, the second and third results are from the same year (1972) as the query photograph, but 
the first match is from a different year (1966). 
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Video segmentation refers to the identification of regions in a 
frame of video that are homogeneous in some sense. Differ- 
ent features and homogeneity criteria generally lead to different 
segmentations of the same data; for example, color segmenta- 
tion, texture segmentation, and motion segmentation usually 
result in different segmentation maps. Furthermore, there is no 
guarantee that any of the resulting segmentations will be se- 
mantically meaningful, since a semantically meaningful region 
may have multiple colors, multiple textures, or multiple mo- 
tion. In this chapter, we are primarily concerned with labeling 
independently moving image regions (motion segmentation) or 
semantically meaningful image regions (video object plane seg- 
mentation). Motion segmentation (also known as optical flow 
segmentation) methods label pixels (or optical flow vectors) at 
each frame that are associated with independently moving part 
of a scene. These regions may or may not be semantically mean- 
ingful. For example, a single object with articulated motion may 
be segmented into multiple regions. Although it is possible to 
achieve fully automatic motion segmentation with some limited 
accuracy, semantically meaningful video object segmentation 
generally requires user to define the object of interest in at least 
some key frames. 

Motion segmentation is closely related to two other problems, 
motion (change) detection and motion estimation. Change de- 
tection is a special case of motion segmentation with only two 
regions, namely changed and unchanged regions (in the case of 
a static camera) or global and local motion regions (in the case 
of a moving camera) [ 1-31. An important distinction between 
change detection and motion segmentation is that the former 
can be achieved without motion estimation if the scene is 
recorded with a static camera. Change detection in the case of a 
moving camera and general motion segmentation, in contrast, 
require some sort of global or local motion estimation, either 
explicitly or implicitly. Motion detection and segmentation are 
also plagued with the same two fundamental limitations associ- 
ated with motion estimation: occlusion and aperture problems 
[ 251. For example, pixels in a flat image region may appear sta- 
tionary even if they are moving as a result of an aperture problem 
(hence the need for hierarchical methods); or erroneous labels 
may be assigned to pixels in covered or uncovered image regions 
as a result of an occlusion problem. 

It should not come as a surprise that motion/object seg- 
mentation is an integral part of many video analysis problems, 
including (i) improved motion (optical flow) estimation, (ii) 
three-dimensional (3-D) motion and structure estimation in the 
presence of multiple moving objects, and (iii) description of the 
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temporal variations or the content of video. In the former case, 
the segmentation labels help to identify optical flow boundaries 
(motion edges) and occlusion regions where the smoothness 
constraint should be turned off. Segmentation is required in 
the second case, because distinct 3-D motion and structure pa- 
rameters are needed to model the flow vectors associated with 
each independently moving object. Finally, in the third case, seg- 
mentation information may be employed in an object-level de- 
scription of frame-to-frame motion, as opposed to a pixel-level 
description provided by individual flow vectors. 

As with any segmentation problem, proper feature selection 
facilitates effective motion segmentation. In general, the appli- 
cation of standard image segmentation methods directly to es- 
timated optical flow vectors may not yield meaningful results, 
since an object moving in 3-D usually generates a spatially vary- 
ing optical flow field. For example, in the case of a rotating object, 
there is no flow at the center of the rotation, and the magnitude 
of the flow vectors grows as we move away from the center of 
rotation. Therefore, a parametric model-based approach, where 
we assume that the motion field can be described by a set of 
K parametric models, is usually adopted. In parametric motion 
segmentation, the model parameters are the motion features. 
Then, motion segmentation algorithms aim to determine the 
number of motion models that can adequately describe a scene, 
type/complexity of these motion models, and the spatial sup- 
port of each motion model. The most commonly used types of 
parametric models are affine, perspective, and quadratic map- 
pings, which assume a 3-D planar surface in motion. In the case 
of a nonplanar object, the resulting optical flow can be modeled 
by a piecewise affme, perspective, or quadratic flow field if we 
approximate the object surface by a union of a small number of 
planar patches. Because each independently moving object or 
planar patch will best fit a different parametric model, the para- 
metric approach may lead to an oversegmentation of motion in 
the case of nonplanar objects. 

It is difficult to associate a generic figure of merit with a video 
segmentation result. If segmentation is employed to improve 
the compression efficiency or rate control, then oversegmenta- 
tion may not be a cause of concern. The occlusion and aperture 
problems are mainly responsible for misalignment of motion 
and actual object boundaries. Furthermore, model misfit pos- 
sibly as a result of a deviation of the surface structure from a 
plane generally leads to oversegmentation of the motion field. 
In contrast, if segmentation is needed for object-based editing 
and composition as in the upcoming MPEG-4 standard, then 
it is of utmost importance that the estimated boundaries align 
with actual object boundaries perfectly. Even a single pixel er- 
ror may not be tolerable in this case. Although elimination of 
outlier motion estimates and imposing spatio temporal smooth- 
ness constraints on the segmentation map improve the chances 
of obtaining more meaningful segmentation results, seman- 
tic object segmentation in general requires specialized capture 
methods (chroma keying) or user interaction (semi-automatic 
methods). 

We start our discussion of video segmentation methods with 
change detection in Section 2, where we study both two-frame 
methods and methods employing memory, spatial segmenta- 
tion, or both. Motion segmentation methods can be classified 
as sequential and simultaneous methods. The dominant mo- 
tion segmentation approach, which aims to label independently 
moving regions sequentially (one at a time), is investigated in 
Section 3, where we discuss the estimation of the parameters 
and detection of the support of the dominant motion. Section 4 
presents methods for simultaneous multiple motion segmenta- 
tion, including clustering in the motion parameter space, max- 
imum likelihood segmentation, maximum a posteriori prob- 
ability segmentation, and region labeling methods. Since the 
accuracy of segmentation results depends on the accuracy of the 
estimated motion field, optical flow estimation and segmenta- 
tion should be addressed simultaneously for best results. This 
is addressed in Section 5. Finally, Section 6 deals with semanti- 
cally meaningful object segmentation with emphasis on chroma 
keying and semi-automatic methods. 

2 Change Detection 

Change detection methods segment each frame into two regions, 
namely changed and unchanged regions in the case of a static 
camera or global and local motion regions in the case of a mov- 
ing camera. This section deals only with the former case, in 
which unchanged regions correspond to the background (null 
hypothesis) and changed regions to the foreground object(s) or 
uncovered (occlusion) areas. The case of moving camera is iden- 
tical to the former, once the global motion between successive 
frames that is due to camera motion is estimated and compen- 
sated. However, an accurate estimation of the camera motion 
requires scene segmentation; hence, there is a chicken-egg prob- 
lem. Fortunately, the dominant motion segmentation approach, 
presented in the next section, offers a solution to the estimation 
of the camera motion without prior scene segmentation. Hence, 
the discussion of the case of moving camera is deferred until Sec- 
tion 3. In the following, we first discuss change detection using 
two frames. Temporal integration (using more than two frames) 
and the combination of spatial and temporal segmentation are 
also studied to obtain spatially and temporally coherent regions. 

2.1 Detection Using Two Frames 
The simplest method to detect changes between two registered 
frames would be to analyze the frame difference (FD) image, 
which is given by 

where x = ( X I ,  x;?) denotes pixel location and s(x, k) stands for 
the intensity value at pixel x in frame k. The FD image shows 
the pixel-by-pixel difference between the current image k and 
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the reference image r . The reference image r may be taken as the 
previous image k - 1 (successive frame difference) or an image 
at a fixed time. For example, if we are interested in monitoring a 
hallway by using a fixed camera, an image of the hallway when 
it is empty may be used as a fixed reference image. Assuming 
that we have a static camera and the illumination remains more 
or less constant between the frames, the pixel locations where 
FDk,, (x) differs from zero indicate regions “changed” as a result 
of local motion. In order to distinguish the nonzero differences 
that are due to noise from those that are due to local motion, 
segmentation can be achieved by thresholding the FD as 

where T is an appropriate threshold. Here, z ~ , ~ ( x )  is called a 
segmentation label field, which is equal to “1” for changed re- 
gions and “0” otherwise. The value of the threshold T can be 
chosen by an optimal threshold determination algorithm (see 
Chapter 2.2). This pixelwise thresholding is generally followed 
by one or more postprocessing steps to eliminate isolated la- 
bels. Postprocessing operations include forming four- or eight- 
connected regions and discarding labels with less than a prede- 
termined number of entries, and morphological filtering of the 
changed and unchanged region masks. 

In practice, a simple FD image analysis is not satisfactory for 
two reasons: first, a uniform intensity region may be interpreted 
as stationary even if it is moving (aperture problem). It may be 
possible to avoid the aperture problem by using a multiresolution 
decision procedure, since uniform intensity regions are smaller 
at lower resolution levels. Second, the intensity difference caused 
by motion is affected by the magnitude of the spatial gradient 
in the direction of motion. This problem can be addressed by 
considering a locally normalized frame difference function [4], 
or locally adaptive thresholding [3]. An improved change detec- 
tion algorithm that addresses both concerns can be summarized 
as follows. 

1. Construct a Gaussian pyramid in which each frame is rep- 
resented in multiple resolutions. Start processing at the 
lowest resolution level. 

2. For each pixel at the present resolution level, compute the 
normalized frame difference given by [4] 

where denotes a local neighborhood of the pixel x, 
Vs (x, r )  denotes the gradient of image intensity at pixel x, 
and c is a constant to avoid numerical instability. If the nor- 
malized difference is high (indicating that the pixel is mov- 
ing), replace the normalized difference from the previous 
resolution level at that pixel with the new value. Otherwise, 
retain the value from the previous resolution level. 

3. Repeat step 2 for all resolution levels. 

Finally, we threshold the normalized motion detection function 
at the highest resolution level. 

2.2 Temporal Integration 
A n  important consideration is to add memory to the motion 
detection process in order to ensure both spatial and tempo- 
ral continuity of the changed regions at each frame. This can 
be achieved in a number of different ways, including temporal 
filtering (integration) of the intensity values across multiple 
frames before thresholding and postprocessing of labels after 
thresholding. 

A variation of the successive frame difTerence and normalized 
frame difference is the frame difference with memory FDMk(x), 
which is defined as the difference between the present frame 
s (x, k) and a weighted average of past frames J(x, k), given by 

FDMk(x) = S(X, k) - S(X, k), (4) 

where 

S(X, k) (1 - CY)S(X, k) + CYS(X, k - I), k = 1, , . . , (5) 

and 

S(x, 0) = s(x, 0). 

Here 0 < a < 1 is a constant. After processing a few frames, 
the unchanged regions in S(x, k) maintain their sharpness with 
a reduced level of noise, while the changed regions are blurred. 
The function FDMk(x) is thresholded either by a global or a 
spatially adaptive threshold as in the case of two frame methods. 
The temporal integration increases the likelihood of eliminating 
spurious labels, thus resulting in spatially contiguous regions. 

Accumulative differences can be employed when detecting 
changes between a sequence of images and a fixed reference im- 
age (as opposed to successive frame differences). Let 5(x, k), 
s(x, k - I), . . . , s(x, k - N )  be a sequence of Nframes, andlet 
s (x, r )  be a reference image. An accumulative difference image 
is formed by comparing every frame in the sequence with this 
reference image. For every pixel location, the accumulative image 
is incremented if the difference between the reference image and 
the current image in the sequence at that pixel location is bigger 
than a threshold. Thus, pixels with higher counter values are 
more likely to correspond to changed regions. 

An alternative procedure that was proposed to MPEG-4 con- 
siders the postprocessing of labels [ 51. First, an initial change de- 
tection mask is estimated between successive pairs of frames by 
global thresholding of the frame difference function. Next, the 
boundary of the changed regions is smoothed by a relaxation 
method using local adaptive thresholds [ 11. Then, memory is 
incorporated by relabeling unchanged pixels that correspond to 
changed locations in one of the last L frames. This step ensures 
temporal continuity of changed regions from frame to frame. 
The depth of the memory L may be adapted to scene content 
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to limit error propagation. Finally, postprocessing to obtain the 
final changed and unchanged masks eliminates small regions. 

2.3 Combination with Spatial Segmentation 
Another consideration is to enforce consistency of the bound- 
aries of the changed regions with spatial edge locations at each 
frame. This may be accomplished by first segmenting each frame 
into uniform color or texture regions. Next, each region resulting 
from the spatial segmentation is labeled as changed or unchanged 
as a whole, as opposed to labeling each pixel independently. Re- 
gion labeling decisions may be based on the number of changed 
and unchanged pixels within each region or thresholding the 
average value of the frame differences within each region [6]. 

3 Dominant Motion Segmentation 

Segmentation by dominant motion analysis refers to extracting 
one object (with the dominant motion) from the scene at a time 
[4,7-9]. Dominant motion segmentation can be considered as 
a hierarchically structured top-down approach, which starts by 
fitting a single parametric motion model to the entire frame, and 
then partitions the frame into two regions, those pixels that are 
well represented by this dominant motion model and those that 
are not. The process converges to the dominant motion model 
in a few iterations, each time fitting a new model to only those 
pixels that are well represented by the motion model in the pre- 
vious iteration. The dominant motion may correspond to the 
camera (background) motion or a foreground object motion, 
whichever occupies a larger area in the frame. The dominant 
motion approach may also handle separation of individually 
moving objects. Once the first dominant object is segmented, it 
is excluded from the region of analysis, and the entire process is 
repeated to define the next dominant object. This is unlike the 
multiple motion segmentation approaches that are discussed in 
the next section, which start with an initial segmentation mask 
(usually with many small regions) and refine them according to 
some criterion function to form the final mask. It is worth noting 
that the dominant motion approach is a direct method that is 
based on spatiotemporal image intensity gradient information. 
This is in contrast to first estimating the optical flow field be- 
tween two frames and then segmenting the image based on the 
estimated optical flow field. 

3.1 Segmentation by Using Two Frames 
Motion estimation in the presence of more than one moving 
objects with unknown supports is a difficult problem. It was Burt 
et al. [7] who first showed that the motion of a two-dimensional 
(2-D) translating object can be accurately estimated by using 
a multiresolution iterative approach, even in the presence of 
other independently moving objects without prior knowledge of 
their supports. This is, however, not always possible with more 

sophisticated motion models (e.g., affine and perspective), which 
are more sensitive to presence of other moving objects in the 
region of analysis. 

To this effect, Irani et al. [4] proposed multistage parametric 
modeling of dominant motion. In this approach, first a transla- 
tional motion model is employed over the whole image to obtain 
a rough estimate of the support of the dominant motion. The 
complexity of the model is then gradually increased to affine and 
projective models with refinement of the support of the object in 
between. The parameters of each model are estimated only over 
the support of the object based on the previously used model. 
The procedure can be summarized as follows. 

1. Compute the dominant 2-D translation vector (dx,  dy) 
over the whole frame as the solution of 

2. 

where Ix ,  Iy, and It denote partials of image intensitywith 
respect to x ,  y, and t. In case the dominant motion is not a 
translation, the estimated translation becomes a first-order 
approximation of the dominant motion. 
Label all pixels that correspond to the estimated dominant 
motion as follows. 
(a) Register the two images by using the estimated domi- 

nant motion model. The dominant object appears sta- 
tionary between the registered images, whereas other 
parts of the image are not. 

(b) Then, the problem reduces to labeling stationary re- 
gions between the registered images, which can be 
solved by the multiresolution change detection algo- 
rithm given in Section 2.1. 

(c) Here, in addition to the normalized frame difference, 
Eq. (3), define a motion reliability measure as the re- 
ciprocal of the condition number of the coefficient 
matrix in Eq. (6), given by [41 

(7) 

where k ~ n  and A, are the smallest and largest eigen- 
values of the coefficient matrix, respectively. A pixel 
is classified as stationary at a resolution level if its 
normalized frame difference is low, and its motion re- 
liability is high. This step defines the new region of 
analysis. 

3. Estimate the parameters of a higher-order motion model 
(affine, perspective, or quadratic) over the new region of 
analysis as in [4]. Iterate over steps 2 and 3 until a satisfac- 
tory segmentation is attained. 

Amin R(x, k) = -, 
xmax 

3.2 Temporal Integration 
Temporal continuity of the estimated dominant objects can 
be facilitated by extending the temporal integration scheme 
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introduced in Section 2.2. To this effect, we define an internal 
representation image [4] 

where 

J(x, 0) = s(x, 0) 

and warp(% B )  denotes warping image A toward image B ac- 
cording to the dominant motion parameters estimated between 
images A and B ,  and 0 < 01 < 1. As in the case of change detec- 
tion, the unchanged regions in J(x, k) maintain their sharpness 
with a reduced level of noise, while the changed regions are 
blurred after processing a few frames. 

The algorithm to track the dominant object across multiple 
frames can be summarized as follows [4]. For each frame, do the 
following. 

1. Compute the dominant motion parameters between the 
internal representation image J(x, k) and the new frame 
s (x, k) within the support Mk--l of the dominant object at 
the previous frame. 

2. Warp the internal representation image at frame k - 1 
toward the new frame according to the computed motion 
parameters. 

3. Detect the stationary regions between the registered im- 
ages as described in Section 3.1, using Mk-1 as an initial 
estimate to compute the new mask Mk. 

4. Update the internal representation image by using Eq. (8). 

Comparing each new frame with the internal representation 
image as opposed to the previous frame allows the method to 
track the same object. This is because the noise is significantly 
filtered in the internal representation image ofthe tracked object, 
and the image gradients outside the tracked object are lowered 
because of blurring. Note that there is no temporal motion con- 
stancy assumption in this tracking scheme. 

3.3 Multiple Motions 
Multiple object segmentation can be achieved by repeating 
the same procedure on the residual image after each object 
is extracted. Once the first dominant object is segmented and 
tracked, the procedure can be repeated recursively to segment 
and track the next dominant object after excluding all pixels be- 
longing to the first object from the region of analysis. Hence, 
the method is capable of segmenting multiple moving objects 
in a top-down fashion if a dominant motion exists at each 
stage. 

Some difficulties with the dominant motion approach were 
reported when there was no overwhelmingly dominant motion. 
Then, in the absence ofcompeting motion models, the dominant 
motion approach could lead to arbitrary decisions (relying upon 

absolute threshold values) that are irrevocable, especially when 
the motion measure indicates unreliable motion vectors (in low 
spatial gradient regions). Sawhney et al. [ 101 proposed the use 
of robust estimators to partially alleviate this problem. 

4 Multiple Motion Segmentation 

Multiple motion segmentation methods let multiple motion 
models compete against each other at each decision site. They 
consist of three basic steps, which are strongly interrelated: esti- 
mation of the number K of independent motions, estimation of 
model parameters for each motion, and determination of sup- 
port of each model (segmentation labels). If we assume that we 
know the number K of motions and the K sets of motion pa- 
rameters, then we can determine the support of each model. 
The segmentation procedure then assigns the label of the para- 
metric motion vector that is closest to the estimated flow vector 
at each site. Alternatively, if we assume that we know the value 
of K and a segmentation map consisting of K regions, the pa- 
rameters for each model can be computed in the least-squares 
sense (either from estimated flow vectors or from spatiotempo- 
ral intensity values) over the support of the respective region. 
But because both the parameters and supports are unknown in 
reality, we have a chicken-egg problem; that is, we need to know 
the motion model parameters to find the segmentation labels, 
and the segmentation labels are needed to find the motion model 
parameters. 

Various approaches exist in the literature for solvingthis prob- 
lem by iterative procedures. They may be grouped as follows: 
segmentation by clustering in the motion parameter space [ 11- 
131, maximum likelihood (ML) segmentation [9, 14, 151, and 
maximum a posteriori probability (MAP) segmentation [ 161, 
which are covered in Sections 4.1-4.3, respectively. Pixel-based 
segmentation methods suffer from the drawback that the re- 
sulting segmentation maps may contain isolated labels. Spa- 
tial continuity constraints in the form of Gibbs random field 
(GRF) models have been introduced to overcome this problem 
within the MAP formulation [ 161. However, the computational 
cost of these algorithms may be prohibitive. Furthermore, they 
do not guarantee that the estimated motion boundaries coin- 
cide with spatial color edges (object boundaries). Section 4.4 
presents an alternative region labeling approach to address this 
problem. 

4.1 Clustering in the Motion Parameter Space 
A simple segmentation strategy is to first determine the number 
K of models (motion hypotheses) that are likely to be observed in 
a sequence, and then perform clustering in the model parameter 
space (e.g., a six-dimensional space for the case of affine models) 
to find K models representing the motion. In the following, we 
studytwo distinct approaches in this class: the K-means method 
and the Hough transform method. 
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4.1.1 K-Means Method 
Wang and Adelson (W-A) [12] employed K-means cluster- 
ing for segmentation in their layered video representation. The 
W-A method starts by partitioning the image into nonoverlap- 

3. Define Sk as the set of seed blocks whose affine parameter 
vector is closest to Ak, k = 1, . . . , K. Then, update the 
class means 

(14) CneSk An ping blocks uniformly distributed over the image, and it fits an & = 
affine model to the estimated motion field (optical flow) within C n e a  1 * 

each block. In order to determine the reliability of the parameter 
estimates at each block, the sum of squared distances between 
the synthesized and estimated flow vectors is computed as 

4. Repeat steps 2 and 3 until the class means Ak do not change 
by more than a predefined amount between successive 
iterations. 

(9) 

where B refers to a block of pixels. Obviously, on one hand, if 
the flow within the block complies with a single affine model, 
the residual will be small. On the other hand, if the block falls 
on the boundarybetween two distinct motions, the residual will 
be large. The motion parameters for blocks with acceptably small 
residuals are selected as the seed models. Then, the seed model 
parameter vectors are clustered to find the K representative affine 
motion models. The clustering procedure can be described as 
follows. Given N seed affine parameter vectors AI, A2, . . . , AN, 
where 

find K cluster centers AI, &, . . . , Ax, where K << N, and the 
label k, k = 1, . . . , K, assigned to each affine parameter vector 
An that minimizes 

N 

n= 1 

The distance measure D between two affine parameter vectors 
An and Ak is given by 

D(An, Ak) = AzMAk, (12) 

where M is a 6 x 6 scaling matrix. 

K -means algorithm, which consists of the following iteration. 
The solution to this problem is given by the well-known 

Statistical tests can be applied to eliminate some parameter vec- 
tors that are deemed as outliers. 

Once the K cluster centers are determined, a label assignment 
procedure is employed to assign a segmentation label z(x) to 
each pixel x as 

where k is from the set { 1,2, . . . , K}, the operator P is defined 
as 

and v(x) is the dense motion vector at pixel x given by 

where v1 and y denote the horizontal and vertical components, 
respectively. All sites without labels are assigned one according 
to the motion compensation criterion, which assigns the label of 
the parameter vector that gives the best motion compensation 
at that site. This feature ensures more robust parameter estima- 
tion by eliminating the outlier vectors. Several postprocessing 
operations may be employed to improve the accuracy of the seg- 
mentation map. The procedure can be repeated by estimating 
new seed model parameters over the regions estimated in the 
previous iteration. Furthermore, the number of clusters can be 
varied by splitting or merging of clusters between iterations. The 
K-means method requires a good initial estimate of the number 
of classes K .  The Hough transform methods do not require this 
information but are more expensive. 

4.1.2 Hough Transform Methods 
1. Initialize A I ,  A2, . . . , & arbitrarily. 
2. For each seed block n, n = 1, . . . , N, find k given by 

The Hough transform is a well-known clustering technique in 
which the data samples “vote” for the most representative fea- 
ture values in a quantized feature space. In a straightforward 
application of the Hough transform method to optical flow seg- 
mentation, using the six-parameter affine flow model, Eq. (16), 
the six-dimensional feature space al, . . . , as would be quan- 
tized to certain parameter states after the minimal and maximal 
values for each parameter are determined. Then, each flowvector 
v(x) = [V I  (x) v2 (x)] votes for a set of quantized parameters 

k = arg minD(An, As), (13) 

where s takes values fromthe set { 1,2, . . . , K}. It should be 
noted that if the minimum distance exceeds a threshold, 
then the site is not labeled, and the corresponding flow 
vector is ignored in the parameter update that follows. 

s 
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that minimizes 

where q (x) = v1 (x) - UI - a2x1- a3x2 and q2(x) = v2(x) - 
a4 - d5x1 - a&. The parameter sets that receive at least a pre- 
determined amount of votes are likely to represent candidate 
motions. The number of classes K and the corresponding pa- 
rameter sets to be used in labeling individual flow vectors are 
hence determined. The drawback ofthis scheme is the significant 
amount of computation and memory requirements involved. 

In order to keep the computational burden at a reasonable 
level, several modified Hough methods have been presented. 
Proposed simplifications to ease the computational load include 
[ 111 (a) decomposition ofthe parameters space into two disjoint 
subsets {al, UZ, a3} x (a4, a5, &) to perform two 3-D Hough 
transforms, (b) a multiresolution Hough transform, in that at 
each resolution level the parameter space is quantized around 
the estimates obtained at the previous level, and (c) a multipass 
Hough technique, in which the flow vectors that are most con- 
sistent with the candidate parameters are grouped first. In the 
second stage, those components formed in the first stage that are 
consistent with the same flow model in the least-squares sense 
are merged together to form segments. Several merging crite- 
ria have been proposed. In the third and final stage, ungrouped 
flow vectors are assimilated into one of their neighboring seg- 
ments. Other simplifications that are proposed include the prob- 
abilistic Hough transform [17] and the randomized Hough 
transform [ 131. 

Clustering in the parameter space has some drawbacks: 
(a) both methods rely on precomputed optical flow as an input 
representation, which is generally blurred at motion boundaries 
and may contain outliers, (b) clustering based on distances in 
the parameter space can lead to clustered parameters that are not 
physically meaningful and the results are sensitive to the choice of 
the weight matrix M and small errors in the estimation of &ne 
parameters, and (c) parameter clustering and label assignment 
procedures are decoupled; hence, ad hoc postprocessing opera- 
tions that depend on some threshold values are needed to clean 
up the final segmentation map. The following section proposes 
a maximum likelihood segmentation method, which addresses 
all of these shortcomings. 

4.2 Maximum Likelihood Segmentation 
Motion segmentation approaches in general are classified as op- 
tical flow segmentation methods, which operate on precom- 
puted optical flow estimates as an input representation, and di- 
rect methods, which operate on spatiotemporal intensity values. 
We present here a unified formulation that covers both cases. 
The ML method finds the segmentation labels that maximize 
the likelihood function, which models the deviation of the ob- 
servations (estimated dense motion vectors or observed inten- 
sity values) from a parametric description of them (parametric 

motion vectors or motion compensated intensity values, respec- 
tively) for a given motion model. 

We start by defining the log likelihood function as 

where zdenotesthe lexicographical orderingofthe segmentation 
labels z(x), which takes values from the set 1,2, . . . , K at each 
pixel x. The vector o stands for the lexicographic ordering of the 
observations, which are either estimated dense motion (optical 
flow) vectors or image intensity values. The conditional prob- 
ability p(o 1 z) quantifies how well piecewise parametric mo- 
tion modeling fits the observations o given the segmentation la- 
bels z. If we model the mismatch between the observations o(x) 
and their parametric representations computed by the operator 
Q(Az(x); XI, 

where Ak denotes the kth parametric motion model, by white 
Gaussian noise with zero mean and variance u2, then the condi- 
tional pdf of the observations given the segmentation labels can 
be expressed as 

where M is the number of observations available at the sites xi. 
Assuming that the parametric flow model is more or less accu- 
rate, this deviation is due to presence of observation noise (given 
correct segmentation labels). Then the problem is to find K mo- 
tion models AI, Az, . . . , AK, and a label field z(x) to maximize 
the log likelihood function L(o 1 z). 

We consider two cases: 
I. Precomputed optical flow segmentation: The observation 

o(x) stands for the estimated dense motion vectors v(x), and the 
operator 0 stands for the parametric motion operator P given 
by Eq. (16) or a higher-order model given by 

%(XI = u l x l +  ~2x2 - a3 + + agxlxz, 
(22) 

+2(x) = + a5x2 - f a7xlx2 + @x2 2' 

Then, 

is the norm-squared deviation of the actual flow vectors from 
what is predictedby the quadratic flow model. This case concerns 
motion segmentation by motion vector matching. 

11. Direct segmentation: The observation o(x) stands for the 
scalar pixel intensities It(x) at frame t, and the operator 0 is the 
motion compensation operator Q, defined by 
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where 

Then, 

This case corresponds to motion segmentation by motion- 
compensated intensity matching. The motion parameters Ak are 
estimated over the support of model k by using direct methods 
(see step (3) below). 

In either case, assuming that the variances for all classes are the 
same, maximization of the log likelihood function is equivalent 
to minimization of the cost function 

or equivalently 

(27) 

where ,& is the set of pixels x with the motion label z(x) = k ,  
and Ok(X) = O(Ak; x). 

Atwo-step iterative solution to this problem is given as follows. 

1. Initialize AI, A2,. . . , AK. 
2. Assign a motion label z(x) to each pixel x as 

z(x) = arg min Ilo(x) - O(Ak; x)[I2 

where k takes values from the set { 1,2, . . . , K } .  

(29) 
k 

3. Update Ai, A2, . . . , AK as 

Ak = arg min ~lv(x) - P(A; x)1I2 (30) 

This minimization is equivalent to a least-squares estima- 
tion of the affine motion model fit to the motion vectors 
with the label z(x) = k. A closed-form solution to this 
problem can be expressed in terms of a linear matrix equa- 
tion 

A 
XEZk 

for all x such that z(x) = k. 
4. Repeat steps (2) and (3) until the class means Ak do not 

change by more than a predefined amount between suc- 
cessive iterations. 

This method does not require gradient-based optimization or 
other numeric search procedures for optimization of a cost func- 
tion. Thus, it is robust and computationally efficient. Extensions 
of this formulation using mixture modeling and robust estima- 
tors, which require a gradient-based optimization, have also been 
proposed [ 91. 

Motion vector matching is a good motion segmentation cri- 
terion when the estimated motion field is accurate; that is, 
all outlier motion estimates are properly eliminated. Motion- 
compensated intensity matching is a more suitable criterion 
when spatial intensity (color) variations are sufficient and/or 
a multiresolution labeling procedure is employed. A possible 
limitation of the ML segmentation framework is that it lacks 
constraints to enforce spatial and temporal continuity of the 
segmentation labels. Thus, rather ad hoc steps are needed to 
eliminate small, isolated regions in the segmentation label field, 
The MAP segmentation strategy promises to impose continuity 
constraints in an optimization framework. 

4.3 Maximum a posteriori Probability 
Segmentation 
The MAP method is a Bayesian approach that searches for the 
maximum of the aposteriori pdfof the segmentation labels given 
the observations (either precomputed optical flow or spatio- 
temporal intensity data). This pdf is not only a measure of how 
well the segmentation labels explain the observed data, but also 
how well they conform with our prior expectations. The MAP 
formulation differs from the maximum likelihood approach in 
that it includes smoothness terms to enforce spatial continuity 
of the output motion segmentation map. 

The a posteriori pdf p(z  I 0 )  of the segmentation label field 
z given the observed data o can be expressed, using the Bayes 
theorem, as 

where p(o I z) is the conditional pdf of the optical flow data 
given the segmentation z, and p(z)  is the a priori pdf of the 
segmentation. Observe that, (a) z is a discrete-valued random 
vector with a finite sample space Q, and (b) p(o) is constant with 
respect to the segmentation labels and hence can be ignored for 
the purpose of computing z. The MAP estimate, then, maximizes 
the numerator of Eq. (32) over all possible realizations of the 
segmentation field z = w, w E a. 

Modeling ofthe conditional pdf p(o I z) has been discussed in 
detail in Section 4.2 through Eqs. (21) and (23) or Eq. (26). The 
prior pdf is modeled by a Gibbs distribution, which effectively 
introduces local constraints on the segmentation. It is given by 

(33) 

where Q denotes the sample space of the discrete-valued random 
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vector z, Q is the partition function (normalization constant) 
given by 

U(z)  is the potential function given by 

which can be expressed as a sum of local clique potential func- 
tions, such as 

and Nxi denotes the neighborhood system for the label field. 
Prior constraints on the structure of the segmentation labels, 
such as spatial smoothness, can be specified in terms of the clique 
potential function. Temporal continuity of the labels can simi- 
larly be modeled [ 161 

Substituting Eqs. (21) and (33) into the criterion (32) and 
taking the logarithm of the resulting expression, maximization 
of the a posteriori probability distribution can be performed by 
minimizing the cost function 

(37) 

The first term describes how well the predicted data fit the actual 
measurements (estimated optical flow vectors or image intensity 
values), and the second term measures how well the segmenta- 
tion conforms to our prior expectations. 

Because the motion model parameters corresponding to each 
label are not known a priori, the MAP segmentation must 
alternate between estimation of the model parameters and as- 
signment of the segmentation labels to optimize the cost func- 
tion, Eq. (37). Murray and Buxton [16] were the first to pro- 
pose a MAP segmentation method in which the optical flow was 
modeled by a piecewise quadratic flow field, Eq. (22), and the 
segmentation labels, were assigned based on a simulated anneal- 
ing (SA) procedure. Given the estimated flow field v and the 
number of independent motion models K ,  the MAP segmen- 
tation using the Metropolis algorithm can be summarized as 
follows: 

Start with an initial labeling z of the optical flow vectors. 
Calculate the model parameters a = [a1 . . as] for 
each region, using least-squares fitting (similar to that in 
Section 4.2). Set the initial temperature for SA. 
Update the segmentation labels at each site xi as follows. 
(a) Perturb the label zi = z(xi) randomly. 

3. 

4. 
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(b) Decide whether to accept or reject this perturbation, 
based on the change AE in the cost function, Eq. (37), 

where Nx, denotes a neighborhood of the site xi and 
Vc(z(xi), z(xj)) is given by Eq. (36). The first term 
indicates whether or not the perturbed label is more 
consistent with the given flow field determined by the 
residual, Eq. (23), andthesecondtermreflectswhether 
or not it is in agreement with the prior segmentation 
field model. 

Because the update at each site is dependent on the labels 
of the neighboring sites, the order in which the sites are 
visited affects the result of this step. 
After all pixel sites are visited once, reestimate the mapping 
parameters for each region based on the new segmentation 
label configuration. 
Exit if a stopping criterion is satisfied. Otherwise, lower 
the temperature according to a predefined temperature 
schedule, and go to step 2. 

We can make the following observations. First, the MAP method 
carries a high computational cost. Second, the procedure pro- 
posed by Murray-Buxton suggests performing step 3 above, the 
model parameter update, after each and every perturbation. We 
did not notice a significant difference in performance if motion 
parameter updates are done after all sites are visited once. Third, 
the method can be applied with any parametric motion model, 
although the original formulation has been developed on the 
basis of the eight-parameter model. 

4.4 Region-Based Label Assignment 
In this section, we extend the ML approach (Section 4.2) to 
region-based motion segmentation, where the image is first di- 
vided into predefined homogeneous regions, and then, at every 
iteration, each region is assigned a single motion label. This 
region-based label assignment strategy facilitates obtaining spa- 
tially continuous segmentation maps that are closely related to 
actual object boundaries, without the heavy computational bur- 
den of statistical Markov random field (MRF) model-based ap- 
proaches. The predefined regions should be such that each region 
has a single motion. It is generally true that motion boundaries 
coincide with color segment boundaries, but not vice versa; that 
is, color segments are almost always a subset of motion seg- 
ments, as illustrated in Fig. 1. Therefore, one can first perform a 
color segmentation to obtain aset of candidate motion segments. 
Other approaches to region definition include mesh-based par- 
titioning of the scene [18] and macropixels (N x N blocks) to 
improve the robustness of the ML motion segmentation. Here, 
we assume that each frame of video has been subject to a region 
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3. Assign a motion label to each region C,, rn = 1,2, . . . , M ,  
such that 

23 25 

I 20 \ I  

where k = 1,2, . . . , K and o(x) and O(x) are as de- 
fined in Section 4.2. This allows region-based affine motion 
segmentation with pixel-based motion-vector or intensity 
matching. 

4. Repeat steps 2 and 3 until the class means Ak do not change 
by more than a predefined amount between successive 
iterations. 

FIGURE 1 Illustration of the observation that color segments are generally 
subsets of motion segments. The bold lines indicate motion segment boundaries, 
and each motion segment is composed of many color regions. 

formation procedure. We let C(x) denote the region map of 
a frame consisting of M mutually exclusive and exhaustive re- 
gions, and we define C, as the set of pixels x with the region label 
C(x) = m, m = 1, . . . , M.  

We wish to find the motion segmentation map z [a vector 
formed by lexicographic ordering of z(x)] and the corresponding 
affine parameter vectors AI,  A2, . . . , AK that best fit the dense 
motion-vector field, such that [ 151 

is minimized. Here z( m) refers to the motion label of all pixels 
within C, and takes one of the values 1,2, . . . , K ;  P is an oper- 
ator defined by Eq. (16), and v(x) is the dense motion vector at 
pixel x as defined by Eq. (17). The procedure is given as follows. 

1. Initialize the motion segmentation map z by assigning a 
single motion label k, k = 1, . . . , K to each C,. 

2. Update the parameter vectors A,, A2, . . . , AK as 

where 2 k  is the set of pixels x with the label z(x) = k. This 
minimization can be achieved by solving the linear matrix 
equation 

We note that the pixel-based ML motion segmentation 
method presented in Section 4.2 is a special case of this region- 
based framework. If each region C, contains a single pixel, then 
the iterations are carried over individual pixels, and the motion 
label assignment is performed at each pixel independently. 

We conclude this section by observing that the methods dis- 
cussed here that used precomputed optical flow as an input 
representation are limited by the accuracy of the available op- 
tical flow estimates. Next, we introduce a framework, in which 
optical flow estimation and segmentation interact in a mutually 
beneficial manner. 

5 Simultaneous Estimation 
and Segmentation 

Until now, we discussed methods to compute the segmentation 
labels from either precomputed optical flow or directly from 
intensity values, but we did not address how to compute an im- 
proved dense motion field along with the segmentation map. It 
is clear that the success of optical flow segmentation is closely 
related to the accuracy of the estimated optical flow field (in 
the case of using precomputed flow values), and vice versa. It 
follows that optical flow estimation and segmentation have to 
be addressed simultaneously for best results. Here we present a 
simultaneous Bayesian approach based on a representation of 
the motion field as the sum of a parametric field and a resid- 
ual field. The interdependence of optical flow and segmentation 
fields is expressed in terms of a Gibbs distribution within the 
MAP framework. The resulting optimization problem, to find 
estimates of a dense set of motion vectors, a set of segmentation 
labels, and a set of mapping parameters, is solved by using the 
highest confidence first (HCF) and iterated conditional mode 
(TCM) algorithms. 

5.1 Modeling 
We model the optical flow field v(x) as the sum of a parametric 
flow field V(x) and a nonparametric residual field v,(x), which for all x in 2 k .  
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accounts for local motion and other modeling errors; that is, 

The parametric component of the motion field clearly de- 
pends on the segmentation label z(x), which takes on the values 
1, ..., K .  

The simultaneous MAP framework aims at maximizing the 
a posteriori pdf 

p(v1, v2, z I g k ,  %k+l) 

(44) 

with respect to the optical flow VI,  vz, and the segmenta- 
tion labels z, where v1 and v2 denote the lexicographic order- 
ing of the first and second components of the flow vectors 
v(x) = [ ~1 (x) v2 (x) ] at each pixel x Through careful modeling 
of these pdfs, we can express an interrelated set of constraints 
that help improve both optical flow and segmentation estimates. 

Thefirstconditionalpdfp(gk+l I gk, VI, v2,z)providesamea- 
sure of how well the present displacement and segmentation 
estimates conform with the observed frame k + 1 given frame k. 
It is modeled by a Gibbs distribution as 

- P(gk+l I g k ,  v1, VZ, Z)P(Vl, vz I5 gk)P(z  I g k )  - 
p(gk+ll g k )  

1 
P h + l  I g k ,  V1Y v2,z) = - exp{-Ul(gk+l I g k ,  v1, v2,z)) 

Qi 

(45) 

where Q1 is the partition function (normalizing constant), and 

is called the Gibbs potential. Here, the Gibbs potential corre- 
sponds to the norm square of the displaced frame difference 
(DFD) between the frames gk and gk+l. Thus, maximization of 
Eq. (45) imposes the constraint that v(x) minimizes the DFD. 

The second term in the numerator in Eq. (44) is the condi- 
tional pdf of the displacement field given the motion segmenta- 
tion and the search image. It is also modeled by a Gibbs distri- 
bution 

1 
p(v1, VZ Iz, g k )  = P(V1, vz 12) = - exp{-U2(v1, vz 12)) 

Q2 

(47) 

where 4 2  is a constant, and 

is the corresponding Gibbs potential, 11 . )I denotes the Euclidian 
distance, and Nx is the set of neighbors of site x. The first term 
in Eq. (48) enforces a minimum norm estimate of the residual 
motion field v,(x); that is, it aims to minimize the deviation 
of the motion field v(x) from the parametric motion field +(x) 
while minimizing the DFD. Note that the parametric motion 
field Z(x) is calculated from the set of model parameters ai, 
i = 1, . . . , K ,  which in turn is a function of v(x) and z(x). The 
second term in Eq. (48) imposes a piecewise local smoothness 
constraint on the optical flow estimates without introducing any 
extra variables such as line fields. Observe that this term is active 
only for those pixels in the neighborhood Nx that share the same 
segmentation label with the site x. Thus, spatial smoothness is 
enforced only on the flow vectors generated by a single object. 
The parameters CY and p allow for relative scaling of the two 
terms. 

The third term in Eq. (44) models the a priori probability 
of the segmentation field in a manner similar to that in MAP 
segmentation. It is given by 

(49) 

where 52 denotes the sample space ofthe discrete-valued random 
vector z, and Q3 and U3(z) are as defined in Eqs. (34) and (35), 
respectively. The dependence of the labels on the image inten- 
sity is usually neglected, although region boundaries generally 
coincide with intensity edges. 

5.2 An Algorithm 
Maximizing the a posteriori pdf, Eq. (44), is equivalent to mini- 
mizing the cost function, 

which is composed of the potential functions in Eqs. (45), (47), 
and (49). Direct minimization of Eq. (50) with respect to all un- 
knowns is an exceedingly difficult problem, because the motion 
and segmentation fields constitute a large set of unknowns. To 
this effect, we perform the minimization of Eq. (50) through the 
following two-step iteration [20]: 

1. Given the best available estimates of the parameters ai, 
i = 1, . . . , K, and z, update the optical flow field VI, v2. 
This step involves the minimization of a modified cost 
function 

X 

X 
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2. 

which is composed of all terms in Eq. (50) that contain 
v(x). While the first term indicates how well v(x) explains 
our observations, the second and third terms impose prior 
constraints on the motion estimates that they should con- 
form with the parametric flow model, and that they should 
vary smoothly within each region. To minimize this energy 
function, we employ the HCF method recently proposed 
by Chou and Brown [ 191. HCF is a deterministic method 
designed to efficiently handle the optimization of multi- 
variable problems with neighborhood interactions. 
Update the segmentation field z, assuming that the optical 
flow field v(x) is known. This step involves the minimiza- 
tion of all the terms in Eq. (50) that contain z as well as 
?(x), given by 

(52) 

The first term in Eq. (52) quantifies the consistency of V(x) 
and v(x). The second term is related to the a priori prob- 
ability of the present configuration of the segmentation 
labels. We use an ICM procedure to optimize E2 [20]. The 
mapping parameters ai are updated by a least-squares a 
estimation within each region. 

An initial estimate of the optical flow field can be found by 
using the Bayesian approach with a global smoothness con- 
straint. Given this estimate, the segmentation labels can be ini- 
tialized by a procedure similar to Wang and Adelson’s [12]. 
The determination of the free parameters a, (3, and y is a de- 
sign problem. One strategy is to choose them to provide a dy- 
namic range correction so that each term in cost function (50) 
has equal emphasis. However, because the optimization is imple- 
mented in two steps, the ratio a/? also becomes of consequence. 
We recommend the selection of 1 I a/y I 5, depending on 
how well the motion field can be represented by a piecewise 
parametric model and whether we have a sufficient number of 
classes. 

A hierarchical implementation of this algorithm is also possi- 
ble by forming successive low-pass filtered versions of the images 
gk and gk+l. Thus, the quantities vl, v2, and z can be estimated 
at different resolutions. The results of each hierarchy are used to 
initialize the next lower level. Note that the Gibbsian model for 
the segmentation labels has been extended to include neighbors 
in scale by Kat0 et al. [21]. 

Several other motion analysis approaches can be formulated 
as special cases of this framework. If we retain only the first 
and the third terms in Eq. (50), and assume that all sites pos- 
sess the same segmentation label, then we have Bayesian motion 
estimation with a global smoothness constraint. The motion es- 
timation algorithm proposed by Iu I221 utilizes the same two 
terms, but it replaces the ti(.) function by alocal outlier rejection 
function. The motion estimation and region labeling algorithm 
proposed by Stiller [23] involves all terms in Eq. (50), except the 

first term in Eq. (48). Furthermore, the segmentation labels in 
Stiller’s algorithm are used merely as tokens to allow for a piece- 
wise smoothness constraint on the flow field, and they do not at- 
tempt to enforce consistencyoftheflowvectorswithaparametric 
component. We also note that the motion estimation method of 
Konrad and Dubois [24], which uses line fields, is fundamentally 
different in that they model discontinuities in the motion field, 
rather than modeling regions that correspond to different para- 
metric motions. In contrast, the motion segmentation algorithm 
ofMurrayandBuxton [ 161 (Section4.3) employs onlythesecond 
term in Eq. (48) and third term in Eq. (50) to model the condi- 
tional and prior pdf, respectively. Wang and Adelson [ 121 rely on 
the first term in Eq. (48) to compute the motion segmentation 
(Section 4.2). However, they also take the DFD of the parametric 
motion vectors into consideration when the closest match be- 
tween the estimated and parametric motion vectors, represented 
by the second term, exceeds a threshold. 

6 Semantic Video Object Segmentation 

So far we discussed methods for automatic motion segmen- 
tation. However, it is difficult to achieve semantically mean- 
ingful object segmentation by using fully automatic methods 
based on low-level features such as motion, color, and texture. 
This is because a semantic object may contain multiple mo- 
tions, colors, textures, and so on, and the definition of semantic 
objects may depend on the context, which may not be possi- 
ble to capture by using low-level features. Thus, in this sec- 
tion, we present two approaches that can extract semantically 
meaningful objects by using capture-specific information or user 
interaction. 

6.1 Chroma Keying 
Chroma keying is an object-based video technology in which 
each video object is captured individually in a special studio 
against a key color. The key color is selected such that it does 
not appear on the object to be captured. Then, the problem of 
extracting the object from each frame of video becomes one 
of color segmentation. Chroma-keyed video capture requires 
special attention to avoid shadows and other nonuniformity in 
the key color within a frame; otherwise, the segmentation of key 
color may become a nontrivial problem. 

6.2 Semi-Automatic Segmentation 
Because chroma keying requires special studios or equipment 
to capture video objects, an alternative approach is interactive 
segmentation, using automated tools to aid a human operator. 
To this effect, we assume that the contour of the first occur- 
rence of the semantic object of interest is marked interactively 
by a human operator. In many instances this is indeed the only 
way to define a semantically meaningful object unambiguously, 
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FIGURE 2 
the second frame to the first frame; (d) region map obtained segmentation. (See color section, p. C-19.) 

(a) The first and (b) second frames of the Mother and Daughter sequence; (c) 2-D dense motion field from 

because only the user can know what is semantically meaning- 
ful in the context of an application. For example, if we have the 
video clip of a person carrying a ball, whether the ball and the 
person are two separate objects or a single object may depend 
on the application. Once the boundary of the object of inter- 
est is interactively determined in one or more key frames, its 
boundary in all other frames can be automatically computed by 
2-D motion tracking until the object exits the field ofview. Two- 
dimensional tracking methods include boundary tracking and 
region tracking, which are discussed in [25]. This tracking step 
defines a polygonal or spline approximation of the boundary of 
the video object, which may be further refined interactively by 
using appropriate software tools. 

7 Examples 

Examples are shown for automatic motion segmentation using 
the pixel-based and region-based ML methods on two MPEG- 
4 test sequences: “Mother and Daughter”(frames 1-2) and 

“Mobile and Calendar” (frames 136-137). The former is an 
example of a slowly moving object against a still background, 
where the mother’s head is rotating while her body, the back- 
ground, and the child are stationary. The latter is a challenging 
sequence, with several distinctly moving objects such as a ro- 
tating ball, a moving train, and a vertically translating calen- 
dar against a background that moves as a result of camera 
pan. Figures 2(a) and 2(b) show the first and second frames 
of the Mother and Daughter sequence, and Fig. 2(c) shows 
the estimated motion field between these frames. Figures 4(a), 
4(b), 4(c) below show the corresponding pictures for frames 
136 and 137 of the Mobile and Calendar sequence. Motion es- 
timation was performed by using the hierarchical version of 
the Lucas-Kanade method [25] with three levels of hierarchy. 
In both cases, region definition by color segmentation is per- 
formed on the temporally second frame by using the fuzzy 
c-means technique [26]. Each spatially disconnected piece of 
the color segmentation map was defined as ?n individual re- 
gion. The resulting region maps are shown in Figs. 2(d) and 4(d), 
respectively. 
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FIGURE 3 
motion-vector matching; (e), (f) region-based motion-vector matching. 

Results of the ML method with two different initializations: (a), (b) initial map; (c), (d) pixel-based 

Figure 3 demonstrates the performance of the ML method for 
foregroundhackground separation (i.e., K = 2) with two differ- 
ent initializations. Figures 3(a) and 3(b) show two possible ini- 
tial segmentation maps, where the segmentation map is divided 
into two horizontal and vertical parts, respectively. Figures 3(b) 

and 3(c) show the segmentation maps using pixel-based label- 
ing by motion-vector matching after 10 iterations starting from 
Figs. 3(a) and 3(b), respectively. Figures 3(d) and 3(e) show 
the results of region labeling by motion-vector matching start- 
ing with the affine parameter sets obtained from the maps of 
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FIGURE 4 
the 137th to 136th frame; (d) region map obtained by color segmentation. (See color section, p. C-20.) 

(a) The 136th and (b) 137th frames of the Mobile and Calendar sequence; (c) 2-D dense motion field from 

Figs. 3(b) and 3(c), respectively. Observe that the segmentation 
maps obtained by pixel labeling contain many misclassified pix- 
els, whereas the maps obtained by color-region labeling are more 
coherent with the moving object in the scene. 

Figure 5 illustrates the performance of the ML method with 
different number of initial segments, K .  Figures 5(a) and 5(b) 
show two initial segmentation maps with K = 4 and K = 6, re- 
spectively. The results of pixel-based labeling by motion vector- 
matching after 10 iterations for both initializations are depicted 

in Figs. 5(c) and 5(d), respectively. Figure 5(e) shows the re- 
sult of region-based labeling using the color regions depicted in 
Fig. 4(d) and the affine model parameters initialized by those 
computed from the map in Fig. 5(c) with K = 4. We observed 
that this procedure results in oversegmentation when repeated 
with K = 6. Therefore, we employ motion-compensated inten- 
sity matching and region merging to reduce the number of the 
motion classes if necessary. In this step, a region is merged with 
another if the latter set of affine parameters gives a comparable 

I 

I 

(4 (b) 
FIGURE 5 
region-based labeling (e) K = 4, (f) K = 6. (See color section, p. C-21.) (Continues.) 

Results of the ML method initial map (a) K = 4, (b) K = 6; pixel-based labeling (c) K = 4, (d) K = 6; 
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(e) 
FIGURE 5 (Continued). 

DFD as the former. The result of this final step is depicted in 
Fig. 5(f) for K = 6, where two of the six classes are eliminated by 
motion-compensated intensity matching. The ML segmentation 
method is computationally efficient, because it does not require 
gradient-based optimization or any numeric search. It converges 
within approximately 10 iterations, and each iteration involves 
solution of onlytwo 3 x 3 matrix equations. The complete proce- 
dure takes less than a minute to implement on a SparcStation 20. 
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The tremendous amount of research in image processing and 
analysis over the past three decades has been influenced not only 
by physiological or psychophysical discoveries and psychologi- 
cal observations about perception by living beings, but also by 
advances in signal processing, computational mathematics, pat- 
tern recognition, and artificial intelligence. Some researchers in 
the rejuvenated field of neural networks are also attempting to 
develop useful models of biological and machine vision. With 
the human visual system serving as a common source of inspira- 
tion, it is not surprising that neural network approaches to image 
processing and understanding often have commonalities with 
more traditional techniques. However, they also bring new ele- 
ments of nonlinear processing with adaptation or learning, they 
bring some additional insights, and they promise breakthroughs 
through massively parallel and distributed implementations in 
VLSI [ 1,2]. 

In this chapter, we highlight some artificial neural network 
techniques for image segmentation - the process of parti- 
tioning an image into regions that are contiguous and rela- 
tively homogeneous in image properties. Image segmentation 
has been studied in great depth ever since satellite images first 

became available. Segmentation is a key step in any image-based 
recognition system, and it fundamentally limits the success of all 
higher level subsystems [ 31. The host of sophisticated techniques 
that have evolved over the past 30 years can be largely grouped 
into three categories. 

1. Edge-based methods: these make use of local and global 
gradient information to provide boundaries to regions of 
interest, and thus indirectly segment the image. 

2. Region-based methods: these group together local regions 
with relatively uniform image properties, using methods 
such as region growing, region splitting, and region split- 
ting with merging. Segmentation methods based on clus- 
tering indirectly use region-based properties, but they are 
often considered as a separate category [4]. 

3. Model-based methods: these are guided by semantic at- 
tributes given to parts ofthe image, say, based on perceived 
match with (projections of) a set of object models of in- 
terest. In this view, segmentation is tightly coupled with 
image classification or object recognition. This is in con- 
trast with methods in the first two categories, which are 
primarily based on image attributes rather than on what 
objects the images may be representing. 

Copyright 0 2000 by Academic Press. 
AU rights of reproduction in any form reserved. 40 1 
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Techniques inspired by neural networks provide additional 
insights into, as well as performance improvements for, all three 
categories. In Section 2, we briefly describe common characteris- 
tics of neural network models and introduce some popular mod- 
els. The next section highlights a prominent edge-based neu- 
ral technique. Section 4 describes representative region-based 
methods, especially those that use textural cues. The study of 
region-based methods is continued in Section 5, where we ex- 
amine optimization-based approaches to segmenting textured 
images. Section 6 describes adaptive clustering techniques for 
segmentation, and the next section summarizes biological-based 
methods in which segmentation is indicated by groups of neu- 
rons oscillating in synchrony. Finally, model-based methods are 
studied in Section 8, where integrated segmentation and recog- 
nition techniques are described. 

2 Artificial Neural Networks 

For our purposes, an artificial neural network (ANN) is a col- 
lection of computing cells (artificial neurons) interconnected 
through weighted links (synapses with varying strengths). The 
cells perform simple computations by using information avail- 
able locally or from topologically adjacent cells through the 
weighted links. The knowledge of the system is embodied in 
the pattern of interconnects and their strengths, which vary as 
the system learns or adapts itself. In this setting we shall see that 
several ANN models are closely related to established image pro- 
cessing methods such as relaxation labeling, nonlinear filtering, 
and various feature extraction routines. 

There is a large variety of ANNs that differ in their topology, 
cell behavior, weight update mechanisms, amount of supervi- 
sion or feedback required, etc. Networks with three layers of 
cells (input, “hidden” and output), and with unidirectional or 
feedforward connections going from one layer to the next, as 
indicated in Fig. 1, are among the most popular topologies. This 

Outputs 

I 

XI xk xd 

Inputs 

FIGURE 1 Topology of a feedforward ANN with a single hidden layer. 

class includes the multilayered perceptron (MLP) with a single 
hidden layer. 

In an MLP, given a d-dimensional input x = [ x1, x2, . . . , xd] T, 
the ith network output, yi, is given by 

j=1 

where z j  is the output of the jth hidden unit: 

In Eq. (2), v,k denotes the weight of the connection between 
the jth input and kth hidden unit, and wij denotes the weight 
between the jth hidden unit and the ith output. The “activa- 
tion function” or transfer function g(.) is S shaped or sigmoidal: 
nonlinear, monotonically increasing, and bounded. The typical 
choice is either the logistic map (sometimes called the sigmoid), 
g(a) = 1 / (1+  e-“), which is bounded between 0 and 1; or the 
hyperbolic tangent, tanh(a) = (e“ - e-“)/(e“ + e-“), bounded 
between -1 and 1. The output transfer function f(-) can be 
linear or sigmoidal as needed. 

The MLP realizes a static map between inputs x and cor- 
responding outputs p(x). This map depends on the u, w,  and 
0 parameters (weights). These weights are trained or adjusted 
based on training samples {x(n), t(n)), where t(n) is the desired 
target vector for the nth input vector, x( n). This adjustment is 
based on the error t(n) - y(x(n)), typically using a stochastic 
gradient descent on the mean-squared value of this error, or by 
second-order methods. 

Another popular feedforward network for realizing static 
maps is the radial basis function network (RBFN). A radial basis 
function (RBF), I$, is one whose output is symmetric around an 
associated center, pc. That is, &(x) = +(llx - pel\), where 11.11 
is a distance norm. For example, selecting the Euclidean norm 
and letting + ( T )  = one sees that the Gaussian function 
is an RBF. Note that Gaussian functions are also characterized 
by a width or scale parameter, u, and this is true for many other 
popular RBF classes as well. 

A set of RBFs can serve as a basis for representing a wide class 
of functions that are expressible as linear combinations of the 
chosen RBFs: 

A RBFN is nothing but an embodiment of Eq. (3) as a feed- 
forward network with three layers: the inputs, the hidden layer, 
and the output node(s), i.e., they also have the topology in 
Fig. 1. Each hidden unit represents a single radial basis func- 
tion, with associated center position and width. Such hidden 
units are sometimes referred to as centroids or kernels. Each 
output unit performs a weighted summation of the hidden 
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units, using the wjs as weights. Powerful universal approxima- 
tion properties of Eq. (3) have been demonstrated for various 
settings. 

From Eq. (3), one can see that designing an RBFN involves 
selecting the type of basis functions 4, with associated widths 
u, the number of functions M, the center locations pj, and the 
weights wj . Typically Gaussians or other bell-shaped functions 
with compact support are used. The choice of M is related to the 
complexity of the desired map. Given that the number of basis 
functions and their type have been selected, training an RBFN 
involves determining the values of three sets of parameters: the 
centers, the widths, and the weights, in order to minimize a suit- 
able cost function. In general, this is a nonconvex optimization 
problem. 

One can perform stochastic gradient descent on a mean- 
squared error cost function to iteratively update all three sets 
of parameters, once per training sample presentation. This may 
be suitable for nonstationary environments or on-line settings. 
But for static maps, RBFNs with localized basis functions offer 
a very attractive alternative, namely that in practice, the esti- 
mation of parameters can be decoupled into a two-stage pro- 
cedure: (i) determine the pjs and ajs, and (ii) for the cen- 
ters and widths obtained in step (i), determine the weights 
to the output units. Both subproblems allow for very efficient 
batch mode solutions. In the first stage only the input values 
{x (n ) }  are used for determining the centers pj  and the widths 
aj of the basis functions. Thus learning is unsupervised and 
can even use unlabelled data. Once the basis function param- 
eters are fixed, supervised training (i.e., training using target 
information) can be employed for determining the second layer 
weights. 

We now briefly describe a third network, one that has a flat 
topology instead of the layered one of Fig. 1. Each cell is con- 
nected to all the cells, including itself, and is also capable of 
receiving direct input signals. One of the simplest such “fully re- 
current” networks is the binary Hopfield model.’ In a network 
of n cells, the kth cell receives a constant input Ik and updates 
its state by using 

constructing an energy or cost function: 

By showing that E is bounded from below, and moreover that E 
is reduced by a finite amount every time a cell changes its value 
on an update, one concludes that updates have to terminate in 
finite time. 

Clearly this model can serve as an associative memory since 
it maps the initial state and input to a final state. Also, if one 
desires to solve an optimization problem in which the cost 
function is quadratic in binary variables, it can be solved on 
the basis of Eq. (5), using one cell per variable, as shown by 
Hopfield and Tank [6]  among others. We shall see such a use 
in Section 5, where texture segmentation is posed as a suit- 
able optimization problem. Note that there is a generalization of 
Eq. (4) to continuous variables and continuous time. The signum 
function is now replaced by tanh(.) or the logistic map, so that 
the cells can have graded responses, and the cell update is now 
given by a first-order differential equation, which can be readily 
implemented in VLSI using R-C circuits. Moreover, an analo- 
gous energy function exists for this generalization too. Indeed, 
even for binary optimization problems, it is preferable to use the 
continuous form, and then consider limiting values of the cell 
states to obtain the binary solution. Unfortunately, even then 
this approach to optimization is often practicable only for small 
problems. This is because the cost reduction only leads us to a 
local minima, and the probability that this minima is a poor or 
even invalid solution increases rapidly with increase in problem 
size (number ofvariables). Fortunately, related but more sophis- 
ticated and powerful schemes for optimization have emerged 
recently, and these can be readily applied for texture segmen- 
tation [ 7,8]. 

3 Perceptual Grouping and Edge-Based 
Segmentation 

where sgn denotes the signum function, equal to 1 if x is nonneg- 
ative, and - 1 otherwise. The weight matrix should be symmetric 
and is fixed, Le., there is no weight adaptation. Starting from an 
initial state, given by the values of all cells at t = 0, cells update 
their state asynchronously till a final state is reached in which 
the left- and right-hand sides of Eq. (4) are equal for each of 
the cells. One can show that such a final state is guaranteed by 

lThough work on this and related models has been carried out previously by 
many researchers, this name is most popular because of a paper by Hopfield [SI 
that sparked widespread interest in these networks. 

We perceive an image not as an array of pixels but as agglom- 
erations or groupings of more abstract entities. A sharp spatial 
gradient in gray scale at an image location may not lead to the 
perception of an edge at that location if similar gradients do not 
occur in nearby locations. However, if there are sharp gradients 
with similar orientations in contiguous regions, then one typ- 
ically perceives a line or contour formed by series of smoothly 
connected small edges. Such a contour is a common example of 
a perceptual grouping. 

Indeed, there is a wide variety of grouping mechanisms in 
human perception. Interestingly, some of these groupings are 
illusory in that they appear to be very real, though there may 
not be evidence at the pixel level. As an example, Fig. 2(a) shows 
a MoirC pattern that distinctly gives the appearance of a circu- 
lar flow pattern, even though there are no individual dotted 
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(a) (b) 

FIGURE 2 
1000 dots and superimposing it with a copy rotated -2O; (b) The Kaniwa subjective triangle. 

Examples of perceptual grouping: (a) random-dot Moire pattern created by taking a pattern of 

contours running through. The grouping is a Gestalt phe- 
nomenon, occurring at a high level of abstraction. 

Our visual mechanisms tend to perceptually connect edges 
that seem part of a longer edge, even across small regions with 
little gradient changes. This kind of grouping is dramatically 
indicated by Fig. 2(b), which shows a Kanizsa subjective triangle, 
demonstrating the formation of illusory contours (in this case 
an upright triangle). 

Detecting edges and then eliminating irrelevant ones and con- 
necting (grouping) the others are key to successful edge-based 
segmentation. To this end, cooperative processes such as relax- 
ation labeling have been explored by the vision community for 
over a decade, without explicitly casting them in a neural net- 
work framework. The idea behind relaxation labeling is that local 
intensity edges typically form a part of a global line or boundary 
rather than occurring in isolation. Thus the presence or absence 
of a nearby edge of simiiar angular orientation would tend to re- 
inforce the hypothesis of the existence of an edge at a given point 
in the intensity field. Detected line segments are assigned line- 
orientation labels are iteratively updated by a relaxation process, 
such that they become more compatible with neighboring labels. 
Thus adjacent “no-line-detected” labels support one another, 
and so do lines with similar orientation, while two adjacent labels 
corresponding to orthogonal orientations antagonize each other. 

A neurallike scheme called the boundary contour system 
(BCS) has been proposed by Grossberg and Mingolla [9] to ex- 
plain how edges are filled in when part of a boundary is missing, 
and how illusory contours, such as in Fig. 2(b), can emerge from 
appropriately positioned line terminations. This real-time visual 
processing model explains a variety of perceptual grouping and 
segmentation phenomena, including the grouping of textured 
images. The BCS consists of a hierarchy of locally tuned inter- 
actions that controls the emergence of image segmentation and 
also detects, enhances, and completes boundaries. The interac- 
tion of BCS with a feature contour system and an object recog- 

nition system attempts to attain a unifying precept for form, 
color, and brightness. The BCS is largely preattentive in that it is 
primarily driven by image properties. However, the model does 
allow feedback from the object recognition system to guide the 
segmentation process. 

The BCS consists of several stages arranged in an approx- 
imately hierarchical organization. The image to be processed 
forms the input to the earliest stage. Here, elongated and ori- 
ented receptive fields or masks are employed for local contrast 
detection at each image position and each orientation. Thus there 
is a family of masks centered at each location, and that respond to 
a prescribed region around that location. These elliptical masks 
respond to the amount of luminance contrast over their elon- 
gated axis of symmetry, regardless ofwhether image contrasts are 
due to differences in textural distribution, a step change in lumi- 
nance, or a smoother intensity gradient. The elongated receptive 
field makes the masks less sensitive to differences in average con- 
trast in a direction orthogonal to the major axis. However, the 
penalty for making them sensitive to contrasts in the preferred 
orientation is the increased uncertainty in the exact locations of 
contrast. This positional uncertainty becomes acute during the 
processing of imageline ends and corners. The authors assert that 
all line ends are illusory in the sense that they are not directly ex- 
tracted from the retinal image, but are created by some process 
that generates line terminations. One such mechanism that is 
hypothesized by them is based on two short-range competitive 
stages followed by long-range cooperation, as described next. 

First, each pair of masks at the same location that are sensitive 
to the same orientation but opposing direction of contrasts are 
input to a common cell. The output of such a cell at position (i, j) 
and orientation k is J i j k ,  which is related to the two directional 
mask outputs, a j k  and x j k ,  by 
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where the notation [p]+ stands for max(p, 0). These oriented 
cells are sensitive to the amount of contrast, but not the direc- 
tion. They in turn feed two short-range competitive stages. In 
the first stage, for cells of the same orientation, there is mutual 
support (by means of positive or excitatory connections) among 
very nearby cells, and competition (by means of negative or 
inhibitory connections) among cells that are at an intermediate 
distance. If the strength of a connection is plotted against the dis- 
tance between the two cells being connected in two dimensions, 
a Mexican-hat or "on center, off surround" pattern is observed. 
Subsequently, in the second competitive stage, there is competi- 
tion among orthogonally oriented masks at each position. 

Let uijk represent the output signal for the cell corresponding 
to position (i, j) and orientation k,  and u i j ~  be the output for 
the cell at the same location but with orientation orthogonal to 
k, at the end of the first stage. The uijks are obtained from 

(7 )  

In Eq. (7),  I is the external input (pixel value), B is a constant, 
R a neighborhood of ( i ,  j ) ,  and wPqij is the strength of the 
negative (inhibitory) connection between positions ( p ,  q )  and 
(i, j ) .  The activity potentials yijk of cell outputs in the second 
stage are governed by 

where Oijk = C[uijk - u i j ~ ] + ,  and A, C ,  and E are constants. 
The behavior of the orientation field is shown in Fig. 3, in 

which adjacent lattice points are one unit apart. Each mask has 
a total exterior dimension of 16 x 8 units. Figure 3(b) shows the 
yijk responses at the end of the second competitive stage for the 
same input stimulus. The two competitive stages together have 
generated end cuts, as can be seen clearly on comparison with 
Fig. 3(a). Note that the second competitive stage has the property 
that inhibition of a vertical orientation excites the horizontal 
orientation at the same position, and vice versa. 

The outputs of the second stage are also used for the bound- 
ary completion process that involves long-range cooperation be- 
tween similarly oriented pairs of input groupings. This mecha- 
nism is able to complete boundaries across regions that receive 
no bottom-up inputs from the oriented receptive fields, and thus 
it accounts for illusory line phenomena such as the completion of 
the edges in a reverse-contrast Kanisza triangle of Fig. 2(b). The 
process of boundary completion occurs discontinuously across 
space, using the gating properties of the cooperative cells to suc- 
cessively interpolate boundaries within progressively finer in- 
tervals. Unlike a low spatial frequency filter, this process does 
not sacrifice spatial resolution to achieve a broad spatial range. 
The cooperative cells used in this stage also provide positive 
feedback to the cells of the second competitive stage so as to 
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FIGURE 3 (a) Output ofthe oriented masks superimposed on the input pat- 
tern (shaded area). Lengths and orientations of lines encode the relative sizes 
of the activations and orientations of the masks at the corresponding positions. 
(b) Output of the second competitive stage for the same input as in (a) (Gross- 
berg and Mingolla, 1985). 

increase the activity of cells of favored orientation and posi- 
tion, thereby providing them with a competitive edge over other 
orientations and positions. This feedback helps in reducing the 
fuzziness of boundaries. The detailed architecture, equations, 
and simulation results can be found in [ 91. 

The BCS approach can also form the basis for a hierarchi- 
cal neural network for texture segmentation and labeling, as 
shown by Dupaguntla and Vemuri. The underlying premise is 
that textural segmentation can be achieved by recognizing lo- 
cal differences in texels. The architecture consists of a feature 
extraction network whose outputs are used by a texture dis- 
crimination network. The feature extraction network is a mul- 
tilayer hierarchical network governed by the BCS theory. The 
image intensities input is first preprocessed by an array of cells 
whose receptive fields correspond to a difference of Gaussian 
filters, and that follow the feedforward shunting equations of 
Grossberg. The output of this array of cells form the input to a 
BCS system and are processed by oriented masks according to 
Eq. (6). These masks then feed into the two competitive stages 
of the BCS theory, governed by Eqs. (7) and (8). However, the 
long-range cooperative processes described above are not used. 
Instead, the outputs of the second competitive stage activate re- 
gion encoding (RE) cells at the next level. Each RE cell gathers its 
activity from a region of orientation masks of the previous layer, 
as well as from a neighborhood of adjacent RE nodes of the same 
orientation. The activity potential of an RE node is given by the 
following equation, where the Ylmk'S are obtained from the pre- 
vious layer according to Eq. (8), ( I ,  m) is in the neighborhood 
of ( p ,  q ) ,  and the activation function, f ,  is sigmoidal. 
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The RE cells appear to be functionally analogous to the com- 
plex cells in the visual cortex, with the intralayer connections 
helping to propagate orientation information across this layer 
of cells. The outputs (zjjk’s) of the feature extraction network 
are used by a texture discrimination network that is essentially 
Kohonen’s single-layered self-organizing feature map [ 101. At 
each position, there are T outputs, one for each possible texture 
type, which is assumed to be known a priori. Model (known) 
textures are passed through the feature extraction network. For 
a randomly selected position (i, j ) ,  the output cell of the tex- 
ture discrimination network that responds maximally is given 
the known texture-type label. The weights in the texture dis- 
crimination network for that position are adapted according 
to the feature-map equations. Since these weights are the same 
for all positions, one can simply replicate the updated weights 
for all positions. The hierarchical scheme described above has 
been applied to natural images with good results. However, it 
is very computationally intensive, since there are cells corre- 
sponding to each orientation and position at every hierarchical 
level. 

4 Adaptive Multichannel Modeling 
for Texture-Based Segmentation 

Image texture provides useful information for segmentation of 
scenes, classification of surface materials, and computation of 
shape, and it is exploited by sophisticated biological vision sys- 
tems for image analysis [ I l l .  In 1980, Marcelja observed that 
highly oriented simple cell receptive fields in the cortex can be 
accurately modeled by one-dimensional (1-D) Gabor functions, 
which are Gaussian modulated sine wave functions. The Gabor 
functions play an important role in functional analysis and in 
physics, since they are the unique functions that satisfy the un- 
certainty principle, which is a measure of the function’s simulta- 
neous localization in space and in frequency. Daugman [12] 
successfully extended Marcelja’s neuronal model to the two- 
dimensional (2-D) one, also extending Gabor’s result by show- 
ing that the 2-D Gabor functions are the unique minimum- 
uncertainty 2-D functions. The implication of this for texture 
analysis purposes, and perhaps for neuronal processing of tex- 
tured images, is that highly accurate measurements of textured 
image spectra can be made on a highly localized spatial basis. 
This simultaneous localization is important, since then it is pos- 
sible to accurately identify sudden spatial transitions between 
texture types, which is important for segmenting images based 
on texture, and for detecting gradualvariations within a textured 
region. 

Based on these observations, a multiple-channel Gabor filter 
bank has been used to segment textured images [ 111. Each fil- 
ter’s response is localized in the frequency (u-v) plane. A large 
set of these channel filters is used to sample the frequency plane 
densely to ensure that a filter exists that will respond strongly 
to any dominant texture frequency component. Segmentation 

n layers 

SAWTA network 

FIGURE 4 SAWA network for the segmentation of textured images. 

can be performed by assigning each pixel the label of the 
maximally responsive filter centered at that pixel. The suc- 
cess of this technique is quite impressive, given that no use is 
made of any sophisticated pattern classification superimposed 
on the basic segmentation structure. More details on multichan- 
nel image segmentation can be found in Chapter 4.7 of this 
handbook. 

Some smoothing of the filter outputs before doing the max 
operation provides better results on texture segmentation. Fur- 
ther improvements can be achieved by using a cooperative- 
competitive feedback network called the smoothing, adaptive 
winner-take-all network (SAWTA) [ 111. This network consists 
of n layers of cells, with each layer corresponding to one Gabor 
filter, as shown in Fig. 4. On the presentation of an image, a 
feedforward network using local receptive fields enables each 
cell plane to reach an activation level corresponding to the am- 
plitude envelope of the Gabor filter that it represents, as out- 
lined in the preceding paragraphs. Let mi(x, y), 1 I i 5 n 
be the activation of the cell in the ith layer with retinotopic 
coordinates ( x ,  y).  Initially, the n cell activations at each point 
( x ,  y )  are set proportional to the amplitude responses of n Gabor 
filters. 

To implement the SAWTA mechanism, each cell receives con- 
stant inhibition from all other cells in the same column, along 
with excitatory inputs from neighboring cells in the same row 
or plane. The synaptic strengths of the excitatory connections 
exhibit a 2-D Gaussian profile centered at ( x ,  y). The net- 
work is mathematically characterized by shunting cooperative- 
competitive dynamics [ 91 that model on-center off-surround 
interactions among cells that obey membrane equations. Thus, 
at each point ( x ,  y), the evolution of the cell in the ith layer is 
governed by 

where J+,  J -  are the net excitatory and inhibitory inputs, 
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FIGURE 5 Segmentation of a synthetic texture using the SAWTA network 
(clockwise from top left): (a) original Image; (b) result of the original multi- 
channel segmentation model [ 131; (c) the results of this model with output 
smoothing; (d) segmentation after 10 iterations of the SAWTA network. 

respectively, and are given by 

Figure 5(a) is the original image; Fig. 5(b) is the result of the 
original multichannel segmentation model [ 131; Fig. 5(c) the 
results of this model with output smoothing; and Fig. 5(d) is 
the segmentation after 10 iterations of the SAWTA network. The 
constants A, B,  and C in Eq. (10) were taken to be 1, 0, and 
10 respectively. The activation function used is f(x) = tanh(2x). 
The results are seen to be superior to that obtained by the original 
multichannel based segmentation scheme. 

Figure 6 shows the effect of varying the number of iteration 
steps, and the inhibition factor C, on the segmentation obtained. 
We observe that the SAWTA network achieves a more smooth 
segmentation in regions where the texture shows small localized 
variations, while preserving the boundaries between drastically 
different textures. Usually, 10 iterations suffice to demarcate the 
segment boundaries, and any changes after that are confined to 
arbitration among neighboring filters. 

The SAWTA network does not require a feature extraction 
stage as in [ 141 or computationally expensive masking fields. The 
incremental and adaptive nature of the SAWTA network enables 
it to avoid making early decisions about texture boundaries. The 
dynamics of each cell is affected by the image characteristics in its 
neighborhood as well by the formation of more global hypothe- 
ses. It has been observed that usually four spatial frequencies 
are dominant at any given time in the human visual system. This 
suggests the use of a mechanism for postinhibitory response that 
suppress cells with activation below a threshold and speeds up 
the convergence of a SAWTA network. The SAWTA network can 
be easily extended to allow for multiple "winners." Then, it can 
cater to multicomponent textures, since a region that contains 
two predominant frequencies of comparable amplitude will not 
be segmented but rather viewed as a whole. 

Here, R is the neighboring region of support and f is a sig- 
moidal transfer function. A sigmoidal transfer function is needed 
to keep the response bounded between 0 and 1 while still main- 
taining a monotonically increasing response with the argument. 

The convergence of a system described by Eq. (10) has been 
shown for the case in which the region of support R consists 
of the single point (x, y) .  The network is allowed to run for 10 
iterations before region assignment is performed by selecting the 
most responsive filter. 

Figures 5 and 6 shows comparative experimental result using 
the SAWTA network for segmentation. The 256 x 256 gray-level 
images are prefiltered by using Laplacian-of-Gaussian filters2 to 
remove high dc components, low-frequency illumination effects, 
and to suppress aliasing. Then, only sixteen circularly symmetric 
Gabor filters are used to detect narrow-band components as 
follows. Sets of three filters with center frequencies increasing 
in geometric progression (ratio = 21) are arranged in a daisy- 
petal configuration along five orientations, while the sixteenth 
filter is centered at the origin. Figure 5 shows the segmentation 
achieved for a synthetic texture using three different techniques. 

a 

FIGURE 6 Effect of iteration steps and inhibition factor on segmentation: 
(a) same as Fig. 5(d); (b) segmentation with C = 3; (c) after 100 iterations; 
(d) after 100 iterations. 'For a description of such filters, see Chapter 4.10. 
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Learning and adaptation is also useful in the multichannel 
image model for determining the channels (filters) themselves. 
Indeed, the results of Gabor filtering can be obtained in an it- 
erative fashion, by performing stochastic gradient descent on a 
suitable cost function. While these filters are useful for a large 
variety of images, one may wonder whether more customized 
filters may yield better results for a specific class of images, such 
as images of barcodes, or MRI scans for the brain. This leads 
to the concept of “texture discrimination masks,” which may 
be learned in order to improve performance in the subsequent 
classification task [ 151. 

First, note that the multichannel framework does not re- 
strict one to using Gabor filters. Other filters reported include 
Laplacians of Gaussians, wavelets, and general IIR and FIR fil- 
ters. Each filter can be considered as a localized feature detec- 
tor, and after performing spatial smoothing if needed, the filter 
outputs for each pixel can serve as inputs to a multilayered feed- 
forward network such as the MLP that performs the desired 
classification task. Thus we effectively have an MLP classifier 
with an additional hidden layer, i.e., the layer whose inputs are 
a the pixel values in a small image window, and whose afferent 
weights represent the mask coefficients. While training this net- 
work, the filter weights get modified to better perform texture 
classification. Moreover, by applying node pruning techniques, 
less important filters can be eliminated. Thus, instead of the usual 
large set of generic filters, a smaller set of task-specific filters is 
evolved. Details of this method, along with superior results ob- 
tained on page layout segmentation and bar-code localization, 
can be found in [15]. It is speculated that the efficacy of the 
learned masks stems from their ability to combine different fie- 
quency and directionality responses in the same masks, so that 
high discrimination information can be captured by a smder  
number of filters. In contrast, if the problem domain changes 
substantially, a new set of filters has to be learned for the new set of 
images. 

5 An Optimization Framework 

The use of Markov random field (MRF) models for model- 
ing texture has been investigated by several researchers (see 
Chapter 4.2). They can be used to model the texture intensity 
process as well as to describe the texture labeling process. In this 
framework, segmentation of textured images is posed as an op- 
timization problem. Two optimality criteria considered in [ 161 
are (i) to maximize the posterior distribution of the texture label 
field given the intensity field, and (ii) to minimize the expected 
percentage of misclassification per pixel by maximizing the pos- 
terior marginal distribution. Corresponding to each criteria, 
an energy (cost) function can be derived that is a function of 
M x M x K binary labels, one for each of the K possible texture 
labels that a pixel in an M x M image can take. 

A neural network solution to minimizing this cost function 
is provided by means of the discrete Hopfield-Tank formulation 

described in Section 2 [6] .  A 3-D lattice of binary (ON/OFF) 
neurons is used, with one neuron for each of the M x M x K 
labels. The cost function chosen imposes a severe penalty unless 
exactly one neuron is ON at each of the M x M positions. The 
location of this neuron in the third dimension provides the la- 
bel to be given to the corresponding pixel. The other terms in 
the cost function encourage solutions in which the same label 
is given to neighboring pixels, and at the same time this class 
has a high probability of occurring given the initial gray-level 
values of the pixels in the neighborhood [ 161. The cost function 
is quadratic in the neuron output values, and indeed has the 
form of Eq. (5). In Section 2 we saw that for such cost functions, 
a network with simple computing cells and local connections 
can be specified such that the cost is steadily reduced as the 
cells update their state, until a local minimum of the cost func- 
tion is realized. This usually happens in 20-30 iterations, but 
the quality of the texture labeling thus obtained is quite sensi- 
tive to initial conditions, as it has a penchant for settling into 
local optima. Alternatively, a stochastic algorithm such as sim- 
ulated annealing can be used to minimize the energy function. 
Indeed, any problem formulated in terms of minimizing an en- 
ergy function can be given a probabilistic interpretation by use 
of the Gibbs distribution. The two approaches are related in that 
a mean field approximation of the stochastic algorithm yields 
the update equations of the network described above, with the 
free parameter being proportional to the inverse of the annealing 
temperature [ 61. 

For the segmentation problem, a constraint on a valid solu- 
tion is that each image position should have only one of the K 
labels “on.” This constraint is usually incorporated in a soft fash- 
ion by adding bias terms to the energy function. Peterson and 
Soderberg have incorporated the 1-of-K constraint in a Potts 
glass, and they derived a mean field solution for that formu- 
lation. The alternative of putting global constraints on the set 
of allowable states in the corresponding stochastic formulation 
leads to significantly better solutions. An iterated hill climbing 
algorithm that combines fast convergence of the deterministic 
relaxation with the sustained exploration of the stochastic ap- 
proach has also been proposed in [16] for the segmentation 
problem. Here, two-stage cycles are used, with the equilibrium 
state of the relaxation process providing the initial state for a 
stochastic learning automaton within each cycle. 

The relation between neural network techniques and MRFs 
was explored in detail in [16,17]. Since the optimization tech- 
niques applied were largely rooted in the Hopfield-Tank formu- 
lation, they were plagued by large training times, and a high 
possibility of being caught in local minima, leading to poor 
solutions. Fortunately, more sophisticated and powerful schemes 
for optimization have emerged recently and can be readily ap- 
plied for texture segmentation [7,8]. 

The MRF framework can also directly leverage the power- 
ful mapping capabilities of feedforward networks. For example, 
Hwang and Chen have used an MLP to directly obtain the class 
distributions conditional on the neighborhood image statistics 
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(needed for the MRF), based on training image samples. This ob- 
viates restrictive parametric representation and tedious param- 
eter estimation for the MRF. Of note is the use of the Karhunen- 
Loeve cost criterion instead of the popular mean squared error, 
since the former tends to give more accurate estimates of low 
probability values. 

6 Image Segmentation by Means 
of Adaptive Clustering 

The use of clustering for image segmentation dates back to the 
late 1960s, and many of the techniques developed then are still 
in popular use today. In this approach each pixel is represented 
by a vector of features based on information derived from image 
characteristics in its neighborhood, as well as positional infor- 
mation. Similar feature vectors are then grouped together in 
clusters, and each cluster is given a texture label. Thus pixels that 
are nearby and have similar local image properties will tend to 
get grouped together and get the same label. 

Clustering can be fruitfully applied to a variety of image do- 
mains, including multispectral images, range images, textured 
images, and intensity images from dot patterns to gray-level or 
colored images. Key issues in the design of any clustering-based 
segmenter are the choice of the number and type of features used, 
the distance metric chosen to measure similarity, data reduction 
techniques used, and the pre- and postprocessing routines ap- 
plied. If the design choices are made suitably, the feature vectors 
will form more compact and well separated regions in the multi- 
dimensional feature space, and one can thus reliably segment the 
images based on both these regions and on image connectivity. 
A nice overview of this area can be found in [4]. 

Neural network research has spawned a variety of adaptive 
clustering techniques, from competitive learning - an iterative 
version of K-means clustering, to learned vector quantization 
(LVQ) [ 101 -a supervised clustering and classification tech- 
nique related to classical vector quantization. In learned vector 
quantization, a set of labeled cluster centers (the codebook vec- 
tors) are first chosen by random subsampling or by K-means 
clustering of the data. Then, for every training sample the po- 
sition of the nearest codebook vector is moved toward or away 
from that sample, depending on whether the two labels match 
or not. Several variations exist. 

Instead of placing each sample in a unique cluster, one can 
‘‘softly” associate a sample with multiple clusters. The resulting 
clusters are sometimes called fuzzy clusters, as their boundaries 
are not sharply delineated. Let the association of sample xi with 
cluster jbe denoted by ai,j. We want this association value to de- 
crease as the distance between xi and the center of the jth cluster 
increases. Also, it is desired that the associations be nonnega- 
tive, and that C j  ai,j = 1, Vi. The jth cluster center is simply 
Xi ai,jG. Depending on how the associations are formed and 
updated, a variety of powerful fuzzy clustering approaches have 
been obtained [ 181. 

A critical issue in clustering is the choice of an appropriate 
scale, which determines the number of clusters obtained and 
hence the amount of segmentation obtained. For a given image, 
there are some natural scales for which the clusters are relatively 
well defined and stable in the sense that the optimum center lo- 
cations change little with small variations in scale. In fact, just 
as scale-space theory views salient edges to be those that survive 
over multiple scales, one can view salient segments in the same 
way. Statistical mechanics based formulations for clustering pro- 
vide a nice approach to the issue of scale, which is naturally re- 
lated to the temperature parameter. At high temperature there 
are many clusters, and as the temperature is lowered, some of the 
clusters coalesce. Stable clusters are those that survive over a wide 
range of temperatures [19]. It turns out that if we adjust only 
the kernel locations by using gradient descent in Gaussian ra- 
dial basis function network, maintaining fixed and equal output 
layer weights, fixed widths, and a constant target function, then 
these locations converge to “optimum” cluster locations for the 
chosen scale, now indicated by the widths (as) of the Gaussian 
units [20]. Moreover, different scales may be indicated as be- 
ing appropriate for different parts of an image for segmentation 
purposes. Thus such networks are promising for segmentation 
with locally adaptive resolution. 

7 Oscillation-Based Segmentation 

It would be remiss not to mention that there are several biologi- 
cally oriented approaches to segmentation. In such approaches, 
it becomes clear that segmentation is closely tied with several 
other mechanisms. For example, when we view an apple, we re- 
gard it not as a smear of red amidst a riot of undifferentiated 
color, but recognize it as distinct desired object. How exactly we 
do this constitutes the sensory segmentation problem. When we 
thus discern an apple, we naturally separate it from the uninter- 
esting background - this is the figure-ground separation prob- 
lem. When we take a further step, like biting into the apple, then 
our experience is not merely a jumble oftactile, olfactory, and vi- 
sual sensations; these different modes of sensations correspond 
to a single object- an apple; this is the binding problem. The 
aforementioned problems are intimately interrelated. 

A single physical stimulus usually activates several groups of 
neurons corresponding to different sensory modalities. How 
does the brain then realize that these groups correspond to the 
same object? A popular hypothesis for answering this query is 
that neurons responding to aspects of a single object fire in syn- 
chrony. Applied to visual perception, the hypothesis states that 
cortical neurons Corresponding to a distinct homogeneous area 
oscillate in phase, and those corresponding to different areas are 
out of phase. 

Supportive of this hypothesis, stimulus-dependent oscilla- 
tions that are correlated temporally and spatially have been found 
in the visual cortex of cats and monkeys. These experiments 
have motivated several oscillating neuron models of sensory 
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segmentation, which largely fall into two broad categories: 
(i) those in which synchronization is achieved by coopera- 
tionlcompetition among neurons via fixed excitatory and in- 
hibitory couplings, and (ii) those in which synchronization 
evolves by locally Hebbian-like synaptic modification, Le., 
synaptic strength increases if both presynaptic and postsynap- 
tic activity are simultaneous high, and decreases otherwise. In 
the former, the visual input is merely transformed into segre- 
gated oscillations, whereas in the latter, the input is encoded 
in modifiable synapses. For example, in [21], oscillating units, 
each consisting of excitatory and inhibitory cells, are connected 
by weights, modulated in a “pre-postsynaptic” fashion. Some 
of these essential ingredients can be seen in several of the sub- 
sequent models, e.g., the approach of Konig, wherein synchro- 
nization among oscillating units depends on similarity of local 
features, and segmentation can be achieved by local learning 
rules. 

In [22], a model is proposed in which synchronization of 
neural oscillations is produced both by (i) cooperation and 
(ii) synaptic modification. It is demonstrated that either ofthese 
mechanisms is sufficient to generate coherent oscillations, but 
the two can be viewed as components of a more integral mech- 
anism for neural synchronization. 

In this model, the state of an oscillating unit or a neuron is 
described by a complex number, z, and each unit is connected to 
every other unit. The dynamics of the model is a generalization of 
the Hopfield equations in the complex plane and is described by 

Vj = tanh(h(v + i ( l  - v) )z ; ) ,  (13) 

where the quantities, zj, Tjk, and v, are complex numbers. The 
real part of the neuron state, Re[z], is analogous to the trans- 
membrane potential of the real neuron; the real part of V is the 
output firing rate; Ij is the sum of the external currents entering 
the j th  neuron, and Tjk is the weight connecting j th  and kth 
neurons. The mode parameter u governs the qualitative nature 
of the above model. For u close to 0, model of Eqs. (12) and (13) 
exhibits oscillatory behavior, and for v near 1, it has fixed-point 
dynamics. 

One can show that oscillations are produced in the model 
above if the cells are arranged in a 2-D grid, and the weights Tjk 
are real and have a “Mexican hat” profile. Suppose the 32 x 32 
image of a plus (+) symbol with noise added (Fig. 7) forms 
the input to a 32 x 32 grid of cells. The image is presented for 
an interval of time (210 iterations in this example) and then 
removed, and the subsequent evolution of the network output is 
followed. It is seen that cells over the plus region start oscillating 
more or less in phase, and are -180” out of phase with the rest 
of the cells. Figure 8 depicts the oscillation of a typical neuron. 
Subsequent to input removal, network response reveals excellent 
noise removal with precise figure boundaries, as indicated in 
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FIGURE 7 
noise. 

Original plus (+) image corrupted with uniformly distributed 

Fig. 9, which was taken after 450 iterations. It is also observed 
that the amount of noise in the interpreted image decreases right 
from the first iteration, and Fig. 9 shows almost no noise. 

If the weights are random rather than “Mexican hat,” the 
network exhibits coherent oscillations only while the input 
is present, and coherency is destroyed subsequent to input 
removal. 

Alternatively, synchronization can be produced, without any 
special predetermined neighborhood, if the weights are not fixed 
but modified by Hebbian learning. In the Hebbian form of 
learning, the connection between a pair of simultaneously active 
neurons is strengthened, and it is expressed in this model as 
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FIGURE 8 Output of neuron (16,16) for a sequence of 2.5 iterations. 
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average effect of learning a large number of patterns. This is 
supported by experimental results [22]. 

Co-operation with “Mexican hat“ coupling weights (input removed) 

After 450 iterations 
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40 
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FIGURE 9 
(noisy) is removed. Fixed “Mexican hat” neighborhood connections are used. 

Network output (after 450 iterations) when the input image 

where g(.) is the sigmoid nonlinearity introduced in Eq. (13). 
Equation (14) is always simulated together with Eqs. (12) and 
(13). The external input I in Eq. (12) produces changes in Tjk 
indirectlyvia neuron outputs, vk. As a result, the input pattern is 
encoded in the weights, and input-dependent synchronization 
takes place as an emergent effect. Figure 10 shows the result (for 
the same input image of Fig. 7) after 530 iterations, using ran- 
dom initial weights that are adapted with the Hebbian learning 
equations. 

The two mechanisms described above for synchronized neu- 
ral oscillations seem unconnected. However, Linsker and others 
have shown that Mexican-hat-like neighborhoods can develop 
automatically in a multilayered network with weights adapted 
by Hebbian learning. Such neighborhoods seem to be canoni- 
cal for producing stimulus-specific oscillations, obtained as an 

Hebbian learning with random initial weights (input removed) 

After 530 iterations 
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FIGURE 10 
(noise corrupted) is removed and the weight adaptation is continued. 

Network output (after 530 iterations) when the input image 

8 Integrated Segmentation 
and Recognition 

Often segmentation is an intermediate step toward object recog- 
nition or classification from 2-D images. For example, segmen- 
tation may be used for figure-ground separation or for isolating 
image regions that indicate objects of interest as differentiated 
from background or clutter. Even small images have lots of 
pixels - there are over 64,000 pixels in a 256 x 256 image. So, it 
is impractical to consider the raw image as an input to an object 
recognition or classification system. Instead, a small number of 
descriptive features are extracted from the image, and then the 
image is classified or further analyzed based on the values of 
these features. ANNs provide powerful methods for both the 
feature extraction and classification steps and have been used 
with much success in integrated segmentation and recognition 
applications. 

Feature Extraction 
The quality of feature selection/extraction limits the perfor- 
mance of the overall pattern recognition system. One desires 
the number of features to be small but highly representative 
of the underlying image classes, and highly indicative of the 
differences among these classes. Once the features are chosen, 
different methods typically give comparable classification rates 
when used properly. Thus feature extraction is the most cru- 
cial step. In fact, the Bayes error is defined for a given choice of 
features, and a poor choice can lead to a high Bayes rate. 

Perhaps the most popular linear technique for feature extrac- 
tion is principal component analysis (PCA) (sometimes referred 
to as the Karhunen-Loeve transform), wherein data are projected 
in the directions of the principal eigenvectors of the input co- 
variance matrix. There are several iterative “neural” techniques 
in which weight vectors associated with linear cells converge to 
the principal eigenvectors under certain conditions. The earliest 
and most well known of these is Oja’s rule, in which the weights 
wi of a linear cell with single output y = xi xiwi are adapted 
according to 

The learning rate is q( n) and should satisfy the Robbins-Munro 
conditions for convergence, and xi(n)  is the ith component of 
the input presented at the nth instant. The inputs are presented 
at random. Then it can be shown that, ifxis a zero-mean random 
variable, the weight vector converges to unit magnitude with its 
direction the same as that of the principal eigenvector of the 
input covariance matrix. In other words, the output y is nothing 
but the principal component after convergence! Moreover, when 
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the “residual,” xi (n)  - y( n) wi ( n  - l), is fed into another similar 
cell, the second principal component is iteratively obtained, and 
so on. Moreover, to make the iterative procedure robust against 
outliers, one can vary the learning rate so that it has a lower value 
if the current input is less probable. 

The nonlinear discriminant analysis network proposed by 
Webb and Lowe [23] is a good example of a nonlinear feature 
extraction method. They use a multilayer perceptron with sig- 
moid hidden units and linear output units. The nonlinear trans- 
formation implemented by the subnetwork from the input layer 
to the final hidden layer of such networks tries to maximize the 
so-called network discriminant function, Tr{ SB Sf}, where S: 
is the pseudo-inverse of the total scatter matrix of the patterns 
at the output of the final hidden layer, and SB is the weighted 
between-class scatter matrix of the output of the final hidden 
layer. The role of the hidden layers is to implement a nonlinear 
transformation that projects input patterns from the original 
space to a space in which patterns are more easily separated by 
the output layer. 

Anice overview of neural based feature techniques is given by 
Mao and Jain [ 241, who have also compared the performance of 
five feature extraction techniques using eight different data sets. 
They note that while several such techniques are nothing but on- 
line versions of some classical methods, they are more suitable 
for mildly nonstationary environments, and often provide better 
generalization. Some techniques, such as Kohonen’s feature map, 
also provide a nice way of visualizing higher dimensional data 
in 2-D or 3-D space. 

Classification 
Several feedforward neural networks have properties that make 
them promising for image classification based on the extracted 
features. ANN approaches have led to the development of var- 
ious “neural” classifiers using feedforward networks. These in- 
clude the MLP as well as kernel-based classifiers such as those 
employing radial basis functions, both of which are described 
in Section 2. Such networks serve as adaptive classifiers that 
learn through examples. Thus, they do not require a good 
a priori mathematical model for the underlying physical char- 
acteristics. A good review of probabilistic, hyperplane, kernel 
and exemplar-based classifiers that discusses the relative merit 
of various schemes within each category is available in [25]. 
It is observed that, if trained and used properly, several neu- 
ral networks show comparable performance over a wide variety 
of classification problems, while providing a range of tradeoffs 
in training time, coding complexity and memory requirements. 
Some of these networks, including the multilayered perceptron 
when augmented with regularization, and the elliptical basis 
function network, are quite insensitive to noise and to irrele- 
vant inputs. Moreover, a firmer theoretical understanding of the 
pattern recognition properties of feedforward neural networks 
has emerged that can relate their properties to Bayesian decision 
making and to information theoretic results [ 261. 

Neural networks are not magical. They do require that the 
set of examples used for training should come from the same 
(possibly unknown) distribution as the set used for testing the 
networks, in order to provide valid generalization and good per- 
formance on classifying unknown signals [27]. Also, the number 
of training examples should be adequate and comparable to the 
number of effective parameters in the neural network, for valid 
results. Interestingly, the complexity of the network model, as 
measured by the number of effective parameters, is not fixed, 
but increases with the amount of training. This provides an 
important knob: one can start with an adequately powerful net- 
work and keep on training until its complexity is of appropriate 
size. In practice, the latter maybe readily arrived at by monitoring 
the network‘s performance on a validation set. 

Training sufficiently powerful multilayer feedforward net- 
works (e.g. MLP, RBF) by minimizing the expected mean 
square error (MSE) at the outputs and using a O D  teaching 
function yields network outputs that approximate posterior 
class probabilities [26]. In particular, the MSE is shown to be 
equivalent to 

where K1 and Di (x) depend on the class distributions only, fi (x) 
is the output of the node representing class Ci given an input 
x, P(Ci 1 x) denotes the posterior probability, and the summa- 
tion is over all classes. Thus, minimizing the (expected) MSE 
corresponds to a weighted least squares fit of the network out- 
puts to the posterior probabilities. Somewhat similar results are 
obtained by using other cost functions such as cross entropy. 

The above result is exciting because it promises a direct way 
of obtaining posterior class probabilities and hence attaining the 
Bayes optimum decision. In practice, of course, the exact poste- 
rior probabilities may not be obtained, but only an approxima- 
tion thereof. (If they had, the Bayes error rate could have been 
attained.) This is because in order to minimize Eq. (16), one 
needs to (i) use an adequately powerful network so that P (Ci I x) 
can be realized, (ii) have enough number of training samples, 
and (iii) find the global minima in weight space. If any of the 
above conditions are Violated, different classification techniques 
will have different inductive biases, and a single method can- 
not give the best results for all problems. Rather, more accurate 
and robust classification can obtained by combining the outputs 
(evidences) of multiple classifiers based on neural network 
and/or statistical pattern recognition techniques. 

Pattern Recognition Techniques Specific to 
Segmentation 
Although this discussion applies to generic pattern recognition 
systems, image segmentation has specific characteristics that may 
call for custom approaches. First, some invariance to (small) 
changes in rotation, scale, or translation is often desired. For 
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example, in OCR, tolerances to such minor distortions is a must. 
Invariance can be achieved by (i) extracting invariant features 
such as Zernicke moments, (ii) by providing additional exam- 
ples with different types of distortion, e.g., for each character in 
OCR also present various rotated, scaled, or shifted versions, or 
(iii) making the mapping robust to invariances by means of 
weight replications or symmetries. The last alternative is the 
most popular and has led to specialized feedforward networks 
with two or more hidden layers. Typically, the early hidden layers 
have cells with local receptive fields, and their weights are shared 
among all cells with similar purpose (i.e., extracting the same 
features) but acting on different portions of the image. A good 
example is the convolutional net [28], in which the first hidden 
layer may be viewed as a 3-D block of cells. Each column of cells 
extract different features from the corresponding localized por- 
tion of the image. These feature extractors essentially perform 
convolution by using nonlinear FIR filters. They are replicated 
at other localized portions by having identical weights among 
all cells in the same layer of the 3-D block Multiple layers with 
subsampling is proposed to form an image processing pyramid. 
Higher layers are fully connected to extract more global infor- 
mation. For on-line handwriting recognition, a hidden Markov 
model postprocessor can be used. Remarkable results on docu- 
ment recognition are given in [28]. 

In an integrated segmentation and recognition scheme, it may 
even be possible to avoid the segmentation step altogether, For 
example, it is well known that presegmented characters are rel- 
atively easy to classify, but isolating such individual characters 
from handwriting is difficult. One can, however, develop a net- 
work that avoids this segmentation by making decisions only if 
the current window is centered on a valid character, and other- 
wise giving a “noncentered” verdict. Such networks can also be 
trained with handwriting that is not presegmented, thus saving 
substantial labor. 

9 Concluding Remarks 

Neural network based methods can be fruitfully applied in sev- 
eral approaches to image segmentation. While many of these 
methods are closely related to classical techniques involving dis- 
tributed iterative computation, new elements of learning and 
adaptation are added. On one hand, such elements are particu- 
larly useful when the relevant properties of images are nonsta- 
tionary, so continuous adaptation can yield better results and 
robustness than a fixed solution. On the other hand, most of 
the methods have not been fully developed as products with 
friendly GUI that a nonexpert end user can obtain off the shelf 
and readily use. Moreover, a detailed comparative analysis is de- 
sired for several of the techniques described in this chapter, to 
further understand when they are most applicable. Thus, fur- 
ther analysis, benchmarking, product development, and system 
integration is necessary if these methods are to gain widespread 
accevtance. 

An exciting aspect of neural network based image processing 
is the prospect of parallel hardware realization in analog VLSI 
chips such as the silicon retina [ 11. Such analog chips use net- 
works of resistive grids and operational amplifiers to perform 
edge detection, smoothing, segmentation, compute optic flow, 
etc., and they can be readily embedded in a variety of smart 
platforms, from toy autonomous vehicles that can track edges, 
movements, etc., to security systems to retinal replacements [2]. 
Further progress toward the development of low power, real- 
time vision hardware requires an integrated approach encom- 
passing image modeling, parallel algorithms, and the underlying 
implementation technology. 
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One of the most fundamental image analysis operations is edge 
detection. Edges are often vital clues toward the analysis and in- 
terpretation of image information, both in biological vision and 
computer image analysis. Some sort of edge detection capability 
is present in the visual systems of a wide variety of creatures, so 
it is obviously useful in their abilities to perceive their surround- 
ings. 

For this discussion, it is important to define what is and is 
not meant by the term “edge.” The everyday notion of an edge 
is usually a physical one, caused by either the shapes of phys- 
ical objects in three dimensions or by their inherent material 
properties. Described in geometric terms, there are two types of 
physical edges: (1) the set ofpoints along which there is an abrupt 
change in local orientation of a physical surface, and (2) the set 
of points describing the boundary between two or more materi- 
ally distinct regions of a physical surface. Most of our perceptual 
senses, including vision, operate at a distance and gather infor- 
mation by using receptors that work in, at most, two dimensions. 
Only the sense of touch, which requires direct contact to stimu- 
late the skin’s pressure sensors, is capable of direct perception of 
objects in three-dimensional (3-D) space. However, some phys- 
ical edges of the second type may not be perceptible by touch 
because material differences - for instance different colors of 
paint - do not always produce distinct tactile sensations. Ev- 
eryone first develops a working understanding of physical edges 

in early childhood by touching and handling every object within 
reach. 

The imaging process inherently performs a projection from 
a 3-D scene to a two-dimensional (2-D) representation of that 
scene, according to the viewpoint of the imaging device. Because 
of this projection process, edges in images have a somewhat dif- 
ferent meaning than physical edges. Although the precise defini- 
tion depends on the application context, an edge can generally 
be defined as a boundary or contour that separates adjacent im- 
age regions having relatively distinct characteristics according 
to some feature of interest. Most often this feature is gray level 
or luminance, but others, such as reflectance, color, or texture, 
are sometimes used. In the most common situation where lumi- 
nance is ofprimary interest, edge pixels are those at the locations 
of abrupt gray-level change. To eliminate single-point impulses 
from consideration as edge pixels, one usuallyrequires that edges 
be sustained along a contour; i.e., an edge point must be part of 
an edge structure having some minimum extent appropriate for 
the scale of interest. Edge detection is the process of determining 
which pixels are the edge pixels. The result of the edge detection 
process is typically an edge map, a new image that describes each 
original pixel’s edge classification and perhaps additional edge 
attributes, such as magnitude and orientation. 

There is usually a strong correspondence between the physical 
edges of a set of objects and the edges in images containing 
views of those objects. Infants and young children learn this 
as they develop hand-eye coordination, gradually associating 
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visual patterns with touch sensations as they feel and handle 
items in their vicinity. There are many situations, however, in 
which edges in an image do not correspond to physical edges. 
Illumination differences are usually responsible for this effect - 
for example, the boundary of a shadow cast across an otherwise 
uniform surface. 

Conversely, physical edges do not always give rise to edges in 
images. This can also be caused by certain cases of lighting and 
surface properties. Consider what happens when one wishes to 
photograph a scene rich with physical edges - for example, a 
craggy mountain face consisting of a single type of rock. When 
this scene is imaged while the Sun is directly behind the camera, 
no shadows are visible in the scene and hence shadow-dependent 
edgesarenonexistent inthephoto.Theonlyedgesin suchaphoto 
are produced by the differences in material reflectance, texture, 
or color. Since oix rocky subject material has little variation of 
these types, the result is a rather dull photograph, because of 
the lack of apparent depth caused by the missing edges. Thus, 
images can exhibit edges having no physical counterpart, and 
they can also miss capturing edges that do. Although edge in- 
formation can be very useful in the initial stages of such image 
processing and analysis tasks as segmentation, registration, and 
object recognition, edges are not completely reliable for these 
purposes. 

If one defines an edge as an abrupt gray-level change, then the 
derivative, or gradient, is a natural basis for an edge detector. 
Figure 1 illustrates the idea with a continuous, one-dimensional 
(1-D) example of a bright central region against a dark back- 
ground. The left-hand portion of the gray-level function f C ( x )  
shows a smooth transition from dark to bright as x increases. 
There must be a point xo that marks the transition from the 
low-amplitude region on the left to the adjacent high-amplitude 
region in the center. The gradient approach to detecting this 
edge is to locate xo where IfC(x)I reaches a local maximum or, 

fCfN 

* ..................................... .............................................................. 

I xo 1 x ,  

FIGURE 1 Edge detection in the 1-D continuous case; changes in f c ( x )  indi- 
cate edges, and ~0 and x1 are the edgelocations found by local extrema of f : ( x )  
or by zero crossings of f:(x). 

equivalently, f,‘(x) reaches a local extremum, as shown in the 
second plot of Fig. 1. The second derivative, or Laplacian ap- 
proach, locates xo where a zero crossing of f ; (x)  occurs, as m 
the third plot of Fig. 1. The right-hand side of Fig. 1 illustrates 
the case for a falling edge located at X I .  

To use the gradient or the Laplacian approaches as the basis 
for practical image edge detectors, one must extend the process 
to two dimensions, adapt to the discrete case, and somehow deal 
with the difficulties presented by real images. Relative to the 1-D 
edges shown in Fig. 1, edges in 2-D images have the additional 
quality of direction. One usually wishes to find edges regard- 
less of direction, but a directionally sensitive edge detector can 
be useful at times. Also, the discrete nature of digital images 
requires the use of an approximation to the derivative. Finally, 
there are a number of problems that can confound the edge 
detection process in real images. These include noise, crosstalk 
or interference between nearby edges, and inaccuracies result- 
ing from the use of a discrete grid. False edges, missing edges, 
and errors in edge location and orientation are often the re- 
sult. 

Because the derivative operator acts as a high-pass filter, edge 
detectors based on it are sensitive to noise. It is easy for noise 
inherent in an image to corrupt the real edges by shifting their 
apparent locations and by adding many false edge pixels. Unless 
care is taken, seemingly moderate amounts of noise are capa- 
ble of overwhelming the edge detection process, rendering the 
results virtually useless. The wide variety of edge detection algo- 
rithms developed over the past three decades exists, in large part, 
because of the many ways proposed for dealing with noise and 
its effects. Most algorithms employ noise-suppression filtering 
of some kind before applying the edge detector itself. Some de- 
compose the image into a set of low-pass or bandpass versions, 
apply the edge detector to each, and merge the results. Still others 
use adaptive methods, modifying the edge detector’s parameters 
and behavior according to the noise characteristics of the image 
data. 

An important tradeoff exists between correct detection of the 
actual edges and precise location of their positions. Edge de- 
tection errors can occur in two forms: false positives, in which 
nonedge pixels are misclassified as edge pixels, and false nega- 
tives, which are the reverse. Detection errors of both types tend 
to increase with noise, making good noise suppression very im- 
portant in achieving a high detection accuracy. In general, the 
potential for noise suppression improves with the spatial ex- 
tent of the edge detection filter. Hence, the goal of maximum 
detection accuracy calls for a large-sized filter. Errors in edge lo- 
calization also increase with noise. To achieve good localization, 
however, the filter should generally be of small spatial extent. 
The goals of detection accuracy and location accuracy are thus 
put into direct conflict, creating a kind of uncertainty principle 
for edge detection [20]. 

In this chapter, we cover the basics of gradient and Laplacian 
edge detection methods in some detail. Following each, we also 
describe several of the more important and useful edge detection 
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algorithms based on that approach. While the primary focus is 
on gray-level edge detectors, some discussion of edge detection 
in color and multispectral images is included. 

2 Gradient-Based Methods 

2.1 Continuous Gradient 
The core of gradient edge detection is, of course, the gradient 
operator, V. In continuous form, applied to a continuous-space 
image, f c (x ,  y), the gradient is defined as 

where i, and iy are the unit vectors in the x and y directions. 
Notice that the gradient is a vector, having both magnitude and 
direction. Its magnitude, I V fc (xg, yo) I, measures the maximum 
rate of change in the intensity at the location (Q, yo). Its direc- 
tion is that of the greatest increase in intensity; i.e., it points 
“uphill.” 

To produce an edge detector, one may simply extend the 1-D 
case described earlier. Consider the effect of finding the local 
extrema of V fc ( x ,  y) or the local maxima of 

The precise meaning of “local” is very important here. If the 
maximaof Eq. (2) are foundover a2-D neighborhood, the result 
is a set of isolated points rather than the desired edge contours. 
The problem stems from the fact that the gradient magnitude is 
seldom constant along a given edge, so finding the 2-D local max- 
ima yields only the locally strongest of the edge contour points. 
To fully construct edge contours, it is better to apply Eq. (2) to a 
1-D local neighborhood, namely a line segment, whose direction 
is chosen to cross the edge. The situation is then similar to that of 
Fig. 1, where the point of locally maximum gradient magnitude 
is the edge point. Now the issue becomes how to select the best 
direction for the line segment used for the search. 

The most commonly used method of producing edge seg- 
ments or contours from Eq. (2) consists of two stages: threshold- 
ing and thinning. In the thresholding stage, the gradient magni- 
tude at every point is compared to a predefined threshold value, 
T.  All points satisfying the following criterion are classified as 
candidate edge points: 

IVfC(x, y>l 2 2-a (3) 

The set of candidate edge points tends to form strips, which 
have positive width. Since the desire is usually for zero-width 
boundary segments or contours to describe the edges, a subse- 
quent processing stage is needed to thin the strips to the final 
edge contours. Edge contours derived from continuous-space 
images should have zero width because any local maxima of 

I V fc ( x ,  y) 1, along a line segment that crosses the edge, cannot 
be adjacent points. For the case of discrete-space images, the 
nonzero pixel size imposes a minimum practical edge width. 

Edge thinning can be accomplished in a number of ways, de- 
pending on the application, but thinning by nonmaximum sup- 
pression is usually the best choice. Generally speaking, we wish 
to suppress any point that is not, in a 1-D sense, a local max- 
imum in gradient magnitude. Since a 1-D local neighborhood 
search typically produces a single maximum, those points that 
are local maxima will form edge segments only one point wide. 
One approach classifies an edge-strip point as an edge point if 
its gradient magnitude is a local maximum in at least one di- 
rection. However, this thinning method sometimes has the side 
effect of creating false edges near strong edge lines [12]. It is 
also somewhat inefficient because of the computation required 
to check along a number of different directions. A better, more 
efficient thinning approach checks only a single direction, the 
gradient direction, to test whether a given point is a local maxi- 
mum in gradient magnitude. The points that pass this scrutiny 
are classified as edge points. Looking in the gradient direction 
essentially searches perpendicular to the edge itself, producing 
a scenario similar to the 1-D case shown in Fig. 1. The method 
is efficient because it is not necessary to search in multiple di- 
rections. It also tends to produces edge segments having good 
localization accuracy. These characteristics make the gradient 
direction, local extremum method quite popular. The following 
steps summarize its implementation. 

1. Using one of the techniques described in the next section, 
compute V f for all pixels. 

2. Determine candidate edge pixels bythresholding all pixels’ 
gradient magnitudes by T.  

3. Thin by checking whether each candidate edge pixel’s gra- 
dient magnitude is a local maximum along its gradient 
direction. If so, classify it as an edge pixel. 

Consider the effect of performing the thresholding and thin- 
ning operations in isolation. If thresholding alone were done, 
the computational cost of thinning would be saved and the edges 
would show as strips or patches instead of thin segments. If 
thinning were done without thresholding, that is, if edge points 
were simply those having locally maximum gradient magnitude, 
many false edge points would likely result because of noise. Noise 
tends to create false edge points because some points in edge-free 
areas happen to have locally maximum gradient magnitudes. 
The thresholding step of Eq. (3) is often useful to reduce 
noise prior to thinning. A variety of adaptive methods have 
been developed that adjust the threshold according to certain 
image characteristics, such as an estimate of local signal-to- 
noise ratio. Adaptive thresholding can often do a better job of 
noise suppression while reducing the amount of edge fragmen- 
tation. 

The edge maps in Fig. 3, computed from the original image 
in Fig. 2, illustrate the effect of the thresholding and subsequent 
thinning steps. 
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continuous domain, the operators become: 

FIGURE 2 Original cameraman image, 512 x 512 pixels. 

The selection of the threshold value T is a tradeoff between 
the wish to fully capture the actual edges in the image and the 
desire to reject noise. Increasing T decreases sensitivity to noise at 
the cost of rejecting the weakest edges, forcing the edge segments 
to become more broken and fragmented. By decreasing T ,  one 
can obtain more connected and richer edge contours, but the 
greater noise sensitivity is likely to produce more false edges. If 
only thresholding is used, as in Eq. (3) and Fig. 3(a), the edge 
strips tend to narrow as T increases and widen as it decreases. 
Figure 4 compares edge maps obtained from several different 
threshold values. 

Sometimes a directional edge detector is useful. One can be 
obtained by decomposing the gradient into horizontal and ver- 
tical components and applying them separately. Expressed in the 

2 T for edges in the y direction, 

2 T for edges in the x direction. 

An example of directional edge detection is illustrated in Fig. 5. 
A directional edge detector can be constructed for any desired 

direction by using the directional derivative along a unit vector n, 

- v f C C X ,  y )  . n, a f c  

an 
_ -  

where 8 is the angle of n relative to the positive x axis. The direc- 
tional derivative is most sensitive to edges perpendicular to n. 

The continuous-space gradient magnitude produces an iso- 
tropic or rotationally symmetric edge detector, equally sensitive 
to edges in any direction [ 121. It is easy to show why lVfl is 
isotropic. In addition to the original X-Y coordinate system, let 
us introduce a new system, X'-Y', which is rotated by an angle 
of 4, relative to X-Y.  Let n,/ and nyj be the unit vectors in the x' 
and y' directions, respectively. For the gradient magnitude to be 
isotropic, the same result must be produced in both coordinate 
systems, regardless of +. Using Eq. (4) along with abbreviated 
notation, we find the partial derivatives with respect to the new 
coordinate axes are 

f x l  = V f . n9 = f x  cos++ fy sin+, 
fy' = v f . ny, = - f x  sin + + fy cos +. 

FIGURE 3 
(a) by finding the local maximum of IV f l  along the gradient direction. 

Gradient edge detection steps, using the Sobel operator: (a) After thresholding lVfl; (b) after thinning 
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FIGURE 4 
(d) T = 40. As T increases, more noise-induced edges are rejected along with the weaker real edges. 

Roberts edge maps obtained by using various threshold values: (a) T = 5, (b) T = 10, (c) T = 20, 

Now let us examine the gradient magnitude in the new co- 
ordinate system: 

So the gradient magnitude in the new coordinate system matches 
that in the original system, regardless of the rotation angle, +. 
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(a) (b) 
FIGURE 5 
ator; (b) results of vertical difference operator. 

Directional edge detection comparison, using the Sobel operator: (a) results of horizontal difference oper- 

Occasionally, one may wish to reduce the computation load of 
Eq. (2) by approximating the square root with a computationally 
simpler function. Three possibilities are 

One should be aware that approximations of this type may al- 
ter the properties of the gradient somewhat. For instance, the 
approximated gradient magnitudes of Eqs. (5), (6 ) ,  and (7) are 
not isotropic and produce their greatest errors for purely diag- 
onally oriented edges. All three estimates are correct only for 
the pure horizontal and vertical cases. Otherwise, Eq. (5) consis- 
tently underestimates the true gradient magnitude while Eq. ( 6 )  
overestimates it. This makes Eq. (5) biased against diagonal edges 
and Eq. ( 6 )  biased toward them. The estimate of Eq. (7) is by far 
the most accurate of the three. 

2.2 Discrete Gradient Operators 
In the continuous-space image, f c ( x ,  y), let x and y represent 
the horizontal and vertical axes, respectively. Let the discrete- 
space representation of fc (x ,  y)  be f(n1, nz), with nl describing 
the horizontal position and n2 describing the vertical. For use 

on discrete-space images, the continuous gradient's derivative 
operators must be approximated in discrete form. The approxi- 
mation takes the form of a pair of orthogonally oriented filters, 
hl(n1, n2) and hz(n1, nz), which must be separately convolved 
with the image. Based on Eq. (l), the gradient estimate is 

where 

Two filters are necessary because the gradient requires the com- 
putation of an orthogonal pair of directional derivatives. The 
gradient magnitude and direction estimates can then be com- 
puted as follows: 

Each of the filters implements a derivative and should not re- 
spond to a constant, so the sum of its coefficients must always 
be zero. A more general statement of this property is described 
later in this chapter by Eq. (10). 

There are many possible derivative-approximation filters for 
use in gradient estimation. Let us start with the simplest case. 
Two simple approximation schemes for the horizontal derivative 
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are, for the first and central differences, respectively, 

The scaling factor of 1/2 for the central difference is caused 
by the two-pixel distance between the nonzero samples. The 
origin positions for both filters are usually set at (nl, nz). The 
gradient magnitude threshold value can be easily adjusted to 
compensate for any scaling, so we omit the scale factor from 
here on. Both of these differences respond most strongly to ver- 
tically oriented edges and do not respond to purely horizon- 
tal edges. The case for the vertical direction is similar, produc- 
ing a derivative approximation that responds most strongly to 
horizontal edges. These derivative approximations can be ex- 
pressed as filter kernels, whose impulse responses, hl (nl , 112) 

and h2(nl, n2), are as follows for the first and central differences, 
respectively: 

Boldface elements indicate the origin position. 
If used to detect edges, the pair of first difference filters above 

presents the problem that the zero crossings of its two [-1 11 
derivative kernels lie at different positions. This prevents the two 
filters from measuring horizontal and vertical edge characteris- 
tics at the same location, causing error in the estimated gradi- 
ent. The central difference, caused by the common center of its 
horizontal and vertical differencing kernels, avoids this position 
mismatch problem. This benefit comes at the costs of larger filter 
size and the fact that the measured gradient at a pixel ( H I ,  n2) 
does not actually consider the value of that pixel. 

Rotating the first difference kernels by an angle of ~ r / 4  and 
stretching the grid a bit produces the hl(n1, n2) and hz(n1, n2) 
kernels for the Roberts operator: 

The Roberts operator's component filters are tuned for diagonal 
edges rather than vertical and horizontal ones. For use in an edge 
detector based on the gradient magnitude, it is important only 
that the two filters be orthogonal. They need not be aligned with 
the nl and n2 axes. The pair of Roberts filters have a common 
zero-crossing point for their differencing kernels. This common 
center eliminates the position mismatch error exhibited by the 
horizontal-vertical first difference pair, as described earlier. If 
the origins of the Roberts kernels are positioned on the +1 sam- 
ples, as is sometimes found in the literature, then no common 

The Roberts operator, like any simple first-difference gradi- 
ent operator, has two undesirable characteristics. First, the zero 
crossing of its [ - 1 11 diagonal kernel lies off grid, but the edge 
location must be assigned to an actual pixel location, namely 
the one at the filter's origin. This can create edge location bias 
that may lead to location errors approaching the interpixel dis- 
tance. If we could use the central difference instead of the first 
difference, this problem would be reduced because the central 
difference operator inherently constrains its zero crossing to an 
exact pixel location. 

The other difficulty caused by the first difference is its noise 
sensitivity. In fact, both the first- and central-difference deriva- 
tive estimators are quite sensitive to noise. The noise problem 
can be reduced somewhat by incorporating smoothing into each 
filter in the direction normal to that of the difference. Consider 
an example based on the central difference in one direction for 
which we wish to smooth along the orthogonal direction with 
a simple three-sample average. To that end, let us define the 
impulse responses of two filters: 

Since ha is a function only of nl and hb depends only on n2, 
one can simply multiply them as an outer product to form a 
separable derivative filter that incorporates smoothing: 

[ 3 - 1  0 1]= [I: -1 : 0 :I. 1 

Repeating this process for the orthogonal case produces the 
Prewitt operator: 

[I: : :I [ -1 : -1 ; -1 ".  
-1 0 1 

The Prewitt edge gradient operator simultaneously accomplishes 
differentiation in one coordinate direction, using the central 
difference, and noise reduction in the orthogonal direction, by 
means of local averaging. Because it uses the central difference 
instead of the first difference, there is less edge-location bias. 

In general, the smoothing characteristics can be adjusted by 
choosing an appropriate low-pass filter kernel in place of the 
Prewitt's three-sample average. One such variation is the Sobel 
operator, one of the most widely used gradient edge detectors: 

-1 0 1 -1 -2 -1 

Sobel's operator is often a better choice than Prewitt's because 
the low-pass filter produced by the [ 1 2 11 kernel results in a 
smoother freauencv response compared to that of [ 1 1 11. ;enter point exists for their first differences. .. Z L  
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The Prewitt and Sobel operators respond differently to di- 
agonal edges than to horizontal or vertical ones. This behavior 
is a consequence of the fact that their filter coefficients do not 
compensate for the different grid spacings in the diagonal and 
the horizontal directions. The Prewitt operator is less sensitive 
to diagonal edges than to vertical or horizontal ones. The oppo- 
site is true for the Sobel operator [ 161. A variation designed for 
equal gradient magnitude response to diagonal, horizontal, and 
vertical edges is the Frei-Chen operator: 

However, even the Frei-Chen operator retains some directional 
sensitivity in gradient magnitude, so it is not truly isotropic. 

. .  . .  . . .  . f-y . , '  , .  . .  .:, 

J . .  :< ' i i !  L . ' 

. .  . ...*. , , 

The residual anisotropy is caused by the fact that the difference 
operators used to approximate Eq. (1) are not rotationally sym- 
metric. Merron and Brady [15] describe a simple method for 
greatly reducing the residual directional bias by using a set of 
four difference operators instead of two. Their operators are ori- 
ented in increments of ~ r / 4  radians, adding a pair of diagonal 
ones to the original horizontal and vertical pair. Averaging the 
gradients produced by the diagonal operators with those of the 
nondiagonal ones allows their complementary directional biases 
to reduce the overall anisotropy. However, Ziou and Wang [23]  
have described how an isotropic gradient applied to a discrete 
grid tends to introduce some anisotropy. They have also analyzed 
the errors of gradient magnitude and direction as a function of 
edge translation and orientation for several detectors. Figure 6 
shows the results of performing edge detection on an example 

I 

FIGURE 6 
(d) 3 x 3 Frei-Chen. In each case, the threshold has been set to allow a fair comparison. 

Comparison of edge detection using various gradient operators: (a) Roberts, (b) 3 x 3 Prewitt, (c) 3 x 3 Sobel, 
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image by applying the discrete gradient operators discussed 
so far. 

Haralick's facet model [ 81 provides another way of calculating 
the gradient in order to perform edge detection. In the sloped 

p n1 + y , describing the plane that best fits the gray levels in that 

compute the gradient magnitude: 

fc(x) 

facet model, a small neighborhood is parameterized by (xlz2 + 

neighborhood. The plane parameters (x and p can be used to 

0 ........... .--.............. .................. ................. . .____ '_............_..______._ 

f,W 

0 

The facet model also provides means for computing directional 
derivatives, zero crossings, and a variety of other useful opera- 
tions. 

Improved noise suppression is possible with increased ker- 
nel size. The additional coefficients can be used to better 
approximate the desired continuous-space noise-suppression fil- 
ter. Greater filter extent can also be used to reduce directional 
sensitivity by more accurately modeling an ideal isotropic filter. 
However, increasing the kernel size will exacerbate edge local- 
ization problems and create interference between nearby edges. 
Noise suppression can be improved by other methods as well. 
Papers by Bovik [ 31 and Hardie and Boncelet [ 91 are just two that 
describe the use of edge-enhancing prefilters, which simultane- 
ously suppress noise and steepen edges prior to gradient edge 
detection. 

3 Laplacian-Based Methods 

3.1 Continuous Laplacian 
The Laplacian is defined as 

(9) 

The zero crossings of V2fc(x, y)  occur at the edge points of 
fc(x, y) because of the second derivative action (see Fig. 1).  
Laplacian-based edge detection has the nice property that it pro- 
duces edges of zero thickness, making edge-thinning steps un- 
necessary. This is because the zero crossings themselves define 
the edge locations. 

The continuous Laplacian is isotropic, favoring no particu- 
lar edge orientation. Consequently, its second partial terms in 
Eq. (9) can be oriented in any direction as long as they remain 
perpendicular to each other. Consider an ideal, straight, and 
noise-free edge oriented in an arbitrary direction. Let us realign 
the first term of Eq. (9) parallel to that edge and the second term 
perpendicular to it. The first term then generates no response at 
all because it acts only along the edge. The second term produces 
azero crossing at the edge position along its edge-crossing profile. 

An edge detector based solely on the zero crossings of the con- 
tinuous Laplacian produces closed edge contours if the image, 

0 

FIGURE 7 The zero crossing of f ; (x )  at x p  creates a phantom edge. 

f ( x ,  y), meets certain smoothness constraints [20]. The con- 
tours are closed because edge strength is not considered, so even 
the slightest, most gradual intensity transition produces a zero 
crossing. In effect, the zero-crossing contours define the bound- 
aries that separate regions of nearly constant intensity in the 
original image. The second derivative zero crossings occur at the 
local extrema of the first derivative (see Fig. l), but many zero 
crossings are not local maxima of the gradient magnitude. Some 
local minima of the gradient magnitude give rise to phantom 
edges, which can be largely eliminated by appropriately thresh- 
olding the edge strength. Figure 7 illustrates a 1-D example of a 
phantom edge. 

Noise presents a problem for the Laplacian edge detector 
in several ways. First, the second-derivative adion of Eq. (9) 
makes the Laplacian even more sensitive to noise than the 
first-derivative-based gradient. Second, noise produces many 
false edge contours because it introduces variation to the 
constant-intensity regions in the noise-free image. Third, noise 
alters the locations of the zero-crossing points, producing lo- 
cation errors along the edge contours. The problem of noise- 
induced false edges can be addressed by applying an addi- 
tional test to the zero-crossing points. Only the zero crossings 
that satisfy this new criterion are considered edge points. One 
commonly-used technique classifies a zero crossing as an edge 
point if the local gray-level variance exceeds a threshold amount. 
Another method is to select the strong edges by thresholding the 
gradient magnitude or the slope of the Laplacian output at the 
zero crossing. Both criteria serve to reject zero crossing points 
which are more likely caused by noise than by a real edge in the 
original scene. Of course, thresholding the zero crossings in this 
manner tends to break up the closed contours. 

Like any derivative filter, the continuous-space Laplacian filter, 
h,(x,  y), has this important property: 

hc(x, y)  dx dy = 0. (10) 
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In other words, h,(x, y) is a surface bounding equal volumes 
above and below zero. Consequently, V2 &(x, y )  will also have 
equal volumes above and below zero. This property eliminates 
any response that is due to the constant or DC bias contained in 
& ( x ,  y). Without DC bias rejection, the filter's edge detection 
performance would be compromised. 

3.2 Discrete Laplacian Operators 
It is useful to construct a filter to serve as the Laplacian operator 
when applied to a discrete-space image. Recall that the gradient, 
which is a vector, required a pair of orthogonal filters. The Lapla- 
cian is a scalar. Therefore, a single filter, h(nl, nz), is sufficient 
for realizing a Laplacian operator. The Laplacian estimate for an 
image, f(n1, n2), is then 

One of the simplest Laplacian operators can be derived as 
follows. First needed is an approximation to the derivative in x, 
so let us use a simple first difference. 

The second derivative in x can be built by applying the first 
difference to Eq. (11). However, we discussed earlier how the 
first difference produces location errors because its zero crossing 
lies off grid. This second application of a first difference can be 
shifted to counteract the error introduced by the previous one: 

Combining the two derivative-approximation stages from 
Eqs. (1 1) and (12) produces 

= fh + 1,122) - Zf(n1, a21 + fh  - 1, n2) 

= [l -2 11. (13) 

Proceeding in an identical manner for y yields 

= [-;I. 
Combining the x and y second partials of Eqs. (13) and (14) 

produces a filter, h(n1, n2), which estimates the Laplacian: 

v2 fC(% y )  --f G2 f(% n2) 

= f x x h ,  n2) + fyy(n1, n2) 

= fh  + 1, n2) + f(n1 - 1, n2> + f b l ,  n2 + 1) 

+ fh, n2 - 1) - 4 f h  n2) 

= [l -2 1]+ -2 = 1 -4 1 . [ :] [: 1 :I 

[i -; i], [I! -; 2 -1 -:I. 
Other Laplacian estimation filters can be constructed by us- 

ing this method of designing a pair of appropriate 1-D second 
derivative filters and combining them into a single 2-D filter. 
The results depend on the choice of derivative approximator, 
the size of the desired filter kernel, and the characteristics of 
any noise-reduction filtering applied. Two other 3 x 3 examples 
are 

In general, a discrete-space smoothed Laplacian filter can be eas- 
ily constructed by sampling an appropriate continuous-space 
function, such as the Laplacian of Gaussian. When constructing 
a Laplacian filter, make sure that the kernel's coefficients sum to 
zero in order to satisfy the discrete form of Eq. (10). Truncation 
effects may upset this property and create bias. If so, the filter co- 
efficients should be adjusted in a waythat restores proper balance. 

Locating zero crossings in the discrete-space image, 
V2 f (  n1, nz), is fairly straightforward. Each pixel should be com- 
pared to its eight immediate neighbors; a four-way neighbor- 
hood comparison, while faster, may yield broken contours. If a 
pixel, p, differs in sign with its neighbor, q, an edge lies between 
them. The pixel, p, is classified as a zero crossing if 

IV2f(P)I I lV2f(@l. (15) 

3.3 The Laplacian of Gaussian 
(Marr-Hildreth Operator) 
It is common for a single image to contain edges having widely 
different sharpnesses and scales, from blurry and gradual to crisp 
and abrupt. Edge scale information is often useful as an aid to- 
ward image understanding. For instance, edges at low resolution 
tend to indicate gross shapes, whereas texture tends to become 
important at higher resolutions. An edge detected over a wide 
range of scale is more likely to be physically significant in the 
scene than an edge found only within a narrow range of scale. 
Furthermore, the effects of noise are usually most deleterious at 
the finer scales. 

Marr and Hildreth [ 141 advocated the need for an operator 
that can be tuned to detect edges at a particular scale. Their 
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method is based on filtering the image with a Gaussian kernel 
selected for a particular edge scale. The Gaussian smoothing 
operation serves to band-limit the image to a small range of fre- 
quencies, reducing the noise sensitivity problem when detecting 
zero crossings. The image is filtered over a variety of scales and 
the Laplacian zero crossings are computed at each. This produces 
a set of edge maps as a function of edge scale. Each edge point 
can be considered to reside in a region of scale space, for which 
edge point location is a function of x ,  y, and u. Scale space has 
been successfully used to refine and analyze edge maps [22]. 

The Gaussian has some very desirable properties that facil- 
itate this edge detection procedure. First, the Gaussian func- 
tion is smooth and localized in both the spatial and frequency 
domains, providing a good compromise between the need for 
avoiding false edges and for minimizing errors in edge posi- 
tion. In fact, Torre and Poggio [20] describe the Gaussian as 
the only real-valued function that minimizes the product of 
spatial- and frequency-domain spreads. The Laplacian of 
Gaussian essentially acts as a bandpass filter because of its dif- 
ferential and smoothing behavior. Second, the Gaussian is sep- 
arable, which helps make computation very efficient. 

Omitting the scaling factor, the Gaussian filter can be written 
as 

Its frequency response, G(%, Q y ) ,  is also Gaussian: 

The u parameter is inversely related to the cutoff frequency. 
Because the convolution and Laplacian operations are both 

linear and shift. invariant, their computation order can be inter- 
changed 

Here we take advantage of the fact that the derivative is a linear 
operator. Therefore, Gaussian filtering followed by differentia- 
tion is the same as filtering with the derivative of a Gaussian. 
The right-hand side of Eq. (17) usually provides for more effi- 
cient computation since V2gc(x, y)  can be prepared in advance 
as a result of its image independence. The Laplacian of Gaus- 
sian (LOG) filter, hc(x, y), therefore has the folIowing impulse 
response: 

hc(x, v> = V2gc(x, y )  

- - 
u4 

To implement the LOG in discrete form, one may construct 
a filter, h(n1, n2), by sampling Eq. (18) after choosing a value 

of u, then convolving with the image. If the filter extent is not 
small, it is usuallymore efficient to workin the frequency domain 
by multiplying the discrete Fourier transforms of the filter and 
the image, then inverse transforming the result. The fast Fourier 
transform, or FFT, is the method of choice for computing these 
transforms. 

Although the discrete form of Eq. (18) is a 2-D filter, Chen 
et al. [6] have shown that it is actually the sum of two separable 
filters because the Gaussian itself is a separable function. By con- 
structing and applying the appropriate 1-D filters successively to 
the rows and columns of the image, the computational expense 
of 2-D convolution becomes unnecessary. Separable convolu- 
tion to implement the LOG is roughly 1-2 orders of magnitude 
more efficient than 2-D convolution. If an image is M x M 
in size, the number of operations at each pixel is M2 for 2-D 
convolution and only 2 M if done in a separable, 1-D manner. 

Figure 8 shows an example of applying the LOG using various 
u values. Figure 8(d) includes a gradient magnitude threshold, 
which suppresses noise and breaks contours. Lim [ 121 describes 
an adaptive thresholding scheme that produces better results. 

Equation (18) has the shape of a sombrero or “Meldcan hat.” 
Figure 9 shows a perspective plot of V2gc (x, y) and its frequency 
response, F{V2gc(x, y)}. This profile closely mimics the re- 
sponse of the spatial receptive field found in biological vision. 
Biological receptive fields have been shown to have a circularly 
symmetric impulse response, with a central excitory region sur- 
rounded by an inhibitory band. 

When sampling the LOG to produce a discrete version, it is 
important to size the filter large enough to avoid significant trun- 
cation effects. A good rule of thumb is to make the filter at least 
three times the width of the LOG’S central excitory lobe [ 161. 
Siohan [ 191 describes two approaches for the practical design 
of LOG filters. The errors in edge location produced by the LOG 
have been analyzed in some detail by Berzins 121. 

3.4 Difference of Gaussian 
The Laplacian of Gaussian of Eq. (18) can be closely approxi- 
mated by the difference of two Gaussians having properly chosen 
scales. The difference of Gaussian (DOG) filter is 

where 

- O2 x 1.6 
0 1  

and gel, gc2 are evaluated by using Eq. (16). However, the LOG is 
usually preferred because it is theoretically optimal and its sepa- 
rability allows for efficient computation [ 141. For the same accu- 
racy of results, the DOG requires a slightly larger filter size [ 101. 

The technique of unsharp masking, used in photography, is 
basically a difference of Gaussians operation done with light 
and negatives. Unsharp masking involves making a somewhat 
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FIGURE 8 
u = 2.0, (d) u = 2.0 and T = 20. 

Zero crossings of f * V2g for several values of u, with (d) also thresholded (a) u = 1.0, (b) u = 1.5, ( c )  

blurry exposure of an original negative onto a new piece of film. 
When the film is developed, it contains a blurred and inverted- 
brightness version of the original negative. Finally, a print is 
made from these two negatives sandwiched together, produc- 
ing a sharpened image with the edges showing an increased 
contrast. 

Nature uses the difference of Gaussians as a basis for the archi- 
tecture of the retina’s visual receptive field. The spatial-domain 
impulse response of a photoreceptor cell in the mammalian 
retina has a roughly Gaussian shape. The photoreceptor output 
feeds into horizontal cells in the adjacent layer of neurons. Each 
horizontal cell averages the responses of the receptors in its im- 
mediate neighborhood, producing a Gaussian-shaped impulse 
response with a higher a than that of a single photoreceptor. 
Both layers send their outputs to the third layer, where bipolar 

neurons subtract the high-a neighborhood averages from the 
central photoreceptors’ low-a responses. This produces a bio- 
logical realization of the difference-of-Gaussian filter, approx- 
imating the behavior of the Laplacian of Gaussian. The retina 
actually implements DOG bandpass filters at several spatial fre- 
quencies [ 131. 

4 Canny’s Method 

Canny’s method [4] uses the concepts of both the first and 
second derivatives in a very effective manner. His is a classic 
application of the gradient approach to edge detection in the 
presence of additive white Gaussian noise, but it also incorpo- 
rates elements of the Laplacian approach. The method has three 
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FIGURE 9 
(b) F{V2gc(x ,  y)) ,  the bandpass-shaped frequency response of Eq. (18). 

Plots of the LOG and its frequency response for cr = 1: (a) -V2gc(x ,  y) ,  the negative of Eq. (18); 

simultaneous goals: low rate of detection errors, good edge lo- 
calization, and only a single detection response per edge. Canny 
assumed that false-positive and false-negative detection errors 
are equally undesirable and so gave them equal weight. He fur- 
ther assumed that each edge has nearly constant cross section 
and orientation, but his general method includes a way to ef- 
fectively deal with the cases of curved edges and corners. With 
these constraints, Canny determined the optimal 1-D edge de- 
tector for the step edge and showed that its impulse response can 
be approximated fairly well by the derivative of a Gaussian. 

An important action of Canny’s edge detector is to prevent 
multiple responses per true edge. Without this criterion, the 
optimal step-edge detector would have an impulse response in 
the form of a truncated signum function. (The signum function 
produces + 1 for any positive argument and - 1 for any negative 
argument.) But this type of filter has high bandwidth, allowing 
noise or texture to produce several local maxima in the vicinity 
of the actual edge. The effect of the derivative of Gaussian is to 
prevent multiple responses by smoothing the truncated signum 
in order to permit only one response peak in the edge neighbor- 
hood. The choice of variance for the Gaussian kernel controls 
the filter width and the amount of smoothing. This defines the 
width of the neighborhood in which only a single peak is to 
be allowed. The variance selected should be proportional to the 
amount of noise present. If the variance is chosen too low, the fil- 
ter can produce multiple detections for a single edge; if too high, 
edge localization suffers needlessly. Because the edges in a given 
image are likely to differ in signal-to-noise ratio, a single-filter 
implementation is usually not best for detecting them. Hence, a 
thorough edge detection procedure should operate at different 
scales. 

Canny’s approach begins by smoothing the image with a 
Gaussian filter: 

One may sample and truncate Eq. (19) to produce a finite-extent 
filter, g(nl,  nz). At each pixel, Eq. (8) is used to estimate the 
gradient direction. From a set of prepared edge detection filter 
masks having various orientations, the one oriented nearest to 
the gradient direction for the targeted pixel is then chosen. When 
applied to the Gaussian-smoothed image, this filter produces an 
estimate of gradient magnitude at that pixel. Next, the goal is 
to suppress non-maxima of the gradient magnitude by testing 
a 3 x 3 neighborhood, comparing the magnitude at the center 
pixel with those at interpolated positions to either side along the 
gradient direction. 

The pixels that survive to this point are candidates for the 
edge map. To produce an edge map from these candidate pix- 
els, Canny applies thresholding by gradient magnitude in an 
adaptive manner with hysteresis. An estimate of the noise in the 
image determines the values of a pair of thresholds, with the 
upper threshold typically two or three times that of the lower. 
A candidate edge segment is included in the output edge map 
if at least one of its pixels has a gradient magnitude exceeding 
the upper threshold, but pixels not meeting the lower threshold 
are excluded. This hysteresis action helps reduce the problem 
of broken edge contours while improving the ability to reject 
noise. 

A set of edge maps over a range of scales can be produced 
by varying the u values used to Gaussian-filter the image. Since 
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smoothing at different scales produces different errors in edge 
location, an edge segment that appears in multiple edge maps at 
different scales may exhibit some position shift. Canny proposed 
unifying the set of edge maps into a single result by using a 
technique he called “feature synthesis,” which proceeds in a fine- 
to-coarse manner while tracking the edge segments within their 
possible displacements. 

The preoriented edge detection filters, mentioned previously, 
have some interesting properties. Each mask includes a derivative 
of Gaussian function to perform the nearly optimal directional 
derivative across the intended edge. A smooth, averaging profile 
appears in the mask along the intended edge direction in order to 
reduce noise without compromising the sharpness of the edge 
profile. In the smoothing direction, the filter extent is usually 
several times that in the derivative direction when the filter is 
intended for straight edges. Canny’s method includes a “good- 
ness of fit” test to determine if the selected filter is appropriate 
before it is applied. The test examines the gray-level variance of 
the strip of pixels along the smoothing direction of the filter. 
If the variance is small, then the edge must be close to linear, and 
the filter is a good choice. Alarge variance indicates the presence 
of curvature or a comer, in which case a better choice of filter 
would have smaller extent in the smoothing direction. There 
were six oriented filters used in Canny’s work The greatest di- 
rectional mismatch between the actual gradient and the nearest 
filter is 15”, which yields a gradient magnitude that is -85% of 
the actual value. 

As discussed previously, edges can be detected from either the 
maxima of the gradient magnitude or the zero crossings of the 
second derivative. Another way to realize the essence of Canny‘s 
method is to look for zero crossings of the second directional 
derivative taken along the gradient direction. Let us examine the 
mathematical basis for this. If n is a unit vector in the gradient 
direction, and f is the Gaussian-smoothed image, then we wish 
to find 

- = ~ ( g > - n  a2f 
8 n2 

= V(0f * n) * n, 

which can be expanded to the following form: 

(20) 
a2 f - f: f x x  + 2 f x  fr fxr + fy’ fry - - 
a n2 Jm 

In Eq. (20), a concise notation has been used for the partial 
derivatives. 

Like the Laplacian approach, Canny’s method looks for zero 
crossings of the second derivative. The Laplacian’s second deriva- 
tive is nondirection& it includes a component taken parallel to 
the edge and another taken across it. Canny’s is evaluated only 
in the gradient direction, directly across the local edge. A deriva- 
tive taken along an edge is counterproductive because it intro- 
duces noise without improving edge detection capability. By 

being selective about the direction in which its derivatives are 
evaluated, Canny’s approach avoids this source ofnoise and tends 
to produce better results. 

Figures 10 and 11 flustrate the results of applying the Canny 
edge detector of Eq. (20) after Gaussian smoothing, then look- 
ing for zero crossings. Figure 10 demonstrates the effect of using 
the same upper and lower thresholds, Tu and TL, over a range 
of u values. The behavior of hysteresis thresholding is shown 
in Fig. 11. The partial derivatives were approximated using cen- 
tral differences. Thresholding was performed with hysteresis, but 
using fixed threshold values for each image instead of Canny’s 
noise-adaptive threshold values. Zero-crossing detection was 
implemented in an eight-way manner, as described by Eq. (15) 
in the earlier discussion of discrete Laplacian operators. Also, 
Canny’s preoriented edge detection filters were not used in 
preparing these examples, so it was not possible to adapt the 
edge detection iilters according to the “goodness of fit” of the 
local edge profile as Canny did. 

5 Approaches for Color and 
Multispectral Images 

Edge detection for color images presents additional difficulties 
because of the three color components used. The most straight- 
forward technique is to perform edge detection on the luminance 
component image while ignoring the chrominance information. 
The only computational cost beyond that for gray-scale images 
is incurred in obtaining the luminance component image, if 
necessary. In many color spaces, such as YIQ, HSL, CIELW, 
and CIELAB, the luminance image is simply one of the com- 
ponents in that representation. For others, such as RGB, com- 
puting the luminance image is usually easy and efficient. The 
main drawback to luminance-only processing is that impor- 
tant edges are often not confined to the luminance component. 
Hence, a gray-level difference in the luminance component is of- 
ten not the most appropriate criterion for edge detection in color 
images. 

Another rather obvious approach is to apply a desired edge 
detection method separately to each color component and con- 
struct a cumulative edge map. One possibility for overall gradient 
magnitude, shown here for the RGB color space, combines the 
component gradient magnitudes [ 171: 

The results, however, are biased according to the properties of 
the particular color space used. It is often important to employ 
a color space that is appropriate for the target application. For 
example, edge detection that is intended to approximate the hu- 
man visual system’s behavior should utilize a color space having 
a perceptual basis, such as CIELW or perhaps HSL. Another 
complication is the fact that the components’ gradient vectors 
may not always be similarlv oriented. makine the search for local 
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FIGURE 10 
(b) u = 1, (c) u = 2, (d) IJ = 4. The thresholds are fixed in each case at TU = 10 and TL = 4. 

Canny edge detector of Eq. (20) applied after Gaussian smoothing over a range of IT: (a) IJ = 0.5, 

maxima of IV fc I along the gradient direction more difficult. If 
a total gradient image were to be computed by summing the 
color component gradient vectors, not just their magnitudes, 
then inconsistent orientations of the component gradients could 
destructively interfere and nullify some edges. 

Vector approaches to color edge detection, while generally less 
computationally efficient, tend to have better theoretical justi- 
fication. Euclidean distance in color space between the color 
vectors of a given pixel and its neighbors can be a good basis for 
an edge detector [ 171. For the RGB case, the magnitude of the 
vector gradient is 

Trahanias and Venetsanopoulos [ 2 11 described the use of vec- 
tor order statistics as the basis for color edge detection. Alater pa- 
per by Scharcanski and Venetsanopoulos [ 181 furthered the con- 
cept. Although not strictly founded on the gradient or Laplacian, 
their techniques are effective and worth mention here because 
of their vector bases. The basic idea is to look for changes in local 
vector statistics, particularly vector dispersion, to indicate the 
presence of edges. 

Multispectral images can have many components, complicat- 
ing the edge detection problem even further. CebriPn [5] de- 
scribes several methods that are useful for multispectral images 
having any number of components. His description uses the sec- 
ond directional derivative in the gradient direction as the basis 
for the edge detector, but other types of detectors can be used 
instead. The components-average method forms a gray-scale 
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FIGURE 11 Canny edge detector of Eq. (20) applied after Gaussian smoothing with u = 2: (a) Tu = 10, Tr. = 1; (b) 
Tu = Tr. = 10; (c) Tu = 20, Tr. = 1; (d) Tu = TL = 20. As TL is changed, notice the effect on the results of hysteresis 
thresholding. 

image by averaging all components, which have first been Gaus- 
sian smoothed, and then finds the edges in that image. The 
method generally works well because multispectral images tend 
to have high correlation between components. However, it is 
possible for edge information to diminish or vanish if the com- 
ponents destructively interfere. 

Cumani [ 71 explored operators for computing the vector gra- 
dient and created an edge detection approach based on combin- 
ing the component gradients. A multispectral contrast function 
is defined, and the image is searched for pixels having maximal 
directional contrast. Cumani’s method does not always detect 
edges present in the component bands, but it better avoids the 
problem of destructive interference between bands. 

The maximal gradient method constructs a single gradient 
image from the component images [5]. The overall gradient 

image’s magnitude and direction values at a given pixel are those 
of the component having the greatest gradient magnitude at 
that pixel. Some edges can be missed by the maximal gradient 
technique because they may be swamped by differently oriented, 
stronger edges present in another band. 

The method of combining component edge maps is the least 
efficient because an edge map must first be computed for every 
band. On the positive side, this method is capable of detecting any 
edge that is detectable in at least one component image. Com- 
bination of component edge maps into a single result is made 
more difficult by the edge location errors induced by Gaussian 
smoothing done in advance. The superimposed edges can be- 
come smeared in width because of the accumulated uncertainty 
in edge localization. A thinning step applied during the combi- 
nation procedure can greatly reduce this edge blurring problem. 
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6 Summary 

Gray-level edge detection is most commonly performed by con- 
volving an image, f ,  with a filter that is somehow based on 
the idea of the derivative. Conceptually, edges can be revealed 
by locating either the local extrema of the first derivative of f 
or zero crossings of its second derivative. The gradient and the 
Laplacian are the primary derivative-based functions used to 
construct such edge-detection filters. The gradient, V, is a 2-D 
extension of the first derivative while the Laplacian, V2, acts as 
a 2-D second derivative. A variety of edge detection algorithms 
and techniques have been developed that are based on the gradi- 
ent or Laplacian in some way. Like any type of derivative-based 
filter, ones based on these two functions tend to be very sensitive 
to noise. Edge location errors, false edges, and broken or missing 
edge segments are often problems with edge detection applied 
to noisy images. For gradient techniques, thresholding is a com- 
mon way to suppress noise and can be done adaptively for better 
results. Gaussian smoothing is also very helpful for noise sup- 
pression, especially when second-derivative methods such as the 
Laplacian are used. The Laplacian of Gaussian approach can also 
provide edge information over a range of scales, helping to fur- 
ther improve detection accuracy and noise suppression as well as 
providing clues that may be useful during subsequent processing. 
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1 Introduction and Motivation 

Sudden, sustained changes in image intensity are called edges. 
We know that the human visual system makes extensive use of 
edges to perform visual tasks such as object recognition [ 2 2 ] .  
Humans can recognize complex three-dimensional (3-D) ob- 
jects by using only line drawings or image edge information. 
Similarly, the extraction of edges from digital imagery allows a 
valuable abstraction of information and a reduction in process- 
ing and storage costs. Most definitions of image edges involve 
some concept of feature scale. Edges are said to exist at certain 
scales- edges from detail existing at fine scales and edges from 
the boundaries of large objects existing at coarse scales. Further- 
more, coarse scale edges exist at fine scales, leading to a notion 
of edge causality. 

In order to locate edges of various scales within an image, it 
is desirable to have an image operator that computes a scaled 
version of a particular image or frame in a video sequence. This 
operator should preserve the position of such edges and facilitate 
the extraction of the edge map through the scale space. The tool 
of isotropic diffusion, a linear low-pass filtering process, is not 
able to preserve the position of important edges through the 
scale space. Anisotropic diffusion, however, meets this criterion 
and has been used in conjunction with edge detection during 
the last decade. 

The main benefit of anisotropic diffusion is edge preservation 
through the image smoothing process. Anisotropic diffusion 
yields intraregion smoothing, not interregion smoothing, byim- 
peding diffusion at the image edges. The anisotropic diffusion 

Copyright @ 2000 by Academic Press. 
All rights of reproduction in any form resewed. 

process can be used to retain image features of a specified scale. 
Furthermore, the localized computation of anisotropic diffu- 
sion allows efficient implementation on a locally interconnected 
computer architecture. Caselles et al. furnish additional motiva- 
tion for using diffusion in image and video processing [ 141. The 
diffusion methods use localized models in which discrete filters 
become partial differential equations (PDEs) as the sample spac- 
ing goes to zero. The PDE framework allows various properties 
to be proved or disproved including stability, locality, causality, 
and the existence and uniqueness of solutions. Through the es- 
tablished tools of numerical analysis, high degrees of accuracy 
and stability are possible. 

In this chapter, we introduce diffusion for image and video 
processing. We specifically concentrate on the implementation 
of anisotropic diffusion, providing several alternatives for the 
diffusion coefficient and the diffusion PDE. Energy-based varia- 
tional diffusion techniques are also reviewed. Recent advances in 
anisotropic d i h i o n  processes, including multiresolution and 
multispectral techniques, are discussed. Finally, the extraction 
of image edges after anisotropic diffusion is addressed. 

2 Background on Diffusion 

2.1 Scale Space and Isotropic Diffusion 
In order to introduce the diffusion-based processing methods 
and the associated processes of edge detection, let us define some 
notation. Let I represent an image with real-valued intensity I(x) 
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image at position x in the domain Q. When defining the PDEs 
for diffusion, let It be the image at time t with intensities I,(x). 
Corresponding with image I is the edge map e - the image of 
“edge pixels” e(x)  with Boolean range (0 = no edge, 1 = edge), 
or real-valued range e(x) E [0,1]. The set of edge positions in 
an image is denoted by 9. 

The concept of scale space is at the heart of diffusion-based 
image and video processing. A scale space is a collection of im- 
ages that begins with the original, fine scale image and pro- 
gresses toward more coarse scale representations. With the use 
of a scale space, important image processing tasks such as hierar- 
chical searches, image coding, and image segmentation may be 
efficiently realized. Implicit in the creation of a scale space is the 
scale generating3lter. Traditionally, linear filters have been used 
to scale an image. In fact, the scale space of Witkin [41] can be 
derived using a Gaussian filter: 

function, calIed the diffusion coefficient c(x), encourages in- 
traregion smoothing over interregion smoothing. For example, 
if c(x) is constant at all locations, then smoothing progresses 
in an isotropic manner. If c(x) is allowed to vary according to 
the local image gradient, we have anisotropic diffusion. A basic 
anisotropic diffusion PDE is 

-- - div{c(x)Vl,(x)} 
a t  (5) 

with IO = I [30]. 
The discrete formulation proposed in [30] will be used as a 

general framework for implementation of anisotropic diffusion 
in this chapter. Here, the image intensities are updated accord- 
ing to 

r -I 

It = G, *Io, (1) [I(X)lt+l = + (AT) 2 cd(x)vId(x)] , (6 )  

where r is the number of directions in which diffusion is com- 
puted, VId(x) is the directional derivative (simple difference) in 
direction d at locationx, and time (in iterations) is given by t. A T 

d=l t 

where G, is a Gaussian kernel with standard deviation (scale) of 
u, and Io = I is the initial image. If 

a=&, (2) 
is the time step - for stability, A T I l /2 in the one-dimensional 
(1-D) case, and AT 5 ‘/4 in the two-dimensional (2-D) case 
using four diffusion directions. For 1-D discrete-domain sin- 

then the Gaussian filter result may be achieved through an 
isotropic diffusion process governed by - 

31, - at = AIt, (3) 

where AI, is the Laplacian of I, [21,41]. To evolve one pixel of 

nals,-the simple differences v ( X I  with respect to the “western” 
and “eastern” neighbors, respectively (neighbors to the left and 
right), are defined by 

I, we have the following PDE vr,(x) = r ( x  - h l )  - q x ) ,  

-- - AI,(x). 
at (4) 

The Marr-Hildreth paradigm uses a Gaussian scale space to 
define multiscale edge detection. Using the Gaussian-convolved 
(or diffused) images, one may detect edges by applying the 
Laplacian operator and then finding zero crossings [ 231. This 
popular method of edge detection, called the Laplacian-of- 
Gaussian, or LOG, is strongly motivated by the biological vision 
system. However, the edges detected from isotropic diffusion 
(Gaussian scale space) suffer from artifacts such as corner round- 
ing and from edge localization errors (deviations in detected 
edge position from the “true” edge position). The localization 
errors increase with increased scale, precluding straightforward 
multiscale imagehide0 analysis. As a result, many researchers 
have pursued anisotropic diffusion as a practicable alternative 
for generating images suitable for edge detection. This chapter 
focuses on such methods. 

2.2 Anisotropic Diffusion 
The main idea behind anisotropic diffusion is the introduction 
of a function that inhibits smoothing at the image edges. This 

VI*(x) = I ( x  + h2) - I ( x ) .  

The parameters hl and h2 define the sample spacing used to es- 
timate the directional derivatives. For the 2-D case, the diffusion 
directions include the “northern” and “southern” directions (up 
and down), as well as the western and eastern directions (left and 
right). Given the motivation and basic definition of diffusion- 
based processing, we will now define several implementations of 
anisotropic diffusion that can be applied for edge extraction. 

3 Implementation of Diffusion 

3.1 Diffusion Coefficient 
The link between edge detection and anisotropic diffusion is 
found in the edge-preserving nature of anisotropic diffusion. 
The function that impedes smoothing at the edges is the diffu- 
sion coefficient. Therefore, the selection of the diffusion coeffi- 
cient is the most critical step in performing diffusion-based edge 
detection. We will review several possible variants of the diffu- 
sion coefficient and discuss the associated positive and negative 
attributes. 
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To simplify the notation, we will denote the diffusion co- 
efficient at location x by c(x) in the continuous case. For the 
discrete-domain case, Cd (x) represents the diffusion coefficient 
for direction d at location x. Although the diffusion coefficients 
here are defined using c(x) for the continuous case, the functions 
are equivalent in the discrete-domain case O f  Cd (x). Typically c(x) 
is a nonincreasing function of I V I (x) I, the gradient magnitude 
at position x. As such, we often refer to the diffusion coefficient 
as c(lVI(x)l). For small values of IVI(x)l, c(x) tends to unity. 
As IVl(x)l increases, c(x) decreases to zero. Teboul et al. [38] 
establish three conditions for edge-preserving diffusion coef- 
ficients. These conditions are (1) limlvr(xp+o c(x) = M ,  where 
0 < M < 00; (2) l i m ~ ~ ~ ( x ~ ~ + ~  c(x) = 0; and (3) c(x) is a strictly 
decreasing function of I V I (x) I. Property 1 ensures isotropic 
smoothing in regions of similar intensity, while property 2 pre- 
serves edges. The third property is given in order to avoid nu- 
merical instability. Although most of the coefficients discussed 
here obey the first two properties, not all formulations obey the 
third property. 

In [ 301, Perona and Mal& propose 

1 
VZ(x) 2 

c(x) = 
1 + [ T I  

2 

, (9)  

as diffusion coefficients. Diffusion operations using Eqs. (9) and 
(10) have the ability to sharpen edges (backward diffusion) and 
are inexpensive to compute. However, these diffusion coefficients 
are unable to remove heavy-tailed noise and create “staircase” 
artifacts [ 39,441. See the example of smoothing using Eq. (9) on 
the noisy image in Fig. l(a), producing the result in Fig. l(b). 
In this case, the anisotropic diffusion operation leaves several 
outliers in the resultant image. A similar problem is observed in 
Fig. 2(b), using the corrupted image in Fig. 2(a) as input. You 
et al. have also shown that diffusion algorithms using Eqs. (9) 
and (10) are ill posed- a small perturbation in the data may 
cause a significant change in the final result [43]. 

The inability of anisotropic diffusion to denoise an image 
has been addressed by Catte et al. [15] and Alvarez et al. [8]. 
Their regularized diffusion operation uses a modification of the 
gradient image used to compute the diffusion coefficients. In this 
case, a Gaussian-convolved version of the image is employed in 
computing diffusion coefficients. Using the same basic form as 
Eq. (9), we have 

where S is the convolution of I and a Gaussian filter with 

FIGURE 1 Three implementations of anisotropic diffusion applied to an in- 
frared image of a tank: (a) original noisy image. (b) Results obtained using 
anisotropic diffusion with Eq. (9). (c) Results obtained using traditional modi- 
fied gradient anisotropic diffusion with Eqs. (1 1) and (12). (d) Results obtained 
using morphological anisotropic diffusion with Eqs. (1 1) and (13). 

standard deviation u: 

This method can be used to rapidly eliminate noise in the image 
as shown in Fig. l(c). The diffusion is also well posed and con- 
verges to a unique result, under certain conditions [ 151. Draw- 
backs of this diffusion coefficient implementation include the 
additional computational burden of filtering at each step and 
the introduction of a linear filter into the edge-preserving 
anisotropic diffusion approach. The loss of sharpness due to 
the linear filter is evident in Fig. 2(c). Although the noise is erad- 
icated, the edges are softened and blotching artifacts appear in 
the background of this example result. 

Another modified gradient implementation, called morpho- 
logical anisotropic diffusion, can be formed by substituting 

S = ( I o B ) . B  (13) 

into Eq. (1 l ) ,  where B is a structuring element of size m x m, 
I O  B is the morphological opening of I by B, and I . B is the 
morphological closing of I by B. In [36], the open-close and 
close-open filters were used in an alternating manner between 
iterations, thus reducing gray-scale bias of the open-close and 
close-open filters. As the result in Fig. l (d)  demonstrates, the 
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FIGURE 2 (a) Corrupted “cameraman” image (Laplacian noise, SNR = 13 dB) used as input for 
results in (b)-(e); (b) after eight iterations of anisotropic diffusion with Eq. (9), k = 25; (c) after 
eight iterations of anisotropic diffusion with Eqs. (11 )  and (12), k = 25; (d) after 75 iterations of 
anisotropic diffusion with Eq. (14), T = 6, e = 1, p = 0.5; (e) after 15 iterations of multigrid 
anisotropic diffusion with Eqs. ( 1  1) and (12), k = 6 [ 11. 
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morphological anisotropic diffusion method can be used to 
eliminate noise and insignificant features while preserving edges. 
Morphological anisotropic diffusion has the advantage of se- 
lecting feature scale (by specifying the structuring element B) 
and selecting the gradient magnitude threshold, whereas pre- 
vious anisotropic diffusions, such as with Eqs. (9) and (lo), 
only allowed selection of the gradient magnitude threshold. 
For this reason, we call anisotropic diffusion with Eqs. (11) 
and either (12) or (13) “scale aware” diffusion. Obviously, the 
need to specify feature scale is important in an edge-based 
application. 

You et al. introduce the following diffusion coefficient in [43]. 

affect fidelity to the input image, edge quality, and convergence 
properties. 

3.2 Diffusion PDE 
In addition to the basic anisotropic diffusion PDE given in 
Section 2.2, other diffusion mechanisms may be employed to 
adaptively filter an image for edge detection. Nordstrom [27] 
used an additional term to maintain fidelity to the input image, 
to avoid the selection of a stopping time, and to avoid termi- 
nation of the diffusion at a trivial solution, such as a constant 
image. This PDE is given by 

where the parameters are constrained by E > 0 and 0 e p < 1. 
Here T is a threshold on the gradient magnitude, similar to k 
in Eq. (9). This approach has the benefits of avoiding staircase 
artifacts and removing impulse noise. The main drawback is 
computational expense. As seen in Fig. 2(d), anisotropic diffu- 
sion with this diffusion coefficient succeeds in removing noise 
and retaining important features from Fig. 2(a) but requires a 
significant number of updates. 

The diffusion coefficient 

Obviously, the right-hand side Io(x) - It(x) enforces an addi- 
tional constraint that penalizes deviation from the input image. 

Just as Canny [ 13 J modified the Laplacian-of-Gaussian edge 
detection technique by detecting zero crossings of the Laplacian 
only in the direction of the gradient, a similar edge-sensitive 
approach can be taken with anisotropic diffusion. Here, the 
boundary-preserving diffusion is executed only in the direc- 
tion orthogonal to the gradient direction, whereas the standard 
anisotropic diffusion schemes impede diffusion across the edge. 
If the rate of change of intensity is set proportional to the sec- 
ond partial derivative in the direction orthogonal to the gradient 
(called T ) , we have 

This anisotropic diffusion model is called mean curvature mo- 
tion, because it induces a diffusion in which the connected com- 
ponents of the image level sets of the solution image move in 
proportion to the boundary mean curvature. Several effective 
edge-preserving diffusion methods have arisen from this frame- 
work including [ 171 and [ 291. Alvarez et al. [ 81 have used the 
mean curvature method in tandem with the diEu- 
sion coefficient of Eqs. (1 1) and (12). The result is a processing 
method that preserves the causality of edges through scale space. 
For edge-based hierarchical searches and multiscale analyses, the 
edge causality property is extremely important. 

The mean curvature method has also been given a graph the- 
oretic interpretation [37, 421. Yezzi [42] treats the image as a 
graph in W - a typical 2-D graY-scale image would be a surface 
in !X3 where the image intensity is the third Parameter, and each 
pixel is a graph node. Hence, a color image could be considered 
a surface in 915. The curvature motion of the graphs can be used 
as a model for smoothing and edge detection. For example, let a 
3-D graph S be defined by S(X) = S ( X ,  v> = [ x ,  y, y>I for 
the 2-D image I with X = ( X ,  Y).  As a Way to mean 

is used in mean curvature motion formulations of diffusion [ 331, 
shock filters [281, and in locally monotonic diffusion PI. One 
may notice that this diffusion coefficient is parameter free. 

Designing a diffusion coefficient with robust statistics, Black 
et al. [9] model anisotropic diffusion as a robust estimation pro- 
cedure that finds a piecewise smooth representation of an input 
image. A diffusion coefficient that utilizes the They’s biweight 
norm is given by 

2 

(16) 

for I V I(x) I 5 u and is 0 otherwise. Here, the parameter (T repre- 
sents scale. Where the standard anisotropic diffusion coefficient 
as in Eq. (9) continues to smooth over edges while iterating, the 
robust formulation of Eq. (16) preserves edges of a prescribed 
scale u and effectively stops diffusion. 

Here, seven important versions ofthe diffusion coefficient are 
giventhat involve tradeoffs between solution quality, solution ex- 
pense, and convergence behavior. Other research in the diffusion 
area focuses on the diffusion PDE itself. The next section reveals 

motion on this graph, the PDE is given 

(19) -- as(x) - h(x)n(x), significant modifications to the anisotropic diffusion PDE that at 
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where h(x) is the mean curvature, LOMO diffusion does not require an additional regularization 

and n(x) is the unit normal of the surface: 

For a discrete (programmable) implementation, the partial 
derivatives of I ( x ,  y) may be approximated by using simple 
differences. One-sided differences or central differences may 
be employed. For example, a one-sided difference approxima- 
tion for a I ( x ,  y ) /ax  is I ( x  + 1, y)  - I ( x ,  y). A central differ- 
ence approximation for the same partial derivative is given by 

The standard mean curvature PDE of Eq. (19) has the draw- 
back of edge movement that sacrifices edge sharpness. To remedy 
this movement, Yezzi used projected mean curvature vectors to 
perform diffusion. Let z denote the unit vector in the vertical 
(intensity) direction on the graph s. The projected mean curva- 
ture diffusion PDE can be formed by 

/zII(x + 1, y) - - 1, y>l. 1 

The PDE for updating image intensity is then 

step to process a noisy signal and uses no thresholds or ad hoc 
parameters. 

On a 1-D signal, the basic LOMO diffusion operation is de- 
fined by Eq. (6) with T’ = 2 and using the diffusion coefficient 
Eq. (15), yielding 

where a time step of A T  = 1/2 is used. Equation (24) is 
modified for the case in which the simple difference VI,(x) 
or VI2(%) is zero. Let VI,(x) +-Vi2(x) in the case of 
VIl(x)=O;V12(x) t-VII(x)whenVI2(x) = &Letthefixed 
point of Eq. (24) be defined as ld(1, hl, hz), where hl and h2 
are the sample spacings used to compute the simple differences 
VI,(x) and VI2(x), respectively. Let ldd(1) denote the LOMO 
diffusion sequence that gives a LOMO-d (or greater) signal from 
input I. For odd values of d = 2m + 1, 

ldd(1) = Id(. . .ld(ld(ld(I, m, m), m - 1, m), 
m - 1, m - 1). . . , 1, 1). (25)  

where k scales the intensity variable. When k is zero, we have 
isotropic diffusion, and when k becomes larger, we have a 
damped geometric heat equation that preserves edges but dif- 
fuses more slowly. The projected mean curvature PDE gives edge 
preservation through scale space. 

Another anisotropic diffusion technique leads to locally 
monotonic signals [ 2, 31. Unlike previous diffusion techniques 
that diverge or converge to trivial signals, locally monotonic 
(LOMO) diffusion converges rapidly to well-defined LOMO sig- 
nals of the desired degree - a signal is locally monotonic of de- 
gree d (LOMO-d) if each interval of length d is nonincreasing or 
nondecreasing. The property of local monotonicity allows both 
slow and rapid signal transitions (ramp and step edges) while 
excluding outliers due to noise. The degree oflocal monotonicity 
defines the signal scale. In contrast to other diffusion methods, 

In Eq. (25), the process commences with ld(1, m, m) and contin- 
ues with spacings of decreasing widths until ld(1, 1, 1) is imple- 
mented. For even values of d = 2m, the sequence of operations 
is similar: 

Idd(1) = Id(. . . ld(ld(ld(1, m - 1, m), m - 1, m - 1), 
m-2, m -  1) .  .., 1, 1). (26) 

For this method to be extended to two dimensions, the same 
procedure may be followed using Eq. (6) with r = 4[2]. An- 
other possibility is diffusing orthogonal to the gradient direc- 
tion at each point in the image, using the 1-D LOMO diffusion. 
Examples of 2-D LOMO diffusion and the associated edge de- 
tection results are given in Section 4. 
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3.3 Variational Formulation within the adaptive smoothing process. An edge map can be 

The diffusion PDEs discussed thus far may be considered nu- 
merical methods that attempt to minimize a cost or energy func- 
tional. Energy-based approaches to diffusion have been effective 
for edge detection and image segmentation. Morel and Solim- 
ini [25] give an excellent overview of the variational methods. 
Isotropic diffusion by means of the heat diffusion equation leads 
to a minimization of the following energy: 

E(1) = I V I ( X ) ~ ~  dx. (27) 4, 
If a diffusion process is applied to an image as in Eq. (4), the 
intermediate solutions may be considered a descent on 

E(I) = X2 I V I ( X ) ~ ~  dx+ [ I ( $  - Io(x)12 dx, (28) 4, s, 
where the regularization parameter X denotes scale [ 251. 

The energy associated with the Perona and Malik diffusion is 
Likewise, anisotropic diffusion has a variational formulation. 

n 

where C is the integral of c’(x) with respect to the independent 
variable JVI(x)I2.Here, c’(~),asafunctionofJVI(x))~,isequiv- 
dent to the diffusion coefficient c(x) as a function of IVI(x) 1, so 
c’(lVI(x)12) = c(lVI(x)l). TheNordstrom [27] diffusionPDE, 
Eq. (17), is a steepest descent on this energy functional. 

Recently, Teboul et al. have introduced a variational method 
that preserves edges and is useful for edge detection. In their 
approach, image enhancement and edge preservation are treated 
as two separate processes. The energy functional is given by 

directly extracted from the final state of e. 
This edge-preserving variational method is related to the seg- 

mentation approach of Mumford and Shah [26]. The energy 
functional to be minimized is 

(33) 

where lv d$ is the integrated length of the edges (Hausdorff 
measure), C2\Q is the set of image locations that exclude the 
edge positions, and p is additional weight parameter. The addi- 
tional edge-length term reflects the goal of computing a minimal 
edge map for a given scale X. The MumfordShah functional has 
spurred several variational image segmentation schemes, includ- 
ing PDE-based solutions [25]. 

In edge detection, thin, contiguous edges are typically desired. 
With diffusion-based edge detectors, the edges may be “thick” 
or “broken” when a gradient magnitude threshold is applied af- 
ter diffusion. The variational formulation allows the addition of 
additional constraints that promote edge thinning and connec- 
tivity. Black et a l  used two additional terms, a hysteresis term for 
improved connectivity and a nonmaximum suppression term 
for thinning [9]. A similar approach was taken in [6]. The addi- 
tional terms allow the effective extraction of spatially coherent 
outliers. This idea is also found in the design of line processes 
for regularization [ 181. 

E(1, e) = X2 4,[e(x)21VI(x)12 + k(e(x) - l)’] dx 3.4 Multiresolution Diffusion 
One drawback of diffusion-based edge detection is the compu- 
tational expense. Typically, a large number (anywhere from 20 
to 200) of iterative steps are needed to provide a high-quality 
edge map. One solution to this dilemma is the use of multireso- 
lution schemes. Two such approaches have been investigated for 
edge detection: the anisotropic diffusion and multigrid 
anisotropic diffusion. 

9(lve(x)I) dx+ 1 [I(X) - IO(x)l2 d% 
51 

(30) 

where the real-valued variable e(x) is the edge strength at x, 
and e(x) E [0, 11. In Eq. (30), the diffusion coefficient is defined 
by c(lvI(x)l) = ~’ ( lv~(x> l> /2 ( lv~(x>I ) .  An additional regu- 
larimtion Parameter is needed, and is an edge 

In the m e  of isotropic diffusion, the Gaussian pyramid has 
been used for edge detection and image segmentation [ 11, 121. 
The basic idea is that the scale generating operator (a Gaussian 
filter, for example) can be used as an anti-aliasing filter before 
sampling. Then, a set of image representations of increasing scale 

threshold parameter. 
The energy 

coupled PDEs: 
in Eq. (30) leads ‘to a system Of 

and decreasing resolution (in terms of the number of pixels) can 
be generated. This image pyramid can be used for hierarchical I0(x) - &(x) - A2div{e(x)[VIt(x)]VIt(x)}=0, (31) 

cy2 ] k2 

searches and coarse-to-fine edge detection. 
The anisotropic diffusion pyramids are born from the same 

fundamental motivation as their isotropic, linear counter- 
parts. However, with a nonlinear scale-generating operator, the 

4- - - -t -div[c(lve(x)l)ve(x)l = (32) 

The coupled PDEs have the advantage of edge preservation 
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pre-sampling operation is constrained morphologically, not by 
the traditional sampling theorem. In the nonlinear case, the 
scale-generating operator should remove image features not sup- 
ported in the subsampled domain. Therefore, morphological 
methods [24] for creating image pyramids have also been used 
in conjunction with the morphological sampling theorem [20]. 

To create level L + 1 of an anisotropic diffusion pyramid, one 
may do the following. 

1. Perform v diffusion steps on level L ,  starting with level 0, 

2. Retain 1 of S samples from each row and column. 
the original image. 

The filtering and subsampling operations are halted when the 
number of pixels in a row or column is smaller than S, or when a 
desired root level is attained. The root level represents the coarsest 
pyramid level that contains the features of interest. With the 
use of the morphological diffusion coefficient in Eq. (1 1) with 
Eq. (13), the number of diffusion steps u performed on each 
pyramid level may be prescribed in order to remove all level 
set objects that are smaller (in terms of minimum diameter or 
width) than the sampling factor interval S [ 351. 

For edge detection, one may implement coarse-to-fine edge 
detection by first detecting edges on the root level. On each de- 
scending pyramid level, causality is exploited where “children” 
can become edges only if the “parent” is an edge, in which case 
the child-parent relationship is defined through sampling. A su- 
perior method of edge detection and segmentation is achieved by 
means ofpyramid node linking [ 111. In this paradigm, each pixel 
on the original (or retinal) level is linked to a potential parent on 
the next ascending level by intensity similarity. This linking con- 
tinues for each level until the root level is reached. Then, the root 
level values are propagated back to the original image level, and 
a segmentation is achieved. Edges are defined as the boundaries 
between the associated root level values on the original image. In 
this framework, step edges are sharpened and processing costs 
are decreased [4,5]. Figure 3 provides an example of multires- 
olution anisotropic diffusion for edge detection. With the use 
of Fig. 3(a) as input, fixed-resolution anisotropic diffusion with 
Eq. (9) [see Fig. 3(b)] and pyramidal anisotropic diffusion with 
Eq . (9) [see Fig. 3(d)] are applied to form a segmented im- 
age. The fixed-resolution diffusion leads to the noisy edge map 
in Fig. 3(c) that requires thinning. Thin, contiguous contours 
that reflect the boundaries of the large scale objects are given 
in the edge map generated from the multiresolution approach 
[see Fig. 3(e)]. Another example of the edge-enhancing ability 
of the anisotropic diffusion pyramid is given in Fig. 4. The in- 
frared image of the space shuttle produces thick, poorly localized 
edges when fixed-resolution anisotropic diffusion is applied [see 
Fig. 4(b)]. The multiresolution result yields a thin, contiguous 
contour suitable for edge-based object recognition and tracking 
[see Fig. 4(c)]. 

The anisotropic diffusion pyramids are, in a way, ad hoc 
multigrid schemes. A multigrid scheme can be useful for 

diffusion-based edge detectors in two ways. First, like the 
anisotropic diffusion pyramids, the number of diffusion updates 
may be decreased. Second, the multigrid approach can be used to 
eliminate low-frequency errors. The anisotropic diffusion PDEs 
are stiff; they rapidly reduce high-frequency errors (noise, small 
details), but they slowly reduce background variations and of- 
ten create artifacts such as blotches (false regions) or staircases 
(false step edges). See Fig. 5 for an example of a staircasing 
artifact. 

To implement a multigrid anisotropic diffusion operation [ 11, 
define J as an estimate of the image I. A system of equations is 
defined by A(1) = 0 where 

which is relaxed by the discrete anisotropic diffusion PDE, in 
Eq. (6). For this system of equations, the (unknown) algebraic 
error is E = I - J, and the residual is R = - A(J) for image 
estimate J. The residual equation A(E) = R can be relaxed (dif- 
fused) in the same manner as Eq. (34), using Eq. (6) to form an 
estimate of the error. 

The first step is performing v diffusion steps on the original 
input image (level L = 0). Then, the residual equation at the 
coarser grid L + 1 is 

where $ S  represents downsampling by a factor of S. Now, resid- 
ual Eq. (35) can be relaxed using the discrete diffusion PDE, 
Eq. (6), with an initial error estimate of EL+I = 0. The new 
error estimate EL+I after relaxation can then be transferred to 
the finer grid to correct the initial image estimate J in a simple 
two-grid scheme. Or, the process of transferring the residual to 
coarser grids can be continued until a grid is reached in which 
a closed form solution is possible. Then, the error estimates are 
propagated back to the original grid. 

Additional steps may be taken to account for the nonlinearity 
of the anisotropic diffusion PDE, such as implementing a full 
approximation scheme multigrid system, or by using a global 
linearization step in combination with aNewton method to solve 
for the error iteratively [ 10, 191. 

The results of applying multigrid anisotropic diffusion are 
shown in Fig. 2(e). In just 15 updates, the multigrid anisotropic 
diffusion method was able to remove the noise from Fig. 2(b) 
while preserving the significant objects and avoiding the intro- 
duction of blotching artifacts. 

3.5 Multispectral Anisotropic Diffusion 
Color edge detection and boundary detection for multispectral 
imagery are important tasks in general imagelvideo process- 
ing, remote sensing, and biomedical image processing. Applying 
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FIGURE 3 (a) “Desktop” image corrupted with Laplacian-distributed additive noise, SNR = 
7.3 dB; (b) diffusion results using Eq. (9); (c) edges from result in (b); (d) multiresolution 
anisotropic diffusion pyramid segmentation; (e) edges from anisotropic diffusion pyramid seg- 
mentation in (d). 

anisotropic diffusion to each channel or spectral band separately 
is one possible way of processing multichannel or multispectral 
image data. However, this single-band approach forfeits the rich- 
ness of the multispectral data and provides individual edge maps 
that do not possess corresponding edges. Two solutions have 

emerged for diffusing multispectral imagery. The first, called 
vector distance dissimilarity, utilizes a function of the gradients 
from each band to compute an overall diffusion coefficient. For 
example, to compute the diffusion coefficient in the “western” 
direction on an RGB color image, the following function could 
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(a) (b) (c) 

FIGURE 4 (a) IRimage ofshuttle with crosshairs marking the position as located by the anisotropic diffusion 
pyramid. (b) Edges found in (a) by thresholding the gradient magnitude. (c) Edges found after enhancement 
by the anisotropic diffusion pyramid. 

be applied edge map in Fig. 6(e) shows improved resilience to impulse noise 

where R(x) is the red band intensity at x, G(x) is the green band, 
and B(x) is the blue band. With the use of the vector distance 
dissimilarity method, the standard diffusion coefficients such 
as Eq. (9) can be employed. This technique was used in [40] 
for shape-based processing and in [7] for processing remotely 
sensed imagery. An example of multispectral anisotropic dif- 
fusion is shown in Fig. 6. Using the noisy multispectral image 
in Fig. 6(a) as input, the vector distance dissimilarity method 
produces the smoothed result shown in Fig. 6(b), which has an 
associated image of gradient magnitude shown in Fig. 6(c). As 
can be witnessed in Fig. 6(c), an edge detector based on vector 
distance dissimilarity is sensitive to noise and does not identify 
the important image boundaries. 

The second method uses mean curvature motion and a 
multispectral gradient formula to achieve anisotropic, edge- 
preserving diffusion. The idea behind mean curvature motion, 
as discussed earlier, is to diffuse in the direction opposite to 
the gradient such that the image level set objects move with a 
rate in proportion to their mean curvature. With a gray-scale 
image, the gradient is always perpendicular to the level set ob- 
jects of the image. In the multispectral case, this quality does 
not hold. A well-motivated diffusion is defined by Sapiro and 
Ringach [ 341, using DiZenzo’s multispectral gradient formula 
[16]. In Fig. 6(d), results for multispectral anisotropic diffu- 
sion are shown for the mean curvature approach of [ 341 used in 
combination with the modified gradient approach of [ 151. The 

over the vector distance dissimilarity approach. 
The implementation issues connected with anisotropic dif- 

fusion include specification of the diffusion coefficient and 
diffusion PDE, as discussed earlier. The anisotropic diffusion 
method can be expedited through multiresolution implemen- 
tations. Furthermore, anisotropic diffusion can be extended to 
color and multispectral imagery. In the following section, we 
discuss the specific application of anisotropic diffusion to edge 
detection. 

4 Application of Anisotropic Diffusion 
to Edge Detection 

4.1 Edge Detection by Thresholding 
Once anisotropic diffusion has been applied to an image I, a 
procedure has to be defined to extract the image edges e. The 
most typical procedure is to simply define a gradient magnitude 
threshold, T ,  that defines the location of an edge: 

e(x) = 1 if IVI(x)I > T,  (37) 

and e(x) = 0 otherwise. Of course, the question becomes one of a 
selecting a proper value for T .  With typical diffusion coefficients 
such as those of Eqs. (9) and (lo), T = k is often asserted. 

(4 (b) (C) 

FIGURE 5 
anisotropic diffusion with Eq. (9) (k = 10) [ l ] .  

(a) Sigmoidal ramp edge; (b) after anisotropic diffusion with Eq. (9) (k = 10); (c) after multigrid 
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With locally monotonic diffusion, other features that appear 
in the diffused image may be used for edge detection. An ad- 
vantage of locally monotonic diffusion is that no threshold is 
required for edge detection. Locally monotonic diffusion seg- 
ments each row and column of the image into ramp segments 
and constant segments. Within this framework, we can define 
concave-down, concave-up, and ramp center edge detection pro- 
cesses. Consider an image row or column. With a concave-down 
edge detection, the ascending (increasing intensity) segments 
mark the beginning of an object and the descending (decreas- 
ing intensity) segments terminate the object. With a concave-up 
edge detection, negative-going objects (in intensity) are detected. 
The ramp center edge detection sets the boundary points at the 
centers of the ramp edges, as the name implies. When no bias 
toward bright or dark objects is inferred, a ramp center edge 
detection can be utilized. 

Figure 7 provides two examples of feature-based edge detec- 
tion using locally monotonic diffusion. The images in Fig. 7(b) 
and Fig. 7(e) are the results of applying 2-D locally monotonic 
diffusion to Fig. 7(a) and Fig. 7(d), respectively. The concave- 
up edge detection given in Fig. 7(c) reveals the boundaries of 
the blood cells. In Fig. 7(f), a ramp center edge detection is 
used to find the boundaries between the aluminum grains of 
Fig. 7(d). 

4.3 Quantitative Evaluation of Edge Detection 
by Anisotropic Diffusion 
When choosing a suitable anisotropic diffusion process for edge 
detection, one may evaluate the results qualitatively or use an 
objective measure. Three such quantitative assessment tools in- 
clude the percentage of edges correctly identified as edges, the 
percentage of false edges, and Pratt’s edge quality metric. Given 
ground truth edge information, usually with synthetic data, one 
may measure the correlation between the ideal edge map and the 
computed edge map. This correlation leads to a classification of 
“correct” edges (in which the computed edge map and ideal ver- 
sion match) and “false” edges. Another method utilizes Pratt’s 
edge quality measurement [ 3 1 ] : 

(39) 

where I A  is the number of edge pixels detected in the diffused im- 
age result, I1 is the number of edge pixels existing in the original, 
noise-free imagery, d ( i )  is the Euclidean distance between an 
edge location in the original image and the nearest detected edge, 
and a is a scaling constant, with a suggested value of 1/9 [31]. A 
“perfect” edge detection result has value F = 1 in Eq. (39). 

FIGURE 7 (a) Original ”blood cells” image; (b) 2-D LOMO-3 diffusion result; (c) boundaries from concave-up seg- 
mentation of image in (b); (d) original “aluminum grains” image; (e) 2-D LQMO-3 diffusion result; (f) boundaries from 
ramp center segmentation of image in (e). 
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FIGURE 8 Three implementations of anisotropic diffusion applied to synthetic imagery: (a) 
original image corrupted with 40% salt-and-pepper noise; (b) results obtained using original 
anisotropic diffusion with Eq. (9); (c) results obtained using modified gradient anisotropic 
diffusion with Eqs. (1 1 )  and ( 12); (d) results obtained using morphological anisotropic diffusion 
withEqs. (11)  and (13) [36]. 

An example is given here in which a synthetic image is cor- 
rupted by 40% salt-and-pepper noise (Fig. 8). Three versions of 
anisotropic diffusion are implemented on the noisy imagery us- 
ing the diffusion coefficients from Eqs. (9),  from (1 1) and (12), 
and from (1 1) and (13). The threshold of the edge detector was 
defined to be equal to the gradient threshold of the diffusion 
coefficient, T = k. The results of the numerical experiment are 
presented in Fig. 9 for several solution times. It may be seen that 
the modified gradient coefficient [Eqs. (1 1) and (12)] initially 
outperforms the other diffusion methods in the edge quality 
measurement, but it produces the poorest identification per- 
centage (because of the edge localization errors associated with 
the Gaussian filter). The morphological anisotropic diffusion 
method [Eqs. (11) and (13)] provides significant performance 
improvement, providing a 70% identification of true edges and 
a Pratt quality measurement of 0.95. 

In summary, edges may be extracted from a diffused image by 
applying a heuristically selected threshold, by using a statistically 
motivated threshold, or by identifymg features in the processed 

imagery. The success of the edge detection method can be evalu- 
ated qualitativelybyvisual inspection or quantitativelywith edge 
quality metrics. 

5 Conclusions and Future Research 

Anisotropic diffusion is an effective precursor to edge detection. 
The main benefit of anisotropic diffusion over isotropic diffusion 
and linear filtering is edge preservation. By the proper specifica- 
tion of the diffusion PDE and the diffusion coefficient, an image 
can be scaled, denoised, and simplified for boundary detection. 
For edge detection, the most critical design step is specification 
of the diffusion coefficient. The variants of the diffusion coeffi- 
cient involve tradeoffs between sensitivity to noise, the ability to 
specify scale, convergence issues, and computational cost. Differ- 
ent implementations of the anisotropic diffusion PDE result in 
improved fidelity to the original image, mean curvature motion, 
and convergence to locally monotonic signals. As the diffusion 
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FIGURE 9 Edge detector performance vs. diffusion time for the results shown in Fig. 8. In the graphs, curves (a) 
correspond to anisotropic diffusion with Eq. (9), curves (b) correspond to Eqs. (11) and (12), and curves (c) correspond 
to Eqs. (11) and (13) [36]. 

PDE may be considered a descent on an energy surface, the diffu- 
sion operation can be viewed in a variational framework. Recent 
variational solutions produce optimized edge maps and image 
segmentations in which certain edge-based features, such as edge 
length, curvature, thickness, and connectivity, can be optimized. 

The computational cost of anisotropic diffusion may be 
reduced by using multiresolution solutions, including the 
anisotropic diffusion pyramid and multigrid anisotropic diffu- 
sion. The application of edge detection to color or other multi- 
spectral imagery is possible through techniques presented in the 
literature. In general, the edge detection step after anisotropic 
diffusion of the image is straightforward. Edges may be detected 
by using a simple gradient magnitude threshold, robust statistics, 
or a feature extraction technique. 

Research in the area of PDEs and diffusion techniques for im- 
age andvideo processing continues. Important issues include the 
extension of discrete diffusion methods to multiple dimensions, 
differential morphology, and specialized hardware for PDE- 
based processing. With the edge preserving and scale-generating 
attributes, anisotropic diffusion methods have a promising fu- 
ture in application to image and video analysis tasks such as 
content-based retrieval, video tracking, and object recognition. 
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Digital systems that process image data generally involve a mix- 
ture of software and hardware. For example, digital video disc 
(DVD) players employ audio and video processors to decode 
the compressed audio and visual data, respectively, in real time. 
These processors are themselves a mixture of embedded soft- 
ware and hardware. The DVD format is based on the MPEG- 
2 video compression and AC-3 audio compression standards, 
which took several years to finalize (refer to Chapter 6.4). Before 
these standards were established, several years of research went 
into developing the necessary algorithms for audio and video 
compression. This chapter describes some of the software that is 
available for developing image and video processing algorithms. 

Once an algorithm has been developed and is ready for oper- 
ational use, it is often implemented in one of the standard com- 
piled languages such as C, C++, or Fortran for greater efficiency. 
Coding in these languages, however, can be time consuming be- 
cause the programmer must iteratively debug compile-time and 
run-time errors. This approach also requires extensive knowl- 
edge of the programming language and the operating system of 
the computer platform on which the program is to be compiled 
and run. As a result, development time can belengthy. To guaran- 
tee portability, the source code must be compiled and validated 
under different operating systems and compilers, which further 

delays development time. In addition, output from programs 
written in these standard compiled languages must often be ex- 
ported to a third-party product for visualization. 

Many available software packages can help designers shorten 
the time required to produce an operational image and video 
processing prototype. Algorithm development environments 
(Section 2) can reduce development time by eliminating the 
compilation step, providing many high-level routines, and guar- 
anteeing portability. Compiled libraries (Section 3) offer high- 
level routines to reduce the development time of compiled pro- 
grams. Source codes (Section 4) are available for entire imaging 
applications. Visualization environments (Section 5) are espe- 
cially useful when manipulating and interpreting large data sets. 
A wide variety of other software packages (Section 6) can also 
assist in the development of imaging applications. 

2 Algorithm Development Environments 

Algorithm development environments strive to provide the user 
with an interface that is much closer to mathematical nota- 
tion andvernacular than are general-purpose programminglan- 
guages. The idea is that a user should be able to write out the 
desired computational instructions in a native language that re- 
quires relatively little time to master. Also, graphical visualization 
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file-id = fopen('mandrill', 'r'); 
fsize = [512, 5121; 
[Il,count] = fread(fi1e-id, fsize, 'unsigned char'); 
Il=Il' ; 
figure, image(I1); axis off, axis square, colormap(gray(256)) 
map = 0:1/255:1; 
map = [map', map', map']; 
imwrite (11, map, 'mandrilltif f ' , ' tiff ' ) 
I2=fft2 (11); 
I2=abs (12) ; 
12=loglO (I2+1) ; 
range=max (max (12) ) -min (min (12) ) ; 
12=(255/range)*(I2-min(min(12))); 
12=fftshift (12); 
figure, image (12); axis off, axis square, colormap(gray(256) ) 
imwrite(I2, map, 'mandrillFFTtiff', 'tiff') 

(C) 

FIGURE 1 
TIFF images. 

MATLAB example: (a) image, (b) FFT, and (c) code to display images, compute the FFT, and write out the 

of the computations should be fully integrated so that the user 
does not have to leave the environment to observe the output. 
This section examines four widely used commercial packages: 
MATLAB, IDL, LabVIEW, and Khoros. For a comparison of the 
styles of specifylng algorithms in these environments, Figs. 1- 
4 show examples of computing the same image processing 
operation by using MATLAB, IDL, LabVIEW, and Khoros, 
respectively. 

2.1 MATLAB 
MATLAB software is produced by The Mathworks, Inc. and 
has its origins in the command-line interface of the LINPACK 
and EISPACK matrix libraries developed by Cleve Moler in the 
late 1970s [ 11. MATLAB interprets commands, which shortens 
programming time by eliminating compilation. The MATLAB 
programming language is a vectorized language, meaning that 
it can perform many operations on numbers grouped as vectors 
or matrices without explicit loop statements. Vectorized code is 
more compact, more efficient, and parallelizable. 

Versions 1-4 of MATLAB assumed that every variable was a 
matrix. The matrix could be a real, complex, or string data type. 
Real and complex numbers were stored in a double-precision 
floating-point format. A scalar would have been represented as a 
1 x 1 matrix of the appropriate data type. A vector is a matrix with 
either one row or one column. MATLAB 5 is also vectorized, but 
it adds signed and unsigned byte data types, which dramatically 
reduces storage in representing images. Version 5 also introduces 
other data types, such as signed and unsigned 16-bit, 32-bit, and 
64-bit integers and 32-bit single-precision floating-point num- 
bers. MATLAB 5 provides the ability to define data structures 
other than matrices and supports arrays of arbitrary dimension. 

The MATLAB algorithm development environment interprets 
programs written in the MATLAB programming language, but 
a compiler for the MATLAB language is available as an add-on 
to the basic package. When developing algorithms, it is generally 
much faster to interpret code than to compile code because the 
developer can immediately test changes. In this sense, MATLAB 
can be used to rapidly prototype an algorithm. Once the algo- 
rithm is stable, it can be compiled for faster execution, which is 
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filel = 'mandrill' 
lun = 1; 
openr, lun, filel 
pic = bytarr (512,512) 
readu, lun, pic 
close, lun 
picr = rotate (pic, 7 )  
tiff-write,'mandrilltif', pic 
window,O,xsize=512,ysize=512, title='mandrill 512x512' 
tvscl,picr, 0,O 
picrf = fft (picr, -1) 
picrfd = abs(picrf) 
picrfd = aloglO(picrfd+l.O) 
picrfd = sqrt (sqrt (sqrt (picrfd) ) ) 
range = max (picrfd) -min (picrfd) 
picrfd = ( (255/range) * (picrfd-min(picrfd) ) ) 
picrfd = shift (picrfd,256,256) 
tiff-write, 'mandrillFFTtif', picrfd 
window,l,xsize=512,ysize=512, title='fft 512x512' 
tv, picrfd, 0, 0 
return 
end 

(C) 

FIGURE 2 
images. 

IDL example: (a) image, (b) FFT, and (c) code to display images, compute the FFT, and write out the TIFF 

I 

especially important for large data sets. The MATLAB compiler 
MATCOM converts native MATLAB code into C++ code, com- 
piles the C++ code, and links it with MATLAB libraries. The 
compiled code is up to ten times faster than the interpreted code 
when run on the same machine [2]. The more vectorized the 
MATLAB program is, the smaller the speedup in the compiled 
version. Highly optimized vectorized code may not experience 
any speedup at all. 

The MATLAB algorithm development environment provides 
a command-line interface, an interpreter for the MATLAB pro- 
gramming language, an extensive set of common numerical and 
string manipulation functions, 2-D and 3-D plotting functions, 
and the ability to build custom graphical user interfaces (GUIs). 
A user-defined MATLAB function can be added by creating a 
file with a ".m" extension containing the interpreter commands. 

Alternatively, a ".m" file can serve as a stand-alone program. For 
faster computation, users may dynamically link C routines as 
MATLAB functions through the MEX utility. As an alternative 
to the command-line interface, the MATLAB environment of- 
fers a "notebook" interface that integrates text and graphics into 
a single document. 

MATLAB toolboxes are available as add-ons to the basic pack- 
age and greatly extend its capabilities by providing application- 
specific function libraries [l, 31. The Signal Processing Tool- 
box provides signal generation; finite impulse response (FIR) 
and infinite impulse response (IIR) filter design; linear sys- 
tem modeling; 1-D fast Fourier transforms (FFTs), discrete 
cosine transforms (DCTs), and Hilbert transforms; 2-D dis- 
crete Fourier transforms; statistical signal processing; and win- 
dows, spectral analysis, and time-frequency analysis. The Image 
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FIGURE 3 
TIFF images. 

LabVIEW example: (a) image, (b) FFT, and (c) code to display images, compute the FFT, and write out the 

Processing Toolbox represents an image as a matrix. It provides 
image file input/output for TIFF, JPEG, and other standard 
formats. Morphological operations, DCTs, FIR filter design in 
two dimensions, and color space manipulation and conversion 
are also provided. The Canny edge detector (refer to Chapter 
4.10) is also available through the Image Processing Toolbox 
The Wavelet Toolbox implements several wavelet families, 1-D 
and 2-D wavelet transforms, and coding of wavelet coefficients. 
Additional toolboxes with uses in imaging systems are available 
in control system design, neural networks, optimization, splines, 
and symbolic mathematics. 

MATLAB’s strength in developing signal and image process- 
ing algorithms lies in its ease of use, powerful functionality, 

and data visualization capabilities. Its programming syntax has 
similarities to C and Fortran. Because the MATLAB program- 
ming language is imperative, specifying algorithms in the MAT- 
LAB language biases the implementation toward software on 
a sequential machine. Using the SIMULINK add-on, designers 
can visually specify a system as a block diagram to expose the 
parallelism in the system. Each block is implemented as MAT- 
LAB or C code. SIMULINK is well suited for simulating and 
designing continuous, discrete, and hybrid discretelcontinuous 
control systems [ 41. SIMULINKhas advanced ordinary differen- 
tial equation solvers and supports discrete-event modeling. Be- 
cause of the run-time scheduling overhead, simulations of digital 
signal, image, and video processing systems in SIMULINK are 
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FIGURE 4 Khoros example: (a) image, (b) FFT, and (c) code to display images, compute the FFT, and write out the 
TIFF images. 

extremely slow when compared to a simulation that uses the 
MATLAB programming language. 

MATLAB runs on Windows, Macintosh, and Unix operat- 
ing systems, including DEC Ultrix, HP-UX, IBM AIX, Linux, 
SGI, and Sun Solaris. The Mathworks Web site (http:// www. 
mathworks.com) contains freely distributable MATLAB add- 
ons. The MATLAB newsgroup is comp.soft-sys.matlab. 

2.2 IDL 
The Interactive Data Language (IDL), by Research Systems, Inc., 
is based on the APL computer language [5]. IDL provides a 
computer language with built-in data visualization routines and 

predefined mathematical functions. Of the algorithm develop- 
ment environments discussed in this chapter, IDL most closely 
resembles a low-level language such as C. Even in its interactive 
mode, IDL programs must be recompiled and executed each 
time a change is made to the code. Thus the advantage of IDL is 
not ease of algorithm development so much as the provision of 
a tremendously powerful integrated data visualization package. 
IDL is probably the best environment for flexible visualization 
of very large data sets. 

Arrays are treated as a particular data type so that they may be 
operated on as single entities, reducing the need to loop through 
the array elements [5]. The basic IDL package consists of a 
command-line interface, low-level numerical and string manip- 
ulation operators (similar to C), high-level implicit functions 
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such as frequency-domain operations, and many data display 
functions. IDL Insight provides a graphical user interface. IDL 
instructions and functions are put in “.pro” files. Although IDL 
syntax may not be as familiar to C and Fortran programmers 
as MATLAB’s syntax, it offers streamlined fle access, and scalar 
variables do not have to be explicitly declared. 

IDL supports aggregate data structures in addition to 
scalars and arrays. Data types supported include %bit, 16-bit, 
32-bit, and 64-bit integers, 32-bit and 64-bit floating-point 
numbers, and string data types [ 51. Image formats supported 
include JPEG, TIFF, and GIF. Formatted I/O allows access to any 
user-defined ASCII or binary format. IDL supports arrays hav- 
ing up to eight dimensions. Many important image processing 
functions are provided, such as 2-D FFTs, wavelets, and median 
filters. IDL I/O supports MPEG video coding, but it does not 
provide an explicit DCT function. 

IDL provides dynamic linking to external C and Fortran func- 
tions, which is analogous to the MEX utililty in MATLAB. IDL, 
however, does not have an automated method for converting 
code into another language. Most often, the users that work 
with those languages and wish to access IDLs capabilities must 
write output files from their programs and then read those files 
into IDL for analysis or visualization. 

Research Systems, Inc. offers several complementary software 
packages written in IDL. Some of these can stand alone, while 
others are add-ons. Except for the Envi package, which is dis- 
cussed in Section 5 ,  these packages do not typically extend IDLs 
signal and image processing functionality. Instead, they provide 
capabilities such as database management and data sharing over 
the Internet. 

IDL runs on Windows, Macintosh, and Unix operating sys- 
tems including DEC Ultrix, HP-UX, SGI, and Sun Solaris. The 
Research Systems, Inc. Web site (http://www.rsinc.com) contains 
IDL libraries written by third parties, some of which are freely 
distributable. The IDL newsgroup is comp.lang.idl. 

2.3 LabVIEW 
LabVIEW, produced by National Instruments, is based on visual 
programming that uses block diagrams [ 61, unlike the default 
text-based interfaces for MATLAB and IDL. LabVIEW was orig- 
inally developed for simulating electronic test equipment, so 
many of its icon and name conventions reflect that legacy. For 
example, it has many specialized I/O and data-handling routines 
for serial-port standards and hardware simulations. 

LabVIEW block diagrams represent its own native language, 
called G. G maybe either interpreted or compiled. G is a dataflow 
language, which is a natural representation for data-intensive 
computation for digital signal, image, and video processing sys- 
tems [7]. 

LabVIEW is primarily an interactive environment. The basic 
interface is called a virtual instrument (VI). A VI is analogous to a 
function in a conventional programming language. Rather than 
being defined bylines oftext as a MATLAB program, a VI consists 

of a graphical user interface with a dataflow diagram represent- 
ing the source code and icon connections that allow the VI to be 
referenced by other VIS. This programming structure naturally 
lends itself to hierarchical and modular computing. Basic data 
structures available for use in the VIS are nodes, terminals, wires, 
and arrays [6]. LabVIEW supports &bit, 16-bit, 32-bit, and 64- 
bit integers and 32-bit and 64-bit floating-point numbers [ 61. 

LabVIEW has limited data visualization capabilities. The add- 
on package HiQ is required for 2-D and 3-D graphics. The Lab- 
Windows/CVI toolkit allows the user to generate C code from VIS, 
which could be linked to LabVIEW libraries. A user can add a 
code interface node function to describe the operation of a node 
in the C language. The Analysis VI toolkit contains VIS for signal 
processing, linear algebra, and statistics [6]. The toolkit sup- 
ports signal generation, frequency-domain filtering (based on 
the FFT), windowing, and statistical signal processing, in one di- 
mension. Other signal processing and image processing toolkits 
are available. The Signal Processing Suite enables time-frequency 
and wavelet analysis. The M A Q  image processing toolkit con- 
tains formats for analog video standards like PAL and NTSC. 
IMAQ also provides 2-D frequency-domain and morphological 
operations, but it does not provide other important functions 
such as the DCT. 

LabVIEWs image handling capabilities are limited compared 
to those of MATLAB and IDL. LabVIEW does not access raw bi- 
naryimage files. Images must be converted into standard formats 
such as TIFF before LabVIEW can access them. Many operations, 
such as logarithms, are not compatible with image data directly. 
Image data must first be converted into an array structure, then 
the operation is performed, and finally the array is converted 
back to an image. Also, operations on complex-valued data are 
limited. To take the absolute value of a complex-valued image, 
the user must explicitly multiply the data with its complex con- 
jugate and then take the square root of the product. 

Of the four algorithm development environments discussed 
in this section, LabVIEW would be the best suited for integration 
with hardware, especially for 1-D data acquisition. LabVIEW VIS 
can be compiled and downloaded into embedded real-time data 
acquisition systems. Neither of these capabilities, however, are 
available for imaging systems. 

LabVIEW is available for Windows, Macintosh, and UNIX op- 
erating systems (e.g., HP-UX and Sun Solaris). However, many 
of the add-on packages such as lMAQ and HiQ are not avail- 
able on UNIX platforms. The National Instruments Web site 
(http:/ /www.natinst.com) contains freely distributable add-ons 
for LabVIEW and other National Instruments software packages. 
The LabVIEW newsgroup is comp.lang.1abview. 

2.4 Khoros 

Khoros, by Khoral Research, Inc., is another visual program- 
ming environment for modeling and simulation [SI. The block 
diagrams use a mixture of data flow and control flow. Khoros 
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supports 8-bit, 16-bit, and 32-bit integer and 32-bit and 64-bit 
float data types. Khoros is written in C, and supports calls to 
external C code. Khoros can also access external C++ code. A 
variety oftoolboxes are available for Khoros that provide capabil- 
ities in I/O, data processing, datavisualization, image processing, 
matrix operations, and software rendering. 

Khoros libraries are effectively linked to the graphical cod- 
ing workspace through a flow control tool called Cantata. When 
Cantata is run, a workspace window appears with several ac- 
tion buttons and pull-down menus along its periphery. The ac- 
tion buttons allow the user to run and reset the program. The 
pull-down menus access mathematical and I/O functions, called 
“subformsl’ Once the user selects a subform and specifies the in- 
put parameters, it is converted into an icon, referred to as a 
“glyph,” and appears in the workspace. A particular glyph will 
perform a self-contained task such as generating an image or 
opening an existing file containing image data. Another glyph 
may perform a function such as a 2-D FFT. Glyphs can be written 
in C by using Khoros templates. Arrow buttons on the glyphs 
represent input and output connections. To perform an opera- 
tion such as an FFT on an image, the user connects the output 
port of the image-accessing glyph to the input port of the FFT 
operator glyph. This is the primary manner in which larger al- 
gorithms are constructed. 

The Datamanip Toolbox provides data I/O, data generation, 
trigonometric and nonlinear functions, bitwise and complex 
math, linear transforms (including FFTs), histogram and mor- 
phological operators, noise generation and processing, data clus- 
tering (data classification), and convolution. Datamanip requires 
that the Bootstrap and Dataserv toolboxes also be loaded. The 
Image Toolbox provides median filtering, 2-D frequency domain 
filtering, edge detectors, and geometric warping, but no DCT. 
Many of the matrix operations that are useful in image process- 
ing are only available in the Matrix Toolbox, and the Geometry 
Toolbox is required to provide 2-D and 3-D plotting capabil- 
ities. The Khoros Pro Software Development Kit comes bun- 
dled with most of the toolboxes relevant to signal and image 
processing. 

The Xprism Pro package runs independently of Khoros, but 
it is meant to complement the Khoros product. XPrism Pro 
uses dynamic rendering so that large data sets can be viewed 
at variable resolution. Most other environments require large 
data sets to be explicitly downsampled to enable rapid plotting. 
Other add-on toolboxes offer wavelets and formats for access- 
ing Geographic Information System (GIS) data. The strength 
of Khoros is that the user can develop complete algorithms 
very rapidly in the visual programming environment, which 
is significantly simpler than that of LabVIEW. The weakness 
is that this environment biases designs toward execution in 
software. 

Khoros allows extensive integration with MATLAB through 
its Mfile Toolbox, making MATLAB functions and programs 
available to Khoros. This toolbox is available on most, but not 
all, of the platforms on which Khoros is supported. The MAT- 

LAB programs can be treated as source code inside Khoros ob- 
jects. This toolbox includes the MATCOM compiler for con- 
verting MATLAB code to C++ code. It is based on Matrix, 
a C++ library consisting of over 500 mathematical functions. 
This in turn significantly increases the execution speed of inter- 
preted MATLAB code. It also supports type single- and double- 
precision float calculations, but not all MATLAB functionality is 
supported. 

Khoros runs on Windows and Unix (DEC Ultrix, Linux, SGI, 
and Sun Solaris) operating systems. The Khoral Research Web 
site (http://www.khoral.com) contains freely distributable add- 
ons for Khoros and other Khoral Research s o h a r e  packages. 
The Khoros newsgroup is comp.soft-sys.khoros. 

3 Compiled Libraries 

Whether users are working in an algorithm development envi- 
ronment or writing their own code, it is sometimes important to 
access mathematical functions that are written in low-level code 
for efficiency. Many libraries containing mathematical functions 
are available for this purpose. Often, a particular librarywill not 
be available in all languages or run on all operating systems. In 
general, the source code is not provided. Object files are sup- 
plied, which must be linked with the users’ programs during 
compilation. When the source code is not available, the burden 
is on the documentation to inform the users about the speed and 
accuracy of each function. 

3.1 Intel 
Intel offers several free libraries (http://developer.intel.com/ 
vtune/perflibst/) for signal processing, image processing, pat- 
tern recognition, general mathematics, and JPEG image coding 
functions. These functions have been compiled and optimized 
for a variety of Intel processors. The libraries require specific op- 
erating systems (Microsoft Windows 95,98, or NT) and C/C++ 
compilers (Intel, Microsoft, or Borland). Signal processing func- 
tions include windows, FIR filters, IIR filters, FFTs, correlation, 
wavelets, and convolution. Image processing functions include 
morphological, thresholding, and filtering operations as well as 
2-D FFTs and DCTs. 

When the Intel library routines run on a Pentium processor 
with MMX, many of the integer and fixed-point routines will 
use MMX instructions [ 9 ] .  MMX instructions compute integer 
and fixed-point arithmetic by applying the same operation on 
eight 8-bit words or four 16-bit words in parallel. In MMX, eight 
8-bit additions, four 16-bit additions, or four 16-bit multiplica- 
tions may be performed in parallel. Switching back and forth 
to the MMX instruction set incurs a 30-cycle penalty The use 
of MMX generally reduces the accuracy of answers, primarily 
because Pentium processors do not have extended precision ac- 
cumulation. Furthermore, many of the library functions make 
hidden function calls which reduces efficiency. When using the 
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Intel libraries on Pentium processors with MMX, the speedup 
for signal and image processing applications varies between 1.5 
and 2.0, whereas the speedup for graphics applications varies 
from4to6 [IO]. 

3.2 IMSL 
Other math libraries that are not specialized for signal and 
image processing applications may contain useful functions 
such as FFTs and median filters. The most prevalent is the 
family of IMSL libraries provided by Visual Numerics, Inc. 
(http://www.vni.com/). These libraries support Fortran, C, and 
Java languages. These libraries are very general. As a result, over 
65 computer platforms are supported. 

4 Source Code 

Source codes for many mathematical functions and image pro- 
cessing applications are available. This section describes two sets 
of available source code besides those that come with the algo- 
rithm development environments listed in Section 2. 

4.1 Numerical Recipes 
Numerical Recipes by the Numerical Recipes Software Com- 
pany (http://www.nr.com) provides source code in Fortran and 
C languages for a wide variety of mathematical functions. As 
long as users have a Fortran or C compiler on their machine, 
these programs can be run on any computer platform. It is the 
users’ responsibility to write the proper I/O commands so that 
their programs can access the desired data. The tradeoff for this 
generality is the lack of optimization for any particular machine 
and the resulting lack of efficiency. The algorithms are not tai- 
lored for signal and image processing applications, but some 
common functions supported are 1-D and 2-D FFTs, wavelets, 
DCTs, Huffman encoding, and numerical linear algebra 
routines. 

4.2 Encoding Standards 
Information regarding the International Standards Organiza- 
tion (ISO) image coding standard developed by the Joint Pho- 
tographic Experts Group (JPEG) is available at the Web site 
http://www.jpeg.org/. Links to the C source code for the JPEG 
encoding and decoding algorithms can be found at that Web 
site. Information regarding the IS0  encoding standards for 
audiolvideo developed by the Moving Picture Experts Group 
(MPEG) is available at the Web site http://www.mpeg.orgl. Links 
are available to the source code for the encoding and decoding 
algorithms. These programs can be used in conjunction with the 
algorithm development packages mentioned previously, or with 
low-level languages. 

5 Specialized Processing 
and Visualization Environments 

In addition to the general purpose algorithm development envi- 
ronments discussed earlier, many packages exist that are highly 
specialized for processing and visualizing large data sets. Some of 
these support user-written programs in limited native languages, 
but most of their functionality consists ofpredefined operations. 
The user can specify some parameters for these functions but typ- 
ically cannot access the source code. Generally, these packages 
are specialized for certain applications, such as remote sensing, 
seismic analysis, and medical imaging. We examine packages 
that are specialized for remote sensing applications as examples. 

Remote sensing data typically comprise electromagnetic 
(sometimes acoustic) energy that has been modulated through 
interaction with objects. The data are often collected by a sensor 
mounted on a moving platform, such as an airplane or satellite. 
The motivation for collecting remotely sensed data is to acquire 
information over large areas not accessible by means of in situ 
methods. This method of acquiring data results in very large 
data sets. When imagery is collected at more than one wave- 
length, there may be several channels of data per imaged scene. 
Remote sensing software packages must handle data sets of 1 Gb 
and larger. Although a multichannel image constitutes a mul- 
tidimensional data set, these packages usually only display the 
data as images. These packages generally have very limited 2-D 
and 3-D graphics capabilities. They do, however, contain many 
specialized display and IIO routines for common remote sens- 
ing formats that other types of software do not have. They have 
many of the common image processing functions such as 2-D 
FFTs, median filtering, and edge detection. They are not very 
useful for generalized data analysis or algorithm development, 
but they can be ideal for processing data for interpretation with- 
out requiring the user to learn any programming languages or 
mathematical algorithms. 

In addition to some of the common image processing func- 
tions, these packages offer functions particularly useful for re- 
mote sensing. In remote sensing, images of a given area are often 
acquired at different times, from different locations, and by dif- 
ferent sensors. To facilitate an integrated analysis of the scene, the 
data sets must be coregistered so that a particular sample (pixel) 
will correspond to the same physical location in all of the chan- 
nels. This is accomplished when control points are chosen in the 
different images that correspond to the same physical locations. 
Then 2-D polynomial warping functions or spline functions are 
created to resample the child images to the parent image. These 
packages contain the functions for coregistering so that the user 
does not need to be familiar with the underlying algorithms. 

Another major class of functions that these packages contain 
is classification or pattern recognition. These algorithms can be 
either statistically based, neural-network based, or fuzzy-logic 
based. Classifying remote sensing imagery into homogeneous 
groups is very important for quantitatively assessing land cover 
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types and monitoring environmental changes, such as deforesta- 
tion and erosion. 

When users have large remotely sensed data sets in sensor- 
specific formats and need to perform advanced operations on 
them, working with these packages will be quicker and easier 
than working with the algorithm development packages. Several 
remote sensing packages are available. We will discuss two of 
the most widely used and powerful packages: PCI and Envi. 
Other popular packages include ERDAS, ERMapper, PV-Wave, 
Raytheon, and ESRI. 

5.1 PCI 
PCI software, by the PCI company, is a geomatics software 
package. It supports imagery, GIS data, and many orthoprojec- 
tion tools [ 111. PCI supports many geographic and topographic 
formats such as Universal Transverse Mercator, and it can project 
the image data onto these non-uniform grids so that they match 
true physical locations. 

Both command line and graphical interfaces are used depend- 
ing on the operations to be performed. Low-level I/O routines 
make it easy to import and export data between PCI and other 
software packages in either ASCII or binary format. PCI provides 
a limited native language so that some user-defined operations 
can be performed without having to leave the PCI environment. 
PCI functions can be accessed by programs in other languages, 
such as C,  by linking commands. 

Most common image formats, such as JPEG and TIFF, are sup- 
ported, as well as formats for particular sensors. Image files can 
have up to 1024 channels. Data represented by the image pix- 
els are referred to as raster data. Raster data types supported 
include 8-bit and 16-bit (signed and unsigned) integers and 
32-bit floating-point numbers. In addition to raster data, PCI 
also supports vector data. PCI vectors are collections of ordered 
pairs (vertices) corresponding tolocations on the image. Thevec- 
tors define piecewise linear paths that can be used to delineate 
exact boundaries among regions in the image. These lines are in- 
dependent of the pixel size because they are defined by the math- 
ematical lines between vertices. Vectors can be used to draw pre- 
cise elevation contours and road networks on top of the imagery. 

PCI can display images in a specialized 3-D perspective view, 
in which the gray levels of a particular channel correspond to 
heights. This format is useful for displaying topographic data. 
PCI also supports “fly throughs” in this perspective, allowing the 
user to scan over the data from different vantage points. PCI has 
a complete set of coregistering and mosaicking functions, and 
standard image filtering and FFT routines. PCI also includes its 
own drivers for accessing magnetic tape drives for reading data. 
Some applications for which PCI is well suited include watershed 
hydrological analysis, flight simulation, and land cover classifi- 
cation. 

PCI is available on Windows, Macintosh, and Unix operating 
systems including DEC Utlrix, HP-UX, SGI, and Sun Solaris. 

The Web site (http:l/www.pci.on.cal) contains demonstration 
and image-handling freeware, as well as a subscriber discussion 
list, discussrequest@pci.on.ca. 

5.2 Envi 
The Environment for Visualizing Images (Envi), by Research 
Systems, Inc., is written in IDL. It is not necessary to acquire 
IDL separately to run Envi, because a basic IDL engine comes 
bundled with Envi. Envi has a menu-driven graphical user in- 
terface. Although batch operations are possible, it is best suited 
for interactive work. 

Envi supports many of the same features and capabilities as 
PCI. PCI has more classification capability and more options for 
orthoprojection and hydrological analysis of the data. Envi has 
more user-friendly access to its functions and more up-to-date 
formatting for some sensors. Envi can also be easily integrated 
with external IDL code. Envi is accessible through the same Web 
site as IDL. 

6 Other Software 

Many other software tools are used in image and video pro- 
cessing. For image display, editing, and conversion, X win- 
dows tools xv and ImageMagick are often used. The xv 
program by John Bradley at the University of Pennsylvania 
(ftp://www.cis.upenn.edu/pub/xv/) is shareware. ImageMagick 
by John Cristy at E.I. du Pont de Nemours and Company, Inc. 
(http://www.wizards.dupont.com/cristy/) is freely distributable. 
ImageMagick can also compose images, and create and animate 
video sequences. Both tools run on Windows NT and Unix op- 
erating systems under X windows. 

Symbolic mathematics environments are useful for deriving 
algebraic relationships and computing transformations alge- 
braically, such as Fourier, Laplace, and z transforms. These en- 
vironments include Mathematica [ 121 from Wolfram Research, 
Inc. (http://www.wolfram.com) and Maple [ 131 from Water- 
loo Maple Software (http://www.maplesoft.com). Mathematica 
has the following application packs related to signal and image 
processing: Signals and Systems, Wavelet, Global Optimization, 
Time Series, and Dynamic Visualizer. Commercial application 
packs are not available for Maple. A variety of notebooks on 
engineering and scientific applications are available on the Web 
site, but none of the Maple notebooks relates to signal or image 
processing. Maple is accessible in MATLAB through its symbolic 
toolbox. Mathematica and Maple run on Windows, Macintosh, 
and Unix operating systems. The newsgroup for symbolic math- 
ematics environments is sci.math.symbolic. The Mathematica 
newsgroup is comp.soft-sys.math.mathematica. 

System-level design tools, such as SPW by Cadence (http:// 
www.cadence.com), COSSAP by Synopsys (http://www. 
synopsys.com), DFL by Mentor graphics (http://www. men- 
tor.com), ADS by HP EEsof (http://www.tmo.hp.codtmo/ 
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hpeesof/), and Ptolemy by the University of California at Berke- 
ley (http://ptolemy.eecs.berkeley.edu), are excellent at simulat- 
ing and synthesizing 1-D signal processing systems. Using these 
tools, designers can specify a system using a mixture of graph- 
ical block diagrams and textual representations. The specifica- 
tion may be efficiently simulated or synthesized into software, 
hardware, or a mixture of hardware and software. These system- 
level design tools provide many basic image and video process- 
ing blocks for simulation. For example, Ptolemy provides im- 
age file I/O, median filtering, 2-D FIR filtering, 2-D FFTs, 2- 
D DCTs, motion vector computation, and matrix operations. 
These system-level design tools also provide an interface to 
MATLAB in which a block in a block diagram can represent 
a MATLAB function or script. These system-level design tools, 
however, currently have limited but evolving support for synthe- 
sizing image and video processing systems into hardware andlor 
software. 

7 Conclusion 

For image and video processing, we have examined algorithm de- 
velopment environments, function libraries, source code repos- 
itories, and specialized data processing packages. Algorithm de- 
velopment environments are useful when a user needs flexible 
and powerful coding capabilities for rapid prototyping of al- 
gorithms. Each of the four algorithm environments discussed 
provides much of the functionality needed for image processing 
and some of the functionality for video processing. When a user 
wants to code an algorithm in a compiled language for speed, 
then function libraries become extremely useful. A wide variety 
of source code upon which to draw exists as part of algorithm de- 
velopment environments and source code repositories. If there 
is no need to understand the underlying algorithms, but there 
is a need to perform specialized analysis of data, then the data 

interpretation and visualization packages should be used. We 
also surveyed a variety of other tools for small tasks. Electronic 
design automation tools for image and video processing systems 
are evolving. 

References 
[ 11 TheMATLAB 5 User’s Guide (Mathworks Inc., Natick, MA, 1997). 
[2] “MATLAB compiler speeds up development,” MATLAB News 

Notes, Winter 1996. 
[3] R. Pratap, Gettingstartedwith W L A B  5:A Quick Introduction for 

Scientists and Engineers (Oxford U. Press, New York, 1999), ISBN 

[4] The SIMULINK User’s Manual (Mathworks Inc., Natick, MA, 
1997). 

[5] The IDL User’s Manual (Research Systems, Inc., Boulder, CO, 
1995). 

[6]  The LabVIEW User’s Manual (National Instruments, Austin, TX, 
1998). 

[ 71 H. Andrade and S. Kovner, “Software synthesis from dataflow mod- 
els for embedded software design in the G programming language 
and the LabVIEW development environment,” presented at  the 
IEEE Asilomar Conference on Signals, Systems, and Computers, 
Pacific Grove, CA, November 1998. 

[8] The Khoros User’s Manual (Khoral Research, Inc., Albuquerque, 
NM, 1997). 

[9] Intel Architecture Software Developer’s Manual, Volume I: Basic 
Architecture (Intel Corp., http://developer.intel.com/design/Pent- 
iumII/manuals/243 190.htm). 

[ 101 R. Bhargava, R. Radhakrishnan, B. L. Evans, and L. K. John, “Evalu- 
ating MMX Technology Using DSP and Multimedia Applications,” 
presented at the IEEE International Symposium on Microarchitec- 
ture Dallas, TX, Nov. 30-Dec. 2, 1998. 

0-19-5 12947-4. 

[ I  11 ThePCI User’s Manual (PCI, Inc., Ontario, Canada, 1994). 
[ 121 S. Wolfram, TheMathematica Book, 3rd ed. (Wolfram Media Inc., 

[ 131 K. M. Heal, M. Hansen, and K. Rickard, Maple VLearning Guide 
Champaign, IL, 1996). 

for Release 5 (Springer Verlag, 1997). 



V 
image Lompression 

5.1 Lossless Coding Lina J. Karam.. ...................................................................................... 461 
Introduction Basics of Lossless Image Coding Lossless Symbol Coding Lossless Coding Standards Other Developments 
in Lossless Coding References 

Introduction and Historical Overview Basics of BTC Moment Preserving Quantization Variations and Applications 
of BTC Conclusions Acknowledgments References 

Introduction Theory of Vector Quantization Design of Vector Quantizers VQ Implementations Structured VQ 
Variable-Rate Vector Quantization Closing Remarks References 

What Are Wavelets: Why Are They Good for Image Coding? The Compression Problem The Transform Coding 
Paradigm Subband Coding: The Early Days New and More Efficient Class of Wavelet Coders Adaptive Wavelet 
Transforms: Wavelet Packets Conclusion References 

5.2 Block Tmcation Coding Edward J. Delp, Martha Saenz, and Paul Salama ................................... 475 

5.3 Fundamentals of Vector Quantization Mohammad A. Khan and Mark J. 'I: Smith.. ........................ 485 

5.4 Wavelet Image Compression Zixiang Xiong and Kannan Ramchandran ....................................... 495 

5.5 The JPEG Lossy Image Compression Standard Rashid Ansari and Nasir Memon ............................ 5 13 
Introduction Lossy JPEG Codec Structure Discrete Cosine Transform Quantization Coefficient-to-Symbol 
Mapping and Coding Image Data Format and Components Alternative Modes of Operation JPEG Part 3 Additional 
Information References 

5.6 The JPEG Lossless Image Compression Standards Nasir Memon and Rashid Ansari.. ...................... 527 
Introduction The Original JPEG Lossless Standards PEG-LS-The New Lossless Standard The Future: JPEG 2000 
and the Integration of Lossless and Lossy Compression Additional Information References 

Introduction Lossy Compression Lossless Compression Conclusion References 
5.7 Multispectral Image Coding Daniel Tretter, Nasir Memon, and Charles A. Bouman.. ....................... 539 





Lossless Coding 

Lina J. Karam 
Arizona State University 

1 Introduction 

Introduction.. ................................................................................. 46 1 
Basics of Lossless Image Coding ............................................................ 462 
2.1 Transformation 2.2 Data-to-Symbol Mapping 2.3 Lossless Symbol Coding 
Lossless Symbol Coding ..................................................................... 464 
3.1 Basic Concepts from Information Theory 3.2 Huffman Coding 3.3 Arithmetic 
Coding 3.4 Lempel-Ziv Coding 
Lossless Coding Standards ................................................................... 471 
4.1. JBIG Standard 4.2 Lossless JPEG Standard 
Other Developments in Lossless Coding .................................................. 471 
5.1 CALK 5.2 Perceptually Lossless Image Coding 
References ...................................................................................... 474 

The goal of lossless image compression is to represent an image 
signal with the smallest possible number of bits without loss of 
any information, thereby speeding up transmission and mini- 
mizing storage requirements. The number of bits representing 
the signal is typically expressed as an average bit rate (average 
number of bits per sample for still images, and average number 
of bits per second for video). The goal of lossy compression is 
to achieve the best possible fidelity given an available communi- 
cation or storage bit-rate capacity, or to minimize the number 
of bits representing the image signal subject to some allowable 
loss of information. In this way, a much greater reduction in bit 
rate can be attained as compared to lossless compression, which 
is necessary for enabling many real-time applications involving 
the handling and transmission of audiovisual information. The 
function of compression is often referred to as coding, for short. 

Coding techniques are crucial for the effective transmission 
or storage of data-intensive visual information. In fact, a single 
uncompressed color image or video frame with a medium reso- 
lution of 500 x 500 pixels would require 100 s for transmission 
over an ISDN (Integrated Services Digital Network) link having 
a capacity of 64,000 bit& (64 Kbps). The resulting delay is intol- 
erably large, considering that a delay as small as 1-2 s is needed 
to conduct an interactive “slide show,” and a much smaller de- 
lay (of the order of 0.1 s) is required for video transmission or 
playback. Although a CD-ROM device has a storage capacity of 
few gigabits, its net throughput is only -1.5 Mbps. As a result, 

compression is essential for the storage and real-time transmis- 
sion of digital audiovisual information, where large amounts of 
data must be handled by devices having a limited bandwidth and 
storage capacity. 

Lossless compression is possible because, in general, there is 
significant redundancy present in image signals. This redun- 
dancy is proportional to the amount of correlation among the 
image data samples. For example, in a natural still image, there 
is usually a high degree of spatial correlation among neighbor- 
ing image samples. Also, for video, there is additional temporal 
correlation among samples in successive video frames. In color 
images and multispectral imagery (Chapter 4.6), there is correla- 
tion, known as spectral correlation, between the image samples 
in the different spectral components. 

In lossless coding, the decoded image data should be identical 
both quantitatively (numerically) and qualitatively (visually) to 
the original encoded image. Although this requirement preserves 
exactly the accuracy of representation, it often severely limits the 
amount of compression that can be achieved to a compression 
factor of 2 or 3. In order to achieve higher compression fac- 
tors, perceptually lossless coding methods attempt to remove 
redundant as well as perceptually irrelevant information; these 
methods require that the encoded and decoded images be only 
visually, and not necessarily numerically, identical. So, in this 
case, some loss of information is allowed as long as the recov- 
ered image is perceived to be identical to the original one. 

Although a higher reduction in bit rate can be achieved 
with lossy compression, there exist several applications that 
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FIGURE 1 General lossless coding system: (a) encoder, (b) decoder. 

require lossless coding, such as the compression of digital medi- 
cal imagery and facsimile transmissions of bitonal images. These 
applications triggered the development of several standards 
for lossless compression, including the lossless JPEG standard 
(Chapter 5.6), facsimile compression standards and the JBIG 
compression standard. Furthermore, lossy coding schemes make 
use of lossless coding components to minimize the redundancy 
in the signal being compressed. 

This chapter introduces the basics of lossless image coding and 
presents classical as well as some more recently developed Ioss- 
less compression methods. This chapter is organized as follows. 
Section 2 introduces basic concepts in lossless image coding. 
Section 3 reviews concepts from information theory and presents 
classical lossless compression schemes including Huffman, arith- 
metic, and Lempel-Ziv-Welchcodes. Standards for lossless com- 
pression are presented in Section 4. Section 5 introduces more 
recently developed lossless compression schemes and presents 
basics of perceptually lossless image coding. 

2 Basics of Lossless Image Coding 

The block diagram of a lossless coding system is shown in Fig. 1. 
The encoder, Fig. l(a), takes as input an image and generates as 
output a compressed bit stream. The decoder, Fig. l(b), takes 
as input the compressed bit stream and recovers the original 
uncompressed image. In general, the encoder and decoder can 
be each viewed as consisting of three main stages. In this section, 
only the main elements of the encoder will be discussed since 
the decoder performs the inverse operations of the encoder. As 
shown in Fig. 1 (a), the operations of a lossless image encoder can 
be grouped into three stages: transformation, data-to-symbol 
mapping, and lossless symbol coding. 

2.1 Transformation 
This stage applies areversible (one-to-one) transformation to the 
input image data. The purpose of this stage is to convert the input 
image data f(n) into a form f(n) that can be compressed more 
efficiently. For this purpose, the selected transformation can aid 
in reducing the data correlation (interdependency, redundancy), 
alter the data statistical distribution, andlor pack a large amount 
of information into few data samples or subband regions. 

Typical transformations include differential or predictive map- 
ping (Chapter 5.6), unitary transforms such as the discrete cosine 
transform (DCT) (Chapter 5.5), subband decompositions such 
as wavelet transforms (Chapters 4.2 and 5.4), and color space 
conversions such as conversion from the highly correlated RGB 
representation to the less correlated luminance-chrominance 
representation. A combination of these transforms can be used at 
this stage. For example, an RGB color image can be transformed 
to its luminance-chrominance representation followed by DCT 
or subband decomposition followed by predictive-differential 
mapping. In some applications (e.g., low power), it might be de- 
sirable to operate directly on the original data without incurring 
the additional cost of applying a transformation; in this case, the 
transformation could be set to the identity mapping. 

2.2 Data-to-Symbol Mapping 
This stage converts the image data f(n) into entities called 5ym- 
bok; that can be efficiently coded by the final stage. The con- 
version into symbols can be done through partitioning or run- 
length coding (RLC), for example. 

The image data can be partitioned into blocks by grouping 
neighboring data samples together; in this case, each data block 
is a symbol. Grouping several data units together allows the ex- 
ploitation of any correlation that might be present between the 
image data, and may result in higher compression ratios at the 
expense of increasing the coding complexity. In contrast, each 
separate data unit can be taken to be a symbol without any fur- 
ther grouping or partitioning. 

The basic idea behind RLC is to map a sequence of numbers 
into a sequence of symbol pairs (run, value), where value is the 
value of a data sample in the input data sequence and run or run 
length is the number of times that data sample is contiguously 
repeated. In this case, each pair (run, value) is a symbol. An 
example illustrating RLC for a binary sequence is shown in Fig. 2. 
Different implementations might use a slightly different format. 
For example, if the input data sequence has long runs of zeros, 
some coders such as the JPEG standard (Chapters 5.5 and 5.6), 

FIGURE 2 Illustration of U C  for a binary input sequence. 
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use value to code only the value of the nonzero data samples and 
Tun to code the number of zeros preceding each nonzero data 
sample. 

Appropriate mapping of the input data into symbols is very 
important for optimizing the coding. For example, grouping 
data points into small localized sets, where each set is coded 
separately as a symbol, allows the coding scheme to adapt to 
the changing local characteristics of the (transformed) image 
data. The appropriate data-to-symbol mapping depends on the 
considered application and the limitations in hardwarelsoftware 
complexity. 

2.3 Lossless Symbol Coding 
This stage generates a binary bitstream by assigning binary code- 
words to the input symbols. Lossless symbol coding, is com- 
monly referred to as noiseless coding or just lossless coding, 
since this stage is where the actual lossless coding into the fi- 
nal compressed bitstream is performed. The first two stages can 
be regarded as preprocessing stages for mapping the data into a 
form that can be more efficiently coded by this lossless coding 
stage. 

Lossless compression is usually achieved by using variable- 
length codewords, where the shorter codewords are assigned to 
the symbols that occur more frequently. This variable-length 
codeword assignment is known as variable-length coding (VLC) 
and also as entropy coding. Entropy coders, such as Huffman and 
arithmetic coders, attempt to minimize the average bit rate (av- 
erage number of bits per symbol) needed to represent a sequence 
of symbols, based on the probability of symbol occurrence. En- 
tropy coding will be discussed in more detail in Section 3. An 
alternative way to achieve compression is to code variable-length 
strings of symbols using fixed-length binary codewords. This is 
the basic strategy behind dictionary (Lempel-Ziv) codes, which 
are also described in Section 3. 

The generated lossless code (bitstream) should be uniquely 
decodable; i.e., the bitstream can be decoded without ambiguity 
resulting in only one unique sequence of symbols (the original 
one). For VLC, unique decodability is achieved by imposing a 
prefix condition that states that no codeword can be a prefix 
of another codeword. Codes that satisfy the prefix condition 
are called prefix codes or instantaneously decodable codes, and 
they include Huffman and arithmetic codes. Binary prefix codes 
can be represented as a binary tree, and are also called tree- 
structured codes. For dictionary codes, unique decodabfity can 
be easily achieved since the generated codewords are of fixed 
length. 

Selecting which lossless coding method to use depends on 
the application and usually involves a tradeoff between sev- 
eral factors, including the implementation hardware or soft- 
ware, the allowable coding delay, and the required compres- 
sion level. Some of the factors that have to be considered when 
choosing or devising a lossless compression scheme are listed as 
follows. 

1. Compression efficiency: Compression efficiency is usually 
given in the form of a compression ratio, CR: 

Total size in bits of original input image 
Total size in bits of compressed bitstream 

CR = 

Total size in bits of encoder input 
Total size in bits of encoder output’ (1) - - 

which compares the size of the original input image data 
with the size of the generated compressed bitstream. Com- 
pression efficiency is also commonly expressed as an aver- 
age bit rate, B,  in bits per pixel, or bpp for short: 

Total size in bits of compressed bitstream 
Total number of pixels in original input image 
Total size in bits of encoder output 
Total size in pixels of encoder input’ 

B =  

( 2 )  - - 

As discussed in Section 3, for lossless coding, the achievable 
compression efficiency is bounded by the entropy of the 
finite set of symbols generated as the output of Stage 2,  
assuming these symbols are each coded separately, on a 
one-by-one basis, by Stage 3. 

2. Coding delay: The coding delay can be defined as the min- 
imum time required to both encode and decode an input 
data sample. The coding delay increases with the total 
number of required arithmetic operations. It also usu- 
ally increases with an increase in memory requirements 
since memory usage usually leads to communication de- 
lays. Minimizing the coding delay is especially important 
for real-time applications. 

3. Implementation complexity: Implementation complexity 
is measured in terms of the total number of required arith- 
metic operations and in terms of the memory require- 
ments. Alternatively, implementation complexity can be 
measured in terms of the required number of arithmetic 
operations per second and the memory requirements for 
achieving a given coding delay or real-time performance. 
For applications that put a limit on power consumption, 
the implementation complexity would also include a mea- 
sure of the level of power consumption. Higher compres- 
sion efficiency can usually be achieved by increasing the 
implementation complexity, which would in turn lead to 
an increase in the coding delay. In practice, it is desir- 
able to optimize the compression efficiency while keep- 
ing the implementation requirements as simple as pos- 
sible. For some applications such as database browsing 
and retrieval, only a low decoding complexity is needed 
since the encoding is not performed as frequently as the 
decoding. 

4. Robustness: For applications that require transmission of 
the compressed bitstream in error-prone environments, 
robustness of the coding method to transmission errors 
becomes an important consideration. 



464 Handbook of Image and Video Processing 

5. Scalability: Scalable encoders generates a layered bitstream 
embedding a hierarchical representation of the input im- 
age data. In this way, the input data can be recovered at 
different resolutions in a hierarchical manner (scalability 
in resolution), and the bit rate can be varied depending on 
the available resources using the same encoded bitstream 
(scalability in bit rate; the encoding does not have to be 
repeated to generate the different bit rates). 

3 Lossless Symbol Coding 

As mentioned in Section 2, lossless symbol coding is commonly 
referred to as lossless coding or lossless compression. The pop- 
ular lossless symbol coding schemes fall into one of the follow- 
ing main categories: statistical schemes and dictionary-based 
schemes. 

Statistical schemes (Huffinan, Arithmetic) require knowledge 
ofthe source symbol probability distribution; shorter codewords 
are assigned to the symbols with higher probability of occurrence 
(VLC); a statistical source model (also called probability model) 
gives the symbol probabilities; the statistical source model can 
be fixed, in which case the symbol probabilities are fixed, or 
adaptive, in which case the symbol probabilities are calculated 
adaptively; sophisticated source models can provide more accu- 
rate modeling of the source statistics and, thus, achieve higher 
compression at the expense of an increase in complexity. 

Dictionary-based schemes (Lempel-Ziv) do not require 
a priori knowledge of the source symbol probability distribu- 
tion; they dynamically construct encoding and decoding tables 
(called dictionary) of variable-length symbol strings as they oc- 
cur in the input data; as the encoding table is constructed, fixed- 
length binary codewords are generated by indexing into the en- 
coding table. 

Both the statistical and dictionary-based codes attempt to 
minimize the average bit rate without incurring any loss in fi- 
delity. The field of information theory gives lower bounds on the 
achievable bit rates. This section presents the popular classical 
lossless symbol coding schemes, including Huffman, arithmetic, 
and Lempel-Ziv coding. In order to gain an insight into how the 
bit rate minimization is done by these different lossless coding 
schemes, some important basic concepts from information the- 
ory are reviewed first. 

3.1 Basic Concepts from Information Theory 
Information theory makes heavy use of probability theory since 
information is related to the degree of unpredictability and ran- 
domness in the generated messages. In here, the generated mes- 
sages are the symbols output by Stage 2 (Section 2). 

An information source is characterized by the set of sym- 
bols S it is capable of generating and the probability of occur- 
rence of these symbols. For the considered lossless image coding 
application, the information source is a discrete-time discrete- 

amplitude source with a finite set of unique symbols; i.e., S 
consists of a finite number of symbols and is commonly called 
the source alphabet. 

Let S consist of N symbols: 

Then the information source outputs a sequence of symbols 
{ X I ,  x2, x3, . . . , xi, . . .} drawn from the set of symbols S, where 
x1 is the first output source sample, x2 is the second output 
sample, and xi is the ith output sample from S. At any given 
time (given by the output sequence index), the probability that 
thesourceoutputssymbolskispk = P(sk),O 5 k 5 N-l.Note 
that EL, p k  = 1 since it is certain that the source outputs only 
symbols from its alphabet S. The source is said to be stationary 
if its statistics (set of probabilities) do not change with time. 
Theinformationassociatedwithasymbd sk  (0 5 k p N- l), 

also called self-information, is defined as: 

From Eq. (4), it can be seen that I k  = 0 if p k  = 1 (certain event) 
and Ik + 00 if P k  = 0 (impossible event). Also, Ik is large when 
P k  is small (unlikely symbols), as expected. 

The information content of the source can be measured by 
using the source entropy H( S), which is a measure of the average 
amount of information per symbol. The source entropy H( S), 
also known as first-order entropy or marginal entropy, is defined 
as the expected value of the self-information and is given by 

Note that H( S) is maximal if the symbols in S are equiprobable 
(flat probability distribution), in which case H (  S) = log, (N) 
bits per symbol. A skewed probability distribution results in a 
smaller source entropy. 

In case of memoryless coding, each source symbol is coded 
separately. For a given lossless code C, let l k  denote the length 
(number of bits) of the codeword assigned to code symbol Sk 

(0 5 k p N - 1). Then, the resulting average bit rate Bc corre- 
sponding to code C is 

N- 1 

(6 )  Bc = p k  l k  (bits per symbol). 
k=O 

For any uniquely decodable lossless code C, the entropy H ( S )  
is a lower bound on the average bit rate Bc [ 11 : 

So, H ( S )  puts a limit on the achievable average bit rate given 
that each symbol is coded separately in a memoryless fashion. 
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In addition, a uniquely decodable prefix code C can always be 
constructed (e.g., Huffman coding, Section 3.2) such that 

An important result that can be used in constructing prefix codes 
is the Kraft inequality, 

N-1 

2 4  5 1. (9) 
k=O 

Every uniquely decodable code has codewords with lengths sat- 
isfying Kraft inequality (9), and prefix codes can be constructed 
with any set of lengths satisfying inequality (9) [2]. 

Higher compression can be achieved by coding a block (sub- 
sequence, vector) of M successive symbols jointly. The coding 
can be done as in the case of memoryless coding by regarding 
each block of M symbols as one compound symbol s(w, drawn 
from the alphabet 

S(W = S x S x . . . x s, (10) v 
M times 

where x in Eq. (10) denotes a Cartesian product, and the super- 
script ( M )  denotes the size of each compound block of symbols. 
Therefore, S ( M )  is the set of all possible compound symbols of 
the form [ X I ,  x2, . . . , XM] where xi E S, 1 f i f M. Since S 
consists of N symbols, S(M will contain L = N M  compound 
symbols: 

The previous results and definitions directly generalize by re- 
placing S with S(m and replacing the symbol probabilities 
p k  = P(sk) ,  (0 f k I N- 1) with the joint probabilities (com- 
pound symbol probabilities) p i M )  = P(skM)),  (0 I k I L - 1). 
So, the entropy of the set S(m, which is the set of all compound 
symbols sLM), (0 I k I L - l),  is given by 

I.-1 

k=O 

H (  S(m) of Eq. (12) is also called the Mth-order entropy of S. 
If S corresponds to a stationary source (i.e., symbol probabili- 
ties do not change over time), H(ScM)) is related to the source 
entropy H( S) as follows [ 11 : 

with equality if and only if the symbols in S are statistically 
independent (memoryless source). The quantity 

is called the entropy rate of the source S and gives the average 
information per output symbol drawn from S. For a stationary 
source, the limit in quantity ( 14) always exists. Also, from relation 
(13), the entropy rate is equal to the source entropy for the case 
of a memoryless source. 

As before, each output (compound) symbol can be coded 
separately. For a given lossless code C, if Z L w  is the length of 
the codeword assigned to code symbol sLW (0 f k f L - l), 
the resulting average bit rate BLM) in code bits per compound 
symbol is 

L-1 
IlkMM' = pLM) Z k M )  (bits per compound symbol). (15) 

k=O 

Also, as before, a prefix code C can be constructed such that 

H ( S ( w )  f BkM) f H(S(') + 1, (16) 

where BkM) is the resulting average bit rate per compound 
symbol. The desired average bit rate Bc in bits per sourcesymbol 
is equal to Btw/M.  So, dividing the terms in relation (16) by 
M, we obtain 

From relation (17), it follows that, by jointly coding very large 
blocks of source symbols ( M  very large), we can find a source 
code C with an average bit rate Bc approaching monotonically 
the entropy rate of the source as M goes to infinity. For a mem- 
oryless source, relation (17) becomes 

(18) 
1 

H ( S )  I Bc I H ( S )  + - M' 

where Bc = BkM)/M. 
From this discussion, we see that the statistics ofthe considered 

source (given by the symbol probabilities) have to be known 
in order to compute the lower bounds on the achievable bit 
rate. In practice, the source statistics can be estimated from the 
histogram of a set ofsample source symbols. For a nonstationary 
source, the symbol probabilities have to be estimated adaptively 
since the source statistics change over time. 

3.2 Huffman Coding 
In [3], D. Huffman presented a simple technique for construct- 
ing prefk codes that results in an average bit rate satisfying rela- 
tion (8) when the source symbols are coded separately, or relation 
( 17) in the case of joint M-symbol vector coding. A tighter upper 
bound on the resulting average bit rate is derived in [2]. 

The Huffman coding algorithm is based on the following op- 
timality conditions for a prefk code [3]: (1) if P(sk)  > P ( s j )  
(symbol sk more probable than symbol s j ,  k # j ) ,  then l k  5 l j ,  
where l k  and l j  are the lengths of the codewords assigned to code 



466 Handbook of Image and Video Processing 

symbols Sk and s j ,  respectively; (2) if the symbols are listed in 
the order of decreasing probabilities, the last two symbols in the 
ordered list are assigned codewords that have the same length 
and are alike except for their final bit. 

$1 53 50 52 SI 53 50 with probabilities P k  = P ( S k )  (0 5 k 5 (N - I)), we can con- oaT o.3 o.2 o.l 
struct a Huffman code corresponding to source S by iteratively 
constructing a binary tree as follows. 

f i  %=1, 
Given a source with alphabet S consisting of N symbols sk 0 0 0 

0.4 0.3 0.2 0.1 
(4 (b) 

1. 

2. 

3. 

4. 

The 

Arrange the symbols of S such that the probabilities P k  are 
in decreasing order; i.e., 

and consider the ordered symbols Sk, 0 5 k 5 (N - l), as 
the leaf nodes of a tree. Let T be the set of the leaf nodes 
corresponding to the ordered symbols of S. 
Take the two nodes in T with the smallest probabilities 
and merge them into a new node whose probability is the 
sum of the probabilities of these two nodes. For the tree 
construction, make the new resulting node the “parent” 
of the two least probable nodes of T by connecting the 
new node to each of the two least probable nodes. Each 
connection between two nodes form a “branch” of the 
tree; so, two new branches are generated. Assign a value of 
1 to one branch and 0 to the other branch. 
Update T by replacing the two least probable nodes in T 
with their parent node, and reorder the nodes (with their 
subtrees) if needed. If T contains more than one node, 
repeat from Step 2; otherwise, the last node in T is the 
“root” node of the tree. 
The codeword of a symbol Sk E S (0 5 k 5 (N - 1)) 
can be obtained by traversing the linked path of the tree 
from the root node to the leaf node corresponding to Sk 
(0 5 k 5 (N- 1)) while reading sequentially the bit values 
assigned to the tree branches of the traversed path. 

Hufhan code construction procedure is illustrated by 
the example shown in Fig. 3 for the source alphabet S =  
{so, sl, 52, sg} with symbol probabilities as given in Table 1. The 
resulting symbol codewords are listed in the 3rd column of 
Table 1. For this example, the source entropy is H( S) = 1.84644 
and the resulting average bit rate is BH = xi=, P k  lk = 1.9 (bits 
per symbol), where lk is the length of the codeword assigned to 
symbol Sk of S. The symbol codewords are usually stored in a 
symbol-to-codeword mapping table that is made available to 
both the encoder and decoder. 

If the symbol probabilities can be accurately computed, the 
above Huffman coding procedure is optimal in the sense that 
it results in the minimal average bit rate among all uniquely 
decodable codes assuming memoryless coding. Note that, for a 
given source S, more than one Huffman code is possible but 
they are alI optimal in the above sense. In fact, another optimal 
Huffinan code can be obtained by simply taking the complement 
of the resulting binary codewords. 

52 51 s3 50 
0.4 0.3 0.2 0.1 

(c) 
FIGURE 3 
Table 1: (a) first, (b) second, (c) third and last iterations. 

Example of Huffman code construction for the source alphabet of 

As a result of memoryless coding, the resulting average bit 
rate is within one bit of the source entropy since integer-length 
codewords are assigned to each symbol separately. The described 
Huffman coding procedure can be directly applied to code a 
group of Msymbols jointlybyreplacing S with S ( M )  ofEq. (10). 
In this case, higher compression can be achieved (Section 3.1), 
but at the expense of an increase in memory and complexity 
since the alphabet becomes much larger and joint probabilities 
have to be computed. 

While encoding can be simply done by using the symbol-to- 
codeword mapping table, the realization of the decoding op- 
eration is more involved. One way of decoding the bitstream 
generated by a Huffman code is to first reconstruct the binary 
tree from the symbol-to-codeword mapping table. Then, as the 
bitstream is read one bit at a time, the tree is traversed starting at 
the root until a leaf node is reached. The symbol corresponding 
to the attained leaf node is then output by the decoder. Restarting 
at the root of the tree, the above tree traversal step is repeated un- 
til all the bitstream is decoded. This decoding method produces 
a variable symbol rate at the decoder output since the codewords 
vary in length. 

Another way to perform the decoding is to construct a 
lookup table from the symbol-to-codeword mapping table. The 

TABLE 1 Example of Huffman code assignment 

Source Symbol (sk) Probability ( p k )  Assigned Codeword 
~ 

50 0.1 111 
$1 0.3 10 
52 0.4 0 
53 0.2 110 
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constructedlookup table has 2'm entries, where l,, is the length 
of the longest codeword. The binary codewords are used to index 
into the lookup table. The lookup table can be constructed as 
follows. Let lk be the length of the codeword corresponding to 
symbol S k .  For each symbol Sk in the symbol-to-codeword map- 
ping table, place the pair of values (Sk, lk) in all the table entries, 
for which the lk leftmost address bits are equal to the codeword 
assigned to sk. Thus, there will be 2(lma*-lk) entries corresponding 
to symbol Sk. For decoding, I,, bits are read from the bitstream. 
The read hx bits are used to index into the lookup table to ob- 
tain the decoded symbol Sk, which is then output by the decoder, 
and the corresponding codeword length lk. Then the next table 
index is formed by discarding the first lk bits of the current index 
and appending to the right the next lk bits that are read from 
the bitstream. This process is repeated until all the bitstream is 
decoded. This approach results in a relatively fast decoding and 
in a fixed output symbol rate. However, the memory size and 
complexity grows exponentially with Zm,, which can be very 
large. 

In order to limit the complexity, procedures to construct 
constrained-length Huffman codes have been developed [4]. 
Constrained-length Huffman codes are Huffman codes designed 
while limiting the maximum allowable codeword length to a 
specified value Zm,. The shortened Huffman codes result in a 
higher average bit rate compared to the unconstrained-length 
Huffman code. 

Since the symbols with the lowest probabilities result in the 
longest codewords, one way of constructing shortened Huffman 
codes is to group the low-probability symbols into a compound 
symbol. The low-probability symbols are taken to be the sym- 
bols in S with a probability 5 2 - ' m = .  The probability of the com- 
pound symbol is the sum of the probabilities of the individ- 
ual low-probability symbols. Then the original Huffman coding 
procedure is applied to an input set of symbols formed by tak- 
ing the original set of symbols and replacing the low-probability 
symbols with one compound symbol s,. When one of the low- 
probability symbols is generated by the source, it is encoded with 
the codeword corresponding to s, followed by a second fixed- 
length binary codeword corresponding to that particular symbol. 
The other "high probability" symbols are encoded as usual by 
using the Huffman symbol-to-codeword mapping table. 

In order to avoid having to send an additional codeword 
for the low-probability symbols, an alternative approach is to 
use the original unconstrained Huffinan code design procedure 
on the original set of symbols S with the probabilities of the low- 
probability symbols changed to be equal to 2-'-. Other meth- 
ods [4] involve solving a constrained optimization problem to 
find the optimal codeword lengths lk (0 5 k 5 N- 1) that min- 
imize the average bit rate subject to the constraints 1 5 lk 5 I,, 
(0 5 k 5 N- 1). Once the optimal codeword lengths have been 
found, a prefix code can be constructed by using Kraft inequal- 
ity (9). In this case, the codeword of length l k  corresponding to 
sk is given by the 1k bits to the right of the binary point in the 
binary representation ofthe fraction x @ + < k  _ _  2 4 .  

This discussion assumes that the source statistics are described 
by a fixed (nonvarying) set of source symbol probabilities. As a 
result, only one fixed set of codewords has to be computed and 
supplied once to the encoder-decoder. This fixed model fails 
if the source statistics vary since the performance of Huffman 
coding depends on how accurately the source statistics are mod- 
eled. For example, images can contain different data types, such 
as text and picture data, with different statistical characteristics. 
Adaptive Huffman coding change the codeword set to match the 
locally estimated source statistics. As the source statistics change, 
the code changes remaining optimal for the current estimate of 
source symbol probabilities. One simple way for adaptively es- 
timating the symbol probabilities is to maintain a count of the 
number of occurrences of each symbol [ 2 ] .  The Huffman code 
can be dynamically changed by precomputing off-line different 
codes corresponding to different source statistics. The precom- 
puted codes are then stored in symbol-to-codeword mapping 
tables that are made available to the encoder and decoder. The 
code is changed by dynamically choosing a symbol-to-codeword 
mapping table from the available tables based on the frequen- 
cies of the symbols that occurred so far. However, in addition 
to storage and the run-time overhead incurred for selecting a 
coding table, this approach requires a priori knowledge of the 
possible source statistics in order to predesign the codes. An- 
other approach is to dynamically redesign the Huffman code 
while encoding based on the local probability estimates com- 
puted by the provided source model. This model is also available 
at the decoder, allowing it to dynamically alter its decoding tree 
or decoding table in synchrony with the encoder. Implementa- 
tion details of adaptive Huffman coding algorithms can be found 
in [ 2 , 5 ] .  

3.3 Arithmetic Coding 
As indicated in Section 3.2, the main drawback of Huffman cod- 
ing is that it assigns an integer-length codeword to each sym- 
bol separately. As a result, the bit rate cannot be less than 1 bit 
per symbol unless the symbols are coded jointly. However, joint 
symbol coding, which codes a block of symbols jointly as one 
compound symbol, results in delay and in an increased com- 
plexity in terms of source modeling, computation, and memory. 
Another drawback of Huffman coding is that the realization and 
the structure of the encoding and decoding algorithms depend 
on the source statistical model. It follows that any change in 
the source statistics would necessitate redesigning the Huffman 
codes and changing the encoding and decoding trees, which can 
render adaptive coding more difficult. 

Arithmetic coding is a lossless coding method that does not 
suffer from the aforementioned drawbacks and that tends to 
achieve a higher compression ratio than Huffman coding. How- 
ever, Huffman coding can generally be realized with simpler 
software and hardware. 

In arithmetic coding, each symbol does not have to be mapped 
into an integral number of bits. Thus, an average fractional 
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bit rate (in bits per symbol) can be achieved without the need 
for blocking the symbols into compound symbols. In addition, 
arithmetic coding allows the source statistical model to be sepa- 
rate fromthe structure ofthe encoding and decodingprocedures; 
i.e., the source statistics can be changed without having to alter 
the computational steps in the encoding and decoding modules. 
This separation makes arithmetic coding more attractive than 
Huffman for adaptive coding. 

The arithmetic coding technique is a practical extended 
version of Elias code and was initially developed by Pasco and 
Rissanen [ 6 ] .  It was further developed by Rubin [ 71 to allow for 
incremental encoding and decoding with fixed-point computa- 
tion. An overview of arithmetic coding is presented in [ 61 with 
C source code. 

The basic idea behind arithmetic coding is to map the input 
sequence of symbols into one single codeword. Symbol blocking 
is not needed since the codeword can be determined and updated 
incrementally as each new symbol is input (symbol-by-symbol 
coding). At any time, the determined codeword uniquely repre- 
sents all the past occurring symbols. Although the final codeword 
is represented by using an integral number of bits, the resulting 
average number of bits per symbol is obtained by dividing the 
length of the codeword by the number of encoded symbols. For 
a sequence of M symbols, the resulting average bit rate satis- 
fies relation (17) and, therefore, approaches the optimum quan- 
tity (14) as the length M of the encoded sequence becomes very 
large. 

In the actual arithmetic coding steps, the codeword is repre- 
sented by a half-open subinterval [ L,, H,) c [0, 1). The half- 
open subinterval gives the set of all codewords that can be used to 
encode the input symbol sequence, which consists of all past in- 
put symbols. So, anyrealnumberwithin thesubinterval [ L,, I&) 
can be assigned as the codeword representing all the past occur- 
ring symbols. The selected real codeword is then transmitted 
in binary form (fractional binary representation, where .1 rep- 
resents 1/2, .01 represents 1/4, .ll represents 3/4, and so on). 
When a new symbol occurs, the current subinterval [ L,, H,) is 
updated by finding a new subinterval [L;,  H i )  c [ L , ,  H,) to 
represent the new change in the encoded sequence. The code- 
word subinterval is chosen and updated such that its length is 
equal to the probability of occurrence of the corresponding en- 
coded input sequence. It follows that less probable events (given 
by the input symbol sequences) are represented with shorter 
intervals and, therefore, require longer codewords since more 
precision bits are required to represent the narrower subin- 
tervals. So, the arithmetic encoding procedure constructs, in a 
hierarchical manner, a code subinterval that uniquely represents 
a sequence of successive symbols. 

In analogy with Huffman, in which the root node of the tree 
represents all possible occurring symbols, the interval [O, 1) here 
represents all possible occurring sequences of symbols (all possi- 
ble messages including single symbols). Also, considering the set 
of all possible M-symbol sequences having the same length M, 
the total interval [0,1) can be subdivided into nonoverlapping 

TABLE 2 Example of code subinterval assignment in 
arithmetic coding 

Source Symbol Probability Symbol Subintend 
(4 (Pk) ILs,, E - 5 )  

0.1 [O, 0.1) 
0.3 [0.1,0.4) 
0.4 [0.4,0.8) 
0.2 10.8,l) 

subintervals such that each M-symbol sequence is represented 
uniquely by one and only one subinterval whose length is equal 
to its probability of occurrence. 

Let S be the source alphabet consisting of N symbols 
S O ,  . . . , ~(hr-1). Let pk = P(sk) be the probability of symbol 5 k ,  

0 I k 5 ( N  - 1). Since, initially, the input sequence will consist 
of the first occurring symbol ( M  = l), arithmetic coding begins 
by subdividing the interval [0,1) into N nonoverlapping inter- 
vals, where each interval is assigned to a distinct symbol Sk E S 
andhasalengthequaltothesymbo1probabilitypk.Let [L,,, Hsk) 
denote the interval assigned to symbol 5 k ,  where P k  = Hsk - Lsk.  
This assignment is illustrated in Table 2; the same source alpha- 
bet and source probabilities as in the example of Fig. 3 are used 
for comparison with Huffman. In practice, the subinterval lim- 
its L,, and Hsk for symbol 5k can be directly computed from 
the available symbol probabilities and are equal to cumulative 
probabilities P k  as given here: 

Let [L,, 23,) denote the code interval corresponding to the 
input sequence that consists of the symbols that occurred so far. 
Initially, L ,  = 0 and H, = 1; so, the initial code interval is 
set to [0, 1). Given an input sequence of symbols, the calcula- 
tion of [ L,, H,) is performed based on the following encoding 
algorithm: 

1. 
2. 

3. 
4. 

5. 

L ,  = 0; H, = 1. 
Calculate code subinterval length 

length = H,  - L,. 

Get next input symbol sk. 
Update the code subinterval: 

L ,  = L ,  + length x L,,, 

H, = L ,  + length x H,,. (23) 

Repeat from Step 2 until all the input sequence has been 
encoded. 
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Iteration # No. Encoded Symbol Code Subinterval 
( 1) b k )  [ L c ,  HC) 

1 51 [0.1,0.4) 
2 50 [0.1,0.13) 
3 52 [0.112,0.124) 
4 53 [0.1216,0.124) 
5 53 [0.12352,0.124) 

TABLE 3 Example of code subinterval construction 
in arithmetic coding 

can be determined (incremental encoding), and then to shift out 
this bit (which amounts to scaling the current code subinterval 
by 2). In order to illustrate how incremental encoding would 
be possible, consider the example in Table 3. At the second iter- 
ation, the leading part “0.1” can be output since it is not going to 
be changed by the future encoding steps. A simple test to check 
whether a leading part can be output is to compare the leading 
parts of L ,  and H,; the leading digits that are the same can 
then be output and they remain unchanged since the next code 
subinterval will become smaller. For fixed-point computations, 
overflow and underflow errors can be avoided by restricting the 
source alphabet size [4]. 

Given the value of the codeword, arithmetic decoding can be 
performed as follows: 

As indicated before, any real number within the final interval 
[ L,,  H,) can be used as a valid codeword for uniquely encod- 
ing the considered input sequence. The binary representation 
of the selected codeword is then transmitted. The above arith- 
metic encoding procedure is illustrated in Table 3 for encoding 
the sequence of symbols s1 SO 52 s3 sg. Another representation of 
the encoding process within the context of the considered ex- 
ample is shown in Fig. 4. Note that arithmetic coding can be 
viewed as remapping, at each iteration, the symbol subintervals 
[L, , ,  Hs,) (0 5 k 5 (N - 1)) to the current code subinterval 
[ L , ,  E ) .  The mapping is done by rescaling the symbol subin- 
tervals to fit within [ L , ,  Hc), while keeping them in the same 
relative positions. So, when the next input symbol occurs, its 
symbol subinterval becomes the new code subinterval, and the 
process repeats until all input symbols are encoded. 

In the arithmetic encoding procedure, the length of a code 
subinterval, “length” in Eq. (22), is always equal to the product 
of the probabilities of the individual symbols encoded so far, and 
it monotonically decreases at each iteration. As a result, the code 
interval shrinks at every iteration. So, longer sequences result 
in narrower code subintervals, which would require the use of 
high-precision arithmetic. Also, a direct implementation of the 
presented arithmetic coding procedure produces an output only 
after all the input symbols have been encoded. Implementations 
that overcome these problems are presented in [6,7]. The basic 
idea is to begin outputting the leading bit of the result as soon as it 

1. 
2. Calculate the code subinterval length: 

L, = 0; H, = 1. 

length = H, - L, .  

3. Find the symbol subinterval [L,,, HSk) (0 5 k 5 N - 1) 
such that 

codeword - L ,  
length < HSk‘ L S k  5 

4. output symbol Sk. 
5. Update the code subinterval 

L, = L,  + length x L,,, 

H, = L ,  + length x Hsk. 

6. Repeat from Step 2 until the last symbol is decoded. 

In order to determine when to stop the decoding (i.e., which 
symbol is the last symbol), a special end-of-sequence symbol 

Input Sequence: SI SO $2 s3 $3 

FIGURE 4 Arithmetic coding example. 
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is usually added to the source alphabet S and is handled like 
the other symbols. In the case in which fixed-length blocks of 
symbols are encoded, the decoder can simply keep a count of the 
number of decoded symbols and no end-of-sequence symbol 
is needed. As discussed before, incremental decoding can be 
achieved before all the codeword bits are output [ 671. 

3.4 Lempel-Ziv Coding 
Huffman coding (Section 3.2) and arithmetic coding (Sec- 
tion 3.3) require a priori knowledge of the source symbol prob- 
abilities or of the source statistical model. In some cases, a suf- 
ficiently accurate source model is difficult to obtain, especially 
when several types of data (such as text, graphics, and natural 
pictures) are intermixed. 

Universal coding schemes do not require u priori knowledge 
or explicit modeling of the source statistics. A popular lossless 
universal coding scheme is a dictionary-based coding method 
developed by Ziv and Lempel [ 81 and known as Lempel-Ziv (LZ) 
coding. Dictionary-based coders dynamically build a coding 
table (called dictionary) ofvariable-length symbol strings as they 
occur in the input data. As the coding table is constructed, fixed- 
length binary codewords are assigned to the variable-length in- 
put symbol strings by indexing into the coding table. In LZ cod- 
ing, the decoder can also dynamically reconstruct the coding 
table and the input sequence as the code bits are received with- 
out any significant decoding delays. Although LZ codes do not 
explicitly make use of the source probability distribution, they 
asymptotically approach the source entropy rate for very long se- 
quences [ ll. Because of their adaptive nature, dictionary-based 
codes are ineffective for short input sequences since these codes 
initially result in a lot of bits being output. So, short input se- 
quences can result in data expansion instead of compression. 

There are several variations of LZ coding. They mainly dif- 
fer in how the dictionary is implemented, initialized, updated, 
and searched. One popular LZ coding algorithm is known as the 
Lempel-Ziv-Welch (LZW) algorithm, a version of LZ coding 
developed by Welch [9]. This is the algorithm used for imple- 
menting the compress command in the UNIX operating system. 

Let S be the source alphabet consisting of N symbols sk (1 5 
k 5 N). The basic steps of the LZW algorithm can be stated as 
follows: 

1. Initialize the first N entries of the dictionary with the in- 
dividual source symbols of s, as shown: 

Address Entry 

1 s1 
2 52 

3 53 

TABLE 4 Dictionary constructed 
while encoding the sequence 
~ 1 ~ 2 S 1 S 2 ~ 3 S 2 S 1 S ; :  

Address Entry 

*This is emitted by a source with 
alphabet S = (51, 52, 53, s4}. 

2. Parse the input sequence and find the longest input string 
of successive symbols w (including the first still unencoded 
symbol s in the sequence) that has a matching entry in the 
dictionary. 

3. Encode w by outputting the index (address) of the match- 
ing entry as the codeword for w. 

4. Add to the dictionary the string ws formed byconcatenat- 
ing w and the next input symbol s (following w ) .  

5. Repeat from Step 2 for the remaining input symbols start- 
ing with the symbol s, until the entire input sequence is 
encoded. 

Consider the source alphabet S = {sl, s2,s3, sq}. The 
encoding procedure is illustrated for the input sequence 
s ~ s ~ s ~ s ~ s ~ s ~ s ~ s ~ .  The constructeddictionaryis showninTable4. 
The resulting code is given by the fixed-length binary representa- 
tion ofthe following sequence of dictionary addresses: 1 2 5 3 6 2. 
The length of the generated binary codewords depends on the 
maximum allowed dictionary size. If the maximum dictionary 
size is M entries, the length of the codewords would be log, ( M )  
rounded to the next smallest integer. 

The decoder constructs the same dictionary (Table 4) as the 
codewords are received. The basic decoding steps can be de- 
scribed as follows. 

1. Start with the same initial dictionary as the encoder. Also, 
initialize w to be the empty string. 

2. Get the next “codeword‘: and decode it by outputing the 
symbol string sm stored at address “codeword” in dictio- 
nary. 

3. Add to the dictionary the string ws formed by concatenat- 
ing the previous decoded string w (if any) and the first 
symbol s of the current decoded string. 

4. Set w = sm and repeat from Step 2 until all the codewords 
are decoded. 

s N N Note that the constructed dictionary has a prefix property; i.e., 
every string w in the dictionary has its prefix string (formed by 
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removing the last symbol of w )  also in the dictionary. Since the 
strings added to the dictionary can become very long, the actual 
LZW implementation exploits the prefix property to render the 
dictionary construction more tractable. To add a string ws to 
the dictionary, the LZW implementation only stores the pair of 
values (c, s), where c is the address where the prefix string w is 
stored and s is the last symbol of the considered string ws. So, 
the dictionary is represented as a linked list [ 1,9] 

4.2 Lossless JPEG Standard 
The JPEG (Joint Photographic Experts Group) standard was 
developed jointly by the ITU and ISO/IEC for the lossy and loss- 
less compression of continuous-tone, color or gray-scale, still 
images [ 111. This section discusses very briefly the main com- 
ponents of the lossless mode of the JPEG standard (known as 
lossless JPEG). 

The lossless JPEG coding standard can be represented in terms 
of the general coding structure of Fig. 1 as follows. 

4 Lossless Coding Standards 

The need for interoperability between various systems has led 
to the formulation of several international standards for lossless 
compression algorithms targeting different applications. Exam- 
ples include the standards formulated by the International Stan- 
dards Organization (ISO), the International Electrotechnical 
Commission (IEC), and the International Telecommunication 
Union (ITU), which was formerly known as the International 
Consultative Committee for Telephone and Telegraph (CCITT). 
A comparison of the lossless still image compression standards 
is presented in [ 101. 

4.1 JBIG Standard 
The JBIG (Joint Binary Image Experts Group) standard was de- 
veloped jointly by the ITU and the ISO/IEC with the objective to 
provide improved lossless compression performance, for both 
business-type documents and binary halftone images, as com- 
pared to the existing standards. Another objective was to support 
progressive transmission. Gray-scale images are also supported 
by encoding separately each bit plane. 

The JBIG standard consists of a context-based arithmetic en- 
coder that takes as input the original binary image. The arith- 
metic encoder makes use of a context-based modeler that es- 
timates conditional probabilities based on causal templates. A 
causal template consists of a set of already encoded neighboring 
pixels and is used as a context for the model to compute the 
symbol probabilities. Causality is needed to allow the decoder to 
recompute the same probabilities without the need to transmit 
side information. 

Progressive transmission is supported by using a layered cod- 
ing scheme. In this scheme, a low-resolution initial version of the 
image (initial layer) is first encoded. Higher-resolution layers can 
then be encoded and transmitted in the order of increasing reso- 
lution. In this case, the causal templates used by the modeler can 
include pixels from the previously encoded layers in addition to 
already encoded pixels belonging to the current layer. 

Compared to the ITU Group 3 and Group 4 facsimile com- 
pression standards [4, 101, the JBIG standard results in 20-50% 
more compression for business-type documents. For halftone 
images, JBIG results in compression ratios that are two to five 
times greater than those obtained from the ITU Group 3 and 
Group 4 facsimile standards [4,10]. 

Stage 1: linear prediction-differential (DPCM) coding is 
used to form prediction residuals. The prediction residuals 
have usually a lower entropy than the original input image. 
Thus, higher compression ratios can be achieved. 
Stage 2: the prediction residual is mapped into a pair of 
symbols (category, magnitude), where the symbol category 
gives the number of bits needed to encode magnitude. 
Stage 3: for each pair of symbols (category, magnitude), 
Huffman coding is used to code the symbol category. The 
symbol magnitude is then coded using a binary codeword 
whose length is given by the value category. Arithmetic cod- 
ing can also be used in place of Huffman coding. 

Complete details about the lossless JPEG standard and related 
recent developments, including JPEG-LS [ 121, are presented in 
Chapter 5.6. 

5 Other Developments in Lossless 
Coding 

Several recent lossless image coding systems have been pro- 
posed [ 13-15]. Most of these systems can be described in terms 
of the general structure of Fig. 1, and they make use of the loss- 
less symbol coding techniques discussed in Section 3 or varia- 
tions on those. Among the recently developed coding systems, 
LOCO-I [ 141 was adopted as part of the new JPEG-LS standard 
(Chapter 5.6) since it exhibits the best compression/complexity 
tradeoff. CALIC [ 131 achieves the best compression performance 
at a slightly higher complexity than LOCO-I. Perceptual-based 
coding schemes can achieve higher compression ratios at a much 
reduced complexity by removing perceptually irrelevant infor- 
mation in addition to the redundant information. In this case, the 
decoded image is required to only be visually, and not necessar- 
ily numerically, identical to the original image. In what follows, 
CALIC and perceptual-based image coding are introduced. 

5.1 CALIC 
CALIC (Context-based, adaptive, lossless image codec) repre- 
sents one of the best performing practical and general purpose 
lossless image coding techniques. 

CALIC encodes and decodes an image in raster scan order 
with a single pass through the image. For the purposes of context 
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FIGURE 5 Schematic description of CALIC. (Courtesy of Nasir Memon.) 

modeling and prediction, the coding process uses a neighbor- 
hood of pixel values taken only from the previous two rows of the 
image. Consequently, the encoding and decoding algorithms re- 
quire a buffer that holds only two rows of pixels that immediately 
precede the current pixel. Figure 5 presents a schematic descrip- 
tion of the encoding process in CALIC. Decoding is achieved by 
the reverse process. As shown in Fig. 5, CALIC operates in two 
modes: binary mode and continuous-tone mode. This allows the 
CALIC system to distinguish between binary and continuous- 
tone images on a local, rather than a global, basis. This distinction 
between the two modes is important because of the vastly dif- 
ferent compression methodologies employed within each mode. 
The former uses predictive coding, whereas the latter codes pixel 
values directly. CALIC selects one of the two modes depending 
on whether or not the local neighborhood of the current pixel 
has more than two distinct pixel values. The two-mode design 
contributes to the universality and robustness of CALIC over a 
wide range of images. 

In the binary mode, a context-based adaptive ternary arith- 
metic coder is used to code three symbols, including an escape 
symbol. In the continuous-tone mode, the system has four major 
integrated components: prediction, context selection and quan- 
tization, context-based bias cancellation of prediction errors, 
and conditional entropy coding of prediction errors. In the pre- 
diction step, a gradient-adjusted prediction (GAP) 7 of the cur- 
rent pixel y is made. The predicted value jj is further adjusted 
by means of a bias cancellation procedure that involves an error 
feedback loop of one-step delay. The feedbackvalue is the sample 
mean of prediction errors 2 conditioned on the current context. 
This results in an adaptive, context-based, nonlinear predictor 
7 = 7 + 2. In Fig. 5, these operations correspond to the blocks 
of context quantization, error modeling, and the error feedback 

The bias corrected prediction error f is finally entropy coded 
based on a few estimated conditional probabilities in different 
conditioning states or coding contexts. A small number of cod- 
ing contexts are generated by context quantization. The context 
quantizer partitions prediction error terms into few classes by the 
expected error magnitude. The described procedures in relation 

loop. 

TABLE 5 
(courtesy of Nasir Memon) 

Lossless bit rates with Intraband and Interband CALIC 

Intraband Interband 
Image JPEG-LS CALIC CALIC 

Band 
Aerial 
Cats 
Water 
Cmpnd 1 
Cmpnd2 
Chart 
Ridgely 

3.36 
4.01 
2.59 
1.79 
1.30 
1.35 
2.74 
3.03 

3.20 
3.78 
2.49 
1.74 
1.21 
1.22 
2.62 
2.91 

2.72 
3.47 
1.81 
1.51 
I .02 
0.92 
2.58 
2.72 

to the system are identified by the blocks of context quantization 
and conditional probabilities estimation in Fig. 5. The details 
of this context quantization scheme in association with entropy 
coding are given in [ 131. 

CALIC has also been extended to exploit interband correla- 
tions found in multiband images such as color images, multi- 
spectral images, and 3-D medical images. Interband CALIC can 
give 1 &30% improvement over intraband CALIC, depending 
on the type of image. Table 5 shows bit rates achieved with intra- 
band and interband CALIC on a set of multiband images. For 
the sake of comparison, results obtained with JPEG-LS, the new 
standard on lossless image coding, are also included. 

5.2 Perceptually Lossless Image Coding 
The lossless coding methods presented so far require the decoded 
image data to be identical both quantitatively (numerically) and 
qualitatively (visually) to the original encoded image. This re- 
quirement usually limits the amount of compression that can be 
achieved to a compression factor of 2 or 3, even when sophis- 
ticated adaptive models are used as discussed in Section 5.1. In 
order to achieve higher compression factors, perceptually loss- 
less coding methods attempt to remove redundant as well as 
perceptually irrelevant information. 

Perceptual-based algorithms attempt to discriminate between 
signal components that are and are not detected by the human 
receiver. They exploit the spatiotemporal masking properties 
of the human visual system and establish thresholds of just- 
noticeable distortion based on psychophysical contrast masking 
phenomena. The interest is in bandlimited signals because of 
the fact that visual perception is mediated by a collection of 
individual mechanisms in the visual cortex, denoted channels 
or filters, that are selective in terms of frequency and orienta- 
tion [16]. 

Neurons respond to stimuli above a certain contrast. The nec- 
essarycontrast to provoke a response from the neurons is defined 
as the detection threshold. The inverse of the detection threshold is 
the contrast sensitivity. Contrast sensitivity varies with frequency 
(including spatial frequency, temporal frequency, and orienta- 
tion) and can be measured using detection experiments [ 171. 
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In detection experiments, the tested subject is presented with 
test images and needs only to specify whether the target stimulus 
is visible or not visible. They are used to derive just-noticeable- 
difference (JND) or detection thresholds in the absence or pres- 
ence of a masking stimulus superimposed over the target. For 
the image coding application, the input image is the masker and 
the target (to be masked) is the quantization noise (distortion). 
JND contrast sensitivity profiles, obtained as the inverse of the 
measured detection thresholds, are derived by varying the target 
or the masker contrast, frequency and orientation. The common 
signals used in vision science for such experiments are sinusoidal 
gratings. For image coding, bandlimited subband components 
are used [ 171. 

The detection experiments can be further subdivided into 
three types: contrast sensitivity, luminance masking (also known 
as light adaptation), and contrast masking experiments. 

The contrast sensitivity experiments measure the sensitivity 
of the eye in function of frequency (spatial and/or temporal) 
and orientation. In this case, a target sinusoidal stimulus at 
a selected frequency and orientation (u,  0)  is presented over 
a flat background of constant luminance (corresponding to 
neutral gray) with no other masking stimulus present. The 
contrast of the target stimulus is varied until it becomes just 
visible. These experiments thus measure, for each frequency 
(u,  e), the smallest contrast t(u,e) that yields a visible signal. 
t (u,e) is often referred to as the base detection threshold. The 
inverse of the measured qU,e) defines the sensitivity of the 
eye in function of frequency and orientation; this function is 
essentially known as the Contrast Sensitivity Function (CSF) 
which is a global characteristic independent of the input im- 
age. In perceptual image coding, a base detection threshold 
is measured for each subband at the center frequency. 

! 

i 

1 

Luminance masking refers to the fact that the detection 
threshold values vary with the background intensity lev- 
els. In the contrast sensitivity experiments, the CSF function 
threshold values are measured based on a fixed background 
illumination. The variation of the threshold values in func- 
tion of the background luminance can be determined by 
luminance masking experiments which vary the illumina- 
tion level of the background over which a target stimulus 
is presented. For the image coding application, the detec- 
tion thresholds will depend on the mean luminance of the 
local image region and, therefore, luminance masking ex- 
periments are used to determine the variation of t(u,e) in 
function of the mean luminance [17]. A brightness cor- 
rection factor can be derived and applied to the contrast 
sensitivity profiles to account for this variation. 
Finally, contrast masking refers to the change in the visibil- 
ity of one image component (the target) by the presence of 
another one (the masker). So, the contrast masking experi- 
ments measure the variation of the detection threshold of a 
target signal as a function of the contrast of the masker. In 
image coding, the masker signal is represented by the band- 
limited subband components of the original visual data 
while the target signal is represented by the bandlimited 
components of the error or noise. 

Several perceptual image coding schemes have been pro- 
posed [ 17-21]. These schemes differ in the way the perceptual 
thresholds are computed and used in coding the visual data. For 
example, not all the schemes account for contrast masking in 
computing the thresholds. One method, called DCTune [ 191, 
fits within the framework of JPEG. Based on a model of hu- 
man perception that considers frequency sensitivity and con- 
trast masking, it designs a DCT quantization matrix (three 
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FIGURE 6 
0.361 bpp. The perceptual thresholds are computed for a viewing distance equal to 6 times the image height. 

Perceptually lossless image compression [17]: (a) Original Lena image, 8 bpp; (b) decoded Lena image, 



474 Handbook of Image and Video Processing 

quantization matrices in the case of color images) for each image. 
The quantization matrix is selected to minimize an overall per- 
ceptual distortion which is computed in terms of the perceptual 
thresholds. 

The perceptual image coder (PIC) proposed by Safianek and 
Johnston [ 181 works in a subband decomposition setting. Each 
subband is quantized using a uniform quantizer with a fixed 
step size. The step size is determined by the JND threshold for 
uniform noise at the most sensitive coefficient in the subband. 
The used model does not include contrast masking. A scalar 
multiplier in the range of 2-2.5 is applied to uniformly scale all 
step sizes in order to compensate for the conservative step size 
selection and to achieve good compression ratio. 

Higher compression can be achieved by exploiting the varying 
perceptual characteristics of the input image in a locally adap- 
tive fashion. Locally adaptive perceptual image coding requires 
computing and making use of image-dependent, locally vary- 
ing, masking thresholds to adapt the quantization to the varying 
characteristics of the visual data. In [17,21], locally adaptive 
perceptual image coders are presented without the need for side 
information for the locally varying perceptual thresholds. This is 
accomplished by using a low-order linear predictor, at both the 
encoder and decoder, for estimating the locally available amount 
of masking. Figure 6 presents coding results obtained by using 
the locally adaptive perceptual image coder of [ 171 for the Lena 
image. The original image is represented by 8 bits per pixel (bpp) 
and is shown in Fig. 6(a). The decoded perceptually lossless im- 
age is shown in Fig 6(b) and requires only 0.361 bpp (compres- 
sion ratio CR = 22). 
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1 Introduction and Historical Overview 

The problem of how one stores and transmits a digital image 
has been a topic of research for more than 40 years and was ini- 
tially driven by military applications and NASA. The problem, 
simply stated, is, How does one efficiently represent an image 
in binary form? This is the image compression problem. It is a 
special case of the source coding problem addressed by Shannon 
in his landmark paper [ 11 on communication systems. What is 
different about image compression is that techniques have been 
developed that exploit the unique nature of the image and the 
observer. These include the spatial nature of the data and of the 
human visual system. The “efficiency” of the representation de- 
pends on two properties of every image compression technique: 
data rate (in bitdpixel) and distortion in the decompressed im- 
age. The date rate is a measure of how much bandwidth one 
would require to transmit the image or how much space it would 
take to store the image.’ Ideally one would like this to be as small 
as possible, If the decompressed image is exactly the same as the 
original image, the technique is said to be lossless. Otherwise the 
technique is lossy and the decompressed image has distortion 
or coding artifacts in it. Depending on the application, one can 
often trade distortion for data rate; hence, if a user is willing to 
accept images with more distortion, the data rate can often be 
lower. 

Statistical and structural methods have been developed for 
image compression [2], the former being based on the princi- 
ples of source coding with emphasis on the algebraic structure 
of the pixels in an image, whereas the latter methods exploit 

One can also use the “Compression ratio” when describing data rate efficiency. 
We find this term to be imprecise and prefer to use data rate in bitdpixel. 

the geometric structure of the image. In recent years there has 
been a great deal of activity in formulating standards for image 
and video compression. The results are the JPEG and MPEG 
standards discussed in Chapters 5.5 and 6.4. Most statistical im- 
age compression methods are implemented by segmenting the 
image into nonoverlapping blocks, because dividing the images 
into blocks allows the image compression algorithm to adapt 
to local image statistics. The disadvantage, however, is that the 
borders of the blocks are often visible in the decoded image.* 

In this chapter we describe a lossy image compression tech- 
nique known as Block Truncation Coding (BTC). In the sim- 
plest possible terms, BTC is a block-adaptive binary encoder 
scheme based on moment preserving quantization. The basic 
concepts of BTC were born on March 17,1977 in the office of 0. 
Robert Mitchell at Purdue University during a conversation be- 
tween Mitchell and his Ph.D. student, Edward J. Delp. Delp and 
Mitchell discussed many ideas relative to how one could exploit 
statistical moments in the context of image compression. Delp 
began working on this concept as part of his Ph.D. the~is .~  The 
first papers on BTC appeared at the IEEE International Confer- 
ence on Communications in 1978 [3] and 1979 [4]. The first 
journal articles also appeared in 1979 [5, 61 along with Delp’s 
thesis [ 71. Since 1977 a great deal of work has been done on BTC. 
There has been more than 200 journal papers, 400 conference 
papers, 40 Ph.D. theses, and one book [8] published on BTC. 
BTC was a final candidate for the JPEG compression standard in 
1987.4 

2The reader might be familiar with this problem when selecting a low “quality 
factor” when using JPEG. 

3The term “block truncation coding” was coined by Delp in early 1978. 
4See page 302 of [9]. 
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In the next section we will describe the basic BTC algorithm 
followed by a description of moment preserving quantization. 
We then describe various extensions to BTC and applications. 

2 Basics of BTC 

The basic BTC algorithm is a lossy fixed length compression 
method that uses a Q-level quantizer to quantize a local region 
of the image. The quantizer levels are chosen such that a number 
of the moments of a local region in the image are preserved in 
the quantized output. In its simplest form, the objective of BTC 
is to preserve the sample mean and sample standard deviation 
of a gray-scale image. Additional constraints can be added to 
preserve higher-order moments. For this reason BTC is a block 
adaptive moment preserving quantizer. 

The first step of the algorithm is to divide the image into 
nonoverlapping rectangular regions. For the sake of simplicity 
we let the blocks be square regions of size n x n, where n is typ- 
ically 4. For a two-level (1 bit) quantizer, the idea is to select two 
luminance values to represent each pixel in the block. These val- 
ues are chosen such that the sample mean and standard deviation 

of the reconstructed block are identical to those of the original 
block. An n x n bit map is then used to determine weather a 
pixel luminance value is above or below a certain threshold. In 
order to illustrate how BTC works, we will let the sample mean 
of the block be the threshold; a “1” would then indicate if an 
original pixel value is above this threshold, and “0” if it is below. 
Since BTC produces a bit map to represent a block, it is classified 
as a binary pattern image coding method [ lo]. The thresholding 
process makes it possible to reproduce a sharp edge with high 
fidelity, taking advantage of the human visual system’s capability 
to perform local spatial integration and mask errors. Figure 1 il- 
lustrates the BTC encoding process for a block. Observe how the 
comparison of the block pixel values with a selected threshold 
produces the bit map. 

By knowing the bit map for each block, the decompression1 
reconstruction algorithm knows whether a pixel is brighter or 
darker than the average. Thus, for each block two gray-scale 
values, a and b, are needed to represent the two regions. These are 
obtained from the sample mean and sample standard deviation 
of the block, and they are stored together with the bit map. 
Figure 2 illustrates the decompression process. An explanation 
of how a and b are determined will be given below. 

FIGURE 1 Illustration of the BTC compression process. 
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FIGURE 2 Illustration of the BTC decompression process. 

For the example illustrated in Figs. 1 and 2, the image was 
compressed from 8 bits per pixel to 2 bits per pixel (bpp). This 
is done because BTC requires 16 bits for the bit map, 8 bits for 
the sample mean, and 8 bits for the sample standard deviation. 
Thus, the entire 4 x 4 block requires 32 bits, and hence the data 
rate is 2 bpp. From this example it is easy to understand how a 
smaller data rate can be achieved by selecting a bigger block size, 
or by allocating fewer bits for the sample mean or the sample 
standard deviation [ 5,7]. We will discuss later how the data rate 
can be further reduced. 

To understand how a and b are obtained, let k be the number 
of pixels of an n x n block (k = n2) and XI,  XZ, . . . , Xk be the 
intensity values of the pixels in a block of the original image. The 
first two sample moments ml and m2 are given by 

and the sample standard deviation a is given by 

The 1-bit quantizer for a block and threshold, x & ,  as shown 
in Fig. 3, is defined by 

b if Xi 2 Xth fori = 1,2,  ..., k. (3) a if x i  .c Xth 
output = 

As the example illustrated, the mean can be selected as the 
quantizer threshold. Other thresholds could also be used, such 
as the sample median. Another way to determine the threshold 
is to perform an exhaustive search over all possible intensity 
values to find a threshold that minimizes a distortion measure 
relative to the reconstructed image [ 71. 

Once a threshold, Xth, is selected, the output levels of the 
quantizer ( a  and b)  are found such that the first and second 
moments are preserved in the output. If we let q be the number 

i output 
b 

U 

I I b 

Input 
xth 

FIGURE 3 Binary quantizer. 
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of pixels in a block that are greater than or equal to xh in value, 
we have 

Since q is defined as the number of xi’s greater than or equal to 
Xth, the threshold is then implicitly determined by q:  

kml = ( k  - q)a  + q b  

km2 = ( k  - q)a2  + qb2. 

Solving for a and b: 

It is evident how each block can be described by the sample 
mean (ml ) ,  the sample standard deviation (a), and a bit map 
where the ones and zeros indicate whether the pixel values are 
above or below the threshold. The data rate is then determined 
by the block size k and the number of bits f that are allocated to 
the sample mean and sample standard deviation of a block. The 
data rate is then given by ( k  + f ) /  k = 1 + (f/ k) bits, as shown 
in ~ i ~ .  4. F~~ instance, for k = 16 and with the use of 10 bits to 
jointly quantize ml and a, the image would be to 
1 + (10/16) = 1.625 bpp. 

The issue of how many bits to assign to the sample mean and 
sample standard deviation was discussed in detail in [ 7,111. The 

a = m l - - a  - 
/ k Q q ’  

b = m l +  a/?. (5) 

Rather than selecting the threshold to be the mean, we can 
add an additional constraint to Eq. (4) in order to determine the 
threshold of the quantizer. This is done by preserving the third 
sample moment ( m3): 

km3 = ( k  - q)a3  + qb3, (6) 

where m3 is given by 

l k  
m3 = - x?. 

k 1 = l  
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most important concept to note is that when the sample mean 
is small or large, the sample standard deviation must be small 
given the dynamic range of the pixel values. One can exploit this 
and assign fewer bits to the sample standard deviation. In [ 111 
it was shown that one could also use spatial masking models to 

(7) 
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FIGURE 4 Data rate vs. block size. (See color section, p. C-23.) 
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FIGURE 5 
presence of channel errors. 

BTC with errors: (a) original image; (b) image compressed to 1.625 bpp; (c) performance of BTC in the 

reduce the number of bits assigned to the mean and standard 
deviation, with 10 bits typically being enough to jointly quan- 
tize both values. The performance of BTC when the first three 
moments are preserved is illustrated in Fig. 5. The image shown 
in Fig. 5(b) is compressed to data rate of 1.625 bpp. 

Another advantage to BTC is that channel errors do not prop- 
agate in the decompressed image because BTC produces a fixed 
length binary representation of each block. Figure 5(c) shows 
the performance of BTC in the presence of channel errors when 
the channel has a bit error probability of 

Other techniques can be used to design a 1 -bit quantizer; for 
instance, one can use a fidelity criterion such as mean square er- 
ror (MSE) or meanabsoluteerror (MAE). Ifwelet y l ,  y2, . . . , yk 
be the xi’s sorted in ascending order, that is, the order statistics 
of xi’s (see Chapter 4.4), the MSE is then given by 

k-q-1 m 

MSE = C (vi - a)2  + (Vi - b)’. (9) 
i = l  i=k-q 

By minimizing the MSE, a and b are 

When minimizing the MAE, Eq. (11), we find the values of a 
and b are given in Eq. (12): 

k-a-I m 

i = l  i = k - q  

A comparison between the use of MSE, MAE, and BTC is given 
in [5]. 

The main feature of BTC is the simplicity of its implemen- 
tation, particularly because of low decompression complexity. 
Because of the block nature of the algorithm, the boundaries of 
adjacent blocks can sometimes be visible. The artifacts produced 
by BTC are usually seen around edges and in low contrast ar- 
eas containing a sloping gray scale. In some images, edges may 
appear to be ragged despite being sharp, and some sloping gray 
levels may exhibit false contours [ 51. 

3 Moment Preserving Quantization 

In this section we will develop the moment preserving (MP) 
quantizer. We will show that quantizers that preserve moments 
can be derived in closed form when the input probability density 
function is symmetric and the number of levels is relatively small. 
We will discuss how a MP quantizer can be formulated as the 
classical Gauss-Jacobi mechanical quadrature problem. 

Since the advent of the use of pulse code modulation systems, 
there has been great interest in the design of quantizers. It was 
observed that non-uniform quantizers possessed properties that 
could be used to achieve results such as alower mean square error 
or enhanced subjective performance in the areas of speech and 
image compression. These types of quantizers are designed for 
a particular input probability distribution function relative to a 
particular performance index or fidelity criterion. The most pop- 
ular fidelity criterion used is that of the MSE between the input 
and output, with the quantizer designed to minimize the mean 
square error. Other pointwise measures have also been proposed, 
such as the MAE criterion. Studies have shown that pointwise 
fidelity criteria cannot be used reliably in image coding [ 121. 

Preserving the moments ofthe input and output of a quantizer 
has been proven to be avery successful approach for image coding 
[5, 111. Block truncation coding, as described in the previous 
section, uses a small number of levels and a nonparametric form 
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of a moment preserving quantizer. By nonparametric we mean 
that the quantizer was designed to fit the actual data; no a priori 
probability distribution function is assumed. We will approach 
the problem by first examining a two level MP quantizer and 
then generalize the result to Q-levels. 

Let the random variable X denote the input to the quantizer, 
whose probability distribution function is F (x) ,  x E [ c, d ]  . The 
interval [ t, d] can be finite, infinite, or semi-infinite. Let Y de- 
note the random variable at the output of the quantizer. For a 
two-level quantizer, the random variable Y is discrete and takes 
on the values {yl, y2) with probabilities PI = prob(Y = yl) 
and P2 = prob(Y = y2). The output Y takes on the value y1 
whenever the input x is below some threshold x h ;  otherwise the 
output is y2. Therefore, in general, to design any two-level quan- 
tizer one must choose the two output levels y1 and y2 (designated 
by a and b in the previous section), and the input threshold xh, 
as illustrated in Fig. 3. It is necessary that the quantizer preserve 
the first three moments of the input; otherwise one of the three 
parameters would have to be known (or guessed) initially [ 71. 
To specify the quantizer one must solve the following equations 
for y1, y2, and xth: 

where the expectation operator is defined by 

We shall assume throughout this presentation that the mo- 
ments exist and are finite. Equation (13) can be rewritten as 

where mi = E [X’], 

PI = prob(X 5 xh)  = F(xth) ,  

P2 = prob(X > xth) = 1 - F (xth). 

then becomes 

By solving the first two equations for y1 and y2 in terms of 
F (xth) and using these solutions in the last equation, we arrive 
at the desired results: 

This result is interesting in that the quantizer can be written in 
closed form. The above result in Eq. (16) also indicates that the 
threshold xth is nominally the median of X and not the mean, as 
one would expect. The third moment m3 is in general a signed 
number and can be thought of as a measure of skewness in the 
probability distribution function. This result indicates that the 
threshold is biased above or below the median according to the 
sign and magnitude of this skewness. These results are similar to 
those of BTC in the previous section, the difference being that 
BTC uses sample moments [ 51. It should be noted that at this 
point we have no guarantee that y1 I xth 5 y2. This problem 
will be addressed below. 

The MP quantizer can be generalized to Q levels. One needs 
to recognize that for a Q-level quantizer there are Q output levels 
and Q - 1 thresholds. So if we desire an Q-level MP quantizer 
we need to know the first 2 Q - 1 moments, i.e., the Q-level MP 
quantizer preserves 2 Q - 1 moments. This, as shown in [ 131, 
guarantees the uniqueness of the quantizer. For large Q this does 
lead to the problem ofknowing a large set of moments for a given 
distribution. 

To arrive at the desired quantizer we need to know Q output 
levels {yl, y2, . . . , YQ} and Q - 1 thresholds {XI, x2, . . . , X Q - ~ }  

with y1 5 x1 i y2 eyQ-1 < XQ-1 5 YQ. We again assume 
ml = 0 and m2 = 1, and solve 

d Q 
m, = x ” d F ( x )  = y7Pi for n = 0, 1,2 , .  . ., 2Q- 1, 

J C  i=l 
(17) 

where 
When Eq. (14) is solved for y1, y2, and Xth, the quantizer 

obtained is such that the first three moments of X and Y are 
identical. To find xth we shall assume that F-’ ( a )  exists. 

xo = c, 

XQ = d, 
m, = E [X”], 
Pi = F ( x i )  - F(xi-l) = prob(Y = yi). 

Without loss of generalitywe shall further assume that w11 = 0 
and m2 = 1, i.e., Xis zero mean and unit variance. Equation ( 14) 
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For a large class of practical problems where F ( x )  admits 
a probability density function f ( x )  and if f ( x )  is even, i.e., 
f ( x )  = f ( - x ) ,  then the complexity of Eq. (17) is simplified 
since m, 0 for n odd and the quantizer itself is symmetric. For 
a symmetric probability density function, a closed form solution 
has been obtained for Q = 2,3,4 [ 131. 

Equation (17) can be recognized as a form of the Gauss- 
Jacobi mechanical quadrature [ 141. The output levels, yi, of a 
Q-level MP quantizer are the zeros of the Qth degree orthogo- 
nal polynomial associated with F ( x ) .  The Pi are the Christoffel 
numbers and the xi and yi alternate by the separation theo- 
rem of Chebyshev-Markov-Stieltjes [ 141. A review of orthogo- 
nal polynomials, the Gauss-Jacobi mechanical quadrature, and 
the separation theorem are presented in [ 131. 

Table 1 shows the MP quantizer thresholds and output lev- 
els for an input that has a zero mean, unit variance Gaussian 
probability density function (PDF). MP quantizer thresholds 
and output levels for uniform and Laplacian probability distri- 
bution functions and other distributions are given in [ 7, 131. 

For comparison purposes the mean square error of the quan- 
tizer and the entropy of the output are shown. 

The results for PDFs on an infinite interval exhibit one of the 
disadvantages of the MP quantizer. The outputs at y1 and YQ 
have a tendency to spread much further from the origin than a 
minimum MSE quantizer. What this says is that the quantizer 
assigns output levels that have a small probability of occurrence. 
These assignments of small probability output levels are reflected 
by the low values of the entropy for MP quantizers [ 131. This 
indicates that it would be very hard to evaluate the MP quantizer 
for large values of Q (say larger than 30) because the output 
levels would be assigned such small probability of occurrence 
that one could have problems with computationally accuracy. 
Also it is no easy task to compute the zeros of a polynomial of 

high degree. These types of problems do not manifest themselves 
in the MSE quantizer because of the types of algorithms used to 
determine the output levels and input thresholds. Convergence 
properties of the MP quantizer for large Q are derived in [ 131. 
It is also shown that the quantization error of the MP quantizer 
is negatively correlated with the input. 

4 Variations and Applications of BTC 

We will not attempt to list all the variations and extensions made 
to BTC over the years; rather we provide a general idea ofthe ways 
in which BTC has been used in image and video compression. 
Overviews of the many different variants of BTC are presented 
in [15, 161. 

The first comparison study of the performance of BTC was 
done in 1980 [ 171. In this study BTC was compared with the DCT 
and hybrid coding techniques in the context of high-resolution 
aerial reconnaissance imagery. This study showed that at data 
rates from 1-3 bits/pixel (monochrome images), BTC performed 
very favorably compared to the other techniques. 

After the initial work on BTC and moment preserving quan- 
tizers [ 131, the group at Purdue worked on several enhancements 
and extensions to the basic algorithm. These include coding 
graphics images [ 111, predictive coding [ 181, coding color im- 
ages [ 191, the use of absolute moments [ 191, video compression 
[20, 211, and hardware implementations [22]. Figure 6 illus- 
trates one of the recent applications of BTC in coding color im- 
ages [23]. Here BTC is used in a multiresolution decomposition 
of the image to achieve a data rate of 1.89 bpp. 

A great deal of work has been done on the use of absolute 
moments [24]. The use of absolute moments is interesting in that 
the mean square performance is better than the standard BTC 

(a) (b) 

FIGURE 6 
1.89 bpp. (See color section, p. C-23.) 

Illustration of the use of BTC in color image compression: left, original image; right, image encoded at 
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TABLE 1 Positive thresholds and output levels for a MP quantizer for a zero mean, unit variance Gaussian PDF 
~~ ~ 

Quantizer Output Levels Thresholds Quantizer Output Levels Thresholds 

Q = 2  
Entropy 1.00 
MSE 0.4042 

Q = 3  
Entropy 1.2516 
MSE 0.2689 

Q = 4  
Entropy 1.4423 
MSE 0.2032 

Q = 5  
Entropy 1.5936 
MSE 0.1626 

Q = 6  
Entropy 1.7188 
MSE 0.1362 

Q = 7  
Entropy 1.8255 
MSE 0.1166 

Q = 8  
Entropy 1.9185 
MSE 0.1024 

Q = 9  
Entropy 2.0008 
MSE 0.0909 

1.0 

0.0000 
1.7312 

0.7419 
2.3344 

0.0000 
1.3557 
2.8570 

6.6167 
1.8892 
3.3242 

0.0000 
1.1544 
2.3667 
3.7504 

0.5391 
1.6365 
2.8025 
4.1445 

0.0000 
1.0233 
2.0768 
3.2054 

0.0 

0.9673 

0.0000 
1.6866 

0.7277 
2.2820 

0.0000 
1.3338 
2.8003 

0.6081 
1.8624 
3.2648 

0.0000 
1.1408 
2.3364 
3.6890 

0.5332 
1.6193 
2.7694 
4.0818 

Q =  10 
Entropy 2.0748 
MSE 0.0820 

Q = 1 1  
Entropy 2.1419 
MSE 0.0745 

Q =  12 
Entropy 2.2032 
MSE 0.06841 

Q =  13 
Entropy 2.2598 
MSE 0.0631 

Q =  14 
Entropy 2.3123 
MSE 0.0587 

Q =  15 
Entropy 2.3611 
MSE 0.0547 

Q =  16 
Entropy 2.4060 
MSE 0.0519 

0.4849 

2.4843 
3.5818 
4.8595 
0.0000 

0.9288 
1.8760 
2.8651 
3.9361 
5.1880 

0.4444 
1.3404 
2.2595 
3.2237 
4.2718 
5.5009 

0.0000 
0.8567 
1.7254 
2.6207 
3.5634 
4.5914 
5.8002 

0.4126 
1.2427 
2.0883 
2.9630 
3.8869 
4.8969 
6.0874 

0.0000 
0.7991 
1.6067 
2.4324 
3.2891 
4.1962 
5.1901 
6.3639 

0.3868 
1.1638 
1.9519 
2.7602 
3.6009 
4.4929 
5.4722 
6.6308 

1.4650 
0.0000 
1.0137 
2.0568 
3.1702 
4.4491 

0.4805 
1.4537 
2.4620 
3.5449 
4.7951 

0.0000 
0.9216 
1.8615 
2.8409 
3.8979 
5.1232 

0.4409 
1.3309 
2.2429 
3.1978 
4.2324 
5.4358 

0.0000 
0.8509 
1.7142 
2.6026 
3.5363 
4.5512 
5.7349 

0.4096 
1.2352 
2.0755 
2.4435 
3.8586 
4.8560 
6.0221 

0.0000 
0.7943 
1.5977 
2.4182 
3.2683 
4.1670 
5.1485 
6.2986 
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approach. A very interesting recent paper by Ma [25] examines 
the earlier work done at Purdue by Lema and Mitchell [ 191 and 
argues that this workis often improperly cited. BTC has also been 
used with vector quantization, nonlinear filters, and multilevel 
quantizers. Many video compression schemes have proposed 
using BTC, including HDTV [ 261. 

Because of its low complexity, BTC is attractive for hardware 
or software implementation. The first paper describing an inte- 
grated circuit approach was prepared in 1978 [27], with more 
recent interest being in video [28]. Many software implemen- 
tations have been proposed, including Sun’s CellB video format 
[29], which is used in their XIL library and as part of the mul- 
ticast transport used on the Internet. The XMovie [30] archi- 
tecture that has been suggested for multimedia systems is an 
extension of the DECs Software Motion Pictures [31] system 
based on BTC. Perhaps one of the most interesting recent ex- 
tensions of BTC is in the area of binary pattern image coding 
[ 101, whereby the BTC bit plane is extended so that only certain 
patterns in each block are encoded. An excellent example of this 
approach is visual pattern coding [ 321, which can preserve lo- 
cal gradients in each image block. These techniques have been 
shown to work quite well for video in multimedia applications 
at data rates below 100 kb/s. 

5 Conclusions 

Block truncation coding has come a long way since March 1977. 
Despite the recent work in image video compression standards, 
BTC is still attractive in many applications that require low com- 
plexity and moderate data rates. These include Internet video 
with software-only codecs, digital cameras, and printers. On the 
research side, work continues on combining BTC with other 
techniques and approaches to improve performance. As in all 
research, one never knows where this work will lead. We have 
no doubt that BTC will be of interest to the research community 
and applications engineers well into the next century. 
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In this age of information, we see an increasing trend toward 
the use of digital representations for audio, speech, images, and 
video. Much of this trend is being fueled by the exploding use 
of computers and multimedia computer applications. The high 
volume of data associated with digital signals, particularly digital 
images and video, has stimulated interest in algorithms for data 
compression. Many such algorithms are discussed elsewhere in 
this book. At the heart of all these algorithms is quantization, a 
field of study that has matured over the past few decades. In sim- 
plest terms, quantization is a mapping of a large set of values to a 
smaller set ofvalues. The concept is illustrated in Fig. 1 (a), which 
shows on the left a sequence of unquantized samples with am- 
plitudes assumed to be of infinite precision, and on the right that 
same sequence quantized to integer values. Obviously, quantiza- 
tion is an irreversible process, since it involves discarding infor- 
mation. If it is done wisely, the error introduced by the process 
can be held to a minimum. 

The generalization of this notion is called vector quantization, 
commonly denoted VQ. It too is a mapping from a large set to a 
smaller set, but it involves quantizing blocks of samples together. 
The conceptual notion ofVQ is illustrated in Fig. 1 (b). Blocks of 
samples, which weview asvectors, are represented by codevectors 

stored in a codebook- aprocess called encoding. The codebook 
is typically a table stored in a digital memory, where each table 
entry represents a different codevector. A block diagram of the 
encoder is shown in Fig. 2. The output of the encoder is a binary 
index that represents the compressed form of the input vector. 
The reconstruction process, which is called decoding, involves 
looking up the corresponding codevector in a duplicate copy of 
the codebook, assumed to be available at the decoder. 

The general concept of VQ can be applied to any type of digital 
data. For a one-dimensional signal as illustrated in Fig. l(b), 
vectors can be formed by extracting contiguous blocks from 
the sequence. For two-dimensional signals (i.e,, digital images) 
vectors can be formed by taking 2-D blocks, such as rectangular 
blocks, and unwrapping them to form vectors. Similarly, the 
same idea can be applied to 3-D data (i.e., video), color and 
multispectral data, transform coefficients, and so on. 

2 Theory of Vector Quantization 

Although conceptually simple, there are a number of issues asso- 
ciated with VQ that are technically complex and relevant for an 
in-depth understanding of the process. To address these issues, 
such as design and optimality, it is useful to treat VQ in a math- 
ematical framework. 

Figures 1-7 copyright @ 2000 by Mark J. T. Smith copyright @ 2000 by Academic Press. 
All rights of reproduction in a T  form reserved 485 
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real numbers integers 

codevectors 

unquantized samples codebook with 2-D codevectors 
(b) 

FIGURE 1 Illustration of (a) scalar and (b) vector quantization. 

Toward this end, we can view VQ as two distinct operations - 
encoding and decoding - shown explicitly in Fig. 2. The encoder 
E performs a mapping from k-dimensional space Rk to the index 
set Z, and the decoder D maps the index set Z into the finite 
subset C, which is the codebook. The codebook has a positive 
integer number of codevectors that defines the codebook size. 
In this chapter, we will use N to denote the codebook size and 
yi to denote the codevectors, which are the elements of C. The 
bit rate R associated with the VQ depends on N (the number of 
codevectors in the codebook) and the vector dimension k. Since 
the bit rate is the number of bits per sample, 

R = (log, N)/k. (1) 

It is interesting to note that for VQ it is natural to have frac- 
etc. in contravention to basic tional bit rates such as 

ENCODER DECODER 
E - I - D reconstructed -51- output index - + l " ; " " p t ' " = y i  

i 

000 

00 1 
010 

111 

F I G W  2 Block diagram of a VQ encoder and decoder 

(fixed-rate) scalar quantization, in which noninteger rates do 
not arise naturally. 

The operation associated with the decoder is extremely simple, 
involving no arithmetic at all. Conversely, the encoding proce- 
dure is complex, because a best matching vector decision must be 
made from among many candidate codevectors. To select a best 
matching codevector, we employ a numerically computable dis- 
tortionmeasure d(x, yi),wherelowvalues of d(., e) implyagood 
match. There are many distortion measures that can be consid- 
ered for quantifymg the "quality of match" between two vectors 
x and y, the most common of which is the squared error given by 

k 
d(x, Y) = (x - Y)"X - Y) = C(xt.eI - y [ m  

e=i 

where x [ l ]  and y [ l ]  are the elements of the vectors x and y, 
respectively. For a vector x to be encoded, distortions are com- 
puted between it and each codevector yj in the codebook. The 
codevector producing the smallest distortion is selected as the 
best match and the index associated with that codevector is used 
for the representation. 

This process of encoding has an interesting and useful in- 
terpretation in the k-dimensional space. The set of codevectors 
defines apartition of Rk into N cells x, where i = 1,2, . . . , N. 
If we let & ( e )  represent the encoding operator, then the ith cell 
is defined by 

= {x E Rk : Q(x) = y i } .  ( 2 )  

Partitions of this type that are formed uniquely from the 
codebook and a nearest neighbor distortion metric such as the 
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(a) 

FIGURE 3 Illustration of the partition cells associated with VQ and scalar 
quantization: (a) partition cells for a 2-D VQ; (b) partition cells corresponding 
to scalar quantization. 

squared error distortion are called Voronoi partitions. The no- 
tion of partitioning can be visualized easily in two dimensions, 
an illustration of which is shown in Fig. 3(a). Here, each vec- 
tor has two elements ( X I ,  ~ 2 )  and consequently is a point in the 
two-dimensional space. That is, both the input vectors andcode- 
vectors are points in this space. The encoding procedure defines 
a unique partitioning of the space as shown in the figure, where 
the black dots denote codevectors. 

The qualityofperformance ofaVQ is typically measuredby its 
average distortion for a given input source. In practice, sources 
are typically signal samples, image pixels, or some other data 
output associated with a signal that is being compressed. What- 
ever the source, average distortion measures are typically used 
to quantify the performance of a vector quantizer; the smaller 
the average distortion, the better the performance. 

Vector quantizers are of interest because their performance is 
better than that of scalar quantization. The inherent advantage of 
VQ over scalar quantization can be understood through the con- 
cept of partitioning. Consider a fictitious input source for which 
we have designed an optimal 2-D codebook. Further, assume 
that the codevectors are those shown in Fig. 3(a). Observe that 
there are 16 2-D codevectors, implying a bit rate of 4 bitshector, 
which is equivalent to 2 bitshample. An optimal VQ design al- 
lows these codevectors to be positioned according to the statis- 
tical distribution of the input source vectors. Said another way, 
the codevectors are positioned to minimize the average distor- 
tion D = E { (x, y)}, where x and y are viewed as random vectors 
and E denotes the expected value. Assume the codevectors shown 
in Fig. 3(a) as black dots represent an optimal VQ for the input 
source in question. The associated partitions shown in the figure 
illustrate the diversity of cell shapes and sizes that VQ can realize. 

Now consider quantizing our fictional input source with scalar 
quantization at an equivalent bit rate of 2 bits/sample. Two bits 
gives us four levels we can use to quantize the XI  and xz axes. The 
cells implied by using a scalar quantizer for the input source are 
shown in Fig. 3(b). Notice that we have exactly 16 cells but that 
each cell is constrained to be rectangular. Moreover, scalar quan- 
tization imposes a structure that forces some cells to be placed 
in regions in the space where the input source may not be signif- 

icantly populated. These observations lead to two immediately 
recognizable advantages of VQ over scalar quantization for the 
general k-dimensional case. First, VQ provides greater freedom 
to control the shapes ofthe celIs to achieve more efficient tilings of 
the k-dimensional space. This property is often called ceZl shape 
gain. Second, VQ allows a greater number of cells to be con- 
centrated in the k-dimensional regions where the source has the 
greatest density, which reduces the average distortion. Structural 
constraints associated with the scalar quantizer prevent it from 
capturing this property of the input. In general terms, because 
VQ operates on blocks of samples, it is able to exploit inher- 
ent statistical dependencies (both linear and nonlinear) within 
the blocks. The resulting gains in efficiency improve with higher 
vector dimension. 

3 Design of Vector Quantizers 

The key element in designing a VQ is determining the codebook 
for a given input source. In practice, the input source is repre- 
sented by a large set of representative vectors called a training 
set. Over the years, there have been many algorithms proposed 
for VQ design. The most widely cited is the classical iterative 
method attributed to Linde, Buzo, and Gray, known as the LBG 
algorithm [2]. The LBG algorithm is fashioned around certain 
necessary conditions associated with the distinct encoder and 
decoder operations implicit in VQ. The first of these conditions 
states that for a fixed decoder codebook, an optimal encoder 
partition of Rk is the one that satisfies the nearest neighbor rule, 
which says that we map each input vector to the cell 9 produc- 
ing the smallest distortion. By that measure, we are selecting the 
codevector that is nearest to the input vector. 

The second optimality condition is the centroid condition. It 
states that for a given encoder partition cell, the optimal decoder 
codeword is the centroid of that cell, where the centroid of cell 
V;: is the vector y* that minimizes E { d(x, y) Ix E V;: }, the average 
distortion in that cell. The centroid is a function of the distortion 
measure and is different for different distortion measures. For 
the popular squared error distortion, the centroid is simply the 
arithmetic average of the vectors in cell vi, i.e., 

where 11 K 11 denotes the number of vectors in cell V;.. 
It can be shown that local optimality can be guaranteed by up- 

holding these conditions, subject to some mild restrictions [ 11. 

3.1 The LBG Design Algorithm 
The necessary conditions for optimality provide the basis for 
the classical LBG VQ design algorithm. The LBG algorithm 
is a generalization of the scalar quantization design algorithm 
introduced by Lloyd, and hence it is also often called the gen- 
eralized Lloyd algorithm, or GLA. Interestingly, this algorithm 
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was known earlier in the pattern recognition community as the 
k-means algorithm. 

The steps of the LEG algorithm for the design of an N vec- 
tor codebook are straightforward and intuitive. Starting with a 
large training set (much larger than N), one first selects Ninitial 
codevectors. Initial codevectors can be selected randomly from 
the training set. There are two basic steps in the algorithm: en- 
coding of the training vectors, and computation of the centroids. 
To begin, we first encode all the training vectors using the initial 
codebook. This process assigns a subset of the training vectors 
to each cell defined by the initial codevectors. Next, the centroid 
is computed for each cell. The centroids are then used to form 
an updated codebook. The process then repeats iteratively with 
a recoding of the training vectors and a new computation of the 
centroids to update the codebook. Ideally, at each iteration, the 
average distortion is reduced until convergence. 

In practice, convergence is often slow near the point of con- 
vergence. Hence, in the interest of time, one often terminates the 
iterative algorithm when the codebook is very close to the local 
optimum. There are many stopping criteria that can be consid- 
ered for this purpose. One approach in particular is to compute 
the average distortion D(‘) between the training vectors and the 
codevectors periodically during the design process, where the 
superscript 1 denotes the Cth iteration. If the normalized dif- 
ference in distortion from one iteration to the next falls below a 
prespecified threshold, the design process can be terminated. For 
example, one could evaluate V at each iteration and compute 
the normalized difference, 

where forced termination is imposed when this normalized dif- 
ference becomes less than the stopping threshold. 

Often convergence proceeds smoothly. On occasion, the en- 
coding stage of a given iteration may result in one or more cells’ 
not being populated by any of the training vectors. This situa- 
tion, known as the “empty cell” problem, effectively reduces the 
codebook size against our wishes. This condition when detected 
can be addressed in any one of a number of ways, one in partic- 
ular consisting of splitting the cell with the greatest population 
in two to replace the lost empty cell. 

3.2 Other Design Methods 
Many methods of VQ design have appeared in the literature in 
recent years. Some focus on finding a good initial set of codevec- 
tors, which are then passed on to a classical LBG algorithm. By 
starting with a good initial codebook, one not only converges to 
a good solution, but generally converges in fewer iterations. Ran- 
domly selectingthe initial codevectors from the training set is the 
easiest approach. This approach often works well, but sometimes 
it does not provide sufficient diversity to achieve a good locally 
optimal codebook. A simple variation that can be effective for 
certain sources is to select the N vectors (as initial codevectors) 

from the training set that are farthest apart in terms of the dis- 
tortion measure. This tends to assure that the initial codevectors 
are widely distributed in the k-dimensional space. 

Alternatively, one can apply the splitting algorithm, which is 
a data dependent approach that systematically grows the ini- 
tial codebook. The method, introduced in the original paper by 
Linde et al. [2], starts with a codebook consisting of the entire 
training set. First the centroid of the training set is computed. 
This centroid is then split into two codewords by perturbing 
the elements of the centroid. For instance, this could be done 
by adding some small value epsilon to each element. The origi- 
nal centroid and the perturbed centroid are used to encode the 
training set, after which centroids are computed to form a new 
initial codebook. These new centroids can then be perturbed and 
used to encode the training set. After centroids are computed, 
we have four codevectors in the codebook The process can be 
repeated until N codevectors are obtained. At this point, the LBG 
algorithm can be applied as described earlier. 

These approaches are intended primarily as a way to obtain 
initial codebooks for the LBG algorithms. Other methods have 
been proposed that attempt to find good codebooks directly, 
which may be optimized further by the LBG algorithm if so de- 
sired. One such algorithm in particular is the pairwise nearest 
neighbor, or PNN, algorithm [3].  In the PNN algorithm, we start 
with the training set and systematically merge vectors together 
until we arrive at a codebook of size N. The idea is to identify 
pairs ofvectors that are closest together in terms ofthe distortion 
measure, and replace these two vectors with their mean, which 
reduces the codebook size at each stage. The PNN algorithm ef- 
fectively merges those partitions that would result in the smallest 
increase in distortion. 

The task of finding partitions to be merged is computationally 
demanding. In order to avoid this, a fast PNN method was devel- 
oped that does not attempt to find the absolute smallest cost at 
each step. The interested reader is referred to the original paper by 
Equitz [ 31 for details. Codebooks designed by the PNN algorithm 
can be used directly for VQ or as initial codebooks for the LBG 
algorithm. It has been observed that using the PNN algorithm 
as a front end to the LBG algorithm (i.e., in lieu of the random 
selection or splitting methods) can lead to better locally optimal 
solutions. It is impossible to discuss all the design algorithms that 
have been proposed. However, it is appropriate to mention a few 
others in closing this section. There are a number of modifica- 
tions to the LBG algorithm that can lead to an order of magnitude 
speedup in design time. One approach involves transforming all 
the training vectors into the discrete cosine transform domain 
and performing the VQ design in that domain. Because many of 
the transform coefficients are close to zero and hence can be ne- 
glected, codebook design can be performed effectivelywithlower 
dimensional vectors. Although there is overhead associated with 
performing the transform, it is offset by the efficiency concomi- 
tant with the design in a reduced dimensional space. 

Neural nets have also been considered for VQ design. A num- 
ber of researchers have successfully used neural nets to generate 
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VQ codebooks [5,6]. Neural net algorithms can have advant- 
ages over the classical LBG algorithm, such as less sensitivity to 
the initialization of the codebook, better rate-distortion perfor- 
mance, and faster convergence. 

The ultimate design algorithm is one that finds the global 
optimal. Several attempts at this have been reported, such as 
design by simulated annealing, by stochastic relaxation, and by 
genetic algorithms [7-lo]. Algorithms of this type are perhaps 
the best in terms of performance, but they tend to have a very 
high computational complexity. Interestingly, amid all of these 
choices, the LBG algorithm still remains one of the most popular. 

4 VQ Implementations 

VQ is attractive because it has a performance advantage over 
scalar quantization. However, like all things in life, quality comes 
with a price. For VQ, that price comes in the form of increased en- 
coder complexity and codebook memory. The number of code- 
vectors that must be stored in a codebook grows exponentially 
with increasing bit rate. For example, a 16-dimensional VQ at 
a rate of 0.25 bits/sample requires a codebook of size 16, while 
the same VQ at a rate of 1 bit/sample requires 65,536 codevec- 
tors. Codebook memory also grows exponentially with vector 
dimension. For example, an eight-dimensional VQ at a rate of 
1 bithample (with 1 byte codevector elements) would occupy 
2048 bytes. Increasing the dimension to 32 causes the memory 
storage requirement to jump to over 34 Gbytes. Similarly, the 
same kind of exponential dependence exists for encoder com- 
plexity. Unlike scalar quantization, careful attention should be 
given to dimension and rate, because memory and complexity 
requirements can easily become prohibitively large. As a general 
rule, VQs that are employed in practice have a dimension of 16 
or less, because complexity, memory, and performance tradeoffs 
are generally most attractive in this range. 

A host of fast search methods have been reported for VQ that 
can be grouped into two general types. The first can be called fast 
optimal search methods, which are optimal in the sense that they 
guarantee that the encoder will find the best matching codevector 
for each input vector [ 1 , 1 1 ,121. 

One of the simplest methods of this type is known as the 
partial distortion method. Consider the VQ encoder in which in 
the conventional paradigm the input vector x is compared to 
each of the codevectors by explicit computation of d(x, yJ for 
i = 1,2, . . . , N. The partial distortion method involves keeping 
track of the lowest distortion calculation to date as the codebook 
is being searched. To understand how complexity is reduced, 
assume that we have searched N/4 of the codevectors in the 
codebook and that the minimum distortion found thus far is 
D[min]. For the next distortion calculation, we compute 

Ir 

L=l 

where x [ l ]  and yi [e]  are the elements ofx and yi, respectively. If 

during the process of evaluating the summation above, the value 
of D [ i ]  exceeds D[min], then we can terminate the calculation 
since we know that this vector is no longer a candidate. The net 
result of applying this procedure for encoding is that many of 
the vectors will be eliminated from further consideration prior 
to the full evaluation of the distortion calculation. 

In addition, the triangle inequality can be used to reduce com- 
plexity, the idea being to use some reference points from which 
the distance to each code vector is precomputed and stored. 
The encoder then computes only the distance between the input 
vector and each reference point. Using these less complex com- 
parisons in conjunction with precomputed data, one can achieve 
a reduction in complexity. The speed improvement realized by 
techniques of this type are clearly dependent on the codebook 
and input source; however, in general, one can expect a modest 
speedup. 

Although every little bit helps, the complexity gains realized 
by optimal fast search algorithms fall short of addressing the ex- 
ponential complexity growth associated with VQ. In this regard, 
efficient structured VQ encoding algorithms are attractive. 

5 Structured VQ 

A class of time-efficient methods has been studied extensively 
that sacrifice performance for substantial improvement in speed. 
The approach taken is to impose efficient structural constraints 
on the VQ codebook. These constraints are often formulated to 
make encoding complexity and/or memory linearly or quadrat- 
ically dependent on the rate and dimension rather than expo- 
nentially dependent. The price paid, however, is usually inferior 
performance for the same rate and dimension. Nonetheless, the 
substantial reduction in complexity usually more than offsets 
the degradation in performance. To begin, we consider the most 
popular structured VQ of this class, tree-structured vector quan- 
tization (TSVQ) . 

5.1 Tree-Structured V Q  
TSVQ consists of a hierarchical arrangement of codevectors, 
which allows the codebook to be searched efficiently. It has the 
property that search time grows linearly with rate instead of ex- 
ponentially. Binary trees are often used for TSVQ because they 
are among the most efficient in terms of complexity. The con- 
cept of TSVQ can be illustrated by examining the binary tree 
shown in Fig. 4. As shown, the TSVQ has a root node at the 
top of the tree with many paths leading from it to the bottom. 
The codevectors of the tree, 

yooo, yoo1, . * * > Yll l ,  

are represented by the nodes at the bottom. The search path to 
reach any node (i.e., to find a codevector) is shown explicitly in 
the tree. In our particular example there are N = 8 codebook 
vectors and N = 8 paths in the tree, each leading to a different 
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FIGURE 4 TSVQ diagram showing a three-level balance binary tree. 

codevector. To encode an input vector x, we start at the top and 
move to the bottom of the tree. During that process, we en- 
counter v = 3 (or log, N> decision points (one at each level). 
The first decision (at level v = 1) is to determine whether x is 
closer to vector yo or y1 by performing a distortion calculation. 
After a decision is made at the first level, the same procedure is 
repeated for the next levels until we have identified the codeword 
at the bottom of the tree. For a binary tree, it is apparent that 
N = 2’, which means that for a codebook of size N, only log, N 
decisions have to be made. As presented, this implies the com- 
putation of two vector distortion calculations, d ( - ,  .), for each 
level, which results in only 2 log, N distortion calculations per 
input vector. 

Alternatively, one can perform the decision calculation expli- 
citly in terms of hyperplane partitioning between the intermedi- 
ate codevectors. The form of this calculation is the inner product 
between the hyperplane vector and input vector, where the sign 
of the output (+ or -) determines selection of either the right 
or left branch in the tree at that node. Implementated this way, 
only log, N distortion calculations are needed. 

For the eight-vector TSVQ example above, this results in three 
instead of eight vector distortion calculations. For a larger (more 
realistic) codebook of size N = 256, the disparity is eight versus 
256, which is quite significant. 

TSVQ is a popular example of a constrained quantizer that 
allows implementation speed to be traded for increased memory 
and a small loss in performance. In many coding applications, 
such tradeoffs are often attractive. 

5.2 Mean-Removed VQ 
Mean-removed VQ is another popular example of a structured 
quantizer that leads to memory-complexity-performance trade- 
offs that are often attractive in practice. It is a method for effec- 
tively reducing the codebook size by extracting the variation 
among vectors due specifically to the variation in the mean and 
coding that extracted component separately as a scalar. The mo- 
tivation for this approach can be seen by recognizing that a code- 
book may have many similar vectors differing only in their mean 
values. 

v=3 

A hnctional block diagram of mean-removed VQ is shown in 
Fig. 5. First the mean of the input vector is computed and quan- 
tized with conventional scalar quantization. Then the mean- 
removed input vector is vector quantized in the conventional way 
by using a VQ that was designed with mean-removed training 
vectors. The outputs of the overall system are the VQ codewords 
and the mean values. 

At the decoder, the mean-removed vectors are obtained by 
table loopup. These vectors are then added to a unit amplitude 
vector scaled by the mean, which in turn restores the mean to the 
mean-removed vector. This approach is really a hybrid of scalar 
quantization and VQ. The mean values, which are scalar quan- 
tized, effectively reduce the size of the VQ, making the overall 
system less memory and computation intensive. 

One can represent the system as being a conventional VQ 
with codebook vectors consisting of all possible codewords ob- 
tainable by inserting the means in the mean-removed vectors. 
This representation is generally called a super codebook. The size 
of such a super codebook is potentially very large, but clearly it 
is also very constrained. Thus, better performance can always 
be achieved, in general, by using a conventional unconstrained 
codebook of the same size instead. However, since memory 
and complexity demands are often costly, mean-removed VQ 
is attractive. 

5.3 Gain-Shape Vector Quantization 
Gain-shape VQ is very similar to mean-removed VQ, but it in- 
volves extracting a gain term as the scalar component instead 
of a mean term. Specifically, the input vectors are decomposed 

Mean-Removed 

I 
VQ VQ index t 

U 
X 

Scalar index Scalar 
Quantizer 

FIGURE 5 Block diagram of mean-removed VQ. 
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into a scalar gain term and a gain normalized vector term, which 
is commonly called the shape. The gain value is the Euclidean 
norm given by 

I C  

(3) 

and the shape vector S is given by 

X s = -. (4) 

The gain term is quantized with a scalar quantizer, whereas the 
shape vectors are represented by a shape codebook designed 
specifically for the gain normalized shape vectors. 

g 

Perhaps not surprisingly, gain-shape VQ and mean-removed 
VQ can be combined effectively together to capture the complex- 
ity and memory reduction gains of both. Similarly, the implicit 
VQ could be designed as a TSVQ to achieve further complexity 
reduction if so desired. 

To illustrate the performance of VQ in a printed medium such 
as a book, we find it convenient to use image coding as our ap- 
plication. Comparative examples are shown in Fig. 6. The image 
in Fig. 6(a) is an original eight bit/pixel256 x 256 monochrome 
image. The image next to it is the same image coded with con- 
vention unstructured 4 x 4 VQ at a rate of 0.25 bitdpixel. The 
images on the bottom are results of the same coding using mean- 
removed and gain-shape VQ. From the example, one can observe 
distortion in all cases at this bit rate. The quality, however, for 
the unconstrained VQ case is better than that of the structured 

FIGURE 6 Comparative illustration of images coded using conventional VQ, mean-extraction VQ, and 
gain-shape VQ: (a) original image 256 x 256, Jennifer; (b) coded with VQ at 0.25 bpp (PSNR, 31.4 dB); 
(c) coded with mean-extraction VQ at 0.25 dB (PSNR = 30.85 dB); (d) coded with gain-shape VQ at 0.25 dB 
(PSNR = 30.56 dB). All coded images were coded at 0.25 bits/pixel using 4 x 4 vector blocks. 
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VQs in Fig. 6(c) and Fig. 6(d), both subjectively and in terms of 
the signal-to-noise ratio (SNR). For quantitative assessment of 
the quality, we can consider the peak SNR (PSNR) defined as 

PSNR 

Although the PSNR can be faulted easily as a good objective 
measure of quality, it can be useful if used with care. PSNRs are 
quoted in the examples shown, and they confirm the quality ad- 
vantage of unconstrainedVQ over the structured methods. How- 
ever, the structured VQs have significantly reduced complexity. 

5.4 Multistage Vector Quantization 
A technique that has proven to be valuable for storage and com- 
plexity reduction is multistage VQ. This technique is also referred 
to as residual VQ, or RVQ. Multistage VQ divides the encoding 
task into a sequence of cascaded stages. The first stage performs 
a first-level approximation of the input vector. The approxima- 
tion is refined by the second-level approximation that occurs in 
the second stage, and then is refined again in the third stage, and 
so on. The series of approximations or successive refinements is 
achieved by taking stage vector input and subtracting the coded 
vector from it, producing a residual vector. Thus, multistage VQ 
is simply a cascade of stage VQs that operate on stage residual 
vectors. At each stage, additional bits are needed to specify the 
new stage vector. At the same time, the quality of the representa- 
tion is improved. A block diagram of a residual VQ is shown in 
Fig. 7. 

Codebook design for multistage VQ can be performed in 
stages. First the original training set can be used to design the 
first-stage codebook. Residualvectors can then be computed for 
the training set using that codebook. The next stage codebook 
can then be designed using the first-stage residual training vec- 
tors, and so on until all stage codebooks are designed. This design 
approach is simple conceptually, but suboptimal. Improvement 
in performance can be achieved by designing the residual code- 
books jointly as described in [ 13,141. 

The most dramatic advantage of residual VQ comes from its 
savings in memory and complexity, which for large VQs can 
be orders of magnitude less than that of the unconstrained VQ 
counterpart. In addition, residual VQ has the property that it al- 

lows the bit rate to be controlled simply by specifymgthe number 
of VQ stage indices to be transmitted. 

6 Variable-Rate Vector Quantization 

The basic form of VQ alluded to thus far is more precisely called 
fixed rate VQ. That is, codevectors are represented by binary in- 
dices all with the same length. For practical data compression 
applications, we often desire variable rate coding, which allows 
statistical properties of the input to be exploited to further en- 
hance the compression efficiency. Variable rate coding schemes 
of this type (entropy coders, an example of which is a Huffman 
coder) are based on the notion that codevectors that are selected 
infrequently on average are assigned longer indices, while code- 
vectors that are used frequently are assigned short-length indices. 
Making the index assignments in this way (which is called en- 
tropy coding) results in a lower average bit rate in general and 
thus makes coding more efficient. Entropy coding the codebook 
indices can be done in a straightforwardway. One only needs esti- 
mates ofthe codevector probabilities P(i). With these estimates, 
methods such as Huffman coding will assign to the ith index a 
codeword whose length Li is approximately -log,P(i) bits. 

We can improve upon this approach by designing the VQ 
and the entropy coder together. This approach is called entropy- 
constrained VQ, or ECVQ. ECVQs can be designed by a modi- 
fied LBG algorithm. Instead of finding the minimum distortion 
d(x, yi) in the LBG iteration, one fmds the minimum modified 
distortion 

Ji = d(x, yi) + ALi ,  

where Li = -log,P(i). Employing this modified distortion 
li, which is a Lagrangian cost function, effectively enacts a 
Lagrangian minimization that seeks the minimum weighted cost 
of quantization error and bits. 

To achieve rate control flexibility, one can design a set of code- 
books corresponding to a discrete set of As, which gives a set of 
VQs with a multiplicity of bit rates. The concept of ECVQ is 
powerful and can lead to performance gains in data compres- 
sion systems. It can also be applied in conjunction with other 
structured VQs such as mean-removed VQ, gain-shape VQ, and 
residual VQ; the last of these is particularly interesting. Entropy 
constrained residual VQ, or EC-RVQ, and variations of it have 
proven to be among the most effective VQ methods for direct 
application to image compression. Schemes of this type involve 
the use of conditional probabilities in the entropy coding block 
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FIGURE 7 Block diagram of a residual VQ, also called multistage VQ. 
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where conditioning is performed on the previous stages andlor 
on adjacent stage vector blocks. Like ECVQ, the design is based 
on a Lagrangian cost function, but it is integrated into the RVQ 
design procedure. In the design algorithm reported in [ 14,151, 
both the VQ stage codebooks and entropy coders are jointly op- 
timized iteratively. 

7 Closing Remarks 

In the context of data compression, the concepts of optimality, 
partitioning, and distortion that we discussed are insightful and 
continue to inspire new contributions in the technical literature, 
particularly with respect to achieving useful tradeoffs among 
memory, complexity, and performance. Equally important are 
design methodologies and the use of variable length encoding 
for efficient compression. Although we have attempted to touch 
on the basics, the reader should be aware that the VQ topic area 
embodies much more than can be covered in a concise tutorial 
chapter. Thus, in closing, it is appropriate to at least mention 
several other classes of VQ that have received attention in recent 
years. First is the class of lattice VQs. Lattice VQs can be viewed 
as vector extensions of uniform quantizers, in the sense that the 
cells of a k- dimensional lattice VQ form a uniform tiling ofthe k- 
dimensional space. Searching such a codebook is highly efficient. 
The advantage achieved over scalar quantization is the ability of 
the lattice VQ to capture cell shape gain. The disadvantage, of 
course, is that cells are constrained to be uniform. Nonetheless, 
lattice VQ can be attractive in many practical systems. 

Second is the general class of predictive VQs, which may in- 
clude finite-state VQ (FSVQ), predictive VQ, vector predictive 
VQ, and several others. Some of these predictive approaches 
involve using neighboring vectors to define a state unambigu- 
ously at the encoder and decoder and then employing a specially 
designed codebook for that state. VQs of this type can exploit 
statistical dependencies (both linear and nonlinear) among ad- 
jacent vectors, but they have the disadvantage of being memory 
intensive. 

Finally, it should be evident that VQ can be applied to virtually 
any lossy compression scheme. Prominent examples of this are 
transform VQ, in which the output of a linear block transform 
such as the DCT is quantized with VQ; and subband VQ, in 
which VQ is applied to the output of an analysis filter bank. The 
latter of these cases has proven to yield some of the best data 
compression algorithms currently known. 

Interestingly, application of the principles of VQ extend far 
beyond our discussion. In addition to enabling construction of 
awidevarietyof VQ datacompression algorithms,VQprovides a 
useful framework in which one can explore fractal compression, 

motion estimation and motion compensated prediction, and 
automated classification. The inquisitive reader is challenged to 
explore this rich area of information theory in the literature [ 161. 
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1 What Are Wavelets: Why Are They 
Good for Image Coding? 

During the past decade, wavelets have made quite a splash in the 
field of image compression. In fact, the FBI has already adopted a 
wavelet-based standard for fingerprint image compression. The 
evolving next-generation image compression standard, dubbed 
JPEG-2000, which will dislodge the currently popular JPEG stan- 
dard (see Chapter 5 3 ,  will also be based on wavelets. Given 
these exciting developments, it is natural to ask whywavelets have 
made such an impact in image compression. This chapter will an- 
swer this question, providing both high-level intuition as well as 
illustrative details based on state-of-the-art wavelet-based cod- 
ing algorithms. Visually appealing time-frequencybased analysis 
tools are sprinkled generously to aid in our task. 

Wavelets are tools for decomposing signals, such as images, 
into a hierarchy of increasing resolutions: as we consider more 
and more resolution layers, we get a more and more detailed 
look at the image. Figure 1 shows a three-level hierarchy wavelet 
decomposition of the popular test image Lena from coarse to 
fine resolutions (for a detailed treatment on wavelets and mul- 
tiresolution decompositions, also see Chapter 4.1). Wavelets can 
be regarded as “mathematical microscopes” that permit one to 
“zoom in” and “zoom out” of images at multiple resolutions. 
The remarkable thing about the wavelet decomposition is that 
it enables this zooming feature at absolutely no cost in terms of 
excess redundancy: for an M x N image, there are exactly M N 

wavelet coefficients - exactlythe same as the number of original 
image pixels (see Fig. 2). 

As a basic tool for decomposing signals, wavelets can be con- 
sidered as duals to the more traditional Fourier-based analysis 
methods that we encounter in traditional undergraduate engi- 
neering curricula. Fourier analysis associates the very intuitive 
engineering concept of “spectrum” or “frequency content” of a 
signal. Wavelet analysis, in contrast, associates the equally intu- 
itive concept of “resolution” or “scale” of the signal. At a func- 
tional level, Fourier analysis is to wavelet analysis as spectrum 
analyzers are to microscopes. 

As wavelets and multiresolution decompositions have been 
described in greater depth in Chapter 4.1, our focus here will 
be more on the image compression application. Our goal is to 
provide a self-contained treatment of wavelets within the scope 
of their role in image compression. More importantly, our goal 
is to provide a high-level explanation for why they have made 
such an impact in image compression. Indeed, wavelets are ready 
to dislodge the more traditional Fourier-based method in the 
form of the discrete cosine transform (DCT) that is currently 
deployed in the popular JPEG image compression standard (see 
Chapter 5.5). Standardization activities are in full swing cur- 
rently to deploy the next-generation JPEG-2000 standard in op- 
timistic anticipation of when the supplanting is likely to occur. 
The JPEG-2000 standard will be a significant improvement over 
the current JPEG standard. While details of how it will evolve, 
and what features will be supported, are being worked out dur- 
ing the writing of this chapter, there is only one thing that is not 
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PIGURE 1 A three-level hierarchywavelet decompositionofthe 512 x 512 color Lenaimage. Level 1 (512 x 512) 
is the one-level wavelet representation of the original Lenaat Level 0; Level 2 (256 x 256) shows the one-level wavelet 
representation of the low-pass image at Level 1; and Level 3 (128 x 128) gives the one-level wavelet representation 
of the low-pass image at Level 2. (See color section, p. C 2 4 . )  

in doubt: JPEG-2000 will be wavelet based. We will also cover 
powerful generalizations ofwavelets, known as wavelet packets, 
that have already made an impact in the standardization world 
the FBI fingerprint compression standard is based on wavelet 
packets. chapter. 

Although this chapter is about image coding,' which involves 
two-dimensional (2-D) signals or images, it is much easier to 

'We use the terms image compression and image codinginterchangeably in this 
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FIGURE 2 A three-level wavelet representation of the Lena image generated 
from the top view of the three-level hierarchy wavelet decomposition in Fig. 1. 
It has exactly the same number of samples as in the image domain. (See color 
section, p. C-25.) 

understand the role of wavelets in image coding using a one- 
dimensional (1-D) framework, as the conceptual extension to 
2-D is straightforward. In the interests of clarity, we will there- 
fore consider a 1-D treatment here. The story begins with what 
is known as the time-frequency analysis of the 1-D signal. As 
mentioned, wavelets are a tool for changing the coordinate sys- 
tem in which we represent the signal: we transform the signal 
into another domain that is much better suited for processing, 
e.g., compression. What makes for a good transform or analysis 
tool? At the basic level, the goal is to be able to represent all the 
useful signal features and important phenomena in as compact 
a manner as possible. It is important to be able to compact the 
bulk of the signal energy into the fewest number of transform 
coefficients: this way, we can discard the bulk of the transform 
domain data without losing too much information. For exam- 
ple, if the signal is a time impulse, then the best thing is to do 
no transforms at all! Keep the signal information in its original 
time-domain version, as that will maximize the temporal energy 
concentration or time resolution. However, what if the signal 
has a critical frequency component (e.g., a low-frequency back- 
ground sinusoid) that lasts for a long time duration? In this case, 
the energy is spread out in the time domain, but it would be 
succinctly captured in a single frequency coefficient if one did 
a Fourier analysis of the signal. If we know that the signals of 
interest are pure sinusoids, then Fourier analysis is the way to go. 
But, what if we want to capture both the time impulse and the 
frequency impulse with good resolution? Can we get arbitrarily 
fine resolution in both time and frequency? 

The answer is no. There exists an uncertainty theorem (much 
like what we learn in quantum physics), which disallows the ex- 
istence of arbitrary resolution in time and frequency [ 11. A good 
way of conceptualizing these ideas and the role of wavelet basis 
functions is through what is known as time-frequency “tiling” 

plots, as shown in Fig. 3, which shows where the basis functions 
live on the time-frequency plane; i.e., where is the bulk of the 
energy of the elementary basis elements localized? Consider the 
Fourier case first. As impulses in time are completely spread 
out in the frequency domain, all localization is lost with Fourier 
analysis. To alleviate this problem, one typically decomposes 
the signal into finite-length chunks using windows or so-called 
short-time Fourier transform (STFT). Then, the time-frequency 
tradeoffs will be determined by the window size. An STFT ex- 
pansion consists of basis functions that are shifted versions of 
one another in both time and frequency: some elements capture 
low-frequency events localized in time, and others capture high- 
frequency events localized in time, but the resolution or window 
size is constant in both time and frequency [see Fig. 3(a)]. Note 
that the uncertainty theorem says that the area of these tiles has 
to be nonzero. 

Shown in Fig. 3(b) is the corresponding tiling diagram associ- 
ated with the wavelet expansion. The key difference between this 
and the Fourier case, which is the critical point, is that the tiles 
are not all of the same size in time (or frequency). Some basis 
elements have short-time windows; others have short-frequency 
windows. Of course, the uncertainty theorem ensures that the 
area of each tile is constant and nonzero. It can be shown that 

m 

(b) 
FIGURE 3 Tiling diagrams’ associated STFT bases and wavelet bases. 
(a) STFT bases and the tiling diagram associated with a STFT expansion. 
STFT bases of different frequencies have the same resolution (or length) in 
time. (b) Wavelet bases and tiling diagram associated with a wavelet expan- 
sion. The time resolution is inversely proportional to frequency for wavelet 
basis. (See color section, p. C-25.) 
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the basis functions are related to one another by shifts and scales 
as is the key to wavelet analysis. 

Why are wavelets well suited for image compression? The 
answer lies in the time-frequency (or more correctly, space- 
frequency) characteristics of typical natural images, which turn 
out to be well captured by the wavelet basis functions shown in 
Fig. 3(b). Note that the STFT tiling diagram of Fig. 3(a) is con- 
ceptually similar to what current commercial DCT-based image 
transform coding methods like JPEG use. Why are wavelets in- 
herently a better choice? Looking at Fig. 3(b), one can note that 
the wavelet basis offers elements having good frequency resolu- 
tion at lower frequency (the short and fat basis elements) while 
simultaneously offering elements that have good time resolution 
at higher frequencies (the tall and skinny basis elements). 

This tradeoff works well for natural images and scenes that 
are typically composed of a mixture of important long-term 
low-frequency trends that have larger spatial duration (such as 
slowly varying backgrounds like the blue sky, and the surface of 
lakes, etc.) as well as important transient short-duration high- 
frequency phenomena such as sharp edges. The wavelet repre- 
sentation turns out to be particularly well suited to capturing 
both the transient high-frequency phenomena such as image 
edges (using the tall and skinny tiles) as well as long-spatial- 
duration low-frequency phenomena such as image backgrounds 
(the short and fat tiles). As natural images are dominated by a 
mixture of these kinds of events: wavelets promise to be very 
efficient in capturing the bulk of the image energy in a small 
fraction of the coefficients. 

To summarize, the task of separating transient behavior from 
long-term trends is a very difficult task in image analysis and 
compression. In the case of images, the difficulty stems from the 
fact that statistical analysis methods often require the introduc- 
tion of at least some local stationarity assumption, i.e., that the 
image statistics do not change abruptly over time. In practice, 
this assumption usually translates into ad hoc methods to block 
data samples for analysis, methods that can potentially obscure 
important signal features: e.g., if a block is chosen too big, a 
transient component might be totally neglected when comput- 
ing averages. The blocking artifact in JPEG decoded images at low 
rates is a result of the block-based DCT approach. A fundamen- 
tal contribution of wavelet theory [2] is that it provides a unified 
frameworkin which transients and trends can be simultaneously 
analyzed without the need to resort to blocking methods. 

As a way of highlighting the benefits of having a sparse repre- 
sentation, such as that provided by the wavelet decomposition, 
consider the lowest frequency band in the top level (Level 3 )  of 
the three-level wavelet hierarchy of Lena in Fig. 1. This band 
is just a downsampled (by a factor of 82 = 64) and smoothed 
version of the original image. A very simple way of achieving 
compression is to simply retain this low-pass version and throw 

'Typical images also contain textures; however, conceptually, textures can be 
assumed to be a dense concentration of edges, and so it is fairly accurate to model 
typical images as smooth regions delimited by edges. 

away the rest of the wavelet data, instantly achieving a compres- 
sion ratio of 64: 1. Note that if we want a full-size approximation 
to the original, we would have to interpolate the low-pass band 
by a factor of 64 -this can be done efficiently by using a three- 
stage synthesis filter bank (see Chapter 4.1). We may also desire 
better image fidelity, as we may be compromising high-frequency 
image detail, especially perceptually important high-frequency 
edge information. This is where wavelets are particularly attrac- 
tive, as they are capable of capturing most image information in 
the highly subsampled low-frequency band, and additional lo- 
calized edge information in spatial clusters of coefficients in the 
high-frequency bands (see Fig. 1). The bulk of the wavelet data 
is insignificant and can be discarded or quantized very coarsely. 

Another attractive aspect of the coarse-to-fine nature of 
the wavelet representation naturally facilitates a transmission 
scheme that progressively refines the received image quality. That 
is, it would be highly beneficial to have an encoded bitstream that 
can be chopped off at any desired point to provide a commensu- 
rate reconstruction image quality. This is known as a progressive 
transmission feature or as an embedded bitstream (see Fig. 4). 
Many modern wavelet image coders have this feature, as will be 
covered in more detail in Section 5. This is ideally suited, for 
example, to Internet image applications. As is well known, the 
Internet is a heterogeneous mess in terms of the number of users 
and their computational capabilities and effective bandwidths. 
Wavelets provide a natural way to satisfy users having disparate 
bandwidth and computational capabilities: the low-end users 
can be provided a coarse quality approximation, whereas higher- 
end users can use their increased bandwidth to get better fidelity. 
This is also very useful for Web browsing applications, where 
having a coarse quality image with a short waiting time may be 
preferable to having a detailed qualitywith an unacceptable delay. 

These are some of the high-level reasons why wavelets repre- 
sent a superior alternative to traditional Fourier-based methods 
for compressing natural images: this is why the evolving JPEG- 
2000 standard will use wavelets instead of the Fourier-based 
DCTs. 

In the sequel, we will review the salient aspects of the gen- 
eral compression problem and the transform coding paradigm 
in particular, and highlight the key differences between the class 
of early subband coders and the recent more advanced class 
of modern-day wavelet image coders. We pick the celebrated 
embedded zero-tree wavelet coder as a representative of this lat- 
ter class, and we describe its operation by using a simple iuustra- 
tive example. We conclude with more powerful generalizations 
of the basic wavelet image coding framework to wavelet pack- 
ets, which are particularly well suited to handle special classes of 
images such as fingerprints. 

2 The Compression Problem 

Image compression falls under the general umbrella of data com- 
pression, which has been studied theoretically in the field of 
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FIGURE 4 Multiresolution wavelet image representation naturally facilitates progressive transmission - a desir- 
able feature for the transmission of compressed images over heterogeneous packet networks and wireless channels. 

information theory [3], pioneered by Claude Shannon [4] in 
1948. Information theory sets the fundamental bounds on com- 
pression performance theoretically attainable for certain classes 
of sources. This is very useful because it provides a theoretical 
benchmark against which one can compare the performance of 
more practical but suboptimal coding algorithms. 

Historically, the lossless compression problem came first. Here 
the goal is to compress the source with no loss of information. 
Shannon showed that given any discrete source with a well- 
defined statistical characterization (i.e., a probability mass func- 
tion), there is a fundamental theoretical limit to how well you can 
compress the source before you start to lose information. This 
limit is called the entropyofthe source. In lay terms, entropyrefers 
to the uncertainty of the source. For example, a source that takes 
on any of N discrete values al ,  a2, . . . , U N  with equal probabil- 
ity has an entropy given by log, N bits per source symbol. If the 
symbols are not equally likely, however, then one can do better 
because more predictable symbols should be assigned fewer bits. 
The fundamental limit is the Shannon entropy of the source. 

Lossless compression of images has been covered in Chap- 
ter 5.1 and Chapter 5.6. For image coding, typical lossless com- 
pression ratios are of the order of 2:l or at most 3:l. For a 
512 x 512 8-bit gray-scale image, the uncompressed representa- 
tion is 256 Kbytes. Lossless compression would reduce this to at 
best -80 Kbytes, which may still be excessive for many practical 
low-bandwidth transmission applications. Furthermore, lossless 

image compression is for the most part overkill, as our human 
visual system is highly tolerant to losses in visual information. 
For compression ratios in the range of 10: 1 to 40: 1 or more, loss- 
less compression cannot do the job, and one needs to resort to 
lossy compression methods. 

The formulation of the lossy data compression framework was 
also pioneered by Shannon in his work on rate-distortion (R-D) 
theory [ 5 ] ,  in which he formalized the theory of compressing 
certain limited classes of sources having well-defined statisti- 
cal properties, e.g., independent, identically distributed (i.i.d.) 
sources having a Gaussian distribution subject to a fidelity crite- 
rion, i.e., subject to a tolerance on the maximum allowable loss 
or distortion that can be endured. Typical distortion measures 
used are mean square error (MSE) or peak signal-to-noise ratio 
( PSNR)3 between the original and compressed versions. These 
fundamental compression performance bounds are called the 
theoretical R-D bounds for the source: they dictate the minimum 
rate R needed to compress the source if the tolerable distortion 
level is D (or alternatively, what is the minimum distortion D 
subject to a bit rate of R). These bounds are unfortunately not 
constructive; i.e., Shannon did not give an actual algorithm for 
attaining these bounds, and furthermore they are based on ar- 
guments that assume infinite complexity and delay, obviously 
impractical in real life. However, these bounds are useful in as 

3The PSNR is defined as 10 log,, & and measured in decibels (dB). 
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much as they provide valuable benchmarks for assessing the 
performance of more practical coding algorithms. The major 
obstacle of course, as in the lossless case, is that these theoretical 
bounds are available only for a narrow class of sources, and it 
is difficult to make the connection to real world image sources 
which are difficult to model accurately with simplistic statistical 
models. 

Shannon's theoretical R-D framework has inspired the de- 
sign of more practical Operational R-D frameworks, in which 
the goal is similar but the framework is constrained to be more 
practical. Within the operational constraints of the chosen cod- 
ing framework, the goal of operational R-D theory is to min- 
imize the rate R subject to a distortion constraint D, or vice 
versa. The message of Shannon's R-D theory is that one can 
come close to the theoretical compression limit of the source, 
if one considers vectors of source symbols that get infinitely 
large in dimension in the limit; i.e., it is a good idea not to 
code the source symbols one at a time, but to consider chunks 
of them at a time, and the bigger the chunks the better. This 
thinking has spawned an important field known as vector quan- 
tization, or VQ [6], which, as the name indicates, is concerned 
with the theory and practice of quantizing sources using high- 
dimensional vector quantization (image coding using VQ is cov- 
ered in Chapter 5.3). There are practical difficulties arising from 
making these vectors too high dimensional because of complex- 
ity constraints, so practical frameworks involve relatively small 
dimensional vectors that are therefore further from the theoret- 
ical bound. 

Because of this reason, there has been a much more popular 
image compression framework that has taken off in practice: 
this is the transform coding framework [7] that forms the basis 
of current commercial image and video compression standards 
like JPEG and MPEG (see Chapters 6.4 and 6.5). The transform 
coding paradigm can be construed as a practical special case 
of VQ that can attain the promised gains of processing source 
symbols in vectors through the use of efficiently implemented 
high-dimensional source transforms. 

3 The Transform Coding Paradigm 

In a typical transform image coding system, the encoder con- 
sists of a linear transform operation, followed by quantization of 
transform coefficients, and lossless compression of the quantized 
coefficients using an entropy coder. M e r  the encoded bitstream 
of an input image is transmitted over the channel (assumed to 
be perfect), the decoder undoes all the functionalities applied 
in the encoder and tries to reconstruct a decoded image that 
looks as close as possible to the original input image, based on 
the transmitted information. A block diagram of this transform 
image paradigm is shown in Fig. 5. 

For the sake of simplicity, let us look at a 1-D example of 
how transform coding is done (for 2-D images, we treat the 
rows and columns separately as I-D signals). Suppose we have a 
two-point signal: xo = 216, x1 = 217. It takes 16 bits (8 bits for 
each sample) to store this signal in a computer. In transform 
coding, we first put xo and x1 in a column vector X = [:] 
and apply an orthogonal transformation T to X to get Y = - 

l / f i  l/& I / a l x o + x d  306.177 [;I = T X  = [ l/& -l/,/d[]l = [1/&[x,,-x,l] = [ -.707 1. 
The transform T can be conceptualized as a counterclockwise 
rotation of the signalvector X by45" with respect to the original 
(xo, x l )  coordinate system. Alternatively and more conveniently, 
one can think of the signal vector as being fixed and instead 
rotate the (xo, XI) coordinate system by45" clockwise to the new 
( y l ,  yo) coordinate system (see Fig. 6) .  Note that the abscissa for 
the new coordinate system is now yl , 

Orthogonality of the transform simply means that the length 
of Y is the same as the length of X (which is even more obvious 
when one freezes the signal vector and rotates the coordinate sys- 
tem as discussed above). This concept still carries over to the case 
of high-dimensional transforms. If we decide to use the simplest 
form of quantization known as uniform scalar quantization, 
where we round off a real number to the nearest integer multiple 
of a step size q (say q = 20), then the quantizer index vector 
f ,  which captures what integer multiples of q are nearest to the 

Original 
Quantization 

image Transform 

(a) 
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FIGURE 6 The transform T can be conceptualized as acounterclockwise rota- 
tion of the signal vector X by 45" with respect to the original ( X O ,  X I )  coordinate 
system. 

entries of Y ,  is given by f = [:E$$;:;] = [ : I .  We store (or 
transmit) f as the compressed version of X using 4 bits, achiev- 
ing a compression ratio of 4:l. To decode X from f, we first 
multiply i by q = 20 to dequantize, i.5, to form the quantized 
approximation ? of Y with ? = 4 .  I = [33 and then ap- 
ply the inverse transform T-' to ? [which corresponds in our 
example to a counterclockwise rotation of the (y1, yo) coordi- 
nate system by 45", just the reverse operation of the T operation 
on the original (xo, X I )  coordinate system-see Fig. 61 to get 

1 ;yo - 1/d 1 / &  300 212.132 
= T- [ , ,I  - Jz 1/Jz1[ o 1 = [212.1321* 
We see from the ahoveexample that, although we "zero out" or 

throw away the transform coefficient y1 in quantization, the de- 
coded version 2 is still very close to X .  This is because the trans- 
form effectively compacts most of the energy in X into the first 
coefficient yo, and renders the second coefficient y1 considerably 
insignificant to keep. The transform T in our example actually 
computes a weighted sum and difference of the two samples xo 
and x1 in a manner that preserves the original energy. It is in fact 
the simplest wavelet transform! 

The energy compaction aspect of wavelet transforms was 
highlighted in Section 1. Another goal of linear transformation 
is decorrelation. This can be seen from the fact that, although the 
values of xo and x1 are very close (highly correlated) before the 
transform, yo (sum) and y1 (difference) are very different (less 
correlated) after the transform. Decorrelation has a nice geomet- 
ric interpretation. A cloud of input samples of length 2 is shown 
along the 45" line in Fig. 7. The coordinates (xo, XI) at each point 

FIGURE 7 Linear transformation amounts to a rotation of the coordinate 
system, making correlated samples in the time domain less correlated in the 
transform domain. 

of the cloud are nearly the same, reflecting the high degree of 
correlation among neighboring image pixels. The linear trans- 
formation T essentially amounts to a rotation of the coordinate 
system. The axes of the new coordinate system are parallel and 
perpendicular to the orientation of the cloud. The coordinates 
(yo,  y l )  are less correlated, as their magnitudes can be quite dif- 
ferent and the sign of yl is random. If we assume xo and x1 are 
samples of a stationary random sequence X(n) ,  then the corre- 
lation between yo and y1 is E{yoyl] = E{1/2(x i  - XI)] = 0. 
This decorrelation property has significance in terms of how 
much gain one can get from transform coding than from do- 
ing signal processing (quantization and coding) directly in the 
original signal domain, called pulse code modulation (PCM) 
coding. 

Transform coding has been extensively developed for coding 
of images and video, where the DCT is commonly used because 
of its computational simplicity and its good performance. But 
as shown in Section 1 ,  the DCT is giving way to the wavelet 
transform because of the latter's superior energy compaction 
capability when applied to natural images. Before discussing 
state-of the-art wavelet coders and their advanced features, we 
address the functional units that comprise a transform cod- 
ing system, namely the transform, quantizer, and entropy coder 
(see Fig. 5). 

3.1 Transform Structure 
The basic idea behind using a linear transformation is to make 
the task of compressing an image in the transform domain after 
quantization easier than direct coding in the spatial domain. A 
good transform, as has been mentioned, should be able to decor- 
relate the image pixels, and provide good energy compaction in 
the transform domain so that very few quantized nonzero co- 
efficients have to be encoded. It is also desirable for the trans- 
form to be orthogonal so that the energy is conserved from the 
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spatial domain to the transform domain, and the distortion in 
the spatial domain introduced by quantization of transform co- 
efficients can be directly examined in the transform domain. 
What makes the wavelet transform special in all possible choices 
is that it offers an efficient space-frequency characterization for 
a broad class of natural images, as shown in Section 1. 

3.2 Quantization 
As the only source of information loss occurs in the quantization 
unit, efficient quantizer design is a key component in wavelet 
image coding. Quantizers come in many different shapes and 
forms, from very simple uniform scalar quantizers, such as the 
one in the example earlier, to very complicated vector quantizers. 
Fixed length uniform scalar quantizers are the simplest kind of 
quantizers: these simply round off real numbers to the nearest 
integer multiples of a chosen step size. The quantizers are fixed 
length in the sense that all quantization levels are assigned the 
same number of bits (e.g., an eight-level quantizer would be 
assigned all binary three-tuples between 000 and 111). Fixed 
length non-un$ororm scalar quantizers, in which the quantizer step 
sizes are not all the same, are more powerful: one can optimize 
the design of these non-uniform step sizes to get what is known 
as Lloyd-Max quantizers [ 81. 

It is more efficient to do a joint design of the quantizer and the 
entropy coding functional unit (this will be described in the next 
subsection) that follows the quantizer in alossy compression sys- 
tem. This joint design results in a so-called entropy-constrained 
quantizer that is more efficient but more complex, and results in 
variable length quantizers, in which the different quantization 
choices are assigned variable codelengths. Variable length quan- 
tizers can come in either scalar, known as entropy-constrained 
scalar quantization, or ECSQ [SI, or vector, known as entropy- 
constrained vector quantization, or ECVQ [6], varieties. An ef- 
ficient way of implementing vector quantizers is by the use of 
so-called trellis coded quantization, or TCQ [ 101. The perfor- 
mance of the quantizer (in conjunction with the entropy coder) 
characterizes the operational R-D function of the source. The 
theoretical R-D function characterizes the fundamental lossy 
compression limit theoretically attainable [ 111, and it is rarely 
known in analytical form except for a few special cases, such as 
the i.i.d. Gaussian source [3]: 

where the Gaussian source is assumed to have zero mean and 
variance cr2 and the rate R is measured in bits per sample. Note 
from the formula that every extra bit reduces the expected dis- 
tortion by a factor of 4 (or increases the signal to noise ratio by 
6 dB). This formula agrees with our intuition that the distortion 
should decrease exponentially as the rate increases. In fact, this 
is true when quantizing sources with other probability distribu- 
tions as well under high-resolution (or bit rate) conditions: the 
optimal R-D performance of encoding a zero mean stationary 

source with variance m2 takes the form of [6] 

where the factor h depends on the probability distribution of the 
source. For a Gaussian source, h = & ~ / 2  with optimal scalar 
quantization. Under high-resolution conditions, it can be shown 
that the optimal entropy-constrained scalar quantizer is a uni- 
form one, whose average distortion is only approximately 1.53 dB 
worse than the theoretical bound attainable that is known as the 
Shannon bound [6, 91. For low bit rate coding, most current 
subband coders employ a uniform quantizer with a “dead zone” 
in the central quantization bin. This simply means that the all- 
important central bin is wider than the other bins: this turns 
out to be more efficient than having all bins be of the same size. 
The performance of dead-zone quantizers is nearly optimal for 
memoryless sources even at low rates [ 121. An additional advan- 
tage of using dead-zone quantization is that, when the dead zone 
is twice as much as the uniform step size, an embedded bitstream 
can be generated by successive quantization. We will elaborate 
more on embedded wavelet image coding in Section 5. 

3.3 Entropy Coding 
Once the quantization process is completed, the last encoding 
step is to use entropy coding to achieve the entropy rate of the 
quantizer. Entropy coding works like the Morse code in electric 
telegraph more frequently occurring symbols are represented by 
short codewords, whereas symbols occurring less frequently are 
represented by longer codewords. On average, entropy coding 
does better than assigning the same codelength to all symbols. 
For example, a source that can take on any of the four symbols 
{A, B ,  C, D }  with equal likelihood has two bits of information 
or uncertainty, and its entropy is 2 bits per symbol (e.g., one 
can assign a binary code of 00 to A, 01 to B ,  10 to C, and 11 
to D). However if the symbols are not equally likely, e.g., if the 
probabilities of A, B ,  C, D are 0.5, 0.25, 0.125, 0.125, respec- 
tively, then one can do much better on average by not assigning 
the same number of bits to each symbol, but rather by assigning 
fewer bits to the more popular or predictable ones. This results 
in a variable length code. In fact, one can show that the optimal 
code would be one in which A gets 1 bit, B gets 2 bits, and C 
and D get 3 bits each (e.g., A=O, B =  10, C= 110, D =  111). 
This is called an entropy code. With this code, one can compress 
the source with an average of only 1.75 bits per symbol, a 12.5% 
improvement in compression over the original 2 bits per symbol 
associated with having fixed length codes for the symbols. The 
two popular entropy coding methods are Huffman coding [ 131 
and arithmetic coding [ 141. A comprehensive coverage of en- 
tropy coding is given in Chapter 5.1. The Shannon entropy [3] 
provides a lower bound in terms of the amount of compression 
entropy coding can best achieve. The optimal entropy code con- 
structed in the example actually achieves the theoretical Shannon 
entropy of the source. 
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4 Subband Coding: The Early Days 

Subband coding normally uses bases of roughly equal band- 
width. Wavelet image coding can be viewed as a special case of 
subband coding with logarithmically varying bandwidth bases 
that satisfy certain properties! Earlywork on wavelet image cod- 
ing was thus hidden under the name of subband coding [7,15], 
which builds upon the traditional transform coding paradigm 
of energy compaction and decorrelation. The main idea of sub- 
band coding is to treat different bands differently as each band 
can be modeled as a statistically distinct process in quantization 
and coding. 

To illustrate the design philosophy of early subband coders, let 
us again assume for example that we are coding a vector source 
{xo, XI}, whereboth xo andq  aresamplesofastationaryrandom 
sequence X(n)  with zero mean and variance a:. If we code xo 
and X I  directly by using PCM coding, from our earlier discussion 
on quantization, the R-D performance can be approximated as 

2 -2R 
DPCM(R) = hU,2 . 

In subband coding, two quantizers are designed: one for each 
o f  the two transform coefficients yo and y1. The goal is to choose 
rates & and R1 needed for coding yo and y1 so that the average 
distortion 

is minimized with the constraint on the average bit rate 

1/2(R0 + R1) = R. 

Using the high rate approximation, we write D(R0) = 
ho2 2-2Ro and D(R1) = ho;12-2R1; then the solutions to this bit 
allocation problem are [ 71 

Yo 

with the minimum average distortion being 

&c(R) = h ~ ~ ~ ~ ~ , 2 - ~ ~ .  

Note that, at the optimal point, D( Ro) = D(R1) = DSBC( R). 
That is, the quantizers for yo and y1 give the same distortion with 
optimal bit allocation. Since the transform T is orthogonal, we 
have u: = 1/2($ + The coding gain of using subband 
coding over PCM is 

DPCM(R) --= a: 1/2(u;o f a;l) 
DSBC ( R)  cryo uyl  ( $o u;,) ' 

- 

4Both wavelet image coding and subband coding are special cases of transform 
coding. 

the ratio of arithmetic mean to geometric mean of coefficient 
variances u;~ and uj1. What this important result states is that 
subband coding performs no worse than PCM coding, and that 
the larger the disparity between coefficient variances, the bigger 
the subband coding gain, because 1/2(0;~ + 3 ( U ~ ~ U ~ ~ ) ' / ~ ,  
with equality if cr;! = cr2 . This result can be easily extended to 
the case when M > 2 uniform subbands (of equal size) are used 
instead. The coding gain in this general case is 

Y! 

M-1 2 
DPCM(R) - l/MCk=~ (Jk - 

M-1 2 1 I M '  DSBC(R) (&=, crk) 

whereu~isthesamplevarianceofthekthband(0 I k 5 M-1). 
The above assumes that all M bands are of the same size. In the 
case of the subband or wavelet transform, the sizes of the sub- 
bands are not the same (see Fig. 8 below), but the above formula 
can be generalized pretty easily to account for this. As another ex- 
tension of the results given in the above example, it can be shown 
that the necessary condition for optimal bit allocation is that all 
subbands should incur the same distortion at optimality- else 
it is possible to steal some bits from the lower-distortion bands 
to the higher-distortion bands in a way that makes the overall 
performance better. 

Figure 8 shows typical bit allocation results for different sub- 
bands under a total bit rate budget of 1 bit per pixel for wavelet 
image coding. Since low-frequency bands in the upper-left cor- 
ner have far more energythan high-frequencybands in the lower- 
right corner (see Fig. l),  more bits have to be allocated to low-pass 
bands than to high-pass bands. The last two frequency bands in 
the bottom half are not coded (set to zero) because of limited bit 
rate. Since subband coding treats wavelet coefficients according 

0 0 

FXGURE 8 Typical bit allocation results for different subbands. The unit of 
the numbers is bits per pixel. These are designed to satisfy a total bit rate budget 
of 1 blp, i.e., 1/4(1/4(1/4(8 + 6 + 5 + 5) + 2 + 2 + 2) + 1 + 0 + 0) = 1. 
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to their frequency bands, it is effectively a frequency domain 
transform technique. 

Initial wavelet-based coding algorithms, e.g., [ 161, followed 
exactly this subband coding methodology. These algorithms 
were designed to exploit the energy compaction properties of 
the wavelet transform only in the frequency domain by applying 
quantizers optimized for the statistics of each frequency band. 
Such algorithms have demonstrated small improvements in cod- 
ing efficiency over standard transform-based algorithms. 

5 New and More Efficient Class 
of Wavelet Coders 

Because wavelet decompositions offer space-frequency represen- 
tations of images, i.e., low-frequency coefficients have large spa- 
tial support (good for representing large image background 
regions), whereas high-frequency coefficients have small spa- 
tial support (good for representing spatially local phenomena 
such as edges), the wavelet representation calls for new quan- 
tization strategies that go beyond traditional subband coding 
techniques to exploit this underlying space-frequency image 
characterization. 

Shapiro made a breakthrough in 1993 with his embedded 
zero-tree wavelet (EZW) coding algorithm [17]. Since then a 
new class of algorithms have been developed that achieve signif- 
icantly improved performance over the EZW coder. In particular, 
Said and Pearlman’s work on set partitioning in hierarchical trees 
(SPIHT) [ 181, which improves the EZW coder, has established 
zero-tree techniques as the current state-of-the-art of wavelet 
image coding since the SPIHT algorithm proves to be very suc- 
cessful for both lossy and lossless compression. 

5.1 Zero-Tree-Based Framework 
and EZW Coding 
A wavelet image representation can be thought of as a tree- 
structured spatial set of coefficients. A wavelet coeficient tree 
is defined as the set of coefficients from different bands that rep- 
resent the same spatial region in the image. Figure 9 shows a 
three-level wavelet decomposition of the Lena image, together 
with a wavelet coefficient tree structure representing the eye re- 
gion of Lena. Arrows in Fig. 9(b) identify the parent-children 
dependencies in a tree. The lowest frequency band of the de- 
composition is represented by the root nodes (top) of the tree, 
the highest frequency bands by the leaf nodes (bottom) of the 
tree, and each parent node represents a lower frequency com- 
ponent than its children. Except for a root node, which has only 
three children nodes, each parent node has four children nodes, 
the 2 x 2 region of the same spatial location in the immediately 
higher frequency band. 

Both the EZW and SPIHT algorithms [ 17,181 are based on the 
idea of using multipass zero-tree coding to transmit the largest 
wavelet coefficients (in magnitude) at first. We hereby use “zero 
coding” as a generic term for both schemes, but we focus on 
the popular SPIHT coder because of its superior performance. 
A set of tree coefficients is significant if the largest coefficient 
magnitude in the set is greater than or equal to a certain threshold 
(e.g., a power of 2); otherwise, it is insignificant. Similarly, a 
coefficient is significant if its magnitude is greater than or equal 
to the threshold; otherwise, it is insignificant. In each pass the 
significance of a larger set in the tree is tested at first: if the set is 
insignificant, a binary “zero-tree’’ bit is used to set all coefficients 
in the set to zero; otherwise, the set is partitioned into subsets (or 
child sets) for further significance tests. After all coefficients are 
tested in one pass, the threshold is halved before the next pass. 

LH ’ HH’ 

FIGURE 9 Wavelet decomposition offers a tree-structured image representation. (a) Three-level wavelet de- 
composition of the Lena image. (b) Spatial wavelet coefficient tree consisting of coefficients from different bands 
that correspond to the same spatial region of the original image (e.g., the eye of Lena). Arrows identify the 
parent-children dependencies. 
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FIGURE 10 Example ofa three-level wavelet representation ofan 8 x 8 image. 

The underlying assumption of the zero-tree coding frame- 
work is that most images can be modeled as having decaying 
power spectral densities. That is, if a parent node in the wavelet 
coefficient tree is insignificant, it is very likely that its descen- 
dents are also insignificant. The zero-tree symbol is used very 
efficiently in this case to signify a spatial subtree of zeros. 

We give a SPIHT coding example to highlight the order of 
operations in zero-tree coding. Start with a simple three-level 
wavelet representation of an 8 x 8 image,’ as shown in Fig. 10. 
The largest coefficient magnitude is 63. We can choose the thresh- 
old in the first pass between 31.5 and 63. Let = 32. Table 1 
shows the first pass of the SPIHT coding process, with the fol- 
lowing comments: 

1. The coefficient value 63 is greater than the threshold 32 and 
positive, so a significance bit “ 1” is generated, followed by 
a positive sign bit “0”. After decoding these symbols, the 
decoder knows the coefficient is between 32 and 64 and 
uses the midpoint 48 as an estimate.6 

2. The descendant set of coefficient -34 is significant; a sig- 
nificance bit “1” is generated, followed by significance test 
of each of its four children (49, 10, 14, --13}. 

3. The descendant set of coefficient -31 is significant; a sig- 
nificance bit “1” is generated, followed by significance test 
of each of its four children (15, 14, -9, -7}. 

4. The descendant set of coefficient 23 is insignificant; an 

TABLE 1 First pass of  the SPIHT coding process at threshold 

Coefficient Coefficient Binary Reconstruction 
Coordinates Value Symbol Value Comments 

= 32 

63 

-34 

-3 1 
23 

-34 
49 

IO 
14 

-13 
-31 

15 
14 

-9 
-7 
23 

-34 
-3 1 

15 
14 

-1 
47 

-3 
2 

-9 
-7 

1 
0 
1 
1 
0 
0 
1 
1 
0 
0 
0 
0 
1 
0 
0 
0 
0 
0 
0 
1 
0 
1 
0 
1 
0 
0 
0 
0 
0 

48 

-48 
0 
0 

48 
0 
0 
0 

(3) 

0 

48 
0 
0 

(9) 

5. The grandchild set of coefficient -34 is insignificant; a 

6. The grandchildset ofcoefficient -3 1 is significant; a binary 
binary bit “0” is generated.’ 

7. 

8. 

9. 

bit “1” is generated. 
The descendant set of coefficient 15 is insignificant; an 
insignificance bit “0” is generated. This zero-tree bit is the 
only symbol generated in the current pass for the whole 
descendant set of coefficient 15. 
The descendant set of coefficient 1 4 a  is significant; signif- 
icance bit “1” is generated, followed by significance test of 
each of its four children { - 1,47, -3,2}. 
Coefficient -31 has four children (15, 14, -9, -7}. De- 
scendant sets of child 15 and child 14 were tested for sig- 
nificance before. Now descendant sets of the remaining 
two children -9 and -7 are tested. 

insignificance bit “0” is generated. This zero-tree bit is the 
Only 
descendant set of coefficient 23. 

In this example, the encoder generates 29 bits in the first 
pass. Along the process, it identifies four significant coefficients generated in the current pass for the 

’This set of wavelet coefficients is the same as the one used by Shapiro in an 
example to showcase EZW coding [ 171. Curious readers can compare these two 
examples to see the difference between EZW and SPIHT coding. 

6The reconstruction value can be anywhere in the uncertaintyinterval[32,64). 
Choosing the midpoint is the result of a simple form of minimax estimation. 

’In this example, we use the following convention: when a coefficientlset is 
significant, a binary bit “1” is generated; otherwise, a binary bit “0” is gener- 
ated. In the actual SPIHT implementation [ 181, this convention was not always 
followed -when a grandchild set is significant, a binary bit “0” is generated; 
otherwise, a binary bit “1” is generated. 
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FIGURE 11 Reconstructions after the (a) first and (b) second passes in SPIHT coding. 

{63, -34,49,47}. The decoder reconstructs each coefficient 
based on these bits. When a set is insignificant, the decoder 
knows each coefficient in the set is between -32 and 32 and uses 
the midpoint 0 as an estimate. The reconstruction result at the 
end of the first pass is shown in Fig. 11 (a). 

The threshold is halved (x = q / 2  = 16) before the second 
pass, where insignificant coefficientslsets in the first pass are 
tested for significance again against E ,  and significant coeffi- 
cients found in the first pass are refined. The second pass thus 
consists of the following. 

1. Significance tests of the 12 insignificant coefficients found 
in the first pass -those having reconstruction value 0 in 
Table 1. Coefficients -31 at (0 , l )  and23 at (1,l) are found 
to be significant in this pass; a sign bit is generated for 
each. The decoder knows the coefficient magnitude is 
between 16 and 32 and decode them as -24 and 24. 

2. The descendant set of coefficient 23 at (1,l) is insignificant; 
so are the grandchild set of coefficient 49 at (2, 0) and 
descendant sets of coefficients 15 at (0, 2), -9 at (0, 3), 
and -7 at (1,3). A zero-tree bit is generated in the current 
pass for each insignificant descendant set. 

3. Refinement of the four significant coefficients (63, -34, 
49,47} found in the first pass. The coefficient magnitudes 
are identified as being either between 32 and 48, which will 
be encoded with “0” and decoded as the midpoint 40, or 
between 48 and 64, which will be encoded with “1” and 
decoded as 56. 

The encoder generates 23 bits (14 from step 1, five from step 2, 
and four from step 3) in the second pass. Along the process it 
identifies two more significant coefficients. Together with the 
four found in the first pass, the set of significant coefficients now 

becomes {63, -34,49,47, -31,23}. The reconstruction result 
at the end of the second pass is shown in Fig. ll(b). 

The above encoding process continues from one pass to an- 
other and can stop at any point. For better coding performance, 
arithmetic coding [ 141 can be used to further compress the bi- 
nary bitstream out of the SPIHT encoder. 

From this example, we note that when the thresholds are pow- 
ers of 2, zero-tree coding can be thought of as a bit-plane coding 
scheme. It encodes one bit-plane at a time, starting from the most 
significant bit. The effective quantizer in each pass is a dead-zone 
quantizer with the dead zone being twice the uniform step size. 
With the sign bits and refinement bits (for coefficients that be- 
come significant in previous passes) being coded on the fly, zero- 
tree coding generates an embedded bitstream, which is highly 
desirable for progressive transmission (see Fig. 4). A simple ex- 
ample of embedded representation is the approximation of an ir- 
rationalnumber (say.rr = 3.1415926535.. .) byarationalnum- 
ber. If we were only allowed two digits after the decimal point, 
then IT % 3.14; ifthree digits after the decimal point were allowed, 
then IT 3.141; and so on. Each additional bit of the embedded 
bitstream is used to improve upon the previously decoded image 
for successive approximation, so rate control in zero-tree coding 
is exact and no loss is incurred if decoding stops at any point ofthe 
bitstream. The remarkable thing about zero-tree coding is that 
it outperforms almost all other schemes (such as JPEG coding) 
while being embedded. This good performance can be partially 
attributed to the fact that zero-tree coding captures across-scale 
interdependencies of wavelet coefficients. The zero-tree symbol 
effectively zeros out a set of coefficients in a subtree, achieving the 
coding gain of vector quantization [6] over scalar quantization. 

Figure 12 shows the original Lena and Barbara images and 
their decoded versions at 0.25 bit per pixel (32:l compression 
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FIGURE 12 Coding of the 512 x 512 Lena and Barbara images at 0.25 b/p (compression ratio of 32:l). 
Top: the original Lena and Barbara images. Middle: baseline JPEG decoded images, PSNR = 31.6 dB for 
Lena, and PSNR = 25.2 dB for Barbara. Bottom: SPIHT decoded images, PSNR = 34.1 dB for Lena, and 
PSNR = 27.6 dB for Barbara. 

ratio) by baseline JPEG and SPIHT [18]. These images are 
coded at a relatively low bit rate to emphasize coding arti- 
facts. The Barbara image is known to be hard to compress be- 
cause of its insignificant high-frequency content (see the pe- 
riodic stripe texture on Barbara’s trousers and scarf, and the 
checkerboard texture pattern on the tablecloth). The subjective 

difference in reconstruction quality between the two decoded 
versions of the same image is quite perceptible on a high- 
resolution monitor. The JPEG decoded images show highly vis- 
ible blocking artifacts while the wavelet-based SPIHT decoded 
images have much sharper edges and preserve most of the striped 
texture. 
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5.2 Advanced Wavelet Coders: 
High-Level Characterization 
We saw that the main difference between the early class of sub- 
band image coding algorithms and the zero-tree-based compres- 
sion framework is that the former exploits only the frequency 
characterization ofthe wavelet image representation, whereas the 
latter exploits both the spa tial and frequency characterization. To 
be more precise, the early class of coders were adept at exploiting 
the wavelet transform’s ability to concentrate the image energy 
disparately in the different frequency bands, with the lower fre- 
quency bands having a much higher energy density. What these 
coders fail to exploit was the very definite spatial characteriza- 
tion of the wavelet representation. In fact, this is even apparent 
to the naked eye if one views the wavelet decomposition of the 
Lena image in Fig. 1, where the spatial structure of the image 
is clearly exposed in the high-frequency wavelet bands, e.g., the 
edge structure of the hat and face and the feather texture, etc. 
Failure to exploit this spatial structure limited the performance 
potential of the early subband coders. 

In explicit terms, not only is it true that the energy density 
of the different wavelet subbands is highly disparate, resulting 
in gains by separating the data set into statistically dissimilar 
frequency groupings of data, but it is also true that the data in 
the high-frequency subbands are highly spatially structured and 
clustered around thespatial edges ofthe original image. The early 
class of coders exploited the conventional coding gain associated 
with dissimilarity in the statistics of the frequency bands, but not 
the potential coding gain from separating individual frequency 
band energy into spatially localized clusters. 

It is insightful to note that unlike the coding gain based on the 
frequency characterization, which is statistically predictable for 
typical images (the low-frequency subbands have much higher 
energy densitythan the high-frequency ones), there is a difficulty 
in going after the coding gain associated with the spatial char- 
acterization that is not statistically predictable; after all, there is 
no reason to expect the upper left corner of the image to have 
more edges than the lower right. This calls for a drastically dif- 
ferent way of exploiting this structure-a way of pointing to 
the spatial location of significant edge regions within each sub- 
band. At a high level, a zero tree is no more than an efficient 
“pointing” data structure that incorporates the spatial charac- 
terization of wavelet coefficients by identifying tree-structured 
collections of insignificant spatial subregions across hierarchical 
subbands. 

Equipped with this high-level insight, it becomes clear that 
the zero-tree approach is but only one way to skin the cat. 
Researchers in the wavelet image compression community 
have found other ways to exploit this phenomenon by us- 
ing an array of creative ideas. The array of successful data 
structures in the research literature include (a) R-D opti- 
mized zero-tree-based structures, (b) morphology- or region- 
growing-based structures, (c) spatial context modeling-based 
structures, (d) statistical mixture modeling-based structure, 

(e) classification-based structures, and so on. As the details 
of these advanced methods are beyond the intended scope 
of this article, we refer the reader to “Wavelet image coding: 
PSNR results” (www.icsl.ucla.edu/-ipl/psnr-results.htm1) on 
the World Wide Web for the latest results [ 191 on wavelet image 
coding. 

6 Adaptive Wavelet Transforms: 
Wavelet Packets 

In noting how transform coding has become the de facto stan- 
dard for image and video compression, it is important to realize 
that the traditional approach of using a transform with fixed 
frequency resolution (be it the logarithmic wavelet transform or 
the DCT) is good only in an ensemble sense for a typical statisti- 
cal class of images. This class is well suited to the characteristics 
of the chosen fixed transform. This raises the natural question, 
Is possible to do better by being adaptive in the transformation 
so as to best match the features of the transform to the specific 
attributes of arbitrary individual images that may not belong to 
the typical ensemble? 

To be specific, the wavelet transform is a good fit for typ- 
ical natural images that have an exponentially decaying spec- 
tral density, with a mixture of strong stationary low-frequency 
components (such as the image background) and perceptually 
important short-duration high-frequency components (such as 
sharp image edges). The fit is good because of the wavelet trans- 
form’s logarithmic decomposition strumre, which results in its 
well-advertised attributes of good frequency resolution at low 
frequencies, and good time resolution at high frequencies (see 
Fig. 3(b)). 

There are, however, important classes of images (or signif- 
icant subimages) whose attributes go against those offered by 
the wavelet decomposition, e.g., images having strong high-pass 
components. A good example is the periodic texture pattern in 
the Barbara image of Fig. 12 -see the trousers and scarf tex- 
tures, as well as the tablecloth texture. Another special class of 
images for which the wavelet is not a good idea is the class of 
fingerprint images (see Fig. 13 for a typical example), which has 
periodic high-frequency ridge patterns. These images are better 
matched with decomposition elements that have good frequency 
localization at high frequencies (corresponding to the texture 
patterns), which the wavelet decomposition does not offer in 
its menu. 

This motivates the search for alternative transform descrip- 
tions that are more adaptive in their representation, and that 
are more robust to a large class of images of unknown or mis- 
matched space-frequency characteristics. Although the task of 
finding an optimal decomposition for every individual image 
in the world is an ill-posed problem, the situation gets more 
interesting if we consider a large but finite library of desir- 
able transforms, and match the best transform in the library 
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FIGURE 13 Fingerprintimage: image coding using logarithmic wavelet trans- 
form does not perform well for fingerprint images such as this one with strong 
high-pass ridge patterns. 

adaptively to the individual image. In order to make this fea- 
sible, there are two requirements. First, the library must con- 
tain a good representative set of entries (e.g., it would be good 
to include the conventional wavelet decomposition). Second, 
it is essential that there exists a fast way of searching through 
the library to find the best transform in an image-adaptive 
manner. 
Both these requirements are met with an elegant generaliza- 

tion of the wavelet transform, called the wavelet packet decom- 
position, also known sometimes as the best basis framework. 
Wavelet packets were introduced to the signal processing com- 
munity by Coifman and Wickerhauser in [ 201. They represent 
a huge library of orthogonal transforms having a rich time- 
frequency diversity that also come with a easy-to-search capa- 
bility, thanks to the existence of fast algorithms that exploit the 
tree-structured nature of these basis expansions. The tree struc- 
ture comes from the cascading of multirate filter bank opera- 
tions; see Chapter 4.1 and [2]. Wavelet packet bases essentially 
look like wavelet bases shown in Fig. 3(b), but they have more 
oscillations. 

The wavelet decomposition, which corresponds to a logarith- 
mic tree structure, is the most famous member of the wavelet 
packet family. Whereas wavelets are best matched to signals 
having a decaying energy spectrum, wavelet packets can be 
matched to signals having almost arbitrary spectral profiles, 
such as signals having strong high-frequency or midfrequency 
stationary components, making them attractive for decompos- 
ing images having significant texture patterns, as discussed ear- 
lier. There are an astronomical number of basis choices avail- 
able in the typical wavelet packet library: for example, it can 
be shown that the library has over transforms for typ- 
ical five-level 2-D wavelet packet image decompositions. The 
library is thus well equipped to deal efficiently with arbitrary 
classes of images requiring diverse spatial-frequency resolution 
tradeoffs. 

Using the concept of time-frequency tilings introduced in 
Section 1, it is easy to see what wavelet packet tilings look like, 
and how they are a generalization of wavelets. We again start 
with 1 -D signals. Tiling representations of several expansions 
are plotted in Fig. 14. Figure 14(a) shows a uniform STFT-like 
expansion, where the tiles are all of the same shape and size; 
Fig. 14(b) is the familiar wavelet expansion or the logarithmic 
subband decomposition; Fig. 14(c) shows a wavelet packet ex- 
pansion where the bandwidths ofthe bases are neither uniformly 
nor logarithmically varying; and Fig. 14(d) highlights a wavelet 
packet expansion where the time-frequency attributes are exactly 
the reverse of the wavelet case: the expansion has good frequency 
resolution at higher frequencies, and good time localization at 
lower frequencies; we might call this the “antiwavelet” packet. 
There are a plethora of other options for the time-frequency res- 
olution tradeoff, and these all correspond to admissible wavelet 
packet choices. 

The extra adaptivity of the wavelet packet framework is ob- 
tained at the price of added computation in searching for the 
best wavelet packet basis, so an efficient fast search algorithm is 
the key in applications involving wavelet packets. The problem 
of searching for the best basis from the wavelet packet library for 
the compression problem using an R-D optimization framework 
and a fast tree-pruning algorithm was described in [21]. 

e 

(a) (b) (c) (4 
FIGURE 14 Tiling representations of several expansions for 1-D signals. (a) STFT-like decomposition, (b) wavelet 
decomposition, (c) wavelet packet decomposition, (d) antiwavelet packet. 
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FIGURE 14 Tiling representations of several expansions for 1-D signals. (a) STFT-like 
decomposition, (c) wavelet packet decomposition, (d) antiwavelet packet. 
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(a) (b) 
FIGURE 15 (a) A wavelet packet decomposition for the Barbara image. White lines represent fre- 
quency boundaries. High-pass bands are processed for display. (b) Wavelet packet decoded Barbara 
at 0.1825 blp. PSNR = 27.6 dB. 

The 1-D wavelet packet bases can be easily extended to 2-D 
by writing a 2-D basis function as the product of two 1-D basis 
functions. In another words, we can treat the rows and columns 
of an image separately as 1-D signals. The performance gains 
associated with wavelet packets are obviously image dependent. 
For difficult images such as Barbara in Fig. 12, a wavelet packet 
decomposition shown in Fig. 15(a) gives much better codingper- 
formance than the wavelet decomposition. The wavelet packet 
decoded Barbara image at 0.1825 b/p is shown in Fig. 15(b), 
whose visual quality (or PSNR) is the same as the wavelet SPIHT 
decoded Barbara image at 0.25 blp in Fig. 12. The bit rate saving 
achieved by using a wavelet packet basis instead of the wavelet 
basis in this case is 27% at the same visual quality. 

An important practical application of wavelet packet expan- 
sions is the FBI wavelet scalar quantization (WSQ) standard for 
fingerprint image compression [22]. Because of the complexity 
associated with adaptive wavelet packet transforms, the FBI WSQ 
standard uses a fixed wavelet packet decomposition in the trans- 
form stage. The transform structure specified by the FBI WSQ 
standard is shown in Fig. 16. It was designed for 500 dots per inch 
fingerprint images by spectral analysis and trial and error. A to- 
tal of 64 subbands are generated with a five-level wavelet packet 
decomposition. Trials by the FBI have shown that the WSQ stan- 
dard benefited from having fine frequency partitions in the mid- 
dle frequency region containing the fingerprint ridge patterns. 

As an extension of adaptive wavelet packet transforms, one can 
introduce time-variation by segmenting the signal in time and 
allowing the wavelet packet bases to evolve with the signal. The 
result is a time-varying transform coding scheme that can adapt 
to signal nonstationarities. Computationally fast algorithms are 
again very important for finding the optimal signal expansions 
in such a time-varying system. For 2-D images, the simplest 
of these algorithms performs adaptive frequency segmentations 
over regions of the image selected through a quadtree decom- 
position. More complicated algorithms provide combinations 

of frequency decomposition and spatial segmentation. These 
jointly adaptive algorithms work particularly well for highly 
nonstationary images. Figure 17 shows the space-frequency tree 
segmentation and tiling for the Building image [23]. The image 
to the left shows the spatial segmentation result that separates 
the sky in the background from the building and the pond in the 
foreground. The image to the right gives the best wavelet packet 
decomposition for each spatial segment. 

Finally we point out that, although this chapter is about 
wavelet coding of 2-D images, the wavelet coding framework 
and its extension to wavelet packets apply to 3-D video as well. 

x 58 I59  162 I 63 I 

Y 0 

FIGURE 16 The wavelet packet transform structure given in the FBI WSQ 
specification. The number sequence shows the labeling of the different subbands. 
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FIGURE 17 Space-frequency segmentation and tiling for the Building image. The image to the 
left shows that spatial segmentation separates the sky in background from the building and the 
pond in the foreground. The image to the right gives the best wavelet packet decomposition of each 
spatial segment. Dark lines represent spatial segments; white lines represent subband boundaries of 
wavelet packet decompositions. Note that the upper-left corners are the low-pass bands of wavelet 
packet decompositions. 

We refer the reader to Chapter 6.2 for a detailed exposition of 
3-D subband/wavelet video coding. 

7 Conclusion 

Since the introduction of wavelets as a signal processing tool 
in the late 1980s, a variety of wavelet-based coding algorithms 
have advanced the limits of compression performance well be- 
yond that of the current commercial JPEG image coding stan- 
dard. In this chapter, we have provided very simple high-level 
insights, based on the intuitive concept of time-frequency rep- 
resentations, into why wavelets are good for image coding. After 
introducing the salient aspects of the compression problem in 
general and the transform coding problem in particular, we have 
highlighted the key important differences between the early class 
of subband coders and the more advanced class of modern-day 
wavelet image coders. Selecting the embedded zero-tree wavelet 
coding structure embodied in the celebrated SPIHT algorithm as 
a representative of this latter class, we have detailed its operation 
by using a simple illustrative example. We have also described the 
role of wavelet packets as a simple but powerful generalization 
of the wavelet decomposition, in order to offer a more robust 
and adaptive transform image coding framework. 

In response to the rapid progress in wavelet image coding 
research, the JPEG-2000 standardization committee will adopt 
the wavelet transform as its workhorse in the evolving next- 
generation image coding standard. A block-based embedded 
coding scheme is expected that will support a variety of cod- 
ing functionalities such as spatial scalability, region of interest 
coding, error resilience, and spatial tiling [ 241. The triumph of 
wavelet transform in the evolution of the JPEG-2000 standard 
underlines the importance of the fundamental insights provided 

in this chapter into why wavelets are so attractive for image com- 
pression. 
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FIGURE 4.2.8 Discrete basis functions for image representation: (a) discrete scaling function from LLLL subband; 
(b)-(d) discrete wavelets from LHLL, LLLH, and LHLH subbands. These basis functions are generated from Daubechies’ 
four-tap filter. 

FIGURE 4.2.9 Discrete wavelets with vertical orientation at three consecutive scales: (a) in HL band; (b) in LHLL band; 
(c) in LLHLLL band. (d) Continuous wavelet is obtained as a limit of (normalized) discrete wavelets as the scale becomes 
coarser. 
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FIGURE 4.2.10 Basis functions for image representation: (a) scaling function; (b)-(d) wavelets with horizontal, vertical, 
and diagonal orientations. These four functions are tensor products of the 1-D scaling function and wavelet in Fig. 11. 
The horizontal wavelet has been rotated by 180" so that its negative part is visible on the display. 
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FIGURE 4.3.12 
data; right, equatorial Pacific temperature estimates based on in situ ship data. 

Multiscale estimation of remotely sensed fields: left, North-Pacific altimetry based on TopexlPoseidon 
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FIGURE 4.6.11 Original Lena. 

FIGURE 4.6.12 Calibrated Lena. 
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FIGURE 4.6.13 New scan Lena. 
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FIGURE 4.7.1 
motion (middle row), and texture (bottom row). 

Examples ofimages that could be segmented based on brightness (top left), color (top right), 
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FIGURE 4.7.6 Segmentation of other images, using the same Fisher color distance. Top: A segmentation that 
yields all segments that contains the color white. Bottom: A segmentation that yields all segments that do not 
contain the color green. 

FIGURE 4.7.7 Updating old maps using image segmentation. (a) Aerial image of Eugene, Oregon in 1993. 
(b) Map of the same area in 1987. (c) Operator-assisted segmentation of the 1993 aerial image. (d) Updated map 
in 1993. (Continued) 
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FIGURE 4.7.7 (Continued) 
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FIGURE 4.7.8 
texture-based maximum likelihood procedure employed in Fig. 7. 

Segmentation of another aerial image, this time of a rural crop field area, using the same 
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FIGURE 4.7.11 
elastic deformation method described in [ZO]. 

Tracking an object of interest, in this case a human heart, from frame to frame by using the 

FIGURE 4.8.6 Two other examples of segementation: (a) an illusory boundary, (b) segementation using texture phase 
in the EdgeFlow algorithm, and (c) segmentation using color and texture energy. 
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FIGURE 4.9.2 
from the second frame to the first frame; (d) region map obtained segmentation. 

(a) The first and (b) second frames ofthe Mother and Daughter sequence; ( c )  2-D dense motion field 
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FIGURE 4.9.4 
from the 137th to 136th frame; (d) region map obtained by color segmentation. 

(a) The 136th and (b) 137th frames of the Mobile and Calendar sequence; (c) 2-D dense motion field 
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FIGURE 4.9.5 
region-based labeling (e) K = 4, (f) K = 6. 

ResultsoftheMLrnethodinitialmap(a) K = 4,(b) K = 6;pixel-basedlabeling(c) K = 4,(d) K = 6; 
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FIGURE 4.12.6 (a) SPOT multispectral image of the Seattle area, with additive Gaussian-distributed noise, cr = 10; 
(b) vector distance dissimilarity diffusion result, using the diffusion coefficient in Eq. (9); (c) edges (gradient magnitude) 
from the result in (b); (d) mean curvature motion [Eq. ( IS) ]  result using diffusion coefficients from Eqs. (11) and (12): 
(e) edges (gradient magnitude) from the result in (d). 
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FIGURE 5.2.4 Data rate vs. block size. 

FIGURE 5.2.6 
at 1.89 bpp. 

Illustration of the use of BTC in color image compression: left, original image; right, image encoded 
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FIGURE 5.4.1 A three-level hierarchy wavelet decomposition of the 512 x 512 color Lena image. Level 1 
(512 x 512) is the one-level wavelet representation of the original Lena at Level 0; Level 2 (256 x 256) shows 
the one-level wavelet representation of the low-pass image at Level 1; and Level 3 (128 x 128) gives the one-level 
wavelet representation of the low-pass image at Level 2. 
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1 Introduction 

JPEG is currently a worldwide standard for compression of dig- 
ital images. The standard is named after the committee that cre- 
ated it and that continues to guide its evolution. This group, the 
Joint Photographic Experts Group (JPEG), consists of experts 
nominated by national standards bodies and by leading compa- 
nies engaged in image-related work. The JPEG committee has an 
official title of ISO/IEC JTCl SC29 Working Group 1, with a Web 
site at http://www.jpeg.org. The committee is charged with the 
responsibility of pooling efforts to pursue promising approaches 
to compression in order to produce an effective set of standards 
for still image compression. The lossy JPEG image compression 
procedure described in this chapter is part of the multipart set of 
IS0 standards IS 10918-1,2,3 (ITU-T Recommendations T.81, 
T.83, T.84). 

The JPEG standardization activity commenced in 1986, which 
generated 12 proposals for consideration by the committee in 
March 1987. The initial effort produced consensus that the 
compression should be based on the discrete cosine transform 
(DCT). Subsequent refinement and enhancement led to the 
Committee Draft in 1990. Deliberations on the JPEG Draft 

International Standard (DIS) submitted in 1991 culminated in 
the approval of the International Standard (IS) in 1992. 

Although the JPEG Standard defines both lossy and lossless 
compression algorithms, the focus in this chapter is on the lossy 
compression component of the JPEG standard. The JPEG loss- 
less standards are describedin detail in an accompanying chapter 
of this volume [7] .  JPEGlossy compression entails an irreversible 
mapping of the image to a compressed bit stream, but the stan- 
dard provides mechanisms for a controlled loss of information. 
Lossy compression produces a bit stream that is usually much 
smaller in size than that produced with lossless compression. 

The key features of the lossy JPEG standard are as follows. 

Both sequential and progressive modes of encoding are per- 
mitted. These modes refer to the manner in which quantized 
DCT coefficients are encoded. In sequential coding, the co- 
efficients are encoded on a block-by-block basis in a single 
scan that proceeds from left to right and top to bottom. In 
contrast, in progressive encoding only partial information 
about the coefficients is encoded in the first scan followed 
by encoding the residual information in successive scans. 
Low complexity implementations in both hardware and 
software are feasible. 

Copyright @ 2000 by .4cademic Press. 
All rights of reproduction in any form reserved. 5 13 
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All types of images, regardless of source, content, reso- 

A graceful tradeoff in bit rate and quality is offered, except 

A hierarchical mode with multiple levels of resolution is 

Bit resolution of 8-12 bits is permitted. 
A recommended file format, JPEG File Interchange Format 
(JFIF), enables the exchange of JPEG bit streams among a 
variety of platforms. 

lution, color formats, etc., are permitted. 

at very low bit rates. 

allowed. 

A JPEG compliant decoder has to support a minimum set 
of requirements, the implementation of which is collectively 
referred to as baseline implementation. Additional features are 
supported in the extended implementation of the standard. The 
features supported in the baseline implementation include the 
ability to provide 

a sequential buildup, 
custom or default Huffman tables, 
8-bit precision per pixel for each component, 
image scans with 1-4 components, and 
both interleaved and noninterleaved scans. 

A JPEG extended system includes all features in a baseline 
implementation and supports many additional features. It allows 
sequential buildup as well as an optional progressive buildup. 
Either Huffman coding or arithmetic coding can be used in the 
entropycodingunit. Precisionofup to 12 bits per pixel is allowed. 
The extended system includes an option for lossless coding. 

The rest of this chapter is organized as follows: in Section 2 
we describe the structure of the JPEG codec and the units that it 
is made up of. In Section 3 the role and computation of the dis- 
crete cosine transform is examined. Procedures for quantizing 
the DCT coefficients are presented in Section 4. In Section 5, the 
mapping of the quantized DCT coefficients into symbols suit- 
able for entropy coding is described. The use of Huffman coding 
and arithmetic coding for representing the symbols is discussed 
in Section 6. Syntactical issues and organization of data units 
are discussed in Section 7. Section 8 describes alternative modes 
of operation such as the progressive and hierarchical modes. In 
Section 9 some recent extensions made to the standard, collec- 
tively known as JPEG Part 3, are described. Finally, Section 10 
lists further sources of information on the standard. 

2 Lossy JPEG Codec Structure 

It should be noted that in addition to defining an encoder and 
decoder, the JPEG standard also defines a syntax for representing 
the compressed data along with the associated tables and param- 
eters. In this chapter, however, we largely ignore these syntactical 
issues and focus instead on the encoding and decoding proce- 
dures. We begin by examining the structure of the JPEG encod- 
ing and decoding systems. The discussion centers on the encoder 

structure and the building blocks that an encoder is made up of. 
The decoder essentially consists of the inverse operations of the 
encoding process carried out in reverse. 

2.1 Encoder Structure 
The JPEG encoder and decoder are conveniently decomposed 
into units that are shown in Fig. 1. Note that the encoder shown 
in Fig. 1 is applicable in open-looplunbuffered environments 
in which the system is not operating under a constraint of a 
prescribed bit ratebudget. The units constituting the encoder 
are described next. 

2.1.1 Signal Transformation Unit: DCT 
In JPEG image compression, each component array in the in- 
put image is first partitioned into 8 x 8 rectangular blocks of 
data. A signal transformation unit computes the DCT of each 
8 x 8 block in order to map the signal reversibly into a repre- 
sentation that is better suited for compression. The object of the 
transformation is to reconfigure the information in the signal 
to capture the redundancies, and to present the information in 
a “machine-friendly’ form that is convenient for disregarding 
the perceptually least relevant content. The DCT captures the 
spatial redundancy and packs the signal energy into a few DCT 
coefficients. The coefficient in the [0, 01-th position in the 8 x 8 
DCT array is referred to as the DC coefficient. The remaining 63 
coefficients are called the AC coefficients. 

2.1.2 Quantizer 
If we wish to recover the original image exactly from the DCT 
coefficient array, then it is necessary to represent the DCT coeffi- 
cients with high precision. Such a representation requires a large 
number of bits. In lossy compression the DCT coefficients are 
mapped into a relatively small set of possible values that are rep- 
resented compactly by defining and coding suitable symbols. The 
quantization unit performs this task of a many-to-one mapping 
of the DCT coefficients, so that the possible outputs are limited 
in number. A key feature of the quantized DCT coefficients is 
that many of them are zero, making them suitable for efficient 
coding. 

2.1.3 Coefficient-to-Symbol Mapping Unit 
The quantized DCT coefficients are mapped to new symbols to 
facilitate a compact representation in the symbol coding unit that 
follows. The symbol definition unit can also be viewed as part of 
the symbol coding unit. However, it is shown here as a separate 
unit to emphasize the fact that the definition of symbols to be 
coded is an important task. An effective definition of symbols 
for representing AC coefficients in JPEG is the “runs” of zero 
coefficients followed by a nonzero terminating coefficient. For 
representing DC coefficients, symbols are defined by computing 
the difference between the DC coefficient in the current block 
and that in the previous block. 
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FIGURE 1 Constituent units of (a) JPEG encoder, (b) JPEG decoder. 

2.1.4 Entropy Coding Unit 
This unit assigns a codeword to the symbols that appear at its 
input, and it generates the bit stream that is to be transmitted or 
stored. H u h a n  coding is usually employed for variable-length 
coding of the symbols, with arithmetic coding allowed as an 
option. 

2.2 Decoder Structure 
In a decoder the inverse operations are performed and in an 
order that is the reverse of that in the encoder. The coded bit 
stream contains coding and quantization tables, which are first 
extracted. The coded data are then applied to the entropy de- 
coder, which determines the symbols coded. The symbols are 
then mapped to an array of quantized DCT coefficients, which 
are then “dequantized” by multiplying each coefficient with the 
corresponding entry in the quantization table.,The decoded im- 
age is then obtained by applying the inverse 2-D DCT to the 
array of the recovered DCT coefficients. 

In the next three sections we consider each of the above en- 
coder operations, DCT, quantization, and symbol mapping and 

3 Discrete Cosine Transform 

Lossy JPEG compression is based on transform coding that uses 
the DCT [2]. In DCT coding, each component of the image is 
subdivided into blocks of 8 x 8 pixels. A two-dimensional DCT 
is applied to each block of data to obtain an 8 x 8 array of 
coefficients. If x[m,  n] represents the image pixel values in a 
block, then the DCT is computed for each block of the image 
data as follows: 

-0 n=O 
( 2 n  + 1 ) V T  

x cos , O I U , V 5 7 ,  16 

where 

u = o ,  
C [u ]  = Jz l- 1 l S U ( 7 .  

The original image samples can be recovered from the DCT 
1 - 

coding, in more detail. coefficients by applying the inverse discrete cosine transform 
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(IDCT) as follows: I 
50 

(2m + 1 ) u ~  
16 

7 7  

x [ m ,  nl = yr c‘ul c[v l  X[ u, V I  cos _ _  u=o v=o 

(2n + 1)VT 
x cos , O i m , n i 7 .  

16 

The DCT, which belongs to the family of sinusoidal trans- 
forms, has received special attention because of its success in 
the compression of real-world images. It is seen from the defi- 
nition of the DCT that an 8 x 8 image block being transformed 
is being represented as a linear combination of real-valued basis 
vectors that consist of samples of a product of one-dimensional 
cosinusoidal functions. The 2-D transform can be expressed as 
a product of 1-D DCT transforms applied separably along the 
rows and columns of the image block. The coefficients X( u, v) 
of the linear combination are referred to as the DCT coeffi- 
cients. For real-world digital images in which the interpixel cor- 
relation is reasonably high and that can be characterized with 
first-order autoregressive models, the performance of the DCT 
is very close to that of the Karhunen-Loeve transform [2]. The 
discrete Fourier transform (DFT) is not as efficient as DCT in 
representing an 8 x 8 image block. This is because when the 
DFT is applied to each row of the image, a periodic extension 
of the data, along with concomitant edge discontinuities, pro- 
duces high-frequency DFT coefficients that are larger than the 
DCT coefficients of corresponding order. In contrast, there is 
a mirror-periodicity implied by the DCT that avoids the dis- 
continuities at the edges when image blocks are repeated. As 
a result, the “high-frequency’’ or “high-order AC” coefficients 
are on the average smaller than the corresponding DFT coeffi- 
cients. 

We consider an example of the computation of the 2-D DCT 
of an 8 x 8 block in the 512 x 512 gray-scale image Lena. The 
specific block chosen is shown in the image in Fig. 2(a), where 
the block is indicated with a black boundary with one corner at 
[208, 2961. A closeup of the block enclosing part of the hat is 
shown in Fig. 2(b). 

The 8-bit pixel values of the block chosen are shown in Fig. 3. 
After the DCT is applied to this block, the 8 x 8 DCT coefficient 
array obtained is shown in Fig. 4. 

The magnitude of the DCT coefficients exhibits a pattern in 
their occurrences in the coefficient array. Also, their contribution 
to the perception of the information is not uniform across the 
array. The DCT coefficients corresponding to the lowest fre- 
quency basis functions are usually large in magnitude, and they 
are also deemed to be perceptually most significant. These fea- 
tures ofthe DCT coefficients are exploited in developing methods 
of quantization and symbol coding. The bulk of the compres- 
sion achieved in transform coding occurs in the quantization 
step. The compression level is controlled by changing the total 
number of bits available to encode the blocks. The coefficients 
are quantized more coarsely when a large compression factor is 
required. 
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FIGURE 2 
(bottom) identified with a black boundary and with one corner at [208,296]. 

The original 512 x 512 Lena image (top) with an 8 x 8 block 

187 188 189 202 209 175 66 41 
191 186 193 209 193 98 40 39 
188 187 202 202 144 53 35 37 
189 195 206 172 58 47 43 45 
197 204 194 106 50 48 42 45 
208 204 151 50 41 41 41 53 
209 179 68 42 35 36 40 47 
200 117 53 41 34 38 39 63 

The 8 x 8 block identified in Fig. 2 FIGURE 3 
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915.6 451.3 25.6 -12.6 16.1 -12.3 7.9 -7.3 
216.8 19.8 -228.2 -25.7 23.0 -0.1 6.4 2.0 

-2.0 -77.4 -23.8 102.9 45.2 -23.7 -4.4 -5.1 
30.1 2.4 19.5 28.6 -51.1 -32.5 12.3 4.5 
5.1 -22.1 -2.2 -1.9 -17.4 20.8 23.2 -14.5 

-0.4 -0.8 7.5 6.2 -9.6 5.7 -9.5 -19.9 
5.3 -5.3 -2.4 -2.4 -3.5 -2.1 10.0 11.0 
0.9 0.7 -7.7 9.3 2.7 -5.4 -6.7 2.5 

FIGURE 4 DCT of the 8 x 8 block in Fig. 3. 

4 Quantization 

Each DCT coefficient X[m,  n] ,  0 5 m, n 5 7, is mapped into 
one of a finite number of levels determined by the compres- 
sion factor desired. This is done by dividing each element of the 
DCT coefficient array by a corresponding element in an 8 x 8 
quantization matrix, and rounding the result. Thus if the entry 
q [ m, n] ,  0 5 m, n 5 7, in the mth row and nth column of the 
quantization matrix is large, then the corresponding DCT coef- 
ficient is coarsely quantized. The values of q [ m, n] are restricted 
to be integers with 1 I q [ m, n] 5 255, and they determine the 
quantization step for the corresponding coefficient. The quan- 
tized coefficient is given by 

A quantization table (or matrix) is required for each im- 
age component. However, a quantization table can be shared 
by multiple components. For example in a luminance-plus- 
chrominance Y-Cr-Cb representation, the two chrominance 
components usually share a common quantization matrix. JPEG 
quantization tables given in Annex K of the standard for lumi- 
nance and components are shown in Fig. 5. These tables were 
obtained from a series of psychovisual experiments to deter- 
mine the visibility thresholds for the DCT basis functions for a 
760 x 576 image with chrominance components downsampled 
by 2 in the horizontal direction and at a viewing distance equal to 
six times the screen width. On examining the tables you will see 
that the quantization table for the chrominance components has 
larger values in general implying a coarser quantization of the 
chrominance planes as compared with the luminance plane. This 
is done to exploit the human visual system’s relative insensitivity 
to chrominance components as compared to luminance com- 
ponents. The tables shown have been known to offer reasonabIe 

16 11 10 16 24 40 51 61 
12 12 14 19 26 58 60 55 
14 13 16 24 40 57 69 56 
14 17 22 29 51  87 80 62 
18 22 37 56 68 109 103 77 
24 35 55 64 81 104 113 92 
49 64 78 87 103 121 120 101 
72 92 95 98 112 100 103 99 

5 7 4 1  2 0 0 0 0 0  
18 1 -16 -1 0 0 0 0 
0 - 5  -1 4 1 0 0 0  
2 0 0 0 - 1 0 0 0  
0 - 1  0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  

FIGURE 6 
quantization table shown in Fig. 5. 

performance, on the average, over a wide variety of applications 
and viewing conditions. Hence they have been widely accepted 
and over the years have become known as the “default” quanti- 
zation tables. 

Quantization tables can also be constructed by casting the 
problem as one of optimum allocation of a given budget of bits 
based on the coefficient statistics. The general principle is to 
estimate the variances of the DCT coefficients and assign more 
bits to coefficients with larger variances. 

We now examine the quantization of the DCT coefficients 
given in Fig. 4, using the luminance quantization table in 
Fig. 5(a). Each DCT coefficient is divided by the correspond- 
ing entry in the quantization table, and the result is rounded 
to yield the array of quantized DCT coefficients in Fig. 6. We 
observe that a large number of quantized DCT coefficients are 
zero, making the array suitable for run-length coding which is 

8 x 8 DCT block in Fig. 4 after quantization with the luminance 

described in Section 6.  The block recovered after decoding is 
shown in Fig. 7. 

4.1 Quantization Table Design 
With lossy compression, the amount of distortion introduced 
in the image is inversely related to the number of bits (bit rate) 
used to encode the image. The higher the rate, the lower the 
distortion. Naturally, for a given rate we would like to incur the 
minimum possible distortion. Similarly, for a given distortion 
level, we would like to encode an image with the minimum rate 
possible. Hence lossy compression techniques are often studied 
in terms of their rate-distortion performance, i.e., the distortion 
they introduce at different bit rates. The rate-distortion perfor- 
mance of JPEG is determined mainly by the quantization tables. 
As mentioned before, the standard does not recommend any 
particular table or set of tables and leaves their design com- 
pletely to the user. While the image quality obtained from the 

17 18 24 47 99 99 99 99 
18 21 26 66 99 99 99 99 
24 26 56 99 99 99 99 99 
47 66 99 99 99 99 99 99 
99 99 99 99 99 99 99 99 
99 99 99 99 99 99 99 99 
99 99 99 99 99 99 99 99 
99 99 99 99 99 99 99 99 

FIGURE 5 
ponents provided in the informative sections of the standard. 

Example quantization tables for luminance (left) and chrominance (right) com- 
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- 
181 
191 
192 
184 
185 
201 
213 
216 - 

185 196 208 
189 197 203 
193 197 185 
199 195 151 
207 185 110 
198 151 74 
161 92 47 
122 43 32 

203 159 
178 118 
136 72 
90 48 
52 43 
32 40 
32 35 
39 32 

86 27 
58 25 
36 33 
38 43 
49 44 
48 38 
41 45 
36 58 

FIGURE 7 The block selected kom the Lena image recovered after decoding. 

use of the “default” quantization tables described earlier is very 
good, there is a need to provide flexibility to adjust the image 
quality by changing the overall bit rate. In practice, scaled ver- 
sions of the “default” quantization tables are very commonly 
used to vary the quality and compression performance of JPEG. 
For example, the popular IJPEG implementation, freely available 
in the public domain, allows this adjustment through the use of 
qualityfactor Q for scaling all elements of the quantization table. 
The scaling factor is then computed as 

for 1 5 Q < 50 
scale factor = 200 - 2 * Q for 50 5 Q 5 99. (1) 1: for Q = 100 

Although varying the rate by scaling a base quantization table 
according to some fixed scheme is convenient, it is clearly not 
optimal. Given an image and a bit rate, there exists a quantiza- 
tion table that provides the “optimal” distortion at the given rate. 
Clearly, the “optimal” table would vary with different images and 
different bit rates and even different definitions of distortion (for 
example MSE, perceptual distortion, etc.). In order to get the best 
performance from JPEG in a given application, custom quan- 
tization tables may have to be designed. Indeed, there has been 
a lot of work reported in the literature addressing the issue of 
quantization table design for JPEG. Broadly speaking, this work 
can be classified into three categories. The first deals with explic- 
itly optimizing the rate-distortion performance of JPEG based 
on statistical models for DCT coefficient distributions. The sec- 
ond attempts to optimize the visual quality of the reconstructed 
image at a given bit rate, given a set of display conditions and a 
perception model. 

An example of the first approach is provided by the work 
of Ratnakar and Livny [lo], who propose RD-OPT, an effi- 
cient algorithm for constructing quantization tables with op- 
timal rate-distortion performance for a given image. The RD- 
OPT algorithm uses DCT coefficient distribution statistics from 
any given image in a novel way to optimize quantization tables 
simultaneously for the entire possible range of compression- 
quality tradeoffs. The algorithm is restricted to the MSE related 
distortion measures as it exploits the property that the DCT is 
a unitary transform, that is, the mean-square error in the pixel 
domain is the same as the mean-square error in the DCT do- 
main. The RD-OPT essentially consists of the following three 
stages. 

1. Gather DCT statistics for given image or set of images. 
Essentially this step involves counting how many times 
the nth coefficient gets quantized to the value Y when the 
quantization step size is q and computing what the MSE 
is for the nth coefficient at this step size. 

2. Use statistics collected above to calculate Rn(q),  the rate for 
the nth coefficient when the quantization step size is q and 
D,(q), the corresponding distortion for each possible q. 
The rate R,(q) is estimated from the corresponding first- 
order entropy of the coefficient at the given quantization 
step size. 

3. Compute R(Q) and D(Q) the rate and distortions for a 
quantization table Q as 

63 63 

n=O n=O 

respectively. Use dynamic programming to optimize R(Q) 
against D(Q) . 

Optimizing quantization tables with respect to MSE may not 
be the best strategy when the end image is to be viewed by a 
human. A better approach is to match the quantization table to 
the Human Visual System (HVS) model. As mentioned before, 
the “default” quantization tables were arrived at in an image 
independent manner, based on the visibility of the DCT basis 
functions. Clearly, better performance could be achieved by an 
image-dependent approach that exploits H V S  properties like fre- 
quency, contrast, and texture masking and sensitivity. A number 
of HVS model-based techniques for quantization table design 
have been proposed in the literature [3,5,15]. Such techniques 
perform an analysis of the given image and arrive at a set of 
thresholds, one for each coefficient, called the just noticeable 
distortion (JND) thresholds. The idea is that if the distortion in- 
troduced is at or just below these thresholds, the reconstructed 
image will be perceptually distortion free. 

Optimizing quantization tables with respect to MSE may also 
not be appropriate when there are constraints on the type of dis- 
tortion that can be tolerated. For example, on examining Fig. 5, 
we find that the “high-frequency” AC quantization factors, i.e., 
q [ m, n] for larger values of rn and n, are significantly greater than 
the DC coefficient q [ 0, 01 and the “low-frequency” AC quantiza- 
tion factors. There are applications in which the information of 
interest in an image may reside in the high-frequency AC coeffi- 
cients. For example, in compression of radiographic images [ 121, 
the critical diagnostic information is often in the high-frequency 
components. The size of microcalcification in mammograms is 
often so small that a coarse quantization of the higher AC coef- 
ficients will be unacceptable. In such cases, JPEG allows custom 
tables to be provided in the bit streams. 

Finally, quantization tables can also be optimized for hard 
copy devices such as printers. JPEG was designed for compress- 
ing images that are to be displayed on CRT-like display devices 
that can represent a large range of pixel intensities. Hence, when 
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an image is rendered through a halftone device like a printer, 
the image quality could be far from optimal (For information 
on halftoning, please see Chapter 8.1). Vander Kam and Wong 
[ 131 give a closed-loop procedure to design a quantization ta- 
ble that is optimum for a given halftoning and scaling method 
chosen. The basic idea behind their algorithm is to code more 
coarsely frequency components that are corrupted by halftoning 
and to code more finely components that are left untouched by 
halftoning. Similarly, to take into account the effects of scaling, 
their design procedure assigns a higher bit rate to the frequency 
components that correspond to a large gain in the scaling filter 
response and a lower bit rate to components that are attenuated 
by the scaling filter. 

5 Coefficient-to-Symbol Mapping 
and Coding 

The quantizer makes the coding lossy, but it provides the major 
contribution in compression. However, the nature of the quan- 
tized DCT coefficients and the preponderance of zeros in the 
array leads to further compression with the use of lossless cod- 
ing. This requires that the quantized coefficients be mapped to 
symbols in such a way that the symbols lend themselves to ef- 
fective coding. For this purpose, JPEG treats the DC coefficient 
and the set of AC coefficients in a different manner. Once the 
symbols are defined, they are then represented with Huffman 
coding or arithmetic coding. 

In defining symbols for coding, the DCT coefficients are 
scanned by traversing the quantized coefficient array in a zigzag 
fashion, shown in Fig. 8. The zigzag scan processes the DCT co- 
efficients in increasing order of spatial frequency. Recall that the 
quantized high-frequency coefficients are zero with high prob- 
ability; hence scanning in this order leads to a sequence that 
contains a large number oftrailing zero values and these can be 
efficiently coded as described later. 

0 1 2 3 4 5 6 7  

FIGURE 8 Zigzag scan procedure. 

The [O,O]-th element or the quantized DC coefficient is sepa- 
rated from the remaining string of 63 AC coefficients, and sym- 
bols are defined next as shown in Fig. 1. 

5.1 DC Coefficient Symbols 
The DC coefficients in adjacent blocks are highly correlated. This 
fact is exploited to differentially code them. Let qXi [0, 01 and 
qXj-1[0, 01 denote the quantized DC coefficient in blocks i and 
i - 1. The difference 6i = qXi  [0, 01 - qXi-1[0,0] is computed. 
Assuming a precision of 8 bitdpixel for each component, it fol- 
lows that the largest DC coefficient value, with q [0, 01 = 1, is less 
than 2048, so that values of 6, are in the range [ -2047,20471. If 
Huffman coding is used, then these possible values would require 
a very large coding table. In order to limit the size of the coding 
table, the values in this range are grouped into 12 size categories, 
which are assigned labels 0 through 11. Category k contains 2k 
elements { f Z k - ’ ,  . . . , f 2 k  - 1). The difference & is mapped to 
a symbol described by a pair (category, amplitude). The 12 cate- 
gories are Huffman coded. In order to distinguish values within 
the same category, extra k bits are used to represent one of the 
possible zk “amplitudes” of symbols within category k. On one 
hand, the amplitude of&, {Zk-l 5 6i 5 2k - 1) is simply given by 
its their binaryrepresentation. On the other hand, the amplitude 
of &, {-zk - 1 5 6; 5 -Zk-’} is given by the one’s complement 
of the absolute value 1, or simply by the binary representation 
of&+2k-1 .  

5.2 Mapping AC Coefficient to Symbols 
As observed before, most of the quantized AC coefficients are 
zero. The zigzag scanned string of 63 coefficients contains many 
consecutive occurrences or “runs of zeros”, making the quan- 
tized AC coefficients suitable for run-length coding. The sym- 
bols in this case can be defined as [runs, nonzero terminating 
value], which can then be entropy coded. However the number 
of possible values of AC coefficients is large as is evident from 
the definition of DCT. For 8-bit pixels, the allowed range of AC 
coefficient values is [ - 1023, 10231. In view of the large coding 
tables this entails, a procedure similar to that discussed above 
for DC coefficients is used. Categories are defined for suitable 
grouped values that terminate a run. Thus a run/category pair 
together with the amplitude within a category is used to define a 
symbol. The category definitions and amplitude bits generation 
use the same procedure as in DC difference coding. Thus a 4-bit 
category value is concatenated with a 4-bit run length to get an 
8-bit [run/category] symbol. This symbol is then encoded by us- 
ing either Huffman or arithmetic coding. There are two special 
cases that arise when coding the [run/category] symbol. First, 
since the run value is restricted to 15, the symbol (15/0) is used 
denote 15 zeros followed by a zero. A number of them can be 
cascaded to form specify larger runs. Second, if after a nonzero 
AC coefficient, all the remaining coefficients are zero, then a 
special symbol ( O D )  denoting end of block is encoded. Figure 1 
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continues our example and shows the sequence of symbols gen- 
erated for coding the quantized DCT block of Fig. 6. 

tical to the ones used in the lossless standard explained in the 
accompanying Chapter [ 71. 

5.3 Entropy Coding 
The symbols defined for DC and AC coefficients can be entropy 
coded by using mostly Huffman coding, or optionally and in- 
frequently, arithmetic coding based on the probability estimates 
of the symbols. Huffman coding is a method of variable-length 
coding (VLC) in which shorter codewords are assigned to the 
more frequently occurring symbols in order to achieve an aver- 
age symbol codeword length that is as close to the symbol source 
entropy as possible. Huffman coding is optimal (meets the en- 
tropy bound) only when the symbol probabilities are integral 
powers of 1/2. The technique of arithmetic coding [ 161 provides 
a solution to attaining the theoretical bound of the source en- 
tropy. The baseline implementation of the P E G  standard uses 
Huffman coding only. 

If Huffman coding is used, then Huffman tables, up to a max- 
imum of eight in number, are specified in the bit stream. The 
tables constructed should not contain codewords that (a) are 
more that 16 bits long or (b) consist of all ones. Recommended 
tables are listed in annex K of the standard. If these tables are 
applied to the output of the quantizer shown in the first two 
columns of Fig. 1, then the algorithm produces output bits 
shown in the following columns of the figure. The procedures 
for specification and generation of the Huffman tables are iden- 

TABLE 1A DC coding 

Difference [Category, Amplitude] Code 

-2 [2, -21 01101 

Note: the code for a DC coefficient with a value of 
57, assuming that the previous block has a DC coeffi- 
cient of value 59. 

TABLE 1B AC coding 

Terminating Code Total Amplitude 
Value RunlCat Length Code Bits Bits 

41 016 7 1 1 1 1000 13 010110 
18 015 5 11010 10 10010 
1 111 4 1100 5 1  
2 012 2 01 4 10 

-16 115 I1 11111110110 16 01111 
-5 0/3 3 100 6 010 

-1 211 5 11 100 6 0  
2 0/2 2 01 4 10 

-1 01 1 2 00 3 0  

-1 111 4 1100 5 1  
4 313 12 111111110101 15 100 

6 Image Data Format and Components 

The JPEG standard is intended for the compression of both 
greyscale and color images. In a gray-scale image there is a single 
“luminance” component. However, a color image is represented 
with multiple components and the JPEG standard sets stipula- 
tions on the allowed number of components and data formats. 
The standard permits a maximum of 255 color components, 
which are rectangular arrays of pixel values represented with 8- 
to 12-bit precision. For each color component, the largest dimen- 
sion supported in either the horizontal or the vertical direction 
is 216 = 65,536. 

All color component arrays do not necessarily have the same 
dimensions. Assume that an image contains K color compo- 
nents denoted by C,, n = 1,2, . . . , K .  Let the horizontal and 
vertical dimensions of the nth component be equal to X ,  and 
Y,, respectively. Define dimensions Xm,, Ym, and Xmin, Y,in 
as 

K: K 
Xmin = min{X,}, Ymi, = min{Yn}. 

n=l n=l 

With each color component C,, n = 1,2, . . . , K ,  one associates 
relative horizontal and vertical sampling factors, denoted by H, 
and V,, respectively, where 

Yn v--. n -  
Xmin Yiin 
Xn H, = -, 

The standard restricts the possible values of H, and V, to the set 
of four integers, 1,2,3,4. The largest values of relative sampling 
factors are given by Hm, = max{Hn} and V,, = max{V,}. 

According to the JPEG file interchange format, the color in- 
formation is specified by [X,,, Ym,, H,, and V,, n = 1,2, . . . , 
K ,  H,,, Vm,]. The horizontal dimensions of the components 
are computed by the decoder as 

Example I: Consider a raw image in a luminance-plus-chro- 
minance representation consisting of K = 3 components, C1 = 
Y, C2 = Cr,  and C3 = Cb. Let the dimensions of the luminance 
matrix ( Y )  be X I  = 720 and 5 = 480, and the dimensions of 
the two chrominance matrices (Cr and Cb)  be X2 = X ,  = 360 

1 51 1 7 1111010 8 1  and Y2 = Y3 = 240. In this case Xm, = 720 and Ym, = 480. 
-1 511 7 1111010 8 0  The relative sampling factors are HI = V, = 2, and H2 = V, = 

When images have multiple components, the standard de- 
scribes formats for organizing the data for the purpose of storage. 

4 -  H3 = V, = 1. EOB EOB 4 1010 
Total bits for block 
Rate= 112164 = 1.75 bitsperpixel 

112 
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Y1:l Y1:2 ... Y1:90 Y2:l Y2:2 ... Y6089 Y60:90 
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Cr1:l Crl:2 ... Cr30:45 Cb1:l Cbl:2 ... Cb30:45 

r30:4!5 

Y1:l Y1:2 Y2:l Y2:2 Cr1:l Cb1;l 

Cr component 
data units 

Y1:3 Y1:4 Y2:3 Y2:4 Crl:2 Crl:2 

Cb,:1 _ _ _ - - -  _I 
b304! 

Cb component 
data units 

Y component 
data units 

MCU-1350 

FIGURE 9 Organizations of the data units in the Y, Cr, Cb components into noninterleaved and interleaved formats. 

In storing components, the standard provides the option of us- 
ing either interleaved or noninterleaved formats. Processing and 
storage efficiency is aided, however, by interleaving the compo- 
nents where the data are read in a single scan. Interleaving is per- 
formed by defining a data unit for lossy coding as a single block of 
8 x 8 pixels in each color component. This definition can be used 
to partition the nth color component C,, n = 1,2, . . . , K into 
rectangular blocks, each of which contains H,, x V,, data units. 
A minimum coded unit (MCU) is then defined as the small- 
est interleaved collection of data units obtained by successively 
picking H,, x V, data units from nth color component. Certain 
restrictions are imposed on the data in order to be stored in the 
interleaved format. 

The number of interleaved components should not exceed 
four, and 
an MCU should contain no more than ten data units, i.e., 

5 HnVn 5 10. 

If these restrictions are not met, then the data are stored in a 

noninterleaved format, where each component is processed in 
successive scans. 

Example 2: We consider the case of storage of the Y, Cr, Cb 
components in Example 1. The luminance component contains 
90 x 60 data units, and each ofthe two chrominance components 
contains 45 x 30 data units. Figure 9 shows both noninterleaved 
and an interleaved arrangement of the data for K = 3 compo- 
nents, C1 = Y, C, = Cr,  and C3 = Cb, with HI = V, = 2, 
and Hz = V, = H3 = V, = 1. The MCU in this case contains 
six data units, consisting of HI x V, = 4 data units of the Y 
component and Hz x V, = H3 x V, = 1 each of the Cr and 
Cb components. 

7 Alternative Modes of Operation 
~ 

What has been described thus far in this chapter represents the 
JPEG sequential DCT mode. The sequential DCT mode is the 
most commonly used mode of operation of JPEG and is required 
to be supported by any baseline implementation of the standard. 
However, in addition to the sequential DCT mode, JPEG also 
defines a progressive DCT mode, sequential lossless mode, and a 
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FIGURE 10 JPEG modes of operation. 

hierarchical mode. In Fig. 10 we show how the different modes 
can be used. For example, the hierarchical mode could be used 
in conjunction with any of the other modes as shown in the 
figure. In the lossless mode, JPEG uses an entirely different al- 
gorithm based on predictive coding as described in detail in the 
next chapter. In this section we restrict ourselves to lossy com- 
pression and describe in more detail the DCT based progressive 
and hierarchical modes of operation. 

7.1 Progressive Mode 
In some applications it may be advantageous to transmit an 
image in multiple passes, such that after each pass an increasingly 
accurate approximation to the final image can be constructed at 
the receiver. In the first pass very fewbits are transmitted and the 
reconstructed image is equivalent to one obtainedwith avery low 
quality setting. Each of the subsequent passes provides additional 
bits, which are used to refine the quality of the reconstructed 
image. The total number of bits transmitted is roughly the same 
as would be needed to transmit the final image in a sequential 
DCT mode. One example of an application that would benefit 
from progressive transmission is provided by the World Wide 
Web, where a user might want to start examining the contents 
of the entire page without waiting for each and every image 
contained in the page to be fully and sequentially downloaded. 
Other examples include remote browsing of image databases, 
telemedicine, and network-centric computing in general. JPEG 
contains a progressive mode of coding that is well suited to such 
applications. The disadvantage of progressive transmission of 
course is that the image has to be decoded a multiple number 
of times and only makes sense if the decoder is faster than the 
communication link. 

In the progressive mode, the DCT coefficients are encoded in 
a series of scans. JPEG defines two ways for doing this: spectral 
selection and successive approximation. In the spectral selection 
mode, DCT coefficients are assigned to different groups accord- 
ing to their position in the DCT block and during each pass, the 
DCT coefficients belonging to a single group are transmitted. 
For example, consider the following grouping of the 64 DCT 

coefficients numbered from 0 to 63 in the zigzag scan order 

IO), {1,2,3), I4,5,6,71, IS, . . . , 631. 

Here, only the DC coefficient is encoded in the first scan. This is 
a requirement imposed by the standard. In the progressive DCT 
mode, DC coefficients are always sent in a separate scan. The 
second scan of the example codes the first three AC coefficients 
in zigzag order, the third scan encodes the next four AC coeffi- 
cients, and the fourth and the last scan encodes the remaining 
coefficients. JPEG provides the syntax for specifying the start- 
ing coefficient number and the final coefficient number being 
encoded in a particular scan. This limits a group of coefficients 
being encoded in any given scan to be successive in the zigzag 
order. The first few DCT coefficients are often sufficient to give 
a reasonable rendition of the image. In fact, just the DC coeffi- 
cient can serve to essentially identlfy the contents of an image, 
although the reconstructed image contains severe blocking ar- 
tifacts. It should be noted that after all the scans are decoded, 
the final image quality is the same as that obtained by a sequen- 
tial mode of operation. The bit rate, however, can be different, 
as the entropy coding procedures for the progressive mode are 
different as described later in this section. 

In successive approximation coding, the DCT coefficients are 
sent in successive scans with an increasing level of precision. 
The DC coefficient, however, is sent in the first scan with full 
precision, just as in spectral selection coding. The AC coefficients 
are sent bit plane by bit plane, starting from the most significant 
bit plane to the least significant bit plane. 

The entropy coding techniques used in the progressive 
mode are slightly different than those used in the sequential 
mode. Since the DC coefficient is always sent as a separate scan, 
the Huffman and arithmetic coding procedures used remain the 
same as those in the sequential mode. However, coding of the AC 
coefficients is done a bit differently. In spectral selection coding 
(without selective refinement) and in the first stage of successive 
approximation coding, a new set of symbols are defined to indi- 
cate runs of end-of-block (EOB) codes. Recall, in the sequential 
mode, the EOB code indicates that the rest of the block contains 
zero coefficients. With spectral selection, each scan contains only 
a few AC coefficients and the probability of encountering EOB is 
significantly higher. Similarly, in successive approximation cod- 
ing each block consists of reduced precision coefficients, leading 
again to the encoding of a large number of EOB symbols. Hence, 
to exploit this fact and acheive further reduction in bit rate, JPEG 
defines an additional set of 15 symbols as EOBn, each represent- 
ing a run of 2" EOB codes. After each EOBi run-length code, 
extra i bits are appended to specify the exact run length. 

It should be noted that the two progressive modes, spectral 
selection and successive refinement, can be combined to give 
successive approximation in each spectral band being encoded. 
This results in quite a complex codec, which to our knowledge 
is rarely used. 

It is possible to transcode between progressive JPEG and se- 
quential JPEG without any loss in quality and approximately 
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maintaining the same bit rate. Spectral selection results in bit 
rates slightlyhigher than the sequentialmode, whereas successive 
approximation often results in lower bit rates. The differences, 
however, are small. 

Despite the advantages of progressive transmission, there have 
not been many implementations of progressive JPEG codecs. 
There has been some interest in them recently because of the 
proliferation of images on the World .Wide Web. It is expected 
that many more public domain progressive JPEG codecs will be 
available in the future. 

7.2 Hierarchical Mode 
The hierarchical mode defines another form ofprogressive trans- 
mission in which the image is decomposed into a pyramidal 
structure of increasing resolution. The topmost layer in the pyra- 
mid represents the image at the lowest resolution, and the base 
of the pyramid represents the image at full resolution. There is 
a doubling of resolutions both in the horizontal and vertical di- 
mensions, between successive levels in the pyramid. Hierarchical 
coding is useful in applications where an image has to be dis- 
played at different resolutions in units such as hand-held devices, 
computer monitors of varying resolutions, and high-resolution 
printers. In such a scenario, a multiresolution representation al- 
lows the transmission of the appropriate layer to each requesting 
device, thereby making full use of available bandwidth. 

In the JPEG hierarchical mode, each image component is 
encoded as a sequence of frames. The lowest resolution frame 
(level 1) is encoded by using one of the sequential or progressive 
modes. The remaining levels are encoded differentially. That is, 
an estimate 1; of the image, Ii, at the i-th level ( i  2 2) is first 
formed by upsampling the low-resolution image Ii-1 from the 
layer immediately above. The difference between I; and Ii is 
then encoded by using modifications of the DCT based modes 
or the lossless mode. If lossless mode is used to code each re- 
finement, then the final reconstruction at the base layer is loss- 
less. The upsampling filter used is a bilinear interpolating filter 
that is specified by the standard and cannot be specified by the 
user. Starting from the high-resolution image, successive low- 
resolution images are created essentially by downsampling by 2 
in each direction. The exact downsampling filter to be used is not 
specified, but the JPEG standard cautions that the downsampling 
filter used be consistent with the fixed upsampling filter. Note 
that the decoder does not need to know what downsampling fil- 
ter was used in order to decode a bit stream. Figure l l depicts the 
sequence of operations performed at each level of the hierarchy. 

Since the differential frames are already signed values, they 
are not level-shifted prior to FDCT. Also, the DC coefficient is 
coded directly rather than differentially. Other than these two 
facts, the Huffman coding model in the progressive mode is the 
same as that used in the sequential mode. Arithmetic coding is, 
however, done a bit differently, with conditioning states based 
on differences with the pixel to the left as well as the one above 
being utilized. For details the user is referred to [9]. 

Image at level Upsampling fitter 
with bilinear 

Difference 
image 

Image at level k 

FIGURE 11 JPEG hierarchical mode. 

8 JPEG Part 3 

JPEG has made some recent extensions to the original standard 
described in [ 11. These extensions are collectively known as JPEG 
Part 3. The most important elements of JPEG Part 3 are variable 
quantization and tiling, as described in more detail below. 

8.1 Variable Quantization 
One of the main limitations of the original JPEG standard was 
the fact that visible artifacts can often appear in the decom- 
pressed image at moderate to high compression ratios. This is 
especially true for parts of the image containing graphics, text, 
or some other such synthesized component. Artifacts are also 
common in smooth regions and in image blocks containing a 
single dominant edge. We consider compression of a 24 bitdpixel 
color version of the Lena image. In Fig. 12 we show the recon- 
structed Lena image with different compression ratios. At 24 to 
1 compression we see little artifacts. But as the compression ra- 
tio is increased to 96 to 1, noticeable artifacts begin at appear. 
Especially annoying is the “blocking artifact” in smooth regions 
of the image. 

One approach to deal with this problem is to change the 
“coarseness” of quantization as a function of image characteris- 
tics in the block being compressed. The latest extension of the 
JPEG standard, called JPEG Part 3, allows rescaling of quanti- 
zation matrix Q on a block-by-block basis, thereby potentially 
changing the manner in which quantization is performed for 
each block. The scaling operation is not done on the DC coeffi- 
cient Y[O, 01, which is quantized in the same manner as baseline 
JPEG. The remaining 63 AC coefficients Y [  u, v ]  are quantized 
as follows: 

A I. Y [ u ,  v ]  x 16 [ Q[u,  v ]  x QScale Y[u,  V I  = 

Here QScale is a parameter that can take on values from 1 to 
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FIGURE 12 
ratios. (See color section, p. C-26.) 

Lena image at 24 to 1 (top) and 96 to 1 (bottom) compression 

112 (default 16). In order for the decoder to correctly recover 
the quantized AC coefficients, it has to know the value of QS- 
cale used by the encoding process. The standard specifies the 
exact syntax by which the encoder can specify change in QS- 
cale values. If no such change is signaled, then the decoder 
continues using the QScale value that is in current use. The 
overhead incurred in signaling a change in the scale factor is 
approximately 15 bits, depending on the Huffman table being 
employed. 

It should be noted that the standard only specifies the syn- 
tax by means of which the encoding process can signal changes 
made to the QScale value. It does not specify how the encoder 
may determine if a change in QScale is desired and what the new 
value of QScale should be. Typical methods for variable quanti- 
zation proposed in the literature utilize the fact that the human 
visual system is less sensitive to quantization errors in highly 
active regions of the image. Quantization errors are frequently 
more perceptible in blocks that are smooth or contain a single 
dominant edge. Hence, prior to quantization, they compute a 
few simple features for each block. These features are used to 
classify the block as either smooth, edge or texture, etc. Based on 
this classification, and a simple activity measure computed for 
the block, a QScale value is computed. 

For example, Konstantinides and Tretter [6] give an algo- 
rithm for computing QScale factors for improving text quality 
on compound documents. They compute an activity measure 
Mi for each image block as a function of the DCT coefficients as 
follows: 

I- 

The QScale value for the block is then computed as 

a x Mi + b if2 > a x Mi + b  1 0 . 4  

a x Mi + b > 2 
QScalei = 0.4 a x Mi + b 2 0.4. * (3) 

1 2  

The technique is only designed to detect text regions and will 
quantize high-activity textured regions in the image part at the 
same scale as text regions. Clearly, this is not optimal, as high- 
activity textured regions can be quantized very coarsely, leading 
to an improved compression. In addition, the technique does not 
discriminate smooth blocks, where artifacts are often the first to 
appear. 

Algorithms for variable quantization that perform a more ex- 
tensive classification have been proposed for video coding but 
nevertheless are also applicable to still image coding. One such 
technique has been proposed by Chun et al. [4], who classify 
blocks as being either smooth, edge, or texture, based on several 
parameters defined in the DCT domain as shown below. 

E,: avg(Eh, E,, Ed) 
E,: vertical energy 
Ed: diagonal energy 

Eh: horizontal energy 
 ern,^: ratio of E, and EM 

Em: min(Eh, E,, Ed) 
EM: ma(Eh,  E,, Ed) 

Here E, represents the average high-frequency energy of the 
block and is used to distinguish between low-activity blocks and 
high-activity blocks. Low-activity (smooth) blocks satisfy the 
relationship, E, 5 T ,  where T, is a small constant. High-activity 
blocks are further classified into texture blocks and edge blocks. 
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Texture blocks are detected under the assumption that they have 
relatively uniform energy distribution in comparison with edge 
blocks. Specifically, a block is deemed to be a texture block if 
it satisfies the conditions E ,  > T,, E,i, > E ,  and E,/M > z, 
where T,; E ,  and 5 are experimentally determined constants. 
All blocks that fail to satisfy the smoothness and texture tests are 
classified as edge blocks. 

8.2 Tiling 
JPEG Part 3 defines a tiling capability whereby an image is sub- 
divided into blocks or tiles, each coded independently. Tiling 
facilitates the following features: 

display of an image region on a given screen size, 
fast access to image subregions, 
region of interest refinement, and 
protection of large images from copying by giving access to 
only a part of it. 

As shown in Fig. 13, the different types of tiling allowed by 
JPEG are as follows. 

Simple tiling: this form of tiling is essentially used for di- 
viding a large image into multiple subimages, which are of 
the same size (except for edges) and are nonoverlapping. In 
this mode, all tiles are required to have the same sampling 
factors and components. Other parameters like quantiza- 
tion tables and Huffman tables are allowed to change from 
tile to tile. 
Pyramidal tiling: this is used for storing multiple resolutions 
of an image. Simple tiling as described above is used in each 
resolution. Tiles are stored in raster order, left to right, top 
to bottom, and low resolution to high resolution. Rl 

6 7 9  

(C) 

FIGURE 13 
(b) composite, and (c) pyramidal. 

Different types of tilings allowed in JPEG Part 3: (a) simple, 

Composite tiling: this allows multiple resolutions on a single 
image display plane. Tiles can overlap within a plane. 

Another Part 3 extension is selective refinement. This feature 
permits a scan in a progressive mode, or a specific level of a hier- 
archical sequence, to cover only part of the total image area. 
Selective refinement could be useful, for example, in tele- 
medicine applications in which a radiologist could request re- 
finements to specific areas of interest in the image. 

9 Additional Information 

An excellent source of information on the JPEG compression 
standard is the book by Pennebaker and Mitchell [9]. This book 
also contains the entire text of the official committee draft in- 
ternational standard IS0 DIS 10918-1 and IS0 DIS 10918-2. 
The book has not been revised since its first publication in 1993, 
and hence later extensions to the standard, incorporated in JPEG 
Part 3, are not covered. The official standards document [ 11 is 
the only source for JPEG Part 3. 

The JPEG committee maintains an official Web Site at www. 
jpeg.org, which contains general information about the com- 
mittee and its activities, announcements, and other useful links 
related to the different JPEG standards. The JPEG FAQ is located 
at http://www.faqs.org/faqs/jpeg-faq/part l/preamble.html. 

Free, portable C code for JPEG compression is available 
from the Independent JPEG Group (IJG). Source code, doc- 
umentation, and test files are included. Version 6b is avail- 
able from ftp.uu.net:/graphics/jpeg/jpegsrc.v6b.tar.g~ and in ZIP 
archive format at ftp.simtel.net:/pub/simtelnet/msdos/graphics/ 
jpegsr6b.zip. 

The IJG code includes a reusable JPEG compression/decom- 
pression library, plus sample applications for compression, de- 
compression, transcoding, and file format conversion. The pack- 
age is highly portable and has been used successfully on many 
machines ranging from personal computers to supercomputers. 
The IJG code is free for both noncommercial and commercial 
use; only an acknowledgement in your documentation is re- 
quired to use it in a product. A different free JPEG implementa- 
tion, written by the PVRG group at Stanford, is available from 
have-fun.stanford.edu:/pub/jpeg/JPEGvl.2.l.tar.Z. The PVRG 
code is designed for research and experimentation rather than 
production use; it is slower, harder to use, and less portable than 
the IJG code, but the PVRG code is easier to understand. 
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Although the Joint Photographic Expert Group (JPEG) commit- 
tee of the International Standards Organization is best known 
for the development of the ubiquitous lossy compression stan- 
dard, which is commonly known as JPEG compression today, it 
has also developed some important lossless image compression 
standards. The first lossless algorithm adopted by the JPEG com- 
mittee, known as JPEG lossless, was developed and standardized 
along with the well-known lossy standard. However, it had little 
in common with the lossy standard based on the discrete cosine 
transform (DCT). The original goals set by the JPEG committee 
in 1988 stated that the lossy standard should also have a lossless 
mode that gives about 2 to 1 compression on images similar to 
the original test set. Perhaps it was also envisioned that both 
lossy and lossless compression be achieved by a single algorithm 
workingwith different parameters. In fact, some of the proposals 
submitted did have this very same capability. However, given the 
superior performance of DCT-based algorithms for lossy com- 
pression, and given the fact that errors caused by implementing 
DCT with finite precision arithmetic preclude the possibility of 
lossless compression, an entirely different algorithm was adopted 
for lossless compression. The algorithm chosen was a very simple 
technique that uses differential pulse code modulation (DPCM) 
in conjunction with either Huffman or arithmetic coding for 
encoding prediction errors. 

Although the JPEG lossless algorithm that uses Huffman cod- 
ing has seen some adoption and a few public domain imple- 
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mentations of it are freely available, the JPEG lossless algorithm 
based on arithmetic coding has seen little use as of today, despite 
the fact that it provides about 10% to 15% better compression. 
Perhaps this is due to the intellectual property issues surround- 
ing arithmetic coding and to the perceived computational and 
conceptual complexity issues associated with it. To address this 
problem, the JPEG committee revisited the issue in 1994 and 
initiated the development of a new lossless image compression 
standard. Anew work item proposal was approved in early 1994, 
titled Next Generation Lossless Compression of Continuous-Tone 
Still Pictures. Acall was issued in March 1994 solicitingproposals 
specifying algorithms for lossless and near-lossless compression 
of continuous-tone (2 to 16 bits) still pictures. It was announced 
that the algorithms should: 

provide lossless and near-lossless compression, 
target 2- to 16-bit still images, 
be applicable over a wide variety of content, 
not impose any size or depth restrictions, 
be applicable to fields such as medical, satellite, archival, 

be amenable to implementation with reasonably low com- 

significantly improve upon the performance of current loss- 

work with a single pass through data. 

etc., 

plexity, 

less standards, and 

A series of additional requirements were imposed on submis- 
sions. The reader is referred to [ l]  for details. For instance, 

527 
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i 
2 The Original JPEG Lossless Standards 

As mentioned before, the original JPEG lossless standards based 
on either Huffman or arithmetic coding both employ a predictive 
approach. That is, the algorithm scans an input image, row by 
row, left to right, predicting each pixel as a linear combination 
of previously processed pixels and encodes the prediction error. 
Since the decoder also processes the image in the same order, it 
can make the same prediction and recover the actual pixel value 
based on the prediction error. The standard allows the user to 

TABLE 1 JPEG predictors for 
lossless coding 

Mode Prediction for P [ i, j ] 

0 (No Prediction) 
N 
W 
hrW 
N+ W -  NW 
W +  ( N -  NW)/2 
N + ( W -  NW/2) 
( N f  W I 2  

exploitation of interband correlations (in color and satellite im- 
ages for example) was prohibited. This was done in order to fa- 
cilitate fair comparison of competing schemes. Later extensions 
of the standard do incorporate interband coding. 

In July of 1995, a total of nine proposals were submitted in 
response to this call. The nine submitted proposals were evalu- 
ated by IS0 on a very large set of test images by using an ob- 
jective performance measure that had been announced prior 
to the competition. Seven out of the nine proposals submit- 
ted employed a traditional DPCM-based approach very much 
like the original lossless JPEG standard, although they contained 
more sophisticated context modeling techniques for encoding 

versible integer wavelet transform coding. However, right from 
the first round of evaluations, it was clear that proposals based on 

prediction errors. The Other Proposals were based On re- choose bemeen eight afferent predictors, which are listed in 
Table 1. The notation used for specdying neighboring pixels 
used in arriving at a in the form is shown in Fig. 

transform coding did not provide ratios as good as ofa template o f ~ o - ~ e n s i o n a l  neighborhood A subset 
those Of the proposed algorithms based On the ofthis neighborhood is used for prediction or 
DPCM [151. The best algorithm in the first round 
was CALIC, a context-based predictive technique [ 191. 

After a few rounds of convergence the final baseline algorithm 
adopted for standardization was based largely on the revised 

tional Standard) was approved by the committee in 1997 [21. The 
new draft standard was named JPEG-LS in order to distinguish 
it from the earlier lossy and lossless standards. JPEG-LS baseline 
is a modern and sophisticated lossless image compression algo- 
rithm that, despite its conceptual and computational simplicity, 
yields a performance that is surprisingly close to that of the best 

core of the algorithm and many extensions to it are currently 
under standardization. 

In the rest of this chapter the different lossless image compres- 
sion standards developed by the JPEG committee are described 
in greater detail. In Section 2, both the H u h a n  and arithmetic 
coding versions of the original JPEG lossless standard are pre- 
sented. In Section 3, JPEG-LS is described. In the same section we 
also briefly discuss different extensions that have been proposed 
to the baseline JPEG-LS algorithm and are currently under the 
process of standardization. Finally, in Section 4 we discuss the 
integration of lossless and lossy compression being proposed in 
JPEG 2000, another new standard currently under development 
by the JPEG committee. 

determination by most lossless image compression techniques. 
In the rest of the paper we shall consistently use this notation to 
denote specific neighbors of the pixel [ i , il in the ith row and 
jth column. 

tion that the intensity function of images is usually quite 
‘csmooth” in a given local region and hence the value at any given 
pixel is quite to its neighbors. In any case, if the prediction 
made is reasonably accurate then the prediction error has signif- 
icantly lower magnitude and variance when e t h  the 
original with a suitable 

rors can be encoded e* either Huffman or arithmetic coding, 
codecs for both being provided by the standard. In the rest of this 
section we elaborate on the different procedures required or rec- 
ommended by the for Huffman and arithmetic coding. 

HeW1ett-Packard Proposal Loco-I1f’, and a DIS (Draft Illterna- prediction essentially to capture the intuitive no- 

and it can be encoded 
techniques like JPEG-LS contains *e variable-length technique. JpEG lossless, prediction er- 

2.1 Huffman Coding Procedures 
In the Huffman coding version, essentially no error model is 
used. Prediction errors are assumed to be independent and iden- 
tically distributed (i.i.d.), andtheyareencodedwiththeHuKman 

FIGURE 1 
p [ i ,  jl. 

Notation used for specifying neighborhood pixels of current pixel 
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TABLE 2 Mapping of prediction errors to magnitude category and extra bits 

Category Symbols Extra Bits 

0 0 
1 -1, 1 0, 1 
2 -3, -2,2,3 00,01,10,11 
3 
4 

- 

-7, . . . , -4,4,. . . ,7  
-15, ..., -8,8, ..., 15 

-32767,. . . , -16384,16384, . . . ,32767 

000, ... ) 011,100, ..., 111 
0000, . . . , 01 11,1000, . . . , 1 1 11 

15 0.. .OO, . . . , 01 .. . 1, 10.. .O, . . . , 11..  . 1 
16 32768 

table provided in .  e bit stream using the specified syntax. The 
Huffman coding procedure specified by the standard for encod- 
ing prediction errors is identical to the one used for encoding 
DC coefficient differences in the lossy codec. 

Since the alphabet size for the prediction errors is twice the 
original alphabet size, a Huffman code for the entire alphabet 
would require an unduly large code table. An excessively large 
Huffman table can lead to multiple problems. First of all, a larger 
code would require more bits to represent. In JPEG, this is not 
a problem, as a special length-limited Huffman code is used 
that can be specified by a small and fixed number of bits. More 
importantly, however, large Huffman tables can lead to serious 
difficulties in a hardware implementation of the codec. In order 
to reduce the size ofthe Huffman table, each prediction error (or 
DC difference in the lossy codec) is classified into a “magnitude 
category” and the label of this category is Huffman coded. Since 
each category consists of a multiple number of symbols, un- 
coded “extra bits” are also transmitted that identify the exact 
symbol (prediction error in the lossless codec, and DC differ- 
ence in the lossy codec) within the category. Table 2 shows the 17 
different categories that are defined. As can be seen, except for 
the 17th (last) category, each category k contains 2k members 
{ ~ t 2 ~ - ’ ,  . . . , f 2 k  - 1) and hence k extra bits would be required 
to identify a specific symbol within the category. The extra bits 
for specifymg the prediction error e in the category k are given 
by the k-bit number n by the mapping 

n = {  e i f e l 0  
2 k - l + e  i f e < ~ ’  

For example, the prediction error - 155 would be encoded by the 
Huffman code for category 8 and the eight extra bits (01100100) 
(integer 100) would be transmitted to identify - 155 within the 
256 different elements that fall within this category. If the pre- 
diction error was 155, then (10011011), integer 155, would be 
transmitted as extra bits. In practice, the above mapping can also 
be implemented by using the k-bit unsigned representation of e 
if e is positive and its one’s complement if negative. 

The Huffman code used for encoding the category label has 
to meet the following conditions. 

1. The Huffman code is a length limited code. The maximum 
code length for a symbol is 16 bits. 

2. The Huffman code is a canonical COG-. The k codewords 
of given length n are represented by the n-bit numbers 
x + 1, x + 2, . . . , x + k,  where x is obtained by left shifting 
the largest numerical value represented by an (n - 1)-bit 
codeword. 

The above two conditions greatly facilitate the specification 
of a Huffinan table and a fast implementation of the encod- 
ing and decoding procedures. In a JPEG bit stream, a Huffman 
table is specified by two lists, BITS and HUFFVAL. BITS is a 
16-byte array contained in the codeword stream, where byte 
n simply gives the number of codewords of length n that are 
present in the Huffman table. HUFFVAL is a list of symbol val- 
ues in order of increasing codeword length. If two symbols have 
the same code length, then the symbol corresponding to the 
smaller numerical value is listed first. Given these two tables, the 
Huffman code table can be reconstructed in a relatively simple 
manner. The standard provides an example procedure for doing 
this in its informative sections but does not mandate its usage 
except in the functional sense. That is, given the lists BITS and 
HUFFVAL, different decoders need to arrive at the same recon- 
struction, irrespective of the procedure used. In practice, many 
hardware implementations of the lossy codec do not implement 
the reconstruction procedure and directly input the Huffman 
table.’ 

Furthermore, the standard only specifies the syntax used for 
representing a Huffman code. It does not specify how to arrive 
at the specific length-limited code to be used. One simple way 
to arrive at a length-limited code is to force probabilities of oc- 
currence for any particular symbol not to be less than 2-’ and 
then run the regular Huffman algorithm. This will ensure that 
any given codeword does not contain more than 1 bits. It should 
be noted that although this procedure is simple, it does not nec- 
essary generate an optimal length-limited code. Algorithms for 
constructing an optimal length-limited code have been proposed 
in the literature. In practice, however, the above simple procedure 
works satisfactorily given the small alphabet size for the Huffman 
table used in JPEG. In addition, the standard also requires that 
the bit sequence of all IS not be a codeword for any symbol. 

‘Actually, what is loaded into the ASIC implementing the lossy codec is not 
the Huffman code itself but a table that facilitates fast encoding and decoding of 
the Huffman code. 
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When an image consists of multiple components, like color 
images, separate Huffman tables can be specified for each 
component. The informative sections of the standard provide 
example Huffman tables for luminance and chrominance com- 
ponents. They work quite well for lossy compression over a wide 
range of images and are often used in practice. Most software 
implementations of the lossy standard permit the use of these 
“default” tables, allowing an image to be encoded in a single pass. 
However, since these tables were mainly designed for encoding 
DC coefficient differences for the lossy codec, they may not work 
well with lossless compression. For lossless compression, a cus- 
tom Huffman code table can be specified in the bit stream along 
with the compressed image. Although this approach requires 
two passes through the data, it does give significantly better 
compression. Finally it should be noted that the procedures for 
Huffman coding are common to both the lossy and the lossless 
standards. 

2.2 Arithmetic Coding Procedures 
Unlike the version based on Huffman coding, which assumes 
the prediction error samples to be i.i.d., the arithmetic coding 
version uses quantized prediction errors at neighboring pixels as 
contexts for conditional coding of the prediction error. This is a 
simplified form of error modeling that attempts to capture the 
remaining structure in the prediction residual. Encoding within 
each context is done with a binary arithmetic coder by decom- 
posing the prediction error into a sequence of binary decisions. 
The first binary decision determines if the prediction error is 
zero. If not zero, then the second step determines the sign of the 
error. The subsequent steps assist in classifying the magnitude 
of the prediction error into one of a set of ranges and the final 
bits that determine the exact prediction error magnitude within 
the range are sent uncoded. 

The QM coder is used for encoding each binary decision. A 
detailed description of the coder and the standard can be found 
in [ 111. Since the arithmetic coded version of the standard is 
rarely used, we do not dwell on the details of the procedures 
used for arithmetic coding and only provide a brief summary. 
The interested reader can find details in [ 111. 

The QM coder is a modification of an adaptive binary arith- 
metic coder called the Q coder [lo], which in turn is an extension 
of another binary adaptive arithmetic coder called the skew coder 
[ 131. Instead of dealing directly with the Os and 1s put out by 
the source, the QM coder maps them into a more probable sym- 
bol (MPS) and less probable symbol (LPS). If 1 represents black 
pixels, and 0 represents white pixels, then in a mostlyblackimage, 
1 will be the MPS, while in an image with mostly white regions 
0 will be the MPS. In order to make the implementation sim- 
ple, the committee recommended several deviations from the 
standard arithmetic coding algorithm. The update equations in 
arithmetic coding that keep track of the subinterval to be used 
for representing the current string of symbols involve multipli- 

cations that are expensive in both hardware and software. In the 
QM coder, expensive multiplications are avoided and rescalings 
of the interval take the form of repeated doubling, which corre- 
sponds to a left shift in the binary representation. The probability 
qc of the LPS for context C is updated each time a rescaling takes 
place and the context C is active. An ordered list of values for qc 
is kept in a table. Every time a rescaling occurs, the value of qc is 
changed to the next lower or next higher value in the table, de- 
pending on whether the rescaling was caused by the occurrence 
of an LPS or MPS. In a nonstationary situation, it may happen 
that the symbol assigned to LPS actually occurs more often than 
the symbol assigned to MPS. In this situation, the assignments 
are reversed; i.e., the symbol assigned the LPS label is assigned 
the MPS label and vice versa. The test is conducted every time a 
rescaling takes place. The decoder for the QM coder operates in 
much the same way as the encoder, by mimicking the encoder 
operation. 

3 JPEG-LS -The New Lossless Standard 

As mentionedearlier, the JPEG-LS algorithm, like its predecessor, 
is a predictive technique. However, there are significant differ- 
ences, as described below. 

1. Instead of using a simple linear predictor, JPEG-LS uses a 
nonlinear predictor that attempts to detect the presence of 
edges passing through the current pixel and accordingly 
adjusts prediction. This results in a significant improve- 
ment in performance in the prediction step. 

2. Like JPEG lossless arithmetic, JPEG-LS uses some simple 
but very effective context modeling of the prediction errors 
prior to encoding. 

3. Baseline JPEG-LS uses Golomb-Rice codes for encoding 
prediction errors. Golomb-Rice codes are Huffman codes 
for certain geometric distributions that serve well in char- 
acterizing the distribution of prediction errors. Although 
Golomb-Rice codes have been known for a long time, 
JPEG-LS uses some novel and highly effective techniques 
for adaptively estimating the parameter for the Golomb- 
Rice code to be used in a given context. 

4. In order to effectively code low entropy images or re- 
gions, JPEG-LS uses a simple alphabet extension mech- 
anism, by switching to a run-length mode when a uni- 
form region is encountered. The run-length coding used 
is again an extension of Golomb codes and provides signifi- 
cant improvement in performance for highly compressible 
images. 

5 .  For applications that require higher compression ratios, 
JPEG-LS provides a near-lossless mode that guarantees 
each reconstructed pixel to be within a distance k from 
its original value. Near-lossless compression is achieved by 
a simple uniform quantization of the prediction error. 
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FIGURE 2 Overview of baseline JPEG-LS. 

An overview of the JPEG-LS baseline algorithm is shown in 
Fig. 2. In the rest of this section we describe in more detail each 
of the steps involved in the algorithm and some of the exten- 
sions that are currently under the process of standardization. 
For a detailed description the reader is referred to the working 
draft [ 21. 

3.1 The Prediction Step 

JPEG-LS uses a very simple and effective predictor. The median 
edge detection (MED) predictor, which adapts in presence of 
local edges. MED detects horizontal or vertical edges by exam- 
iningthe North N, West W, and Northwest N Wneighbors ofthe 
current pixel P [ i, j ] .  The North (West) pixel is used as a predic- 

tion in the case of a vertical (horizontal) edge. In case of neither, 
planar interpolation is used to compute the prediction value. 
Specifically, prediction is performed according to the following 
equations: 

min(N, W) 
max(N, W) 
N + W - NW 

if NW e max(N, W) 
if NW < min(N, W) 
otherwise 

A 

P [ i ,  j ]  = 

The MED predictor is essentially a special case of the median 
adaptive predictor (MAP) ,  first proposed by Martucci in 1990 
[6]. Martucci proposed the MAP predictor as a nonlinear adap- 
tive predictor that selects the median of a set of three predictions 
in order to predict the current pixel. One way of interpreting such 



532 Handbook of Image and Video Processing 

a predictor is that it always chooses either the best or the second- 
best predictor among the three candidate predictors. Martucci 
reported the best results with the following three predictors, in 
which case it is easy to see that MAP turns out to be the MED 
predictor. 

1. i i i ,  j ]  = N. 
2. F [ i ,  j ]  = W. 
3. i [ i ,  j ]  = N+ W- NW. 

In an extensive evaluation, Memon and Wu observed that the 
MED predictor gives a performance that is superior to or almost 
as good as that of several standard prediction techniques, many 
of which are significantly more complex [ 7,8]. 

3.2 Context Formation 
Gradients alone cannot adequately characterize some of the 
more complex relationships between the predicted pixel P [i, j] 
and its surrounding area. Context modeling of the prediction 
error e = 1; [ i, j ]  - P [ i, j] can exploit higher-order structures 
such as texture patterns and local activity in the image for fur- 
ther compression gains. Contexts in JPEG-LS are formed by first 
computing the following differences: 

D 1 =  NE - N, 

0 2  = N -  NW, 

0 3  = N W -  W, (1 )  

where the notation for specifying neighbors is as shown in Fig. 1. 
The differences D1, D2, and D3 are then quantized into nine 
regions (labeled -4 to +4) symmetric about the origin with 
one of the quantization regions (region 0) containing only the 
difference value 0. Further, contexts of the type (41, q z ,  q 3 )  and 
( -ql ,  -qz ,  - q 3 )  are merged based on the assumption that 

The total number of contexts turn out to be 93 - 1/2 = 364. 
These contexts are then mapped to the set of integers [0,363] in a 
one-to-one fashion. The standard does not specify how contexts 
are mapped to indices and vice versa, leaving it completely to the 
implementation. In fact, two different implementations could 
use different mapping functions and even a different set of indices 
but nevertheless be able to decode files encoded by the other. The 
standard only requires that the mapping be one to one. 

3.3 Bias Cancellation 
As described earlier, in JPEG arithmetic, contexts are used as con- 
ditioning states for encoding prediction errors. Within each state 
the pdf of the associated set of events is adaptively estimated from 
events by keeping occurrence counts for each context. Clearly, 
to better capture the structure preset in the prediction residuals, 

one would like to use a large number of contexts or conditioning 
states. However, the larger the number of contexts, the more the 
number of parameters (conditional probabilities in this case) 
that have to be estimated based on the same data set. This can 
lead to the “sparse context” or “high model cost” problem. In 
JPEG lossless arithmetic this problem is addressed by keepingthe 
number of contexts small and decomposing the prediction error 
into a sequence of binary decisions, each requiring estimation of 
a single probability value. Although this results in alleviating the 
sparse context problem, there are two problems caused by such 
an approach. First, keeping the number of conditioning states to 
a small number fails to capture effectively the structure present 
in the prediction errors and results in poor performance. Sec- 
ond, binarization of the prediction error necessitates the use of 
an arithmetic coder, which adds to the complexity of the coder. 

The JPEG-LS baseline algorithm employs a different solu- 
tion for this problem. First of all it uses a relatively large num- 
ber of contexts to capture the structure present in the predic- 
tion errors. However, instead of estimating the pdf of prediction 
errors, p ( e  I C), within each context C, only the conditional ex- 
pectation E {  e I C} is estimated, using the corresponding sample 
means Z(C) within each context. These estimates are then used 
to further refine the prediction prior to entropy coding, by an 
error feedback mechanism that cancels prediction biases in dif- 
ferent contexts. This process is called bias cancellation. Further- 
more, for encoding the bias-cancelled prediction errors, instead 
of estimating the probabilities of each possible prediction error, 
baseline JPEG-LS essentially estimates a parameter that serves to 
characterize the specific pdf to be employed from a fixed set of 
pdfs. This is explained in greater detail in the next subsection. 

A straightforward implementation of bias cancellation would 
require accumulating prediction errors within each context and 
keeping frequency counts ofthe number of occurrences for each 
context. The accumulated prediction error within a context di- 
vided by its frequency count would then be used as an esti- 
mate of prediction bias within the context. However, this divi- 
sion operation can be avoided by a simple and clever operation 
that updates variables in a suitable manner producing average 
prediction residuals in the interval [ -0.5,0.5]. For details the 
reader is referred to the proposal that presented this technique 
and also to the DIS [2, 181. Also, since JPEG-LS uses Golomb- 
Rice codes, which assign shorter codes to negative residual val- 
ues than to positive ones, the bias is adjusted such that it pro- 
duces average prediction residuals in the interval [ - 1, 01, instead 
of [-OS, 0.51. For a detailed justification of this procedure, 
and other details pertaining to bias estimation and cancellation 
mechanisms, see [ 181. 

3.4 Rice-Golomb Coding 
Before the development of JPEG-LS, the most popular com- 
pression standards, such as JPEG, MPEG, H263, and CCITT 
Group 4, have essentially used static Huffman codes in the en- 
tropy coding stage. This is because adaptive Huffman coding 
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does not provide enough compression improvement in order to 
justify the additional complexity. Adaptive arithmetic coding, in 
contrast, despite being used in standards such as JBIG and JPEG 
arithmetic, has also seen little use because of concerns about in- 
tellectual property restrictions and also perhaps because of the 
additional computational resources that are needed. JPEG-LS is 
the first international compression standard that uses an adap- 
tive entropy coding technique that requires only a single pass 
through the data and requires computational resources that are 
arguably lesser than what is needed by static H u h a n  codes. 

In JPEG-LS, prediction errors are encoded using a special case 
of Golomb codes [5], which is also known as Rice coding [ 121. 
Golomb codes of parameter m encode a positive integer n by 
encoding n mod m in binary followed by an encoding of n div m 
in unary. The unary coding of n is a string of n 0 bits, followed 
by a terminating 1 bit. When m = 2k, Golomb codes have a very 
simple realization and have been referred to as Rice coding in the 
literature. In this case n mod m is given by the k least significant 
bits and n div m by the remaining bits. So, for example, the Rice 
codeofparameter 3 forthe 8-bit number (00101010inbinary) 
is given byO10000001, wherethe first 3 bits 010 are thethreeleast 
significant bits of 42 (which is the same as 42 mod 8) and the 
remaining 6 bits represent the unary coding of 42 div 8 = 5 ,  
which is represented by the remaining 5 bits 00101 in the binary 
representation of 42. Note that, depending on the convention 
being employed, the binary code can appear before the unary 
code and the unary code could have leading Is terminated by a 
zero instead. 

Clearly, the number of bits needed to encode a number n 
depend on the parameter k employed. For the example above, 
if k = 2 was used we would get a code length of 13 bits and the 
parameter 4 would result in 7 bits being used. It turns out that 
given an integer n the Golomb-Rice parameter that results in 
the minimum code length of n is [log, nl . 

From these facts, it is clear that the key factor behind the 
effective use of Rice codes is estimating the parameter k to be 
used for a given sample or block of samples. Rice's algorithm 
[ 121 tries codes with each parameter on a block of symbols and 
selects the one that results in the shortest code as suggested. This 
parameter is sent to the decoder as side information. However, in 
JPEG-LS the coding parameter k is estimated on the fly for each 
prediction error by using techniques proposed by Weinberger 
et al. [17]. Specifically, the Golomb parameter is estimated by 
maintaining in each context the count N of the prediction errors 
seen so far and the accumulated sum of magnitude of prediction 
errors A seen so far. The coding context k is then computed as 

k = min(k' I 2'N 1: A}. 

Also, since Golomb-Rice codes are defined for positive inte- 
gers, prediction errors have to be accordingly mapped. In JPEG- 
LS, prediction errors are first reduced to the range [ -128, 1281 
by the operation e = y - x mod 256 and then mapped to posit- 
ive values by 

2e ife 2 0 
-2e-1 i f e < O  

m =  [ 
3.5 Alphabet Extension 
The use of Golomb-Rice codes is very inefficient when coding 
low-entropy distributions because the best coding rate achiev- 
able is 1 bit per symbol. Obviously for entropy values ofless than 
1 bit per symbol, such as would be found in smooth regions of 
an image, this can be very wasteful and lead to significant de- 
terioration in performance. This problem can be alleviated by 
using alphabet extension, wherein blocks of symbols rather than 
individual symbols are coded, thus spreading the excess coding 
length over many symbols. The process of blocking several sym- 
bols together prior to coding produces less skewed distributions, 
which is desirable. 

To implement alphabet extension, JPEG-LS first de- 
tects smooth areas in the image. Such areas in the image are 
characterized by the gradients D1, 0 2 ,  and 0 3 ,  as defined in 1, 
all being zero. In other words, this is the context (o,o, O), which 
we call the zero context. When a zero context is detected, the 
encoder enters a run mode where a run of the west symbol B is 
assumed and the total run of the length is encoded. The end of 
run state is indicated by a new symbol x # B ,  and the new sym- 
bol is encoded by using its own context and special techniques 
described in the standard 121. A run may also be terminated 
by the end of line, in which case only the total length of run is 
encoded. 

The specific run-length coding scheme used is the MELCODE 
described in [ 91. MELCODE is a binary coding scheme in which 
target sequences contain an MPS and a LPS. In JPEG-LS, if the 
current symbol is the same as the previous one, an MPS is en- 
coded; otherwise, an LPS is encoded. Runs of the MPS of length 
n are encoded using only one bit. If the run is of length less than 
n (including 0), it is encoded by a zero bit followed by the binary 
value of the run length encoded using log n bits. The parameter 
n is constrained to be of the form zk and is adaptively updated 
while encoding a run. For details ofthe adaptation procedure and 
other details pertaining to the run mode, the reader is referred to 
the draft standard [2]. Again the critical factor behind effective 
usage of the MELCODE is the estimation of the parameter value 
n to be used. 

3.6 Near-Lossless Compression 
Although lossless compression is required in many applications, 
compression ratios obtained with lossless techniques are sig- 
nificantly lower than those possible with lossy compression. 

The strategy employed is an approximation to optimal param- 
eter selection for this entropy coder. Despite the simplicity of 
the coding and estimation procedures, the compression perfor- 
mance achieved is surprisingly close to that obtained by arith- 
metic coding. For details the reader is referred to [ 171. 
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Typically, on one hand, depending on the image, lossless com- 
pression ratios range from about 1.5 to 1 to 3 to 1. On the other 
hand, state-of-the-art lossy compression techniques give com- 
pression rations in excess of 20 to 1, with virtually no loss in 
visual fidelity. However, in many applications, the end use of the 
image is not human perception. In such applications, the im- 
age is subjected to postprocessing in order to extract parameters 
of interest like ground temperature or vegetation indices. The 
uncertainty about reconstruction errors introduced by a lossy 
compression technique is undesirable. 

This leads to the notion of a near-lossless compression tech- 
nique that gives quantitative guarantees about the type and 
amount of distortion introduced. Based on these guarantees, a 
scientist can be assured that the extracted parameters of interest 
will either not be affected or be affected only within a bounded 
range of error. Near-lossless compression could potentially lead 
to significant increase in compression, thereby giving more ef- 
ficient utilization of precious bandwidth while preserving the 
integrity of the images with respect to the postprocessing oper- 
ations that are carried out. 

JPEG-LS has a near-lossless mode that guarantees a f k  recon- 
struction error for each pixel. Extension of the lossless baseline 
algorithm to the case of near-lossless compression is achieved 
by prediction error quantization according to the specified pixel 
value tolerance. In order for the predictor at the receiver to track 
the predictor at the encoder, the reconstructed values of the im- 
age are used to generate the prediction at both the encoder and 
the receiver. This is the classical DPCM structure. Specifically, 
the prediction error is quantized according to the following rule: 

where e is the prediction error, k is the maximum reconstruction 
error allowed in any given pixel, and 1.1 denotes the integer part 
of the argument. At the encoder, alabel 1 is generated according to 

(3) 

This label is encoded, and at the decoder the prediction error is 
reconstructed according to 

= l(2k + 1). (4) 

This form of quantization, where all values in the interval [ nk - 
151, nk + liJ] are mapped to nk, is a special case of un$om 
quantization. It is well known that uniform quantization leads to 
a minimum entropy of the output, provided the step size is small 
enough for the constant pdfassumption to hold. For smallvalues 
of k, as one would expect to be used in near-lossless compression, 
this assumption is reasonable. 

It has been experimentally observed that for bit rates exceeding 
1.5 bpp, JPEG-LS near-lossless actually gives better performance 

than baseline lossy JPEG. However, it should be noted that the 
uniform quantization performed in JPEG-LS near-lossless of- 
ten gives rise to annoying “contouring” artifacts. Such artifacts 
are most visually obvious in smooth regions of the image. In 
Chapter 1.1 of this volume, such “false contouring” is examined 
in more detail and shown to possibly occur even from simple 
image quantization. 

In many cases these artifacts can be reduced by some sim- 
ple postprocessing operations. As explained in the next section, 
JPEG-LS Part 2 allows variation of the quantization step size 
spatially in a limited manner, thereby enabling some possible 
reduction in artifacts. 

Finally, it may appear that the quantization technique em- 
ployed in JPEG-LS is overly simplistic. In actuality, there is a 
complex dependency between the quantization error that is in- 
troduced and subsequent prediction errors. Clearly, quantiza- 
tion affects the prediction errors obtained. Although one can 
vary the quantization in an optimal manner by using a trellis- 
based technique and the Viterbi algorithm, it has been observed 
that such computationally expensive and elaborate optimizing 
strategies offer little advantage, in practice, over the simple uni- 
form quantization used in JPEG-LS [ 31. 

3.7 JPEG-LS Part 2 

Even as the baseline algorithm was being standardized, the JPEG 
committee initiated development of JPEG-LS Part 2. Initially the 
motivation for Part 2 was to standardize an arithmetic coding 
version of the algorithm. As it evolves, however, Part 2 also in- 
cludes many other features that improve compression but were 
considered to be too application specific to include in the base- 
line algorithm. Eventually, it appears that JPEG-LS Part 2 will be 
an algorithm that is substantially different from Part 1, although 
the basic approach, in terms of prediction followed by context- 
based modeling and coding of prediction errors, remains the 
same as the baseline. As of December 1998, Part 2 has been 
mostly, but not completely, finalized. In the subsections that fol- 
low we briefly describe some of the key features that are expected 
to be part of the standard. 

3.7.1 Prediction 
JPEG-LS baseline is not suitable for images with sparse his- 
tograms (prequantized images or images with less than 8 or 
16 bits represented by 1 or 2 bytes, respectively). This is because 
predicted values of pixels do not actually occur in the image, 
which causes code space to be wasted during the entropy coding 
of prediction errors. In order to deal with such images, Part 2 
defines an optional prediction value control mode, wherein it is 
ensured that a predicted value is always a symbol that has ac- 
tually occurred in the past. This is done by forming the same 
prediction as JPEG baseline using the MED predictor, but by 
adjusting the predictor to a value that has been seen before. 
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A flag array is used to keep track of pixel values that have oc- 
curred thus far. 

counts. Multiplication and division are avoided by approximate 
values stored in a look-up table. 

3.7.2 Context Formation 3.7.6 Near-Lossless Mode 
In order to better model prediction errors, Part 2 uses an addi- 
tional gradient 

D4= WW- W, ( 5 )  

where W and WW are the neighboring pixels as shown in Fig. 1. 
D4 is quantized along with D1, D2, and D3, defined earlier 
in Eq. (l), just as in the baseline. D4 is, however, quantized 
only to three regions. Context merging is done only on the ba- 
sis of D1, 4, and 4, and not D4. That is, contexts of type 
(41, q2 ,  q 3 ,  q4) and (-11, -q2, -q3 ,  q4) are merged to arrive a 
total of 364 x 3 = 1092 contexts. 

3.7.3 Bias Cancellation 
In the bias-cancellation step of baseline JPEG-LS, prediction 
errors within each context are centered around -0.5 instead 
of 0. As explained, this was done because the prediction error 
mapping technique and Rice-Golomb coding used in the base- 
line algorithm assign shorter code words to negative errors as 
opposed to a positive error of the same magnitude. However, 
if arithmetic coding is employed, then there is no such imbal- 
ance and bias cancellation is used to center the prediction error 
distribution in each context around zero. This is exactlythe bias- 
cancellation mechanism proposed in CALIC. 

The near-lossless mode is another area where Part 2 differs sig- 
nificantly from the baseline. Essentially, Part 2 provides mecha- 
nisms for a more versatile application of the near-lossless mode. 
The two main features enabled by Part 2 in the near-lossless 
mode are as follows. 

1. Visual quantization: as mentioned before, near-lossless 
compression can often lead to annoying artifacts at larger 
values of k. Furthermore, the baseline does not provide 
any graceful degradation mechanism between step size of 
k and k + 1. Hence JPEG-LS Part 2 defines a new ‘tisual 
quantization” mode. In this mode, the quantization step 
size is allowed to be either k or k + 1, depending on the 
context. Contexts with a larger gradients use a step size of 
k + 1, and contexts with smaller gradients use a step size 
of k. The user specifies a threshold, based on which this 
decision is made. The standard does not specify how the 
threshold should be arrived at. It only provides a syntax 
for its specification. 

2. Rate control: by allowing the user to change the quantiza- 
tion step size while encoding an image, Part 2 essentially 
provides a rate-control mechanism whereby the coder can 
keep track of the coded bytes, based on which appropriate 
changes to the quantization step size can be made. The en- 
coder, for example, can compress the image to less than a 

3.7.4 Alphabet Extension 
If arithmetic coding is used, then alphabet extension is clearly not 
required. Hence, in the arithmetic coding mode, the coder does 
not switch to run mode on encountering the all-zeros context. 
However, in addition to this change, Part 2 also specifies some 
small changes to the run-length coding mode of the original 
baseline algorithm. For example, when the underlying alphabet 
is binary, Part 2 does awaywith the redundant encoding ofsample 
values that terminated a run, as required by the baseline. 

bounded size with a single sequential pass over the image. 
Other uses of this feature are possible, including region- 
of-interest lossless coding, etc. 

3.7.5 Arithmetic Coding 
Even though the baseline algorithm has an alphabet extension 
mechanism for low-entropy images, performance can be sig- 
nificantly improved by the use of arithmetic coding. Hence the 
biggest difference between JPEG-LS and JPEG-LS Part 2 is in the 
entropy coding stage. Part 2 uses a binary arithmetic coder for 
encoding prediction errors that are binarized by a Golomb code. 
The Golomb code tree is produced based on an activity class of 
the context computed from its current average prediction error 
magnitude. Twelve activity levels are defined. In the arithmetic 
coding procedure, numerical data are treated in radix 255 repre- 
sentation, with each sample expressed as 8-bit data. Probabilities 
of the MPS and the LPS are estimated by keeping occurrence 

3.7.7 Fixed Length Coding 
There is a possibility that a Golomb code will cause data expan- 
sion and result in a compressed image larger than the source 
image. To avoid such a case, an extension to the baseline is de- 
fined whereby the encoder can switch to a fixed length coding 
technique by inserting an appropriate marker in the bit stream. 
Another marker is used to signal the end of fixed length coding. 
The procedure for determining if data expansion is occurring 
and for selecting the size of the fixed length representation is left 
entirely up to the implementation. The standard does not make 
any recommendation. 

3.7.8 Interband Correlations 
Currently there is no mechanism for exploiting interband corre- 
lations in JPEG-LS baseline a well as JPEG-LS Part 2. The applica- 
tion is expected to decorrelate individual bands prior to encoding 
by JPEG-LS. The lack of informative or normative measures for 
exploiting interband correlations, in our opinion, is the most 
serious shortcoming of the JPEG-LS standard. It is very likely 
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that the committee will incorporate some such mechanism into 
JPEG-LS Part 2 before its adoption. 

4 The Future: JPEG 2000 
and the Integration of Lossless 
and Lossy Compression 

In prediction-based lossless image compression techniques, im- 
age pixels are processed in some fixed and predetermined order. 
The intensity of each pixel is modeled as being dependent on 
the intensities values in a fixed and predetermined neighbor- 
hood set of previously visited pixels. As a result, such techniques 
do not adapt well to the nonstationary nature of image data. 
Furthermore, such techniques form predictions and model the 
prediction error based solely on local information. Hence they 
usually do not capture “global patterns” that influence the inten- 
sity value of the current pixel being processed. As a consequence, 
recent years have seen techniques based on a predictive approach 
rapidly reach a point of diminishing returns. JPEG-LS, the new 
lossless standard provides testimony to this fact. Despite being 
extremely simple, it provides compression performance that is 
within a few percent of more sophisticated techniques such as 
CALIC [ 191 and UCM [ 161. Experimentation suggests that an 
improvement of more than 10% is unlikely to be obtained by 
pushing the envelope on the current state-of-the-art predictive 
techniques like CALIC [8]. Furthermore, the complexity costs 
incurred for obtaining these improvements are enormous and 
usually not worth the marginal improvement in compression 
that is obtained. 

An alternative approach to lossless image compression that 
has emerged recently is based on subband (or wavelet) decom- 
position. Subband decomposition provides a way to cope with 
the nonstationarity of image data by separating the information 
into several scales and exploiting correlations within each scale 
as well as across scales. A subband approach also provides a bet- 
ter framework for capturing global patterns in the image data. 
Finally, the wavelet transforms employed in the decomposition 
can be viewed as a prediction scheme, as in [4, 141, that is not 
restricted to a casual template but makes a prediction of the cur- 
rent pixel based on (‘past” and “future” pixels with respect to a 
spatial raster scan. 

In addition to these advantages, there are other advantages 
offered by a subband approach for lossless image compression. 
The most important of these is perhaps the natural integration 
of lossy and lossless compression that the subband approach 
makes possible. By transmitting entropy-coded subband coeffi- 
cients in an appropriate manner, one can produce an embedded 
bit stream that permits the decoder to extract a lossy reconstruc- 
tion at the desired bit rate. This enables progressive decoding of 
the image that can ultimately lead to lossless reconstruction [ 14, 
201. The image can also be recovered at different spatial resolu- 
tions. These features are of great value for specific applications 

like teleradiology and the World Wide Web, and for applica- 
tions in “network-centric” computing in general. More details 
on these are given in Chapter 4.1 (wavelets), Chapter 5.4 (wavelet 
image coding), and Chapter 6.2 (wavelet video coding) of this 
handbook. 

The above facts have caused an increasing popularity of the 
subband approach for lossless image compression. Some excel- 
lent work has already been done toward applying subband image 
coding techniques for lossless image compression, such as S + P 
[ 141 and CREW [20]. However, they do not perform as well for 
lossless compression as compared with predictive techniques, 
which are arguably simpler, both conceptually and computa- 
tionally. Nevertheless, it should be noted that a subband decom- 
position approach for lossless image compression is still in its 
infancy, and hence it should be no surprise if it does not yet 
provide compression performance that matches state-of the-art 
predictive techniques like CALIC, which took its current form 
after years of development and refinement. 

The JPEG committee is currently going through the process 
of standardizing a state-of-the-art compression technique with 
many “modern” features like embedded quantization, region- 
of-interest decoding, etc. The new standard will be a wavelet- 
based technique, which among other features, will make lossy 
and lossless compression possible within a single framework. 
Although such a standard may receive wide adoption, it is not 
clear whether JPEG 2000 will eventually replace the other lossless 
standards that currently exist and were described in this chapter. 
Surely, certain application will require the computational sim- 
plicity of JPEGlossless Huffman and JPEG-LS and its extensions. 
For example, the memory requirements of a wavelet-based ap- 
proach are typically very high. Such techniques are not suitable 
for printers and other applications in which additional memory 
adds to the fixed cost of the product. 

5 Additional Information 

A free implementation ofthe Huhan-based original JPEG loss- 
less algorithm, written by the PVRG group at Stanford, is avail- 
able from havefun.stanford.edu:/pub/jpeg/JPEGvl.2.1 .tar.Z. 
The PVRG code is designed for research and experimenta- 
tion rather than production use, but it is easy to under- 
stand. There’s also a lossless- JPEG-only implementation avail- 
able from Cornell, ftp.cs.cornell.edu:/pub/multimed/ljpg.tar.Z. 
Neither the PVRG nor Cornel1 codecs are being actively main- 
tained. They are both written in the Clanguage and can be ported 
to a variety of operating systems, including variants of UNIX and 
the different Microsoft platforms. 

The JPEG committee maintains a Web site at www.jpeg.org. 
Currently this site contains a committee draft of the JPEG-LS 
baseline standard. This draft will be available to the general pub- 
lic until the standard is officially approved by ISO. Another site 
maintained by Hewlett-Packard at www.hpl.hp.com/loco/ con- 
tains an example decoder that is a public domain executable 
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of their JPEG-LS implementation for Win95/NT, HP-UX, and 
SunOS. This site also contains literature on LOCO-I, the algo- 
rithm on which JPEG-LS baseline is largely based. 
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Multispectral images are a particular class of images that require 
specialized coding algorithms. In multispectral images, the same 
spatial region is captured multiple times by using different imag- 
ing modalities. These modalities often consist of measurements 
at different optical wavelengths (hence the name multispectral), 
but the same term is sometimes used when the separate image 
planes are captured from completely different imaging systems. 
Medical multispectral images, for example, may combine MRI, 
CT, andX-ray images into a single multilayer data set [ 101. Multi- 
spectral images are three-dimensional data sets in which the third 
(spectral) dimension is qualitatively different from the other two. 
Because of this, a straightforward extension of two-dimensional 
image compression algorithms is generally not appropriate. Also, 
unlike most two-dimensional images, multispectral data sets are 
often not meant to beviewedby humans. Remotelysensedmulti- 
spectral images, for example, often undergo electronic computer 
analysis. As a result, the quality of decompressed images may be 
judged by a different criterion than for two-dimensional images. 

The most common example of multispectral images are con- 
ventional RGB color images, which contain three spectral image 
planes. The image planes represent the red, green, and blue color 
channels, which all lie in the visible range of the optical band. 
These three spectral images can be combined to produce a full 
color image for viewing on a display. However, most printing 
systems use four colors, typically cyan, magenta, yellow, and 
black (CMYK), to produce a continuous range of colors. More 

recently, many high-fidelity printing systems have begun to use 
more than four colors to increase the printer gamut, or range of 
printable colors. This is particularly common in photographic 
printing systems. 

In fact, three colors are not sufficient to specify the appear- 
ance of an object under varying illuminants and viewing con- 
ditions. To accurately predict the perceived color of a physical 
surface, we must know the reflectance ofthe surface as a function 
of wavelength. Typically, spectral reflectance is measured at 31 
wavelengths ranging from 400 to 700 nm; however, experiments 
indicate that the spectral reflectances of most physical materials 
can be accurately represented with eight or fewer spectral ba- 
sis functions [ 131. Therefore, some high-fidelity image capture 
systems collect and store more than three spectral measurements 
at each spatial location or pixel in the image [ 131. For example, 
the VASARI imaging system developed at the National Gallery 
in London employs a seven-channel multispectral camera to 
capture paintings [20]. At this time, color image representations 
with more than four bands are only used invery high-quality and 
high-cost systems. However, such multispectral representations 
may become more common as the cost of hardware decreases 
and image quality requirements increase. 

Another common class of multispectral data is remotely 
sensed imagery. Remote sensing consists of capturing image data 
from a remote location. The sensing platform is usually an air- 
craft or satellite, and the scene being imaged is usuallythe Earth's 
surface. Because the sensor and the target are so far apart, each 
pixel in the image can correspond to tens or even hundreds of 
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square meters on the ground. Data gathered from remote sensing 
platforms are normally not meant primarily for human viewing. 
Instead, the images are analyzed electronically to determine fac- 
tors such as land use patterns, local geography, and ground cover 
classifications. Surface features in remotely sensed imagery can 
be difficult to distinguish with only a few bands of data. In par- 
ticular, a larger number of spectral bands are necessary if a single 
data set is to be used for multiple purposes. For instance, a ge- 
ographical survey may require different spectral bands than a 
crop study. Older systems, like the French SPOT or American 
thematic mapper, use only a handful of spectral bands. More 
modern systems, however, can incorporate hundreds of spectral 
bands into a single image [ 171. Compression is important for 
this class of images both to minimize transmission bandwidth 
from the sensing platform to a ground station and to archive the 
captured images. 

Some medical images include multiple image planes. Al- 
though the image planes may not actually correspond to separate 
frequency bands, they are often still referred to as multispectral 
images. For example, magnetic resonance imaging (MRI) can 
simultaneously measure multiple characteristics of the medium 
being imaged [ 111. Alternatively, multispectral medical images 
can be formed from different medical imaging modalities such 
as MRI, CT, and X-ray [ 101. These multimodal images are useful 
for identifying and diagnosing medical disorders. 

Most multispectral compression algorithms assume that the 
multispectral data can be represented as a two-dimensional im- 
age with vector-valued pixels. Each pixel then consists of one 
sample from each image plane (spectral band). This representa- 
tion requires all spectral bands to be sampled at the same res- 
olution and over the same spatial extent. Most multispectral 
compression schemes also assume the spectral bands are per- 
fectly registered, so each pixel component corresponds to the 
same exact location in the scene. For instance, in a perfectly reg- 
istered multispectral image, a scene feature that covers only a 
single image pixel will cover exactly the same pixel in all spectral 
bands. In actual physical systems, registration can be a difficult 
task, and misregistration can severely degrade the resulting com- 
pression ratio or decompressed image quality. Also, although the 
image planes may be resampled to have pixel values at the same 
spatial locations, the underlying images may not be of the same 
resolution. 

As with monochrome image compression, multispectral im- 
age compression algorithms fall into two general categories: loss- 
less and lossy. In lossless compression schemes, the decoded im- 
age is identical to the original. This gives perfect fidelity but 
limits the achievable compression ratio. For many applications, 
the required compression ratio is larger than can be achieved 
with lossless compression, so lossy algorithms are used. Lossy 
algorithms typically obtain much higher compression ratios but 
introduce distortions in the decompressed image. Popular ap- 
proaches for lossy image coding are covered in Chapters 5.2-5.5 
of this volume, whereas lossless image coding is discussed in 
Chapters 5.1 and 5.6. Lossy compression algorithms attempt to 

introduce errors in such a way as to minimize the degradation 
in output image quality for a given compression ratio. In fact, 
the rate distortion curve gives the minimum bit rate (and hence 
maximum compression) required to achieve a given distortion. 
If the allowed distortion is taken to be zero, the resulting maxi- 
mum compression is the limit for lossless coding. The limit ob- 
tained from the theoretical rate distortion curve can be useful 
for evaluating the effectiveness of a given algorithm. Although 
the bound is usually computed with respect to mean squared 
error (MSE) distortion, MSE is not a good measure of quality in 
all applications. 

Most two-dimensional (2-D) image coding algorithms at- 
tempt to transform the image data so that the transformed 
data samples are largely uncorrelated. The samples can then be 
quantized independently and entropy coded. At the decoder, 
the quantized samples are recovered and inverse transformed to 
produce the reconstructed image. The optimal linear transfor- 
mation for decorrelating the data is the well-known Karhunen- 
Loeve (KL) transform. Because the KL transformation is data 
dependent, it requires considerable computation and must be 
encoded along with the data so it is available at the decoder. 
As a result, frequency transforms such as the discrete cosine 
transform (used in JPEG) or the wavelet transform are used to 
approximate the KL transform along the spatial dimensions. In 
fact, it can be shown that frequency transforms approximate 
the KL transform when the image is a stationary 2-D random 
process. This is generally a reasonable assumption since, over 
a large ensemble of images, statistical image properties should 
not vary significantly with spatial position. A large number of 
frequency transforms can be shown to approach the optimal KL 
transform as the image size approaches infinity, but in practice, 
the discrete cosine and wavelet transforms approach this optimal 
point much more quickly than many other transforms, so they 
are preferred in actual compression systems. 

Multispectral images complicate this scenario. The third 
(spectral) dimension is qualitatively different from the spatial 
dimensions, and it generally cannot be modeled as stationary. 
The correlation between adjacent spectral bands, for example, 
can vary widely depending on which spectral bands are being 
considered. In a remotely sensed image, for instance, two ad- 
jacent infrared spectral bands might have consistently higher 
correlation than adjacent bands in the visible range. The cor- 
relation is thus dependent on absolute position in the spectral 
dimension, which violates stationarity. This means that simple 
frequency transforms along the spectral dimension are gener- 
ally not effective. Moreover, we will see that most multispectral 
compression methods work by treating each spectral band dif- 
ferently. This can be done by computing a KL transform across 
the spectral bands, using prediction filters which vary for each 
spectral band, or applying vector quantization methods which 
are trained for the statistical variation among bands. 

Multispectral image compression algorithms can be rough- 
ly categorized by how they exploit the redundancies along 
the spatial and spectral dimensions. The simplest method for 
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requiring that all image planes be registered but not necessarily of the same resolution; (c) complex spatial-spectral 
method, not requiring registration or planes of the same resolution. 
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compressing multispectral data is to decompose the multi- 
spectral image into a set of monochrome images, and then to 
separately compress each image using conventional image com- 
pression methods. Other multispectral compression techniques 
concentrate solely on the spectral redundancy. However, the best 
compression methods exploit redundancies in both the spatial 
and spectral dimensions. 

In [ 2 5 ] ,  Tretter and Bouman categorized transform-based 
multispectral coders into three classes. These classes are impor- 
tant because they describe both the general structure ofthe coder 
and the assumptions behind its design. Figure 1 illustrates the 
structure of these three basic coding methods. 

1.1 Spectral-Spatial Transform 
In this method, a KL-transform is first applied across the spectral 
components to decorrelate them. Then each decorrelated com- 
ponent is compressed separately using a transform based image 
coding method. The image coding method can be based on ei- 
ther block DCTs (see Chapter 5.5 in this volume) or a wavelet 
transform (Chapter 5.4). This methods is asymptotically opti- 
mal if all image planes are properly registered and have the same 
spatial resolution. 

1.2 Spatial-Spectral Transform 
In this method, a spatial transform (i.e., block DCT or wavelet 
transform) is first applied. Then the spectral components of 
each spatial-frequency band are decorrelated using a different 

transform. So for example, a different KL transform is used 
for each coefficient of the DCT transform or each band of the 
wavelet transform. This method is useful when the different 
spectral components have different spatial-frequency content. 
For instance, an infrared band may have lower spatial resolution 

than a visible band of the same multispectral image. In this case, 
the separate KL transforms result in better compression. 

1.3 Complex Spatial-Spectral Transform 
If, in addition, the image planes are not registered, the fre- 
quency transforms must be complex to retain phase informa- 
tion between planes. A spatial shift in one image plane relative 
to another (i.e. misregistration) corresponds to a phase shift 
in the frequency domain. In order to retain this information, 
frequency components must be stored as complex numbers. 
This method differs from the spatial-spectral method in that 
the transforms must be complex valued. This complex spatial- 
spectral transform has the advantage that it can remove the effect 
of misregistration between the spectral bands. However, because 
it requires the use of a DFT (instead of DCT), or a complex 
wavelet transform, it is more complicated to implement. If a real 
spatial-spectral transform is used to compress an image that has 
misregistered planes, much of the redundancy between image 
planes will be missed. The transform is unable to follow a scene 
feature as it shifts in location from one image plane to another, 
so the feature is essentially treated as a separate feature in each 
plane and is coded multiple times. As a result, the image will not 
compress well. 

In the following sections, we will discuss a variety of methods 
for both lossy and lossless multispectral image coding. The most 
appropriate coding method will depend on the application and 
system constraints. 

2 Lossy Compression 

Many researchers have worked on the problem of compressing 
multispectral images. In the area of lossy compression, most of 
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the work has concentrated on remotely sensed data and RGB 
color images rather than medical imagery or photographic im- 
ageswith more than three spectralbands. For diagnostic andlegal 
reasons, medical images are often compressed losslessly, and the 
high-fidelity systems that use multispectral photographic data 
are still relatively rare. 

Suppose we represent a multispectral image by fk(n), where 

n =  (nl, nz), nl E { O - . . M -  1}, nz E { O . - - N -  11, 

k E { O * * * K - I } .  

In this notation, n represents the two spatial dimensions and k 
is the spectral band number. In the development that follows, 
we will denote spectral band k by fj, and f(n) will represent a 
single vector-valued pixel at spatial location n = (nl , nz) . 

Lossy compression algorithms attempt to introduce errors in 
such a way as to minimize the degradation in output image qual- 
ity for a given compression ratio. To do this, algorithm designers 
must first decide on an appropriate measure of output image 
quality. Quality is often measured by defining an error metric re- 
lating the decompressed image to the original. The most popular 
error metric is the simple mean squared error (MSE) between the 
original image and the decompressed image. Although this met- 
ric does not necessarily correlate well with image quality, it is easy 
to compute and mathematically tractable to minimize when de- 
signing a coding algorithm. If a decompressed two-dimensional 
M x Nimage f(n) is compared with the original image f(n), the 
mean squared error is defined as 

M-1 N-1 

For photographic images, quality is usually equated with vi- 
sual quality as perceived by a human observer. The error metrics 
used thus often incorporate a human visual model. One popular 
choice is to use a visually weighted MSE between the original 
image and the decompressed image. This is normally computed 
in the frequency domain, since visual weighting of frequency co- 
efficients is more natural than weightings in the spatial domain. 

Some images are used for purposes other than viewing. Med- 
ical images may be used for diagnosis, and satellite photos are 
sometimes analyzed to classify surface regions or identify objects. 
For these images, other error metrics may be more appropriate 
as the measure of image quality is quite different. We will discuss 
this topic further with respect to multispectral images later in 
this chapter. 

2.1 RGB Color Images 
Lossy compression of RGB color images deserves special men- 
tion. These images are by far the most common type of multi- 
spectral image, and a considerable body of research has been de- 
voted to development of appropriate coding techniques. Color 
images in uncompressed form typically consist of red, green, 

and blue color planes, where the data in each plane have un- 
dergone a nonlinear gamma correction to make it appropri- 
ate for viewing on a CRT monitor [22]. Typical CRT mon- 
itors have a nonlinear response, so doubling the value of a 
pixel (the frame buffer value), for instance, will increase the 
luminance of the displayed pixel, but the luminance will not 
double. The nonlinear response approximates a power func- 
tion, so digital color images are usually prewarped by using 
the inverse power function to make the image display prop- 
erly Different color imaging systems can have different defi- 
nitions of red, green, and blue, different gamma curves, and 
different assumed viewing conditions. In recent years, however, 
many commercial systems are moving to the sRGB standard 
to provide better color consistency across devices and applica- 
tions [2]. Before compression, color images are usually trans- 
formed from RGB to a luminance-chrominance representation. 
Each pixel vector f(n) is transformed by means of a reversible 
transformation to an equivalent luminance-chrominance vector 
gb).  

Two common luminance-chrominance color spaces used are 
YCrCb, a digital form of the YUV format used in NTSC color 
television, and CIELab [22]. YCrCb is obtained from sRGB by 
means of a simple linear transformation, whereas CIELab re- 
quires nonlinear computations and is normally computed with 
lookup tables. 

The purpose of the transformation is to decorrelate the 
spectral bands visually so they can be treated separately. Af- 
ter transformation, the three new image planes are normally 
compressed independently by using a two-dimensional cod- 
ing algorithm such as the ones described earlier in this chap- 
ter. The luminance channel Y (or L) is visually more impor- 
tant than the two chrominance channels, so the chrominance 
images are often subsampled by a factor of 2 in each dimen- 
sion before compression 1221. Perhaps the most common color 
image compression algorithm uses the YCrCb (sometimes still 
referred to as YUV) color space in conjunction with chromi- 
nance subsampling and standard JPEG compression on each 
image plane. Many color devices refer to this entire scheme as 
JPEG, even though the standard does not specify color space 
or subsampling. Most JPEG images viewed across the World 
Wide Web by browsers have been compressed in this way. 
Figure 2 illustrates the artifacts introduced by JPEG compres- 
sion. Figure 2(a) shows a detail from an original uncompressed 
image, Fig. 2(b) illustrates the decompressed image region af- 
ter 30 : 1 JPEG compression with chrominance subsampling, 
and Fig. 2(c) illustrates the decompressed image after 30: 1 
JPEG compression with no chrominance subsampling. Figures 
2(b) and 2(c) both show typical JPEG compression artifacts; 
the reconstructed images have blocking artifacts in the smooth 
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FIGURE 2 Detail illustrating JPEG compression artifacts (75 dpi): (a) original image data; (b) JPEG compressed 30 : 1, 
using chrominance subsampling; (c) JPEG compressed 30 : 1, using no chrominance subsampling. (See color section, 
p. C-27.) 

regions such as the back of the hand, and both images show 
ringing artifacts along the edges. However, the artifacts are 
much more visible in Fig. 2(c), which was compressed without 
chrominance subsampling. Because the chrominance compo- 
nents are retained at full resolution, a larger percentage of the 
compressed data stream is required to represent the chromi- 
nance information, so fewer bits are available for luminance. 
The additional artifacts introduced by using fewer bits for lu- 
minance are more visible than the artifacts caused by chromi- 
nance subsampling, so Fig. 2(c) has more visible artifacts than 
Fig. 2(b). 

One interesting approach to color image storage and com- 
pression is to use color palettization. In this approach, a limited 
palette of representative colors (usually no more than 256 col- 
ors) is stored as a lookup table, and each pixel in the image is 
replaced by an index into the table that indicates the best palette 
color to use to approximate that pixel. This is essentially a sim- 
ple vector quantization scheme (vector quantization is covered 
in detail in Chapter 5.3). Palettization was first designed not for 
compression, but to match the capabilities of display monitors. 
Some display devices can only display a limited number of colors 
at a time, as a result of either a limited internal memory size or 
of characteristics of the display itself. As a result, images had to 
be palettized before display. 

Nearest Palette index 8. 
Palette Color 

Palettization collapses the multispectral image into a single 
image plane, which can be further compressed if desired. Both 
lossy and lossless compression schemes for palettized images 
have been developed. The well-known GIF format, which is of- 
ten used for images transmitted over the World Wide Web, is 
one example of this sort of image. As a compression technique, 
palettization is most useful for nonphotographic images, such 
as synthetically generated images, which often only use a limited 
number of colors. 

2.2 Remotely Sensed Multispectral Images 
Remotely sensed multispectral images have been in use for a long 
time. The Landsat 1 system, for example, was first launched in 
1972. Aircraft-based systems have been in use even longer. Satel- 
lite and aircraft platforms can gather an extremely large amount 
of data in a short period oftime, and remotely sensed data are of- 
ten archived so changes in the Earth’s surface can be tracked over 
long periods of time. As a result, compression has been of con- 
siderable interest since the earliest days of remote sensing, when 
the main purpose of compression was to reduce storage require- 
ments and processing time [9,16]. Although processing and data 
storage facilities are becoming increasingly more powerful and 
affordable, recent remote sensing systems continue to stress state 
of the art technology. Compression is particularly important for 
spaceborne systems where transmission bandwidth reduction is 
a necessity 19,261. Reviews of compression approaches for re- 
motely sensed images can be found in [21,28]. 

The simplest type of lossy compression for multispectral im- 
ages, known as spectral editing, consists of not transmitting all 
spectral bands. Some sort of algorithm is used to determine 
which bands are of lesser importance, and those bands are not 
sent. Because this amounts to simply throwing away some of the 
data, such a technique is obviously undesirable. For one thing, 
the choice of bands to eliminate is strongly dependent on the in- 
formation desired from the image. Since a variety of researchers 
may want to extract entirely different information from the same 
image, all of the bands may be needed at one time or another. 
As a result, a number of researchers have proposed more so- 
phisticated ways to combine the spectral bands and reduce the 
spectral dimensionality while retaining as much of the informa- 
tion as possible. 

As in two-dimensional image compression, many algorithms 
attempt to first transform the image data such that the trans- 
formed data samples are largely uncorrelated. For multispectral 
images, the spectral bands are often modeled as a series of corre- 
lated random fields. Ifeach spectral band fk is a two-dimensional 
stationary random field, frequency transforms are appropriate 
across the spatial dimensions. However, redundancies between 
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spectral bands are usually removed differently. A variety of 
schemes use a KL or similar transformation across spectral bands 
followed by a two-dimensional frequency transform like DCT 
or wavelets across the two spatial dimensions [ 1,5-7,24,25]. 
These spectral-spatial transform methods are of the general form 
shown in Fig. l(a) and have been shown to be asymptotically 
optimal for a MSE distortion metric as the size of the data set 
goes to infinity when the following three assumptions hold [25]. 

1. The spectral components can be modeled as a stationary 
Gaussian random field. 

2. The spectral components are perfectly registered with one 
another. 

3. The spectral components have similar frequency distribu- 
tions (for instance, they are of the same resolution as one 
another). 

If assumption 3 does not hold, a separate KL spectral transform 
must be used at every spatial frequency. Algorithms of this sort 
have been proposed by several researchers [ 1,25,27]. If assump- 
tion 2 does not apply either, a complex frequency transform 
must be used to preserve phase information if the algorithm is 
to remain asymptotically optimal [25]. However, the computa- 
tional complexity involved makes this approach difficult, so it is 
generally preferable to add more preprocessing to better register 
the spectral bands. Some recent algorithms also get improved 
performance by adapting the KL transform spatially based on 
local data characteristics [6,7,24]. 

Figure 3 shows the result of applying two different coding 
algorithms to a thematic mapper multispectral data set. The 
data set consists of bands 1, 4, and 7 from a thematic map- 
per image. Figure 3(a) shows a region from the original un- 
compressed data. The image is shown in pseudo-color, with 
band 1 being mapped to red, band 4 to green, and band 7 to 
blue. Figure 3(b) shows the reconstructed data after 30 : 1 com- 
pression, using an algorithm from [25] that uses a single KL 
transform followed by a two-dimensional frequency subband 

transform across the two spatial dimensions (RSS algorithm), 
and Fig. 3(c) shows the reconstructed data after 30 : 1 compres- 
sion, using a similar algorithm that first applies the frequency 
transform and then computes a separate KL transform for each 
frequency subband (RSM algorithm). For this imaging device, 
band 7 is of lower resolution than the other bands, so assump- 
tion 3 does not hold for this data set. As a result, we expect the 
RSM algorithm to outperform the RSS algorithm on this data 
set. Comparing Fig. 3(b) and 3(c), we can see that Fig. 3(c) has 
slightly fewer visual artifacts than Fig. 3(b). The mean squared 
error produced by the RSM algorithm was 27.44 for this image, 
compared with a mean squared error of 28.65 for the RSS algo- 
rithm. As expected, the RSM algorithm outperforms the RSS al- 
gorithm on this data set both in visual quality and mean squared 
error. 

Rather than decorrelating the data samples by using a re- 
versible transformation, some approaches use linear prediction 
to remove redundancy. The predictive algorithms are often used 
in conjunction with data transformations in one or more dimen- 
sions [9,14]. For instance, spectral redundancy may be removed 
using prediction, while spatial redundancies are removed via a 
decorrelating transformation. 

Correlation in the data can also be accounted for by using 
clustering or vector quantization (VQ) approaches, often cou- 
pled with prediction. A number of predictive VQ and clustering 
techniques have been proposed [4,8,9,26]. As with predictive 
algorithms, VQ methods can be combined with decorrelating 
data transformations [ 1,271. 

Finally, some compression algorithms have been devised spe- 
cifically for multispectral images, where the authors assumed 
the images would be subjected to machine classification. These 
approaches, which are not strongly tied to two-dimensional 
image compression algorithms, use parametric modeling to 
approximate the relationships between spectral bands [ 151. 
Classification accuracy is used to measure the effectiveness of 
these algorithms. 
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FIGURE 3 Detail illustrating transform-based compression on thematic mapper data (100 dpi): (a) Original image data 
in pseudo-color; (b) compressed 30: 1, using the RSS algorithm (single KL transform); (c) compressed 30: 1, using the 
RSM algorithm (multiple KL transforms). The RSM algorithm gives better compression for this result, with a MSE of 
27.44 vs. the RSS algorithm at 28.65. (See color section, p. C-27.) 
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Two popular approaches for lossy compression of remotely 
sensed multispectral images have emerged in recent years. One 
approach is based on predictive VQ, and the other consists of a 
decorrelating KL transform across spectral bands in conjunction 
with frequency transforms in the spatial dimensions. We discuss 
a representative algorithm of each type in more detail below to 
help expand upon and illustrate the main ideas involved in each 
approach. 

Gupta and Gersho propose a feature predictive vector quanti- 
zation approach to the compression of multispectral images [8]. 
Vector quantization is a powerful compression technique, known 
to be capable of achieving theoretically optimal coding perfor- 
mance. However, straightforward VQ suffers from high encod- 
ing complexity, particularly as the vector dimension increases. 
Thus, Gupta and Gersho couple VQ with prediction to keep the 
vector dimension manageable while still accounting for all of 
the redundancies in the data. In particular, VQ is used to take 
advantage of spatial correlations, while spectral correlations are 
removed by using prediction. The authors propose several algo- 
rithm variants, but we only discuss one of them here. 

Gupta and Gersho begin by partitioning each spectral band 
k into P x P nonoverlapping blocks, which will each be coded 
separately. Suppose bk(m) is one such set of blocks, with 

number of spectral bands and the correlations among them. 
Vector quantization is used to code each feature band separately, 
as illustrated for block bk in the figure. Each feature band is coded 
with a separate VQ codebook. Each of the K - L nonfeature 
bands is then predicted from one of the coded feature bands. The 
prediction is subtracted from the actual datavalues to get an error 
block e, for each nonfeature band. If the energy (squared norm) 
of the error block exceeds a predefined threshold T,  the error 
block is coded with yet another VQ codebook. This procedure is 
illustrated for block bj in Fig. 4. A binary indicator flag Ij is set 
for each nonfeature band to indicate whether or not the error 
block was coded: 

1 IIej 1 1 2  > T I 0 else 
Ij = 

To decode, simply add any decoded error blocks to the pre- 
dicted block for nonfeature bands. Feature bands are decoded di- 
rectly by using the appropriate VQ codebook. Gupta and Gersho 
also derive optimal predictors Pj for their algorithm and dis- 
cuss how to design the various codebooks from training images. 
See [8] for details. 

One example of a transform-based compression system is 
proposed by Saghri et al. in [ 191. Their algorithm uses the KL 
transform to decorrelate the data spectrally, followed by JPEG 
compression on each of the transformed bands. Like Gupta 
and Gersho, they begin by partitioning each spectral band into 
nonoverlapping blocks, which will be coded separately. A sepa- 
rate KL transform is computed for each spatial block, so different 
regions of the image will undergo different transformations. This 
approach allows the scheme to adapt to varying terrain in the 
scene, producing better compression results. 

Figure 4 illustrates the operation of the algorithm for the two 
types of spectral blocks bk and bj in this set of blocks. A small 
subset L of the K spectral bands is chosen as feature bands. 
The number of feature bands will be chosen based on the total 
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non-feature band b, 
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t 

FIGURE 4 
feature blocks are used to predict nonfeature blocks, thus removing both spatial and spectral redundancy. 

Gupta and Gersho's feature predictive VQ scheme encodes each spectral block separately, where 
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must be sent to the decoder as overhead bits. 

Figure 5 illustrates the algorithm for a single image block. In 
this example, the image consists of three highly correlated spec- 
tral bands. The KL transform concentrates much of the energy 
into a single band, improving overall coding efficiency. Saghri 
et al. have designed their algorithm for use on board an imaging 
platform, so they must consider a variety of practical details in 
their paper. The KL transform is generally a real-valued trans- 
form, so they use quantization to reduce the required overhead 
bits. Also, JPEG expects data of only 8 bits per pixel, so in order 
to use standard JPEG blocks, they scale and quantize the trans- 
formed bands (eigenimages) to 8 bits per pixel. This mapping 
is also sent to the decoder as overhead. The spatial block size 
is chosen to give good compression performance while keeping 
the number of overhead bits small. 

The authors also discuss practical ways to select the JPEG pa- 
rameters to get the best results. They use custom quantization 
tables and devise several possible schemes for selecting the ap- 
propriate quality factor for each transformed band. 

Saghri et al. have found that their system can give approx- 
imately 40 : 1 compression ratios with visually lossless quality 
for test images containing eleven spectral bands. They give both 
measured distortion and classification accuracy results for the 
decompressed data to support this conclusion. They also exam- 
ine the sensitivity of the algorithm to various physical system 
characteristics. They found that the coding results were sensitive 
to band misregistration, but were robust to changes in the dy- 
namic range of the data, dead/saturated pixels, and calibration 
and preprocessing of the data. More details can be found in the 
paper [ 191. 

Most coding schemes for remotely sensed multispectral im- 
ages are designed for a MSE distortion metric, but many au- 
thors also consider the effect on scene classification accuracy 

[9,19,25]. For fairly modest compression ratios, MSE is often 
a good indicator of classification accuracy. System issues in the 
design of compression for remotely sensed images are discussed 
in some detail in [28]. 

2.3 Multispectral Medical and 
Photographic Images 
Relatively little work has been done on lossy compression for 
multispectral medical images and photographic images with 
more than three spectral bands. Medical images are usually 
compressed losslessly for legal and diagnostic reasons, although 
preliminary findings indicate that moderate degrees of lossy 
compression may not affect diagnostic accuracy. Because most 
diagnosis is performed visually, the visual quality of decom- 
pressed images correlates well with diagnostic accuracy. Hu et al. 
propose linear prediction algorithms for the lossy compression 
of multispectral MR images [ 1 11. They compare MSE and visual 
quality of their algorithm versus several other common com- 
pression schemes and report preliminary results indicating that 
diagnostic accuracy is not affected by compression ratios up to 
25 : 1. They do note that their results rely on the spectral bands' 
being well registered, so a preprocessing step may be necessary 
in some cases to register the planes before coding to get good 
results. 

Multispectral photographic images with more than three 
spectral bands are still relatively rare. Most work with these im- 
ages concentrates on determining the appropriate number and 
placement of the spectral bands and deriving the mathematical 
techniques to use the additional bands for improved color re- 
production. Many researchers must design and build their own 
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image capture systems as well, so considerable attention and ef- 
fort is being spent on image capture issues. As a result, little 
work has been published on lossy coding of such data, although 
we expect this to be an interesting area for future research. One 
interesting approach that could be the first stage in a lossy com- 
pression algorithm is the multispectral system proposed by Imai 
and Berns, which combines a low spatial resolution multispec- 
tral image with a high-resolution monochrome image [ 121. The 
monochrome image contains lightness information, while color 
information is obtained from the lower resolution multispectral 
image. Because human viewers are most sensitive to high fre- 
quencies in lightness, these images can be combined to give a 
high-resolution color image with little or no visible degradation 
resulting from the lower resolution of the multispectral data. In 
this way, the approach of Imai and Berns is analogous to the 
chrominance subsampling often done during RGB color image 
coding. 

3 Lossless Compression 

Because of the difference in goals, the best way of exploiting 
spatial and spectral redundancies for lossy and lossless compres- 
sion is usually quite different. The decorrelating transforms used 
for lossy compression usually cannot be used for lossless com- 
pression, as they often require floating point computations that 
result in loss of data when implemented with finite precision 
arithmetic. This is especially true for “optimal” transforms such 
as the KL transform and the DCT transform. Also, techniques 
based on vector quantization are clearly of little utility for lossless 
compression. Furthermore, irrespective of the transform used, 
there is often a significant amount of redundancy that remains 
in the data after decorrelation, the modeling and capturing of 
which constitutes a crucial step in lossless compression. 

There are essentially two main approaches used for lossless 
image compression. The first is the traditional DPCM approach 
based on prediction followed by context modeling of prediction 
errors. The second and more recent approach is based on re- 
versible integer wavelet transforms followed by context modeling 
and coding of transform coefficients. For a detailed description 
of these techniques and specific algorithms that employ these 
approaches, the reader is referred to accompanying chapters in 
this volume on lossless image compression (Chapter 5.1) and 
wavelet-based coding (Chapter 5.4). In the rest ofthis section, we 
focus on how techniques based on each of these two approaches 
can be extended to provide lossless compression of multispectral 
data. 

3.1 Predictive Techniques 
When a predictive technique is extended to exploit interband 
correlations, the following new issues arise. 

1. Band ordering: in what order does one encode the different 
spectral bands? This is related to the problem of determining 

which band(s) are the best to use as reference band(s) for 
predicting and modeling intensity values in a given band. 

2. Interbandprediction: how is it best to incorporate additional 
information available from pixels located in previously en- 
coded spectral bands to improve prediction? 

3. Interband error modeling: how does one exploit information 
available from prediction errors incurred at pixel locations 
in previously encoded spectral bands to better model and 
encode the current prediction error? 

We examine typical approaches that have been taken to address 
these questions in the rest of this subsection. 

3.1.1 Band Ordering 
In [29], Wang et al. analyzed correlations between the seven 
bands ofLANDSAT TM images, and proposed an order, based on 
heuristics, to code the bands that result in the best compression. 
According to their studies, bands 2, 4, and 6 should first be 
encoded by traditional intraband linear predictors optimized 
within individual bands. Then pixels in band 5 are predicted by 
using neighboring pixels in band 5 as well as those in bands 2, 
4, and 6. Finally, bands 1,3, and 7 are coded using pixels in the 
local neighborhood as well as selected pixels from bands 2,4,5, 
and 6. 

Ifwe restrict the number of reference bands that can be used to 
predict pixels in any given band, then Tate [23] showed that the 
problem of computing an optimal ordering can be formulated 
in graph theoretic terms, admitting an O ( N 2 )  solution for an 
N-band image. He also observed that using a single refer- 
ence band is sufficient in practice as compression performance 
does not improve significantly with additional bands. Although 
significant improvements in compression performance were 
demonstrated, one major limitation of this approach is the fact 
that it is two pass. An optimal ordering and corresponding pre- 
diction coefficients are first computed by making an entire pass 
through the data set. This problem can be alleviated to some 
degree by computing an optimal ordering for different types of 
images. Another limitation of the approach is that it reorders 
entire bands. That is, it makes the assumption that spectral re- 
lationships do not vary spatially. The optimal spectral ordering 
and prediction coefficients will change spatially depending on 
the characteristics of the objects being imaged. 

In the remainder of this subsection, for clarity of exposition, 
we assume that the image in question has been appropriately re- 
ordered, if necessary, and simply use the previous band as the ref- 
erence band for encoding the current band. However, before we 
proceed, there is one further potential complication that should 
be addressed. The different bands in a multispectral image may 
be represented one pixel at a time (pixel interleaved), one row 
at a time (line interleaved), or an entire band at a time (band 
sequential). Because the coder needs to utilize at least one band 
(the reference band) in order to make compression gains on other 
bands, buffering strategy and requirements would vary with the 
different representations and should be taken into account be- 
fore adopting a specific compression technique. We assume this 
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to be the case in the remainder of this subsection and discuss 
prediction and error modeling techniques for lossless compres- 
sion of multispectral images, irrespective of the band ordering 
and pixel interleaving employed. 

3.1.2 Interband Prediction 
Let Y denote the current band and X the reference band. In 
order to exploit interband correlations, it is easy to gener- 
alize a DPCM-like predictor from two-dimensional to three- 
dimensional sources. Namely, we predict the current pixel Y [ i, j ]  
to be 

much side information (high model cost), especially for color 
images which have only three or four bands. In view of this, 
Wu and Memon [30] propose an adaptive interband predictor 
that exploits relationships between local gradients among adja- 
cent spectral bands. Local gradients are an important piece of 
information that can help resolve uncertainty in high-activity 
regions of an image, and hence improve prediction efficiency. 
The gradient at the pixel being currently coded is known in the 
reference band but missing in the current band. Hence, the local 
waveform shape in the reference band can be projected to the 
current band to obtain a reasonably accurate prediction, partic- 
ularly in the presence of strong edges. Although there are several 
ways in which one can interpolate the current pixel on the basis 
of local gradients in the reference band, in practice the following 
difference based interband interpolation works well: 

where Nl and NZ are appropriately chosen neighborhoods that 
are causal with respect to the scan and the band interleaving be- 
ing employed. The coefficients ea,b and e:,,,, can be optimized 
by standard techniques to minimize 11 Y - f 11 over a given multi- 
spectral image. In [ 181 Roger and Cavenor performed a detailed 
study on AVIRISl images with different neighborhood sets and 
found that a third-order spatial-spectral predictor based on the 
immediate two neighbors Y [ i, j - 11, Y [ i - 1, j] and the cor- 
responding pixel X[ i, j] in the reference band is sufficient and 
larger neighborhoods provide very marginal improvements in 
prediction efficiency. 

Since the characteristics of multispectral images often vary 
spatially, optimizing prediction coefficients over the entire im- 
age can be ineffective. Hence, Roger and Cavenor [ 181 compute 
optimal predictors for each row of the image and transmit them 
as side information. The motivation for adapting predictor co- 
efficients a row at a time has to do with the fact that an AVIRIS 
image is acquired in a line-interleaved manner, and a real-time 
compression technique would have to operate under such con- 
straints. However, for off-line compression, say for archival pur- 
poses, this may not be the best strategy, as one would expect 
spectral relationships to change significantly across the width 
of an image. A better approach to adapt prediction coefficients 
would be to partition the image into blocks, and compute opti- 
mal predictors on a block-by-block basis. 

Computing an optimal least-squares multispectral predictor 
for different image segments does not always improve coding 
efficiency despite the high computational costs involved. This 
is because frequently changing prediction coefficients incur too 

IAirborne Wsible InfraRed Imaging Spectrometer. AVIRIS is a world-class 
instrument in the realm of Earth remote sensing. It delivers calibrated images in 
224 contiguous spectral bands with wavelengths from 400 to 2500 nm. 

Wu and Memon also observed that performing interband 
prediction in an unconditional manner does not always give 
significant improvements over intraband prediction and some- 
times leads to a degradation in compression performance. This 
is because the correlation between bands varies significantly 
in different regions of the image, depending on the objects 
present in that specific region. Thus it is difficult to find an 
interband predictor that works well across the entire image. 
Hence, they propose a switched interbandhntraband predic- 
tor that performs interband prediction only if the correlation 
in the current window is strong enough; otherwise intraband 
prediction is used. More specifically, they examine the correla- 
tion Cor(Xw, Yw) between the current and reference band in 
a local window w. If Cor(X,, Yw) is high, then interband pre- 
diction is performed; otherwise intraband prediction is used. 
Since computing Cor(Xw, Yw) for each pixel can be computa- 
tionally expensive, they give simple heuristics to approximate 
this correlation. They report that switched interbandhtraband 
prediction gives significant improvement over optimal predic- 
tors using interband or intraband prediction alone. 

3.1.3 Error Modeling and Coding 
If the residual image consisting of prediction errors is treated 
as an source with independent identically distributed (i.i.d.) 
output, then it can be efficiently coded by using any of the 
standard variable length entropy coding techniques, such as 
Huffman coding or arithmetic coding. Unfortunately, even af- 
ter applying the most sophisticated prediction techniques, the 
residual image generally has ample structure which violates 
the i.i.d. assumption. Hence, in order to encode prediction er- 
rors efficiently, we need a model that captures the structure 
that remains after prediction. This step is often referred to as 
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error modeling. The error modeling techniques employed by 
most lossless compression schemes proposed in the literature 
can be captured within a context modeling framework. In this 
approach, the prediction error at each pixel is encoded with re- 
spect to a conditioning state or context, which is arrived at from 
the values of previously encoded neighboring pixels. Viewed 
in this framework, the role of the error model is essentially to 
provide estimates of the conditional probability of the predic- 
tion error, given the context in which it occurs. This can be 
done by estimating the probability density function by main- 
taining counts of symbol occurrences within each context or 
by estimating the parameters of an assumed probability density 
function. The accompanying chapter on lossless image com- 
pression (Chapter 5.1) gives more details on error modeling 
techniques. Here we look at examples of how each of these two 
approaches have been used for compression of multispectral 
images. 

An example of the first approach used for multispectral im- 
age compression is provided in [ 181, where Roger and Cavenor 
investigate two different variations. First they assume predic- 
tion errors in a row belong to a single geometric probability 
mass function (pmf) and determine the optimal Rice-Golomb 
code by an exhaustive search over the parameter set. In the 
second technique they compute the variance of prediction er- 
rors for each row and based on this utilize one of eight pre- 
designed Huffman codes. An example of the second approach 
is provided by Tate [23], who quantizes the prediction error 
in the corresponding location in the reference band and uses 
this as a conditioning state for arithmetic coding. Because this 
involves estimating the pmf in each conditioning state, only a 
small number of states (4-8) are used. An example of a hy- 
brid approach is given by Wu and Memon [30], who propose 
an elaborate context formation scheme that includes gradients, 
prediction errors, and quantized pixel intensities from the cur- 
rent and reference band. They estimate the variance of pre- 
diction error within each context, and based on this estimate 
they select between one of eight different conditioning states 
for arithmetic coding. In each state they estimate the pmf of 
prediction errors by keeping occurrence counts of prediction 
errors. 

Another simple technique for exploiting relationships be- 
tween prediction errors in adjacent bands, which can be used in 
conjunction with any of the above error modeling techniques, 
follows from the observation that prediction errors in neigh- 
boring bands are correlated and just taking a simple difference 
between the prediction error in the current and reference band 
can lead to a significant reduction in the variance of the pre- 
diction error signal. This in turn Ieads to a reduction in bit 
rate produced by a variable length code such as a Huffman 
or an arithmetic code. The approach can be further improved 
by conditioning the differencing operation based on statistics 
gathered from contexts. However, it should be noted that the 
prediction errors would still contain enough structure to benefit 
from one ofthe error modeling and coding techniques described 
above. 

3.2 Reversible Transform-Based Techniques 
An alternative approach to lossless image compression that has 
emerged recently is based on subband decomposition. There are 
several advantages offered by a subband approach for lossless 
image compression, the most important of which is perhaps the 
natural integration of lossy and lossless compression that be- 
comes possible. By transmitting entropy coded subband coeffi- 
cients in an appropriate manner, one can produce an embedded 
bit stream that permits the decoder to extract a lossy recon- 
struction at a desired bit rate. This enables progressive decoding 
of the image that can ultimately lead to lossless reconstruction. 
The image can also be recovered at different spatial resolutions. 
These features are of great value for specific applications in re- 
mote sensing and “network-centric’’ computing in general. Al- 
though quite a few subband based lossless image compression 
have been proposed in recent literature, there has been very little 
work on extending them to multispectral images. Bilgin etal. [ 31 
extend the well known zero-tree algorithm for compression of 
multispectral data. They perform a 3-D dyadic subband decom- 
position of the image and encode transform coefficients by using 
a zero-tree structure extended to three dimensions. They report 
an improvement of 1520% over the best 2-D lossless image 
compression technique. 

3.3 Near-Lossless Compression 
Recent studies on AVIRIS data have indicated that the presence 
of sensor noise limits the amount of compression that can be 
obtained by any lossless compression scheme. This is supported 
by the fact that the best results reported in the literature on com- 
pression of AVIRIS data seem to be in the range of 5-6 bits 
per pixel. Increased compression can be obtained with lossy 
compression techniques that have been shown to provide very 
high compression ratios with little or no loss in visual fidelity. 
Lossy compression, however, may not be desirable in many cir- 
cumstances because of the uncertainty of the effects caused by 
lossy compression on a subsequent scientific analysis that is per- 
formed with the image data. One compromise then is to use a 
bounded distortion (or nearly lossless) technique, which guaran- 
tees that each pixel in the reconstructed image is within &k ofthe 
original. 

Extension of a lossless predictive coding technique to a nearly 
lossless one can be done in a straightforward manner by predic- 
tion error quantization according to the specified pixel value tol- 
erance. In order for the predictor at the receiver to track the 
predictor at the encoder, the reconstructed values of the image 
have to then be used to generate the prediction at both the en- 
coder and the receiver. More specifically, the following uniform 
quantization procedure leads us to a nearly lossless compression 
technique: 

(3) 

where x is the prediction error, k is the maximum reconstruction 
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error allowed in any given pixel, and L.1 denotes the integer part 
of the argument, At the encoder, a label 1 is generated accord- 
ing to 

(4) 

This label is encoded, and at the decoder the prediction error is 
reconstructed according to 

Nearly lossless compression techniques can yield significantly 
higher compression ratios as compared to lossless compression. 
For example, f l  near-lossless compression can usually lead to 
reduction in bit rates by approximately 1-1.3 bits per pixel. 

4 Conclusion 

In applications such as remote sensing, multispectral images 
were first used to store the multiple images corresponding to each 
band in a optical spectrum. More recently, multispectral images 
have come to refer to any image formed by multiple spatially 
registered scalar images, independent of the specific manner in 
which the individual images were obtained. This broader defi- 
nition encompasses many emerging technologies such as multi- 
modal medical images and high-fidelity color images. As these 
new sources of multispectral data become more common, the 
need for high-performance multispectral compression methods 
will increase. 

In this chapter, we have described some of the current meth- 
ods for both lossless and lossy coding of multispectral images. 
Effective methods for multispectral compression exploit the re- 
dundancy across spectral bands while also incorporating more 
conventional image coding methods based on spatial dependen- 
cies of the image data. Importantly, spatial and spectral redun- 
dancy differ fundamentally in that spectral redundancies gener- 
ally depend on the specific choices and ordering of bands and 
are not subject to the normal assumptions of stationarity used 
in the spatial dimension. 

We described some typical examples of lossy image coding 
methods. These methods use either a Karhunen-Loeve (KL) 
transform or prediction to decorrelate data along the spectral di- 
mension. The resulting decorrelated images can then be coded by 
using more conventional image compression methods. Lossless 
multispectral image coding necessitates the use of prediction 
methods because general transformations result in undesired 
quantization error. For both the lossy and lossless compression, 
adaptation to the spectral dependencies is essential to achieve 
the best coding performance. 
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1 Introduction 
The subject of video coding is of fundamental importance to 
many areas in engineering and the sciences. Video engineer- 
ing is quickly becoming a largely digital discipline. The digi- 
tal transmission of television signals via satellites is common- 
place, and widespread HDTV terrestrial transmission is slated 
to begin in 1999. Video compression is an absolute require- 
ment for the growth and success of the low-bandwidth trans- 
mission of digital video signals. Video encoding is being used 
wherever digital video communications, storage, processing, ac- 
quisition, and reproduction occur. The transmission of high- 
quality multimedia information over high-speed computer net- 
works is a central problem in the design of Quality of Services 
(QOS) for digital transmission providers. The Motion Pictures 
Expert Group (MPEG) has already finalized two video coding 
standards, MPEG-I and MPEG-2, that define methods for the 
transmission of digital video information for multimedia and 
television formats. MPEG-4 is currently addressing the trans- 
mission of very low bitrate video. MPEG-7 is addressing the 
standardization of video storage and retrieval services (Chap- 
ters 9.1 and 9.2 discuss video storage and retrieval). A central 

aspect to each of the MPEG standards are the video encoding 
and decoding algorithms that make digital video applications 
practical. The MPEG Standards are discussed in Chapters 6.4 
and 6.5. 

Video compression not only reduces the storage requirements 
or transmission bandwidth of digital video applications, but it 
also affects many system performance tradeoffs. The design and 
selection of a video encoder therefore is not only based on its 
ability to compress information. Issues such as bitrate versus 
distortion criteria, algorithm complexity, transmission channel 
characteristics, algorithm symmetry versus asymmetry, video 
source statistics, fixed versus variable rate coding, and standards 
compatibility should be considered in order to make good en- 
coder design decisions. 

The growth of digital video applications and technology in 
the past few years has been explosive, and video compression 
is playing a central role in this success. Yet, the video coding 
discipline is relatively young and certainlywill evolve and change 
significantly over the next fewyears. Research in video coding has 
great vitality and the body of work is significant. It is apparent 
that this relevant and important topic will have an immense 
affect on the future of digital video technologies. 

Copyright @ 2000 by Academic Press. 
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2 Introduction to Video Compression 

Video or visual communications require significant amounts 
of information transmission. Video compression, as consid- 
ered here, involves the bitrate reduction of a digital video signal 
carrying visual information. Traditional video-based compres- 
sion, like other information compression techniques, focuses 
on eliminating the redundant elements of the signal. The de- 
gree to which the encoder reduces the bitrate is called its cod- 
ing efJicienT, equivalently, its inverse is termed the compression 
ratio: 

coding efficiency = (compression ratio)-’ 
= encoded bitrate/decoded bitrate. (1) 

Compression can be a lossless or lossy operation. Because of 
the immense volume of video information, lossy operations are 
mainly used for video compression. The loss of information or 
distortion measure is usually evaluated with the mean square 
error (MSE), mean absolute error (MAE) criteria, or peak signal- 
to-noise ratio (PSNR): 

Inverse pa- 

Intradrame - Open Quantizer 
Interframe - Closed Q“ 

for an image I and its reconstructed image f, with pixel indices 
1 5 i 5 M and 1 5 j 5 N, image size N x M pixels, and 
n bits per pixel. The MSE, MAE, and PSNR as described here 

Intraframe 
Sub-block 

or 

are global measures and do not necessarily give a good indi- 
cation of the reconstructed image quality. In the final analysis, 
the human observer determines the quality of the reconstructed 
image and video quality. The concept of distortion versus cod- 
ing efficiency is one of the most fundamental tradeoffs in the 
technical evaluation of video encoders. The topic of perceptual 
quality assessment of compressed images and video is discussed 
in Section 8.2. 

Video signals contain information in three dimensions. These 
dimensions are modeled as spatial and temporal domains for 
video encoding. Digital video compression methods seek to min- 
imize information redundancy independently in each domain. 
The major international video compression standards (MPEG- 1, 
MPEG-2, H.261) use this approach. Figure 1 schematically de- 
picts a generalized video compression system that implements 
the spatial and temporal encoding of a digital image sequence. 
Each image in the sequence I k  is defined as in Eq. (1). The 
spatial encoder operates on image blocks, typically of the order 
of 8 x 8 pixels each. The temporal encoder generally operates 
on 16 x 16 pixel image blocks. The system is designed for two 
modes of operation, the intrafiame mode and the intufiame 
mode. 

The single-layer feedback structure of this generalized model 
is representative of the encoders that are recommended by 
the International Standards Organization (ISO) and Interna- 
tional Telecommunications Union (ITU) video coding standards, 
MPEG-1, MPEG-2/H.262, and H.261 [l-31. The feedback loop 
is used in the interframe mode of operation and generates a 
prediction error between the blocks of the current frame and 
the current prediction frame. The prediction is generated by the 
motion compensator. The motion estimation unit creates motion 
vectors for each 16 x 16 block. The motion vectors and previ- 
ously reconstructed frame are fed to the motion compensator to 
create the prediction. 

A h 1 Encoded 
Ik, andE,, Interframe 

Delayed Inverse Spatial Prediction 
Error and 

Motion 
- compensation 4- Frame c Operator 

Memory T‘ Motion 

FIGURE 1 Generalized video compression system. 
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The intraframe mode spatidyencodes an entire current frame 
on a periodic basis, e.g., every 15 frames, to ensure that system- 
atic errors do not continuously propagate. The intraframe mode 
will also be used to spatially encode a block whenever the inter- 
frame encoding mode cannot meet its performance threshold. 
The intraframe versus interframe mode selection algorithm is 
not included in this diagram. It is responsible for controlling the 
selection of the encoding functions, data flows, and output data 
streams for each mode. 

The Intraframe encoding mode does not receive any input 
from the feedback loop. I k  is spatially encoded, and losslessly 
encoded by the variable length coder (VLC) forming Ike, which 
is transmitted to the decoder. The receiver decodes Ik,, produc- 
ing the reconstructed image subblock ?k. During the interframe 
coding mode, the current frame prediction Pk is subtracted from 
the current frame input Ik to form the current prediction error 
Ek. The prediction error is then spatially and VLC encoded to 
form Eke, and it is transmitted along with the VLC encoded mo- 
tionvectors MVk. The decoder canreconstructtheAcurrent frame 
.fk by using the previously reconstructed frame 4 - 1  (stored in 
the decoder), the current frame motion vectors, and the predic- 
tion error. The motions vectors M &  operate on 4 - 1  to generate 
the current prediction frame Pk. The encoded prediction error 
E k e  is decoded to produce the reconstructedprediction error J!?k. 
The prediction error is added to the prediction to form the cur- 
rent frame &. The functional elements of the generalized model 
are described here in detail. 

A 

1. Spatial operator: this element is generally a unitary two- 
dimensional linear transform, but in principle it can be 
any unitary operator that can distribute most of the signal 
energy into a small number of coefficients, i.e., decorrelate 
the signal data. Spatial transformations are successively ap- 
plied to small image blocks in order to take advantage of 
the high degree of data correlation in adjacent image pix- 
els. The most widely used spatial operator for image and 
video coding is the discrete cosine transform (DCT). It is 
applied to 8 x 8 pixel image blocks and is well suited for 
image transformations because it uses real computations 
with fast implementations, provides excellent decorrela- 
tion of signal components, and avoids generation of spu- 
rious components between the edges of adjacent image 
blocks. 

2. Quantizer: the spatial or transform operator is applied to 
the input in order to arrange the signal into a more suit- 
able format for subsequent lossy and lossless coding oper- 
ations. The quantizer operates on the transform generated 
coefficients. This is a lossyoperation that can result in a sig- 
nificant reduction in the bitrate. The quantization method 
used in this kind ofvideo encoder is usually scalar and non- 
uniform. The scalar quantizer simplifies the complexity of 
the operation as compared to vector quantization (VQ). 
The non-uniform quantization interval is sized according 

to the distribution of the transform coefficients in order 
to minimize the bitrate and the distortion created by the 
quantization process. Alternatively, the quantization in- 
terval size can be adjusted based on the performance of 
the human Visual System ( H V S ) .  The Joint Pictures Expert 
Group (JPEG) standard includes two (luminance and color 
difference) H V S  sensitivity weighted quantization matri- 
ces in its “Examples and Guidelines” annex. JPEG coding 
is discussed in Sections 5.5 and 5.6. 

3. Variable length coding: The lossless VLC is used to ex- 
ploit the “symbolic” redundancy contained in each block 
oftransform coefficients. This step is termed “entropycod- 
ing” to designate that the encoder is designed to minimize 
the source entropy. The VLC is applied to a serial bit stream 
that is generated by scanning the transform coefficient 
block. The scanning pattern should be chosen with the 
objective of maximizing the performance of the VLC. The 
MPEG encoder for instance, describes a zigzag scanning 
pattern that is intended to maximize transform zero coef- 
ficient run lengths. The H.261 VLC is designed to encode 
these run lengths by using a variable length Huffman code. 

The feedback loop sequentially reconstructs the encoded spa- 
tial and prediction error frames and stores the results in order 
to create a current prediction. The elements required to do this 
are the inverse quantizer, inverse spatial operator, delayed frame 
memory, motion estimator, and motion compensator. 

1. Inverse operators: The inverse operators Q-’ and T-’ are 
applied to the encoded current frame Ike or the current 
prediction error Eke in order to reconstruct and store the 
frame for the motion estimator and motion compensator 
to generate the next prediction frame. 

2. Delayed frame memory: Both current and previous frames 
must be available to the motion estimator and motion 
compensator to generate a prediction frame. The number 
of previous frames stored in memory can vary based upon 
the requirements of the encoding algorithm. MPEG-1 de- 
fines a B frame that is a bidirectional encoding that requires 
that motion prediction be performed in both the forward 
and backward directions. This necessitates storage of mul- 
tiple frames in memory. 

3. Motion estimation: The temporal encoding aspect of this 
system relies on the assumption that rigid body motion is 
responsible for the differences between two or more suc- 
cessive frames. The objective of the motion estimator is to 
estimate the rigid body motion between two frames. The 
motion estimator operates on all current frame 16 x 16 
image blocks and generates the pixel displacement or mo- 
tion vector for each block. The technique used to generate 
motion vectors is called block-matching motion estimation 
and is discussed further in Section 5.4. The method uses 
the current frame I k  and the previous reconstructed frame 
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fk-l  as input. Each block in the previous frame is assumed 
to have a displacement that can be found by searching for 
it in the current frame. The search is usually constrained 
to be within a reasonable neighborhood so as to minimize 
the complexity of the operation. Search matching is usu- 
ally based on a minimum MSE or MAE criterion. When a 
match is found, the pixel displacement is used to encode 
the particular block. If a search does not meet a minimum 
MSE or MAE threshold criterion, the motion compen- 
sator will indicate that the current block is to be spatially 
encoded by using the intraframe mode. 

4. Motion compensation: The motion compensator makes 
use of the current frame motion estimates MVk and the 
previously reconstructed frame 4 - 1  to generate the cur- 
rent frame prediction Pk. The current frame prediction is 
constructed by placing the previous frame blocks into the 
current frame according to the motion estimate pixel dis- 
placement. The motion compensator then decides which 
blocks will be encoded as prediction error blocks using 
motion vectors and which blocks will only be spatially en- 
coded. 

h 

The generalized model does not address some video compres- 
sion system details such as the bit-stream syntax (which supports 
different application requirements), or the specifics of the en- 
coding algorithms. These issues are dependent upon the video 
compression system design. 

Alternative video encoding models have also been researched. 
Three-dimensional (3-D) video information can be compressed 
directly using VQ or 3-D wavelet encoding models. VQ encodes 
a 3-D block of pixels as a codebook index that denotes its “closest 
or nearest neighbor” in the minimum squared or absolute error 
sense. However, the VQ codebook size grows on the order as the 
number ofpossible inputs. Searching the codebook space for the 
nearest neighbor is generally very computationally complex, but 
structured search techniques can provide good bitrates, quality, 
and computational performance. Tree-structured VQ (TSVQ) 
[ 131 reduces the search complexity from codebook size N to log 
N, with acorresponding loss in average distortion. The simplicity 
of the VQ decoder (it only requires a table lookup for the trans- 
mitted codebook index) and its bitrate-distortion performance 
make it an attractive alternative for specialized applications. The 
complexity of the codebook search generally limits the use of 
VQ in real-time applications. Vector quantizers have also been 
proposed for interframe, variable bitrate, and subband video 
compression methods [4]. 

Three-dimensional wavelet encoding is a topic of recent inter- 
est. This video encoding method is based on the discrete wavelet 
transform methods discussed in Section 5.4. The wavelet trans- 
form is a relatively new transform that decomposes a signal into 
a multiresolution representation. The multiresolution decompo- 
sition makes the wavelet transform an excellent signal analysis 
tool because signal characteristics can be viewed in a variety of 

time-frequency scales. The wavelet transform is implemented in 
practice by the use of multiresolution or subband filterbanks [ 51. 
The wavelet filterbank is well suited for video encoding because 
of its ability to adapt to the multiresolution characteristics of 
video signals. Wavelet transform encodings are naturally hierar- 
chical in their time-frequency representation and easily adapt- 
able for progressive transmission [ 6 ] .  They have also been shown 
to possess excellent bitrate-distortion characteristics. 

Direct three-dimensional video compression systems suffer 
from a major drawback for real-time encoding and transmis- 
sion. In order to encode a sequence of images in one operation, 
the sequence must be buffered. This introduces a buffering and 
computational delay that can be very noticeable in the case of 
interactive video communications. 

Video compression techniques treating visual information in 
accordance with H V S  models have recently been introduced. 
These methods are termed “second-generation or object-based” 
methods, and attempt to achieve very large compression ratios 
by imitating the operations of the HVS. The HVS model can 
also be incorporated into more traditional video compression 
techniques by reflecting visual perception into various aspects 
of the coding algorithm. H V S  weightings have been designed for 
the DCT AC coefficients quantizer used in the MPEG encoder. 
A discussion of these techniques can be found in Chapter 6.3. 

Digital video compression is currently enjoying tremendous 
growth, partially because of the great advances in VLSI, ASIC, 
and microcomputer technology in the past decade. The real-time 
nature of video communications necessitates the use of general 
purpose and specialized high-performance hardware devices. In 
the near future, advances in design and manufacturing technolo- 
gies will create hardware devices that will allow greater adapt- 
ability, interactivity, and interoperability of video applications. 
These advances will challenge future video compression tech- 
nology to support format-free implementations. 

3 Video Compression Application 
Requirements 

A wide variety of digital video applications currently exist. They 
range from simple low-resolution and low-bandwidth applica- 
tions (multimedia, Picturephone) to very high-resolution and 
high-bandwidth (HDTV) demands. This section will present re- 
quirements of current and future digital video applications and 
the demands they place on the video compression system. 

As a way to demonstrate the importance of video compres- 
sion, the transmission of digital video television signals is pre- 
sented. The bandwidth required by a digital television signal is 
approximately one-half the number of picture elements (pix- 
els) displayed per second. The analog pixel size in the vertical 
dimension is the distance between scanning lines, and the hori- 
zontal dimension is the distance the scanning spot moves during 



6.1 Basic Concepts and Techniques of Video Coding and the H.261 Standard 559 

'/z cycle of the highest video signal transmission frequency. The 
bandwidth is given by Eq (3): 

where 

B ~ F  = system bandwidth, 
FR = number of fiames transmitted per second ( fps) ,  
NL = number of scanning lines per frame, 
RH = horizontal resolution (lines), proportional 

to pixel resolution. 

The National Television Systems Committee (NTSC) aspect ra- 
tio is 4/3, the constant 0.5 is the ratio of the number of cycles to 
the number oflines, and the factor 0.84 is the fraction of the hor- 
izontal scanning interval that is devoted to signal transmission. 

The NTSC transmission standard used for television broad- 
casts in the United States has the following parameter values: 
FR = 29.97 fps, NL = 525 lines, and RH = 340 lines. This 
yields a video system bandwidth Bw of 4.2 MHz for the NTSC 
broadcast system. In order to transmit a color digitalvideo signal, 
the digital pixel format must be defined. The digital color pixel is 
made of three components: one luminance (Y) component oc- 
cupying 8 bits, and two color difference components (U and V) 
each requiring 8 bits. The NTSC picture frame has 720 x 480 x 2 
total luminance and color pixels. In order to transmit this in- 
formation for an NTSC broadcast system at 29.97 framesls, the 
following bandwidth is required 

Digital Bw 2: S/,bitrate = x(29.97 fps) x (24 bitdpixel) 

x (720 x 480 x 2 pixels/frame) 

= 249 MHz. 

This represents an increase of -59 times the available system 
bandwidth, and -41 times the full transmission channel band- 
width (6  MHz) for current NTSC signals. HDTV picture res- 
olution requires up to three times more raw bandwidth than 
this example! (Two transmission channels totaling 12 MHz are 
allocated for terrestrial HDTV transmissions.) It is clear from 
this example that terrestrial television broadcast systems will 
have to use digital transmission and digital video compression 
to achieve the overall bitrate reduction and image quality re- 
quired for HDTV signals. 

The example not only points out the significant bandwidth 
requirements for digital video information, but also indirectly 
brings up the issue of digital video quality requirements. The 
tradeoff between bitrate and quality or distortion is a hnda- 

mental issue facing the design of video compression systems. 
To this end, it is important to fully characterize an applica- 
tion's video communications requirements before designing or 
selecting an appropriate video compression system. Factors that 
should be considered in the design and selection of avideo com- 
pression system include the following items. 

1. Video characteristics: video parameters such as the dy- 
namic range, source statistics, pixel resolution, and noise 
content can affect the performance ofthe compression sys- 
tem. 

2. Transmission requirements: transmission bitrate require- 
ments determine the power of the compression system. 
Very high transmission bandwidth, storage capacity, or 
quality requirements may necessitate lossless compression. 
Conversely, extremely low bitrate requirements may dic- 
tate compression systems that trade off image quality for 
a large compression ratio. Progressive transmission is a key 
issue for selection of the compression system. It is gen- 
erally used when the transmission bandwidth exceeds the 
compressed video bandwidth. Progressive coding refers to 
a multiresolution, hierarchical, or subband encoding of 
the video information. It allows for transmission and re- 
construction of each resolution independently from low to 
high resolution. In addition, channel errors affect system 
performance and the quality of the reconstructed video. 
Channel errors can affect the bit stream randomly or in 
burst fashion. The channel error characteristics can have 
different effects on different encoders, and they can range 
from local to global anomalies. In general, transmission 
error correction codes (ECC) are used to mitigate the ef- 
fect of channel errors, but awareness and knowledge of this 
issue is important. 

3. Compression system characteristics and performance: the 
nature of video applications makes many demands on the 
video compression system. Interactive video applications 
such as videoconferencing demand that the video com- 
pression systems have symmetric capabilities. That is, each 
participant in the interactive video session must have the 
same video encoding and decoding capabilities, and the 
system performance requirements must be met by both 
the encoder and decoder. In contrast, television broad- 
cast video has significantly greater performance require- 
ments at the transmitter because it has the responsibility 
of providing real-time high quality compressed video that 
meets the transmission channel capacity. Digital video sys- 
tem implementation requirements can vary significantly. 
Desktop televideo conferencing can be implemented by 
using software encoding and decoding, or it may require 
specialized hardware and transmission capabilities to pro- 
vide a high-quality performance. The characteristics of the 
application will dictate the suitability of the video com- 
pression algorithm for particular system implementations. 
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The importance of the encoder and system implementa- 
tion decision cannot be overstated; system architectures 
and performance capabilities are changing at a rapid pace 
and the choice of the best solution requires careful analysis 
of the all possible system and encoder alternatives. 

4. Rate-distortion requirements: the rate-distortion require- 
ment is a basic consideration in the selection of the video 
encoder. The video encoder must be able to provide the 
bitrate(s) and video fidelity (or range of video fidelity) 
required by the application. Otherwise, any aspect of the 
system may not meet specifications. For example, if the bi- 
trate specification is exceeded in order to support a lower 
MSE, a larger than expected transmission error rate may 
cause a catastrophic system failure. 

5. Standards requirements: video encoder compatibility with 
existing and future standards is an important considera- 
tion if the digital video system is required to interoperate 
with existing or future systems. A good example is that of a 
desktop videoconferencing application supporting a num- 
ber of legacy video compression standards. This results in 
requiring support of the older video encoding standards on 
new equipment designed for a newer incompatible stan- 
dard. Videoconferencing equipment not supporting the 
old standards would not be capable or as capable to work 
in environments supporting older standards. 

These factors are displayed in Table 1 to demonstrate video 
compression system requirements for some common video com- 
munications applications. The video compression system de- 
signer at a minimum should consider these factors in making 
a determination about the choice of video encoding algorithms 
and technology to implement. 

TABLE 1 Digital video application requirements 

4 Digital Video Signals and Formats 

Video compression techniques make use of signal models in 
order to be able to utilize the body of digital signal analy- 
sis/processing theory and techniques that have been developed 
over the past fifty or so years. The design of a video compres- 
sion system, as represented by the generalized model introduced 
in Section 2, requires a knowledge of the signal characteristics, 
and the digital processes that are used to create the digital video 
signal. It is also highly desirable to understand video display 
systems, and the behavior of the H V S .  

4.1 Sampling of Analog Video Signals 
Digital video information is generated by sampling the inten- 
sity of the original continuous analog video signal I ( x ,  y, t) 
in three dimensions. The spatial component of the video sig- 
nal is sampled in the horizontal and vertical dimensions (x ,  y), 
and the temporal component is sampled in the time dimension 
(t). This generates a series of digital images or image sequence 
I ( i ,  j, k). Video signals that contain colorized information are 
usually decomposed into three parameters (YGCb, YW, RGB) 
whose intensities are likewise sampled in three dimensions. The 
sampling process inherently quantizes the video signal due to 
the digital word precision used to represent the intensity values. 
Therefore the original analog signal can never be reproduced 
exactly, but for all intents and purposes, a high-quality digital 
video representation can be reproduced with arbitrary closeness 
to the original analog video signal. The topic of video sampling 
and interpolation is discussed in Chapter 7.2. 

An important result of sampling theory is the Nyquist sam- 
pling theorem. This theorem defines the conditions under which 

Application Bitrate Req. 

Network video 1.5 Mbps 
on demand 10 Mbps 

Video phone 64 Kbps 

Desktop multimedia 1.5 Mbps 
video CDROM 

Desktop LAN 10 Mbps 

Desktop WAN 1.5 Mbps 
videoconference 

videoconference 

D&~oP dial-up 64 Kbps 
videoconference 

television 
Digital satellite 10 Mbps 

HDTV 20 Mbps 

DVD 20 Mbus 

Distortion Req. 

High 
medium 

High distortion 

High distortion 
to medium 

Medium 
distortion 

High distortion 

Very high 
distortion 

Low distortion 

Low distortion 

Low distortion 

Transmission Req. Computational Req. 

Internet MPEG- 1 
100 Mbps MPEG-2 
LAN 
ISDN p x 64 

PC channel MPEG-1 decoder 

H.261 encoder 
H.261 decoder 

Fast ethernet Hardware decoders 

Ethernet Hardware decoders 
100 Mbps 

POTS and Software decoder 

Fixed service MPEG-2 decoder 

12-MHz MPEG-2 decoder 

PC channel MPEG-2 decoder 

internet 

satellites 

terrestrial link 

Standards Req. 

MPEG- 1 
MPEG-2 
MPEG-7 
H.261 

MPEG-1 
MPEG-2 
MPEG-7 
MPEG-2, 
H.261 
MPEG-1, 
M P E G -4, 
K.263 

H.263 
MPEG-4, 

MPEG-2 

MPEG-2 

MPEG-2 
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FIGURE 2 Nyquist sampling theorem,with magnitudes ofFourier spectra for (a) input 1; (b) sampled 
input I,, with fs =- 2fB; (c) sampled input ls, with fs < 2fB. 

sampled analog signals can be “perfectly” reconstructed. If these 
conditions are not met, the resulting digital signal will contain 
aliused components which introduce artifacts into the recon- 
struction. The Nyquist conditions are depicted graphically for 
the one dimensional case in Fig. 2. 

The one dimensional signal 2 is sampled at rate 5. It is band- 
limited (as are all real-world signals) in the frequency domain 
with an upper frequency bound of fB. According to the Nyquist 
sampling theorem, if a bandlimited signal is sampled, the result- 
ing Fourier spectrum is made up of the original signal spectrum 
ILI plus replicates of the originaI spectrum spaced at integer 
multiples of the sampling frequency 5. Diagram (a) in Fig. 2 
depicts the magnitude IL[ of the Fourier spectrum for 2. The 
magnitude of the Fourier spectrum I L,  I for the sampled sig- 
nal 1, is shown for two cases. Diagram (b) presents the case 
where the original signal 2 can be reconstructed by recovering 
the central spectral island. Diagram (c) displays the case where 
the Nyquist sampling criteria has not been met and spectral 
overlap occurs. The spectral overlap is termed aliasing and oc- 
curs when fs < 2 fB. When 5 > 2 fB, the original signal can be 
reconstructed by using a low-pass digital filter whose passband 

is designed to recover JLI. These relationships provide a basic 
framework for the analysis and design of digital signal process- 
ing systems. 

Two-dimensional or spatial sampling is a simple extension of 
the one-dimensional case. The Nyquist criteria has to be obeyed 
inboth dimensions; i.e., the sampling rate in the horizontal direc- 
tion must be two times greater than the upper frequency bound 
in the horizontal direction, and the sampling rate in the vertical 
direction must be two times greater than the upper frequency 
bound in the vertical direction. In practice, spatial sampling grids 
are square so that an equal number of samples per unit length in 
each direction are collected. Charge coupled devices (CCDs) are 
typically used to spatially sample analog imagery and video. The 
sampling grid spacing of these devices is more than sufficient 
to meet the Nyquist criteria for most resolution and applica- 
tion requirements. The electrical characteristics of CCDs have a 
greater effect on the image or video qualitythan its sampling grid 
size. 

Temporal sampling ofvideo signals is accomplished bycaptur- 
ing a spatial or image frame in the time dimension. The temporal 
samples are captured at a uniform rate of -60 fields/s for NTSC 



562 Handbook of Image and Video Processing 

television and 24fps for amotion film recording. These sampling 
rates are significantly smaller than the spatial sampling rate. The 
maximum temporal frequency that can be reconstructed accord- 
ing to the Nyquist frequency criteria is 30 Hz in the case of televi- 
sion broadcast. Therefore any rapid intensity change (caused, for 
instance, by a moving edge) between two successive frames will 
cause aliasing because the harmonic frequency content of such a 
steplike function exceeds the Nyquist frequency. Temporal alias- 
ing of this kind can be greatly mitigated in CCDs by the use of 
low-pass temporal filtering to remove the high-frequency con- 
tent. Photoconductor storage tubes are used for recording broad- 
cast television signals. They are analog scanning devices whose 
electrical characteristics filter the high-frequency temporal con- 
tent and minimize temporal aliasing. Indeed, motion picture 
film also introduces low-pass filtering when capturing image 
frames. The exposure speed and the response speed of the photo 
chemical film combine to mitigate high-frequency content and 
temporal aliasing. These factors cannot completely stop tempo- 
ral aliasing, so intelligent use of video recording devices is still 
warranted. That is, the main reason movie camera panning is 
done very slowly is to minimize temporal aliasing. 

In many cases in which fast motions or moving edges are not 
well resolved because of temporal aliasing, the HVS will interpo- 
late such motion and provide its own perceived reconstruction. 
The H V S  is very tolerant of temporal aliasing because it uses its 
own knowledge of natural motion to provide motion estimation 
and compensation to the image sequences generated by tempo- 
ral sampling. The combination of temporal filtering in sampling 
systems and the mechanisms ofhuman visual perception reduces 
the effects of temporal aliasing such that temporal undersam- 
pling (sub-Nyquist sampling) is acceptable in the generation of 
typical image sequences intended for general purpose use. 

4.2 Digital Video Formats 
Sampling is the process used to create the image sequences used 
for video and digital video applications. Spatial sampling and 
quantization of a natural video signal digitizes the image plane 
into a two-dimensional set of digital pixels that define a digi- 
tal image. Temporal sampling of a natural video signal creates 
a sequence of image frames typically used for motion pictures 
and television. The combination of spatial and temporal sam- 
pling creates a sequence of digital images termed digital video. 
As described earlier, the digital video signal intensity is defined 
as I ( i ,  j ,  k), where 0 5 i 5 M, 0 5 j 5 N are the horizon- 
tal and vertical spatial coordinates, and 0 5 k is the temporal 
coordinate. 

The standard digital video formats introduced here are used 
in the broadcast for both analog and digital television, as well as 
computer video applications. Composite television signal digital 
broadcasting formats are introduced here because of their use 
in video compression standards, digital broadcasting, and stan- 
dards format conversion applications. Knowledge of these digital 

TABLE 2 Digital composite television parameters 

Description NTSC PAL 

Analog video bandwidth (MHz) 
Aspect ratio; hor. sizelvert. size 
Framesls 
Linesls 
Interlace ratio; fieldsframes 
Subcarrier frequency (MHz) 
Sampling frequency (MHz) 
Samples/active line 
Bitrate (Mbps) 

4.2 5.0 
413 413 

29.97 25 
525 625 
2 1  2:1 
3.58 4.43 
14.4 17.7 
757 939 

114.5 141.9 

video formats provides background for understanding the inter- 
national video compression standards developed by the ITU and 
the ISO. These standards contain specific recommendations for 
use of the digital video formats described here. 

Composite television digital video formats are used for the 
digital broadcasting, SMPTE digital recording, and conversion 
of television broadcasting formats. Table 2 contains both analog 
and digital system parameters for the NTSC and Phase Alternat- 
ing Lines (PAL) composite broadcast formats. 

Component television signal digital video formats have been 
defined by the International Consultative Committee for Radio 
(CCIR) Recommendation 601. It is based on component video 
with one luminance (Y) and two color difference signals (C, and 
Cb).Therawbitratefor theCCIR601 formatis 162hlbps.Table 3 
contains important systems parameters of the CCIR 601 digital 
video studio component recommendation for both NTSC and 
PAWSECAM (Sequentiel Couleur avec Memoire). 

The ITU Specialist Group (SGXV) has recommended three 
formats that are used in the ITU H.261, H.263, and IS0 MPEG 
video compression standards. They are the Standard Input For- 
mat (SIF), Common Interchange Format (CIF), and the low bit- 
rate version of CIF, called Quarter CIF (QCIF). Together, these 
formats describe a comprehensive set of digital video formats 
that are widely used in current digital video applications. CIF 
and QCIF support the NTSC and PAL video formats using the 

TABLE 3 Digital video component television 
parameters for CCIR 601 

Description NTSC PAL/SECAM 

Luminance channel 
Analog video bandwidth (MHz) 
Sampling frequency (MHz) 
Samples/active line 
Bitrate (Mbps) 

Analog video bandwidth (MHz) 
Sampling frequency (MHz) 
Sampleslactive line 
Bitrate (Mbps) 

Color difference channels 

5.5 5.5 
13.5 13.5 
710 716 
108 108 

2.2 2.2 
6.75 6.75 
335 358 
54 54 
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TABLE 4 SIF, CIF, and QCIF digital video formats 

Description 
SIF 

NTSClPAL CIF QCIF 

Horizontal resolution (Y) 

Vertical resolution (Y) 

Horizontal resolution 

Vertical resolution (Cr, c b )  

Bitslpixel (bpp) 
Interlace fie1ds:fiames 
Frame rate ( f p s )  
Aspect ratio; hor. size/ 

Bitrate (Y) Mbps @ 30 f p s  
Bitrate (U, V) Mbps @ 30 fps 

pixels 

pixels 

(G, c b )  pixels 

pixels 

vert. size 

352 

240/288 

176 

120/144 

8 
1:l 
30 
4:3 

20.3 
10.1 

360(352) 

288 

180( 176) 

144 

8 
1:l 

30, 15, 10, 7.5 
4 3  

24.9 
12.4 

180( 176) 

144 

90(88) 

72 

8 
1:l 

30, 15, 10,7.5 
4 3  

6.2 
3.1 

same parameters. The SIF format defines different vertical reso- 
lution values for NTSC and PAL. The CIF and QCIF formats also 
support the H.261 modified parameters. The modified parame- 
ters are integer multiples of eight in order to support the 8 x 8 
pixel two-dimensional DCT operation. Table 4 lists this set of 
digital video standard formats. The modified H.261 parameters 
are listed in parentheses. 

5 Video Compression Techniques 

Video compression systems generally comprise two modes that 
reduce information redundancy in the spatial and the temporal 
domains. Spatial compression and quantization operates on a 
single image block, making use of the local image characteristics 
to reduce the bitrate. The spatial encoder also includes a VLC 
inserted after the quantization stage. The VLC stage generates 
a lossless encoding of the quantized image block. Lossless cod- 
ing is discussed in Chapter 5.1. Temporal domain compression 
makes use of optical flow models (generally in the form of block- 
matching motion estimation methods) to identify and mitigate 
temporal redundancy. 

This section presents an overview of some widely accepted en- 
coding techniques used in video compression systems. Entropy 
Encoders are lossless encoders that are used in the VLC stage of 
a video compression system. They are best used for information 
sources that are memoryless (sources in which each value is in- 
dependently generated), and they try to minimize the bitrate by 
assigning variable length codes for the input values according to 
the input probability densityfunction (pdf). Predictive coders are 
suited to information sources that have memory, i.e., a source in 
which each value has a statistical dependency on some number 
of previous and/or adjacent values. Predictive coders can pro- 
duce a new source pdf with significantly less statistical variation 
and entropy than the original. The transformed source can then 

be fed to a VLC to reduce the bitrate. Entropy and predictive 
coding are good examples for presenting the basic concepts of 
statistical coding theory. 

Block transformations are the major technique for represent- 
ing spatial information in a format that is highly conducive to 
quantization and VLC encoding. Block transforms can provide 
a coding gain by packing most of the block energy into a fewer 
number of coefficients. The quantization stage of the video en- 
coder is the central factor in determining the rate-distortion 
characteristics of a video compression system. It quantizes the 
block transform coefficients according to the bitrate and dis- 
tortion specifications. Motion compensation takes advantage of 
the significant information redundancy in the temporal domain 
by creating current frame predictions based upon block match- 
ing motion estimates between the current and previous image 
frames. Motion compensation generally achieves a significant in- 
crease in the video coding efficiency over pure spatial encoding. 

5.1 Entropy and Predictive Coding 
Entropy coding is an excellent starting point in the discussion of 
coding techniques because it makes use of many of the basic con- 
cepts introduced in the discipline of Information Theory or Sta- 
tistical Communications Theory [ 71. The discussion of VLC and 
predictive coders requires the use of information sourcemodels to 
lay the statistical foundation for the development of this class of 
encoder. An information source can be viewed as a process that 
generates a sequence of symbols from a finite alphabet. Video 
sources are generated from a sequence of image blocks that are 
generated from a “pixel” alphabet. The number ofpossible pixels 
that can be generated is 2n, when n is the number of bits per pixel. 
The order in which the image symbols are generated depends on 
how the image block is arranged or scanned into a sequence 
of symbols. Spatial encoders transform the statistical nature of 
the original image so that the resulting coefficient matrix can be 
scanned in a manner such that the resulting source or sequence 
of symbols contains significantly less information content. 

Two useful information sources are used in modeling video 
encoders: the discrete memoryless source (DMS), and Markov 
sources. VLC coding is based on the DMS model, and the pre- 
dictive coders are based on the Markovsource models. The DMS 
is simply a source in which each symbol is generated indepen- 
dently. The symbols are statistically independentand the source is 
completely definedby its symbols/events and the set of probabili- 
ties for the occurrence for each symbol; i.e., E = {el, e2, . . . , en} 
and the set {p(el), p(ez), . . . , p(e,)}, where n is the number of 
symbols in the alphabet. It is useful to introduce the concept of 
entropy at this point. Entropy is defined as the average informa- 
tion content of the information source. The information content 
of a single event or symbol is defined as 

(4) 
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The base of the logarithm is determined by the number of 
states used to represent the information source. Digital infor- 
mation sources use base 2 in order to define the information 
content using the number of bits per symbol or bitrate. The 
entropy of a digital source is further defined as the average in- 
formation content of the source, i.e., 

n 

n 

= - C p(e i )  log, p(e i )  bits/symbol. (5) 
i=l 

This relationship suggests that the average number of bits per 
symbol required to represent the information content of the 
source is the entropy. The noiseless source coding theorem states 
that a source can be encoded with an average number of bits per 
source symbol that is arbitrarily close to the source entropy. So 
called entropy encoders seek to find codes that perform close to 
the entropy of the source. Huffman and arithmetic encoders are 
examples of entropy encoders. 

Modified Huffman coding [ 81 is commonly used in the image 
and video compression standards. It produces well performing 
variable length codes without significant computational com- 
plexity. The traditional Huffman algorithm is a two-step process 
that first creates a table of source symbol probabilities and then 
constructs codewords whose lengths grow according to the de- 
creasing probability of a symbol's occurrence. Modified versions 
of the traditional algorithm are used in the current generation of 
image and video encoders. The H.261 encoder uses two sets of 
static Huffman codewords (one each for AC and DC DCT co- 
efficients). A set of 32 codewords is used for encoding the AC 
coefficients. The zigzag scanned coefficients are classified accord- 
ing to the zero coefficient run length and first nonzero coefficient 
value. A simple table lookup is all that is then required to assign 
the codeword for each classified pair. 

Markov and random field source models (discussed in Chap- 
ter 4.2) are well suited to describing the source characteristics of 
natural images. A Markov source has memory of some number 
of preceding or adjacent events. In a natural image block, the 
value of the current pixel is dependent on the values of some the 
surrounding pixels because they are part of the same object, tex- 
ture, contour, etc. This can be modeled as an mth order Markov 
source, in which the probability of source symbol ei depends on 
the last m source symbols. This dependence is expressed as the 
probability of occurrence of event e; conditioned on the occur- 
rence of the last m events, i.e., p(e ;  [ e;-2, . . . , e+,,,). The 
Markov source is made up of all possible n" states, where n is 
the number of symbols in the alphabet. Each state contains a set 
of up to n conditional probabilities for the possible transitions 
between the current symbol and the next symbol. The differen- 
tial pulse code modulation (DPCM) predictive coder makes use 
of the Markov source model. DPCM is used in the MPEG-1 and 

H.261 standards to encode the set of quantized DC coefficients 
generated by the discrete cosine transforms. 

The DPCM predictive encoder modifies the use ofthe Markov 
source model considerably in order to reduce its complexity. It 
does not rely on the actual Markov source statistics at all, and 
it simply creates a linear weighting of the last rn symbols (mth 
order) to predict the next state. This significantly reduces the 
complexity of using Markov source prediction at the expense of 
an increase in the bitrate. DPCM encodes the differential signal d 
between the actual value and the predictedvalue, i.e., d = e - 2,  
where the prediction 2 is a linear weighting of m previous values. 
The resulting differential signal d generally has reduced entropy 
as compared to the original source. DPCM is used in conjunc- 
tion with a VLC encoder to reduce the bitrate. The simplicity and 
entropy reduction capability of DPCM makes it a good choice 
for use in real-time compression systems. Third order predic- 
tors ( m  = 3) have been shown to provide good performance on 
natural images [ 91. 

5.2 Block Transform Coding: The Discrete 
Cosine Transform 
Block transform coding is widely used in image and video com- 
pression systems. The transforms used in video encoders are uni- 
tary, which means that the transform operation has a inverse op- 
eration that uniquely reconstructs the original input. The DCT 
successively operates on 8 x 8 image blocks, and it is used in the 
H.261, H.263, and MPEG standards. Block transforms make use 
of the high degree of correlation between adjacent image pixels 
to provide energy compaction or coding gain in the transformed 
domain. The block transform codinggain, %, is defined as the 
ratio of the arithmetic and geometric means of the transformed 
block variances, i.e., 

r 1 

where the transformed image block contains N subbands, and 
is the variance of each block subband i ,  for 0 I i I N- 1. 

&C also measures the gain of block transform coding over PCM 
coding. The coding gain generated by a block transform is re- 
alized by packing most the original signal energy content into 
a small number of transform coefficients. This results in a loss- 
less representation of the original signal that is more suitable for 
quantization. That is, there may be many transform coefficients 
containing little or no energy that can be completely eliminated. 
Spatial transforms should also be orthonormal, i.e., generate un- 
correlated coefficients, so that simple scalar quantization can be 
used to quantize the coefficients independently. 

The Karhunen-LoBve transform (KLT) creates uncorrelated 
coefficients, and it is optimal in the energy packing sense. But 
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the KLT is not widely used in practice. It requires the calcu- 
lation of the image block covariance matrix so that its unitary 
orthonormal eigenvector matrixcan be used to generate the KLT 
coefficients. This calculation (for which no fast algorithms ex- 
ist), and the transmission of the eigenvector matrix, is required 
for every transformed image block. 

The DCT is the most widely used block transform for digital 
image and video encoding. It is an orthonormal transform, and 
it has been found to perform close to the KLT [ 101 for first-order 
Markov sources. The DCT is defined on an 8 x 8 array of pixels, 

and the inverse DCT (IDCT) is defined as 

(2i + 1 ) u ~  7 7  

f<i, j )  = C,C, ~ ( u ,  v )  cos 
u=v v=o 

( 7 )  

with 

1 
C - - for u = 0, C, = 1 otherwise, " - f i  

1 c, = 5 for v = 0, C, = 1 otherwise 

where i and j are the horizontal and vertical indices of the 8 x 8 
spatial array, and u and v are the horizontal and vertical indices 
of the 8 x 8 coefficient array. The DCT is the chosen method for 
image transforms for a couple of important reasons. The DCT 
has fast O( n log n) implementations using real calculations. It 
is even simpler to compute than the DFT because it does not 
require the use of complex numbers. 

The second reason for its success is that the reconstructed 
input of the IDCT tends not to produce any significant discon- 
tinuities at the block edges. Finite discrete transforms create a 
reconstructed signal that is periodic. Periodicity in the recon- 
structed signal can produce discontinuities at the periodic edges 
of the signal or pixel block. The DCT is not as susceptible to 
this behavior as the DFT. Since the cosine function is real and 
even, i.e., cos(%) = cos(-x), and the input F(u,  v )  is real, the 
IDCT generates a function that is even and periodic in 2n, where 
n is the length of the original sequence. In contrast, the IDFT 
produces a reconstruction that is periodic in n, but and nec- 
essarily even. This phenomenon is illustrated in Fig .3 for the 
one-dimensional signal f ( i ) .  

The original finite sequence f ( i )  depicted in part Fig. 3(a) is 
transformed and reconstructed in Fig. 3(b) by using the DFT- 

t 

i 

(4 
FIGURE 3 
(b) DFT reconstruction; (c) DCT reconstruction. 

Reconstruction periodicity of DFT vs. DCT: (a) original sequence; 

IDFT transform pairs, and in Fig. 3(c) by using the DCT-IDCT 
transform pairs. The periodicity of the IDFT in Fig. 3(b) is five 
samples long and illustrates the discontinuity introduced by the 
discrete transform. The periodicity of the IDCT in Fig. 3(c) is 10 
samples long, as a result of the evenness of the DCT operation. 
Discontinuities introduced by the DCT are generally less severe 
than those of the DFT. The importance of this property of the 
DCT is that reconstruction errors and blocking artifacts are less 
severe in comparison to those of the DFT. Blocking artifacts are 
visually striking and occur because of the loss of high-frequency 
components that are either quantized or eliminated from the 
DCT coefficient array. The DCT minimizes blocking artifacts 
as compared to the DFT because it does not introduce the same 
level of reconstruction discontinuities at the block edges. Figure 4 
depicts blocking artifacts introduced by gross quantization of the 
DCT coefficients. 

This section ends with an example ofthe energy packing capa- 
bility of the DCT. Figure 5 depicts the DCT transform operation. 
The original 8 x 8 image subblock from the Lena image is dis- 
played in Fig. 5(a), and the DCT transformed coefficient array 
is displayed in Fig. 5(b). 

The original image subblock in Fig. 5(a) contains large values 
in every position, and is not very suitable for spatial compression 
in this format. The coefficient matrix (b) concentrates most of 
the signal energy in the top left quadrant. The signal frequency 
coordinates (u, Y )  = (0,O) start at the upper left position. The 
DC component equals 1255 and contains the vast majority of 
the signal energy by itself. This dynamic range and concentration 
of energy should yield a significant reduction in nonzero values 
and bitxate after the coefficients are quantized. 

5.3 Quantization 
The quantization stage ofthe video encoder creates a lossyrepre- 
sentation of the input. The input, as discussed earlier, should be 
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( i l l  ( 1 ) )  

FIGURE 4 
structed. (See color section, p. C-27.) 

Severe blocking artifacts introduced by gross quantization of DCT coefficients: (a) original, (b) recon- 

conditioned with a particular method of quantization in mind. 
Vice versa, the quantizer should be well matched to the character- 
istics of the input in order to meet or exceed the rate-distortion 
performance requirements. As is always the case, the quantizer 
has an effect on system performance that must be taken under 
consideration. Simple scalar versus vector quantization imple- 
mentations can have significant system performance implica- 
tions. 

Scalar and vector are the two major types of quantizers. These 
can be further classified as memoryless or containing memory, 
and symmetric or nonsymmetric. Scalar quantizers control the 
values taken by a single variable. The quantizer defined by the 
MPEG- 1 encoder scales the DCT transform coefficients. Vec- 
tor quantizers operate on multiple variables, i.e., a vector of 

F(u,v) = 

136 141 143 153 152 154 154 156 
143 150 153 156 160 156 155 155 
149 155 161 163 158 155 156 155 
158 161 162 161 160 158 160 157 
157 161 160 162 161 157 154 155 
160 160 161 
160 161 160 
162 162 161 

1255 - 8  -9 
-26 -20 - 5  

- 9  - 5  1 
- 6  - 2  0 

1 0 1  
- 2  1 2 
- 1  0 0 

1 0 -1 

1 160 160 156 156 156 
161 161 157 157 156 
161 162 157 157 157 

(a) 

- 6  
4 

- 1  
1 
2 
0 

- 2  
- 2  

(b) 

1 - 1  - 3  1 
- 1 1 0 1  

0 0 - 1  0 
- 1 0 0 0  

0 - 1  - 1  0 
1 1  0 - 1  
0 0 1 - 1  
0 1 - 1  0 

FIGURE 5 
ficients. 

8 x 8 DCT (a) original lena 8 x 8 image subblock; (b) DCT coef- 

variables, and become very complex as the number of variables 
increases. This discussion will introduce the reader to the basic 
scalar and vector quantizer concepts that are relevant to image 
and video encoding. 

The uniform scalar quantizer is the most fundamental scalar 
quantizer. It possesses a nonlinear staircase input-output char- 
acteristic that divides the input range into output levels of equal 
size. In order for the quantizer to effectively reduce the bitrate, 
the number of output values should be much smaller than the 
number of input values. The reconstruction values are chosen to 
be at the midpoint of the output levels. This choice is expected to 
minimize the reconstruction MSE when the quantization errors 
are uniformly distributed. The quantizers specified in the H.261, 
H.263, MPEG-1, and MPEG-2 video coders are nearly uniform. 
They have constant step sizes except for the larger dead-zonearea 
(the input range for which the output is zero). 

Non-uniform quantization is typically used for non-uniform 
input distributions, such as natural image sources. The scalar 
quantizer that produces the minimum MSE for a non-uniform 
input distribution will have non-uniform steps. Compared with 
the uniform quantizer, the non-uniform quantizer has increas- 
ingly better MSE performance as the number of quantization 
steps increases. The Lloyd-Max [ 111 is a scalar quantizer design 
that utilizes the input distribution to minimize the MSE for a 
given number of output levels. The Lloyd-Max places the recon- 
struction levels at the centroids of the adjacent input quantiza- 
tion steps. This minimizes the total absolute error within each 
quantization step based upon the input distribution. 

Vector quantizers (discussed in Chapter 5.3) decompose the 
input into a length n vector. An image for instance, can be di- 
vided into M x N blocks of n pixels each, or the image block can 
be transformed into a block of transform coefficients. The re- 
sulting vector is created by scanning the two-dimensional block 
elements into a vector of length n. A vector X is quantized by 
choosing a codebook vector representation X that is its “closest 
match.” The closest match selection can be made by minimizing 
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an error measure, i.e., choose 2 = Xi such that the MSE over all 
codebook vectors is minimized 

. n  

The index i of the vector % j  denotes the codebook entry that 
is used by the receiver to decode the vector. Obviously the com- 
plexity of the decoder is much simpler than the encoder. The size 
of the codebook dictates both the coding efficiency and recon- 
struction quality. The raw bitrate of a vector quantizer is 

bitratwQ = - log’ bits/pixel, 
n 

where log, m is the number of bits required to transmit the 
index i of the codebook vector Xi. The codebook construction 
includes two important issues that are pertinent to the perfor- 
mance of the video coder. The set of vectors that are included in 
the codebook determine the bitrate and distortion characteris- 
tics of the reconstructed image sequence. The codebook size and 
structure determines the search complexityto find the minimum 
error solution for Eq. (9). Two important VQ codebook designs 
are the Linde-Buzo-Gray (LBG) [ 121 and TSVQ [ 131. The LEG 
design is based on the Lloyd-Max scalar quantizer algorithm. It 
is widely used because the system parameters can be generated 
by the use of an input “training set” instead of the true source 
statistics. The TSVQ design reduces VQ codebook search time 
by using m-ary tree structures and searching techniques. 

5.4 Motion Compensation and Estimation 
Motion compensation [ 141 is a technique created in the 1960s 
that used to increase the efficiency of video encoders. Motion 
compensated video encoders are implemented in three stages. 
The first stage estimates objective motion (motion estimation) 
between the previously reconstructed frame and the current 
frame. The second stage creates the current frame prediction 
(motion compensation), using the motion estimates and the 
previously reconstructed frame. The final stage differentially en- 
codes the prediction and the actual current frame as the pre- 
diction error. Therefore, the receiver reconstructs the current 
image only by using the VLC encoded motion estimates and the 
spatially and VLC encoded prediction error. 

Motion estimation and compensation are common tech- 
niques used to encode the temporal aspect of a video signal. As 
discussed earlier, block-based motion compensation and motion 
estimation techniques used in video compression systems are ca- 
pable of the largest reduction in the raw signal bitrate. Typical 
implementations generally outperform pure spatial encodings 
by a factor of 3 or more. The interframe redundancy contained in 
the temporal dimension of a digital image sequence accounts for 
the impressive signal compression capability that can be achieved 
by video encoders. Interframe redundancy can be simply mod- 
eled as static backgrounds and moving foregrounds to illustrate 

the potential temporal compression that can be realized. Over a 
short period oftime, image sequences can be described as a static 
background with moving objects in the foreground. If the back- 
ground does not change between two frames, their difference is 
zero, and the two background frames can essentially be encoded 
as one. Therefore the compression ratio increase is proportional 
to two times the spatial compression achieved in the first frame. 
In general, unchanging or static backgrounds can realize additive 
coding gains, i.e., 

Static Background Coding Gain cx 
N 0 (Spatial Compression Ratio of Background Frame), 

(11) 

where N is the number of static background frames being en- 
coded. Static backgrounds occupy a great deal of the image area 
and are typical of both natural and animated image sequences. 
Some variation in the background always occurs as a result of 
random and systematic fluctuations. This tends to reduce the 
achievable background coding gain. 

Moving foregrounds are modeled as nonrotational rigid ob- 
jects that move independently of the background. Moving ob- 
jects can be detected by matching the foreground object between 
two frames. A perfect match results in zero difference between 
the two frames. In theory, moving foregrounds can also achieve 
additive coding gain. In practice, moving objects are subject 
to occlusion, rotational and nonrigid motion, and illumination 
variations that reduce the achievable coding gain. Motion com- 
pensation systems that make use of motion estimation methods 
leverage both background and foreground coding gain. They 
provide pure interframe differential encoding when two back- 
grounds are static; i.e., the computed motion vector is (0,O). The 
motion estimate computed in the case of moving foregrounds 
generates the minimum distortion prediction. 

Motion estimation is an interframe prediction process falling 
in two general categories: pel-recursive algorithms 1151 and 
block-matching algorithms (BMAs) [ 161. The pel-recursive me- 
thods are very complex and inaccurate and restrict their use in 
video encoders. Natural digital image sequences generally display 
ambiguous object motion that adversely affects the convergence 
properties of pel-recursive algorithms. This has led to the intro- 
duction of block-matching motion estimation, which is tailored 
for encoding image sequences. Block-matching motion estima- 
tion assumes that the objective motion being predicted is rigid 
and nonrotational. The block size of the BMA for the MPEG, 
H.261, and H.263 encoders is defined as 16 x 16 luminance 
pixels. MPEG-2 also supports 16 x 8 pixel blocks. 

BMAs predict the motion of a block of pixels between two 
frames in an image sequence. The prediction generates a pixel 
displacement or motion vector whose size is constrained by the 
search neighborhood. The search neighborhood determines the 
complexity of the algorithm. The search for the best prediction 
ends when the best block match is determined within the search 
neighborhood. The best match can be chosen as the minimum 
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FIGURE 6 Best match motion estimate. 

MSE, which for a full search is computed for each block in the 
search neighborhood 

where k is the frame index, l is the temporal displacement in 
frames, N is the number of pixels in the horizontal and vertical 
directions of the image block, i and j are the pixel indices within 
the image block, and m and n are the indices of the search neigh- 
borhood in the horizontal and vertical directions. Therefore the 
best match motion vector estimate M V ( m  = x ,  n = y )  is the 
pixel displacement between the block I k ( i ,  j )  in frame k, and 
the best matched block Ik- ' ( i  + x ,  j + y )  in the displaced frame 
k - 1. The best match is depicted in Fig. 6. 

In cases in which the block motion is not uniform or if the 
scene changes, the motion estimate may in fact increase the bi- 
trate over a spatial encoding of the block. In the case in which the 
motion estimate is not effective, the video encoder does not use 
the motion estimate and encodes the block by using the spatial 
encoder. 

The search space size determines the complexity ofthe motion 
estimation algorithm. Full search methods are costly and are not 
generally implemented in real-time video encoders. Fast search- 
ing techniques can considerably reduce computational complex- 
ity while maintaining good accuracy. These algorithms reduce 
the search process to a few sequential steps in which each sub- 

sequent search direction is based upon the results of the current 
step. The procedures are designed to find local optimal solutions 
and cannot guarantee selection of the global optimal solution 
within the search neighborhood. The logarithmic search [ 171 al- 
gorithm proceeds in the direction of minimum distortion until 
the final optimal value is found. Logarithmic searching has been 
implemented in some MPEG encoders. The three-step search 
[ 181 is a very simple technique that proceeds along a best match 
path in three steps in which the search neighborhood is reduced 
for each successive step. Figure 7 depicts the three-step search 
algorithm. 

A 14 x 14 pixel search neighborhood is depicted. The search 
area sizes for each step are chosen so that the total search neigh- 
borhood can be covered in finding the local minimum. The 
search areas are square. The length of sides of the search area for 
step 1 are chosen to be larger than or equal to YZ the length of the 
range of the search neighborhood (in this example the search 
area is 8 x 8). The length of the sides are reduced by Yz after each 
of the first two steps are completed. Nine points for each step are 
compared by using the matching criteria. These consist of the 
central point and eight equally spaced points along the perime- 
ter of the search area. The search area for step 1 is centered on 
the search neighborhood. The search proceeds by centering the 
search area for the next step over the best match from the previ- 
ous step. The overall best match is the pixel displacement chosen 
to minimize the matching criteria in step 3. The total number 
of required comparisons for the three-step algorithm is 25. That 
represents an 87% reduction in complexity versus the full search 
method for a 14 x 14 pixel search neighborhood. 
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FIGURE 7 Three-step search algorithm pictorial. 
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6 Video Encoding Standards and H.261 

The major internationally recognized video compression stan- 
dards have been developed by the ISO, the International Elec- 
trotechnical Commission (IEC), and the ITU standards organi- 
zations. 

The MPEG is a working group operating within IS0 and IEC. 
Since starting its activity in 1988, MPEG has produced ISOlIEC 
11172 (MPEG-1) andISOlIEC 13818 (MPEG-2). The MPEG-1 
specification was motivated by T1 transmission speeds, the CD- 
ROM, and the multimedia capabilities of the desktop computer. 
It is intended for video coding up to the rate of 1.5 Mbps, and it 
is composed of five sections: system configurations, video cod- 
ing, audio coding, compliance testing, and software for MPEG- 1 
coding. The standard does not specify the actual video coding 
process, but only the syntax and semantics of the bit stream, and 
the video generation at the receiver. It does not accommodate 
interlaced video, and it only supports CIF quality format at 25 
or 30 fps .  

Activity for MPEG-2 was started in 1991. It was targeted for 
higher bitrates, broadcast video, and a variety of consumer and 
telecommunications video and audio applications. The syntax 
and technical contents of the standard were frozen in 1993. It is 
composed of four parts: systems, video, audio, and conformance 
testing. MPEG-2 was also recommended by the ITU as H.262. 

MPEG is considering more advanced forms of video appli- 
cation interactivity that technology will make possible in the 
next few years. The MPEG-4 project is targeted to give users 
the possibility to achieve various forms of interactivity with the 
audiovisual content of a scene, and to mix synthetic and nat- 
ural audio and video information in a seamless way. MPEG-4 
technology comprises two major parts: a set of coding tools for 
audiovisual objects, and a syntactic language to describe both the 
coding tools and the coded objects. From a technical viewpoint, 
the most notable departure from traditional coding standards 
will be the possibility for a receiver to download the description 
of the syntax used to represent the audiovisual information. The 
visual information will not be restricted to the format of con- 
ventional video, i.e., it will not necessarilybe frame based. This is 
expected to produce significant improvements in both encoder 
efficiency and functionality. 

The ITU Recommendation H.261 was adopted in 1990 and 
specifies a video encoding standard for videoconferencing and 
videophone services for transmission over the Integrated Ser- 
vices Digital Network (ISDN) at p x 64 Kbps, p = 1, . . . ,30. 
H.261 describes the video compression methods that were later 
adopted by the MPEG standards and is presented in the fol- 
lowing section. The ITU Experts Group for Very Low Bit-Rate 
Video Telephony (LBC) has produced the H.263 recommenda- 
tion for Public Switched Telephone Networks (PSTN), which was 
finalized in December 1995 [ 181. It is an extended version of 
H.261 supporting bidirectional motion compensation and sub- 
QCIF formats. The encoder is based on hybrid DPCMlDCT cod- 

ing and improvements targeted to generate bitrates of less than 
64 Kbps. 

6.1 The H.261 Video Encoder 
The H.261 recommendation [3] is targeted at the videophone 
and videoconferencing application market running on 
connection-based ISDN at p x 64 kbps, p = 1, . . . ,30. It ex- 
plicitly defines the encoded bit stream syntax and decoder, while 
leaving the encoder design to be compatible with the decoder 
specification. The video encoder is required to carry a delay of 
less than 150 ms so that it can operate in real-time bidirec- 
tional videoconferencing applications. H.261 is part of a group 
of related ITU recommendations that define visual telephony 
systems. This group includes the following. 

1. H.221: defines the frame structure for an audiovisual chan- 
nel supporting 64-1920 Kbps. 

2. H.230: defines frame control signals for audiovisual sys- 
tems. 

3. H.242: defines audiovisual communications protocol for 
channels supporting up to 2 Mbps. 

4. H.261: defines the video encoderldecoder for audiovisual 
services at p x 64 Kbps. 

5. H.320: defines narrow-band audiovisual terminal equip- 
ment for p x 64 Kbps transmission. 

The H.261 encoder block diagrams are depicted in Fig. 8(a) 
and 8(b). An H.261 source coder implementation is depicted 
in Fig. 8(c). The source coder implements the video encoding 
algorithm that includes the spatial encoder, the quantizer, the 
temporal prediction encoder, and the VLC. The spatial encoder 
is defined to use the two-dimensional 8 x 8 pixel block DCT 
and a nearly uniform scalar quantizer, using up to a possible 3 1 
step sizes to scale the AC and interframe DC coefficients. The 
resulting quantized coefficient matrix is zigzag scanned into a 
vector that is variable length coded using a hybrid modified run 
length and Hufhan coder. Motion compensation is optional. 
Motion estimation is only defined in the forward direction be- 
cause H.261 is limited to real-time videophone and videocon- 
ferencing. The recommendation does not specify the motion 
estimation algorithm or the conditions for the use of intraframe 
versus interframe encoding. 

The video multiplex coder creates a H.261 bitstream that is 
based on the data hierarchy described below. The transmission 
buffer is chosen not to exceed the maximum coding delay of 
150 ms, and it is used to regulate the transmission bitrate by 
means of the coding controller. The transmission coder embeds 
an ECC into the video bit stream that provides error resilience, 
error concealment, and video synchronization. 

H.261 supports most of the internationally accepted digital 
video formats. These include CCIR 601, SIF, CIF, and QCIF. 
These formats are defined for both NTSC and PAL broadcast sig- 
nals. The CIF and QCIF formats were adopted in 1984 by H.261 
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FIGURE 8 ITU-T H.261 block diagrams: (a) video encoder; (b) video decoder; (c) source encoder implementation. 

in order to support 525-line NTSC and 625-line PAL/SECAM 
video formats. The CIF and QCIF operating parameters can be 
found in Table 4. The raw data rate for 30 f p s  CIF is 37.3 Mbps 
and 9.35 Mbps for QCIF. CIF is defined for use in channels in 
which p 3 6 so that the required compression ratio for 30 fps  
is smaller than 98:l. CIF and QCIF formats support frame rates 
of 30, 15, 10, and 7.5 f p s ,  which allows the H.261 encoder to 
achieve greater coding efficiency by skipping the encoding and 
transmission of whole frames. H.261 allows zero, one, two, three 
or more frames to be skipped between transmitted frames. 

H.261 specifies a set of encoder protocols and decoder op- 
erations that every compatible system must follow. The H.261 

video multiplex defines the data structure hierarchy that the de- 
coder can interpret unambiguously. The video data hierarchy 
defined in H.261 is depicted in Fig. 9. They are the picture layer, 
group ofblock (GOB) layer, macroblock (ME) layer and the ba- 
sic (8 x 8) block layer. Each layer is built from the previous or 
lower layer and contains its associated data payload, and header 
that describes the parameters used to generate the bit stream. 
The basic 8 x 8 block is used in intraframe DCT encoding. The 
MB is the smallest unit for selecting intraframe or interframe 
encoding modes. It is made up of four adjacent 8 x 8 luminance 
blocks and two subsampled 8 x 8 color difference blocks (Cg 
and CR as defined in Table 4) corresponding to the luminance 



6.1 Basic Concepts and Techniques of Video Coding and the H.261 Standard 

GOB 1 GOB 2 

GOB 3 

GOB 10 

GOB 11 GOB 12 

571 

GOB 1 GOB 3 GOB 5 I. 
.I.... 

... 9.. 
... I.. 

as.... 
... ... ..... *....* 1-.. 

.I. 
.e..... 

-... 

...e- ......** MB 1 rn 2 rn l l  .....** 

.'.****--.... MB 23 rn 24 MB 33 
*e... 

Group of Blocks GOB (CIF) Group of Blocks GOB (QCIF) 

57) 164 
Basic Block Structure Macroblock Structure 
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blocks. The GOB is made up of 176 x 48 pixels (33 MBs) and 
is used to construct the 352 x 288 pixel CIF or 176 x 144 pixel 
QCIF picture layer. 

The headers for the GOB and picture layers contain start codes 
so that the decoder can resynchronize when errors occur. They 
also contain other relevant information required to reconstruct 
the image sequence. The following parameters used in the head- 
ers of the data hierarchy complete the H.261 video multiplex. 

Picture layer: 

Picture start code (PSC), 20-bit synchronization pattern 

Temporal reference (TR), 5-bit input frame number. 
Type information (PTYPE), indicates source format, CIF = 

User-inserted bits. 

(0000 0000 0000 0001 0000). 

1 QCIF = 0, and other controls. 

GOB layer: 

Group ofblocks start code (GBSC), 16-bit synchronization 
code (0000 0000 0000 0001). 
Group number (GN), 4-bit address representing the 12 
GOBS per CIF frame. 
Quantizer information (GQUANT), indicates one of 31 
quantizer step sizes to be used in a GOB unless overrid- 
den by Macroblock MQUANT parameter. 
User-inserted bits. 

Macroblock layer: 

Macroblock address (MBA) is the position of a MB within 
a GOB. 
Type information (MTYPE) for one of 10 encoding modes 
used for the MB. This includes permutations of intraframe, 
interframe, motion compensation (MC), and loop filter- 
ing (LF). A prespecified VLC is used to encode these 
modes. 
Quantizer (MQUANT), 5-bit normalized quantizer step 
size from 1-3 1. 
Motion vector data (MVD), up to 11-bit VLC describing 
the differential displacement. 
Coded block pattern (CBP), up to %bit VLC indicating the 
location of the encoded blocks in the MB. 

Block layer: 

Transform coefficients (TCOEFF) are zigzag scanned and 

End of block (EOB), symbol. 

The H.261 bit stream also specifies transmission synchroniza- 
tion and error code correction by using a BCH code [ 191 that 
is capable of correcting 2-bit errors in every 511-bit block. It 
inserts 18 parity bits for every 493 data bits. A synchronization 
bit is added to every codeword to be able to detect the BCH 

can be 8-bit fixed or up to 13-bit VLC. 
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codeword boundaries. The transmission synchronization and 
encoding also operates on the audio and control information 
specified by the ITU H.320 Recommendation. 

The H.261 video compression algorithm depicted in Fig. 8(c) 
is specified to operate in intraframe and interframe encoding 
modes. The intraframe mode provides spatial encoding of the 
8 x 8 block and uses the two-dimensional DCT. Interframe mode 
encodes the prediction error, with motion compensation being 
optional. The prediction error is optionally DCT encoded. Both 
modes provide options that effect the performance and video 
quality of the system. The motion estimate method, mode selec- 
tion criteria, and block transmission criteria are not specified, 
although the ITU has published reference models [20,21] that 
make particular implementation recommendations. The coding 
algorithm used in the ITU-T Reference Model 8 (RM8) [21] is 
summarized in three steps, and is followed by an explanation of 
its important encoding elements. 

1. The motion estimator creates a displacement vector for 
each MB. The motion estimator generally operates on the 
16 x 16 pixel luminance MB. The displacement vector is 
an integer value between f15 ,  which is the maximum size 
of the search neighborhood. The motion estimate is scaled 
by a factor of 2 and applied to the CR and CB component 
macroblocks. 

2. The compression mode for each macroblock is selected 
by using a minimum error criteria that is based upon the 
displaced macroblock difference (DMD), 

DMD (i, j ,  k) = b(i, j, k) - b(i - dl, j - d2, k - I), 
(13) 

where b is a 16 x 16 MB, i and j are its spatial pixel indices, 
k is the frame index, and dl and d2 are the pixel displace- 
ments of the MB in the previous frame. The displacements 
range from -15 5 dl ,  dz 5 +15. When dl and d2 are 
set to zero, the DMD becomes the macroblock diffirence 
(MD). The compression mode determines the operational 
encoder elements that are used for the current frame. The 
H.261 compression modes are depicted in Table 5 .  

TABLE 5 H.261 MB video compression modes 

Mode MQUANT MVD CBP TCOEFF 

Intra J 
Intra J J 
Inter J J  
hter J J J  
Inter + MC J 
Inter + MC J J J  
Inter + MC J J J J  
Inter + MC + LF J 
Inter + MC + LF J J J  
Inter + MC + LF J J J J  

3. The video multiplex coder processes each macroblock to 
generate the H.261 video bit stream whose elements are 
discussed above. 

There are five basic MTYPE encoding mode decisions that are 
carried out in step 2. These are as follows. 

Use intrafi-ame or interframe mode? 
Use motion compensation? 
Use a coded block pattern (CBP)? 
Use loop filtering? 
Change quantization step size MQUANT? 

To select the macroblockcompression mode, the variances(VAR) 
of the input macroblock, the MD, and the DMD (as determined 
by the best motion estimate) are compared as follows. 

1. If VAR(DBD) < VAR(MD) then interframe + motion 
compensation (Inter + MC) coding is selected. In this case, 
the motion vector data (MVD) is transmitted. Table 5 in- 
dicates that there are three Inter + MC modes that allow 
for the transmission of the prediction error (DMD) with 
or without DCT encoding of some or all of the four 8 x 8 
basic blocks. 

2. “VAR input” is defined as the variance of the input mac- 
roblock. If VAR input < VAR(DMD) and VAR input < 
VAR(MD), then the intraframe mode (Intra) is selected. 
Intraframe mode uses DCT encoding of all four 8 x 8 basic 
blocks. 

3. IfVAR(MD) < VAR(DMD), theninterframe mode (Inter) 
is selected. This mode indicates that the motion vector is 
zero, and that some or all of the 8 x 8 prediction error 
(MD) blocks can be DCT encoded. 

The transform coefficient CBP parameter is used to indicate 
whether a basic block is reconstructed using the corresponding 
basic block from the previous frame, or if it is encoded and trans- 
mitted. In other words, no basic block encoding is used when 
the block content does not change significantly. The CPB pa- 
rameter encodes 63 combinations of the four luminance blocks 
and two color difference blocks using a variable length code. 
The conditions for using CBP are not specified in the H.261 
recommendation. 

Motion compensated blocks can be chosen to be low-pass fil- 
tered before the prediction error is generated by the feedback 
loop. This mode is denoted as Inter + MC + LF in Table 5.  The 
low-pass filter is intended to reduce the quantization noise in the 
feedback loop, as well as the high-frequency noise and artifacts 
introduced by the motion compensator. H.261 defines loop fil- 
tering as optional and recommends a separable two-dimensional 
spatial filter design, which is implemented by cascading two iden- 
tical one-dimensional finite impulse response (FIR) filters. The 
coefficients ofthe 1-D filter are [ 1,2,1] for pixels inside the block, 
and [O, 1,0] (no filtering) for pixels on the block boundary. 

The MQUANT parameter is controIled by the state of the 
transmission buffer in order to prevent overflow or underflow 
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conditions. The dynamic range of the DCT macroblock coeffi- 
cients extends between [ -2047, . . . ,20471. They are quantized 
to the range [-127, . . . , 1271 using one of the 31 quantizer step 
sizes as determined by the GQUANT parameter. The step size 
is an even integer in the range of [2, . . . ,621. GQUANT can 
be overridden at the macroblock layer by MQUANT to clip or 
expand the range prescribed by GQUANT so that the transmis- 
sion buffer is better utilized. The ITU-T R M 8  liquid level control 
model specifies the inspection of 64-Kbit transmission buffers 
after encoding 11 macroblodcs. The step size of the quantizer 
should be increased (decreasing the bitrate) if the buffer is full; 
vice versa, the step size should be decreased (increasing the bi- 
trate) if the buffer is empty. The actual design of the rate control 
algorithm is not specified. 

The DCT macroblock coefficients are subjected to variable 
thresholding before quantization. The threshold is designed to 
increase the number of zero valued coefficients, which in turn 
increases the number ofthe zero run lengths andVLC coding effi- 
ciency. The ITU-T F N 8  provides an example thresholding algo- 
rithm for the H.261 encoder. Nearly uniform scalar quantization 
using a dead zone is applied after the thresholding process. All 
the coefficients in the luminance and chrominance macroblocks 
are subjected to the same quantizer, except for the intraframe DC 
coefficient. The intraframe DC coefficient is quantized by using 
a uniform scalar quantizer whose step size is 8. The quantizer 
decision levels are not specified, but the reconstruction levels are 
defined in H.261 as follows. 

For case QUANT odd, 

REC-LEVEL = QUANT x (2 x COEFF-VALUE + l), 

for COEFF-LEVEL =- 0, 

REC-LEVEL = QUANT x (2 x COEFF-VALUE - I), 
for COEFF-LEVEL < 0. 

For case QUANT even, 

REC-LEVEL = QUANT x (2 x COEFF-VALUE + 1) - 1, 

for COEFF-LEVEL > 0, 

REC-LEVEL = QUANT x (2 x COEFF-VALUE - 1) + 1, 

for COEFFLEVEL < 0. 

If COEFF-VALUE = 0, then RECLEVEL = 0, where 
RECLEVEL is the reconstruction value, QUANT is 3: the mac- 
roblock quantization step size ranging 1-3 1, and COEFF-VALUE 
is the quantized DCT coefficient. 

To increase the coding efficiency, lossless variable length cod- 
ing is applied to the quantized DCT coefficients. The coefficient 
matrix is scanned in a zigzag manner in order to maximize the 
number of zero coefficient run lengths. The VLC encodes events 
defined as the combination of a run length of zero coefficients 
preceding a nonzero coefficient, and the value of the nonzero 

coefficient, Le., EVENT = (RUN, VALUE). The VLC EVENT 
tables are defined in [ 31. 

7 Closing Remarks 

Digital video compression, although only recently becoming a 
standardized technology, is strongly based upon the informa- 
tion coding technologies developed over the past 40 years. The 
large variety of bandwidth and video quality requirements for 
the transmission and storage of digital video information has 
demanded that a variety of video compression techniques and 
standards be developed. The major international standards rec- 
ommended by IS0 and the ITU make use of common video cod- 
ing methods. The generalized digital video encoder introduced 
in Section 2 illustrates the spatial and temporal video compres- 
sion elements that are central to the current MPEG-1, MPEG- 
2/H.262, H.261, and H.263 standards that have been developed 
over the past decade. They address avast landscape of application 
requirements, from low- to high-bitrate environments, as well 
as stored video and multimedia to real-time videoconferencing 
and high-quality broadcast television. 

The near future will drive video compression systems to incor- 
porate support for more interactive functions, with the ability 
to define and download new functions to the encoder. New en- 
coding methods currently being explored by the MPEG-4 and 
MPEG-7 standards look toward object-based encoding in which 
the encoder is not required to follow the international video 
transmission signal formats. These object-based techniques are 
expected to produce significant improvements in both encoder 
efficiency and functionality for the end user. 
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This chapter is devoted to subband and wavelet video compres- 
sion. We start out by showing the unity between these two ap- 
proaches. They will be revealed to be essentially the same for 
digital video; hence our chapter title of subband/wavelet com- 
pression. Thus our chapter can be viewed as a companion to 
earlier chapters on wavelets (Chapter 4.1) and wavelet image 
compression (Chapter 5.4). We review image and video com- 
pression basics from the standpoint of subbands and wavelets. 
We treat subband/wavelet video compression itself in the next 
section, including the hybrid or recursive as well as nonrecursive 
methods that use a subbandlwavelet transformation in the tem- 
poral direction also. There is the possibility of improving com- 
pression efficiency by performing the temporal filtering along 
the motion trajectory, if motion estimation is employed. In both 
cases efficiency can be improved by coding across the scales or 
subband levels by introducing a special zero symbol and forming 
a zero-tree structure. 

For various reasons, initially related to compression efficiency, 
an object-based approach has been pursued. This means that 
the video is treated as being made up from separate objects 

moving and deforming in time. The main advantages of object- 
based coding have turned out to be in the areas of provid- 
ing additional functionalities, such as object-based scalability 
and compression capability for composited images and videos. 
We present an object-based version of spatiotemporal subbandl 
wavelet coding. Then we briefly present the topic of invertible 
motion compensated spatiotemporal coding. Here, even in the 
presence of half-pixel motion compensation, the synthesis op- 
eration can reconstruct the exact source video in the absence of 
quantization errors. These two techniques could be combined 
to achieve invertible subband/wavelet coding of spatiotemporal 
objects. 

Currently with this writing, the JPEG 2000 standards body 
is adopting a subbandlwavelet method for image coding. How- 
ever, existent and emerging video compression standards are 
based on block processing using the discrete cosine trans- 
form (DCT) as the decorrelating transformation, followed by 
quantization and variable length coding. In this chapter we 
will review various methods for replacing the DCT by more 
general subband/wavelet transformations, both in hybrid cod- 
ing employing spatial subbands, and in 3-D (spatiotemporal) 
subbands. 

Copyright @ 2000 by Academic Press. 
All rights of reproduction in any form reserved. 5 75 
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F I G W  1 1-D subbandlwavelet analysis and synthesis filter bank 

1.1 Subbands and Wavelets Reviewed 
Subband methods started from work in digital signal process- 
ing in the area of speech compression. A major step was the 
invention of quadrature mirror filters (QMFs) by Esteban and 
Galland [l] in 1977. A very often used set of QMF filters ap- 
peared in Johnston's 1980 paper [2]. These filters, when applied 
in a 2-D separable manner, were found to be good for image 
coding too [3].  We summarize some results below. More details 
on subband/wavelet filters can be found in [4]. 

1.2 Subband/Wavelet Filter Sets 
In Fig. 1, neglecting the coding errors and transmission losses, 
we can write 

g(w) = '/z [Go(~)Ho(o )  + Gi(o)Hi(o>l  X(W) 

(1) 
+ l/2 [Go (0) Ho (w + IT) 

+ G i ( o ) ~ i ( ~ + ~ ) l X ( w + ~ ) .  

or equivalently in the 2 transform domain: 

n 

A common goal is to design this analysislsynthesis filter * bank 
to have the perfect reconstruction (PR) property, i.e., X ( o )  = 
X ( o > .  

The second term in Eq. (1) is due to aliasing, which can be 
made to disappear (necessary and sufficient) by setting 

(2) 

The necessary and sufficient solution to Eq. (2) in the Z-trans- 
form domain is 

Go(o)Ho(o + IT) + Gl(o)Hi(w + T) = 0. 

(3 )  

for some C(z), which is usually taken to be a constant c .  In the 
Fourier domain, this is then equivalent to 

Go(o) = CHi(w +IT>, 

Gi(o )  = -cHo(o +IT), 
(4) 

and in the spatial (time) domain, 

go(n> = C(-l)nhl(n), 

g1(n) = -c(-l)"ho(n). (5) 

Upon cancellation of the aliased component in the output, the 
overall transfer function is given by 

Ideally the filter bank output should be a delayed replica of the 
input: 

T(o) = f?-joD. (7) 

The necessary and sufficient condition for this is [ 51 

" / ~ [ H ~ ( Z ) H ~ ( - Z )  - H~(-z)H~(z)I = const z-"-l, 1 E 2, 
(8) 

where Z denotes the set of integers. 
Here, we summarize some design considerations for subband/ 

wavelet filters, some of which are conflicting. For image and 
video coding, these criteria need not be satisfied exactly and 
approximations are sufficient. 

1. Easy to implement (computationally efficient). This could 
be achieved through one or more: symmetric filter co- 
efficients, short-length filters, multiplierless implementa- 
tion of the convolution, and fast transform equivalent of 
the convolution. 

2. The wavelet basis functions generated by ho are orthogonal. 
That is, the impulse response of filter ho and its shifted ver- 
sions (by even shifts) form an orthogonal set. This ensures 
that there is no redundancy in the transform coefficients. 

3. For the same reason as above, the wavelet basis functions 
generated by ho and hl should be orthogonal. 

4. PR holds in the absence of coding and channel errors. 
5. The aliased components in the subbands should be small. 

This is because the upper subband may have to be truncated 
because of bit-rate constraints. It is achieved by making 
the frequency response of ha as close as possible to that of 
an ideal half-band filter. 

6. The filters should have linear phase, which is important in 
image compression. 

7. The overall transfer function T(o) should be maximally 
flat at zero frequency. This is important because the energy 
in images is concentrated near zero frequency, and it is 
undesirable to introduce much distortion there. 

8. The coding gain should be maximized. This would involve 
signal adaptive design of the filters. 

9. The filters should be such that the energy of the signal is 
concentrated in a single subband (as much as possible). 
This criterion is necessary for coding efficiency. 

10. Step response of the filters should have small overshoots. 
Otherwise, ringing artifacts occur in the encoded image. 

11. Regularity: Iterated synthesis applied to a sequence con- 
sisting of only one nonzero entry should look reasonably 
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nice, even after several iterations. This feature is needed 
when one subband is made zero while encoding at low bit 
rate. 

12. For optimality, the subband signals should be uncorre- 
lated. That is, for a zero-mean wide-sense stationary (WSS) 
input x (  n),  

E{xi(k)xj(Z)}  = u:&j8klVk, I ,  i, j E {0, 1). (9) 

This would let us encode various subbands and their com- 
ponents independently, in the Gaussian case. 

We say a subband filter set is orthogonal if criteria 2 and 
3 are satisfied. We note that considerations 5 and 10 conflict. 
Though one cannot achieve zero overshoot and also an ideal 
frequency response, one can use a cost function for the opti- 
mization, which is a combination ofboth the step and frequency 
responses of the filters. Numerous approaches have been re- 
ported in the literature to design filters hi and gi ,  i = o, 1, that 
satisfy exactly or approximately Eqs. ( 5 )  and (7), in addition 
to some of the other considerations given above. The QMF fil- 
ters have the property that the high-pass and low-pass filters are 
mirror symmetric about o = ~ / 2 ,  but with only approximate 
perfect reconstruction. The biorthogonal case is a generaliza- 
tion of the PR orthogonal design wherein separate orthogonal 
basis filters can be used for analysis and synthesis. In such a case 
the hi and gi are less constrained than the orthogonal case in 
Eq. (6). It has been claimed that this extra freedom can result in 
significant improvement in coding efficiency. Biorthogonal filter 
design is considered in [ 6,7], and the now widely used wavelet 
9/7 biorthogonal filter set was first used for image coding in [6]. 
Both orthogonal and biorthogonal PR filter banks havingthe reg- 
ularity property are related to wavelet theory (cf. Chapter 4.1). 
A wavelet transform splits the signal space in two, and then recur- 
sively splits the lower frequency half space in two, and so on. This 
is done for images by separable filtering, as mentioned above; 
i.e., filter the rows first and then the columns (cf. Chapter 5.4). For 
the video extension, one can continue this separable approach by 
addition of temporal domain filtering to accomplish an overall 
3-D or spatiotemporal subband/wavelet transformation. 

1.3 Optimal Subband/Wavelet Filters 
Kronander [8] designed a linear phase biorthogonal filter, using 
a combination of step-response and frequency-response errors 
as the objective function. 

References [9,10] design a paraunitary filter bank that opti- 
mizes the coding gain for a given input signal. Assuming a con- 
stant quantizer performance factor [ 111, the coding gain over 
pulse code modulation (PCM) of a two-band subband scheme 
with an orthogonal filter bank is given by 

where and e:l are the variances of subband signals Q (n) and 

x1 (n),  respectively. Maximizing this gain involves finding the fil- 
ter set that minimizes the variance of one of the two subbands. 
When the spectrum of the input signal x ( n )  is nonincreasing 
and has components beyond w = ~ / 2 ,  which is true for many 
natural images, the design goal would be to approximate ideal 
half-band filters. A definitive treatment of this approach to op- 
timal orthonormal coders is given by Vaidyanathan [ 121, where 
it is argued optimal biorthogonal coders cannot beat the per- 
formance of orthonormal coders if the power spectrum of the 
signal is flat over the subbands. Signal adapted finite-order fil- 
ter design has been presented by Moulin et al. [ 131. Again, by 
means of separable or row-column processing, this method can 
be extended to images and then onto image sequences or video. 

1.4 Comparison of Two Subband/Wavelet 
Filter Sets 
The power of filter sets for compression depends, of course, on 
the nature of the frequency decomposition as well as the na- 
ture of the filter. For this reason, it is of interest to compare the 
peak signal-to-noise ratio (PSNR) performance of some of these 
filters on a standard 10 subband wavelet decomposition versus 
a 16 subband full decomposition. The latter non-wavelet de- 
composition is sometimes called the ‘wavelet packet’ case. Some 
authors have found better PSNR performance of the full band 
case [ 141 over the wavelet, sometimes called dyadic or octave 
band, decomposition. 

Knowing of the variety of filters that are available, there arises 
the question ofhow thesevarious filters workin a coding context. 
Here we report on our test for the Lena image only and for two 
popular filters, the biorthogonal Daubechies 9/7 set [ 61 and from 
the oldest QMF design, we select Johnston’s 16B [ 151. The 16B is 
one of the first QMF filters and has been used for both audio and 
image coding from the early times. The more recent 9/7 filter 
has come from wavelet theory and is generally regarded as the 
best nonadapted filter to use currently for image compression. 
Both filters are used in a dyadic or octave band decomposition 
as well as a full or complete tree decomposition. The octave 
band decomposition is for three levels resulting in a traditional 
wavelet decomposition with 10 subbands. The full decomposi- 
tion is for two levels and results in 16 subbands. A more thorough 
study of the effects of using different filters has been done by 
Villasenor [16]. Many notable individual coding results are 
posted at the website www.icsl.ucla.edu/-ipl/psnrxesults.html. 

We look at the Lena image and just two filters. The coder 
used is a one-class version of subband finite-state scalar quanti- 
zation (SB-FSSQ) described in [ 171, and so does not implement 
prediction across the subbands or scales. The PSNR results are 
contained in Table 1, but can be summarized as follows. First 
the 16-band or nonwavelet decomposition is best at or above 
0.5 bitslpixel, i.e., at higher qualities. At lower rates the 10- 
band octave or traditional wavelet decomposition works better. 
Having said this, we note that the PSNR difference between the 
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TABLE 1 PSNR comparison of Daubechies 9/7 vs. Johnston 16B 
filter sets on the Lena image 

Daub 917 Johnston 16B 
10-bmd 16-bmd 10-band 16-bmd 

bpp PSNR bpp PSNR bpp PSNR bpp PSNR 

0.96 39.2 1.00 39.5 1.00 38.6 1.01 39.4 
0.74 38.0 0.76 38.2 0.73 37.2 0.74 38.0 
0.49 36.2 0.50 36.3 0.50 35.8 0.50 36.2 
0.25 33.2 0.24 32.9 0.25 33.0 0.24 32.9 
0.13 30.4 0.12 29.5 0.12 30.2 0.13 29.7 

four cases at any given bit rate is never more than 1 dB and 
often much less. For example at 0.5 bpp, a 16-subband John- 
ston filter decomposition results in a PSNR of 36.2 dB, while the 
Daubechies 9/7 results in 36.3 dB, only a 0.1-dB difference. Both 
filter results are better for the full subband decomposition than 
for the wavelet decomposition. If we use a full 16-subband tree, 
the maximum observed difference is 0.2 dB. Visual differences 
are not judged as significant. 

2 Video Compression Basics 

Here we review some video compression basics relevant to spa- 
tiotemporal coding. We look at motion estimation and compen- 
sation first. This is followed by the transformation and quantiza- 
tion. Then we introduce the issue of scalability, which has been 
an interesting research topic, as well as being of concern to in- 
ternational standards bodies. The scalability properties of the 
spatiotemporal or 3-D filtering approaches has been considered 
one of their foremost advantages. 

2.1 Motion Compensation 
The motion estimation problem (cf. Chapter 6.1) for spatiotem- 
poral subband/wavelet coding is somewhat different than that 
of hybrid coding. This is because in the scalable case, which is the 
main focus of the spatiotemporal coding, the lower frame-rate 
sequences are created by the motion compensated spatiotempo- 
ral filtering. Thus this is the ideal low frame-rate image sequence 
being communicated to the receiver. Any artifacts created by 
motion field errors will be seen directly in the lower frame rate 
output. 

2.2 Transformation and Quantization 
The role of the transformation is generally to reduce the de- 
pendence between the video samples. For example, linear trans- 
formations such as DCT and subband/wavelet filter trees and 
banks are known to reduce the correlation between transformed 
samples. In the Gaussian case, correlation and dependence are 
synonymous. More generally correlation and dependence typ- 
ically reduce together, though this is not always the case. It is 

important to note that the transformation does not reduce en- 
tropy. A scalar or vector quantizer is then called on to pro- 
vide the desired data compression. While the optimal quan- 
tizer (from a mean-square error viewpoint) will have the best 
performance, most modern coders use uniform step-size scalar 
quantizers, with a central dead zone to reject noise in the signal 
subband. 

2.3 Scalabilities 
Many applications of video coding require some sort of scala- 
bility, that is, the ability to usefully decode from only portions 
of the full compressed file. That is to say, we want one scalable 
coded file, consisting of a telescoping set of embedded files, that 
offers increasingly greater spatial resolution, higher frame rates, 
or a better signal-to-noise ratio (SNR). One motivation for scal- 
ability is for multicast on a heterogeneous computer network. If 
a certain part of the net contains only low-resolution terminals, 
then only that part of the scalable bit stream has to propagate 
there. Some receiving computers of varying clock speeds will 
only be able to keep up with lower resolution or lower frame- 
rate parts of the transmitted signal. Then an SNR scalable coder 
and appropriate decoder software will permit them all to get a 
usable image and keep up with the transmission. Alternatively, 
for a resolution or frame-rate scalable coder, we avoid the band- 
width inefficiency of the ad hoc solution of dropping frames at 
the receiver. 

3 Subband/Wavelet Compression 

There are basically two types of subband/wavelet video compres- 
sion. One makes use of a frame-difference coder for the temporal 
direction amounting to a temporal differential PCM (DPCM) 
loop. Such a coder is called a hybrid coder when coupled with 
either a block transform or asubband/wavelet based coder in the 
spatial dimension. The other option is to use subband/wavelet 
coding for the temporal dimension too. Before presenting this 
3-D or spatiotemporal subband/wavelet coder, we pause to look 
at the hybrid coder briefly. 

3.1 Hybrid SubbandlWavelet Coder 
This is motion compensated predictive coding with subbandl 
wavelet filters used for the transformation instead of the DCT 
used in a standards-based coder like MPEG. Most subband/ 
wavelet video coders are hybrid coders too. The class of hybrid 
coders is characterized by a very efficient one-frame recursive 
structure. While very efficient for implementation, and limiting 
the need for motion compensation to a frame-by-frame basis, 
this recursive structure can be a problem with regard to error 
propagation, scalability, picture in fastforward, and optimiza- 
tion of the coder. The latter arises because of the dependent 
frame nature of the hybrid coder’s recursive structure. 
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3.2 Spatiotemporal Subband/Wavelet Coder 
This type of coder is a spatiotemporal or 3-D subband/wavelet 
transformation, in contrast to the hybrid coder, which uses sub- 
band/wavelet filters only for the spatial transformation. There 
are two versions of these spatiotemporal subband/wavelet coders 
currently of interest; they differ in their use of motion compen- 
sation. 

3.2.1 Without Motion Compensation 
This is the simplest type of spatiotemporal subband/wavelet 
coder. The advantages of no motion compensation are 

computational simplicity, 
freedom from motion artifacts, 
easier transmission error concealment, and 
limited error propagation. 

A number of such 3-D subband coders have been advanced in 
the literature [ 18-20]. Some have claimed to offer pictures equi- 
valent to those of MPEG2 at similar rates [ 18,211. This is re- 
markable since no motion compensation is used. Of course the 
performance will vary with the motion content in the scene and 
whether the motion estimator is able to track it or not. For track- 
able moderate to high motion, we believe that motion compen- 
sation is still the best approach. Without motion compensation, 
the lower temporal video subbands will be blurred (or worse 
display multiple images or ghosts) when there is much motion. 
This is a serious disadvantage for scalable frame-rate coding. 

3.2.2 With Motion Compensation 
Ifwe can afford to use motion compensation in our video coder, 
then we gain the added efficiencies of this method. There are two 
variants, the simpler of which uses just one global motion vec- 
tor, which is suitable for camera-pan compensation [22]. Stud- 
ies have indicated that camera pan constitutes a large portion of 
the motion seen in entertainment television. The next step is to 
get a fixed-size block-based motion estimate and compensation. 
More computation even can yield a variable block size and more 
accurate motion field [23-251, or still denser near-continuous 
motion fields. These latter two more accurate motion fields 
are important for spatiotemporal scalable methods, in which 
the motion compensated filter is used to generate the low frame- 
rate videos, which are the ideal videos that will be subject to the 
subsequent coding. Any motion compensation artifacts in these 
lower temporal subbands will inevitably show up in the received 
and decoded lower frame-rate videos. 

3.3 Zero Coding and Embedding 
Often, especially when high compression ratios are needed, the 
quantizer step size for the high-frequency subbands is large. 
Because of the central dead band of the normally used scalar 
quantizer, this makes its zero output value quite probable. Zero 

coding is a way to take advantage of this fact by attempting 
to code clusters or runs of these zero values together. This is 
done in MPEG by coding the run lengths in a so-called zigzag 
scan of the DCT coefficients. In subband/wavelet image coders, 
not only zero runs but zero clusters have been efficiently coded, 
most notably in the zero-tree image coder of Shapiro [26], who 
codes the zeros across spatial scales by introducing a special sym- 
bol called the zero-tree root for the often occurring situation in 
which a quantizer zero at one scale is associated with zero val- 
ues at all finer spatial scales. This coder has been improved by 
Said and Pearlman in their set partitioning in hierarchical trees 
(SPIHT) [27], which processes lists of symbols related to signif- 
icant and insignificant sets of wavelet coefficients. This image 
coder has been extended to video as 3-D SPIHT in [21]. These 
coders are made embedded by coding bit planes of coefficients 
in a most-significant-bit-first strategy, which results in a coded 
bit stream in which one can stop decoding after each bit plane 
and get the image or video represented to that level of signifi- 
cance. Thus this embedded property facilitates the SNR type of 
scalability that is desirable when compression is done once for 
many possible decodings at various quality levels, such as the 
computationally limited PC mentioned above. Resolution and 
frame-rate scalability were not addressed in these papers. Inter- 
estingly, the four class SB-FSSQ coder [ 171 has better PSNR than 
the embedded zero-tree wavelet (EZW) coder [26] on the Lena 
image. 

4 Object-Based Subband/Wavelet 
Compression 

At least two problems have prevented object-based video coding 
systems from outperforming standard block-based techniques. 
Object segmentation is a very difficult problem because of its 
sensitivity and complexity. Also, we have the additional need to 
transmit the contour or shape of the object, leading to additional 
bit rate. So, the gain in coding the objects must outweigh the need 
to transmit the additional contour information. 

A n  object-based coder addressing these issues was presented 
in [28]. The extraction of the moving objects is performed by a 
joint motion estimation and segmentation algorithm based on 
Markov random field (MRF) models (cf. Chapter 4.2). In this 
approach, the object motion and shape are guided by the spa- 
tial color intensity information, thus utilizing the observation 
that in an image sequence, motion and intensity boundaries 
usually coincide. This not only improves the motion estima- 
tionlsegmentation process itselfin extracting meaningful objects 
true to the scene, but it also aids the process of coding the object 
intensities because a given object has a certain spatial cohesive- 
ness. The MRF formulation also allows temporal linking of the 
objects, thus creating spatiotemporal objects. This helps stabilize 
the object segmentation process in time, and more importantly 
for coding, allows the object boundaries to be predicted tem- 
porally by using the motion information. A n  efficient temporal 
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updating scheme to encode the object boundaries results in a 
significant reduction in bit rate while preserving the accuracy 
of the boundaries. With the linked objects, uncovered regions 
can be deduced in a systematic fashion. New objects are detected 
by utilizing both the motion and intensity information. The 
interiors of the objects are encoded adaptively, meaning that ob- 
jects well described by the motion parameters are encoded in an 
"inter" mode, while those that cannot be predicted in time are 
encoded in an "intra" mode. This is analogous to P blocks and I 
blocks in the MPEG coding structure (cf. Chapters 6.4 and 6.5), 
where we now have P objects and I objects. I-object coding is 
feasible because the object segments are based on intensity in- 
formation. The subband/wavelet approach [29] is adopted in 
spatial coding the objects. Both hybrid [28] and spatiotempo- 
ral [30] versions ofthis object-basedsubband/waveletcoderwere 
developed. 

4.1 Joint Motion Estimation and Segmentation 
The main objective is to segment thevideo scene into objects that 
are undergoing distinct motion and to find the parameters that 
describe the motion. We have adopted a Bayesian formulation 
based on an MRF model to solve this challenging problem. The 
MRF approach was initially used in motion segmentation and 
motion estimation in separate works. Because ofthe interdepen- 
dency ofthe two problems, algorithms to perform the motion es- 
timation and segmentation jointly have been proposed [31,32]. 

4.1.1 Problem Formulation 
Let It represent the frame at time t of the discretized image se- 
quence. The motion field d' represents the displacement between 
It and It-' for each pixel. The segmentation field Z* consists of 
numerical labels at every pixel, with each label representing one 
moving object, ie., z'(x) = n ( n  = 1,2, . . . , N), for each pixel 
location x on the lattice A. Here, N refers to the total number of 
moving objects. With the use of this notation, the goal of motion 
estimatiordsegmentation is to find {d', z'} given It and If-'. We 
further assume that dt-' and z'-' are available, making it possi- 
ble to impose temporal constraints and to link the object labels. 

We adopt the maximum a posteriori (MAP) formulation to 
provide estimates dt, ff by maximizing the joint conditional 
density p(dt, Z' I It, It-'). With the use of Bayes' rule, this is sim- 
plified to the equivalent maximization of the product of mixed 
conditional densities and probabilities: 

(11) 

each of which will be explained in the paragraphs that follow, 
where we incorporate various assumptions and models about 
our motion and segmentation field in formulating these terms. 

4.1.2 Probability Models 
The first term of Eq. (1 1) is the likelihood functional that de- 
scribes how well the observed images match the motion field 

p(It-' I d', zt, If)p(d'lzt, It)P(z' I It), 

data. It reflects the relationship between the gray-level changes 
between frame t - 1 and t that are corrupted by additive noise. 
Thus, the actual observed image It is regarded as a noisy ver- 
sion of the original image Gt, or It(x) = Gt(x) + q(x). Ignor- 
ing such factors as illumination changes, we assume the change 
of gray level between the two frames to be only due to object 
motion, and we have Gf(x) = Gt-'(x - d(x)). If the noise is 
assumed to be white Gaussian with zero mean and variance 
u2, p(ItF1 1 dt, zt, It) is also Gaussian with p(It-' I dt, zt ,  It) = 
Qrl exp{-q(If-' I dt, It)} where the energy function 
q(It-l I dt,It) = CxEh(It(x) - It-'(x- dt(x)))2/2' and QI is a 
normalization constant. 

The second term of Eq. (11) is the a priori density of mo- 
tion p(dt 1 zt, It) and thus enforces prior constraints on the 
motion field. We adopted a coupled MRF model in 1281 to 
govern the interaction between the motion field and segmenta- 
tion field both spatially and temporally. The probability density 
and corresponding energy function is given as p(dt I zt, It) = 
Qd' exp{-Ud(dt I d ) }  and 

+ b ]Idf (x) - dt-' (x - dt(x)) 11' 
X 

- A 3  CS(zt(x)  - z'-'(x - dt(x))). (12) 
X 

where refers to the usual Kronecker delta function1, 11 . 11 is 
Euclidean norm in R2, and Mx indicates a small neighborhood of 
x. The first term encourages motion vectors be locally smooth, 
but only within each object. The second term links the motion 
vectors along the motion trajectory. The last term encourages 
the object labels to be consistent along the motion trajectories. 

Now as to the third term on the right-hand side of Eq. (1 I), 
P(z'1 It), it models our a priori expectations for the ob- 
ject label field itself. In the temporal direction, we have al- 
ready modeled the object labels to be consistent along the 
motion trajectories. Our model incorporates the spatial in- 
tensity information (It) based on the reasonable assump- 
tion that object discontinuities coincide with spatial inten- 
sity boundaries. The segmentation field is a discrete-valued 
MRF, P(z' I It) = Q;' exp{-U,(z' I It)} with the energy func- 
tion given as UZ(zt I It) = Ex Cy E N, K(z(x), z(y) I It), where 

(13) 
Here, s refers to the spatial segmentation field that is prede- 

termined from I. As a simplification, we treat s as a deterministic 

'The Kronecker delta function 6(.) assigns the value 6 = 1 when its argument 
is 0 and 6 = 0 otherwise. 
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field that can be calculated uniquely from I alone. According 
to Eq. (13), if the spatial neighbors x and y belong to the 
same intensity-bused object (s(x) = s(y)), then the two pix- 
els are encouraged to belong to the same motion-based ob- 
ject. This is achieved by the f y  terms. In contrast, if x and 
y belong to diferent intensity-based objects (s(x) # s(y)), we 
do not enforce z to be either way, and hence the 0 terms in 
Eq. (13). This slightly more complex model ensures that the 
moving object segments we extract have some sort of spa- 
tial cohesiveness as well. This is a very important property for 
our adaptive coding strategy, presented in the paragraphs that 
follow. 

4.1.3 Maximation Approach 
As a result of the equivalence of MRFs and Gibbs densities, i.e., 
those densities that can be written as the exponential of the neg- 
ative of an energy function (cf. Chapter 4.2), the MAP solution 
amounts to a minimization of the sum of these energies. To ease 
the computation, a two-step iterative hierarchical procedure is 
implemented, in which the motion and segmentation fields are 
found in an alternating fashion, assuming the other is given. 
Mean field annealing is used for the motion field estimation, 
while the object label field is found by a deterministic iterated 
conditional modes (ICM) algorithm [ 331. 

4.1.4 Video Object Segmentation Results 
In Figs. 2 and 3, the segmentation results for Miss America are 
displayed in a horizontal versus time plot, corresponding to a 
fixed vertical position. We see that the segments generally follow 
the object in the scene and are coherent over time. We can see 
that the MRF model produced smooth vectors within the objects 
with definitive discontinuities at the intensity boundaries. Also, 
it can be observed that the object boundaries relate well to the 
“real” objects in the scene. 

FIGURE 2 Miss America horizontalvs. time display. (Reprinted by permission 
from Image and Video Compression, P. Topiwala, ed., Kluwer Academic Publishers 
1998.) 

FIGURE 3 Segmented horizontal vs. time display. (Reprinted by permission 
from Image and Video Compression, P. Topiwala, ed., Kluwer Academic Publishers 
1998.) 

4.2 Coding of Video Objects 
The coding of the object interior is performed by adaptive cod- 
ing. Objects that can be described well by the motion were en- 
coded by motion compensated predictive (MCP) coding in hy- 
brid object-based (OB)-MCP [28], and those that cannot were 
encoded in the “intra” mode. The coding was done indepen- 
dently on each object, using spatial subbandlwavelet coding. 
Since the objects are arbitrarily shaped, the efficient signal ex- 
tension method proposed by Barnard [29] was applied. 

Although the motion compensation was relatively good for 
most objects at most frames, the flexibility to switch to the intra- 
mode (I mode) in certain cases is inevitable. For instance, when 
a new object appears from outside the scene, it cannot be prop- 
erly predicted from the previous frame. Thus, these new objects 
must be coded in the I mode. This includes the initial frame 
of the image sequence, where all the objects are considered new. 
Even for “continuing” objects, the motion might be too complex 
at certain frames for our model to describe properly, resulting in 
poor prediction. This is another case when objects should be en- 
coded in the I mode. Such classification of objects into I objects 
and P objects is analogous to P blocks and I blocks in current 
MPEG video standards (cf. Chapters 6.4 and 6.5). Each of these 
linked spatiotemporal objects can also be coded by a 3-D spa- 
tiotemporal coder as in [30], offering scalability and robustness 
advantages over the hybrid OB-MCP method, and with, it turns 
out, almost the same performance. 

4.2.1 Object Motion Field 
The motion analysis provides us with the boundaries of the 
moving objects and a dense motion field within each object. 
An affine parametric representation can provide a smooth and 
efficient fit to each object’s motion. Potential new objects can 
be found for regions where the fit fails. By modeling the mo- 
tion of the temporally linked objects with affine parameters, one 
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TABLE 2 PSNR results for OB-3DSBC 

Bit Rate OB-3DSBC 
Sequence (kbps) Channel (PSNR) 

Miss America (15 f p s )  20 Y 37.5 
U 38.9 
V 37.6 

Carphone (15 f p s )  40 Y 33.1 
U 38.3 
V 38.9 

H.263 
(PSNR) 

37.9 
38.5 
37.4 

33.4 
38.6 
38.1 

Source: From Image and Video Compression, P. Topiwala, ed., Kluwer 
Academic Publishers 1998. 

reduces the bit rate to encode the object boundaries significantly 
[28,30]. Furthermore, one can extract uncovered regions simply 
by comparing the object location and motion parameters be- 
tween two frames. 

Because the objects are linked in time, covered/uncovered re- 
gion extraction merely involves projecting the motion vectors in 
time and comparing labels. More specifically, for the uncovered 
regions in frame t to be found, each pixel is projected back to 
frame t - 1 according to its synthesized motion vector. The un- 
covered pixels are simply those whose object labels don't match 
along the trajectory. 

4.2.2 Coding the Object Boundaries 
We have already seen that temporally linked objects in an object- 
based coding environment offer various advantages. However, 
the biggest advantage comes in reducing the contour informa- 
tion rate. Using the object boundaries from the previous frame 
and the affine transformation parameters, one can predict the 
boundaries with a good deal of accuracy. Some small error oc- 
curs near boundaries, and one can simply encode these by using 
1-bit flags. 

4.3 Object Motion/Segmentation Coding 
The object-based 3-D subband/wavelet coding (OB-3DSBC) 
coder was tested on the QCIF resolution Miss America and 
Curphone sequences. Simulations were performed at the frame 
rate of 15 frames/s. The object segmentation and motion analy- 
sis from [28] was used. The target bit rate was 20 kbps at the full 
frame rate for Miss America and 40 kbps for Carphone, with the 
bits being divided equally among the group of pictures (GOPs) 
except for the first one. The first GOP was assigned twice as many 
bits as the other GOPs to account for the I-tLL band. For com- 
parison, we obtained results at the same frame and bit rate with 
an H.263 standard coder (cf. Chapter 6.1). The average PSNRs 
are summarized in Table 2. 

Figure 4 displays full-rate reconstruction results from the var- 
ious methods for Carphone, with corresponding H.263 results 
shown in Fig. 5. In terms of the PSNR, we can see that the 

FIGURE 4 
Video Compression, P. Topiwala, ed., Kluwer Academic Publishers 1998.) 

OB-3DSBC coder result. (Reprinted by permission from Imageand 

OB-3DSBC is somewhat worse (by 0.2-0.4 dB) than the H.263 
coder. The OB-MCP coder results are slightly better in PSNR and 
are shown in [28]; however, the difference in visual quality with 
OB-3DSBC is minimal. On the plus side, the OB-3DSBC gives 
us a natural scalability option in frame rate, i.e., the flexibility of 
decoding the given bit stream at multiple frame-rates [ 301. 

5 Invertible Subband/Wavelet 
Compression 

The spatiotemporal coding presented in Section 3 has the prob- 
lem of requiring interpolation to create the lower frame-rate 
videos. Even in the absence of any quantization error, the inter- 
polation step will cause some distortion in the lower frame-rate 
videos. The result is that the above presented technique does not 
work that well for high quality (read high bit rates). To extend 
the technique to high quality and also high resolution, we need 
to address this problem. The interpolation is only needed when 
motion compensation is used at subpixel accuracy, but this is 
necessary for high-efficiency coding. Also, the motion compen- 
sation itself is a big cause of artifacts at the lower frame rates, 
where it is more inaccurate. 

FIGURE 5 
Compression. P. Topiwala, ed., Kluwer Academic Publishers 1998.) 

H.263 coder result. (Reprintedbypermission from Imageand Video 
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Because of its high-energy compaction and nonrecursive cod- 
ing structure, spatiotemporal (3-D) subbandlwavelet coding 
with motion compensation (MC-3DSBC) has been demon- 
strated to outperform conventional hybrid coders in compres- 
sion efficiency [23,25,34] and in robustness for video trans- 
mission. 

It is widely acknowledged that motion compensation with 
half-pixel accuracy is necessary in order to effectively reduce the 
energy of the displaced frame difference (DFD). Since the high- 
frequency output of the temporal two-tap analysis filter bank 
utilized in [34,35] is the scaled difference of the previous and 
current frames, they adopted half-pixel accuracy for MC tempo- 
ral filtering in order to reduce the energy of the high-frequency 
band. The images therein had to be interpolated at both analy- 
sis and synthesis stages, and the resulting systems were thus not 
invertible. Therefore, reconstruction error was introduced even 
without any coding distortion. This excluded the technique from 
high-qualityvideo coding applications and also limited the num- 
ber of analysislsynthesis stages allowed. In [25,34], two stages of 
temporal decomposition were applied in order to avoid buildup 
of reconstruction error from the analysislsynthesis system. For 
the HDTV application, only one stage could be used in [36]. 
To further enhance coding efficiency, the images of the lowest 
temporal band from the same GOP were encoded by temporal 
DPCM. Therefore, the overall system still could not fully avoid 
recursive coding structures and their disadvantages. 

In [37], we presented an invertible 3-D or spatiotempo- 
ral subbandlwavelet system with half-pixel-accurate motion 
compensation for video coding. We term it invertible motion- 
compensated 3DSBC, or IMC-3DSBC. There we looked at 
temporal decomposition of the progressively scanned image 
sequence as a kind of downconversion of the sampling lattice 
from the interlaced format to the progressive format, follow- 
ing the suggestion in [ 381. We thus extended the method of [ 381, 
intended for interlacedlprogressive scan conversion, to our anal- 
ysislsynthesis system IMC-3DSBC. An important feature of the 
new system is that it guarantees perfect reconstruction while 
high-energy compaction is retained. 

It is known that optimal bit allocation for conventional hy- 
brid coders is very complex because of the frame-to-frame 
dependent quantization structure resulting from the DPCM cod- 
ing loop [39]. In contrast, in a subband-based coder, coefficients 
of individual subbands are quantized and coded independently. 
Optimal bit allocation is therefore possible. However, since 
MC-DPCM was still used to encode frames of the lowest tempo- 
ral band in the earlier MC-3DSBC [25,34], bit allocation could 
not be fully optimized for the GOPs. In the new system, the input 
video is decomposed into four temporal stages without build-up 
of reconstruction error. The GOP consisting of 16 frames does 
not contain any dependent coding structure at all. Therefore, if 
the effects of side information are neglected, each GOP can be 
optimally encoded in an operational rate-distortion sense. 

Figure 6 shows PSNR coding results versus bit rate of OB- 
3DSBC and MPEG-2 (TM5) for the color SIF version of the 

4 
2 0:s i 1:s i i . 5  6 31.5 i 4:5 I 

rate (Mbps) 

FIGURE 6 Mobile Calendar PSNR vs. bit rate for hybrid and spatiotemporal 
subband/wavelet object coders + MPEGZ (TM5). 

Mobile Calendar test clip. Note that the improvement of MC- 
3DSBC drops off, and will actually saturate, at the higher bit rates, 
while IMC-3DSBC does not. Notice the 2-3 dB improvement 
over MPEG-2, which is largely due to optimization, but which 
in turn is easier for nonrecursive coders. 

6 Summary and Look Forward 

This chapter has presented 3-D or spatiotemporal coding us- 
ing subbandlwavelet methods. We have first reviewed avail- 
able filters and compared results. We related the spatiotemporal 
methods to hybrid methods such as MPEG and hybrid sub- 
bandlwavelet. We have presented spatiotemporal coding for a 
low bit-rate, object-based coder, and we addressed the needs 
for higher rates and resultant quality by showing a method for 
invertible motion compensated spatiotemporal coding. We be- 
lieve that future work should extend the invertible coder to code 
objects and at higher qualities and bit rates. 
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1 Introduction 
Conventional digital image and image sequence coding has his- 
torically relied on a number of simple yet powerful concepts. 
An original image is converted into a digital format by sampling 
in space and time, and by quantizing in brightness or color. 
Messages defined by using this basic data format are referred 
to as being in “canonical form.” Codewords have been assigned 
to messages in a variety of ways, motivated by the information 
theory framework. Examples of messages include pairs of adja- 
cent pixels, groups of pixels within a geometrically simple data 
independent structure (e.g., a square image block), or a linear 
reversible transform of these pixels (such as the discrete cosine 
transform, or DCT). Statistical distributions of the messages 
have been used to determine optimal codeword assignments. 
The compression performance of these types of schemes satu- 
rated quickly Natural images and image sequences are anything 
but stationary, meaning that the statistical properties of image 
data are variable over space and time. Although interesting, adap- 
tive sampling is impractical. Furthermore, the entropy of a nat- 
ural scene is hardly known and depends heavily, if not uniquely, 
on the model used to estimate image statistics and statistical 
dependencies. Last but not least, data independent structures 
such as Cartesian sampling grids (or square data blocks, as used 
in MPEG, for example) cannot describe nonstationarities and 
hence cannot serve as efficient data structures for images and 
image sequences. 

Improvements have come by representing visual data in terms 
of regions, defined by their contour and texture, possibly corre- 

sponding to objects or to parts of objects. This approach closes 
the gap between technical systems and the human visual system 
( H V S ) ,  the latter usually being the last element of an image pro- 
cessing system. It also makes it possible to emphasize visuallysen- 
sitive data while neglecting visually insignificant information. Of 
course, the raw data resulting from sampling and quantization 
must be transformed into this representation. Once the regions 
are obtained, there is still a challenging step to connect regions 
belonging to the same visual object. As a byproduct to compres- 
sion and representation efficiency, this approach has paved the 
way to a number of new hnctionalities, such as interaction with 
regions and objects. This so-called second-generation concept 
is now widely accepted and has become the basic philosophy of 
the new MPEG-4 standard (Chapter 6.5). 

Unfortunately, there is no single compression method or algo- 
rithm that can efficiently compress all possible image regions or 
objects, just as there is no single tool to repair a car. The ultimate 
representation is then to assign the tool to the information. Each 
type of visual information, region or object, can be compressed 
by the most efficient algorithm. The label of the algorithm is 
appended to the data and algorithms are accumulated in a tool 
box. This approach is called dynamic coding. 

The chapter is organized as follows. In the next section, 
second-generation coding is presented as the basis for object- 
based coding. Section 3 describes an efficient and relatively sim- 
ple way of encodingvideo information using objects. It has three 
main components based on the handling, respectively, of shape, 
motion, and texture. The components ofthe scheme are designed 
in such a way that each one allows progressive transmission 
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or retrieval. Integrating these components into an overall pro- 
gressive coding scheme is described in Section 4. The dynamic 
coding concept, together with a few illustrations, is developed in 
Section 5, before the conclusions in the last section. 

2 Second-Generation Coding 

The most widely used approach to represent still and moving 
pictures in the digital domain is based on pixels. This is mainly 
because pixel-based acquisition and reproduction of digital vi- 
sual information are mature and relatively cheap technologies, 
as they produce uniformly sampled data. In parallel, we can view 
the lowest level of the HVS (rods and cones in the retina) as a 
non-uniformly sampled acquisition system [ 1,2]. Compared to 
its technical counterpart, this system has, however, incredible 
complexity and sophistication in its higher levels. In a pixel- 
based representation, an image or a video is modeled as a set of 
pixels (with associated properties such as a given color or mo- 
tion) the same way the physical world is made of atoms. Until 
recently, pixel-based image processing was the only digital repre- 
sentation available for the processing of visual information, and 
therefore the majority of techniques known today rely on this 
representation. It was in the mid-1980s that, for the first time, 
motivated by studies of the mechanisms ofthe humanvision sys- 
tem, researchers developed other representation techniques [ 31. 
The main idea behind this effort was that, since the HVS is in the 
majority of cases the final stage in the image processing chain, 
then a representation that matches the H V S  will be more efficient 
in the design ofimage processing and coding systems. Non-pixel- 
based representation techniques for coding (also called second- 
generation coding) have been found to be superior in coding 
efficiency at very high compression ratios, when they are when 
compared with pixel-based representation methods [3]. 

Figure 1 depicts a representation pyramid illustrating various 
methods used to represent visual information and their relation- 
ships. Linear transform and (motion-compensated) predictive 
coding, which can be considered special cases of pixel-based rep- 
resentation techniques, have also shown outstanding results in 
compression efficiency for the coding of still images and video. 
One reason is that digital images and video are captured and 
therefore mainly available in a pixel-based form, as this is the 
only way we can acquire them today. In order to apply a non- 
pixel-based approach, either the input data should be captured in 
a non-pixel-based form, or the available pixel-based data have to 
be converted to a non-pixel-based representation, which brings 
additional complexity but also other inefficiencies. Examples of 
such conversions are depicted in Fig. 1 and can vary from simple 
visual primitive extraction methods to more sophisticated ob- 
ject segmentation and tracking techniques. An important class 
of non-pixel-based representation schemes is that of content- 
based representation. In this approach, an image is seen as a set 
of visual primitives (edges, contour, texture, etc.) containing the 
most salient visual information in the scene. 

synthetic 
models 

representati descriptor 
extraction 

Visual 
primitiv 

FIGURE 1 
structure. 

Visual information representation pyramid and its internal 

Among content-based representations, region-based and ulti- 
mately object-based visual data representations are very impor- 
tant classes. Here, regions are defined as segments in an image 
that share a common property, while objects are defined as sets 
of regions that represent a semantically meaningful entity in an 
image [4]. In object-based representations, objects replace pix- 
els. An image or a video is seen as a set of objects that cannot be 
broken into smaller elements. In addition to texture (color) and 
motion properties, shape information is also needed in order 
to completely define any object. The shape in this case can be 
seen as a force field keeping together the elements of an image or 
video object like atoms in a molecule or a physical object. Once 
you grab a corner of an object, the rest comes with it because the 
force field has glued all atoms of the object together. The same is 
true in an object-based representation, where the role of the force 
field is played by shape. Thanks to this property, object-based 
representation brings a very important feature at no cost, called 
interactivity Interactivity is defined by some as the element that 
defines multimedia [ 51. This is one of the main reasons for which 
an object-based representation was adopted in the MPEG-4 stan- 
dard; see Chapter 6.5 and [6]. As pointed out earlier, because of 
the fact that the majority of digital visual information is still in 
pixel-based representations, converters are needed in order to go 
from one representation to another. The passage from a pixel- 
based representation to an object-based representation can be 
performed by using manual, semiautomatic, or automatic seg- 
mentation techniques. This subject will not be covered here, as it 
is addressed in Chapter 4.8. The inverse operation is achieved by 
rendering, blending, or composition, which are typically used in 
computer graphics applications. Object-based representations 
are also very suitable to be cast in the same framework as nat- 
ural and synthetic data coding, since synthetic objects (2-D or 
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3-D) can be treated in the same way as any natural object and 
added into the scene (see Fig. 1). A large number of object-based 
coding schemes have been proposed in the literature. The main 
differences among these techniques reside in one of the following 
points: 

the specific method used for the coding of shapes of objects 
the method used for the coding of texture and color infor- 
mation in objects 
the method used to estimate and to code the motion of 
objects 
the way in which the complete system is integrated, using 
the above components 

In this chapter, we will not cover all possible variants and 
approaches to object-based video coding. Interested readers can 
refer to tutorial articles and books for this purpose [18, 201. 
Rather, the remainder of this chapter will concentrate on object- 
based video coding algorithms that provide major functionalities 
expected from such an approach while providing other useful 
features. 

In the data representation pyramid, one could think of yet an- 
other representation in which visual information is represented 
by describing its content. An example would be when you de- 
scribe to someone a person he or she has never seen: She is tall, 
thin, has long black hair, blue eyes, etc. As this kind of represen- 
tation would require some degree of semantic understanding, 
one could call it a “semantics-based representation.” One way 
of building a semantics-based representation is to start from an 
object-based or content-based representation, as again, it seems 
that humans do it this way [ 1,2]. An example of an implementa- 
tion of a semantics-based representation would be a descriptor 
language that describes objects and their properties (position, 
dominant color, texture, shape, etc.), as well as their relations 

Input 
video object 

to each other (close, far, connected, above, etc.). The semantic 
description can be based on other simpler semantic descriptors 
in a hierarchical manner. For instance, a house could be by it- 
self a semantic descriptor, which can be also divided into other 
semantic descriptors such as doors, windows, roof, walls, etc., 
which could each be divided into simpler semantic descriptors 
(geometric objects with various shapes, colors and textures, etc.). 
The difficulty in a semantics-based representation is to make the 
description as application independent as possible. The coding 
scheme described in this chapter provides a mechanism that 
allows efficient access to the salient visual information in an im- 
age sequence that is useful for semantics-based representation, 
while still providing other features desired in a content-based 
and object-based representation, such as interactivity with ob- 
jects and compression efficiency. 

- 
Flat approximation 

3 Object-Based Video Coding 

Previous 
reconstructed 
video object 

This section describes a complete object-based video coding 
scheme that addresses many requirements desired in applica- 
tions that would necessitate a content-, object-, or even seman- 
tics-based representation. It starts by giving a general overview 
of the algorithm used for the coding of arbitrarily shaped video 
objects. The general block diagram of this technique is depicted 
in Fig. 2. As in other object-based coding schemes, one would 
expect to distinguish three key components, namely, shape, mo- 
tion, and texture coding blocks. In this scheme, shape coding 
is replaced by geometric coding, which refers to information 
about the outline of objects (shape) as well as its internal visual 
primitives (edges, corners, etc.). 

In addition to the above, as in many video coding schemes, 
the algorithm operates either in intramode (I), when an object 

+ 
Motion PO-SA-DCT -+ compensation 

I + I Motioncoding 1 
Motion estimation 

Quantization 

I J  
FIGURE 2 Overview of the object-based video object coding structure. 
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Texture data 

FIGURE 3 Overview of the intracoding mode syntax. 

is coded independently, or in a predicted (P) intermode, when a 
video object is coded taking into account information available 
on its past. Intramode provides random access points in the bit 
stream, as well as some robustness to propagation of transmis- 
sion errors as it does not refer to any prior information. Ideally, 
intracoded video objects should occur at each scene change, 
when new objects appear. In practice, they occur at a prede- 
fined, fixed rate, e.g., every 0.5 s. Figure 3 gives an overview of the 
intracoding mode syntax. The geometric information is coded 
first. The object shape is encoded by using a progressive polyg- 
onal approximation, which amounts to a simple vertex coding 
method when a lossy representation or quasi-lossless shape cod- 
ing is good enough. Given the mesh outer boundary, interior 
nodes are selected at high-gradient points by using a minimum 
distance constraint. The object’s outer boundary and inner ver- 
tices form a triangular mesh, which is described by coding each 
vertex position. The entropy associated with a vertex position is 
in general a function of the size of the video object. By taking 
into account the forbidden positions, one can reduce this en- 
tropy and consequently the amount of bits needed to code the 
geometry. 

Once the geometry (mesh) is coded, the mean color value of 
each triangle is directly transmitted. The pointwise difference 
between the original image and the mean value constitutes the 
texture error image. A shape-adaptive DCT is applied to encode 
the resulting zero-mean triangular error patches. The transform 
is followedby uniform quantization of the AC coefficients, zigzag 
scan, run-length representation, and adaptive arithmetic coding, 
as in MPEG. At the decoder side, the inverse operations are 
applied. 

Figure 4 gives an overview of the intermode coding syntax. 
First, the geometric update is encoded a list of deleted boundary 
vertices, a list of inserted boundaryvertices and their positions, 
shape motion vectors for predicted vertices, and texture motion 
vectors for every node (boundary as well as interior). The sign 
and the absolute value of each vector components are encoded 
separately with an adaptive arithmetic code (Chapter 5.1), and 
a special value is defined to indicate that the node is deleted. 
Then, texture updates are encoded. For each triangle, a one- 
bit flag indicates to the decoder whether it is updated or not. 
The choice of whether to update a triangle or not depends on its 
error measure and a threshold value that is a function of targeted 

bitrate or desired quality. To perform an update, the same shape- 
adaptive DCT is applied to each error triangle, combined with 
uniform quantization of the AC coefficients, zigzag scan, run- 
length representation, and adaptive arithmetic coding, as in the 
intramode. At the decoder side, motion compensation and the 
inverse DCT are applied. 

It is important to mention at this point that in addition to 
a mechanism to generate video objects (by manual, supervised, 
semiautomatic, or fully automatic segmentation), the encoder 
should also design a content-based mesh on the video objects 
by selecting nodes on high spatial gradient points such as those 
described in [7,9,13]. In this case, an adaptive triangular mesh 
partition is constructed from the resulting set of nodes by means 
of Delaunay triangulation [ 171. Only the node positions (mesh 
geometry) need to be transmitted for the decoder to reconstruct 
this content-based partition. If an arbitrarily shapedvideo object 
is considered, its outer boundary is approximated by a polygon 
(vertices), transmitted to the decoder, and constrained Delaunay 
triangulation is applied. Consecutive occurrences of video ob- 
jects are predicted by means of forward node tracking. Motion 
compensation is based on an affine triangular warping model 
where the motion of any pixel is linearly interpolated from that 
of surrounding triangle vertices. Only the node motion vectors 
need to be determined and transmitted to the decoder to track 
the mesh deformation along the video sequence. 

The bitstream syntax is organized in a separable fashion, so 
as to allow efficient and independent access to geometry (and 
shape), motion, and texture information in a quality-scalable 
way, so that the salient information comes first and can be de- 
coded without the need to reconstruct all of the data. Salient 
information includes a coarse shape description by polygon ver- 
tices; mesh node positions (which are selected based on specific 
image features, such as edges and corners); coarse texture data 
in intrafiames (for instance, one DC component per mesh tri- 
angle - flat image approximation); and coarse mesh motion 
(defined by the tracking trajectories of a limited set of signifi- 
cant vertices). This codec provides many functionalities needed 
for video compression, video object coding, and manipulation, 
as well as content-based retrieval in video databases [ 131. 

In the following paragraphs the major components of this 
coding algorithm are described in further detail, and more in- 
sights are provided. 

~~~~ 

Triangle update 
Texture data 

FIGURE 4 Overview of the intercoding mode syntax. 
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FIGURE 5 Exampleofvideo object decoding, using PPE fromcoarse to fine to lossless. (Seecolor section,p. C-28.) 

3.1 Object Shape and Geometry Coding 

In object-based coding techniques, information about the shape 
of video objects has to be coded and made available in the bit- 
stream. This component is the major difference between object- 
based and more conventional pixel-based techniques, as the 
shape information is not needed in the latter and is therefore 
not coded. A progressive contour coding based on a polygo- 
nal approximation of the shape boundary is used to code the 
outline of every video object [ 121. The corresponding progres- 
sive polygonal encoding (PPE) method exploits the previously 
transmitted coarser polygons to achieve efficient compression of 
subsequent contour refinements, defined either geometrically or 
by a chain code (when lossless shape coding is desired). This rep- 
resentation offers several interesting features. First, being quality 
scalable, geometrical, and semantic, it is particularly suitable for 
sketch-based retrieval that is based on video object shapes, as 
well as for video manipulation. Indeed, the decoder can easily 
decode the first bits in the shape bit stream that correspond to 
the most salient vertices, typically high-curvature points along 
the shape contour. Figure 5 gives an example of a video object 
that has been decoded in a progressive manner from coarse to 

fine, and up to a lossless level. Shape matching methods such 
as vertex-based modal matching or comparisons based on the 
Hausdorff distance can then directly exploit this coarse vertex 
representation [ 10, 131. Second, a geometrical shape boundary 
description can be integrated into an object-based mesh coding 
scheme. Coarse vertices simply define the outer mesh boundary, 
and constrained Delaunay triangulation can be applied to de- 
fine a corresponding arbitrarily shaped triangular mesh partition 
[ 1,9, 17, 191. 

In order to support lossless shape representation, as required 
by high-quality applications for appropriate object texture ren- 
dering, a solution has to be designed to efficiently and losslessly 
compress video object shapes while maintaining a reasonable 
complexity. Such a solution is based on altered boundary trian- 
gles, which is enabled by a specific property of the PPE repre- 
sentation: the lossless contour refinement is constrained into a 
geometrical stripe one or two pixels wide on both sides of the 
coarser polygonal approximation, if the latter was defined under 
an accuracy of one or two pixels respectively. The boundary tri- 
angles in the mesh can then be easily adapted to fit the lossless 
shape boundary, by checking only pixels in a thin stripe along 
the mesh boundary, as illustrated by Fig. 6. A detailed example of 

Level 1 polygonal vertex 

h b  
add pixels 

Level 1 polygonal vertex WY lossless contour 
remove pixels 

------+ 

\ /& addpixels 

Level 1 polygonal vertex 

lossless contour 
remove pixels 

FIGURE 6 Lossless shape refinement with altered triangles. Left: mesh triangle and its 
corresponding original contour, which is no farther than one pixel away from the boundary 
edge; right: it is possible to obtain the original shape by adding and removing pixels where 
necessary. 
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o w o o o  r o o 0  
0 interior pixel 0 pixel to check ~rr pixel to add 

exterior pixel pixel to remove 
FIGURE 7 Example of refinement along a boundary edge, resulting in an altered triangle. 
Squares indicate 2-D pixels; circles and lines represent the interpixel discrete segment. (a) Coarse 
shape boundary; (b) local stripe to refine; (c) refined pixels; (d) final lossless shape boundary. 

this stripe-based boundary refinement is given in Fig. 7. Figure 8 
shows the coarse mesh, the refined mesh, and the correspond- 
ing updated pixels for a mesh-based partition of a typical video 
object. 

In the intermode, a temporally predicted shape can be used in 
order to reduce the shape coding overhead and to take advantage 
of temporal correlation regarding the contour information. To 
this end, the progressive polygonal approximation method is ap- 
plied to each occurrence ofvideo objects, and the resulting coarse 
vertices are matched to the previous corresponding video objects 
(polygon matching). Information about deleted, inserted, and 
tracked vertices is sent to the decoder in the form of binary lists, 
followed by the prediction motion vector or the inserted vertex 
position depending on the transmitted vertex status. Refinement 
vertices are still intra-encoded by means of the PPE algorithm, 
as they are likely to correspond to details that are expected to be 
temporally unstable. Experimental results show a gain of about 
40% by using such predicted shape coding schemes when com- 
pared with intrashape coding for rigid and even slightly nonrigid 
video objects [ 131. 

3.2 Object Motion Estimation, Compensation, 
and Coding 
In triangular mesh-based video codecs, the motion at each node 
defining the mesh is determined and transmitted to the de- 
coder, which applies affine warping as the motion compensation 
method to interpolate the motion in each mesh triangle [8, 9, 
15,16,19]. Various node motion estimation methods have been 

investigated so far in the literature. The simplest technique con- 
sists of performing block matching by defining a square block 
centered on the node to track. Forward or backward blockmatch- 
ing may be used [ 151, the former being more suited to node 
trajectory tracking along the video sequence [ 191. A variant of 
this method, called pixel matching, consists of weighting the er- 
ror computation in the block matching process so that higher 
importance is given to the error at and immediately around the 
node itself, as the aim is a node motion estimation rather than 
a block motion estimation [ 15, 161. Experimental results show 
that block matching methods outperform pixel matching algo- 
rithms in terms of motion compensation quality, especially in 
the presence of mild to complex motion [ 131. The major draw- 
back of block matching as well as pixel matching lies in the fact 
that they do not take into account the affine warping process in 
the motion optimization. Consequently, the compensation er- 
ror is not exactly the computed error in the motion estimation 
procedure, and a suboptimal solution may be obtained. 

To overcome this limitation, two major methods have been 
reported in the literature: closed-form connectivity-preserving 
solutions [8] and hexagonal matching refinement [ 141. The first 
method operates on a dense optical flow field, possibly derived 
from a prior video segmentation and tracking stage. The dense 
motion field requirement together with its relative complexity 
explain its infrequent use in practice. The hexagonal matching 
refinement method aims at taking into account the warping- 
based motion compensation in the motion estimation process. 
It was initially applied to regular (hexagonal) triangular parti- 
tions [ 141, but several authors have adapted it to content-based 

FIGURE 8 
right: pixels processed in a shape-refinement process (black: removed pixels; white: added pixels). 

Left: triangular mesh partition; center left: coarse boundary; center right: exact boundarywithaltered triangles; 
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an example of such a coarse representation, based on nodes 
selected on features such as edges and corners. This coarse field 
corresponds to salient features easily accessed in the bit stream 
and suitable for fast discrimination between images, for instance 
in a content-based retrieval scheme [ 131. The corresponding re- 
constructed image is then further refined by means of transform v5 

FIGURE 9 Hexagonal matching refinement. Left: triangulation is applied 
based on the positions of predicted refinement nodes and previously deter- 
mined coarser nodes; right: the refinement node position is actually optimized 
to minimize the warping error in the corresponding surrounding polygons. 

triangular meshes, fitting arbitrarily shapedvideo objects [ 9,161. 
This approach relies on an initial guess for mesh node motion, 
possibly provided by a block matching technique. Based on this 
initial solution, the motion vector at each node is optimized by 
minimizing the affine compensation error in connected trian- 
gles, assuming the motion of connected nodes is fixed (see Fig. 9). 
The optimization is repeated for each node and iterated over the 
whole set of nodes until stability is reached. Each pass of the 
algorithm guarantees that the error decreases when compared 
with the initial guess error. However, in addition to its complex- 
ity, the algorithm may also suffer from other limitations, such as 
its suboptimality and high sensitivity to initial guess values, as 
outlined in [22]. In practice, while being much more complex 
in terms of both implementation and computation, the hexago- 
nal matching refinement method does not necessarily generate 
better results than the direct block matching method. The latter 
is therefore preferred as the motion estimation algorithm, and 
it is used here (and for the base layer in the progressive coding 
scheme described further). 

3.3 Texture Representation 
In a complete video compression scheme, texture approxima- 
tion and encoding are needed in the intracoding mode, but also 
in intercoding modes when prediction residual errors should 
be coded. Until very recently, mesh-based video representations 
were often embedded in standard video coding schemes with 
little attention devoted to their efficient integration [21]. The 
present object-based coding algorithm is designed to provide a 
complete and consistent video compression scheme, where the 
texture representation method is suitable to the triangular par- 
tition associated with the warping motion model and applicable 
to both intracoding and intercoding modes. 

In classical intraframe mesh-based image approximation 
methods, intensity values are transmitted only at the mesh nodes, 
and other pixel values are interpolated from them; for instance, 
by means of an affine model applied to the mesh triangles. The 
major drawback ofthis approach is the underlying assumption of 
a continuous image surface, which clearly does not support edge 
and contour discontinuities. As pointed out earlier, a flat approx- 
imation is used to represent the intensity of each triangle which 
results in coding one value per mesh triangle. Figure 10 shows 

coding of the residual texture error. 
In order to efficiently approximate and encode the texture 

data in intracoding as well as intercoding modes, a transform 
method is used. Such methods are very popular in image and 
video compression. Their major drawback lies in the fact that 
they were originally designed for pixel-based compression of 
rectangular images, as opposed to content-based approaches. 
However, with the emergence of the MPEG-4 standard, different 
solutions have been recently proposed that partly overcome this 
problem, such as padding and shape-adaptive transforms [6,11]. 

In the framework of mesh-based compression, both Wang 
[21] and Altunbasak [7,8] have reported the use of quadrilateral 
warping combined with conventional block-based DCT. How- 
ever, the major drawback of this method lies in the additional 
low-pass filtering effect introduced in the compression scheme 
by the direct and inverse digital warping procedures [22]. There- 
fore, rather than transforming the triangles to fit a quadrilat- 
eral region over which conventional transforms may be applied, 
another approach consists of directly applying a transform to 
the triangular domain, such as the pseudo-orthonormal shape- 
adaptive discrete cosine transform (PO-SADCT) [ 111. With such 
a transform, there are as many coefficients to code as there were 
pixels in the shape. In addition, these coefficients are gathered 
in the top-left part of the shape’s bounding box, which makes 
further quantization and run-length coding similar to the con- 
ventional DCT coding scheme. The decoder only needs the shape 
information to apply the inverse operations and reconstruct the 
approximated segment. The efficiency ofthe SADCT has been as- 
sessed in the case of 8 x 8 boundary blocks (conventional blocks 
partly overlapping the border of a video object), for both intra- 
texture and displaced frame difference (DFD) coding. Variants of 
the SADCT method have been described in [ 1 11. Among them, 

1 
FIGURE 10 Example ofapplication oftexture coding. Left flat approximation 
(mean or DC intensity values of mesh triangles); Right: PO-SADCT coding of 
remaining AC coefficients per triangle (compression ratio, 321; PSNR, 30.6 dB). 
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the PO-SADCT method has been shown to be suitable for cod- 
ing zero-mean texture data, such as DFD and error coding in 
general. Here, this transform is applied to partition triangles 

prediction residual errors. It is then followed by conventional 

and adaptive arithmetic coding, as in MPEG. 
Figure 10 shows an example of the application of this texture 

coding scheme and its coding efficiency for compression of a still 
picture. 

corresponding to intracoding mode as well as intercoding mode 

uniform quantization, zigzag scan, run-length representation, 

b 

I+ 1 

predicted motion 
FIGURE 12 Example ofprogressive motion prediction. Once the motion vec- 
tors for level 1 + 1 nodes are known, it is possible to predict motion vectors for 
level 2 nodes. 

motion field, coarse motion vectors can be used as predictors 
of the refinement trajectories, as illustrated by Fig. 12. In terms 
of compression, such a prediction will be efficient as long as the 
hypothesis of a smooth motion field remains true. Indeed, in this 
case, if motion estimation and motion vector coding 

reference position, 
likely. 

at both the encoder and decoder sides, progressive motion trans- 
mission also facilitates local optimization of the refinement mo- 

tion derived from coarser motion vectors provides a satisfactory 

Progressive object-Based Video Coding 

The object-based video compression scheme discussed in the 
previous section may also be adapted to achieve progressive cod- 

coding techniques used in this coding algorithm are both inher- 
ently progressive, the key to achieve an overall progressive coding 

motion coding. 

ing desired in a number Of aPP1ications* As 'Ontour and texture are performed relative to the predicted position, rather than the 
and small displacements become 

scheme be to a Progressive geometry (mesh) and By enabling a suitable motion prediction for refinement data 

k t  us consider a progressive mesh from its coarsest to finest 

ing a minimum distance constraint. By progressively reducing 
levels. At the coarsest level, the mesh is designed as usual, us- tion vectors. Indeed, under the hypothesis that the initial predic- 

&lis constraint, One define new nodes along image edges* initial guess, triangulation can be applied at this stage. Refine- 

accuracy be at the Same time using the hexagonal matching refinement, as illustrated in Fig. 9. As op- 
This technique a Progressive mesh design* The shape ment motion vectors can then be further optimized by of 

posed to direct block matching, this method takes into account method. Examples of a few levels of a progressive mesh built 
On Of a typical video Object according to the above Process the warping-based rendering process in the optimal displace- 
are given in Fig. 1. When encoding the location Of a node at a ment computation. As explained earlier, its major drawbacks lie 
given resolution level, some positions within an 8-neighborhood 
around a previously transmitted node (contour or interior node, 
from coarser levels or from the current layer) are invalid. The 
entropy associated with this node location is therefore reduced 
accordingly, as well as the number of bits needed for its coding. 

in its inherent complexity and in the fact that it imposes 
triangulation, which is suboptimal when the initial guess is far 
from the local optimum. By predicting the refinement motion 
from displacement vectors at surrounding nodes, how- 
ever, the initial guess is expected to be close enough to the fi- 

AS the mesh node ProgressivelY increases, the quality 
improve, as long as 

nal solution. In addition, many nodes corresponding to coarser 
motion and contour approximation are fured, which reduces Of the motion approximation 

the mesh has not reached the Optima' size [9, 13]* The motion 
coding cost also increases with the number of motion vectors 
to transmit. It may therefore be interesting to first transmit the 

bits become available. In order to improve the rate-distortion 

motion information when encoding the refinement motion vec- 

the search space and accordingly the necessary computation. In 
the nodes connected to a refinement node are 

fixed (e.g., nodes y1 to u6 in Fig. 9), there is no need to iterate 

ates convergence. For the mentioned above, hexagonal 

resolution mesh from a one. Experiments show that this 

when compared with other motion estimation methods [ 131. 

if 

major node trajectories, then progressively refine them as more the optimization on the corresponding polygon, which acceler- 

Performance, it is Possible to the PrevioUs1Y transmitted matching is performed for estimation ofmotion vectors ofa finer 

tors* In Particular, under the Of a smooth approach produces superior results in terms of rate distortion 

FIGURE 11 Example of a progressive geometry (mesh) construction by SUC- coders receive the encoded bit stream, so that the former can 
cessive refinements from left to right. take advantage of all of the data while the latter only use the 
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FIGURE 13 Example of progressive decoding of a typical video object. From left to right are decoded results from lowest 
quality (70 kbps) to medium quality (170 kbps), to highest quality (320 kbps). The original video object is shown to the 
right side. 

coarser part of it. Independent of the decoder performance, scal- 
able transmission also provides decoders with the possibility to 
quickly browse and preview a coarse version of the video, at a 
fraction of the resources required by complete decoding. 

Figure 13 depicts results from a progressive decoding of a 
typical video object using the described coding algorithm. When 
the progressive representation is achieved by means of a quality- 
scalable scheme carefully designed to this end, the availability of 
high-level, preorganized, and easy-to-access information at the 
coarse data layer enables specific processing at the decoder side. 
In particular, it facilitates sequence matching, indexing, retrieval, 
classification, and automatic event control. In such a scenario, 
part of the analysis stage performed at the encoder for the sake 
of compression can be exploited (and saved) at the decoder side, 
such as contour extraction or motion analysis. In this coding 
algorithm, examples of information potentially exploitable at 
this level include the following: the shape contour information, 
either accurate or approximated by a set of vertices; the mesh 
geometry, where nodes are defined along edges and in highly 
textured areas; the motion vectors; the node trajectories; and the 
coarse color representation. 

5 Dynamic Coding 

It is well known that visual information has a highly nonsta- 
tionary nature. In multimedia applications, all sort of visual 
data could be transmitted between terminals. Among all the 
techniques already investigated in the literature, some perform 
better in particular regions of an image than others. Typically, 
subband/wavelet schemes are known to perform well in areas 
with texture, whereas techniques based on object representation, 
or morphological operators perform well in areas with sharp 
edges and contours. Similarly, methods using linear transforms 
produce poor results in areas with text or graphics. Dynamic 
coding is a solution to solve the drawbacks existing in a given 
scheme while still maintaining its strong performance where 
appropriate. The basic idea behind dynamic coding is simple 
yet powerful [23]. The visual information (a frame of video, or 
a video object) is subdivided into several regions with similar 
suitability for a given compression method. Each region is en- 
coded by using a multitude of compression techniques. Among 
all these techniques, the one which is the most efficient is cho- 

sen, and the compressed bit stream of the region using the best 
coding technique is sent to the decoder along with informa- 
tion specifying which technique was chosen for its coding. As 
an example, in areas with texture, a subband/wavelet technique 
would be used, while areas with strong edges and contours will 
be coded with morphological-based or other more appropriate 
techniques. Similarly, text areas will use an encoding technique 
more appropriate for an efficient compression of such data. 

The concept of dynamic coding implicitly defines a general 
coding syntax. Video objects are further segmented into regions, 
each represented by their respective representation model. The 
syntax therefore relies on two degrees of freedom, namely, the 
video object partition into its constituting regions and their as- 
sociated representation models. 

As depicted in Fig. 14, the resulting syntax is both open and 
flexible. Indeed, different classes of partitioning can be consid- 
ered, ranging from the whole image as a single object to arbitrar- 
ily shaped video objects segmented into regions of predefined 
or arbitrary shapes. Additionally, each region resulting from a 
particular segmentation can be coded with respect to a model 
chosen from a multitude of representation methods. Figure 15 
gives an example of dynamic coding of a rectangular still im- 
age by putting in competition a linear and a nonlinear subband 
decomposition scheme. As it can be seen from this figure, the 
highly texture regions are best represented when a linear filter 
bank is used for subband decomposition, while sharp edges and 
contours are better maintained by using a nonlinear filter bank. 
A dynamic approach applied to this image allows the use of the 
best configuration in the region where it is appropriate and pro- 
duces the best results. 

6 Conclusions 

In this chapter an object-based video coding scheme was pre- 
sented that supports arbitrarily shaped video objects, possibly 
with a lossless shape accuracy. To this end, a progressive polyg- 
onal contour approximation is integrated in a complete, con- 
sistent, coding scheme. In this context, various node motion 
estimation methods are used, and the application of the shape- 
adaptive DCT transform to residual error representation in a 
content-based, triangular mesh partition is described. The adap- 
tation of this scheme to achieve progressive compression was 
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FIGURE 14 Dynamic coding principle. 

also discussed and solutions were presented for geometric and 
motion representations. As opposed to standard compression 
schemes, including MPEG-4, the proposed scheme supports a 
separate, content based, quality-scalable syntax where the most 
salient information is transmitted first and the shape, motion, 
and texture information fields can be accessed separately in the 
bit stream. This hierarchical, semantic organization of the en- 
coded data is of particular interest for content-based indexing 
and retrieval applications, while still allowing an efficient im- 
plementation of this scheme for compression and object-based 
interactivity. 

The second part of the chapter briefly introduced the notion 
of dynamic coding of visual information. Dynamic coding offers 

the opportunity of combining several compression techniques 
on different objects or regions where most appropriate. It was 
shown in a simple example how a dynamic coding approach can 
provide superior results by a clever combination of algorithms 
in regions where specific compression techniques produce better 
results. 
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1 MPEG-1 Video Coding Standard 

1.1 Introduction 
1.1.1 Background and Structure of MPEG-1 
Standards Activities 
The development of digital video technology in the 1980s has 
made it possible to use digital video compression in various kinds 
of applications. The effort to develop standards for coded rep- 
resentation of moving pictures, audio, and their combination 
is carried out in the Moving Picture Experts Group (MPEG). 
MPEG is a group formed under the auspices of the International 
Organization for Standardization (ISO) and the International 
Electrotechnical Commission (IEC). It operates in the frame- 
work of the Joint ISOlIEC Technical Committee 1 (JTC 1) on 
Information Technology, which was formerly Working Group 
11 (WG11) of Sub-committee 29 (SC29). The premise is to set 
the standard for coding moving pictures and the associated au- 
dio for digital storage media at -1.5 Mbitls so that a movie can 
be compressed and stored in a CD-ROM (Compact Disc-Read 
Only Memory). The resultant standard is the international stan- 
dard for moving picture compression, ISO/IEC 11 172 or MPEG- 
1 (Moving Picture Experts Group-Phase 1). MPEG-1 stan- 
dards consist of five parts, including systems (11172-l), video 
(1 1172-2), audio (1 1172-3), conformance testing (11 172-4), and 
software simulation ( 1 1172-5). In this chapter, we will focus only 
on the video part. 

The activity of the MPEG committee started in 1988 based on 
the work of IS0 JPEG (Joint Photographic Experts Group) [ 11 
and CCITT Recommendation H.261: “Video Codec for Audio- 
visual Services at p x 64 kbitsls” [2]. Thus, the MPEG- 1 standard 
has much in common with the JPEG and H.261 standards. The 
MPEG development methodology was similar to that of H.261 
and was divided into three phases: requirements, competition, 
and convergence [ 31. The purpose of the requirements phase is 
to precisely set the focus of the effort and determine the rule for 
the competition phase. The document of this phase is a “pro- 
posal package description” [4] and a test methodology [5]. The 
next step is the competition phase, in which the goal is to obtain 
state of the art technology from the best of academic and indus- 
trial research. The criteria are based on the technical merits and 
the tradeoff between video quality and the cost of implementa- 
tion of the ideas and the subjective test [5]. After the competition 
phase, various ideas and techniques are integrated into one solu- 
tion in the convergence phase. The solution results in a document 
called the simulation model. The simulation model implements, 
in some sort of programming language, the operation of a ref- 
erence encoder and a decoder. The simulation model is used to 
carry out simulations to optimize the performance of the cod- 
ing scheme [ 61. A series of fully documented experiments called 
core experiments are then carried out. The MPEG committee 
reached the Committee Draft (CD) status in September 1990 
and the Committee Draft (CD 11 172) was approved in Decem- 
ber 1991. International Standard (IS) 11172 for the first three 
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FIGURE 1 A video sequence, showing the benefits of bidirectional prediction. 

parts was established in November 1992. The IS for the last two 
parts was finalized in November 1994. 

1.1.2 MPEG-1 Target Applications and Requirements 
The MPEG standard is a generic standard, which means that it is 
not limited to a particular application. A variety of digital stor- 
age media applications of MPEG- 1 have been proposed based on 
the assumptions that the acceptable video and audio quality can 
be obtained for a total bandwidth of -1.5 Mbitsh. Typical stor- 
age media for these applications include CD-ROM, DAT (digital 
audio tape), Winchester-type computer disks, and writable op- 
tical disks. The target applications are asymmetric applications 
in which the compression process is performed once and the de- 
compression process is required often. Examples ofthe asymmet- 
ric applications include video CD, video on demand, and video 
games. In these asymmetric applications, the encoding delay is 
not a concern. The encoders are needed only in small quanti- 
ties, whereas the decoders are needed in large volumes. Thus, 
the encoder complexity is not a concern, whereas the decoder 
complexity has to be low in order to result in low-cost decoders. 

The requirements for compressed video in digital storage me- 
dia mandate several important features ofthe MPEG-1 compres- 
sion algorithm. The important features include normal playback, 
frame-based random access and editing of video, reverse play- 
back, fast forwardlreverse play, encoding high-resolution still 
frames, robustness to uncorrectable errors, etc. The applications 
also require MPEG-1 to support flexible picture sizes and frame 
rates. Another requirement is that the encoding process can be 
performed in reasonable speed by using existing hardware tech- 
nologies and that the decoder can be implemented by using a 
small number of chips at low cost. 

Because MPEG- 1 video coding algorithm is based heavily on 
H.261, in the following sections we will focus only on those that 
are different from H.261. 

1.2 MPEG-1 Video Coding Versus H.261 
1.2.1 Bidirectional Motion Compensated Prediction 
In H.261, only the previous video frame is used as the reference 
frame for the motion compensated prediction (forward predic- 

tion). MPEG-1 allows the future frame to be used as the reference 
frame for the motion compensated prediction (backward pre- 
diction), which can provide better prediction. For example, as 
shown in Fig. 1, if there are moving objects, and if only the for- 
ward prediction is used, there will be uncovered areas (such as 
the block behind the car in Frame N) for which we may not be 
able to find a good matching block from the previous reference 
picture (Frame N- 1). In contrast, the backward prediction can 
properly predict these uncovered areas since they are available in 
the future reference picture, i.e., frame N+ 1 in this example. As 
also shown in Fig. 1, if there are objects moving into the picture 
(the airplane in the figure), then these new objects cannot be 
predicted from the previous picture but can be predicted from 
the future picture. 

1.2.2 Motion Compensated Prediction 
with Half-Pixel Accuracy 
The motion estimation in H.261 is restricted to only integer- 
pixel accuracy. However, a moving object often moves to a posi- 
tion that is not on the pixel grid but between the pixels. MPEG- 1 
allows half-pixel-accuracy motion vectors. By estimating the dis- 
placement at a finer resolution, we can expect improved pre- 
diction and, thus, better performance than motion estimation 
with integer-pixel accuracy. As shown in Fig. 2, since there is no 
pixel value at the half-pixel locations, interpolation is required 
to produce the pixel values at the half-pixel positions. Bilinear 
interpolation is used in MPEG-1 for its simplicity. As in H.261, 
the motion estimation is performed only on luminance blocks. 

nteger-pixel grid 

X Pixel values on integer-pixel grid 
Interpolated pixel values on half-pixel 
grid using bilinear interpolation from 
pixel values on integer-pixel grid 

Half-pixel grid 

FIGURE 2 Half-pixel motion estimation. 
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The resulting motion vector is scaled by 2 and applied to the 
chrominance blocks. This reduces the computation but may not 
necessarily be optimal. Motion vectors are differentially encoded 
with respect to the motion vector in the preceding adjacent mac- 
roblock. The reason is that the motion vectors of adjacent regions 
are highly correlated, as it is quite common to have relativelyuni- 
form motion over areas of picture. 
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1.3 MPEG-1 Video Structure 
1.3.1 Source Input Format 
The typical MPEG-1 input format is the source input format 
(SIF). SIF was derived from CCIR601, a worldwide standard for 
digital TV studio. CCIR6Ol specifies the Y Cb Cr color coor- 
dinate, where Y is the luminance component (black and white 
information), and Cb and Cr are two color difference signals 
(chrominance components). A luminance sampling frequency 
of 13.5 MHz was adopted. There are several Y Cb Cr sampling 
formats, such as 4:4:4, 4:2:2, 4:1:1, and 4:2:0. In 4:4:4, the sam- 
pling rates for Y, Cb, and Cr are the same. In 4:2:2, the sampling 
rates of Cb and Cr are half of that of Y. In 41:1 and 4:2:0, the 
sampling rates of Cb and Cr are one quarter of that of Y. The 
positions ofY Cb Cr samples for 444,4:2:2,41:1, and 4:2:0 are 
shown in Fig. 3. 

Converting analog TV signals to digital video with the 13.5- 
MHz sampling rate of CCIR601 results in 720 active pixels per 
line (576 active lines for PAL (Phase Alternating Line) and 480 
active lines for NTSC (National Television System Committee)). 
This results in a 720 x 480 resolution for NTSC and a 720 x 576 
resolution for PAL. With 4:2:2, the uncompressed bit rate for 
transmitting CCIR60 1 at 30 framesh is then - 166 Mbitsh. Since 
it is difficult to compress a CCIR601 video to 1.5 Mbls with good 
video quality, in MPEG-1, typically the source video resolution 
is decimated to a quarter of the CCIR601 resolution by filtering 
and subsampling. The resultant format is called source input for- 
mat, which has a 360 x 240 resolution for NTSC and a 360 x 288 
resolution for PAL. Since in the video coding algorithm the block 
size of 16 x 16 is used for motion compensated prediction, the 
number of pixels in both the horizontal and the vertical dimen- 
sions should be multiples of 16. Thus, the four leftmost and 
rightmost pixels are discarded to give a 352 x 240 resolution for 
NTSC systems (30 framesls) and a 352 x 288 resolution for PAL 
systems (25 frames/s). The chrominance signals have half of the 
above resolutions in both the horizontal and vertical dimensions 

x : Luminance samples o : Chrominance samples 

4 Group oi pictures L A  Group of pictures 

FIGURE 4 MPEG group of pictures. 

(4:2:0,176 x 120 for NTSC and 176 x 144 for PAL). The uncom- 
pressed bit rate for SIF (NTSC) at 30 fi-ames/s is -30.4 Mbitsls. 

1.3.2 Group Of Pictures and I-B-P Pictures 
In MPEG, each video sequence is divided into one or more 
groups of pictures (GOPs). There are four types of pictures de- 
fined in MPEG-l: I, P, B, and D pictures, of which the first three 
are shown in Fig. 4. Each GOP is composed of one or more pic- 
tures; one of these pictures must be an I picture. Usually, the 
spacing between two anchor frames (I or P pictures) is referred 
to as M, and the spacing between two successive I pictures is 
referred to as N. In Fig. 4, M = 3 and N = 9. 

I pictures (intracoded pictures) are coded independently with 
no reference to other pictures. I pictures provide random access 
points in the compressed video data, since the I pictures can be 
decoded independently without referencing to other pictures. 
With I pictures, an MPEG bit stream is more editable. Also, 
error propagation due to transmission errors in previous pictures 
will be terminated by an I picture, since the I picture does not 
have a reference to the previous pictures. Since I pictures use 
only transform coding without motion compensated predictive 
coding, it provides only moderate compression. 

P pictures (predictive-coded pictures) are coded by using 
the forward motion-compensated prediction similar to that in 
H.261 from the preceding I or P picture. P pictures provide 
more compression than the I pictures by virtue of motion- 
compensated prediction. They also serve as references for B pic- 
tures and future P pictures. Transmission errors in the I pictures 
and P pictures can propagate to the succeeding pictures, because 
the I pictures and P pictures are used to predict the succeeding 
pictures. 

B pictures (bidirectional-coded pictures) allow macroblocks 
to be coded by using bidirectional motion-compensated predic- 
tion from both the past and future reference I or P pictures. In the 
B pictures, each bidirectional motion-compensated macroblock 
can have two motion vectors: a forward motion vector, which 
references to a best matching block in the previous I or P pic- 
tures, and a backward motion vector, which references to a best 
matching block in the next I or P pictures as shown in Fig. 5. The 
motion compensated prediction can be formed by the average 
of the two referenced motion compensated blocks. By averaging 
between the past and the future reference blocks, the effect of 
noise can be decreased. B pictures provide the best compression 
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FIGURE 5 Bidirectional motion estimation. 

compared to I and P pictures. I and P pictures are used as ref- 
erence pictures for predicting B pictures. To keep the structure 
simple and since there is no apparent advantage to use B pic- 
tures for predicting other B pictures, the B pictures are not used 
as reference pictures. Hence, B pictures do not propagate errors. 

D pictures (DC pictures) are low-resolution pictures ob- 
tained by decoding only the DC coefficient of the discrete cosine 
transform coefficients of each macroblock. They are not used in 
combination with I, P, or B pictures. D pictures are rarely used, 
but they are defined to allow fast searches on sequential digital 
storage media. 

The tradeoff of having frequent B pictures is that it decreases 
the correlation between the previous I or P picture and the next 
reference P or I picture. It also causes coding delay and increases 
the encoder complexity. With the example shown in Fig. 4 and 
Fig. 6, at the encoder, if the order of the incoming pictures is 
1,2,3,4,5,6,7,  . . . , the order of coding the pictures at the en- 
coder will be 1,4,2,3,  7, 5 6 ,  . . . . At the decoder, the order of 
the decoded pictures will be 1,4,2,3,7,5,6,  . . . . However, the 
display order after the decoder should be 1,2,3,4,  5, 6,7. Thus, 
frame memories have to be used to put the pictures in the correct 
order. This picture reordering causes delay. The computation of 
bidirectional motion vectors and the picture-reordering frame 
memories increase the encoder complexity. 

In Fig. 6, two types of GOPs are shown. GOPl can be decoded 
without referencing other GOPs. It is called a closed GOP. In 
GOP2, to decode the eighth B and ninth B pictures, the seventh 

Encoder Input: 

11 2B3B4P5B6B7P 8B9B10111B12B13P14815B16P 

GOPl GOP2 
4 L A  - -  b 

Decoder Input: 
114P2B3B7P5B6B 101 8B9B 13P 11B 128 16P 14B 15B - --  

GOPl GOP2 

CLOSED OPEN 

FIGURE 6 Frame reordering. 

P picture in GOPl is needed. GOP2 is called an open GOP, which 
means the decoding of this GOP has to reference other GOPs. 

1.3.3 Slice, Macroblock, and Block Structures 
An MPEG picture consists of slices. A slice consists of a contigu- 
ous sequence of macroblocks in a raster scan order (from left to 
right and from top to bottom). In an MPEG coded bit stream, 
each slice starts with a slice header, which is a clear codeword 
(a clear codeword is a unique bit pattern that can be identified 
without decoding the variable-length codes in the bit stream). 
As a result of the clear-codeword slice header, slices are the lowest 
level of units that can be accessed in an MPEG coded bit stream 
without decoding the variable-length codes. Slices are impor- 
tant in the handling of channel errors. If a bit stream contains a 
bit error, the error may cause error propagation because of the 
variable-length coding. The decoder can regain synchronization 
at the start of the next slice. Having more slices in a bit stream 
allows better error termination, but the overhead will increase. 

A macroblock consists of a 16 x 16 block of luminance sam- 
ples and two 8 x 8 block of corresponding chrominance samples 
as shown in Fig. 7. A macroblock thus consists of four 8 x 8 Y 
blocks, one 8 x 8 Cb block, and one 8 x 8 Cr block. Each coded 
macroblock contains motion-compensated prediction informa- 
tion (coded motion vectors and the prediction errors). There are 
four types of macroblocks: intra, forward predicted, backward 
predicted, and averaged macroblocks. The motion informa- 
tion consists of one motion vector for forward- and backward- 
predicted macroblocks and two motion vectors for bidirection- 
ally predicted (or averaged) macroblocks. P pictures can have 
intra- and forward-predicted macroblocks. B pictures can have 
all four types of macroblocks. The first and last macroblocks in 
a slice must always be coded. A macroblock is designated as a 
skipped macroblock when its motion vector is zero and all the 
quantized DCT coefficients are zero. Skipped macroblocks are 
not allowed in I pictures. Nonintracoded macroblocks in P and B 
pictures can be skipped. For a skipped macroblock, the decoder 
just copies the macroblock from the previous picture. 
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FIGURE 7 Macroblock and slice structures. 

1.4 Summary of the Major Differences Between 
MPEG-1 Video and H.261 

6. MPEG-1 uses a flexible slice structure instead of group of 

7. MPEG-1 has D pictures to allow the fast-search option. 
blocks (GOB) as defined in H.261. 

Compared with H.261, MPEG-1 video differs in the following 8. In order to allow cost-effedve implementation of user 
aspects. terminals, MPEG-1 defines a constrained parameter set, 

which lays down specific constraints, as listed in Table 1. 

1. 

2. 

3. 

4. 

5. 

MPEG- 1 uses bidirectional motion-compensated predic- 
tive coding with half-pixel accuracy, whereas H.261 has 
no bidirectional prediction (B pictures) and the motion 
vectors are always in integer-pixel accuracy. 
MPEG-1 supports the maximum motion vector range of 
-512 to +511.5 pixels for half-pixel motion vectors and 
- 1024 to +lo23 for integer-pixel motion vectors, whereas 
H.261 has a maximum range of only f 1 5  pixels. 
MPEG- 1 uses visually weighted quantization based on the 
fact that the human eye is more sensitive to quantization 
errors related to low spatial frequencies than to high spatial 
frequencies. MPEG- 1 defines a default 64-element quanti- 
zation matrix, but it also allows custom matrices appropri- 
ate for different applications. H.261 has only one quantizer 
for the intra-DC coefficient and 31 quantizers for all other 
coefficients. 
H.261 only specifies two source formats: CIF (common 
intermediate format; 352 x 288 pixels) and QCIF (quarter 
CIF; 176 x 144 pixels). In MPEG-1, the typical source for- 
mat is SIF (352 x 240 for NTSC, and 352 x 288 for PAL). 
However, the users can specify other formats. The picture 
size can be as large as 4k x 4k pixels. There are certain pa- 
rameters in the bit streams that are left flexible, such as the 
number of lines per picture (less than 4096), the number 
of pels per line (less than 4096), picture rate (24, 25, and 
30 frame&), and 14 choices of pel aspect ratios. 
In MPEG- 1, I, P, and B pictures are organized as a flexible 
group of pictures. 

1.5 Simulation Model 
Similar to H.261, MPEG-1 specifies only the syntax and the de- 
coder. Many detailed coding options such as the rate-control 
strategy, the quantization decision levels, the motion estimation 
schemes, and coding modes for each macroblock are not spec- 
ified. This allows future technology improvement and product 
differentiation. In order to have a reference MPEG-1 video qud- 
ity, simulation models were developed in MPEG-1. A simula- 
tion model contains a specific reference implementation of the 
MPEG-1 encoder and decoder, including all the details that are 
not specified in the standard. The final version of the MPEG-1 
simulation model is “simulation model 3” (SM3) [ 71. In SM3, 
the motion estimation technique uses one forward or one back- 
ward motion vector per macroblock with half-pixel accuracy. A 
two-step search scheme, which consists of a full-search in the 
range of f7 pixels with the integer-pixel precision, followed 

TABLE 1 MPEG-1 constrained parameter set 

Parameter Constraint 

Horiz. size 1720 pels 
Vert. size 2576  pels 
Total No. of Macroblocks/picture 5396 
Total No. of Macroblocklsecond 1396 - x 25 = 330 X 30 

530 framesls Picture rate 
51.86 Mbitsls Bit rate 

Decoder Buffer 5376832 bits 
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by a search in eight neighboring half-pixel positions, is used. 
The decision of the coding mode for each macroblock (whether 
or not it will use motion-compensated prediction and intra or 
inter coding), the quantizer decision levels, and the rate-control 
algorithm are all specified. 

1.6 MPEG-1 Video Bit-Stream Structures 
As shown in Fig. 8, there are six layers in the MPEG-1 video 
bit stream: the video sequence, group of pictures, picture, slice, 
macroblock, and block layers. 

A video sequence layer consists of a sequence header, one or 
more groups of pictures, and an end-of-sequence code. It con- 
tains the setting of the following parameters: the picture size 
(horizontal and vertical sizes), pel aspect ratio, picture rate, bit 
rate, the minimum decoder buffer size (video buffer verifier size), 
constraint parameters flag (this flag is set only when the picture 
size, picture rate, decoder buffer size, bit rate, and motion pa- 
rameters satisfy the constraints bound in Table l), the control 
for the loading of sixty-four 8-bit values for intra and nonintra 
quantization tables, and the user data. 

The GOP layer consists of a set of pictures that are in a con- 
tinuous display order. It contains the setting of the following pa- 
rameters: the time code, which gives the hours-minutes-seconds 
time interval from the start of the sequence; the closed GOP 
flag, which indicates whether the decoding operation requires 
pictures from the previous GOP for motion compensation; the 
broken link flag, which indicates whether the previous GOP can 
be used to decode the current GOP; and the user data. 

The picture layer acts as a primary coding unit. It contains 
the setting of the following parameters: the temporal reference, 
which is the picture number in the sequence and is used to 
determine the display order; the picture types (IIPIBID); the 
decoder buffer initial occupancy, which gives the number of bits 
that must be in the compressed video buffer before the idealized 
decoder model defined by MPEG decodes the picture (it is used to 
prevent the decoder buffer overflow and underflow); the forward 

motion vector resolution and range for P and B pictures; the 
backward motion vector resolution and range for B pictures; 
and the user data. 

The slice layer acts as a resynchronization unit. It contains the 
slice vertical position where the slice starts, and the quantizer 
scale that is used in the coding of the current slice. 

The macroblock layer acts as a motion compensation unit. 
It contains the setting of the following parameters: the optional 
stuffing bits, the macroblock address increment, the macroblock 
type, quantizer scale, motion vector, and the coded block pat- 
tern, which defines the coding patterns of the six blocks in the 
macroblock. 

The block layer is the lowest layer of the video sequence and 
consists of coded 8 x 8 DCT coefficients. When a macroblock is 
encoded in the intra mode, the DC coefficient is encoded similar 
to that in JPEG (the DC coefficient of the current macroblock is 
predicted from the DC coefficient of the previous macroblock). 
At the beginning of each slice, predictions for DC coefficients 
for luminance and chrominance blocks are reset to 1024. The 
differential DC values are categorized according to their abso- 
lute values and the category information is encoded using VLC 
(variable-length code). The category information indicates the 
number of additional bits following the VLC to represent the 
prediction residual. The AC coefficients are encoded similar to 
that in H.261, using a VLC to represent the zero run length and 
the value of the nonzero coefficient. When a macroblock is en- 
coded in nonintra modes, both the DC and AC coefficients are 
encoded similar to that in H.261. 

Above the video sequence layer, there is a system layer in which 
thevideo sequence is packetized. The video and audio bit streams 
are then multiplexed into an integrated data stream. These are 
defined in the systems part. 

1.7 Summary 
MPEG-1 is mainly for storage media applications. Because of 
the use of B picture, it may result in a long end-to-end delay. 

I Macroblockheader I Block0 I Block 1 I Block2 I Block3 I Block4 I Block5 I Macroblocklayer 
I I ~. ..... ............. .......... ............................................................................... ............................. 

........ - ........ 
bfierential DC coefficient I AC coefficient 1 AC coefficient I AC coefficient I ..... I End-Of-Block I Block layer 
I I I I I - 

FIGURE 8 MPEG-I bit-stream syntax layers. 
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The MPEG-1 encoder is much more expensive than the decoder 
because of the large search range, the half-pixel accuracy in mo- 
tion estimation, and the use of the bidirectional motion estima- 
tion. The MPEG-1 syntax can support a variety of frame rates 
and formats for various storage media applications. Similar to 
other video coding standards, MPEG-1 does not specify every 
coding option (motion estimation, rate control, coding modes, 
quantization, preprocessing, postprocessing, etc.). This allows 
for continuing technology improvement and product differen- 
tiation. 

2 MPEG-2 Video Coding Standard 

2.1 Introduction 
2.1.1 Background and Structure of MPEG-2 
Standards Activities 
The MPEG-2 standard represents the continuing efforts of the 
MPEG committee to develop generic video and audio coding 
standards after their development of MPEG- 1. The idea of this 
second phase of MPEG work came from the fact that MPEG-1 
is optimized for applications at -1.5 Mb/s with input source 
in SIF, which is a relatively low-resolution progressive format. 
Many higher quality, higher bit-rate applications require a higher 
resolution digital video source such as CCIR601, which is an 
interlaced format. New techniques can be developed to code the 
interlaced video better. 

The MPEG-2 committee started working in late 1990 af- 
ter the completion of the technical work of MPEG-1. The 
competitive tests of video algorithms were held in Novem- 
ber 1991, followed by the collaborative phase. The Commit- 
tee Draft (CD) for the video part was achieved in November 
1993. The MPEG-2 standard (ISO/IEC 13818) [8] currently 
consists of nine parts. The first five parts are organized in 
the same fashion as MPEG-1: systems, video, audio, confor- 
mance testing, and simulation software technical report. The 
first three parts of MPEG-2 reached International Standard 
(IS) status in November 1994. Parts 4 and 5 were approved 
in March 1996. Part 6 of the MPEG-2 standard specifies a 
full set of digital storage media control commands (DSM-CC). 
Part 7 is the specification of a nonbackward compatible au- 
dio. Part 8 was originally planned to be the coding of 10- 
bit video but was discontinued. Part 9 is the specification of 
real-time interface (RTI) to transport stream decoders, which 
may be utilized for adaptation to all appropriate networks car- 
rying MPEG-2 transport streams. Parts 6 and 9 have already 
been approved as International Standards in July 1996. Like 
the MPEG-1 standard, MPEG-2 video coding standard spec- 
ifies only bit-stream syntax and the semantics of the decoding 
process. Many encoding options were left unspecified to encour- 
age continuing technology improvement and product differen- 
tiation. 

MPEG-3, which was originally intended for HDTV (high- 
definition digital television) at higher bit rates, was merged with 

MPEG-2. Hence there is no MPEG-3. The MPEG-2 video cod- 
ing standard (ISO/IEC 13818-2) was also adopted by ITU-T, as 
ITU-T Recommendation H.262 [9]. 

2.1.2 Target Applications and Requirements 
MPEG-2 is primarily targeted at coding high-quality video at 
6 1 5  Mb/s for video on demand (VOD), digital broadcast tele- 
vision, and digital storage media such as DVD (digital versatile 
disc). It is also used for coding HDTV, cable/satellite digital TV, 
video services over various networks, two-way communications, 
and other high-quality digital video applications. 

The requirements from MPEG-2 applications mandate sev- 
eral important features ofthe compression algorithm. Regarding 
picture quality, MPEG-2 has to be able to provide good NTSC 
quality video at a bit rate of approximately 4-6 Mbitsls and 
transparent NTSC quality video at a bit rate of approximately 
8-10 Mbits/s. It also has to provide the capability of random 
access and quick channel switching by means of inserting I pic- 
tures periodically. The MPEG-2 syntax also has to support trick 
modes, e.g., fast forward and fast reverse play, as in MPEG-1. 
Low-delay mode is specified for delay-sensitive visual commu- 
nications applications. MPEG-2 has scalable coding modes in 
order to support multiple grades of video quality, video formats, 
and frame rate for various applications. Error resilience options 
include intra motion vector, data partitioning, and scalable cod- 
ing. Compatibility between the existing and the new standard 
coders is another prominent feature provided by MPEG-2. For 
example, MPEG-2 decoders should be able to decode MPEG-1 
bit streams. If scalable coding is used, the base layer of MPEG-2 
signals can be decoded by a MPEG-1 decoder. Finally, it should 
allow reasonable complexity encoders and low-cost decoders be 
built with mature technology. Since MPEG-2 video is based heav- 
ily on MPEG- 1. In the following sections, we will focus only on 
those features which are different from MPEG-1 video. 

2.2 MPEG-2 Profiles and Levels 
MPEG-2 standard is designed to cover a wide range of applica- 
tions. However, features needed for some applications may not 
be needed for other applications. If we put all the features into 
one single standard, it may result in an overly expensive system 
for many applications. It is desirable for an application to imple- 
ment only the necessary features to lower the cost of the system. 
To meet this need, MPEG-2 classified the groups of features for 
important applications into profiles. A profile is defined as a spe- 
cific subset of the MPEG-2 bit-stream syntax and functionality 
to support a class of applications (e.g., low-delay video confer- 
encing applications, or storage media applications). Within each 
profile, levels are defined to support applications that have differ- 
ent quality requirements (e.g., different resolutions). Levels are 
specified as a set of restrictions on some of the parameters (or 
their combination) such as sampling rates, frame dimensions, 
and bit rates in a profile. Applications are implemented in the 
allowed range ofvalues of a particular profile at a particular level. 
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TABLE 2 Profiles and levels 

Handbook of Image and Video Processing 

Profile 

Simple Main SNR scalable Spatially High 4 2 0  
Level 4 2 0  42:o 42:o scalable k20 or 4 2 2  

High 
1920 x 1152 
(60 framesh) 

1440 x 1152 
(60 framesls) 

720 x 576 
(30 framesls) 

352 x 288 
(30 framesls) 

High-1440 

lM& 

LOW 

62.7 Msls 
80 Mbit/s 

47 Msls 
60 Mbitls 

10.4 Msls 10.4 Msls 
15 Mbit/s 15 Mbit/s 

3.04 Msls 
4 Mbit/s 

100 Mbith 
for 3 Iayers 

47 Msls 80 Mbitls 
60 Mbit/s for 3 layers 
for 3 layers 

15 Mbitls for 3 layers 
for 2 layers 

3.04 Msls 
4 Mbit/s 
for 2 layers 

10.4 Msls 20 Mbit/s 

Table 2 shows the combination of profiles and levels that are 
defined in MPEG-2. MPEG-2 defines seven distinct profiles: 
simple, main, SNR scalable, spatially scalable, high, 4:2:2, and 
multiview. The last two profiles were developed after the final 
approval of MPEG-2 video in November 1994. Simple profile 
is defined for low-delay video conferencing applications. Main 
profile is the most important and widely used profile for general 
high-quality digital video applications such as VOD, DVD, Dig- 
ital TV, and HDTV. SNR (signal-to-noise ratio) scalable profile 
supports multiple grades of video quality. Spatially scalable pro- 
file supports multiple grades of resolutions. High profile sup- 
ports multiple grades of quality, resolution, and chroma for- 
mat. Four levels are defined within the profiles: low (for SIF 
resolution pictures), main (for CCIR60 1 resolution pictures), 
high-1440 (for European HDTV resolution pictures), and high 
(for North American HDTV resolution pictures). The 11 com- 
binations of profiles and levels in Table 2 define the MPEG-2 
conformance points that cover most practical MPEG-2 target 
applications. The numbers in each conformance point indicate 
the maximum bound of the parameters. The number in the fist 
line indicates the luminance rate in samplesh. The number in 
the second line indicates bit rate in bitsls. Each conformance 
point is a subset of the conformance point at the right or above. 
For example, a main-profile main-level decoder should also de- 
code simple-profile main-level and main-profile low-level bit 
streams. Among the defined profiles and levels, main-profile at 
main-level (MP@ML) is used for digital television broadcast in 
CCIR601 resolution and DVD-video. The main-profile at high- 
level (MP@HL) is used for HDTV. The 4:2:2 profile is defined to 
support the pictures with a color resolution of 4:2:2 for higher 
bit-rate studio applications. Although the high profile supports 
4:2:2 also, a high-profile codec has to support SNR scalable pro- 
file and spatially scalable profile. This makes the high-profile 
codec expensive. The 4:2:2 profile does not have to support the 
scalabilities and thus will be much cheaper to implement. Mul- 
tiview profile is defined to support the efficient encoding of the 

application involving two video sequences from two cameras 
shooting the same scene with a small angle between them. 

2.3 MPEG-2 Video Input Resolutions 
and Formats 
Although the main concern of the MPEG-2 committee is to sup- 
port the CCIR601 resolution, which is the digital TV resolution, 
MPEG-2 allows a maximum picture size of 16k x 16k pixels. It 
also supports the frame rates of 23.976, 24, 25, 29.97, 30, 50, 
59.94 and 60 Hz, as in MPEG-1. MPEG-2 is suitable for cod- 
ing progressive video format as well as interlaced video format. 
As for the color subsampling formats, MPEG-2 supports 4:2:0, 
422 ,  and 4:4:4. MPEG-2 uses the 4 2 0  format as in MPEG-1, 
except that there is a difference in the positions of the chromi- 
nance samples as shown in Figs. 9(a) and 9(b). On one hand, in 
MPEG-1, a slice can cross macroblock row boundaries. There- 
fore, a single slice in MPEG- 1 can be defined to cover the entire 
picture. On the other hand, slices in MPEG-2 begin and end in 
the same horizontal row of macroblocks. There are two types of 
slice structure in MPEG-2: the general and the restricted slice 
structures. In the general slice structure, MPEG-2 slices need 
not cover the entire picture. Thus, only the regions enclosed 
in the slices are encoded. In the restricted slice structure, every 
macroblock in the picture shall be enclosed in a slice. 

x : Luminance samples  o : Chrominance samples  
I I 

x x x x  
0 0 

x x x x  
x x x o x  
0 

x x x x  

x x x x  
x x x x  

0 I o  
x x x x  

0 x x x  1 8  
(a) @> 

PIGURE 9 
in (a) MPEG-1, (b) MPEG-2. 

Position of luminance and chrominance samples for 42:O format 
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FIGURE 10 (a) Progressive scan, (b) interlaced scan. 

2.4 MPEG-2 Video Coding Standard Compared 

2.4.1 Interlaced Versus Progressive Video 
Figure 10 shows the progressive and interlacedvideo scan. In the 
interlaced video, each displayed frame consists of two interlaced 
fields. For example, frame 1 consists of field 1 and field 2, with 
the scanning lines in field 1 located between the lines of field 2. 
In contrast, the progressive video has all the lines of a picture 
displayed in one frame. There are no fields or half-pictures as with 
the interlaced scan. Thus, progressive video requires a higher 
picture rate than the frame rate of an interlaced video, to avoid a 
flickery display. The main disadvantage of the interlaced format 
is that when there are object movements, the moving object may 
appear distorted when we merge two fields into a frame. For 
example, Fig. 10 shows a moving ball. In the interlaced format, 
because the moving ball will be at different locations in the two 
fields, when we put the two fields into a frame, the ball will 
look distorted. Using MPEG-1 to encode the distorted objects in 
the frames of the interlaced video will not produce the optimal 
results. Interlaced video also tends to cause horizontal picture 
details to dither and thus introduces more high-frequency noises. 

with MPEG-3 

2.4.2 Interlaced Video Coding 
Figure 11 shows the interlacedvideo format. As explainedearlier, 
an interlaced frame is composed of two fields. From the figure, 
the top field (field 1) occurs earlier in time than the bottom field 
(field 2). Both fields together form a frame. In MPEG-2, pictures 
are coded as I, P, and B pictures, like in MPEG-1. To optimally 
encode the interlaced video, MPEG-2 can encode a picture either 
as a field picture or a frame picture. In the field-picture mode, 
the two fields in the frame are encoded separately. If the first field 
in a picture is an I picture, the second field in the picture can be 
either I or P pictures, as the second field can use the first field 
as a reference picture. However, if the first field in a picture is a 
P- or B-field picture, the second field has to be the same type of 

time - 
fieldl 

x field2 
0 

0 
vertical 1 :  X 0 

0 

0 

frame1 

X 

U 

fieldl 
x field2 

X 

X 

X 

X 

0 

0 

0 

0 

0 

frame2 
U 

FIGURE 11 Interlaced video format. 

picture. In a frame picture, two fields are interleaved into a pic- 
ture and coded together as one picture, similar to the conven- 
tional coding of progressive video pictures. In MPEG-2, a video 
sequence is a collection of frame pictures and field pictures. 

2.4.2.1 Frame-Based and Field-Based Motion-Compensated 
Prediction. In MPEG-2, an interlaced picture can be encoded 
as a frame picture or as field pictures. MPEG-2 defines two dif- 
ferent motion-compensated prediction types: frame-based and 
field-based motion-compensated prediction. Frame-based pre- 
diction forms a prediction based on the reference frames. Field- 
based prediction is made based on reference fields. For the sim- 
ple profile in which the bidirectional prediction cannot be used, 
MPEG-2 introduced a dual-prime motion-compensated predic- 
tion to efficiently explore the temporal redundancies between 
fields. Figure 12 shows three types of motion-compensated pre- 
diction. Note that all motion vectors in MPEG-2 are specified 
with a half-pixel resolution. 

Frame predictions in frame pictures: in the frame-based pre- 
diction for frame pictures, as shown in Fig. 12(a), the whole 
interlaced frame is considered as a single picture. It uses the 
same motion-compensated predictive coding method used in 
MPEG-1. Each 16 x 16 macroblock can have only one motion 
vector for each forward or backward prediction. Two motion 
vectors are allowed in the case of the bidirectional prediction. 

Field prediction in a frame pictures: the field-based prediction 
in frame pictures considers each frame picture as two separate 

frame frame frame frame fieldl field2 fieldl field2 
1 2 1 2 

X 

X 

x 

reference reference reference 
0 0 -0 

(a) (b) (c) 

FIGURE 12 
(b) field, (c) dual prime. 

Three types of motion-compensated predidion: (a) frame, 
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FIGURE 13 Blocks for frame-based or field-based prediction. 

field pictures. Separate predictions are formed for each 16 x 8 
block of the macroblock as shown in Fig. 13. Thus, field-based 
prediction in a frame picture requires two sets of motion vectors. 
A total of four motion vectors is allowed in case of bidirectional 
prediction. Each field prediction may select either the field 1 or 
the field 2 of the reference frame. 

Field prediction in field pictures: in field-based prediction 
for field pictures, the prediction is formed from the two most 
recently decoded fields. The predictions are made from reference 
fields, independently for each field, with each field considered as 
an independent picture. The block size of prediction is 16 x 16; 
however, it should be noted that the 16 x 16 block in the field 
picture corresponds to a 16 x 32 pixel area in the frame picture. A 
field-based prediction in field pictures requires only one motion 
vector for each forward or backward prediction. Two motion 
vectors are allowed in the case of the bidirectional prediction. 

16 x 8 prediction in field pictures: two motion vectors are used 
for each macroblock. The first motion vector is applied to the 
16 x 8 block in field 1 and the second motion vector is applied 
to the 16 x 8 block in field 2. A total of four motion vectors is 
allowed in the case of bidirectional prediction. 

Dual-prime motion-compensated prediction can be used only 
in P pictures. Once the motion vector “v” for a macroblock in a 
field of given parity (field 1 or field 2) is known relative to a ref- 
erence field of the same parity, it is extrapolated or interpolated 
to obtain a prediction of the motion vector for the opposite par- 
ity reference field. In addition, a small correction is also made 
to the vertical component of the motion vectors to reflect the 
vertical shift between lines of the field 1 and field 2. These de- 
rived motion vectors are denoted by dvl and dv2 (represented 
by dash line) in Fig. 12(c). Next, a small refinement differential 
motion vector, called “dmv”, is added. The choice of dmv values 
(- 1,0, + 1) is determined by the encoder. The motion vector v 
and its corresponding dmv value are included in the bit stream 
so that the decoder can also derive dvl and dv2. In calculating 
the pixel values of the prediction, the motion-compensated pre- 
dictions from the two reference fields are averaged, which tends 
to reduce the noise in the data. Dual-prime prediction is mainly 
for low-delay coding applications such as videophone and video 
conferencing. For low-delay coding using simple profile, B pic- 
tures should not be used. Without using bidirectional prediction, 
dual-prime prediction is developed for P pictures to provide a 

Frame Format 

FIGURE 14 FramelField format block for DCT. 

2.4.2.2 FrameLFieZd DCT. MPEG-2 has two DCT modes: 
frame-based and field-based DCT, as shown in Fig. 14. In the 
frame-based DCT mode, a 16 x 16-pixel macroblock is divided 
into four 8 x 8 DCT blocks. This mode is suitable for the blocks in 
the background or in a still image that have little motion because 
these blocks have high correlation between pixel values from ad- 
jacent scan lines. In the field-based DCT mode, a macroblock is 
divided into four DCT blocks where the pixels from the same 
field are grouped together into one block. This mode is suitable 
for the blocks that have motion because, as explained, motion 
causes distortion and may introduce high-frequency noises into 
the interlaced frame. 

2.4.2.3 Alternate Scan. MPEG-2 defines two different zigzag 
scanning orders zigzag and alternate scans as shown in Fig. 15. 
The zigzag scan used in MPEG-1 is suitable for progressive im- 
ages where the frequency components have equal importance in 
each horizontal and vertical direction. In MPEG-2, an alternate 
scan is introduced based on the fact that interlaced images tend 
to have higher frequency components in the vertical direction. 
Thus, the scanning order weighs more on the higher vertical fre- 
quencies than the same horizontal frequencies. In MPEG-2, the 
selection between these two zigzag scan orders can be made on 
a picture basis. 

Zigzag (progressive) Alternate (interlaced) 

better prediction than the forward prediction. FIGURE 15 Progressivelinterlaced scan. 
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2.5 Scalable Coding 
Scalable coding is also called layered coding. In scalable coding, 
the video is coded in a base layer and several enhancement layers. 
If only the base layer is decoded, basic video quality can be ob- 
tained. If the enhancement layers are also decoded, enhanced 
video quality (e.g., higher SNR, higher resolution, higher frame 
rate) can be achieved. Scalable coding is useful for transmis- 
sion over noisy channel since the more important layers (e.g., 
the base layer) can be better protected and sent over a channel 
with better error performance. Scalable coding is also used in 
video transport over variable-bit-rate channels. When the chan- 
nel bandwidth is reduced, the less important enhancement layers 
will not be transmitted. It is also useful for progressive transmis- 
sion, which means the users can get rough representations of the 
video fast with the base layer and then the video quality will be 
refined as more enhancement data arrive. Progress transmission 
is useful for database browsing and image transmission over the 
Internet. 

MPEG-2 supports three types of scalability modes: SNR, spa- 
tial, and temporal scalability. Each of them is targeted at sev- 
eral applications with particular requirements. Different scalable 
modes can be combined into hybrid coding schemes such as hy- 
brid spatial-temporal and hybrid spatial-SNR scalability. In a 
basic MPEG-2 scalability mode, there can be two layers of video: 
lower and enhancement layers. The hybrid scalability allows up 
to three layers. 

2.5.1 SNR Scalability 
MPEG-2 SNR scalability provides two different video qualities 
from a single video source while maintaining the same spatial 
and temporal resolutions. A block diagram of the two-layer SNR 
scalable encoder and decoder is shown in Figs. 16(a) and 16(b), 
respectively. In the base layer, the DCT coefficients are coarsely 
quantized and the coded bit stream is transmitted with mod- 
erate quality at a lower bit rate. In the enhancement layer, the 

difference between the nonquantized DCT coefficients and the 
coarsely quantized DCT coefficients from the lower layer is en- 
coded with finer quantization step sizes. By doing this, the mod- 
erate video quality can be achieved by decoding only the lower- 
layer bit streams while the higher video quality can be achieved 
by decoding both layers. 

2.5.2 Spatial Scalability 
With Spatial scalability, the applications can support users with 
different resolution terminals. For example, the compatibility 
between SDTV (Standard Definition TV) and HDTV can be 
achieved with the SDTV being coded as the base layer. With 
the enhancement layer, the overall bit stream can provide the 
HDTV resolution. The input to the base layer usually is created 
by downsampling the original video to create a low-resolution 
video for providing the basic spatial resolution. The choice of 
video formats such as frame sizes, frame rate, or chrominance 
formats is flexible in each layer. 

A block diagram of the two-layer spatial scalable encoder and 
decoder is shown in Figs. 17(a) and 17(b), respectively. In the 
base layer, the input video signal is downsampled by spatial deci- 
mation. To generate a prediction for the enhancement layer video 
signal input, the decoded lower layer video signal is upsampled 
by spatial interpolation and is weighted and combined with the 
motion-compensated prediction from the enhancement layer. 
The selection of weights is done on a macroblock basis and the 
selection information is sent as a part of the enhancement-layer 
bit stream. 

The base- and enhancement-layer coded bit streams are then 
transmitted over the channel. At the decoder, the lower-layer bit 
streams are decoded to obtain the lower-resolution video. The 
lower-resolution video is interpolated and then weighted and 
added to the motion-compensated prediction from the enhance- 
ment layer. In the MPEG-2 video standard, the spatial interpo- 
lator is defined as a linear interpolation or a simple averaging for 
missing samples. 

Base-layer 
coded 

Video bit stream out 

fiWi bit stream out 

DCT : Discrete Cosine Transform 
IDCT : Inverse DCT 
Q : Quantization 
iQ : Inverse Q 

VLC : Variable-Length Coding 
VLD : Variable-Length Decoding 
MCP : Motion-Compensated Prediction 

video out 

(a) (b) 
FIGURE 16 SNR scalable (a) encoder, (b) decoder. 

Base-layer 
coded Base-layer 

decoded bit stream in 
video out 

coarse 

Enhancement layer fine 
coded Q 
bit stream in Enhancement 

layer decoded 



608 Handbook of Image and Video Processing 
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coded bit stream in Enhancement layer 
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FIGURE 17 Spatial scalable (a) encoder, (b) decoder. 

2.5.3 Temporal Scalability 
The temporal scalability is designed for video services that re- 
quire different temporal resolutions or frame-rates. The target 
applications include video over wireless channel where the video 
frame rate may need to be dropped when the channel condition 
is poor. It is also intended for stereoscopic video and coding of 
future HDTV format in which the baseline is to make the migra- 
tion from the lower temporal resolution systems to the higher 
temporal resolution systems possible. In temporal scalable cod- 
ing, the base layer is coded at a lower frame rate. The decoded 
base-layer pictures provide motion-compensated predictions for 
encoding the enhancement layer. 

2.5.4 Hybrid Scalability 
Two different scalable modes from the three scalability types, 
SNR, spatial, and temporal, can be combined into hybrid scal- 
able coding schemes. Thus, this results in three combinations: 
hybrid of SNR and spatial, hybrid of spatial and temporal, and 
hybrid of SNR and temporal. Hybrid scalability supports up to 
three layers: the base layer, enhancement layer 1, and enhance- 
ment layer 2. The first combination, hybrid of SNR and spatial 
scalabilities, is targeted at applications such as HDTV/SDTV 
or SDTV/videophone at two different quality levels. The sec- 
ond combination, hybrid spatial and temporal scalability, can 
be used for applications such as high temporal resolution pro- 
gressive HDTV with basic interlaced HDTV and SDTV. The last 
combination, hybrid SNR and temporal scalable mode, can be 
used for applications such as enhanced progressive HDTV with 
basic progressive HDTV at two different quality levels. 

2.6 Data Partitioning 
Data partitioning is designed to provide more robust transmis- 
sion in an error-prone environment. Data partitioning splits the 
block of 64 quantized transform coefficients into partitions. The 
lower partitions contain more critical information, such as low- 

frequency DCT coefficients. To provide more robust transmis- 
sion, the lower partitions should be better protected or transmit- 
ted with a high priority channel with a low probability of error, 
while the upper partitions can be transmitted with a lower prior- 
ity, This scheme has not been formally standardized in MPEG-2 
but was specified in the information annex of the MPEG-2 DIS 
document [7 ] .  One thing to note is that the partitioned data 
are not backward compatible with other MPEG-2 bit streams. 
Therefore, it requires a decoder that supports the decoding of 
data partitioning. Using the scalable coding and data partition- 
ing may result in mismatch of reconstructed pictures in the en- 
coder and the decoder and thus cause drift in video quality. In 
MPEG-2, since there are I pictures that can terminate error prop- 
agation, depending on the application requirements, it may not 
be a severe problem. 

2.7 Other Tools for Error Resilience 
The effect of bit errors in MPEG-2 coded sequences varies de- 
pending on the location of the errors in the bit stream. Errors 
occurring in the sequence header, picture header, and slice header 
can make it impossible for the decoder to decode the sequence, 
the picture, or the slice. Errors in the slice data that contains 
important information such as macroblock header, DCT coef- 
ficients, and motion vectors can cause the decoder to lose syn- 
chronization or cause spatial and temporal error propagation. 
There are several techniques to reduce the effects of errors besides 
the scalable coding. These include concealment motion vectors, 
the slice structure, and temporal localization by the use of intra 
pictures/slices/macroblocks. 

The basic idea of concealment motion vector is to transmit 
motion vectors with the intra macroblocks. Since the intra mac- 
roblocks are used for future prediction, they may cause severe 
video quality degradations if they are lost or corrupted by trans- 
mission errors. With a concealment motion vector, a decoder 
can use the best matching block indicated by the concealment 
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motion vector to replace the corrupted intra macroblock. This 
improves the concealment performance of the decoder. 

In MPEG, each slice starts with a slice header, which is a unique 
pattern that can be found without decoding the variable-length 
codes. These slice headers represent possible resynchronization 
markers after atransmission error. Asmall slice size, i.e., asmaller 
number of macroblocks in a slice, can be chosen to increase the 
frequency of synchronization points, thus reducing the effects of 
the spatial propagation of each error in a picture. However, this 
can lead to a reduction in coding efficiency as the slice-header 
overhead information is increased. 

The temporal localization is used to minimize the extent 
of error propagation from picture to picture in a video se- 
quence, e.g., by using intra coding modes. For the temporal 
error propagation in an MPEG video sequence, the error from 
an I or P picture will stop propagating when the next error- 
free I picture occurs. Therefore, increasing the number of I pic- 
tures/slices/macroblocks in the coded sequence can reduce the 
distortion caused by the temporal error propagation. However, 
more I pictures/slices/macroblocks will result in a reduction of 
coding efficiency, and it is more likely that errors will occur in 
the I pictures, which will cause error propagation. 

2.8 Test Model 
Similar to other video coding standards such as H.261 and 
MPEG-1, MPEG-2 only specifies the syntax and the decoder. 
Many detailed coding options are not specified. In order to have 
a reference MPEG-2 video quality, test models were developed in 
MPEG-2. The final test model ofMPEG-2 is called “test model 5” 
(TM5) [lo]. TM5 was defined only for main profile experiments. 
The motion-compensated prediction techniques involve frame, 
field, and dual-prime prediction, and have forward and back- 
ward motion vectors as in MPEG-1. The dual-prime was kept 
in main profile but restricted to P pictures with no intervening 
B pictures. A two-step search, which consists of an integer-pixel 
full search followed by a half-pixel search, is used for motion esti- 
mation. The mode decision (intrahnter coding) is also specified. 
Main profile was restricted to only two quantization matrices, 
the default table specified in MPEG-1 and the nonlinear quan- 
tizer tables. The traditional zigzag scan is used for inter coding 
while the alternate scan is used for intra coding. The rate-control 
algorithm in TMN5 consists of three layers operating at the GOP, 
the picture, and the macroblock levels. A bit allocation per pic- 
ture is determined at the GOP layer and updated based on the 
buffer fullness and the complexity of the pictures. 

2.9 MPEG-2 Video and System 
Bit-Stream Structures 
A high-level structure of the MPEG-2 video bit stream is shown 
in Fig. 18. Every MPEG-2 sequence starts with a sequence header 
and ends with an end of sequence. MPEG-2 syntax is a super- 
set of the MPEG-1 syntax. The MPEG-2 bit stream is based on 
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FTGURE 18 MPEG-2 data structure and syntax. 

the basic structure of MPEG-1 (refer to Fig. 8). There are two 
types of bit stream syntax allowed ISO/IEC 11 172-2 video se- 
quence syntax or ISO/IEC 13818-2 (MPEG-2) video sequence 
syntax. 

If the sequence header is not followed by the sequence ex- 
tension, the MPEG-1 bit-stream syntax is used. Otherwise, the 
MPEG-2 syntax is used, which accommodates more features 
but at the expense of higher complexity. The sequence exten- 
sion includes a profde/level indication, a progressive/interlaced 
indicator, a display extension including choices of chroma for- 
mats and horizontal/vertical display sizes, and choices of scalable 
modes. The GOP header is located next in the bit-stream syntax 
with at least one picture following each GOP header. The picture 
header is always followed by the picture coding extension, the 
optional extension and user data fields, and picture data. The 
picture coding extension includes several important parameters 
such as the indication of intra-DC precision, picture structures 
(choices of the firsthecond fields or frame pictures), intra-VLC 
format, alternate scan, choices of updated quantization matrix, 
picture display size, display size of the base layer in the case of the 
spatial scalability extension, and indicator of forwardbackward 
reference picture in the base layer in the case of the temporal scal- 
ability extension. The picture data consist of slices, macroblocks, 
and data for the coded DCT blocks. MPEG-2 defines six layers 
as MPEG-1. However, the specification of some data elements is 
different. The details of MPEG-2 syntax specification are docu- 
mented in [ 81. 

2.10 Summary 
MPEG-2 is mainly targeted at general higher quality video ap- 
plications at bit-rate greater than 2 Mbit/s. It is suitable for 
coding both progressive and interlaced video. MPEG-2 uses 
frame/field adaptive motion-compensated predictive coding and 
DCT. Dual-prime motion compensation for P pictures is used for 
low-delay applications with no intervening B pictures. In addi- 
tion to the default quantization table, MPEG-2 defines a nonlin- 
ear quantization table with increased accuracy for small values. 
Alternate scan and new VLC tables are defined for DCT coef- 
ficient coding. MPEG-2 also supports compatibility and scala- 
bility with the MPEG- 1 standard. MPEG-2 syntax is a superset 
of MPEG-1 syntax and can support a variety of rates and for- 
mats for various applications. Similar to other video coding stan- 
dards, MPEG-2 defines only syntax and semantics. It does not 
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specify every encoding options (preprocessing, motion estima- 
tion, quantizer, rate-quality control, and other coding options) 
and decoding options (postprocessing and error concealment) 
to allow continuing technology improvement and product dif- 
ferentiation. It is important to keep in that digerent im- 
plementations may lead to the different quality, bit rate, delay, 
and complexity tradeoffs with the different cost factors. An 
MPEG-2 encoder is much more expensive than an MPEG-2 de- 
coder, because it has to perform many more operations (e.g., 
motion estimation, coding-mode decisions, and rate-control). 
An MPEG-2 encoder is also much more expensive than an H.261 
or an MPEG-1 encoder as a result of the higher resolution and 
more complicated motion estimations (e.g., larger search range, 
fi-ame/field bidirectional motion estimation). References [ 1 1- 
251 provide further information on the related MPEG-1 and 
MPEG-2 topics. 
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During the past two decades, we have witnessed an increasing 
number of multimedia applications and services in many areas, 
including entertainment, education, and medicine. Multimedia 
technologies improve interpersonal communication, promote 
faster understanding of complex ideas, provide increased access 
capabilities to information, and allow higher interactivity levels 
with the media. 

The vast amount of digital data that are associated with mul- 
timedia applications, and the complex interactions between the 
different types of data, such as text, speech, music, images, graph- 
ics, and video, make the representation, exchange, storage, ac- 
cess, and manipulation of these data a challenging task. In order 
to provide interoperability between different multimedia appli- 
cations and promote further use of multimedia data, there is a 
need to standardize the representation of, and access to, these 
data. There has already been significant work in the fields of 
efficient representation by means of compression, storage, and 
transmission [ 1-41. However, there has been little emphasis on 
the content accessibility and manipulation. The new generation 
of highly interactive multimedia applications require that the 
users be able to access and manipulate multimedia data in both 
uncompressed and compressed forms. This has fueled several 
recent international standardization activities, such as those of 

*This work was supported by the Natural Sciences and Engineering Research 
Council (NSERC) and the National Research Council (NRC) of Canada. 

the Moving Picture Experts Group (MPEG), officially known as 
Working Group 11 of the ISO/IEC JTClKC29 technical com- 
mittee. MPEG is currently developing two emerging standards: 
MPEG-4, which is standardizing an object-based coded repre- 
sentation of multimedia data, and MPEG-7, which is standard- 
izing a multimedia content description interface. 

MPEG-4, like the MPEG-1/2 [I, 21 and ITU-T H.263/ 
H.263+ [3,4] standards, which are discussed in Chapters 6.4 
and 6.1, respectively, offers high compression performance lev- 
els, making much more efficient the storage and transmission of 
audiovisual data. However, the other key objectives of MPEG- 
4 are to enable content-based access and provide functionalities 
such as error resilience, scalability, and hybrid coding of synthetic 
and natural data [5,6].  On the other hand, MPEG-7 is expected 
to enable effective and efficient content-based access and manip- 
ulation of multimedia data, and to provide functionalities that 
are complementary to those of the MPEG-4 standard. With the 
use of an MPEG-4IMPEG-7 compliant system, it will be possi- 
ble to randomly access, manipulate, and process individual ob- 
jects within a scene. For example, consider the video scene given 
in Fig. 1. Using an MPEG-4/MPEG-7 compliant decoder, the 
user will be able to search for podiums that are similar to the 
one in the video scene, or search for fish that are similar to 
the one shown on the screen. The user can also search for cur- 
tains that have a texture similar to that of the background. Next, 
besides providing a comprehensive description of the emerg- 
ing MPEG-4 and MPEG-7 visual standards, we show, through 
examples, how MPEG-4 and MPEG-7 will together enable 
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FIGURE 1 An audiovisual scene. (See color section, p. (2-28.) 

many desired functionalities and provide a complete multimedia 
solution. 

2 The MPEG-4 Standard 

The MPEG-4 standard addresses system issues such as the mul- 
tiplexing and composition of audiovisual data in the systems 
part [7], the decoding of the visual data in the visual part [8], 
and the decoding of the audio data in the audio part [9]. The 
initial goal of MPEG-4 was to provide tools and algorithms 
for very low bit rate coding of audiovisual data. However, the 
scope has changed considerably in order to address the require- 
ments of the new generation multimedia applications, which 
include multimedia communications (broadcast and interper- 
sonal), Internet, interactive video games, video surveillance, and 
multimedia databases [ 10,111. Besides the need to achieve high 
compression performance levels, these applications require in- 
teractivity with individual objects, hybrid coding of natural and 
synthetic objects, and a high degree of scalability and error re- 
silience [6,12-141. MPEG-4 addresses all of these requirements 
by providing the following functionalities: (1) improved cod- 
ing efficiency by providing compression tools that are optimized 
for objects with a wide range of source material and bit rates, 
(2) object-based interactivity by enabling a high degree of user 
interaction with the individual audiovisual objects, (3) generic 
coding by providing tools for the efficient representation of both 
natural and synthetic objects, (4) object-based and temporal ran- 
dom access, (5) temporal, spatial, quality and object-based scal- 
ability, and (6) robust operation in error-prone environments. 

2.1 Audiovisual Object Representation 
An object-based representation is necessary to enable the above 
functionalities. MPEG-4 achieves object-based representation 

by defining audiovisual objects and coding them into separate 
bit stream segments [6,7,15]. An audiovisual (AV) object (AVO) 
consists of a visual object component, an audio object compo- 
nent, or a combination of these components. The characteristics 
of the audio and visual components of individual AVOs can vary, 
such that the audio component can be (1) synthetic or natural, 
and (2) mono, stereo, or multichannel (e+, surround sound), 
and the visual component can be natural or synthetic. Some ex- 
amples of AVOS include a sound recorded with a microphone, a 
speech synthesized from a text, a person recorded by a video 
camera, and a 3-D image with text overlay. 

MPEG-4 supports the composition of a set of audiovisual ob- 
jects into a scene, also referred to as an audiovisual scene. In 
order to allow interactivity with individual AVOs within a scene, 
it is essential to transmit the information that describes each 
AVOs spatial and temporal coordinates. This information is re- 
ferred to as the scene description information and is transmitted 
as a separate stream and multiplexed with AVO elementary bit 
streams so that the scene can be composed at the user’s end. 
This functionality makes it possible to change the composition 
of AVOs without having to change the content of AVOs. 

An example of an audiovisual scene, which is composed of 
natural and synthetic audio and visual objects, is presented in 
Fig. 1. AV objects can be organized in a hierarchical fashion. 
Elementary AVOs, such as the blue head and the associated voice, 
can be combined together to form a compound AVO, i.e., a talk- 
ing head. It is possible to change the position of the AVOs, delete 
them or make them visible, or manipulate them in a number of 
ways depending on the nature of their characteristics. For exam- 
ple, if it is a visual object, the user can zoom and rotate it. If it is 
an audio object, the user can change its pitch, as well as his or her 
listening point. Also, the quality and spatial and temporal res- 
olutions of the individual AVOs can be modified. For example, 
in a mobile video telephony application, the user can request a 
higher frame rate and spatial resolution for the talking person 
than those of the background objects. 

Audiovisual scenes are reconstructed and presented by audio- 
visual terminals at the receiver’s end. As seen from Fig. 2, an 
audiovisual terminal receives the bit stream from a network or a 
storage device, demultiplexes the bit stream to retrieve elemen- 
tary streams, decompresses the primitive AV objects, and finally 
performs composition and rendering of the reconstructed AV 
objects by using the corresponding scene description informa- 
tion. An AV terminal also manages upstream data transfer for 
user commands that require server-side interaction. 

2.2 The MPEG-4 Visual Standard: 
Technical Description 
The emerging MPEG-4 visual standard, officially known as 
ISO/IEC 14496-2 [8], aims at providing standardized core pro- 
cessing elements that allow efficient storage, transmission, and 
manipulation ofvisual data [ 161. While the MPEG-4 visual stan- 
dard, like its predecessors, defines only the bit stream syntax and 
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FIGURE 2 An audiovisual terminal. (See color section, p. C-29.) 

the decoding process, the precise definitions of some compli- 
ant encoding algorithms are presented in two verification mod- 
els: one for synthetic and natural hybrid coding (SNHC) [ 171, 
and the other one for natural video coding [ 181. Although the 
MPEG-4 standard does not define the encoding process, both the 
encoding and decoding processes are discussed in this chapter. 

Different representations and compression algorithms may 
offer optimum solutions for different applications, bit rates, and 
formats. Therefore, MPEG-4 provides four different types of 
coding tools: Video object codingfor the coding of a naturally or 
synthetically originated, rectangular, or arbitrarily shaped video 
object; mesh object codingfor the coding of a visual object repre- 
sented with a mesh structure; model-based coding for the coding 
of a synthetic representation and animation of the human face 
and body; and still texture coding for the wavelet coding of still 
textures. 

In the following sections, we first describe each of the MPEG-4 
visual object coding tools. Next we discuss the scalability and 
the error resilience tools, followed by a presentation of the appli- 

cations and profiles of the MPEG-4 visual standard. Finally, we 
provide an example that illustrates how MPEG-4 can be used for 
the coding of rectangular and arbitrarily shaped video objects. 

2.2.1 Video Object Coding 
A video object (VO) is an arbitrarily shaped video segment that 
has a semantic meaning. A 2-D snapshot of a VO at a partic- 
ular time instant is called a video object plane (VOP). A VOP 
is defined by its texture (luminance and chrominance values) 
and its shape. MPEG-4 allows content-based access to not only 
the video objects, but also temporal instances of the video ob- 
jects, i.e., VOPs. In general, MPEG-4 coding of a VOP involves 
coding of motion, texture, and shape information. However, 
when the VOP is a rectangularly shaped video frame, MPEG-4 
video coding becomes quite similar to that specified in MPEG- 1/ 
MPEG-2 [ 1,2] and H.263 [3]. In fact, an MPEG-4 visual termi- 
nal must be able to decode all the bit streams of H.263 baseline 
encoders. 
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FIGURE 3 VOP prediction types. 

To enable access to an arbitrarily shaped object, such an object 
has to be separated from the background and the other objects. 
This process is called segmentation, and it can be performed in 
real time during encoding (on line), or in nonreal time prior to 
encoding (off line). The segmentation process is not standard- 
ized in MPEG-4. However, there are a number of automatic and 
semiautomatic tools available for segmentation [ 191. Also, it is 
possible to generate image sequences that are segmented ini- 
tially by using techniques such as chroma keying [20], in which 
a unique color is used to separate the background from a video 
object. 

MPEG-4 video object coding consists of shape coding (for 
arbitrarily shaped VOs), motion compensated prediction to re- 
duce temporal redundancies, and DCT-based texture coding of 
the motion compensated prediction error data to reduce spatial 
redundancies. The video coding is performed at the macroblock 
level. VOPs are divided into macroblocks, such that they are rep- 

- 

resented with the minimum number of macroblocks within a 
bounding rectangle. Similar to MPEG- 1 and MPEG-2, MPEG-4 
supports intracoded (I), temporally predicted (P), and bidirec- 
tionally predicted (B) VOPs, all ofwhich are illustrated in Fig. 3. 

Figure 4 shows the basic VOP encoder structure. The encoder 
consists mainly of two parts: a hybrid of a motion compensated 
predictor and a DCT-based coder, and a shape coder. In the 
first part, motion estimation and compensation are performed 
(except for I-VOPs) on texture data, followed by DCT and quan- 
tization. Then, the difference between the predicted data and the 
original texture data is coded by variable length coding (VLC). 
Motion information is also encoded by using VLC. Then, the 
VOP is reconstructed as in the decoder, that is, by applying in- 
verse quantization, applying inverse DCT (IDCT), and adding 
the resulting data to the motion compensated prediction data. 
The resulting VOP is then used for the prediction of future VOPs. 
The shape coder encodes the binary shape and the transparency 
information of the object. Since the shape of a VOP may not 
change significantly between consecutive VOPs, predictive cod- 
ing is employed to reduce temporal redundancies. Thus, motion 
estimation and compensation are also performed for the shape 
of the object. Finally, motion, texture, and shape information is 
multiplexed with the headers to form the coded VOP bit stream. 
At the decoder end, the VOP is reconstructed by combining mo- 
tion, texture, and shape data decoded from the bit stream. 

2.2.1.1 Motion Vector Coding. In the bit stream, the motion 
data are transmitted in the form of motion vectors (MVs). MVs 
are predicted by using a spatial neighborhood of three MVs, 
and the prediction error is variable length coded. Motion vec- 
tors are transmitted only for P-VOPs and B-VOPs. MPEG-4 em- 
ploys some advanced motion compensation techniques, such as 

........................................................................................................ 
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FIGURE 4 Basic block diagram of an MPEG-4 video coder. 
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the use of unrestricted MVs, where MVs are allowed to point 
outside the coded area of a reference VOP, overlapped motion 
compensation, and the use of four MVs per macroblock. 

Since the VOPs are, in general, arbitrarily shaped, there may 
not be a corresponding pixel available for the prediction of the 
current VOP. In order to guarantee that every pixel of the cur- 
rent VOP can be predicted, some or all of the boundary and 
outside blocks of the reference VOP have to be padded by ex- 
trapolation. The boundary blocks are padded by first repeating 
the boundary pixels in the horizontal direction, and then repeat- 
ing the boundary pixels in the vertical direction while averaging 
pixels whose values were obtained by horizontal padding. When 
a reference pixel belongs to a block that is completely outside 
the VOP, then the block is filled by extended padding, where 
pixels are assigned average values that are determined by the 
neighboring blocks. 

2.2.1.2 Texture Coding. Intrablocks, as well as motion com- 
pensation prediction error blocks, are texture coded. Similar to 
MPEG-l/MPEG-2 and H.263 (described in Chapters 6.4 and6.1, 
respectively), DCT-based coding is employed to reduce spatial 
redundancies. That is, each VOP is divided into macroblocks 
as illustrated in Fig. 5, and DCT coding is applied to the four 
8 x 8 luminance and two 8 x 8 chrominance blocks of the mac- 
roblocks. If a macroblock lies on the boundary of an arbi- 
trarily shaped VOP, then the pixels that are outside the VOP 
are padded before DCT coding. For intra-VOP boundary mac- 
roblocks, padding is performed as described in the previous sec- 
tion, whereas for residual blocks, the region that is outside the 
VOP is padded with zeros. Alternatively, a shape-adaptive DCT 
(SA-DCT) coder can be used to encode only those pixels that 
belong to the VOP. This generally results in higher compression 
performance, but at the expense of an increased implementa- 
tion complexity. Macroblocks that are completely inside the VOP 
are DCT transformed as in MPEG-l/MPEG-2 and H.263. The 
blocks that do not belong to the VOP are not coded. DCT trans- 
formation of the blocks is followed by quantization, zigzag scan- 
ning, and variable length coding. Note that adaptive DC/AC pre- 
diction methods and alternate scan techniques can be employed 
for efficient coding of the DCT coefficients of intra blocks. 

Bounding 
box 

Boundary 
blocks 

Inside 
block 

Outside block 

FIGURE 5 
macroblocks. 

VOP enclosed in a rectangular bounding box and divided into 

FIGURE 6 Binary alpha plane. 

2.2.1.3 Shape Coding. MPEG-4 supports coding of shape in- 
formation to enable content-based access to individual video 
objects in a scene [6,8,18,20]. MPEG-4 is the only video cod- 
ing standard that supports shape coding, besides H.263+ [4], 
which provides some limited shape coding support by means 
of its chroma-keying coding technique. Because of its limita- 
tions on shape rate control and its unstable performance for 
complex shapes, the chroma-keying coding technique was not 
considered for shape coding in MPEG-4 [20]. Polygon-based 
and bitmap-based shape coding techniques were found to be 
better candidates. Because of its high compression performance 
and low complexity, a bitmap-based shape coder was adopted. 

In bitmap-based shape coding, the shape and transparency of 
a VOP are defined by their binary and gray-scale (respectively) 
alpha planes. A binary alpha plane indicates whether or not a 
pixel belongs to a VOP. A gray-scale alpha plane indicates the 
transparency of each pixel within a VOP. MPEG-4 provides tools 
for both lossless and lossy coding of binary and gray-scale alpha 
planes. Furthermore, both intra shape and inter shape coding 
are supported. 

Binary alpha planes are divided into 16 x 16 blocks, as illus- 
trated in Fig. 6. The blocks that are inside the VOP are signaled 
as opaque blocks and the blocks that are outside the VOP are sig- 
naled as transparent blocks. The pixels in boundaryblocks (i.e., 
blocks that contain pixels both inside and outside the VOP) are 
scanned in a raster scan order and coded by using context-based 
arithmetic coding. In intracoding, a context is computed for each 
pixel using 10 neighboring pixels, which are shown in Fig. 7(a), 
by using the equation C = X k C k  2k, where k is the pixel index, 
and ck is “0” for transparent pixels and “1” for opaque pixels. 
Pixels from neighboring blocks are used to build the context if 

Pixels of the Pixels of the Pixels of the 
current block current block previous block 

coded 

FIGURE 7 Template pixels that form the context of arithmetic coder for (a) in- 
tracoded and (b) intercoded shape blocks. 
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FIGURE 8 Sprite coding of a video sequence. (Courtesy of Dr. Thomas Sikora.) (See color section, p. C-30.) 

the context pixels fall outside the current block. The computed 
context is used to access the table of probabilities. The selected 
probability is used to determine the appropriate code space for 
arithmetic coding. For each boundary block, the arithmetic en- 
coding process is also applied to the transposed version of the 
block. The representation that results in less coding bits is con- 
veyed in the bit stream. 

In inter shape coding, the shape ofthe current block is first pre- 
dicted from the shape of the temporally previous or future VOP 
(depending on the VOP coding type) by performing motion es- 
timation and compensation in integer pixel accuracy. The shape 
motion vector is then coded predictively. Then, the difference 
between the current and the predicted shape block is arithmeti- 
cally coded. The context for an intercoded shape block is com- 
puted by using a template of nine pixels from both the current 
andtemporallypreviousVOPshapeblocks, asshowninFig. 7(b). 

Lossy coding of the binary shape is achieved by either not 
transmitting the difference between the current and the pre- 
dicted shape block (in inter shape coding), or by subsampling 
the binary alpha plane by a factor of 2 or 4 prior to arithmetic 
encoding (in both intra- and intercoding). In order to reduce the 
blocky appearance of the decoded shape caused by lossy coding, 
an upsampling filter is employed during the reconstruction. 

Transparency of pixels can take values in the range of 0 
(transparent) to 255 (opaque). If all of the pixels in a VOP 
block are opaque or transparent, then no transparency informa- 
tion is transmitted for that block. Otherwise, gray-scale alpha 
planes, which represent transparency information, are divided 
into 16 x 16 blocks and coded the same way as the texture in the 
luminance blocks. 

2.2.1.4 Sprite Coding. In MPEG-4, sprite coding is used for 
representation of video objects that are static throughout a video 
scene, or their changes can be approximated by warping the orig- 
inal object planes [8,21]. Sprites are generally used for trans- 
mitting background in video sequences. They are coded in the 

same way as intra VOPs and are saved in a buffer at the decoder to 
reconstruct the video sequences. An example of a sprite is shown 
in Fig. 8. As seen here, a sprite may consist of a panoramic image 
of the background, including the pixels that are occluded by the 
other video objects. Such a representation can increase coding 
efficiency, since the background image is coded only once at the 
beginning of the video segment, and the camera motion, such 
as panning and zooming, can be represented by a few transfor- 
mation coefficients in the rest of the frames. 

2.2.2 Mesh Object Coding 
A mesh is a tessellation (partitioning) of an image into polygonal 
patches. Mesh representations have been successfully used in 
computer graphics for efficient modeling and rendering of 3-D 
objects. In order to benefit from functionalities provided by such 
representations, MPEG-4 supports 2-D mesh representations of 
natural and synthetic visual objects, and still texture objects, 
with triangular patches [8,22]. The vertices of the triangular 
mesh elements are called node points, and they can be used to 
track the motion of a video object, as depicted in Fig. 9. Motion 
compensation is performed by spatially piecewise warping of 
the texture maps that correspond to the triangular patches. This 
representation provides a good model for spatially continuous 
motion fields. 

An initial 2-D triangular mesh can be either a uniform mesh 
or a Delaunay mesh. An example of a uniform mesh is shown 

FIGURE 9 Mesh object with triangular patches. 
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rather than transmission of the video frames. MPEG-4 supports 
the coding of two types of models [8,23,24]: a face objectmodel, 
which is a synthetic representation of the human face with 3-D 
polygon meshes that can be animated to have visual manifesta- 
tions of speech and facial expressions, and a body object model, 
which is avirtual human body model represented with 3-D poly- 
gon meshes that can be rendered to simulate body movements. 

2.2.3.1 Face Animation. It is required that every MPEG-4 de- 
coder that supports face object decoding has a default face model 
that can be replaced by downloading a new face model. Either 
model can be customized to have a different visual appearance 
by transmitting facial definition parameters (FDPs). FDPs can 
determine the shape (i.e., head geometry) and texture of the face 
model. 

A face object consists of a collection of nodes, also called fea- 
ture points, which are used to animate synthetic faces. The an- 
imation is controlled by face animation parameters (FAPs) that 
manipulate the displacements of feature points and angles of face 
features and expressions. MPEG-4 defines a set of 68 low-level 
animations, such as head and eye rotations, as well as motion of 
a total of 82 feature points for the jaw, lips, eye, eyebrow, cheek, 
tongue, hair, teeth, nose, and ear. These feature points are shown 
in Fig. 11. MPEG-4 also defines high-level expressions, such as 
joy, sadness, fear, and surprise, and visemes for determining the 
mouth movements for speech animation. High-level expressions 
consist of a set of low-level expressions. For example, the joy ex- 
pression is defined by relaxed eyebrows and open mouth, with 
the mouth corners pulled back toward the ears. Figure 12 il- 
lustrates several video scenes that are constructed by using face 
animation parameters. 

The FAPs are coded by quantization followed by arith- 
metic coding. The quantization is performed by taking into 
consideration the limited movements of the facial features. Al- 
ternatively, DCT coding can be applied to a vector of 16 temporal 
instances of the FAP, improving compression efficiency, but also 
increasing delay. 

FIGURE 10 
(Courtesy of Dr. Murat Tekalp.) (See color section, p. C-30.) 

in Fig. 9. A uniform mesh can be represented by a small set of 
parameters: the width and height of the mesh rectangle, and 
the type of the mesh structure. On the other hand, Delaunay 
meshes provide more flexibility by allowing initial node points 
to be at any location. The locations of the node points are coded 
differentially with respect to the previously coded node point 
coordinate. The ordering of the node points is such that the 
boundary node points are coded first, followed by coding of the 
interior node points. As seen in Fig. 10, a Delaunay mesh can be 
adapted to the image content for a more accurate representation 
of the video object. The selection process of the node points for 
a Delaunay mesh and the tracking of mesh node points are not 
specified in the MPEG-4 standard. 

Similar to VOPs, instances of mesh objects are called mesh 
object planes (MOPs). The structure (in the case of intracoding) 
and motion (in the case of intercoding) of MOPs are variable 
length coded into a nonscalable bit stream. The texture of the 
corresponding visual object has to be coded separately. 

Mesh representation of a video object with triangular patches. 

2.2.2.1 Functionalities. A mesh-based representation of an 
object enables many functionalities. It improves content-based 
manipulation by enabling the merging of synthetic objects with 
natural objects. It also allows us to transmit only selected key 
frames, which can be animated to construct intermediate frames 
at the decoder. Moreover, mesh modeling can efficiently repre- 

accurate object trajectory information and syntax for vertex- 

sent continuous motion, resulting in less blocking artifacts at 
low bit rates as compared with the block-based modeling. It also 

based object shape representation, which is more efficient than 
the bitmap representation. 

2.2.3 Model-Based Coding 
Model-based representation enables very low bit rate video cod- 
ing applications by providing the syntax for the transmission 

2.2.3.2 Body Animation. Similar to the case of a face object, 
two sets of parameters are defined for a body object: body def- 
inition parameters (BDPs), which define the body through its 

enables content-based retrieval of video objects by providing T 
tongue 

WJ 
rmri 

teeth 

* Feature points 

of the parameters that describe the behavior of a human being, FIGURE 11 Feature points used for animation. 



618 Handbook of Image and Video Processing 

JOY Sadness Surprise 
FIGURE 12 
Ostermann. ) 

Examples of face expressions codedwith FAPs. (Courtesy ofJoern 

dimensions, surface and texture, and body animation parame- 
ters (BAPs), which define the posture and animation of a given 
body model. Body animation is being standardized in the Version 
2 of the MPEG-4 standard. 

2.2.4 Still Texture Coding 
The block diagram of an MPEG-4 still texture coder is shown 
in Fig. 13. As depicted in the figure, the still texture is first de- 
composed using a 2-D separable wavelet transform, employing 
a Daubechies biorthogonal filter bank [ 81. The discrete wavelet 
transform is performed using either integer or floating point 
operations. Also, a shape adaptive wavelet transform can be em- 
ployed for coding arbitrarily shaped texture. 

The DPCM coding method is applied to the coefficient values 
of the lowest frequency subband. A multiscale zero-tree coding 
method [26] is applied to the coefficients of the remaining sub- 
bands. Zero-tree modeling is used for encoding the location of 
nonzero wavelet coefficients by taking advantage of the fact that 
if a wavelet coefficient is quantized to zero, then all wavelet coef- 
ficients with the same orientation and the same spatial location 
at finer wavelet scales are also likely to be quantized to zero. Two 
different zero-tree scanning methods are employed to achieve 
spatial and SNR scalability. After DPCM coding of the coeffi- 
cients of the lowest frequency subband, and zero-tree scanning 
of the remaining subbands, the resulting data are coded by using 
an adaptive arithmetic coder. 

2.2.5 Scalability 
Scalability means that a bit stream consists of a separately decod- 
able base layer, and associated enhancement layers. This struc- 

ture is especially desirable for heterogeneous environments to 
counter limitations such as constraints on bit rate, display res- 
olution, network throughput, and decoder complexity. More- 
over, scalability provides improved error resilience by allowing 
the syntax for prioritized transmission. MPEG-4 supports tra- 
ditional frame-based temporal, spatial, and quality scalabilities, 
as well as object-based scalability. Object-based scalability al- 
lows one to add or remove video objects, as well as prioritize 
the objects within a scene. MPEG-4 supports both spatial and 
temporal object-based scalability. With the use of this function- 
ality, it is possible to represent the objects of interest with a 
higher spatial or temporal resolution, while allocating less band- 
width and computational power to the objects that are not as 
important. 

2.2.6 Error resilience 
MPEG-4 offers error resilience tools to address the problem of 
robust operation over error-prone channels. These tools can be 
divided into three groups: resynchronization, data partitioning, 
and data recovery [8,27]. 

If an error occurs during the transmission of the bit stream, 
then resynchronization is required to recover data and conceal 
the effects of errors. MPEG-4 allows resynchronization by em- 
ploying a method that is similar to the group of macroblocks 
approach of 1-1.263 [ 31. The difference is that, in order to provide 
periodic resynchronization markers, the number of macroblocks 
in an MPEG-4 packet may be variable, depending on the num- 
ber of bits required to represent each macroblock. Each video 
packet contains information such as macroblock number and 
quantizer, necessary to restart the decoding operation in case an 
error is encountered. 

Data partitioning allows the separation between the motion 
and texture data, along with additional resynchronization mark- 
ers in the bit stream to improve the ability to localize the errors. 
This technique provides enhanced concealment capabilities. For 
example, if texture information is lost, motion information can 
be used to conceal the errors. Error concealment, however, is not 
standardized in MPEG-4. 

Reversible variable length codes (RVLCs) can be employed 
for the coding of macroblock texture information for improved 
error resilience. RVLCs can be decoded in both the forward and 
backward directions. Thus, if part of a bit stream cannot be 
decoded in the forward direction because of errors, data can be 
recovered partially by decoding in the backward direction. 

Lowest band 
Quantize Prediction 

Still texture Discrete Aritmetic data ~ ’ ~ ~ ~ - ~  Transform Wavelet 
Coding Bit stream 

Zero Tree Quantize Other bands Scanning 

FIGURE 13 Block diagram of the still texture coder. 
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TABLE 1 MPEG-4 visual profiles 

Profile Group Profile Name Supported Functionalities 

Natural video Simple 
Simple scalable 
Core 
iMain 
N-bit 

Synthetic video Simple face animation 

Hybrid (natural/synthetic) Simple basic animated 
video 2-D texture 

Scalable texture 

Hybrid 

Error resilient coding of rectangular video objects 
Simple profile + frame-based temporal and spatial scalability 
Simple profile + coding of arbitrarily shaped objects 
Core profile + interlaced video + transparency coding + sprite coding 
Core profile + coding video objects with pixel depths between 4 and 12 bits 
Basic coding of simple face animation 
Spatially scalable coding of st i l l  texture objects 
Simple face animation + spatial and quality scalability + mesh-based 
representation of still texture objects 
Coding of arbitrarily shaped objects + temporal scalability + face 
object coding + mesh coding of animated still texture objects 

2.3 Applications and Profiles 
MPEG-4 is designed to address a wide range of multimedia ap- 
plications, which cover interactive video communications (e+, 
video telephony and conferencing), noninteradive video com- 
munications (e.g., video e-mailing and multimedia broadcast- 
ing), digital storage media (e.g., optical disks), content-based 
image and video databases, video surveillance, and interactive 
video games. Since the MPEG-4 syntax is designed to be very 
generic and includes many tools to enable a wide variety of ap- 
plications, the implementation of a decoder that supports the full 
syntax will most often be impractical. Therefore, the MPEG-4 vi- 
sual standard defines a number of subsets of the syntax, referred 
to as “profiles” (Table l), each targeting a specific group of appli- 
cations. For example, the simple profile targets low-complexity 
and low-delay applications, such as mobile video communica- 
tions, the main profile targets interactive broadcast and DVD 
applications, the N-bit profile targets surveillance applications, 
and the scalable texture profile targets applications that require 
multiple texture scalability levels, such as mapping texture onto 
objects in video games. 

2.4 MPEG-4 Video Coding Example 
In this section, we present an example to illustrate the capabil- 
ities and compression performance levels of an MPEG-4 com- 
pliant video encoder. We performed our simulations by using 
Microsoft’s MPEG-4 encoder software [28] to encode the video 
sequence called Bream, which shows a fish that changes direc- 
tions while swimming. The segmented sequence is coded fol- 
lowing two different modes of operation that represent two dis- 
tinct MPEG-4 profiles: the simple profile and the core profile. 
The simulation results are given in Fig. 14. The figure shows the 
reconstructed frames corresponding to the two used profiles, 
as well as the number of bits used to represent motion, tex- 
ture, and shape information. In the example, the 100 frames 
of the Bream sequence are encoded at 10 frames per second 
( f p s )  and with a constant quantizer of 10. The first frame is 
intracoded and the rest of the frames are intercoded. In the 

object-based coding case (i.e., core profile), lossless shape coding 
is employed. Figure 14(a) shows the original input frame (the 
first frame of Bream), and Fig. 14(b) shows the reconstructed 
frame after using an encoder that is compliant with the sim- 
ple profile (no shape coding). In this example, the simple pro- 
file coder achieves a 56:l compression ratio with relatively high 
reconstruction quality (34.4 dB). If the quantizer step size were 
larger, it would be possible to achieve up to a 200:l compression 
ratio for this sequence, while still keeping the reconstruction 
quality above 30 dB. 

The Bream video sequence consists mainly of two objects: a 
fish (foreground object), and a water background (background 
object). Using the core profile encoder, we encode these two 
objects into two separate bit streams. Figure 14(c) shows the 
shape of the foreground object. We encode only the pixels that 
are inside the shape, which are indicated by a darker color. Tex- 
ture padding of the boundary blocks is shown in Fig. 14(d). 
Figure 14(e) shows the foreground object as it is decoded and 
displayed. In this example, lo%, 14%, and 73% of the total bits 
are spent to represent the shape, motion vectors, and texture in- 
formation, respectively. The rest of the bits are used for headers 
and bit stuffing. These ratios would change depending on the 
sequence. For example, if the shape of the sequence is changing 
rapidly, then more bits will be spent for shape coding. 

Figure 14(f) shows the background ofthe sequence. The com- 
bination of background and foreground objects is shown in 
Fig. 14(g). A compression ratio of 8O:l is obtained. Since the 
background object does not vary significantly with time, the 
number of bits spent for its representation is very small. Here, it 
is also possible to employ sprite coding by selecting background 
as a sprite. 

The PSNR versus rate performance of the frame-based and 
object-based coders for the 100 frames of the Bream video se- 
quence is presented in Fig. 15. As seen here, for this sequence, the 
PSNR bit-rate tradeoffs of object-based coding are better than 
those of frame-based coding. This is mainly due to the slowly 
varying foreground and background objects. However, for scenes 
with complex and quickly varying shapes, since a considerable 
amount of bits would be spent for shape coding, frame-based 



620 

I - - -x ~ .foreground and background objects] 

Handbook of Image and Video Processing 

c 7 Quantizer 10 
*-Coded frames I O  Framesls 

Motion bits 36 Kbitsls 
Texture bits 180 Kbits/s 
Shape bits 0 Kbits/s 
Total bits 217 Kbitsls 
PSNR 34.4 dB 

b ' 1  ? .!, 

=w- 
r( Quantizer 10 
I .-: . .. Coded frames 10 Frames/s 

Motion bits 18 Kbits/s 
Texture bits 92 Kbits/s 
Shape bits 13 Kbits/s 
Total bits 125 Kbits/s 
PSNR 32.7 dR 

. *  . 

1 1% 

T Quantizer 10 
Coded frames 10 Frames/s 

/Motion bits 8 Kbits/s 
Texture bits 16 Kbits/s 
Shapebits 0 Kbits/s 
Total bits 25 Kbits/s 
PSNR 41.4 dB 

\ Quantizer 10 
/Coded frames 10 Frames/s 

Motion bits 26 Kbitsls 
Texture bits 108 Kbits/s 
Shape bits 13 Kbits/s 
Total bits 150 Kbits/s 
PSNR 38.8 dB 

FIGURE 14 Illustration of MPEG-4 coding, simple profile vs. core profile: (a) original frame; (b) frame-based coded 
frame; (c) shape mask for the foreground object; (d) coded foreground object (boundary macroblocks are padded); 
(e) foreground object as it is decoded and displayed; (f) background object as it is decoded and displayed; (g) foreground 
+ background objects (e + f ). (Bream video sequence is courtesy of Matsushita Electric Industrial Co., Ltd.) (See color 
section, p. C-31.) 
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FIGURE 15 
using different profiles of the MPEG-4 video coder. 

PSNR performance for the 100 frames of the Bream video sequence, 
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coding would achieve better compression levels, but at the cost 
of a limited content-based access capability. 

TABLE 2 Examples oftext-based search engines for visual content 

Tvae Name Reference Data Format 

3 The MPEG-7 Visual Standard 

Many of the current multimedia applications require that the vi- 
sual data be effectively and efficiently accessed and manipulated. 
Many text-based methods have been applied to the access and 
manipulation of visual content, where keywords are associated 
with each visual component. In order to overcome the limita- 
tions of the text-based methods, which typically require human 
assistance in describing visual content, feature-based methods 
have been introduced. Low-level features, such as texture, shape, 
and color, and high-level features, such as composition informa- 
tion, have been employed in many of the existing content-based 
access and manipulation (CBAM) systems. As they arise from 
different applications, these systems make use of various feature 
representations. For instance, the same “shape” feature may be 
represented by Fourier descriptors, geometric descriptors, etc. 
Therefore, data accessibility and interoperability between these 
systems are quite limited. 

A unified framework for content representation can overcome 
the above problems. Moreover, such a framework would be very 
useful in the evaluation of current systems by various research 
and industry organizations, as well as for future research and de- 
velopment. Hence, it is not surprising that current international 
standardization committees, such as the MPEG committee, have 
focused on the standardization of a “multimedia content de- 
scription interface” (MPEG-7). The major challenges facing the 
MPEG-7 standardization activity is that visual data can have dif- 
ferent formats (e.g., uncompressed, compressed), different types 
(e.g., still pictures, audio, video), can be described by using het- 
erogeneous feature representations, and can reside in different 
geographical locations. 

MPEG-7 requirements for the systems, visual, and audio parts 
have already been developed [29,30]. Here, we focus on the 
visual part of the MPEG-7 standard. We first describe the cur- 
rent workin the access and manipulation ofvisual data. Next, we 
present the objectives ofthe MPEG-7 visual standard and its nor- 
mative components. Finally, we illustrate, through an example, 
how MPEG-7 will impact the CBAM of visual data. 

3.1 Text-Based CBAM of Visual Data 
Many of the text-based search methods that have been proposed 
are currently employed in the search engines of the World Wide 
Web. There are several types of text-based search engines, such 
as the full-text (e.g., Alta Vista, Lycos), catalogue-based (e.g., 
Excite, Yahoo!), meta- (e.g., Netsearch), and specialist (e+, Big- 
foot White Pages) search engines. FuZI-textsearch engines analyze 
the content of files in order to find the desired text. Catalogue- 
bused search (also known as index-search) engines use classifi- 
cation systems in order to help the users identify the files that 

Still images Icon Browser 33 GIF 
Image Surfer 34 JPEG 
Lycos Media 35 JPEG 
Virtual Image Archive 36 GIF, JPEG 
Yahoo Image Surfer 37 JPEG 

Video Whoopie 38 MPEG, AVI, and others 
Lycos Media 35 MOV 

have been marked by human agents as being potentially useful 
to a particular topic. Metu-search (also known as multisearch) 
engines allow the users to search for keywords, using several 
search engines sequentially or simultaneously. Specialist search 
engines provide responses that are relevant to specific application 
areas. 

All of the above text-based search methods can be applied to 
the access and manipulation of the visual content by assigning 
keywords to each visual component [ 3 1,321. Examples of such 
text search engines used for CBAM of visual content are shown 
in Table 2. Some of the existing standards, such as HTML, pro- 
vide methods to associate a text descriptor with a still image. 
However, HTML does not provide a mechanism for attaching 
other sets of descriptors to images. The SGML standard over- 
comes this problem. Unfortunately, the vocabulary is restricted, 
and similarity-based retrieval cannot be performed. Moreover, 
human assistance in describing the content and entering the de- 
scription in the database is required. 

3.2 Feature-Based CBAM of Visual Data 
Feature-basedmethods have been proposed in order to overcome 
the limitations of the text-based search methods for accessing 
visual content. The features that are employed by the CBAM 
methods can be divided into two classes: low-level and high- 
level features [39]. The low-level features can often be extracted 
automatically. However, the extraction of the high-level features 
usually requires human assistance. 

Most of the current research in content-based access and ma- 
nipulation of visual data has focused on using low-level features 
such as texture, shape, and color [40,41]. Texture-based CBAM 
of visual data has been applied in [41,42]. These systems use 
texture analysis methods that are based on structural, statistical, 
spectral, stochastic model-based, morphology-based, or mul- 
tiresolution techniques [4346] .  Shape-based CBAM methods 
of visual data have been proposed [47,48] that employ various 
boundary-based (e.g., chain codes, geometric, and Fourier de- 
scriptors) or region-based (e.g., area, roundness) shape models. 
Color features have been extensively used for the CBAM of im- 
age databases [49,50], because oftheir invariance with respect to 
image scaling and rotation. The color features have been he- 
quently represented by computing the average color, the domi- 
nant color, and the globaVlocal histograms [49]. 



622 Handbook of Image and Video Processing 

In many cases, using only one low-level feature may not be 
sufficient to discriminate between several objects. Therefore, 
combinations of two or several low-level features, as employed 
in [39,51-551, can improve significantly the outcome of the 
CBAM of visual data. 

3.3 Objectives of the MPEG-7 Visual Standard 
MPEG-7 is the most recent standardization activity of the MPEG 
group. The goal of MPEG-7 is to provide a standardized descrip- 
tion that allows effective and efficient access and manipulation 
of the multimedia content [29,30,56]. MPEG-7 will standardize 
a set of descriptors (Ds), a set of description schemes (DSs), a 
description definition language (DDL), and schemes for the cod- 
ing of the descriptions [29,56]. MPEG-7 will not standardize the 
tools that are used to generate the description (e.g., segmentation 
tools, feature extraction tools) and the tools that use the descrip- 
tion (e.g., content recognition tools). The MPEG-7 requirements 
posed indirectly on the visual description tools would likely yield 
effective and efficient tools for segmentation, feature extraction, 
and visual recognition. 

3.4 Visual Description 
In this section, we describe the normative components, i.e., the 
Ds, the DSs, the DDL, and the coding schemes, of the visual part 
of MPEG-7. 

3.4.1 Descriptors 
For a given visual content (e.g., images, video), a set of features 
can be extracted. A feature is defined as a distinctive charac- 
teristic of the content. In order to compare several features, a 
meaningful representation of each feature (descriptor) and its 
instantiation for a given data set (descriptor value) are needed. 
Figure 16 illustrates the relationship between data, features, and 
descriptors. Using feature extraction, one projects the input vi- 
sual content space onto the feature space. The result of the pro- 
jection is a set of features [ fi, f2, . . . , fi, . . . , fN] associated 
with any item of the visual content, where N is the total num- 
ber of features that are extracted. Then, each feature fi of the 
feature vector can be represented by several descriptors. Exam- 
ples of descriptors associated with the input features are pre- 

TABLE 3 Examples of features and their descriptors 

Feature Descriptor 

Texture contrast, coarseness, directionality, Markov model, 
Co-occurrence matrix, DCT coefficients, wavelet coefficients, 
Wold coefficients 

geometrical descriptors (area, perimeter, etc.), Fourier 
descriptors, chain code 

Shape 

Color color histogram, color moments 
Auuearance text, Fourier coefficients 

sented in Table 3. For instance, the shape feature may be rep- 
resented by geometric descriptors or Fourier descriptors. Some 
of these descriptors are standardized in MPEG-7 (i.e., they be- 
long to the standardized descriptor space). The projection from 
the visual data space to the feature space, which is not stan- 
dardized in MPEG-7, is not unique since different applications 
may require different features for describing the same visual 
content. The projection from the feature space to the descriptor 
space, which is being standardized in MPEG-7, is also not unique 
since several descriptors may be assigned to the same feature. An 
MPEG-7 descriptor should be relevant and effective. This guar- 
antees that the descriptor expresses precisely and completely the 
associated feature. Moreover, it should have expression and pro- 
cessing efficiency. This guarantees the existence of an efficient 
method for computing the descriptor value. Descriptor scala- 
bility with the application and with the data are also required. 
Finally, the descriptor should provide a multilevel representa- 
tion of the associated feature. Other requirements are included 
in [ 301. 

3.4.2 Description Scheme 
A description scheme (DS) is the pair {S, R},  where S is the 
structure consisting of several components, and R is the set of 
relationships between the components of S. These components 
are descriptors, descriptors and other description schemes, or de- 
scription schemes. Similar to an MPEG-7 descriptor, an MPEG-7 
description scheme must be relevant and effective. Moreover, it 
must have expression efficiency, extensibility, and scalabilitywith 
the application and with the data. DS relevance and effectiveness 
are guaranteed if the DS components and relationships between 
these components are also relevant and effective. Expression 

Featurespace ~ MPEG-7 
A 
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FIGURE 16 Relationship among data, features, and descriptors. 
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efficiency is guaranteed by obeying the parsimony principle, i.e., 
by employing the minimum number of DS components and re- 
lationships between these components. Finally, the DS should 
provide a multilevel representation of the data. Other MPEG-7 
DS requirements are described in [30]. 

3.4.3 Description Definition Language 
The description definition language (DDL) is the language used 
to specify the description schemes. MPEG-7 requires that the 
DDL be explicit by following an unambiguous grammar. More- 
over, the DDL should have compositional capabilities, by allow- 
ing new DSs to be created and existing DSs to be extended. Most 
importantly, the DDL should be platform independent [ 571. 

3.4.4 Coding of the Descriptions 
A coded description is a representation of the description that 
allows efficient storage and transmission. MPEG-7 will standard- 
ize error resilient and low complexity methods for the efficient 
coding of the descriptions [ 571. 

3.5 MPEG-7 Example: A Generic Visual Scene 
In this section, we discuss how MPEG-7 will provide solutions to 
the problems associated with CBAM of visual data. Consider the 
audiovisual scene illustrated in Fig. 1. Suppose that we want to 
retrieve a picture that is similar to the one shown in the figure by 
submitting the same query “retrieve all the pictures containing 
fish” to two different CBAM systems: System A and System B. 
System A employs Fourier descriptors (coefficients of the Fourier 
transform of the fish boundary) for shape feature representat- 
ion. Therefore, it will process the query by retrieving all the 
objects in the library having similar (according to a specific sim- 
ilarity measure) Fourier descriptors to those of the fish extracted 
from the query. System B uses geometric descriptors (e.g., area, 
perimeter) for shape feature representation, and it will then pro- 
cess the query by retrieving all the objects in the library having 
similar geometric descriptors to those extracted from the fish. 
The response of the systems A and B to the submitted query 
will clearly be different, even if both systems were to access the 
same digital library. This is due to the following two reasons. 
First, the query may be processed differently by these systems. 
For example, System A may accept sketch-based queries, whereas 
System B may accept picture-based queries. Second, even if the 
query were to be processed in an identical manner, the different 
shape feature representations and different similarity measures, 
would most definitely yield different results. This will likely pose 
problems for most of today‘s CBAM applications. 

MPEG-7 addresses the above problems by providing a stan- 
dardized description interface. That is, if System A and Sys- 
tem B were MPEG-7 compliant, the shape feature representation 
would be the same in the sense that the two systems would use 
the same descriptors. Moreover, an MPEG-7 compliant system 
would achieve a better retrieval performance level than that of 

existing CBAM systems because of the following reasons. First, 
MPEG-7 would attach descriptors only to the relevant features. 
For instance, no descriptors would be attached to the texture 
feature for the black character shown in Fig. 1. Second, in an 
MPEG-7 description, the relevant features would be prioritized. 
For example, a higher importance level would be assigned to 
the shape descriptors than to the color descriptors for the fish. 
Finally, MPEG-7 would provide a hierarchical description of the 
audiovisual scene, as illustrated in Fig. 17. This would allow for 
coarse to fine representations of the audiovisual content and 
improve the description’s accuracy. 

4 Conclusions: Towards a Complete 
Multimedia Solution 

In this chapter, we have presented a comprehensive technical 
description of the visual parts of the two emerging MPEG stan- 
dards: MPEG-4 and MPEG-7. We showed, through examples, 
how these standards will enable many desired functionalities, 
such as efficient content-based representation, access, and ma- 
nipulation of multimedia data, which are not addressed properly 
by today‘s multimedia standards. 

MPEG-4 becomes an international standard in January 1999. 
A secondversion of MPEG-4, which will be backward compatible 
with the first version and will feature more functionalities and 
profiles, is expected to be completed by the end of 1999. The 
work of MPEG-7, however, is still in its infancy. In fact, the 
MPEG-7 call for proposals has just been issued (October 1998). 
MPEG-7 is expected to become an international standard in 
September 2001 [29]. 

MPEG-4 achieves high compression levels, making effi- 
cient the communication of multimedia content. Through its 
object-based representation and modeling tools (e.g., mesh, 
sprite), MPEG-4 allows us to combine graphics, text, and syn- 
thetidnaturalobjects in a single bit stream. MPEG-4 also features 
scalability and error resilience functionalities enabling efficient 
and robust transmission of multimedia data. MPEG-7 will build 
on MPEG-4, making use of the object-based representation and 
modeling tools, and providing complementary functionalities. 
MPEG-7 will facilitate, and even enable, the effective and effi- 
cient content-based access and manipulation of multimedia data 
by providing a standardized description interface. 

A decoder that is compliant with both MPEG-4 and MPEG-7 
will enable efficient and highly interactive multimedia applica- 
tions. Consider our example of the visual scene shown in Fig. 1. 
While watching the TV, the user may want to search for “shirts” 
that have similar texture to the fish shown on the screen. Be- 
cause of the object-based representation provided by MPEG-4, 
the “fish” object can be easily accessed by the user. Also, since 
MPEG-4 allows the embedding of user data in the bit stream, 
it is possible to attach MPEG-7 standardized texture descrip- 
tors to the corresponding object bit stream. Therefore, the user 
can access a database without performing expensive decoding, 
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FIGURE 17 Example of description associated with the audiovisual scene. 

segmentation, and feature extraction, which would have been 
required with other representations (e.g., JPEG, MPEG- 1/ 
MPEG-2). The user may also want to search for video sequences 
that contain persons who are “walking’: If the underlying bit 
stream were compliant with MPEG-2, the only way to achieve 
this would be to decode the bit stream, reconstruct the video 
sequences, perform spatiotemporal segmentation, and estimate 
the motion field corresponding to the person video object. On 

the other hand, the MPEG-4 mesh model can accurately repre- 
sent continuous motion. Assuming MPEG-7 standardizes mesh 
motion, the corresponding descriptors can be used by the user 
to search for objects with similar motion trajectories. Another 
case is that in which the user wants to search for persons who 
are “smiling’: MPEG-7 may standardize descriptors that are ex- 
pressed in terms of MPEG-4s FAPs, described in the previous 
section. Since it is possible to tell the mood of the speaker (e.g., 
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joyful, sad, angry) by the FNs, the search for a “smiling” person 
can be easily performed, again without performing expensive 
processes, such as decoding, segmentation, and feature extrac- 
tion. These expensive processes have to be performed only once 
at the encoder end, making MPEG-7/MPEG-4 compliant sys- 
tems well suited for many applications. 

Together, MPEG-4 and MPEG-7 will provide a complete mul- 
timedia system solution by allowing the efficient and effective 
representation, exchange, storage, access, and manipulation of 
multimedia data. They are expected to enable key technologies 
for the new generation multimedia applications, revolutionizing 
our multimedia world. 
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Image capture takes us from the continuous-parameter real 
world in which we live to the discrete-parameter, amplitude 
quantized domain of the digital devices that comprise an 
electronic imaging system. The process of converting from a 
continuous-parameter image to one that is discrete parameter, 
i.e., consists ofan array ofnumbers, is referred to as sampling. The 
meaning of the term rcunningis somewhat less precise. Its com- 
mon usage refers to the notion of sequential acquisition of data 
through some type of electromechanical motion. It is also used 
to refer to the process of converting a two-dimensional signal 
into a signal that is one dimensional. The process of quantizing 
an image that is continuous in amplitude to one that takes on val- 
ues from a finite set is called quantization. Examples illustrating 
the effect of quantization may be found in Chapter 1.1. 

1.1 Representations for the Sampled Image 
Sampling a continuous-space image gc ( x ,  y)  yields a discrete- 
space image 

space and discrete space, and (X, Y) is the spacing between sam- 
ple points, also called the pitch. However, it is also convenient 
to represent the sampling process by using the 2-D Dirac delta 
function 6(x,  y) .  In particular, we have from the sifting prop- 
erty of the delta function that multiplication of gc(x,  y )  by a 
delta function centered at the fixed point (xo, yo) followed by 
integration will yield the sample value gc(xo, yo), i.e., 

provided gc(x,  y )  is continuous at (xo ,  yo). It follows that 

that is, multiplication of an impulse centered at (xo, yo) by the 
continuous-space image gc(x,  y )  is equivalent to multiplication 
of the impulse by the constant gc(xo, yo). It will also be useful 
to note from the sifting property that 

g d h  n) = gSmX, nu, 
where the subscripts c and d denote, respectively, continuous impulse located at ( X O ,  yo) shifts the function to ( X O ,  yo). 

That is, convolution of a continuous-space function with an 
(1) 
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F 
FIGURE 1 
“C” carriage with light source on the inside arm, and detector optics on the outside arm. (See color section, p. C-32.) 

High-resolution drum scanner: (a) scanner with cover open, and (b) closeup view showing screw-mounted 

To get all the samples of the image, we define the comb func- 
tion 

combx,y(x, y )  = 7, y, 6(x - mX, y - nu) .  (5) 
m n  

Then we define the continuous-parameter sampled image, de- 
noted with the subscript s, as 

m n  

We see from Eq. (7) that the continuous- and discrete-space 
representations for the sampled image contain the same infor- 
mation about its sample values. In the sequel, we shall only use 
the subscripts c and d when necessary to provide additional 
clarity. In general, we can distinguish between functions that are 
continuous space and those that are discrete space on the ba- 
sis of their arguments. We will usually denote continuous-space 
independent variables by (x, y )  and discrete-space independent 
variables by (m, n). 

1.2 Image Capture Technologies 
There are two fundamental aspects of image capture. The first 
is the raster of points in two- or three-dimensional space where 
samples are taken. The second is the effect of the system aperture, 
which causes the data samples to consist of an average of the 
image or scene within a neighborhood of the nominal sampling 
point. 

Devices for image capture may be divided into two classes, 
according to the mechanism by which the samples are acquired. 
The first class utilizes a flying spot mechanism for data acquisi- 

tion. Examples of such mechanisms include an electron beam, 
as is used in an analog video camera, the electromechanical scan 
resulting from rotation of a drum and movement of a screw, as 
can be found in graphic arts drum scanners (see Fig. I), diffrac- 
tive optical beam formation, as is used in supermarket point-of- 
sale scanners, and phased array beam formation, as is used with 
radar. With all these systems, the spot trajectory and read times 
determine the sampling raster, whereas the aperture effects are 
governed by the shape of the illuminating and read spots and 
the dwell time, i.e., the time interval during which the read spot 
output signal is averaged to form a sample value. Although none 
of the examples cited above operate in this manner, flying spot 
scanners can also function in a passive mode. In this case, there 
is no write spot; and the read spot detects radiation emanating 
naturally from the scene. Air and spaceborne systems for remote 
sensing of the Earth’s surface are examples of passively scanning 
systems. 

The second class of image capture devices utilizes afocalplane 
mosaic, which consists of an array of detector sites. The scene 
is imaged onto the surface of the array; each detector integrates 
the radiation gathered from the active area of its surface. This 
gives rise to the aperture effect. The spatial arrangement of the 
detectors determines the sampling raster. Focal plane array tech- 
nologies include charge coupled devices (CCDs), charge injec- 
tion devices (CIDs), and CMOS devices. These technologies are 
widely used in digital still and video cameras. Some systems 
comprise a hybrid of the flying spot and focal plane mosaic ar- 
chitectures. The flatbed scanner, which uses a mechanical means 
to move a one-dimensional array of detectors across the surface 
of the document being scanned, is a good example. 

1.3 General Model for the Image Capture Process 
Despite the diversity of technologies and architectures for image 
capture devices, it is possible to cast the sampling process for all 
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of these systems within a common framework. We will illustrate 
this fact for two examples. The first example is that of a flying 
spot scanner. Since this device acquires data time sequentially, 
i.e., one sample at a time, we can represent the scanned signal 
as a function of the single time parameter t. Accordingly, the 
operation of this device is described by 

Here s ( t )  is the continuous-time signal generated at the detector 
output, prior to A/D conversion; p i ( x ,  y )  and pr(x, y)  are the 
illuminating and read spots, respectively; [ x, ( t ) ,  y, ( t ) ]  is the tra- 
jectory of these spots across the image as a function of time; and 
g(x, y )  is the image to be sampled. What this equation shows 
is that at any time t, the detector output is given by an integral 
over the entire image g ( x ,  y), weighted by the spatially varying 
intensity of the illuminating spot and the spatially varying sensi- 
tivity of the detector (read spot), which are both centered at the 
trajectory coordinates [ x s ( t ) ,  y s ( t ) ]  at that time. The final step 
in the sampling process is to sample the detector output at an 
appropriate set of times, yielding s d  (k) = s ( t k ) ,  where again the 
subscript d denotes the fact that S d ( k )  is a discrete-time signal, 
and t k  is the sequence of sampling times, which are not neces- 
sarily uniformly spaced. 

The scanning trajectory [ x S ( t ) ,  ys( t ) ]  and the set of sampling 
times t k  combine to determine the set of spatial points (xk, yk) 
at which samples are acquired. We shall represent each such 
sampling point by a 2-D Dirac delta function 6 ( x  - xk, y - yk), 
and the entire set of sampling points by the sampling function 

Because the image is not time varying, the order in which the 
samples are acquired is immaterial to the characteristics of the 
sampled 2-D signal. 

Since the illuminating and read spot functions have the same 
arguments, they may be combined as a single function p (  x ,  y )  = 
p i ( - x ,  - y ) p r ( - x ,  -y) ,  which accounts for all aperture effects 
due to the flying spot scanning process. We have reflected the 
coordinates simply for mathematical convenience. In addition, 
the averaging effect of the aperture may be represented as a 2-D 
convolution ofthe continuous-parameter image g (x, y )  with the 
aperture function; so the continous-parameter representation of 
the sampled image is thus given by 

With the appropriate choice of sampling times t k  for s ( t )  in 
Eq. (8) and sampling points (xk, yk) for q ( x ,  y )  in Eq. (lo), 
these two representations for the sampled image are completely 
equivalent. 

H M  
FIGURE 2 Focal plane array geometry. 

The second example that we wish to consider is that of a 2-D 
focal plane array illustrated in Fig. 2. Here each sample is ob- 
tained by integrating over the active area of the corresponding 
detector; so we have 

mX -k a12 nY + b f 2  

gd(m, = J J g(S,rl)dSdrl, (11) 
mX - a f 2  nY - b / 2  

where as before the spacing between sample points is X x Y and 
the size of the active area of each detector is a x b. The averaging 
effect ofthe active area ofthe detector can again be accounted for 
by convolution with an appropriately chosen aperture function, 
in this case 

p ( x ,  y )  = rect(x/a, y lb ) ,  (12) 

where rect(x, y )  is defined to be 1 if 1x1 < 1/2 and IyI < 1/2, and 
0, otherwise. The sampling function is given by 

q(x, y )  = combx,y(X, V I .  (13) 

With p ( x ,  y)  given by Eq. (12) and q ( x ,  y )  given by Eq. (13), 
Eq. (10) is completely equivalent to Eq. (1 1). 

To summarize, the sampling process for a broad group of 
image capture devices may be modeled as a convolution with 
an appropriately chosen aperture function p ( x ,  y )  followed by 
multiplication by an appropriate sampling function q ( x ,  y). 

2 Fourier Analysis of Image Capture 

Fourier analysis sheds a great deal of light on the effect of the 
sampling process. However, before we get to that, it will be helpful 
to first define the different spectral representations that we will 
be using. 

2.1 Spectral Representations for Discrete- 
and Continuous-Space Signals 
For continuous-space images, the appropriate spectral represen- 
tation is the continuous-space Fourier transform (CSFT). The 



632 Handbook of Image and Video Processing 

forward and inverse versions of  this transform are given respec- 
tively by 

where U = 1/X and V = 1/Y are the sampling frequencies in the 
horizontal and vertical directions in units of cycleshnit distance. 
Thus we see that there is a simple and direct relation between 
the CSFT of the continuous-space representation of the sampled 
image and the DSFT of the discrete-space representation of that 
image. Combining Eqs. (20) and (22), we obtain 

G, (u,  v )  = 

u dv. (15) gc (x, y )  = / I  G, (u,  v )  ei27F(ux -t vy)  d 

The units of  frequency for (u,  v )  are cycleshnit distance. For 
discrete-space images, we use the discrete-space Fourier trans- 

g, (x, y)  e-i2.rr(ux + vv) d dy. (14) Js 
Gd(U, v> = u V y , Y , G , ( ( U -  k)U, (V-Z)V). (23) 

k l  

form (DSFT) defined as 2.2 The General Image Capture Model Revisited 

m n  

The units of frequency for (U,  V) are cycles/pixel. Again, we shall 
use the subscripts c and d only where needed for clarity. 

In Section 1.1, we defined both continous-parameter and 
discrete-parameter representations for the sampled signal. To 
examine the spectral form of continuous-parameter representa- 
tion (6), we first note that 

We are now ready to examine our general model for image cap- 
ture from a frequency domain perspective. Taking the CSFT of 
Eq. (10) and using the convolution and product theorems, we 
obtain 

G5(u, v )  = Q(u, v )  * [ P ( u ,  v)G(u, v)I. (24) 

So we see that the spectrum of the sampled image is obtained 
by multiplying the spectrum of the continuous-space image by 
the CSFT P ( u ,  v )  of the aperture function p ( x ,  y) ,  and then 
convolving with the CSFT Q(u, v )  of  the sampling function 
q ( x ,  y). Let us denote the effect of multiplication by the CSFT 
of the aperture with a tilde: 

d ( u ,  v )  = P ( u ,  Y)G(u, v ) .  
(18) 

CSFT 1 
combx,y(x, y)  t, -comb+,+ (u,  v ) .  

XY 

For the special case where q ( x ,  y )  = combx,y(x, y),  we then 
have from Eq. (20) that 

Then by the convolution theorem, we have that the CSFT of 
Eq. (6) is given by 

1 
XY 

G,(u, v )  = Gc(u, v )  * -comb+,+(u, v ) .  (19) G5(u, v )  = UV 7 6 ( u  - kU, v - ZV). (26) 
k l  

It follows directly from the definition of comb function (5) and 
the convolution property of impulse (4) that 

Figure 3 illustrates this result. Let us first assume that there is 
G (1.4, v ) .  We no aperture effect; so P (u,  v )  1 and 5 (u ,  v )  

see that a sufficient condition for the spectral replications to not 
(20) overlap is that 1 

G, (u,  v )  = 7 G, ( u  - i, v - '). Y 
n .  

G(u, v )  # 0 onlyif IuI < U/2 and / V I  < V/2. (27) 

This is referred to as the Nyquist condition. Since 1/X = U and 
So sampling a continuous-space function on a lattice with inter- 
val (x,  y)  causes the CSFT of that function to be replicated in 
the frequency domain on a lattice with interval (1/X, 1/Y), and 
scaled overall by l/XY. 

To relate this result to the DSFT Ofgd(m, n), we take the CSFT 
of Eq. (7) directly. Interchanging the summation over the terms 
in the comb function with the Fourier integral, and using sifting 
property (2), we obtain T- - 

-r *. 
. n 

G,(u, v )  = 7,T; gd(m, n)e-i2.rr(umx +vnY)  f (21) 
m n  

Comparing this to Eq. (16), we see that Eq. (21) can be put in 
the form of the DSFT Of gd(m, n) with an appropriate change of 
frequency variables. Thus 

Gs(u, v )  = Gd(u/U, v/V>, (22) FIGURE 3 Spectrum of sampled image. 
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7 

FIGURE 4 Effect of undersampling a 2-D sinusoid (a) original sinewave with DC offset to make it 
nonnegative; (b) sampled sinewave (a); (c) reconstruction obtaining by band limiting (b) to the Nyquist 
limit; (d)-(f) spectra of (a)-(c), respectively. The square in (e) indicates frequencies below the Nyquist 
limit. 

1/Y = V ,  this condition has the interpretation that we must 
sample at least twice per cycle of the highest horizontal and 
vertical frequencies found in the image. Provided the Nyquist 
condition is satisfied, we see that G (u, v )  may be recovered from 
G,(u, v )  by multiplication with a scaled 2-D rect function. 

1 

uv G (u, v )  = - rect( u/U, v / V )  G, (u,  v) .  (28) 

Using the product theorem and the scaling property, we obtain 
in the spatial domain 

which using Eq. (7) can be expressed as 

g(X, = g(mX, nY)sinc(x - mX, y - nY), (30) 
m n  

where sinc(x, y )  sin(.rrx) sin(.rry)/(.rrx)(.rry). This is the 
Whitaker-Kotelnikov-Shannon sampling expansion, which 
shows that we can reconstruct an appropriately bandlimited im- 
age by interpolating between samples with a sinc function. This 
result is commonly known as the 2-D sampling theorem. 

When the Nyquist condition is not satisfied, any frequency 
component in the continuous-parameter image that lies outside 
the region 

will fold back into v, thus mimicking a lower frequency. 
Figure 4 illustrates this’for the case of a simple 2-D sinusoid. 
This phenomenon is known as aliasing. In images reconstructed 
from undersampled data, it manifests itself as moire patterns 
and staircasing or “jaggies” along straight edges. 

Figure 5 illustrates the effect of undersampling a real image. 
At the top of Fig. 5(a), we see a jagged edge along the crest of 
the dune. In addition, close inspection of the ripples in the sand 
reveals what appear to be fine lines oriented at 90” to the ripples. 
Both these artifacts are due to undersampling. In Fig. 5(b), we 
see that the energy in the Fourier transform oriented along a 
fine line at about 75” from the positive U axis has folded back, 
creating short diagonal line segments in the second and fourth 
quadrants. This spectral component corresponds to the edge 
of the crest. In addition, the more diffuse cloud of energy ori- 
ented at 45” to the positive U axis has folded back, creating 
clouds in the upper left and lower right corners of the spec- 
trum. This spectral component corresponds to the ripples in the 
sand. 

The Nyquist condition may be stated more generally in a nec- 
essary and sufficient form: If and only if the support of G(u ,  v )  
does not exceed an area of size UV, g(x, y )  may be recon- 
structed from its samples taken on a rectangular lattice at in- 
terval ( l /U ,  l / V ) .  The interpolating function will be the inverse 
CSFT of the indicator function for the support region, scaled 
by l/UV. 

Now let’s consider the effect of the aperture indicated by 
Eq. (25). If the CSFT P ( u ,  v )  of the aperture rolls off at 
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FIGURE 5 
Fourier transform. 

Effect of undersampling an image of a sand dune: (a) undersampled image, and (b) the magnitude of its 

frequencies outside SZU, V, the aperture will attenuate any fre- 
quencies in the continuous-parameter image g(x, y )  outside 
SZu,v, thereby suppressing aliasing. This desirable effect is 
known as prescan band limitation or antialiasing. In con- 
trast, if P ( u ,  v) rolls off, i.e., IP(u ,  v)l < 1, for frequencies 
(u,  v) E i - 2 ~  v, then the aperture will have the undesired effect 
of attenuating frequencies in g(x, y )  that are not undersampled. 
Typically, it is the higher frequencies in the image that are at- 
tenuated in this manner, resulting in an image that looks soft 
or slightly blurred after reconstruction using Eq. (28) or (30). 
Provided I P ( u ,  v)l > 0 for all frequencies (u, v) E au,v, this 
effect may be compensated by replacing Eq. (28) with 

1 
uv G ( u ,  v) = -rect(u/U, v / U )  [ P ( u ,  v)]-' G,(u, v). (32) 

Of course, at frequencies within SZu,v where I P (u,  v )  I is small, 
this reconstruction procedure will amplify any noise present in 
the sampled data. 

2.3 Sampling with Nonrectangular Lattices 
We saw in the preceding section that sampling an image on a 
rectangular lattice with interval X x Y causes replication of the 
image spectrum on a reciprocal lattice that is also rectangular, 
and which has interval 1/X x 1/Y. To prevent aliasing, these 
replications must be spaced far enough apart to prevent overlap. 
For an image band limited to a circular band region with high- 
est frequency W, we must have 1/X > 2 W and 1/Y > 2 W. The 
minimum sampling density is given by 

(33) dR = - = 4 W sampleslunit area. 

Figure 3 shows a situation in which the sampling in the vertical 
direction slightly exceeds the Nyquist rate. However, even if the 

2 1 
XY 

sampling were at the Nyquist rate, the spectral replications would 
not completely cover the frequency domain. This suggests that 
it may be possible to use a different lattice that will more tightly 
pack the spectra in the frequency domain, resulting in a spreading 
of samples on the reciprocal lattice in the spatial domain, and 
hence a lower sampling density. 

It is well known that the lattice that most tightly packs circles 
is hexagonal. Figure 6 shows the corresponding spatial lattice. 
Each sample point has six equidistant neighbors, which are all 
separated from it by angles of 60 '. To determine the reciprocal 
lattice for this sampling structure, we represent it using two in- 
terlaced rectangular lattices with the same period, as indicated 
in Fig. 6; so 

where X = 1/(2 W) and Y = l/(&W). To determine the cor- 
responding reciprocal lattice, we calculate the CSFT of Eq. (34), 
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FIGURE 7 Spectrum of image sampled on a hexagonal lattice. 

3.1 Downsampling and Decimation 
To decrease the sampling rate of a digital image f( m, n) by in- 
teger factors of C x D, we can downsample it by using 

So we simply discard all but every Cth sample in the m direction 
and all but every Dth sample in the n direction. To understand 
the effect of this operation, we derive an expression for the DSFT 
of 83- (m, n) in terms of that of f ( m ,  n). By definition (16), 

using the shifting property of the Fourier transform to yield With a change of indices of summation, we can write 

1 
Q(u, v )  = -comb1 ~ ( u ,  v )  XY X' Y 

(41) 
where 1 + -combi L (u ,  v)e-i"'fxu+yv),  XY X' Y 

1, m/ C is an integer 
(42) I 0, else sc(m) = 

Because 

Since sc(m) is periodic with period C, it can be expressed as a 
discrete Fourier series. Within one period, sc(m) consists of a 
single impulse; so the Fourier coefficients all have value unity. 
Thus we can write 

(35) 

2, m+neven 
0, m + n o d d '  c - 1  

(36) 

sc(m) = (43) - e-i2,dmklC) 

k = O  

1 + e-i.rrfm + n) = 

the reciprocal lattice is also hexagonal. So the spectrum 

Substituting this into Eq. (41), and interchanging orders of sum- 
mation, we obtain G,(u, v )  = UV (1 + e-i.rr(m +n))c ( u  - kU, v - ZV) 

k l  

C - 1 D - 1  (37) 

of the sampled image appears as shown in Fig. 7. Here, U = 1/X 
and V = 1/Y, as before. Now the sampling density is 

G $ ( U  V) = - yy 
c D  k = O  1=0 m n 

> (44) f ( m ,  n) e-i2.rr[f  u - k)m/  C + ( V - b / D 1  

which may be recognized as (38) 2 2 A H =  - = 4 & W .  
XY 

The savings is d H / d R  = &/2 = 0.866, or 13.4%. 
The hexagonal lattice is only one example of a nonrectangular 

lattice. Such lattices can be treated in a more general context of 
lattice theory. This framework is developed in Chapter 7.2. 

3 Sampling Rate Conversion 

In some instances, it is desirable to change the sampling rate of 
a digital image. This section addresses the procedures for doing 
this, and the effect of sampling rate changes. 

So we see that downsampling the image causes the DSFT to be 
expanded by a factor of C in the U direction and a factor of D in 
the V direction. This is a consequence of the fact that the image 
has contracted by these same factors in the spatial domain. The 
DSFT G (U,  V) is comprised of a summation of C D replications 
of the expanded DSFT F (U/ C, V / D )  shifted by unit intervals in 
both the U and V directions. Figure 8 illustrates the overall result. 
Here the downsampling has resulted in overlap of the spectral 
replications of F (U/ C, V/ D ) ,  thus resulting in aliasing. 
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(a) (b) 

FIGURE 8 
(a) before downsampling, (b) after downsampling. 

Effect of downsampling by factor of 2 x 2 on the DSFT of image: 

The most important consequence of downsampling is the po- 
tential for additional aliasing, which will occur if F (U, V) # 0 
for any I UI ? 1/(2C) or I VI 2 1/(2D). To prevent this, we can 
prefilter f (  m, n) prior to downsampling with a filter having fre- 
quency response 

H(U, V) = CDrect(CU, DV). 

The impulse response corresponding to this filter is 

h(m, n) = sinc(m/C, n/D). (47) 

Because of the large negative sidelobes and slow roll-off of the 
filter, it can result in undesirable ringing at edges when it is trun- 
cated to finite extent. This is known as the Gibb’s phenomenon. 
It can be avoided by tapering the filter with a window function. 
In practice, it is common to simply average the image samples 
within each C x D cell, or to use a Gaussian filter. The combi- 
nation of a filter followed by a downsampler is called a decima- 
tor. Figure 9 shows the block diagram of such a system. Its net 
effect is 

g(m, n) = 7; f (k ,  l)h(Cm - k ,  Dn - I ) .  (48) 
k 1  

FIGURE 10 Interpolator. 

zeros between each sample in the n direction: 

{ o’,’m, n),  m/ C and n/ D are integers 
gt(m n) = * (49) else 

We again seek an expression for the DSFT of gt (m,  n) in terms 
of that of f(m, n). Applying the definition of the DSFT, we can 
write 

m n  

which after a change of variable becomes 

m n  

= F(CU, DV). 

Thus upsampling contracts the spectrum by a factor of C in 
the U direction and D in the V direction. There is no aliasing, 
because no information has been lost. The DSFT G t ( U ,  V) is 
periodic with period 1 /C x 1/D. To generate an image that is 
oversampled by a factor of C x D, we need to filter out all but 
the baseband replication, again using the ideal low-pass filter of 
Eq. (46). The combination of an upsampler followed by a filter 
is called an interpolator. Figure 10 shows the block diagram of 
such a system. Its net effect is given by 

g(m, n) = 7; f(k,  I)h(m - Ck, n - DZ). (53) 
k 1  

For the special case of the ideal low-pass filter, 

Here we have dropped the down-arrow subscript to denote the 

first. 

g(m, n) = f (k ,  l)sinc(m/C - k, n/D - 1).  (54) 
fact that we are not just downsampling, but rather are filtering k 1  

In the frequency domain, the interpolator is described by 

G(U, V) = H(U, V)F(CU, DV). ( 5 5 )  3.2 Upsampling and Interpolation 
T~ understand how we increase the sampling rate of an image 
f (  m, n) by integer factors c in the direction and D in the 

direction, it is helpful to start with an upsampler, which inserts c - 1 between sample in the direction and D - 1 following section, we examine some alternative approaches. 

For reasons similar to those discussed in the context of deci- 
mation as Well as undesirably large computational requirements, 
the sinc filter is not widely used for image interpolation. In the 

4 Image Interpolation 

Both decimation and interpolation are fundamental image pro- 
cessing operations. As the resolution of desktop printers grows, 
interpolation is increasingly needed to scale images up to the FIGURE 9 Decimator. 
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resolution of the printer prior to halftoning which is discussed 
in detail in Chapter 8.1. In addition to the quality of the interpo- 
lated image, the effort required to compute it is a very important 
consideration in these applications. We will use the theory de- 
veloped in the preceding section as the basis for describing a 
variety of methods that can be used for image interpolation. We 
shall assume that the image is to be enlarged by integer factors 
C x D, where for convenience, we assume that both C and D 
are even. We begin with several methods that can be modeled as 
an upsampler followed by a linear filter, as shown in Fig. 10. 

0.6 

0.5 

0.4 

0.2 
4.1 Linear Filtering Approaches 
At the lowest level of computational complexity, we have pixel 
replication, also known as nearest neighbor interpolation or zero- 

In this case, 
order interpolation, which is widely used in many applications. 

g ( m  n)  = f(lm/C13 ln/Dl>, (56) 

FIGURE 12 
lation. 

Magnitude of frequency response of linear filters for 4x interpo- 

where 1.1 denotes rounding to the nearest integer. The corre- 
sponding filter in the interpolator structure shown in Fig. 10 is 
given by 

of the filter, we see that this is a consequence of the fact that the 
filter does not effectively block the replications of F(CU, DV) 
outside the region fil,c,l,~(U, V), as shown in Fig. 12. 

To obtain a smoother result, we can linearly interpolate be- 
tween adjacent samples. The extension ofthis idea to 2-D, called -C/2 5 rn < C/2, - D/2 i n < D / 2  

else ' bilinear interpolation, is described by ho(m, n) = 

where the subscript denotes the order of the interpolation. Pixel 
replication yields images that appear blocky, as shown in Fig. 11. 
Looking at Eq. (55) and the frequency response 

(58) where a = rm/ Cl - m/ C and P = rn/ Dl - n/ D. In this case, 

It follows directly from Eq. (60) that 

1 w 

(4 (b) 
FIGURE 11 
interpolated by 4x. (See color section, p. C-33.) 

Interpolation by pixel replication: (a) original image, (b) image 

which provides better suppression of the nonbaseband replica- 
tions of F(U, V), as shown in Fig. 12. As can be seen in Fig. 13, 
bilinear interpolation yields an image that is free of the block- 
iness produced by pixel replication. However, the interpolated 
image has an overall appearance that is somewhat soft. 

Both these strategies are examples of B-spline interpolation, 
which can be generalized to arbitrary order K .  The correspond- 
ing frequency response is given by 



FIGURE 13 
section, p. C 3 3 . )  

Interpolation by4x by means ofbilinear interpolation. (See color 

The choice K = 3 is popular, since it yields a good trade-off 
between smoothness of the interpolation and locality of depen- 
dence on the underlying data. For further discussion of image 
interpolation using splines, the reader is directed to [ 11 and [2]. 
The latter reference, in particular, discusses the design of an op- 
timal prefilter for minimizing loss of information when splines 
are used for image reduction. 

4.2 Model-Based Approaches 
In many applications, spline interpolation does not yield im- 
ages that are sufficiently sharp. This problem can be traced to 
the way in which edges and textures are rendered. In recent 
years, there has been a great deal of interest in techniques for 
improving the quality of interpolated images by basing the in- 
terpolation on some type of image model. With many of the 
algorithms, the fundamental idea is to identify edges and to 
avoid interpolating across them [3-161. A few of these methods 
explicitly estimate high-resolution edge information from the 
low-resolution image, and use this information to control the 
interpolation [ 6,9, lo]. These works use a variety of underlying 
interpolation methods: bilinear [ 7,9,10] cubic splines [6,8], di- 
rectional filtering [3-5,8], and least-squares fit to a model [ 7,9]. 

Low-resolution 
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image 

Subpixel edge 

High resolution 
edge map 

FIGURE 14 Framework for the edge-directed interpolation algorithm. 

Some of these methods are based on more general models that 
account for texture as well as edges. These approaches include 
Bayesian reconstruction based on a Markov random field model 
[ 111, a wavelet-transform based method [ 121, and a tree-based 
scheme [ 131. In order to illustrate the kind of performance that 
can be achieved with methods of this type, we will briefly de- 
scribe two approaches that have been reported in the literature, 
and show some experimental results. 

4.2.1 Edge-Directed Interpolation 
Figure 14 shows the framework within which the edge-directed 
interpolation algorithm operates. We will only sketch the high- 
lights of the procedure here. For further details, the reader is 
directed to [ 101. A subpixel edge estimation technique is used 
to generate a high-resolution edge map from the low-resolution 
image, and then the high-resolution edge map is used to guide 
the interpolation of the low-resolution image to the final high- 
resolution version. Figure 15 shows the structure of the edge- 
directed interpolation algorithm itself. It consists of two phases: 
rendering and data correction. Rendering is based on a modi- 
fied form of bilinear interpolation of the low-resolution image 
data. An implicit assumption underlying bilinear interpolation 
is that the low-resolution data consists of point samples from 
the high-resolution image. However, most sensors generate low- 
resolution data by averaging the light incident at the focal plane 
over the unit cell corresponding to the low-resolution sampling 
lattice. We iteratively compensate for this effect by feeding the 
interpolated image back through the sensor model and using 

Low-resolution 

1 
Data & Edge-directed ym,n  interpolated 

Correction Rendering Image 

Sensor 
Model 

Sensor 
Data 

Data 
FIGURE 15 Structure of the edge-directed interpolation algorithm. 
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the disparity between the resulting estimated sensor data and 
the true sensor data to correct the mesh values on which the 
bilinear interpolation is based. Reference [ 111 also embodies a 
sensor model. 

To estimate the subpixel edge map shown in Fig. 14, we fil- 
ter the low-resolution image with a simple rectangular center- 
on-surround-off (COSO) filter with a constant positive center 
region embedded within a constant negative surround region. 
The relative heights are chosen to yield zero DC response. The 
filter coefficients are given by 

(0, otherwise 

This filter mimics the point-spread function for the Laplacian- 
of-Gaussian (LOG) given by [ 141 

2 

U 2  
hLOG(m, n> = -[I - (& + n 2 ) / 2 a 2 1 e - ( ~ + n ~ ) / 2 ~ ~  . (64) 

as shown in Fig. 16. For a detailed treatment ofthe Laplacian-of- 
Gaussian filter and its use, the reader is directed to Chapter 4.1 1. 

The COSO filter results in a good approximation to the edge 
map generated with a true LOG filter, but requires only nine ad- 
ditionslsubtractions and two multiplies per output point when 
recursively implemented with row and column buffers. To deter- 
mine the high-resolution edge map, we linearly interpolate the 
COSO filter output between points on the low-resolution lat- 
tice to estimate zero-crossing positions on the high-resolution 
lattice. Figure 17 shows a subpixel edge map estimated by using 
the COSO filter followed by piecewise linear interpolation, using 
the original low-resolution image shown in Fig. 11. The inter- 
polation factor was 4 x .  For comparison, we show a subpixel 
edge map obtained by upsampling the low-resolution image, 

1.5 I I 

-0.5' 1 -6 -4 -2 0 2 4 6 
n 

FIGURE 16 Point-spread function of COSO and LOG filters along the axes. 

followed by filtering with a LOG filter, and detection of zero 
crossings. The COSO edge map does not contain the fine detail 
that can be seen in the LOG edge map. However, it does show the 
major edges corresponding to significant gray value changes in 
the original image. 

Now let us turn our attention to Fig. 15. The essential feature 
of the rendering step is that we modify bilinear interpolation on 
a pixel-by-pixel basis to prevent interpolation across edges. To 
illustrate the approach, let's consider interpolation at the high- 
resolution pixel m in Fig. 18. We first determine whether or not 
any of the low-resolution corner pixels a, b, c, and d are sepa- 
rated from m by edges. For all those pixels that are, we compute 
replacement values according to a heuristic procedure that de- 
pends on the number and geometry of the pixels to be replaced. 
Figure 18(a) shows the situation in which a single corner pixel 
ub is to replaced. In this case, we linearly interpolate to the mid- 
point i of the line u, - uc, and then extrapolate along the line 
ud - i to yield the replacement value Lib. If two corner pixels 
are to be replaced, they can be either adjacent or not adjacent. 
Figure 18(b) shows the case in which two adjacent pixels u, and 

FIGURE 17 High-resolution edge map interpolated by4x using a rectangular COSO filter followed by piecewise linear 
interpolation of zero crossings (left) and high-resolution edge map interpolated by 4 x  using a LOG filter after upsampling 
by4x. 
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FIGURE 18 Computation of replacement values for the low-resolution corner pixels to be used when 
bilinearly interpolating the image value at high-resolution pixel m The cases shown are (a) replacement of 
one pixel, and (b) replacement of two adjacent pixels. 

ub must be replaced. In this case, we check to see if any edges cross 
the lines e - c and f - d.  If none does, we linearly extrapolate 
along the lines u, - u, and uf - ud to generate the replacement 
values f i b  and c,, respectively. If an edge crosses e - c, we sim- 
ply let U b  = u,. The cases in which two nonadjacent pixels are 
to be replaced or in which three pixels are to be replaced are 
treated similarly. The final case to be considered is that which 
occurs when the pixel m to be interpolated is separated from 
all four corner pixels a, b, c, and d by edges. This case would 
only occur in regions of high spatial activity. In such areas, we 
assume that it is not possible to obtain a meaningful estimate of 
the high-resolution edge map from just the four low-resolution 
corner pixels; so the high-resolution image will be rendered with 
unmodified bilinear interpolation. It is interesting to note that 
the process of bilinear interpolation, except across edges, is very 
closely related to anisotropic diffusion, which is studied in detail 
in Chapter 4.12. 

To describe the iterative correction procedure, we let 1 be the 
iteration index, and denote the true sensor data by z( m, n), the 
preprocessed sensor data by x(m, n), the corrected sensor data 
by u(')(m, n),  the edge-directed rendering step by the operator 
R, the interpolated image by y(')(m, n),  the sensor model by 
the operator S, and the estimated sensor data by d')(m, n). The 
sensor model S is a simple block average of the high-resolu- 
tion pixels in the unit cell for each pixel in the low resolution 
lattice. 

With this notation, we may formally describe the procedure 
depicted in Fig. 15 by the following equations: 

y'"(m n) = R[u(')(m, $1, 
Y( l )  (m, n) = S [  y(l) (m, 41, 

(65) 

(66) 

u(' + (m, n) = u(') (m, n) -t X (d') (m, n) - x( m, n)) , (67) 

where h is a constant that controls the gain of the correc- 
tion process. The iteration is started with the initial condi- 
tion u0(m, n) = x(m,  n). Equations (65-67) represent a classical 
successive approximation procedure [15]. We can think of 
d')(m, n) - x(m,  n) as the closed loop error when an image 

is interpolated and then decimated as it passes through the sen- 
sor model. If we have convergence in the iterative loop, i.e., if 
u(' + ') (m, n) = u(') (m, n), this implies that v(') (m, n) = x( m, n) . 
Hence the closed loop error is zero. Convergence of the itera- 
tion can be proved under mild restrictions on the location of 
edges [ 161. 

Figure 19 shows the results of 4 x interpolation using the edge- 
directed interpolation algorithm after iterations 0 and 10. We 
see that edge-directed interpolation yields a much sharper result 
than bilinear interpolation. While some of the aliasing artifacts 
that occur with pixel replication can be seen in the edge-directed 
interpolation result, they are not nearly as prominent. The result 
after iteration 0 shows the effect of the edge-directed rendering 
alone, without data correction to account for the sensor model. 
While this image is sharper than that produced by bilinear in- 
terpolation, it lacks some of the crispness of the image resulting 
after 10 iterations of the algorithm. 

4.2.2 Tree-Based Resolution Synthesis 
Tree-based resolution synthesis (TBRS) [ 131 works by first per- 
forming a fast local classification of a window around the pixel 
being interpolated, and then applying an interpolation filter de- 
signed for the selected class, as illustrated in Fig. 20. The idea be- 
hind TBRS is to use aregression tree as a piecewise linear approxi- 
mation to the conditional mean estimator of the high-resolution 
image given the low-resolution image. Intuitively, having the 
Merent regions of linear operation allows for separate filter- 
ing of distinct behaviors like edges of different orientation and 
smoother gradient transitions. 

An overview of the TBRS algorithm appears in Fig. 21. Note 
that before TBRS can be executed, we must already have gener- 
ated the parameters for the regression tree by training on sample 
images. This training procedure requires considerable compu- 
tation, but it only has to be performed once. The resulting pre- 
dictor may be used effectively on images that were not used in 
the training. 

As illustrated in Fig. 20, we generate an C x C block of high- 
resolution pixels for every pixel in the low-resolution source 
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(a) (b) 

FIGURE 19 Image interpolated by 4x using edge-directed interpolation with (a) 0 and (b) 10 iterations. (See color 
section, p. C-34.) 

image by filtering the corresponding W x W window of pixels 
in the low-resolution image, with the filter coefficients selected 
based on a classification. We have used W = 5 .  Thinking of the 
desired high-resolution pixels as a C2-dimensional random vec- 
tor X and the corresponding low-resolution pixels as the real- 
ization of a W2-dimensional random vector Z,  our approach is 
to use a regression tree that approximates the conditional mean 
estimator of X IZ, so that the vector i of interpolated pixels 
satisfies 

It is well known that the conditional mean estimator minimizes 
the expected mean-squared error [ 171. Here we will use capital 
letters to represent random quantities, and lowercase letters for 
their realizations. A closed-form expression for the true condi- 
tional mean estimator would be difficult to obtain for the present 
context. However, the regression tree T that we use provides a 
convenient and flexible piecewise linear approximation, with the 
M different linear regions being polygonal subsets which com- 
prise a partition of the sample space 2 of low-resolution vectors 
Z. These polygonal subsets, or classes, correspond to visually 
distinct behaviors like edges of different orientation. 

Interpolator Parameters 

Interpolation filter 
selected by classifier 

Compute 
optimal estimate 

of X given z 

Image Scaled Image - 1  
FIGURE 20 TBRS interpolation by a factor of 2. 

With the main ideas in place, we return to Fig. 20 for a better 
look. To interpolate the shaded pixel in the low-resolution image, 
we first procure the vector z by stacking the pixels in the 5 x 5 
window centered there. Then we obtain interpolated pixels as 

32 = A ~ z  + p j ,  (69) 

where Aj and p j  are respectively the L 2  x W2 matrix and L2-  
dimensional vector comprising the interpolation filter for class 
j, and j is the index of the class obtained as 

j = C T ( Z ) ,  (70) 

where CT : 2 + {0,  . . . , A4 - 1) is a function that embodies 
the classifylng action of T.  To evaluate CT(Z),  we begin at the 
top and traverse down the tree T as illustrated in Fig. 22, making 
a decision to go right or left at each nonterminal node (circle), 
and taking the index j of the terminal node (square) that z lands 
in. Each decision has the form 

where m is the index of the node, e,,, and Urn are W2-dimensional 

Training 
Interpolator 

Interpolator 
Parameters 1 4 TBRS Interpolated 

Image set) Interpolation - 
FIGURE 21 Overview of TBRS. 
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z 

FIGURE 22 Binary tree structure used in TBRS. 

vectors, and a superscript t denotes taking the transpose. This 
decision determines whether z is on one side of a hyperplane or 
the other, with V, being a point in the hyperplane and with e ,  
specifymg its orientation. By convention, we go left ifthe quantity 
on the left-hand side is negative, and we go right otherwise. 

In order to complete the design of the TBRS algorithm, we 
must obtain numerical values for the integer number M 2 1 
of terminal nodes in the tree; the decision rules {(e,, U,)}, = 
OM - 2 for the nonterminal nodes (assuming that A4 > 1); and 
the interpolation filters {(A,, Pm)), = O M  - 1 for the termi- 
nal nodes. To compute these parameters, a training procedure is 
used, which is based on that given by Gelfand, Ravishankar, and 
Delp [ 181, suitably modified for the design of a regression tree 

FIGURE 23 Interpolation by 4x via TBRS. (See color section, p. C-34.) 

rather than a classification tree. The training vector pairs are as- 
sumed to be independent realizations of ( X ,  Z). Training vector 
pairs are extracted from low- and high-resolution renderings of 
the same image. For further details regarding the design process, 
the reader is directed to Ref. [ 131. Figure 23 shows the flower 
image interpolated by 4 x using tree-based resolution synthe- 
sis. Comparing this image with those shown in Fig. 19, which 
were generated by means of edge-directed interpolation, we see 
that TBRS yields a higher quality than edge-directed interpola- 
tion after 0 iterations, and quality that is comparable to that of 
edge-directed interpolation after 10 iterations. 

5 Conclusion 

Most systems for image capture may be categorized into one of 
two classes: flying spot scanners and focal plane arrays. Both these 
classes of systems may be modeled as a convolution with an aper- 
ture function, followed by multiplication by a sampling func- 
tion. In the frequency domain, the spectrum of the continuous- 
parameter image is multiplied by the Fourier transform of the 
aperture function, resulting in attentuation of the higher fre- 
quencies in the image. This modified spectrum is then replicated 
on a lattice of points that is reciprocal to the sampling lattice. If 
the sampling frequency is sufficiently high, the replications will 
not overlap; and the original image may be reconstructed from 
its samples. Otherwise, the overlap of the spectral replications 
with the baseband term may cause aliasing artifacts to appear in 
the image. 

In many image processing applications, including printing of 
digitalimages, it is necessary to resize the image. This process may 
be analyzed within the framework of multirate signal process- 
ing. Decimation, which consists of low-pass filtering followed by 
downsampling, results in expansion and replication of the spec- 
trum of the original digital image. Interpolation, which consists 
of upsampling following by low-pass filtering, causes the spec- 
trum of the original digital image to contract; so it occupies only 
a portion of the baseband spectral region. With this approach, 
the interpolated image is a linear function of the sampled data. 
Linear interpolation may blur edges and fine detail in the image. 
A variety of nonlinear approaches have been proposed that yield 
improved rendering of edges and detail in the image. 

References 
[ 11 H. S. Hou and H. C. Andrews, “Cubic convolution interpolation 

for digital image processing,” IEEE Trans. Acoust. Speech Signal 
Process. 26, 508-517 (1978). 

[2] M. Unser, A. Aldroubi, and M. Eden, “Enlargement or reduction 
of digital images with minimum loss of information,” IEEE Trans. 
Image Process. 4,247-258 (1995). 

[3] V. R. Algazi, G. E. Ford, and R. Potharlanka, “Directional inter- 
polation of images based on visual properties and rank order filter- 
ing,” presented at the 199 1 International Conference on Acoustics, 
Speech, and Signal Processing, Toronto, CN, May 14-17, 1991. 



7. I Image Scanning, Sampling, and Interpolation 643 

[4] G. E. Ford, R. R Estes, and H. Chen, “Space scale analysis for 
image sampling and interpolation,” presented at the 1992 Interna- 
tional Conference on Acoustics, Speech, and Signal Processing, San 
Francisco, CA, March 23-26,1992. 

[5] B. Ayazifar and J. S. Lim, “Pel-adaptive model-based interpolation 
of spatially subsampled images,” presented at the 1992 Interna- 
tional Conference on Acoustics, Speech, and Signal Processing, 
San Francisco, CA, March 23-26,1992. 

[6] K. Xue, A. Winans, and E. Walowit, “An edge-restricted spatial 
interpolation algorithm,” J. Electron. h a g .  1,152-161 (1992). 

[7] E G. B. De Natale, G. S. Desoli, D. D. Guisto, and G. Vernazza, 
“A spline-like scheme for least-squares bilinear interpolation,” pre- 
sented at the 1993 International conference on Acoustics, Speech, 
and Signal Processing, Minneapolis, MN, April 27-30, 1993. 

[8] S. W. Lee and J. K. Paik, “Image interpolation using adaptive fast 
B-spline filtering,” presented at the 1993 International Conference 
on Acoustics, Speech, and Signal Processing, Minneapolis, MN, 
April 27-30, 1993. 

[9] K. Jensen and D. Anastassiou, “Subpixel edge localization and the 
interpolation of still images,” IEEE Trans. Image Process. 4,285-295 
(1995). 

[lo] J. P. AUebach and P. W. Wong, “Edge-directed interpolation,” 
presented at the 1996 IEEE International Conference on Image 
Processing, Lausanne, Switzerland, September 16-19, 1996. 

[ 111 R. R. Schultz and R. L. Stevenson, ‘X Bayesian approach to image 
expansion for improved definition,” IEEE Trans. Image Process. 3, 

[ 121 S. G. Chang, Z. Cvetkovic, and M. Vetterli, “Resolution enhance- 
ment of images using wavelet transform extrema extrapolation,” 
Proc. IEEE Int. Can$ Acoust. Speech Signal Process. 4, 2379-2382 
(1995). 

[ 131 C. B. Atkins, C. A. Bouman, and J. P. AUebach, “Tree-Based Res- 
olution Synthesis,” presented at the 1999 IS&T Image Processing, 
Image Quality, Image Capture Systems Conference, Savannah, GA, 

[14] J. Canny, “A computational approach to edge detection,” IEEE 
Trans. Pattern Anal. Machine Intell. PAMI-S,679-698 (1986). 

[ 151 R W. Schafer, R M. Mersereau, and M. A. Richard, “Constrained 
iterative restoration algorithms:’ Proc. IEEE 69,432450 (198 1). 

[ 161 P. W. Wong and J. P. Allebach, “Convergence of an iterative edge 
directed image interpolation algorithm,” presented at the 1997 
IEEE International Symposium on Circuits and Systems, Hong 
Kong, June 9-12,1997. 

[ 171 L. L. Sharf, Statistical Signal Processing (Addison-Wesley, Reading, 
MA, 1991). 

[ 181 “An iterative growing and pruning algorithm for classification tree 
design,” IEEE Trans. Pattern Anal. Machine Intell. 13, 163-174 
(1991). 

233-242 (1994). 

April 25-28,1999. 





Video Sampling and 
Interpolation 

Eric Dubois 
University of Ottawa 

Introduction. .................................................................................. 645 
Spatiotemporal Sampling Structures.. ..................................................... 645 
Sampling and Reconstruction of Continuous Time-Varying Imagery.. .............. 647 
Sampling Structure Conversion ............................................................ 65 1 
4.1 Frame-Rate Conversion 4.2 Spatiotemporal Sampling Structure Conversion 
Conclusion.. ................................................................................... 654 
References.. .................................................................................... 654 

1 Introduction 

This chapter is concerned with the sampled representation of 
time-varying imagery, often referred to as video. Time-varying 
imagery must be sampled in at least one dimension for the pur- 
poses of transmission, storage, processing, or display. Exam- 
ples are one-dimensional temporal sampling in motion-picture 
film, two-dimensional vertical-temporal scanning in the case 
of analog television, and three-dimensional horizontal-vertical- 
temporal sampling in digital video. In some cases a single sam- 
pling structure is used throughout an entire video processing 
or communication system. This is the case in standard analog 
television broadcasting, in which the signal is acquired, trans- 
mitted, and displayed using the same scanning standard from 
end to end. However, it is becoming increasingly more common 
to have different sampling structures used in the acquisition, 
processing, transmission, and display components of the sys- 
tem. In addition, the number of different sampling structures in 
use throughout the world is increasing. Thus, sampling structure 
conversion for video systems is an important problem. 

The initial acquisition and scanning is particularly critical be- 
cause it determines what information is contained in the orig- 
inal data. The acquisition process can be modeled as an ana- 
log prefiltering followed by ideal sampling on a given sampling 
structure. The sampling structure determines the amount of spa- 
tiotemporal information that the sampled signal can carry, while 
the prefiltering serves to limit the amount of aliasing. At the final 
stage of the system, the desired display characteristics are closely 
related to the properties of the human visual system. The goal 

of the display is to convert the sampled signal to a continuous 
image presented to the viewer that approximates the original 
continuous scene as closely as possible. In particular, the effects 
caused by sampling should be attenuated sufficiently to be below 
the threshold of perceptibility. 

This chapter has three main sections. First the sampling lat- 
tice, the basic tool in the analysis of spatiotemporal sampling, is 
introduced. The issues involved in the sampling and reconstruc- 
tion of continuous time-varying imagery are then addressed. 
Finally, methods for the conversion of image sequences between 
different sampling structures are presented. 

2 Spatiotemporal Sampling Structures 

A continuous time-varying image f c ( x ,  y, t)  is a function of 
two spatial dimensions x and y and time t, usually observed 
in a rectangular spatial window W over some time interval 1. 
The spatiotemporal region W x I is denoted W T .  The spatial 
window is of dimension pw x ph, where pw is the picture width 
and ph is the picture height. Since the absolute physical size of 
an image depends on the display device used, and the sampling 
density for a particular video signal may be variable, we choose 
to adopt the picture height ph as the basic unit of spatial distance, 
as is common in the broadcast video industry. The ratio pw/ph 
is called the aspect ratio, the most common values being 413 for 
standard TV and 16/9 for HDTV. The image fc can be sampled 
in one, two, or three dimensions. It is almost always sampled in 
the temporal dimension at least, producing an image sequence. 

Copyight @ 2000 by Acadmic Press. 
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An example of an image sampled only in the temporal dimen- 
sion is motion picture film. Analog video is typically sampled 
in the vertical and temporal dimensions whereas digital video is 
sampled in all three dimensions. The subset of R3 on which the 
sampled image is defined is called the sampling structure Q; it is 
contained in W r .  

The mathematical structure most useful in describing sam- 
pling of time-varying images is the lattice. A discussion of lattices 
from the point of view of video sampling can be found in [ 11 
and [2]. Some of the main properties are presented here. A lattice 
A in D dimensions is a discrete set ofpoints that can be expressed 
as the set of all linear combinations with integer coefficients of 
D linearly independent vectors in RD (called basis vectors), 

where Z is the set of integers. For our purposes, D will be one, two 
or three dimensions. The matrix V = [VI I v2 I . . . I VD] whose 
columns are the basis vectors vi is called a sampling matrix and 
we write A = LAT( V). The basis or sampling matrix for a given 
lattice is not unique however, since LAT( V) = LAT( V E )  where 
E is any unimodular (ldet E 1 = 1) integer matrix. Figure 1 shows 
an example of a lattice in two dimensions, with basis vectors 
VI = (2X, 0) and v2 = (X, Y ) .  The sampling matrix in this 
case is 

v=['o" ;I. 
A unit cell of a lattice A is a set P c RD such that copies of 

P centered on each lattice point tile the whole space without 
overlap: (P + sl) n (P + s2) = 0 for sl, s2 E A, s1 # s2, and 
U s e ~ ( P  + s) = RD. The volume of a unit cell is d(A) = ldet VI, 
which is independent of the particular choice of sampling ma- 
trix. We can imagine that there is a region congruent to P of 
volume d(A) associated with each sample in A, so that d(A) is 
the reciprocal of the sampling density. The unit cell of a lattice 
is not unique. In Fig. 1, the shaded hexagonal region centered 
at the origin is a unit cell, of area d(A) = 2XY. The shaded 
parallelogram in the upper right is also a possible unit cell. 

y t  . . 

. 
FIGURE 1 Example of a lattice in two dimensions with two possible unit cells. 

Most sampling structures of interest for time-varying imagery 
can be constructed using a lattice. In the case of 3-D sampling, the 
sampling structure can be the intersection of W r  with a lattice, 
or in a few cases, with the union of two or more shifted lattices. 
The latter case occurs relatively infrequently (although there are 
several practical situations where it is used), and so the discussion 
here is limited to sampling on lattices. The theory of sampling 
on the union of shifted lattices (cosets) can be found in [ 11. In 
the case of one or two-dimensional (partial) sampling ( D  = 1 
or 2), the sampling structure can be constructed as the Cartesian 
product of a D-dimensional lattice and a continuous (3 - D) di- 
mensional space. For one-dimensional sampling, the 1 -D lattice 
is At  = { n T I n E Z}, where T is the frame period. The sampling 
structure is then W x At  = ((x, t)  I x E W ,  t E A t } .  For two- 
dimensional vertical-temporal sampling (scanning) using a 2-D 
lattice Ayt,  the sampling structure is WT n (7-t x Ayt ) ,  where 
7-t is a one-dimensional subspace of R3 parallel to the scanning 
lines. In video systems, the scanning spot is moving down as 
it scans from left to right, and of course is moving forward in 
time. Thus 7-t has both a vertical and temporal tilt, but this ef- 
fect is minor and can usually be ignored; we assume that 7-t is 
the line y = 0, t = 0. Most digital video signals are obtained 
by three-dimensional subsampling of signals that have initially 
been sampled with one or two-dimensional sampling as above. 
Although the sampling structure is space limited, the analysis 
is often simplified if the sampling structure is assumed to be of 
infinite extent, with the image either set to zero outside of WT 
or replicated periodically. 

Much insight into the effect of sampling time-varying images 
on a lattice can be achieved by studying the problem in the fre- 
quency domain. To do this, we introduce the Fourier transform 
for signals defined on different domains. For a continuous signal 
fc the Fourier transform is given by 

x exp[-j2n(ux + v y +  ~ t ) ]  dxdydt,  (2) 

or, more compactly, setting u = (u,  v ,  w )  and s = ( x ,  y ,  t) ,  by 

fc(s) exp(- j2ru.  s) ds, u E R3. (3) 

The variables u and v are horizontal and vertical spatial frequen- 
cies in cycles/picture height (c/ph) and w is temporal frequency 
in Hz. 

Similarly, a discrete signal f(s), s E A has a lattice Fourier 
transform (or discrete space-time Fourier transform) 

~ ( u )  = Cf(s) exp(-j2nu. s), u E R ~ .  (4) 
S€A 

With this nonnormalized definition, both s and u have the same 
units as in Eq. (3). As with the 1-D discrete-time Fourier trans- 
form, the lattice Fourier transform is periodic. If k is an element 
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(a) (b) 

FIGURE 2 2-D vertical-temporal lattices: (a) rectangular lattice AR; (b) hexagonal lattice AH. 

of R3 such that k s E Z for all s E A, then F(u + k) = F(u). 
It can be shown that { k I k . s E Z for all s E A} is a lattice called 
the reciprocal lattice A*, and that if V is a sampling matrix for 
A, then A* = LAT((V’)-’). Thus F(u) is completely specified 
by its values in a unit cell of A*. 

For partially sampled signals, a mixed Fourier transform is 
required. For the examples of temporal and vertical-temporal 
sampling mentioned previously, these Fourier transforms are 

and a hexagonal lattice in Fig. 2(b). These correspond in video 
systems to progressive scanning and interlaced scanning, respec- 
tively. Possible sampling matrices for the two lattices are 

Both lattices have the same sampling density, with ~ ( A R )  = 
d(AH) = Y 7’. Figure 3 shows the reciprocal lattices A I  and A% 
with several possible unit cells. 

3 Sampling and Reconstruction of 
Continuous Time-Varying Imagery 

The process for sampling a time-varying image can be approxi- 
mated by the system shown in Fig. 4. The light arriving on the 
sensor is collected and weighted in space and time by the sensor 
aperture a(s)  to give the output 

These Fourier transforms are periodic in the temporal frequency 
domain (with periodicity 1/ T )  and in the vertical-temporal fre- 
quency domain (with periodicity lattice Af,), respectively. 

The terminology is illustrated with two examples that will be 
discussed in more detail further on. Figure 2 shows two vertical- 
temporal sampling lattices: a rectangular lattice AR in Fig. 2(a) 

where it is assumed here that the sensor aperture is space and 
time invariant. The resulting signal fca(s) is then sampled in an 

/ I  
W 

rtl;: ~ ~ p+x]-; ~ ~ 

l/T 
- 4  --! h, l/T W 

/ 

/ / - 
(a) @) 

FIGURE 3 
lattice A>. 

Reciprocal lattices of the 2-D vertical-temporal lattices of Fig. 2: (a) rectangular lattice A i ;  (b) hexagonal 
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ha 

FIGURE 4 System for sampling a time-varying image. 

ideal fashion on the sampling structure 9: 

By defining h,(s) = a(-s), we see that the aperture weighting 
is a linear filtering operation, i.e., the convolution of fc(s) with 
ha($) 

Thus, if fc(s) has a Fourier transform Fc(u), then F,,(u)= 
F, (u) I& (u), where Ha (u) is the Fourier transform of the aper- 
ture impulse response. 

If the sampling structure is a lattice A, then the effect of sam- 
pling in the frequency domain is given by [ 11 

In other words, the continuous signal spectrum F,, is replicated 
on the points of the reciprocal lattice. The terms in the sum of 
Eq. (11) other than for k = 0 are referred to as spectral repeats. 
There are two main consequences of the sampling process. The 
first is that these spectral repeats, if not removed by the dis- 
playhiewer system, may be visible in the form of flicker, line 
structure, or dot patterns. The second is that if the regions of 
support of F,,(u) and F,,(u + k) have nonzero intersection for 
some values k E A*, we have aliasing; a frequency u, in this 
intersection can represent both the frequencies u, and u, - kin 
the original signal. Thus, to avoid aliasing, the spectrum F,, (u)  
should be confined to a unit cell of A*; this can be accomplished 
to some extent by the sampling aperture ha. Aliasing is par- 
ticularly problematic because once introduced it is difficult to 
remove, since there is more than one acceptable interpretation 
of the observed data. Aliasing is a familiar effect that tends to 
be localized to those regions of the image with high frequency 
details. It can be seen as moir6 patterns in such periodic-like 
patterns as fishnets and venetian blinds, and as staircase-like ef- 
fects on high-contrast oblique edges. The aliasing is particularly 
visible and annoying when these patterns are moving. Aliasing 
is controlled by selecting a sufficiently dense sampling structure 
and through the prefiltering effect of the sampling aperture. 

If the support of Fca(U) is confined to a unit cell P* of A*, 
then it is possible to reconstruct fca exactly from the samples. 

In this case, we have 

{ R(h)F(u) if u E P* 
if u 6 P*, Fca (u) = 

and it follows that 

where 

is the impulse response of an ideal low-pass filter (with sampled 
input and continuous output) having passband P*. This is the 
multidimensional version of the familiar Sampling Theorem. 

In practical systems, the reconstruction is achieved by 

S'EA 

where d is the display aperture, which generally bears little re- 
semblance to the ideal t ( s )  of Eq. (14). The display aperture is 
usually separable in space and time, d(s)  = d, ( x ,  y)d,(t), where 
d, ( x ,  y) may be Gaussian or rectangular, and dt(t)  may be expo- 
nential or rectangular, depending on the type of display system. 
In fact, a large part of the reconstruction filtering is often left 
to the spatiotemporal response of the human visual system. The 
main requirement is that the first temporal frequency repeat at 
zero spatial frequency (at 1/ T for progressive scanning and 2/ T 
for interlaced scanning (Fig. 2)) be at least 50 Hz for large area 
flicker to be acceptably low. 

If sampling is performed in only one or two dimensions, the 
spectrum is replicated in the corresponding frequency dimen- 
sions. For the two cases of temporal and vertical-temporal sam- 
pling, we obtain 

(16) 
k - m  T 

Consider first the case of pure temporal sampling, as in 
motion-picture film. The main parameters in this case are the 
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sampling period T and the temporal aperture. As shown in 
Eq. (16), the signal spectrum is replicated in temporal frequency 
at multiples of 1/  T. In analogy with one-dimensional signals, 
one might think that the time-varying image should be band- 
limited in temporal frequency to 1/2T before sampling. How- 
ever, this is not the case. To illustrate, consider the spectrum of 
an image undergoing translation with constant velocity v. This 
can model the local behavior in a large class of time-varying 
imagery. The assumption implies that fc(x,  t )  = fCo(x - vt), 
where fco(x) = fc (x ,  0). A straightforward analysis [3] shows 
that Fc(u, w )  = F,o(u)S(u.v + w),whereS(.)istheDiracdelta 
function. Thus, the spectrum of the time-varying image is not 
spread throughout spatiotemporal frequency space but rather 
it is concentrated around the plane u . v + w = 0. When this 
translating image is sampled in the temporal dimension, these 
planes are parallel to each other and do not intersect, i.e., there 
is no aliasing, even if the temporal bandwidth far exceeds 1/2 T. 
This is most easily illustrated in two dimensions. Consider the 
case ofvertical motion only. Figure 5 shows the vertical-temporal 
projection of the spectrum of the sampled image for different 
velocities v. Assume that the image is vertically bandlimited 
to B c/ph. It follows that when the vertical velocity reaches 1 /2 T B 
picture heights per second (ph/s), the spectrum will extend out 
to the temporal frequency of 1/2T as shown in Fig. 5(b). At 
twice that velocity (1 /  TB), it would extend to a temporal fre- 

quency of 1/ T, which might suggest severe aliasing. However, as 
seen in Fig. 5(c), there is no spectral overlap. To reconstruct the 
continuous signal correctly however, a vertical-temporal filter- 
ing adapted to the velocity is required. Bandlimiting the signal to 
a temporal frequency of 1 /2 T before sampling would effectively 
cut the vertical resolution in half for this velocity. Note that the 
velocities mentioned above are not really very high. To consider 
some typical numbers, if T = 1/24 s, as in film, and B = 500 
c/ph (corresponding to 1000 scanning lines) the velocity 1/2 TB 
is about 1/42 ph/s. It should be noted that if the viewer is track- 
ing the vertical movement, the spectrum of the image on the 
retina will be far less tilted, again arguing against sharp temporal 
bandlimiting. (This is in fact a kind of motion-compensated fil- 
tering by the visual system.) The temporal camera aperture can 
roughly be modeled as the integration of fc for a period T, 5 T. 
The choice of the value of the parameter T, is a compromise 
between motion blur and signal-to-noise ratio. 

Similar arguments can be made in the case of the two most 
popular vertical-temporal scanning structures, progressive scan- 
ning and interlaced scanning. In reference to Fig. 6, the vertical- 
temporal spectrum of a vertically translating image at the same 
three velocities (assuming that 1/ Y = 2 B)  is shown for these two 
scanning structures. For progressive scanning there continues to 
be no spectral overlap, whereas for interlaced scanning the spec- 
tral overlap can be severe at certain velocities [e.g., 1/TB as in 

(C) 

FIGURE 5 
with vertical motion ofvelocity v: (a) Y = 0, (b) Y = 1/2 T B ,  (c) v = 1/ T B .  

Vertical-temporal projection of the spectrum of temporally sampled time-varying image 
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FIGURE 6 Vertical-temporal projection ofthe spectrum of avertical-temporal sampled time-varying 
image with progressive and interlaced scanning: progressive, (a) v = 0, (b) v = 1/2TB, (c) v = 1/ T B ;  
interlaced, (d) v = 0, (e) v = 1/2TB, (f) v = 1/ T B .  
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Fig. 6(f)]. This is a strong advantage for progressive scanning. 
Another disadvantage of interlaced scanning is that each field 
is spatially undersampled and pure spatial processing or inter- 
polation is very difficult. An illustration in three dimensions of 
some of these ideas can be found in [4]. 

4 Sampling Structure Conversion 

There are numerous spatiotemporal sampling structures used 
for the digital representation of time-varying imagery. However, 
the vast majority of those in use fall into one of two categories 
corresponding to progressive or interlaced scanningwith aligned 
horizontal sampling. This corresponds to sampling matrices of 
the form 

x o o  

i], O O T  0 T / 2  T 

respectively. Table 1 shows the parameters for a number of com- 
monly used sampling structures covering a broad range of appli- 
cations, from low-resolution QCIF used in videophone to HDTV 
and digitized IMAX film (the popular large-format film, about 
70 mm by 52 mm, used by Imax Corporation). Note that of 
these, only HDTV and IMAX formats have X = Y (i.e., square 
pixels). It is frequently required to convert a time-varying im- 
age sampled on one such structure to another. An input image 
sequence f(x) sampled on lattice A I  is to be converted to the 
output sequence f o ( x )  sampled on the lattice Az. 

Besides converting between different standards, sampling 
structure conversion can also be incorporated into the acquisi- 
tion or display portions of an imaging system to compensate for 
the difficulty in performing adequate prefiltering with the cam- 
era aperture, or adequate postfiltering with the display aperture. 
Specifically, the time-varying image can initially be sampled at a 
higher density than required, using the camera aperture as pre- 
filter, and then downsampled to the desired structure by using 
digital prefiltering, which offers much more flexibility. Similarly, 

[ o  Y 0 1  or [t 

the image can be upsampled for the display device by using dig- 
ital filtering, so that the subsequent display aperture has a less 
critical task to perform. 

4.1 Frame-Rate Conversion 
Consider first the case of pure frame-rate conversion. This ap- 
plies when both the input and the output sampling structures 
are separable in space and time with the same spatial sampling 
structure, and where spatial aliasing is assumed to be negligible. 
The temporal sampling period is to be changed from T, to G. 
This situation corresponds to input and output sampling lattices 

Pure Temporal Interpolation 
The most straightforward approach is pure temporal inter- 
polation, in which a temporal resampling is performed inde- 
pendently at each spatial location x. A typical application for 
this is increasing the frame rate in motion-picture film from 
24 framesls to 48 or 60 framesls, giving a significantly better 
motion rendition. With the use of linear filtering, the interpo- 
lated image sequence is given by 

If the temporal spectrum of the underlying continuous time- 
varying image satisfies the Nyquist criterion, the output points 
can be computed by ideal sinc interpolation: 

However, aside from the fact that this filter is unrealizable, it is 
unlikely, and in fact undesirable according to the discussion of 

TABLE 1 Parameters of several common scanning structures 

System X Y T Structure Aspect Ratio 
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Section 3, that the temporal spectrum satisfy the Nyquist cri- 
terion. Thus high-order interpolation kernels that approximate 
Eq. (20) are not found to be useful and are rarely used. Instead, 
simple low-order interpolation kernels are frequently applied. 
Examples are zero-order and linear (straight-line) interpolation 
kernels given by 

1 i f 0 5  t 5  ? 
0 otherwise ' 

h( t )  = 

respectively. Note that Eq. (22) defines a noncausal filter and that 
in practice a delay of T must be introduced. Zero-order hold 
is also called frame repeat and is the method used in film pro- 
jection to go from 24 to 48 framesh. These simple interpolators 
work well if there is little or no motion, but as the amount of mo- 
tion increases they will not adequately remove spectral repeats 
causing effects such as jerkiness, and they may also remove use- 
ful information, introducing blurring. The problems with pure 
temporal interpolation can easily be illustrated for the image 
corresponding to Fig. 5(c) for the case of doubling the frame 
rate, i.e., z = ?/2. Using a one-dimensional temporal low- 
pass filter with cutoff at about 1/2 ? removes the desired high 
vertical frequencies in the baseband signal above B/2 (motion 
blur) and leaves undesirable aliasing at high vertical frequencies, 
as shown in Fig. 7( a). 

Motion-Compensated Interpolation 
It is clear that to correctly dealwith a situation such as in Fig. 4(c), 
it is necessary to adapt the interpolation to the local orientation 
ofthe spectrum, and thus to thevelocity, as suggested in Fig. 7(b). 
This is called motion-compensated interpolation. An auxiliary 
motion analysis process determines information about local mo- 
tion in the image and attempts to track the trajectory of scene 
points over time. Specifically, suppose we wish to estimate the 

'1 

signal value at position x at time n z from neighboring frames 
at times rnT1. We can assume that the scene point imaged at 
position x at time n z  was imaged at position c(rn?; x, n z )  at 
time rn Ti [ 51. If we know c exactly, we can compute 

fo(x, nTz) = f(c(mTi; x, n z ) ,  m T ) h ( n z  - m T ) .  (23) 
m 

Since we assume that f(x, t )  is very slowly varying along the 
motion trajectory, a simple filter such as the linear interpola- 
tor of Eq. (22) would probably do very well. Of course, we do 
not know c(rnTl; x, n z ) ,  so we must estimate it. Furthermore, 
since the position (c (rnF;  x, n z ) ,  rnT1) probably does not lie 
on the input lattice 121, f ( c ( r n 3 ;  x, n z ) ,  mT1) must be spa- 
tially interpolated from its neighbors. If spatial aliasing is low 
as we have assumed, this interpolation can be done well (see 
previous chapter). 

If a two-point temporal interpolation is used, we only need 
to find the correspondence between the point at (x, n z )  and 
points in the frames at times I T, and ( I  + 1) TI where I Ti  5 n z  
and ( I  + 1)T  > n z .  This is specified by the backward and 
forward displacements 

respectively. The interpolated value is then given by 

There are a number of key design issues in this process. The 
main one relates to the complexity and precision of the mo- 
tion estimator. Since the image at time n z  is not available, the 
trajectory must be estimated from the existing frames at times 
rn?, and often just from IT and ( I  + 1)Tl as defined above. 

'I 

FIGURE 7 
velocity 1/ T B :  (a) pure temporal interpolation; (b) motion-compensated interpolation. 

Frequency domain interpretation of 2: 1 temporal interpolation of an image with vertical 
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In the latter case, the forward and backward displacements will 
be collinear. We can assume that better motion estimators will 
lead to better motion-compensated interpolation. However, the 
tradeoff between complexity and performance must be opti- 
mized for each particular application. For example, block-based 
motion estimation (say one motion vector per 16 x 16 block) 
with accuracy rounded to the nearest pixel location will give very 
good results in large moving areas with moderate detail, giving 
significant overall improvement for most sequences. However, 
areas with complex motion and higher detail may continue to 
show quite visible artifacts, and more accurate motion estimates 
would be required to get good performance in these areas. Better 
motion estimates could be achieved with smaller blocks, para- 
metric motion models, or dense motion estimates, for exam- 
ple. Motion estimation is treated in detail in Chapter 3.8. Some 
specific considerations related to estimating motion trajectories 
passing through points in between frames in the input sequence 
can be found in [ 51. 

If the motion estimation method used sometimes yields un- 
reliable motion vectors, it may be advantageous to be able to 
fall back to pure temporal interpolation. A test can be per- 
formed to determine whether pure temporal interpolation or 
motion-compensated interpolation is liable to yield better re- 
sults, for example by comparing I f ( % ,  (1 + 1)F) - f ( ~ ,  1Tl)I 
with I f ( %  + d f ( x ,  n z ) ,  (1 + 1 ) F )  - f (% - db(X ,  nT2), 1TdI. 
Then the interpolated value can either be computed by the 
method suspected to be better, or by an appropriate weighted 
combination of the two. 

Occlusions pose a particular problem, since the pixel to be 
interpolated may be visible only in the previous frame 
(newly covered area) or in the subsequent frame (newly ex- 
posed area). In particular, if I f(x + d f ( x ,  nz), ( 2  + 1)T)  - 
f(x - db(& n z ) ,  2T)I is relatively large, this may signal that x 
lies in an occlusion area. In this case, we may wish to use zero- 
order hold interpolation based on either the frame at 1F or at 
(1 + 1) Ti, according to some local analysis. Figure 8 depicts the 
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FIGURE 8 
ing occlusion handling. 

Example of motion-compensated temporal interpolation includ- 

motion-compensated interpolation of a frame midway between 
1 and (1 + 1) including occlusion processing. 

4.2 Spatiotemporal Sampling 
Structure Conversion 
In this section, we consider the case in which both the spatial 
and the temporal sampling structures are changed, and when 
one or both of the input and output sampling structures is not 
separable in space and time (usually because of interlace). If the 
input sampling structure AI is separable in space and time, as in 
Eq. (18), and spatial aliasing is minimal, then the methods of the 
previous section can be combined with pure spatial interpola- 
tion. Ifwe want to interpolate a sample at a time mT1, we can use 
any suitable spatial interpolation. To interpolate at a sample at a 
time t that is not a multiple of T', the methods of the previous 
section can be applied. 

The difficulties in spatiotemporal interpolation mainly arise 
when the input sampling structure A is not separable in space 
and time, which is generally the case of interlace. This en- 
compasses both interlaced-to-interlaced conversion, such as in 
conversion between NTSC and PAL television systems, and 
interlaced-to-progressive conversion (also called deinterlacing) . 
The reason this introduces problems is that individual fields are 
undersampled, contrary to the assumption in all the previously 
discussed methods. Furthermore, as we have seen, there may also 
be significant aliasing in the spatiotemporal frequency domain 
as a result of vertical motion. Thus, a great deal of the research 
on spatiotemporal interpolation has been addressing these prob- 
lems due to interlace, and a wide variety of techniques have been 
proposed, many of them very empirical in nature. 

Deinterlacing 
Deinterlacing generally refers to a 2: 1 interpolation from an in- 
terlaced grid to a progressive grid with sampling lattices 

0 T/2 T 0 0 T /2  

respectively (see Fig. 9). Both input and output lattices consist of 
fields at time instants mT/2. However, because each input field 
is vertically undersampled, spatial interpolation alone is inade- 
quate. Similarly, because of possible spatiotemporal aliasing and 
difficulties with motion estimation, motion-compensated inter- 
polation alone is inadequate. Thus, the most successful methods 
use a nonlinear combination of spatially and temporally inter- 
polated values, according to local measures ofwhich is most reli- 
able. For example, in Fig. 9, sample Amight best be reconstructed 
using spatial interpolation, sample B with pure temporal inter- 
polation, and sample C with motion-compensated temporal in- 
terpolation. Another sample like D may be reconstructed by us- 
ing a combination of spatial and motion-compensated temporal 
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X . X .  

t 

x . x . 
FIGURE 9 Input and output sampling structures for deinterlacing. 

interpolation. See ref. [6] for a detailed presentation and discus- 
sion of a wide variety of deinterlacing methods. It is shown there 
that some adaptive motion-compensated methods can give rea- 
sonably good deinterlacing results on a wide variety of moving 
and fixed imagery. 

5 Conclusion 

This chapter has provided an overview of the basic theory re- 
lated to sampling and interpolation of time-varying imagery. 
In contrast to other types of signals, it has been shown that it 
is not desirable to limit the spectrum of the continuous signal 
to a fixed three-dimensional frequency band prior to sampling, 
since this leads to excessive loss of spatial resolution. It is suffi- 
cient to ensure that the replicated spectra caused by sampling do 
not overlap. However, optimal reconstruction requires the use 
of motion-compensated temporal interpolation. 

The interlaced scanning structure that is widely used in video 
systems has a fundamental problem whereby aliasing in the pres- 
ence ofvertical motion is inevitable. This makes operations such 
as motion estimation, coding, and so on more difficult to accom- 
plish. Thus, it is likely that interlaced scanning will gradually 
disappear as camera technology improves and the full spatial 
resolution desired can be obtained with frame rates of 50-60 Hz 
and above. 

Spatiotemporal interpolation will remain an important tech- 
nology to convert between the wide variety of scanning standards 

in both new and archival material. Research will continue into 
robust, low-complexity methods for motion-compensated tem- 
poral interpolation that can be incorporated into any receiver. 

Further Information 
The classic paper on television scanning is ref. [ 71. The use of 
lattices for the study of spatiotemporal sampling was introduced 
in [ 81. A detailed study ofcamera and display aperture models for 
television can be found in [9]. Research papers on spatiotempo- 
ral interpolation can be found regularly in the IEEE Transactions 
on Image Processing, IEEE Transactions on Circuits and Systems 
for Video Technology, and Signal Processing: Image Communica- 
tion. See ref. [ 101 for a special issue on motion estimation and 
compensation for standards conversion. 
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FIGURE 12 Video retrieval user-study interface [3]. (See color section, p. G 4 2 . )  

Oriainal Video - I100 Frames 
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FIGURE 13 Illustration of video skimming. (See color section, p. C-43.) 
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High-rate keyframe browsing: the Digital Library Research 
Group at the University of Maryland, College Park, MD, has 
conducted a user study to test optimal frame rates for keyframe- 
based browsing [4]. They use many of the same image analy- 
sis techniques mentioned earlier to extract keyframes, and they 
quantify their research through studies of a video slide-show 
interface at various frame rates. 

Video abstracts: the Movie Content Analysis (MoCA) group in 
Mannheim, Germany has created a system for movie abstraction 
based on the occurrence of image statistics and audio frequency 
analysis to detect dialogue scenes [ 91. 

7 Case Study: Informedia and other 
Digital Library Projects 

~ 

The Informedia digital video library project at Carnegie Mellon 
University has established a large, on-line digital video library 
by developing intelligent, automatic mechanisms to populate the 
library and allow for full-content and knowledge-based search 
and retrieval via desktop computer over local, metropolitan, and 
wide-area networks [ 181. Initially, the librarywas populated with 
1000 hours of raw and edited documentary and education videos 
drawn from video assets of WQED/Pittsburgh, Fairfax County 
(VA) Public Schools, and the Open University (U.K.). To as- 
sess the value of video reference libraries for enhanced learning 
at different ages, the library was deployed at a local area K-12 
schools. Figure 14 shows an example of the Informedia interface, 
with poster frames, weighted query, and textual abstracts. The 
library’s approach utilizes several techniques for content-based 
searching and video sequence retrieval. Content is conveyed in 
both the narrative (speech and language) and the image. The 
collaborative interaction of image, speech, and natural language 
understanding technology allows for successful population, seg- 
mentation, indexing, and search of diverse video collections with 
satisfactory recall and precision. 

’! 
FIGURE 14 Informedia interface. (See color section, p. C-43.) 

TABLE 3 Systems with unique characteristics 

Svstem Descriution 

U. C. Berkeley 

U. C. Santa 

Object extraction and recognition system. National Science 
Foundation Digital Library Initiative. 

Image matching system based on region segmentation. 
National Science Foundation Digital Library Initiative. 

One of the first well-known image matching systems, Query 
by Image Content, or QBIC. Fast image indexing through 
condensed hierarchical tree structure. Features based on 
color, texture, shape, and position. 

Image and video retrieval based on research at the University 
of California at San Diego. Features are based on color, 
texture, shape, position and language queries. 

Video, image and text indexing and retrieval for internet 
distribution. Primary technology is licensed from Carnegie 
Mellon University Informedia Project. 

language aueries. 

Barbara 

IBM 

VIRAGE 

Media Site 

Excalibur Video and text retrieval based on image matching and 

There are many researchers working in the area of image 
matching. A few systems with unique characteristics are listed in 
Table 3. 

8 The MPEG-7 Standard 

As pointed out earlier in this chapter, instead of trying to extract 
relevant features, manually or automatically, from original or 
compressed video, a better approach for content retrieval should 
be to design a new standard in which such features, often referred 
to as metadata, are already available. MPEG-7, an ongoing effort 
by the Moving Picture Experts Group, is working toward this 
goal, i.e., the standardization ofmetadata for multimedia content 
indexing and retrieval. 

MPEG-7 is an activity that is triggered by the growth of digital 
audiovisual information. The group strives to define a “multime- 
dia content description interface” to standardize the description 
of various types of multimedia content, including still pictures, 
graphics, 3-D models, audio, speech, video, and composition 
information. It may also deal with special cases such as facial 
expressions and personal characteristics. 

The goal of MPEG-7 is exactly the same as the focus of this 
chapter, i.e., to enable efficient search and retrieval of multi- 
media content. Once finalized, it will transform the text-based 
search and retrieval (e.g., keywords), as is done by most of the 
multimedia databases, into a content-based approach, e.g., us- 
ing color, motion, or shape information. MPEG-7 can also be 
thought of as a solution to describing multimedia content. If one 
looks at PDF (portable document format) as a standard language 
to describe text and graphic documents, then MPEG-7 will be a 
standard description for all types of multimedia data, including 
audio, images, and video. 

Compared with earlier MPEG standards, MPEG-7 possesses 
some essential differences. For example, MEPG-1, 2, and 4 all 
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AN Data Feature Extraction 
Standard Description 

Scope of MPEG-I 

FIGURE 15 The scope of MPEG-7. 

focus on the representation of audiovisual data, but MPEG-7 will 
focus on representing the metadata (information about data). 
MPEG-7, however, may utilize the results of previous MPEG 
standards, e.g., the shape information in MPEG-4 or the motion 
vector field in MPEG-1/2. 

Figure 15 shows the scope of the MPEG-7 standard. Note that 
feature extraction is outside the scope ofMPEG-7; so is the search 
engine. This is a result of one approach constantly taken by most 
of the standard activities, i.e., “to standardize the minimum.” 
Therefore, the analysis (feature extraction) should not be stan- 
dardized, so that after MPEG-7 is finalized, various analysis tools 
can still be further improved over time. This also leaves room 
for competition among vendors and researchers. This is similar 
to the fact that MPEG-1 does not specify motion estimation, 
and that MPEG-4 does not specify segmentation algorithms. 
Likewise, the query process (the search engine) should not be 
standardized. This allows the design of search engines and query 
languages to adapt to different application domains, and also 
leaves room for further improvement and competition. Sum- 
marizing, MPEG-7 takes the approach that it standardizes only 
what is necessary so that the description for the same content 
may adapt to different users and different application domains. 

We now explain a few concepts of MPEG-7. One goal of 
MPEG-7 is to provide a standardized method of describing fea- 
tures of multimedia data. For images and video, colors or mo- 
tion are example features that are desirable in many applications. 
MPEG-7 will define a certain set of descriptors to describe these 
features. For example, the color histogram can be a very suit- 
able descriptor for color characteristics of an image, and mo- 
tion vectors (as commonly available in compressed video bit 
streams) form a useful descriptor for motion characteristics of a 
video clip. MPEG-7 also uses the concept of description scheme 
(DS), which means a framework that defines the descriptors and 
their relationships. Hence, the descriptors are the basis of a DS. 

TABLE 4 Timetable for MPEG-7 

Development Date 

Search Engine 

Description then implies an instantiation of a DS. MPEG-7 not 
only to standardize the description; it also wants the description 
to be efficient. Therefore, MPEG-7 also considers compression 
techniques to turn descriptions into coded descriptions. Com- 
pression reduces the amount of data that need to be stored or 
processed. Finally, MPEG-7 will define a description definition 
language (DDL) that can be used to define, modify, or combine 
descriptors and description schemes. Summarizing, MPEG-7 
will standardize a set of descriptors and DS’s, a DDL, and meth- 
ods for coding the descriptions. 

The process to define MPEG-7 is similar to those of the pre- 
vious MPEG standards. Since 1996, the group has been working 
on defining and refining the requirements ofMPEG-7, i.e., what 
MPEG-7 should provide. The MPEG-7 process includes a com- 
petitive phase followed by a collaborative phase. During the com- 
petitive phase, a Call for Proposals is issued and participants re- 
spond by both submitting written proposals and demonstrating 
the proposed techniques. Proposals are then evaluated by experts 
to determine merit. During the collaborative phase, MPEG-7 will 
evolve as a series of experimentation models (XM), where each 
model outperforms the previous one. Eventually, MPEG-7 will 
turn into an international standard. Table 4 shows the timetable 
for MPEG-7 development. At the time of this writing, the group 
is going through the definition process of the first XM. 

Once finalized, MPEG-7 has a large variety of applications, 
such as digital libraries, multimedia directory services, broad- 
cast media selection, and multimedia authoring. Here are some 
examples. With MPEG-7, the user can draw a few lines on a 
screen to retrieve a set of images containing similar graphics. 
The user can also describe movements and relations between a 
number of objects to retrieve a list ofvideo clips containing these 
objects with the described temporal and spatial relations. Also, 
for a given content, the user can describe actions and then get a 
list of scenarios where similar. Summarizing, here we presented 
an overview of recent MPEG-7 activities and their strong rela- 
tionship with image and video indexing and retrieval. For more 
details on MPEG-4 and MPEG-7, please see Chapter 6.5. 

Call for test material 
Call for proposals 
Proposals due 
1st experiment model (XM) 
Working draft (WD) 
Committee draft (CD) 
Final committee draft (FCD) 
Draft international standard (DIS) 
International standard (IS) 

Mar. 1998 
Oct. 1998 
Feb. 1999 
Mar. 1999 
Dec. 1999 
Oct. 2000 
Feb. 2001 
July 2001 
Sep. 2001 

9 Conclusion 

Image and video retrieval systems have been primarily based 
on the statistical analysis of a single image. With an increase in 
feature-based analysis and extraction, these systems are becom- 
ing usable and efficient in retrieving perceptual content. Power- 
ful feature-based indexing and retrieval tools can be developed 
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for image-video archives, complementing the traditional text- 
based techniques. There are no  “best” features for “all” image 
domains. It’s a matter of creating a good “solution” by using 
multiple features for a specific application. Performance evalu- 
ation of visual query is an important but unsolved issue. 
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FIGURE 5.4.2 A three-level wavelet representation of the Lena image generated 
from the top view of the three-level hierarchy wavelet decomposition in Fig. 1. It 
has exactly the same number of samples as in the image domain. 

m m 

m I 

time 

@> 
FIGURE 5.4.3 Tiling diagrams' associated STFT bases and wavelet bases. 
(a) STFT bases and the tiling diagram associated with a STFT expansion. STFT 
bases of different frequencies have the same resolution (or length) in time. 
(b) Wavelet bases and tiling diagram associated with a wavelet expansion. The 
time resolution is inversely proportional to frequency for wavelet basis. 
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FIGURE 5.5.12 Lena image at 24 to 1 (top) and 96 to 1 (bottom) compression 
ratios. 

C-26 





250 

200 

150 
h 

100 

50 

0 

0 Embedded polygonal approximation 

t A 

0 50 100 150 200 
W 

Lossless 
A Quasi-lossless 
+ Lossy 

FIGURE 6.3.5 Example of video object decoding, using PPE from coarse to line to lossless. 
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FIGURE 6.5.2 An audiovisual terminal 
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FIGURE 6.5.8 Sprite coding of a video sequence. (Courtesy of Dr. Thomas Sikora.) 

FIGURE 6.5.10 Mesh representation of a video object with triangular patches. 
(Courtesy of Dr. Murat Tekalp.) 
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Motionbits 36 Kbitsls 
Texturebits 180 Kbitds 
Shatxbits 0 Kbitds 

217 Kbitds 
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Coded frames 10 Frame& 
'Motion bits 8 Kbits/s 

Texture bits 16 Kbits/s 
Shapebits 0 Kbits/s 
Total bits 25 Kbitsh 
PSNR 41.4 dB 

Quantizer 10 
Coded frames 10 Framesls 
Motionbits 18 KbWs 
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FIGURE 6.5.14 Illustration of MPEG-4 coding, simple profile vs. core profile: (a) original frame; (b) frame-based coded frame; (c) shape mask for foreground 
object; (d) coded foreground object (boundary macroblocks are padded); (e) foreground object as it is decoded and displayed; (f) background object as it is 
decoded and displayed; (g) foreground + background objects (e + f ) .  (Bream video sequence is courtesy of Matsushita Electric Industrial Co., Ltd.). 



(b) 
FIGURE 7.1.1 High-resolution drum scanner: (a) scanner 
with cover open, and (b) closeup view showing screw- 
mounted "C" carriage with light source on the inside arm, 
and detector optics on the outside arm. 
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FIGURE 7.1.11 
interpolated by 4 x . 

Interpolation by pixel replication: (a) original image, (b) image 

FIGURE 7.1.13 Interpolation by 4x by means of bilinear interpolation. 
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FIGURE 7.1.19 Image interpolated by 4x wing edge-directed interpolation with (a) 0 and (b) 10 iterations. 

F 

FIGURE 7.1.23 Interpolation by 4x via TBRS. 
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FIGURE 8.1.2 Original boats image. 

L 

I 

FIGURE 8.1.3 
constant threshold for each primary color plane. 

Boats image thresholded to two levels, using a 

(4 (b) 

FIGURE 8.1.5 
spectrum. 

Boats image: (a) halftoned with a clustered dot dither at 150 dots per in.; (b) the halftone power 
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FIGURE 8.1.6 Boats image: (a) halftoned with a Bayer dither [9] at 150 dots per in.; (b) the halftone power spectrum. 
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FIGURE 8.1.9 
halftone power spectrum. 

Boats image: (a) halftoned with a Floyd-Steinberg error diffusion [I l l  at 150 dots per in.; (b) the 
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(a) 

FIGURE 8.1.10 
power spectrum. 

Boats image: (a) halftoned with a tree-coding algorithm [24] at 150 dots per in.; (b) the halftone 

FIGURE 8.1.11 
est-neighbor mapping and (b) error diffusion. 

Boats image, color quantized to 256 colors by using the median cut algorithm [ 39 ] ,  with (a) near- 
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FIGURE 9.1.1 Video terminology. 
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(a) (b) 

FIGURE 9.1.2 Image: (a) original; (b) filtered. 
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FIGURE 9.1.4 Optical flow fields for a pan (top right), zoom (top left), and object motion. 
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FIGURE 9.1.5 Camera and object motion detection. 
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FIGURE 9.1.6 Images with similar shapes (human face and torso). 

FIGURE 9.1.7 Recognition of captions and faces [ 111. 
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FIGURE 9.1.9 
(a) frame t; (b) frame t + T.  

Graphics detection through subregion histogram differencing: 
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Research on how to efficiently access video content has be- 
come increasingly active in the past few years [ 1-41. Consid- 
erable progress has been made in video analysis, representation, 
browsing, and retrieval, which are the four fundamental bases 
for accessing video content. Video analysis deals with the sig- 
nal processing part of the video system, including shot bound- 
ary detection, key frame extraction, etc. Video representation 
is concerned with the structure of the video. An example of a 
video representation is the tree structured key frame hierarchy 
[5 ,  31. Built on top of the video representation, video brows- 
ing deals with how to use the representation structure to help 
viewers browse the video content. Finally, video retrieval is con- 
cerned with retrieving interesting video objects. The relationship 
among these four research areas is illustrated in Fig. 1. 

So far, most of the research effort has gone into video analysis. 
Although it is the basis for all the other research activities, it 
is not the ultimate goal. Relatively less research exists on video 
representation, browsing, and retrieval. As seen in Fig. 1, video 
browsing and retrieval are on the very top of the diagram. They 
directly support users' access to the video content. For accessing 

a temporal medium, such as a video clip, browsing and retrieval 
are equally important. Browsing helps a user to quickly grasp the 
global picture of the data, whereas retrieval helps a user to find 
a specific query's results. 

An analogy explains this argument. How does a reader effi- 
ciently access a 1000-page book's content? Without reading the 
whole book, the reader can first go to the book's Table of Con- 
tents (ToC), finding which chapters or sections suit his or her 
needs. If the reader has specific questions (queries) in mind, 
such as finding a term or a key word, he or she can go to the 
Index page and find the corresponding book sections contain- 
ing that question. In short, the book's ToC helps a reader browse, 
and the book's index helps a reader retrieve. Both aspects are 
equally important in helping users access the book's content. 
For today's video data, unfortunately, we lack both the ToC and 
the Index. Techniques are urgently needed for automatically (or 
semiautomatically) constructing video ToCs and video Indexes 
to facilitate browsing and retrieval. 

A great degree of power and flexibility can be achieved by 
simultaneously designing the video access components (ToC and 
Index) using a unified framework, For a long and continuous 
stream of data, such as video, a "back and forth" mechanism 
between browsing and retrieval is crucial. 

Copyright 0 2000 by Academic Press. 
All rights of reproduction in any form reserved 705 
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Video Browsing Video Retrieval 3 Video Analysis 

As can be seen from Fig. 1, video analysis is the basis for later 
video processing. It includes shot boundary detection and key 
f iame extraction. 

r -  

FIGURE 1 Relationships among the four research areas. 

The goals of this chapter are to develop novel techniques for 
constructing both the video ToC and video Index as well as 
a method for integrating them into a unified framework. The 
rest of the chapter is organized as follows. In Section 2, impor- 
tant video terminologies are first introduced. We review video 
analysis, representation, browsing, and retrieval in Sections 2-5, 
respectively. In Section 6 we describe in detail a unified frame- 
work for video browsing and retrieval. Algorithms as well as 
experimental results on real-world video clips are presented. 
Conclusions and future research directions are summarized in 
Section 7. 

2 Terminologies 

Before we go into the details of the discussion, we find it benefi- 
cial to first introduce some important terminologies used in the 
digital video research field. 

1. Video shot is a consecutive sequence of frames recorded 
from a single camera. It is the building block of video 
streams. 

2. Key frame is the frame which represents the salient visual 
content ofa shot. Depending on the complexity of the con- 
tent of the shot, one or more key frames can be extracted. 

3. Video scene is defined as a collection of semantically re- 
lated and temporally adjacent shots, depicting and wnvey- 
ing a high-level concept or story While shots are marked 
by physical boundaries, scenes are marked by semantic 
boundaries.' 

4. Video group is an intermediate entity between the phys- 
ical shots and semantic scenes and serves as the bridge 
between the two. Examples of groups are temporally adja- 
cent shots [5] or visually similar shots [3]. 

In summary, the video data can be structured into a hierarchy 
consisting of five levels: video, scene, group, shot, and key frame, 
which increase in granularity from top to bottom [4] (see Fig. 2). 

3.1 Shot Boundary Detection 
It is not efficient (sometimes not even possible) to process a video 
clip as a whole. It is beneficial to first decompose the video clip 
into shots and do signal processing at the shot level. 

In general, automatic shot boundary detection techniques 
can be classified into five categories: pixel based, statistics based, 
transform based, feature based, and histogram based. Pixel-based 
approaches use pixelwise intensity difference to mark shot 
boundaries [ 1,6]. However, they are highly sensitivity to noise. 
To overcome this problem, Kasturi and Jain propose to use in- 
tensity statistics (mean and standard deviation) as shot bound- 
ary detection measures [7]. Seeking to achieve faster process- 
ing, Arman et al. propose to use the compressed discrete wsine 
transform (DCT) coefficients (e.g., MPEG data) as the bound- 
ary measure [8]. Other transform-based shot boundary detec- 
tion approaches make use of motion vectors, which are already 
embedded in the MPEG stream [9,10]. Zabih et al. address the 
problem from another angle. Edge features are first extracted 
from each frame. Shot boundaries are then detected by finding 
sudden edge changes [ 11 1. So far, the histogram-based approach 
is the most popular. Instead of using pixel intensities directly, the 
histogram-based approach uses histograms of the pixel intensi- 
ties as the measure. Several researchers claim that it achieves 
a good tradeoff between accuracy and speed [ 11. Representa- 
tives of this approach are [ 1,12-151. More recent work has been 
based on clustering and postfiltering [16], which achieves fairly 
high accuracywithout producing many false positives. Two com- 
prehensive comparisons of shot boundary detection techniques 
are [17,18]. 

3.2 Key Frame Extraction 
After the shot boundaries are detected, corresponding key 
frames can then be extracted. Simple approaches may just extract 
the first and last frames of each shot as the key frames [ 151. More 
sophisticated keyframe extraction techniques are based on visual 
content complexity indicators [ 191, shot activity indicators [ 201, 
and shot motion indicators [21]. 

4 Video Representation 

Considering that each video frame is a two-dimensional (2-D) 
Object and the temporal axis makes up the third 
a video stream spans a three-dimensional (3-D) space. Video 
representation is the mapping from the 3-D space to the 2-D 

'Some of the early literature in video parsing misused the phrase scene change 
detection for shot boundary deteaion. To avoid any later confusion, we will use 
shot boundary detection to mean the detection of physical shot boundaries, and 
we will use scene boundary detection to mean the detection of semantic scene 
boundaries. 
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FIGURE 2 A hierarchical video representation. 

view screen. Different mapping functions characterize different 
video representation techniques. 

4.1 Sequential Key Frame Representation 
After obtaining shots and key frames, an obvious and simple 
video representation is to sequentially lay out the key frames of 
the video, from top to bottom and from left to right. This simple 
technique works well when there are few key frames. When the 
video clip is long, this technique does not scale, since it does not 
capture the embedded information within the video clip, except 
for time. 

4.2 Group-Based Representation 
For a more meaningfulvideo representation to be obtained when 
the video is long, related shots are merged into groups [ 3,5]. In 
[5], Zhang et al. divide the entire video stream into multiple 
video segments, each of which contains an equal number of 
consecutive shots. Each segment is further divided into subseg- 
ments, thus constructing a tree structured video representation. 
In [ 31, Zhong et al. proposed a cluster-based video hierarchy, in 
which the shots are clustered based on their visual content. This 
method again constructs a tree structured video representation. 

4.3 Scene-Based Representation 
To provide the user with better access to the video, the construc- 
tion of a video representation at the semantic level is needed 
[2,4]. It is not uncommon for a modern movie to contain a few 
thousand shots and key frames. This is evidenced in [ 221 -there 

are 300 shots in a 15-min video segment of the movie “Termina- 
tor 2 -Judgment Day,” and the movie lasts 139 min. Because of 
the large number of key frames, a simple one-dimensional (1-D) 
sequential presentation of key frames for the underlying video 
(or even a tree structured layout at the group level) is almost 
meaningless. More importantly, people watch the video by its 
semantic scenes rather than the physical shots or key frames. 
While shot is the building block of a video, it is scene that conveys 
the semantic meaning of the video to the viewers. The discon- 
tinuity of shots is overwhelmed by the continuity of a scene 
[2]. Video ToC construction at the scene level is thus of fun- 
damental importance to video browsing and retrieval. In [ 21, a 
scene transition graph (STG) ofvideo representation is proposed 
and constructed. The video sequence is first segmented into 
shots. Shots are then clustered by using time-constrained cluster- 
ing. The STG is then constructed based on the time flow of the 
clusters. 

4.4 Video Mosaic Representation 
Instead of representing the video structure based on the video- 
scene-group-shot-frame hierarchy as discussed above, this ap- 
proach takes a different perspective [ 231. The mixed information 
within a shot is decomposed into three components: 

1. 

2. 

The Extended spatial information captures the appearance 
of the entire background imaged in the shot, and is repre- 
sented in the form of a few mosaic images. 
The Extended temporal information captures the mo- 
tion of independently moving objects in the form of their 
trajectories. 
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3. The Geometric information captures the geometric trans- 
formations that are induced by the motion of the camera. 

5 Video Browsing and Retrieval 

These two functionalities are the ultimate goals of a video access 
system, and they are closely related to (and built on top of) 
video representations. The first three representation techniques 
discussed above are suitable for video browsing, while the last 
can be used in video retrieval. 

5.1 Video Browsing 
For “Sequential key frame representation,” browsing is obviously 
sequential browsing, scanning from the top-left key frame to the 
bottom-right key frame. 

For “Group-based representation,” a hierarchical browsing is 
supported [3, 51. At the coarse level, only the main themes are 
displayed. Once the user determines which theme he or she is 
interested in, the user can then go to the finer level of the theme. 
This refinement process can go on until the leaf level. 

For the STG representation, a major characteristic is its in- 
dication of time flow embedded within the representation. By 
following the time flow, the viewer can browse through the video 
clip. 

5.2 Video Retrieval 
As discussed in Section 1, both the ToC and Index are equally 
important for accessing the video content. Unlike the other video 
representations, the mosaic representation is especially suitable 

for video retrieval. Three components, moving objects, back- 
grounds, and camera motions, are perfect candidates for a video 
Index. After constructing such a video index, queries such as 
“find me a car moving like this,” “find me a conference room 
having that environment,” etc. can be effectively supported. 

6 Proposed Framework 

As we have reviewed in the previous sections, considerable 
progress has been made in each of the areas of video analy- 
sis, representation, browsing, and retrieval. However, so far, the 
interaction among these components is still limited and we still 
lack a unified framework to glue them together. This is especially 
crucial for video, given that the video medium is characteristi- 
cally long and unstructured. In this section, we will explore the 
synergy between video browsing and retrieval. 

6.1 Video Browsing 
Among the many possible video representations, the “scene- 
based representation” is probably the most effective for mean- 
ingful video browsing [2, 41. We have proposed a scene-based 
video ToC representation in [4]. In this representation, a video 
clip is structured into the scene-group-shot-frame hierarchy (see 
Fig. 2), which then serves as the basis for the ToC construction. 
This ToC frees the viewer from doing tedious “fast forward and 
“rewind,” and it provides the viewer with nonlinear access to the 
video content. Figures 3 and 4 illustrate the browsing process, 
enabled by the video ToC. Figure 3 shows a condensed ToC for 
a video clip, as we normally have in a long book. By looking at 
the representative frames and text annotation, the viewer can 

~ ~~ 

FIGURE 3 Condensed ToC. (See color section, p. C44.)  
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FIGURE 4 Expanded ToC. (See color section, p. C-44.) 

determine which particular portion of the video clip he or she is 
interested in. Then, the viewer can further expand the ToC into 
more detailed levels, such as groups and shots. The expanded 
ToC is illustrated in Fig. 4. Clicking on the “Display” button 
will display the specific portion that is of interest to the viewer, 
without viewing the entire video. 

The algorithm is described below. To learn details, interested 
readers are referred to [ 241. 

[Main Procedure] 
Input: video shot sequence, S = {shot 0, . . . , shot i } .  
Output: video structure in terms of scene, group, and shot. 
Procedure: 
1. Initialization: assign shot 0 to group 0 and scene 0; ini- 

tialize the group counter numGroups = 1; initialize the 
scene counter numScenes = 1. 

2. If S is empty, quit; otherwise get the next shot. Denote 
this shot as shot i. 

3. Test if shot i can be merged to an existing group: 
(a) Compute the similarities between the current shot 

(b) Find the maximum group similarity: 
and existing groups: Call findGroupSim( ). 

maxGroupSimi = max GroupSimi,g, 
g 

g = 1, . . . , numGroups, (1) 

where GroupSimi,g is the similarity between shot i 
and group g. Let the group of the maximum simi- 
larity be group gma. 

(c) Test if this shot can be merged into an existing 
group: 

If maxGroupSimi > groupThreshold, where 
groupThreshold is a predefined threshold: 
i. Merge shot i to group gma. 

ii. Update the video structure: call updateGroup- 
Scene( ). 

iii. Go to Step 2. 
otherwise: 
i. Create a new group containing a single shot i .  

ii. Set numGroups = numGroups + 1. 

(a) Calculate the similarities between the current shot i 
and existing scenes: call findSceneSim( ). 

(b) Find the maximum scene similarity: 

Let this group be group j .  

4. Test if shot i can be merged to an existing scene: 

maxSceneSimi = max SceneSimi, 8 ,  
8 

s = 1, . . . , numscenes, (2) 

where SceneSimi,8 is the similarity between shot i 
and scene s. Let the scene of the maximum similar- 
ity be scene sma. 

(c) Test if shot i can be merged into an existing scene: 
If maxSceneSimi > sceneThreshold, where scene- 
Threshold is a predefined threshold: 
i. Merge shot i to scene sma. 

ii. Update the video structure: call updatescene( ). 
otherwise: 
i. Create a new scene containing a single shot i and 

a single group j. 
ii. Set numScenes = numScenes + 1. 

5.  Go to Step 2. 
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[findGroupSim] 
Input: current shot and group structure. 
Output: similarity between current shot and existing 
groups. 
Procedure: 
1. Denote current shot as shot i. 
2. Calculate the similarities between shot i and existing 

groups: 

GroupSimi,g = ShotSimi,g,at, g = 1, . . . , numGroups, 
(3) 

where ShotSimj, j is the similarity between shots i and j; 
and g is the index for groups and gIat is the last (most 
recent) shot in group g. That is, the similarity between 
current shot and a group is the similarity between the 
current shot and the most recent shot in the group. The 
most recent shot is chosen to represent the whole group 
because all the shots in the same group are visually sim- 
ilar and the most recent shot has the largest temporal 
attraction to the current shot. 

3. Return. 

[findSceneSim] 
Input: the current shot, group structure, and scene struc- 
ture. 
Output: similarity between the current shot and existing 
scenes. 
Procedure: 
1. Denote the current shot as shot i. 
2. Calculate the similarity between shot i and existing 

scenes: 

numGroups, 

SceneSimi,, = GroupSimi,g, 

where s is the index for scenes; numGroups, is the num- 
ber of groups in scene s; and GroupSimi,g is the simi- 
larity between current shot i and gth group in scene 5. 

g 
numGroupss 

(4) 

That is, the similarity between the current shot and a 
scene is the average of similarities between the current 
shot and all the groups in the scene. 

3. Return. 

[updateGroupScene] 
Input: current shot, group structure, and scene structure. 
Output: an updated version of group structure and scene 
structure. 
Procedure: 
1. Denote current shot as shot i and the group having the 

largest similarity to shot i as group gm,. That is, shot i 
belongs to group gm,. 

2. Define two shots, top and bottom, where top is the sec- 
ondmost recent shot in group g,, and bottom is the 
most recent shot in group g,, (i.e., current shot). 

3. For any group g, if any of its shots (shot gj) satisfies the 
following condition 

top < shot gj < bottom, (5) 

merge the scene that group g belongs to into the scene 
that group gm, belongs to. That is, if a scene contains a 
shot that is interlaced with the current scene, merge the 
two scenes. This is illustrated in Fig. 5 (shot i = shot 4, 
g,, = 0, g = 1, top = shot 1, and bottom = shot 4). 

4. Return. 

[updateScene] 
Input: current shot, group structure, and scene structure. 
Output: an updated version of scene structure. 
Procedure: 
1. Denote current shot as shot i. and the scene having the 

largest similarity to shot i as scene s,. That is, shot i 
belongs to scene s,,. 

2. Define two shots, top and bottom, where top is the sec- 
ondmost recent shot in scene s,, and bottom is the 
current shot in scene s,, (i.e., current shot). 

before after 

group j 0 0 1 1 0 

scene j o 0 1 1 o 

/ 0 0  1 1 0  

j 0 0  0 0 0  

t f  
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TABLE 1 Scene structure construction results 

Moviename Frames Shots Groups DS FN FP 

Movie1 21717 133 16 5 0  0 
Movie2 2795 1 186 25 7 0  1 
Movie3 14293 86 12 6 1  1 
Movie4 35817 195 28 10 1 2 
Movie5 18362 77 10 6 0  0 
Movie6 23260 390 79 24 1 10 
Movie7 35154 329 46 14 1 2 

3. For any scene s, if any of its shots (shot s j )  satisfies the 
following condition 

top c shot s j  < bottom, ( 6 )  

merge scene s into scene sma. That is, if a scene contains 
a shot that is interlaced with the current scene, merge 
the two scenes. 

4. Return. 

Extensive experiments using real-world video clips have been 
carried out. The results are summarized in Table 1 [4], where DS 
(detected scene) denotes the number of scenes detected by the 
algorithm, FN (false negative) indicates the number of scenes 
missed by the algorithm; and FP (false positive) indicates the 
number of scenes detected by the algorithm, although they are 
considered scenes by humans. 

Some observations can be summarized as follows. 

1. The proposed scene construction approach achieves rea- 
sonably good results in most of the movie types. 

2. The approach achieves better performance in “slow” 
movies than in “fast” movies. This follows since in the 
“fast” movies, the visual content is normally more complex 
and more difficult to capture. We are currently integrat- 
ing closed-captioning information into the framework to 
enhance the accuracy of the scene structure construction. 

3. The proposed approach seldom misses a scene bound- 
ary, but it tends to oversegment the video. That is, “false 
positives” outnumber “false negatives.” This situation is 
expected for most of the automated video analysis ap- 
proaches and has also been observed by other researchers 
[2,221* 

6.2 Video Retrieval 
Video retrieval is concerned with how to return similar video 
clips (or scenes, shots, and frames) to a user given a video query. 
This is a little-explored research area. There are two major cat- 
egories of existing work. One is to first extract key frames from 
the video data and then use image retrieval techniques to obtain 
the video data indirectly. Although easy to implement, it has the 
obvious problem of losing the temporal dimension. The other 
technique incorporates motion information (sometimes object 
tracking) into the retrieval process. Although this is a better 

technique, it requires the computationally expensive task of mo- 
tion analysis. If object trajectories are to be supported, then this 
becomes more difficult. 

Here we view video retrieval from a different angle. We seek 
to construct a video Index to suit various users’ needs. However, 
constructing avideo Index is far more complex than constructing 
an index for books. For books, the form of an index is fixed 
(e.g., key words). For videos, the viewer’s interests may cover a 
wide range. Depending on his or her knowledge and profession, 
the viewer may be interested in semantic level labels (building, 
car, people), low-level visual features (color, texture, shape), or 
the camera motion effects (pan, zoom, rotation). In the system 
described here, we support all three Index categories: 

Visual Index 
Semantic Index 
Camera Motion Index 

As a way to support semantic level and visual feature-based 
queries, frame clusters are first constructed to provide indexing. 
Our clustering algorithm is described as follows. 

1. Feature extraction: color and texture features are extracted 
from each frame. The color feature is an 8 x 4 2-D color his- 
togram in hue-saturation-value (HSV) color space. The V com- 
ponent is not used because ofits sensitivity to lighting conditions. 
The H component is quantized finer than the S component be- 
cause of the psychological observation that the human visual 
system is more sensitive to hue than to saturation. For texture 
features, the input image is fed into a wavelet filter bank and 
is then decomposed into decorrelated subbands. Each subband 
captures the feature of a given scale and orientation from the 
original image. Specifically, we decompose an image into three 
wavelet levels; thus there are 10 subbands. For each subband, 
the standard deviation of the wavelet coefficients is extracted. 
The 10 standard deviations are used as the texture representa- 
tion for the image [25]. 

2. Global clustering: based on the features extracted from each 
frame, the entire video clip is grouped into clusters. A detailed 
description of the clustering process can be found in [ 191. Note 
that each cluster can contain frames from multiple shots and each 
shot can contain multiple clusters. The cluster centroids are used 
as the visual Index and can be later labeled as a Semantic Index 
(see Section 6.3.). This procedure is illustrated in Fig. 6. 

I I I I I 

[people] & I-..] . . .  [*] Index 

FIGURE 6 From video clip to duster to Index. 
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After the above clustering process, the entire video clips are 
grouped into multiple clusters. Since color and texture features 
are used in the clustering process, all the entries in a given cluster 
are visually similar. Therefore these clusters naturally provide 
support for the visual queries. 

In order to support semantic level queries, semantic labels 
have to be provided for each cluster. There are two techniques 
that have been developed in our research lab. One is based on the 
hidden Markov model (HMM), and the other is an annotation- 
based approach. Since the former approach also requires training 
samples, both approaches are semiautomatic. To learn details of 
the first approach, readers are referred to [ 161. We will introduce 
the second approach here. Instead of attempting to attack the 
unsolved automatic image understanding problem, semiauto- 
matic human assistance is used. We have built interactive tools 
to display each cluster centroid frame to a human user, who will 
label that frame. The label will then be propagated through the 
whole cluster. Since only the cluster centroid frame requires la- 
beling, the interactive process is fast. For a 21,717 frame video 
clip (Moviel), -20 min is needed. After this labeling process, 
the clusters can support both visual and semantic queries. The 
specific semantic labels for Moviel are people, car, dog, tree, 
grass, road, building, house, etc. 

To support camera motion queries, we have developed tech- 
niques to detect camera motion in the MPEG compressed do- 
main [26]. The incoming MPEG stream does not have to be fully 
decompressed. The motion vectors in the bit stream form good 
estimates of camera motion effects. Hence, panning, zooming, 
and rotation effects can be efficiently detected [26]. 

6.3 Unified Framework for Browsing 
and Retrieval 
Subsections 6.1 and 6.2 described video browsing and retrieval 
techniques separately. In this section, we integrate them into a 
unified framework to enable a user to go “back and forth” be- 
tween browsing and retrieval. Going from the Index to the ToC, 
a user can get the context where the indexed entity is located. 
Going from the ToC to the Index, a user can pin point specific 
queries. Figure 7 illustrates the unified framework. 

An essential part of the unified framework is the weighted 
links. The links can be established between Index entities and 
scenes, groups, shots, and key frames in the ToC structure. As 
a first step, in this paper we focus our attention on the links 
between Index entities and shots. Shots are the building blocks 
of the ToC. Other links are generalizable from the shot link. 

To link shots and the Visual Index, we propose the follow- 
ing techniques. As we mentioned before, a cluster may contain 
frames from multiple shots. The frames from a particular shot 
form a subcluster. This subcluster’s centroid is denoted as cs&,, 
and the centroid of the whole cluster is denoted as c. This is 
illustrated in Fig. 8. 

Here c is a representative of the whole cluster (and thus the 
Visual Index) and Csub is a representative of the frames from 

FIGURE 7 Unified framework. 

a given shot in this cluster. We define the similarity between 
the cluster centroid and subcluster centroid as the link weight 
between Index entity c and that shot. 

w,,(i, j) = similarity(c,,b, c j ) ,  (7) 

where i and j are the indices for shots and clusters, respectively, 
and wv(i, j) denotes the link weight between shot i and Visual 
Index cluster cj. 

After defining the link weights between shots and the Visual 
Index, and labeling each cluster, we can next establish the link 
weights between shots and the Semantic Index. Note that multi- 
ple clusters may share the same semantic label. The link weight 
between a shot and a Semantic Index is defined as 

wdi, k) = max(wv(i, j ) ) ,  (8) 

where k is the index for the Semantic Index entities, and j rep- 
resents those clusters sharing the same semantic label k. 

The link weight between shots and a Camera Motion Index 
(e.g., panning) is defined as 

I 

ni wc(i ,  1) = -, 
Ni (9) 

where 1 is the index for the camera operation Index entities; ni is 

FIGURF, 8 Subclusters. 
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FIGURE 9 Interface for going from the Semantic Index to the ToC. (See color section, p. C-45.) 

the number offrames having that camera motion operation; and 
N, is the number of frames in shot i .  

Extensive tests have been carried out with real-world video 
clips. The video streams are MPEG compressed, with the digi- 
tization rate equal to 30 frames/s. Table 2 summarizes example 
results over the video clip Moviel. The first two rows are an ex- 
ample of going from the semantic Index (e.g., car) to the ToC 
(Fig. 9). The middle two rows are an example of going from the 
visual Index (e.g., Fig. 10) to the ToC (Fig. 11). The last two 
rows are going from the camera operation Index (panning) to 
the ToC. 

By just looking at each isolated Index alone, a user usually 
cannot understand the context. By going from the Index to the 
ToC (as in Table 2), a user quickly learns when and under which 
circumstances (e.g., within a particular scene) that Index entity 
is happening. Table 2 summarizes how to go from the Index to 

TABLE 2 From the semantic, visual, camera Index to the ToC 

Shotid 0 2 10 12 14 31 33 

shotid 16 18 20 22 24 26 28 

shotid 0 1 2 3 4 5 6 

W 0.958 0.963 0.919 0.960 0.957 0.954 0.920 

Wv 0.922 0.877 0.920 0.909 0.894 0.901 0.907 

Wc 0.74 0.03 0.28 0.17 0.06 0.23 0.09 

the ToC to find the context. We can also go from the ToC to the 
Index to pin point a specific Index. Table 3 summarizes which 
Index entities appeared in shot 33 of the video clip Moviel. 

For a continuous and long medium such as video, a “back 
and forth” mechanism between browsing and retrieval is crucial. 
Video library users may have to browse the video first before 

FIGURE 10 Frame 2494 as a Visual Index. 
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FIGURE 11 Interface for going from the Visual Index to the ToC. (See color section, p. C-45.) 

they know what to retrieve. On the other hand, after retrieving 
some video objects, the users will be better able to browse the 
video in the correct direction. We have carried out extensive 
subjective tests employing USerS from Various disciplines. Their 
feedback indicates that this unified framework greatly facilitated 
their access to video content, in both home entertainment and 
educational applications. 
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Paul Baran from the RAND Corporation first proposed the no- 
tion of a distributed communication network in 1964. The aim 
of the proposal was to provide a communication network that 
could survive the impact of a nuclear war. This proposal em- 
ployed a new approach to data communication based on packet 
switching. 

The Department of Defense through the Advanced Re- 
search Projects Agency (ARPA) commissioned the ARPANET, 
later known as the Internet, in 1969. The ARPANET was 
initially an experimental communication network that con- 
sisted of four nodes: UCLA, UCSB, SRI, and the University of 
Utah. 

The Internet grew very rapidly over the next two decades to 
encompass over 100,000 nodes by 1989, connecting research 
universities and government organizations around the world. 
Various protocols had been adopted to facilitate services such 
as remote connection, file transfer, electronic mail, and news 
distribution. 

The proliferation of the Internet exploded over the past decade 
to over 10 million nodes since the release of the World Wide Web 
(WWW). Tim Berners-Lee proposed the WWW for the Corpo- 
ration for Education and Research Networking (CERN) -the 
European center for nuclear research-in 1989. The Web grew 
out of a need for physics researchers from around the world to 
collaborate by using a large and dynamic collection of scientific 
documents. 

Today the WWW provides a powerful framework for access- 
ing linked documents throughout the Internet. The wealth of 
information available over the WWW has attracted the interest 
of commercial businesses and individual users alike. Its enor- 
mous popularity is enhanced by the graphical interfaces cur- 
rently available for browsing multimedia information over the 
Internet. 

The potential impact of multimedia information is currently 
restricted by the bandwidth of the existing communication net- 
works. Recent proposals for the improvement of communication 
networks wiU be able to accommodate the data rates required 
for image and video information. 

cowright @ 2000 byhdemic  Press. 
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In the future, image and video communication networks will 
be used for a variety of applications such as videoconferencing, 
broadcast television, interactive television, video on demand 
(VoD), multimedia e-mail, telemedicine, and distance learn- 
ing. 

In this presentation, a broad overview of image and video 
communication networks is provided. The basic methods used 
for image and video communication are illustrated over a wide 
variety of communication networks: ATM, Internetworks, and 
Wireless networks. The efficient use of the various communi- 
cation networks requires the transmission of image and video 
data in compressed form. A survey of the main image and video 
compression standards - JPEG and MPEG - is presented in 
Section 2. 

The compressed image and video data are stored and trans- 
mitted in a standard format known as a compression stream. A 
discussion of the image and video compression stream stand- 
ards is presented in Section 3. For brevity, this presentation will 
focus exclusively on the most popular current video compres- 
sion standard: MPEG-2. A detailed presentation of the MPEG-2 
compression stream standards - elementary stream, packetized 
elementary stream, program stream, and transport stream- is 
provided. 

Initial efforts for image and video communication conducted 
over ATM networks are presented in Section 4. For brevity, 
this presentation will once again be restricted exclusively to the 
MPEG-2 compression standard. The mapping of the MPEG-2 
transport stream to the ATM Application Layer (AAL) - AAL-1 
and AAL-5 -is provided. 

Current efforts are underway to expand the bandwidth of 
the Internet. For instance, the NSF has restructured its data 
networking architecture by providing the very high speed Back- 
bone Network Service (vBNS). The vBNS Multicast Back- 
bone (MBONE) network is intended to serve multicast real- 
time traffic such as audio and video communication over the 
Internet. 

An overview of the existing protocols for image and video 
communication over the Internet is presented in Section 5. The 
standard protocol for the transport of real-time data is pro- 
vided by the real-time transport protocol (RTP) presented in 
Section 5.1. For brevity, this presentation will once again focus 
exclusively on the MPEG-2 compression standard. Augmented 
to the RTP is the standard protocol for data delivery monitoring, 
as well as minimal control and identification capability, provided 
by the real-time transport control protocol (RTCP) presented in 
Section 5.2. 

Preliminary plans have been in progress for image and 
video communication over wireless networks. A sketch of the 
proposed unified wideband wireless communication standard 
known as the International Mobile Telecommunications-2000 
(IMT-2000) is discussed in Section 6. 

Finally, a brief summary and discussion of the various meth- 
ods used for image and video communication networks is pre- 
sented. 

2 Image and Video Compression 
Standards 

Introduction 
Numerous image and video compression standards have been 
proposed over the past decade by several international organi- 
zations.' In this section, a survey of the main image and video 
compression standards - JPEG and MPEG - is presented.2 

2.1 JPEG: Joint Photographic Experts Group 
The Joint Photographic Experts Group (JPEG) standard is used 
for the compression of continuous-tone still images. This com- 
pression standard is based on the Huffman and run-length 
encoding of the quantization of the discrete cosine transform 
(DCT) of image blocks. The widespread use of the JPEG stan- 
dard is motivated by the fact that it consistently produces excel- 
lent perceptual picture quality at compression ratios in excess of 
20:l. 

A direct extension of the JPEG standard to video compres- 
sion known as Motion JPEG (MJPEG) is obtained by the JPEG 
encoding of each individual picture in avideo sequence. This ap- 
proach is used when random access to each picture is essential, 
such as in video editing applications. The MJPEG compressed 
video yields data rates in the range of 8-10 Mbps. 

For additional details about the lossy and lossless JPEG 
compression standard of continuous-tone still images, refer to 
Chapters 5.5 and 5.6, respectively 

2.2 MPEG-1: Motion Photographic 
Expert Group- 1 
The Motion Picture Expert Group (MPEG) proposals for com- 
pression of motion pictures have been adopted as the main video 
compression standards. Although the MPEG standards provide 
for both audio and video compression of motion pictures, our 
attention will be focused in this presentation exclusively on the 
video compression standards. 

The goal of MPEG-1 was to produce VCR NTSC (352 x 240) 
quality video compression to be stored on CD-ROM (CD-I and 
CD-Video format) using a data rate of 1.2 Mbps. This approach 
is based on the arrangement of frame sequences into a group 
of pictures (GOP) consisting of four types of pictures: I pic- 
ture (intra), P picture (predictive), B picture (bidirectional), and 
D picture (DC). I pictures are intraframe JPEG encoded pictures 
that are inserted at the beginning of the GOP. P and B pictures 

'The organizations involved in the adoption of image and video compression 
standards include the International Standards Organization (ISO), the Interna- 
tional Telecommunications Union (ITU), and the International Electrotechnical 
Commission (IEC). 

2A closely related family of videoconferencing compression standards known 
as the H.26X Series -omitted from this presentation for brevity- is discussed 
in Chapter 6.1. 
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are interframe motion compensated JPEG encoded macroblock 
difference pictures that are interspersed throughout the GOP.3 
MPEG-1 restricts the GOP to sequences of 15 frames in progres- 
sive mode. 

The system level of MPEG-1 provides for the integration 
and synchronization of the audio and video streams. This 
is accomplished by multiplexing and including time stamps 
in both the audio and video streams from a 90-kHz system 
clock. For additional information related to MPEG-1, refer to 
Chapter 6.4. 

2.3 MPEG-2: Motion Photographic 
Expert Group-2 
The aim of MPEG-2 was to produce broadcast-quality video 
compression and was expanded to support higher resolutions, 
including High Definition Television (HDTV).4 The HDTV 
Grand Alliance standard has adopted the MPEG-2 video com- 
pression and transport stream standards in 1996.' MPEG-2 sup- 
ports four resolution levels: low (352 x 240), main (720 x 480), 
high-1440 (1440 x 1152), andhigh (1920 x 1080).TheMPEG-2 
compressed video data rates are in the range of 3-100 Mbpsa6 

Although the principles used to encode MPEG-2 are verysim- 
ilar to MPEG-1, it provides much greater flexibility by offering 
several profiles that differ in the presence or absence of B pic- 
tures, chrominance resolution, and coded stream ~calability.~ 
MPEG-2 supports both progressive and interlaced modes.* Sig- 
nificant improvements have also been introduced in the MPEG-2 
system level, as will be discussed in the following section. Addi- 
tional details about MPEG-2 can also be found in Chapter 6.4. 

2.4 MPEG-4: Motion Photographic 
Expert Group-4 
The intention of MPEG-4 was to provide low bandwidth video 
compression at a data rate of 64 kbps that can be transmitted 
over a single N-ISDN B channel. This goal has evolved to the 
development of flexible scalable extendable interactive compres- 
sion streams that can be used with any communication network 
for universal accessibility (e.g., Internet and wireless networks). 
MPEG-4 is a genuine multimedia compression standard that 
supports audio and video as well as synthetic and animated im- 
ages, text, graphics, texture, and speech synthesis. 

3D pictures are used exclusively for low-resolution high-speedvideo scanning. 
4The MPEG-3 video compression standard, which was originally intended for 

5The HDTV Grand Alliance standard, however, has selected the Dolby Audio 

%e HDTV Grand Alliance standard video data rate is approximately 

'The MPEG-2 video compression standard, however, does not support 

'The interlaced mode is compatible with the field format used in broadcast 

HDTV, w a s  later cancelled. 

Coding 3 (AC-3) audio compression standard. 

18.4 Mbps. 

D pictures. 

television interlaced scanning. 

The foundation of MPEG-4 is on the hierarchical representa- 
tion and composition of audio-visual objects (AVO). MPEG-4 
provides a standard for the configuration, communication, and 
instantiation of classes of objects: The configuration phase de- 
termines the classes of objects required for processing the AVO 
by the decoder. The communication phase supplements existing 
classes of objects in the decoder. Finally, the instantiation phase 
sends the class descriptions to the decoder. 

A video object at a given point in time is a video object plane 
(VOP). Each VOP is encoded separately according to its shape, 
motion, and texture. The shape encoding of a VOP provides a 
pixel map or a bitmap of the shape of the object. The motion 
and texture encoding of a VOP can be obtained in a manner 
similar to that used in MPEG-2. A multiplexer is used to inte- 
grate and synchronize the VOP data and composition informa- 
tion - position, orientation, and depth - as well as other data 
associated with the AVOS in a specified bit stream. 

MPEG-4 provides universal accessibility supported by error 
robustness and resilience, especially in noisy environments at 
very low data rates (less than 64 kbps): bit-stream resynchro- 
nization, data recovery, and error concealment. These features 
are particularly important in mobile multimedia communica- 
tion networks. For a thorough introduction to MPEG-4 refer to 
Chapter 6.5. 

2.5 MPEG-7: Motion Photographic 
Expert Group-7 
MPEG-7 - a recent initiative devoted to the standardization 
of the Multimedia Content Description Interface (MCDI) - 
is planned for completion by the year 2000. This standard will 
permit the description, identification, and access of audiovisual 
information from compressed multimedia databases. The search 
for audiovisual information will be retrieved by means of query 
material such as text, color, texture, shape, sketch, images, graph- 
ics, audio, and video, as well as spatial and temporal composition 
information. Although the MPEG-7 description can be attached 
to any multimedia representation, the standard will be based 
on MPEG-4. This standard will be used in applications such as 
medical imaging, home shopping, digital libraries, multimedia 
databases, and the Web. Additional information pertaining to 
MPEG-7 is also presented in Chapter 6.5. 

3 Image and Video Compression 
Stream Standards 

Introduction 
The compressed image andvideo data are stored and transmitted 
in a standard format known as a compression stream. The dis- 
cussion in this section will be restricted exclusively to the presen- 
tation ofthevideo compression stream standards associatedwith 
the MPEG-2 systems layer: elementary stream (ES), packetized 
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elementary stream (PES), program stream (PS), and transport 3.4 MPEG-2 Transport Stream 
stream (TS). 

The MPEG-2 systems layer is responsible for the integration 
and synchronization of the ESs: audio and video streams, as 
well as an unlimited number of data and control streams that 
can be used for various applications such as subtitles in multiple 
languages. This is accomplished by first packetizing the ESs, thus 
forming the packetized elementary streams (PESs). These PESs 
contain time stamps from a system clock for synchronization. 

The PESs are subsequently multiplexed to form a single out- 
put stream for transmission in one of two modes: PS and TS. 
The PS is provided for error-free environments such as storage 
in CD-ROM. It is used for multiplexing PESs that share a com- 
mon time base, using long variable-length  packet^.^ The TS is 
designed for noisy environments such as communication over 
ATM networks. This mode permits multiplexing streams (PESs 
and PSs) that do not necessarily share a common time base, using 
fixed-length (188 bytes) packets. 

3.1 MPEG-2 Elementary Stream 
As indicated earlier, MPEG-2 systems layer supports an unlim- 
ited number of ESs. Our focus is centered on the presentation 
of the ES format associated with the video stream. The struc- 
ture of the video ES format is dictated by the nested MPEG-2 
compression standard: video sequence, group of pictures (GOP), 
pictures, slices, and macroblocks. The video ES is defined as a 
collection of access units (pictures) from one source. 

3.2 MPEG-2 Packetized Elementary 
Stream 
The MPEG-2 systems layer packetizes all ESs -audio, video, 
data, and control streams - thus forming the PESs. Each PES is 
a variable-length packet with a variable format that corresponds 
to a single ES. The PES header contains time stamps to allow 
for synchronization by the decoder. Two different time stamps 
are used: the presentation time stamp (PTS) and the decoding 
time stamp (DTS). The PTS specifies the time at which the access 
unit should be removed from the decoder buffer and presented. 
The DTS represents the time at which the access unit must be 
decoded. The DTS is optional and is used only if the decoding 
time differs from the presentation time.'" 

3.3 MPEG-2 Program Stream 
A PS multiplexes several PESs, which share a common time base, 
to form a single stream for transmission in error-free environ- 
ments. The PS is intended for the storage and retrieval of pro- 
grams from digital storage media such as CD-ROM. The PS 
uses relatively long variable-length packets. For a more detailed 
presentation of the MPEG-2 PS refer to [4]. 

9The MPEG-2 PS is similar to the MPEG-1 systems stream. 
"This is the situation for MPEG-2 video ES profiIes that contain B pictures. 

A TS permits multiplexing streams (PESs and PSs) that do not 
necessarily share a common time base for transmission in noisy 
environments. The TS is designed for broadcasting over com- 
munication networks such as ATM networks. The TS uses small 
fixed-length packets (188 bytes) that make them more resilient 
to packet loss or damage during transmission. The TS provides 
the input to the transport layer in the OS1 reference model.'l 

The TS packet is composed of a 4-byte header followed by 184 
bytes shared between the variable-length optional adaptation 
field (AF) and the TS packet payload. The optional AF contains 
additional information that need not be included in every TS 
packet. One of the most important fields in the AF is the program 
clock reference (PCR). The PCR is a 42-bit field composed of a 
9-bit segment incremented at 27 MHz as well as a 33-bit segment 
incremented at 90 kHz.'* The PCR is used along with a voltage- 
controlled oscillator as a time reference for synchronization of 
the encoder and decoder clock. 

A PES header must always follow the TS header and possi- 
ble AF. The TS payload may consist of the PES packets or PSI. 
The PSI provides control and management information used to 
associate particular ESs with distinct programs. A program is 
once again defined as a collection of ESs that share a common 
time base. This is accomplished by means of a program descrip- 
tion provided by a set of PSI associated signaling tables (ASTs): 
program association tables (PATS), program map tables (PMTs), 
network information tables (NITS), and conditional access ta- 
bles (CATS). The PSI tables are sent periodically and carried in 
sections along with cyclic redundancy check (CRC) protection 
in the TS payload. 

An example illustrating the formation of the TS packets is de- 
picted in Fig. l. The choice ofthe size ofthe fixed-length TS pack- 
ets- 188 bytes-is motivated by the fact that the payload of 
the ATM Adaptation Layer-1 (AAL-1) cell is 47 bytes. Therefore, 
four AAL- 1 cells can accommodate a single TS packet. A detailed 
discussion of the mapping of the TS packets to ATM networks 
is presented in the next section. 

4 Image and Video ATM Networks 

Introduction 
Asynchronous transfer mode (ATM), also known as cell relay, is a 
method for information transmission in small fixed-size packets 
called cells based on asynchronous time-division multiplexing. 
ATM technology was proposed as the underlying foundation for 
the Broadband Integrated Services Digital Network (B-ISDN). 
B-ISDN is an ambitious very high data rate network that will re- 
place the existing telephone system and al l  specialized networks 

"The TS, however, is not considered as part of the transport layer. 
12Tne 33-bit segment incremented at 90 kHz is compatible with the MPEG-1 

system dock. 
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with a single integrated network for information transfer appli- 
cations such as video on demand (VoD), broadcast television, 
and multimedia communication. These lofty goals not with- 
standing, ATM technology has found an important niche in 
providing the bandwidth required for the interconnection of 
existing local area networks (LAN); e.g., Ethernet. 

The ATM cells are 53 bytes long, of which 5 bytes are devoted 
to the ATM header and the remaining 48 bytes are used for the 
payload. These small fixed-sized cells are ideally suited for the 
hardware implementation of the switching mechanism at very 
high data rates. The data rates envisioned for ATM are 155.5 
Mbps (OC-3), 622 Mbps (OC-12), and 2.5 Gbps (OC-48).l3 

The B-ISDN ATM reference model consists of several layers: 
the physical layer, the ATM layer, the ATM Adaptation Layer 
(AAL), and the upper 1a~ers . l~ This layer can be further di- 
vided into the physical medium dependent (PMD) sublayer 
and the transmission convergence (TC) sublayer. The PMD sub- 
layer provides an interface with the physical medium and is re- 
sponsible for transmission and synchronization on the physical 
medium (e.g., SONET or SDH). The TC sublayer converts be- 
tween the ATM cells and the frames - strings of bits - used 
by the PMD sublayer. ATM has been designed to be indepen- 
dent of the transmission medium. The data rates specified at the 
physical layer, however, require category 5 twisted pair or optical 
fibers.15 

"The data rate of 155.5 Mbps was chosen to accommodate the transmission of 
HDTV and for compatibility with the Synchronous Optical Network (SONET). 
The higher data rates of 622 Mbps and 2.5 Gbps were chosen to accommodate 
four and 16 channels, respectively. 

14Note that the B-ISDN ATM reference model layers do not map well into the 
OS1 reference model layers. 

15Existing twisted pair wiring cannot be used for B-ISDN ATM transmission 
for any substantial distances. 

TS packets. 

72 1 

The ATM layer provides the specification ofthe cell format and 
cell transport. The header protocol defined in this layer provides 
generic flow control, virtual path and channel identification, 
payload type, cell loss priority, and header error checking. The 
ATM layer is a connection-oriented protocol that is based on the 
creation ofend-to-endvirtual circuits (channels). The ATM layer 
protocol is unreliable - acknowledgements are not provided - 
since it was designed for use of real-time traffic such as audio and 
video over fiber optic networks that are highly reliable. The ATM 
layer nonetheless provides quality of service (QoS) guarantees 
in the form of cell loss ratio, bounds on maximum cell transfer 
delay (MCTD), cell delay variation (CDV) -known also as de- 
lay jitter. This layer also guarantees the preservation of cell order 
along virtual circuits. 

The structure of the AAL can be decomposed into the seg- 
mentation and reassembly sublayer (SAR) and the convergence 
sublayer (CS). The SAR sublayer converts between packets from 
the CS sublayer and the cells used by the ATM layer. The CS 
sublayer provides standard interface and service options to the 
various applications in the upper layers. This sublayer is also 
responsible for converting between the message or data streams 
from the applications and the packets used by the SAR sublayer. 
The CS sublayer is further divided into the common part con- 
vergence sublayer (CPCS) and the service specific convergence 
sublayer (SSCS) . 

Initially four service classes were defined for the AAL (Classes 
A-D). This classification has subsequently been modified by 
the characterization of four protocols: Class A is used to repre- 
sent real-time (RT) constant bit-rate (CBR) connection-oriented 
(CO) services handled by AAL- 1. This class includes applica- 
tions such as circuit emulation for uncompressed audio and 
video transmission. Class B is used to define real-time (RT) 
variable bit-rate (VBR) CO services given by AAL-2. Among the 
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FIGURE 2 AAL-1 SAR-PDU header. 

applications considered by this class are compressed audio and 
video transmission. Although the aim of the AAL-2 protocol is 
consistent with the focus ofthis presentation, we shall not discuss 
it in detail since the AAL-2 standard has not yet been defined. 
Classes C and D support nonreal-time (NRT) VBR services cor- 
responding to AAL-3/4.16 Class C is further restricted to NRT, 
VBR, connection-oriented services provided by AAL-5." It is 
expected that this protocol will be used to transport IP packets 
and interface to ATM networks. 

4.1 AAL-1: ATM Application Layer-1 
The AAL-1 protocol is used for transmission of RT, CBR, 
connection-oriented traffic. This application requires transmis- 
sion at constant rate, minimal delay, insignificant jitter, and low 
overhead. 

Transmission using the AAL- 1 protocol is in one oftwo modes: 
unstructured data transfer (UDT) and structured data transfer 
(SDT). The UDT mode is provided for data streams in which 
boundaries need not be preserved. The SDT mode is designed 
for messages where message boundaries must be preserved. 

The CS sublayer detects lost and misinserted cells that occur 
due to undetected errors in the virtual path or channel identifi- 
cation. It also controls incoming traffic to ensure transmission 
at a constant rate. This sublayer also converts the input mes- 
sages or streams into 46-47 byte segments to be used by the SAR 
sublayer. 

The SAR sublayer has a 1-byte protocol header. The conver- 
gence sublayer indicator (CSI) of the odd-numbered cells forms 
a data stream that provides a 4-bit synchronous residual time 
stamp (SRTS) used for clock synchronization in SDT mode.'* 
The timing information is essential for the synchronization of 
multiple media streams as well as for the prevention of buffer 
overflow and underflow in the decoder. The sequence count 

16Classes C and D were originally used for the representation of NRT, VBR, 
CO, and connectionless services handled by AAL-3 and AAL-4, respectively. 
These protocols, however, were so similar - differing only in the presence or 
absence of a multiplexing header field - that they eventually decided to merge 
them into a single protocol provided by AAL-3/4. 

"A new protocol AAL-5 -originally named simple efficient adaptation layer 
(SEAL) - was proposed by the computer industry as an alternative to the previ- 
ously existing protocol AAL-3/4, which was presented by the telecommunications 
industry. 

'*The SRTS method encodes the frequency difference between the encoder 
clock and the network clock for synchronization of the encoder and receiver 
clock in the asynchronous service clock operation mode, despite the presence of 
delay jitter. 

P 

(SC) is a modulo-8 counter used to detect missing or misin- 
serted cells. The CSI and SC fields are protected by the cyclic 
redundancy check (CRC) field. An even parity (P) bit covering 
the protocol header affords additional protection of the CSI and 
SC fields. The AAL-1 SAR sublayer protocol header is depicted 
in Fig. 2. A corresponding glossary of the AAL- 1 SAR sublayer 
protocol header is provided in Table 1. 

An additional 1 -byte pointer field is used on every even num- 
bered cell in the STD mode.19 The pointer field is a number in the 
range of 0-92 used to indicate the offset of the start of the next 
message, either in its own cell or the one following it in order to 
preserve message boundaries. This approach allows messages to 
be arbitrarily long and need not align on cell boundaries. In this 
presentation, however, we shall restrict ourselves to operation in 
the UDT mode for data streams in which boundaries need not 
be preserved and the pointer field will be omitted. 

As we have already indicated, the MPEG-2 systems layer con- 
sists of 188-byte fixed-length TS packets. The CS sublayer di- 
rectly segments each of the MPEG-2 TS packets into four 47-byte 
fixed-length AAL- 1 SAR payloads. This approach is used when 
the cell loss ratio (CLR) that is provided by the ATM layer is 
satisfactory. 

An alternative optional approach is used in noisy environ- 
ments to improve reliability by the use of interleaved forward 
error correction (FEC); Le., Reed-Solomon (128,124). The CS 
sublayer groups a sequence of 31 distinct 188-byte fixed-length 
MPEG-2 TS packets. This group is used to form a matrix writ- 
ten in standard format (row-by-row) of 47 rows and 124 bytes 
in each row. Four bytes of the FEC are appended to each row. 
The resulting matrix is composed of 47 rows and 128 bytes in 
each row. This matrix is forwarded to an interleaver that reads 
the matrix in transposed format (column by column) for trans- 
mission to the SAR sublayer. The interleaver ensures that a cell 
loss would be limited to the loss of a single byte in each row, 
which can be recovered by the FEC. A mild delay equivalent 

TABLE 1 AAL-1 SAR-PDU header glossary 

Abbrev. Function 

CSI convergence sublayer indicator 
sc sequence count 
CRC cyclic redundancy check 
P parity (even) 

"The high-order bit of the pointer field is currently unspecified and reserved 
for future use. 
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FIGURE 3 Interleaved transport stream (FEC). 

by the matrix for- 
mation at the transmitter and the receiver. An illustration of 
the formation of the interleaved FEC TS packets is depicted in 
Fig. 3. 

Whether the interleaved FEC of the TS packets is imple- 
mented or direct transmission of the TS packets is used, the 
AAL- 1 SAR sublayer receives 47-byte fixed-length payloads that 
are appended by the 1-byte AAL- 1 SAR protocol header to form 
48-byte fixed-length packets. These packets serve as payloads of 
the ATM cells and are attached to the 5-byte ATM headers to 
comprise the 53-byte fixed-length ATM cells. An illustration of 

the mapping of MPEG-2 systems layer TS packets into ATM cells 
using the AAL- 1 protocol is depicted in Fig. 4. 

4.2 AAL-5: ATM Application Layer 5 
The AAL-5 protocol is used for NRT, VBR, CO, traffic. This 
protocol also offers the option of reliable and unreliable services. 

The CS sublayer protocol is composed of a variable-length 
payload oflength not to exceed 65,535 bytes and a variable-length 
trailer of length 8-55 bytes. The trailer consists of a padding (P) 
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Length 

FIGURE 5 AAL-5 CPCS-PDU trailer. 

field of length 0-47 bytes chosen to make the entire message - 
payload and trailer - be a multiple of48 bytes. The user- to-user 
(VU) direct information transfer field is available for higher 
layer applications (e.g., multiplexing). The common part indi- 
cator (CPI) field designed for interpretation of the remaining 
fields in the CS protocol is currently not in use. The length field 
provides the length of the payload (not including the padding 
field). The standard 32-bit CRC field is used for error checking 
over the entire message - payload and trailer. This error check- 
ing capability allows for the detection of missing or misinserted 
cells without using sequence numbers. An illustration of the 
AAL-5 CPCS protocol trailer is depicted in Fig. 5 .  A correspond- 
ing glossary of the AAL-5 CPCS protocol trailer is provided by 
Table 2. 

The SAR sublayer simply segments the message into 48-byte 
units and passes them to the ATM layer for transmission. It 
also informs the ATM layer that the ATM user-to-user (AAU) 
bit in the payload type indicator (PTI) field of the ATM cell 
header must be set on the last cell in order to preserve message 
boundaries.20 

Encapsulation of a single MPEG-2 systems layer 188-byte 
fixed-length TS packet in one AAL-5 CPCS packet would in- 
troduce a significant amount of overhead because of the size of 
the AAL-5 CPCS trailer protocol. The transmission of a single TS 
packet using this approach to the implementation of the AAL-5 
protocol would require five ATM cells in comparison to the four 
ATM cells needed with the AAL-1 protocol. More than one TS 
packets must be encapsulated in a single AAL-5 CPCS packet in 
order to reduce the overhead. 

The encapsulation of more than one TS packets in a single 
AAL-5 CPCS packet is associated with an inherent packing jitter. 
This will manifest itself as delay variation in the decoder and may 
affect the quality of the systems clock recovered when one of the 
TS packets contains a PCR. For this problem to be alleviated, 

TABLE 2 AAL-5 CPCS-PDU trailer glossary 

Abbrev. Function 

P padding 
uu user-to-user direct information transfer 
CPI common part indicator field 
Length length of payload 
CRC cyclic redundancy check 

ZoNote that this approach is in violation of the principles of the open architec- 
ture protocol standards-the AAL layer should not invoke decisions regarding 
the bit pattern in the header of the ATM layer. 

the number of TS packets encapsulated in a single AAL-5 CPCS 
packet should be minimized.21 

The preferred method adopted by the ATM Forum is based 
on the encapsulation of two MPEG-2 systems layer 188-byte 
TS packets in a single AAL-5 CPCS packet. The AAL-5 CPCS 
packet payload consequently occupies 376 bytes. The payload is 
appended to the 8-byte AAL-5 CPCS protocol trailer (no padding 
is required) to form a 384-byte AAL-5 CPCS packet. The AAL-5 
CPCS packet is segmented into exactly eight 48-byte AAL-5 SAR 
packets, which serve as payloads ofthe ATM cells and are attached 
to the 5-byte ATM headers to comprise the 53-byte fixed-length 
ATM cells. An illustration of the mapping of two MPEG-2 sys- 
tems layer TS packets into ATM cells using the AAL-5 protocol 
is depicted in Fig. 6. 

The overhead requirements for the encapsulation of two TS 
packets in a single AAL-5 CPCS packet are identical to the over- 
head needed with the AAL-1 protocol- both approaches map 
two TS packets into eight ATM cells. This approach to the imple- 
mentation of the AAL-5 protocol is currently the most popular 
method for mapping MPEG-2 systems layer TS packets into ATM 
cells. 

5 Image and Video Internetworks 

Introduction 
A critical factor in our ability to provide worldwide multimedia 
communication is the expansion of the existing bandwidth of the 
Internet. The NSF has recently restructured its data networking 
architecture by providing the very high speed Backbone Network 
Service (vBNS). The vBNS currently employs ATM switches and 
OC-12c SONET fiber optic communications at data rates of 
622 Mbps. 

The vBNS Multicast Backbone (MBONE), a worldwide digital 
radio and television service on the Internet, was developed in 
1992. MBONE is used to provide global digital multicast real- 
time audio and video broadcast via the Internet. The multicast 
process is intended to reduce the bandwidth consumption of the 
Internet. 

MBONE is a virtual overlay network on top of the Inter- 
net. It consists of islands that support multicast traffic and tun- 
nels that are used to propagate MBONE packets between these 

'lAn alternative solution to the packing jitter problem, known as PCR-aware 
packing, requires that TS packets containing a PCR appear in the last packet 
in the AAL-5 CPCS packet. This approach is rarely used because of the added 
hardware complexity in detecting TS packets with a PCR. 
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islands. The islands are interconnected using mrouters (multi- 
cast routers), which are logically connected by tunnels. 

The Multicast Internet Protocol (IP) was adopted as the stand- 
ard protocol for multicast applications on the Internet. MBONE 
packets are transmitted as multicast IP packets between mrouters 
in different islands. Multicast IP packets are encapsulated within 
ordinary IP packets and regarded as standard unicast data by 
ordinary routers along a tunnel. 

MBONE applications such as multimedia data broadcasting 
do not require reliable communication or flow control. These 
applications do require, however, real-time transmission over the 
Internet. The loss of an audio or video packet will not necessarily 
degrade the broadcast quality. Significant jitter delay, in contrast, 
cannot be tolerated. The user datagram protocol (UDP) -not 
the transmission control protocol (TCP) -is consequently used 
for transmission of multimedia traffic. 

The UDP is an unreliable connectionless protocol for appli- 
cations such as audio and video communications that require 
prompt delivery rather than accurate delivery and flow control. 
The UDP is restricted to an 8-byte header that contains the source 
and destination ports, the length of the packet, and an optional 
checksum over the entire packet. 

In this section, an overview of the protocols used for image 
and video communications over the Internet is presented. For 
brevity, this presentation will focus exclusively on the MPEG-2 
compression standard. 

5.1 RTP: Real-Time Transport Protocol 
The RTP provides end-to-end network transport functions for 
the transmission of real-time data such as audio or video over 
unicast or multicast services independent of the underlying net- 

work or transport protocols. Its functionality, however, is en- 
hanced when run on top of the UDP. It is also assumed that 
resource reservation and quality of service have been provided 
by lower layer services (e.g., RSVP). The RTP protocol, however, 
does not assume nor provide guaranteed delivery or packet order 
preservation. 

RTP services include time-stamp packet labeling for media 
stream synchronization, sequence numbering for packet loss de- 
tection, and packet source identification and tracing. 

RTP is designed to be a flexible protocol that can be used to 
accommodate the detailed information required by particular 
applications. The RTP protocol is, therefore, deliberately incom- 
plete and its full specification requires one or more companion 
documents: profile specification and payload format specifica- 
tion. The profile specification document defines a set of payload 
types and their mapping to payload formats. The payload format 
specification document defines the method by which particular 
payloads are carried. 

The RTP protocol supports the use of intermediate system 
relays known as translators and mixers. Translators convert each 
incoming data stream from different sources separately. An ex- 
ample of a translator is used to provide access to an incoming 
audio or video packet stream beyond an application-level fire- 
wall. Mixers combine the incoming data streams from different 
sources to form a single stream. An example of a mixer is used to 
resynchronize an incoming audio or video packet stream from 
high-speed networks to a lower-bandwidth packet stream for 
communication across low-speed networks. 

An illustration of the RTP packet header is depicted in Fig. 7. 
A corresponding glossary of the RTP packet header is provided 
in Table 3. The version number of the RTP is defined in the 
version (V) field. The version number of the current RTP is 
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number 2.22 A padding (P) bit is used to indicate if additional 
padding bytes, which are not part of the payload, have been ap- 
pended at the end of the packet. The last byte of the padding field 
provides the length of the padding field. An extension (X) bit is 
used to indicate if the fixed header is followed by a header exten- 
sion. The contributing source count (CC) provides the number 
(up to 15) of contributing source (CSRC) identifiers that follow 
the fixed header. A marker (M) bit is defined by a profile for 
various applications such as the marking of frame boundaries 
in the packet stream. The payload type (PT) field provides the 
format and interpretation of the payload. The mapping ofthe PT 
code to payload formats is specified by a profile. An incremental 
sequence number (SN) is used by the receiver to detect packet 
loss and restore packet sequence. The initial value of the SN is 
random in order to combat possible attacks on encryption. The 
time stamp provides the sampling instant of the first byte in the 
packet derived from a monotonically and linearly incrementing 
clock for synchronization and jitter delay estimation. The clock 
frequency is indicated by the profile or payload format specifi- 
cation. The initial value of the time stamp is once again random. 

TABLE 3 RTP packet header glossary 

Abbrev. Function 

V 
P 
X 
cc 
M 
PT 
SN 
TS 
SSRC 
CSRC 

version 
padding 
extension 
contibuting source count 
marker 
payload type 
sequence number 
time stamp 
synchronization source identifier 
Contributing source identifier 

22Version numbers 0 and 1 have been used in previous versions of the RTP. 

The synchronization source (SSRC) field is used to identify the 
source of a stream of packets from a synchronization source. A 
translator forwards the stream of packets while preserving the 
SSRC identifier. A mixer, on the other hand, becomes the new 
synchronization source and must therefore include its own SSRC 
identifier. The SSRC field is chosen randomly in order to pre- 
vent two synchronization sources from having the same SSRC 
identifier in the same session. A detection and collision resolu- 
tion algorithm prevents the possibility that multiple sources will 
select the same identifier. The contributing source (CSRC) field 
designates the source of a stream of packets that has contributed 
to the combined stream, produced by a mixer, in the payload of 
this packet. The CSRC identifiers are inserted by the mixer and 
correspond to the SSRC identifiers of the contributing sources. 
As indicated earlier, the CC field provides the number (up to 15) 
of contributing sources. 

Numerous options for the augmentation of the RTP proto- 
col for various applications have been proposed. An important 
proposal for the generic forward error correction (FEC) data en- 
capsulation in RTP packets has been presented in [ 21. 

The most popular current video compression standards are 
based on MPEG. RTP payload encapsulation of MPEG data 
streams can be accomplished in one of two formats: systems 
stream - transport stream and program stream - as well as 
elementary stream. The format used for encapsulation of MPEG 
systems stream is designed for maximum interoperability with 
video communication network environments. The format used 
for the encapsulation of MPEG systems stream, however, pro- 
vides greater compatibility with the Internet architecture includ- 
ing other RTP encapsulated media streams and current efforts 
in conference control.23 

23 RTP payload encapsulation of MPEG elementary stream format defers some 
ofthe issues addressed by the MPEG systems stream to other protocols proposed 
by the Internet community. 
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The RTP header for encapsulation of MPEG SS is set as fol- 
lows: The payload type (PT) field should be assigned to corre- 
spond to the systems stream format in accordance with the RTP 
profile for audio and video conferences with minimal control 
[ 71. The marker (M) bit is activated whenever the time stamp is 
discontinuous. The time-stamp field provides the target trans- 
mission time ofthe first byte in the packet derived from a 90 KHz 
clock reference, which is synchronized to the system stream PCR 
or system clock reference (SCR). This time-stamp is used to min- 
imize network jitter delay and synchronize relative time drift 
between the sender and receiver. The RTP payload must con- 
tain an integral number of MPEG-2 transport stream packets - 
there are no restrictions imposed on MPEG-1 systems stream or 
MPEG-2 program stream packets. 

The RTP header for encapsulation of MPEG ES is set as fol- 
lows: the payload type (PT) field should once again be assigned to 
correspond to the elementary stream format in accordance with 
the RTP profile for audio and video conferences with minimal 
control [ 71. The marker (M) bit is activated whenever the RTP 
packet contains an MPEG frame end code. The time-stamp field 
provides the presentation time of the subsequent MPEG picture 
derived from a 90-KHz clock reference, which is synchronized 
to the system stream program clock reference or system clock 
reference. 

The RTP payload encapsulation of MPEG ES format requires 
that an MPEG ES video-specific header follow each RTP packet 
header. The MPEG ES video-specific header contains a must be 
zero (MBZ) field that is currently unused and must be set to 
zero. An indicator (T) bit is used to announce the presence of 
an MPEG-2 ES video-specific header extension following the 
MPEG ES video-specific header. The temporal reference (TR) 
field provides the temporal position of the current picture within 
the current group of pictures (GOP). The active N (AN) bit is 
used for error resilience and is activated when the following in- 
dicator (N) bit is active. The new picture header (N) bit is used 
to indicate parameter changes in the picture header information 
for MPEG-2 payloads.24 A sequence header present (S) bit indi- 
cates the occurrence of an MPEG sequence header. A beginning 
of slice (B) bit indicates the presence of a slice start code at the 
beginning of the packet payload, possibly preceded by any com- 
bination of a video sequence header, group of pictures (GOP) 
header, and picture header. An end of slice (E) bit indicates that 
the last byte ofthe packet payload is the end ofa slice. The picture 
type (PT) field specifies the picture type-I picture, P picture, 

24The active N and new picture header indicator bits must be set to 0 for 
MPEG-1 payloads. 

B picture, or D picture. The full pel backward vector (FBV), back- 
ward f code (BFC), full pel forward vector (FFV), and forward 
f code (FFC) fields are used to provide information necessary 
for determination of the motion vectors.25 Figure 8 and Table 4 
provide an illustration and corresponding glossary of the RTP 
MPEG ES video-specific header, respectively. 

An illustration of the RTP MPEG-2 ES video-specific header 
extension is depicted in Fig. 9. A corresponding glossary used to 
summarize the function of the RTP MPEG-2 ES video-specific 
header extension is provided in Table 5 .  Particular attention 
should be paid to the composite display flag (D) bit, which indi- 
cates the presence ofa composite display extension - a 32-bit ex- 
tension that consists of 12 zeros followed by 20 bits of composite 
display information - following the MPEG-2 ES video-specific 
header extension. The extension (E) bit is used to indicate the 
presence of one or more optional extensions - quantization ma- 
trix extension, picture display extension, picture temporal scal- 
able extension, picture spatial scalable extension, and copyright 
extension -following the MPEG-2 ES video-specific header ex- 
tension as well as the composite display extension. The first byte 
of each of these extensions is a length (L) field that provides 
the number of 32-bit words used for the extension. The exten- 
sions are self-identifying since they must also include the exten- 
sion start code (ESC) and the extension start code ID (ESCID). 
For additional information regarding the remaining fields in the 
MPEG-2 ES video-specific header extension refer to the MPEG-2 
video compression standard. 

TABLE 4 RTP MPEG ES video-specific 
header glossary 

Abbrev. Function 

MBZ must be zero 
T video-specific header extension 
TR temporal reference 
AN active N 
N new picture header 
S sequence header present 
B beginning of slice 
E end of slice 
P picture type 
FBV full pel backward vector 
BFC backward F code 
FFV full pel forward vector 
FFC forward F code 

250nly the FFV and FFC fields are used for P pictures; none of these fields are 
used for I pictures and D pictures. 
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FIGURE 9 RTP MPEG-2 ES video-specific header extension. 

The RTP payload encapsulation of MPEG ES format frag- 
ments the stream into packets such that the following headers 
must appear hierarchically at the beginning of a single payload 
of an RTP packet: MPEG video sequence header, MPEG GOP 
header, and MPEG picture header. The beginning of a slice - 
the fundamental unit of recovery-must be the first data (not 
including any MPEG ES headers) or must follow an integral 
number of slices in the payload of an RTP packet. 

Efforts have also been devoted to the encapsulation of other 
video compression standards (e.g., Motion JPEG and MPEG-4). 

5.2 RTCP: Real-Time Transport Control Protocol 
The RTCP augments the RTP protocol to monitor the quality of 
service and data delivery monitoring as well as provide minimal 
control and identification capability over unicast or multicast 
services independent of the underlying network or transport 
protocols. The primary function of the RTCP protocol is to pro- 
vide feedback on the quality of data distribution that can be used 
for flow and congestion control. The RTCP protocol is also used 
for the transmission of a persistent source identifier to monitor 
the participants and associate related multiple data streams from 
a particular participant. The RTCP packets are sent to all partic- 
ipants in order to estimate the rate at which control packets are 
sent. An optional function of the RTCP protocol can be used to 
convey minimal session control information. 

The implementation of the RTCP protocol is based on the 
periodic transmission to all participants in the session of con- 

TABLE 5 RTP MPEG-2 ES video-specific header extension glossary 

Abbrev. Function 

unused (Zero) 
extension 
forward horizontal F code 
forward vertical F code 
backward horizontal F code 
backward vertical F code 
intra DC Precision (intra macroblock DC difference value) 
picture structure (fieldlframe) 
top field first (oddleven lines first) 
frame predicted frame DCT 
concealment motion vectors (I  picture exit) 
Q-scale type (quantization table) 
intra VLC format (Huffman code) 
alternate scan (sectionlinterlaced field breakup) 
repeat first field 
chroma 420 type (options also include 422 and 444) 
progressive frame 
composite display flag 

trol information in several packet types summarized in Table 6. 
The sender report (SR) and receiver report (RR) provide recep- 
tion quality feedback and are identical except for the additional 
sender information that is included for use by active senders. 
The SR or RR packets are issued depending on whether a site has 
sent any data packets during the interval since the last two re- 
ports were issued. The source description item (SDES) includes 
items such as the canonical end-point identifier (CNAME), user 
name (NAME), electronic mail address (EMAIL), phone num- 
ber (PHONE), geographic user location (LOC), application or 
tool name (TOOL), notice/status (NOTE), and private exten- 
sions (PRIV). The end of participation (BYE) packet indicates 
that a source is no longer active. The application specific func- 
tions (APP) packet is intended for experimental use as new ap- 
plications and features are developed. 

RTCP packets are composed of an integral number of 32-bit 
structures and are, therefore, stackable; multiple RTCP packets 
may be concatenated to form compound RTCP packets. RTCP 
packets must be sent in compound packets containing at least 
two individual packets of which the first packet must always be 
a report packet. Should the number of sources for which reports 
are generated exceed 3 1 -the maximal number of sources that 
can be accommodated in a single report packet - additional 
RR packets must follow the original report packet. An SDES 
packet containing a CNAME item must also be included in each 
compound packet. Other RTCP packets may be included subject 
to bandwidth constraints and application requirements in any 
order, except that the BYE packet should be the last packet sent in 
a given session. These compound RTCP packets are forwarded 
to the payload of a single packet of a lower layer protocol (e.g., 
UDP) . 

An illustration of the RTCP SR packet is depicted in Fig. 10. 
A corresponding glossary of the RTCP SR packet is provided in 
Table 7. The RTCP SR and RR packets are composed of a header 
section, zero or more reception report blocks, and a possible 
profile-specific extension section. The SR packets also contain 
an additional sender information section. 

TABLE 6 RTCP packet types 

Abbrev. Function 

SR sender report 
RR receiver report 
SDES 
BYE end of participation indication 
APP application specific functions 

source description item (e.g., CNAME) 
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FIGURE 10 RTCP sender report packet. 

The header section defines the version number of the RTCP 
protocol in the version (V) field. The version number of the 
current RTCP protocol is number 2 -the same as the version 
number of the RTP protocol. A padding (P) bit is used to indicate 
if additional padding bytes, which are not part of the control in- 
formation, have been appended at the end of the packet. The last 
byte of the padding field provides the length of the padding field. 
In a compound RTCP packet, padding should only be required 
on the last individual packet. The reception report count (RC) 
field provides the number of reception report blocks contained 

in the packet. The packet type (PT) field contains the constant 
200 and 201 to identify the packet as a sender report (SR) and 
receiver report (RR) RTCP packet, respectively. The length (L) 
field provides the number of %bit words of the entire RTCP 
packet - including the header and possible padding - minus 
one. The synchronization source (SSRC) field is used to identify 
the sender of the report packet. 

The sender information section appears in the sender report 
packet exclusively and provides a summary of the data trans- 
mission from the sender. The network time protocol time stamp 
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TABLE 7 RTCP sender report packet glossary 

Abbrev. Function 

V 
P 
RC 
PT 
L 
SSRC 
NTPT 
RTPT 

version 
padding 
reception report count 
packet type 
length 
synchronization source identifier (sender) 
network time protocol time stamp 
real-time transport protocol time stamp 

PC packet count (sender) 
oc octet count (sender) 
SSRC-N synchronization source identifier-N 
FL fraction lost 
CNPL 
EHSNR 
J interarrival jitter 
LSR 
DLSR 

cumulative number of packets lost 
extended highest sequence number received 

last sender report time stamp 
delay since last sender report time stamp 

(NTPT) indicates the wallclock time at that instant the report was 
sentF6 This time stamp along with the time stamps generated by 
other reports is used to measure the round-trip propagation to 
the other receivers. The real-time protocol time stamp (RTPT) 
corresponds to the NTPT provided using the units and random 
offset used in the RTP data packets. This correspondence can 
be used for synchronization among sources whose NTP time 
stamps are synchronized. The packet count (PC) field indicates 
the total number of RTP data packets transmitted by the sender 
since the beginning of the session up until the generation of the 
SR packet. The octet count (OC) field represents the total num- 
ber of bytes in the payload of the RTP data packets - excluding 
header and padding-transmitted by the sender since the be- 
ginning of the session up until the generation of the SR packet. 
This information can be used to estimate the average payload 
data rate. 

All RTCP report packets must contain zero or more recep- 
tion report blocks corresponding to the number of synchro- 
nization sources from which the receiver has received RTP data 
packets since the last report. These reception report blocks con- 
vey statistical data pertaining to the RTP data packets received 
from a particular synchronization source. The synchronization 
source (SSRC-N) field is used to identify the Nth synchroniza- 
tion source to which the statistical data in the Nth reception 
report block is attributed. The fraction lost (FL) field indicates 
the fraction of RTP data packets from the Nth synchronization 
source lost since the previous report was sent. This fraction is 
defined as the number of packets lost divided by the number 
of packets expected (NPE). The cumulative number of packets 
lost (CNPL) field provides the total number of RTP data packets 
from the Nth synchronization source lost since the beginning of 

26The walldock time (absolute time) represented with the Network Time 
Protocol time-stamp format is a 64-bit unsigned fixed-point number provided 
in seconds relative to Oh Universal Time Clock (UTC) on January I, 1900. 

the session. The CNPL is defined as the number of packets ex- 
pected (NPE) less the number of packets received. The extended 
highest sequence number received (EHSNR) field contains the 
highest sequence number of the RTP data packets received from 
the Nth synchronization source stored in the 16 least signifi- 
cant bits of the EHSNR field. In contrast, the extension of the 
sequence number provided by the corresponding count of se- 
quence number cycles is maintained and stored in the 16 most 
significant bits of the EHSNR field. The EHSNR is also used to 
estimate the number of packets expected, which is defined as 
the last EHSNR less the initial sequence number received. The 
interarrival jitter (J) field provides an estimate of the statistical 
variance of the interarrival time of the RTP data packets from 
the Nth synchronization source. The interarrival jitter (J) is de- 
fined as the mean deviation of the interarrival time D between 
the packet spacing at the receiver compared with the sender for a 
pair ofpackets; i.e., D(i, j) = (R(j) - R(i)) - (S(j) - S(i)), where 
S(i) and R(i) are used to denote the RTP time stamp from the 
RTP data packet i and the time of arrival in RTP time-stamp 
units of RTP data packet i, respectively. The interarrival time D 
is equivalent to the difference in relative transit time for the two 
packets; Le., D(i, j) = (R(j) - S(j)) - (R(i) - S(i)). An estimate 
of the interarrival jitter (J) is obtained by the first-order approx- 
imation of the mean deviation given by 

1 
16 J = J + -[ID(& i - 111 - J l .  

The estimate of the interarrival jitter (J) is computed contin- 
uously as each RTP data packet is received from the Nth syn- 
chronization source and sampled whenever a report is issued. 
The last sender report time stamp (LSR) field provides the NPT 
time stamp (NTPT) received in the most recent RTCP sender 
report (SR) packet that arrived from the Nth synchronization 
source. The LSR field is confined to the middle 32 bits out of 
the 64-bit NTP time stamp (NTPT). The delay since last sender 
report (DLSR) expresses the delay between the time of the recep- 
tion of the most recent RTCP sender report packet that arrived 
from the Nth synchronization source and sending the current 
reception report block. These measures can be used by the Nth 
synchronization source to estimate the round-trip propagation 
delay (RTPD) between the sender and the Nth synchronization 
source. The estimate of the RTPD obtained provided the time 
of arrival T of the reception report block from the sender is 
recorded at the Nth synchronization source is given by RTPD = 
T - LSR - DLSR 

6 Image and Video Wireless Networks 

Wireless networks were until recently primarily devoted to pag- 
ing as well as real-time speech communications. First gener- 
ation wireless communication networks were analog systems. 
The most widely used analog wireless communication network 
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is known as the Advanced Mobile Phone Service (AMPS)F7 The 
AMPS system is based on frequency-division multiple access 
(FDMA) and uses 832 30-kHz transmission channels in the range 
of 824-849 MHz and 832 30-kHz reception channels in the range 

Second-generation wireless communication networks are dig- 
ital systems based on two approaches: time-division multiple 
access (TDMA) and code-division multiple access (CDMA). 
Among the most common TDMA wireless communication net- 
works are the IS-54 and IS-136, as well the Global Systems for 
Mobile communications (GSM). The IS-54 and IS-136 are dual 
mode (analog and digital) systems that are backward compat- 
ible with the AMPS system.28 In IS-54 and IS-136, the same 
30-kHz channels are used to accommodate three simultaneous 
users (six time slots) for transmission at data rates of approxi- 
mately 8 kbps. The GSM system originated in Europe is, in con- 
trast, a pure digital system based on both FDMA and TDMA. It 
consists of 50 200-kHz bands in the range of 900 MHz used to 
support eight separate connections (eight time slots) for trans- 
mission at data rates of 13 k b p ~ . * ~  

The second approach to digital wireless communication net- 
works is based on CDMA. The origins of CDMA are based on 
spread-spectrum methods that date back to secure militarycom- 
munication applications during the Second World War.30 The 
CDMA approach uses direct-sequence spread-spectrum (DSSS), 
which provides for the representation of individual bits by 
pseudo-random chip sequences. Each station is assigned a 
unique orthogonal pseudo-random chip sequence. The original 
bits are recovered by determining the correlation (inner prod- 
uct) of the received signal and the pseudo-random chip sequence 
corresponding to the desired station. The current CDMA wire- 
less communication network is specified in IS-95.3' In IS-95 the 
channel bandwidth of 1.25 MHz is used for transmission at data 
rates of 8 kbps or 13 Kbps. 

Preliminary plans have proposed for the implementation of 
the third-generation wireless communication networks in the 
International Mobile Communications-2000 (IMT-2000). The 
motivation of IMT-2000 is to expand mobile communications 
to multimedia applications as well as to provide access to ex- 
isting networks (e.g., ATM and Internet). This is accomplished 
by providing circuit and packet switched channel data connec- 
tion as well as larger bandwidth used to support much higher 
data rates. The focus of IMT-2000 is on the integration of several 
technologies: CDMA-2000, Wideband CDMA (W-CDMA), and 
Universal Wireless Communications-136 (UWC-136). 

of 869-894 MHz. 

27TheAMPSsystemisalsoknownasTACSandMCS-L1 inEnglandandJapan, 
respectively. 

2BThe Japanese JDC system is also a dual mode (analog and digital) system 
that is backward compatible with the MCS-L1 analog system. 

29The implementation of the GSM system in the range of 1.8 GHz is known 
as DCS-1800. 

301n 1940, the actress Hedy Lamarr, at the age of 26, invented a form of spread 
spectrum, known as the frequency-hopping spread spectrum (FHSS). 

31The IS-95 standard has recently been referred to as CDMA-One. 

The CDMA-2000 is designed to be a wideband synchronous 
intercell CDMA based network using the frequency-division du- 
plex (FDD) mode and is backward compatible with the exist- 
ing CDMA-One (IS-95). The CDMA-2000 channel bandwidth 
planned for the first phase of the implementation will be re- 
stricted to 1.25 MHz and 3.75 MHz for transmission at data 
rates of up to 1 Mbps. The CDMA-2000 channel bandwidth will 
be expanded during the second phase of the implementation to 
also include 7.5 MHz, 11.25 MHz, and 15 MHz for transmission 
that will support data rates that could possibly exceed 2.4 Mbps. 

The W-CDMA is a wideband asynchronous intercell CDMA 
(with some TDMA options) based network that provides 
for both frequency-division dupIex and time-division duplex 
(TDD) operations. The W-CDMA is backward compatible with 
the existing GSM. The W-CDMA channel bandwidth planned 
for the initial phase of the implementation is 5 MHz for trans- 
mission at data rates of up to 480 kbps. The W-CDMA channel 
bandwidth planned for a later phase of the implementation will 
reach 10 MHz and 20 MHz for transmission that will support 
data rates of up to 2 Mbps. 

The UWC-136 is envisioned to be an asynchronous inter- 
cell TDMA based system that permits both fi-equency-division 
duplex and time-division duplex modes. The UWC-136 is back- 
ward compatible with the current IS-136 and provides possible 
harmonization with GSM. The WC-136 is a unified repre- 
sentation of IS-136+ and IS-136 High Speed (IS-136 HS). The 
IS-136+ will rely on the currently available channel bandwidth 
of 30 kHz, for transmission at data rates of up to 64 Kbps. The IS- 
136 HS outdoor (mobile) channel bandwidth will be 200 kHz 
for transmission at data rates of up to 384 kbps, whereas the 
IS-136 HS indoor (immobile) channel bandwidth will be ex- 
panded to 1.6 MHz for transmission that will support data rates 
of up to 2 Mbps. 

The larger bandwidth and significant increase in data rates 
supported by the various standards in IMT-2000 will facilitate 
image and video communication over wireless networks. More- 
over, the packet switched channel data connection option pro- 
vided by the various standards in IMT-2000 will allow for the 
implementation of many ofthe methods and protocols discussed 
in the previous sections over wireless communication networks 
(e.g., RTP). 

7 Summary 

In this presentation we have provided a broad overview of image 
and video communication networks. The fundamental image 
and video compression standards - JPEG and MPEG -were 
briefly discussed. The compression stream standards associated 
with the most popular video compression standard-MPEG- 
2 -were presented. These compression stream standards were 
subsequently mapped to various adaptation layers -AAL-1 and 
AAL-5 - of ATM communication networks. A comprehensive 
discussion of ATM communication networks must extend to 
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other image and video compression standards (e.g., MPEG-4). 
A broader topic addressing the issue of image and video com- 
munication over the Internet was discussed next. 

Transport layer protocols- RTP and RTCP - that are essen- 
tial for efficient and reliable image and video communication 
over the Internet were illustrated. Some complementary proto- 
cols in various stages of development were omitted for brevity. 
For instance, the resource reservation protocol (RSVP) is used 
to provide an integrated service resource reservation and quality 
of service control. Another example is the real-time streaming 
protocol used as an application level protocol that provides for 
the on-demand control over the delivery of real-time data. A 
more recent example is the advanced streaming format (ASF) 
used to provide interoperability through the standardization of 
amultimedia presentation file format. Other important develop- 
ments in the effort to facilitate image and video communications 
over the Internet provided by various session layer protocols - 
session announcement protocol (SAP), session initiation proto- 
col (SIP), and session description protocol (SDP) -were also 
omitted from this presentation. The final discussion pertained to 
the future implementation of image and video communications 
over wireless networks. The entirety of this presentation points 
to the imminent incorporation of a variety of multimedia ap- 
plications into a seamless nested array of wireline and wireless 
communication networks. 
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1 Introduction 
The concepts of authenticity and copyright protection are of 
major importance in the framework of our information soci- 
ety. For example, TV channels usually place a small visible logo 
on the image corner (or a wider translucent logo) for copyright 
protection. In this way, unauthorized duplication is discouraged 
and the recipients can easily identify the video source. Official 
scripts are stamped or typed on watermarked papers for au- 
thenticity proof. Bank notes also use watermarks for the same 
purpose, which are very difficult to reproduce by conventional 
photocoping techniques. The above mentioned logos, patterns, 
and drawings are familiar examples of visible watermarks. 

Nowadays, digital technology is rapidly replacing traditional 
techniques for information transmission, processing, and stor- 
age. Producers and customers find it very convenient to use 
digital images, video and audio, and multimedia products, and 
they are proving to be a revolutionary way for demonstrating 
information. A great number of tools and computer applications 
are available for producing and manipulating digital products. 

However, at the same time, methods for piracy are becoming 
more powerful because duplications, forgery, and illegal retrans- 
missions are easier than ever. Visible watermarks can also be 
applied to protect digital products in the traditional way. How- 
ever, their contribution to copyright and authenticity protec- 
tion is rather insufficient. Modern digital processing techniques 
can be used maliciously in order to remove or replace a visible 
watermark. In order to overcome such a problem, invisible dig- 
ital watermarks or invisible digital stamps have been proposed 
[ 1-31. A great number of various watermarking techniques 
have been presented in the literature. However, the problem 
of creating an efficient and robust watermarking system is still 
open. 

Inthe following sections we present the basic concepts ofinvis- 
ible watermarking techniques applied on digital images. The pre- 
sented watermark definitions, properties, and basic algorithms 
form a general watermarking framework. We note that invisible 
watermarks aim at protecting either authenticity (content veri- 
fication) or copyright. Some watermark properties are common 
to both cases, but some others are not generic [4]. 

Copyright @ 2000 by Academic Press. 
All righu of reproduction in any form res& 733 
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DATA 2 Piracy and Protection Schemes 
~ ~~ 

Although we refer to digital images, most of the watermark- 
ing concepts are applicable to any type of multimedia informa- 
tion, including digital video, audio, documents, and computer 
graphics. Digital images are mostly delivered through network 
services or broadcasting. Figure 1 presents an outline of such a 
basic network-based distribution system. We adopt the following 
definitions: 

1. A provider is the person or company that has the legal 
rights to distribute a digital image X, and to guarantee its 
authenticity. 

2. A customer is the recipient of a distributed digital image X .  
He or she is also concerned about the authenticity of X .  

3. A pirate is the person who receives an image X in some 
way and proceeds to one of the following actions: 

copyright violation: he or she creates and resells product 
duplicates XD without getting the proper rights from the 
copyright owner 
intentional tampering: he or she modifies X for ma- 
licious reasons by extracting or inserting new features 
and, afterward, proceeds to the retransmission of the 
tampered (nonauthentic) image X T  

In the current multimedia and computer market, a potential 
deterrent of malicious modifications or duplications of digital 
images seems very difficult. Possible solutions against piracy in- 
clude cryptography, digital signatures, and digital watermarks. 
Figure 2 illustrates these three solutions. 

2.1 Private Public Key Cryptography 
In this approach, the original data are encrypted by the providers, 
using a cryptographic algorithm and a private key. The users 
can decrypt the received data by using a decryption algorithm. 
A necessary condition for successful decryption is the posses- 
sion of an associated public key [ 5 ] .  Fast implementation of 
encryption-decryption algorithms is highly desirable. Further- 
more, the increase of data size as a result of encryption should 
remain within reasonable limits. The key bit length should be 
sufficient for preventing an encryption break. The most sig- 
nificant weakness of such a method is that, once the digi- 
tal data are decrypted, they are directly vulnerable to piracy, 

Pirate (6) 

Provider 
(distributor) 

User 
(customer) 

Pirate (A) 

FIGURE 1 Outline of a basic digital product distribution system. 

I H I  DATA+ Watermark I 
FIGURE 2 Typical data for encrypted, signed, and watermarked images. 

because they are brought back to their original unprotected 
form. 

2.2 Digital Signatures 
Digital signatures have been proposed for content verification 
[ 5,6]. A digital signature is an encoded message that matches the 
content of a particular authentic digital image and is appended 
to the image data. Verification procedures are based on public 
algorithms and public keys. Any modification performed on the 
digital image data or on the signature causes verification failure. 
Generally, the signature size is proportional to the signed data 
size. Therefore, since usually images have a very large size, this 
scheme is not practical for their protection. 

2.3 Digital Watermarks 
Watermarking is related to stegunography, which hides messages 
within other data for secret communication [ 71. Invisible digital 
watermarks (or simply watermarks) are defined as small alter- 
ations of the image data. We can distinguish two watermarking 
schemes: 

private key watermarking for copyright protection 

1. Each provider possesses a unique private watermark key, 

2. The provider alters the digital image data by using the 
private key and a public or private algorithm, thus pro- 
ducing the watermarked image, which is distributed to 
the customers. 

3. The provider can examine any accessible image and 
check for the existence of the watermark, by using a 
public and trustworthy detection algorithm and his or 
her personal private key. 

Kpr . 

public key watermarking for content verification 

1. 

2. 

3. 

The provider possesses a unique private watermark key, 
K,,, for watermark casting. 
Watermark casting should associate Kpr with a public key 
Kpub, which can demonstrate the watermark existence 
without disclosing the private key Kpr. 
The customer can use the particular public key Kpub 

and a public watermark detection algorithm in order to 
find out whether Kpub verifies the received digital data. 
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It is important to note that the private watermarking scheme 
aims to protect the provider, while the public scheme aims to 
protect the customer. The provider, who needs protection from 
copyright violations, is the only contributor to the first scheme. 
In this case a crucial point is a potential watermark removal 
by a pirate. Therefore, such watermarks should be very diffi- 
cult to be removed by third parties. In the second scheme, the 
provider gives to the user the capability to verify the originality 
of the received data and, thus, to be protected from intentionally 
tampered copies. In this case, pirates do not aim at watermark 
removal but at reproducing the watermark in the tampered copy 
so as to create false authenticity proofs. We note that such wa- 
termarks are produced only by using the private key Kpr and 
should be easily destroyed when the image is modified. 

Within the simplified distribution framework of Fig. 1, cus- 
tomers have no access to the original data. Watermarking does 
not affect the size of the data, as shown in Fig. 2. Although 
public key cryptography and public key digital signatures are 
feasible [ 5,8], public key watermarking implementation seems 
to be avery difficult task. In the current stage, such watermarking 
is vulnerable to piracy [ 91. Subsequently, the implementation of 
the second watermarking scheme is an open problem. However, 
private watermarking, which deals with fragile watermarks, can 
contribute to authenticity protection, e.g., in the following cases. 

1. The provider exhibits his or her collection of images on an 
Internet server. Pirates or hackers may replace parts of the 
collection with nonauthentic images or may modify some 
of them. The provider is able at any time to examine the 
authenticity of the exhibited images by checking the exis- 
tence of the particular watermark. When the watermark 
does not exist in an image, this image has been tampered 
with [lo]. 

2. The provider disposes a securely accessible server, which 
can inform the customers about the authenticity of a ques- 
tionable product through private key watermark detection. 

Subsequently, we discuss private key watermarking, which has 
been extensively studied in the literature but is still a very hot 
research topic. 

3 The Watermarking Framework 

Watermarks can be described by digital signals defined as: 

W =  {w(k); 1 w(k) E U, k E Gd}, (1) 

where denotes the watermark domain (grid) of dimension 
d = 1,2,3 for audio, still images, and video, respectively. The 
watermark data usually take values in the following sets: 

U = {0, 1) 

U = {-1, 1) 

U = (-a, 01) c R (Gaussian noise [15,16]). (2) 

(Binary [11,12]) 

(Bipolar [13,141) 

Sometimes, we call W “original watermark” in order to distin- 
guish it from transformed watermarks ( W’ = .F( W)), which may 
be also used for watermark casting. 

The watermarking framework can be defined as the sixtuple 
(X , W , K , 6 , E , 2,) related to the distribution system of Fig. 1. 

1. X denotes the set of digital images X to be protected. 
2. W is the set of the possible watermark signals defined by 

3. K is the set of watermark keys (ID numbers). 
4. Q denotes the algorithm that generates watermark signal 

(1) by using digital image (original or watermarked) and 
a key: 

Eq. (1). 

The notation A x B means the Cartesian product of the 
sets A and B. 

5. E is the embedding algorithm that casts a watermark Win 
the original image XO: 

€ : X x W + X ,  X , = E ( X , , w )  (4) 

X,,, denotes the watermarked version of XO. 

follows: 
6. Finally, 27 denotes the detection algorithm defined as 

2,:X x K + (0, 1) (5) 

1, 
0, otherwise 

if W exists in X 
D(X, w> = 

The overall watermark casting and detection procedures are 
formed by the pairs (Q, €) and (9, D),  respectively, and they 
are illustrated in Fig. 3. 

The detection procedure may depend on the original image XO 
(2, = D(X, W,Xo)) .  The use of the original in the watermark 

Original 
Proflucf Key 

Watermark 
I 

Wafermark signal 

Embedding 

Watermarked 
Product 

(a) 

Tesf 
Product Key 

I i .I. 1 
I Watermark 

Watermark signal 

Detection 

011 
@> 

FIGURE 3 Watermark casting and detection procedures. 
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detection enhances the ability to develop more powerful and 
reliable techniques for countering attacks and, thus, improving 
detection performance. However, the use of the originals reduces 
significantly the capabilities of an automated watermark detec- 
tor (AWD). An AWD is composed of a watermark detector 2, 
and a network monitor (e.g., a Web browser), which scans the 
accessible Web domains or monitors broadcasting, thus provid- 
ing the detector with images to be examined. When the original 
image is required for the watermark detection, the AWD requires 
an additional efficient technique to search and localize the cor- 
responding original in the provider's image archive. 

4 Fundamental Properties and Demands 

The watermarking framework, defined in the previous section, 
should be reliable, effective against malevolent attacks, and 
should not affect the perceived data quality. In order to satisfy 
these general demands as much as possible, the watermarking 
framework should obey basic rules. The perceptual similarity of 
products and watermark equivalence plays a central role in the 
watermarking framework. 

4.1 Perceptual Similarity and 
Watermark Equivalence 
Perceptual similarity: if X, Y E X, then the notation X - Y de- 
notes that the digital products X and Y seem perceptually the 
same. X 9 Y denotes that either X and Y are completely differ- 
ent products or Y shows significant perceived quality reduction 
with respect to X. 

The capability of detector 2, to distinguish watermarks that 
are not exactly identical is generally limited. Two watermarks are 

assumed different when possible detection of the first does not 
imply possible detection of the second. Thus, we introduce the 
following definition. 

Watermark equivalence: We say that the watermark W1 is 
equivalent to W, (Wl = W,) when 

D(X, W,)  = 1 * D(X, W,) = 1. 

Obviously, identical watermarks are equivalent but the inverse 
does not hold in general. Equivalent watermarks may differ sig- 
nificantly. When watermarking aims at copyright protection, 
perceptual similarity is associated with the commercial product 
value. When watermarking is performed for content verification, 
similarity is associated with content matching. 

4.2 Basic Demands 
Perceptual invisibility. The watermark embedding should 
not produce perceivable data alterations. X, should not show 
any perceptual distortions that reduce the image quality with 
respect to the original data. This property implies that 

x, - x,. 
Figure 4 demonstrates an 8-bit gray-scale original image and 
the corresponding watermarked one produced by the technique 
presented in [17]. The alterations on the watermarked image 
are unnoticed when they are displayed either on a computer 
screen or on printed copies. Therefore, the authenticity of the 
image is not affected by the watermark superposition, since the 
watermarked copy shows high quality and preserves content in- 
tegrity. Furthermore, image quality (and therefore its commer- 
cial value) remains unaffected. Perceptual invisibility is usually 

FIGURE 4 (a) Original and (b) watermarked image. Watermark alterations are almost invisible. 
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performed either by low-power alterations, which are not per- 
ceivable by the human eye, or by using visual (or audio) mask- 
ing techniques [ 18,191. Visual masking can be used to render 
an image invisible, when embedded properly within another 
image. 

Different keys should not 
produce similar watermarks, i.e., 

Key uniqueness and adequacy. 

for any product X E X and w = Q ( X ,  Ki).  This condition 
prevents possible conflicts between different providers who 
ask for unique watermarks. The key set K should be suffi- 
ciently large in order to supply all the providers with different 
keys and to hinder watermark key detection by trial and error 
procedures. 

A provider may distribute a large 
amount of different images that generally consist of statistically 
independent data. When the same watermark data are embed- 
ded in each image, extraction of the watermark is possible by 
using statistical operations. For example, we consider a set of N 
8-bit gray-scale images Y,  produced from the originals X ,  by 
adding the same watermark alterations W. After averaging and 
for N + 00 we will get 

Product dependency. 

-~Y,,=---(X+,+W)=~+W, l N  l N  

n= 1 n= 1 N 

where is a homogeneous image with approximately constant 
intensity. Therefore, when 6 is applied on different products 
with the same key, different watermarks should be produced, 
i.e., for any particular key K E K and for any XI, X2 E X : X I  
X2 j W1 $ W,, where w = o ( X i ,  K ) ,  so that such attacks 
fail. Another reason for using image-dependent watermarks is 
that a provider may give the customer both the original and the 
watermarked image, thus enabling him or her to subtract an 
image-independent watermark (if the embedding is simple, e.g., 
additive). 

In practice, the existence or not of a 
watermark in an image is indicated with a degree ofcertainty. The 
overall performance of the detector D should be characterized 
by a small error probability Per,. In particular, the realization of 
D may produce the following errors: Type I errors, in which the 
watermark is detected although it does not exist in the data (false 
positives); Type I1 errors, in which the watermark is not detected 
in the data although it does exist (false negative). 

The above errors occur with specified probabilities of false 
alarm (Pf,) and rejection (Prej), respectively, and the total prob- 
ability error is 

Reliable detection. 

The certainty of a positive detection is c = 1 - Pf, and the de- 

Null Hypothesis 

Type I Error (fh ) 

0 Type II Error ( f,,) 

0 t-test 

FIGURE 5 Detection by using a statistical test based on normal distributions. 

tector output should be the following: 

c 2 Cthres + watermark exists. (7) 

The detection threshold Cthres is the minimal certainty level for 
establishing watermark existence in the test image. Hypothesis 
testing can be used for statistical certainty estimation and er- 
ror manipulation [20]. Generally, when false positives become 
insignificant (Pf, += 0) the probability to reject a watermark 
increases (Prej += I), and vice versa. Figure 5 demonstrates typi- 
cal detector output normal distributions, and the corresponding 
errors. 

Computational efficiency. The watermarking algorithm 
should be efficiently implemented by hardware or software. 
Watermark casting is performed by applying the watermark gen- 
eration and embedding only once for each image. However, the 
application of the overall detection procedure (browsing, wa- 
termark generation and detection) is frequently required. Sub- 
sequently, the development of a fast watermark detection algo- 
rithm is of great importance. 

4.3 Necessary Conditions for 
Copyright Protection 
Multiple watermarking. Watermarked images are like the 
original images with respect to their archival format and data 
range and size. Therefore, a watermarked image can be water- 
marked again without any technical restrictions. This feature is 
desirable in certain cases, e.g., for tracing the distribution chan- 
nels when several resellers exist and are allowed to watermark the 
images. We consider the following multiply watermarked image: 

It is strongly recommended that the original watermark Wj, j 5 
i, is still detectable in X w i :  

D(Xwi,  Wj) = 1, V j  5 i 5 n, 
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where n is a sufficient number of coexisting watermarks such 
that Xwn - XO and Xw,+l 9 Xo. We remark also that 

D(XWi, Wj) = 0, V j  > i. 

Apirate may embed his or her own watermark Wz on an image 
X,, watermarked by the original owner with the watermark 
W,. The pirate produces the product X,, = E(X,,, WZ). Both 
watermarks (the original and the piratical one) can be detected 
by using the corresponding unique key. However, the true owner 
can dispose of an image copy X,, that contains only his or her 
watermark Wl. In contrast, the pirate’s copy X,, will always 
contain both watermarks. 

Watermark validity and noninvertibdity. Rightful owner- 
ship can be disputed and attacked when there is the possibility to 
produce counterfeit watermarks. Counterfeit watermark signals 
W = W(k) are created by taking into account the features of a 
particular image X, that is watermarked by the legal owner and 
the watermark generation method used in the public detector 
D. The counterfeit watermark is never embedded, but it is de- 
signed in such a way so that it forces the detector to output a 
positive result for the particular image X ,  i.e., D(x,, r;i? = 1. 
In this case both the legal owner and the pirate can show the ex- 
istence of their watermarks, Wand Wrespectively, in X,. Since 
6’ is formed by accounting the main features of X,, generally, 
it can be detected in the original image X O  as well. Subsequently, 
watermarking does not provide the legal owner with sufficient 
evidence to prove his or her ownership [21]. In order to over- 
come the above problem, only valid watermarks should be used 
in the watermarking scheme. A watermark signal W E W is a 
valid watermark for a particular product X E X if and only if it 
is associated with a key: 

3 K E K such that B(X, K) = W. (8) 

Watermark validity is effective when it is followed by non- 
invertibility of the watermark generation procedure: For any 
given image x*, the watermark generation function Gx* (K) = 
G(X*,  K) should not be invertible in the sense that, for a water- 
mark W, it is infeasible to find a key K* E K that satisfies the 
relation B(x*, K*) 2: W. 

A digital image can 
undergo many manipulations that deliberately (piratical attacks) 
or not (compression, filtering, etc.) affect the embedded water- 
mark. Let Xo be the original image and X ,  be a watermarkedver- 
sion of it (D(X,, w) = 1). We denote by A4 an image process- 
ing operator that modifies somehow the digital images X E X 
Robustness means that the watermark is still detected when the 
performed modifications preserve perceptual similarity: 

Robustness to image modifications. 

D(Y,  W) = 1, VY - X ,  and Y = M(X,). 

Image (or video) modifications usually include (but are not lim- 
ited to): 

lossy compression up to a certain quality level that does not 
produce visible image degradations 

filtering for noise removal, enhancement for improving im- 
age quality, etc. Specialized filters for intentional watermark 
removal should be also accounted for as well 
geometric distortions (e.%., scaling, rotation, cropping, im- 
age/frame reflection, and line/column/frame extraction or 
insertion or their combinations) 
changes in presentation format, e.g., analog-to-digital or 
digital-to-analog conversion, printing, and rescanning. 

4.4 Watermark Fragility and 
Content Verification 
As in the case of copyright protection, efficiency for content 
verification demands watermarks that satisfy the basic demands 
discussed in Section 4.2. In this case, piracy is associated with 
forgery that aims to harm the credibility of the rightful providers 
or to distribute false information to the users. Pirates may tamper 
with and distribute an image that belongs to a rightful provider. 
They want to preserve the original watermark in the tampered 
copy. Furthermore, they may create their own images and put 
authenticity watermarks in them that belong to another rightful 
provider. Subsequently, protection against piracy requires secure 
and fragile watermarks. 

Security against forgery. Determination and extraction of 
a watermark, without using the private key K,,, and creation 
of forged authenticity proofs on other products should be 
impossible. 

Watermark fragility. Any image modification that affects 
the original image content integrity should cause watermark 
distortions and, consequently, content verification failure. 

High-performance protection demands that watermarks can 
reveal any slight image modifications. Watermarks based on the 
least significant bit (LSB) of the image data are very sensitive 
and fragile. However, such watermarks are not secure because a 
pirate can produce modifications leaving the LSB invariant. Al- 
though fragility is a basic watermark property, robustness may 
also be required in some special cases that include modifications 
that do not harm the original image content [22], e.g., High- 
quality compression and necessary insignificant modifications 
to incorporate the product in a multimedia environment. How- 
ever, some researchers insist that no content modification should 
be allowed at all, since “minor” changes due, e.g., to compression 
render the image useless in legal terms. Generally, local image 
modifications affect image contents. Therefore, the watermark 
should be very sensitive to such modifications (eg., object in- 
sertion or extraction in a photograph). It would be useful if the 
detection algorithm localizes the tampered regions, besides giv- 
ing a negative authenticity answer. 

5 Watermarking on the Spatial 
Image Domain 

One of the first still image watermarking techniques was based 
on directly modifying the image pixel intensity [ 11,131. These 
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techniques are applicable on 8-bit gray-scale or 24-bit color im- 
ages. In the second case, the %bit luminance component is con- 
sidered, In this section, we present the basic concepts of such 
watermarking and we demonstrate its capabilities to satisfy the 
demands of the general watermarking framework. 

Subsequently, we consider the set X of gray-scale images of 
size N x M, and an original image XO E X is defined as 

5.1 Watermark Generation 
The watermark set W is defined by the binary two-dimensional 
signals of size N x M 

where the number Po of zeros is equal to the number Pl of ones: 

The number Nw of possible watermarks is very large and is 
estimated by the formula [ 111 

However the choice of a watermark from W should not be ar- 
bitrary. Watermark validity requires well-defined key sets K and 
a noninvertible generation algorithm. An efficient way for pro- 
ducing the watermarks of Eq. (10) is to use a pseudo-random 
number generator (PNG), which provides an almost random 
binary sequence: 

PNG(n;S) = 0 or 1, n = 1,2,3, .  . . . 

S is the seed of the PNG that coincides with the private water- 
mark key K. The watermark generation procedure can be de- 
fined as B : K -+ w, and theproducedwatermarks are formed as 
follows: 

W ( H ,  m) = PNG(k, IC,,), k = nM+ m+ 1. (12) 

Generally PO - PI # 0, e.g., when NM is an odd number. 
However, small deviations from zero do not affect the practical 
implementation of the algorithm. The seed bitlength determines 
the number ofwatermarks that can be produced. This number is 
generally less than the number estimated in Eq. (1 1). Generally, 
the inversion of is very difficult. Furthermore, “key unique- 
ness’’ is not proven and we should account for the problem of 
equivalent watermarks described in Section 4.1. 

5.2 Watermark Embedding 
The embedding procedure E is based on intensity alterations 
that produce the watermarked image Xw: 

X, = {%(n, m) I O  5 n < N, 0 5 m < m. (13) 

The most straightforward embedding techniques are described 
by the following formulae: 

xw(n,  m) = q(n, m) + aw(n,  m) (additive rule), (14) 

x,(n,  m) = (1 + aw(n, m)) xo(n, m) (multiplicative rule). 

(15) 

In the currently examined technique we perform additive water- 
markembedding [ll, 131: 

6, 
-6, 

if w(n, m) = 1 
if w(n, m) = 0‘ (16) a(n, m) = 

The positive parameter 6 denotes alteration strength. In order 
to guarantee watermark invisibility, 6 should be restricted by a 
maximum value a,,, which depends on the image character- 
istics in the neighborhood of the particular pixel (n,  m). The 
embedding procedure is exclusively responsible for watermark 
invisibility. It may include techniques based on the human vi- 
sual system ( H V S )  (e.g., [ 121) in order to get an estimate of &=. 
Generally, 8 should be small at homogeneous image regions and 
large enough in highly textured image regions. In the following 
we consider a constant 6 for simplicity. 

5.3 Watermark Detection 
Watermark detection is approached statistically. Watermark em- 
bedding produces a systematic intensity change, in the following 
two subsets: 

By considering the bipolar form of the (0, 1)-valued watermark, 
i.e., the signal I$ = {G(n, m) E {-1, I}), and an image X = 
{ x ( n ,  m)}, we define the detection procedure D through the 
correlation 

‘. n=O m=O 

where k = nM + m + 1. By taking into account that I+ and I- 
correspond to independent image samples we get the following 
expected values of R when it is applied on the images of Eqs. (9) 
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and (13) respectively: on a threshold value Rthres, and it is formed as follows: 

1, if 2 > 
0, otherwise ' 

D (X, w) = 
lim Ro(k) = 0, 

lim R,(k) = 26. 

The above expected values provide a clear distinction between 
a watermarked and a nonwatermarked case. We note that the 
expected value of R for any image watermarked by a different 

k+ m 

k-+ 00 
The choice of Rthres is associated with the false alarm and rejection 
probabilities, discussed in Section 4.2, and contributes to the 
overall detection error probability: 

key is zero: per, = + prej (24) 

N-1 M-1 

lim i t l (n ,  rn) i tz(n,  rn) = 0, 
n=O m=O k+ m 

where it means bipolar watermark presentation. 
Since k is limited by the number of total image pixels ( N M ) ,  

the expected values do not match exactly to the values R obtained 
at specific detection runs. At the limit k = M N  we get 

According to the central limit theorem, R follows a normal dis- 
tribution N(26, ui) when the particular watermark is present 
in X and N(0, ui) otherwise. The variance of R is estimated by 
the formula 

where s:, s! and s i  are the standard deviations of the subsets 
I+, I- and of the entire image X, respectively. The correlation 
output E, calculated from Eq. (19) for a specific image X and a 
watermark W, belongs to the first or to the second distribution 
and, thus, indicates the absence or the presence ofthe watermark, 
respectively. However, the two distributions overlap as shown in 
Fig. 5. Therefore, the derivation of detector (5) should be based 

+----I 1 h e r  exp(- ( R  - 26)' )dR. 
u R 2 / 2 . r r  --oO 2UR 

Here Per, is minimized for Rthres = 6 and decreases as the wa- 
termark strength 6 increases. However, when 6 is increased, per- 
ceptual distortions occur in the watermarked image. 

Figure 6 demonstrates a sample of a "pseudo-random'' wa- 
termark, and an 8-bit watermarked image of size 256 x 256, 
produced by using 6 = 2. Figure 7 shows the evolution of the 
correlation function R(k )  for the original and watermarked im- 
age, which converges to the expected values 0 and 26 respectively 
for large k. The correlation R for 1,000 watermarks, produced 
with different keys, shows a major and well distinct peak that 
corresponds to the correct key. 

5.4 Satisfaction of Basic Demands 
The watermarks presented in the above section satisfy the basic 
demands of the watermarking framework under specific condi- 
tions. 

1. Perceptual invisibility. This demand is satisfied directly 
under the restrictions discussed in Section 5.2. 

FIGURE 6 (a) A pseudo-random binarywatermark; (b) the watermarked image. 
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FIGURE 7 (a) Correlation R ( k )  for the original and the watermarked image; (b) Detection output foI 
1,000 different keys. The correct key is K = 61 1. 

2. Key uniqueness, adequacy, and noninvertibility. All the 
watermarks, generated by the chosen PNG, are valid since 
they correspond directly to the seed (key) of the PNG. 
The size of the key can be efficiently long for producing 
an enormous number of different watermarks. However, 
some watermarks might be equivalent. The number of 
nonequivalent watermarks is directly related to the choice 
of the threshold value in the detection procedure. In a 
set of L % l/Pfa keys, we expect to find one watermark 
that provides positive detection. Therefore, the number of 
nonequivalent watermarks is restricted approximately by 
the number L = L (&e$). Key adequacy requires a very 
small false alarm detection probability. Invertibility of the 
procedure 0 requires invertibility of the PNG, which is 
extremely difficult. However, counterfeit watermarks can 
be derived by a trial and error procedure using about L 
different keys. This is an additional reason for operating at 
very small false alarm probability. 

The threshold &,res, chosen by the 
provider, estimates the expected errors with good accuracy. 

The computations for water- 
mark generation, embedding, and detection are of rather 
small complexity. 

The embedding of a watermark 
W, on a watermarked image X ,  does not significantly 
reduce the detection of the watermark W,. This is a conse- 
quence ofthe statistical approach followed in the detection 
procedure [ 1 1 1. 

6. Image dependency. The presented watermarking tech- 
nique produces the same watermarks for all images and, 
subsequently, is directly vulnerable to the statistical attack 
mentioned in Section 4.2. Secure image-dependent water- 
marks can be produced by composing the PNG function 
with a function F : X x K + {O, 1): 

3. Reliable detection. 

4. Computational efficiency. 

5. Multiple watermarking. 

w(n, m) = PNG(k K p r )  8 F ( i ( n ,  m);Kpr) ,  

k = n M + m + l ,  

7. 

where i ( n ,  m) denotes a robust image feature around the 
pixel (n ,  m). 
Robustness and fragility. The watermarks of Eq. (10) are 
present on a watermarked image as a low-power white 
noise. Therefore, they are easily removed by low-pass filter- 
ing or JPEG compression. Also, correlation (19) demands 
“watermark synchronization.” On one hand, when the wa- 
termarked image is resized, rotated, or cropped, the appli- 
cation of the detection procedure fails. On the other hand, 
the watermark fragility, under the above manipulations, is 
not proper for content verification. Local image modifica- 
tions do not efficiently effect the detector output. In this 
case, the existence of watermark segments can be exam- 
ined in particular image regions. Various optimizations 
that partially solve the above problems have been pro- 
posed, e.g., [ 12,141. Besides the watermarks of the form of 
Eq. (lo), other watermark forms described by special con- 
straints on the spatial domain components can be proven 
effective [17,23]. 

6 Watermarking on Image 
Transform Domains 

We mentioned that copyright protection requires watermarks 
that are robust to various attacks. Besides the spatial intensity 
image domain, discrete cosine transform (DCT) and discrete 
fourier transform (DFT) image domains are also convenient 
for watermarking. In this case, spread spectrum watermarks, 
embedded in a suitably chosen low-medium frequency range, 
provide increased security, invisibility, and robustness to lossy 
compression and certain geometrical modifications. 

6.1 Watermarking in the DCT Domain 
Spread spectrum watermarking in the image DCT domain has 
been proposed by Cox et al. [ 151. Their scheme preserves image 



742 

fidelity after proper alterations of the DCT coefficients. The de- 
tection procedure involves the use of the original image in order 
to overcome geometrical image modifications. A version of this 
technique, which bypasses the use of the original image in the 
detection procedure, has been proposed by Barni et al. [24]. 

We consider the one-dimensional ( 1-D) sequence of the DCT 
coefficients of an image X formed by a zig-zag ordering (see 
Chapter 5.5), denoted by Z, of the 2-D DCT domain: 

The watermark signal is defined by a pseudo-random sequence 
of M real numbers that follows a normal distribution with zero 
mean and unit variance: 

W = {wl, ~ 2 ,  . . . , W M ) ,  wi E ( -d ,  d )  c R. (25) 

The watermark embedding takes place on a subset of the do- 
main Y located in the medium frequency range in the interval 
( L ,  M + L ] .  The embedding is multiplicative: 

= Yi + 6 I ~ i l w i - ~ ,  L < i 5 M +  L .  (26) 

The watermarked image is obtained by applying the inverse 
transform: 

X, = Z-’ o IDCT( Y,), Y, = { Y!~’, Y:”’, . . . }. (27) 

Since alterations (26) may produce significant distortions in the 
watermarked image, visual masking, mentioned in Section 4.2, 
should be employed. In this way, the watermark casting is pro- 
cessed suitably in order to produce small changes in homoge- 
neous image regions and higher ones in textured regions. 

Detection is based on the correlation between the watermark 
Wand a test image X* with DCT coefficients Y* = (y;, y;, . . .): 

1 
R = - E Y E + ~  wi. 

M .  r=l 

Similarly to correlation (22), R follows a normal distribution. In 
the absence of visual masking, the distribution has mean value 
and variance: 

tiply.1, if Y* = Y, 2 a:* , u R ~  -. (29) 
0, otherwise M F R =  { 

The final decision about watermark existence requires to deter- 
mine a threshold value &hres as in definition (23). The total error 
is minimized for Rthres = 6ply*l/2. Spread spectrum watermarks 
in the DCT domain show high resistance to modifications like 
JPEG compression, filtering, dithering, histogram equalization 
or stretching, and resizing. Also, internal cropping or replace- 
ment of some image objects preserves a significant part of the 
watermark power. However, such a watermark robustness is a 
disadvantage when content verification is desired. We should 

L 

L+M 

N 

Handbook of Image and Video Processing 

L L+M N 

0 

0 

FIGURE 8 A 2-D watermark for embedding in the DCT image domain. 

note that the DCT domain is not invariant under image rota- 
tion and, subsequently, watermark is not detected after such an 
attack. Cropped and resized image parts contain watermark in- 
formation but watermark synchronization requires the knowl- 
edge of the size of the original image, which is generally not 
available. 

The above technique can be implemented, in a similar manner 
as above, by using directly the 2-D DCT image domain Y = 
(y(i, j ) )  and a watermark signal defined as 

where G(i, j )  follow the normal distribution N(0, 1) and U 
is a subset of the frequency domain located in the medium 
band. An example is shown in Fig. 8. The altered coefficients are 
given by 

and provide the watermarked image after applying the inverse 
DCT. Figure 9 shows the watermarked image “Lena” (256 x 
256) produced by using the watermark of Fig. 8 for M = 45 
and various L ,  6 values. Similarly to Eq. (28), the watermark 
detection is defined by the correlation 

where M’ is the number of elements of the subset U .  Figure 10 
shows the R values obtained for the image of Fig. 9(a) and for 
1,000 different keys. The main peakPO corresponds to the correct 
key. Peaks P1 and P2 indicate the R values calculated on JPEG 
versions of Fig. 9(a). 

The parameters 6 and L are essential for achieving watermark 
invisibility and robustness under lossy compression. By increas- 
ing 6 (the strength of alterations), the detection performance 
also increases but, at the same time, the image fidelity is reduced 
and edge blurring and visible texture appear [Fig. 9(b)]. This is 
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FIGURE 9 
L = 10; and (d) 6 = 1.0, L = 128, with visual masking. 

Watermarked images for M = 45; (a) 6 = 0.2, L = 128; (b) 6 = 1.0, L = 128; (c) 6 = 0.2, 

also the case when embedding is applied in the low frequencies, 
i.e., when L +. 0 [Fig. 9(c)]. 

We can observe that quality degradation is most significant 
in the homogeneous image regions. In order to avoid undesir- 
able effects, we may reduce the strength of alterations in ho- 
mogeneous regions by using an image-dependent parameter 
and obtaining a new watermarked image X h  = {xh(i ,  j ) }  as 
follows: 

where is A X ( i ,  j )  = xw(i,  j )  - x( i ,  j ) .  The matrix M = 
{m(i ,  j )  E R) is called "mask" and Eq. (30) is an example of 
visual masking. Barni et al. [24] proposed the mask m(i, j) = 
Ivar(Bs(i, j ) ) l ,  where Bs(i, j) is an image block of size S x S 
around the pixel (i ,  j) and I. I denotes normalization to unity. For 
homogeneous image regions, m( i, j) << 1 and, subsequently, wa- 
termark alterations are filtered in such regions. The masked ver- 
sion of image 9(b) is shown in Fig. 9(d). We should remark that 
the above example ofvisual masking provides a correlation value 

R less than the expected one given by Eq. (29). Detection, which 
is applied on the masked image, results the peak P3 in Fig. 10. 

6.2 Watermarking Using Fourier-Mellin 
Transforms 
Several geometrical image modification attacks can be countered 
if we use image domains that are invariant under rotation and 
scaling. Such domains can be derived by considering the 2-D 
DFT image transformation and log polar maps [ 251. Ruanaidh 
and Pun [ 261 proposed a watermarking technique based on DFT 
amplitude spread spectrum modulation combined with a dis- 
crete Fourier-Mellin transformation. Let A(kl,  k ~ )  denote the 
amplitude of the DFT transform of an image X = { x ( n ,  m)). We 
mention the following properties. 

1. Scaling of the spatial domain of the image X by a factor p 
implies inverse scaling in the Fourier amplitude domain: 
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FIGURE 10 The detection response R for 1,000 different keys. The main peaks 
that exceed the dotted lime (a possible threshold) correspond to correct positive 
detection on the original watermarked image (PO), on JPEG image versions (PI 
and P2 for a compression ratio of 3:l and 5:1, respectively), and on the visually 
masked image (P3). 

2. Rotation of the image by an angle + implies the same ro- 
tation in the amplitude domain: 

x(ncos+- rnsin+, ns in++  rncos+) 

+ A(kl cos + - k2 sin +, kl sin 4, + k2 cos +). (32) 

The log-polar mapping (LPM) is applied to provide a new 
coordinate system (p, e) given by equations 

Let 2 be a rotated and scaled version of an image X. Its DFT 
amplitude in the log polar coordinate system will be 

&F, 6) = A(F + 2p, 8 + +>. 

The above relation means that image scaling and rotation is 
transformed to a translation of the DFT amplitude by a constant 
vector (2p, 0) in the log polar coordinate system. Such a trans- 
lation can be eliminated by applying a new DFT transform on 
the above domain: 

where [ ] denotes the amplitude domain ofthe transform. There- 
fore, we have the following RST (rotation, scaling, and transla- 
tion) invariant domain: 

DFT o LPM o DFT (X) = DFT o LPM o DFT (2). (33) 

The composition DFT o LPM constitutes the discrete Fourier- 
Mellin transform. We remark that a suitable discrete space should 
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FIGURE 11 Schematic presentation of (a) the watermark embedding and 
(b) the detection procedure in the RST invariant domain. The Greek letter 4 
denotes the particular phase at each stage. 

be used for the LPM transformation [25]. Figure 11 demon- 
strates the main steps for the watermark embedding and de- 
tection. The watermark generation and embedding should be 
performed for any one of the above amplitude domains. How- 
ever, detection should be always applied in the RST invariant 
domain, Eq. (33), in order to compensate for scaling or rotation. 
However, simple combinations of cropping and scaling or the 
non-uniform scaling renders the watermark undetectable. 

7 Conclusions 

Digital watermarking is a new research topic. Important progress 
has occurred in the past years and many new techniques have 
been presented in the literature. Current watermarking research 
is mainly focused on watermark robustness issues for copyright 
protection. Can a watermark be robust to all processing tech- 
nique attacks that preserve the perceived product quality? The 
answer may be “yes” for the currently known attacks. However, 
what will happen with future image processing attacks or lossy 
compression methods? For example, watermarking and com- 
pression are evolving techniques. A watermark may be robust 
under JPEG compression, but this may not be true for a more 
powerful technique that will possibly occur in the years to come. 
Once the watermarked product is out in public distribution, it 
is vulnerable to any future attack. Antiwatermarking techniques 
have been already developed based on miscellaneous processing 
methods [27]. 
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This chapter presents a sampling of key algorithms related to the 
generation and exploitation of fine resolution synthetic aper- 
ture radar (SAR) imagery, It emphasizes practical algorithms in 
common use by the S A R  community. Based on function, these 
algorithms involve image formation, image enhancement, and 
image exploitation. Image formation transforms collected S A R  
data into a focused image. Image enhancement operates on the 
formed image to improve image quality and utility. Image ex- 
ploitation refers to the extraction and use of information about 
the imaged scene. 

Section 2 introduces the fundamental concepts that enable 
fine-resolution S A R  imaging and reviews the characteristics of 
collected radar signal data and processed SAR imagery. These 
attributes determine the need for specific processing functions 
and the ability of a particular algorithm to perform such func- 
tions. Section 3 surveys leading S A R  image formation algorithms 
and discusses the issues associated with their use. Section 4 in- 
troduces several enhancement algorithms for improving S A R  
image quality and utility. Section 5 samples image exploitation 
topics of current interest in the SAR community. 

2 SAR Overview 

Radar is an acronym for radio detection and ranging. In its simple 
form, radar detects the presence of a target by sensing energy that 
the target reflects back to the radar antenna. It ranges the target 
by measuring the time interval between transmitting a signal (for 
instance, in the form of a short pulse) and receiving a return (the 
backscattered signal) from the target. Radar is an active sensor 
that provides its own source of illumination. Radar operates 
at night without impact and through clouds or rain with only 
limited attenuation. 

A radar image is a two-dimensional (2-D) map of the spa- 
tial variations in the radar backscatter coefficient (a measure of 
the strength of the signal returned to the radar sensor) of an 
illuminated scene. A scene includes targets, terrain, and other 
background. The image provides information regarding the po- 
sition and strength of scatterers throughout the scene. While a 
common optical image preserves only amplitude, a radar image 
naturally contains phase and amplitude information. An optical 
sensor differentiates signals based on angle (in two dimensions) 
and makes no distinction based on range to various scene el- 
ements. An imaging radar naturally separates returns in range 

Copyright @ ZOO0 b y h d e m i c  Press 
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FIGURE 1 Resolution in range Rt and (Doppler) cone angle a d .  

and cone angle and does not differentiate signals based on de- 
pression (or elevation) angle. The (Doppler) cone angle ad is 
the angle between the radar velocity vector V, (indicating the 
direction of antenna motion) and the line-of-sight vector from 
the antenna to a particular scatterer. The depression angle aJt 

is the angle between the nominal ground plane and the projec- 
tion of the line-of-sight vector onto a plane perpendicular to V,. 
Figure 1 illustrates this range and angle differentiation by a SAR 
imaging system. 

The ability to distinguish, or resolve, closely spaced features in 
the scene is an important measure of performance in an imaging 
system. In SAR imaging, it is common to define resolution as 
the -3-dB width of the system impulse response function with 
separate measures in each dimension of the image. The -3-dB 
width is the distance between two points, one on each side of the 
mainlobe peak, that are nearest to and one half the intensity of 
the peak. 

The complex (phase and amplitude) nature of SAR imagery 
increases the ability of enhancement algorithms to improve the 
quality and interpretability of an image. It also increases the op- 
portunity for image exploitation algorithms to derive additional 
information about an imaged scene. Traditional SAR provides 
2-D scatterer location and resolution between scatterers in range 
and azimuth (or cross range). New applications extract 3-D in- 
formation about the scene by using interferometric techniques 
applied to multiple images of a scene collected from similar view- 
ing geometries. 

SAR imaging involves the electromagnetic spectrum in the 
frequency bands encompassing VHF through K-band. Figure 2 
relates these frequency bands to radio frequency and wavelength 
intervals. Various organizations throughout the world have suc- 
cessfully demonstrated and deployed S A R  systems operating in 
most of these bands. 

2.1 Image Resolution 
Radar estimates the distance to a scatterer by measuring the 
time interval between transmitting a signal and receiving a re- 
turn from the scatterer. Total time delay determines the distance 
to a scatterer; differential time delay separates scattering objects 
located at different distances from the radar sensor. The band- 
width B of the transmitted pulse limits time resolution to 1/B 
and corresponding range resolution pr  to 

C 
P T  = 5’ 

where c is the speed of light. To maintain a high average power at 
the large bandwidths required for fine resolution, it is common 
to transmit a longer pulse with linear frequency modulation 
(FM) rather than a shorter pulse at constant frequency. Pulse 
compression following reception of the linear FM pulses achieves 
a range resolution consistent with the transmitted bandwidth. 

To generate a 2-D image, the radar separates returns arriv- 
ing from the same distance based on differences in the angle 
of arrival. A real-beam radar achieves this angular resolution by 
scanning a narrow illuminating beam across the scene to provide 
azimuth samples sequentially. The angular resolution is compa- 
rable with the angular extent of the physical beam. A synthetic 
aperture radar generates an angular resolution much finer than 
its physical beamwidth. It transmits pulses from a series of lo- 
cations as it moves along its path (the synthetic aperture) and 
processes the collection of returns to synthesize a much nar- 
rower beam. The image formation processor (IFP) adjusts the 
relative phase among the returns from successive pulses to re- 
move the phase effects of the nominally quadratic range vari- 
ation to scatterers within the scene. It coherently sums the re- 
turns (generally by means of a Fourier transform) to form the 

Designation VHF UHF L-band S-band C-band X-band K-band mmwave 
Frequency (GHz) 0.7 0 . r  1.; ejO 8/0 12.0 4yO 30i1.0 

Typical Wavelength 2 m 0.5 m 0.2 m 0.1 m 50 mm 30 mm 15 mm 2 mm 

FIGURE 2 Frequency bands of S A R  operation. 
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FIGURE 3 Synthetic aperture geometry. 

synthetic beam and generate azimuth resolution cells. Signal 
processing provides azimuth samples simultaneously within a 
physical beamwidth. 

The synthetic aperture concept is essential for achieving fine 
azimuth resolution when it is not practical to generate a suf- 
ficiently narrow real beam. The synthetic aperture provides an 
azimuth resolution capability Pa of 

A, 
P a  - 2A0 

Here, A, is the center wavelength of the transmitted signal and 
A0 is the angular interval over which the processed data were 
collected. Azimuth resolution is proportional to range because 
A0 decreases as distance to scatterers in the scene increases. 

Figure 3 illustrates this synthetic aperture geometry. As an 
example, consider a SAR system that collects signals over a syn- 
thetic aperture distance L of 1 km with an antenna moving at 
velocity Va of 100 m/s during a synthetic aperture time interval 
Ta of 10 s. At a minimum range Ra, of 20 km, the synthetic 
aperture angular interval A0 is approximately 0.05 rad. With a 
transmitted bandwidth B of 500 MHz at a center wavelength of 
0.03 m (X-band), these parameters offer azimuth resolution of 
0.3 m and range resolution of 0.3 m. 

2.2 Imaging Modes 
Figure 4 illustrates two basic SAR data-collection modes. In the 
stripmap mode, the antenna footprint sweeps along a strip of 

terrain parallel to the sensor trajectory. Antenna pointing is 
fixed perpendicular to the flight line in a broadside collection, 
or pointed either ahead or behind the normal to the flight line 
in a squintedcollection. The azimuth beamwidth of the antenna 
dictates the finest-achievable azimuth resolution by limiting the 
synthetic aperture, while the transmitted bandwidth sets the 
range resolution. The antenna elevation beamwidth determines 
the range extent (or swath width) of the imagery, while the length 
of the flight line controls the azimuth extent. 

The stripmap mode naturally supports the coarser resolution, 
wide area coverage requirements of many natural resource and 
commercial remote-sensing applications. Most airborne SAR 
systems include a stripmap mode. Remote sensing from orbit 
generally involves a wide area coverage requirement that neces- 
sitates the stripmap mode. 

In the spotlight mode, the antenna footprint continuously 
illuminates one area of terrain to collect data over a wide an- 
gular interval in order to improve azimuth resolution beyond 
that supported by the azimuth beamwidth of the antenna. The 
spotlight mode achieves this fine azimuth resolution at the cost 
of reduced image area. The angular interval over which the radar 
observes the scene determines the azimuth resolution. Antenna 
beamwidths in range and azimuth determine scene extent. 

The spotlight mode naturally supports target detection and 
classification applications that emphasize fine resolution over a 
relatively small scene. While a fine-resolution capability is useful 
largely in military and intelligence missions, it also has value in 
various scientific and commercial applications. 

4 ' _  

t i  \ ! -  
(a) (b) 

FIGURE 4 
resolution. 

Basic SAR imaging modes: (a) stripmap mode for area search and mapping; (b) spotlight mode for fine 
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FIGURE 5 RADARSAT-1 C-band image of Ft. Irwin, CA. (Copyright Canadian Space Agency, 1998.) 

2.3 Examples of SAR Imagery 

The following examples indicate the diversity of imagery and 
applications available from SAR systems. They include stripmap 
and spotlight mode images in a variety of frequency bands. In 
each image, near range is at the top. 

Figure 5 is a coarse resolution SAR image of Ft. Irwin, 
California, collected by the Canadian RADARSAT- 1 satellite [I] .  
The RADARSAT-1 SAR operates at C-band (5.3 GHz) in the 

stripmap mode with a variety of swath width and resolution op- 
tions. The sensor collected this particular image at a resolution 
of 15.7 m in range and 8.9 m in azimuth. The processed image 
covers a ground area approximately 120 km in range by 100 km 
in azimuth, encompassing numerous large-scale geographic fea- 
tures including mountains, valleys, rivers, and lakes. 

Figure 6(a) displays an X-band image of a region near Cal- 
leguas, California collected by the Interferometric SAR for 
Terrain Elevation (IFSARE) system [ 21. The IFSARE system 

FIGURE 6 
Calleguas, CA; (b) corresponding elevation data displayed as a shaded relief map. 

X-band image from the Interferometric SAR for Terrain Elevation system: (a) magnitude SAR image of 
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FIGURE 7 
clearings and access roads; (b) close-up view of clearing. 

Stripmap mode VHF/UHF-band image of Northern Michigan tree stands: (a) forested area with several 

is a dual-channel interferometric SAR built by ERIM Interna- 
tional Incorporated and the Jet Propulsion Laboratory under the 
sponsorship of the Defense Advanced Research Projects Agency 
(DARPA). It simultaneously generates basic stripmap SAR im- 
ages at two different depression angles and automatically pro- 
duces terrain elevation maps from these images. The image in 
Fig. 6(a) is a composite image assembled from multiple strips. 
It covers a ground area of approximately 20 km by 20 km. The 
resolution of collected IFSARE imagery is 2.5 m in range by 
0.8 m in azimuth. After several averaging operations (required 
to improve the fidelity of output digital terrain elevation data) 
and projection of the image into the nominal ground plane, the 
intrinsic resolution of the image in Fig. 6(a) is approximately 
3.5 m in both range and azimuth. Figure 6(b) illustrates one way 
to visualize the corresponding terrain elevation. This type of 
presentation, known as a shaded relief map, uses a conventional 
linear mapping to represent the gradient of terrain elevation by 
assigning higher gray-scale values to steeper terrain slopes. The 
IFSARE system derives topographic data with a vertical accuracy 
of 1.5 m to 3.0 m depending on the collection altitude. 

Figure 7(a) is a fine resolution VHF/UHF-band image of a 
forested region in northern Michigan with a spatial resolution 
of 0.33 m in range and 0.66 m in azimuth. This stripmap image 
originates from an ultrawideband SAR system that flies aboard 
a U. S .  Navy P-3 aircraft. ERIM International designed and built 
this radar for DARPA in conjunction with the Naval Air Warfare 
Center (NAWC) for performing foliage penetration (FOPEN) 
and ground penetration (GPEN) experiments [3]. Figure 7(b) 
shows a close-up view of the clearing observed in Fig. 7(a). The 
numerous point like scatterers surrounding the clearing repre- 
sent the radar signatures of individual tree trunks; a fraction 
of the incident radar energy has penetrated the forest canopy 
and returned to the sensor following double-bounce reflections 
between tree trunks and the ground. 

The image of the Washington Monument in Fig. 8 originates 
from the ERIM International airborne Data Collection System 

[4] operating at X-band in the spotlight mode. This 0.3-m res- 
olution image illustrates the SAR phenomena of layover and 
shadowing. Layover occurs because scatterers near the top of the 
monument are closer to the SAR sensor and return echoes sooner 
than do scatterers at lower heights. Therefore, the system nat- 
urally positions higher scatterers on a vertical object at nearer 
ranges (toward the top of Fig. 8) than lower scatterers on the 
same object. As a result, vertical objects appear to lay over in 
a SAR image from far range to near range. Shadowing occurs 
in this example because the monument blocks the illumination 
of scatterers located behind it. Therefore, these scatterers can 
reflect no energy back to the sensor. The faint horizontal streaks 
observed throughout this image represent the radar signatures 

FIGURE 8 
collected by the Data Collection System. 

Spotlight mode X-band image of the Washington Monument, 
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FIGURE 9 
by the Data Collection System. 

Spotlight mode X-band image of the Pentagon building, collected 

of automobiles moving with various velocities during the syn- 
thetic aperture imaging time. Section 5.1 describes the image 
characteristics of moving targets. 

The spotlight image of the Pentagon in Fig. 9 (from the Data 
Collection System) illustrates the extremely fine detail that a SAR 
can detect. Observable characteristics include low return areas, 
the wide dynamic range associated with SAR imaging, distinct 
shadows, and vehicles in the parking lots. Individual windowsills 
are responsible for the regular array of reflections observed along 
each ring of the Pentagon; as in the case of the Washington Mon- 
ument, they exhibit considerable layover because of their vertical 
height. It is impressive to realize that SAR systems today are ca- 
pable of generating such fine-resolution imagery in complete 
darkness during heavy rain from distances of many kilometers! 

2.4 Characteristics of Signal Data 
A SAR sensor transmits a sequence of pulses over time and 
receives a corresponding set of returns as it traverses its flight 
path. We visualize this sequence of returns as a 2-D signal, with 
one dimension being pulse number (or sensor position along 
the flight path) and the other being time delay (or round-trip 
range). Analogous to an optical signal reaching a lens, this 2-D 
radar signal possesses a quadratic phase pattern that the pro- 
cessor must match in order to compress the dispersed signal 
from each scatterer to a focused point or image of that scat- 
terer. In a simple optical system, a spherical lens provides the 
required 2-D quadratic phase match to focus the incoming field 
and form an optical image. In a modern SAR imaging system, 

a digital image formation algorithm generates and applies the 
required phase pattern. While the incoming SAR signal phase 
pattern is nominally quadratic in each coordinate, many varia- 
tions and subtleties are present to challenge the IFP. For instance, 
the quadratic phase coefficient in the azimuth coordinate varies 
across the range swath. The quadratic phase in the range coor- 
dinate is a deterministic function of the linear FM rate of the 
transmitted radar pulses. 

SAR signal data consist of a 2-D array of complex numbers. 
In the range dimension, these numbers result from analog-to- 
digital (A/D) conversion of the returns from each transmitted 
pulse. Each sample includes quantized amplitude and phase 
(or alternatively, in-phase and quadrature) components. In the 
azimuth dimension, samples correspond to transmitted pulses. 

To alleviate high A/D sampling rates, most fine-resolution sys- 
tems remove the quadratic phase associated with the incoming 
signals within each received pulse electronically in the receiver 
before storing the signals. This quadratic phase arises from the 
linear FM characteristic of the transmitted waveform. Thinking 
of the quadratic phase in range as a “chirping” signal with a lin- 
ear variation in frequency over time, we refer to this electronic 
removal of the quadratic phase with the terminology dechirp-on- 
receive or stretch processing. Following range dechirp-on-receive, 
the frequency of the resulting intermediate frequency (IF) signal 
from each scatterer is proportional to the distance from the radar 
sensor to the scatterer. Figure 10 illustrates this process. Stretch 
processing is advantageous when the resulting IF signal has lower 
bandwidth than the RF bandwidth of the transmitted signal. 

Similarly, it may be desirable to electronically remove the 
azimuth quadratic phase (or azimuth chirp) associated with a 
sequence of pulses in the receiver before storage and subsequent 
image formation processing. The quadratic phase characteris- 
tic in azimuth originates from the quadratic variation in range 
to each scatterer over the synthetic aperture interval. Processing 
such a dechirped signal in either dimension involves primarily 
a Fourier transform operation with preliminary phase adjust- 
ments to accommodate various secondary effects of the SAR 
data-collection modes and radar system peculiarities. Ifthe radar 
receiver does not remove these quadratic phase effects, the image 
formation processor must remove them. 

Requirements for a minimum number of range and azimuth 
samples arise from constraints on the maximum spacing between 
samples. These constraints are necessary to avoid the presence 
of energy in the desired image from undersampled signals origi- 
nating from scatterers outside the scene. The number of complex 
samples in the range dimension must slightly exceed the number 
of range resolution cells represented by the range swath that is 
illuminated by the antenna elevation beam. Similarly, the num- 
ber of complex samples in the azimuth dimension must exceed 
slightly the number of azimuth resolution cells represented by 
the azimuth extent illuminated by the azimuth antenna beam. 
In the spotlight mode, bandpass filtering in azimuth limits the 
azimuth scene size and reduces the number of data samples into 
the IFP. 
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Signal data include desired signals representing attributes of 
the scene being imaged, undesired phase effects related to trans- 
mitter and receiver properties or to the geometric realities of data 
collection, phase and amplitude noise from various sources, and 
ambiguous signals related to inadequate sampling density. Usu- 
ally, the major error effect in SAR data is phase error in the az- 
imuth dimension arising from uncertainty in the precise location 
of the radar antenna at the time of transmission and reception 
of each pulse. Without location accuracy of a small fraction of 
a wavelength, phase errors will exist across the azimuth signal 
aperture that degrade the quality of the S A R  image. Other hard- 
ware and s o h a r e  sources of phase errors also are likely, even 
in a well-designed S A R  system. Section 4.1 discusses autofocus 
algorithms to manage these error effects. 

2.5 Characteristics of Image Data 
S A R  image data are a 2-D array of complex numbers with indices 
representing, for example, changingrange and changing azimuth 
coordinates. Like signal data, each sample includes quantized 
amplitude and phase (or alternatively, in-phase and quadrature) 
components. Each element of the array represents an image pixel 
with amplitude related to the strength of the radar backscatter 
coefficient in the corresponding scene area. In general, the phase 
of an image pixel includes a deterministic component and a 
random component. The deterministic component is related to 
the distance between the corresponding scatterer and the radar 
sensor. The random component is related to the presence of many 
scattering centers in an area the size of a 2-D resolution cell in 

most parts of the scene. Because of this random component, 
image phase generally is not useful when working with a single 
image. SAR interferometry, described in Section 5.2, surmounts 
this difficulty by controlling the data-collection environment 
adequately to achieve (and then cancel) the same random phase 
component in two images. 

Characteristics of radar imagery include center frequency (for 
instance, X-band or L-band), polarization of transmit and re- 
ceive antennas (for instance, horizontal or vertical and like or 
cross polarization), range and azimuth resolutions, and image 
display plane. Common choices for the image display plane 
are the nominal ground plane that includes the imaged terrain 
or the slant plane that contains the antenna velocity vector and 
the radar line-of-sight vector to scene center. Other attributes of 
SARimagery include low return areas (shadows, roads, lakes, and 
other smooth surfaces), types of scatterers, range layover, targets 
moving during the data collection, multiple bounce (multipath) 
reflections, and coherent speckle patterns. Certain types of scat- 
terers are common to manmade, metallic objects. These types 
include flat plates, cylinders, spheres, and dihedral and trihedral 
reflectors. Another type of scatterer is the distributed scatterer 
containing many scattering centers within the area of a reso- 
lution cell, such as a region covered by vegetation or a gravel- 
covered roof. Speckle refers to the characteristic nature of radar 
imagery of distributed scatterers to fluctuate randomly between 
high and low intensity. Such fluctuations about an average value 
appear throughout an otherwise uniform scene because the co- 
herent summation of the echoes from the many scattering centers 
within each resolution cell yields a random value rather than the 
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FIGURE 11 Intersection of range spheres with Doppler cones: (a) ground plane; (b) radar slant plane. 

mean backscatter coefficient. Speckle is responsible for the mot- 
tled appearance of the grassy area surrounding the monument 
in Fig. 8. 

The geometrical aspects of S A R  image data naturally relate 
directly to scene geometry, data-collection geometry, and sensor 
parameters. Here we discuss the range and azimuth channels 
separately to describe these relationships. 

Range refers to the distance Rt between the antenna phase cen- 
ter (APC) and a particular scatterer measured by the time delay 
( td  = 2Rt/c) between transmission and reception of pukes. 
Spheres (indicating surfaces of constant range) centered at the 
APC will intersect a flat earth as circles centered at the radar 
nadir point. Figure 11 (a) illustrates this geometric relationship. 
The illuminated parts of each of these circles appear as (straight) 
lines of constant range in a processed image. 

Azimuth relates to angular location in terms of the Doppler 
cone angle, defined as the angle between the antenna velocity 
vector and the line of sight to a particular scatterer. A conical 
surface (indicating constant azimuth) with its vertex at the APC 
and its axis along the antenna velocity vector intersects a flat 
earth as a hyperbola. Figure 11 (a) illustrates the shape of these 
intersections for a family of conical surfaces. The illuminated 
parts of each of these hyperbolas appear as (straight) lines of 
constant azimuth in a processed image. 

While a conical surface and a spherical surface centered at the 
cone vertex intersect orthogonally in 3-D space, these circles of 
constant range and hyperbolas of constant Doppler on the flat 
earth generally are not orthogonal. As Fig. 11 (b) illustrates, these 
intersections are orthogonal in the radar slant plane. 

A typical set of image quality (IQ) parameters includes resolu- 
tion, peak sidelobe levels, a measure of additive noise (primarily 
from thermal noise in the radar receiver), a measure of mul- 
tiplicative noise, and geometric distortion. Resolution refers to 
the -3-dB width of the mainlobe of the system impulse response. 

The sidelobe region is the area of the impulse response outside 
the mainlobe area. Peak sidelobe levels refer to the local peaks 
in intensity in the sidelobe region. Multiplicative noise refers to 
signal-dependent effects and includes digital quantization noise, 
energy in the sidelobes of the system impulse response, and en- 
ergy from scatterers outside the scene that alias into the image as 
PRF (pulse repetition frequency) ambiguities. Geometric distor- 
tion involves a nonideal relationship between the image geom- 
etry and scene geometry, for instance, a square patch of terrain 
taking on a non-square shape in the image. 

In practice, requirements on IQ parameters vary among task 
categories that include terrain imaging, target detection, target 
classification, and target identification. Each category indicates 
a different set of image quality, quantity, and timeliness require- 
ments that a SARsystem design and implementation must satisfy 
to perform that task acceptably [ 5 ] .  

3 Image Formation Algorithms 

This section describes the principal image formation processing 
algorithms associated with operational spotlight and stripmap 
modes. We introduce this discussion with a short historical re- 
view of image formation processing of S A R  data. 

3.1 History of Image Formation Algorithms 
The S A R  sensor receives and processes analog electromagnetic 
signals in the form of time-varying voltages. While the mod- 
ern digital signal processor requires that the receiver sample and 
quantize these analog signals, the first processor to successfully 
generate a fully focused SAR image operated on analog signals 
recorded in a 2-D format on a strip of photographic film. In 
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this recording process, the signals returned from successively 
transmitted pulses were recorded side-by-side parallel to each 
other along the length of the film in a so-called rectangular for- 
mat. The optical signal processor illuminated the signal film 
with a coherent (helium-neon) laser beam while an assortment 
of spherical, cylindrical, and conical lenses provided the needed 
quadratic focus to effect a Fourier transform operation. In a per- 
spective analogous to optical imaging, the laser releases the radar 
wavefronts originating from the illuminated scene and stored in 
the photographic film while the lenses focus these wavefronts to 
form a 2-D image of the scene. Early digital signal processors 
performed essentially these same operations on the quantized 
signals, mimicking the rectangular format, the quadratic phase 
adjustments, and the Fourier transform operations inherent in 
the original optical processor. 

Following these early processors, the SAR community has 
developed a succession of new approaches for processing SAR 
data in order to improve image quality, support different data- 
collection modes, and improve algorithm efficiency (particularly 
with respect to real-time and near-real-time imaging applica- 
tions). Fortunately, the performance of digital signal processing 
(DSP) hardware has improved dramatically since the first digital 
SAR processors to keep pace with increasing processing demands 
of modern SAR sensors and associated algorithms. 

3.2 Major Challenges in SAR Image Formation 
The generation ofhigh-quality SARimageryrequires that the IFP 
compensate a number of fundamental effects of radar system de- 
sign, hardware implementation, and data-collection geometry. 
The more significant effects include scatterer motion through 
range and azimuth resolution cells, the presence of range curva- 
ture, effects of measured sensor motion, errors induced by non- 
ideal sensor hardware components, errors induced by nonideal 
signal propagation, and errors caused by unmeasured sensor 
motion. Additional concerns involve computational complex- 
ity, quantity of digital data, and data rates. 

Of these issues, motion through resolution cells (MTRC) and 
range curvature often present the greatest challenges to algo- 
rithm design. The remainder of this subsection defines and dis- 
cusses these two challenges. Together with resolution require- 
ments and scene size, they generally drive the choice of image 
formation algorithm. In addition, unmeasured sensor motion 
causes phase errors that often require the use of a procedure to 
detect, measure, and remove them. Section 4.1 discusses auto- 
focus algorithms to address this need. 

Over the synthetic aperture distance necessary to collect the 
data needed to form a single image, the changing position of the 
radar sensor causes changes in the instantaneous range and an- 
gle from the sensor to each scatterer in the scene being imaged. 
Motion through resolution cells refers to the existence of these 
changes. Because SAR uses the range and angle to a scatterer to 
position that scatterer properly within the image, the radar must 
estimate these changing quantities. For typical narrow-beam 

width sensors, the line-of-sight range to each scatterer is nom- 
inally a quadratic function of along-track sensor position. In a 
generic sense, this variation represents scatterer MTRC in range. 

The drawings of imaging geometry in Fig. 12 help to relate 
MTRC to a change in range and define range curvature. In broad- 
side stripmap imaging, the change in range to each scatterer is 
symmetrical about broadside and represents range curvature. In 
a squinted stripmap collection, the variation in range to each 
scatterer is not symmetrical over the synthetic aperture, but in- 
cludes a large linear component The S A R  community refers to 
the linear component as range walk and the nonlinear (nomi- 
nally quadratic) component as range curvature. Somewhat dif- 
ferent terminology applies to the same effect in the arena of the 
fine-resolution spotlight mode, where all MTRC becomes range 
curvature regardless ofwhether the motion is linear or nonlinear. 
Figure 12 illustrates these effects for a stripmap collection (left 
side) and a spotlight collection (right side). 

The key challenge in SARimage formation is the fact that range 
curvature varies with scatterer location within the imaged scene. 
The top right diagram in Fig. 12 suggests this variation. While 
it is easy to compensate range curvature for one scatterer, it can 
be difficult to compensate adequately and efficiently a different 
range curvature for each scatterer in the image. 

For many systems having fine resolution or a wide swath 
width, this change in range curvature or digerential range curva- 
ture (DRC) across the imaged swath can be large enough to chal- 
lenge the approximations that most IFP algorithms use in their 
analytical basis for compensating MTRC. The consequences can 
include spatially variant phase errors that cause image defocus 
and geometric distortion. 

3.3 Image Formation in the Stripmap Mode 
In the stripmap mode, successively transmitted pulses interro- 
gate the strip of terrain being imaged from successively increas- 
ing along-track positions as the antenna proceeds parallel to 
the strip. For image formation in the stripmap mode, we discuss 
range-Doppler processing, the range migration algorithm, and 
the chirp scaling algorithm. 

Range-Doppler processing is the traditional approach for pro- 
cessing stripmap SAR data. It involves signal storage in a rectan- 
gular format analogous to the early optical stripmap processor 
described in Section 3.1. While manyvariations of this algorithm 
exist, the basic approach involves two common steps. First, the 
IFP compresses the signal data (pulses) in range. It then com- 
presses the (synthetic aperture) data in azimuth to complete 
the imaging process. If range curvature is significant, the range- 
compressed track of each scatterer migrates through multiple 
range bins requiring use of a 2-D matched filter for azimuth 
compression. Otherwise, use of a 1-D matched filter is adequate. 
A range-Doppler processor usually implements the matched fil- 
ter by means of the fast convolution algorithm involving a fast 
Fourier transform (FFT) followed by a complex multiply and 
an inverse FFT. The matched filter easily compensates the range 
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curvature associated with scatterers at some reference range that 
is specified in the filter design. 

A typical approach to accommodate DRC in range-Doppler 
processing divides the range swath being imaged into narrow 
subswaths. This division allows the use of the same matched fil- 
ter for azimuth compression within each subswath tuned to its 
midrange, but a different matched filter from subswath to sub- 
swath. The IFP applies the same 2-D matched filter to all range 
bins within a specific subswath and accepts a gradual degradation 
in focus away from midrange. A common criterion allows n l 2  
rad of quadratic phase error and limits the maximum subswath 
width AR to 

(3) 

in order to avoid significant defocus [ 61. As an example, an X- 
band (A, = 0.03 m) stripmap SAR with a 1-m azimuth resolu- 
tion (requiring an azimuth beamwidth of 0.015 rad) corresponds 
to a range subswath width AR of 267 m. 

A common implementation of the range-Doppler algorithm 
begins with an FFT of the azimuth chirped data in order to 
compensate directly for scatterer migration through range bins 
by means of a Doppler-dependent, 1-D digital interpolation in 
range. The idea is to straighten the curved trajectories that each 

scatterer follows in range-Doppler (frequency) space by resam- 
pIing the range compressed data. Figure 13 summarizes the steps 
in this process. This method is useful in processing medium- 
resolution and coarse-resolution S A R  data but has difficultywith 
either fine-resolution data or data collected in a squinted geom- 
etry. While an additional processing stage can perform secondary 
range compression to partially overcome this difficulty, the range 
migration algorithm and the chirp scaling algorithm offer at- 
tractive alternatives for many applications. 

The range migration algorithm (RMA) is a modern approach 
to stripmap SAR image formation [ 71. As a key attribute, RMA 
provides a complete solution to the presence of range curva- 
ture and avoids any related geometric distortion or defocus. The 
RMA operates on input data after dechirp-on-receive (described 
in Section 2.4) in the receiver or subsequent range dechirp in the 
processor. It requires that the receiver preserve (or that the pro- 
cessor reapply) the natural azimuth chirp characteristics of the 
collected signals when compensating the received data for ran- 
dom sensor motion. We refer to this procedure of preserving 
the natural phase chirp in azimuth (common in conventional 
stripmap imaging) as motion compensation to a line. 

Figure 14 illustrates the key steps in RMAprocessing. First, the 
RMA transforms the input signal data (already in the range fre- 
quency domain following the receiver dechirp-on-receive opera- 
tion) into the 2-D spatial frequency (or wavenumber) domain by 
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means ofa 1-D along-trackFFT. Operation in this 2-D wavenum- 
ber domain differentiates the RMA from range-Doppler al- 
gorithms. Next, a matched filter operation removes from all 
scatterers the along-track quadratic phase variation and range 
curvature associated with a scatterer located at swath center. 

While this operation perfectly compensates the range curvature 
of scatterers located along swath center, it provides only partial 
compensation for scatterers at other ranges. In the next step, 
a 1-D coordinate transformation in the range frequency coor- 
dinate (known as the Stolt interpolation) removes the residual 
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FIGURE 14 Key steps in RMA processing. 
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range curvature of all scatterers. Finally, a two-dimensional in- 
verse FFT compresses the signal data in both range and azimuth 
to achieve the desired image. 

The RMA outperforms other algorithms in situations in which 
differential range curvature is excessive. These situations are 
likely to occur in operations either at fine resolution, with a 
low center frequency, at a short standoff range, or with a large 
scene size. Thus, the RMA is a natural choice for processing 
fine-resolution stripmap imagery at VHF and UHF bands for 
FOPEN applications. With appropriate preprocessing of the sig- 
nal data, the RMA can be a viable choice for spotlight processing 
applications as well [ 51. 

The chirp scaling algorithm (CSA) requires SAR input data 
possessing chirp signal characteristics in both range and az- 
imuth. Related to the RMA, the CSA requires only FFTs and 
complex multiplies to form a well-focused image of a large- 
scene; it requires no digital interpolations. This attribute often 
makes the CSA an efficient and practical alternative to the RMA. 

The CSA avoids interpolation by approximating the Stolt 
transformation step of the RMA with a chirp scaling operation 
[ 81. This operation applies aDoppler-dependent quadratic phase 
function to the range chirped data after an FFT of the azimuth 
chirped data. This process approximately equalizes DRC over the 
full swath width and permits partial range curvature compen- 
sation of all scatterers with a subsequent matched filtering step. 
With its efficiency and good focusing performance, the CSA and 
its various extensions have become standard image formation 
techniques for commercial and scientific orbital S A R  systems 
that operate with coarse to medium resolutions over large swath 
widths. 

3.4 Image Formation in the Spotlight Mode 
In the spotlight mode, successively transmitted pulses interro- 
gate the fixed scene being imaged at successively increasing cone 
angles as the antenna proceeds past the scene. This vision sug- 
gests the storage of collected pulses in a polar format for sig- 
nal processing. In fact, the polar format algorithm (PFA) is the 
standard approach for image formation in the fine-resolution 
spotlight mode. 

The PFA requires S A R  signal data after dechirp in range. Such 
data occur naturally in systems employing dechirp-on-receive 
hardware. Unlike the range migration algorithm, the PFA re- 
quires that the receiver (or the IFP) remove the natural azimuth 
chirp characteristics of the collected signals. We refer to this 
procedure of removing the natural chirp when compensating 
the received data for random sensor motion as motion compen- 
sation to apoint. This fixed reference point becomes scene center 
in the spotlight image. 

The use of motion compensation to scene center completely 
removes the effect of MTRC from a scatterer at scene center and 
partially removes it from other scatterers. The PFA removes most 
of the remaining effects of MTRC by its choice of a data-storage 
format for signal processing. Using a 2-D interpolation, the al- 

gorithm maps returns from successively transmitted pulses in an 
annular shape. It locates each return at a polar angle that tracks 
the increasing cone angle between the antenna velocity vector 
and its line-of-sight to scene center as the antenna proceeds past 
the scene. It locates the returns at a radial distance proportional 
to the radio frequency of the transmitted pulse. Figure 15 il- 
lustrates this data-storage format and its similarity to the data- 
collection geometry, particularly in terms of the Doppler cone 
angle old. The combination of motion compensation to a point 
and polar formatting leaves a small residual effect of MTRC 
that we call range curvature phase error in discussions of the 
PFA. 

Range curvature phase error introduces geometric distortion 
in the image from residual linear phase effects and causes image 
defocus from quadratic and higher order phase effects. Based 
on sensor and data-collection parameters, these effects are de- 
terministic and vary in severity over the scene. The digital pro- 
cessor is able to correct the geometric distortion by resampling 
the processed image to remove the deterministic distortion. The 
processor cannot easily remove the image defocus resulting from 
range curvature because the amount of defocus varies over the 
scene. Because the amount of defocus increases with distance 
from scene center, the usual method of dealing with it is simply 
to limit the processed scene to a size that keeps defocus to an 
acceptable level. A typical criterion allows n / 2  rad of quadratic 
phase error. This criterion restricts the allowable scene radius 
ro to 

(4) 

where Rac is the midaperture range between scene center and 
the SAR antenna [ 5 ] .  As an example, a system design using 
Xc = 0.03 m, Pa = 0.3 m, and Rac = 10 km limits ro to 346 m. 

To process a larger scene, it is common to divide the scene into 
sections, process each section separately, and mosaic the sections 
together to yield an image of the entire illuminated scene. This 
subpatch processing approach can become inefficient because 
the IFP must process the collected signal data multiple times in 
order to produce the final output image. Amplitude and phase 
discontinuities are invariably present at section boundaries. Sig- 
nificant amplitude discontinuities affect image interpretability, 
while phase discontinuities impact utility in interferometry and 
other applications that exploit image phase. 

The PFA requires a 2-D interpolation of digitized signal data to 
achieve the polar storage format. The IFP typically implements 
this 2-D interpolation separably in range and azimuth by means 
of two passes of 1-D finite impulse response filters [ 5 ] .  

The PFA is an important algorithm in fine-resolution S A R  im- 
age formation because it removes a large component of MTRC 
in an efficient manner. In addition, the PFA is attractive because 
it can perform numerous secondary compensations along the 
way. These compensations include range and azimuth down- 
sampling to reduce computational load, autofocus to remove 
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unknown phase errors, and resampling to change the image dis- 
play geometry. As a result, use of the PFA is common in many 
operational reconnaissance S A R  systems. 

4 Image Enhancement 

The magnitude and phase of each image pixel can have signif- 
icance in image exploitation. Additionally, the geometric rela- 
tionship (mapping) between image pixel location and scatterer 
location in 3-D target space is an important aid in target de- 
tection, classification, and identification applications. It is the 
function of image enhancement algorithms to improve or ac- 
centuate these image characteristics for image understanding 
and information extraction. 

The complex nature of the S A R  image extends the capability 
of image enhancement algorithms to vary the quality and nature 
of the image. Important enhancement functions include autofo- 
cus, impulse response shaping, geometric distortion correction, 
intensity remapping, and noncoherent integration. Autofocus 
and distortion correction improve image quality by addressing 
deficiencies in the image formation process. Impulse response 
shaping and intensity remapping provide a capability to adjust 
image characteristics to match a specific application. Noncoher- 
ent integration smoothes speckle noise by noncoherently sum- 
ming multiple images of the same scene collected at different 
frequencies or cone angles. 

These image enhancement functions are standard consider- 
ations in S A R  image improvement. In this section, we describe 
autofocus algorithms and impulse response shaping in detail and 
briefly discuss the remaining image enhancement functions. 

4.1 Autofocus Algorithms 
The synthetic aperture achieves fine cross-range resolution by 
adjusting the relative phase among signals received from various 
pulses and coherently summing them to achieve a focused image. 
A major source of uncertainty in the relative phase among these 
signals is'the exact location of the radar antenna at the time 
of transmission and reception of each pulse. Location accuracy 
of a small fraction of a wavelength is necessary, perhaps to a 
few millimeters in the case of X-band operation at a IO-GHz 
center frequency. Without this location accuracy, phase errors 
will exist across the azimuth signal aperture and cause image 
distortion, defocus, and loss of contrast. Other hardware and 
software sources of phase error also are likely to be present, even 
in a well-designed system. 

The high probability of significant phase error in the azimuth 
channel of a SAR system operating at fine resolution (typically 
better than 1-m azimuth resolution) necessitates the use of al- 
gorithms during or following image formation to measure and 
remove this phase error. We refer to the process that automat- 
ically estimates and compensates for phase error as autofocus. 
We describe two common autofocus algorithms in this chapter, 
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the mapdrift algorithm and the phase gradient autofocus (PGA). 
The mapdrift algorithm is ideal for detecting and removing low- 
frequency phase error that causes image defocus. By low fre- 
quency, we mean phase error that varies slowly (for example, a 
quadratic or cubic variation) over the aperture. The PGA is an 
elegant algorithm designed to detect both low-frequency phase 
error and high-frequency phase error that varies rapidly over the 
aperture. High-frequency phase error primarily degrades image 
contrast. 

Originating at Hughes Aircraft Corporation in the mid-l970s, 
the mapdrift algorithm became the first robust autofocus pro- 
cedure to see widespread use in operational S A R  systems. While 
mapdrift estimates quadratic and cubic phase errors best, it also 
extends to higher-frequency phase error [9]. With the aid of 
Fig. 16, we illustrate use of the mapdrift concept to detect and 
estimate an azimuth quadratic phase error with center-to-edge 
phase of Q over an aperture of length L. This error has the 
form exp( j27rkqx2),  where x is the azimuth coordinate and kq 
is the quadratic phase coefficient being measured. In its quadratic 
mode, mapdrift begins by dividing the signal data into two halves 
(or subapertures) in azimuth, each oflength L/2. Mapdrift forms 
separate, but similar, images (or maps) from each subaperture. 
This process degrades the azimuth resolution of each map by 
a factor of 2 relative to the full-aperture image. Viewed sepa- 
rately over each subaperture, the original phase effect includes 
identical constant and quadratic components but a linear com- 

Phase error over full 
sythetic aperture 

4 
Phase error function 

over full aperture 

Subaperature 1 Subaperture 2 

4 4 

Phase error function 
over half-apertures 

FIGURE 16 Subaperture phase characteristics in the mapdrift concept. 

ponent of opposite slope in each subaperture. Mapdrift exploits 
the fact that each subaperture possesses a different linear phase 
component. A measurement of the difference between the linear 
phase components over the two subapertures leads to an esti- 
mate of the original quadratic phase error over the full aperture. 
The constant phase component over each subaperture is incon- 
sequential, while the quadratic phase component causes some 
defocus in the subaperture images that is not too troublesome. 

By the Fourier shift theorem, a linear phase in the signal do- 
main causes a proportional shift in the image domain. By es- 
timating the shift (or drift) between the two similar maps, the 
mapdrift algorithm estimates the difference in the linear phase 
component between the two subapertures. This difference is di- 
rectly proportional to Q. Most implementations of mapdrift 
measure the drift between maps by locating the peak of the 
cross-correlation of the intensity (magnitude squared) maps. 
After mapdrift estimates the error, a subsequent step removes 
the error from the full data aperture by multiplying the original 
signal by a complex exponential of unity magnitude and phase 
equal to the negative of the estimated error. Typical implemen- 
tations improve algorithm performance by iterating the process 
after removing the current error estimate. Use of more than two 
subapertures to extend the algorithm to higher frequency phase 
error is rare because of the availability of more capable higher- 
order techniques, such as the PGA algorithm. 

The PGA entered the S A R  arena in 1989 as a method to esti- 
mate higher-order phase errors in complex SAR signal data [ 10, 
111. Unlike mapdrift, the PGA is a nonparametric technique in 
that it does not assume any particular functional model (for 
example, quadratic) for the phase error. The PGA follows an it- 
erative procedure to estimate the derivative (or phase gradient) 
of a phase error in one dimension. The underlying idea is simple. 
The phase of the signal that results from isolating a dominant 
scatterer within an image and inverse Fourier transforming it in 
azimuthisameasureoftheazimuthphaseerrorinthesignaldata. 

The PGAiteration cycle begins with a complex image that is fo- 
cused in range but possibly blurred in azimuth by the phase error 
being estimated. The basic procedure isolates (by windowing) 
the image samples containing the azimuth impulse response of 
the dominant scatterer within each range bin and inverse Fourier 
transforms the windowed samples. The PGA implementation 
estimates the phase error in azimuth by measuring the change 
(or gradient) in phase between adjacent samples of the inverse 
transformed signal in each range bin, averaging these measure- 
ments over all range bins, and integrating the average. The algo- 
rithm then removes the estimated phase error from the original 
S A R  data and proceeds with the next iteration. A number of 
techniques are available for selecting the initial window width. 
Typical implementations of the PGA decrease the window width 
following each iteration of the algorithm. 

Figure 17 demonstrates use of the PGA to focus a 0.3-m res- 
olution stripmap image of the University of Michigan engineer- 
ing campus. The image in Fig. 17(a) contains a higher-order 
phase error in azimuth that seriously degrades image quality. 
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FIGURE 17 
auto focus. 

PGA algorithm example: (a) input image degraded with simulated phase errors; (b) output image after 

Figure 17(b) shows the focused image that results after three iter- 
ations ofthe PGA algorithm. This comparison illustrates the abil- 
ity of the PGA to estimate higher-order phase errors accurately. 
While the presence of numerous dominant scatterers in this ex- 
ample eases the focusing task considerably, the PGA also exhibits 
robust performance against scenes without dominant scatterers. 

4.2 Impulse Response Shaping 
In the absence of errors, the impulse response of the SAR imag- 
ing system is the Fourier transform of the aperture weighting 
function. An unweighted (constant amplitude and phase) aper- 
ture yields a sin (x)/x impulse response. Control of the sidelobes 
of the impulse response is important in order to maintain image 
contrast and avoid interference with weaker nearby targets by 
a stronger scatterer. Conventional aperture weighting generally 
involves amplitude tapering at the data aperture edges to reduce 
their contribution to sidelobe energy. This type of weighting 
always widens the mainlobe as a consequence of reducing the 
energy in the sidelobes. Widening the mainlobe degrades reso- 
lution as measured by the -3-dB width of the impulse response 
function. Figure 18 compares the intensity impulse responses 
from an unweighted aperture and from -35-dB Taylor weight- 
ing, a popular choice for fine-resolution SAR imagery. With this 
weighting function, the first sidelobe is 35 dB below the mainlobe 
peak, compared with 13 dB without weighting. The weighted 
-3-dB mainlobe width is 1.3 times that in the unweighted case. 

Dual apodization is a new approach to impulse response shap- 
ing for SAR imagery [12, 131. In this approach, an algorithm 
generates two images from the same signal data, one using an 
unweighted aperture and one using heavy weighting that sup- 
presses sidelobes and widens the mainlobe width. Logic within 
the algorithm compares the magnitude of the unweighted image 
with that resulting from the heavy weighting on a pixel-by-pixel 

basis. This logic saves the minimum value at each pixel location 
to represent that pixel in the output image. In this way, dual 
apodization attempts to preserve both the narrow width of the 
unweighted aperture and the low sidelobe levels of the weighted 
aperture. 

Our example of dual apodization compares the unweighted 
image with that resulting from half-cosine weighting, which we 
select specifically for use in a dual-apodization operation. Fig- 
ure 19(a) illustrates the half-cosine weighting. Alone, half-cosine 
weighting is not useful because it greatly degrades the main- 
lobe of the impulse response. However, as a partner in dual 
apodization with the unweighted aperture, it performs adeptly 
to minimize sidelobes without increasing mainlobe width. Fig- 
ures 19(b) and 19(c) show the weighted and unweighted impulse 
responses. Unlike many aperture weighting functions that do not 
significantly change the zero crossings of the impulse response 
function, half-cosine weighting does shift the zero crossings rel- 
ative to those ofthe unweighted aperture. Figure 19(d) indicates 
the impulse response resulting from dual apodization. This result 
maintains the width of the unweighted aperture and the sidelobe 
levels of the half-cosine weighted aperture. Dual apodization 
with this pair of weighting requires that we multiply the mag- 
nitude of the weighted image by a factor of 2 before comparison 
to balance the reduction in amplitude from weighting. Figure 20 
compares a SAR image containing a number of strong targets 
using an unweighted aperture and using this dual-apodization 
pairing. 

Space variant apodization (SVA) is a step beyond dual 
apodization that uses logic queries regarding the phase and am- 
plitude relationships among neighboring pixels to determine 
whether a particular pixel consists of primarily mainlobe energy, 
primarily sidelobe energy or a combination of the two [ 12, 131. 
The logic directs the image enhancement algorithm to zero out 
the sidelobe pixels, maintain the mainlobe pixels, and suppress 
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FIGURE 20 
apodization (half-cosine). 

Image example using dual apodization: (a) original image with unweighted aperture; (b) image with dual 

the pixels of mixed origin. The operation of SVA to zero out 
sidelobe pixels introduces some suppression of clutter patterns. 
Reference [ 51 supplements the original papers with heuristic ex- 
planations of SVA and SAR image examples. 

4.3 Other Image Enhancement Functions 
Other image improvement options include geometric distortion 
correction, intensity remapping, and noncoherent integration. 
Geometric distortion refers to the improper positioning of scat- 
terers in the output imagewith respect to their true position when 
viewed in a properly scaled image display plane. Correction pro- 
cedures remove the deterministic component of geometric dis- 
tortion by resampling the digital SAR image from distorted pixel 
locations to undistorted locations. Intensity remapping refers to 
a (typically) nonlinear transformation between input pixel in- 
tensity values and output intensity. Such a remapping operation 
is particularly important when displaying SAR imagery in order 
to preserve the wide dynamic range inherent in the digital im- 
age data (typically 50 to 100 dB). Noncoherent integration refers 
to a process that detects the amplitude of SAR images (thereby 
eliminating the phase) and averages a number of these detected 
images taken at slightly different cone angles in order to reduce 
the variance of the characteristic speckle that naturally occurs in 
SAR images. 

Geometric distortion arises largely from an inadequacy of the 
IFP algorithm to compensate for the geometrical relationships 
inherent in the rangelangle imaging process. When necessary 
to satisfy image quality requirements, an image enhancement 
module after image formation compensates for deterministic 
distortion by interpolating between sample points of the orig- 
inal image to obtain samples on an undistorted output grid. 
This digital resampling operation (or interpolation) effectively 
unwarps the distorted image in order to reinstate geometric fi- 
delity into the output image. 

Intensity remapping is necessary and valuable because the 
wide dynamic range (defined as the ratio between the highest 
intensity scatterer present and system noise) inherent in radar 
imagery greatly exceeds that of common display media. It is often 
desirable to examine stronger targets in their natural background 
of terrain or in the presence of weaker targets. The common ap- 
proach to remapping sets input pixels below a lower threshold 
level to zero, sets input pixels above an upper threshold level 
to that level, and maps pixels in between from input to output 
according to a prescribed (generally nonlinear) mapping rule. 
One popular remapping rule performs a linear mapping of im- 
age pixels having lower intensity and a logarithmic mapping of 
pixels having higher intensity. The output of this Zinlogmapping 
is typically an image with 8-bit samples that retains the proper 
linear relationship among the intensities of low-level scatter- 
ing sources (such as terrain), yet compresses the wide dynamic 
range of the strongest scatterers (typically manmade, metallic 
objects). 

Noncoherent integration (or multilook averaging) of fine- 
resolution radar images allows the generation of radar images 
with an almost optical-like appearance. This process smoothes 
out the pixel-to-pixel amplitude fluctuations (speckle noise) as- 
sociated with a coherent imaging system. By including scatterers 
sensed at a multitude of cone angles, it adds detail to the target 
signature to enhance identification and provide a more literal 
image appearance. Figure 21 shows a fine-resolution SAR image 
of an automobile resulting from noncoherent summation of 36 
images collected at unique cone angles. 

5 Image Exploitation 

The value of imagery is in its use. Information inherent in image 
data must be identified, accessed, quantified, often calibrated, 
and developed into a usable and observable form. Observation 
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FIGURE 21 Use of noncoherent intergration to fill in the target signature. 

may involve visual or numerical human study or automatic com- 
puter analysis. 

An image naturally presents a spatial perspective to an ob- 
server with a magnitude presentation of specific features or 
characteristics. Beyond this presentation, SAR imagery offers 
additional information related to its coherent nature, with mean- 
ingful amplitude and phase associated with each pixel. This com- 
plex nature of SAR imagery represents special value when the 
image analyst can relate it to target or data-collection character- 
istics of value in specialized military or civilian applications. 

Some examples of these special applications of SAR image 
data include moving target detection (possibly with tracking and 
focusing) using a single image, and digital terrain elevation data 
(DTED) extraction by means of interferometry using multiple 
images collected at different depression angles. We discuss these 
two applications in detail below. 

Additional applications of a single SAR image include glint 
detection, automated road finding and following, and shadow 
exploitation. Glints (or specular flashes) refer to bright returns 
off the edges of linear surfaces, characteristic of manmade struc- 
tures such as aircraft wings. Road finding and shadow detection 
naturally involve searches for low return areas in the image. Ad- 
ditional applications involving multiple images include target 
characterization using polarization diversity, and change detec- 
tion using images of the same area collected at different times 
from a similar perspective. Differences in signatures from both 
terrain and cultural features as a function of the polarization 
characteristics of transmit and receive antennas support target 
classification and identification tasks. Change detection gener- 
ally involves the subtraction of two detected images collected 
at different times. Image areas that are unchanged between col- 
lections will experience significant cancellation while features 
that have changed will not cancel, making the changes easier to 
identify. 

5.1 Moving Target Detection 
Target motion during the coherent aperture time used to gener- 
ate azimuth resolution disturbs the pulse-to-pulse phase coher- 
ence required to produce an ideal impulse response function. The 

result is azimuth phase error in the signals received from moving 
target scatterers. In conventional SAR imagery, such phase er- 
ror causes azimuth smearing of the moving target image. In the 
simple case of a target moving at constant velocity parallel to the 
antenna path (along-track velocity) or at constant acceleration 
toward the antenna (line-of-sight acceleration), the phase error 
is quadratic and the image smearing is proportional to the mag- 
nitude of the motion [5]. This image effect offers both a basis 
for detection of a moving target and a hope of refocusing the 
moving target image after image formation [ 141. In the simple- 
motion case presented here, the image streak corresponding to 
a moving scatterer possesses a quadratic phase in the image deter- 
ministically related to the value of the target motion parameter 
and to the quadratic phase across the azimuth signal data. This 
quadratic phase characteristic of the streaks in the image offers 
an interesting approach to automatic detection and refocusing 
of moving targets in conventionally processed SAR images. 

Equations relating target velocity to quadratic phase error in 
both domains and to streak length are well known [ 51. A target 
moving with an along-trackvelocity Qat parallel to the antenna 
velocity vector introduces a quadratic phase error across the 
azimuth signal data. The zero-to-peak size Qvtat  of this phase 
effect is 

(5) 

Here, Ta is the azimuth aperture time and Sa, is the sine of the 
cone angle at aperture center. 

Conventional image formation processing of the resulting sig- 
nal data produces an azimuth streak in the image for each scat- 
tering center of the target. The length L s  of each streak is roughly 

Each image streak has a quadratic phase characteristic along its 
length of the same size but opposite sign as the phase effect in the 
signal data before the Fourier transform operation that produces 
the image. Figure 22 indicates these relationships. Line-of-sight 
target acceleration introduces a similar quadratic phase effect, 
while more complicated motions introduce higher order (for 
example, cubic, quartic and sinusoidal) phase effects. 

A simple algorithm for automated detection of moving target 
streaks in conventional SAR imagery utilizes this low-frequency 
(largely quadratic) phase characteristic of the image streaks rep- 
resenting moving target scatterers. The procedure is to calculate 
the pixel-to-pixel change in phase in the azimuth direction along 
each range bin of the image. Normal stationary SAR image back- 
ground areas including stronger extended targets such as trees 
and shrubbery vary almost randomly in phase from pixel to 
pixel while the streaks associated with moving scatterers vary 
more slowly and regularly in phase. This smooth phase deriva- 
tive from azimuth pixel to azimuth pixel differentiates moving 
scatterers from stationary scatterers in a way easily detected by 
an automated process. 
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Figure 23(a) displays a 0.3-m resolution SAR image that in- 
cludes a group of streaks associated with a defocused moving 
target. In this image, the horizontal coordinate is range and the 
vertical coordinate is azimuth. The moving target streaks are 
the brighter returns extending over much of the azimuth extent 
of the scene. The phase along each streak is largely quadratic. 
Figure 23(b) displays the azimuth derivative of the phase of this 
image from -IT change (dark) to +IT change (light). Various 
averaging, filtering, and thresholding operations in this phase 
derivative space will easily and automatically detect the mov- 
ing target streak in the background. For instance, one simple 
approach detects areas where the second derivative of phase in 
azimuth is small. 

Ameasure of L ,  in Fig. 23, along with Eqs. ( 5 )  and (6), provides 
an estimate of the quadratic defocus parameter associated with 
this image. A moving target focus algorithm can make this esti- 
mate of defocus and apply a corrective phase adjustment to the 
original signal data to improve the focus ofthis moving target im- 
age. Ideally, this process generates a signature of the moving tar- 

get identical to that of a similar stationary target. In reality, target 
motion is significantly more complex than that modeled here. In 
addition, the moving target streaks often do not stand out as well 
from the background as they do in this particular image. How- 
ever, sophisticated implementations of this simple algorithm can 
provide reasonable detection performance, even for a relatively 
low ratio of target streak intensity to background intensity. 

5.2 SAR Interferometry 
SAR interferometry requires a comparison of two complex SAR 
images collected over the same Doppler cone angle interval but 
at different depression angles. This comparison provides an esti- 
mate of the depression angle from the sensor to each pixel in the 
image. Figure 24(a) illustrates an appropriate data-collection ge- 
ometry using a vertical interferometer (second antenna directly 
below first antenna). Information on the depression angle from 
the sensor to each pixel in the image, along with the cone angle 
and range provided by a single SAR image, locates scatterers in 
three dimensions relative to the sensor location and velocity vec- 
tor. With information about these sensor parameters, absolute 
height and horizontal position is available to generate a digital 
terrain elevation map. A natural product of SAR interferome- 
try is a height contour map. Figure 6 presents example products 
from a modern interferometric SAR system. Major applications 
encompass both civilian and military activities. 

We use the vertical interferometer in Fig. 24( a) to illustrate the 
geometrical basis for determining depression angle. The image 
from the first antenna locates the scatterer P1 on the range- 
Doppler circle C1 in a plane orthogonal to the sensor veloc- 
ity vector. The image from the second antenna locates P1 on 
the range-Doppler circle C2. The point P2 is the center of both 

FIGURE 23 Example of moving target detection: (a) SAR image with moving target present; (b) phase derivative of image. 
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FIGURE 24 Geometrical models for SAR interferometry: (a) basis for estimating the depression 
angle; (b) model for interferometric analysis. 

circles. In the absence of errors, the intersection of the two circles 
identifies the location of PI. 

The mathematical basis and sensitivity of S A R  interferome- 
try is readily available in the published literature [15-171. To 
summarize the equations that characterize the interferometric 
S A R  function, we use the horizontal interferometer illustrated in 
Fig. 24(b). The two antennas AI and A2 are at the same height. 
They are separated by a rigid baseline of length Bi orthogonal to 
the flight line. Each antenna illuminates the same ground swath 
in a broadside imaging direction. The sensor travels in the X 
direction, + is the nominal depression angle from the interfer- 
ometer to the scatterer relative to the horizontal baseline, and 
Z,, is the height ofthe interferometer above the nominal ground 
plane X Y .  

Following image registration, multiplication of the first image 
by the complex conjugate of the second image yields the phase 
difference between corresponding pixels in the two images. For 
a particular scatterer, this phase difference is proportional to 

the difference in range to the scatterer from each antenna. This 
range difference, Rtl - Rt2 in Fig. 24(b), is adequate informa- 
tion to determine the depression angle to the scatterer. Without 
resolving the natural  IT ambiguity in the measurement of phase, 
this phase difference provides an estimate of only the difference 
in depression angle between the scatterers represented by image 
pixels rather than their absolute depression angle. The relation- 
ship between relative depression angle A$ and the difference 
A+12 between pixels in this phase difference between images is 

(7) 

Two pixels with an interferometric phase difference A + I ~  differ 
in depression angle by A+. A change in A412 corresponds to a 
change in height Ah given by [ 51 : 
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As an example, we consider an interferometer with horizontal 
baseline Bi = 1 m, center frequency X, = 0.03 m, operating at 
a depression angle + = 30 deg from a height Z,, = 4 km. We 
have the coefficient K h  = -33.1 d r a d  = -0.58 ddeg ;  thus 
10 deg of interferometric phase difference corresponds to 5.8 m 
of height change. 

6 Chapter Summary 

Microwave imaging has been an attractive technology since its 
early roots in the World War I1 era, largely because of its poten- 
tial for 24-hour remote surveillance in all weather conditions. 
In recent years, particularly with the advent of the synthetic 
aperture radar approach to realizing fine azimuth resolution, 
microwave imagery has come to represent a powerful remote 
sensing capability. With today‘s fine-resolution SAR techniques, 
the finest radar imagery begins to take on the appearance of op- 
tical imagery to which we are naturally accustomed. For many 
applications, the utility of S A R  imagery greatly exceeds that of 
comparable optical imagery. 

Four factors contribute significantly to this advanced state of 
radar imaging. First, advances in SAR sensor hardware technol- 
ogy (particularly with respect to resolving capability) provide 
the inherent information within the raw S A R  data received by 
the radar sensor. Second, recent developments in image forma- 
tion algorithms and computing systems provide the capability 
to generate a digital image in a computationally efficient man- 
ner that preserves the inherent information content of the raw 
radar signals. A combination of requirements on airborne SAR 
for finer and finer resolution in various military applications and 
requirements on orbital SAR for wide area coverage in natural 
resource and environmental applications provided the impetus 
for these developments. Third, improvements in image qual- 
ity by means of state-of-the-art image enhancement algorithms 
extend the accessibility of information and emphasize that in- 
formation of interest to the specialized user of S A R  imagery. 
Autofocus and space-variant apodization exemplify these im- 
age quality improvements. Finally, an explosion in powerful ex- 
ploitation techniques to extract information coded in the phase 
as well as the amplitude of SAR imagery multiplies the value of 
the radar imagery to the end user. 
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1 Introduction 

The term tomography refers to the general class of devices 
and procedures for producing two-dimensional (2-D) cross- 
sectional images of a three-dimensional (3-D) object. Tomo- 
graphic systems make it possible to image the internal structure 
of objects in a noninvasive and nondestructive manner. By far 
the best known application is the computer assisted tomography 
(CAT or simply CT) scanner for X-ray imaging of the human 
body. Other medical imaging devices, including PET (positron 
emission tomography), SPECT (single photon emission com- 
puted tomography) and MRI (magnetic resonance imaging) sys- 
tems, also make use of tomographic principles. Outside of the 
medical realm, tomography is used in diverse applications such 
as microscopy, nondestructive testing, radar imaging, geophysi- 
cal imaging, and radio astronomy. 

We will restrict our attention here to image reconstruction 
methods for X-ray CT, PET, and SPECT. In all three modalities 
the data can  be modeled as a collection of line integrals of the 
unknown image. Many of the methods described here can also 
be applied to other tomographic problems. The reader should 
also refer to Chapter 3.6 for a more general treatment of image 
reconstruction in the context of ill-posed inverse problems. 

We describe 2-D image reconstruction from parallel and fan- 
beam projections and 3-D reconstruction from sets of 2-D pro- 
jections. Analytic methods derived from the relationships be- 
tween functions and their line integrals are described in Sections 
3-5. In Section 6 we describe the class of iterative methods that 
are based on a finite dimensional discretization of the problem. 
We will include key results and algorithms for a range of imaging 
geometries, including systems currently in development. Refer- 
ences to the appropriate sources for a complete development 
are also included. Our objective is to convey the wide range of 
methods available for reconstruction from projections and to 
highlight some recent developments in what remains a highly 
active area of research. 

2 Background 

2.1 X-Ray Computed Tomography 
In conventional X-ray radiography, a stationary source and pla- 
nar detector are used to produce a 2-D projection image of the 
patient. The image has intensity proportional to the amount by 
which the X-rays are attenuated as they pass through the body, 
i.e., the 3-D spatial distribution of X-ray attenuation coefficients 
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FIGURE 1 (a) Schematic representation of a first-generation CT scanner that uses translation and 
rotation of the source and a single detector to collect a complete set of 1-D parallel projections. (b) The 
current generation of CT scanners uses a fan X-ray beam and an array of detectors, which require 
rotation only. 

is projected into a 2-D image. The resulting image provides im- 
portant diagnostic information as a result of differences in the 
attenuation coefficients ofbone, muscle, fat, and other tissues in 
the 40-120 keV range used in clinical radiography [ 11. 

X-rays passing through an object experience exponential at- 
tenuation proportional to the linear attenuation coefficient of 
the object. The intensity of a collimated beam of monoener- 
getic X-radiation exiting a uniform block of material with linear 
attenuation coefficient p and depth d is given by I = Ioe-kd, 
where Io is the intensity of the incident beam. For objects with 
spatially variant attenuation p(z) along the path length z, this 
relationship generalizes to: 

where [ p(z)dz is a line integral through p(z). 
Let ~ ( x ,  y, z) represent the 3-D distribution of attenuation 

coefficients within the human body. Consider a simplified model 
of a radiography system that produces a broad parallel beam 
of X-rays passing through the patient in the z direction. An 
ideal 2-D detector array or film in the ( x ,  y )  plane would pro- 
duce an image with intensity proportional to the negative log- 
arithm of the attenuated X-ray beam, i.e., -log(I/Io). The fol- 
lowing projection image would then be formed at the ideal 
detector: 

r(X,  y)  = /I.(., y, 4 dz (2) 

The utility of conventional radiography is limited because of 
the projection of 3-D anatomy into a 2-D image, causing certain 
structures to be obscured. For example, lung tumors, which have 

a higher density than the surrounding normal tissue, may be 
obscured by a more dense rib that projects into the same area 
in the radiograph. Computed tomography systems overcome 
this problem by reconstructing 2-D cross sections of the 3-D 
attenuation coefficient distribution. 

The concept of the line integral is common to the radiographic 
projection defined in Eq. (2) and to computed tomography. Con- 
sider the first clinical X-ray CT system for which the inventor, 
G. Hounsfield, received the 1979 Nobel prize in medicine (the 
prize was shared with mathematician A. Cormack) [2]. A col- 
limated X-ray source and detector are translated on either side 
of the patient so that a single plane is illuminated, as illustrated 
in Fig. l(a). After applying a logarithmic transformation, the 
detected X-ray measurements are a set of line integrals repre- 
senting a 1-D parallel projection of the 2-D X-ray attenuation 
coefficient distribution in the illuminated plane. By rotating the 
source and detector around the patient, other 1-D projections 
can be measured in the same plane. The image can then be recon- 
structed from these parallel-beam projections using the methods 
described in Section 3.1. 

One major limitation ofthe first-generation of CT systems was 
that the translation and rotation of the detectors was slow and a 
single scan would take several minutes. X-ray projection data can 
be collected far more quickly using the fan-beam X-ray source 
geometry employed in the current generation of CT scanners, 
as illustrated in Fig. l(b). Since an array of detectors is used, the 
system can simultaneously collect data for all projection paths 
that pass through the current location of the X-ray source. In this 
case, the X-ray source need not be translated and a complete set 
ofdata is obtained through a single rotation ofthe source around 
the patient. Using this configuration, modern scanners can scan 
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a single plane in less than 1s. Methods for reconstruction from 
fan-beam data are described in Section 3.2. 

Recently developed spiral CT systems allow continuous acqui- 
sition of data as the patient bed is moved through the scanner 
[ 31. The detector traces out a helical orbit with respect to the 
patient, allowing rapid collection of projections over a 3-D vol- 
ume. These data require special reconstruction algorithms as de- 
scribed in Section 4.2. In an effort to simultaneously collect fully 
3-D CT data, a number of systems have been developed that use 
a cone-beam of X-rays and a 2-D rather than 1-D array of detec- 
tors [ 31. While cone-beam systems are rarely used in clinical CT, 
they play an important role in industrial applications. Methods 
for cone-beam reconstruction are described in Section 5.2. 

The above descriptions can only be considered approximate 
because a number of factors complicate the X-ray CT problem. 
For example, the X-ray beam typically contains a broad spec- 
trum of energies and therefore an energy dependence should 
be included in Eq. (1) [ 11. The theoretical development of CT 
methods usually assumes a monoenergetic source. For broad- 
band X-ray sources, the beam becomes “hardened” as it passes 
through the object; Le., the lower energies are attenuated faster 
than the higher energies. This effect causes a beam hardening 
artifact in CT images that is reduced in practice by the use of a 
data calibration procedure [4]. 

In X-ray CT data the high photon flux produces relatively 
high signal-to-noise ratios. However, the data are corrupted by 
the detection of scattered X-rays that do not conform to the line 
integral model. Calibration procedures are required to compen- 
sate for this effect as well as for the effects of variable detector 
sensitivity. A final important factor in the acquisition of CT data 
is the issue of sampling. Each 1-D projection is undersampled 
by approximately a factor of 2 in terms of the attainable resolu- 
tion as determined by detector size. This problem is dealt with 
in fan-beam systems by using fractional detector offsets or flying 
focal spot techniques [ 31. 

2.2 Nuclear Imaging Using PET and SPECT 

PET and SPECT are methods for producing images of the spa- 
tial distribution of biochemical tracers or “probes” that have 
been tagged with radioactive isotopes [ 11. By tagging different 
molecules with positron or gamma-ray emitters, PET and SPECT 
can be used to reconstruct images of the spatial distribution of a 
wide range of biochemical probes. Typical applications include 
glucose metabolism and monoclonal antibody studies for cancer 
detection, imaging of cardiac function, imaging of blood flow 
and volume, and studies of neurochemistry using a range of 
neuroreceptors and transmitters [ 5,6]. 

SPECT systems detect emissions by using a “gamma camera.” 
This camera is a combination of a sodium iodide scintillation 
crystal and an array of photomultiplier tubes (PMTs). The PMTs 
measure the location on the camera surface at which each gamma 
ray photon is absorbed by the scintillator [ 11. A mechanical col- 
limator, consisting of a sheet of dense metal in which a large 
number of parallel holes have been drilled, is attached to the 
front of the camera as illustrated in Fig. 2(a). The collimated 
camera is only sensitive to gamma rays traveling in a direction 
parallel to the holes in the collimator. The total number ofgamma 
rays detected at a given pixel in the camera will be approximately 
proportional to the total activity (or line integral) along the line 
that passes through the patient and is parallel to the holes in the 
collimator. Thus, when viewing a patient from a fixed camera 
position, we collect a 2-D projection image of the 3-D distribu- 
tion of the tracer. By collecting data as the camera is rotated to 
multiple positions around the patient, we obtain parallel-beam 
projections for a contiguous set of parallel 2-D slices through 
the patient, as shown in Fig. 2(b). The distribution can be re- 
constructed slice by slice using the same parallel-beam recon- 
struction methods as are used for X-ray CT. 

Other collection geometries can be realized by modifying the 
collimator design [ 71. For imaging an organ such as the brain or 

Y 

I 1  
0 0  

FIGURE 2 Schematic representation ofa SPECT system: (a) cross-sectionalview ofa system with parallel hole collimator; 
gamma rays normally incident to the camera surface are detected, and others are stopped by the collimator so that the 
camera records parallel projections of the source distribution. (b) Rotation of the camera around the patient produces 
a complete set of parallel projections. (c) Different collimators can be used to collect converging or diverging fan- and 
cone-beam projections; shown is a converging cone-beam collimator. 
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heart, which is smaller than the surface area of the camera, im- 
proved sensitivity can be realized by using converging fan-beam 
or cone-beam collimators as illustrated in Fig. 2(c). Similarly, 
diverging collimators can be used for imaging larger objects. 
Images are reconstructed from these fan-beam and cone- 
beam data using the methods in Section 3.2 and Section 5.2, 
respectively. While the vast majority of SPECT systems use ro- 
tating planar gamma cameras, other systems have been con- 
structed with a cylindrical scintillation detector that surrounds 
the patient. A rotating cylindrical collimator defines the projec- 
tion geometry. Although the physical design of these cylindrical 
systems is quite different from that of the rotating camera, in 
most cases the reconstruction problem can still be reduced to 
one of the three basic forms: parallel, fan-beam, or cone-beam. 

The physical basis for PET lies in the fact that a positron pro- 
duced by a radioactive nucleus travels a very short distance and 
then annihilates with an electron to form a pair of high-energy 
(51 1 keV) photons [ 6 ] .  The pair of photons travel in opposite 
directions along a straight line path. Detection of the positions 
at which the photon pair intersect a ring of detectors allows us 
to approximately define a line that contains the positron emit- 
ter, as illustrated in Fig. 3(a). The total number of photon pairs 
measured by a detector pair will be proportional to the total 
number of positron emissions along the line joining the detec- 
tors; i.e., the number of detected events between a detector pair 
is an approximate line integral of the tracer density. 

A PET scanner requires one or more rings of photon detectors 
coupled to a timing circuit that detects coincident photon pairs 
by checking that both photons arrive at the detectors within a 
few nanoseconds of each other. PET detectors are usually con- 
structed with a combination of scintillation crystals and PMTs. 
A unique aspect of PET is that the ring of detectors surrounding 
the subject allows simultaneous acquisition of a complete data 
set; no rotation of the detector system is required. A schematic 
view of two modern PET scanners is shown in Fig. 3. In the 2-D 
scanner, multiple rings of detectors surround the patient with 
dense material, or “septa,” separating each ring. These septa stop 
photons traveling between rings so that coincidence events are 

del- + SEPTA 

collected only between pairs of detectors in a single ring. We 
refer to this configuration as a 2-D scanner because the data are 
separable and the image can be reconstructed as a series of 2-D 
sections. In contrast, the 3-D scanners have no septa so that CO- 
incidence photons can be detected between planes. In this case 
the reconstruction problem is not separable and must be treated 
directly in three dimensions. 

PET data can be viewed as sets of approximate line integrals. In 
the 2-D mode the data are sets of parallel-beam projections and 
the image can be reconstructed by using methods equivalent 
to those in parallel-beam X-ray CT. In the 3-D case, the data 
are still line integrals but new algorithms are required to deal 
with the between-plane coincidences that represent incomplete 
projections through the patient. These methods are described in 
Sections 4 and 5. 

As with X-ray CT, the line integral model is only approximate. 
Finite and spatially variant detector resolution is not accounted 
for in the line integral model and has a major impact on im- 
age quality [ 81. The number of photons detected in PET and 
SPECT is relatively small so that photon-limited noise is also a 
factor limiting image quality. The data are further corrupted by 
additional noise that is produced by scattered photons. Also, in 
both PET and SPECT, the probability of detecting an emission 
is reduced by the relatively high probability of Compton scatter 
of photons before they reach the detector. These attenuation ef- 
fects can be quantified by performing a separate “transmission” 
scan in which the scattering properties of the body are measured. 
This information must then be incorporated into the reconstruc- 
tion algorithm [ 5 , 6 ] .  Although all of these effects can, to some 
degree, be compensated for within the framework of analytic 
reconstruction from line integrals, they are more readily and 
accurately dealt with by using the finite dimensional statistical 
formulations described in Section 6. 

2.3 Mathematical Preliminaries 
Since we deal with both 2-D and 3-D reconstruction problems 
here, we will use the following unified definition of the line 

i 

(a) (b) ( C )  

FIGURE 3 (a) Schematic showing how coincidence detection of a photon pair produced by electron-positron annihi- 
lation determines the line along which the positron was annihilated. (b) In 2-D systems septa between adjacent rings of 
detectors prevent coincidence detection between rings. (c) Removal of the septa produces a fully 3-D PET system in which 
cross-plane coincidences are collected and used to reconstruct the source distribution. 
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FIGURE 4 Examples of brain scans using: (a) X-ray CT, in which a nonlinear gray scale is used to enhance the contrast 
between soft tissue regions within the brain; (b) PET, showing an image of glucose metabolism obtained with an analog 
of glucose labelled with the positron emitting isotope, flourine-18; ( c )  SPECT, showing a brain perfusion scan using a 
technetium-99m ligand. (Courtesy of J. E. Bowsher, Duke University Medical Center.) 

integrals of an image f(3): refers to line integrals that are not available because of the limited 
extent of the detector. 

00 

g(a, e) = [, f(a + @> dt, llell = 1. (3) 
2.4 Examples 

Here g is the integral of f over the line passing through a and 
oriented in the direction e. 

For parallel-beam data, each projection corresponds to a fixed 
- 8 (the projection direction). To avoid redundant parameteriza- 
tion of line integrals we only consider those g perpendicular to 
- 8 (i.e., a . e = 0). We say a parallel projection g(., e) is trun- 
cated if some nonzero line integrals are not measured. Generally, 
truncation occurs when a finite detector is too small to gather a 
complete projection of the object at some orientation e. 

For fan-beam and cone-beam systems, g is fixed for a single 
projection; g is the fan vertex or cone vertex, which in practice 
would be the position of the X-ray source or the focal point of a 
converging collimator. Again, truncation of a projection g(g, a )  

We conclude this introductory section with examples in Figs. 4 
and 5 of CT, PET, and SPECT images collected from the current 
generation of scanners. These images clearly reveal the differ- 
ences between the high resolution, low noise images produced 
by X-ray CT scanners and the lower resolution and noisier images 
produced by the nuclear imaging instruments. These differences 
are primarily due to the photon flux in X-ray CT, which is 
many orders of magnitude higher than that for the individually 
detected photons in nuclear medicine imaging. In diagnostic 
imaging these modalities are highly complementary since X-ray 
CT reveals information about patient anatomy while PET and 
SPECT images contain functional information. For further in- 
sight into the ability of X-ray CT to produce high resolution 

FIGURE 5 
kidneys (CT images courtesy of G. E. Medical Systems). (See color section, p. C-46.) 

Volume rendering from a sequence of X-ray CT images, showing the abdominal cavity and 



776 Handbook of Image and Video Processing 

from the origin to the integration line, or equivalently, the pro- 
jection element index for the + projection. Since f! depends only 
on +, and g then depends on u, we simplify the notation by 
writing g(u, 4) = g(g, e) = i f (g  + tf!) dt. For the parallel- 
beam case, the function g is the Radon transform of the image 

Practical inversion methods can be developed by using the 
relationship between the Radon and Fourier transforms. The 
projection slice theorem is the basic result that is used in develop- 
ing these methods [4]. This theorem states that the 1-D Fourier 
transform of the parallel projection at angle + is equal to the 
2-D image Fourier transform evaluated along the line through 
the origin in the direction + + IT/& i.e., 

f [41. 

00 

G(U, +) = l, g(u, +)e-jUu du = F(&)  

= F(-Usin+, Ucos+), 

FIGURE 6 The coordinate system used to describe parallel-beam projection 
data. 

(4) 

anatomical images, we show a set of 3-D renderings from CT 
data in Fig. 5 .  

3 2-D Image Reconstruction 

3.1 Fourier Space and Filtered Backprojection 
Methods for Parallel-Beam Projections 
For 2-D parallel-beam projections, the general notation of 
Eq. (1) can be refined as illustrated in Fig. 6. We parameterize the 
direction of the rays using +, so f! = (cos +, sin +). For the po- 
sition g perpendicular to f!, we write g = ( -u  sin +, u cos +) = 
ut',  where u is the scalar coordinate indicating the distance 

where F (3) = F ( X ,  Y )  is the 2-D image Fourier transform 

F ( 3 )  = F ( X ,  Y )  = l,l, f ( x ,  y ) e - jxxe - j yY  dx dy 
0 0 0 0  

This result, illustrated in Fig. 7, can be employed in a number 
of ways. The discrete Fourier transform (DFT, see Chapter 2.3) 
of the samples of each 1-D projection can be used to compute 
approximate values of the image Fourier transform. If the angu- 
lar projection spacing is A+, then the DFTs of all projections will 
produce samples of the 2-D image Fourier transform on a polar 

, 'L: I' 
FIGURE 7 Illustration of the projection slice theorem. The 2-D image at the left is projected at angle C$ to produce 
the 1-D projection g(u, I+). The 1-D Fourier transform, G(U, +), of this projection is equal to the 2-D image Fourier 
transform, F ( X ,  Y ) ,  along the radial line at angle C$ + "h. 
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sampling grid. The samples’ loci lie at the intersections of radial 
lines, spaced by A+, with circles of radii equal to integer multiples 
of the DFT frequency sampling interval. Once these samples are 
computed, the image can be reconstructed by first interpolating 
these values onto a regular Cartesian grid, and then applying an 
inverse 2-D DFT. Design of these Fourier reconstruction meth- 
ods involves a tradeoff between computational complexity and 
accuracy of the interpolating function [4]. 

A more elegant solution can be found by reworking Eq. (4) 
into a spatial domain representation. It is then straightforward 
to show that the image can be recovered by using the following 
equations [ 91 : 

where 

and us+ = g-g’ is the uvalue of the parallel projection at angle 
+ of the point g; see Fig. 6. 

These two equations form the basis of the widely used filtered 
backprojection algorithm. Equation (7) is a linear shift-invariant 
filtering of the projection data with a filter with frequency 
response H( U )  = I UI. The gain of this filter increases mono- 
tonically with frequency and is therefore unstable. However, by 
assuming that the data g(u, +), and hence the corresponding 
image, are bandlimited to a maximum frequency U = U,,, we 
need only consider the finite bandwidth filter with impulse re- 
sponse: 

The filtered projections g( u, +) are found by convolving g( u, +) 
with h(u) scaled by 1/4n2. To reduce effects of noise in the data, 
the response of this filter can be tapered off at higher frequencies 
[4,91. 

The integrand g(ug,+, +) in Eq. (6) can be viewed as an image 
with constant values along lines in the direction that is formed 
by “backprojecting” the filtered projection at angle +. Summing 
(or in the limit, integrating) these backprojected images for all 
+ produces the reconstructed image. Although this summation 
involves E [ 0 , 2 ~  J , in practice only 180” ofprojection measure- 
ments are collected because opposing parallel-beam projections 
contain identical information. In Eq. (6 ) ,  the integration lim- 
its can be replaced with + E [0, n] and the factor of y2 can be 
removed. This filtered backprojection method, or the modifi- 
cation described below for the fan-beam geometry, is the basis 
for image reconstruction in almost all commercially available 
computed tomography systems. 

(a) (b) 
FIGURE 8 Illustration of the coordinate system for fan-beam tomography 
using (a) circular arc and (b) linear detector array arrangements. 

3.2 Fan-Beam Filtered Backprojection 
X-ray CT data can be collected more rapidly by using an array 
of detectors and a fan-beam X-ray source so that all elements in 
the array are simultaneously exposed to the X-rays. This arrange- 
ment gives rise to a natural fan-beam data collection geometry as 
illustrated in Fig. 1 (b). The source and detector array are rotated 
around the patient and a set of fan-beam projections, g(g, e), 
are collected, where g represents the position of the source 
and specifies the individual line integrals in the projections. 
For a radius of rotation A, we parametrize the motion of the 
source as a = (Aces+, Asin+). For the case of a circular 
arc of detectors whose center is the fan source and that ro- 
tates with the source, a particular detector element is conve- 
niently specified by using the relative angle p as shown in Fig. 
8(a). The fan-beam projection notation is then simplified to 
g(+, P> = g(g, e> = j”f(a+ te> dt, where e= (-cos(+ - PI, 
-sin(+ - PI>. 

The projection data could be re-sorted into equivalent paral- 
lel projections and the above reconstruction methods applied. 
Fortuitously, this re-sorting is unnecessary. It can be shown 
[ 101 that reconstruction of the image can be performed by us- 
ing a fan-beam version of the filtered backprojection method. 
Development of this inverse method involves substituting the 
fan-beam data in the parallel-beam formulas, (6) and ( 7 ) ,  and 
applying a change of variables with the appropriate Jacobian. 
After some manipulation, the equations can be reduced to the 
form 

where r = 1 1 ~ :  - all is the distance from the point 5 to the 
fan-beam source, 
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and y is the maximum value of p required to ensure that data 
arenot truncated. InEq. (9)) &+ = cos-’((A2 - (s .ca)) / (rA))  
indicates the value in the +projection for the line passing through 
the point x. 

As in the parallel-beam case, this reconstruction method 
involves a two-step procedure: filtering, in this case with a pre- 
weighting factor A cos p, and backprojection. The backprojec- 
tion for fan-beam data is performed along the paths converg- 
ing at the location of the X-ray source and includes an inverse 
square-distance weighting factor. The filter h(u) was given in 
Eq. (8) and, as before, can include a smoothing window tailored 
to the expected noise in the measured data. 

In some fan-beam tomography applications the detector bank 
might be linear rather than curved. In principle, the same for- 
mula could be used by interpolating to obtain values sampled 
evenly in p. However, there is an alternative formula suitable 
for linear detectors. In this case we use u to indicate the projec- 
tion line for a scaled version of the flat detector corresponding 
to a virtual flat detector passing through the origin, as shown 
in Fig. 8(b). The simplified notation is g(+, u) = g(g, e) = 
Jf(g + te) dt, where u = (Acos +, Asin+) as before, and 
- 8 = (usin+-Acos+, - u c o s + - A s i n + ) / d m .  

The derivation of the fan-beam formula for linear detectors 
is virtually the same as for the curved detectors, and it results in 
equations of the form 

u’) h(u - u’) du’, ) 
where, as before, r = 11s - all is the distance between x and 
the source point a, and us+ = A tan p specifies the line passing 
through c in the + projection. The limits of integration in the 
filtering step of Eq. (12) are replaced in practice with the finite 
range of u corresponding to nonzero values of the projection 
data g(+, u). 

The existence of a filtered backprojection algorithm for these 
two fan-beam geometries is quite fortuitous and does not oc- 
cur for all detector sampling schemes. In fact these are two of 
only four sampling arrangements that have this convenient re- 
construction form [Ill. In general, the filtering step must be 
replaced with a more general linear operation on the weighted 
projection values, which results in a more computationally in- 
tensive algorithm. 

For the fan-beam geometry, opposingprojections do not con- 
tain the same information, although all line integrals are mea- 
suredtwice over the range of 2 ~ i  measurements. The redundancy 
is interwoven in the projections. An angular range of IT + y can 
be used with careful adjustments to Eqs. (1 1) and (12) to obtain 
a fast “short scan” reconstruction [4]. These short-scan modes 

are used in clinical CT systems, including spiral CT systems as 
discussed in Section 4.2. 

4 Extending 2-D Methods 
into Three Dimensions 

4.1 Extracting 2-D Data from 3-D Data 
A full 3-D image can be built up by repeatedly performing 2-D 
image reconstruction on a set of parallel contiguous slices. In 
X-ray CT, SPECT, and PET, this has been a standard method 
for volume tomographic reconstruction. Mathematically we 
use f&) = fi(x, y )  to represent the z slice of f ( x ,  y ,  z), and 
gz(u, e) to represent the line integrals in this z slice. Recon- 
struction for each z is performed sequentially by using tech- 
niques described in Section 3. 

More sophisticated methods ofbuilding 3-D tomographic im- 
ages have been developed for a number of applications. For ex- 
ample, in spiral X-ray CT, the patient is moved continuously 
through the scanner so no fixed discrete set of tomographic 
slices is defined. In this case there is flexibility in choosing the 
slice spacing and the absolute slice location, but there is no 
slice position for which a complete set of projection data is 
measured. We describe image reconstruction for spiral CT in 
Section 4.2. 

In a more general framework, we call an image reconstruc- 
tion problem f i l l y  3 - 0  if the data cannot be separated into a set 
of parallel contiguous and independent 2-D slices. An example 
is 3-D PET, which allows measurement of oblique coincidence 
events and therefore must handle line integrals that cross mul- 
tiple transverse planes, as shown in Fig. 3(c). Other examples of 
fully 3-D problems include cone-beam SPECT and cone-beam 
X-ray CT, where the diverging geometry of the rays precludes any 
sorting arrangement into parallel planes. Fully 3-D image recon- 
struction is described in more detail in Section 5, but a common 
feature of these methods is the heavy computational load associ- 
ated with the 3-D backprojection step. Since 2-D reconstruction 
is generally very fast, a number of approaches reduce compu- 
tation cost by converting a fully 3-D problem into a multislice 
2-D problem. These rebinning procedures involve approxima- 
tions that in some instances are very good, and significant im- 
provements in image reconstruction time can be achieved with 
little resolution loss. One such example is the Fourier rebinning 
(FORE) method used in 3-D PET imaging, in which an order 
of magnitude improvement in computation time is achieved 
over the standard fully 3-D methods; the method is described in 
Section 4.3. 

4.2 Spiral CT 
In spiral CT a conventional fan-beam X-ray source and detec- 
tor system rotates around the patient while the bed is translated 
along its long axis, as illustrated in Fig. 9. This supplementary 



10.2 Computed Tomography 779 

(a) (b) 

FIGURE 9 Illustration of spiral or helical CT geometry. (a) Relative to a stationary bed, the 
source and detector circle the patient in a helical fashion with pitch P ;  (b) to reconstruct cross 
section fi(x, y ) ,  missing projections are interpolated from neighboring points on the helix at 
which data were collected. 

motion, although it complicates the image reconstruction al- 
gorithms and results in slightly blurred images, provides the 
capability to scan large regions of the patient in a single breath 
hold. 

The helical motion is characterized by the pitch P, the amount 
of translation in the axial or z direction for a full rotation 
of the source and detector assembly. Therefore + = 2 ~ z / P  
and we can write g(z ,  p) = g(g ,  (3) = s f ( .  + te) dt, which 
is similar to the fan-beam geometry of Section 3.2, with a= 
(Aces+, Asin+, z )  and 6 = (-cos(+- p), -sin(+- p), 0). 
Note that + now ranges from 0 to 2 n n  as z ranges from 0 to n P, 
where n is the number of turns of the helix. The usual method 
of reconstruction involves estimating a full set of fan-beam 
projections g,(+, p) for each transverse plane, using the avail- 
able projections at other points on the helix. Ifthe reconstruction 
on transverse plane z is required, the standard fan-beam CT al- 
gorithm is used: 

in Fig. 9, z1 and z2 lie within one pitch P of the reconstruction 
plane, z. Note that in Eq. (15), z l / P  differs from + by some 
multiple of 2 ~ ,  and similarly for 22 .  

Various schemes for choosing the weights w1 and w2 exist [ 121. 
Each weighting scheme establishes a tradeoff between increas- 
ed image noise from unbalanced contributions, and inherent 
axial blurring artifacts from the geometric approximation of the 
estimation process. When the image noise is particularly low, 
a short-scan version of the fan-beam reconstruction algorithm 
might be used. This version reduces the range of contributing 
projections to T + y from 2 ~ r  and correspondingly reduces the 
maximum distance required to estimate a projection gz(+, p). 
Even more elaborate estimation schemes exist, such as approx- 
imating gZ(+, p) on a line-by-line basis. Figure 9(b) illustrates 
how in the short-scan mode, the line integral gz(+, p) could be 
estimated from a value in the 2 3  projection rather than from the 
z1 and 2.2 projections. 

The choice of pitch P represents a compromise between max- 
imizing the axial coverage of the patient, and avoiding unac- 
ceptable artifacts from the geometric estimation. Generally the 
pitch is chosen between one and two times the thickness of the 
detector in the axial direction [ 121. 

4.3 Rebinning Methods in 3-D PET 
where pz,x,+, indicates the relative projection angle p found by 
projecting in the z plane at angle + through the point (x, y ,  z) ,  
and r is the distance (in the z plane) between the point (x, y ,  z )  
and the virtual source at angular position +. In the simplest case, 
the z-plane projections gz(+, p) are estimated by a weighted sum 
of the measured projections at the same angular position above 
and below z on the helix: 

for some suitable weights w1 and w2, and where, as illustrated 

PET data are generally sorted into parallel-beam projections, 
g(u,  +), as d.escribed in Section 3.1. For a multiring 2-D PET 
scanner the data are usually processed slice by slice. With the use 
of z to denote the axis of the scanner, the data are reconstructed 
by using Eqs. (6) and ( 7 )  applied to each z slice as follows: 
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with uZ,&,+ = (x, y, 2). (-sin (b, cos (b, 0). The data gz(u, +) are 
found from sampled values of u and + determined by the ring 
geometry: the radius R and the number of crystals (typically 
several hundreds). In Eqs. (16) and (17), z is usually chosen to 
match the center of each detector ring. In practice, 2-D scanners 
allow detection of coincidences between adjacent rings. Using 
the single-slice rebinning (SSRB) technique described below, 
slices midway between adjacent detector rings can also be re- 
constructed from 2-D scanner data. 

Current commercial PET scanners usually consist of a few 
tens of detector rings and have supplementary 3-D capability 
to detect oblique photon pairs that strike detectors on different 
rings. These fully 3-D data require more advanced reconstruc- 
tion techniques. The fully 3-D version of Eqs. (16) and (17) is 
given in Section 5 .  In this section we describe two popular re- 
binning methods in which the data are first processed to form 
independent 2-D projections gz(u, +). Equations (16) and (17) 
are then used for image reconstruction. 

Let A denote the spacing between rings. Let gl,m(u, +) denote 
the resulting line integral, with endpoints on rings 2 and m, whose 
2-D projection variables are (u, +) when the line is projected 
onto the x-y plane, as shown in Fig. 10. In the SSRB method 
[ 131, all line-integral data are reassigned to the slice midway 
between the rings where the detection occurred. Thus 

gz(% 4) R5 gl ,m(% $1, where 
(Lm)eP, 

and reconstruction proceeds according to Eqs. (16) and (17). 
A more sophisticated method, known as Fourier rebinning 

(FORE), [ 141 effectively performs the rebinning operation in the 
2-D frequency domain. The rebinned data g,( u, +) are found by 
using the following transformations: 

J-00 J O  

Both SSRB and FORE are approximate techniques, and the 
geometrical misplacement of the data can cause artifacts in the 
reconstructed images. However, FORE is far more accurate than 

(a) (b) 
FIGURE 10 Oblique lineintegrals, along the path AB in (a), between different 
rings of detectors can be rebinned into equivalent in-plane data, either directly 
using SSRB or indirectly using FORE. (b) The relationship between the projected 
line integral path and the parameters (u, +). 

SSRB yet almost as fast computationally, when compared with 
the subsequent reconstruction time using Eqs. (16) and (17). 
In [ 141 a mathematically exact rebinning formula is presented, 
and it is shown that SSRB and FORE represent zeroth- and first- 
order versions of this formula. However, algorithms using the 
exact version are far less practical than SSRB or FORE. 

5 3-D Image Reconstruction 

5.1 Fully 3-D Reconstruction with Missing Data 
In 3-D image reconstruction, parallel-beam projection data can 
be specified using 6, the direction of the line integrals, and two 
scalars (u, v )  that indicate offsets in directions 9' and e' perpen- 
dicular to e. Therefore g ( u ,  v, e) = g(g, e) = J f ( g  + te) dt, 
where = uel + ye2, and {e, el, e2} is an orthonormal system. 
Note that all vectors in this section are three dimensional. 

Image reconstruction can be performed by using a 3-D version 
of the filtered backprojection formulas, Eqs. (6) and (7), given 
in Section 3.1: 

where, in the surface integral of Eq. (23), de  can be written as 
sin 0 dl3 d+ for e having polar angle 0 and azimuthal angle 4; 
and where (uz,e, v&,e) = (x . el, x . e') represents the (u, Y )  

coordinates of the line with orientation e passing through 5. 
The subset of the unit sphere represents the measured di- 
rections {e} and must satisfy Orlov's condition for data com- 
pleteness in order for Eqs. (23) and (24) to be valid. Orlov's 
condition requires that every great circle on the unit sphere 
intersect the region Q. The tomographic reconstruction filter 
Ha (U,  V, e> depends on the measured data set [ 151. In the spe- 
cial case that 'i2 is the whole sphere s', then HQ(U, V, 9) = 
d P .  
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In 3-D PET imaging, data can be sorted according to the 
parameterization g(  u, v,  e). The set of measured projections 
can be described by C ~ Z U ,  = {e = (ex, e,, e,) : l8,( i sin Q}, 
where Q = atan(L/(2R)) represents the most oblique line in- 
tegral possible for a scanner radius of R and axial extent L .  
Provided none of the projections are truncated, reconstruction 
can be performed according to Eqs. (23) and (24) by using the 
Colsher filter HQ* (V, V, e) = Hw (U ,  V, e) given by 

H* (V, v, 8) = 

if Jw 

In practice the object occupies most of the axial extent of the 
scanner so nearly all projections are truncated. However, there 
is always a subset C 2 ~ 1  of the projections that are not trun- 
cated, and from these projections a reconstruction can be per- 
formed to obtain the image f”(&), using Eqs. (24) and (25) with 
H“ (V, V, e). In the absence ofnoise, this reconstruction would 
be sufficient, but to include the partially measured projections a 
technique known as the “reprojection method is used. All trun- 
cated projections are completed by estimating the missing line 
integrals based on the initial reconstruction f”(&). Then, in a 
second step, reconstruction from the entire data set is performed, 
using H*(V,  V, e> to obtain the final image f*(x) [8,16]. 

5.2 Cone-Beam Tomography 
For cone-beam projections it is convenient to use the general 
notation g(g,  e), where and e are three-dimensional vectors. 
For an X-ray system, the position of the source would be repre- 
sented by g and the direction of individual line integrals obtained 
from that source would be indicated by e. Because of difficulties 
obtaining sufficient tomographic data (see below), the source, 
detector, or both may follow elaborate trajectories in space rela- 
tive to the object; therefore a general description oftheir orienta- 
tions is required. For applications involving a planar detector, we 
replace e with (u, v ) ,  the coordinates on an imaginary detector 
centered at the origin and lying in the plane perpendicular to g. 
The source point g is assumed never to lie on the scanner axis 
e,. The u axis lies in the detector plane in the direction g3 x g. 
The v direction is perpendicular to u and points in the same 
direction as e,, as shown in Fig. 1 l(b). 

In the simplest applications, the detector and source rotate 
in a circle about the scanner axis e,. If the radius of rotation 
is A, the source trajectory is parameterized by + E [ 0 , 2 ~ ]  
as g = (A cos +, A sin +,O).  In this case the v axis in the de- 
tector stays aligned with e, and the u axis points in the tan- 
gent direction to the motion of the source. Physical detector 
measurements can easily be scaled to this virtual detector 

n , e3 
- -  4 

\ 
(a) (b) 

FIGURE 11 (a) 2-D planar projections of a 3-D object are collected in a 
cone-beam system as line integrals through the object from the cone vertex 
- a to the detector array. (b) The coordinate system for the cone-beam geometry; 
the cone vertices g can follow an arbitrary trajectory provided Tuy’s condition 
is satisfied. 

system, just as for the fan-beam example of Section 3.2. Thus 
g(+, u, v ) = g ( g , e ) = l f ( g  + te)dt,  where e=(-usin+ - 
Aces+, ucosc$- Asin+, v ) .  

The algorithm of Feldkamp et al. [ 171 is based on the fan- 
beam formula for flat detectors (see Section 3.2) and collapses 
to this formula in the central plane z = 0 where only fan-beam 
measurements are taken. 

x h(u - u’) du’. (27) 

Similarly to Eq. (1 l),  r = 11s - gl( is the distance between x and 
the source position g, and (ux,+, vx.+) are the coordinates on the 
detector of the cone-beam projection of E; see Fig. 11. 

Figure 12 shows two images of reconstructions from mathe- 
matically simulated data. Using a magnified gray scale to reveal 
the 1% contrast structures, the top images show both a high- 
quality reconstruction in the horizontal transverse slice at the 
level of the circular trajectory, and apparent decreased intensity 
on planes above and below this level. These artifacts are charac- 
teristic of the Feldkamp algorithm. The bottom images, showing 
reconstructions for the “disks” phantom, also exhibit cross-talk 
between transverse planes and some other less dramatic artifacts. 
The disks phantom is specifically designed to illustrate the diffi- 
culty in using cone-beam measurements for a circular trajectory. 
Frequencies along and near the scanner axis are not measured, 
and objects with high amplitudes in this direction produce poor 
reconstructions. 

For the cone-beam configuration, requirements for a to- 
mographically complete set of measurements are known as 
Tuy’s condition. Tuy’s condition is expressed in terms of a 
geometric relationship between the trajectory of the cone-beam 
vertex point (the source point) and the size and position of the 
object being scanned. Tuy’s condition requires that every plane 
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FIGURE 12 Example of cone-beam reconstructions from a circular orbit; the obvious artifacts are a result of the 
incompleteness in the data. Other trajectories, such as a helix or a circle plus line, give complete data and artifact-free 
reconstructions. 

that cuts through the object must also contain some point of the 
vertex trajectory. Furthermore, it is assumed that the detector is 
large enough to measure the entire object at all positions of the 
trajectory, i.e., the projections should not be truncated. For the 
examples given in Fig. 12, the artifacts arose because the circu- 
lar trajectory did not satisfy Tuy’s condition (even though the 
projections were not truncated). In this sense the measurements 
were incomplete and artifacts were inevitable. 

Analytic reconstruction methods for cone-beam configura- 
tions satisfymg Tuy’s completeness condition are generally based 
on a transform pair that plays a similar role to the Fourier trans- 
form in the projection slice theorem for classical parallel-beam 
tomography. A mathematical result from Grangeat [ 181 links the 
information in a single cone-beam projection to a subset of the 
transform domain, just as the Fourier slice theorem links a par- 
allel projection to a certain subset of the Fourier domain. This 
relationship is defined through the ‘‘ B transform,” the derivative 
of the 3-D Radon transform: 

(29) 

where s is a scalar and IIy 11 = 1. The symbol 6’ represents the 
derivative of the Dirac dexa function. 

Grangeat’s formula can be rewritten as 

An analysis of Eq. (30) shows that if Tuy’s condition is satisfied, 
then all values are available in the B domain representation of 
f(xL namely P ( S ,  1) [181. 

Equations (29) and (30) form the basis for a reconstruction 
algorithm. All values in the B domain can be found from cone- 
beam projections, and f (&) can be recovered from the inverse 
transform B-l. Care must be taken to ensure that the B do- 
main is sampled uniformly in s and y ,  and that if two differ- 
ent cone-beam projections provide the same value of p ( 5 ,  I), 
then the contributions must be normalized. The method fol- 
lows the concept of direct Fourier reconstruction described in 
Section 3.1. 

A filtered backprojection type of formulation for cone-beam 
reconstruction is also possible [ 191. If the trajectory is a piecewise 
smooth path, parameterized mathematically by 4 E @ c R, a 
reconstruction formula similar to filtered backprojection can be 
derived from Eqs. (29) and (30): 

Here r = Ilx - a(+) 1 1 )  e, ,  = (x - d+))/Ilx - a(+) II is the line 
passing through x for the a(+) projection, and the func- 
tion M must be chosen to normalize multiple contributions 
in the B domain [ 191. The normalization condition is 1 = 
Ckz’ M(y, I&), where n(y, 5 )  is the number of vertices ly- 
ing in the $ane with unit normal y and displacement s, and 
$1, $2, . . . , c$n(y,s) indicate the vert& locations where the path 
- a(@) intersects the plane. By Tuy’s condition, n ( y ,  - s )  > 0 for 
Is 1 < R for an object of radius R. 

These equations must be tailored to the specific application. 
When the variables are changed to reflect the planar detector 
arrangement specified at the beginning of this subsection, the 
above equations resemble the Feldkamp algorithm with a much 

n(r 8 )  
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more complicated “filtering” step. To simplify notation, we 
write A for the varying distance llg(+)II of the vertex from the 
origin. 

We will assume that the image is adequately represented 
by a finite set of basis functions. While there has been some 
interest in alternative basis elements, almost all researchers 

+ v sin I ,  

where, in the innermost integration, (u’, v’)  = ( t  cos IJ. - 1 sin p, 
t sin p + 1 cos p);  the function T(+, y ) = la’(+) + y I M(y , 4) 
contains all the dependency on t& particular trajectory. 
Note that in Eq. (34), y = (Acos pg, + Asin pgv + tg,)/ 
( d m ) ,  where the detector coordinate axes are e,  and e,, 
and e,  = -g(+)/A. 

Although these equations are only valid when the cone-beam 
configuration satisfies Tuy’s condition, the algorithm of Eqs. (33) 
and (34) collapses to the Feldkamp algorithm when a circular 
trajectory is specified. This general algorithm has been refined 
and tailored for specific applications involving truncated pro- 
jections. Practical methods have been published for the case of 
source trajectories containing a circle. 

- 

6 Iterative Reconstruction Methods 

6.1 Finite Dimensional Formulations and ART 
As noted above, the line-integral model on which all of the pre- 
ceding methods are based is only approximate. Furthermore, 
there is no explicit modeling of noise in these approaches; noise 
in the data is typically reduced by tapering off the response of 
the projection filters before backprojection. In clinical X-ray CT, 
the beam is highly collimated, the detectors have low noise and 
have high resolution, and the number of photons per measure- 
ment is very large; consequently the line integral approximation 
is adequate to produce low noise images at submillimeter reso- 
lutions. 

However, this may not be the case in industrial and other 
nonmedical applications, and these systems may benefit from 
more accurate modeling of the data and noise. In the case of PET 
and SPECT, the often low intrinsic resolution of detectors, depth 
dependent and geometric resolution losses, and the typically low 
photon count, can lead to rather poor resolution at acceptable 
noise levels. An alternative to the analytic approach is to use a 
finite dimensional model in which the detection system and the 
noise statistics can be modeled more accurately. Research in this 
area has lead to the development of a large class of reconstruction 
methods that often outperform the analytic methods. 

currently use a cubic voxel basis function. Each voxel is an in- 
dicator function on a cubic region centered at one of the image 
sampling points in a regular 2-D or 3-D lattice. The image value 
at each voxel is proportional to the quantity being imaged in- 
tegrated over the volume spanned by the voxel. For a unified 
treatment of 2-D and 3-D problems, a single index will be used 
to represent the lexicographically ordered elements of the image 
f = { fi, f2, . . . , fN}. Similarly, the elements of the measured 
projections will be represented in lexicographically ordered form 
as y = I n ,  y ~ ,  . . . , y d .  

In X-ray CT we can model the attenuation of a finite width 
X-ray beam as the integral of the linear attenuation coefficient 
over the path (or strip) through which the beam passes. Thus 
the measurements can be written as 

where f j  is the attenuation coefficient at the j th voxel. The el- 
ements Hij of the projection matrix, H ,  is equal to the area of 
intersection ofthe ith strip with the indicator function on the j th  
voxel, as illustrated in Fig. 13. Equation (35) represents a huge 
set of simultaneous linear equations, y = H f ,  that can be solved 
to compute the CT imagef. In principle the system can be solved 

integr 
strip, 

N-1 N 
Detector 

FIGURE 13 Illustration of the voxel-based finite-dimensional formulation 
used in iterative X-ray CT reconstruction. The matrix element H,I gives the 
contribution of the j th  voxel to the ith measurement and is proportional to the 
area of intersection of the voxel with the strip that joins the source and detector. 
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using standard methods. However, the size of these systems cou- 
pledwith the special structure of H motivated research into more 
efficient specialized numerical procedures. These methods ex- 
ploit the key property that H is very sparse; i.e., since the path 
along which each integration is performed intersects only a small 
fraction of the image pixels, most elements in the matrix are zero. 

One algorithm that makes good use of the sparseness prop- 
erty is the algebraic reconstruction technique, or ART [20]. This 
method finds the solution to the set of equations in an iterative 
fashion through successive orthogonal projection of the current 
image estimate onto hyperplanes defined by each row of H .  If 
this procedure converges, the solution will be a point where all 
of the hyperplanes intersect, i.e., a solution to Eq. (35). Let f” 
represent the vector of image pixel values at the nth iteration, 
and let h: represent the ith row of H .  The ART method has the 
following form: 

hi, i = (nmodM) + 1. (36) 
f ”+’=f”+(  yi - hirfn 

hrh, 

ART can also be viewed in terms of the backprojection op- 
erator used in filtered backprojection: each iteration of Eq. (36) 
is equivalent to adding to the current image estimate f”, the 
weighted backprojection of the error between the ith measured 
projection sample and the projection corresponding to f”. ART 
will converge to a solution of Eq. (35) provided the system of 
equations is consistent. In the inconsistent case, the iterations 
will not converge to a single solution and the properties ofthe im- 
age at a particular stopping point will be dependent on the se- 
quence in which the data are ordered. Many variations of the 
ART method can be found in the literature. These variations 
exhibit differences in convergence behavior, sensitivity to noise, 
and optimality properties [21]. 

6.2 Statistical Formulations 
The ART method does not directly consider the presence of noise 
in the data. While acceptable in high signal-to-noise X-ray CT 
data, the low photon counting statistics found in PET and SPECT 
should be explicitly considered. The finite dimensional formula- 
tion in Section 6.1 can be extended to model both the physics of 
PET and SPECT detection and the statistical fluctuations caused 
by noise. 

Rather than simply assume a strip integral model as in Eq. (35), 
we can instead use the matrix relating image and data to more 
exactly model the probability, Pij, of detecting an emission from 
voxel site j at detector element i. To differentiate this probabilis- 
tic model from the strip integral one, we will denote the detec- 
tion probability matrix by P. The elements of this matrix are 
dependent on the specific data acquisition geometry and many 
other factors including detector efficiency, attenuation effects 
within the subject, and the underlying physics of gamma-ray 
emission (for SPECT) and positron-electron annihilation (for 

PET). See [22] and [23] for descriptions of the formation of 
these matrices. 

In PET and SPECT the mean of the data can be estimated for 
a particular image as the linear transformation 

where f represents the mean emission rates from each image 
voxel. In practice, these data are corrupted by additive back- 
ground terms that are due to scatter and either “random coinci- 
dences” in PET [ 61 or background radiation in SPECT [ 71. The 
methods described below can be modified relatively easily to in- 
clude these factors, but these issues will not be addressed further 
here. 

As mentioned in Section 2.2, PET and SPECT systems use 
an external radiation source to perform transmission measure- 
ments to determine the attenuation factors that must be included 
in the matrix P. These data represent line integrals of the pa- 
tient’s attenuation coefficient distribution at the energy of the 
transmission source. Just as in X-ray CT, it is possible to re- 
construct attenuation images from these transmission measure- 
ments. As in Eq. (35), the image f would represent the map of 
attenuation coefficients and the elements of matrix H contain 
the areas of intersection of each projection path with each voxel. 
Let E ( y )  represents the mean value of the transmission mea- 
surement. Assuming that the source intensity is a constant CY, 
then we can model the mean of the transmission data as 

Our emphasis in the following is the description of recon- 
struction methods for the emission problem, but we also indicate 
which methods can and cannot be applied to the transmission 
data. 

For both emission and transmission measurements, the data 
can be modeled as collections of Poisson random variables, 
mean E (y) ,  with probability or likelihood 

(39) 

The physical model for the detection system is included in the 
likelihood function in the mapping from the image f to the 
mean of the detected events E (y ) ,  using Eqs. (37) and (38) for 
the emission and transmission case, respectively. Using this basic 
model, we can develop estimators based on maximum likelihood 
(ML) or Bayesian image estimation principles. 

6.3 Maximum Likelihood Methods 
The maximum likelihood estimator is the image that maxi- 
mizes the likelihood of Eq. (39) over the set of feasible images, 
f 3 0. The EM (expectation maximization) algorithm can be 
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applied to the emission CT problem, resulting in an iterative al- 
gorithm that has the elegant closed-form update equation [24]: 

This algorithm has a number of interesting properties, includ- 
ing the fact that the solution is naturally constrained by the 
iteration to be nonnegative. Unfortunately, the method tends to 
exhibit very slow convergence and is often unstable at higher it- 
erations. The variance problem is inherent in the ill-conditioned 
Fisher information matrix. This effect can be reduced using ad 
hoc stopping rules in which the iterations are terminated be- 
fore convergence. An alternative approach to reducing variance 
is through penalized maximum likelihood or Bayesian methods 
as described in Section 6.4. 

A number of modifications of the EM algorithm have 
been proposed to speed up convergence. Probably the most 
widely used of these is the ordered subsets EM (OSEM) al- 
gorithm, in which each iteration uses only a subset of the 
data [25]. Let I & ) ,  k =  1, . . . , Q be a disjoint partition of the 
set { 1,2, . . . , M } .  Let n denote the number of complete cycles 
through the Q subsets, and define f:n’o) = fjn-l’Q). Then one 
complete iteration of OSEM is given by 

f o r j = 1 ,  ..., N , k = l ,  ..., Q. (41) 

Typically, each subset will consist of a group of projections 
with the number ofsubsets equal to an integer fraction ofthe total 
number of projections. “Subset balance” is recommended [ 251, 
i.e., the subsets should be chosen so that an emission from each 
pixel has equal probability of being detected in each subset. The 
grouping of projections within subsets will alter both the con- 
vergence rate and the sequence of images generated. To avoid 
directional artifacts, the projections are usually chosen to have 
maximum separation in angle in each subset. In the early itera- 
tions OSEM produces remarkable improvements in convergence 
rates although subsequent iterations over the entire data is re- 
quired for ultimate convergence to an ML solution. 

The corresponding ML problem for Poisson distributed trans- 
mission data does not have a closed-form EM update. However, 
both emission and transmission ML problems can be solved ef- 
fectively using standard gradient descent methods. In fact, it is 
easily shown that the EM algorithm for emission data can be 
written as a steepest descent algorithm with a diagonal precon- 
ditioner equal to the current image estimate. More powerful 
nonlinear optimization methods, and in particular the precon- 
ditioned conjugate gradient method, can produce far faster con- 
vergence than the original EM algorithm [26]. 

6.4 Bayesian Reconstruction Methods 
As noted earlier, ML estimates of PET images exhibit a high vari- 
ance as a result of ill-conditioning. Some form of regularization 
is required to produce acceptable images. Often regularization is 
accomplished simply by starting with a smooth initial estimate 
and terminating an ML search before convergence. Here we con- 
sider explicit regularization procedures in which a prior distri- 
bution is introduced through a Bayesian reformulation of the 
problem (see also Chapter 3.6). Some authors prefer to present 
these regularization procedures as penalized ML methods, but 
the differences are largely semantic. 

By the introduction of random field models for the unknown 
image, Bayesian methods can address the ill-posedness inher- 
ent in PET image estimation. In an attempt to capture the lo- 
cally structured properties of images, researchers in emission 
tomography, and many other image processing applications, 
have adopted Gibbs distributions as a suitable class of prior. The 
Markovian properties of these distributions make them both 
theoretically attractive as a formalism for describing empirical 
local image properties, as well as computationally appealing, 
since the local nature of their associated energy functions results 
in computationally efficient update strategies (see Chapter 4.3 
for a description of Gibbs random field models for image pro- 
cessing). The majority of work using Gibbs distributions in to- 
mographic applications involves relatively simple pairwise inter- 
action models in which the Gibbs energy function is formed as 
a sum of potentials, each defined on neighboring pairs of pixels. 
These potential functions can be chosen to reflect the piece- 
wise smooth property of many images. The existence of sharp 
intensity changes, corresponding to the edges of objects in the 
image, can be modeled by using more complex Gibbs priors. 
The Bayesian formulation also offers the potential for combin- 
ing data from multiple modalities. For example, high-resolution 
anatomical X-ray CT or MR images can be used to improve the 

FIGURE 14 Example of a PET scan of metabolic activity using FDG, an F-18 
tagged analog of glucose. This tracer is used in detection of malignant tumors. 
The image at left shows a slice through the chest of a patient with breast cancer; 
the tumor is visible in the bright region in the upper left region of the chest. This 
image was reconstructed using a Bayesian method similar to that in [23]. An 
analytic reconstruction method was used to form the image on the right from 
the same data. 
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quality of reconstructions from low-resolution PET or SPECT 
data [27]. See [28] for a recent review of statistical models and 
methods in PET. 

Let p ( f )  denote the Gibbs prior that captures the expected 
statistical characteristics of the image. The posterior probability 
for the image conditioned on the data is then given by Bayes 
theorem: 

Bayesian estimators in tomography are usually of the max- 
imum a posteriori (MAP) type. The MAP solution is given by 
maximizing the posterior probability p ( f  I y )  with respect to f .  
For each data set, the denominator of the right-hand side of 
Eq. (42) is a constant so that the MAF’ solution can be found by 
maximizing the log of the numerator, i.e., 

mr” P(Y I t )  + ln P V ) .  (43) 

A large number of algorithms have been developed for com- 
puting the MAP solution. The EM algorithm, Eq. (40)) can be 
extended to include a prior term - see, e.g., [27] - and hence 
maximize Eq. (43). This algorithm suffers from the same slow 
convergence problems as Eq. (40). AIternatively, Eq. (43) can be 
maximized by using standard nonlinear optimization algorithms 
such as the preconditioned conjugate gradient method [23] or 
coordinatewise optimization [29]. The specific algorithmic form 
is found by applying these standard methods to Eq. (43) after 
substituting both the log of the likelihood function, Eq. (39), in 
place of In p(y  I f )  and the log of the Gibbs density in place of 
In p(f). For compound Gibbs priors that involve line processes, 
mean-field annealing techniques can be combined with any of 
the above methods [27,28]. 

7 Summary 

We have summarized analytic and iterative approaches to 2-D 
and 3-D tomographic reconstruction for X-ray CT, PET, and 
SPECT. With the exception of the rebinning algorithms, which 
can be used in place of fully 3-D reconstruction methods, the 
choice of analytic reconstruction algorithm is determined pri- 
marily by the data collection geometry. In contrast, the iterative 
approaches (ART, ML, and MAP) can be applied to any collec- 
tion geometry in PET and SPECT. Furthermore, after appro- 
priate modifications to account for differences in the mapping 
from image to data, these methods are also applicable to trans- 
mission PET and SPECT data. X-ray CT data are not Poisson 
so that a different likelihood model is required if ML or MAP 
methods are to be used. The choice of approach for a particular 
problem should be determined by considering the factors limit- 
ing resolution and noise performance and weighing the relative 
importance of the computational cost of the algorithm and the 
desired and achievable image resolution and noise performance. 

Handbook of Image and Video Processing 

Image processing for computed tomography remains an ac- 
tive area of research. In large part, development is driven by the 
construction of new imaging systems, which are continuing to 
improve the resolution of these technologies. Carefully tailored 
reconstruction algorithms will help to realize the full potential of 
these new systems. In the realm ofX-ray CT, new spiral and cone- 
beam systems are extending the capabilities of CT systems to al- 
low fast volumetric imaging for medical and other applications. 
In PET and SPECT, recent developments are also aimed at achiev- 
ing high-resolution volumetric imaging through combinations 
of new detector and collimator designs with fast, accurate recon- 
struction algorithms. In addition to advances resulting from new 
instrumentation developments, current areas of intense research 
activity include theoretical analysis of algorithm performance, 
combining accurate modeling with fast implementations of it- 
erative methods, analytic methods that account for factors not 
included in theline integral model, and development ofmethods 
for fast dynamic volumetric (4-D) imaging. 
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1 Introduction 

Heart disease continues to be the leading cause of death. Imag- 
ing techniques have long been used for assessing and treating 
cardiac disease [ 1,2].. Among the imaging techniques employed 
are X-ray angiography, X-ray computed tomography (CT), ul- 
trasonic imaging, magnetic-resonance (MR) imaging, positron 
emission tomography (PET), single-photon emission tomog- 
raphy (SPECT), and electrocardiography. These options span 
most of the common radiation types and have their respective 
strengths for assessing various disease conditions. Chapter 10.2 
further discusses some relevant image-formation techniques, 
and references [ 1,2] give a general discussion on cardiac image- 
formation techniques. 

The heart is an organ that is constantly in motion. It receives 
deoxygenated blood from the body‘s organs via the venous cir- 
culation system (veins). It sends out oxygenated blood to the 
body via the arterial circulation system (arteries). The heart it- 
self receives some of this blood via the coronary arterial network. 
Disease arises when the blood supply to the heart is interrupted 
or when the mechanics of the cardiac cycle change. 

The available cardiac-imaging modalities produce a wide 
range of image data types for disease assessment: two-dimen- 
sional (2-D) projection images, reconstructed three-dimen- 
sional (3-D) images, 2-D slice images, true 3-D images, time 
sequences of 2-D and 3-D images, and sequences of 2-D 
interior-view (endolurninal) images. Each type of data intro- 
duces different processing issues. Fortunately, an extensive effort 

has been made to devise computer-based techniques for man- 
aging these data and for extracting the useful information. This 
chapter focuses on techniques for processing cardiac images. 
Since a cardiac image is generally formed to diagnose a possible 
health problem, it is always essential that the physician have con- 
siderable control in managing the image data. Thus, visualiza- 
tion and manual data interaction play a major role in processing 
cardiac images. In general, the physician uses computer-based 
processing for guidance, not as the “final word.” The various 
techniques for processing cardiac images can be broken down 
into four main classes: 

1. Examination of the coronary arteries to find narrowed 

2. Study of the heart’s mechanics during the cardiac cycle. 
3. Analysis of the temporal circulation of the blood through 

4. Mapping of the electrical potentials on the heart’s surfaces. 

Subsequent sections of this chapter will focus on each of these 
four areas. 

(stenosed) arteries. 

the heart. 

2 Coronary Artery Analysis 

Perhaps the largest application of cardiac imaging is in the 
identification and localization of narrowed or blocked coro- 
nary arteries. Arteries become narrowed over time by means 
of a process known as coronary calcification (“hardening of the 

Copyright @ 2000 by Academic Press. 
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arteries”). If a major artery becomes completely blocked, this 
causes myocardial infarction (“heart attack); the blood supply 
to the part of the heart provided by the blocked artery stops, 
causes tissue damage and, in many instances, death. 

The region where an artery is narrowed or blocked is referred 
to as a stenosis. In the discussion to follow, the arteries will often 
be referred to as vessels. The inside of an artery is known as the 
lumen. The arterial network to the heart is often referred to as the 
coronary arterial tree. The major imagingmodalities for examin- 
ing the coronary arteries areX-ray angiography, CT imaging, and 
intravascular ultrasound. MR angiography, similar to X-ray an- 
giography, is also possible. Digital image-processing techniques 
exist for all of these image types. As described further below, the 
primary aim of these methods is to provide human-independent 
aids for assessing the condition of the coronary arteries. 

i 

2.1 Single-Plane Angiography 
Historically, angiographic imaging has been the standard for 
cardiovascular imaging. In angiography, a catheter is inserted 
into the body and positioned within the anatomical region un- 
der study. A contrast agent is injected through the catheter, and 
X-ray projection imaging is used to track the flow of contrast 
through the anatomy. An immediate problem with this imaging 
set-up is that 3-D anatomical information is mapped onto a 2-D 
plane. This results in information loss, structural overlap, and 
ambiguity. 

Images may be obtained in a single plane or in two orthogonal 
planes (biplane angiography). Such images are referred to as 
angiograms. For coronary angiography, the contrast is used to 
highlight the coronary arteries. Figure 1 depicts a typical 2-D 
angiogram containing a stenosed artery. 

The size of pixels in a digitized angiogram is of the order of 
0.1 mm, permitting visualization of arteries around 1 .O mm in 
diameter. Sometimes separate angiograms can be collected be- 
fore and after the contrast agent is introduced. Then, the no- 
contrast image is subtracted from the contrast-enhanced image 
to give an image that nominally contains only the enhanced coro- 
nary arteries. This procedure is referred to as digital subtraction 
angiography (DSA) [ 1,2,4]. 

For an X-ray coronary angiogram f ,  the value f ( x ,  y )  rep- 
resents the line integral of X-ray attenuation values of tissues 
situated along a ray L originating at the X-ray source and pass- 
ing through the body to strike a detector at location ( x ,  y) :  

where L represents the ray (direction of X-ray) emanating from 
point (x ,  y )  and p(x, y, z) represents the attenuation coeffi- 
cient of tissues. Encountered tissues can include muscle, fat, 
bone, blood, and contrast-agent enhanced blood. The value 
f(x, y )  tends to be darkest for rays passing through the contrast- 
enhanced arteries, since the contrast agent is radiodense (fully 

FIGURE 1 Typical 2-D angiogram. Image intensity is inverted to show the 
arteries as bright structures. The artery running horizontally near the top clearly 
shows a stenosis. From [3]. 

absorbs transmitted X-rays). Thus, the arteries of interest tend to 
appear dark in angiograms. The main image-processing problem 
is to locate the dark, narrow, branching structures - presumably 
this is the coronary arterial tree - and estimate the diameter or 
cross-sectional area along the extent of each identified branch. 
A stenosis is characterized by a local drop in vessel diameter or 
cross-sectional area. 

Pappas proposed a complete mathematical model for struc- 
tures contained in a 2-D angiogram [ 51. In this model, a contrast- 
enhanced vessel is represented as a generalized cylinder having an 
elliptical cross-section; the 2-D projection of this representation 
can be captured by a function determined by two parameters. 
The background tissues (muscle, fat, etc.) are modeled by a low- 
order slowly varying polynomial, since such structures presum- 
ably arise from much bigger, and hence slowly varying functions. 
During the imaging process, unavoidable blurring occurs in the 
final image; this introduces another factor. Finally, a small noise 
component arises from digitization and attenuation artifacts. 
Thus, a point f ( x ,  y )  on an angiogram can be modeled as 

f(x,  v) = l x , y ( ( ( v ( x >  y, 2) + b ( x ,  y, 2)) * g ( 4 )  + 44) dz, 

(1) 
where v ( x ,  y, z) represents a contrast-enhanced vessel, 
b(x ,  y, z) represents the background, g(z) is a Gaussian- 
smoothing function to account for image blurring, and n(z) 
denotes the noise component. Pappas proposed a method in 
which parameters of this model can be estimated by using an 
iterative maximum-likelihood (ML) estimation technique. The 
procedure enables reasonable extraction of major arteries. Most 
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importantly, it also provides estimates of vessel cross-sectional 
area profiles (a function showing the cross-sectional area mea- 
surement along the extent of a vessel); this permits identification 
of vessel stenoses. 

Fleagle et  al. proposed a fundamentally different approach for 
locating the coronary arteries and estimating vessel-diameter 
profiles [ 6 ] .  Their study uses processing elements common to 
many other proposed approaches and contains many tests on 
real image data. 

The first step of their approach requires a trained human ob- 
server to manually identify the centerline (central axis) of each 
artery of interest. The human uses a computer mouse to identify 
a few points that visually appear to approximately pass through 
the center of the vessel. Such manual intervention is common 
in many medical imaging procedures. These identified center- 
line points are then smoothed, using an averaging filter to give a 
complete centerline estimate. This step need not take more than 
10 s per vessel. Next, two standard edge-detection operators - 
a Sobel operator and a Marr-Hildreth operator - are applied. 
A weighted sum of these output edge images is then computed. 
The composite edge image is then resampled along lines perpen- 
dicular to the centerline, at each point along the centerline. This 
produces a 2-D profile where the horizontal coordinate equals 
distance along the centerline and the vertical data correspond to 
the composite edge data. In effect, these resampled data represent 
a “straightened out” form of the artery. Next, this warped edge 
image is filtered, to reduce the effect of vessel border blurring, 
and a graph-search technique is applied to locate vessel borders. 
Finally, the detected borders are mapped back into the original 

space of the angiogram f ( x ,  y )  to give the final vessel borders 
and diameters. 

Sun et al. proposed a method especially suited for the insuf- 
ficient resolution often inherent in digitized angiograms [ 71. A 
human user first manually identifies the beginning and ending 
points of a vessel of interest. An adaptive tracking algorithm is 
then applied to identify the vessel’s centerline. This centerline 
then serves as the axis traveled by a direction-sensitive low- 
pass filter. For each point along the centerline, angiographic 
data perpendicular to the centerline are retrieved and filtered. 
These new data are then filtered by a low-pass differentiator 
to identify vessel walls (outer borders). The differentiator acts 
as an edge detector. Figure 2 gives a typical output from this 
technique. 

As an alternative to border-finding techniques, Klein etal. pro- 
posed a technique based on active contour analysis [ 81. In their 
approach two direction-sensitive Gabor filters are applied to the 
original angiogram. These filtered images are then combined to 
form a composite energy-field image. The human operator then 
manually identifies several control points on this image to seed 
the contour finding process. Two B-spline curves, correspond- 
ing to the vessel borders, are then computed using an iterative 
dynamic-programming procedure. Figure 3 gives an example 
from the procedure. 

2.2 Biplane Angiography and 3-D Reconstruction 
Biplane angiography involves generating two 2-D angiograms at 
different viewing angles. Since the major coronary arteries are 

FIGURE 2 
arrow points to the stenosis. From [7]. 

Example of an extracted artery and associated vessel-diameter (lumen-width) profile. The 
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FIGURE 3 Result ofan active-contour analysis applied to a selected artery in atypical 2-D angiogram. 
The green points are the manually identified control points. The red lines are the computed vessel wall 
borders. From [8]. (See color section, p. C-46.) 

contrast enhanced, they can be readily identified and matched 
in the two given angiograms. This admits the possibility of 3-D 
reconstruction of the arterial tree. 3-D views provide many ad- 
vantages over single 2-D views: (1) they provide unambiguous 
positional information, which is useful for catheter insertion and 
surgical procedures; (2) they enable true vessel cross-sectional 
area calculations; and (3) they are useful for monitoring the ab- 
solute motion of the myocardium. Biplane angiography is essen- 
tiallyaform ofstereo imaging, but the term “biplane” has evolved 
in the medical community. Many computer-based approaches 
have been proposed for 3-D reconstruction of the arterial tree 
from a set of biplane angiograms [ 3,4,9,10]. 

Parker et al. proposed a procedure in which the user first 
manually identified the axes of the arterial tree in each given 
angiogram [ 91. Next, a dynamic search, employing vessel edge 
information, improves the manually identified axes. A least- 
squares-based point-matching algorithm then correlates points 
from the two skeletons to build the final 3-D reconstructed 
tree. The point-matching algorithm takes into account man- 
ually identified key points, the sparseness of the 3-D data, and 
the known geometry between the two given angiograms. 

Kitamura et al. proposed a two-stage 3-D reconstruction tech- 
nique [4]. First, the skeleton (central axes) and arteryboundaries 
are computed for each 2-D angiogram. Next, a correspondence 
technique is applied to build a 3-D reconstructed artery model 
and skeleton. 

its relationship to each of the two known angiograms. Kitamura 
et al. allow the user to manually set parameters for all artery end 
points. Thus, all preidentified parts of the arterial tree are esti- 
mated. A nonlinear least-squares technique is used to estimate 
the model parameters. A few arteries can be situated parallel to 
the transmitted X-rays; these ill-defined portions of branches 
must be manually preidentified. Stage-2 reconstruction requires 
the user to manually identify bifurcation points (where a mother 
artery forms two smaller daughter branches) and stenotic points 
(where a stenosis occurs). These identified points then enable an 
automatic correspondence calculation of all skeleton points for 
the two reconstructed trees. This is done by backprojecting the 
points from the two trees into 3-D space, as depicted in Fig. 4. 
Since the structure of the 3-D tree is known from the manually 
identified points, the resulting correspondence is straightfor- 
ward. The final output is a 3-D reconstructed tree and associated 
cross-sectional areas. The approach of Wahle et al. is similar [3]; 
Fig. 5 gives a typical result. 

Note that the anatomy of the coronary arterial tree is well 
known. Also, the imaging geometry is known. This admits the 
possibility of using a knowledge-based system for reconstructing 
the 3-D arterial tree. Recently, Liu and Sun proposed such a 
method that is fully automatic [lo]. 

2.3 X-ray CT Imaging 
Stage 1 employs the same generalized cylinder model (1) as 

used by Pappas [5]. Figure 4 shows a portion of this model and 
Recently, ultrafast high-resolution X-ray CT has emerged as 
a true 3-D cardiac imaging technique. CT can give detailed 
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FIGURE 4 Geometry for reconstructing the 3-D arterial tree from two biplane images. The artery 
is modeled as a generalized cylinder having elliptical 2-D cross-sections. These cross-sections project 
as weighted line segments onto the two known 2-D angiograms (Images 1 and 2). From [4]. 

information on the 3-D geometry and function of the heart. 
Because of the heart motion during the cardiac cycle, high- 
speed scanning combined with electrocardiogram (ECG)-gated 
image acquisition is required to obtain high-resolution images. 
Over the past 20 years, cardiac imaging has been performed on 
scanners such as the experimental Dynamic Spatial Reconstruc- 
tor [ l l ,  121, electron beam CT (EBCT) scanner [13], and the 
newer spiral (helical) CT scanners [ 141. CT can provide a stack 
of 2-D cross-sectional images to form a high-resolution 3-D im- 
age. Thus, true 3-D anatomic information is possible in a CT 
image, without the 2-D projection artifacts of angiograms that 
cause structural ambiguities. 

Once again, to image the coronary arteries, generally one 
must inject a contrast agent into the patient prior to scanning. 

Fortunately, the contrast can be injected intravenously, requiring 
significantly less invasion. Such an image is referred to as a 3-D 
coronary angiogram. Recently, the EBCT scanner has received 
considerable attention for use as an early screening device for 
coronary artery disease [ 131. 

A complete system for 3-D coronary angiographic analysis 
has been devised by Higgins et al. [ 121. The first component of 
the system automatically processes the 3-D angiogram to pro- 
duce a complete 3-D coronary arterial tree. It also outputs vessel 
cross-sectional area information and vessel branching relation- 
ships. The second component of the system permits the user to 
visualize the analysis results. 

The first processing component uses true, automatic, 3-D, 
digital image-processing operations. The raw 3-D angiogram 

i 

I 

FIGURE 5 
is the same as Fig. 1); (b) the reconstructed rendered 3-D tree. From [3]. 

Extracted 3-D tree using the method of Wahle etal.: (a) theangiogram with superimposed tree (angiogram 
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undergoes 3-D nonlinear filtering to reduce image noise and 
sharpen the thin, bright coronary arteries. Next, a 3-D seeded 
region growing approach is applied to segment the raw 3-D coro- 
nary arterial tree. Cavity filling and other shape-based image- 
processing operations, based on 3-D mathematical morphology, 
are next applied to clean up the raw segmentation. Next, a 3-D 
skeletonization technique is applied to generate the raw central 
axes of the major tree branches. (Chapter 2.2 discusses mathe- 
matical morphology and skeletonization techniques.) This skele- 
ton undergoes pruning to remove distracting short branches. 
Finally, the skeleton is converted into a series of piecewise linear 
line segments to give the final tree. Vessel cross-sectional area 
measurements and other quantities are also computed for the 
tree. 

After automatic analysis, the second system component, a 
visualization tool, provides 2-D projection views, 3-D ren- 
dered views, along-axis cross-sectional views, and plots of cross- 
sectional area profiles. Figure 6 provides an overview of this vi- 
sual tool. The various tools clearly show evidence of a stenosis. As 
shown in this example and in Section 2.4,3-D imaging applica- 
tions routinelyrequire visualization tools to give adequate means 
for assessing the image data beyond simple 2-D image planes. 

High-resolution CT imaging techniques are also in use to im- 
age the microvasculature. These so-called micro-CT scanners 
give avoxel resolution of the order of 0.001 mm (10 km). Micro- 
CT scanners are being used to track the anatomical changes in 
genetically engineered mice to determine the long-term impact 
of various genes on disease states. 

2.4 Intravascular Ultrasound Imaging 
Standard coronary angiography does not give reliable informa- 
tion on the cross-sectional structure ofarteries. This makes it dif- 
ficult to accurately assess the buildup of plaque along the artery 
walls. Intravascular ultrasound (IWS) imaging has emerged as 
a complementary technique for providing such cross-sectional 
data [ 151. To perform IWS, one inserts a catheter equippedwith 
an ultrasonic transducer into avessel ofinterest. As the catheter is 
maneuvered through the vessel, real-time cross-sectional images 
are generated along the vessel’s extent. IVUS, however, does not 
provide positional information for the device. However, when 
NUS is used in conjunction with biplane angiography, precise 
positional information can be computed. Thus, true 3-D in- 
formation, as well as local detailed cross-sectional information, 
can be collected. This admits the possibility of using sophisti- 
cated viewing tools drawing upon the virtual reality modeling 
language (VRML). See Fig. 7 for an example. 

For this view to be produced, standard biplane analysis, similar 
to that described in Section 2.2, must first be performed on a 
given pair of biplane angiograms. Next, the 3-D position of the 
I W S  probe, as given by its spatial location and rotation, must 
be computed from the given sequence of I W S  cross-sectional 
images. This positional information can then be easily correlated 
to the biplane information. 

3 Analysis of Cardiac Mechanics 

Imaging can be used to make a clinically meaningful assessment 
ofheart structure and function. The human heart consists of four 
chambers separated by four valves. The right atrium receives de- 
oxygenated blood from the venous circulation and delivers it to 
the right ventricle. The right ventricle is a low-pressure pump 
that moves the blood through the pulmonary artery into the 
lungs for gas exchange. The left atrium receives the oxygenated 
blood from the lungs and empties it into the left ventricle (LV). 
The LV is a high-pressure pump that distributes the oxygenated 
blood to the rest of the body. The heart muscle, called the my- 
ocardium, receives blood via the coronary arteries. During the 
diastolic phase of the heart cycle, the LV chamber fills will blood 
from the left atrium. At the end of the diastolic phase (end di- 
astole) the LV chamber is at its maximum volume. During the 
systolic phase of the heart cycle, the LV chamber pumps blood 
to the systemic circulation. At the end of the systole phase (end 
systole), the LV chamber is at its minimum volume. The cycle of 
diastole-systole repeats for each cardiac cycle. 

Cardiac imaging can be used to qualitatively assess heart mor- 
phology, for example, by checking for a four-chambered heart 
with properly functioning heart valves. More quantitatively, pa- 
rameters such as chamber volumes and myocardial muscle mass 
can be estimated from either 2-D or 3-D imaging modalities. If 
3-D images are available, it is possible to construct a 3-D surface 
model of the inner and outer myocardium walls. If 3-D images 
are available at multiple time points (a 4-D image sequence), the 
3-D model can be animated to show w d  motion and estimate 
wall thickening, velocity, and myocardial strain. 

From an image engineering perspective, cardiac imaging pro- 
vides a number of unique challenges. Since the heart is a dynamic 
organ that dramatically changes size and shape across the car- 
diac cycle (“1 s), image acquisition times must be short or the 
cardiac structures will be blurred as a result of the heart mo- 
tion. Good spatial resolution is required to accurately image the 
complex heart anatomy. Adjacent structures, including the chest 
wall, ribs, and lungs, all contribute to the difficulties associated 
with obtaining high quality cardiac images. A variety of image 
processing techniques, ranging from simple edge detection to so- 
phisticated 3-D shape models, have been developed for cardiac 
image analysis. Once the cardiac anatomy has been segmented 
in the image data, measurements such as heart chamber volume, 
ejection fraction, and muscle mass can be computed. 

3.1 Chamber Analysis 
The LV chamber is the high-pressure heart pump that moves 
oxygenated blood from the heart to other parts of the body. An 
assessment of LV geometry and function can provide informa- 
tion on overall cardiac health. Many cardiac image acquisition 
protocols and image analysis techniques have been developed 
specifically for imaging the LV chamber to estimate chamber 
volume. There are two specific points in the cardiac cycle that 
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(4 
FIGURE 6 Composite view of a visual tool for assessing a 3-D angiogram [12]. (a) Volume-rendered version of the 
extracted 3-D arterial tree. (b) 2-D coronal ( x - z )  and sagittal ( y-z)  maximum-intensity projection images, with extracted 
arterial axes superimposed; red lines are extracted axes, green squares are bifurcation points, and the blue line is a selected 
artery segmented highlighted below. (c) Series of local 2-D cross-sectional images along a stenosed branch; these views lie 
orthogonal to the automatically defined axis through this branch. (d) Cross-sectional area plot along the stenosed branch. 
(See color section, p. C-47.) 
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(c )  

FIGURE 7 Views from a VRML-based IVUS system. (a) 2-D angiogram; the square indicates interior arterial 
viewing site of interest. (b) Corresponding cross-sectional IVUS frame of the arterial lumen. (c) 3-D surface 
rendering ofthe artery surface. (Courtesy of Dr. Milan Sonka, University of Iowa.) (See color section, p. C-48.) 

are ofparticular interest: the end ofthe LV filling phase (end dias- 
tole), when the LV chamber is a maximum volume; and the end 
of the LV pumping phase (end systole), when the LV chamber 
is at minimum volume. Let VES and VED represent the end sys- 
tolic and end diastolic chamber volumes. Then the total cardiac 
stroke volume S V = VED - V&, and the cardiac ejection frac- 
tion is E F = S V/ VED. Both of these parameters can be used as 
indices of cardiac efficiency [ 161. 

3.1.1 Angiography 

Both single and biplane angiography can be used to study 
the heart chambers [2,16]. For this analysis, sometimes called 
ventriculography, the imaging planes are typically oriented so 
that one image is acquired on a coronal projection (called the 
anterior-posterior, or A-P plane), and the other image is ac- 
quired on a sagittal projection (called the lateral, or LAT plane). 
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FIGURE 9 CT cross-sectional images of a human thorax obtained by using an electron beam CT scanner. Images 
show heart (oval-shaped gray region near the center of the images, with several bright ovals inside), lungs (dark regions 
on either side of heart), and vertebrae (bright regions at top middle). The heart region contains the myocardium 
(medium gray) and contrast-enhanced heart chambers (bright gray). (Images provided by Dr. Eric A. Hoffman, 
University of Iowa). 

editing to guide automatic gray-scale and shape-based process- 
ing; their method shows good LV chamber volume correlation 
with manual analyses [ 171. A popular LV chamber segmenta- 
tion approach is to use deformable 2-D contours or 3-D sur- 
faces attracted to the gradient maxima. Staib and Duncan used 
a 3-D surface model of the LV to segment the chamber from 
CT data [ 181. Their method is initialized by configuring the 
model to an average chamber shape, and then deforming the 
model based on local gradient information. Related work from 
the same group uses a 3-D shape model and combined gray-scale 

region statistics with edge information for robust LV chamber 
segmentation [ 191. 

Figure 10 shows a surface-rendered view of a canine heart 
from a DSR data set. This figure was created by manually tracing 
region boundaries on the image, and then shading surface pixels 
based on the angle between the viewing position and the local 
surface normal. The image clearly shows the four-chambered 
heart, the valves, and the myocardium. Figure 11 shows how 
the time series of images can be processed to yield data about 
cardiac function. The figure shows the LV chamber volume as 

FIGURE 10 3-D surface-rendered heart image. The top row shows the computer-generated “dissection” 
of the 3-D heart volume; the bottom row has partially labeled heart anatomy. LA is left atrium and RV is 
right ventricle. From [20]. (See color section, p. C-49.) 
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FIGURE 11 Plot of canine LV chamber volume vs. time. The image data set 
consists of 16 3-D images gathered over one heart cycle, using the DSR. LV 
volume was computed for each image after segmenting the chamber, using the 
method of [ 171. 

a function of time across the heart cycle. In this case the LV 
chamber volume was computed by identifying the pixels within 
the LV, using the semiautomatic method described in [ 171. The 
peak of the curve in Fig. 11 occurs at end diastole; the minimum 
of the curve occurs at end systole. 

3.1.3 Echocardiography 
Echocardiography uses ultrasound energy to image the heart 
[2 11. The ultrasound energy (in the form of either a longitudinal 
or transverse wave) is applied to the body through a transducer 
with piezoelectric transmit and receive ultrasound crystals. As 
the ultrasound wave propagates through the body, some energy 
is reflected when the wavefront encounters a change in acoustic 
impedance (caused by a change in tissue type). The ultrasound 
receiver detects this return signal and uses it to form the image. 
Because ultrasound imaging does not use ionizing radiation to 
construct the image, ultrasound exams can be repeated many 
times without worries of cumulative radiation exposure. Ultra- 
sound systems are often inexpensive, portable, and easy to op- 
erate, and as a result, exams are often performed at the bedside 
or in an examination room. 

Common cardiac ultrasound imaging applications use energy 
in the range of 1 to -25 MHz, although higher frequencies may 
be used for IVUS imaging. Most clinical ultrasound scanners can 
acquire B-mode (brightness) images, M-mode (motion) images, 
and Doppler (velocity) images. In B-mode imaging, a 2-D sector 
scan is used to create an image where pixel brightness in the 
image is proportional to the strength of the received echo signal. 
Several B-mode images may be obtained at different orientations 
to approximate volume imaging. In M-mode imaging, a 2-D 
image is formed where one image axis is the distance from the 
transducer and the other axis is the time. As with the B mode, 
pixel intensities in the M-mode image are proportional to the 
strength of the received echo signal. M-mode images can be used 

to track myocardial wall and valve motion. Doppler imaging 
uses the frequency shift in the received signal to estimate the 
velocity of ultrasound scatterers. Doppler imaging can be used to 
measure wall and valve motion, and to assess blood flow through 
the arteries and heart. New 3-D ultrasound scanners have been 
introduced. These scanners use an electronically steered 2-D 
phased array transducer to acquire a volumetric data set. The 
3-D ultrasound scanners can acquire data sets at near video rates 
(10-20 3-D images per second). 

As shown in Fig. 12, ultrasound images are often considerably 
noisier and lower in resolution than images obtained using X- 
ray or magnetic resonance imaging. They present a number of 
interesting image processing challenges. 

Much work in cardiac ultrasound image processing has been 
focused on edge detection in 2-D B-mode images to eliminate 
the need for manual tracing of the endocardial and epicardial 
borders [2]. The first step in the processing is often some pre- 
processing filtering, such as a median filter, to reduce noise in 
the image. Preprocessing is followed by an edge detection step, 
with a 2-D operator such as the Sobel or Prewitt edge detection 
mask, to identify strong edges in the image. Finally, the strong 
edges are linked together to form a closed boundary around the 
ventricle. This automatic 2-D processing shows good correlation 
with contours manually traced by a human [2]. After identifying 
the ventricle on each slice of a 3-D stack of B-mode images, a 
3-D surface can be reconstructed and visualized. 

Deformable contour models have also been successfully ap- 
plied to the segmentation of LV chamber borders in echocar- 
diographic images [22]. Another approach for LV chamber 
detection in echocardiography has focused on using optimiza- 
tion algorithms to identify likely border pixels. For these ap- 
proaches, the image is processed with an edge detection op- 
erator to compute the edge strength at each pixel. The edge 
strength at each pixel is converted to a cost value, where the 
cost assigned to a pixel is inversely proportional to the likeli- 
hood that the pixel lies on the true LV border. Graph searching 
or dynamic programming is used to find a minimum-cost path 
through the image, corresponding to the most likely location of 
the LV chamber border. More sophisticated optimization meth- 
ods can incorporate a priori anatomic information into the cost 
computation. Related work on MR images has focused on ex- 
tending these 2-D optimal border detection algorithms to three 
dimensions [23]. 

3.1.4 Magnetic Resonance Imaging 
Magnetic resonance (MR) imaging uses RF magnetic fields to 
construct tomographic images based on the principle of nu- 
clear magnetic resonance (NMR) [21]. The pixel values in MR 
images are a function of the chemical configuration of the tis- 
sue under study. For most imaging protocols the pixel values are 
proportional to the density of hydrogen nuclei within a region 
of interest, although new imaging techniques are being devel- 
oped to measure blood flow and other physiologic parameters. 
Diagnostic MR imaging uses nonionizing radiation, so exams 
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FIGURE 12 Ultrasound B-mode image of a human heart. The LV chamber is a center of image. The 
red border is the automatically detected epicardial border from 3-D graph search; the green border is 
the manually traced border. (Figure courtesy of Dr. Edwin L. Dove, University of Iowa and Dr. David 
D. McPherson, Northwestern University.) (See color section, p. G-49.) 

can be repeated without the dangers associated with cumulative 
radiation exposure. Because the magnetic fields are electrically 
controlled, MR imaging is capable of gathering planar images 
at arbitrary orientations. New, faster MR scanners are being de- 
veloped especially for cardiovascular applications. Because of 
differences in their magnetic resonance, there is natural con- 
trast between the myocardium and the blood pool. MR contrast 
agents are now available to further enhance cardiac and vascular 
imaging. Many of the same techniques used in echocardiography 
and CT are applicable to cardiac MR image analysis; for exam- 
ple, 2-D and 3-D border detection algorithms based on optimal 
graph searches have been applied to LV chamber segmentation 
in MR images [23]. 

3.2 Myocardial Wall Motion 
If a time series of images showing the heart chamber motion 
is available, information such as regional chamber wall velocity, 
myocardial thickening, and muscle strain can be computed. This 
analysis requires that the LV boundary be determined at each 
time point in the image sequence. After the LV boundary has been 

determined, motion estimation requires that the point-to-point 
correspondences be determined between the LV border pixels 
in images acquired at different times. For this difficult problem, 
algorithms based on optical flow [ 241 and shape-constrained 
minimum-energy deformations [ 251 have been successfully ap- 
plied to CT and echocardiographic images. 

One of the most dramatic recent advances in cardiac imaging 
has been the development of noninvasive techniques to “tag” 
specific regions of tissue within the body [26]. These tagging 
techniques, all based on MR imaging, use a presaturation RF 
pulse to temporarily change the magnetic characteristics of the 
nuclei in the tagged region just prior to image acquisition. The 
tagged region will have a greatly attenuated NMR response sig- 
nal compared with the untagged tissue. Because the tags are 
associated with a particular spatial region of tissue, if the tis- 
sue moves, the tags move as well. Thus, by acquiring a sequence 
of images across time, the local displacement of the tissue can 
be determined by tracking the tags. One common cardiac tag- 
ging technique is called spatial modulation of magnetization 
(SPAMM) [26]. SPAMM tags are often applied as grid lines, as 
illustrated in Fig. 13. 
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FIGURE 13 MR image showing SPAMM tag lines. The top left shows the initial tag line 
configuration (manually traced contours show chamber borders), and the top right is after 
the heart has changed shape. Tag lines have deformed to provide an indication of myocardial 
deformation. The bottom left and right show detected tag lines. From [27]. 

The two major image analysis problems in SPAMM imaging 
are the detection of the tag points and tracking and registering 
the tag points as the tissue deforms. Young et al. used a mesh 
of snakes to detect the tag lines in SPAMM images and tracked 
the tag lines and their intersection points between images [ 271. 
The deformation information in [27] was used to drive a fi- 
nite element model of the myocardium. Park et al. analyzed 
the dynamic LV chamber by using 3-D deformable models. The 
models were parameterized by functions representing the local 
LV surface shape and deformation parameters. Their approach 
gave estimates of LV radial contraction, longitudinal contrac- 
tion, and twisting. Amini used B-spline snakes to detect the tag 
lines. The B splines were part of a thin-plate myocardial model 
that could be used to estimate myocardial deformation (com- 
pression, torsion, etc.) and strain at sample points between the 
tag line intersections [28]. Figure 14 shows a 3-D myocardial 
wall model computed by tracking SPAMM tag line motion dur- 
ing the heart cycle. 

stenoses. However, the precise linkage between coronary artery 
stenoses and blood flow (perfusion) to the myocardium is un- 
clear [ 301. Angiographic imaging is also limited by the spatial 
resolution of the imaging system. The largest coronary arteries 

4 Myocardial Blood Flow (Perfusion) 

Coronary angiography can be used to evaluate the structure 
of the coronary artery tree and to detect and quantify arterial 

FIGURE 14 3-D myocardial wall model derived from deformable surface 
tracking SPAMM tag lines. The model shows inner and outer borders of the 
myocardium. Also shown is the evolution of myocardial wall and LV cham- 
ber shape from end diastole to end systole. (Figure courtesy of Dr. Jinah Park, 
University of Pennsylvania.) (See color section, p. C-50.) 
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FIGURE 15 SPECT myocardial perfusion analysis, using an injected thal- 
lium-201 tracer. Shown is across-sectionalview ofthe myocardium (LVchamber 
is the cavity at center of the image), with pixel intensity proportional to my- 
ocardial blood flow distribution. (Image courtesy of Dr. Richard Hichwa, PET 
Imaging Center, University of Iowa.) (See color section, p. C-50.) 

are easily identified and analyzed. However, the vast network of 
smaller arteries that actually deliver blood to the myocardium 
remain mostly undetectable on the images. In this section we 
describe imaging modalities capable of directly assessing my- 
ocardial perfusion. The primary use of these techniques is to 
detect perfusion flow deficits beyond an arterial stenosis. 

Positron emission tomography (PET) and single photon emis- 
sion computed tomography (SPECT) both use intravenously in- 
jected radiopharmacueticals to track the flow of blood into the 
myocardial tissue. An image is formed where the pixels in the 

image represent the spatial distribution of the radiopharmacuet- 
ical. An example SPECT myocardial perfusion image is shown 
in Fig. 15. 

Both echocardiographic and MR imaging can also be used to 
assess myocardial blood flow. In both cases, a contrast agent is 
used to increase the signal response from the blood. In echocar- 
diography, small microbubbles (of the order of 5 p,m in diame- 
ter) are injected into the bloodstream [ 301. Bubbles this small can 
move through the pulmonary circulation and travel to the my- 
ocardium through the coronary arteries. The large difference in 
acoustic impedance between the blood and the bubbles results in 
a dramatic increase in the echo signal back from the perfused my- 
ocardium. For MR imaging, new injectable MR contrast agents 
have been developed to serve a similar purpose. 
An interesting image processing challenge related to perfusion 

imaging is the problem of registering the functional (blood flow) 
images to structural (anatomic) images obtained with other 
modalities [ 311. This structure-function matching typically uses 
anatomic landmarks, external fiducial markers, or both to find an 
affine transformation to align the two image data sets. The results 
can be visualized by combining the images so that a thresholded 
blood flow image is overlaid in pseudo-color on the anatomic 
image. 

5 Electrocardiography 

The constant muscular contractions of the heart during the car- 
diac cycle are triggered by regular electrical impulses originating 
from the heart’s sinoatrial node (the heart’s “pacemaker”). These 
impulses conduct throughout the heart, causing the movement 
of the heart’s muscle. Certain diseases can produce iregulari- 
ties in this activity; if it is sufficiently interrupted, it can cause 
death. This electrical activity can be recorded and monitored as 
an electrocardiogram (ECG). 

1 

(a) (b) 
FIGURE 16 Example of a body-surface potential map. (a) Mapping for a 2-D slice through the heart; the cavities 
correspond to the ventricles. (b) 3-D surface-renderedview of the same map. The color-coding indicates the degree 
of myocardial ischemia (reduction in blood flow). The red lines on the 3-D view indicate a stenosed arterial region 
that brought about the ischemia. From [32]. (See color section, p. C-51.) 



10.3 Cardiac Image Processing 803 

Through the techniques of electrocardiographic imaging, 
ECG data can be mapped into a 2-D or 3-D image [32]. These 
so-called body-surface potential maps are constructed by simul- 
taneously recording and assembling a series of ECGs. Such image 
data can be used to visualize and evaluate various disease states, 
such as myocardial ischemia, in which the blood flow is reduced 
to a portion of the myocardium. Angiographic and CT imag- 
ing cannot provide such data. Body-surface potential maps also 
permit the study of ventricular fibrillation, a condition when the 
heart is excited by chaotic - and potentially lethal - electrical 
impulses. 

Standard analytical methods from electromagnetics, such as 
the application of Green’s theorem to compute the electric field 
distributions within the heart volume, are applied to evaluate 
such image data. Figure 16 gives an example. 

6 Summary and View of the Future 

Cardiovascular imaging is a major focus of modern health- 
care. Many modalities are available for cardiac imaging. The 
image processing challenges include the development of ro- 
bust image segmentation algorithms to minimize routine man- 
ual image analysis, methods for accurate measurement of 
clinically relevant parameters, techniques for visualizing and 
modeling these complex multidimensional data sets, and tools 
for using the image information to guide surgical interventions. 

As technology continues to advance, scanner hardware and 
imaging software will continue to improve as well. Faster scan- 
ners with higher-resolution detectors will improve image qual- 
ity. Researchers will continue the move toward scanning systems 
that provide true 3-D and 4-D image acquisition. From the im- 
age processing perspective, there will be a need to quickly pro- 
cess large multidimensional data sets, and to provide easy-to-use 
tools to inspect and visualize the results. 

The interest in cardiovascular imaging is evidenced by the 
large number ofjournals, conferences, and workshops devoted to 
this area of research. From the engineering perspective, the IEEE 
Transactions on Medical Imaging, IEEE Transactions on Biomed- 
ical Engineering IEEE Transactions on Image Processing, and the 
IEEE Engineering in Medicine and Biology Society Magazine carry 
articles related to cardiac imaging. Conferences such as Comput- 
ers in Cardiology, the IEEE International Conference on Image 
Processing, the SPIE Conference on Medical Imaging, and the 
IEEE Engineering in Medicine and Biology Annual Meeting are 
good sources for the most recent advances in cardiac imaging 
and image processing. 
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Abstract 
Breast cancer is the second leading cause of death for women 
in the U.S. Screening asymptomatic women is the most ef- 
fective method for early detection of this disease. Despite 
its proven effectiveness, screening still misses about 20% of 
cancers and is the reason for an estimated 536,100' nega- 
tive biopsies in 1998. Several studies have shown that double 
reading of mammograms (by a second radiologist) improves 
the accuracy of mammogram interpretation. The desire to 
use computers in place of the second radiologist, or as a pre- 
screener to separate out clearly normal mammograms, are 
motivations for computer-aided detection research. 

1 Introduction 

Screening mammography is the X-ray examination ofthe breasts 
to check for cancer in asymptomatic women. Its goal is to iden- 

'This figure of 536,100 assumes that 178,700 breast cancers were found in 
1998 with a true positive biopsy rate of 25%. 

ti@ breast cancer in an early stage of growth, before it becomes 
palpable or metastasizes (spreads to other parts of the body). 
Screening with mammography, accompanied by clinical exams 
and routine breast self-examination, currently provides the best 
means for early detection and survival of breast cancer. 

The effectiveness of screening mammography can be mea- 
sured by the reduction of mortality from breast cancer. Com- 
bined data from several randomized controlled trials showed 
the mortality rate from breast cancer was reduced with breast 
cancer screening. The size of the reduction was related to the 
age of women entering screening trials [ 11. Women aged 4049  
showed a 17% reduction 15 years after starting screening, and 
women aged 50-69 showed a reduction in mortality of 2530% 
10-12 years after beginning screening. In women over age 70, 
there was insufficient information on the effectiveness of mam- 
mography because of the small numbers of women that started 
screening at this age. In addition to the reduction in mortality, 
early detection of breast cancer can provide a benefit through 
less invasive treatments. 

Despite the observed reduction in mortality through screen- 
ing, there is still room for improvement. A recent retrospective 

Copyright @ 2000 by Academic Press. 
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study of women screened over a 10-year period, with a me- 
dian of four mammogram exams and five clinical breast exams, 
showed that 23.8% of women had at least one false positive2 
mammogram, 13.4% had at least one false positive breast exam- 
ination, and 3 1.7% had at least one false positive result for either 
test. 

Another improvement in screening could be achieved byfind- 
ing cancers that are missed by current screening programs. The 
FDA has estimated that “for every 80 cancers currently detected 
through routine mammogram screening of healthy women, an 
estimated 20 additional cancers are missed and not found until 
later. Of those missed, about half have cancerous features that 
are simply overlooked; the other half have cancerous features but 
look benign” [3]. It is estimated that 10-25% of palpable cancers 
are not visible on mammograms [4]. 

To improve screening with mammography, one must im- 
prove both the sensitivity (find a higher fraction of cancers) 
and specificity (obtain a higher fraction of malignancies in re- 
ported abnormal findings) or improve one without changing the 
other. This can be done by improving the quality of mammo- 
grams and the accuracy in interpreting them. Another potential 
improvement is to find invasive cancers earlier when they are 
smaller, 

The image quality of mammograms has gone through signif- 
icant technological improvements over the past 20 years (e.g., 
dedicated mammography X-ray equipment, optimized film 
screen combinations, automatic exposure control, improved 
quality control, and improved film processing), and it is reason- 
able to believe that digital mammography may lead to further 
improvements (mainly by increasing contrast and lowering the 
noise). 

Interpretation accuracy can be improved by double reading 
mammograms by a second radiologist [ 5-71. Similar results may 
be achieved when computers, programmed to detect suspicious 
regions in mammograms, direct radiologists’ attention to them 
[ 8 ] .  Another possibility is to apply artificial intelligence methods 
to help classify the suspicious features as being malignant or 
benign. 

This chapter will introduce the reader to the mammographic 
exam, describe the digitization of mammograms, discuss issues 
in preprocessing the digitized images, introduce algorithms for 
detecting cancers, and describe methods of measuring their per- 
formance. In short, we will summarize the technical background 
for the engineer to work in the area of computer-aided detec- 
tion (CAD) in mammography. Of course, collaboration with 
radiologists specializing in mammography is also an important 
component of research in this area. 

2A false positive screening result was defined as “mammograms or clinical 
breast examinations that were interpreted as indeterminate, aroused a suspicion 
of cancer, or prompted recommendations for additional work up in women 
whom breast cancer was not diagnosed within the next year” [ 2 ] .  

2 Mammographic Screening Exam 

2.1 Breast Positioning and Compression 
A mammographic screening exam involves obtaining one or two 
images of each breast. A single view exam can be performed by 
using a mediolateral oblique (MLO) projection, and a two-view 
exam can be done by using a craniocaudal (CC) projection with 
the MLO projection. Figure 1 illustrates the four images collected 
in a typical two-view exam. Single-view exams are common in 
countries in Europe, while two-view exams are standard practice 
in the United States. 

A mediolateral oblique mammogram images the most breast 
tissue of any single view. It is imaged at an angle approximately 
45” to vertical with X-rays entering the patient anteriorly and 
medially (from the upper center of the body). The inferolateral 
(the lower outside) aspect of the breast is positioned near the 
film holder. A craniocaudal view is imaged vertically with X-rays 
entering the breast from the top. Medial tissue is better visualized 
in the CC projection than in the MLO projection. 

In both projections, the breast is positioned by lifting it up 
and out such that the nipple is in profile. Compression is applied 
to the breast to improve image quality and to reduce the dose 
to the patient by helping to separate overlapping structures, re- 
ducing geometric unsharpness, reducing motion unsharpness, 
obtaining more uniform tissue thickness, and reducing scattered 
radiation. 

The number of views taken of each breast and the exact po- 
sitioning will depend on the patient. Examples of these include 
the following: (1) two films may be required to show all of the 
tissue in an MLO view of a large breast and (2) the angle used in 
positioning the patient for an MLO view may vary from 40-60” 
from vertical for large breasted women or from 60-70” from ver- 
tical for small breasted women [9]. The amount of compression 
used also varies between patients. It can be 10 cm or more with a 
median value of 4.5-5.5 cm, depending on the population [lo]. 

2.2 Film Labeling 
Mammograms are initially labeled with radiopaque markers that 
indicate (1) right or left laterality (R/L) and projection (CC 
or MLO); (2) patient identification; (3) the date of the exam; 
(4) technologist identification; and ( 5 )  the name of the facility. 
This information is recorded on the film when the image is ac- 
quired so it is permanently recorded on the mammogram. The 
label is placed on top of the film holder near the axillary portion 
of the breast. 

Additional sticker labels may be attached to the film. These 
may include, but are not limited to, the following information: 
(1) patient name, age, sex, and social security number; (2) date 
of study; and (3) technical factors such as the mAs, kVp, com- 
pression force, compressed breast thickness, and angle for MLO 
views. 
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(c) (4 
FIGURE 1 Examples of the four images that make up a typical two-view screening exam; (a) and (b) are 
mediolateral oblique projections and (c) and (d) are craniocaudal projections. Note the lettering used to record 
the date of the exam (December 18, 1997), the institution (Massachusetts General Hospital), the breast laterality 
(R or L), and the technician’s initials (T. R.). A patient identification number appeared below the date but was 
covered before digitizing the film. The label is found near the axillary tail of the breast (by the armpit). Stickers 
with the view, date, and patient data can also be seen on the images. 

3 Recording the Image 
The image quality of mammograms must be very high for them 
to be useful. This is because the mammogram must accurately 
record small, low-contrast features that are critical to the detec- 
tion of cancers such as those with microcalcifications or those 

for which the margin characteristics of a mass must be deter- 
mined. The need for high quality mammograms was stated by the 
“Mammography Quality Standards Act of 1992” (PL 102-539, 
Oct. 27,1992) 106 United States Statutes at Large, pp. 3547-3562, 
which requires the use of dedicated mammography equipment 
and certification of mammography facilities. 
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Many technical factors interact with one another and must be 
balanced to achieve high-quality mammograms. For example, 
the focal spot must be small enough to image small breast struc- 
tures. Smaller focal spots reduce the X-ray intensity and increase 
the exposure time. This in turn may lead to a reduction of image 
quality from motion-induced blur during the longer exposure. 
Another tradeoff involves the use of an antiscatter grid placed 
between the patient and the film. As the name implies, this de- 
vice reduces the amount of scattered radiation to improve image 
contrast, but it does so at the cost of reducing the exposure to the 
film. Subsequently, the amount of X-ray exposure must be in- 
creased to overcome the exposure reduction to the film, thereby 
increasing the radiation dose to the patient. 

The following subsections will introduce film screen mam- 
mography, which is in common use today, and will describe the 
digitization of mammographic films for computer analysis. Di- 
rect digital systems, which are nearing deployment, will also be 
introduced. 

3.1 Film Screen Mammography 
In a film screen mammography system, the image is captured, 
stored, and displayed by using photographic film. By itself, film 
has a poor sensitivityto X-rays. To compensate for this, a sheet of 
phosphorescent material that converts X-rays to visible light is 
placed tightly against the film. This “screen” substantially reduces 
the X-ray dose to the patient but does so at the cost of blurring 
the image somewhat. 

In film screen mammography systems, high spatial resolu- 
tion may be achieved, but the quality of the image is limited 
by film granularity (noise), non-uniform contrast with relative 
exposure, and the blur introduced by the phosphor screen. The 
degradation in image quality from these sources (noise, con- 
trast, and blur) reduces the interpretability of the mammogram 
in ways that are not well expressed as a single numeric spatial 
resolution limit. 

3.2 Film Digitization 
Image digitization is the process of converting the image stored 
on a physical medium (film) into an electronic image. Scanners 
or digitizers do this by dividing the image up into tiny picture 
elements (pixels) and assigning a number that corresponds to the 
average transmission or optical density in each area. This process 
involves illuminating the film with a known light intensity, and 
measuring the amount of light transmitted by each point (small 
area) of the film. 

Scanners have physical limitations that introduce noise and 
artifacts. The quality of a scanner can be expressed by the fol- 
lowing four primary performance criteria. “The spatia2 resolu- 
tion measures the ability of the scanner to distinguish fine spatial 
structure in the film image. The photometric accuracy measures 
the uncertaintyinthe densityvalues producedbythe instrument. 

The scanning speed measures the rate at which the instrument 
scans images. Image artifacts are errors in the density values that 
are not random. Artifacts usually fall outside the stated error 
bounds for the instrument and may be correlated over many 
pixels.” [ 111. 

Several of these performance criteria can be quantified, and 
this may be useful in comparing and contrasting scanners. How- 
ever, it is important to understand that a scanner is but one com- 
ponent of alarger system and that the degree to which the entire 
system meets its goals is the best measure of performance. 

Pixel values have no explicit relation to film density other than 
increasing or decreasing with density. Digital images obtained 
from the same radiograph by two scanners maybe very different. 
To compensate for these differences, a normalization procedure 
may be applied to the images to remap the pixels values to a 
common measurement such as optical density. 

There are no specifications on the required spatial resolu- 
tion or photometric accuracy in scanning mammograms. One 
study by Chan et a2. [12] showed that the accuracy of an al- 
gorithm for detecting microcalcifications decreased in perfor- 
mance with increasing sampling distance (35-140 pm). At the 
time of this writing, the preferred sampling resolution for digi- 
tizing mammograms is around 50 pm with a photometric dig- 
itization of 12-16 bits over an optical density range of roughly 
0 to 3.5. 

3.3 Direct Digital Mammography 
Direct digital mammographyreplaces the film exposure and pro- 
cessing by directly digitizing the X-ray signal. The design of such 
a system involves a separate design of the image detector, stor- 
age, and display subsystems. This allows separate optimization of 
each, which in turn should produce a system with better overall 
performance. 

Various configurations for the acquisition of digital mammo- 
grams have been proposed [ 131. The principle differences be- 
tween them are the scanning method (point, line and slot, and 
area systems) and X-ray detection method (indirect phosphor 
conversion or direct X-ray to electrical charge conversion). The 
digitization resolution of systems under development is 100 pm 
or better. 

The development of detector technologies for digital mam- 
mography is well underway and will likely produce a practical 
system. The ultimate success of a digital mammography system 
wiIl, however, rely on several factors, including the detection, 
storage, processing and display of digital mammograms. In sum- 
mary, direct digital mammography will provide radiologists the 
control to visualize more detail in mammograms, but it must do 
so in a time-efficient manner. Computer-assisted detection may 
be of great importance here by serving to direct the physician to 
particular regions to examine in detail. Direct digital acquisition 
will provide data in the format necessary for CAD technology to 
be applied. 
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4 Image Preprocessing 

Preprocessing digital mammographic images is a useful step be- 
fore any interpretation of the image is performed. This prepro- 
cessing involves correcting artifacts introduced by the scanner 
and mammography equipment to better relate pixel values to 
the transmission of the breast. Depending on the magnitude of 
the artifacts, and the detection algorithm to be used, prepro- 
cessing can have a range of effects on the ultimate success of the 
algorithm. In situations in which an algorithm performs well 
on some images, preprocessing may still be useful when the al- 
gorithm is to be applied to images from different digitizers or 
mammographic equipment. 

4.1 CCD Non-Uniformity 
As discussed previously, the digitization process requires mea- 
suring the average density or exposure of tiny regions at regular 
intervals. The individual CCD detectors for most high speed de- 
vices are either arranged in a line that is swept across the field, or 
in a full two-dimensional lattice used in full-field digital mam- 
mography. 

Each detector may have a slightly different sensitivity to light. 
The effect of this across the image is the addition of a noise 
pattern. In a linear scanning device, this noise will appear as 
stripes oriented in the direction of the linear scanning device 
with time. In a full-field digital device, this may appear as any 
pattern. 

To some degree, this noise pattern artifact can be reduced by 
estimating the relative sensitivity function for each detector and 
then simulating an image that would have been obtained if each 
detector had the same sensitivity. 

Measurements oflight oftwo different intensities by each CCD 
can be used to estimate the relative sensitivity function of each 

detector. In a film scanner these can be obtained by scanning a 
film with two uniform regions of different optical density such 
that all CCD elements are used to scan each region. In a full-field 
digital system, images can be recorded of a uniform object at two 
different exposures. Several repetitions may be recorded at each 
exposure. 

For each CCD element, CCD(k) where 1 5 k 5 K ,  the aver- 
age of the high-intensity measurements is CCDhi(k) and the av- 
erage of the low-intensity measurements for the same CCD is de- 
noted CCDI,, (k) . The average of all CCDhi (k) and all CCDI,, (k) 
values is CCDhi and CCDI,,, respectively. A corrected value can 
be calculated for any pixel f ( nl ,  nz)  that was recorded by CCD 
element k using Eq. (1): 

- - 

where the coefficients CCD,(k) and CCD,(k) are defined by 
Eqs. (2) and (3). 

Figure 2 illustrates the CCD non-uniformity in an image ob- 
tained with a HOWTEK 960 film digitizer and the removal of 
this artifact by processing with the algorithm described above. 

4.2 Calibration to Film Density 
Calibrating a digitized film screen mammogram to optical den- 
sity is one way to normalize images digitized on different scan- 
ners. Algorithms written to detect abnormalities in mammo- 
grams calibrated to film densitywill be more generally applicable 

I 

FIGURE 2 Non-uniformity correction applied to an image scanned with a HOWTEK 960 film digitizer; (a) is 
a subsection of a step wedge calibration film that shows artifacts introduced by non-uniform sensitivity of CCD 
elements in the digitizer, and (b) illustrates the image resulting from applying the correction algorithm described 
in Section 4.1. Note that the vertical lines have been removed by this processing. 
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FIGURE 3 (a) and (b) Step wedge film scanned on both HOWTEK and DBA scanners, respectively. Plots of the average 
gray level vs. optical density in (d) and (e) show that the HOWTEK scanner has a linear response with density and the 
DBA scanner has an exponential response with density. The residuals from fitting a polynomial to the DBA data, using a 
regression model OD = a0 + a1 * log,,(GL) + a2 * log:,(GL), areplottedin (f). Image (c) illustratesthe result ofapplying 
this model to the DBA image in (b) and then linearly scaling it for display. Note how much more similar the gray levels 
are in images (a) and (c) than in (a) and (b). The bleeding of the brighter steps in (c) is an artifact introduced by the DBA 
scanner. 

to mammograms digitized on different scanners or at different 
times. 

To calibrate an image to film density, one can scan a film that 
has regions of uniform optical density. If the optical density of 
each patch is not known, it can be measured with a spot densit- 
ometer operated in the transmission mode. The average digital 
count of each patch in the scanned image can be calculated and 
then plotted as a function of the known optical density. The 
optical density of any pixel value can be estimated by using an 
equation resulting from a regression analysis. Figure 3 illustrates 
how images produced by scanning the same film on two scan- 
ners are very different. After calibration, the images look more 
similar. 

4.3 Calibration to Relative Exposure 
The relationship between optical density and exposure is not 
linear over a broad range in film. This relationship is most easily 
expressed as a plot ofthe characteristic curve of a film (densityvs. 
log exposure). Figure 4 shows the characteristic curve of Kodak 
MIN-R 2000 film. The shape of this plot is largely due to the 

film and processing chemicals and conditions used, but it is 
influenced by many factors including, for example, the amount 
of time between exposure and de~elopment.~ 

An effect of this non-linear relationship of optical density 
and log exposure is that the contrast changes with exposure. A 
gamma plot shows the contrast (change in optical density) as 
a function of optical density. Figure 4 illustrates this for Kodak 
MIN-R 2000 film. Inspection of this plot shows that the contrast 
is reduced at both low and high optical densities (low and high 
relative exposures). 

Since the film and development affect the optical density, we 
want to back out their effects to more accurately measure the 
relative transmission of the breast. To do this, we must image 
an artificial object (called a phantom) on the mammographic 
unit. This phantom may be made by stacking uniform thickness 
material of the same X-ray transmission in a stair-step fashion 
to achieve a variety of thicknesses that can all be imaged on the 
same film. Once the film is developed, digitized and calibrated 
to optical density, the average value of each constant thickness 

3A delay of 4 h between exposure and processing can reduce the film speed by 
10% [14]. 
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FIGURE 4 (a) Illustration of the nonlinear relationship between optical density and relative log exposure obtained by 
measuring the optical densities from KODAK MIN-R 2000 film exposed with a step pattern. (b) Shown is the contrast 
(change in optical density) as a function of optical density. The loss of contrast is evident at both low and high optical 
densities. 

patch can be calculated and plotted against the corresponding 
thickness. The equation produced by application of regression 
analysis can be used to produce an image in which the contrast 
is nearly uniform with exposure. 

4.4 Noise Equalization 
Another approach to normalizing the mammograms is to remap 
the pixel values to equalize the noise [ 151. This procedure will 
map the image to an isoprecision scale, which is a scale in which 
the noise level does not change with intensity. The advantage of 
this approach is that differences in pixel values are differences in 
a constant signal-to-noise scale, so detection thresholds should 
be uniform over gray level. 

This mapping can be found by recording a number of uniform 
samples at different exposure levels and estimating the noise by 
measuring the variance in each sample. When it is not possible to 
perform these measurements on the mammographic system, a 
different approach can be taken where the high-frequency noise 
characteristics are estimated from a mammogram. Assuming 
that there are more pixels in homogeneous regions than there 
are near region boundaries, the conditional probability distribu- 
tion ofthe noise can be estimated as a function ofgray level. This 
can be done by computing a histogram ofcontrast for each inten- 
sityvalue in the image k = 1, . . . , K ,  hist(f(n1, n2),c(nl, nz)) ,  
where c(nl, n2) is the local contrast, 

with z,,,,, specifying a square neighborhood centered at posi- 
tion nl,  n2 of size N. Assuming the noise process is symmetric 
and the relationship between the pixel value and the X-ray expo- 
sure is approximately linear, the mean of each sample probability 
density function g(c I k) should be zero. The standard deviation 

j C ( k )  of the contrast distribution for each intensity level k can 
be estimated from the histogram. The scale transform L ( k )  that 
rescales pixel values to a scale with uniform noise level can then 
be calculated by numerically solving 

aL(k)  sr 
(5) 

where the constant S, is a free parameter that represents the noise 
level on the transformed scale. The equation can be numerically 
solved to create a look-up table L ( k )  from the array j C ( k )  by 
computing a normalized cumulative sum of 1/2c(k) from 1 to k. 
Figure 5 shows examples of the steps described above applied to 
create an isoprecision remapping look-up table. In practice, the 
intensities can be placed in bins that increase exponentially in 
width to obtain histograms for which it is easier to measure the 
standard deviation. 

- 
a k  Q k ) '  

5 Abnormal Mammographic Findings 

Masses and calcifications are the most common abnormalities 
on mammograms. A mass is a space-occupying lesion seen in at 
least two mammographic projections. A calcification is a deposit 
of calcium salt in a tissue. Both can be associated with either ma- 
lignant or benign abnormalities, and can have a variety of visual 
appearances. To aid in standardized reporting, the American 
College of Radiology, in cooperation with the National Cancer 
Institute, the Centers for Disease Control, the Food and Drug 
Administration, the American Medical Association, the Amer- 
ican College of Surgeons, and the College of American Pathol- 
ogists, formulated the Breast Imaging Reporting and Data 
System (BI-RADS) [ 161. The lexicon used for describing mam- 
mographic abnormalities is organized by mass and calcifica- 
tions. Masses are described by their geometry, border charac- 
teristics, and density. Calcifications are described by their size 
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FIGURE 5 Plots showing steps of a noise equalization process. First, the histogram of the contrast is calculated for 
each gray level in a set of mammograms; (a) illustrates this for three gray levels. The standard deviation of each plot is 
then estimated; (b) shows this for each gray level. Note that the standard deviation is underestimated for high valued 
pixels because they occur with low frequency. A polynomial is then fit to the data in (b), where several of the highest 
points were dropped because of their poor estimation. A plot of the polynomial is shown in (c). A look-up table (LUT) is 
constructed from (c), where the derivative of the LUT at each point is the inverse of (c) at that point. The LUT was then 
normalized to the range 0-65535 and then plotted in (d); (e) shows the result of applying this LUT to the step wedge image 
scanned on the DBA scanner, i.e., (b) from Fig. 3. 

morphology and distribution. Several books provide example 
illustrations and descriptions of abnormalities found in mam- 
mograms [ 17-20]. 

5.1 Masses 

The type is modified by keywords that indicate the distribution 
of the calcifications. The distribution can be clustered, linear, 
segmental regional, or diffuse (scattered). Regional and diffuse 
distributions are more likely to be benign. Figure 7 shows several 
examples of calcifications in different distributions. 

The shape of a mass can be round, oval, lobular, or irregular, and 
its margins may be circumscribed, microlobulated, obscured, 
indistinct, or spiculated. Both the shape and margins are indica- 
tors of the likelihood of malignancy with round and oval shapes 
and circumscribed margins having a lower likelihood of malig- 
nancy. Several examples of masses, described with the BI-RADS 
lexicon, are shown in image subsections in Fig. 6. Another sec- 
ondary sign of cancer is architectural distortion of the normal 
breast structure with no visible mass. 

5.2 Calcifications 
Calcifications are described by their type, which refers to their 
size and shape. Typically benign types include skin, vascu- 
lar, coarse, large rodlike, round, spherical or lucent centered, 
eggshell, milk of calcium, suture, dystrophic, or punctate. Amor- 
phous or indistinct types are of more intermediate concern. Pleo- 
morphic or heterogeneous and fine branching calcification types 
indicate a higher probability of malignancy. 

6 Cancer Detection 

6.1 Breast Segmentation 
Breast segmentation is usually the first step applied in most can- 
cer detection algorithms. The reason for this is that the breast 
region can be segmented quickly and the results can be used 
to limit the search area for the more computationally intensive 
abnormality detection algorithms. 

An adequate segmentation of the breast tissue can often be 
achieved by thresholding the image and finding the largest region 
of pixels above the threshold. Histograms of mammograms have 
a characteristic large peak in a low-valued bin as a result of the 
large area ofthe background. Automated location ofthis peak can 
be accomplished by finding the maximum valued bin in the his- 
togram. This bin value will be a typical background pixel value. 
Searching the histogram for the upper end of this peak will re- 
veal a thresholdvalue that should segment the breast. This can be 
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(c) (4 
FIGURE 6 Examples of several types of masses: (a) a circumscribed oval mass; (b) an oval 
mass with obscuredmargins outlined for illustration; (c) alobulatedmass with microlobulated 
margins; (d) an irregular mass with spiculated margins. 

accomplished by automatically searching the histogram for the 
lowest value bin position that has a higher value than the typical 
background bin value and is a local minimum in the histogram. 
There may be regions other than the breast, such as labels, which 
contain pixels above the threshold. Since these regions are gen- 
erally smaller than the breast, keeping only the largest region 
should yield an adequate segmentation of the breast. 

Some problems may be encountered with this approach when 
the label partially overlaps the breast tissue or when the inten- 
sifying screen does not cover the entire film. More sophisticated 
segmentation procedures may have to be developed to contend 
with these problems. 

6.2 Mass Detection 
The reliable detection of masses is a difficult problem because 
of their nonspecific appearan~e.~ Masses can be many shapes 
and sizes, and may not even be directly visible, as in the case of 
architectural distortions. 

4For the very reason that masses are difficult to detect, CAD may have its 
largest impact on breast cancer mortality if reliable detection methods can be 
found. 

Common approaches to mass detection search for a “bright 
region” in a single image [21,22], a region that is brighter in 
the image of one breast than the corresponding region in the 
contralateral breast [23,24] or a mass that is spiculated with 
radial lines emanating from the center [25]. 

Most of these methods consist of computing several features 
(properties) for each pixel in the image and applying a clas- 
sification procedure to decide which pixels are part of a mass. 
The features may include the average brightness, the direction of 
the gradient, the difference in brightness between correspond- 
ing positions in each breast, a measure of the distribution of the 
directions of the gradient, or any other feature thought to have a 
different value for pixels in a mass than for those not in a mass. 

One method for detecting spiculated lesions [25] uses a binary 
decision tree classifier to assign a “suspiciousness” probability to 
each pixel in the breast. This probability of suspiciousness image 
is then blurred and thresholded to yield a map of suspicious areas 
in the mammogram. 

Five features are precomputed for each pixel in the breast re- 
gion and are then used by the binary decision tree classifier. This 
classifier uses a set of rules, that, when applied to the feature vec- 
tor associated with a pixel, determines a category or class label 
for the pixel. The rules are automatically generated by training 
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(c) (4 
FIGURE 7 Examples of several types of calcifications: (a) a cluster of pleomorphic calcifications; 
(b) a cluster of punctate calcifications; (c) a regional distribution of fine linear branching calcifications; 
(d) an example of three lucent centered calcifications. 

the classifier with features from mammograms that have spicu- 
lated lesions with known locations. The training produces a set 
of rules that can be represented graphically by a tree. When data 
are classified, it begins at the root and takes the path specified by 
the result of the first rule. This continues with subsequent rules 
until the last rule has been applied. At this point a leaf of the 
tree has been reached and the pixel is assigned a probability of 
suspiciousness associated with that leaf. 

The five feature vectors include four Laws texture energy 
features and one novel feature, named ALOE for analysis of 
local oriented edges. Each of the Laws texture energy features 
is obtained by convolving the mammogram with two one- 
dimensional kernels and then computing the sum of the absolute 
values ofthe filtered pixel values in a local window. The equations 
for the four feature images F 1, F 2, F 3, and F 4 are provided in 
Eqs. 6-9. The kernel A is a 15 x 15 matrix5 containing elements 

5This assumes that the mammogram being processed is sampled at or resam- 
pled to 280 km. 

that all have the value 1.0. 

F1 = A B S ( F  * L5 * E5') * A, 

F 2  = A B S ( F  * E5 * S5') * A, 

F 3  = A B S ( F  * L5 * S5') * A, 

F4 = A B S ( F  * R5 * R5') * A, 

(6) 

( 7 )  

(8) 

(9) 

L5 = (1.0 4.0 6.0 4.0 l . O ) ,  

E5 = (-1.0 -2.0 0.0 2.0 l . O ) ,  

s 5  = (-1.0 0.0 2.0 0.0 - l . O ) ,  

R5 = (1.0 -4.0 6.0 -4.0 1.0). 

The ALOE feature is computed as the standard deviation of a 
histogram of edge orientations (quantized to 180 discrete val- 
ues) in a 4 x 4 cm window of the image, centered at each 
pixel. The edge orientation, +, is computed at each site nl, 112 by 
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using Eq. 10. 

where 

sx= f *  -2 0 2 , (I: :) 
.-i.(; ; ;). -1 -2 -1 

The decision tree classifier is trained by using a set of images 
for which the positions of spiculated lesions are known. A ran- 
dom sample of pixels in spiculated lesions, and pixels outside of 
spiculatedlesions is input to a decision tree classifier6 operated in 
the training mode, and the rules are automatically generated. All 
pixels from the training images are then passed through the tree 
and the fraction of suspicious pixels is computed for each leaf of 
the tree. This fraction serves as the probability of suspiciousness 
for all pixels classified in this leaf. 

Mammograms that are to have spiculatedlesions detected can 
then be processed by computing the five feature values for each 
pixel, classifying each pixel with the decision tree, assigning the 
probability of suspiciousness to each pixel, convolving this image 
with a 7.5 x 7.5 mm kernel filled with equal weights that sum to 
1.0, and thresholding the convolved image at avalue of 0.5. This 
produces a binary image in which probabilities above 0.5 are as- 
signed avalue of 255 and probabilities smaller than or equal to 0.5 
are assigned the value zero. AI1 pixels with the value 255 are part 
of regions that are suspicious as being part of spiculated lesions. 

Figure 8 illustrates the application of this algorithm to a mam- 
mogram. The figure shows the original image with overlayed 
ground truth indicating the position of a spiculated lesion, the 
five feature images, the blurred probability image and a thresh- 
olded probability image. One true positive (correct detection) 
and two false positive (incorrect detections) can be seen in the 
figure. 

6.3 Calcification Detection 
The detection of microcalcifications is an important component 
of CAD. Calcifications are small densities that appear as bright 
spots on mammograms, as illustrated in Fig. 7. Calcification de- 
tection is generally regarded as a much easier problem than the 
detection of masses as a result of their more specific appear- 
ance. Their visual detection may be difficult without the aid of 
a magnifymg glass. Computer-aided detection of microcalcifi- 
cations has been an intense area of research. Many approaches 

60ne decision tree classifier program that can be used for this purpose is 
C4.5 [26]. 

have been taken to the problem and impressive results have been 
reported [ 15,271. 

One straightforward approach that applies standard image 
processing steps will be described and illustrated here. This is 
basically the approach used in [28], written for application on 
images digitized at a 100 pm. This method can be easily im- 
plemented and used as a baseline for comparisons with other 
algorithms. 

The first step in the algorithm is to create an image in which 
calcifications are enhanced for easier identification and detec- 
tion. This is done by subtracting a signal-suppressed image from 
a signal-enhanced image. The signal enhanced image, g, is ob- 
tained by convolving the original mammogram with a small 
kernel. The signal suppressed image is obtained by using a me- 
dian filter (described in Chapter 3.2). This nonlinear filter selects 
the median value of the 49 intensity values in a 7 x 7 window 
centered at each pixel in the original mammogram. Ifcalcifica- 
tions are present in the original mammogram, they will appear 
as bright dots in the difference image, h. 

0.75 0.75 0.75 

0.75 0.75 0.75 

h(m, n2) = g(n1, n d  - medianif ( p ,  q)l, (11) 

where nl - 3 5 p I nl + 3 and n2 - 3 5 q 5 n2 + 3. 
Calcifications can be segmented in the difference image by 

thresholding. One method for selecting the threshold value is to 
calculate the cumulative histogram of the enhanced image, h, for 
all pixels in the segmented breast, and automatically searching 
the cumulative histogram for the lowest numbered bin where the 
count exceeds alarge percentage (e.g., 99.995%) ofthe total num- 
ber of pixels. Once a binary image is obtained from threshold- 
ing, individual calcifications can be labeled by using a connected 
component labeling algorithm (described in Chapter 2.2). The 
result of the connected component algorithm will be an image 
in which all of the pixels in each separate connected group of 
pixels have the same value and this value will not be shared by 
any other pixels in the image. 

The next step is to remove any connected group of pixels 
that has less than two or three pixels in it. This can be done by 
computing the histogram of the connected component image 
and setting anybin value that is less than 3 to zero. The histogram 
can then be applied as alook-up table to the image to remap pixel 
values of small components to the background value of zero. 

The final step in the process is to find c‘clustersn of calcifica- 
tions, where a cluster is defined to be more than three calcifica- 
tions (Le., connected regions) in a 1- to 1.5-cm diameter circle. 
Figure 9 illustrates the results of this method. 

Additional processing can be applied to improve the accuracy 
of calcification detection algorithms. The usual approach for this 
is to measure features such as the size and shape of individual 
calcifications and the geometry of a group of calcifications and 
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FIGURE 8 Illustration of a spiculated lesion detection algorithm, showing the original mammogram with the ground 
truth marking the location of a spiculated lesion in red in (a), the ALOE feature image in (b), and the Laws feature images 
L5 * E5', E5 * S5', L5  * S5', and R5 * R5' in (c)-(f). The blurred probability image is shown in (g). Image (h) is a 
thresholded version of (g); it shows three detected spiculated lesions. The bottom one is a correct detection corresponding 
the the ground truth outline in (a), and the other two white blobs are false detections. (See color section, p. C-51.) 

then train a classifier to differentiate false detections from true 
detections of clusters of calcifications. Many features commonly 
used for this are described in [ 291. 

7 Performance Assessment 

Thorough assessment of the performance of a CAD algorithm 
is critical. Many algorithms for detecting and classifying both 
masses and microcalcifications have been designed and imple- 
mented, but few have undergone rigorous testing with large 
databases of proven cases, and even fewer have been evaluated 
in a clinical setting [30,31]. 

It is usually desirable to first evaluate an algorithm using ret- 
rospective testing on a database of previously diagnosed cases 
with radiologist specified ground truth. Several publicly avail- 

able databases [ 32-35] simplify this task because high-quality 
images with ground truth are available either for free or for a 
minimal charge. If testing is done properly according to standard 
train, test, and evaluation procedures, it may even be possible to 
estimate the relative merit of competing algorithms. 

The largest publicly available mammography database is the 
Digital Database for Screening Mammography (DDSM) at the 
University of South Florida [ 361. It currently contains 2620 cases. 
Each case contains all four images from the mammographic 
exam. Both cancer and benign cases include ground truth mark- 
ings. Keyword descriptions of abnormalities are specified using 
the BI-RADS lexicon. Additional data with each case include 
radiologist-assigned values for the ACR breast density rating, 
the ACR assessment code, and a subtlety rating for the case, on 
a 1-5 scale. All of the images in this chapter were selected from 
this database. 
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FIGURE 9 Illustration of a calcification detection algorithm, showing one true positive and one false positive detection 
of a malignant cluster of pleomorphic calcifications. (a) An overview of a segmented breast with one ground truth region 
(white) and two detections (green and red). The border of the segmented breast is shown in purple. (b) A closeup of the 
cluster of calcifications with ground truth overlaid in white. (c) The result of enhancing the calcifications in the image using 
the algorithm described in Section 6.3. (d) The result of thresholding the enhanced mammogram, labeling individual 
calcifications, finding a cluster group of more than three calcifications linked by intercalcification distances of t4 mm. 
Individual calcifications in the group are circled in green and the cluster is marked with a green border. (e) A false detection 
of a group of calcifications. (See color section, p. C-52.) 

Once testing has been done on the computer, and satisfactory 
results are obtained, it is necessary to evaluate a CAD algorithm 
in a clinical setting with radiologists using the system. A high- 
performance algorithm for prompting a radiologist’s attention 
to suspicious regions must still be shown to result in an improve- 
ment in the radiologist’s interpretation of the case. 

7.1 Computer Analysis of Algorithm 
Performance 
The performance of an algorithm for detecting suspicious re- 
gions in mammograms can be calculated from a set of digital 
mammograms when ground truth markings of the abnormali- 
ties are available. Many decisions must be made in the course of 
evaluating the performance. The selection of cases, the training 
procedure used, and the method of scoring detections can all 
dramatically affect the measured performance. 

The subtlety of lesions of the same type will vary in mammo- 
grams. For example tumors may have a variety of size, contrast, 

margin definition, and similarity to normal parenchymal tissue, 
and calcifications may vary in size, number, contrast, and the 
number of noninteresting calcifications (e.g., vascular calcifica- 
tions) may vary per mammogram. Thus, some mammograms 
will have lesions that are easier to detect than others, and the mix 
of mammograms will affect the overall performance. The num- 
ber of normal mammograms included in the evaluation will also 
affect the performance. Since cancers are only found in a small 
percentage of mammograms, the measured performance on a 
set of images that all contain cancers will not reflect the per- 
formance of the algorithm when run on consecutive cases in a 
screening program. 

Mammography databases contain a large number of cases of a 
variety of cancers (e.g., calcifications and masses with varied vi- 
sual appearances). Some bias toward easier cases may be present 
in the cases in the database, because low-quality mammograms 
may be excluded or because more interesting or difficult cases 
may not have been available when the database was created. Ad- 
ditional bias will be introduced when a subset of mammograms 
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is selected for evaluating an algorithm designed to detect a par- 
ticular subtype of abnormalities. For example, should cases with 
calcifications inside a mass or cases with calcifications not dis- 
tributed in clusters be used when testing an algorithm for detect- 
ing clustered calcifications? Such restrictions on the selection of 
cases will reduce the size of the dataset and reduce the generality 
of the estimated performance. 

To avoid the possibility of overtraining an algorithm and ob- 
taining artificially high-performance scores, no data in the test 
set should be allowed to influence the algorithm or its parameter 

of a detection algorithm at a range of possible operating points. 
Typically, operating a detection algorithm at a point where more 
correct detections are made will lead to more false detections as 
well. Comparing FROC curves generated from two algorithms 
allows a quick comparison of the algorithms at any of a range 
of possible operating points. Excellent coverage of ROC analysis 
can be found in [37] and [38]. 

7.2 Testing in a Clinical Setting 
settings. An algorithm must be fixed before training or testing is 
done. In training, the algorithm is tuned to the data by running 
it on a fixed subset of the data in an iterative fashion, measur- 

parameter values to obtain the best performance. Once this is 
completed, the algorithm is run on the remaining cases (adisjoint 

the ground truth. There are two common procedures for select- 
ing the subset to use in training and testing. The first method is 
to randomly divide the cases in half. Training and testing is done 
twice, first training on one half of the data and then testing on 
the other half and then reversing the process. The other method 

performance on the remaining case. This is repeated many times 
such that each case is left out one time. 

The method of scoring detections as correct or incorrect must 

Analysis ofa  computer algorithm alone is not sufficient for ob- 
taining in a clinical setting. The evaluation 
must consider the effects that the computer-generated informa- 

the Food and Drug Administration (FDA) has the authority to 
safe and effedve devices. This authority includes the ap- 

to use 

ingthe performance of the at each step and adjusting tion ultimately has on patient care [39]. In the United States, 

subset of the cases) and the Performance is evaluated by Using proval of computerized medical image analysis and computer- 
aided detection. 

To evaluate a prompting system, one may want to 
demonstrate that the sensitivity and specificityin finding breast 
cancer are improved when fie system is used, Measuring this 
directly would be very difficult and time consuming because of 

cal approach may be to break the problem down into two parts. 
First, one could determine whether or not the biopsy rate for 
a particular radioIogist increases to his or her prior 

is to train On Of the One, and then evaluate the the low incidence of cancers in screening exams. A more practi- 

be fixed, and listed with In a prompting 
system, a correct detection may be assumed when a prompt is 

performance biopsyrate. Second, one could demonstrate whether or not a sys- 
tem is able to prompt regions on previous exams where a cancer 

generated inside a ground truth region. Prompts that are outside 
all ground truth regions are false positive detections and the first 
prompt inside aground truth region is a true positive. Additional 

~s not found until the next exam at that location. This could 
demonstrate the the system is capable ofdetecting missed 
by radiologists. Clinical studies of this type were to 

Prompts in the Same ground truth region are not scored because 
Only One detection Of an is Produdve* With this 

it is 'Iear that the method Of marking the ground truth 

demonstrate the safety and effectiveness of a commercial CAD 
system (the Imagechecker MI000 System, Technologies Inc., 
Losdtos, CA). In June 1998 this system was approved for clinical 

will affect the performance of an algorithm. If ground truth 
is specified as a circle around an abnormality, the area of the 
marking will be larger than if free-form markings are used. Also, 
if the ground truth represents all regions that initially looked 
suspicious, the performance of an algorithm will measure higher 
than when only cancers are marked. 

Another decision to make in measuring the performance of 
an algorithm is how the fraction of true positive and false posi- 
tive detections are calculated. When an algorithm prompts three 
regions in an MLO mammogram and three regions in a CC 
mammogram of the same breast, and of these six prompts one 
f d s  on a cancer, is the average true positive rate 1 or 0.51 Ei- 
ther could be correct, as long as the method of calculation is 
consistent and clearly stated. 

The preferred method for showing the results of a detection 
algorithm in mammography is through a free-response receiver 
operating characteristic (FROC) plot. This is a plot of the av- 
erage fraction of correct detections (TP/(TP + FN)) versus the 
average number of false detections per image obtained on a set 
of images. Displaying results in this form shows the performance 

FDA [31. 

8 Summary 

Mammography has proven to be an effective tool for the early 
detection of breast cancer, and when used in a screening program 
has been shown to decrease the mortality rate. This being stated, 
there is room for improvement byeither finding cancers earlier or 
by decreasing the number of false positive mammograms. Initial 
experience with CAD in mammography has shown potential, 
and this technology is at a stage of transition to commercial 
application. It will take some time to determine the true effect 
CAD has on reducing the mortality rate from breast cancer. 
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1 Introduction 

The problem of resolving the identity of a person can be cat- 
egorized into two fundamentally distinct types of problems 
with different inherent complexities [ 11: (1) verification and 
(2) recognition. Verification (authentication) refers to the prob- 
lem of confirming or denying a person’s claimed identity (Am 
I who I claim I am?). Recognition (Who am I?) refers to the 
problem of establishing a subject’s identity.l A reliable personal 
identification is critical in many daily transactions. For example, 
access control to physical facilities and computer privileges are 
becoming increasingly important to prevent their abuse. There is 
an increasing interest in inexpensive and reliable personal iden- 
tification in many emerging civilian, commercial, and financial 
applications. 

Typically, a person could be identified based on (1) a person’s 
possession (“something that you possess”), e.g., permit physi- 
cal access to a building to all persons whose identities could be 
authenticated by possession of a key; (2) a person’s knowledge of 
a piece of information (“something that you know”), e.g., per- 
mit log-in access to a system to a person who knows the user i.d. 

‘Often, recognition is also referred to as identification. 

Copyright @ 2000 bykademic Press. 
AU rights of reproduction in any form reserved. 

and a password associated with it. Another approach to positive 
identification is based on identifymg physical characteristics of 
the person. The characteristics could be either a person’s physio- 
logical traits, e.g., fingerprints, hand geometry, etc., or his or her 
behavioral characteristics, e.g., voice and signature. This method 
of identification of a person based on his or her physiological or 
behavioral characteristics is called biometrics. Since the biolog- 
ical characteristics can not be forgotten (like passwords) and can 
not be easily shared or misplaced (like keys), they are generally 
considered to be a more reliable approach to solving the personal 
identification problem. 

2 Emerging Applications 

The accurate identification of a person could deter crime and 
fraud, streamline business processes, and save critical resources. 
Here are a few mind-boggling numbers: about one billion 
dollars in welfare benefits in the United States are annually 
claimed by “double dipping” welfare recipients with fraudulent 
multiple identities [33]. Mastercard estimates the credit card 
fraud at $450 million per annum, which includes charges made 
on lost and stolen credit cards: unobtrusive positive personal 
identification of the legitimate ownership of a credit card at the 

821 
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FIGURE 1 Fingerprints and a fingerprint classification schema involving six categories: (a) arch, (b) tented arch, (c) right 
loop, (d) left loop, (e) whorl, and (f) twin loop. Critical points in a fingerprint, called core and delta, are marked as squares 
and triangles. Note that an arch does not have a delta or a core. One of the two deltas in (e) and both the deltas in (f) are 
not imaged. A sample minutiae ridge ending ( 0 )  and ridge bifurcation ( x )  is illustrated in (e). Each image is 512 x 512 
with 256 grey levels and is scanned at 5 12 dpi resolution. All features points were manually extracted by one of the authors. 

point of sale would greatly reduce the credit card fraud. About 
1 billion dollars worth of cellular telephone calls are made by 
cellular bandwidth thieves - many of these calls are made from 
stolen PINS or cellular telephones. Again, an identification of the 
legitimate ownership of the cellular telephones would prevent 
cellular telephone thieves from stealing the bandwidth. A reli- 
able method of authenticating the legitimate owner of an ATM 

pected to become one ofthe important application ofbiometric- 
based authentication. 

Miniaturization and mass-scale production of relatively inex- 
pensive biometric sensors (e.g., solid-state fingerprint sensors) 
will facilitate the use of biometric-based authentication in asset 
protection. 

1 - 
card would greatly reduce ATM-related fraud, worth approxi- 
mately $3 billion annually [ 6 ] .  A positive method of identifying 3 Fingerprint as a Biometric 
the rightful check payee would also reduce billions of dollars that 
are misappropriated through fraudulent encashment of checks 
each year. A method of positive authentication of each system 
log-in would eliminate illegal break-ins into traditionally secure 
(even federal government) computers. The United States Immi- 
gration and Naturalization service stipulates that it could each 
day detect or deter about 3,000 illegal immigrants crossing the 
Mexican border without delaying legitimate persons entering 
the United States if it had a quick way of establishing positive 
personal identification. 

A smoothly flowing pattern formed by alternating crests (ridges) 
and troughs (valleys) on the palmar aspect of hand is called a 
palmprint. Formation of a palmprint depends on the initial con- 
ditions of the embryonic mesoderm from which they develop. 
The pattern on pulp of each terminal phalanx (of a finger) is 
considered as an individual pattern and is commonly referred to 
as afingerprint(see Fig. 1). A fingerprint is believed to be unique 
to each person (and each finger).* Fingerprints of even identical 
twins are different. 

High-speed computer networks Offer interesting 'pportuni- 
ties for electronic commerce and electronic purse applications* 
The accurate authentication of identities over networks is ex- 

*There is some anecdotal evidence that a fingerprint expert once found two 
(possibly latent) fingerprints belonging to two distinct individuals having 10 
identical minutiae. 
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Fingerprints are one of the most mature biometric technolo- 
gies and are considered legitimate proofs of evidence in courts of 
law all over the world. Fingerprints are, therefore, used in forensic 
divisions worldwide for criminal investigations. More recently, 
an increasing number of civilian and commercial applications 
are either using or actively considering the use of fingerprint- 
based identification because of a better understanding of finger- 
prints as well as a better demonstrated matching performance 
than any other existing biometric technology. 

4 History of Fingerprints 

Humans have used fingerprints for personal identification for a 
very long time [ 231. Modern fingerprint matching techniques 
were initiated in the late 16th century [7]. Henry Fauld, in 
1880, first scientifically suggested the individuality and unique- 
ness of fingerprints. At the same time, Herschel asserted that he 
had practiced fingerprint identification for about 20 years [23]. 
This discovery established the foundation of modern fingerprint 
identification. In the late 19th century, Sir Francis Galton con- 
ducted an extensive study of fingerprints [23]. He introduced the 
minutiae features for single fingerprint classification in 1888. The 
discovery of the uniqueness of fingerprints caused an immedi- 
ate decline in the prevalent use of anthropometric methods of 
identification and led to the adoption of fingerprints as a more 
efficient method of identification [ 291. An important advance in 
fingerprint identification was made in 1899 by Edward Henry, 
who (actually his two assistants from India) established the fa- 
mous “Henry system” of fingerprint classification [ 7,231 - an 
elaborate method of indexing fingerprints very much tuned to 
facilitating the human experts performing (manual) fingerprint 
identification. In the early 20th century, fingerprint identifica- 
tion was formally accepted as a valid personal identification 
method by law enforcement agencies and became a standard 
procedure in forensics [ 231. Fingerprint identification agencies 
were set up worldwide, and criminal fingerprint databases were 
established [23]. With the advent of livescan fingerprinting and 
the availability of cheap fingerprint sensors, fingerprints are in- 
creasingly used in government and commercial applications for 
positive person identification. 

5 System Architecture 

The architecture of a fingerprint-based automatic identity au- 
thentication system is shown in Fig. 2. It consists of four com- 
ponents: (1) user interface, (2) system database, (3) enrollment 
module, and (4) authentication module. The user interface pro- 
vides mechanisms for a user to indicate his or her identity and 
input his or her fingerprints into the system. The system database 
consists of a collection of records, each of which corresponds to 
an authorized person that has access to the system. Each record 
contains the following fields, which are used for authentication 
purpose: (1) user name of the person, (2) minutiae template(s) 

FIGURE 2 
@ IEEE. 

Architecture of an automatic identity authentication system. 

of the person’s fingerprint(s), and (3) other information (e.g., 
specific user privileges). 

The task of enrollment module is to enroll persons and their 
fingerprints into the system database. When the fingerprint im- 
ages and the user name of a person to be enrolled are fed to 
the enrollment module, a minutiae extraction algorithm is first 
applied to the fingerprint images and the minutiae patterns are 
extracted. A quality checking algorithm is used to ensure that 
the records in the system database only consist of fingerprints of 
good quality, in which a significant number (default value is 25) 
of genuine minutiae may be detected. If a fingerprint image is of 
poor quality, it is enhanced to improve the clarity of ridgehalley 
structures and mask out all the regions that cannot be reliably 
recovered. The enhanced fingerprint image is fed to the minutiae 
extractor again. 

The task of authentication module is to authenticate the iden- 
tity of the person who intends to access the system. The person 
to be authenticated indicates his or her identity and places his 
or her finger on the fingerprint scanner; a digital image of this 
fingerprint is captured; minutiae pattern is extracted from the 
captured fingerprint image and fed to a matching algorithm, 
which matches it against the person’s minutiae templates stored 
in the system database to establish the identity. 

6 Fingerprint Sensing 

There are two primary methods of capturing a fingerprint im- 
age: inked (off line) and live scan (inkless) (see Fig. 3). An inked 
fingerprint image is typically acquired in the following way: a 
trained professional3 obtains an impression of an inked finger 
on a paper and the impression is then scanned with a flat bed 
document scanner. The live-scan fingerprint is a collective term 
for a fingerprint image directly obtained from the finger without 

3Possibly for reasons of expediency, Mastercard sends fingerprint kits to their 
credit card customers. The kits are used by the customers themselves to create 
an inked fingerprint impression to be used for enrollment. 
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(a) 

FIGURE 3 Fingerprint sensing: (a) an inked fingerprint image could be captured from the inked impression of a finger; 
(b) a live-scan fingerprint is directly imaged from a live finger based on the optical total internal reflection principle; 
(c) rolled fingerprints are images depicting the nail-to-nail area of a finger; (d) fingerprints captured with solid-state 
sensors show a smaller area of finger than a typical fingerprint dab captured with optical scanners; (e) a latent fingerprint 
refers to partial print typically lifted from the scene of a crime. 

the intermediate step of getting an impression on a paper. The 
acquisition of inked fingerprints is cumbersome; in the context 
of an identity authentication system, it is both infeasible and 
socially unacceptable. The most popular technology to obtain 
a live-scan fingerprint image is based on the optical frustrated 
total internal reflection (FTIR) concept [22 ] .  When a finger is 
placed on one side of a glass platen (prism), ridges of the finger 
are in contact with the platen, while the valleys of the finger are 
not in contact with the platen. The rest of the imaging system 
essentially consists of an assembly of an LED light source and a 
CCD placed on the other side of the glass platen. The laser light 
source illuminates the glass at a certain angle and the camera 
is placed such that it can capture the laser light reflected from 
the glass. The light that is incident upon the platen at the glass 
surface touched by the ridges is randomly scattered, while the 
light that is incident upon the glass surface corresponding to 
valleys suffers total internal reflection. Consequently, portions 
of the image formed on the imaging plane of the CCD corre- 
sponding to ridges are dark, and those corresponding to valleys 
are bright. More recently, capacitance-based solid-state live-scan 
fingerprint sensors have been gaining popularity since they are 

very small in size and hold the promise of becoming inexpen- 
sive in the near future. A capacitance-based fingerprint sensor 
essentially consists of an array of electrodes. The fingerprint skin 
acts as the other electrode, thereby forming a miniature capaci- 
tor. The capacitance from the ridges is higher than that from the 
valleys. This differential capacitance is the basis of operation of 
a capacitance-based solid-state sensor [ 341. 

7 Fingerprint Representation 

Fingerprint representations are of two types: local and global. 
Major representations of the local information in fingerprints 
are based on the entire image, finger ridges, pores on the ridges, 
or salient features derived from the ridges. Representations pre- 
dominantly based on ridge endings or bifurcations (collectively 
known as minutiae; see Fig. 4) are the most common, primarily 
because of the following reasons: (1) minutiae capture much of 
the individual information, (2) minutiae-based representations 
are storage efficient, and (3) minutiae detection is relatively ro- 
bust to various sources of fingerprint degradation. Typically, 
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Ridge Ending Ridge Bifurcation 

FIGURE 4 Ridge ending and ridge bifurcation. @ IEEE. 

minutiae-based representations rely on locations of the minu- 
tiae and the directions of ridges at the minutiae location. Finger- 
print classification identifies the typical global representations 
of fingerprints and is the topic of Section 10. Some global repre- 
sentations include information about locations of critical points 
(e.g., core and delta) in a fingerprint. 

8 Feature Extraction 

A feature extractor finds the ridge endings and ridge bifurca- 
tions from the input fingerprint images. If ridges can be perfectly 
located in an input fingerprint image, then minutiae extraction 
is just a trivial task of extracting singular points in a thinned 
ridge map. However, in practice, it is not always possible to ob- 

Orientation 
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Input Image 

Fingerprint - 
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J -  -> ‘% 
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tain a perfect ridge map. The performance of currently available 
minutiae extraction algorithms depends heavily on the quality 
of the input fingerprint images. As a result of a number of factors 
(aberrant formations of epidermal ridges of fingerprints, post- 
natal marks, occupational marks, problems with acquisition de- 
vices, etc.), fingerprint images may not always have well-defined 
ridge structures. 

A reliable minutiae extraction algorithm is critical to the per- 
formance of an automatic identity authentication system using 
fingerprints. The overall flowchart of a typical algorithm [ 18,281 
is depicted in Fig. 5. It mainly consists of three components: (1) 
orientation field estimation, (2) ridge extraction, and (3) minu- 
tiae extraction and postprocessing. 

1. Orientation estimation : The orientation field of a finger- 
print image represents the directionality of ridges in the 

. Ridge 

. Extraction 

Thinning 
I 

Flowchart of the minutiae extraction algorithm [ 181. @ IEEE. 
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(a) Divide the inputjngerprint image into blocks of size W x W. 

(b) Compute the gradients G, and Gy at each pixel in each block [4]. 

where W is the size of the local window: G, and Gy are the gradient magnitudes in x and y 
directions, respectively. 

(d) Compute the consistency level of the orientationjeld in the local neighborhood of a block 
(a, j) with thefollowing fomzula: 

if(& = (8) - 8 + 360) mod 360) < 180, 
le'-eI = i" d - 180 otherwise, ( 5 )  

where D repments the local neighborhood around the block (i, j )  (in our system, the size 
of D is 5 x 5); N is the number of blocks w'thin D; q?, j') and O(i, j )  are local ridge 
orientations at block (i',j') and (i, j), mpectiveb. 

(e) Ifthe consistency level (Eq.(4)) is above a certain threshold T,, then the local orientations 
amund this region are re-estimated at a lower resolution level until C( i ,  j )  is below a certain 
level. 

FIGURE 6 Hierarchical orientation field estimation algorithm. @ IEEE. 

fingerprint image. It plays a very important role in fin- 
gerprint image analysis. A number of methods have been 
proposed to estimate the orientation field of fingerprint 
images [ 221. Fingerprint image is typically divided into a 
number of nonoverlapping blocks (e.g., 32 x 32 pixels), 
and an orientation representative of the ridges in the block 
is assigned to the block based on an analysis of gray-scale 
gradients in the block. The block orientation could be de- 
termined from the pixel gradient orientations based on, 
say, averaging [22], voting [25], or optimization [28]. We 
have summarized the orientation estimation algorithm in 
Fig. 6. 

2. Segmentation: it is important to localize the portions of 
fingerprint image depicting the finger (foreground). The 
simplest approaches segment the foreground by global or 
adaptive thresholding. A novel and reliable approach to 
segmentation by Ratha etaL [28] exploits the fact that there 
is significant difference in the magnitudes of variance in 
the gray levels along and across the flow of a fingerprint 
ridge. Typically, block size for variance computation spans 
1-2 interridge distance. 

3. Ridge detection: The approaches to ridge detection use 
either simple or adaptive thresholding. These approaches 
may not work for noisy and low-contrast portions of the 
image. An important property ofthe ridges in a fingerprint 
image is that the gray-level values on ridges attain their 
local maxima along a direction normal to the local ridge 
orientation [ 18,281. Pixels can be identified to be ridge 
pixels based on this property. The extracted ridges may be 
thinned or cleaned by using standard thinning [26] and 
connected component algorithms [27]. 

4. Minutiae detection: Once the thinned ridge map is avail- 
able, the ridge pixels with three ridge pixel neighbors are 
identified as ridge bifurcations, and those with one ridge 
pixel neighbor identified as ridge endings. However, all 
the minutiae thus detected are not genuine because of im- 
age processing artifacts and the noise in the fingerprint 
image. 

5. Postprocessing: In this stage, typically, genuine minutiae 
are gleaned from the extracted minutiae using a num- 
ber of heuristics. For instance, too many minutiae in a 
small neighborhood may indicate noise, and they could be 
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discarded. Very close ridge endings oriented antiparallel to 
each other may indicate spurious minutia generated by a 
break in the ridge, caused by either a poor contrast or a cut 
in the finger. Two very closely located bifurcations sharing 
a common short ridge often suggest extraneous minutia 
generated by bridging of adjacent ridges as a result of dirt 
or image processing artifacts. 

7 Fingerprint Enhancement 

The performance of a fingerprint image matching algorithm re- 
lies critically on the quality of the input fingerprint images. In 
practice, a significant percentage of acquired fingerprint images 
(approximately 10% according to our experience) is of poor 
quality. The ridge structures in poor-quality fingerprint images 
are not always well defined, and hence they cannot be correctly 
detected. This leads to the following problems: (1) a significant 
number of spurious minutiae may be created, (2) a large percent- 
age of genuine minutiae may be ignored, and (3) large errors in 
minutiae localization (position and orientation) may be intro- 
duced. In order to ensure that the performance of the minutiae 
extraction algorithm will be robust with respect to the quality of 
fingerprint images, an enhancement algorithm that can improve 
the clarity of the ridge structures is necessary. 

Typically, fingerprint enhancement approaches [ 5,9,14,20] 
employ frequency domain techniques [ 9,10,20] and are compu- 
tationally demanding. In a small local neighborhood, the ridges 
and furrows approximately form a two-dimensional sinusoidal 
wave along the direction orthogonal to local ridge orientation. 
Thus, the ridges and furrows in a small local neighborhood have 
well-defined local frequency and local orientation properties. 
The common approaches employ bandpass filters that model 
the frequency domain characteristics of a good-quality finger- 
print image. The poor-quality fingerprint image is processed 
by using the filter to block the extraneous noise and pass the 
fingerprint signal. Some methods may estimate the orientation 

or frequency of ridge in each block in the fingerprint image 
and adaptively tune the filter characteristics to match the ridge 
characteristics. 

One typical variation of this theme segments the image into 
nonoverlapping square blocks of widths larger than the average 
interridge distance. With the use of a bank of directional band- 
pass filters, each filter is matched to a predetermined model of 
generic fingerprint ridges flowing in a certain direction; the filter 
generating a strong response indicates the dominant direction 
of the ridge flow in the finger in the given block. The resulting 
orientation information is more accurate, leading to more reli- 
able features. A single block direction can never truly represent 
the directions of the ridges in the block and may consequently 
introduce filter artifacts. 

For instance, one common directional filter used for finger- 
print enhancement is a Gabor filter [ 171. Gabor filters have 
both frequency-selective and orientation-selective properties 
and have optimal joint resolution in both spatial and fre- 
quency domains. The even-symmetric Gabor filter has the gen- 
eral form [ 171 

h ( x ,  y )  = exp [ -- :[;; - + - sl) c o s ( 2 1 ~ u ~ x ) ,  (6 )  

where uo is the frequency of a sinusoidal plane wave along the 
x axis, and S, and 6, are the space constants of the Gaussian 
envelope along x and y axes, respectively. Gabor filters with 
arbitrary orientation can be obtained by a rotation of the x-y 
coordinate system. The modulation transfer function (MTF) of 
Gabor filter can be represented as 

H ( u ,  v )  = 21~8~8,  

where Su = 1/27rS, and 8, = l/2.rraY. Figure 7 shows an 

0.8 'I 

FIGURE 7 
sponding MTF. 

An even-symmetric Gabor filter: (a) Gabor fill 

(b) 

ter tuned to 60 cycledwidth and 0" orientation; (b) corre- 
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FIGURE 8 Fingerprint enhancement algorithm [ 111. 

even-symmetric Gabor filter and its MTF. Typically, in a 500 dpi, 
512 x 512 fingerprint image, a Gabor filter with ~0 = 60 cycles 
per image width (height), the radial bandwidth of 2.5 octaves, 
and orientation 8 models the fingerprint ridges flowing in the 
direction 8 + ~ / 2 .  

We summarize a novel approach to fingerprint enhancement 
proposed by Hong et al. [ l l]  (see Fig. 8). It decomposes the 
given fingerprint image into several component images by us- 
ing a bank of directional Gabor bandpass filters and extracts 
ridges from each of the filtered bandpass images by using a typ- 
ical feature extraction algorithm [ 181. By integrating informa- 

tion from the sets of ridges extracted from filtered images, the 
enhancement algorithm infers the region of fingerprint where 
there is sufficient information to be considered for enhancement 
(recoverable region) and estimates a coarse-level ridge map for 
the recoverable region. The information integration is based on 
the observation that genuine ridges in a region evoke a strong 
response in the feature images extracted from the filters oriented 
in the direction parallel to the ridge direction in that region, and 
at most a weak response in feature images extracted from the fil- 
ters oriented in the direction orthogonal to the ridge direction in 
that region. The coarse ridge map thus generated consists of the 
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/ c 

(a) (h) (ci 

FIGURE 9 
hancement; (c) minutiae extracted after image enhancement [ 111. (See color section, p. (2-53.) 

Fingerprint enhancement results: (a) a poor-quality fingerprint; (b) minutiae extracted without image en- 

ridges extracted from each filtered image that are mutually con- 
sistent, and portions of the image where the ridge information 
is consistent across the filtered images constitute the recoverable 
region. The orientation field estimated from the coarse ridge 
map is more reliable than the orientation estimation from the 
input fingerprint image. 

After the orientation field is obtained, the fingerprint image 
can then be adaptively enhanced by using the local orientation in- 
formation. Let f i ( x ,  y ) ( i  = 0, 1,2,3,4,5,6,7) denote thegray- 
level value at pixel (x, y) of the filtered image corresponding to 
the orientation Oi, Bi = i * 22.5". The gray-level value at pixel 
(x, y) of the enhanced image can be interpolated according to 
the following formula: 

f c n h ( %  y) = y) fp(x.y)(x, y) + (1 - a(% y)) f q ( x , y ) ( x ,  y), 

(8) 

where p ( x ,  y )  = l-&J, q ( x ,  y) = r e 1  mod 8, a(%, y )  = e(x ) 

9 ( x ~ y ) 2 ; 5 P ( x . y ) ,  and O(x, y) represents the value of local orienta- 
tion field at pixel (x, y). The major reason that we interpolate 
the enhanced image directly from the limited number of filtered 
images is that the filtered images are already available and the 
above interpolation is computationally efficient. 

An example illustrating the results of minutiae extraction al- 
gorithm on a noisy input image and its enhanced counterpart is 
shown in Fig. 9. The improvement in performance caused byim- 
age enhancement was evaluated by using the fingerprint matcher 
described in Section 1 1. Figure 10 shows an improvement in ac- 
curacy of the matcher with and without image enhancement on 
the MSU database consisting of 700 fingerprint images of 70 
individuals (10 fingerprints per finger per individual). 

prints; these methods of binning eliminate the need to match an 
input fingerprint(s) to the entire fingerprint database in iden- 
tification applications and significantly reduce the computing 
requirements [8,19]. 

Efforts in automatic fingerprint classification have been exclu- 
sively directed at replicating the manual fingerprint classification 
system. Figure 1 shows one prevalent manual fingerprint classi- 
fication scheme that has been the focus of many automatic fin- 
gerprint classification efforts. It is important to note that the dis- 
tribution of fingers into the six classes (shown in Fig. 1) is highly 
skewed. A fingerprint classification system should be invariant 
to rotation, translation, and elastic distortion of the frictional 
skin. In addition, often a significant part of the finger may not 
be imaged (e.g., dabs frequently miss deltas) and the classifica- 
tion methods requiring information from the entire fingerprint 
may be too restrictive for many applications. 

A number ofapproaches to fingerprint classification have been 
developed. Some of the earliest approaches did not make use 
of the rich information in the ridge structures and exclusively 
depended on the orientation field information. Although fin- 
gerprint landmarks provide very effective fingerprint class clues, 
methods relying on the fingerprint landmarks alone may not be 
very successful because of a lack of availability of such informa- 
tion in many fingerprint images and because of the difficulty 
in extracting the landmark information from the noisy finger- 
print images. As a result, the most successful approaches have 
to (1) supplement the orientation field information with ridge 
information; (2) use fingerprint landmark information when 
available but devise alternative schemes when such informa- 
tion cannot be extracted from the input fingerprint images; and 
(3) use reliable structurallsyntactic pattern recognition methods 
in addition to statistical methods. 

We summarize a method of classification [ 121 that takes into . .  

consideration the above-mentioned design criteria that has been 
tested on a large database of realistic fingerprints to classify 
fingers into five major categories: right loop, left loop, arch, 
tented arch, and whorl? 

10 Fingerprint Classification 

The fingerprints have been traditionally classified into categories 
based on information in the global patterns of ridges. In large- 
scale fingerprint identification systems, elaborate methods of 
manual fingerprint classification systems were developed to in- 
dex individuals into bins based on classification of their finger- 

%her  types ofprints, e.g., twin loop, are not considered here but, in principle, 
could be lumped into the "other" or "reject" category. 
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The orientation field determined from the input image may 
not be very accurate and the extracted ridges may contain many 
artifacts and, therefore, cannot be directly used for fingerprint 
classification. A ridge verification stage assesses the reliability of 
the extracted ridges based upon the length of each connected 
ridge segment and its alignment with other adjacent ridges. 
Parallel adjacent subsegments typically indicate a good quality 
fingerprint region; the ridge/orientation estimates in these re- 
gions are used to refine the estimates in the orientation fieldhidge 
map. 

1. Singular points: the Poincark index [22] on the orienta- 
tion field is used to determine the number of delta (ND) 
and core (Nc) points in the fingerprint. A digital closed 
curve, W, about 25 pixels long, around each pixel is used 
to compute the PoincarC index as defined here: 

where 

0 is the orientation field, and W x ( i )  and W,,(i) denote co- 
ordinates of the ith point on the arc length parameterized 
closed curve W. 

2. Symmetry: the feature extraction stage also estimates an 
axis locally symmetric to the ridge structures at the core 
and computes (1) CY, the angle between the symmetry axis 

3. 

and the line segment joining core and delta, (2 )  @, the av- 
erage angle difference between the ridge orientation and 
the orientation of the line segment joining the core and 
delta, and (3) y , the number of ridges crossing the line 
segment joining core and delta. The relative position, R, 
of the delta with respect to symmetry axis is determined as 
follows: R = 1 if the delta is on the right side of symmetry 
axis; R = 0, otherwise. 
Ridge structure: the classifier not only uses the Orientation 
information but also utilizes the structural information in 
the extracted ridges. This feature summarizes the overall 
nature of the ridge flow in the fingerprint. In particular, it 
classifies each ridge of the fingerprint into three categories: 

nonrecurring ridges: the ridges that do not curve very 

Type- 1 recurring ridges: ridges that curve approximately 

Type-2 fully recurring ridges: ridge that curve by more 

much 

7i 

than IT 

The classification algorithm summarized here (see Fig. 11) 
essentially devises a sequence of tests for determining the class 
of a fingerprint and conducts simpler tests earlier in the deci- 
sion tree. For instance, two core points are typically detected 
for a whorl (see Fig. 11), which is an easier condition to verify 
than detecting the number of Type-2 recurring ridges. Another 
highlight of the algorithm is that if it does not detect the salient 
characteristics of any category from features detected in a finger- 
print, it recomputes the features with a different preprocessing 
method. For instance, in the current implementation, the dif- 
ferential preprocessing consists of a different methodlscale of 
smoothing. As can be observed from the flowchart, the algo- 
rithm detects (1) whorls based upon detection of either two 
core points or a sufficient number of Type-2 recurring ridges; 
(2) arch based upon the inability to detect either delta or core 
points; (3) left (right) loops based on the characteristic tilt of the 
symmetric axis, detection of a core point, and detection of either 
a delta point or a sufficient number of Type-1 recurring curves; 
and (4) tented arch based on relatively upright symmetric axis, 
detection of a core point, and detection of either a delta point or 
a sufficient number of Type-1 recurring curves. 

Table 1 shows the results of the fingerprint classification al- 
gorithm on the NIST-4 database, which contains 4,000 images 
(image size is 512 x 480) taken from 2,000 different fingers, two 
images per finger. Five fingerprint classes are defined (1) arch, 
(2) tented arch, (3) left loop, (4) right loop, and (5) whorl. Fin- 
gerprints in this database are uniformly distributed among these 
five classes (800 per class). The five-class error rate in classifying 
these 4,000 fingerprints is 12.5%. The confusion matrix is given 
in Table 1; numbers shown in bold font are correct classifica- 
tions. Since a number of fingerprints in the NIST-4 database are 
labeled as belonging to possibly two different classes, each row 
of the confusion matrix in Table 1 does not sum up to 800. For 
the five-class problem, most of the classification errors are due 
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Ridge Classification 

FIGURE 11 Flowchart of fingerprint classification algorithm. The inset also illustrates ridge classification [ 121. 
The re-compute option involves startingthe classification algorithm with a different preprocessing (e.g., smoothing) 
of the image. 

TABLE 1 Five-class classification results on the NIST-4 database 

Assigned Class 

True Class A T L R W 

A 885 13 10 11  0 
T 179 384 54 14 5 
L 31 27 755 3 20 
R 30 47 3 717 16 
w 6 1 15 15 759 

Note A, arch; T, tented arch; L, left loop; R, right loop; W, whorl. 

to misclassifying a tented arch as an arch. By combining these 
two arch categories into a single class, the error rate drops from 
12.5% to 7.7%. Besides the tented arch/arch errors, the other 
errors mainly come from misclassifications between archhented 
arch and loops and are due to poor image quality. 

11 Fingerprint Matching 

Given two (input and template) sets of features originating from 
two fingerprints, the objective of the feature matching system 
is to determine whether or not the prints represent the same 
finger. Fingerprint matching has been approached from sev- 
eral different strategies, like image-based [ 21, ridge pattern- 
based, and point (minutiae) pattern-based fingerprint repre- 
sentations. There also exist graph-based schemes [ 15,16,30] for 

fingerprint matching. Image-based matching may not tolerate 
large amounts of nonlinear distortion in the fingerprint ridge 
structures. Matchers critically relying on extraction of ridges, or 
their connectivity information may display drastic performance 
degradation with a deterioration in the quality of the input fin- 
gerprints. We, therefore, believe that the point pattern matching 
(minutiae matching) approach facilitates the design of a robust, 
simple, and fast verification algorithm while maintaining a small 
template size. 

The matching phase typically defines the similarity (distance) 
metric between two fingerprint representations and determines 
whether a given pair of representations is captured from the 
same finger (mated pair) based on whether this quantified 
(dis)similarity is greater (less) than a certain (predetermined) 
threshold. The similarity metric is based on the concept of cor- 
respondence in minutiae-based matching. Aminutia in the input 
fingerprint and a minutia in the template fingerprint are said to 
be corresponding if they represent the identical minutia scanned 
from the same finger. 

Before the fingerprint representations could be matched, most 
minutia-based matchers first transform (register) the input and 
template fingerprint features into a common frame of refer- 
ence. The registration essentially involves alignment based on 
rotation/translation and may optionally include scaling. The 
parameters of alignment are typically estimated either from 
(1 )  singular points in the fingerprints, e.g., core and delta lo- 
cations; (2) pose clustering based on minutia distribution [28]; 
or (3) any other landmark features. For example, Jain et aL [ 181 
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FIGURE 12 Two different fingerprint impressions ofthe same finger. In order to know the correspondence between 
the minutiae of these two fingerprint images, all the minutiae must be precisely localized and the deformation must 
be recovered. @ IEEE. 

use a rotation/translation estimation method based on proper- 
ties of ridge segment associated with ridge ending min~ t i ae .~  

There are two major challenges involved in determinating the 
correspondence between two aligned fingerprint representations 
(see Fig. 12). (1) dirt or leftover smudges on the sensing device 
and the presence of scratches or cuts on the finger either in- 
troduce spurious minutiae or obliterate the genuine minutiae; 
(2) variations in the area of finger being imaged and its pressure 
on the sensing device affect the number of genuine minutiae cap- 
tured and introduce displacements of the minutiae from their 
“true” locations as a result of elastic distortion of the finger- 
print skin. Consequently, a fingerprint matcher should not only 
assume that the input fingerprint is a transformed template fin- 
gerprint by a similarity transformation (rotation, translation, 
and scale), but it should also tolerate both spurious minutiae as 
well as missing genuine minutiae and accommodate perturba- 
tions of minutiae from their true locations. Figure 13 illustrates a 
typical situation of aligned ridge structures of mated pairs. Note 
that the best alignment in one part (top left) of the image may 
result in a large magnitude of displacements between the corre- 
sponding minutiae in other regions (bottom right). In addition, 
observe that the distortion is nonlinear: given the amount of dis- 
tortions at two arbitrary locations on the finger, it is not possible 
to predict the distortions at all the intervening points on the line 
joining the two points. 

The adaptive elastic string matching algorithm [ 181 summa- 
rized in this chapter uses three attributes of the aligned minutiae 
for matching: its distance from the reference minutiae (radius), 
the angle subtended to the reference minutiae (radial angle), 
and the local direction of the associated ridge (minutiae direc- 

’The input and template minutiae used for the alignment will be referred to 
as reference minutiae below. 

tion). The algorithm initiates the matching by first representing 
the aligned input (template) minutiae as an input (template) 
minutiae string. The string representation is obtained by im- 
posing a linear ordering based on radial angles and radii. The 
resulting input and template minutiae strings are matched using 
an inexact string matching algorithm to establish the correspon- 
dence. 

The inexact string matching algorithm essentially transforms 
(edits) the input string to the template string, and the number 
of edit operations is considered as a metric of the (dis)similarity 

FIGURE 13 Aligned ridge structures of mated pairs. Note that the best align- 
ment in one part (midleft) of the image results in a large displacements between 
the corresponding minutiae in the other regions (bottom right). @ IEEE. (See 
color section, p. C-53.) 
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TABLE 2 False acceptance and false reject rates on two data sets with different 
threshold values @ IEEE 

Threshold False Accept. Rate False Reject Rate False Accept. Rate False Reject Rate 
Value (MSU) (%) (MSU) (%) (NET 9) (%) (NIST 9) (%) 

7 0.07 7.1 0.073 12.4 
8 0.02 9.4 0.023 14.6 
9 0.01 12.5 0.012 16.9 

10 0 14.3 0.003 19.5 

between the strings. While permitted edit operators model the 
impression variations in a representation of a finger (deletion 
of the genuine minutiae, insertion of spurious minutiae, and 
perturbation of the minutiae), the penalty associated with each 
edit operator models the likelihood of that edit. The sum of 
penalties of all the edits (edit distance) defines the similarity 
between the input and template minutiae strings. Among several 
possible sets of edits that permit the transformation of the input 
minutiae string into the reference minutiae string, the string 
matching algorithm chooses the transform associated with the 
minimum cost based on dynamic programming. 

The algorithm tentatively considers a candidate (aligned) in- 
put and a candidate template minutia in the input and template 
minutiae string to be a mismatch if their attributes are not within 
a tolerance window (see Fig. 14) and penalizes them for dele- 
tionhnsertion edit. If the attributes are within the tolerance win- 
dow, the amount of penalty associated with the tentative match 
is proportional to the disparity in the values of the attributes in 
the minutiae. The algorithm accommodates for the elastic dis- 
tortion by adaptively adjusting the parameters of the tolerance 
window based on the most recent successful tentative match. 
The tentative matches (and correspondences) are accepted if the 
edit distance for those correspondences is smaller than any other 
correspondences. 

Figure 15 shows the results of applying the matching algo- 
rithm to an input and a template minutiae set pair. The outcome 

FIGURE 14 Bounding box and its adjustment. @ IEEE. 

TABLE 3 Average CPU time for minutiae extraction and 
matching on a Sun ULTRA 1 workstation @ IEEE 

Minutiae Extraction (s.) Minutiae Matching (s.) Total (s.) 

1.1 0.3 1.4 

of the matching process is defined by a matching score. The 
matching score is determined from the number of mated minutia 
from the correspondences associated with the minimum cost of 
matching input and template minutiae string. The raw matching 
score is normalized by the total number of minutia in the input 
and template fingerprint representations and is used for deciding 
whether input and template fingerprints are mates. The higher 
the normalized score, the larger the likelihood that the test and 
template fingerprints are the scans of the same finger. 

The results of a performance evaluation of the fingerprint 
matching algorithm are illustrated in Fig. 16 for 1,350 finger- 
print images in NIST 9 database [ 3 11 and in Fig. 10 for 700 images 
of 70 individuals from the MSU database. Some sample points 
on the receiver operating characteristics curve are tabulated in 
Table 2. 

In order for an automatic identity authentication system to 
be acceptable in practice, the response time of the system has to 
be within a few seconds. Table 3 shows that our implemented 
system does meet the practical response time requirement. 

12 Summary and Future Prospects 

minutia 

With recent advances in fingerprint sensing technology and im- 
provements in the accuracy and matching speed of the finger- 
print matching algorithms, automatic personal identification 
based on the fingerprint is becoming an attractive alternative 
or complement to the traditional methods of identification. We 
have provided an overview of the fingerprint-based identifica- 
tion and summarized algorithms for fingerprint feature extrac- 
tion, enhancement, matching, and classification. We have also 
presented a performance evaluation of these algorithms. 

The critical factor for the widespread use of fingerprints is in 
meeting the performance (e.g., matching speed and accuracy) 
standards demanded by emerging civilian identification appli- 
cations. Unlike an identification based on passwords or tokens, 
performance of the fingerprint-based identification is not per- 
fect. There will be a growing demand for faster and more accurate 
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FIGURE 15 Results of applying the matching algorithm to an input minutiae set and a template: (a) input 
minutiae set; (b) template minutiae set; (c) alignment result based on the minutiae marked with green circles; 
(d) matching result, where template minutiae and their correspondences are connected by green lines. @ IEEE. 
(See color section, p. C54.)  

fingerprint matching algorithms that can (particularly) handle 
poor-quality images. Some of the emerging applications (e.g., 
fingerprint-based smartcards) will also benefit from a compact 
representation of a fingerprint. The design of highly reliable, ac- 
curate, and foolproof biometrics-based identification systems 
may warrant the effective integration of discriminatory infor- 
mation contained in several different biometrics or technolo- 
gies [ 131. The issues involved in integrating fingerprint-based 
identification with other biometric or nonbiometric technolo- 
gies may constitute an important research topic. 

As biometric technology matures, there will be an increasing 
interaction among the (biometric) market, (biometric) tech- 
nology, and the (identification) applications. The emerging 
interaction is expected to be influenced by the added value of the 
technology, the sensitivities of the population, and the credibil- 
ity of the service provider. It is too early to predict where, how, 
and which biometric technology would evolve and be mated 
with which applications. However, it is certain that biometrics- 
based identification will have a profound influence on the way 
we conduct our daily business. It is also certain that, as the most 
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mature and well-understood biometric, fingerprints will remain 
an integral part of the preferred biometric-based identification 
solutions in the years to come. 
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Developing a computational model for the recognition of nat- 
ural objects such as human faces is quite difficult, because they 
are complex, multidimensional, and meaningful visual stimuli. 
They are a natural class of objects, and they stand in stark con- 
trast to sine wave gratings and other artificial stimuli used in 
human and computer vision research. Thus, unlike most im- 
age processing functions, for which we may construct detailed 
mathematical models, recognition of natural objects such as hu- 
man faces is a high-level task in which computational approaches 
must rely on features and structures learned from examples by 
statistical modeling. 

The general approach we have developed is to attempt to de- 
scribe the range of two-dimensional (2-D) appearances of ob- 
jects to be recognized. To obtain such an “appearance-based” 
representation, one must first transform the image into a low- 
dimensional coordinate system that preserves the general per- 
ceptual quality of the target object’s image. The necessity for 
such a transformation is to address the “curse of dimensional- 
ity”: the raw image data have so many degrees of freedom that it 

Copyright @ 2000 b v h d e m i c  Press. 
AU rights of reproduction in any form reserved. 

would require millions of examples to learn the range of appear- 
ances directly. Once a low-dimensional representation of the 
target class (face, eye, hand, car, etc.) has been obtained, then 
standard methods can be used to learn the range of appearance 
that the target exhibits in the new, low-dimensional coordinate 
system. 

1.1 Appearance-Based Detection 
and Recognition 
What do we mean by “the range of appearances of the human 
face”? The range of appearances is precisely the probability den- 
sityfirnction (PDF) of the image data for the target class. For 
instance, given several examples of a target class C2 in such a 
low-dimensional representation, it is straightforward to model 
the probability distribution function P (x I 52) of its image-level 
features x as a mixture of Gaussian distributions, thus obtaining 
a low-dimensional, parametric appearance model for the tar- 
get class [21]. Once the target classes’ probability distribution 
fiinction has been learned, we can use Bayes’ rule to perform 
maximum a postieriori (MAP) detection and recognition. 

837 
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The result is a very simple, representation of the target class’s 
appearance, which can be used to detect occurances of the class, 
to compactly describe its appearance, and to efficiently compare 
different examples from the same class. We have shown that this 
method is very powerful for the detection and recognition of hu- 
man faces, hands, and facial expressions [ 221. Other researchers 
have used extensions of this basic method to recognize industrial 
objects and household items [24]. 

The use of parametric appearance models to characterize the 
PDF of an object’s appearance in the image is related to the 
simpler idea of aview-based representation [ 3 1,381. As originally 
developed, the idea of view-based recognition was to accurately 
describe the spatial structure of the target object by interpolating 
between previously seen views. However, in order to describe 
natural objects such as faces or hands, Which display a wide range 
of structural and nonrigidvariation, one must extend the notion 
of “view” to include characterizing the range of geometric and 
feature variation, as well as the likelihood associated with such 
variation. That is, one must use an appearance-based approach 
such as the one described here, instead of the simpler idea of a 
view-based approach. 

We typically use the Karhunen-Lokve transform (KLT), 
also called the principal components analysis (PCA), as the 
dimensionality-reducing preprocessing transform. This is be- 
cause the KLT is known to provide an optimally compact linear 
basis (with respect to the RMS error) for a given class of signal. 
This transform has also been used by pioneers in face recogni- 
tion research [ 1,161. However, our use ofthe same preprocessing 
step leads to a false impression of similarity. Previous researchers 
have used the KLT as a feature extraction step, which is followed 
by a simple classification algorithm. In contrast, we are using the 
KLT to facilitate learning of the range of appearances (the PDF), 
which we then use to make MAP estimates for target detection 
and recognition. 

In this chapter we will first address the problem of detecting 
faces and facial features, and describe how our method of learn- 
ing the range of faciallfeature appearances is used to accomplish 
this first, all-important step. We will then describe how to the 
same models of facial appearance can be used for facial recog- 
nition, and we report on the robustness and accuracy of the 
combined detectionlrecognition method. Finally, we will dis- 
cuss how recognition is extended to included variation in head 
orientation, and how facial features can be usefully included in 
the face recognition proccess. 

2 Visual Attention and Object Detection 

Visual attention is the process of restricting higher-level pro- 
cessing to a subset of the visual field, referred to as the focus of 
attention (FOA). The critical component of visual attention is 
the selection of the FOA. In humans this process is not based 
purely on bottom-up processing and is in fact goal driven. The 

measure of interest or saliency is thus defined by the demands of 
the particular visual task. 

Palmer [26] has suggested that visual attention is the process 
of locating the object of interest and placing it in a canonical 
(or object-centered) reference frame suitable for recognition (or 
template matching). We have developed a computational tech- 
nique for automatic object recognition, which is in accordance 
with Palmer’s model of visual attention. The system uses a prob- 
abilistic formulation for the estimation of the position and scale 
of the object in the visual field and remaps the FOA to an object- 
centered reference frame, which is subsequently used for recog- 
nition and verification. 

At a simple level the underlying mechanism of attention dur- 
ing avisual search task can be based on a spatiotopic saliency map 
S(i, j ) ,  which is a function of the image information I ( x ,  y) in 
a local region R: 

W ,  j )  = f [{I(i + r, j + c)  : (r, c )  E R}] (1 )  

For example, saliency maps have been constructed that employ 
spatiotemporal changes as cues for foveation [2] or other low- 
level image features such as local symmetry for detection of inter- 
est points [33]. However, bottom-up techniques based on low- 
level features lack context with respect to high-level visual tasks 
such as object recognition. In a recognition task, the selection 
of the FOA is driven by higher-level goals and therefore requires 
internal representations of an object’s appearance and a means 
of comparing candidate objects in the FOA to the stored object 
models. 

Specifically, in an object-based visual search the saliency map 
is a function of the degree of match between a candidate ob- 
ject in a local image region and an internal model of the target 
object. In view-based recognition (as opposed to 3-D geomet- 
ric or invariant-based recognition), the saliency can be formu- 
lated in terms of visual similarity by using a variety of metrics, 
ranging from simple template matching scores to more sophis- 
ticated measures using, for example, robust statistics for im- 
age correlation [ 6 ] .  In this chapter, however, we are primarily 
interested in saliency maps that have a probabilistic interpreta- 
tion as object-class membership functions or likelihoods. These 
likelihood functions are learned by applying density estimation 
techniques in complementary subspaces obtained by an eigen- 
vector decomposition. Our approach to this learning problem 
is view-based, that is, the learning and modeling of the visual 
appearance of the object from a (suitably normalized and pre- 
processed) set of training imagery. Figure 1 shows examples 
of the automatic selection of FOA for the detection of human 
faces. In each case, the target object’s probability distribution was 
learned from training views and then was subsequently used in 
computing likelihoods for detection. The face representation is 
based on the visual appearance (normalized gray-scale image). 
The maximum likelihood (ML) estimates of position and scale 
are shown in the figure by the cross-hairs and bounding box, 
respectively. 



10.6 Probabilistic, View-Rased, and Modular Models for Human Face Recognition 839 
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FIGURE 1 (a) Input image, (b) face detection, (c) face centering, (d) facial feature detection. 

2.1 Object Detection 
The standard detection paradigm in image processing is that of 
normalized correlation or template matching (see Chapter 3.1 
of this Handbook). However, this approach is only optimal in 
the simplistic case of a deterministic signal embedded in addi- 
tive white Gaussian noise. When we begin to consider a target 
class detection problem - e.g, finding a generic human face or 
a human hand in a scene - we must incorporate the underly- 
ing probability distribution of the object. Subspace methods and 
eigenspace decompositions are particularly well suited to such 
a task since they provide a compact and parametric description 
of the object’s appearance and also automatically identify the 
degrees offreedom of the underlying statistical variability. 

In particular, the eigenspace formulation leads to a powerful 
alternative to standard detection techniques such as template 
matching or normalized correlation. The reconstruction error 
(or residual) of the eigenspace decomposition (referred to as 
the “distance from face space” in the context of the work with 
“eigenfaces” [ 371 ) is an effective indicator ofsimilarity. The resid- 
ual error is easily computed by using the projection coefficients 
and the original signal energy. This detection strategy is equiv- 
alent to matching with a linear combination of eigentemplates 
and allows for a greater range of distortions in the input signal 
(including lighting, and moderate rotation and scale). In a sta- 
tistical signal detection framework, the use of eigentemplates has 
been shown to yield superior performance in comparison with 
standard matched filtering [ 17,271. 

In [28] we used this formulation for a modular eigenspace rep- 
resentation of facial features where the corresponding residual - 
referred to as distance-from-feature-space, or DFFS - was used 
for localization and detection. Given an input image, a saliency 
map was constructed by computing the DFFS at each pixel. When 
using M eigenvectors, this requires M convolutions (which can 
be efficiently computed using an FFT) plus an additional local 
energy computation. The global minimum of this distance map 
was then selected as the best estimate of the location of the target. 

In this chapter we will show that the DFFS can be interpreted as 
an estimate of a marginal component of the probability density 
of the object and that a complete estimate must also incorporate 
a second marginal density based on a complementary “distance 
in feature space” (DIFS). Using our estimates of the object den- 
sities, we formulate the problem of target detection from the 

point of view of a ML estimation problem. Specifically, given the 
visual field, we estimate the position (and scale) of the image 
region that is most representative of the target of interest. Com- 
putationally this is achieved by sliding an m-by-n observation 
window throughout the image and at each location computing 
the likelihood that the local subimage xis an instance of the target 
class ‘2, i.e., P(x I ‘2). After this probability map is computed, 
we select the location corresponding to the highest likelihood as 
our ML estimate of the target location. Note that the likelihood 
map can be evaluated over the entire parameter space affecting 
the object’s appearance, which can include transformations such 
as scale and rotation. 

3 Eigenspace Methods for Visual 
Modeling 

In recent years, computer vision research has witnessed a grow- 
ing interest in eigenvector analysis and subspace decomposi- 
tion methods. In particular, eigenvector decomposition has been 
shown to be an effective tool for solving problems that use high- 
dimensional representations of phenomena that are intrinsically 
low-dimensional. This general analysis framework lends itself 
to several closely related formulations in object modeling and 
recognition that employ the principal modes or characteristic 
degrees of freedom for description. The identification and para- 
metric representation of a system in terms of these principal 
modes is at the core of recent advances in physically based mod- 
eling 1291, correspondence and matching [ 341, and parametric 
descriptions of shape [9]. 

Eigenvector-based methods also form the basis for data anal- 
ysis techniques in pattern recognition and statistics, where they 
are used to extract low-dimensional subspaces comprising sta- 
tistically uncorrelated variables that tend to simplify tasks such 
as classification. The KLT [ 181 and PCA [ 131 are examples of 
eigenvector-based techniques that are commonly used for di- 
mensionality reduction and feature extraction in pattern recog- 
nition. 

In computer vision, eigenvector analysis of imagery has been 
used for the characterization of human faces [ 151 and automatic 
face recognition using “eigenfaces” [27, 371. More recently, a 
principal components analysis of imagery has also been applied 
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for robust target detection [8, 271, nonlinear image interpolation 
[5], visual learning for object recognition [24, 401, and visual 
servoing for robotics [ 251. 

3.1 Probabilistic Eigenspaces 
However, these authors (with the exception of [27]) have used 
eigenvector analysis primarily as a dimensionality reduction 
technique for subsequent modeling, interpolation, or classifi- 
cation. In contrast, our methods use an eigenspace decomposi- 
tion as an integral part of an efficient technique for probability 
density estimation of high-dimensional data. 

Our learning method estimates the complete probability dis- 
tribution of the object's appearance by using an eigenvector de- 
composition of the sample covariance matrix of a set of training 
views. The desired target density is decomposed into two com- 
ponents: the density in the principal subspace (containing the 
traditionally defined principal components) and its orthogonal 
complement (which is usually discarded in standard PCA). We 
have derived the form for an optimal density estimate for the 
case of Gaussian data and a near-optimal estimator for arbitrar- 
ily complex distributions in terms of a mixture-of-Gaussians 
density model [22]. 

We note that this learning method differs from supervised 
visual learning with function approximation networks [32] in 
which a hypersurface representation of an inputloutput map is 
automatically learned from a set of training examples. Instead, 
we use a probabilistic formulation, which combines the two stan- 
dard paradigms of unsupervised learning - PCA and density es- 
timation - to arrive at a computationally feasible estimate of the 
class conditional density function which is then used for maxi- 
mum likelihood detection of faces and facial features, as well as 
Bayesian modeling for recognition. 

The key to our approach to automatic visual learning is den- 
sity estimation. However, instead of applying estimation tech- 
niques directly to the original high-dimensional space of the 
imagery, we use an eigenspace decomposition to yield a compu- 
tationally feasible estimate. Specifically, the eigenspace analysis 
is applied to a set of training views of the object in order to 
identify a principal subspace that captures the intrinsic dimen- 
sionality of the data. The component of the complete density 
in this lower-dimensional subspace is then estimated by using 
a suitable parametric form. In addition, we implicitly model 
the component of the distribution in the orthogonal subspace. 
The complete density estimate can be efficiently computed from 
the lower-dimensional principal components. Our density esti- 
mate is shown to be optimal in the case of Gaussian-distributed 
training data. 

3.1.1 Principal Component Imagery 
Given a training set of m-by-n images {It}zl, we can form a 
training set of vectors {xt}, where x E RN=mn, by lexicographic 
ordering of the pixel elements of each image If. The basis func- 
tions for the KLT [18] are obtained by solving the eigenvalue 

problem, 

A = CPTCCP, 

where E is the covariance matrix, CP is the eigenvector matrix 
of E, and A is the corresponding diagonal matrix of eigen- 
values. The unitary matrix CP defines a coordinate transform 
(rotation) that decorrelates the data and makes explicit the in- 
variantsubspacesof the matrix operator X. In PCA, a partial KLT 
is performed to identify the largest-eigenvalue eigenvectors and 
obtain a principal component feature vector y = i, where 
f i  = x - j i  is the mean-normalized image vector and C P M  is 
a submatrix of @ containing the principal eigenvectors. PCA 
can be seen as a linear transformation y = T ( x )  : RN + RM, 
which extracts a lower-dimensional subspace of the KL basis 
corresponding to the maximal eigenvalues. These principal com- 
ponents preserve the major linear correlations in the data and 
discard the minor ones.' 

By ranking the eigenvectors of the KL expansion with respect 
to their eigenvalues and selecting the first M principal compo- 
nents, we form an orthogonal decomposition of the vector space 
RN into two mutually exclusive and complementary subspaces: 
the principal subspace (or feature space) F = {O.ijEl contain- 
ing the principal components, and its orthogonal complement 
F = {Oi}EM+,. This orthogonal decomposition is illustratedin 
Fig. 2(a), where we have a prototypical example of a distribution 
that is embedded entirely in F. In practice there is always a signal 
component, in because of the minor statistical variabilities in 
the data or simply because of the observation noise that affects 
every element of x. 

In a partial KL expansion, the residual reconstruction error is 
defined as 

N M 
2(x) = 2 = l l % 1 I 2  - c y ;  

i=M+l i=l 
(3) 

and can be easily computed from the first M principal com- 
ponents and the L.2 norm of the mean-normalized image i. 
Consequently the L2 norm of every element x E RN can be de- 
composed in terms of its projections in these two subspaces. 
We refer to the component in the orthogonal subspace F as the 
DFFS, which is a simple Euclidean distance and is equivalent to 
the residual error e2(x) in Eq. (3). The component of x that lies 
in the feature space F is referred to as the DIFS, but it is generally 
not a distance-based norm, but can be interpreted in terms of 
the probability distribution of y in F .  

3.1.2 Density Estimation in Eigenspace 
One difficulty with probabilistic visual modeling is that the in- 
tensity or intensity difference vectors are very high dimensional, 

'In practice, the number of training images NT is far less than the dimen- 
sionality of the imagery N, consequently, the covariance matrix C is singular. 
However, the first M NT eigenvectors can always be computed (estimated) 
from Nt samples by using, e.g., a singular value decomposition [ 121. 
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FIGURE 2 
density; (b) a typical eigenvalue spectrum and its division into the two orthogonal subspaces. 

(a) Decomposition into the principal subspace F and its orthogonal complement F for a Gaussian 

with A E RN and N = O( IO4). Therefore we typically lack suf- 
ficient independent training observations to compute reliable 
second-order statistics for the likelihood densities (i.e., singular 
covariance matrices will result). Even if we were able to estimate 
these statistics, the computational cost of evaluating the likeli- 
hoods is formidable. Furthermore, this computation would be 
highly inefficient since the intrinsic dimensionality or major de- 
grees of freedom of the data vectors of each class is likely to be 
significantly smaller than N. 

Recently, an efficient density estimation method was pro- 
posed by Moghaddam and Pentland [22], which divides the 
vector space RN into two complementary subspaces by using 
an eigenspace decomposition. This method relies on a PCA [ 131 
to form a low-dimensional estimate of the complete likelihood, 
which can be evaluated by using only the first M principal com- 
ponents, where M << N. This decomposition is illustrated in 
Fig. 2, which shows an orthogonal decomposition of the vector 
space RN into two mutually exclusive subspaces: the principal 
subspace F containing the first M principal components and 
its orthogonal complement F, which contains the residual of 
the expansion. The component in the orthogonal subspace F is 
the so-called DFFS, a Euclidean distance equivalent to the PCA 
residual error. The component of A that lies in the feature space 
F is referred to as the DIFS and is a MahaZanobis distance for 
Gaussian densities. 

As shown in [22], the complete likelihood estimate can be 
written as the product of two independent marginal Gaussian 
densities: 

where PF (2 I Q) is the true marginal density in F ,  @p (2 I Q) is 
the estimated marginal density in the orthogonal complement 
F, yi are the principal components, and ~ ~ ( 2 )  is the residual (or 

DFFS). The optimal value for the weighting parameter p is then 
found to be simply the average of the F eigenvalues 

(5) 

We note that in actual practice, the majority of the $ eigenvalues 
are unknown but can be estimated, for example, by fitting a 
nonlinear function to the available portion of the eigenvalue 
spectrum and estimating the average of the eigenvalues beyond 
the principal subspace. 

3.2 Maximum Likelihood Detection 
The density estimate @(x I S 2 )  can be used to compute a local 
measure of target saliency at each spatial position (i,  j )  in an 
input image based on the vector x obtained by the lexicographic 
ordering of the pixel values in a local neighborhood R: 

S(i, j ; Q ) = @ ( x l a ) ,  x = ~ . [ { ~ ( i + r ,  j + c > : ( r , c ) E R ) ] ,  
( 6 )  

where J. [o] is the operator that converts a subimage into avector 
by raster scanning the image elements into the vector. The ML 
estimate of position of the target S2 is then given by finding the 
position ( i ,  j )  that maximizes S(i, j ;  a), e.g., 

(i,  j l M L  = S(i, j ;  Q). (7) 

An example of a saliency may for ML detection is shown in 
Fig. 3. This ML formulation can be extended to estimate object 
scale with multiscale saliency maps. The likelihood computation 
is performed (in parallel) on linearly scaled versions of the in- 
put image I(") corresponding to a predetermined set of scales 
{VI, 0 2 ,  . . . , u"): 



842 Handbook of Image and Video Processing 

1 

FIGURE 3 
image. 

Target saliency map S(i, j ) ,  showing the probability of a left eye pattern over the input 

where the ML estimate of the spatial and scale indices is defined 
by 

(i, j, k)ML = S(i, j, k; 52). (9) 

One important factor of variability in the appearance of the 
object in gray-scale imagery is that of lighting and contrast. 
However, one can normalize for global illumination changes (as 
well as the linear response characteristics of the CCD camera) 
by normalizing each subimage x by its mean and standard de- 
viation. This lighting normalization is performed both during 
training (density estimation) and also in the operational mode 
(e.g., in detection). 

This maximum likelihood detection framework can be viewed 
as a Bayesian formulation of some neural network approaches 
to target detection. Perhaps the most closely related is the neu- 
ral network face detector of Sung and Poggio [35], which is 
essentially a trainable nonlinear binary pattern classifier. They 
too learn the distribution of the object class with a mixture-of- 
Gaussians model (using an elliptical k-means algorithm instead 
of EM). Instead of likelihoods, however, input patterns are repre- 
sented by a set of distances to each mixture component (similar 
to a combination of the DIFS and DFFS), thus forming a feature 
vector indicative of the overall class membership. In addition, 
Sung and Poggio explicitly model the “not-class’’ by learning the 
distribution of nearby nonface patterns. The set of distances to 
both classes are then used to train a neural network to discrimi- 
nate between face and nonface patterns (similar to computing a 
likelihood ratio in MAP). 

4 Bayesian Model of Facial Similarity 

Current approaches to image matching for visual object recog- 
nition and image database retrieval often make use of simple im- 
age similarity metrics such as Euclidean distance or normalized 
correlation, which correspond to a standard template-matching 

approach to recognition. For example, in its simplest form, the 
similarity measure S( 11, 1 2 )  between two images I1 and 12 can 
be set to be inversely proportional to the norm 11 11 - 12 1 1 .  Such 
a simple formulation suffers from a major drawback it does not 
exploit knowledge of which type of variations are critical (as 
opposed to incidental) in expressing similarity. In this chapter, 
we formulate a probabilistic similarity measure which is based 
on the probability that the image intensity differences, denoted 
by A = 11 - 1 2 ,  are characteristic of typical variations in ap- 
pearance of the same object. For example, for purposes of face 
recognition, we can define two classes of facial image variations: 
intrapersond variations 52 1 (corresponding, for example, to dif- 
ferent facial expressions ofthe sameindividual) and extrapersonal 
variations C ~ E  (corresponding to variations between different 
individuals). Our similarity measure is then expressed in terms 
of the probability 

where P(C21 1 A) is the a posteriori probability given by Bayes 
rule,usingestimatesofthelikelihoods P(A I C21) and P ( A  I a,), 
which are derived from training data by using an efficient sub- 
space method for density estimation of high-dimensional data 
[22]. This Bayesian (MAP) approach can also be viewed as a 
generalized nonlinear extension of linear discriminant analysis 
(LDA) [ 11,361 or “FisherFace” techniques [3] for face recogni- 
tion. Moreover, our nonlinear generalization has distinct com- 
putational/storage advantages over these linear methods for large 
databases. 

4.1 Analysis of Intensity Differences 
We now consider the problem of characterizing the type of differ- 
ences that occur when matching two images in a face recognition 
task. We define two distinct and mutually exclusive classes: 521, 

representing intrapersonalvariations between multiple images of 
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the same individual (e.g., with different expressions and lighting 
conditions); and 5 2 ~ ,  representing extrapersonal variations that 
result when matching two different individuals. We will assume 
that both classes are Gaussian distributed and seek to obtain esti- 
mates of the likelihood functions P(A I 521) and P(A I 5 2 ~ )  for 
a given intensity difference A = 11 - 12. 

Given these likelihoods, we can define the similarity score 
S( I1, 1 2 )  between a pair of images directly in terms of the in- 
trapersonal a posteriori probability as given by Bayes rule: 

S = P(Q1 I A) 

where the priors P (52)  can be set to reflect specific operating con- 
ditions (e.g., number oftest images vs. the size ofthe database) or 
other sources of aprioriknowledge regarding the two images be- 
ing matched. Additionally, this particular Bayesian formulation 
casts the standard face recognition task (essentially an M-ary 
classification problem for M individuals) into a binary pattern 
classification problem with 521 and 5 2 ~ .  This much simpler prob- 
lem is then solved by using the maximum a posteriori rule; i.e., 
two images are determined to belong to the same individual if 
P(Q1 I A) > P ( Q E  I A), or equivalently, if S(Z1, 1 2 )  > 1/2. 

We note that the Bayesian classification of identity outlined 
above is perhaps closely related to human “categorical percep- 
tion,” and the a posteriori probability itself is perhaps a more 
meaningful and accurate computational model of perceptual 
similarity as judged by humans. 

5 Face Detection and Recognition 

In this section we will present several examples of our face de- 
tection and recognition systems, including the following: ML 
detection of faces and facial features (e.g., eyes) used for facial 

alignment, recognition using “eigenfaces” on large databases, 
and recognition using the Bayesian similarity measure. 

Over the years, various strategies for facial feature detection 
have been proposed, ranging from edge map projections [ 141, to 
more recent techniques that use generalized symmetry operators 
[ 331 and multilayer perceptrons [ 391. In any robust face process- 
ing system, this task is critically important since a face must be 
first geometrically normalized by aligning its features with those 
of a stored model before recognition can be attempted. 

The eigentemplate approach to the detection of facial features 
in “mugshots” was proposed in [27], where the DFFS metric 
was shown to be superior to standard template matching for 
target detection. The detection task was the estimation of the 
position of facial features (the left and right eyes, the tip of the 
nose, and the center of the mouth) in frontal view photographs 
of faces at fixed scale. Figure 4 shows examples of facial feature 
training templates and the resulting detections on the MIT Media 
Laboratory’s database of 7,562 “mugshots.” 

We have compared the detection performance of three dif- 
ferent detectors on approximately 7,000 test images from this 
database: a sum-of-square-differences (SSD) detector based on 
the average facial feature (in this case the left eye), an eigentem- 
plate or DFFS detector, and a ML detector based on S(i ,  j ;  52) 
as defined in Section 3.1.2. Figure 5(a) shows the receiver oper- 
ating characteristic (ROC) curves for these detectors, obtained 
by varying the detection threshold independently for each de- 
tector. The DFFS and ML detectors were computed based on 
a five-dimensional principal subspace. Since the projection co- 
efficients were unimodal, a Gaussian distribution was used in 
modeling the true distribution for the ML detector as in Sec- 
tion 3.1.2. Note that the ML detector exhibits the best detection 
versus false-alarm tradeoff and yields the highest detection rate 
(95%). Indeed, at the same detection rate the ML detector has a 
false-alarm rate that is nearly 2 orders of magnitude lower than 
the SSD. 

FIGURE 4 (a) Examples of facial feature training templates and (b) the resulting typical detections. 
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FIGURE 5 (a) Detection performance of an SSD, DFFS, and a ML detector; (b) geometric interpretation of the detectors. 

Figure 5(b) provides the geometric intuition regarding the op- 
eration of these detectors. The SSD detector's threshold is based 
on the radial distance between the average template (the origin 
of this space) and the input pattern. This leads to hyperspherical 
detection regions about the origin. In contrast, the DFFS detec- 
tor measures the orthogonal distance to F, thus forming planar 
acceptance regions about F. Consequently, to accept valid object 
patterns in SZ that are very different from the mean, the SSD de- 
tector must operate with high thresholds, which results in many 
false alarms. However, the DFFS detector cannot discriminate 
between the object class SZ and non-SZ patterns in F. The solu- 
tion is provided by the ML detector, which incorporates both the 
F-space component (DFFS) and the F-space likelihood (DIFS). 
The probabilistic interpretation of Fig. 5(b) is as follows: SSD as- 
sumes a single prototype (the mean) in additive white Gaussian 
noise, whereas the DFFS assumes a unqorrn density in F. The 
ML detector, in contrast, uses the complete probability density 
for detection. 

We have incorporated and tested the multiscale version of the 
ML detection technique in a face detection task. This multiscale 

head finder was tested on the ARPA FERET database, where 
in 97% of 2,000 images the face, eyes, nose, and mouth were 
correctly detected and localized to within one pixel error. Figure 6 
shows examples of the ML estimate of the position and scale on 
these images. The multiscale saliency maps S( i ,  j, k; S2) were 
computed based on the likelihood estimate i ( x  I SZ) in a ten- 
dimensional principal subspace using a Gaussian model (Section 
3.1.2). Note that this detector is able to localize the position and 
scale of the head despite variations in hair style and hair color, as 
well as the presence of sunglasses. Illumination invariance was 
obtained by normalizing the input subimage x to a zero-mean 
unit-norm vector. 

5.1 Using ML Detection for Attention 
and Alignment 
We have also used the multiscale version ofthe ML detector as the 
attentional component of an automatic system for recognition 
and model-based coding of faces. The block diagram of this 

FIGURE 6 Examples of multiscale face detection. 
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FIGURE 7 The face processing system. 

system is shown in Fig. 7, which consists of a two-stage object 
detection and alignment stage, a contrast normalization stage, 
and a feature extraction stage whose output is used for both 
recognition and coding. Figure 8 illustrates the operation of the 
detection and alignment stage on a natural test image containing 
a human face. The function of the face finder is to locate regions 
in the image that have a high likelihood of containing a face. 

The first step in this process is illustrated in Fig. 8(b), where 
the ML estimate of the position and scale of the face is indi- 
cated by the cross-hairs and bounding box. Once these regions 
have been identified, the estimated scale and position are used to 
normalize for translation and scale, yielding a standard “head- 
in-the-box’’ format image [Fig. 8(c)]. A second feature detection 
stage operates at this fixed scale to estimate the position of four 
facial features: the left and right eyes, the tip of the nose, and 
the center of the mouth [Fig. 8(d)]. Once the facial features have 
been detected, the face image is warped to align the geometry 
and shape of the face with that of a canonical model. Then the 
facial region is extracted (by applying a fixed mask) and subse- 
quently normalized for contrast. The geometrically aligned and 
normalized image [shown in Fig. 9(a)] is then projected onto a 
custom set of eigenfaces to obtain a feature vector, which is then 
used for recognition purposes as well as facial image coding. 

Figure 9 shows the normalized facial image extracted from 
Fig. 8(d), its reconstruction with a 100-dimensional eigenspace 
representation (requiring only 85 bytes to encode), and a com- 
parable nonparametric reconstruction obtained with a standard 
transform-coding approach for image compression (requiring 
530 bytes to encode). This example illustrates that the eigenface 
representation used for recognition is also an effective model- 
based representation for data compression. 

To test our Bayesian recognition strategy, we used a collec- 
tion of images from the FERET face database. This collection of 
images consists of hard recognition cases that have proven diffi- 
cult for all face recognition algorithms previously tested on the 
FERET database. The difficulty posed by this dataset appears to 
stem from the fact that the images were taken at different times, 
at different locations, and under different imaging conditions. 
The set of images consists of pairs of frontal views (FNFB) and 
are divided into two subsets: the “gallery” (training set) and the 
“probes” (testing set). The gallery images consisted of 74 pairs 
of images (two per individual), and the probe set consisted of 
38 pairs of images, corresponding to a subset of the gallerymem- 
bers. The probe and gallery datasets were captured a week apart 
and exhibit differences in clothing, hair, and lighting. 

Before we can apply our matching technique, we need to per- 
form an affine alignment of these facial images. For this purpose 
we have used an automatic face-processing system, which ex- 
tracts faces from the input image and normalizes for translation, 
scale as well as slight rotations (both in plane and out of plane). 
This is achieved by using the maximum-likelihood detection 
and alignment method described earlier, which is summarized 
in Fig. 7. All the faces in our experiments were geometrically 
aligned and normalized in this manner prior to further analysis. 

5.1.1 Comparison with Eigenface Matching 
As a baseline comparison, we first used an eigenface matching 
technique for recognition [37]. The normalized images from the 
gallery and the probe sets were projected onto a 100-dimensional 
eigenspace, and a nearest-neighbor rule based on a Euclidean dis- 
tance measure was used to match each probe image to a gallery 

FIGURE 8 (a) Original image, (b) position and scale estimate, (c) normalized head image, (d) position of facial features. 
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FIGURE 9 
reconstruction (530 bytes). 

(a) Alignedface, (b) eigenspace reconstruction (85 bytes), (c) JPEG 

image. We note that this method corresponds to a generalized 
template-matching method that uses a Euclidean norm type of 
similarity S(I1,  I*),  which is restricted to the principal compo- 
nent subspace ofthe data. We note that these eigenfaces represent 
the principal components of an entirely different set of images; 
i.e., none of the individuals in the gallery or probe sets were 
used in obtaining these eigenvectors. In other words, neither the 
gallery nor the probe sets were part of the “training set.” The 
rank-1 recognition rate obtained with this method was found to 
be 84% (64 correct matches out of 76), and the correct match 
was always in the top 10 nearest neighbors. Note that this per- 
formance is better than or similar to recognition rates obtained 
by any algorithm tested on this database, and that it is lower (by 
about 10%) than the typical rates that we have obtained with the 
FERET database [20]. We attribute this lower performance to the 
fact that these images were selected to be particularly challeng- 
ing. In fact, using an eigenface method to match the first views of 
the 76 individuals in the gallery to their second views, we obtain 
a higher recognition rate of 89% (68 out of 76), suggesting that 
the gallery images represent a less challenging dataset since these 
images were taken at the same time and under identical lighting 
conditions. 

’ O 0 1  

. . .  
0 

. 

5.1.2 Intrapersonal- and Extrapersonal-Based 
Matching 
For our probabilistic algorithm, we first gathered training data 
by computing the intensity differences for a training subset of 74 
intrapersonal differences (by matching the two views of every in- 
dividual in the gallery) and a random subset of 296 extrapersonal 
differences (by matching images of diflerent individuals in the 
gallery), corresponding to the classes C21 and Q E ,  respectively. 

It is interesting to consider how these two classes are dis- 
tributed; for example, are they linearly separable or embedded 
distributions? One simple method of visualizing this is to plot 
their mutual principal components, i.e., perform PCA on the 
combined dataset and project each vector onto the principal 
eigenvectors. Such a visualization is shown in Fig. lO(a), which 
is a 3-D scatter plot of the first three principal components. This 
plot shows what appears to be two completely enmeshed distri- 
butions, both having near-zero means and differing primarily in 
the amount of scatter, with S21 displaying smaller intensity dif- 
ferences as expected. It therefore appears that one cannot reliably 
distinguish low-amplitude extrapersonal differences (of which 
there are many) from intrapersonal ones. 

However, direct visual interpretation of Fig. 10(a) is verymis- 
leading, since we are essentially dealing with low-dimensional 
(or “flattened”) hyperellipsoids that are intersecting near the 
origin of a very high-dimensional space. The key distinguishing 
factor between the two distributions is their relative orientation. 
Fortunately, we can easily determine this relative orientation by 
performing a separate PCA on each class and computing the dot 
product of their respective first eigenvectors. This analysis yields 
the cosine of the angle between the major axes of the two hyper- 
ellipsoids, which was found to be 124”, implying that the orien- 
tation of the two hyperellipsoids is quite different. Figure 10(b) 
is a schematic illustration of the geometry of this configuration, 
where the hyperellipsoids have been drawn to approximate scale 
by using the corresponding eigenvalues. 

\ 

(4 (b) 

FIGURE 10 (a) Distribution of the two classes in the first three principal components (circles for ‘21, dots for ‘2,) 
and (b) schematic representation of the two distributions showing the orientation difference between the corresponding 
principal eigenvectors. 
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(b) 

FIGURE 11 “Dual” eigenfaces: (a) intrapersonal, (b) extrapersonal. 

(b) 

FIGURE 11 “Dual” eigenfaces: (a) intrapersonal, (b) extrapersonal. 

5.1.3 Dual Eigenfaces 
We note that the two mutually exclusive classes Q I  and i - 2 ~  corre- 
spond to a “dual” set of eigenfaces as shown in Fig. 1 1. Note that 
the intrapersonal variations shown in Fig. 11 (a) represent subtle 
variations caused mostly by expression changes (and lighting), 
whereas the extrapersonal variations in Fig. 11 (b) are more rep- 
resentative of general eigenfaces that code variations such as hair 
color, facial hair, and glasses. This suggests the basic intuition that 
intensity differences of the extrapersonal type span a larger vec- 
tor space similar to the volume of face space spanned by standard 
eigenfaces, whereas the intrapersonal eigenspace corresponds to 
a more tightly constrained subspace. It is the representation of 
this intrapersonal subspace that is the critical part of formu- 
lating a probabilistic measure of facial similarity. In fact, our 
experiments with a larger set of FERET images have shown that 
this intrapersonal eigenspace alone is sufficient for a simplified 
maximum likelihood measure of similarity (see Section 5.1.4). 

Finally, we note that since these classes are not linearly sep- 
arable, simple linear discriminant techniques (e.g., using hy- 
perplanes) cannot be used with any degree of reliability. The 
proper decision surface is inherently nonlinear (quadratic, in 
fact, under the Gaussian assumption) and is best defined in 
terms of the a posteriori probabilities - i.e., by the equality 
P(Q1  I A )  = P(Q, I A). Fortunately, the optimal discriminant 
surface is automatically implemented when invoking a MAP clas- 
sification rule. 

Having analyzed the geometry of the two distributions, 
we then computed the likelihood estimates P ( A  I Q I )  and 
P ( A  I Q,) by using the PCA-based method outlined in Sec- 
tion 3.1.2. We selected principal subspace dimensions of MI = 
10 and ME = 30 for !21 and Q E ,  respectively. These density es- 
timates were then used with a default setting of equal priors, 
P(S21) = P ( Q E ) ,  to evaluate the aposterioriintrapersonalprob- 

ability P(QI  I A )  for matching probe images to those in the 
gallery. 

Therefore, for each probe image we computed probe-to- 
gallery differences and sorted the matching order, this time 
using the a posteriori probability P(Q1 I A )  as the similarity 
measure. This probabilistic ranking yielded an improved rank- 1 
recognition rate of 89.5%. Furthermore, out of the 608 extra- 
personal warps performed in this recognition experiment, only 
2% (1 1) were misclassified as being intrapersonal - i.e., with 
P ( ~ I  I A )  > ~ ( Q E  I A). 

5.1.4 The 1996 FERET Competition Results 
The interpersonal/extrapersonal approach to recognition has 
produced a significant improvement over the accuracy we ob- 
tained by using a standard eigenface nearest-neighbor match- 
ing rule. The probabilistic similarity measure was used in the 
September 1996 FERET competition (with subspace dimen- 
sionalities of MI = ME = 125) and was found to be the top- 
performing system by a typical margin of 10-20% over the other 
competing algorithms [30]; see Fig. 12(a). Figure 12(b) shows 
the performance comparison between standard eigenfaces and 
the Bayesian method from this test. Note the 10% gain in perfor- 
mance afforded by the new Bayesian similarity measure. Thus we 
note that the new probabilistic similarity measure has effectively 
halved the error rate of eigenface matching. 

We have recently experimented with a more simplified prob- 
abilistic similarity measure, which uses only the intrapersonal 
eigenfaces with the intensity difference A to formulate a ML 
matching technique, using 

instead of the MAP approach defined by Eq. (1 1). Although this 
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FIGURE 12 (a) Cumulative recognition rates for frontal FNFB views for the competing algorithms in the FERET 1996 
test. The top curve (labeled “MIT Sep 96”) corresponds to our Bayesian matching technique. Note that second placed 
is standard eigenface matching (labeled “MIT Mar 95”). (b) Cumulative recognition rates for frontal FNFB views with 
standard eigenface matching and the newer Bayesian similarity metric. 

simplified measure has not yet been officially FERET tested, our 
own experiments with a database of size 2000 have shown that 
using S’ instead of S results in only a minor (2%) deficit in the 
recognition rate while cutting the computational cost by a fac- 
tor of 2 (requiring a single eigenspace projection as opposed to 
two). 

6 View-Based Face Recognition 

The problem of face recognition under general viewing con- 
ditions (change in pose) can also be approached by using an 
eigenspace formulation. There are essentially two ways of ap- 
proaching this problem by using an eigenspace framework. 
Given N individuals under M different views, one can do recog- 
nition and pose estimation in a universal eigenspace computed 
from the combination of NM images. In this way a single “para- 
metric eigenspace” will encode both identity as well as pose. Such 
an approach, for example, has recently been used by Murase and 
Nayar [24] for general 3-D object recognition. 

Alternatively, given N individuals under M different views, we 
can build a “view-based” set of M distinct eigenspaces, each cap- 
turing the variation of the N individuals in a common view. The 
view-based eigenspace is essentially an extension of the eigenface 
technique to multiple sets of eigenvectors, one for each combi- 
nation of scale and orientation. One can view this architecture 
as a set of parallel “observers,” each trying to explain the image 
data with their set of eigenvectors, see also Darrell and Pentland 
[lo]. In this view-based, multiple-observer approach, the first 
step is to determine the location and orientation of the target 
object by selecting the eigenspace that best describes the input 

image. This can be accomplished by calculating the likelihood 
estimate, using each viewspace’s eigenvectors, and then selecting 
the maximum. 

The main advantage ofthe parametric eigenspace method is its 
simplicity. The encoding of an input image using n eigenvectors 
requires only n projections. In the view-based method, M differ- 
ent sets of n projections are required, one for each view. However, 
this does not imply that a factor of M times more computation is 
necessarily required. By progressively calculating the eigenvec- 
tor coefficients while pruning alternative viewspaces, one can 
greatly reduce the cost of using M eigenspaces. 

The key difference between the view-based and parametric 
representations can be understood by considering the geometry 
of facespace. In the high-dimensional vector space of an input 
image, multiple-orientation training images are represented by 
a set of M distinct regions, each defined by the scatter of N indi- 
viduals. Multiple views of a face form nonconvex (yet connected) 
regions in image space [4]. Therefore, the resulting ensemble is 
a highly complex and nonseparable manifold. 

The parametric eigenspace attempts to describe this ensemble 
with a projection onto a single low-dimensional linear subspace 
(corresponding to the first n eigenvectors of the NM training 
images). In contrast, the view-based approach corresponds to 
M independent subspaces, each describing a particular region of 
the facespace (corresponding to a particular view of a face). The 
relevant analogy here is that of modeling a complex distribution 
by a single cluster model or by the union of several component 
clusters. Naturally, the latter (view-based) representation can 
yield a more accurate representation of the underlying geometry. 

This difference in representation becomes evident when con- 
sidering the quality of reconstructed images using the two 
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FIGURE 13 
orientation. The average recognition accuracy was 92%; the orientation error had a standard deviation of 15". 

Some of the images used to test the accuracy of face recognition, despite wide variations in head 

different methods. Figure 14 below compares reconstructions 
obtained with the two methods when trained on images of faces 
at multiple orientations. In Fig. 14(a) top row, we see first an im- 
age in the training set, followed by reconstructions of this image 
using first the parametric eigenspace and then the view-based 
eigenspace. Note that in the parametric reconstruction neither 
the pose nor the identity ofthe individual is adequately captured. 
Theview-based reconstruction, in contrast, provides a much bet- 
ter characterization of the object. Similarly, in Fig. 14(a) bottom 
row, we see a novel view (+68") with respect to the training 
set (-90" to +45"). Here, both reconstructions correspond to 
the nearest view in the training set (+45"), but the view-based 
reconstruction is seen to be more representative of the individ- 
ual's identity. Although the quality of the reconstruction is not a 
direct indicator of the recognition power, from an information- 
theoretic point of view the multiple eigenspace representation is 
a more accurate representation of the signal content. 

We have evaluated the view-based approach with data simi- 
lar to that shown in Fig. 13. These data consist of 189 images, 

Training View 

made up of nine views of 21 people. The nine views of each 
person were evenly spaced from -90" to +90" along the hori- 
zontal plane. In the first series of experiments the interpolation 
performance was tested by training on a subset of the available 
views {f90", f 4 5 " ,  0") and testing on the intermediate views 
{f68", f23"}. A 90% average recognition rate was obtained. 
A second series of experiments tested the extrapolation perfor- 
mance by training on a range of views (e.g., -90" to +45") and 
testing on novel views outside the training range (e.g., +68" and 
+90°). For testing views separated by f23"  from the training 
range, the average recognition rates were 83%. For f45"  test- 
ing views, the average recognition rates were 50%; see [28] for 
further details. 

7 Modular Descriptions for Recognition 

The eigenface recognition method is easily extended to facial fea- 
tures as shown in Fig. 15(a). Eye-movement studies indicate that 

FIGURE 14 (a) Parametric vs. view-based eigenspace reconstructions for a training view and a novel testing 
view. The input image is shown in the left column. The middle and right columns correspond to the paramet- 
ric and view-based reconstructions, respectively. All reconstructions were computed using the first 10 eigenvectors. 
(b) Schematic representation of the two approaches. 



850 

1 -  

0.8 

al c 
I2 5 0.6- 
.- .- c 
c 
0 
0 

0.4 d 

Handbook of Image and Video Processing 

- 

- 

I I 

/ 
, .o 

.I 0." 
1 : x .  

o - whole face 

x - features 

+ - combined 

i 

(4 (b) 

FIGURE 15 
modular representation. 

(a) Facial eigenfeature regions; (b) recognition rates for eigenfaces, eigenfeatures, and the combined 

these particular facial features represent important landmarks 
for fixation, especially in an attentive discrimination task [41]. 
This leads to an improvement in recognition performance by in- 
corporating an additional layer of description in terms of facial 
features. This can be viewed as either a modular or layered repre- 
sentation of a face, where a coarse (low-resolution) description of 
the whole head is augmented by additional (higher-resolution) 
details in terms of salient facial features. 

The utility of this layered representation (eigenface plus eigen- 
features) was tested on a small subset of our large face database. 
We selected a representative sample of 45 individuals with two 
views per person, corresponding to different facial expressions 
(neutral versus smiling). These set of images was partitioned 
into a training set (neutral) and a testing set (smiling). Since 
the difference between these particular facial expressions is pri- 
marily articulated in the mouth, this feature was discarded for 
recognition purposes. 

Figure 15(b) shows the recognition rates as a function of the 
number of eigenvectors for eigenface-only, eigenfeature-only, 
and the combined representation. What is surprising is that (for 
this small dataset at least) the eigenfeatures alone were sufficient 
in achieving an (asymptotic) recognition rate of 95% (equal to 
that of the eigenfaces). More surprising, perhaps, is the obser- 
vation that in the lower dimensions of eigenspace, eigenfeatures 
outperformed the eigenface recognition. Finally, by using the 
combined representation, we gain a slight improvement in the 
asymptotic recognition rate (98%). A similar effect was reported 
by Brunelli and Poggio [ 71, in which the cumulative normalized 
correlation scores oftemplates for the face, eyes, nose, and mouth 
showed improved performance over the face-only templates. 

A potential advantage of the eigenfeature layer is the ability to 
overcome the shortcomings of the standard eigenface method. 
A pure eigenface recognition system can be fooled by gross vari- 
ations in the input image (hats, beards, etc.). Figure 16(a) shows 
the additional testing views of three individuals in the above 
dataset of45. These test images are indicative ofthe type ofvaria- 
tions that can lead to false matches: a hand near the face, a painted 
face, and a beard. Figure 16(b) shows the nearest matches found 
based on standard eigenface matching. None ofthe three matches 

FIGURE 16 (a) Test views, (b) eigenface matches, (c) eigenfeature matches. 
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correspond to the correct individual. In contrast, Fig. 16(c) 
shows the nearest matches based on the eyes and nose, and it re- 
sults in a correct identification in each case. This simple example 
illustrates the potential advantage of a modular representation 
in disambiguating low-confidence eigenface matches. 

8 Discussion 

In this chapter we have described an eigenspace density estima- 
tion technique for unsupervised visual learning that exploits the 
intrinsic low-dimensionality of the training imagery to form a 
computationally simple estimator for the complete likelihood 
function of the object. Our estimator is based on a subspace 
decomposition and can be evaluated by using only the M- 
dimensional principal component vector. In contrast to previous 
work on learning and characterization - which uses PCA pri- 
marily for dimensionality reduction or feature extraction - our 
method uses the eigenspace decomposition as an  integral part 
of estimating complete density functions in high-dimensional 
image spaces. 

These density estimates were then used in a maximum likeli- 
hood formulation for target detection. The multiscale version of 
this detection strategywas demonstratedin applications in which 
it functioned as an attentional subsystem for object recognition. 
The performance was found to be superior to existing detection 
techniques in experiments with large numbers of test data. We 
have also shown that the same representation can be extended to 
multiple head poses, to incorporate edge or texture features, and 
to utilize facial features such as eye or nose shape. Each of these 
extensions has provided additional robustness and generality to 
the core idea of detection and recognition using probabilistic 
appearance models. 
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Confocal microscopes have been built and used in research labo- 
ratories since the early 1980s and have been commercially avail- 
able for only the last few years. The concept of the confocal mi- 
croscope, however, is over 40 years old. In 1957, Marvin Minsky 
[ 11 applied for apatent on the confocal idea. At that time, Minsky 
demonstrated great insight into the power of the confocal mi- 
croscope. He realized that the design of the confocal microscope 
would give increased resolution and increased depth discrim- 
ination ability over conventional microscopes. Independently, 
in Czechoslovakia, M. Petrhn and M. Hadravsky [2 ]  developed 
the idea for the tandem scanning optical microscope (a form of 
the confocal microscope) in the mid-1960s. However, it was not 
until the 1980s that the confocal microscope became a useful tool 
in the scientific community. At the time the confocal scope was 
introduced, the electron microscope was receiving a great deal 
of attention as it was becoming commercially available. Mean- 
while, the confocal microscope required a very high intensity 
light source, and thus its commercialization was delayed until 
the emergence of affordable lasers in the technological market. 
Finally, without the aid of high-speed data processing equipment 
and large computer memories, taking advantage of the three- 
dimensional (3-D) capabilities of the confocal microscope was 
not practical. Visualization of the data was also not feasible with- 
out high-powered computers and advanced computer graphics 
techniques. 

Since the early 198Os, research and application of confocal 
microscopy has grown substantially. A great deal of research 
has now been done in understanding the imaging properties 
of the confocal microscope. Moreover, confocal microscopes of 
different varieties are now commercially available from several 
quality manufacturers. 

2 Image Formation in Confocal 
Microscopy 

There are several different designs of the confocal microscope. 
Each of these designs is based on the same underlying phys- 
ical principles. First these underlying principles will be dis- 
cussed, and then some of the specific designs will be briefly 
described. 

The confocal microscope has three important features that 
make it advantageous over a conventionallight microscope. First, 
the lateral resolution can be as great as one and a half times that 
of a conventional microscope. Second, and most importantly, 
the confocal microscope has the ability to remove out-of-focus 
information and thus produce an image of a very thin “section” 
of a specimen. Third, because of the absence of out-of-focus 
information, much higher contrast images are obtained. 

A schematic representation of a reflectance (dark field) or 
fluorescence type confocal microscope is shown in Fig. 1. The 
illumination pinhole produces a point source from which the 
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FIGURE 1 Diagram ofa confocal microscope. The dashedlies represent light 
rays from an out-of-focus plane within the specimen; these rays are blocked by 
the imaging pinhole and do not reach the detector. 

light ray originates. The ray passes through the beam splitter 
and down to the objective lens, where it is focuseq to a point 
spot inside of the specimen on the focal plane. If the ray re- 
flects off a point in the focal plane, it will take the same path 
back up through the objective and pass, via the beam splitter, 
through the imaging pinhole and to the detector. If the ray in- 
stead reflects off a point that is out of the focal plane, the ray 
will take a new path back through the objective lens and will 
be blocked by the imaging pinhole from reaching the detec- 
tor. From this simple explanation it is seen that only the focal 
plane is imaged. This analysis was purely in terms of geometrical 
optics. However, since the resolution of a high-quality micro- 
scope is diffraction limited, a diffraction analysis is needed to 
compare the resolutions of the conventional and the confocal 
microscope. 

2.1 Lateral Resolution 
First the lateral resolution of the microscope will be considered. 
The lateral resolution refers to the resolution in the focal plane 
of the microscope. The point spread function (PSF) of a circular 
converging lens is well known to be the Auy disk [ 31. The Airy 
disk is defined in terms of J1 (v),  the Bessel function of order 1. 
The PSF is defined as the square of the modulus of the amplitude 

point spread function, h(v), which has the form 

The independent variable v, known as the optical distance, is 
defined in terms of r ,  the radial distance from the optical axis in 
the focal plane: 

where a is the radius of the lens, h is the wavelength of the light, 
and f is the focal length of the lens. 

Light is most often detected on an intensity basis. Sheppard 
and Wilson [4] give the following formulas for calculating the 
distribution of intensity, I ( x ,  y), for the coherent conventional 
microscope, the incoherent conventional microscope, and the 
confocal microscope in terms of the amplitude point spread 
function. A coherent microscope is a microscope in which the 
illumination source is coherent light. Likewise, an incoherent mi- 
croscope has an incoherent illumination source. Letting t ( x ,  y )  
be the object amplitude transmittance, for the conventional co- 
herent microscope the intensity is 

for the conventional incoherent microscope the intensity is 

and for the confocal microscope the intensity is 

IC = It JF h2I2. (5) 

From a quick examination of these equations, it may not be 
obvious that the resolution of the confocal microscope is supe- 
rior. The responses of each type of microscope to a point object 
are Icc = lhI2, Ici = jhI2, and I ,  = lhI4. These responses, with 
h as defined in Eq. (l), are plotted in one dimension in Fig. 2. 
In both cases of the conventional microscope, the PSFs are iden- 
tical and equal to the Airy disk. The confocal PSF is equal to 
the square of the Airy disk and hence is substantially narrower 
and has very weak sidelobes. Because of the different imaging 
properties of the microscopes, the width of the PSF is not a suf- 
ficient means by which to describe resolution. Using the width 
of the PSF, one might conclude that the coherent and incoher- 
ent conventional microscopes have the same resolution. This, 
as is shown below, is not the case. The resolution of the inco- 
herent microscope is in fact greater than that of the coherent 
microscope. 

The resolution of an optical system is often given in terms of 
its two-point resolution. The two-point resolution is defined as 
the closest distance between two point objects such that each 
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microscopes ( 1  hi2), and the confocal microscope ([hi4). 

Plots of the PSFs for the conventional coherent and incoherent 

object can just be resolved. This is a somewhat loose defini- 
tion, since one must explain what is meant by justresolved. The 
Rayleigh criterion is often used to define the two-point resolu- 
tion. The Rayleigh criterion (somewhat arbitrarily) states that 
the two points are just resolved when the center of the Airy disk 
generated by one point coincides with the first zero of the Airy 
diskgenerated by the second point. The Rayleigh distances for the 
coherent and incoherent conventional microscope are given in 
[3] as 0.77WN.A. and 0.6X/N.A., respectively, where N.A. repre- 
sents the numerical aperture of the objective lens. The numerical 
aperture is computed as n sin 0, where n is the index of refraction 
of the immersion medium and 0 is the half-angle of the cone of 

light that exits the objective. For the confocal microscope, the 
Rayleigh distance is given in [5] as 0.56WN.A. 

Figure 3 shows the one-dimensional response to two point 
objects separated by the Rayleigh distance for the conventional 
incoherent microscope. The point objects are shown with re- 
duced amplitude on the plot for reference purposes. From Fig. 3, 
it is evident that the conventional coherent microscope cannot 
resolve the two point objects. The two points appear as a single 
large point. The superior resolution of the confocal microscope 
is demonstrated from this simulation. 

2.2 Depth Resolution and Optical Sectioning 
The confocal microscope’s most important property is its abil- 
ity to discriminate depth. It is easy to show by the conservation 
of energy that the conventional microscope has no depth dis- 
crimination ability. Consider the conventional detector setup in 
Fig. 4. The output of the large area detector is the integral of the 
intensity of the image formed by the lens. When a point object 
is in focus (at A), the Airy disk is formed on the detector. If the 
point object is moved out of the focal plane (at B), a pattern of 
greater spatial extent is formed on the detector (a mathemati- 
cal description of the out-of-focus PSF is given in [6]). By the 
conservation of light energy, the integral of these two intensity 
patterns must be equal and hence the detector output is the same 
for the in-focus and out-of-focus objects. 

In the case of the confocal microscope, the pinhole aperture 
blocks the light from the extended size of the defocused point 
object’s image. Early work by Born and Wolf [ 31 gave a descrip- 
tion of the defocused light amplitude along the optical axis of 
such a lens system. Wilson et al. [ 5,6], have adapted this analysis 
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FIGURE 3 Two-point response of the coherent conventional, incoherent conventional, and 
confocal microscopes. The object points are spaced apart by one Rayleigh distance of the con- 
ventional incoherent system. 
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3 Confocal Fluorescence Microscopy 

The analysis presented herein has assumed that the radiation 
emitted from the specimen is of the same wavelength as the ra- 
diation incident on the specimen. This is true for reflectance 
and transmission confocal microscopy, but not for fluorescence 
confocal microscopy. In fluorescence confocal microscopy, the 
image formation no longer takes the form of Eq. (5), but rather 
of 

Detector 

FIGURE 4 
and an out-of-focus point is the same. 

In the conventional microscope, the detector output for an in-focus 

I C  = I t *  W u ,  v M u l P ,  V l P ) l 2 ,  (8) 

to the confocal microscope. An optical distance along the optical 
axis of the microscope is defined by 

where is the ratio of the fluorescent wavelength (h2) to the 
incident wavelength (XI), i.e., P = X2/X1, and u and Y are rect- 
angular distances in the focal plane. Considering, as before, the 

8 n  2 ( 6 )  case of the circular pupil function u = - sin (01/2)z, 
X 

where z is distance along the optical ( z )  axis, and s ina is the 
numerical aperture of the objective. With this definition, the 
intensity along the optical axis is given by 

sin 4 2 )  

Iu = [ ( (242) l2 (7) 

Experimental verification of Eq. (7) has been performed by 
sectioning through a highly planar mirror [ 7-91. Figure 5 shows 
a plot of I ( u )  versus u. The resolution of the z-axis sectioning is 
most often given as the full width at the half-intensity point. A 
plot ofthe z-sectioning width as a function of numerical aperture 
is given in [ 71. A typical example is for an air objective with a N.A. 
of 0.8, the z-sectioning width is approximately 0.8 pm. For an 
oil immersion objective with N.A. equal to 1.4, the z-sectioning 
is approximately 0.25 pm. 
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FIGURE 5 
axis of a confocal microscope. 

Plot of I ( u )  vs. u, showing the optical sectioning along the optical 

(9) 

as the lateral PSF in the focal plane. Obviously, if P = 1 the 
PSF of the reflection (and transmission) confocal microscope 
is obtained. As P + 00, the PSF of the conventional (nonconfo- 
cal) microscope is obtained. In practice, P will be generally less 
than 2. A detailed analysis of a confocal microscope in fluores- 
cence mode is given in [ 7, lo]. 

4 Further Considerations 

In all of the analyses presented here, it is assumed that the pinhole 
apertures are infinitely small. In practice, the pinhole apertures 
are of finite radius. In [9], Wilson presents theoretical and ex- 
perimental results of the effects ofvarious finite pinhole sizes. As 
one would expect, the resolution in both the axial and transverse 
directions is degraded by a larger pinhole. Also in [9], Wilson 
discusses the use of slit, rather than circular, apertures at the 
detector. The slit detector allows more light to reach the detec- 
tor than the circular aperture with a compromise of sectioning 
ability. Wilson has also shown that using an annular rather than 
a circular lens pupil can increase the resolution of the confocal 
microscope at the expense of higher sidelobes in the point spread 
function [ 571. 

5 Types of Confocal Microscopes 

Confocal microscopes are categorized into two major types, de- 
pending on the instrument design employed to achieve imaging. 
One type of confocal microscope scans the specimen by either 
moving the stage or the beam of light, whereas the second type 
employs both a stationary stage and light source. 
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I 5.1 Scanning Confocal Microscope 
The scanning confocal microscope is by far the most popular 
on the market today, and it employs a laser source for specimen 
scanning. If a laser is not used, then avery high power light source 
is needed to get sufficient illumination through the source and 
detector pinhole apertures. 

There are two practical methods for the raster scanning of a 
specimen. One method is to use a mechanical scanning micro- 
scope stage. With a scanning stage, the laser beam is kept sta- 
tionary while the specimen is raster scanned through the beam. 
The other method is to keep the specimen still and scan the 
laser in a raster fashion over the specimen. There are, of course, 
advantages to using either of these scanning methods. 

There are two qualities that makes scanning the specimen rel- 
ative to the stationary laser attractive. First, the field of view is 
not limited by the optics, but by the range of the mechanical 
scanners. Therefore, very large areas of a specimen can be im- 
aged. A second important advantage of scanning the specimen is 
that only a very narrow optical path is necessary in the design of 
the optics. This means that aberrations in the images due to im- 
perfections in the lenses will be less of a problem. A disadvantage 
of this type of scanning is that image formation is very slow. 

The main advantage of scanning the laser instead of the spec- 
imen is that the imaging speed is greatly increased. A mobile 
mirror can be used to scan the laser, in which case an image of 
512 x 512 pixels can be obtained in -1 s. A newer technology 
of laser scanning confocal microscopes uses acousto-optical de- 
flection devices that can scan out an image at speeds up to TV 
frame rates. The problem with these acousto-optic scanners is 
that they are highly nonlinear and special care must be taken in 
order to obtain distortion-free images. 

5.2 Tandem Scanning Optical Microscope 
The tandem scanning optical microscope (TSOM) was pat- 
ented in Czechoslovakia in the mid-1960s by M. Petrdn and 
M. Hadravsky. The main advantage of the TSOM over the scan- 
ning confocal microscope is that images are formed in real time 
(at video frame rates or greater). Figure 6 shows a simple diagram 
ofthe tandem scanning optical microscope. The most important 
feature of the TSOM is the Nipkow disk. The holes in the Nip- 
kow disk are placed such that when the disk is spun, a sampled 
scan of the specimen is produced. Referring to Fig. 6, the source 
light enters a pinhole on the Nipkow disk and is focused onto the 
specimen through the objective lens. The light reflected off of the 
specimen goes back up through the objective and up through a 
corresponding pinhole on the opposite side of the Nipkow disk. 
The light exiting from the eyepiece can be viewed by the oper- 
ator, captured on video, or digitized and sent to a computer. In 
early TSOMs, sunlight was used as the illuminating source. To- 
day, though, an arc or filament lamp is generally used. Figure 6 
shows the path of a single ray through the system, but it should 
be noted that several such rays are focused on the specimen at 
any given instant of time. 

i 

Rotating 
Nipkow Disk n 

Source Source 

io000 I 
ll 

Specimen 

Objective 
Lens 

FIGURE 6 Diagram of the tandem scanning optical microscope. 

Kino et al. [ 101 altered the above design so that the light enters 
and exits through the same pinhole. With this design, smaller 
pinholes can be used since mechanical alignment of the optics 
is not as difficult. Smaller pinholes, of course, are desirable since 
the depth of the in-focus plane is directly related to the pin- 
hole size. Kino et al. were able to construct a Nipkow disk with 
200,000 pinholes, 20 pm in diameter each, that spun at 2000 
RPM. This gave them a frame rate of 700 frames/s with 5000 
linedimage. 

The TSOM does have certain drawbacks. Because the total area 
of the pinholes on the Nipkow disk must be negligible (less than 
1%) with respect to the total area of the disk [7], the intensity of 
the light actually reaching the specimen is a very small fraction 
of that of the source. Depending on the specimen, the amount of 
light reflected may not be detectable. Another disadvantage ofthe 
TSOM is that it is mechanically more complex than the scanning 
confocal microscopes. Very precise adjustment is needed to keep 
the tiny pinholes in the rapidly spinning Nipkow disk aligned. 

6 Biological Applications of Confocal 
Microscopy 

Confocal microscopy is widely used in a variety of fields, includ- 
ing materials science, geology, metrology, forensics, and biology. 
The enhanced imaging capability of the confocal microscope has 
resulted in its increased application in the field of biomedical 
sciences. In general, there is considerable interest in the bio- 
logical sciences to study and analyze the 3-D structure of cells 
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and tissues. Confocal imaging is a high-resolution microscopy 
technique that provides both fine structural details and 3-D in- 
formation without the need to physically slice the specimen into 
thin sections. In the area of biological imaging, confocal mi- 
croscopy has been extensively used and has led to increase our 
understanding of the cell’s 3-D structure, as well as its physiology 
and motility. 

Recent technical advances have made 3-D imaging more 
accessible to researchers, and the collection of 3-D data sets 
is now routine in several biomedical laboratories. With the 
dramatic improvements in computing technology, the visual- 
ization of 3-D data is no longer a daunting task. Several soft- 
ware packages for 3-D visualization, both commercial and free- 
ware (http:llwww.cs.ubc.ca/spider/ladiclsoftware.html) are now 
readily available. These packages include special rendering algo- 
rithms that allow (1) the visualization of 3-D structures from 
several viewing angles, (2) the analysis of surface features, (3) the 
generation of profiles across the surface, and through the 3-D 
volume, and (4) the production of animations, anaglyphs (red- 
green images) and stereo image pairs. Several books and articles 
have been written covering the different visualization and recon- 
struction techniques for 3-D data [ 11-13]. However, little work 
has yet been done in the quantitative assessment of 3-D confocal 
microscope images. Moreover, the current emphasis in biology 
is now on engineering quantification and quantitative analysis 
of information, so that observations can be integrated and their 
significance understood. Information regarding the topological 
properties of structure such as the number of objects and their 
spatial localization per unit volume, or the connectivity of net- 
works cannot be made by using single two-dimensional images. 
Such quantitative measurements have to be made in 3-D, us- 
ing volume data sets. In the following sections, we will present 
some of the digital image processing methods that maybe imple- 
mented to obtain quantitative information from 3-D confocal 
microscope images of biological specimens. 

6.1 Quantitative Analysis of 3-D Confocal 
Microscope Images 
Three-dimensional data obtained from confocal microscopes 
comprise a series of optical sections, referred to as the z series. 
The optical sections are obtained at k e d  intervals at succes- 
sively higher or lower focal planes along the z axis. Each two- 
dimensional (2-D) image is called an  “optical slice,” and all 
the slices together comprise a volume data set. Building up the 
z series in depth allows the 3-D structure to be reconstructed. 

Most of the image processing algorithms for 2-D images dis- 
cussed in the preceding chapters can be easily extended into three 
dimensions. Quantitative measurements in 3-D involve the iden- 
tification, classification, and tracing of voxels that are connected 
to each other throughout the volume data set. For the volume 
data sets, 3-D image measurements are generally performed by 
using two different approaches, either independently, or in con- 
junction with each other. The first approach involves performing 

image processing operations on the individual optical sections 
(2-D) of the z series, and then generating a new (processed) 
3-D image set to make measurements. The second approach is 
to perform image processing by using the voxel (volume ele- 
ment), which is the 3-D analog of pixel (the unit ofbrightness in 
two dimensions). In this case, cubic voxel arrays are employed 
to perform operations such as kernel multiplication, template 
matching, and others using the 3-D neighborhood of voxels. In 
either case, quantitative measurements have to be made on the 
volume data set to determine the 3-D relationship of connecting 
voxels. A summary of the different image processing algorithms 
for 2-D images, which can be applied to the individual slices of 
a 3-D data set without compromising the 3-D measurements, 
is discussed by Russ in [ 141. Certain operations such as skele- 
tonization, however, cannot be applied to single optical slices, 
and they have to be performed in three dimensions, using voxel 
arrays to maintain the true connectivity of 3-D structure. See 
[E, 161 for a discussion. 

In the following sections, we will use examples to demon- 
strate the application of image processing algorithms to perform 
quantitative measurements at both the cellular and tissue level in 
biological specimens. It will be evident from the examples pre- 
sented that each volume data set requires a specific set of image 
processing operations, depending on the image parameters to 
be measured. There are no generic image processing algorithms 
that can be used to make 3-D measurements, so in most cases it 
is necessary to customize a set of image analysis operations for a 
particular data set. 

6.2 Cells and Tissues 
Confocal fluorescence microscopy is increasingly used to study 
dynamic changes in the physiology of living cell’s and tissues, 
and to determine the spatial relationships between fluorescently 
labeled features in fixed specimens. Live cell imaging is used 
to determine cell and tissue viability, and to study dynamic 
processes such as membrane fusion and fission, calcium-ion 
fluxes, volumetric transitions, and FRAP (fluorescence recovery 
after photobleaching). Similarly, immunofluorescence imaging 
is used determine cellular localization of organelles, cytoskeletal 
elements, and macromolecules such as proteins, RNA, and DNA. 
We present examples demonstrating the use of image analysis for 
confocal microscope images to estimate viability, determine the 
spatial distribution of cellular components, and to trackvolume 
and shape changes in cells and tissues. 

6.2.1 Viability Measurements 
Fluorescence methods employing fluorescent dyes specifically 
designed for assaying vital cell functions are now routinely used 
in biological research. Propidium iodide (PI) is one such dye 
that is highly impermeant to membranes, and it stains only cells 
that are dead or have injured cell membranes. Similarly, acridine 
orange (AO) is a weakly basic dye that concentrates in acidic 
organelles in living plant and animal cells, and it is used to assess 
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cell viability. Dead cells are stained red with the PI dye, while 
the live cells are stained green with AO. Laser scanning confocal 
microscopy (LSCM) allows the reconstruction of the 3-D mor- 
phology of both the viable and dead cells. Digital image process- 
ing algorithms can then be implemented to obtain an estimate 
of the proportion of viable and dead cells throughout the islet 
volume as described below. 

Figures 7(a) and 7(b) present series of optical sections that 
were obtained through an individual islet, at two different exci- 
tation wavelengths, 488 nm and 514 nm, for viable and damaged 
tissue, respectively. We implemented image analysis algorithms 
consisting of template masking, binarization, and median filter- 
ing (Chapter 2.2) to estimate viability, as described next. The 
first step involved the processing of each 2-D (512 x 512) image 
in the sequence of N sections. Template masking was applied to 
perform object isolation, in which the domain of interest (islet) 
was separated from the background region. The template mask 
is a binary image in which the mask area has an intensity of 1 
and the background has an intensity of 0. Point wise multipli- 
cation of this mask with the individual serial optical sections 
isolates the islet cross-sections, since the intensity of the back- 
ground is forced to zero. The advantage of masking, especially 
in the case of biological samples, is that the processed images are 
free of background noise and other extraneous data (i.e., sur- 
rounding regions of varying intensity that may occur as a result 
of the presence of exocrine tissue or impurities in the culture 
media). The masked images were then binarized by using gray- 
level thresholding operations (discussed earlier in Chapter 2.2). 
For 3-D (volume) data sets, it is critical to choose a threshold 
that produces a binary image retaining most of the relevant in- 
formation for the entire sequence of images. The result of the 
gray-level thresholding operation is a binary image with each 
pixel value greater than or equal to the threshold set to 255 and 

the remaining pixels values set to 0. Binary median filtering was 
then applied to smooth the binary image. The algorithm to per- 
form median filtering on binary images in the neighborhood 
(eight-connected) of a pixel counts the incidence of (255 and 0) 
values of the pixels and its neighbors, determines the majority, 
and assigns this value to the pixel. The function of median fil- 
tering is to smooth the image by eliminating isolated intensity 
spikes. Following these preprocessing steps on each 2-D optical 
section, the 3-D data set was then used to determine the total 
number fluorescently stained voxels (dead/live) present in the 
islet. The total number of pixels at an intensity of 255 (indicat- 
ing the local presence of the fluorescent stain) was recorded for 
each cross-section of the live and dead cell data sets. The sum 
of the total pixels for N sections was computed, and the ratio 
of the sum of the live tissue to that of the dead was determined. 
This technique was successfully applied to investigate the effect 
ofvarying cooling rates on the survival of cryopreserved pancre- 
atic islets [ 171. These image processing algorithms can be easily 
applied to determine the viability in various cells and tissues that 
have been labeled with vital fluorescent dyes. 

6.2.2 Quantification of Spatial Localization 
and Distribution 
In order to take full advantage of the 3-D data available by means 
of confocal microscopy, it is imperative to quantitatively analyze 
and interpret the volume data sets. An application where such 
quantification is most beneficial constitutes the spatial localiza- 
tion and distribution of objects within the 3-D data set. This is 
particularly applicable to biological specimens, because the exact 
location or distribution of cellular components (e.g., organelles 
or proteins) within cells is often desired. We will present an ex- 
ample, each for living and fixed cells wherein a 3-D quantitative 

FIGURE 7 
nm (reproduced with permission from [17]). 

Series of 14 optical sections through an islet: (a) viable cells imaged at 488 nm; (b) dead cells imaged at 514 
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analysis is required, to estimate the distribution ofdamage within 
cells, and to determine the cellular localization of a protein; re- 
spectively. 

Frequently, the elements of interest are represented by either 
individual voxels (indicating the presence of fluorescently label- 
ed elements) or clusters of connected voxels. It is typically re- 
quired to determine the location and frequency of occurrence of 
these objects within the volume data set. There are three steps 
involved in performing a spatial distribution analysis: (1) iden- 
tify objects, (2) determine their local position relative to the 3-D 

rence within the 3-D volume. The first step involves identifying of an object of the Same shape 
the elements of interest in the data sets, whose spatial distri- is in turn 
bution is desired. If individual voxels are to be analyzed, there of the object could be 
is no special processing that has to be performed. However, if concentrated without changing the first moment of the object 
the objects of interest consist of clusters of connected voxels, an moments about the x, y, 
image processing algorithm called region labeling or blob color- 
ing (Chapter 2.2) is implemented to identify and isolate these 

imagedvolume> and (3) determine the Of their occur- Detmmjnation of(=entroid. The centroid ofan object maybe 
defined as the center of 
with constant 
defined as that point where all the 

about any axis [191. In the 3-D 
and axes are: 

per unit area. The center of 

gion were assigned the same color. A threshold was set for the 
size of each region. Only regions containing more than ten voxels 
were counted; the rest were assumed to be noise and neglected. 

Once the elements of interest [individual voxels/connected 
voxels (objects)] have been identified, the second step is to de- 
termine their spatial location or position within the volume data 
set. On one hand, for individual voxels, the spatial coordinates 
along the x ,  y, and z axes are used to represent position. The po- 
sition of objects, on the other hand, can be represented in terms 
of its centroid. 

objects. 

3-0 Region Labeling. Each image element in 3-D is a voxel, 
and each voxel has 26 neighboring voxels; eight voxels, one at 
each corner, 12 voxels, one at each edge, and six voxels, one at 
each surface. A 3-D region array may then be defined wherein 
a similar value (region numbedunique color) is assigned for 
each nonzero voxel in the image depending on its connectivity. 
The connectivity of a voxel is tested based on a predetermined 
neighborhood so that all voxels belonging to the same connected 
region may have the same region number. The size of the neigh- 
borhood is chosen depending on image parameters, and the size 
of the features of interest. Each region or blob is identified by 
its unique color, and hence the procedure is called blob coloring 
[ 181. For example, the volume data set presented in Fig. 7(b) 
was analyzed by region labeling to identify and isolate the dead 
nuclei within the islet volume. The connectivity of voxels was 
tested by using a ten-connected neighborhood. Since the diam- 
eter of each nucleus is -7-9 pm and the serial sectioning was 
performed at a z interval of -2-5 pm, it was necessary to use 
only the six surface voxels and four edge voxels for compari- 
son. This decision was made because the use of the voxels at the 
remaining eight edges and the 12 corners produced artificially 
connected regions extending from the first to the last section in 
the 3-D image. These artificial regions were larger in size and 
did not compare with the typical size of a nucleus. An algorithm 
for 3-D blob coloring was implemented, to first scan the data 
set and check for connectedness so that pixels belonging to the 
same eight-connected region in the X-Y plane had the same 
color for each nonzero pixel. The remaining two surface neigh- 
bors in the Z direction were then checked for connectedness so 
that voxels belonging to the same two-connected (voxels in the 
previous and following z sections) region had the same color 
for each non-zero voxel. The final results of this procedure thus 
contained information on the connectedness of voxels in the 
3-D image. All voxels belonging to the same ten-connected re- 

where (X , ,  Y,, 2,) is the position of the center of mass. The 
expressions appearing on the left of these equations are the total 
mass, with integration over the entire image I .  For discrete binary 
images the integrals become sums, thus the center of mass for 
3-D binary images can be computed using the following: 

where f(i, j ,  k) is the value of the 3-D binary image (ie., the 
intensity) at the point in the ith row, jth column and kth section 
of the 3-D image, i.e., at voxel (i, j ,  k). Intensities are assumed 
to be analogous to mass so that zero intensities represented zero 
mass. The above expressions were used to determine the centroid 
of the 3-D islet volume shown in Fig. 7(b), and the centroid of 
each damaged nuclei isolated using the region labeling tech- 
nique. Thus, the spatial position of each damaged nuclei within 
the islet was determined. 

It should be noted here that the position of the individual vox- 
els defined by the ( x ,  y, z) spatial coordinates, or that of objects 
in terms of the centroid, represent their ‘‘global” location with 
respect to the entire 3-D data set. In order to determine the spatial 
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distributionlocally, it is necessary to estimate their position rela- 
tive to some specific feature in the imaged volume. For example, 
Fig. 7(b) presents a z series or volume data set of the damaged 
nuclei within an islet. The specific feature of interest (or image 
volume) in this case comprises the islet. The spatial position of 
the nuclei when expressed only in terms of the centroid then 
represents their “global” position within the z series. In order to 
establish their distribution locally within the imaged islet, it is 
necessary to determine their location in terms of some feature 
specific to the islet. Thus, the final stage of a spatial distribution 
analysis is to determine the frequency and location of the objects 
with reference to the imaged volume. For cellular structures, this 
can be accomplished by estimating a 3-D surface that encloses 
the imaged volume. In the islet example, the local distribution of 
the damaged nuclei can then be described relative to the surface 
ofthe islet within which they lie. A technique to estimate the 3-D 
surface of spherical objects is described as follows. 

Estimation of 3-0 surface. Superquadrics are a family of para- 
metric shapes that are used as primitives for shape representa- 
tion in computer graphics and computer vision. An advantage 
of using these geometric modeling primitives is that they allow 
complex solids and surfaces to be constructed and altered easily 
from a few interactive parameters. Superquadric solids are based 
on the parametric forms of quadric surfaces such as the superel- 
lipse or superhyperbola, in which each trigonometric function 
is raised to an exponent. The spherical product of pairs of such 
curves produces a uniform mathematical representation for the 
superquadric. This function is referred to as the inside-outside 
function of the superquadric or the cost function. The cost func- 
tion represents the surface of the superquadric that divides the 
3-D space into three distinct regions: inside, outside, and surface 
boundary. 

Model recovery may be implemented by using 3-D data points 
as input. The cost function is defined such that its value depends 
on the distance of points from the model’s surface and on the 
overall size of the model. A least-squares minimization method 
is used to recover model parameters, with initial estimates for 
minimization obtained from the rough position, orientation, 
and size of the object. During minimization, all the model pa- 
rameters are iteratively adjusted to recover the model surface, 
such that most of the input 3-D data points lie close to the sur- 
face, To summarize, a superquadric surface is defined by a single 
analytic function that is differentiable everywhere, and can be 
used to model a large set of structures like spheres, cylinders, 
parallelepipeds, and shapes in between. Further, superquadrics 
with parametric deformations can be implemented to indude 
tapering, bending, and cavity deformation [ 201. 

We will demonstrate the use of superellipsoids to estimate the 
3-D bounding surface of pancreatic islets. In the example pre- 
sented, our aim was to approximate a smooth surface to define 
the shape of islets, and parametric deformations were not im- 
plemented. A 3-D surface for pancreatic islets was estimated by 
formulating a least-squares minimization of the superquadric 

cost function with the imaged 3-D data points as input [21]. 
The insideoutside cost function, F ( x ,  y ,  z), of a superquadric 
surface is defined by the following equation: 

where x ,  y ,  and z are the position coordinates in 3-D; u1, u2, u3 

define the superquadric size; and €1 and €2 are the shape param- 
eters. 

The input 3-D points were initially translated and rotated to 
the center of the world coordinate system (denoted by the sub- 
script W) and the superquadric cost function in the general 
position was defined as follows [21]: 

where ul, u2, u3, € 1  and € 2  are as described earlier; +, 8, + repre- 
sent orientation; and c1, c2, cg define the position in space of the 
islet centroid. To recover a 3-D surface it was necessary to vary 
the above 11 parameters to define a set of values such that most 
of the outermost 3-D input data points will lie on or close to the 
surface. The orientation parameters 4, 8,$ were neglected in 
accordance with the rationale of Solina and Bajcsy [20], for the 
analysis of bloblike objects. Only the size and the shape param- 
eters were varied, and the cost function was minimized by using 
the Levenberg-Marquardt method [ 221. Further, since multiple 
sets of parameter values can produce identical shapes, typically 
certain severe constraints are essential to obtain an unique so- 
lution. However, since the recovered 3-D surface was used only 
to represent space occupancy or shape, such ambiguities did not 
impose a problem [20]. The initial estimates for the size parame- 
ters were obtained from the input data points, whereas the shape 
parameters were initially set to 1. The final parameter values for 
the 3-D surface were determined based on the criterion that the 
computed surface would enclose >90% of the 3-D input data 
points. Figure 8 presents a graph of an estimated superquadric 
surface illustrating the imaged tissue voxels enclosed within or 
lying on the 3-0  surface along with the outlying tissue voxels. 
The estimated surface was then used as a local reference bound- 
ary, relative to which the spatial distribution of individual voxels 
or objects within the islet was determined. 

Localization and Distwbzltion. The spatial localization of an 
element in 3-D space can be estimated by describing its position 
with reference to a morphological feature, such as an enclosing 
surface. This information can then be organized into groups to 
determine the distribution of elements by computing the he- 
quency of elements that occur at similar spatial positions. In the 
example presented, the 3-D spatial distribution of tissue was de- 
termined by identifying each voxel (viable and damaged) and 
computing its relative location in the islet. The spatial location 
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. .  

FIGURE 8 Graph of an estimated 3-D superquadric surface illustrating the 
viable (green) and dead (red) tissue voxels enclosed within or lying on the 3-D 
surfacealongwith afewoutlyingvoxels (reproducedwithpermissionfrom [ 171). 

of tissue within the islet was measured by computing the nor- 
malized distance of each voxel from the recovered superquadic 
surface, as described below. 

After the surface model was identified, the distance of each 
viable or damaged image voxel from the centroid of the 3-D 
islet volume was obtained. The distance was then normalized 
with respect to the length of a vector containing the voxel and 
extending from the centroid to its intersection with the estimated 
superquadric 3-D surface. Defining the origin 0 to be fixed at 
the centroid, and pc to be the length of the vector originating 
at 0, passing through a voxel P, and terminating at the point of 
intersection with the superquadric surface, S, we then have the 
coordinates ofvoxel S as (pc, 8, +). Voxels P and S have similar 
8 and +values and different p values. Thus, pc is easily obtained 
from 

Pc = 
1 .o 

where the parameters a l ,  a2, a3, € 1  and € 2  were estimated by 
means of the nonlinear least-squares minimization of the su- 
perquadric cost function. 

After pc was obtained, the normalized distance ofvoxel P from 
the centroid was computed as p/pc. All voxels inside the esti- 
mated 3-D surface had a normalized distance value less than 1, 

and surface voxels had a value of 1. Thus the “local” spatial lo- 
cation of each voxel within the islet volume was determined, 

For estimating the spatial distribution, each tissue voxel was 
then assigned to a regional group as a function of its computed 
normalized distance from the centroid. Thereby 10 serial annu- 
lar shells were obtained, each having a normalized shell width of 
0.1. Thus, the spatial distribution of viable and damaged tissue 
was computed in the form of a histogram, i.e., the number of 
voxels were determined for each shell depending upon the nor- 
malized distance from the centroid. This technique was used to 
determine the 3-D nature of cryopreservation induced injury in 
pancreatic islets, and the information was used to obtain a better 
understanding of the fundamental phenomena underlying the 
mechanisms of freeze-thaw induced injury [ 171. A similar anal- 
ysis was implemented to determine the spatial distribution of a 
bacterial protein in mouse fibroblasts cells, fluorescently labeled 
by using indirect immunofluorescence methods [23]. 

These methods may be easily extended to other applications, 
biologically oriented or otherwise, to determine the spatial dis- 
tribution of 3-D data. 

6.2.3 Dynamic Volumetric Transitions 
and Shape Analysis 
The confocal microscope has the ability to acquire 3-D images 
of an object that is moving or changing shape. A complete vol- 
umetric image of an object can be acquired at discrete time in- 
stances. By acquiring a sequence of images this way, the time 
dimension is added to the collected data, and a 4-D data set 
is produced. The addition of the time dimension makes analy- 
ses of the data even more difficult, and manual techniques be- 
come nearly impossible. Some of the volumetric morphological 
techniques described in the previous sections can be easily ex- 
tended into the time domain. Quantities such as the total vol- 
ume, surface area, or centroid of an object can be measured over 
time by simply computing these quantities for each time sam- 
ple. Simple extensions into the time domain such as this cannot 
give a detailed picture of how a nonrigid object has changed 
shape from one time frame to the next. The most difficult anal- 
ysis is to determine where each portion of an object undergo- 
ing nonrigid deformations has moved from one frame to the 
next. 

An overview of a technique that produces detailed localized 
information on nonrigid object motion is presented. The tech- 
nique is described in detail in [24, 251. The technique works 
by initially defining a material coordinate system for the spec- 
imen in the initial frame and computing the deformations of 
that coordinate system over time. It assumes that the 3-D frames 
are sampled at a sufficiently fast rate so that displacements are 
relatively small between image frames. 

Let f i ( x ,  y, z) represent the 3-D image sequence in which 
each 3-D frame was sampled at time ti where i is an integer. 
The material coordinate system which is “attached” to the ob- 
ject changing shape is given by (u1, u2, ug). The function that 
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defines the location and deformation of the material coordinate 
system within the fixed ( x ,  y, z )  coordinate system is defined as 
a(u1, 2.42, 2.43) = ( x ,  y, z). To define the position of the material 
coordinate system at a particular time ti, the subscript i is added, 
giving ai(u1, u2, 2.43) = (x i ,  yi, zi). The deformation ofthe ma- 
terial coordinate system between times ti-1 and ti is given by the 
function Ai, i.e., ai = ai-1 + Ai. 

The goal of the shape-change technique is to find the func- 
tions Ai given the original image sequence and the initially 
defined material coordinates ao(u1, u2, 243). The functions are 
found by minimizing the following functional using the calcu- 
lus of variations [26] : 

where E is a nonnegative functional that is a measure of the 
shape-change smoothness, S, and the penalty functional P that 
measures how much the brightness of each material coordinate 
changes as a result of a given deformation Ai. The parameter A 
is a positive real number that weights the tradeoff between the 
fidelity to the data given by P and the shape-change limit im- 
posed by S. Specifically, the brightness continuity constraint is 
given by 

P(Ai) =J J I,[J(ai-l + A i ) -  J-l(ai-l)I2d~ldu2du3. 

(16) 
UI u2 

The shape-change constraint is given by 

S(Ai) = I ,  I, 1 3 ( g i  - gi-1)’dUl d ~ 2  d ~ 3 ,  (17) 

where gi is a 3 x 3 matrix and function of (u1, u2, u3) called 
the first fundamental form [27] of the material coordinate sys- 

tem. The first fundamental form is a differential geometric 
property of the coordinate system which completely defines the 
shape of the coordinate system up to a rigid motion in ( x ,  y, z )  
space. 

The formulation of the shape-change technique is similar to 
the well-known opticalflow algorithm presented in [ 191, except 
that in this case the smoothness constraint is based on the ac- 
tual shape of the object rather than simple derivatives of the 
image. Also, this formulation is presented in three dimensions 
and produces a model of the shape change for an entire image 
sequence. 

The solution of Eq. ( 15) requires solution of 3 coupled, nonlin- 
ear partial differential equations. A finite difference approach can 
be used to solve the equations. The resulting solution depends 
highly on the selection of the parameter X in Eq. (15). Selection of 
A is generally done by trial and error. Once an appropriate value 
for A is found, however, it can generally be held constant through- 
out solution for the entire image sequence. Figure 9 shows the 
result of running the shape-change algorithm on human pancre- 
atic islets undergoing dynamic volumetric changes in response 
to osmotic changes caused by the presence of a cryoprotective 
additive (dimethyl sulfoxide) [28]. 

6.3 Microvascular Networks 
Microvascular research is another area in biology that employs 
various imaging methods to study the dynamics of blood flow, 
and vascular morphology. One of the problems associated with 
evaluating microvascular networks relates to the measurement 
of the tortuous paths followed by blood vessels in thick tissue 
samples. It is difficult to acquire this information by means of 
conventional light/fluorescence microscopy without having to 
physically section the specimen under investigation. The use of 

FIGURE 9 Shape-change analysis in a human islet subjected to osmotic stress. 
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confocal microscopy overcomes this problem by providing, in 
three dimensions, additional spatial information related to the 
vascular morphology. However, this now presents the issue of al- 
lowing quantitative measurements to be made in the 3-D space. 
In the past, even with 2-D data, morphometric evaluation of 
blood vessel density and diameter has involved manual count- 
ing and estimation procedures. There is considerable ambiguity 
involved in the manual measurement of vessel diameters. Es- 
timating the location of vessel boundaries within the image of 
microvessels presents a difficult problem. Manual counting of 
blood vessels is often tedious and time consuming, and the er- 
ror in measurements typically increases with time. The prob- 
lem is only compounded in 3-D space. Hence, it is necessary 
to develop computer algorithms to automate the quantitative 
measurements, thus providing an efficient alternative for mea- 
surements of the vascular morphology. We present an example 
in which digital imaging was used to measure the angiogene- 
sis and revascularization processes occurring in rat pancreatic 
islets transplanted at the renal subcapsular site [29]. Confocal 
microscopy was employed to image the 3-D morphology of the 
microvasculature, and image processing algorithms were used 
to analyze the geometry of the neovasculature. Vascular mor- 
phology was estimated in terms of 3-D vessel lengths, branching 
angles, and diameters, whereas vascular density was measured 
in terms of vessel to tissue area (2-D) and volume (3-D) ratios. 
The image processing algorithms employed are described in the 
following sections. It should be noted that the methodology de- 
scribed here is suited for microvascular networks wherein the 
vessel lengths are perpendicular to the optical axis. For vascu- 
lar networks, where the vessel direction is parallel to the optical 
axis so that only vessel cross-sections (circular or elliptical) are 
known by the 3-D image, different image processing algorithms 
are needed [ 301. 

6.3.1 Data Acquisition and 3-D Representation 
The revascularization of pancreatic islet grafts transplanted at 
the renal subcapsular site in rats was evaluated experimentally 
by means of intravital LSCM of the blood vessels [29]. Three- 
dimensional imaging of the contrast-enhanced microcirculation 
(5% fluorescein labeled dextran) was performed to obtain serial 
optical cross-sections through the neovascular bed at defined z 
increments. In this example, the acquisition of the optical sec- 
tions was influenced by the curvilinear surface of the kidney. 
During optical sectioning of the graft microvasculature, im- 
ages were captured along an inclined plane rather then vertically 
through the area being sectioned. This occurred as adjacent ar- 
eas on the surface of the kidney came into focus during optical 
sectioning. This effect is demonstrated in Fig. 10, which presents 
the results of a computerized 3-D reconstruction performed on 
25 optical sections ( z  interval of 5 pm) obtained through thevas- 
cular bed of an islet graft. As seen in Fig. 10, the curvaceous shape 
of the kidney is easily distinguished in the 3-D reconstruction. 
Thus, in order to evaluate the 3-D vascular morphology, a 2-D 
image was projected from the 3-D reconstruction. The compos- 

FIGURE 10 Computerized 3-D reconstruction performed on 25 optical sec- 
tions (z interval of 5 pm) obtained through the vascular bed of the kidney. 
As seen, the curvaceous shape of the kidney is easily distinguished in the 3-D 
reconstruction. 

ite 2-D image representing the 3-D morphologywas obtained by 
projection of the individual sections occurring at varying depths 
(along the z plane) onto the x-y plane. As shown in Fig. 11, the 
resulting image consisted of blood vessels that were contiguous 
in the third dimension. All the morphological measurements 
were performed on the composite image. 

6.3.2 Determination Of Vascular Density 
The measurement of the vascular density included a combina- 
tion of the gray-level thresholding, binarization, and median 
filtering algorithms described in the preceding chapters. Binary 
images were initially generated by image segmentation, using 
gray-level thresholding. Two-dimensional images of similar spa- 
tial resolutions were then smoothed with a 3 x 3 or 5 x 5 median 
filter (Chapter 3.2). The total of the number of pixels at 255 was 
used as an estimate of the vessel area, and the remaining pixels 
represented the tissue area. The vessel to tissue area ratios were 
then computed for each section (areas) or for an entire sequence 
of sections (volumes). 

6.3.3 Determination of Vascular Morphology 
Vascular morphology was determined in terms of 3-D vessel 
lengths, vessel diameter, and tortuosity index as described below. 

Unbiased Estimation of Vessel Length. Composite images of 
the projected microvasculature were segmented by using gray- 
level thresholding to extract the blood vessels from the back- 
ground. The segmented image was then used to obtain a skeleton 
of the vascular network by means of a thinning operation [31]. 
The skeletonization algorithm obtains the skeletons from binary 
images by thinning regions, i.e., by progressively eliminating 
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FIGURE 11 3-D representation of the microvasculature of an islet graft at the renal subcapsular site. 
The image is color coded to denote depth. The vessels appearing in the lower portion (blue) are at a 
depth of 30 pm, whereas those in the middle and upper portions of the image are at a depth of -85 
(green) and 135 p m  (violet), respectively (reproduced with permission from [29]). (See color section, 
p. C-55.) 

border pixels that do not break the connectivity of the neighbor- 
ing (eight-connected) pixels, thus preserving the shape of the 
original region. The skeletonized image was labeled by using the 
procedure of region labeling and chain coding. The region label- 
ing procedure was implemented with a eight-connected neigh- 
borhood for identifying connected pixels. It was used to identify 
and isolate the different blood vessel skeletons and to determine 
the length of each segment. Further, the chain coding opera- 
tion was applied to identify nodes and label vessel segments. 
The labeled image was scanned to isolate the nodes, by check- 
ing for connectivity in the eight-connected neighborhood. Pixels 
with only one neighbor were assigned as the terminating nodes. 
Those having greater than two neighbors were classified as junc- 
tion nodes with two, three, or four branches, depending on the 
connectivity of pixels. The labeled image was pruned to remove 
isolated short segments without affecting the connectivity of the 
vascular network. The vessel length was determined as the sum 
of the total number of pixels in each labeled segment. This ap- 
proach introduces some systematic bias, because the projection 
of the 3-D data onto a 2-D composite results in the lost of some 
information. An unbiased estimation of the 3-D vessel lengths 

was implemented by applying a modification of the technique 
described by Gokhale [32] and Cruz-Orive and Howard [33]. 
This technique eliminated the error introduced in the measure- 
ment of the vessel lengths caused by the bias generated during 
the vertical projection of volume data sets. 

Gokhale [32] and Cruz-Orive et al. [33] have addressed the 
issue of estimating the 3-D lengths of curves using stereological 
techniques. These studies describe a method to obtain an unbi- 
ased estimate the 3-D length oflinear features from “totalvertical 
projections,” obtained by rotating the curve about a fixed axis 
and projecting it onto a fixed vertical plane. The length of linear 
structures is measured for each of the vertical projections. The 
final estimate of the 3-D length is then obtained as the maximum 
of the different projected lengths. This technique was adapted 
for our application and implemented as follows. The 3-D re- 
construction (Fig. 10) was rotated about a fixed axis ( y  axis) in 
varying amounts, and the vertical projections were performed 
to obtain the composite image for each orientation. 

The 3-D rotations were implemented by means of 3-D trans- 
formations represented by 3 x 3 matrices using nonhomoge- 
nous coordinates. A right-handed 3-D coordinate system was 
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implemented. By convention, positive rotations in the right- 
handed system are such that, when looking from a positive axis 
toward the origin, a 90" counterclockwise rotation transforms 
one positive axis into another. Thus, for a rotation of the x axis the 
direction of positive rotation is y to z, for a rotation of the y axis 
the direction of positive rotation is z to x, and for a rotation of the 
z axis the direction of positive rotation is x to y. The zaxis (opti- 
cal axis) was fixed as the vertical axis. The y axis was fixed as 
the axis about which the 3-D rotations were performed, and the 
vertical projections were obtained in the x-y plane. The 3-D 
morphology of the microvascular bed, i.e., the blood vessels, 
were projected onto the fixed plane (x-y plane) in a systematic 
set of directions between 0" and 180", about the y axis as shown 
in Fig. 12. 

The 3 x 3 matrix representation of the 3-D rotation at angle 
0 about the y axis is 

[ case o -~;e] 
R,(0) = 0 1 (18) 

-sin0 0 cos0 

Thus, the geometrical transformation of the 3-D volume is 

Original 3-D image and its vertical projection 

3-D image rotated 15" about the 
y-axis and its vertical projection 

3-D image rotated 45" about the 
y-axis and its vertical projection 

3-D solid rotated about the y axis and its vertical projections in FIGURE 12 
the x-y plane. 

Step 1 

Vertical projection of the 
original 3-D image and 
its skeleton 

Step 3 

Vertical projection of the 
rotated 3-D image and 
its skeleton 

FIGURE 13 
ages by means of mapping and 3-D transformations. 

Correspondence of vessel segments in the various projected im- 

computed as follows: 

[d] [ cos0 0 -spa] X 

v ' =  0 1 
2' -sin0 0 cos0 

where x', y', and z' are the transformed coordinates, x, y, and z 
are the original coordinates of the reconstructed 3-D image, and 
0 is the angle of rotation about the y axis. The projected length 
of individual vessel segments may vary in the different projec- 
tions obtained. Vessel segments were uniquely labeled in each 
of the composites at different orientations, and the connecting 
node junctions identified. The unbiased 3-D lengths were de- 
termined as the maximum of the projected lengths estimated 
for the various rotations. In order to achieve this, the individual 
vessel segments at the different rotations have to be matched. 
The problem involves the registration of each individual vessel 
segment as it changes in its projected orientation. It was resolved 
by performing a combination of mapping and inverse mapping 
transformations. For example, as shown in Fig. 13, an unbiased 
estimate of the 3-D length of segment PQ may be determined as 
the maximum of the length of the projected segments PlQl  and 
P3Q3. It is essential that PlQl and P3Q3 are matched as projec- 
tions ofthe samevessel segment. This was achieved in three steps. 
The first step was to match the points P1 and Q1 in the skele- 
tonized image to the points P and Q in the binary image. This 
was achieved by a simple mapping of points because the skele- 
ton PlQl  maps onto the centerline of the binary segment PQ. In 
step 2, the points P and Q were mapped onto the points P2 and 
Q2 by performing the required transformation to rotate the 3-D 
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image. Finally, the binary segment P2Q2 was mapped on to its 
skeleton P3Q3. Thus a correspondence was established between 
the two projected lengths P l Q l  and P3Q3. The maximum value 
of these lengths was a measure of the unbiased length. The tortu- 
osity index was then defined as the ratio of the length of a straight 
line vector between two points to the length of the vessel seg- 
ment between the samepoints. A n  index of 1 represents a straight 
vessel, and < 1.0 represents a curvilinear or tortuous vessel. 

Automated Estimation of the Vessel Diameter. In order to 
automate the vascular diameter measurements, a technique em- 
ploying linear rotating structuring elements (ROSE) described 
by Thackray and Nelson [34], was implemented. In this method, 
various linear structuring elementshemplates of known orienta- 
tions were constructed to represent shapes frequently occurring 
in the images [ 351. The template was then passed over the la- 
beled image until a match was obtained. At this step, a path was 
identified through a matched point on the skeleton such that its 
direction was along the normal to the edge of the vessel (in the 
image or x-y plane) at the corresponding point in the segmented 
(binary) image. The diameter was then measured by traversing 
the two sides from the corresponding point in the segmented 
image along the defined path until an intensity change occurred 
from white (255) to black (0). The total distance traversed on 
both sides was then used as the diameter estimate at that point. 
The diameter measurements were obtained by starting at a point 
a few pixels (determined as 20% of the total number of pixels in 
the vessel) from the nodes in order to avoid any erroneous mea- 
surements caused by the presence of overlapping blood vessels. 
Further, since each blood vessel segment was labeled individu- 
ally, the diameter measurements were obtained at various inter- 
vals along each segment at points where a template match was 
found, and the average was determined to obtain an estimate of 
the vessel diameter along that length. 

Determination of Contiguous Vessel Segments. The 3-D 
lengths of the blood vessels were then obtained by identifying 
all vessel segments that were contiguous in depth. The continuity 
of vessel segments was determined by two parameters, namely 
the vessel diameters and the branching and junction angles. The 
diameters ofthevariousvessel segments meeting at each junction 
node were examined, and vessel segments having similar diame- 
ters and a common junction node were identified as contiguous 
vessels. Further, at junction nodes of three or more vessel seg- 
ments, the branching angles were measured with the following: 

where ml and m2 are the slopes of two vessel segments that are 
at angle &2 to each other. 

Wo vessel segments were considered to be vessel branches 
when their junction angle was <go”, and their diameters were 
different. A vessel segment was identified as a parent vessel if 
its junction angle with other vessels was >90°. Vessels segments 

were identified as crossing or overlapping vessels when their 
junction angles were -90”. 

We applied these algorithms to assess and compare the mi- 
crovasculature of cultured and cryopreserved islets transplanted 
at the renal subcapsular site in rats [ 361. These algorithms may 
be employed to estimate the morphology of various other vas- 
cular networks, including tumor microvasculature, angiograms 
of patients evaluated for heart disease, and the retinal microvas- 
culature. 

7 Conclusion 

The past 5 years have seen a virtual explosion in the applica- 
tion of confocal microscopy to biological specimens, There is 
no doubt that the need for quantification of 3-D biological data 
will steadily grow. Digital image processing can provide numer- 
ical data to quantify and substantiate biological processes. Most 
often, digital analysis algorithms have to be customized to meet 
the requirements of the application. We have presented several 
examples to demonstrate the application of image processing al- 
gorithms for analyzing confocal microscope images of biological 
specimens. The methodology developed here would be applica- 
ble to the general problem of 3-D image analysis in both cellular 
and network structures. 
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1 Introduction 
When human beings look at camera images of known objects, 
such as a table, a chair, or a car, we recognize them immediately. 
For example, the top left panel in Fig. 1 shows a picture in which 
we can easily identify a car. Even if the pictures are corrupted 
or noisy, or the objects are partially obscured by other objects, 
we can still recognize the car. This observation points to an im- 
portant fact: the human visual recognition system is an awesome 
system with extraordinary processingpower. Can we design an au- 
tomated system, equipped with cameras, computers, databases 
and algorithms, to achieve a similar performance in object recog- 
nition? The answer so far has been no! In this chapter we analyze 
this issue in the context of a very specific problem in automated 
image analysis, called automated target recognition (ATR). By 
restricting ourselves to ATR we can utilize the additional con- 
textual information available in designing ATR algorithms. In 
a general ATR situation, a number of remote sensors (cameras, 
radars, ladars, etc.) observe a scene containing a number of dy- 
namic or stationary targets; a more detailed introduction can be 
found in [2]. These sensors produce observations, in the form 
of images or signals, which are then analyzed by computer al- 
gorithms to detect, track, and recognize the targets of interest in 
that scene. Our goal is to derive ATR algorithms and analyze 
them for their performance. Our approach relies on two main 
building blocks: (i) efficient mathematical representations of the 
scenes containing targets, and (ii) efficient algorithms for infer- 
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ences on these representation spaces. This article describes these 
two steps to ATR. 

One fundamental issue in automated target recognition is the 
following. Consider a normal hand-held camera taking pictures 
of a car. Depending on the relative orientation between the cam- 
era and the car, and the distance between them, the car appears 
vastly different in different pictures. The possible variability in 
relative orientation, also called the pose, causes a tremendous 
variability in the profiles of the targets as seen by a camera, or 
a sensor in general. This fact underlines one difficulty in the 
design of a completely automated algorithm of target recogni- 
tion: how to mathematically model the variability in the sensor 
outputs caused by the variability in target pose? The task is fur- 
ther complicated by relative motion between the sensors and the 
targets, imperfections in sensor operations, and the presence of 
structured clutter in the scene, which often obscures the targets. 

We will utilize elements of deformable template theoryto math- 
ematically model the variations in target pose. For each possible 
object, we define a template (using CAD models and other de- 
scriptors) of standard size, pose, and location. All occurrences 
of a target in a scene can then be represented by scaling, rotat- 
ing and translating its template appropriately. All possible scales, 
rotations, and translations form sets that have interesting geo- 
metrical properties. As described later, they have a group struc- 
ture. In short, these transformations are utilized to transform 
the templates to match the occurrence of targets in a scene. The 
objects and the scenes containing them are three dimensional 
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FIGURE 1 
left to right bottom. 

Synthetic images of a toy model of a car; the pictures become noisier from top 

even though our observations of them are one or two dimen- 
sional. Using the physics of the sensor operation, we will derive 
operators that transform three-dimensional scenes into sensor 
outputs, thus mathematically modeling the sensor operation. 
These operators can be deterministic or random with known 
probability distributions. 

In view of several competing ATR approaches presented in 
recent years, it becomes important to develop a coherent frame- 
work for performance analysis. This analysis should include both 
prognostics (e.g., the best performance that can be achieved 
irrespective of the algorithm) and diagnostics (e.g., the per- 
formance analysis of a given algorithm). Several authors have 
presented metrics for ATR performance analyses, although in 
limited frameworks [ 16-20]. A detailed review of current ATR 
approaches is also presented in a recent report [3], in the con- 
text of synthetic aperture radar (SAR) ATR. One advantage of 
the Bayesian framework is that it provides metrics and bounds 
for comparing algorithmic performance, both between the al- 
gorithms and with the best that can be achieved. 

Section 2 introduces the deformable template approach to 
representing the target variabilities, Section 3 defines statistical 
models for some commonly used sensors. Section 4 sets up a 
Bayesian framework to solve pose and location estimation, and 
target recognition problems. Section 5 defines and computes 
minimum mean square error (MMSE) estimates for the target 
pose and location, and Section 6 summarizes the procedure for 
target recognition. 

2 Target Representations 

Representation is an essential element of image understanding 
and target recognition. The generation of efficient models, for 
representations of target shapes, supporting recognition invari- 
ant to orientations and locations is crucial. Targets are observed 
at arbitrary positions and orientations, in highly variable en- 
vironments. The variability in target pose, with respect to the 
sensor, is important because at different orientations the targets 
appear very different. Even the same target can appear completely 
different at two different orientations. Because of the nonlinear 
relationship between target orientation and image pixel values, 
the orientation parameter has to be modeled explicitly and esti- 
mated for target recognition. The task is complicated by relative 
motion between the sensors and the targets, imperfections in 
sensor operations, and the presence of clutter elements in the 
scene. Furthermore, different sensors capture widely different 
aspects of the target. A video captures the visible light reflection, 
radar captures the electromagnetic scattering, forward-looking 
infrared (FLIR) captures the thermodynamic profile, and so on. 
For these widely varying sensor outputs, what should be chosen 
to represent the targets? 

An emerging paradigm for target representations is the de- 
formable template theory. In this approach the starting point 
is to select a standard template for each of the targets and then 
define a family of transformations to account for the variability 
associated with target occurrences. 
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I I I I c 
FIGURE 2 Templates for various targets. 

1. Templates: start by defining a set of target labels: 

A = {airplane, chair, car, lamp, 

table, jeep, truck, tank,. . .). 

Each 01 E A denotes a particular target. For each 01 E A, we de- 
fine la to be a template associated with that target. It includes all 
the physical attributes of the target that are reflected in the sensor 
output, including shape, size, material, surface reflectivity, and 
thermal profile. Clearly, the constituents of I" depend upon the 
sensor(s) being used. For a visible spectrum video camera, I" 
may consist of a finite element description of its surface, surface 
texture, and the colors. Shown in Fig. 2 are three-dimensional 
renderings of sample target templates. In this case each tem- 
plate consists of a set of polygonal patches covering the surface, 
the material description (texture and reflectivity), and surface 
colors. 

2. Transformations: the targets when they appear in a scene 
do so at arbitrary positions, orientations, light conditions, and 
thermal profiles. The next issue is to account for this variability 
by defining a family of transformations, on the templates, to gen- 
erate all possible occurrences of the targets. To understand the 
basic idea, consider this simple example from high-school ge- 
ometry. We define two triangles to be similar if they have equal 
corresponding angles, for example the two triangles shown in 
Fig. 3.  If we rotate, translate, and (uniformly) scale the left tri- 
angle appropriately, we will obtain the right triangle and vice 
versa. The transformation that takes one triangle to another is 
called the similarity transformation. The set of all possible sim- 
ilarity transformations, call it S, forms a group. A group is a 
set endowed with a group operation (denoted here by 0, often 
called the product) such that for any two elements in the group 
their product also lies in the group. Additionally, there exists an 
identity element, e ,  such that its product with any element of 
the group does not change that element; please refer to [ 121 for 
more details. As an example, Rn is a group with vector-addition 

1 
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as the group operation and zero vector as the identity element. 
Similarly, the set of n x n nonsingular matrices is a group with 
matrix multiplication as the group operation and the identity 
matrix as the identity element. The group structure is instru- 
mental in defining compositions of the transformations: one 
transformation (SI) applied after another transformation (s2) 

has the equivalent effect of a third transformation (s3) applied 
alone. The third transformation is a product of the first two; 
53 = 52 0 SI. 

Now we extend the same idea to more complicated objects 
and seek groups that model their variations. We need groups 
to rigidly rotate and translate three-dimensional objects. Let 0 
be a 3 x 3 matrix such that OOt = identity (t denotes matrix 
transpose) and the determinant of 0 is 1. Then, for any point 
x E R3 on an object, Ox is just a rotated version of x .  0 is called 
a rotation matrix, and the set of all such rotation matrices is 
denoted by S 0 ( 3 ) ,  the special orthogonal group in three dimen- 
sions. SO(3) is a group with matrix multiplication as the group 
operation and a 3 x 3 identity matrix as the identity element. If 
we fix an axis of rotation, as is the case for ground-based objects, 
then there is only one rotational freedom left. This rotation is 
modeled by 2 x 2 rotation matrices, and their set is denoted 
by SO(2). For translations, if we translate an object by a vector 
p E I R 3 ,  then each point x on the object becomes x + p .  The set 

S 

x2 

S-' 

FIGURE 3 Two similar triangles in Euclidean geometry. 
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FIGURE 4 
and translated from an initial pose and location to match the pose and location on the left. 

Left, an airplane at an arbitrary orientation and position; right, the airplane template rotated 

of all possible translations in three dimensions is the whole of 
I R 3 .  Similarly, if the translations are restricted to ground, then 
IR2 is the translation group. More generally, in n-dimensional 
spaces, SO(n) is the rotation group and R" is the translation 
group. To accomplish both rotation and translation, we utilize 
a combination of SO(n) and IR". Let U be a ( n  + 1) x ( n  + 1) 
matrix such that 

[ 3, where 0 E SO(n), p E R" 

For a vector x E R", define an augmented (n + 1) vector x1 = 
[ 'f 1. Then, the first n entries of the vector Uxl represent a ro- 
tated and translated version of x .  The set of all such matrices 
U is denoted by SE(n) ,  the special Euclidean group. S E ( n )  is a 
group with matrix multiplication as the group operation and the 
( n  + 1) x ( n  + 1) identity matrix as its identity element. 

Depending on the specific problem, the group of transfor- 
mations S can be IR", SO(n), SE(n) ,  or Cartesian products of 
them. For an elements E S, let SI" denote the target template I" 
transformed by the element s. For example if S = SE(3),  then 
sIair is the airplane template rotated and translated according to 
s, as shown in Fig. 4. The set of all possible transformations of a 
target a is given by 

0, = {SI", s E S}. 

0, is called an orbit associated with the target a. Then, S is said 
to act on 0, (on the left) because it satisfies the following two 
conditions: 

(a) If e is the identity element of S, then 

el" = I" ,  for all a E A. 

It must be noted that the variability in targets is not caused only 
by arbitrary orientations, and positions. There are other factors 
such as light conditions, targets' surface temperatures, texture 
variations, and their operational status. These factors can also 
be incorporated through more general transformations that are 
much higher dimensional than rigid rotation and translation. As 
an example, the thermodynamic variability in target surfaces as 
observed by FLIR cameras is modeled and estimated as a high- 
dimensional scalar field in [ 14,151. 

3 Sensor Modeling 

So far we have considered three-dimensional target templates 
and a set of transformations on them to describe their occur- 
rences in arbitrary scenes. The observations are, however, in 
general restricted to one- or two-dimensional arrays of num- 
bers as generated by the sensors. Therefore, for a better under- 
standing of images we have to build detailed models for these 
sensors. In these models the physics of sensor operation plays 
an important role because different sensors may produce very 
different pictures of the same scene. Microwave radars generate 
very different "pictures" of the target than second-generation 
FLIR cameras or video cameras. 

In most sensors, imaging is essentially a projective mechanism 
operating by accumulating responses from the scene elements 
that project to' the same pixel in the image. Mathematically, we 
will model the mechanism that maps the scene to some obser- 
vation space ID. In most cases ZD = Rd or ad for some fixed 
number d. This mechanism can either be deterministic or ran- 
dom and constitutes a mapping T bywhich a transformed target, 
SI", appears to the observer as an image I D  E ID. In addition to 
T, a sensor may also generate random noise image, w ,  which is 
assumed to be additive. Then, the observation is modeled by 

(b) If sl, s2 E S ,  then 
I D  = TsI" + w E Iv. (1) 

sz(s1 I") = (SI o s 2 )  I", for all a E A. 

The strength of a deformable template approach comes from 
the fact that all targets' occurrences can be modeled by using ap- 
propriate transformations on appropriate templates. Therefore, 
given an observed image of a target, the task reduces to finding 
the template and the transformation that fits that image best. 

In the ATR context, we must abstract this Tin some generality 
to accommodate various sensors. The particular transformation 
T and the noise properties are determined by the sensor. For 
example, in case of an infrared camera, Tsl" is the mean field 
of a Poisson process for which the additive noise is not appro- 
priate; see, for example, the discussion in [ lo]. It must be noted 
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that accurate analytical expressions for T may not be available 
in all situations, but very often a high-quality simulation exper- 
iment (using special hardware) can be used to sample T at some 
predefined target orientations. For modeling radar returns, the 
XPATCH simulator has been widely used, whereas for FLIR cam- 
eras, PRISM is used. Visible spectrum images can be simulated 
on high-performance silicon graphics machines. 

ID may have multiple components corresponding to multiple 
sensors observing the scene simultaneously: I D  ( I F ,  If, . . .). 
Since the images are random, they are characterized by means of 
a statistical transition law, called the ZikeIihood function P (. I .) : 

the target OL at transformation s to the output ID.  Some of the 
sensors used frequently in ATR applications are as follows. 

1. Video imager: A video sensor provides two-dimensional 
high-resolution real-valued images of rigid targets sampled 

Z D x ( S ,  A) +- IR+, summarizing completely the mapping from 

1,' 1,' ,' 

on a lattice of certain size, = { P ( y > ,  y E Y = { 1,2 ,  . . . , }', 
I D ( y )  E IR}. The images are assumed to result from an ortho- 
graphic or a perspective projection of a three-dimensional sur- 
face intensity on to the camera focal plane, as shown in Fig. 5. 
Figures 5(a) and (c) depict an orthographic projection scheme 
utilized in pose estimation, when the target position is assumed 
to be known. Figures 5(b) and (d) illustrate the perspective pro- 
jection system utilized when both the target pose and location are 
unknown. Figures 5(c) and (d) show TsItank for orthographic 
and perspective systems, respectively. It is assumed that the re- 
flectedlight intensityis high so that I D  = { I D ( y ) ,  y E Y )  is taken 
to be a Gaussian random field, with the mean field given by TsIa. 
Shown in Fig. 6(a) is an example of a simulated noisy video image 
of a truck. 

2. High range resolution radar: A high range resolution (HRR) 
radar provides one-dimensional range profiles of rigid targets; 

camera 
(1. 

FIGURE 5 
image; (d) a perspective image. 

(a) Orthographic projection model; (b) perspective projection system; (c) an orthographic 
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FIGURE 6 
range imagery (XPATCH), and (c) FLIR imagery (PRISM). 

Simulated sample images obtained from different sensors: (a) video imagery (SGI), (b) high range resolution 

see Jacobs et al. [ 61. The transmitted electromagnetic pulses di- 
rected at a target are received back at the receiver, at times pro- 
portional to the distance traveled, representing the superposition 
of the echoes from all the reflectors in a bin along the range 
direction. The received signal is processed by a matched fil- 
ter to generate a one-dimensional magnitude profile versus 
range, I D  = { I D ( y ) ,  y = 1,2,  . . . , I D ( y )  E IR}.Themiddlepanel 
of Fig. 6 shows a range profile of a T62 tank at certain orientation, 
for a carrier frequency in the millimeter-wave region. 

3. Forward-looking infrared A second-generation FLIR cam- 
era captures the thermodynamical profile of a target body by 
means of CCD detectors; see Snyder e t  al. [ 7, lo]. The measured 
data I D  { I D ( y ) ,  y E {1,2, . . . , }2, I D ( y )  E IR} are each as- 
sumed to be Poisson with means given by the corresponding pix- 
els of the perspective projection of the target's three-dimensional 
thermodynamic state. Figure 6( c) shows a tank's thermal profile, 
which when projected and blurred by the point-spread function 
of the camera, provides an infrared image. 

4 Bayesian Framework 

To analyze observed images and to set up estimation problems, 
we utilize the classical Bayesian framework. Similar to the opti- 
mal conditional mean estimators and their covariances as derived 
in the Kalman filtering, we will seek optimal estimators for ATR 
transformation groups. 

A probability density function is often defined as the deriva- 
tive of a probability distribution function. For probabilities on 
IR", this derivative is with respect to the infinitesimal volume 
element in IR" : dx = dxl dx2, . . . , dx,. On SO(n), the volume 
element, has a different form since S O ( n )  is not a vector space. 
The derivatives of functions are evaluated with respect to an 
infinitesimal volume element, which we will denote by y (do); 
please refer to [ 11 for a description of this volume element, also 
called the Haar measure. The product of the volume elements 
on S O ( n )  and IRn provides a volume element on S E ( n ) .  Note 
that just like s,. f (x)  dx, the integration of a function on any 
set is defined with respect to the volume element of that set. 

Now to model the uncertainty in associating an observed im- 
age to a particular template (indexed by a) and a particular 
transformation (denoted by s), we derive a posterior density on 
these unknowns. The posterior densityis the product ofthe prior 
probability density on the unknowns and the likelihood of the 
data according to 

1 
P ( s ,  a I I D )  = - P ( s ,  a ) P ( I D  I s ,  a), s E s, a E A. 

P ( I D )  

The prior density P ( s ,  a)  incorporates our prior knowledge on 
finding a target a, at the pose and location dictated by the trans- 
formations, in the scene. For example, in case ofmoving targets, 
the knowledge of target location may imply a higher probabil- 
ity of there being a future target presence in certain areas and 
low probability in others. The likelihood function P ( I D  I s, a)  
quantifies the probability that a target a at the pose and location 
resulting from the transformation s will give rise to the observed 
image ID.  It is derived from the physical characteristics of the 
sensor map T and the statistics of the sensor noise. As an exam- 
ple, for the video sensor described earlier, the likelihood function 
takes the form 

The resulting posterior includes all the information we have for 
target recognition. 

Having obtained the posterior density, we will generate the 
classical estimators such as maximum a posteriori probability 
(MAP), MMSE, minimum absolute error (MAE), and entropy- 
based estimators. Following the classical Kalman filtering frame- 
work, we will seek MMSE estimators for the transformation, s, 
and a MAP estimation for the target type, a. Along with the 
estimators, we will also compute quantities that represent errors 
in estimation and impose a lower bound on these errors. First 
we construct MMSE estimators on the transformation groups 
SO( n) and SE (n) ,  and then we seek a MAP estimator for a. 
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Because of the geometric properties of rotation matrices, the 
evaluation of the HSE simplifies to the following form: 

& I D )  = argmax trace(OAt) (3) 
OESO(n) 

UV?, if determinant(A) L: 0 

ifdeterminant(A) < 0, (4) 

where 

( 5 )  

and where A = UC V is the standard singular value decom- 
position of A, as described in [22]. The matrices U, C, V are 
arranged such that the singular values occur in decreasing or- 
der along the diagonal of E. Equation (5) can be interpreted 
as element-by-element integration in Rn2 with non-zero con- 
tributions only from the rotation matrices. This integral can be 
computed by using one of several numerical integration tech- 
niques: a Monte Carlo sampling technique is presented in [ 111, 
and the trapezoidal integration is utilized in [4] to compute 6, 
the orientation estimate. 

5.2 Lower Bound on Expected Error 
The next issue is to define a quantity that can be used to assess 
any given estimator in terms of its expected estimation errors. 
For example, in the case of Euclidean parameters, Cramer-Rao 
lower bounds are often used to establish the optimum perfor- 
mance and the estimators are judged through these comparisons. 
In the context of orientation estimation in ATR, we will derive 
Hilbert-Schmidt bounds, which provide a way of comparing dif- 
ferent algorithms. The Hilbert-Schmidt bound (HSB) is defmed 
to be the minimum error attainable when the error is specified 
using the HS norm. 

Definition 2. De&e the HSB as the quantity J T ~  @ ( I D )  
P ( I D )  dID, where dID is the base measure onZD, and 

d I D >  = Lo,,, 11; - s’II’P(s’ I ID>r(ds’). (6) 

The importance of the HSB stems from the fact that for any 
estimator F : --+  SO(^>, 

E116 - 011’ 2 El l6  - 011’ HSB, (7) 

where 6 is the HSE as defined earlier. The expectation is over 
both: the randomness in the data and the randomness in the 
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unknown parameters according to 

x P ( I D )  dID. 

For the proof of this result please refer to 
structure of SO(n), the HSB takes the form 

[4]. Because of the 

where p( ID) = 2(n - trace(At 6)) for A as defined in Eq. (5). 
We shall say that the HSE is efficient in the sense that it has HS 
efficiency = 1, with the HS efficiency of an arbitrary estimator 
S : ZD + SO(n) defined as the ratio 

Shown in Fig. 8(a) is a plot of the HSB for estimating the truck 
orientation, in S0(2), as a function of the noise standard devi- 
ation, u. To avoid some symmetry issues (please refer to [21] 
for a discussion on symmetry issues), this bound is computed 
by considering only the half-circle. The zero expected error im- 
plies perfect orientation estimation; the maximal expected error 
of 1.45 implies completely unreliable estimation of the truck 
orientation. Superimposed on the error plot are three x’s, cor- 
responding to three noise levels. The three truck images in Figs. 
8(b)-8( d) are samples at the noise levels corresponding to the XS. 

Figure 8(b) corresponds to low-noise resulting in a perfect pose 
estimation; however, notice the rapid increase in the estimation 
error as the noise level increases. 

To explain the performance curves, at a given noise level, say 
at noise standard deviation 0.4, the HSB value of the video sen- 
sor is 1.0; i.e., the minimum expected error in estimating truck 
orientation in this environment is 1.0. Also, for a noise level 
~ 0 . 2 ,  the HSB = 0 and for deviation >0.6, the error is maximal. 
Errorless estimation is, thus, possible in the case of the video 
sensor for a noise level 10.2, and reasonable estimates (HSB of 
0-1.2) are possible for deviations in the range [0.2, 0.61; beyond 
that the data are too noisy to provide any information for infer- 
ence on target orientation. To illustrate the significance of the 
HSB = 1.0, consider Fig. 9. Figure 9(f) shows a noisy image of 
the truck at the noise level corresponding to HSB = 1 .O. At this 
particular noise level, the estimation is degraded to such a point 
that, on average, the estimates span a 1.0 HSB unit around the 
mean. Four sample orientations, all within the 1.0 HSB unit of 
the orientation shown in Fig. 9(a), are shown in the other pan- 
els. Naturally, the target geometry should determine the bound 
associated with pose estimation by a given sensor suite, as is 
depicted in Fig. 10. Shown here are HSB curves for two differ- 
ent targets: tank and truck, when imaged by a video camera. 
This curve shows that, in low-noise situations, the tank ori- 
entation estimates are better than the truck estimates by the 
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(a) The bound for estimating the orientation ofa truck, using video data. (b)-(d) show FIGURE 8 
sample images of the truck at three noise levels consistent with the x's in (a). 

FIGURE 9 (a) Orientation with a 1.0 HSB unit; (b)-(d) show four different truck orientations 
within HSB = 1.0 of the orientation in (a); (f) shows the associated imagery with this uncertainty 
level. 
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FIGURE 10 Panel shows the variation of the HSB with noise for two targets: truck 
and tank. For low-noise levels the bounds are different; at higher noise levels the 
performance is identical. 

video sensor, whereas at higher noise levels, the performance is 
similar. 

Sensor fusion occurs automatically in this setting. The in- 
creased number of data observations If, If, . . . increases the 
accuracy of the estimator. Figure l l (a)  shows plots of the HSB 
on expected error versus noise level in estimating tank orienta- 
tion for the two sensors: the broken line plots the HSB for HRR, 
the solid line shows the HSB for video, and the x’s display the 
HSB for the joint case. Figure 11 (b) shows the HSB curves for the 
tank pose estimation by three individual sensors: the solid line 
for FLIR, the broken line for HRR, and the dotted line for video. 
The HSB for the joint case is shown by the crosses. Notice that 

since the information is being optimally fused in the Bayesian 
setting, the joint curves always deliver a higher accuracy for the 
estimation. 

For joint estimation of target pose and location, the trans- 
formation s is an element of SE(n) .  As described in [8] both 
HSE and HSB simply extend from SO(#) to SE (n) .  To illustrate 
the cumulative position and orientation estimation bound, we 
have utilized a dataset involving real FLIR images of a tank, 
mounted on a pedestal and imaged at 120 different orientations. 
(This dataset is obtained courtesy of Dr. Richard Sims at Army 
Missile Command). Shown in Fig. 12 are six sample images from 
this dataset. Shown in Fig. 13 is the variation of the cumulative 

0 1 2 3 4 5 6 7 
Noise Standard Deviation Noise Standard Deviation 

(a) (b) 
FIGURE 11 
sensors; (b) the HSB curves for the tank pose estimation by three individual sensors. 

(a) the plots of the HSB on expected error versus noise level in estimating tank orientation for the two 
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In the context of selecting a and ATR, s can be considered as 
a nuisance parameter. This important integral governs the rela- 
tionship between target recognition (selecting a) and the pose- 
location estimation (estimating s). It is intuitively clear that 
recognition and pose estimation are inherently linked; accuracy 
of target recognition is directly determined by the accuracy of 
pose estimation. 

In most practical situations, the integrand is too complicated 
to be computed analytically, and one of several approximations, 
numerical and analytical, can be used. To illustrate some of these 
methods we simplify to binary target recognition. That is, given 
an observed image, our task is to select one of the two targets: a0 

FIGURE 12 
AMCOM). The images are downscaled to 64 x 64 for the results described in this paper. 

Sample images from a dataset of real FLIR images of a tank (data courtesy of Dr. Richard Sims of 

position and orientation error (on SE (2)) versus the sensor 
noise. This error bound can be utilized to analyze multisensor, 
multitarget situations. 

the index with maximum a posteriori probability. It becomes an 
M-ary hypothesis test. That is, 

& = argmax ~ ( a  I P), (8) 
O l d  

6 Target Recognition and Performance 

cation estimation, we now focus on the main task finding the 

where the posterior is calculated by using the Bayes’ rule, 

P(ID I ..>P(a> 
p (ID> 

Having established a framework for target orientation and lo- 

index a that best matches a given image ID.  As described earlier, 
in a Bayesian framework the estimated target type is given by 

P((Y I I D )  = 

The term P(  I D  I a) is the likelihood of observing I D  given that 
the true target is a and can be evaluated as the integration over 
all transformations Position 8 Orientation HSB versus noise 

2500 I I 

+----- 
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Prob of Correct Hypothesis vs Noise (0,42, 90 deg) 
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(c) (4 
FIGURE 14 The probability of a correct hypothesis in binary Bayesian identification plotted against increasing 
noise for three underlying orientations: the crosses for 90, the solid line for 42 and the broken line for 0 deg. (b)-(d) 
show the three underlying truck orientations: (b), 0, (c), 42, and (d), 90. 

1. Quadrature integration: since SO(n) is compact, one can 
compute the integral approximately by evaluating the integrand 
at some sampled points and using one of the many established 
formulas (trapezoidal, Simpson’s, Gauss-quadrature). As an ex- 
ample, for ground targets ( n  = 2), we have evaluated the integral 
by using the trapezoidal rule and performed hypothesis selec- 
tion for target recognition. Shown in Fig. 14 are the results from 
binary recognition for (YO = truck and a1 = tank. Avideo image 
was simulated for a0 at some orientation so with respect to the 
sensor, the integral was computed for that image, and a decision 
is made following Bayes’ selection. Plotted in Fig. 14(a) are the 
probabilities of selecting the correct target, c10, studied against 
the sensor noise for three different target orientations. Notice 
that when the target is broadside with most of the pixels in the 
image, the probability of recognizing it is the highest. 

2. Generalized likelihood ratio: in this procedure the integral 
value is approximated by the maximum value of the integrand 
as a function of the integration variable [ 131. The test is given by 

In other words, the maximum likelihood estimation of s is cal- 

culated for both of the hypotheses, and the ratio of maximum 
likelihoods compared to the ratio of prior probabilities decides 
the hypothesis selection. 

3. Asymptotics: to obtain analytical expressions, which are 
often more useful than the numerical approximations, asymp- 
totic approximations using Laplace’s method ( [23]) can be de- 
rived. The basic approach is to assume a very large signal to noise 
ratio, either through large sample size or small sensor noise, and 
approximate the integrand using normal approximation of the 
integrand [ 5 ] .  This result is then used in computing the likeli- 
hood ratio and, furthermore, the probability of error in the hy- 
pothesis selection. The error probability decreases exponentially 
with the decrease in the sensor noise, with the rate depending 
on the accuracy in pose estimation. This highlights the relevance 
of transformation estimation accuracy in hypothesis testing. A 
more accurate pose estimator can lead to a better recognition 
system. 

7 Discussion 

In this paper we have described a model-based Bayesian ap- 
proach to automated target recognition. Models for targets are 
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FIGURE 9.1.12 Video retrieval user-study interface [3]. 
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FIGURE 9.1.13 Illustration of video skimming. 

FIGURE 9.1.14 Informedia interface. 
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FIGURE 9.2.9 Interface for going from the Semantic Index to the ToC. 
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FIGURE 10.2.5 
and kidneys (CT images courtesy of G. E. Medical Systems). 

Volume rendering from a sequence of X-ray CT images, showing the abdominal cavitv 

FIGURE 10.3.3 Result of an active-contour analysis applied to a selected artery in a typical 2-D 
angiogram. The green points are the manually identified control points. The red lines are the computed 
vessel wall borders. From [ 81. 
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FIGURE 10.3.6 Composite view of avisual tool for assessing a 3-D angiogram [ 121. (a) Volume-rendered version of the 
extracted 3-D arterial tree. (b) 2-D coronal (x-z) and sagittal ( y-z) maximum-intensity projection images, with extracted 
arterial axes superimposed; red lines are extracted axes, green squares are bifurcation points, and the blue line is a selected 
artery segmented highlighted below. (c) Series of local 2-D cross-sectional images along a stenosed branch; these views lie 
orthogonal to the automatically defined axis through this branch. (d) Cross-sectional area plot along the stenosed branch. 
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_Aorta 

End Diastole Muscle 

FIGURE 10.3.10 3-D surface-rendered heart image. The top row shows the computer-generated “dissec- 
tion” of the 3-D heart volume; the bottom row has partially labeled heart anatomy. LA is left atrium and RV 
is right ventricle. From [20]. 

c 
FIGURE 10.3.12 Ultrasound B-mode image of a human heart. The LV chamber is a center of image. 
The red border is the automatically detected epicardial border from 3-D graph search; the green border 
is the manually traced border. (Figure courtesy of Dr. Edwin L. Dove, University of Iowa and Dr. David 
D. McPherson, Northwestern University.) 
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FIGURE 10.3.14 3-D myocardial wall model derived from deformable surface 
tracking SPAMM tag lines. The model shows inner and outer borders of the my- 
ocardium. Also shown is the evolution of myocardial wall and LV chamber shape 
from end diastole to end systole. (Figure courtesy of Dr. Jmah Park, University of 
Pennsylvania). 

FIGURE 10.3.15 SPECT myocardial perfusion analysis, using an injected thal- 
lium-201 tracer. Shown is a cross-sectional view of the myocardium (LV chamber 
is the cavity at center of the image), with pixel intensity proportional to my- 
ocardial blood flow distribution. (Image courtesy of Dr. Richard Hichwa, PET 
Imaging Center, University of Iowa). 
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FIGURE 10.4.9 Illustration of a calcification detection algorithm, showing one true positive and one false positive detection of a malignant cluster 
of pleomorphic calcifications. (a) An overview of a segmented breast with one ground truth region (white) and two detections (green and red). The 
border of the segmented breast is shown in purple. (b) A closeup of the cluster of calcifications with ground truth overlaid in white. (c) The result 
of enhancing the calcifications in the image using the algorithm described in Section 6.3. (d) The result of thresholding the enhanced mammogram, 
labeling individual calcifications, finding a cluster group of more than three calcifications linked by intercalcification distances of <4 mm. Individual 
calcifications in the group are circled in green and the cluster is marked with a green border. (e) A false detection of a group of calcifications. 



(c )  

FIGURE 10.5.9 
extracted without image enhancement; (c) minutiae extracted after image enhancement [ 111. 

Fingerprint enhancement results: (a) a poor-quality fingerprint; (b) minutiae 

FIGURE 10.5.13 Aligned ridge structures of mated pairs. Note that the best 
alignment in one part (midleft) of the image results in a large displacements 
between the corresponding minutiae in the other regions (bottom right). Q IEEE. 
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FIGURE 10.5.15 Results of applying the matching algorithm to an input minutiae set and a template: (a) input 
minutiae set; (b) template minutiae set; (c) alignment result based on the minutiae marked with green circles; 
(d) matching result, where template minutiae and their correspondences are connected by green lines. 0 IEEE. 
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PIGURE 10.7.11 3-D repmentation of the m i d m  of an &let graft at the renal subcapsdm 
site. The image is color coded to denote depth. The appearing in the lower portion (blue) an at 
a depth of 30 wm, &mas those in the middle and uppa portions of the image are at a depth of -85 
(green) and 135 km (violet), respcdivdy (reproduced with permission from [29]). 
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developed by using a deformable template approach in which 
each target occurrence in a given scene is modeled by using 
a template and a transformation. The transformations associ- 
ated with ATR form groups and have curved geometry. Utiliz- 
ing the Hilbert-Schmidt norm, we have defined a MMSE es- 
timator for pose and pose/location estimates, and also lower 
bounded the expected squared error for any estimator. Pose- 
location estimates are incorporated in target recognition, which 
is performed using Bayesian hypothesis selection. The posterior 
calculation includes an integration over the nuisance parameters, 
and several methods are presented to perform this numerically. 
The asymptotic technique leads to an analytic expression for the 
performance analysis by providing the probability of errors in 
recognition. 

Among the remaining challenges in developing a general ATR 
system has to be developing reasonable clutter models. Any ele- 
ment of the scene that is not a target of interest and influences 
the observed images can be called clutter. If the cluttered is so 
structured that it appears like a target, then it can severely affect 
the ATR performance. Statistical models are being developed to 
tackle this issue. 
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Coarse-to-fine strategy, 252 
COC. See Circle of confusion 
Code-division multiple access (CDMA), 731 
Coder-specific models, 676-681 
Coding efficiency, 461-463,556 
Coefficient symbols, 519-520 
Coherent light imaging, 332-333 
Collision warning (CW) systems, 358 
Color 

84,90 

321-323 

aliasing, 344,346-347 
calibration and, 344-345,348-352 
colorimetry, 342-346,351 
device independent, 350 
edge detection, 428-43 1 
matching, 343-348 
multispectral, 337-353 
Newton’s laws of, 271 
palettization, 543 

quantization, 664-666 
restoration and, 127 
sampling, 346-347 

Color television, 345 
Colsher filter, 781 
Common Interchange Format (CIF), 562 
Communication networks, 717-732 
Compatibility constraints, 251 
Compiled libraries, 455-456 
Complex extension, 317 
Complexity measure, 29,463 
Compression, 212,215 

binary representation, 51-52 
coding and, 461-463 
domain features, 694 
efficiency of, 463 
entropy and, 463,499 
halftoning and, 664 
historical overview, 475 
lossless, 527-536 
lossy, 461 
object-based, 579-582 
quality and, 673-682 
ratio, 556 
segmentation and, 362-363 
spatiotemporal, 575-583 
subband, 575-583,578-579 
wavelet, 495-51 1,575-583 
See also specific methods, standards 

Computer-aided tomography (CAT), 4, 

Confocal microscopy, 853-867 
Conjugate gradient (CG) methods, 135-136, 

Conjugate quadrature filters (CQFs), 293 
Conjugate symmetry, 56 
Connected component method, 41 
Connectivity-preserving methods, 590 
Constrained-length codes, 467 
Constraint operators, 205 
Content-based access and manipulation 

(CBAM) systems, 621,696700 
Context modeling, 549 
Continuity constraints, 251 
Continuous bases, 295-296 
Continuous-space Fourier transform (CSFT), 

Continuous system theory, 71 
Continuous time-varying imagery, 647-651 
Contour plots, 338 
Contouring artifacts, 534 
Contradon mapping theorem, 205 
Contrast, 280 

771-786,789,792-793,797-799 

155, 171, 183,206 

631-635 

enhancement of, 108 
masking and, 473,671-672,675 
saturation and, 281 
sensitivity, 472, 670-671 
stretch and, 27-28 

Convergence sublayer, 721 
Convex functions, 152 
Convolution methods, 56-58,72-74,413, 

Coordinate descent methods, 183 
Copywright, 733-744 

631-633 

Coring, 232-233 
Correspondence problem, 249-25 1 
Cortical process, 282-285,299,674 
Cosine window, 262 
COSO. See Center-on-surround-off 
Counting algorithm, 42 
Covariance statistics, 358 
CQFs. See Conjugate quadrature filters 
Cross correlation, 108 
Cross ratios, 254 
Crosstalk, 416 
CRT calibration, 350-351 
Cryptography, 734 
CSA. See Chirp scaling algorithm 
CSFT. See Continuous-space Fourier 

Cumani method, 430 
Cumulative normalized histogram, 30 
Cutoff frequency, 73 
CW systems. See Collision warning systems 
CWM. See Center weighted median smoother 
Cyclic convolution, 59,61,64 

transform 

D 

Daly model, 674,676 
Daubechies theory, 120,296,6 18 
DBS. See direct binary search 
DCA. See dominant component analysis 
DCT. See discrete cosine transform 
Dechirped signals, 754,759 
Decimation, 635-636 
Decomposition. See specific methods, types 
Defocus, degree of, 128 
Deformation theory, 799,869-870 
Degradation process, 192,198 
Deinterlacing, 653-654 
Delaunay mesh, 588,617 
Delta function, 71, 127, 192,340,631 
Demodulation algorithms, 315-317 
DeMorgan’s laws, 43,% 
Denoising, 117-122 
Dense representations, 208,223 
Density estimation method, 841 
Density functions, 326 
Depth resolution, 855-856 
Derivative filters, 416,423 
Derivative image, 159 
Detail image, 292 
Deterministic models, 161,218 
Device-independent space, 350 
DFD. See Displaced frame reference 
DFSS. See Distance-from-feature-space 
DFT. See Discrete Fourier transform 
Diagonal assumption, 341 
Dictionary codes, 463-464 
Difference-based interpolation, 548 
Difference measures, 689-690 
Difference of Gaussian (DOG) filter, 425 
Differential pulse code modulation (DPCM), 

Diffraction, 177-178 
Diffusion, 433-437 

528,564 
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Digital histogram equalization, 30 
Digital libraries, 264,702 
Digital subscriber lines, 14 
Digital Versatile Disk (DVD), 449 
Digital video, 13-14,94,449,562-563, 

Dilation, 102 
Dimensionality problems, 164 
Dirac delta function, 71,127,192,340,631 
Direct binary search (DBS), 664 
Directional filtering, 231 
DIS. See Draft International Standards 
Discrepancy measures, 149,157-158,181-182 
Discrete cosine transform (DCT) 

687-704 

blocking and, 120-121 
coefficients in, 694 
DC pictures, 600-601 
Fourier methods and, 495-496 
JPEG and, 515517,718 
lossless codes and, 462 
multimedia, 694 
notation for, 674 
perception and, 473-474 
video and, 688489,694 
watermarking and, 741-742 
wavelets and, 495-499 

Discrete Fourier transform (DFT), 57-66, 
192,319,516 

Discrete scaling functions, 295 
Discrete-space sinusoids, 53-55 
Discrete wavelet transform (DWT), 118,233, 

Disparity gradient, 250 
Displaced frame difference (DFD), 583 
Displacement vector, 166,208 
Distance-from-feature-space (DFSS), 839 
Distortion criteria, 659-660 
Distortion model, 141 
Dithering method, 660-661 
DiZenzo formula, 442 
DOCM coding, 618 
DOG filter. See Difference of Gaussian filter 
Domain decomposition methods, 305 
Dominant component analysis (DCA), 314, 

Dominant motion approach, 386-387 
Donoho-Johnstone method, 118-119 
Double algebra invariants, 254 
Double exponential methods, 329 
Downsampling, 291,635-636 
DPCM. See Differential pulse code 

Draft International Standards (DIS), 513 
DSLs. See Digital subscriber lines 
Dual apodization, 763 
Dual operators, 102-103 
Dual prime motion-compensated prediction, 

DVD. See Digital Versatile Disk 
DVF. See Displacement vector field 
DWT. See Discrete wavelet transform 
Dynamic coding, 585,593 
Dynamic mosaic, 264 

294-295,681 

319-321 

modulation 

606 

E 

EBCT scanner. See Electron beam CT scanner 
ECG. See Electrocardiography 
Edge detection 

anisotropic df is ion,  442-445 
boundary detection and, 355 
Canny’s method, 452 
color, 428-43 1 
connectivity constraint, 250-251 
contrast and, 108 
diffusion-based, 433 
directional filtering, 418 
edge-based methods, 81,343-346,401 
edge effects, 3 17 
gradient-based methods, 417-423 
image features, 443-444 
interpolation and, 638-640 
Laplacian methods, 423-426 
morphological filters, 50-51 
multispectral images, 428431 
process of, 97-99 
ringing artifacts, 77 
thinning methods, 417 
thresholding, 442-443 
wavelets and, 299 

Edgeflow technique, 374 
Eigenspace methods, 829-832 
Electrocardiography (ECG), 799,802 
Electron beam CT (EBCT) scanner, 793 
Electron micrographs, 125 
EM. See Expectation maximization algorithm 
Embedded features, 579,697-698 
Emergent frequencies, 3 19 
Empty cell problem, 488 
End-of-block (EOB) codes, 522 
Energy features method, 368 
Energy function, 209,305 
Energy minimization, 223 
Energy separation algorithms (ESAs), 

Enhancement, 53,74 
313-3 15 

denoising, 117-122 
linear filtering, 71-79 
morphological filters, 104-108,112-116 
nonlinear filtering, 81-1 16 
types of tools, 81 
wavelets and, 119-120 

Enlargement, 82 
Entropycoding, 463-465,469,492,502,520, 

Envi. See Environment for Visualizing Images 
Environment for Visualizing Images (Envi), 

Environmental blur, 177 
EOB codes. See End-of-block codes 
Epipolar geometry, 245,250-252 
Erosion, 45-46,102-103 
Error modeling, 548-549,608-609,661-666, 

ESAs. See Energy separation algorithms 
Estimation theory, 74,327-328 
Ethernet, 14 
Euler-Lagrange equations, 222 

563 

457 

675 

Expectation maximization algorithm (EM), 

Exponentiation, 54,57 
Extrinsic matrix, 244 
EZW. See Zero-tree modeling 

138,183,784-785 

F 

Face animation, 214,617,837-851 
Facet model, 423 
False contouring, 10,31,534 
Fast Fourier transform (FFT), 61,72,78,358, 

425 
Fast search methods, 222,489 
FBI methods, 510 
Feature-based methods, 245-260,368,411, 

621,698 
Feldkamp algorithm, 781 
FERET database, 844 
FFT. See Fast Fourier transform 
Field-based methods, 605-606 
Field refresh rate, 13 
Figure-ground separation problem, 409 
Film-grain noise, 81 
Filtered backprojection algorithm, 778,784 
Filters, 81-116. See specific types, applications 
Fingerprint classification, 495,821-835 
Finite difference methods, 222-223 
FIR filters, 292 
Fisher matrix, 359,785 
Fixed length coding, 535 
Fixed threshold testing, 209-210 
Flat histograms, 40 
Flat operators, 102,103, 108 
Fletcher-Reeves method, 184 
Flicker parameter estimation, 238-239 
FLIR. See Forward-looking infrared image 
Flow-based algorithms, 260 
Floyd-Steinberg diffusion, 662-663 
Fluoresence microscopy, 856 
Focus of attention, 838 
FORE method. See Fourier rebinning method 
Formation algorithms, 756-761 
Forward-looking infrared image (FLIR), 5, 

Four-tap filter, 293 
Fourier-MeUm transforms, 743 
Fourier rebinning (FORE) method, 778-780 
Fourier statistics, 358 
Fourier transform methods 

184,870,874 

blurring, 137 
coefficients of, 29 
continuous-space (CSFT), 63 1-635 
discrete, 55-67, 164, 192,291,319,516 
efficiency, 8 
fast (FFT), 61,72,78,358,425 
image capture and, 631-635 
interpolations for, 136 
inverse operator, 137 
inversion methods, 776-780 
iterative schemes and, 135-136 
multichannel methods, 164 
projection slice theorem, 776 
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Fourier transform methods (cont.) 
restoration and, 126-128 
shift property, 217,762 
short-time, 497 
See also Wavelet methods 

Fractional difference model, 368 
Frame-based methods, 605-606 
Frame difference image, 384 
Frame-to-frame motion, 184 
Fredholm equation, 141 
Free-response receiver operating 

Frei-Chen operator, 422 
Frequency analysis, 15,217,673-674 
Frequency estimation algorithms, 319 
Frequency granularity, 62-65 
Frequency response, 72-74 
FROC plot. See Free-response receiver 

operating characteristic 
Full-scale histogram stretch, 27-28 
Full-text search, 621 
Fundamental matrix, 245,254-255 
Fuzziness, 328,409 

characteristic (FROC), 818 

G 
Gabor filters, 279-280,299,318-321, 

Gain-shape VQ, 490-491 
Gamut mapping algorithm, 350 
Gauss-Jacobi problem, 479 
Gauss-Markov random fields (GMRFs), 182, 

Gauss-Seidel method, 218,223 
Gaussian filter, 77 
Gaussian kernel sieve, 181, 186 
Gaussian noise, 75, 121, 181,327,328 
Gaussian pyramid, 289,292,439 
Gaussian scale space, 78 
Gaussian statistics, 152, 328,357,403,424 
Generalized cross validation, 120,158 
Generalized function, 340 
Generalized solutions, 144-145, 154, 193 
Geographical information systems (GISs), 359 
Geometric operations, 33-36 
Gerchberg-Papoulis algorithm, 154 
Gestalt effects, 404 
Gibbs distributions, 77,209-211,303-306, 

Gibbs random field (GFS) models, 387 
GIF format, 543 
GISs. See Geographical information systems 
Glint detection, 766 
Global motion models, 219,247,259-262 
Global patterns, 536 
Global smoothness constraint, 394 
Glow time, 14 
Glyph icon, 455 
GMRFs. See Gauss-Markov random fields 
Golomb codes, 533 
Good-Gaskins measure, 182 
Gradient-based techniques, 218-219,417, 

369-371,791,827 

303-308 

364,393,581,785 

420-423 

Gradient constraint equation, 262 
Granularity, 62,228,325,332 
Graph matching, 251 
Grassman laws, 343-344 
Graylevels, 9,22, 102-103,338,358 
Green’s theorem, 802 
GRF models. See Gibbs random field models 
Ground-based imaging, 184-185 
Group theory, 261,871 
Gupta-Gersho technique, 545 
Gyroscopic stabilizers, 263 

H 

Haar measure, 874 
Hadamard criterion, 144,180 
Half-pixel accuracy, 598-599 
Halftoning, 657-666 
Hammersley-Clifford theorem, 209,305 
Hamming window, 77 
Hand gestures, 214 
Handwriting, 413 
Haralick model, 423 
Hard thresholding operator, 118 
Harmonic analysis, 63 
Hausdorf distance, 589 
HCF algorithm. See Highest confidence first 

Heat diffusion, 106 
Heaviside unit, 277 
Heavy-tailed noises, 329-330 
Hebbian learning, 410,411 
Hermitian form, 164 
Hessian matrix, 247-249 
Hexagonal matching refinement, 590 
Hidden Markov model (HMM), 712 
Hierarchical coding 
Hierarchical techniques, 252,523,693 
High range resolution (HRR) radar, 873 
High-resolution monitors, 13 
Highest confidence first (HCF) algorithm, 

218,223,392,394 
Highway control systems, 358 
Hilbert-Schmidt estimate, 875-876 
Hilbert transforms, 317,319,369 
Hill climbing algorithm, 408 
Histogram approaches, 22-23,29-30, 

Hit-miss filter, 110-1 11 
HMM. See Hidden Markov model 
Hopfield model, 403,410 
Hopfield-Tank formulation, 408 
Hough transform method, 387-388 
HRR radar. See High range resolution radar 
Hubble Space Telescope, 178, 185 
Huffman coding, 463-467,502,514,520, 

Human face recognition, 837-851 
Human vision, 271-287,298-299,346,368, 

Human Visual Subspace (HVSS) model, 346 
H V S S .  See Human Visual Subspace model 
Hybrid systems, 112,578479,608 

algorithm 

689-690,706 

528-532,557,564,689 

518,557,586,669-682,829-832 

Hydrology, 307 
Hyperplane partitioning, 490 
Hypothesis testing, 206,209-21 1 
Hysteresis thresholding, 428,439 

I 

ICC. See International Color Commission 
ICMs. See Iterated conditional modes 
Ideal interpolation filters, 292 
Ideal low-pass filter, 76 
Ideal observer model, 275 
Identification algorithms, 125-139,829-833 
IDL. See Interactive Data Language 
IEC. See International Electrotechnical 

Commission 
IFSARE system, 753 
IID. See Independent identical distribution 
Illuminants, 348 
Illumination change, 210 
Image capture model, 632-634 
Implementation complexity, 463 
Implicit approach, 171 
Impulse function, 71-74 
Impulse response shaping, 763-765 
IMSL libraries, 456 
Incoherent imaging, 176 
Independent identical distribution (IID), 153 
Indexing, 687-714 
Information theory, 29,464 
Informedia, 702 
Infrared cameras, 177 
Instantaneously decodable codes, 463 
Integrated Services Digital Network (ISDN), 

Intel libraries, 455 
Intensity flicker correction, 238,238-240 
Interactive Data Language (IDL), 453 
Interactive systems, 586 
Interband correlations, 535,548 
Interferometry, 767-769 
Interframe registration, 246,251,266,673 
Interlaced coding, 13,605-606 
International Color Commission (ICC), 350 
International Consultative Committee for 

International Consultative Committee for 

461,569 

Radio (CCIR), 562 

Telephone and Telegraph (CCITT), 
47 1 

International Electrotechnical Commission 
(IEC), 471,569,597 

International Standards Organization (ISO), 
456,471,556,597 

International Telecommunications Union 
(ITU), 471,556,569 

Internet, 81, 100,717,724 
Interpolation methods, 35,291,629442, 

645654 
Intershape coding, 616 
Intraframe filters, 227, 557 
Intravascular ultrasound (IVUS) imaging, 794 
Intrinsic matrix, 245 
Inverse filters, 129-130, 144 
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ISDN. See Integrated Services Digital Network 
Ising model, 305 
ISO. See International Standards Organization 
Isometric plot, 338 
Iterated conditional modes (ICMs), 218,298; 

364,392 
Iterative filters, 133-134 
Iterative optimization, 237 
Iterative recovery algorithms, 191-206 
Iterative regularization methods, 154-155 
ITU. See International Telecommunications 

I W S  
See intravascular ultrasound imagining 

Union 

J 
Jacobi method, 218,223 
JBIG standard. See Joint Binary Image Experts 

Group standard 
Jitter model, 184 
JND. See Just-noticeable difference 
Joint Binary Image Experts Group (JBBIG) 

Joint Photographic Experts Group (JPEG), 

JPEG. See Joint Photographic Experts Group 
Jump-diffusion algorithm, 364 
Just-noticeable difference (JND), 472,473, 

standard, 471 

16,52,81,456,471,513-536,557,718 

518 

K 

K-means method, 388,409 
Kalman filter, 304,308 
Kanizsa triangle, 404 
Karhunen-Loeve transform (KLT), 169-171, 

Key frame extraction, 706 
Khoros software, 454-455 
KLT. See Karhunen-Loeve transform 
Kohonen map, 412 
Kolmogorov statistics, 187 
Konig approach, 410 
Kraft inequality, 465 
Kronecker delta function, 71 
Kronecker product, 169, 170 
Krylov subspace, 155 

187,411,516,540,546,564,838 

L 

L-curve approach, 158 
Label statistics, 358 
Labeling algorithm, 41-42 
LabVIEW software, 454 
Lagrangian approach, 199 
LANDSAT images, 543,547 
Landweber iteration, 134,154-155 
Laplace method, 880 
Laplacian-of-Gaussian (LOG) methods, 321, 

425,434 

Laplacian operator, 163,200,222,423-424 
Laplacian pyramid, 282,289,292 
Laser scanning confocal microscopy (LSCM), 

859 
Lattice theory, 104-106,302,646 
Laws features, 814 
Layered coding, 607 
LEG. See Linde-Buzo-Gray design 
Learned vector quantization (LYQ), 409 
Least mean-square (LMS) algorithm, 

Least-squares methods, 40, 130-131, 

Jxmpel-Ziv (LZ) coding, 463,464,470-471 
Levenberg-Marquardt method, 86 1 
Lexicographic ordering, 162, 198,392 
Likelihood ratio test, 39, 110,208 
Linde-Buzo-Gray (LBG) design, 487,567 
Linear convolution, 56,60-61,72,72-74 
Linear filtering, 71-79,229-231,327,637-638 
Linear point operations, 23-28 
Linear programming, 112 
Linear space-invariant systems, 71, 126 
Linlog mapping, 765 
Lloyd algorithm, 487,659 
Lloyd-Max quantizers, 502,566,658 
h i s .  See Least-mean-square algorithm 
Local constraints, 250,306 
Local frequency estimation, 372 
Locally monotonic (LOMO) systems, 438,471 
Log-likelihood function, 152,389 
LOG methods. See Laplacian of Gaussian 

methods 
Logarithmic point operations, 29 
Logarithmic search, 568 
Logistic function, 402 
LOMO systems. See Locally monotonic 

systems 
Look-up table, 350-351 
Lorentzian function, 216 
Lossless compression, 461-474,527-536, 

Lossy compression, 51,259,475,513-525, 

Low-pass filters, 7678,291 
LSCM. See Laser scanning confocal 

microscopy 
Lubin method, 674,676 
Lucas-Kanade method, 395 
LUM filter, 327 
Luminance masking, 272,473,674-675 
LVQ. See Learned vector quantization 
LZ coding. See Lempel-Ziv coding 

113-116,231 

143-144,149,163,199-200,263 

547-550 

541-547 

M 

MAE criteria. See Mean absolute error criteria 
Magnetic resonance imaging (MRI), 4,120, 

Magnetic tape, 228 
Magnitude response, 73 
Mahalanobis distance, 841 
Majority filter, 45,49 

367,540,789,799-800 

Mammography, 40,805-819 
MAP method. See Maximum a posteriori 

estimate 
Mapdrift algorithm, 762 
Maple software, 457 
Marcelja model, 406 
Marching methods, 305 
Marginal entropy, 464 
Marginal filtering, 94 
Markov random field (MRF) models, 208, 

Markov source, 564 
Marr-Hildreth operator, 424-425,434,791 
Masking, 64,98, 110,671,674 
Matching algorithms, 245-252,833 
Mathematica software, 457 
Mathematical morphology, 101 
MATLAB software, 338,340,450 
Maximum a posteriori (MAP) estimate, 

223,301,368,391,408,579,638 

152-153,159,211,223,359,364,387, 
390-391,580,786,874 

Maximum entropy method, 150 
Maximum-likelihood estimation, 137,181, 

Maximum Likelihood (ML) segmentation, 

MBONE. See Multicast Backbone 
MCU. See Minimum coded unit 
Mean absolute error (MAE) criteria, 556 
Mean-removed VQ, 490-492 
Mean squared error (MSE), 108, 131,163, 

Mean squared quantizer error (MSQE), 658 
MED predictor. See Median edge detection 

predictor 
Median edge detection (MED) predictor, 531 
Median filtering, 103,458 
Medical images, 227,355,540,546,771-786 
MELCODE coding, 533 
Memoryless coding, 464,466 
Merron-Brady method, 422 
Mesh object coding, 616-617 
Meta-search engines, 62 1 
Metamers, 344,346 
Metrics, 673-675 
Metropolis algorithm, 306,391 
Microfeatures, 369-373 
Microscanning, 175, 183-185 
Microscopy, 177,853-867 
Microvascular networks, 863-867 
Midpoint condition, 658 
Military applications, 100,753 
Minimum coded unit (MCU), 521 
Minimum least-squared error estimator 

Minimum mean square error, 152 
Minkowski operations, 102, 675 
Minor region removal algorithm, 43 
Minutiae extraction algorithms, 825 
Mixture density, 310 
ML. See Maximum likelihood estimation 
ML segmentation. See Maximum likelihood 

MMF. See Multistage median f b r  

209 

389-390 

200,658 

(MMSE), 327 

segmentation 
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MMSE. See Minimum least-squared error 

MMX instructions, 455 
MoCA. See Movie content analysis 
Model-based methods, 401,617 
Modular arithmetic, 59 
Modular descriptions, 839-841 
Modulation models, 298, 313-324 
Moment preserving quantization, 479-481 
Monitor calibration, 350 
Monotonicity properties, 152,438,471 
Monte Carlo sampling, 303,876 
Morozovparameter, 157 
Morphing, 21 
Morphological diffusion, 435 
Morphological filters, 43-51,101-116 
Mosaicking, 16,264 
Motion detection methods, 33,207-224, 

estimator 

264267,590-599,652-653, 
691-692 

Motion Picture Experts Group (MPEG), 215, 
384,449,456,475,555-570,597-625, 
702,718-719 

614-615 
Motion vector ( M V )  coding, 236-237, 

Movie Content Analysis (MoCA), 702 
Moving average filter, 74-76 
MPEG. See Motion Picture Experts Group 
MRF models. See Markov random field 

MRI. See Magnetic resonance imaging 
MSE. See Mean-squared error 
MSQE. See Mean squared quantizer error 
Multiband techniques, 341,367-377 
Multicast Backbone (MBONE), 724 
Multichannel modeling, 161,163-173, 

Multicomponent models, 314,318-323 
Multidimensional energy separation, 315-317 
Multidimensional systems representation, 

Multiframe filters, 127 
Multiframe restoration, 175-188 
Multilayered perceptron, 402 
Multilook averaging, 765 
Multimedia systems, 586,700 
Multimodal histograms, 40 
Multiple motion segmentation, 387-392 
Multiple views, 243-256 
Multiplicative image scaling, 26-27 
Multiplicative model, 325,334 
Multiplicative noise, 74 
Multiresolution filters, 232-233 
Multiresolution methods, 301-311,368,523 
Multiscale decomposition, 289-299 
Multiscale random fields, 307-308 
Multiscale smoothers, 106 
Multispectral diffusion, 440-442 
Multispectral images, 337-353,428-431, 

Multistage median filter (MMF), 231 
Multistage vector quantization, 492-493 
Multistep algorithms, 206 
Mumford-Shah functional, 439 

models 

406-408 

341-342 

539-550 

Murray-Buxton procedure, 391 
MV coding. See Motion vector coding 

N 

Name-It system, 699 
National Television Systems Committee 

(NTSC), 559,599 
Navigation, 259 
Near-lossless mode, 534,549-550 
Needle diagrams, 316,317 
Negative exponential models, 329 
Negative image, 27 
Neighborhood systems, 34,208,488,637 
Nested dissection method, 305 
Neural nets, 351,401-413,488 
Newton methods, 183,186 
Nipkow disk, 857 
Noise, 16,416 

additive, 74,119-120,325 
cleaning, 90-94 
covariance, 169 
defined, 325 
denoising, 117-122 
equalization, 81 1 
filtering, 228-233 
heavy-tailed, 329-330 
leakage, 75 
models of, 179-180,325-335 
multiplicative, 74 
non-Gaussian, 114 
nonlinear methods, 81-1 16 
ringing artifacts, 197-198 
salt and pepper, 330-331 
types of, 328-335 
visibility matrix, 204 
zero mean, 32 
See also specific systems, types 

Noncoherent integration, 765 
Nonconvex functions, 152 
Nondiagonal matrix, 164 
Nonlinear discriminant analysis, 412 
Nonlinear filtering, 81-1 16 
Nonlinear point operations, 28-3 1 
Nonquadratic regularization, 149,151-152 
Nonsymmetric half-plane models (NSHP), 

Normalized image histogram, 29 
NSHP. See Nonsymmetric half-plane models 
NTSC. See National Television Systems 

Nuisance parameters, 183-184 
Numerical code, 456 
Numerical filtering, 147 
Nyquist frequency, 55 
Nyquist Sampling, 560,632,633 

304 

Committee 

0 

Object-based representation, 579-595 
Object motion, 692 
Object recognition, 251, 828-829 

Observation model, 213-215 
Occlusion, 259 
OCR. See Optical character recognition 
Offset, 24,25 
Oja’s rule, 41 1 
One-at-a-time search, 221 
Open-dose filters, 47-48 
Optical character recognition (OCR), 413 
Optical flow methods, 222-223,246-249, 

855456,863 
Optics, 178,272-273 
Order-statistic filters, 23 1 
Ordered dithering method, 660 
Orientation tuning, 279 
Orlov condition, 780 
Oscillation-based methods, 409-41 1 
Outliers, 219,232 
Overcompleteness, 292 

P 

Painvise nearest neighbor (PNN) algorithm, 
487-488 

PAL. See Phase alternating lines 
Palettization, 543 
Palmer model, 838 
Panning, 616 
Parallel hierarchical search, 221-222 
Parametric methods, 154 
Partial differential equations (PDEs), 106,443 
Partial distortion method, 489 
Partitioning, 209,305,608 
Pattern matching, 299 
Pattern recognition, 101,299,412-413,456 
PCA. See Principal component analysis 
PCI software, 457 
PDEs. See Partial differential equations 
Peak signal-to-noise ratio (PSNR), 120,327, 

Peak/valley detection, 11 1-1 12 
Pel. See Pixel 
Pel-recursive algorithm, 567 
Penalized maximum-likelihood estimation, 

Perceptual-based algorithms, 472 
Perceptual criteria, 669-682 
Perceptual grouping, 343-346,403-406 
Perceptual image coder (PIC), 474,677 
Perfect reconstruction, 293 
Periodicity, 58 
Periodograms, 131,358 
Permutation filters, 85,92 
Persistence, 14 
Perspective transformations, 261 
PET. See Positron emission tomography 
PGA. See Phase gradient autofocus 
Phase alternating lines (PAL), 212, 562,599 
Phase correlation, 222 
Phase diversity, 185-188 
Phase gradient autofocus (PGA), 762 
Phase response, 73 
Phase shift, 53 
Photoconductor tubes, 562 

556,577 

182 
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Photocounts, 179 
Photogrammetry, 253 
Photographic grain noise, 332 
Photomultiplier tubes, 348 
Photoreceptors, 272,273,274,277 
PIC. See Perceptual image coder 
Pictorial Transcripts system, 699 
Pin-cushion distortion, 125 
Pinhole camera model, 244 
Piracy, 736735 
Pixel methods, 9,21,41-45,52,216-219,567 
Plane, of image, 260 
PNN algorithm. See Pairwise nearest 

neighbor algorithm 
PO-SADCT method, 592 
Poincare index, 830 
Point-based matching, 249 
Point operations, 23-3 1,59, 8 1 
Point-spread functions (PSF), 72, 126, 141, 

Pointlike objects, 150 
Poisson noise, 181,279, 326,331 
Poisson observation model, 159 
Polynomial-based intensity model, 210 
Positivity constraint, 205-206 
Positron emission tomography (PET), 4,172, 

771,789,802 
Potential function, 209 
Power-complementary filters, 293 
Power spectrum, 131 
PPE. See Progressive polygonal encoding 
Pratt metric, 444 
Prediction coefficients, 131, 135 
Predictive coding, 563-564,599 
Prefiltering, 219 
Preiix codes, 463 
Prewitt operator, 421 
Principal component analysis (PCA), 411,838 
Principal point, 244,260 
Printing, 351,657-666 
Probability theory, 464,840-841. See spec@ 

models 
Progressive coding, 589,592-593 
Progressive polygonal encoding (PPE), 589 
Progressive scanning, 13 
Projection slice theorem, 776 
Projective geometry, 246245,254 
Pseudo-Gibbs phenomena, 119 
Pseudo-inverse solution, 193 
Pseudo-likelihood function, 306 
Pseudo-perspective model, 261 
PSF. See Point-spread function 
PSNR. See Peak signal-to-noise ratio 
Psychophysics, 272,287,298,670 
Psychovisual system, 348 
Ptolemy software, 458 
Pyramid representations, 219,29 1-292 

175-178,273,333,341 

Q 
QCIF. See Quarter CIF 
QED. See Quantum electrodynamics 
QM coder, 530 

QMFs. See Quadrature mirror filters 
QOS. See Quality of Services 
Qscale value, 523 
Quadratic flow model, 389 
Quadrature mirror filters (QMFs), 293 
Quadrilateral warping, 591 
Qualitative mosaics, 264 
Quality evaluation, 669-682 
Quality of Services (QOS), 555 
Quantization, 502 

coarseness of, 523 
halftoning and, 657-666 
moment preserving, 479-481 
noise and, 325,330-331,517-519,534 
printing and, 657-666 
vector, 485-493 
video encoder and, 565-567 

Quantum electrodynamics (QED), 179 
Quarter CIF (QCIF), 562 
Quasi-Newton methods, 183,186 

R 
Radar, 120,307,749-769 
Radial basis function network (RBFN), 402 
Radial frequency, 53 
Radio astronomy, 141 
Radiometric quantities, 342 
Radon transform, 172,776 
Range-doppler processing, 757 
Range migration algorithm ( M A ) ,  758 
Rank filtering, 103, 109-112 
Rank order difference (ROD) detector, 

236235 
Rauch-Tung-Striebel smoother, 308 
Rayleigh criterion, 855 
Rayleigh quotient, 167 
RBFN. See Radial basis function network 
RD-OPT algorithm, 518 
Read-out noise, 180 
Real-Time Transport Protocol (RTP), 718, 

Rebinning methods, 779-780 
Reblurring, 194 
Receiver operating characteristic (ROC) 

curves, 843 
Recency effect, 682 
Reconstruction, 73, 141-160,205,243-256 
Recursive median smoothing, 82 
Reference coordinate system, 244 
Reflectances, 348,539 
Refresh rate, 13 
Region-based methods, 391-392,401 
Region labeling, 4143,860 
Region of support, 214 
Registration, 246,251, 266,673 
Regularization, 200, 217 

direct methods, 147-154 
iterative methods, 154-156 
least-squares and, 163, 171, 182 
line processes, 439 
need for, 145-146 
optical flow, 222-223 

725-730 

parameter choice, 133, 156159,206 
reconstruction and, 141-160 
Tikhonov method, 147-148 
visual inspection, 156 

Relative position constraint, 251 
Relaxation methods, 166, 192,206,218,251, 

404 
Remote sensing, 355,440,456,539-546 
Residual image, 548 
Response functions, 277 
Restoration, 53,73 

algorithms for, 129-136 
filters for, 197, 205 
identification and, 125-139 
optimization, 180-183 
reconstruction, 141-160 
regularization, 141-160 
video enhancement, 227-241 

Retinal process, 10,260,272-275, 342 
Retrieval, 376, 687-714 
Reversible transform-based techniques, 549 
Reversible variable length codes (RVLCs), 6 18 
Rewarping process, 264 
Rice coding, 533 
Rice-Golomb coding, 532-533,549 
Richardson-Lucy method, 175 
Ringing, 77,197-200 
Ripple, 77 
RLC. See Run-length coding 
Robbins-Munro conditions, 411 
Roberts operator, 421 
Robustness, 463 
ROC curves. See Receiver operating 

characteristic curves 
ROD detector. See Rank order difference 

detector 
Rotational effects, 35,214,368,372 
Roughness measure, 182 
RTP. See Real-Time Transport Protocol 
Run-length coding (RLC), 51-52,368,462, 

Running median smoothers, 82-83 
RVLCs. See Reversible variable length codes 

689 

S 

SA-DCT coder. See Shape-adaptive DCT 
coder 

Safranek- Johnston adjustment model, 
675-677 

SAGE. See Space alternating generalized 
procedure 

Salt and pepper noise, 90,326,330 
Sampling, 8,55,179,560 

aliasing and, 346-347 
color and, 346-347 
conversion rate, 635-636,651-654 
interpolation and, 629-642,645-654 
proper, 343 
scanning and, 629-642 
sensors, 346-348 

Sampling theorem, 8,55,648 
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S A R .  See Segmentation and reassembly 
sublayer 

Satellite images, 161, 555 
Saturation conditions, 24,125 
SAWTA. See Smoothing, adaptive 

Scalar quantization, 658-660 
Scalar WM filter, 89 
Scale aware diffusion, 437 
Scaling, 24,26,254,296,434,464,523,578, 

607,618 
Scanning, 13,339,349-351,629-642 
Scatters, 755 
Scene change, 690 
Scene labeling, 251 
SDI. See Spike-detector index 
Search strategies, 207, 218, 568, 621 
Second-generation coding, 586-587 
Segmentation, 53,409 

winner-take-all network 

adaptive methods, 401-413 
clustering, 409 
compression, 362-363 
edge-based, 403-406 
Gabor features, 368-369 
integrated, 411-413 
motion detection, 207 
multiband techniques, 367-377 
multichannel modeling, 406-408 
multimedia, 586,700 
neural methods, 401-413 
oscillation-based, 409-41 1 
pattern recognition, 412-413 
process of, 614 
SAR and, 72 1 
semi-automatic, 394-395 
sensory, 409 
simultaneous estimation, 392-394 
statistical methods for, 355-364 
texture-based, 406-408 
texture classification, 367-377 
of video image, 383-398,690-691 

Segmentation and reassembly sublayer (SAR), 

Selective stabilization, 627 
Self-information, 464 
Semantics, 394-395,587,712 
Semiconvergence, 155 
Sensors, 74,346-348 
Sensory segmentation, 409 
Separability, 169,292,481 
SFM problem. See Structure from motion 

problem 
Shading models, 210 
Shadows, 259 
Shannon’s R-D theory, 500 
Shape-adaptive DCT (SA-DCT) coder, 591, 

Shaping, 31,43,491,589-590 
Shapiro EZW algorithm, 681 
Sharpening, 95-97 
Shift invariance, 72, 119, 149 
Shock filtering, 108 
Short-time Fourier transform (STFT), 497 
Shot boundary detection, 706 

72 1 

6 15-6 16 

Shot noise, 228 
Shutter speed, 331 
Side constraints, 148-150 
Sidelobes, 75-77 
Sieve-constrained maximum-likelihood 

SIF. See Source input format 
Sifting property, 71 
Sigmoidal function, 402 
Signal processing operations, 291 
Signal-to-noise ratio (SNR), 129, 167, 

194-196 
Similarity operators, 250,261,871 
Simoncelli pyramid, 233 
Simplification methods, 104-108 
SIMULINK software, 452 
Simultaneous estimation, 392-394 
Single-component demodulation, 172, 

Single-photon emission computed 
tomography (SPECT), 172,789,802 

Single-slice rebinning (SSRB) technique, 780 
Singular value decomposition, 145 
Sinusoidal functions, 54 
Skew symmetric matrix, 254 
Smoothing, 104-108,113 

constraints for, 217 
diffusion coefficient, 434-437 
filters, 44-50 
frequency estimates, 319 
SAWTA and, 406-407 

SNR. See Signal-to-noise ratio 
Sobel operator, 98,421,791 
Sobolev norms, 149 
Soft thresholding operator, 118 
Solar imaging, 185-188 
SOR. See Successive overrelaxation method 
Source code, 456,464 
Source input format (SIF), 599 
Space alternating generalized (SAGE) 

procedure, 183 
Space-frequency representations, 285,504 
SPAMM. See Spatial modulation of 

magnetization 
Spatial adaptivity, 200-201 
Spatial aliasing, 59-60 
Spatial modulation of magnetization 

Spatial motion models, 213 
Spatial sampling, 342 
Spatial scalability, 607 
Spatial-spectral transform, 541 
Spatial variance, 164-166, 171,177, 192-198, 

Spatiotemporal filtering, 228-233,276-277, 

Spatiotemporal sampling, 645,653-654 
Speckle, 120,185,325-326,332-335,755 
SPECT. See Single-photon emission 

Spectral blur estimation, 137 
Spectral editing, 543 
Spectral multipliers, 319 
Spectral selection, 522 

estimation, 181 

3 15-3 18 

(SPAMM), 800 

763 

575-583 

computed tomography 

Spectral-spatial transform, 541-544 
Spectrophotometer, 35 1 
Speech, 313 
Spherical aberration, 178 
SPIHT algorithm, 504507,681 
Spike-detector index (SDI), 234 
Spline methods, 234,638 
Splitting algorithm, 488 
Spreading, 127 
Sprite coding, 616 
SSD. See Sum of squared differences 
SSRB technique. See Single-slice rebinning 

technique 
Stability of solution, 144 
Stabilization, 263-267 
Stacking, 86-87,104 
Standard observer, 344 
Steepest descent methods, 113, 135,206 
Steganography, 734 
Stein risk estimate, 119 
Stereo problem, 16,243-249,253-255,285, 

314,320 
STFT. See Short-time Fourier transform 
Still texture coding, 618 
Stiller algorithm, 394 
Stimulated annealing, 218,364 
Stochastic relaxation, 218,307 
Stretch processing, 754 
String matching algorithm, 833 
Structure from motion (SFM) problem, 

Structuring elements, 102 
Subbands, 299,503-504,536,575-583 
Successive approximation algorithms, 192, 

Successive overrelaxation method (SOR), 239 
Sum of squared differences (SSD), 246 
Superposition property, 72,104 
Superquadrics, 861 
Superresolution of motion, 264-267 
Surveillance, 259 
Switching filter, 230 
Synthesis filter bank, 293 
Synthetic Aperture Radar ( S A R ) ,  141, 

267-268 

522 

749-769 

T 
Tagging techniques, 800 
“Talking head” image, 695 
Target recognition, 869-881 
Taylor approximation, 218 
Taylor weighting, 763 
TDMA. See Time-division multiple access 
Teager-Kaiser energy operator (TKEO), 

3 12-3 15 
Tele-operation, of vehicles, 259,264 
Telescopes, 175,177 
Television camera, 346-347 
Temperature factors, 74,209,228 
Temporal averaging, 229-23 1 
Temporal integration, 386-387 
Temporal masking, 672 
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Temporal motion models, 213-214 
Temporal scalability, 608 
Teo-Heeger model, 676 
Text-based search, 621,687 
Texture, 675 

analysis of, 692493,695 
classification, 367-377 
coding, 6 1 5 
discrimination masks, 408 
Gabor features, 368-369 
masking, 670,675 
microfeatures, 373 
model, 373-374 
multiband techniques, 367-377 
representation, 59 1-592 
retrieval, 376 
segmentation, 320, 367-377,406408 
synthesis, 3 11 
thesaurus, 376 

Thermal noise, 74,228 
Thinning methods, 417,439 
Three-dimensional reconstruction, 243-256, 

Three-stage synthesis filter bank, 498 
Three-step search, 219,221 
Threshold sets, 102-103 
Thresholding, 102, 103,659 

267 

coring, 233 
decomposition, 86-87,112 
edge detection, 442-443 
locally adaptive, 385 
process of, 38-41 
rules, 11 8 
superposition, 104 

Tikhonov method, 149,153 
Tiling representations, 509,525 
Time-division multiple access (TDMA), 731 
Time series data, 82 
TKEO. See Teager-Kaiser energy operator 
TLS. See Total least squares approach 
Toeplitz blocks, 141,341 
Toggle contrast filter, 108 
Tomography, 141,153,771-786 
Top-hat transformation, 11 1 
Topological constraints, 251 
Total least-squares (TLS) approach, 262 
Total variation regularization, 150-151 
Tracking methods, 254 
Transform coding paradigm, 500-502, 

500-503 
Translation-invariant set operator, 102-103 
Translational model, 214 
Tree-based methods, 463,504-507,640-643 
Tree-structured VQ (TSVQ), 489-490,558, 

Trellis-based technique, 502,534 
Triangulation, 252,592 
Trichromatic theory, 272 

567 

Tsai method, 253 
TSVQ. See Tree-structured VQ 
Tuning parameter, 133 
Turbulence, 128,175, 184 
Tuy condition, 781-782 
'Itvo-dimensional frequency, 53-54 
Two-point resolution, 854 

U 

Ultrasound imaging, 794,799 
Unary constraints, 250 
Uncertainty theorem, 497 
Undersampling effect, 8 
Unidirectional filters, 47 
Uniform color spaces, 348 
Uniform noise, 330-331 
Uniform quantization, 534,566 
Unit sample sequence, 71-72 
Universal coding, 103,470 
Upsampling, 291,636 

V 

Van Cittert iteration, 134,154 
Variable-length coding (VLC), 463,557 
Variable-rate quantization, 492493 
Variational methods, 439 
VASAN imaging system, 539 
Vascular morphology, 864-867 
Vector dissimilarity method, 442 
Vector filtering, 94 
Vector interpolation, 237 
Vector quantization (VQ), 485-493,544,566 
Vectorized language, 450 
Vehicle control systems, 358-359 
Velocity field, 208 
Ventriculography, 796 
Video access, 700-702 
Video libraries, 687-704 
Video object (VO) coding, 394-395,613-616, 

Video on demand (VoD), 721 
Video quality metrics, 681-682 
Videoconferencing, 214 
Virtual coordinate system, 254 
Vision, human, 271-287,298-299,342,346, 

VisuShrink, 119 
Viterbi algorithm, 534 
VLC. See Variable-length coding 
VO coding. See Video object coding 
VoD. See Video on demand 
Voronoi partitions, 487 
VQ. See Vector quantization 

719 

365,669482,829-832 

w 
Warping, 591-592 
Watermarking, 733-744 
Watson model, 680 
Wave propagation, 178 
Wavelet methods, 53 

coders, 504-508 
compression and, 495-51 1,575-583 
decomposition, 289-299,509 
denoising and, 117-122 
enhancement, 119-120 
filter sets, 576-577 
multiresolution models, 308-31 1 
packets, 508-511 
representations, 292-299 
scalar quantization, 510 
transform based methods, 577, 638 

Weak calibration, 253,254 
Weak-membrane cost, 152 
Weber law, 671 
Weighted filters, 82-92,230 
Welch estimate, 348 
Whitaker-Kotelnikov-Shannon expansion, 

633 
Wideband noise, 74 
Wiener filters, 131,133,153,171,230,327 
Windowing, 43-45,74,327 
World coordinate system, 244 
World Wide Web, 3,94,523,543,687,717 
Wraparound convolution, 59 

X 

Xv program, 457 

Y 

YIQ coordinate system, 11 
Yule-Walker equations, 131 

Z 

Zernicke moments, 413 
Zero coding, 579 
Zero context, 533 
Zero-crossing detection, 428 
Zero mean noise, 32,74 
Zero-order interpolation, 637 
Zero padding, 60,64,72-73 
Zero-tree modeling, 506507,618 
Zigzag scan, 588,606 
Zooming, 35-36,82,9495,214,504-507, 

616 
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