

Feature Extraction
and

Image Processing

Dedication
We would like to dedicate this book to our parents:

To Gloria and Joaquin Aguado, and to Brenda and the late Ian Nixon.

Feature Extraction
and

Image Processing
Second edition

Mark S. Nixon

Alberto S. Aguado

Amsterdam • Boston • Heidelberg • London • New York • Oxford

Paris • San Diego • San Francisco • Singapore • Sydney • Tokyo

Academic Press is an imprint of Elsevier

Academic Press is an imprint of Elsevier
Linacre House, Jordan Hill, Oxford OX2 8DP, UK
84 Theobald’s Road, London WC1X 8RR, UK

First edition 2002
Reprinted 2004, 2005
Second edition 2008

Copyright © 2008 Elsevier Ltd. All rights reserved

No part of this publication may be reproduced, stored in a retrieval system
or transmitted in any form or by any means electronic, mechanical, photocopying,
recording or otherwise without the prior written permission of the publisher

Permissions may be sought directly from Elsevier’s Science & Technology Rights
Department in Oxford, UK: phone (+44) (0) 1865 843830; fax (+44) (0) 1865 853333;
email: permissions@elsevier.com. Alternatively you can submit your request online by
visiting the Elsevier web site at http://elsevier.com/locate/permissions, and selecting
Obtaining permission to use Elsevier material

Notice
No responsibility is assumed by the publisher for any injury and/or damage to persons
or property as a matter of products liability, negligence or otherwise, or from any use
or operation of any methods, products, instructions or ideas contained in the material
herein. Because of rapid advances in the medical sciences, in particular, independent
verification of diagnoses and drug dosages should be made

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Cataloging-in-Publication Data
A catalog record for this book is available from the Library of Congress

ISBN: 978-0-12372-538-7

For information on all Academic Press publications
visit our web site at books.elsevier.com

Printed and bound in Hungary
08 09 10 10 9 8 7 6 5 4 3 2 1

Working together to grow
libraries in developing countries

www.elsevier.com | www.bookaid.org | www.sabre.org

. Contents .

Preface xi

1 Introduction 1

1.1 Overview 1
1.2 Human and computer vision 1
1.3 The human vision system 3

1.3.1 The eye 4
1.3.2 The neural system 6
1.3.3 Processing 7

1.4 Computer vision systems 9
1.4.1 Cameras 10
1.4.2 Computer interfaces 12
1.4.3 Processing an image 14

1.5 Mathematical systems 15
1.5.1 Mathematical tools 16
1.5.2 Hello Mathcad, hello images! 16
1.5.3 Hello Matlab! 21

1.6 Associated literature 24
1.6.1 Journals and magazines 24
1.6.2 Textbooks 25
1.6.3 The web 28

1.7 Conclusions 29
1.8 References 29

2 Images, sampling and frequency domain processing 33

2.1 Overview 33
2.2 Image formation 34
2.3 The Fourier transform 37
2.4 The sampling criterion 43
2.5 The discrete Fourier transform 47

2.5.1 One-dimensional transform 47
2.5.2 Two-dimensional transform 49

2.6 Other properties of the Fourier transform 54
2.6.1 Shift invariance 54
2.6.2 Rotation 56
2.6.3 Frequency scaling 56
2.6.4 Superposition (linearity) 57

v

2.7 Transforms other than Fourier 58
2.7.1 Discrete cosine transform 58
2.7.2 Discrete Hartley transform 59
2.7.3 Introductory wavelets: the Gabor wavelet 61
2.7.4 Other transforms 63

2.8 Applications using frequency domain properties 64
2.9 Further reading 65
2.10 References 66

3 Basic image processing operations 69

3.1 Overview 69
3.2 Histograms 70
3.3 Point operators 71

3.3.1 Basic point operations 71
3.3.2 Histogram normalization 74
3.3.3 Histogram equalization 75
3.3.4 Thresholding 77

3.4 Group operations 81
3.4.1 Template convolution 81
3.4.2 Averaging operator 84
3.4.3 On different template size 87
3.4.4 Gaussian averaging operator 88

3.5 Other statistical operators 90
3.5.1 More on averaging 90
3.5.2 Median filter 91
3.5.3 Mode filter 94
3.5.4 Anisotropic diffusion 96
3.5.5 Force field transform 101
3.5.6 Comparison of statistical operators 102

3.6 Mathematical morphology 103
3.6.1 Morphological operators 104
3.6.2 Grey-level morphology 107
3.6.3 Grey-level erosion and dilation 108
3.6.4 Minkowski operators 109

3.7 Further reading 112
3.8 References 113

4 Low-level feature extraction (including edge detection) 115

4.1 Overview 115
4.2 First order edge detection operators 117

4.2.1 Basic operators 117
4.2.2 Analysis of the basic operators 119
4.2.3 Prewitt edge detection operator 121
4.2.4 Sobel edge detection operator 123
4.2.5 Canny edge detection operator 129

vi Contents

4.3 Second order edge detection operators 137
4.3.1 Motivation 137
4.3.2 Basic operators: the Laplacian 137
4.3.3 Marr–Hildreth operator 139

4.4 Other edge detection operators 144
4.5 Comparison of edge detection operators 145
4.6 Further reading on edge detection 146
4.7 Phase congruency 147
4.8 Localized feature extraction 152

4.8.1 Detecting image curvature (corner extraction) 153
4.8.1.1 Definition of curvature 153
4.8.1.2 Computing differences in edge direction 154
4.8.1.3 Measuring curvature by changes in intensity

(differentiation) 156
4.8.1.4 Moravec and Harris detectors 159
4.8.1.5 Further reading on curvature 163

4.8.2 Modern approaches: region/patch analysis 163
4.8.2.1 Scale invariant feature transform 163
4.8.2.2 Saliency 166
4.8.2.3 Other techniques and performance issues 167

4.9 Describing image motion 167
4.9.1 Area-based approach 168
4.9.2 Differential approach 171
4.9.3 Further reading on optical flow 177

4.10 Conclusions 178
4.11 References 178

5 Feature extraction by shape matching 183

5.1 Overview 183
5.2 Thresholding and subtraction 184
5.3 Template matching 186

5.3.1 Definition 186
5.3.2 Fourier transform implementation 193
5.3.3 Discussion of template matching 196

5.4 Hough transform 196
5.4.1 Overview 196
5.4.2 Lines 197
5.4.3 Hough transform for circles 203
5.4.4 Hough transform for ellipses 207
5.4.5 Parameter space decomposition 210

5.4.5.1 Parameter space reduction for lines 210
5.4.5.2 Parameter space reduction for circles 212
5.4.5.3 Parameter space reduction for ellipses 217

5.5 Generalized Hough transform 221
5.5.1 Formal definition of the GHT 221
5.5.2 Polar definition 223

Contents vii

5.5.3 The GHT technique 224
5.5.4 Invariant GHT 228

5.6 Other extensions to the Hough transform 235
5.7 Further reading 236
5.8 References 237

6 Flexible shape extraction (snakes and other techniques) 241

6.1 Overview 241
6.2 Deformable templates 242
6.3 Active contours (snakes) 244

6.3.1 Basics 244
6.3.2 The greedy algorithm for snakes 246
6.3.3 Complete (Kass) snake implementation 252
6.3.4 Other snake approaches 257
6.3.5 Further snake developments 257
6.3.6 Geometric active contours 261

6.4 Shape skeletonization 266
6.4.1 Distance transforms 266
6.4.2 Symmetry 268

6.5 Flexible shape models: active shape and active
appearance 272

6.6 Further reading 275
6.7 References 276

7 Object description 281

7.1 Overview 281
7.2 Boundary descriptions 282

7.2.1 Boundary and region 282
7.2.2 Chain codes 283
7.2.3 Fourier descriptors 285

7.2.3.1 Basis of Fourier descriptors 286
7.2.3.2 Fourier expansion 287
7.2.3.3 Shift invariance 289
7.2.3.4 Discrete computation 290
7.2.3.5 Cumulative angular function 292
7.2.3.6 Elliptic Fourier descriptors 301
7.2.3.7 Invariance 305

7.3 Region descriptors 311
7.3.1 Basic region descriptors 311
7.3.2 Moments 315

7.3.2.1 Basic properties 315
7.3.2.2 Invariant moments 318
7.3.2.3 Zernike moments 320
7.3.2.4 Other moments 324

7.4 Further reading 325
7.5 References 326

viii Contents

8 Introduction to texture description, segmentation and classification 329

8.1 Overview 329
8.2 What is texture? 330
8.3 Texture description 332

8.3.1 Performance requirements 332
8.3.2 Structural approaches 332
8.3.3 Statistical approaches 335
8.3.4 Combination approaches 337

8.4 Classification 339
8.4.1 The k-nearest neighbour rule 339
8.4.2 Other classification approaches 343

8.5 Segmentation 343
8.6 Further reading 345
8.7 References 346

9 Appendix 1: Example worksheets 349

9.1 Example Mathcad worksheet for Chapter 3 349
9.2 Example Matlab worksheet for Chapter 4 352

10 Appendix 2: Camera geometry fundamentals 355

10.1 Image geometry 355
10.2 Perspective camera 355
10.3 Perspective camera model 357

10.3.1 Homogeneous coordinates and projective geometry 357
10.3.1.1 Representation of a line and duality 358
10.3.1.2 Ideal points 358
10.3.1.3 Transformations in the projective space 359

10.3.2 Perspective camera model analysis 360
10.3.3 Parameters of the perspective camera model 363

10.4 Affine camera 364
10.4.1 Affine camera model 365
10.4.2 Affine camera model and the perspective projection 366
10.4.3 Parameters of the affine camera model 368

10.5 Weak perspective model 369
10.6 Example of camera models 371
10.7 Discussion 379
10.8 References 380

11 Appendix 3: Least squares analysis 381

11.1 The least squares criterion 381
11.2 Curve fitting by least squares 382

Contents ix

12 Appendix 4: Principal components analysis 385

12.1 Introduction 385
12.2 Data 385
12.3 Covariance 386
12.4 Covariance matrix 388
12.5 Data transformation 389
12.6 Inverse transformation 390
12.7 Eigenproblem 391
12.8 Solving the eigenproblem 392
12.9 PCA method summary 392
12.10 Example 393
12.11 References 398

Index 399

x Contents

. Preface .

Why did we write this book?

We will no doubt be asked many times: why on earth write a new book on computer vision?
Fair question: there are already many good books on computer vision in the bookshops, as you
will find referenced later, so why add to them? Part of the answer is that any textbook is a
snapshot of material that exists before it. Computer vision, the art of processing images stored
within a computer, has seen a considerable amount of research by highly qualified people and
the volume of research would appear even to have increased in recent years. This means that a
lot of new techniques have been developed, and many of the more recent approaches have yet
to migrate to textbooks.

But it is not just the new research: part of the speedy advance in computer vision technique
has left some areas covered only in scanty detail. By the nature of research, one cannot publish
material on technique that is seen more to fill historical gaps, rather than to advance knowledge.
This is again where a new text can contribute.

Finally, the technology itself continues to advance. This means that there is new hardware,
and there are new programming languages and new programming environments. In particular for
computer vision, the advance of technology means that computing power and memory are now
relatively cheap. It is certainly considerably cheaper than when computer vision was starting as
a research field. One of the authors here notes that the laptop that his portion of the book was
written on has more memory, is faster, and has bigger disk space and better graphics than the
computer that served the entire university of his student days. And he is not that old! One of
the more advantageous recent changes brought about by progress has been the development of
mathematical programming systems. These allow us to concentrate on mathematical technique
itself, rather than on implementation detail. There are several sophisticated flavours, of which
Mathcad and Matlab, the chosen vehicles here, are among the most popular. We have been using
these techniques in research and teaching, and we would argue that they have been of consider-
able benefit there. In research, they help us to develop technique more quickly and to evaluate
its final implementation. For teaching, the power of a modern laptop and a mathematical system
combines to show students, in lectures and in study, not only how techniques are implemented,
but also how and why they work with an explicit relation to conventional teaching material.

We wrote this book for these reasons. There is a host of material that we could have included
but chose to omit. Our apologies to other academics if it was your own, or your favourite,
technique. By virtue of the enormous breadth of the subject of computer vision, we restricted the
focus to feature extraction and image processing in computer vision, for this not only has been
the focus of our research, but is also where the attention of established textbooks, with some
exceptions, can be rather scanty. It is, however, one of the prime targets of applied computer
vision, so would benefit from better attention. We have aimed to clarify some of its origins
and development, while also exposing implementation using mathematical systems. As such,
we have written this text with our original aims in mind.

xi

Why did we produce another edition?

There are many reasons why we have updated the book to provide this new edition. First,
despite its electronic submission, some of the first edition was retyped before production. This
introduced errors that we have now corrected. Next, the field continues to move forward: we
now include some techniques which were gaining appreciation when we first wrote the book,
or have been developed since. Some areas move more rapidly than others, and this is reflected
in the changes made. Also, there has been interim scholarship, especially in the form of new
texts, and we include these new ones as much as we can. Matlab and Mathcad are still the
computational media here, and there is a new demonstration site which uses Java. Finally, we
have maintained the original format. It is always tempting to change the format, in this case even
to reformat the text, but we have chosen not to do so. Apart from corrections and clarifications,
the main changes from the previous edition are:

• Chapter 1: updating of eye operation, camera technology and software, updating and exten-
sion of web material and literature

• Chapter 2: very little (this is standard material), except for an excellent example of aliasing
• Chapter 3: inclusion of anisotropic diffusion for image smoothing, the force field operator

and mathematical morphology
• Chapter 4: extension of frequency domain concepts and differentiation operators; inclusion

of phase congruency, modern curvature operators and the scale invariant feature transform
(SIFT)

• Chapter 5: emphasis of the practical attributes of feature extraction in occlusion and noise,
and some moving-feature techniques

• Chapter 6: inclusion of geometric active contours and level set methods, inclusion of skele-
tonization, extension of active shape models

• Chapter 7: extension of the material on moments, particularly Zernike moments, including
reconstruction from moments

• Chapter 8: clarification of some of the detail in feature-based recognition
• Appendices: these have been extended to cover camera models in greater detail, and principal

components analysis.

As already mentioned, there is a new JAVA-based demonstration site, at http://www.ecs.soton.
ac.uk/∼msn/book/new_demo/, which has some of the techniques described herein and some
examples of how computer vision-based biometrics work. This webpage will continue to be
updated.

The book and its support

Each chapter of the book presents a particular package of information concerning feature
extraction in image processing and computer vision. Each package is developed from its origins
and later referenced to more recent material. Naturally, there is often theoretical development
before implementation (in Mathcad or Matlab). We have provided working implementations of
most of the major techniques we describe, and applied them to process a selection of imagery.
Although the focus of our work has been more in analysing medical imagery or in biometrics

xii Preface

(the science of recognizing people by behavioural or physiological characteristics, like face
recognition), the techniques are general and can migrate to other application domains.

You will find a host of further supporting information at the book’s website
(http://www.ecs.soton.ac.uk/∼msn/book/). First, you will find the worksheets (the Matlab and
Mathcad implementations that support the text) so that you can study the techniques described
herein. There are also lecturing versions that have been arranged for display via an overhead
projector, with enlarged text and more interactive demonstration. The example questions (and,
eventually, their answers) are also there. The demonstration site is there too. The website will
be kept as up to date as possible, for it also contains links to other material such as websites
devoted to techniques and to applications, as well as to available software and online literature.
Finally, any errata will be reported there. It is our regret and our responsibility that these will
exist, but our inducement for their reporting concerns a pint of beer. If you find an error that
we do not know about (not typos such as spelling, grammar and layout) then use the mailto on
the website and we shall send you a pint of good English beer, free!

There is a certain amount of mathematics in this book. The target audience is third or fourth
year students in BSc/BEng/MEng courses in electrical or electronic engineering, software engi-
neering and computer science, or in mathematics or physics, and this is the level of mathematical
analysis here. Computer vision can be thought of as a branch of applied mathematics, although
this does not really apply to some areas within its remit, but certainly applies to the material
herein. The mathematics essentially concerns mainly calculus and geometry, although some of
it is rather more detailed than the constraints of a conventional lecture course might allow. Cer-
tainly, not all of the material here is covered in detail in undergraduate courses at Southampton.

The book starts with an overview of computer vision hardware, software and established
material, with reference to the most sophisticated vision system yet ‘developed’: the human
vision system. Although the precise details of the nature of processing that allows us to see
have yet to be determined, there is a considerable range of hardware and software that allow
us to give a computer system the capability to acquire, process and reason with imagery, the
function of ‘sight’. The first chapter also provides a comprehensive bibliography of material
on the subject, including not only textbooks, but also available software and other material. As
this will no doubt be subject to change, it might well be worth consulting the website for more
up-to-date information. The preferred journal references are those that are likely to be found
in local university libraries or on the web, IEEE Transactions in particular. These are often
subscribed to as they are relatively low cost, and are often of very high quality.

The next chapter concerns the basics of signal processing theory for use in computer vision.
It introduces the Fourier transform, which allows you to look at a signal in a new way, in terms
of its frequency content. It also allows us to work out the minimum size of a picture to conserve
information and to analyse the content in terms of frequency, and even helps to speed up some
of the later vision algorithms. Unfortunately, it does involve a few equations, but it is a new
way of looking at data and signals, and proves to be a rewarding topic of study in its own right.

We then start to look at basic image-processing techniques, where image points are mapped
into a new value first by considering a single point in an original image, and then by considering
groups of points. We see not only common operations to make a picture’s appearance better,
especially for human vision, but also how to reduce the effects of different types of commonly
encountered image noise. This is where the techniques are implemented as algorithms in Mathcad
and Matlab to show precisely how the equations work. We shall see some of the modern ways
to remove noise and thus clean images, and we shall also look at techniques which process an
image using notions of shape, rather than mapping processes.

Preface xiii

The following chapter concerns low-level features, which are the techniques that describe
the content of an image, at the level of a whole image rather than in distinct regions of it. One
of the most important processes is edge detection. Essentially, this reduces an image to a form
of a caricaturist’s sketch, but without a caricaturist’s exaggerations. The major techniques are
presented in detail, together with descriptions of their implementation. Other image properties
we can derive include measures of curvature and measures of movement. These also are covered
in this chapter.

These edges, the curvature or the motion need to be grouped in some way so that we can
find shapes in an image. Our first approach to shape extraction concerns analysing the match
of low-level information to a known template of a target shape. As this can be computationally
very cumbersome, we then progress to a technique that improves computational performance,
while maintaining an optimal performance. The technique is known as the Hough transform,
and it has long been a popular target for researchers in computer vision who have sought to
clarify its basis, improve its speed, and increase its accuracy and robustness. Essentially, by
the Hough transform we estimate the parameters that govern a shape’s appearance, where the
shapes range from lines to ellipses and even to unknown shapes.

Some applications of shape extraction require the determination of rather more than the
parameters that control appearance, but require the ability to deform or flex to match the image
template. For this reason, the chapter on shape extraction by matching is followed by one on
flexible shape analysis. This is a topic that has shown considerable progress of late, especially
with the introduction of snakes (active contours). The newer material is the formulation by level
set methods, and brings new power to shape-extraction techniques. These seek to match a shape
to an image by analysing local properties. Further, we shall see how we can describe a shape by
its skeleton, although with practical difficulty which can be alleviated by symmetry (though this
can be slow), and also how global constraints concerning the statistics of a shape’s appearance
can be used to guide final extraction.

Up to this point, we have not considered techniques that can be used to describe the shape
found in an image. We shall find that the two major approaches concern techniques that describe
a shape’s perimeter and those that describe its area. Some of the perimeter description techniques,
the Fourier descriptors, are even couched using Fourier transform theory, which allows analysis
of their frequency content. One of the major approaches to area description, statistical moments,
also has a form of access to frequency components, but is of a very different nature to the Fourier
analysis. One advantage is that insight into descriptive ability can be achieved by reconstruction,
which should get back to the original shape.

The final chapter describes texture analysis, before some introductory material on pattern
classification. Texture describes patterns with no known analytical description and has been the
target of considerable research in computer vision and image processing. It is used here more
as a vehicle for material that precedes it, such as the Fourier transform and area descriptions,
although references are provided for access to other generic material. There is also introductory
material on how to classify these patterns against known data, but again this is a window on a
much larger area, to which appropriate pointers are given.

The appendices include a printout of abbreviated versions of the Mathcad and Matlab work-
sheets. The other appendices include material that is germane to the text, such as camera
models and coordinate geometry, the method of least squares and a topic known as principal
components analysis. These are aimed to be short introductions, and are appendices since they
are germane to much of the material. Other related, especially online, material is referenced
throughout the text.

xiv Preface

In this way, the text covers all major areas of feature extraction in image processing and
computer vision. There is considerably more material on the subject than is presented here;
for example, there is an enormous volume of material on 3D computer vision and 2D signal
processing which is only alluded to here. Topics that are specifically not included are colour,
3D processing and image coding. But to include all that would lead to a monstrous book that
no one could afford, or even pick up! So we admit that we give a snapshot, but we hope that it
is considered to open another window on a fascinating and rewarding subject.

In gratitude

We are immensely grateful to the input of our colleagues, in particular to Prof. Steve Gunn and to
Dr John Carter. The family who put up with it are Maria Eugenia and Caz and the nippers. We are
also very grateful to past and present researchers in computer vision at the Information, Signals,
Images, Systems (ISIS) Research Group under (or who have survived?) Mark’s supervision at
the School of Electronics and Computer Science, University of Southampton. As well as Alberto
and Steve, these include Dr Hani Muammar, Prof. Xiaoguang Jia, Prof. Yan Qiu Chen, Dr
Adrian Evans, Dr Colin Davies, Dr David Cunado, Dr Jason Nash, Dr Ping Huang, Dr Liang Ng,
Dr Hugh Lewis, Dr David Benn, Dr Douglas Bradshaw, Dr David Hurley, Dr John Manslow, Dr
Mike Grant, Bob Roddis, Dr Andrew Tatem, Dr Karl Sharman, Dr Jamie Shutler, Dr Jun Chen,
Dr Andy Tatem, Dr Chew Yam, Dr James Hayfron-Acquah, Dr Yalin Zheng, Dr Jeff Foster, Dr
Peter Myerscough, Dr David Wagg, Dr Ahmad Al-Mazeed, Dr Jang-Hee Yoo, Dr Nick Spencer,
Stuart Mowbray, Dr Stuart Prismall, Dr Peter Gething, Dr Mike Jewell, Dr David Wagg, Dr
Alex Bazin, Hidayah Rahmalan, Xin Liu, Imed Bouchrika, Banafshe Arbab-Zavar, Dan Thorpe,
Cem Direkoglu (the latter two especially for the new active contour material), John Evans (for
the great hippo photo) and to Jamie Hutton, Ben Dowling and Sina Samangooei (for the Java
demonstrations site). We are also very grateful to other past Southampton students of BEng
and MEng Electronic Engineering, MEng Information Engineering, BEng and MEng Computer
Engineering, MEng Software Engineering and BSc Computer Science who have pointed our
earlier mistakes, noted areas for clarification and in some cases volunteered some of the material
herein. Beyond Southampton, we remain grateful to the reviewers of the two editions and to Prof.
Daniel Cremers, Dr Timor Kadir and Prof. Tim Cootes for observations on and improvements
to the text and for permission to use images. To all of you, our very grateful thanks.

Final message

We ourselves have already benefited much by writing this book, and this second edition. As
we already know, previous students have also benefited, and contributed to it as well. But it
remains our hope that it will inspire people to join in this fascinating and rewarding subject that
has proved to be such a source of pleasure and inspiration to its many workers.

Mark S. Nixon Alberto S. Aguado
University of Southampton University of Surrey

Preface xv

This page intentionally left blank

. 1 .

Introduction

1.1 Overview

This is where we start, by looking at the human visual system to investigate what is meant
by vision, then on to how a computer can be made to sense pictorial data and then how we
can process an image. The overview of this chapter is shown in Table 1.1; you will find a
similar overview at the start of each chapter. There are no references (citations) in the overview,
citations are made in the text and are collected at the end of each chapter.

Table 1.1 Overview of Chapter 1

Main topic Sub topics Main points

Human vision
system

How the eye works, how visual
information is processed and how it can
fail.

Sight, lens, retina, image, colour,
monochrome, processing, brain, visual
illusions.

Computer
vision systems

How electronic images are formed, how
video is fed into a computer and how we
can process the information using a
computer.

Picture elements, pixels, video standard,
camera technologies, pixel technology,
performance effects, specialist cameras,
video conversion, computer languages,
processing packages. Demonstrations of
working techniques.

Mathematical
systems

How we can process images using
mathematical packages; introduction to
the Matlab and Mathcad systems.

Ease, consistency, support, visualization
of results, availability, introductory use,
example worksheets.

Literature Other textbooks and other places to find
information on image processing,
computer vision and feature extraction.

Magazines, textbooks, websites and this
book’s website.

1.2 Human and computer vision

A computer vision system processes images acquired from an electronic camera, which is like the
human vision system where the brain processes images derived from the eyes. Computer vision
is a rich and rewarding topic for study and research for electronic engineers, computer scientists
and many others. Increasingly, it has a commercial future. There are now many vision systems
in routine industrial use: cameras inspect mechanical parts to check size, food is inspected

1

for quality, and images used in astronomy benefit from computer vision techniques. Forensic
studies and biometrics (ways to recognize people) using computer vision include automatic face
recognition and recognizing people by the ‘texture’ of their irises. These studies are paralleled
by biologists and psychologists who continue to study how our human vision system works,
and how we see and recognize objects (and people).

A selection of (computer) images is given in Figure 1.1; these images comprise a set of points
or picture elements (usually concatenated to pixels) stored as an array of numbers in a computer.
To recognize faces, based on an image such as Figure 1.1(a), we need to be able to analyse
constituent shapes, such as the shape of the nose, the eyes and the eyebrows, to make some
measurements to describe, and then recognize, a face. (Figure 1.1a is perhaps one of the most
famous images in image processing. It is called the Lena image, and is derived from a picture
of Lena Sjööblom in Playboy in 1972.) Figure 1.1(b) is an ultrasound image of the carotid
artery (which is near the side of the neck and supplies blood to the brain and the face), taken
as a cross-section through it. The top region of the image is near the skin; the bottom is inside
the neck. The image arises from combinations of the reflections of the ultrasound radiation by
tissue. This image comes from a study that aimed to produce three-dimensional (3D) models of
arteries, to aid vascular surgery. Note that the image is very noisy, and this obscures the shape
of the (elliptical) artery. Remotely sensed images are often analysed by their texture content.
The perceived texture is different between the road junction and the different types of foliage
seen in Figure 1.1(c). Finally, Figure 1.1(d) is a magnetic resonance imaging (MRI) image of a
cross-section near the middle of a human body. The chest is at the top of the image, the lungs
and blood vessels are the dark areas, and the internal organs and the fat appear grey. Nowadays,
MRI images are in routine medical use, owing to their ability to provide high-quality images.

(a) Face from a camera (b) Artery from
ultrasound

(c) Ground by remote
sensing

(d) Body by magnetic
resonance

Figure 1.1 Real images from different sources

There are many different image sources. In medical studies, MRI is good for imaging soft
tissue, but does not reveal the bone structure (the spine cannot be seen in Figure 1.1d); this
can be achieved by using computed tomography (CT), which is better at imaging bone, as
opposed to soft tissue. Remotely sensed images can be derived from infrared (thermal) sensors
or synthetic-aperture radar, rather than by cameras, as in Figure 1.1(c). Spatial information can
be provided by two-dimensional arrays of sensors, including sonar arrays. There are perhaps
more varieties of sources of spatial data in medical studies than in any other area. But computer
vision techniques are used to analyse any form of data, not just the images from cameras.

Synthesized images are good for evaluating techniques and finding out how they work, and
some of the bounds on performance. Two synthetic images are shown in Figure 1.2. Figure 1.2(a)

2 Feature Extraction and Image Processing

is an image of circles that were specified mathematically. The image is an ideal case: the circles
are perfectly defined and the brightness levels have been specified to be constant. This type of
synthetic image is good for evaluating techniques which find the borders of the shape (its edges)
and the shape itself, and even for making a description of the shape. Figure 1.2(b) is a synthetic
image made up of sections of real image data. The borders between the regions of image data are
exact, again specified by a program. The image data comes from a well-known texture database,
the Brodatz album of textures. This was scanned and stored as a computer image. This image can
be used to analyse how well computer vision algorithms can identify regions of differing texture.

(a) Circles (b) Textures

Figure 1.2 Examples of synthesized images

This chapter will show you how basic computer vision systems work, in the context of the
human vision system. It covers the main elements of human vision, showing you how your eyes
work (and how they can be deceived). For computer vision, this chapter covers the hardware
and the software used for image analysis, giving an introduction to Mathcad and Matlab, the
software tools used throughout this text to implement computer vision algorithms. Finally, a
selection of pointers to other material is provided, especially those for more detail on the topics
covered in this chapter.

1.3 The human vision system

Human vision is a sophisticated system that senses and acts on visual stimuli. It has evolved
for millions of years, primarily for defence or survival. Intuitively, computer and human vision
appear to have the same function. The purpose of both systems is to interpret spatial data,
data that is indexed by more than one dimension. Even though computer and human vision
are functionally similar, you cannot expect a computer vision system to replicate exactly the
function of the human eye. This is partly because we do not understand fully how the vision
system of the eye and brain works, as we shall see in this section. Accordingly, we cannot
design a system to replicate its function exactly. In fact, some of the properties of the human eye
are useful when developing computer vision techniques, whereas others are actually undesirable
in a computer vision system. But we shall see computer vision techniques which can, to some
extent, replicate, and in some cases even improve upon, the human vision system.

Introduction 3

You might ponder this, so put one of the fingers from each of your hands in front of your face
and try to estimate the distance between them. This is difficult, and I am sure you would agree
that your measurement would not be very accurate. Now put your fingers very close together.
You can still tell that they are apart even when the distance between them is tiny. So human
vision can distinguish relative distance well, but is poor for absolute distance. Computer vision
is the other way around: it is good for estimating absolute difference, but with relatively poor
resolution for relative difference. The number of pixels in the image imposes the accuracy of
the computer vision system, but that does not come until the next chapter. Let us start at the
beginning, by seeing how the human vision system works.

In human vision, the sensing element is the eye from which images are transmitted via the optic
nerve to the brain, for further processing. The optic nerve has insufficient bandwidth to carry all the
information sensed by the eye. Accordingly, there must be some preprocessing before the image is
transmitted down the optic nerve. The human vision system can be modelled in three parts:

• the eye: this is a physical model since much of its function can be determined by pathology
• a processing system: this is an experimental model since the function can be modelled, but

not determined precisely
• analysis by the brain: this is a psychological model since we cannot access or model such

processing directly, but only determine behaviour by experiment and inference.

1.3.1 The eye

The function of the eye is to form an image; a cross-section of the eye is illustrated in Figure 1.3.
Vision requires an ability to focus selectively on objects of interest. This is achieved by the
ciliary muscles that hold the lens. In old age, it is these muscles which become slack and the
eye loses its ability to focus at short distance. The iris, or pupil, is like an aperture on a camera
and controls the amount of light entering the eye. It is a delicate system and needs protection,
which is provided by the cornea (sclera). This is outside the choroid, which has blood vessels

Lens

Ciliary muscle

Choroid/sclera

Optic nerve

Fovea

Blind spot

Retina

Figure 1.3 Human eye

4 Feature Extraction and Image Processing

that supply nutrition and is opaque to cut down the amount of light. The retina is on the inside
of the eye, which is where light falls to form an image. By this system, muscles rotate the eye,
and shape the lens, to form an image on the fovea (focal point), where the majority of sensors
are situated. The blind spot is where the optic nerve starts; there are no sensors there.

Focusing involves shaping the lens, rather than positioning it as in a camera. The lens is
shaped to refract close images greatly, and distant objects little, essentially by ‘stretching’ it.
The distance of the focal centre of the lens varies from approximately 14 mm to around 17 mm,
depending on the lens shape. This implies that a world scene is translated into an area of about
2 mm2. Good vision has high acuity (sharpness), which implies that there must be very many
sensors in the area where the image is formed.

There are nearly 100 million sensors dispersed around the retina. Light falls on these sensors
to stimulate photochemical transmissions, which results in nerve impulses that are collected to
form the signal transmitted by the eye. There are two types of sensor: first, the rods, which are
used for black and white (scotopic) vision; and secondly, the cones, which are used for colour
(photopic) vision. There are approximately 10 million cones and nearly all are found within 5�

of the fovea. The remaining 100 million rods are distributed around the retina, with the majority
between 20� and 5� of the fovea. Acuity is expressed in terms of spatial resolution (sharpness)
and brightness/colour resolution and is greatest within 1� of the fovea.

There is only one type of rod, but there are three types of cone. These are:

• S (short wavelength): these sense light towards the blue end of the visual spectrum
• M (medium wavelength): these sense light around green
• L (long wavelength): these sense light towards the red region of the spectrum.

The total response of the cones arises from summing the response of these three types of cone,
which gives a response covering the whole of the visual spectrum. The rods are sensitive to light
within the entire visual spectrum, giving the monochrome capability of scotopic vision. Accord-
ingly, when the light level is low, images are formed away from the fovea, to use the superior
sensitivity of the rods, but without the colour vision of the cones. Note that there are very few of
the bluish cones, and there are many more of the others. But we can still see a lot of blue (espe-
cially given ubiquitous denim!). So, somehow, the human vision system compensates for the lack
of blue sensors, to enable us to perceive it. The world would be a funny place with red water! The
vision response is logarithmic and depends on brightness adaptation from dark conditions where
the image is formed on the rods, to brighter conditions where images are formed on the cones.

One inherent property of the eye, known as Mach bands, affects the way we perceive images.
These are illustrated in Figure 1.4 and are the bands that appear to be where two stripes of
constant shade join. By assigning values to the image brightness levels, the cross-section of
plotted brightness is shown in Figure 1.4(a). This shows that the picture is formed from stripes
of constant brightness. Human vision perceives an image for which the cross-section is as plotted
in Figure 1.4(c). These Mach bands do not really exist, but are introduced by your eye. The bands
arise from overshoot in the eyes’ response at boundaries of regions of different intensity (this
aids us to differentiate between objects in our field of view). The real cross-section is illustrated
in Figure 1.4(b). Note also that a human eye can distinguish only relatively few grey levels. It
has a capability to discriminate between 32 levels (equivalent to five bits), whereas the image of
Figure 1.4(a) could have many more brightness levels. This is why your perception finds it more
difficult to discriminate between the low-intensity bands on the left of Figure 1.4(a). (Note that
Mach bands cannot be seen in the earlier image of circles, Figure 1.2a, owing to the arrangement

Introduction 5

(a) Image showing the Mach band effect

0 50 100

100

200

mach0,x

x

0 50 100

100

200

seenx

x

(b) Cross-section through (a) (c) Perceived cross-section through (a)

Figure 1.4 Illustrating the Mach band effect

of grey levels.) This is the limit of our studies of the first level of human vision; for those who
are interested, Cornsweet (1970) provides many more details concerning visual perception.

So we have already identified two properties associated with the eye that it would be difficult
to include, and would often be unwanted, in a computer vision system: Mach bands and sensi-
tivity to unsensed phenomena. These properties are integral to human vision. At present, human
vision is far more sophisticated than we can hope to achieve with a computer vision system.
Infrared guided-missile vision systems can have difficulty in distinguishing between a bird at
100 m and a plane at 10 km. Poor birds! (Lucky plane?) Human vision can handle this with ease.

1.3.2 The neural system

Neural signals provided by the eye are essentially the transformed response of the wavelength-
dependent receptors, the cones and the rods. One model is to combine these transformed signals
by addition, as illustrated in Figure 1.5. The response is transformed by a logarithmic function,
mirroring the known response of the eye. This is then multiplied by a weighting factor that
controls the contribution of a particular sensor. This can be arranged to allow combination of
responses from a particular region. The weighting factors can be chosen to afford particular
filtering properties. For example, in lateral inhibition, the weights for the centre sensors are much
greater than the weights for those at the extreme. This allows the response of the centre sensors
to dominate the combined response given by addition. If the weights in one half are chosen to

6 Feature Extraction and Image Processing

Logarithmic response

Sensor inputs

p 1 log(p 1) w 1 × log(p 1)

w 2 × log(p 2)

w 3 × log(p 3)

w 4 × log(p 4)

w 5 × log(p 5)

log(p 2)

log(p 3)

log(p 4)

log(p 5)

p 2

p 3

p 4

p 5

Weighting functions

Output

∑

Figure 1.5 Neural processing

be negative, while those in the other half are positive, then the output will show detection of
contrast (change in brightness), given by the differencing action of the weighting functions.

The signals from the cones can be combined in a manner that reflects chrominance (colour)
and luminance (brightness). This can be achieved by subtraction of logarithmic functions, which
is then equivalent to taking the logarithm of their ratio. This allows measures of chrominance
to be obtained. In this manner, the signals derived from the sensors are combined before
transmission through the optic nerve. This is an experimental model, since there are many ways
possible to combine the different signals together.

Visual information is then sent back to arrive at the lateral geniculate nucleus (LGN), which
is in the thalamus and is the primary processor of visual information. This is a layered structure
containing different types of cells, with differing functions. The axons from the LGN pass
information on to the visual cortex. The function of the LGN is largely unknown, although it
has been shown to play a part in coding the signals that are transmitted. It is also considered to
help the visual system to focus its attention, such as on sources of sound. For further information
on retinal neural networks, see Ratliff (1965); an alternative study of neural processing can be
found in Overington (1992).

1.3.3 Processing

The neural signals are then transmitted to two areas of the brain for further processing. These
areas are the associative cortex, where links between objects are made, and the occipital cortex,
where patterns are processed. It is naturally difficult to determine precisely what happens in
this region of the brain. To date, there have been no volunteers for detailed study of their
brain’s function (although progress with new imaging modalities such as positive emission
tomography or electrical impedance tomography will doubtless help). For this reason, there are
only psychological models to suggest how this region of the brain operates.

It is well known that one function of the human vision system is to use edges, or boundaries,
of objects. We can easily read the word in Figure 1.6(a); this is achieved by filling in the

Introduction 7

missing boundaries in the knowledge that the pattern is likely to represent a printed word. But
we can infer more about this image; there is a suggestion of illumination, causing shadows to
appear in unlit areas. If the light source is bright, then the image will be washed out, causing the
disappearance of the boundaries which are interpolated by our eyes. So there is more than just
physical response, there is also knowledge, including prior knowledge of solid geometry. This
situation is illustrated in Figure 1.6(b), which could represent three ‘pacmen’ about to collide,
or a white triangle placed on top of three black circles. Either situation is possible.

(a) Word? (b) Pacmen?

Figure 1.6 How human vision uses edges

It is also possible to deceive human vision, primarily by imposing a scene that it has not been
trained to handle. In the famous Zollner illusion (Figure 1.7a), the bars appear to be slanted,
whereas in reality they are vertical (check this by placing a pen between the lines): the small
cross-bars mislead your eye into perceiving the vertical bars as slanting. In the Ebbinghaus
illusion (Figure 1.7b), the inner circle appears to be larger when surrounded by small circles
than it is when surrounded by larger circles.

There are dynamic illusions too: you can always impress children with the ‘see my wobbly
pencil’ trick. Just hold the pencil loosely between your fingers then, to whoops of childish glee,
when the pencil is shaken up and down, the solid pencil will appear to bend. Benham’s disk

(a) Zollner (b) Ebbinghaus

Figure 1.7 Static illusions

8 Feature Extraction and Image Processing

(Figure 1.8) shows how hard it is to model vision accurately. If you make up a version of this
disk into a spinner (push a matchstick through the centre) and spin it anticlockwise, you do not
see three dark rings, you will see three coloured ones. The outside one will appear to be red, the
middle one a sort of green and the inner one deep blue. (This can depend greatly on lighting, and
contrast between the black and white on the disk. If the colours are not clear, try it in a different
place, with different lighting.) You can appear to explain this when you notice that the red
colours are associated with the long lines and the blue with short lines. But this is from physics,
not psychology. Now spin the disk clockwise. The order of the colours reverses: red is associated
with the short lines (inside) and blue with the long lines (outside). So the argument from physics
is clearly incorrect, since red is now associated with short lines, not long ones, revealing the
need for psychological explanation of the eyes’ function. This is not colour perception; see
Armstrong (1991) for an interesting (and interactive) study of colour theory and perception.

Figure 1.8 Benham’s disk

There are many texts on human vision. One popular text on human visual perception
is by Schwartz (2004) and there is an online book, The Joy of Vision (http://www.yorku.
ca/eye/thejoy.htm): useful, despite its title! Marr’s seminal text (Marr, 1982) is a computational
investigation into human vision and visual perception, investigating it from a computer vision
viewpoint. For further details on pattern processing in human vision, see Bruce and Green
(1990); for more illusions see Rosenfeld and Kak (1982). Many of the properties of human vision
are hard to include in a computer vision system, but let us now look at the basic components
that are used to make computers see.

1.4 Computer vision systems

Given the progress in computer technology, computer vision hardware is now relatively inex-
pensive; a basic computer vision system requires a camera, a camera interface and a computer.
These days, some personal computers offer the capability for a basic vision system, by including
a camera and its interface within the system. There are specialized systems for vision, offering
high performance in more than one aspect. These can be expensive, as any specialist system is.

Introduction 9

1.4.1 Cameras

A camera is the basic sensing element. In simple terms, most cameras rely on the property of
light to cause hole/electron pairs (the charge carriers in electronics) in a conducting material.
When a potential is applied (to attract the charge carriers), this charge can be sensed as current.
By Ohm’s law, the voltage across a resistance is proportional to the current through it, so the
current can be turned in to a voltage by passing it through a resistor. The number of hole/electron
pairs is proportional to the amount of incident light. Accordingly, greater charge (and hence
greater voltage and current) is caused by an increase in brightness. In this manner cameras can
provide as output, a voltage that is proportional to the brightness of the points imaged by the
camera. Cameras are usually arranged to supply video according to a specified standard. Most
will aim to satisfy the CCIR standard that exists for closed circuit television (CCTV) systems.

There are three main types of camera: vidicons, charge coupled devices (CCDs) and, more
recently, CMOS cameras (complementary metal oxide silicon, now the dominant technology
for logic circuit implementation). Vidicons are the older (analogue) technology which, although
cheap (mainly by virtue of longevity in production), are being replaced by the newer CCD and
CMOS digital technologies. The digital technologies now dominate much of the camera market
because they are lightweight and cheap (with other advantages) and are therefore used in the
domestic video market.

Vidicons operate in a manner akin to a television in reverse. The image is formed on a
screen, and then sensed by an electron beam that is scanned across the screen. This produces
an output which is continuous; the output voltage is proportional to the brightness of points in
the scanned line, and is a continuous signal, a voltage which varies continuously with time. In
contrast, CCDs and CMOS cameras use an array of sensors; these are regions where charge
is collected which is proportional to the light incident on that region. This is then available in
discrete, or sampled, form as opposed to the continuous sensing of a vidicon. This is similar to
human vision with its array of cones and rods, but digital cameras use a rectangular regularly
spaced lattice, whereas human vision uses a hexagonal lattice with irregular spacing.

Two main types of semiconductor pixel sensor are illustrated in Figure 1.9. In the passive
sensor, the charge generated by incident light is presented to a bus through a pass transistor.

Incident
light

Tx

Column bus

(a) Passive

Reset

Incident
light Select

Column bus

VDD

(b) Active

Figure 1.9 Pixel sensors

10 Feature Extraction and Image Processing

When the signal Tx is activated, the pass transistor is enabled and the sensor provides a
capacitance to the bus, one that is proportional to the incident light. An active pixel includes an
amplifier circuit that can compensate for limited fill factor of the photodiode. The select signal
again controls presentation of the sensor’s information to the bus. A further reset signal allows
the charge site to be cleared when the image is rescanned.

The basis of a CCD sensor is illustrated in Figure 1.10. The number of charge sites gives the
resolution of the CCD sensor; the contents of the charge sites (or buckets) need to be converted
to an output (voltage) signal. In simple terms, the contents of the buckets are emptied into
vertical transport registers which are shift registers moving information towards the horizontal
transport registers. This is the column bus supplied by the pixel sensors. The horizontal transport
registers empty the information row by row (point by point) into a signal conditioning unit,
which transforms the sensed charge into a voltage which is proportional to the charge in a bucket,
and hence proportional to the brightness of the corresponding point in the scene imaged by the
camera. The CMOS cameras are like a form of memory: the charge incident on a particular site
in a two-dimensional lattice is proportional to the brightness at a point. The charge is then read
like computer memory. (In fact, a computer RAM chip can act as a rudimentary form of camera
when the circuit, the one buried in the chip, is exposed to light.)

Horizontal transport register

Video
output

Control
inputs

Pixel sensors

Control

Signal
condit-
ioning

V
er

tic
al

 tr
an

sp
or

t r
eg

is
te

r

V
er

tic
al

 tr
an

sp
or

t r
eg

is
te

r

V
er

tic
al

 tr
an

sp
or

t r
eg

is
te

r

Figure 1.10 CCD sensing element

There are many more varieties of vidicon (Chalnicon, etc.) than there are of CCD technology
(charge injection device, etc.), perhaps owing to the greater age of basic vidicon technology.
Vidicons are cheap but have a number of intrinsic performance problems. The scanning process
essentially relies on moving parts. As such, the camera performance will change with time, as
parts wear; this is known as ageing. Also, it is possible to burn an image into the scanned screen
by using high incident light levels; vidicons can also suffer lag, that is, a delay in response to
moving objects in a scene. The digital technologies are dependent on the physical arrangement
of charge sites and as such do not suffer from ageing, but can suffer from irregularity in the
charge sites’ (silicon) material. The underlying technology also makes CCD and CMOS cameras

Introduction 11

less sensitive to lag and burn, but the signals associated with the CCD transport registers can
give rise to readout effects. Charge coupled devices only came to dominate camera technology
when technological difficulty associated with quantum efficiency (the magnitude of response
to incident light) for the shorter, blue, wavelengths was solved. One of the major problems
in CCD cameras is blooming, where bright (incident) light causes a bright spot to grow and
disperse in the image (this used to happen in the analogue technologies too). This happens much
less in CMOS cameras because the charge sites can be much better defined and reading their
data is equivalent to reading memory sites as opposed to shuffling charge between sites. Also,
CMOS cameras have now overcome the problem of fixed pattern noise that plagued earlier
MOS cameras. The CMOS cameras are actually much more recent than CCDs. This begs a
question as to which is better: CMOS or CCD? Given that they will be both be subject to much
continued development, CMOS is a cheaper technology and it lends itself directly to intelligent
cameras with on-board processing. This is mainly because the feature size of points (pixels) in a
CCD sensor is limited to be about 4 �m so that enough light is collected. In contrast, the feature
size in CMOS technology is considerably smaller, currently at around 0�1 �m. Accordingly, it
is now possible to integrate signal processing within the camera chip and thus it is perhaps
possible that CMOS cameras will eventually replace CCD technologies for many applications.
However, the more modern CCDs also have on-board circuitry, and their process technology is
more mature, so the debate will continue.

Finally, there are specialist cameras, which include high-resolution devices, which can give
pictures with a great number of points, low-light level cameras, which can operate in very
dark conditions (this is where vidicon technology is still found), and infrared cameras, which
sense heat to provide thermal images. Increasingly, hyperspectral cameras are available, which
have more sensing bands. For more detail concerning modern camera practicalities and imaging
systems, see Nakamura (2005). For more detail on sensor development, particularly CMOS,
Fossum (1997) is well worth a look.

1.4.2 Computer interfaces

This technology is in a rapid state of change, owing to the emergence of digital cameras.
Essentially, the image sensor converts light into a signal which is expressed either as a continuous
signal or in sampled (digital) form. Some (older) systems expressed the camera signal as an
analogue continuous signal, according to a standard, often the CCIR standard, and this was
converted at the computer (and still is in some cases). Modern digital systems convert the
sensor information into digital information with on-chip circuitry and then provide the digital
information according to a specified standard. The older systems, such as surveillance systems,
supplied (or supply) video, whereas the newer systems are digital. Video implies delivering the
moving image as a sequence of frames and these can be in analogue (continuous) or discrete
(sampled) form, of which one format is digital video (DV).

An interface that converts an analogue signal into a set of digital numbers is called a
framegrabber, since it grabs frames of data from a video sequence, and is illustrated in
Figure 1.11. Note that cameras that provide digital information do not need this particular
interface (it is inside the camera). However, an analogue camera signal is continuous and is
transformed into digital (discrete) format using an analogue-to-digital (A/D) converter. Flash
converters are usually used owing to the high speed required for conversion, say 11 MHz, which
cannot be met by any other conversion technology. Usually, 8 bit A/D converters are used;
at 6 dB/bit, this gives 48 dB, which just satisfies the CCIR stated bandwidth of approximately
45 dB. The output of the A/D converter is often fed to look-up tables (LUTs), which implement

12 Feature Extraction and Image Processing

A/D
converter

Control

Input
video Signal

conditioning
Look-up

table
Image

memory

Computer
interface

Computer

Figure 1.11 A computer interface: a framegrabber

designated conversion of the input data, but in hardware rather than in software, and this is very
fast. The outputs of the A/D converter are then stored. Note that there are aspects of the sampling
process that are of considerable interest in computer vision; these are covered in Chapter 2.

In digital camera systems this processing is usually performed on the camera chip, and the
camera eventually supplies digital information, often in coded form. IEEE 1394 (or firewire) is a
way of connecting devices external to a computer and is often used for digital video cameras as
it supports high-speed digital communication and can provide power; this is similar to universal
serial bus (USB), which can be used for still cameras. Firewire needs a connection system and
software to operate it, and these can be easily acquired. One important aspect of Firewire is its
support of isochronous transfer operation which guarantees timely delivery of data, which is of
importance in video-based systems.

There are many different ways to design framegrabber units, especially for specialist systems.
Note that the control circuitry has to determine exactly when image data is to be sampled. This is
controlled by synchronization pulses that are supplied within the video signal: the sync signals,
which control the way video information is constructed. Television pictures are constructed from
a set of lines, those lines scanned by a camera. To reduce requirements on transmission (and for
viewing), the 625 lines in the PAL system (NTSC is of lower resolution) are transmitted in two
fields, each of 312.5 lines, as illustrated in Figure 1.12. (Currently, in high-definition television,

Aspect ratio
4

3

Television picture

Even field lines Odd field lines

Figure 1.12 Interlacing in television pictures

Introduction 13

there is some debate between the corporations who do not want interlacing, and those who do,
e.g. the television broadcasters.) If you look at a television, but not directly, the flicker due to
interlacing can be perceived. When you look at the television directly, persistence in the human
eye ensures that you do not see the flicker. These fields are called the odd and even fields. There
is also an aspect ratio in picture transmission: pictures are arranged to be 1.33 times longer than
they are high. These factors are chosen to make television images attractive to human vision,
and can complicate the design of a framegrabber unit. Some conversion systems accept PAL or
NTSC video and convert it to the firewire system.

Nowadays, digital video cameras can provide digital output, in progressive scan (without
interlacing), delivering sequences of images that are readily processed. Or there are webcams,
or just digital camera systems that deliver images straight to the computer. Life just gets easier!

This completes the material we need to cover for basic computer vision systems. For
more detail concerning the practicalities of computer vision systems see, for example, Davies
(2005) (especially for product inspection) or Umbaugh (2005) (and both offer much more
than this).

1.4.3 Processing an image

Most image processing and computer vision techniques are implemented in computer soft-
ware. Often, only the simplest techniques migrate to hardware, although coding techniques
to maximize efficiency in image transmission are of sufficient commercial interest that they
have warranted extensive, and very sophisticated, hardware development. The systems include
the Joint Photographic Expert Group (JPEG) and the Moving Picture Expert Group (MPEG)
image coding formats. C, C++ and JavaTM are by now the most popular languages for vision
system implementation, because of strengths in integrating high- and low-level functions, and
the availability of good compilers. As systems become more complex, C++ and Java become
more attractive when encapsulation and polymorphism may be exploited. Many people use
Java as a development language partly because of platform independence, but also because
of ease in implementation (although some claim that speed and efficiency are not as good as
in C/C++). There is considerable implementation advantage associated with use of the Java
Advanced Imaging API (application programming interface). There is an online demonstration
site, for educational purposes only, associated with this book, to be found of the book’s website
at http://www.ecs.soton.ac.uk/∼msn/book/new_demo/. This is based around Java, so that the
site can be used over the web (as long as Java is installed and up to date). Some textbooks
offer image processing systems implemented in these languages. Many commercial packages
are available, although these are often limited to basic techniques, and do not include the more
sophisticated shape extraction techniques. The Visiquest (was Khoros) image processing system
has attracted much interest; this is a schematic (data-flow) image processing system where a
user links together chosen modules. This allows for better visualization of information flow
during processing. However, the underlying mathematics is not made clear to the user, as it can
be when a mathematical system is used. There is a textbook, and a very readable one at that, by
Efford (2000), which is based entirely on Java and includes, via a CD, the classes necessary for
image processing software development. Other popular texts include those that present working
algorithms, such as Seul et al. (2001) and Parker (1996).

In terms of software packages, one of the most popular is OpenCV, whose philosophy is to
‘aid commercial uses of computer vision in human–computer interface, robotics, monitoring,
biometrics and security by providing a free and open infrastructure where the distributed efforts
of the vision community can be consolidated and performance optimized’. This contains a wealth

14 Feature Extraction and Image Processing

of technique and (optimized) implementation; there is even a Wikipedia entry and a discussion
website supporting it. Then there are the VXL libraries (the Vision-something-Libraries, groan).
This is ‘a collection of C++ libraries designed for computer vision research and implementation’.
Finally, there is Adobe’s Generic Image Library (GIL), which aims to ease difficulties with
writing imaging-related code that is both generic and efficient. Note that these are open source,
but there are licences and conditions on use and exploitation.

A set of web links is shown in Table 1.2 for established freeware and commercial soft-
ware image processing systems. Perhaps the best selection can be found at the general site,
from the computer vision homepage software site at Carnegie Mellon (repeated later in
Table 1.5).

Table 1.2 Software websites

Packages (freeware or student version indicated by ∗)

General Site Carnegie Mellon http://www.cs.cmu.edu/afs/cs/project/cil/ftp/html/v-source.html
(large popular index including links to research code, image
processing toolkits, and display tools)

Visiquest
(Khoros)

Accusoft http://www.accusoft.com/

Hannover University http://www.tnt.uni-hannover.de/soft/imgproc/khoros/

AdOculos∗

(+ Textbook)
The Imaging Source http://www.theimagingsource.com/

CVIPtools∗ Southern Illinois
University

http://www.ee.siue.edu/CVIPtools/

LaboImage∗ Geneva University http://cuiwww.unige.ch/∼vision/LaboImage/labo.html

TN-Image∗ Thomas J. Nelson http://brneurosci.org/tnimage.html (scientific image analysis)

OpenCV Intel http://www.intel.com/technology/computing/opencv/index.htm
and http://sourceforge.net/projects/opencvlibrary/

VXL Many international
contributors

http://vxl.sourceforge.net/

GIL Adobe http://opensource.adobe.com/gil/

1.5 Mathematical systems

Several mathematical systems have been developed. These offer what is virtually a word-
processing system for mathematicians. Many are screen based, using a Windows system. The
advantage of these systems is that you can transpose mathematics pretty well directly from
textbooks, and see how it works. Code functionality is not obscured by the use of data structures,
although this can make the code appear cumbersome. A major advantage is that the system
provides low-level functionality and data visualization schemes, allowing the user to concentrate
on techniques alone. Accordingly, these systems afford an excellent route to understand, and
appreciate, mathematical systems before the development of application code, and to check that
the final code works correctly.

Introduction 15

1.5.1 Mathematical tools

Mathcad, Mathematica, Maple and Matlab are among the most popular of current tools. There
have been surveys that compare their efficacy, but it is difficult to ensure precise comparison
owing to the impressive speed of development of techniques. Most systems have their protago-
nists and detractors, as in any commercial system. Many books use these packages for particular
subjects, and there are often handbooks as addenda to the packages. We shall use both Matlab
and Mathcad throughout this text as they two very popular mathematical systems. We shall
describe Matlab later, as it is different from Mathcad, although the aim is the same. The website
links for the main mathematical packages are given in Table 1.3.

Table 1.3 Mathematical package websites

General

Guide to available
mathematical software

NIST http://gams.nist.gov/

Vendors

Mathcad MathSoft http://www.mathcad.com/

Mathematica Wolfram Research http://www.wolfram.com/

Matlab Mathworks http://www.mathworks.com/

Maple Maplesoft http://www.maplesoft.com/

1.5.2 Hello Mathcad, hello images!

Mathcad uses worksheets to implement mathematical analysis. The flow of calculation is very
similar to using a piece of paper: calculation starts at the top of a document, and flows left to right
and downwards. Data is available to later calculation (and to calculation to the right), but is not
available to prior calculation, much as is this case when calculation is written manually on paper.
Mathcad uses the Maple mathematical library to extend its functionality. To ensure that equations
can migrate easily from a textbook to application, Mathcad uses a WYSIWYG (what you see
is what you get) notation [its equation editor is not dissimilar to the Microsoft Equation (Word)
editor]. Mathcad offers a compromise between many performance factors, and is available at
low cost. There used to be a free worksheet viewer called Mathcad Explorer which operated in
read-only mode, which is an advantage lost. An image processing handbook is available with
Mathcad, but it does not include many of the more sophisticated feature extraction techniques.

Images are actually spatial data, data which is indexed by two spatial coordinates. The camera
senses the brightness at a point with coordinates x,y. Usually, x and y refer to the horizontal
and vertical axes, respectively. Throughout this text we shall work in orthographic projection,
ignoring perspective, where real-world coordinates map directly to x and y coordinates in an
image. The homogeneous coordinate system is a popular and proven method for handling three-
dimensional coordinate systems (x, y and z, where z is depth). Since it is not used directly in
the text, it is included as Appendix 2 (Section 10.3). The brightness sensed by the camera is
transformed to a signal which is then fed to the A/D converter and stored as a value within the
computer, referenced to the coordinates x,y in the image. Accordingly, a computer image is a

16 Feature Extraction and Image Processing

matrix of points. For a greyscale image, the value of each point is proportional to the brightness
of the corresponding point in the scene viewed, and imaged, by the camera. These points are
the picture elements, or pixels.

Consider, for example, the matrix of pixel values in Figure 1.13(a). This can be viewed as
a surface (or function) in Figure 1.13(b), or as an image in Figure 1.13(c). In Figure 1.13(c)
the brightness of each point is proportional to the value of its pixel. This gives the synthesized
image of a bright square on a dark background. The square is bright where the pixels have a
value around 40 brightness levels; the background is dark, and these pixels have a value near 0
brightness levels. This image is first given a label, pic, and then pic is allocated, :=, to the
matrix defined by using the matrix dialogue box in Mathcad, specifying a matrix with eight rows
and eight columns. The pixel values are then entered one by one until the matrix is complete
(alternatively, the matrix can be specified by using a subroutine, but that comes later). Note that
neither the background nor the square has a constant brightness. This is because noise has been
added to the image. If we want to evaluate the performance of a computer vision technique on an
image, but without the noise, we can simply remove it (one of the advantages of using synthetic
images). The matrix becomes an image when it is viewed as a picture, in Figure 1.13(c). This
is done either by presenting it as a surface plot, rotated by zerodegrees and viewed from above,
or by using Mathcad’s picture facility. As a surface plot, Mathcad allows the user to select a
greyscale image, and the patch plot option allows an image to be presented as point values.

0

(a) Matrix (b) Surface plot (c) Image

pic

1

2

3

4

1

2

1

1

2

2

1

1

2

1

2

2

3

3

38

45

43

39

1

1

4

2

39

44

44

41

2

3

1

1

37

41

40

42

2

1

1

2

36

42

39

40

3

1

2

2

3

2

1

2

1

4

1

1

1

1

3

1

1

2

2 4 6

0
2

4
6

10
20

30

40

pic

Figure 1.13 Synthesized image of a square

Mathcad stores matrices in row–column format. The coordinate system used throughout this
text has x as the horizontal axis and y as the vertical axis (as conventional). Accordingly, x is
the column count and y is the row count, so a point (in Mathcad) at coordinates x,y is actually
accessed as picy�x. The origin is at coordinates x = 0 and y = 0, so pic0�0 is the magnitude
of the point at the origin and pic2�2 is the point at the third row and third column and pic3�2

is the point at the third column and fourth row, as shown in Code 1.1 (the points can be seen

pic2,2=38 pic3,2=45
rows(pic)=8 cols(pic)=8

Code 1.1 Accessing an image in Mathcad

Introduction 17

in Figure 1.13a). Since the origin is at (0,0) the bottom right-hand point, at the last column and
row, has coordinates (7,7). The number of rows and the number of columns in a matrix, the
dimensions of an image, can be obtained by using the Mathcad rows and cols functions,
respectively, and again in Code 1.1.

This synthetic image can be processed using the Mathcad programming language, which can
be invoked by selecting the appropriate dialogue box. This allows for conventional for, while
and if statements, and the earlier assignment operator which is := in non-code sections, is
replaced by [back-arrow] in sections of code. A subroutine that inverts the brightness level
at each point, by subtracting it from the maximum brightness level in the original image, is
illustrated in Code 1.2. This uses for loops to index the rows and the columns, and then
calculates a new pixel value by subtracting the value at that point from the maximum obtained
by Mathcad’s max function. When the whole image has been processed, the new picture is
returned to be assigned to the label newpic. The resulting matrix is shown in Figure 1.14(a).
When this is viewed as a surface (Figure 1.14b), the inverted brightness levels mean that the
square appears dark and its surroundings appear white, as in Figure 1.14(c).

newpicturey,x←max(pic)-picy,x

for y∈0..rows(pic)-1
new_pic:= for x∈0..cols(pic)-1

newpicture

Code 1.2 Processing image points in Mathcad

0 2 4

44

43

42

41

44

43

44

44

43

43

44

44

43

44

43

43

42

42

7

0

2

6

44

44

41

43

6

1

1

4

43

42

44

44

8

4

5

3

43

44

44

43

9

3

6

5

42

44

43

43

42

43

44

43

44

41

44

44

44

44

42

44

44

43

new_pic = 6

2
4

6

0
10

20
30

40

new_pic

(a) Matrix (b) Surface plot (c) Image

Figure 1.14 Image of a square after division

Routines can be formulated as functions, so they can be invoked to process a chosen picture,
rather than restricted to a specific image. Mathcad functions are conventional; we simply add
two arguments (one is the image to be processed, the other is the brightness to be added) and
use the arguments as local variables, to give the add function illustrated in Code 1.3. To add a
value, we simply call the function and supply an image and the chosen brightness level as the
arguments.

18 Feature Extraction and Image Processing

← inpicy,x+value

add_value(inpic,value):= for x∈0..cols(inpic)–1
for y∈0..rows(inpic)–1

newpicturey,x
newpicture

Code 1.3 Function to add a value to an image in Mathcad

Mathematically, for an image which is a matrix of N ×N points, the brightness of the pixels
in a new picture (matrix), N, are the result of adding b brightness values to the pixels in the old
picture, O, given by:

Nx�y = Ox�y +b ∀x� y ∈ 1�N (1.1)

Real images have many points. Unfortunately, the Mathcad matrix dialogue box only allows
matrices that are 10 rows and 10 columns at most, i.e. a 10 × 10 matrix. Real images can be
512×512, but are often 256×256 or 128×128; this implies a storage requirement for 262×144,
65 × 536 and 16 × 384 pixels, respectively. Since Mathcad stores all points as high-precision,
complex floating point numbers, 512×512 images require too much storage, but 256×256 and
128×128 images can be handled with ease. Since this cannot be achieved by the dialogue box,
Mathcad has to be ‘tricked’ into accepting an image of this size. Figure 1.15 shows an image

(a) Part of original image as a matrix

(c) Bitmap of original image (d) Bitmap of processed image

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

150 145 145 145 150 159 152 152 151 145

159 151 151 152 159 159 159 151 145 145

159 152 151 151 159 159 159 152 134 145

159 145 137 134 145 151 152 151 145 152

145 142 128 128 134 145 145 151 150 159

134 145 142 137 134 145 145 145 151 152

142 145 151 142 145 151 151 145 159 159

145 151 152 145 134 145 152 159 170 170

152 159 158 151 145 142 151 152 170 152

158 158 152 152 142 134 145 159 159 151

oldhippo =

(b) Part of processed image as a matrix

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

170 165 165 165 170 179 172 172 171 165

179 171 171 172 179 179 179 171 165 165

179 172 171 171 179 179 179 172 154 165

179 165 157 154 165 171 172 171 165 172

165 162 148 148 154 165 165 171 170 179

154 165 162 157 154 165 165 165 171 172

162 165 171 162 165 171 171 165 179 179

165 171 172 165 154 165 172 179 190 190

172 179 178 171 165 162 171 172 190 172

178 178 172 172 162 154 165 179 179 171

newhippo =

Figure 1.15 Processing an image

Introduction 19

captured by a camera. This image has been stored in Windows bitmap (.BMP) format. This
can be read into a Mathcad worksheet using the READBMP command (in capitals – Mathcad
cannot handle readbmp), and is assigned to a variable. It is inadvisable to attempt to display
this using the Mathcad surface plot facility, as it can be slow for images and requires a lot of
memory. It is best to view an image using Mathcad’s picture facility or to store it using the
WRITEBMP command, and then look at it using a bitmap viewer.

So, we can make an image brighter, by addition, by the routine in Code 1.3, via the code in
Code 1.4. The result is shown in Figure 1.15. The matrix listings in Figure 1.15(a) and (b) show
that 20 has been added to each point (these only show the top left-hand section of the image
where the bright points relate to the grass; the darker points on, say, the ear cannot be seen).
The effect will be to make each point appear brighter, as seen by comparison of the (darker)
original image (Figure 1.15c) with the (brighter) result of addition (Figure 1.15d). In Chapter 3
we will investigate techniques that can be used to manipulate the image brightness to show the
face in a much better way. For the moment, we are just seeing how Mathcad can be used, in a
simple way, to process pictures.

oldhippo:=READBMP(“hippo_orig”)
newhippo:=add_value(hippo,20)
WRITEBMP(“hippo_brighter.bmp”):=newhippo

Code 1.4 Processing an image

Mathcad was used to generate the image used to demonstrate the Mach band effect; the code
is given in Code 1.5. First, an image is defined by copying the hippo image (from Code 1.4) to
an image labelled mach. Then, the floor function (which returns the nearest integer less than
its argument) is used to create the bands, scaled by an amount appropriate to introduce sufficient
contrast (the division by 21.5 gives six bands in the image of Figure 1.4a). The cross-section and
the perceived cross-section of the image were both generated by Mathcad’s X–Y plot facility,
using appropriate code for the perceived cross-section.

mach:= for x∈0..cols(mach)–1
for y∈0..rows(mach)–1

mach brightnessy,x ← ·floor x
bar_width

⎛
⎝⎜

⎞
⎠⎟

mach

Code 1.5 Creating the image of Figure 4(a)

The translation of the Mathcad code into application can be rather prolix when compared with
the Mathcad version by the necessity to include low-level functions. Since these can obscure the
basic image processing functionality, Mathcad is used throughout this book to show how the
techniques work. The translation to application code is perhaps easier via Matlab, as it offers
direct compilation of the code. There is also an electronic version of this book, which is a
collection of worksheets to help you to learn the subject; and an example Mathcad worksheet

20 Feature Extraction and Image Processing

is given in Appendix 1 (Section 9.1 for Mathcad; 9.2 for Matlab). You can download these
worksheets from this book’s website (http://www.ecs.soton.ac.uk/∼msn/book/) and there is a
link to the old Mathcad Explorer there too. You can then use the algorithms as a basis for
developing your own application code. This provides a good way to verify that your code actually
works: you can compare the results of your final application code with those of the original
mathematical description. If your final application code and the Mathcad implementation are
both correct, the results should be the same. Your application code will be much faster than in
Mathcad, and will benefit from the graphical user interface (GUI) that you have developed.

1.5.3 Hello Matlab!

Matlab is rather different from Mathcad. It is not a WYSIWYG system, but instead it is more
screen based. It was originally developed for matrix functions, hence the ‘Mat’ in the name. Like
Mathcad, it offers a set of mathematical tools and visualization capabilities in a manner arranged
to be very similar to conventional computer programs. In some users’ views, a WYSIWYG
system like Mathcad is easier to start with, but there are a number of advantages to Matlab,
not least the potential speed advantage in computation and the facility for debugging, together
with a considerable amount of established support. Again, there is an image processing toolkit
supporting Matlab, but it is rather limited compared with the range of techniques exposed in
this text. Its popularity is reflected in a book dedicated to use of Matlab for image processing
(Gonzalez et al., 2003), by perhaps one of the subject’s most popular authors.

Essentially, Matlab is the set of instructions that process the data stored in a workspace,
which can be extended by user-written commands. The workspace stores the different lists of
data and these data can be stored in a MAT file; the user-written commands are functions that
are stored in M-files (files with extension .M). The procedure operates by instructions at the
command line to process the workspace data using either one of Matlab’s commands or your
own commands. The results can be visualized as graphs, surfaces or images, as in Mathcad.

Matlab provides powerful matrix manipulations to develop and test complex implementations.
In this book, we avoid matrix implementations in favour of a more C++ algorithmic form. Thus,
matrix expressions are transformed into loop sequences. This helps students without experience
in matrix algebra to understand and implement the techniques without dependency on matrix
manipulation software libraries. Implementations in this book only serve to gain understanding
of the techniques’ performance and correctness, and favour clarity rather than speed.

The system runs on Unix/Linux or Windows and on Macintosh systems. A student version is
available at low cost. There is no viewer available for Matlab; you have to have access to a system
for which it is installed. As the system is not based around worksheets, we shall use a script which
is the simplest type of M-file, as illustrated in Code 1.6. To start the Matlab system, type MATLAB
at the command line. At the Matlab prompt (>>) type chapter1 to load and run the script (given
that the filechapter1.m is saved in the directory you are working in). Here, we can see that there
are no text boxes and so comments are preceded by %. The first command is one that allocates data
to our variablepic. There is a more sophisticated way to input this in the Matlab system, but that is
not available here. The points are addressed in row–column format and the origin is at coordinates
y = 1 and x = 1. So we access these points pic3�3 as the third column of the third row and pic4�3

as the point in the third column of the fourth row. Having set the display facility to black and white,
we can view the arraypic as a surface. When the surface (Figure 1.16a), is plotted, then Matlab has
been made to pause until you press Return before moving on. Here, when you press Return,
you will next see the image of the array (Figure 1.16b).

Introduction 21

%Chapter 1 Introduction (Hello Matlab) CHAPTER1.M
%Written by: Mark S. Nixon

disp(‘Welcome to the Chapter1 script’)
disp(‘This worksheet is the companion to Chapter 1 and is an
introduction.’)
disp(‘It is the source of Section 1.4.3 Hello Matlab.’)
disp(‘The worksheet follows the text directly and allows you to
process basic images.’)

disp(‘Let us define a matrix, a synthetic computer image called
pic.’)

pic =[1 2 3 4 1 1 2 1;
2 2 3 2 1 2 2 1;
3 1 38 39 37 36 3 1;
4 1 45 44 41 42 2 1;
1 2 43 44 40 39 1 3;
2 1 39 41 42 40 2 1;
1 2 1 2 2 3 1 1;
1 2 1 3 1 1 4 2]

%Pixels are addressed in row-column format.
%Using x for the horizontal axis (a column count), and y for the
%vertical axis (a row count) then picture points are addressed as
%pic(y,x). The origin is at coordinates (1,1), so the point
%pic(3,3) is on the third row and third column; the point pic(4,3)
%is on the fourth row, at the third column. Let’s print them:
disp (‘The element pic(3,3) is’)
pic(3,3)
disp(‘The element pic(4,3)is’)
pic(4,3)

%We’ll set the output display to black and white
colormap(gray);
%We can view the matrix as a surface plot
disp (‘We shall now view it as a surface plot (play with the
controls to see it in relief)’)
disp(‘When you are ready to move on, press RETURN’)
surface(pic);
%Let’s hold awhile so we can view it
pause;
%Or view it as an image
disp (‘We shall now view the array as an image’)
disp(‘When you are ready to move on, press RETURN’)
imagesc(pic);
%Let’s hold awhile so we can view it
pause;

22 Feature Extraction and Image Processing

%Let’s look at the array’s dimensions
disp(‘The dimensions of the array are’)
size(pic)

%now let’s invoke a routine that inverts the image
inverted_pic=invert(pic);
%Let’s print it out to check it
disp(‘When we invert it by subtracting each point from the
maximum, we get’)
inverted_pic
%And view it
disp(‘And when viewed as an image, we see’)
disp(‘When you are ready to move on, press RETURN’)
imagesc(inverted_pic);
%Let’s hold awhile so we can view it
pause;
disp(‘We shall now read in a bitmap image, and view it’)
disp(‘When you are ready to move on, press RETURN’)
face=imread(‘rhdark.bmp’,‘bmp’);
imagesc(face);
pause;
%Change from unsigned integer(uint8) to double precision so we can
process it
face=double(face);
disp(‘Now we shall invert it, and view the inverted image’)
inverted_face=invert(face);
imagesc(inverted_face);
disp(‘So we now know how to process images in Matlab. We shall be
using this later!’)

Code 1.6 Matlab script for Chapter 1

Figure 1.16 Matlab image visualization

Introduction 23

(a) Matlab surface plot (b) Matlab image

50

40

30

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

20

10

0
8

6

4

2

0
1 2 3 4 5 6 7 8

We can use Matlab’s own command to interrogate the data; these commands find use in
the M-files that store subroutines. An example routine is called after this. This subroutine is
stored in a file called invert.m and is a function that inverts brightness by subtracting the
value of each point from the array’s maximum value. The code is illustrated in Code 1.7.
Note that this code uses for loops, which are best avoided to improve speed, using Matlab’s
vectorized operations (as in Mathcad). The whole procedure can be implemented by the
command inverted=max(max(pic))-pic. One of Matlab’s assets is a ‘profiler’ which
allows you to determine exactly how much time is spent on different parts of your programs.
There is facility for importing graphics files, which is actually rather more extensive (i.e. it
accepts a wider range of file formats) than available in Mathcad. When images are used, this
reveals that unlike Mathcad, which stores all variables as full precision real numbers, Matlab
has a range of datatypes. We must move from the unsigned integer datatype, used for images,
to the double precision datatype to allow processing as a set of real numbers. In these ways
Matlab can and will be used to process images throughout this book. As with the Mathcad
worksheets, there are Matlab scripts available at the website for online tutorial support of the
material in this book; an abbreviated example worksheet is given in Appendix 1 (Section 9.2).

function inverted=invert(image)
%Subtract image point brightness from maximum
%
%Usage:[new image]=invert(image)
%
%Parameters: image-array of points
%
%Author: Mark S.Nixon
%get dimensions
[rows,cols]=size(image);

%find the maximum
maxi=max(max(image));

%subtract image points from maximum
for x=1:cols %address all columns

for y=1:rows %address all rows
inverted(y,x)=maxi-image(y,x);

end
end

Code 1.7 Matlab function (invert.m) to invert an image

1.6 Associated literature

1.6.1 Journals and magazines

As in any academic subject, there are many sources of literature. The professional magazines
include those that are more systems orientated, like Vision Systems Design and Advanced
Imaging. These provide more general articles, and are often a good source of information about

24 Feature Extraction and Image Processing

new computer vision products. For example, they survey available equipment, such as cameras
and monitors, and provide listings of those available, including some of the factors by which
you might choose to purchase them.

There is a wide selection of research journals, probably more than you can find in your
nearest library unless it is particularly well stocked. These journals have different merits: some
are targeted at short papers only, whereas some have short and long papers; some are more
dedicated to the development of new theory, whereas others are more pragmatic and focus more
on practical, working, image processing systems. But it is rather naive to classify journals in this
way, since all journals welcome good research, with new ideas, which has been demonstrated
to satisfy promising objectives.

The main research journals include: IEEE Transactions on: Pattern Analysis and Machine
Intelligence (in later references this will be abbreviated to IEEE Trans. on PAMI); Image
Processing (IP); Systems, Man and Cybernetics (SMC); and Medical Imaging (there are many
more IEEE transactions, some of which sometimes publish papers of interest in image processing
and computer vision). The IEEE Transactions are usually found in (university) libraries since
they are available at comparatively low cost; they are online to subscribers at the IEEE Explore
site (http://ieeexplore.ieee.org/) and this includes conferences and IEE Proceedings (described
soon). Computer Vision and Image Understanding and Graphical Models and Image Processing
arose from the splitting of one of the subject’s earlier journals, Computer Vision, Graphics and
Image Processing (CVGIP), into two parts. Do not confuse Pattern Recognition (Pattern Recog.)
with Pattern Recognition Letters (Pattern Recog. Lett.), published under the aegis of the Pattern
Recognition Society and the International Association of Pattern Recognition, respectively, since
the latter contains shorter papers only. The International Journal of Computer Vision is a more
recent journal, whereas Image and Vision Computing was established in the early 1980s. Finally,
do not miss out on the IEE Proceedings – Vision, Image and Signal Processing (now called
IET Computer Vision).

Most journals are now online but usually to subscribers only; some go back a long way.
Academic Press titles include Computer Vision and Image Understanding, Graphical Models
and Image Processing and Real-Time Imaging (which will reappear as Springer’s Real-Time
Image Processing).

There are plenty of conferences too: the Proceedings of the IEEE conferences are held
on the IEEE Explore site; Lecture Notes in Computer Science are hosted by Springer
(http://www.springer.com/). Some conferences such as the British Machine Vision Conference
series maintain their own site (http://www.bmva.ac.uk). The excellent Computer Vision Con-
ferences page in Table 1.5 is brought to us by Keith Price and lists conferences in computer
vision, image processing and pattern recognition.

1.6.2 Textbooks

There are many textbooks in this area. Increasingly, there are web versions, or web support,
as summarized in Table 1.4. The difficulty is one of access, as you need a subscription to
be able to access the online book (and sometimes even to see that it is available online). For
example, this book is available online to those subscribing to Referex in Engineering Village
(http://www.engineeringvillage.org). The site given in Table 1.4, as this book is the support site
which includes demonstrations, worksheets, errata and other information. The site given next,
at Edinburgh University UK, is part of the excellent CVOnline site (many thanks to Bob Fisher
there) and it lists current books as well pdfs, some of which are more dated, but still excellent

Introduction 25

Table 1.4 Web textbooks and homepages

This book’s
homepage

Southampton
University

http://www.ecs.soton.ac.uk/∼msn/book/

CVOnline: online
book compendium

Edinburgh University http://homepages.inf.ed.ac.uk/rbf/CVonline/books.htm

Image Processing
Fundamentals

Delft University http://www.ph.tn.tudelft.nl/Courses/FIP/noframes/fip.html

World of
Mathematics

Wolfram Research http://mathworld.wolfram.com

Numerical Recipes Cambridge University
Press

http://www.nr.com/

Digital Signal
Processing

Steven W. Smith http://www.dspguide.com/

The Joy of Visual
Perception

York University http://www.yorku.ca/research/vision/eye/thejoy.htm

(e.g. Ballard and Brown, 1982). There is also continuing debate on appropriate education in
image processing and computer vision, for which review material is available (Bebis et al., 2003).

The CVOnline site also describes a great deal of technique. Image Processing Fundamentals
is an online textbook for image processing. The World of Mathematics comes from Wolfram
research (the distributors of Mathematica) and gives an excellent web-based reference for
mathematics. Numerical Recipes (Press et al., 2002) is one of the best established texts in signal
processing. It is beautifully written, with examples and implementation, and is on the web too.
Digital Signal Processing is an online site with focus on the more theoretical aspects which will
be covered in Chapter 2. As previously mentioned, The Joy of Visual Perception is an online
site on how the human vision system works.

By way of context, for comparison with other textbooks, this text aims to start at the
foundation of computer vision, and ends very close to a research level. Its content specifically
addresses techniques for image analysis, considering shape analysis in particular. Mathcad and
Matlab are used as a vehicle to demonstrate implementation, which is not always considered in
other texts. But there are other texts, and these can help you to develop your interest in other
areas of computer vision.

This section includes only a selection of some of the texts. There are more than these,
some of which will be referred to in later chapters; each offers a particular view or insight
into computer vision and image processing. Some of the main textbooks include: Marr, Vision
(1982), which concerns vision and visual perception (as mentioned previously); Jain, Funda-
mentals of Computer Vision (1989), which is stacked with theory and technique, but omits
implementation and some image analysis, and Robot Vision (Horn, 1986); Sonka et al., Image
Processing, Analysis and Computer Vision (1998), offers more modern coverage of com-
puter vision including many more recent techniques, together with pseudocode implementation,
but omitting some image processing theory (the support site http://css.engineering.uiowa.edu/
%7Edip/LECTURE/lecture.html has teaching material too); Jain et al., Machine Vision (1995),
offers concise and modern coverage of 3D and motion (there is an online website at
http://vision.cse.psu.edu/with code and images, together with corrections); Gonzalez and Wintz,
Digital Image Processing (1987), has more tutorial element than many of the basically theoretical

26 Feature Extraction and Image Processing

texts and has a fantastic reputation for introducing people to the field; Rosenfeld and Kak,
Digital Picture Processing (1982) is very dated now, but is a well-proven text for much of
the basic material; and Pratt, Digital Image Processing (2001), which was originally one of
the earliest books on image processing and, like Rosenfeld and Kak, is a well-proven text for
much of the basic material, particularly image transforms. Despite its name, the recent text
called Active Contours (Blake and Isard, 1998) concentrates rather more on models of motion
and deformation and probabilistic treatment of shape and motion, than on the active contours
which we shall find here. As such, it is more a research text, reviewing many of the advanced
techniques to describe shapes and their motion. Image Processing – The Fundamentals (Petrou
and Bosdogianni, 1999) surveys the subject (as its title implies) from an image processing
viewpoint, covering not only image transforms, but also restoration and enhancement before
edge detection. The latter of these is most appropriate for one of the major contributors to
that subject. A newer text (Shapiro and Stockman, 2001) includes chapters on image databases
and on virtual and augmented reality. Umbaugh’s Computer Imaging: Digital Image Analysis
and Processing (2005) reflects recent interest in implementation by giving many programming
examples. One of the most modern books is Forsyth and Ponce’s Computer Vision: A Modern
Approach (2002), which offers much new, and needed, insight into this continually develop-
ing subject (two chapters that did not make the final text, on probability and on tracking, are
available at the book’s website http://www.cs.berkeley.edu/%7Edaf/book.html)

Kasturi and Jain’s Computer Vision: Principles (1991) and Computer Vision: Advances and
Applications (1991) present a collection of seminal papers in computer vision, many of which
are cited in their original form (rather than in this volume) in later chapters. There are other
interesting edited collections (Chellappa, 1992), and one edition (Bowyer and Ahuja, 1996)
honours Azriel Rosenfeld’s many contributions.

Books that include a software implementation include Lindley, Practical Image Processing in
C (1991), and Pitas, Digital Image Processing Algorithms (1993), which both cover basic image
processing and computer vision algorithms. Parker, Practical Computer Vision Using C (1994),
offers an excellent description and implementation of low-level image processing tasks within a
well-developed framework, but again does not extend to some of the more recent and higher level
processes in computer vision and includes little theory, although there is more in his later text
Image Processing and Computer Vision (Parker, 1996). There is excellent coverage of practical-
ity in Seul et al. (2000) and the book’s support site is at http://www.mlmsoftwaregroup.com/. As
mentioned previously, a recent text, Computer Vision and Image Processing (Umbaugh, 2005),
takes an applications-orientated approach to computer vision and image processing, offering
a variety of techniques in an engineering format. One recent text concentrates on Java only,
Image Processing in Java (Lyon, 1999), and concentrates more on image processing systems
implementation than on feature extraction (giving basic methods only). As already mentioned,
a newer textbook (Efford, 2000) offers Java implementation, although it omits much of the
mathematical detail, making it a lighter (more enjoyable?) read. Masters, Signal and Image Pro-
cessing with Neural Networks – A C++ Sourcebook (1994), offers good guidance in combining
image processing technique with neural networks and gives code for basic image processing
technique, such as frequency domain transformation.

Other textbooks include Russ, The Image Processing Handbook (2002), which contains much
basic technique with excellent visual support, but without any supporting theory, and has many
practical details concerning image processing systems; Davies, Machine Vision: Theory, Algo-
rithms and Practicalities (2005), which is targeted primarily at (industrial) machine vision sys-
tems, but covers much basic technique, with pseudo-code to describe their implementation; and

Introduction 27

the Handbook of Pattern Recognition and Computer Vision (Cheng, 2005). Last but by no means
least, there is even an illustrated dictionary (Fisher, 2005) to guide you through the terms that
are used.

1.6.3 The web

The web entries continue to proliferate. A list of web pages is given in Table 1.5 and these give
you a starting point from which to build up your own list of favourite bookmarks. All these
links, and more, are available at this book’s homepage (http://www.ecs.soton.ac.uk/∼msn/book/).
This will be checked regularly and kept up to date. The web entries in Table 1.5 start with
the Carnegie Mellon homepage (called the computer vision homepage). The Computer Vision
Online CVOnline homepage has been brought to us by Bob Fisher from the University of
Edinburgh. There is a host of material there, including its description. Their group also proves
the Hypermedia Image Processing Website and, in their words: ‘HIPR2 is a free www-based
set of tutorial materials for the 50 most commonly used image processing operators. It contains
tutorial text, sample results and JAVA demonstrations of individual operators and collections’.
It covers a lot of basic material and shows you the results of various processing options. A big
list of active groups can be found at the Computer Vision Homepage. If your University has
access to the web-based indexes of published papers, the ISI index gives you journal papers (and
allows for citation search), but unfortunately including medicine and science (where you can

Table 1.5 Computer vision and image processing websites

Name/scope Host Address

Vision and its applications

The Computer Vision
Homepage

Carnegie Mellon
University

http://www.cs.cmu.edu/afs/cs/project/cil/ftp/
html/vision.html

Computer Vision
Online

Edinburgh University http://www.dai.ed.ac.uk/CVonline/

Hypermedia Image
Processing Reference 2

Edinburgh University http://www.dai.ed.ac.uk/HIPR2

Image Processing
Archive

PEIPA http://peipa.essex.ac.uk/

3D Reconstruction Stanford University http://biocomp.stanford.edu/3dreconstruction/
index.html

Face Recognition Zagreb University http://www.face-rec.org/

Conferences

Computer Vision (and
image processing)

Keith Price, USC http://iris.usc.edu/Information/
Iris-Conferences.html

Newsgroups

Computer Vision Vision List comp.ai.vision (http://www.vislist.com/)

Image Processing sci.image.processing

28 Feature Extraction and Image Processing

get papers with over 30 authors). Alternatively, Compendex and INSPEC include papers more
related to engineering, together with papers in conferences, and hence vision, but without the
ability to search citations. More recently, many turn to Citeseer and Google Scholar with direct
ability to retrieve the papers, as well as to see where they have been used. Two newsgroups
can be found at the addresses given in Table 1.5 to provide what is perhaps the most up-to-date
information.

1.7 Conclusions

This chapter has covered most of the prerequisites for feature extraction in image processing and
computer vision. We need to know how we see, in some form, where we can find information
and how to process data. More importantly, we need an image, or some form of spatial data.
This is to be stored in a computer and processed by our new techniques. As it consists of data
points stored in a computer, this data is sampled or discrete. Extra material on image formation,
camera models and image geometry is to be found in Appendix 2, but we shall be considering
images as a planar array of points from here on. We need to know some of the bounds on the
sampling process, on how the image is formed. These are the subjects of the next chapter, which
also introduces a new way of looking at the data, and how it is interpreted (and processed) in
terms of frequency.

1.8 References

Armstrong, T., Colour Perception – A Practical Approach to Colour Theory, Tarquin Publica-
tions, Diss, 1991

Ballard, D. H. and Brown, C. M., Computer Vision, Prentice-Hall, New Jersey, 1982
Bebis, G., Egbert, D. and Shah, M., Review of Computer Vision Education, IEEE Trans. Educ.,

46(1), pp. 2–21, 2003
Blake, A. and Isard, M., Active Contours, Springer, London, 1998
Bowyer, K. and Ahuja, N. (Eds), Advances in Image Understanding, A Festschrift for Azriel

Rosenfeld, IEEE Computer Society Press, Los Alamitos, CA, 1996
Bruce, V. and Green, P., Visual Perception: Physiology, Psychology and Ecology, 2nd edn,

Lawrence Erlbaum Associates, Hove, 1990
Chellappa, R., Digital Image Processing, 2nd edn, IEEE Computer Society Press, Los Alamitos,

CA, 1992
Cheng, C. H. and Wang, P. S. P., Handbook of Pattern Recognition and Computer Vision, 3rd

edn, World Scientific, Singapore, 2005
Cornsweet, T. N., Visual Perception, Academic Press, New York, 1970
Davies, E. R., Machine Vision: Theory, Algorithms and Practicalities, 3rd edn, Morgan

Kaufmann (Elsevier), Amsterdam, 2005
Efford, N., Digital Image Processing – A Practical Introduction Using JAVA, Pearson Education,

Harlow, 2000
Fisher, R. B., Dawson-Howe, K., Fitzgibbon, A. and Robertson, C., Dictionary of Computer

Vision and Image Processing, John Wiley & Sons, New York, 2005
Forsyth, D. and Ponce, J., Computer Vision: A Modern Approach, Prentice Hall, New Jersey,

2002

Introduction 29

Fossum, E. R., CMOS Image Sensors: Electronic Camera-On-A-Chip, IEEE Trans. Electron.
Devices, 44(10), pp. 1689–1698, 1997

Gonzalez, R. C. and Wintz, P., Digital Image Processing, 2nd edn, Addison Wesley, Reading,
MA, 1987

Gonzalez, R. C., Woods, R. E. and Eddins, S., Digital Image Processing using MATLAB, 1st
edn, Prentice Hall, New Jersey, 2003

Horn, B. K. P., Robot Vision, MIT Press, Boston, MA, 1986
Jain, A. K., Fundamentals of Computer Vision, Prentice Hall International (UK), Hemel

Hempstead, 1989
Jain, R. C., Kasturi, R. and Schunk, B. G., Machine Vision, McGraw-Hill Book Co., Singapore,

1995
Kasturi, R. and Jain, R. C., Computer Vision: Principles, IEEE Computer Society Press, Los

Alamitos, CA, 1991
Kasturi, R. and Jain, R. C., Computer Vision: Advances and Applications, IEEE Computer

Society Press, Los Alamitos, CA, 1991
Lindley, C. A., Practical Image Processing in C, Wiley & Sons, New York, 1991
Lyon, D. A., Image Processing in Java, Prentice Hall, New Jersey, 1999
Maple, Waterloo Maple Software, Ontario, Canada
Marr, D., Vision, W. H. Freeman and Co., New York, 1982
Masters, T. Signal and Image Processing with Neural Networks – A C++ Sourcebook, Wiley

and Sons, New York, 1994
MATLAB, The MathWorks, 24 Prime Way Park, Natick, MA, USA
Mathcad, Mathsoft, 101 Main St., Cambridge, MA, USA
Mathematica, Wolfram Research, 100 Trade Center Drive, Champaign, IL, USA
Nakamura, J., Image Sensors and Signal Processing for Digital Still Cameras, CRC Press, Boca

Raton, FL, 2005
Overington, I., Computer Vision – A Unified, Biologically-Inspired Approach, Elsevier Science

Press, Amsterdam, 1992
Parker, J. R., Practical Computer Vision Using C, Wiley & Sons, New York, 1994
Parker, J. R., Algorithms for Image Processing and Computer Vision, Wiley & Sons, New York,

1996
Petrou, M. and Bosdogianni, P., Image Processing – The Fundamentals, John Wiley & Sons,

London, 1999
Pitas, I., Digital Image Processing Algorithms, Prentice Hall International (UK), Hemel Hemp-

stead, 1993
Pratt, W. K., Digital Image Processing: PIKS Inside, 3rd edn, Wiley, New York, 2001
Press, W. H., Teukolsky, S. A., Vetterling, W. T. and Flannery, B. P., Numerical Recipes in

C++: The Art of Scientific Computing, 2nd edn, Cambridge University Press, Cambridge,
2002

Ratliff, F., Mach Bands: Quantitative Studies on Neural Networks in the Retina, Holden-Day
Inc., San Francisco, USA, 1965

Rosenfeld, A. and Kak A. C., Digital Picture Processing, 2nd edn, Vols 1 and 2, Academic
Press, Orlando, FL, 1982

Russ, J. C., The Image Processing Handbook, 4th edn, CRC Press (IEEE Press), Boca Raton,
FL, 2002

Schwarz, S. H., Visual Perception, 3rd edn, McGraw-Hill, New York, 2004
Seul, M., O’Gorman, L. and Sammon, M. J., Practical Algorithms for Image Analysis: Descrip-

tions, Examples, and Code, Cambridge University Press, Cambridge, 2000

30 Feature Extraction and Image Processing

Shapiro, L. G. and Stockman, G. C., Computer Vision, Prentice Hall, New Jersey, USA, 2001
Sonka, M., Hllavac, V. and Boyle, R, Image Processing, Analysis and Computer Vision, 2nd

edn, Chapman Hall, London, 1998
Umbaugh, S. E., Computer Imaging: Digital Image Analysis and Processing, CRC Press, Boca

Raton, FL, 2005

Introduction 31

This page intentionally left blank

. 2 .

Images, sampling and
frequency domain

processing

2.1 Overview

In this chapter, we shall look at the basic theory which underlies image formation and processing.
We shall start by investigating what makes up a picture and look at the consequences of
having a different number of points in the image. We shall also look at images in a different
representation, known as the frequency domain. In this, as the name implies, we consider an
image as a collection of frequency components. We can operate on images in the frequency
domain and we shall also consider different transformation processes. These allow us different
insights into images and image processing which will be used in later chapters not only as a
means to develop techniques, but also to give faster (computer) processing.

Table 2.1 Overview of Chapter 2

Main topic Sub topics Main points

Images Effects of differing numbers of
points and of number range for
those points.

Greyscale, colour, resolution, dynamic range,
storage.

Fourier
transform
theory

What is meant by the frequency
domain, how it applies to
discrete (sampled) images, how it
allows us to interpret images and
the sampling resolution (number
of points).

Continuous Fourier transform and properties,
sampling criterion, discrete Fourier transform and
properties, image transformation, transform duals.
Inverse Fourier transform.

Consequences
of transform
approach

Basic properties of Fourier
transforms, other transforms,
frequency domain operations.

Translation (shift), rotation and scaling. Principle
of superposition and linearity. Walsh, Hartley,
discrete cosine and wavelet transforms. Filtering
and other operations.

33

2.2 Image formation

A computer image is a matrix (a two-dimensional array) of pixels. The value of each pixel
is proportional to the brightness of the corresponding point in the scene; its value is usually
derived from the output of an analogue-to-digital (A/D) converter. The matrix of pixels, the
image, is usually square and an image may be described as N × N m-bit pixels, where N is
the number of points and m controls the number of brightness values. Using m bits gives a
range of 2m values, ranging from 0 to 2m − 1. If m is 8 this gives brightness levels ranging
between 0 and 255, which are usually displayed as black and white, respectively, with shades
of grey in between, as they are for the greyscale image of a walking man in Figure 2.1(a).
Smaller values of m give fewer available levels, reducing the available contrast in an
image.

The ideal value of m is related to the signal-to-noise ratio (bandwidth) of the camera. This is
stated as approximately 45 dB for an analogue camera, and since there are 6 dB per bit, 8 bits
will cover the available range. Choosing 8 bit pixels has further advantages in that it is very
convenient to store pixel values as bytes, and 8 bit A/D converters are cheaper than those with
a higher resolution. For these reasons images are nearly always stored as 8 bit bytes, although
some applications use a different range. The relative influence of the 8 bits is shown in the
image of the walking subject in Figure 2.1. Here, the least significant bit, bit 0 (Figure 2.1b),
carries the least information (it changes most rapidly). As the order of the bits increases, they
change less rapidly and carry more information. The most information is carried by the most
significant bit, bit 7 (Figure 2.1i). Clearly, the fact that there is a walker in the original image
can be recognized much more reliably from the high-order bits than it can from the other bits
(notice too the odd effects in the bits, which would appear to come from lighting at the top of
the image).

Colour images follow a similar storage strategy to specify pixels’ intensities. However, instead
of using just one image plane, colour images are represented by three intensity components.
These components generally correspond to red, green and blue (the RGB model), although there
are other colour schemes. For example, the CMYK colour model is defined by the components
cyan, magenta, yellow and black. In any colour mode, the pixel’s colour can be specified in
two main ways. First, you can associate an integer value with each pixel, which can be used
as an index to a table that stores the intensity of each colour component. The index is used to
recover the actual colour from the table when the pixel is going to be displayed, or processed.
In this scheme, the table is known as the image’s palette and the display is said to be performed
by colour mapping. The main reason for using this colour representation is to reduce memory
requirements. That is, we only store a single image plane (i.e. the indices) and the palette. This
is less than storing the red, green and blue components separately and so makes the hardware
cheaper, and it can have other advantages, for example when the image is transmitted. The
main disadvantage is that the quality of the image is reduced since only a reduced collection of
colours is actually used. An alternative to represent colour is to use several image planes to store
the colour components of each pixel. This scheme is known as true colour and it represents
an image more accurately, essentially by considering more colours. The most common format
uses 8 bits for each of the three RGB components. These images are known as 24 bit true
colour and they can contain 16 777 216 different colours simultaneously. In spite of requiring
significantly more memory, the image quality and the continuing reduction in cost of computer
memory make this format a good alternative, even for storing the image frames from a video
sequence. A good compression algorithm is always helpful in these cases, particularly if images

34 Feature Extraction and Image Processing

(a) Original image

(f) Bit 4 (g) Bit 5 (h) Bit 6 (i) Bit 7 (MSB)

(b) Bit 0 (LSB) (c) Bit 1 (d) Bit 2 (e) Bit 3

Figure 2.1 Decomposing an image into its bits

need to be transmitted on a network. Here we will consider the processing of grey-level images
only, since they contain enough information to perform feature extraction and image analysis.
Should the image be originally colour, we will consider processing its luminance only, often
computed in a standard way. In any case, the amount of memory used is always related to the
image size.

Images, sampling and frequency domain processing 35

Choosing an appropriate value for the image size, N , is far more complicated. We want N
to be sufficiently large to resolve the required level of spatial detail in the image. If N is too
small, the image will be coarsely quantized: lines will appear to be very ‘blocky’ and some
of the detail will be lost. Larger values of N give more detail, but need more storage space
and the images will take longer to process, since there are more pixels. For example, with
reference to the image of the walking subject in Figure 2.1(a), Figure 2.2 shows the effect of
taking the image at different resolutions. Figure 2.2(a) is a 64 × 64 image, which shows only
the broad structure. It is impossible to see any detail in the subject’s face, or anywhere else.
Figure 2.2(b) is a 128 × 128 image, which is starting to show more of the detail, but it would
be hard to determine the subject’s identity. The original image, repeated in Figure 2.2(c), is a
256×256 image which shows a much greater level of detail, and the subject can be recognized
from the image. (These images come from a research programme aimed to use computer vision
techniques to recognize people by their gait; face recognition would have little potential for the
low-resolution image, which is often the sort of image that security cameras provide.) If the
image were a pure photographic image, some of the much finer detail like the hair would show
up in much greater detail. This is because the grains in film are very much smaller than the pixels
in a computer image. Note that the images in Figure 2.2 have been scaled to be the same size.
As such, the pixels in Figure 2.2(a) are much larger than in Figure 2.2(c), which emphasizes
its blocky structure. The most common choices are for 256 × 256 images or 512 × 512. These
require 64 and 256 kbytes of storage, respectively. If we take a sequence of, say, 20 images for
motion analysis, we will need more than 1 Mbyte to store the 20 256 × 256 images, and more
than 5 Mbytes if the images were 512×512. Even though memory continues to become cheaper,
this can still impose high cost. But it is not just cost which motivates an investigation of the
appropriate image size, the appropriate value for N . The main question is: are there theoretical
guidelines for choosing it? The short answer is ‘yes’; the long answer is to look at digital signal
processing theory.

(b) 128 × 128(a) 64 × 64 (c) 256 × 256

Figure 2.2 Effects of differing image resolution

The choice of sampling frequency is dictated by the sampling criterion. Presenting the
sampling criterion requires understanding of how we interpret signals in the frequency domain.
The way in is to look at the Fourier transform. This is a highly theoretical topic, but do not let
that put you off (it leads to image coding, like the JPEG format, so it is very useful indeed).

36 Feature Extraction and Image Processing

The Fourier transform has found many uses in image processing and understanding; it might
appear to be a complex topic (that’s actually a horrible pun!), but it is a very rewarding one to
study. The particular concern is the appropriate sampling frequency of (essentially, the value
for N), or the rate at which pixel values are taken from, a camera’s video signal.

2.3 The Fourier transform

The Fourier transform is a way of mapping a signal into its component frequencies. Frequency
measures in Hertz (Hz) the rate of repetition with time, measured in seconds (s); time is the
reciprocal of frequency and vice versa �Hertz = 1/second� s = 1/Hz�.

Consider a music centre: the sound comes from a CD player (or a tape, etc.) and is played on
the speakers after it has been processed by the amplifier. On the amplifier, you can change the
bass or the treble (or the loudness, which is a combination of bass and treble). Bass covers the
low-frequency components and treble covers the high-frequency ones. The Fourier transform is
a way of mapping the signal from the CD player, which is a signal varying continuously with
time, into its frequency components. When we have transformed the signal, we know which
frequencies made up the original sound.

So why do we do this? We have not changed the signal, only its representation. We can now
visualize it in terms of its frequencies, rather than as a voltage which changes with time. But
we can now change the frequencies (because we can see them clearly) and this will change the
sound. If, say, there is hiss on the original signal then since hiss is a high-frequency component,
it will show up as a high-frequency component in the Fourier transform. So we can see how to
remove it by looking at the Fourier transform. If you have ever used a graphic equalizer, you
have done this before. The graphic equalizer is a way of changing a signal by interpreting its
frequency domain representation; you can selectively control the frequency content by changing
the positions of the controls of the graphic equalizer. The equation that defines the Fourier
transform, Fp, of a signal p, is given by a complex integral:

��p���� = Fp��� =
∫ �

−�
p�t�e−j�tdt (2.1)

where Fp(�) is the Fourier transform; � is the angular frequency, � = 2�f , measured in
radians/s (where the frequency f is the reciprocal of time t� f = 1/t); j is the complex variable
(electronic engineers prefer j to i since they cannot confuse it with the symbol for current –
perhaps they don’t want to be mistaken for mathematicians!); p�t� is a continuous signal (vary-
ing continuously with time); and e−j�t = cos��t�− j sin��t� gives the frequency components
in p�t�.

We can derive the Fourier transform by applying Equation 2.1 to the signal of interest. We
can see how it works by constraining our analysis to simple signals. (We can then say that
complicated signals are just made up by adding up lots of simple signals.) If we take a pulse
which is of amplitude (size) A between when it starts at time t = −T/2 and when it ends at
t = T/2, and is zero elsewhere, the pulse is:

p�t� =
∣∣∣∣∣
A if −T/2 ≤ t ≤ T/2

0 otherwise
(2.2)

To obtain the Fourier transform, we substitute for p�t� in Equation 2.1. p�t� = A only for a
specified time, so we choose the limits on the integral to be the start and end points of our pulse

Images, sampling and frequency domain processing 37

(it is zero elsewhere) and set p�t� = A, its value in this time interval. The Fourier transform of
this pulse is the result of computing:

Fp��� =
∫ T/2

−T/2
Ae−j�tdt (2.3)

When we solve this we obtain an expression for Fp���:

Fp��� = −Ae−j�T/2 −Aej�T/2

j�
(2.4)

By simplification, using the relation sin��� = �ej� − e−j��/2j, the Fourier transform of the
pulse is:

Fp��� =

∣∣∣∣∣∣∣

2A

�
sin
(

�T

2

)
if � �= 0

AT if � = 0

(2.5)

This is a version of the sinc function, sinc�x� = sin�x�/x. The original pulse, and its transform
are illustrated in Figure 2.3. Equation 2.5 (as plotted in Figure 2.3b) suggests that a pulse is
made up of a lot of low frequencies (the main body of the pulse) and a few higher frequencies
(which give the edges of the pulse). (The range of frequencies is symmetrical around zero
frequency; negative frequency is a necessary mathematical abstraction.) The plot of the Fourier
transform is called the spectrum of the signal, which can be considered akin to the spectrum
of light.

p (t)

t

Fp (ω)

ω

(a) Pulse of amplitude A = 1 (b) Fourier transform

Figure 2.3 A pulse and its Fourier transform

So what actually is this Fourier transform? It tells us what frequencies make up a time
domain signal. The magnitude of the transform at a particular frequency is the amount of that
frequency in the original signal. If we collect together sinusoidal signals in amounts specified
by the Fourier transform, we should obtain the originally transformed signal. This process is
illustrated in Figure 2.4 for the signal and transform illustrated in Figure 2.3. Note that since
the Fourier transform is a complex number it has real and imaginary parts, and we only plot the
real part here. A low frequency, that for � = 1, in Figure 2.4(a), contributes a large component
of the original signal; a higher frequency, that for � = 2, contributes less, as in Figure 2.4(b).
This is because the transform coefficient is less for � = 2 than it is for � = 1. There is a very
small contribution for � = 3 (Figure 2.4c), although there is more for � = 4 (Figure 2.4d). This
is because there are frequencies for which there is no contribution, where the transform is zero.
When these signals are integrated together, we achieve a signal that looks similar to the original
pulse (Figure 2.4e). Here we have only considered frequencies from � = −6 to � = 6. If the

38 Feature Extraction and Image Processing

Re(Fp (1).e
j.t)

t

Re(Fp (2).e
j.2.t)

t

(a) Contribution for ω = 1 (b) Contribution for ω = 2

Re(Fp (3).e
j.3.t)

t

Re(Fp (4).e
j.4.t)

t

(c) Contribution for ω = 3 (d) Contribution for ω = 4

(e) Reconstruction by integration

Fp (ω).e

j.ω.t dω
6

t

–6

Figure 2.4 Reconstructing a signal from its transform

frequency range in integration were larger, more high frequencies would be included, leading
to a more faithful reconstruction of the original pulse.

The result of the Fourier transform is a complex number. As such, it is usually represented
in terms of its magnitude (or size, or modulus) and phase (or argument). The transform can be
represented as:

∫ �

−�
p�t�e−j�tdt = Re	Fp���
+ j Im	Fp���
 (2.6)

where Re��� and Im��� are the real and imaginary parts of the transform, respectively. The
magnitude of the transform is then:

∣∣∣
∫ �

−�
p�t�e−j�tdt

∣∣∣=
√

Re	Fp���
2 + Im	Fp���
2 (2.7)

and the phase is:
〈 ∫ �

−�
p�t�e−j�tdt = tan−1 Im	Fp���

Re	Fp���

(2.8)

Images, sampling and frequency domain processing 39

where the signs of the real and the imaginary components can be used to determine which
quadrant the phase is in (since the phase can vary from 0 to 2� radians). The magnitude
describes the amount of each frequency component, while the phase describes timing, when the
frequency components occur. The magnitude and phase of the transform of a pulse are shown
in Figure 2.5, where the magnitude returns a positive transform, and the phase is either 0 or 2�
radians (consistent with the sine function).

ω

⏐Fp (ω)⏐

(a) Magnitude

arg (Fp (ω))

ω
(b) Phase

Figure 2.5 Magnitude and phase of the Fourier transform of a pulse

To return to the time domain signal, from the frequency domain signal, we require the inverse
Fourier transform. This is the process by which we reconstructed the pulse from its transform
components. The inverse FT calculates p�t� from Fp��� according to:

p�t� = �−1�Fp���� = 1
2�

∫ �

−�
Fp���e−j�td� (2.9)

Together, Equations 2.1 and 2.9 form a relationship known as a transform pair that allows
us to transform into the frequency domain, and back again. By this process, we can perform
operations in the frequency domain or in the time domain, since we have a way of changing
between them. One important process is known as convolution. The convolution of one signal
p1�t� with another signal p2�t�, where the convolution process denoted by ∗, is given by the
integral

p1�t�∗p2�t� =
∫ �

−�
p1���p2�t − ��d� (2.10)

This is the basis of systems theory, where the output of a system is the convolution of a stimulus,
say p1, and a system’s response, p2, By inverting the time axis of the system response, to give
p2�t − ��, we obtain a memory function. The convolution process then sums the effect of a
stimulus multiplied by the memory function: the current output of the system is the cumulative
response to a stimulus. By taking the Fourier transform of Equation 2.10, where the Fourier
transformation is denoted by �, the Fourier transform of the convolution of two signals is

�	p1�t�∗p2�t�
 =
∫ �

−�

{∫ �

−�
p1���p2�t − ��d�

}
e−j�tdt

(2.11)

=
∫ �

−�

{∫ �

−�
p2�t − ��e−j�tdt

}
p1���d�

40 Feature Extraction and Image Processing

Now, since � 	p2 �t − ��
 = e−j�tFp2 ��� (to be considered later in Section 2.6.1),

�	p1�t�∗p2�t�
 =
∫ �

−�
Fp2���p1���e−j�td�

= Fp2���
∫ �

−�
p1���e−j�td� (2.12)

= Fp2���×Fp1���

As such, the frequency domain dual of convolution is multiplication; the convolution integral
can be performed by inverse Fourier transformation of the product of the transforms of the
two signals. A frequency domain representation essentially presents signals in a different way,
but it also provides a different way of processing signals. Later, we shall use the duality of
convolution to speed up the computation of vision algorithms considerably.

Further, correlation is defined to be

p1�t�⊗p2�t� =
∫ �

−�
p1���p2�t + ��d� (2.13)

where ⊗ denotes correlation (� is another symbol which is used sometimes, but there is not
much consensus on this symbol). Correlation gives a measure of the match between the two
signals p2��� and p1���. When p2��� = p1��� we are correlating a signal with itself and the
process is known as autocorrelation. We shall be using correlation later, to find things in images.

Before proceeding further, we also need to define the delta function, which can be considered
to be a function occurring at a particular time interval:

delta�t − �� =
∣∣∣∣∣
1 if t = �

0 otherwise
(2.14)

The relationship between a signal’s time domain representation and its frequency domain version
is also known as a transform pair: the transform of a pulse (in the time domain) is a sinc
function in the frequency domain. Since the transform is symmetrical, the Fourier transform of
a sinc function is a pulse.

There are other Fourier transform pairs, as illustrated in Figure 2.6. First, Figure 2.6(a) and (b)
show that the Fourier transform of a cosine function is two points in the frequency domain
(at the same value for positive and negative frequency); we expect this since there is only one
frequency in the cosine function, the frequency shown by its transform. Figure 2.6(c) and (d)
show that the transform of the Gaussian function is another Gaussian function; this illustrates
linearity (for linear systems it is Gaussian in, Gaussian out, which is another version of GIGO).
Figure 2.6(e) is a single point (the delta function) which has a transform that is an infinite set of
frequencies (Figure 2.6f); an alternative interpretation is that a delta function contains an equal
amount of all frequencies. This can be explained by using Equation 2.5, where if the pulse is
of shorter duration (T tends to zero), the sinc function is wider; as the pulse becomes infinitely
thin, the spectrum becomes infinitely flat.

Finally, Figure 2.6(g) and (h) show that the transform of a set of uniformly spaced delta
functions is another set of uniformly spaced delta functions, but with a different spacing. The
spacing in the frequency domain is the reciprocal of the spacing in the time domain. By way of

Images, sampling and frequency domain processing 41

Time domain signals Frequency domain spectra

cos (t)

g (t)

F cos (ω)

Fg (ω)

t ω
(a) Cosine wave (b) Fourier transform of cosine wave

t
ω

(c) Gaussian function (d) Spectrum of Gaussian function

Delta (t, 0)

t

1

ω
(e) Delta function (f) Frequency content of delta function

manyd (t , Ψ)

t

manyd ⎛
⎝

⎛
⎝ω, 1

Ψ

ω

(g) Sampling function in time domain (h) Transform of sampling function

Figure 2.6 Fourier transform pairs

a (non-mathematical) explanation, let us consider that the Gaussian function in Figure 2.6(c) is
actually made up by summing a set of closely spaced (and very thin) Gaussian functions. Then,
since the spectrum for a delta function is infinite, as the Gaussian function is stretched in the
time domain (eventually to be a set of pulses of uniform height) we obtain a set of pulses in
the frequency domain, but spaced by the reciprocal of the time domain spacing. This transform
pair is the basis of sampling theory (which we aim to use to find a criterion that guides us to an
appropriate choice for the image size).

42 Feature Extraction and Image Processing

2.4 The sampling criterion

The sampling criterion specifies the condition for the correct choice of sampling frequency.
Sampling concerns taking instantaneous values of a continuous signal; physically, these are the
outputs of an A/D converter sampling a camera signal. The samples are the values of the signal at
sampling instants. This is illustrated in Figure 2.7, where Figure 2.7(a) concerns taking samples
at a high frequency (the spacing between samples is low), compared with the amount of change
seen in the signal of which the samples are taken. Here, the samples are taken sufficiently fast
to notice the slight dip in the sampled signal. Figure 2.7(b) concerns taking samples at a low
frequency, compared with the rate of change of (the maximum frequency in) the sampled signal.
Here, the slight dip in the sampled signal is not seen in the samples taken from it.

(a) Sampling at high frequency

Sampling
instants

Δt

Signal
Amplitude

Sampling
instants

TimeTime
Δt

Signal

Amplitude

(b) Sampling at low frequency

Figure 2.7 Sampling at different frequencies

We can understand the process better in the frequency domain. Let us consider a time-variant
signal which has a range of frequencies between −fmax and fmax as illustrated in Figure 2.8(b).
This range of frequencies is shown by the Fourier transform, where the signal’s spectrum exists
only between these frequencies. This function is sampled every �t s: this is a sampling function
of spikes occurring every �t s. The Fourier transform of the sampling function is a series of
spikes separated by fsample = 1/�t Hz. The Fourier pair of this transform was illustrated earlier
(Figure 2.6g and h).

The sampled signal is the result of multiplying the time-variant signal by the sequence of
spikes; this gives samples that occur every �t s, and the sampled signal is shown in Figure 2.8(a).
These are the outputs of the A/D converter at sampling instants. The frequency domain analogue
of this sampling process is to convolve the spectrum of the time-variant signal with the spectrum
of the sampling function. Convolving the signals, the convolution process, implies that we
take the spectrum of one, flip it along the horizontal axis and then slide it across the other.
Taking the spectrum of the time-variant signal and sliding it over the spectrum of the spikes
results in a spectrum where the spectrum of the original signal is repeated every 1/�t Hz� fsample

in Figure 2.8(b–d). If the spacing between samples is �t, the repetitions of the time-variant
signal’s spectrum are spaced at intervals of 1/�t, as in Figure 2.8(b). If the sample spacing is
small, then the time-variant signal’s spectrum is replicated close together and the spectra collide,
or interfere, as in Figure 2.8(d). The spectra just touch when the sampling frequency is twice the
maximum frequency in the signal. If the frequency domain spacing, fsample, is more than twice
the maximum frequency, fmax, the spectra do not collide or interfere, as in Figure 2.8(c). If the

Images, sampling and frequency domain processing 43

(a) Sampled signal

Time

Frequency response

Frequency

Frequency

Frequency

Frequency response

Frequency response

f max f sample–f max–f sample

–3f max

–f sample
= –1/Δt

f sample
= 1/Δt

1/Δt

–f max f max

–f max f max 2f max
= f sample

3f max–2f max
= –f sample

Signal

(b) Oversampled spectra

(c) Sampling at the Nyquist rate

(d) Undersampled, aliased, spectra

Figure 2.8 Sampled spectra

sampling frequency exceeds twice the maximum frequency then the spectra cannot collide. This
is the Nyquist sampling criterion:

In order to reconstruct a signal from its samples, the sampling frequency must be at least
twice the highest frequency of the sampled signal.

44 Feature Extraction and Image Processing

If we do not obey Nyquist’s sampling theorem the spectra collide. When we inspect the
sampled signal, whose spectrum is within −fmax to fmax, wherein the spectra collided, the corrupt
spectrum implies that by virtue of sampling, we have ruined some of the information. If we
were to attempt to reconstruct a signal by inverse Fourier transformation of the sampled signal’s
spectrum, processing Figure 2.8(d) would lead to the wrong signal, whereas inverse Fourier
transformation of the frequencies between −fmax and fmax in Figure 2.8(b) and (c) would lead
back to the original signal. This can be seen in computer images as illustrated in Figure 2.9,
which show an image of a group of people (the computer vision research team at Southampton)
displayed at different spatial resolutions (the contrast has been increased to the same level in
each subimage, so that the effect we want to demonstrate should definitely show up in the print
copy). Essentially, the people become less distinct in the lower resolution image (Figure 2.9b).
Now, look closely at the two sets of window blinds behind the people. At higher resolution,
in Figure 2.9(a), these appear as normal window blinds. In Figure 2.9(b), which is sampled
at a much lower resolution, a new pattern appears: the pattern appears to be curved, and if
you consider the blinds’ relative size the shapes actually appear to be much larger than normal
window blinds. So by reducing the resolution, we are seeing something different, an alias of the
true information: something that is not actually there at all, but appears to be there as a result of
sampling. This is the result of sampling at too low a frequency: if we sample at high frequency,
the interpolated result matches the original signal; if we sample at too low a frequency we can
get the wrong signal. (For these reasons people on television tend not to wear chequered clothes,
or should not!)

(a) High resolution (b) Low resolution – aliased

Figure 2.9 Aliasing in sampled imagery

Obtaining the wrong signal is called aliasing: our interpolated signal is an alias of its proper
form. Clearly, we want to avoid aliasing, so according to the sampling theorem we must
sample at twice the maximum frequency of the signal coming out of the camera. The maximum
frequency is defined to be 5.5 MHz, so we must sample the camera signal at 11 MHz. (For
information, when using a computer to analyse speech we must sample the speech at a minimum
frequency of 12 kHz, since the maximum speech frequency is 6 kHz.) Given the timing of a
video signal, sampling at 11 MHz implies a minimum image resolution of 576 × 576 pixels.

Images, sampling and frequency domain processing 45

This is unfortunate: 576 is not an integer power of two, which has poor implications for storage
and processing. Accordingly, since many image processing systems have a maximum resolution
of 512 × 512, they must anticipate aliasing. This is mitigated somewhat by the observations
that:

• globally, the lower frequencies carry more information, whereas locally the higher frequen-
cies contain more information, so the corruption of high-frequency information is of less
importance

• there is limited depth of focus in imaging systems (reducing high frequency content).

But aliasing can, and does, occur and we must remember this when interpreting images.
A different form of this argument applies to the images derived from digital cameras. The basic
argument that the precision of the estimates of the high-order frequency components is dictated
by the relationship between the effective sampling frequency (the number of image points) and
the imaged structure, still applies.

The effects of sampling can often be seen in films, especially in the rotating wheels of cars,
as illustrated in Figure 2.10. This shows a wheel with a single spoke, for simplicity. The film
is a sequence of frames starting on the left. The sequence of frames plotted Figure 2.10(a) is
for a wheel which rotates by 20	 between frames, as illustrated in Figure 2.10(b). If the wheel
is rotating much faster, by 340	 between frames, as in Figure 2.10(c) and (d), the wheel will
appear to rotate the other way. If the wheel rotates by 360	 between frames, it will appear to be
stationary. To perceive the wheel as rotating forwards, then the rotation between frames must be
180	 at most. This is consistent with sampling at least twice the maximum frequency. Our eye
can resolve this in films (when watching a film, I bet you haven’t thrown a wobbly because the
car’s going forwards whereas the wheels say it’s going the other way) since we know that the
direction of the car must be consistent with the motion of its wheels, and we expect to see
the wheels appear to go the wrong way, sometimes.

(a) Oversampled rotating wheel (b) Slow rotation

(c) Undersampled rotating wheel (d) Fast rotation

340°

20°

Figure 2.10 Correct and incorrect apparent wheel motion

46 Feature Extraction and Image Processing

2.5 The discrete Fourier transform

2.5.1 One-dimensional transform

Given that image processing concerns sampled data, we require a version of the Fourier transform
which handles this. This is known as the discrete Fourier transform (DFT). The DFT of a set
of N points px (sampled at a frequency which at least equals the Nyquist sampling rate) into
sampled frequencies Fpu is:

Fpu = 1√
N

N−1∑
x=0

pxe
−j

(
2�
N

)
xu

(2.15)

This is a discrete analogue of the continuous Fourier transform: the continuous signal is replaced
by a set of samples, the continuous frequencies by sampled ones, and the integral is replaced by
a summation. If the DFT is applied to samples of a pulse in a window from sample 0 to sample
N/2−1 (when the pulse ceases), the equation becomes:

Fpu = 1√
N

N
2 −1∑
x=0

Ae
−j

(
2�
N

)
xu

(2.16)

Since the sum of a geometric progression can be evaluated according to:
n∑

k=0

a0r
k = a0�1− rn+1�

1− r
(2.17)

the discrete Fourier transform of a sampled pulse is given by:

Fpu = A√
N

⎛
⎜⎝1− e

−j

(
2�
N

)(
N
2

)
u

1− e
−j

(
2�
N

)
u

⎞
⎟⎠ (2.18)

By rearrangement, we obtain:

Fpu = A√
N

e
−j�

�u
2 �

(
1− 2

N

)
sin��u/2�

sin��u/N�
(2.19)

The modulus of the transform is:

�Fpu� = A√
N

∣∣∣∣
sin��u/2�

sin��u/N�

∣∣∣∣ (2.20)

since the magnitude of the exponential function is 1. The original pulse is plotted Figure 2.11(a)
and the magnitude of the Fourier transform plotted against frequency is given in Figure 2.11(b).

if x < 51

otherwise0

x

Fpu

u

(a) Sampled pulse (b) DFT of sampled pulse

Figure 2.11 Transform pair for sampled pulse

Images, sampling and frequency domain processing 47

This is clearly comparable with the result of the continuous Fourier transform of a pulse
(Figure 2.3), since the transform involves a similar, sinusoidal, signal. The spectrum is equivalent
to a set of sampled frequencies; we can build up the sampled pulse by adding up the frequencies
according to the Fourier description. Consider a signal such as that shown in Figure 2.12(a).
This has no explicit analytic definition, and as such it does not have a closed Fourier transform;
the Fourier transform is generated by direct application of Equation 2.15. The result is a set of
samples of frequency (Figure 2.12b).

x

Fpupx

u

(a) Sampled signal (b) Transform of sampled signal

Figure 2.12 A sampled signal and its discrete transform

The Fourier transform in Figure 2.12(b) can be used to reconstruct the original signal in
Figure 2.12(a), as illustrated in Figure 2.13. Essentially, the coefficients of the Fourier transform
tell us how much there is of each of a set of sinewaves (at different frequencies) in the original
signal. The lowest frequency component Fp0, for zero frequency, is called the d.c. component
(it is constant and equivalent to a sinewave with no frequency) and it represents the average
value of the samples. Adding the contribution of the first coefficient Fp0 (Figure 2.13b) to
the contribution of the second coefficient Fp1 (Figure 2.13c), is shown in Figure 2.13(d). This
shows how addition of the first two frequency components approaches the original sampled
pulse. The approximation improves when the contribution due to the fourth component, Fp3, is
included, as shown in Figure 2.13(e). Finally, adding up all six frequency components gives a
close approximation to the original signal, as shown in Figure 2.13(f).

This process is the inverse DFT. This can be used to reconstruct a sampled signal from its
frequency components by:

px =
N−1∑
u=0

Fpue
j

(
2�
N

)
ux

(2.21)

Note that there are several assumptions made before application of the DFT. The first is that
the sampling criterion has been satisfied. The second is that the sampled function replicates
to infinity. When generating the transform of a pulse, Fourier theory assumes that the pulse
repeats outside the window of interest. (There are window operators that are designed specifi-
cally to handle difficulty at the ends of the sampling window.) Finally, the maximum frequency
corresponds to half the sampling period. This is consistent with the assumption that the sam-
pling criterion has not been violated, otherwise the high frequency spectral estimates will be
corrupt.

48 Feature Extraction and Image Processing

Re

j.t

. 2⋅π
10

t

Re

t

Re

3

u = 0 u = 0

t

Re

5

t

x

p x Fp 0

Fp 1
.e

j.t

. .u
2⋅π
10

j.t

. .u
2⋅π
10

Fp u
.e Fp u

.e

j.t

. 2⋅π
10

Fp 0 + Fp 1
.e

t

(b) First coefficient Fp0

(d) Adding Fp1 and Fp0

(e) Adding Fp0, Fp1, Fp2 and Fp3 (f) Adding all six frequency components

(c) Second coefficient Fp1

(a) Original sampled signal

Figure 2.13 Signal reconstruction from its transform components

2.5.2 Two-dimensional transform

Equation 2.15 gives the DFT of a one-dimensional (1D) signal. We need to generate Fourier
transforms of images, so we need a two-dimensional (2D) discrete Fourier transform. This is a
transform of pixels (sampled picture points) with a 2D spatial location indexed by coordinates
x and y. This implies that we have two dimensions of frequency, u and v, which are the horizontal
and vertical spatial frequencies, respectively. Given an image of a set of vertical lines, the
Fourier transform will show only horizontal spatial frequency. The vertical spatial frequencies
are zero since there is no vertical variation along the y-axis. The 2D Fourier transform evaluates
the frequency data, FPu�v, from the N ×N pixels Px�y as:

FPu�v = 1
N

N−1∑
x=0

N−1∑
y=0

Px�ye
−j

(
2�
N

)
�ux+vy�

(2.22)

The Fourier transform of an image can be obtained optically by transmitting a laser through a
photographic slide and forming an image using a lens. The Fourier transform of the image of
the slide is formed in the front focal plane of the lens. This is still restricted to transmissive

Images, sampling and frequency domain processing 49

systems, whereas reflective formation would widen its application potential considerably (since
optical computation is just slightly faster than its digital counterpart). The magnitude of the 2D
DFT to an image of vertical bars (Figure 2.14a) is shown in Figure 2.14(b). This shows that
there are only horizontal spatial frequencies; the image is constant in the vertical axis and there
are no vertical spatial frequencies.

(a) Image of vertical bars (b) Fourier transform of bars

Figure 2.14 Applying the 2D discrete Fourier transform

The 2D inverse DFT transforms from the frequency domain back to the image domain. The
2D inverse DFT is given by:

Px�y =
N−1∑
u=0

N−1∑
v=0

FPu�ve
j

(
2�
N

)
�ux+vy�

(2.23)

One of the important properties of the FT is replication, which implies that the transform repeats
in frequency up to infinity, as indicated in Figure 2.8 for 1D signals. To show this for 2D signals,
we need to investigate the Fourier transform, originally given by FPu�v, at integer multiples of
the number of sampled points FPu+mM� v+nN (where m and n are integers). The Fourier transform
FPu+mM� v+nN is, by substitution in Equation 2.22:

FPu+mN�v+nN = 1
N

N−1∑
x=0

N−1∑
y=0

Px�ye
−j

(
2�
N

)
��u+mN�x+�v+nN�y�

(2.24)

so,

FPu+mN�v+nN = 1
N

N−1∑
x=0

N−1∑
y=0

Px�ye
−j

(
2�
N

)
�ux+vy� × e−j2��mx+ny� (2.25)

and since e−j2��mx+ny� = 1 (since the term in brackets is always an integer and then the exponent
is always an integer multiple of 2�), then

FPu+mN�v+nN = FPu�v (2.26)

which shows that the replication property does hold for the Fourier transform. However,
Equations 2.22 and 2.23 are very slow for large image sizes. They are usually implemented
by using the fast Fourier transform (FFT), which is a splendid rearrangement of the Fourier
transform’s computation that improves speed dramatically. The FFT algorithm is beyond the

50 Feature Extraction and Image Processing

scope of this text, but is also a rewarding topic of study (particularly for computer scientists or
software engineers). The FFT can only be applied to square images whose size is an integer
power of 2 (without special effort). Calculation involves the separability property of the Fourier
transform. Separability means that the Fourier transform is calculated in two stages: the rows
are first transformed using a 1D FFT, then this data is transformed in columns, again using
a 1D FFT. This process can be achieved since the sinusoidal basis functions are orthogonal.
Analytically, this implies that the 2D DFT can be decomposed as in Equation 2.27:

1
N

N−1∑
x=0

N−1∑
y=0

Px�ye
−j

(
2�
N

)
�ux+vy� = 1

N

N−1∑
x=0

{
N−1∑
y=0

Px�ye
−j

(
2�
N

)
�vy�

}
e

−j

(
2�
N

)
�ux�

(2.27)

showing how separability is achieved, since the inner term expresses transformation along one
axis (the y-axis) and the outer term transforms this along the other (the x-axis).

Since the computational cost of a 1D FFT of N points is O�N log�N��, the cost (by separabil-
ity) for the 2D FFT is O�N 2 log�N��, whereas the computational cost of the 2D DFT is O�N 3�.
This implies a considerable saving since it suggests that the FFT requires much less time, par-
ticularly for large image sizes (so for a 128×128 image, if the FFT takes minutes, the DFT will
take days). The 2D FFT is available in Mathcad using the icfft function, which gives a result
equivalent to Equation 2.22. The inverse 2D FFT (Equation 2.23) can be implemented using
the Mathcad cfft function. (The difference between many Fourier transform implementations
essentially concerns the chosen scaling factor.) The Mathcad implementations of the 2D DFT
and the inverse 2D DFT are given in Code 2.1(a) and (b), respectively. The implementations
using the Mathcad functions using the FFT are given in Code 2.1(c) and (d), respectively.

FPu,v := .1

rows(P)
∑ ∑

rows(P)–1

y=0

cols(P)–1

x=0

Py,x.e

–j.2.π.(u.y + v.x)

rows(P)

(a) 2D DFT, Equation 2.22

(b) Inverse 2D DFT, Equation 2.23

Fourier(pic):=icfft(pic)
(c) 2D FFT

inv_Fourier(trans):=cfft(trans)

(d) inverse 2D FFT

IFPy,x :=
rows(FP)–1

u=0

cols(FP)–1

v=0

FPu,v·e
j.2.π.(u.y + v.x)

rows(FP)∑ ∑

Code 2.1 Implementing Fourier transforms

For reasons of speed, the 2D FFT is the algorithm commonly used in application. One (unfor-
tunate) difficulty is that the nature of the Fourier transform produces an image which, at first, is
difficult to interpret. The Fourier transform of an image gives the frequency components. The
position of each component reflects its frequency: low-frequency components are near the origin
and high-frequency components are further away. As before, the lowest frequency component,

Images, sampling and frequency domain processing 51

for zero frequency, the d.c. component, represents the average value of the samples. Unfortu-
nately, the arrangement of the 2D Fourier transform places the low-frequency components at the
corners of the transform. The image of the square in Figure 2.15(a) shows this in its transform
(Figure 2.15b). A spatial transform is easier to visualize if the d.c. (zero frequency) component
is in the centre, with frequency increasing towards the edge of the image. This can be arranged
either by rotating each of the four quadrants in the Fourier transform by 180	, or by reordering
the original image to give a transform which shifts the transform to the centre. Both operations
result in the image in Figure 2.15(c), wherein the transform is much more easily seen. Note
that this is aimed to improve visualization and does not change any of the frequency domain
information, only the way it is displayed.

(a) Image of square (b) Original DFT (c) Rearranged DFT

Figure 2.15 Rearranging the 2D DFT for display purposes

To rearrange the image so that the d.c. component is in the centre, the frequency components
need to be reordered. This can be achieved simply by multiplying each image point Px,y by
−1�x+y�. Since cos�−�� = −1, then −1 = e−j� (the minus sign is introduced just to keep the
analysis neat), so we obtain the transform of the multiplied image as:

1
N

N−1∑
x=0

N−1∑
y=0

Px�ye
−j

(
2�
N

)
�ux+vy� ×−1�x+y� = 1

N

N−1∑
x=0

N−1∑
y=0

Px�ye
−j

(
2�
N

)
�ux+vy� × e−j��x+y�

= 1
N

N−1∑
x=0

N−1∑
y=0

Px�ye
−j

(
2�
N

)((
u+ N

2

)
x+
(

v+ N
2

)
y

)

(2.28)

= FP
u+ N

2 �v+ N
2

According to Equation 2.28, when pixel values are multiplied by −1�x+y�, the Fourier transform
becomes shifted along each axis by half the number of samples. According to the replication
theorem (Equation 2.26), the transform replicates along the frequency axes. This implies that
the centre of a transform image will now be the d.c. component. (Another way of interpreting
this is that rather than look at the frequencies centred on where the image is, our viewpoint has

52 Feature Extraction and Image Processing

been shifted so as to be centred on one of its corners, thus invoking the replication property.)
The operator rearrange, in Code 2.2, is used before transform calculation, and results in the
image of Figure 2.15(c) and all later transform images.

rearrange(picture):= for y∈0..rows(picture)–1
for x∈0..cols(picture)–1

rearranged_picy,x
← picturey,x·(–1)

(y+x)

rearranged_pic

Code 2.2 Reordering for transform calculation

The full effect of the Fourier transform is shown by application to an image of much higher
resolution. Figure 2.16(a) shows the image of a face and Figure 2.16(b) shows its transform.
The transform reveals that much of the information is carried in the lower frequencies, since
this is where most of the spectral components concentrate. This is because the face image has
many regions where the brightness does not change a lot, such as the cheeks and forehead.
The high-frequency components reflect change in intensity. Accordingly, the higher frequency
components arise from the hair (and that awful feather!) and from the borders of features of the
human face, such as the nose and eyes.

(a) Image of face (b) Transform of face image

Figure 2.16 Applying the Fourier transform to the image of a face

As with the 1D Fourier transform, there are 2D Fourier transform pairs, illustrated in
Figure 2.17. The 2D Fourier transform of a 2D pulse (Figure 2.17a) is a 2D sinc function
(Figure 2.17b). The 2D Fourier transform of a Gaussian function (Figure 2.17c) is again a 2D
Gaussian function in the frequency domain (Figure 2.17d).

Images, sampling and frequency domain processing 53

0
10 20 30

0
10

20
30

0.2
0.4
0.6
0.8

1

square

(a) Square

Image domain Transform domain

0
10 20 30

0
10

20
30

1

2

ft_square

(b) 2D sinc function

0
10 20 30

0
10

20
30

0.2
0.4
0.6
0.8

1

Gauss

(c) Gaussian

0
10 20 30

0
10

20
30

0.5

1

1.5

ft_Gauss

(d) Gaussian

Figure 2.17 2D Fourier transform pairs

2.6 Other properties of the Fourier transform

2.6.1 Shift invariance

The decomposition into spatial frequency does not depend on the position of features within
the image. If we shift all the features by a fixed amount, or acquire the image from a different
position, the magnitude of its Fourier transform does not change. This property is known as
shift invariance. By denoting the delayed version of p�t� as p�t − ��, where � is the delay, and
the Fourier transform of the shifted version as �	p�t − ��
, we obtain the relationship between
a time domain shift in the time and frequency domains as:

�	p�t − ��
 = e−j�tP��� (2.29)

Accordingly, the magnitude of the Fourier transform is:

�� 	p �t − ��
� = ∣∣e−j�tP ���
∣∣= ∣∣e−j�t

∣∣ �P ���� = �P ���� (2.30)

and since the magnitude of the exponential function is 1.0, the magnitude of the Fourier transform
of the shifted image equals that of the original (unshifted) version. We shall use this property
later in Chapter 7, when we use Fourier theory to describe shapes. There, it will allow us to
give the same description to different instances of the same shape, but a different description

54 Feature Extraction and Image Processing

to a different shape. You do not get something for nothing: even though the magnitude of the
Fourier transform remains constant, its phase does not. The phase of the shifted transform is:

�� 	p �t − ��
 = 〈
e−j�tP ��� (2.31)

The Mathcad implementation of a shift operator (Code 2.3) uses the modulus operation to
enforce the cyclic shift. The arguments fed to the function are: the image to be shifted (pic), the
horizontal shift along the x-axis (x_value) and the vertical shift along the y-axis (y_value).

shift(pic,y_val,x_val):= NC←cols(pic)

for y∈0..NR–1
for x∈0..NC–1
shiftedy,x

←

picmod(y+y_val,NR),mod(x+x_val,NC)

shifted

NR←rows(pic)

Code 2.3 Shifting an image

This process is illustrated in Figure 2.18. An original image (Figure 2.18a) is shifted along the
x- and y-axes (Figure 2.18d). The shift is cyclical, so parts of the image wrap around; those parts
at the top of the original image appear at the base of the shifted image. The Fourier transform of
the original image and that of the shifted image are identical: Figure 2.18(b) appears the same
as Figure 2.18(e). The phase differs: the phase of the original image (Figure 2.18c) is clearly
different from the phase of the shifted image (Figure 2.18f).

(a) Original image (b) Magnitude of Fourier
transform of original image

(c) Phase of Fourier transform
of original image

(d) Shifted image (e) Magnitude of Fourier
transform of shifted image

(f) Phase of Fourier transform
of shifted image

Figure 2.18 Illustrating shift invariance

Images, sampling and frequency domain processing 55

The differing phase implies that, in application, the magnitude of the Fourier transform of a
face, say, will be the same irrespective of the position of the face in the image (i.e. the camera
or the subject can move up and down), assuming that the face is much larger than its image
version. This implies that if the Fourier transform is used to analyse an image of a human face
or one of cloth, to describe it by its spatial frequency, we do not need to control the position of
the camera, or the object, precisely.

2.6.2 Rotation

The Fourier transform of an image rotates when the source image rotates. This is to be expected
since the decomposition into spatial frequency reflects the orientation of features within the
image. As such, orientation dependency is built into the Fourier transform process.

This implies that if the frequency domain properties are to be used in image analysis, via the
Fourier transform, the orientation of the original image needs to be known, or fixed. It is often
possible to fix orientation, or to estimate its value when a feature’s orientation cannot be fixed.
Alternatively, there are techniques to impose invariance to rotation, say by translation to a polar
representation, although this can prove to be complex.

The effect of rotation is illustrated in Figure 2.19. An image (Figure 2.19a) is rotated by
90	 to give the image in Figure 2.19(b). Comparison of the transform of the original image
(Figure 2.19c) with the transform of the rotated image (Figure 2.19d) shows that the transform has
been rotated by 90	, by the same amount as the image. In fact, close inspection of Figure 2.19(c)
and (d) shows that the diagonal axis is consistent with the normal to the axis of the leaves
(where the change mainly occurs), and this is the axis that rotates.

(a) Original image (b) Rotated image (c) Transform of
original image

(d) Transform of
rotated image

Figure 2.19 Illustrating rotation

2.6.3 Frequency scaling

By definition, time is the reciprocal of frequency. So if an image is compressed, equivalent to
reducing time, its frequency components will spread, corresponding to increasing frequency.
Mathematically, the relationship is that the Fourier transform of a function of time multiplied
by a scalar � p�t�, gives a frequency domain function P��/�, so:

F	p�t�
 = 1

P
(�

)
(2.32)

56 Feature Extraction and Image Processing

This is illustrated in Figure 2.20, where the texture image of a chain-link fence (Figure 2.20a)
is reduced in scale (Figure 2.20b), thereby increasing the spatial frequency. The DFT of the
original texture image is shown in Figure 2.20(c), which reveals that the large spatial frequencies
in the original image are arranged in a star-like pattern. As a consequence of scaling the original
image, the spectrum will spread from the origin consistent with an increase in spatial frequency,
as shown in Figure 2.20(d). This retains the star-like pattern, but with points at a greater distance
from the origin.

(a) Texture image (b) Scaled texture
image

(c) Transform of
original texture

(d) Transform of scaled
texture

Figure 2.20 Illustrating frequency scaling

The implications of this property are that if we reduce the scale of an image, say by imaging
at a greater distance, we will alter the frequency components. The relationship is linear: the
amount of reduction, say the proximity of the camera to the target, is directly proportional to
the scaling in the frequency domain.

2.6.4 Superposition (linearity)

The principle of superposition is very important in systems analysis. Essentially, it states that a
system is linear if its response to two combined signals equals the sum of the responses to the
individual signals. Given an output O which is a function of two inputs I1 and I2, the response
to signal I1 is O�I1�, that to signal I2 is O�I2�, and the response to I1 and I2, when applied
together, is O�I1 + I2�, the superposition principle states:

O�I1 + I2� = O�I1�+O�I2� (2.33)

Any system which satisfies the principle of superposition is termed linear. The Fourier transform
is a linear operation since, for two signals p1 and p2:

�	p1 +p2
 = �	p1
+�	p2
 (2.34)

In application this suggests that we can separate images by looking at their frequency
domain components. This is illustrated for 1D signals in Figure 2.21. One signal is shown in
Figure 2.21(a) and a second is shown in Figure 2.21(c). The Fourier transforms of these signals
are shown in Figure 2.21(b) and (d). The addition of these signals is shown in Figure 2.21(e)
and its transform in Figure 2.21(f). The Fourier transform of the added signals differs little from
the addition of their transforms (Figure 2.21g). This is confirmed by subtraction of the two
(Figure 2.21d) (some slight differences can be seen, but these are due to numerical error).

Images, sampling and frequency domain processing 57

0 200 0 200 0 200 0 200

0 200 0 200 0 200 0 200

(a) Signal 1 (b) ℑ (Signal 1) (c) Signal 2 (d) ℑ (Signal 2)

(e) Signal 1 + Signal 2 (f) ℑ (Signal 1 + Signal 2) (g) ℑ (Signal 1) +
ℑ (Signal 2)

(h) Difference: (f)–(g)

Figure 2.21 Illustrating superposition

By way of example, given the image of a fingerprint in blood on cloth it is very difficult to
separate the fingerprint from the cloth by analysing the combined image. However, by translation
to the frequency domain, the Fourier transform of the combined image shows strong components
due to the texture (this is the spatial frequency of the cloth’s pattern) and weaker, more scattered,
components due to the fingerprint. If we suppress the frequency components due to the cloth’s
texture, and invoke the inverse Fourier transform, then the cloth will be removed from the
original image. The fingerprint can now be seen in the resulting image.

2.7 Transforms other than Fourier

2.7.1 Discrete cosine transform

The discrete cosine transform (DCT) (Ahmed et al., 1974) is a real transform that has great
advantages in energy compaction. Its definition for spectral components DPu�v is:

DPu�v =

∣∣∣∣∣∣∣∣∣

1
N

N−1∑
x=0

N−1∑
y=0

Px�y if u = 0 and v = 0

2
N

N−1∑
x=0

N−1∑
y=0

Px�y × cos
(

�2x+1�u�

2N

)
× cos

(
�2y +1�v�

2N

)
otherwise

(2.35)

The inverse DCT is defined by

Px�y = 2
N

N−1∑
u=0

N−1∑
v=0

DPu�v × cos
(

�2x+1�u�

2N

)
× cos

(
�2y +1�v�

2N

)
(2.36)

58 Feature Extraction and Image Processing

A fast version of the DCT is available, like the FFT, and calculation can be based on the
FFT. Both implementations offer about the same speed. The Fourier transform is not actually
optimal for image coding, since the DCT can give a higher compression rate for the same image
quality. This is because the cosine basis functions can afford for high-energy compaction. This
can be seen by comparison of Figure 2.22(b) with Figure 2.22(a), which reveals that the DCT
components are much more concentrated around the origin, than those for the Fourier transform.
This is the compaction property associated with the DCT. The DCT has been considered as
optimal for image coding, and this is why it is found in the JPEG and MPEG standards for
coded image transmission.

(a) Fourier
transform

(b) Discrete cosine
transform

(c) Hartley
transform

Figure 2.22 Comparing transforms of the Lena image

The DCT is actually shift variant, owing to its cosine basis functions. In other respects, its
properties are very similar to the DFT, with one important exception: it has not yet proved
possible to implement convolution with the DCT. It is possible to calculate the DCT via the FFT.
This has been performed in Figure 2.22(b), since there is no fast DCT algorithm in Mathcad
and, as shown earlier, fast implementations of transform calculation can take a fraction of the
time of the conventional counterpart.

The Fourier transform essentially decomposes, or decimates, a signal into sine and cosine
components, so the natural partner to the DCT is the discrete sine transform (DST). However,
the DST transform has odd basis functions (sine) rather than the even ones in the DCT. This
lends the DST transform some less desirable properties, and it finds much less application than
the DCT.

2.7.2 Discrete Hartley transform

The Hartley transform (Hartley, 1942) is a form of the Fourier transform, but without complex
arithmetic, with a result for the face image shown in Figure 2.22(c). Oddly, although it sounds
like a very rational development, the Hartley transform was first invented in 1942, but not
rediscovered and then formulated in discrete form until 1983 (Bracewell, 1983). One advantage
of the Hartley transform is that the forward and inverse transform is the same operation; a
disadvantage is that phase is built into the order of frequency components since it is not readily

Images, sampling and frequency domain processing 59

available as the argument of a complex number. The definition of the discrete Hartley transform
(DHT) is that transform components HPu�v are:

HPu�v = 1
N

N−1∑
x=0

N−1∑
y=0

Px�y ×
(

cos
(

2�

N
× �ux+ vy�

)
+ sin

(
2�

N
× �ux+ vy�

))
(2.37)

The inverse Hartley transform is the same process, but applied to the transformed image.

Px�y = 1
N

N−1∑
u=0

N−1∑
v=0

HPx�y ×
(

cos
(

2�

N
× �ux+ vy�

)
+ sin

(
2�

N
× �ux+ vy�

))
(2.38)

The implementation is then the same for both the forward and the inverse transforms, as given
in Code 2.4.

Hartley(pic):= NC←cols(pic)

NR←row(pic)

for v∈0.. NR – 1

for u∈0.. NC – 1

ΣΣtransv,u← .1

NC

NR–1 NC–1

x=0y=0
picy,x. cos

2.π.(u.x + v.y)
 + sin

NC

2.π.(u.x + v.y)

NR

trans

Code 2.4 Implementing the Hartley transform

Again, a fast implementation is available, the fast Hartley transform (Bracewell, 1984)
(although some suggest that it should be called the Bracewell transform, eponymously). It is
possible to calculate the DFT of a function, F�u�, from its Hartley transform, H�u�. The analysis
here is based on 1D data, but only for simplicity since the argument extends readily to two
dimensions. By splitting the Hartley transform into its odd and even parts, O�u� and E�u�,
respectively, we obtain:

H�u� = O�u�+E�u� (2.39)

where:

E�u� = H�u�+H�N −u�

2
(2.40)

and

O�u� = H�u�−H�N −u�

2
(2.41)

The DFT can then be calculated from the DHT simply by

F�u� = E�u�− j ×O�u� (2.42)

60 Feature Extraction and Image Processing

Conversely, the Hartley transform can be calculated from the Fourier transform by:

H�u� = Re	F�u�
− Im	F�u�
 (2.43)

where Re[] and Im[] denote the real and the imaginary parts, respectively. This emphasizes the
natural relationship between the Fourier and the Hartley transform. The image of Figure 2.22(c)
has been calculated via the 2D FFT using Equation 2.43. Note that the transform in Figure 2.22(c)
is the complete transform, whereas the Fourier transform in Figure 2.22(a) shows magnitude
only. As with the DCT, the properties of the Hartley transform mirror those of the Fourier
transform. Unfortunately, the Hartley transform does not have shift invariance, but there are
ways to handle this. Also, convolution requires manipulation of the odd and even parts.

2.7.3 Introductory wavelets: the Gabor wavelet

Wavelets are a comparatively recent approach to signal processing, being introduced only in
1990 (Daubechies, 1990). Their main advantage is that they allow multiresolution analysis
(analysis at different scales, or resolution). Furthermore, wavelets allow decimation in space
and frequency, simultaneously. Earlier transforms actually allow decimation in frequency, in the
forward transform, and in time (or position) in the inverse. In this way, the Fourier transform
gives a measure of the frequency content of the whole image: the contribution of the image to
a particular frequency component. Simultaneous decimation allows us to describe an image in
terms of frequency which occurs at a position, as opposed to an ability to measure frequency
content across the whole image. This gives us greater descriptional power, which can be used
to good effect.

First, though, we need a basis function, so that we can decompose a signal. The basis functions
in the Fourier transform are sinusoidal waveforms at different frequencies. The function of the
Fourier transform is to convolve these sinusoids with a signal to determine how much of each
is present. The Gabor wavelet is well suited to introductory purposes, since it is essentially a
sinewave modulated by a Gaussian envelope. The Gabor wavelet gw is given by

gw�t��0� t0� a� = e−j�0te
−
(

t−t0
a

)2

(2.44)

where �0 = 2�f0 is the modulating frequency, t0 dictates position and a controls the width
of the Gaussian envelope which embraces the oscillating signal. An example Gabor wavelet is
shown in Figure 2.23, which shows the real and the imaginary parts (the modulus is the Gaussian
envelope). Increasing the value of �0 increases the frequency content within the envelope,

Re(gw (t))

t

(a) Real part

Im(gw (t))

t

(b) Imaginary part

Figure 2.23 An example Gabor wavelet

Images, sampling and frequency domain processing 61

whereas increasing the value of a spreads the envelope without affecting the frequency. So why
does this allow simultaneous analysis of time and frequency? Given that this function is the
one convolved with the test data, then we can compare it with the Fourier transform. In fact, if
we remove the term on the right-hand side of Equation 2.44, we return to the sinusoidal basis
function of the Fourier transform, the exponential in Equation 2.1. Accordingly, we can return
to the Fourier transform by setting a to be very large. Alternatively, setting f0 to zero removes
frequency information. Since we operate in between these extremes, we obtain position and
frequency information simultaneously.

An infinite class of wavelets exists which can be used as an expansion basis in signal
decimation. One approach (Daugman, 1988) has generalized the Gabor function to a 2D form
aimed to be optimal in terms of spatial and spectral resolution. These 2D Gabor wavelets are
given by

gw2D�x� y� = 1

�
√

�
e

−
(

�x−x0�2+�y−y0�2

2�2

)

e−j2�f0��x−x0� cos���+�y−y0� sin���� (2.45)

where x0� y0 control position, f0 controls the frequency of modulation along either axis, and �
controls the direction (orientation) of the wavelet (as implicit in a 2D system). The shape of the
area imposed by the 2D Gaussian function could be elliptical if different variances were allowed
along the x- and y-axes (the frequency can also be modulated differently along each axis).
Figure 2.24, an example of a 2D Gabor wavelet, shows that the real and imaginary parts are
even and odd functions, respectively; again, different values for f0 and � control the frequency
and envelope’s spread, respectively, the extra parameter � controls rotation.

Re(Gabor_wavelet)

(a) Real part

Im(Gabor_wavelet)

(b) Imaginary part

Figure 2.24 Example 2D Gabor wavelet

The function of the wavelet transform is to determine where and how each wavelet specified
by the range of values for each of the free parameters occurs in the image. Clearly, there is
a wide choice which depends on application. An example transform is given in Figure 2.25.
Here, the Gabor wavelet parameters have been chosen in such a way as to select face features:
the eyes, nose and mouth have come out very well. These features are where there is local
frequency content with orientation according to the head’s inclination. These are not the only

62 Feature Extraction and Image Processing

(a) Original image (b) After Gabor wavelet transform

Figure 2.25 Example Gabor wavelet transform

features with these properties: the cuff of the sleeve is highlighted too! But this does show the
Gabor wavelet’s ability to select and analyse localized variation in image intensity.

The conditions under which a set of continuous Gabor wavelets will provide a complete
representation of any image (i.e. that any image can be reconstructed) have only recently been
developed. However, the theory is very powerful, since it accommodates frequency and position
simultaneously, and further it facilitates multiresolution analysis. We shall find wavelets again,
when processing images to find low-level features. Applications of Gabor wavelets include
measurement of iris texture to give a very powerful security system (Daugman, 1993) and
face feature extraction for automatic face recognition (Lades et al., 1993). Wavelets continue
to develop (Daubechies, 1990) and have found applications in image texture analysis (Laine
and Fan, 1993), coding (da Silva and Ghanbari, 1996) and image restoration (Banham and
Katsaggelos, 1996). Unfortunately, the discrete wavelet transform is not shift invariant, although
there are approaches aimed to remedy this (see, for example, Donoho, 1995). As such, we
shall not study it further and just note that there is an important class of transforms that
combine spatial and spectral sensitivity, and it is likely that this importance will continue
to grow.

2.7.4 Other transforms

Decomposing a signal into sinusoidal components was one of the first approaches to transform
calculus, and this is why the Fourier transform is so important. The sinusoidal functions are
called basis functions; the implicit assumption is that the basis functions map well to the signal
components. There is (theoretically) an infinite range of basis functions. Discrete signals can
map better into collections of binary components rather than sinusoidal ones. These collections
(or sequences) of binary data are called sequency components and form the basis functions of the
Walsh transform (Walsh, 1923). This has found wide application in the interpretation of digital
signals, although it is less widely used in image processing. The Karhunen–Loéve transform
(Karhunen, 1947; Loéve, 1948) (also called the Hotelling transform from which it was derived,
or more popularly principal components analysis; see Chapter 12, Appendix 4) is a way of
analysing (statistical) data to reduce it to those data which are informative, discarding those which
are not.

Images, sampling and frequency domain processing 63

2.8 Applications using frequency domain properties

Filtering is a major use of Fourier transforms, particularly because we can understand an image,
and how to process it, much better in the frequency domain. An analogy is the use of a graphic
equalizer to control the way music sounds. In images, if we want to remove high-frequency
information (like the hiss on sound) then we can filter, or remove, it by inspecting the Fourier
transform. If we retain low-frequency components, we implement a low-pass filter. The low-pass
filter describes the area in which we retain spectral components; the size of the area dictates the
range of frequencies retained, and is known as the filter’s bandwidth. If we retain components
within a circular region centred on the d.c. component, and inverse Fourier transform the filtered
transform, then the resulting image will be blurred. Higher spatial frequencies exist at the sharp
edges of features, so removing them causes blurring. But the amount of fluctuation is reduced
too; any high-frequency noise will be removed in the filtered image.

The implementation of a low-pass filter which retains frequency components within a circle
of specified radius is the function low_filter, given in Code 2.5. This operator assumes
that the radius and centre coordinates of the circle are specified before its use. Points within the
circle remain unaltered, whereas those outside the circle are set to zero, black.

low_filter(pic):= for y∈0.. rows(pic)–1
for x∈0.. cols(pic)–1

filtered

rows(pic)

2

2

y –
cols(pic)

 +
2

x –
2

 – radius2 ≤ 0
otherwise0

filtered y,x

← picy,x if

Code 2.5 Implementing low-pass filtering

When applied to an image we obtain a low-pass filtered version. In application to an image
of a face, the low spatial frequencies are the ones which change slowly, as reflected in the
resulting, blurred image (Figure 2.26a). The high-frequency components have been removed as
shown in the transform (Figure 2.26b). The radius of the circle controls how much of the original

(a) Low-pass filtered
image

(b) Low-pass filtered
transform

(c) High-pass filtered
image

(d) High-pass
filtered transform

Figure 2.26 Illustrating low- and high-pass filtering

64 Feature Extraction and Image Processing

image is retained. In this case, the radius is 10 pixels (and the image resolution is 256 × 256).
If a larger circle were to be used, more of the high-frequency detail would be retained (and the
image would look more like its original version); if the circle was very small, an even more
blurred image would result, since only the lowest spatial frequencies would be retained. This
differs from the earlier Gabor wavelet approach, which allows for localized spatial frequency
analysis. Here, the analysis is global: we are filtering the frequency across the whole image.

Alternatively, we can retain high-frequency components and remove low-frequency ones.
This is a high-pass filter. If we remove components near the d.c. component and retain all
the others, the result of applying the inverse Fourier transform to the filtered image will be
to emphasize the features that were removed in low-pass filtering. This can lead to a popular
application of the high-pass filter: to ‘crispen’ an image by emphasizing its high-frequency
components. An implementation using a circular region merely requires selection of the set of
points outside the circle, rather than inside as for the low-pass operator. The effect of high-
pass filtering can be observed in Figure 2.26(c), which shows removal of the low-frequency
components: this emphasizes the hair and the borders of a face’s features, since these are where
brightness varies rapidly. The retained components are those which were removed in low-pass
filtering, as illustrated in the transform, Figure 2.26(d).

It is also possible to retain a specified range of frequencies. This is known as band-pass fil-
tering. It can be implemented by retaining frequency components within an annulus centred
on the d.c. component. The width of the annulus represents the bandwidth of the band-pass filter.

This leads to digital signal processing theory. There are many considerations to be made in
the way you select, and the manner in which frequency components are retained or excluded.
This is beyond a text on computer vision. For further study in this area, Rabiner and Gold
(1975), or Oppenheim et al. (1999), although published (in their original form) a long time ago
now, remain as popular introductions to digital signal processing theory and applications.

It is possible to recognize the object within the low-pass filtered image. Intuitively, this
implies that we could store only the frequency components selected from the transform data,
rather than all the image points. In this manner a fraction of the information would be stored, and
still provide a recognizable image, albeit slightly blurred. This concerns image coding, which is
a popular target for image processing techniques. For further information see Clarke (1985) or
a newer text, such as Woods (2006).

2.9 Further reading

We shall meet the frequency domain throughout this book, since it allows for an alternative
interpretation of operation, in the frequency domain as opposed to the time domain. This will
occur in low- and high-level feature extraction, and in shape description. Further, it allows for
some of the operations we shall cover. Because of the availability of the FFT, it is also used to
speed up algorithms.

Given these advantages, it is well worth looking more deeply. For introductory study, there
is Who is Fourier (Lex, 1995), which offers a lighthearted and completely digestible overview
of the Fourier transform, and is simply excellent for a starter view of the topic. For further
study (and entertaining study too!) of the Fourier transform, try The Fourier Transform and
its Applications by Bracewell (1986). Some of the standard image processing texts include
much coverage of transform calculus, such as Jain (1989), Gonzalez and Wintz (1987) and Pratt
(2007). For more coverage of the DCT try Jain (1989); for excellent coverage of the Walsh

Images, sampling and frequency domain processing 65

transform try Beauchamp’s superb text (Beauchamp, 1975). For wavelets, the book by Wornell
(1996) introduces wavelets from a signal processing standpoint, or there is Mallat’s classic text
(Mallat, 1999). For general signal processing theory there are introductory texts (e.g. Meade
and Dillon, 1986) or Ifeachor’s excellent book (Ifeachor and Jervis, 2002), for more complete
coverage try Rabiner and Gold (1975) or Oppenheim and Schafer (1999) (as mentioned earlier).
Finally, on the implementation side of the FFT (and for many other signal processing algorithms),
Numerical Recipes in C (Press et al., 2002) is an excellent book. It is extremely readable, full
of practical detail and well worth a look. Numerical Recipes is on the web too, together with
other signal processing sites, as listed in Table 1.4.

2.10 References

Ahmed, N., Natarajan, T. and Rao, K. R., Discrete Cosine Transform, IEEE Trans. Comput.,
pp. 90–93, 1974

Banham, M. R. and Katsaggelos, K., Spatially Adaptive Wavelet-Based Multiscale Image
Restoration, IEEE Trans. Image Process., 5(4), pp. 619–634, 1996

Beauchamp, K. G., Walsh Functions and Their Applications, Academic Press, London, 1975
Bracewell, R. N., The Discrete Hartley Transform, J. Opt. Soc. Am., 73(12), pp. 1832–1835, 1983
Bracewell, R. N., The Fast Hartley Transform, Proc. IEEE, 72(8), pp. 1010–1018, 1984
Bracewell, R. N., The Fourier Transform and its Applications, Revised 2nd edn, McGraw-Hill

Book Co., Singapore, 1986
Clarke, R. J., Transform Coding of Images, Addison Wesley, Reading, MA, 1985
Daubechies, I., The Wavelet Transform, Time Frequency Localization and Signal Analysis,

IEEE Trans. Inform. Theory, 36(5), pp. 961–1004, 1990
Daugman, J. G., Complete Discrete 2D Gabor Transforms by Neural Networks for

Image Analysis and Compression, IEEE Trans. Acoust. Speech Signal Process., 36(7),
pp. 1169–1179, 1988

Daugman, J. G., High Confidence Visual Recognition of Persons by a Test of Statistical
Independence, IEEE Trans. PAMI, 15(11), pp. 1148–1161, 1993

Donoho, D. L., Denoizing by Soft Thresholding, IEEE Trans. Inform. Theory, 41(3),
pp. 613–627, 1995

Gonzalez, R. C. and Wintz P., Digital Image Processing, 2nd edn, Addison Wesley, Reading,
MA, 1987

Hartley, R. L. V., A More Symmetrical Fourier Analysis Applied to Transmission Problems,
Proc. IRE, 144, pp. 144–150, 1942

Ifeachor, E. C. and Jervis, B. W., Digital Signal Processing, 2nd edn, Prentice Hall, Hemel
Hempstead, 2002

Jain, A. K. Fundamentals of Computer Vision, Prentice Hall International (UK), Hemel
Hempstead, 1989

Karhunen, K., Über Lineare Methoden in der Wahrscheinlich-Keitsrechnung, Ann. Acad. Sci.
Fennicae, Ser A.I.37, 1947 (Translation in I. Selin, On Linear Methods in Probability Theory,
Doc. T-131, The RAND Corporation, Santa Monica, CA, 1960)

Lades, M., Vorbruggen, J. C., Buhmann, J., Lange, J., Madsburg, C. V. D., Wurtz, R. P. and
Konen, W., Distortion Invariant Object Recognition in the Dynamic Link Architecture, IEEE
Trans. Comput., 42, pp. 300–311, 1993

Laine, A. and Fan, J., Texture Classification by Wavelet Packet Signatures, IEEE Trans. PAMI,
15, pp. 1186–1191, 1993

66 Feature Extraction and Image Processing

Lex, T. C. O. L. T. (!!), Who is Fourier, A Mathematical Adventure, Language Research
Foundation, Boston, MA, US, 1995

Loéve, M., Fonctions Alétoires de Seconde Ordre, In: P. Levy (Ed.), Processus Stochastiques
et Mouvement Brownien, Hermann, Paris, 1948

Mallat, S., A Wavelet Tour of Signal Processing, 2nd edn, Academic Press, New York, 1999
Meade, M. L. and Dillon, C. R., Signals and Systems, Models and Behaviour, Van Nostrand

Reinhold (UK), Wokingham, 1986
Oppenheim, A. V., Schafer, R. W. and Buck, J. R. Digital Signal Processing, 2nd edn, Prentice

Hall International (UK), Hemel Hempstead, 1999
Pratt, W. K., Digital Image Processing: PIKS Scientific Inside, 4th edn, Wiley, New York, 2007
Press, W. H., Teukolsky, S. A., Vetterling, W. T. and Flannery, B. P., Numerical Recipes in C++�

The Art of Scientific Computing, 2nd edn, Cambridge University Press, Cambridge, 2002
Rabiner, L. R. and Gold, B., Theory and Application of Digital Signal Processing, Prentice Hall,

Englewood Cliffs, NJ, 1975
da Silva, E. A. B. and Ghanbari, M., On the Performance of Linear Phase Wavelet Transforms

in Low Bit-Rate Image Coding, IEEE Trans. Image Process., 5(5), pp. 689–704, 1996
Walsh, J. L., A Closed Set of Normal Orthogonal Functions, Am. J. Math., 45(1), pp. 5–24, 1923
Woods, J. W., Multidimensional Signal, Image, and Video Processing and Coding, Academic

Press, New York, 2006
Wornell, G. W., Signal Processing with Fractals, A Wavelet-Based Approach, Prentice Hall,

Upper Saddle River, NJ, 1996

Images, sampling and frequency domain processing 67

This page intentionally left blank

. 3 .

Basic image processing
operations

3.1 Overview

We shall now start to process digital images. First, we shall describe the brightness variation in
an image using its histogram. We shall then look at operations that manipulate the image so as
to change the histogram, processes that shift and scale the result (making the image brighter or
dimmer, in different ways). We shall also consider thresholding techniques that turn an image
from grey level to binary. These are called single point operations. After that, we shall move
to group operations where the group is those points found inside a template. Some of the most
common operations on the groups of points are statistical, providing images where each point
is the result of, say, averaging the neighbourhood of each point in the original image. We shall

Table 3.1 Overview of Chapter 3

Main topic Sub topics Main points

Image
description

Portray variation in image brightness
content as a graph/histogram.

Histograms, image contrast.

Point
operations

Calculate new image points as a function
of the point at the same place in the
original image. The functions can be
mathematical, or can be computed from
the image itself and will change the
image’s histogram. Finally, thresholding
turns an image from grey level to a binary
(black and white) representation.

Histogram manipulation; intensity
mapping: addition, inversion, scaling,
logarithm, exponent. Intensity
normalization; histogram equalization.
Thresholding and optimal thresholding.

Group
operations

Calculate new image points as a function
of neighbourhood of the point at the same
place in the original image. The functions
can be statistical, including: mean
(average); median and mode. Advanced
filtering techniques, including feature
preservation. Morphological operators
process an image according to shape,
starting with binary and moving to
grey-level operations.

Template convolution (including frequency
domain implementation). Statistical
operators: direct averaging, median filter
and mode filter. Anisotropic diffusion for
image smoothing. Other operators: force
field transform. Mathematical morphology:
hit or miss transform, erosion, dilation
(including grey-level operators) and
Minkowski operators.

69

see how the statistical operations can reduce noise in the image, which is of benefit to the
feature extraction techniques to be considered later. As such, these basic operations are usually
for preprocessing for later feature extraction or to improve display quality.

3.2 Histograms

The intensity histogram shows how individual brightness levels are occupied in an image; the
image contrast is measured by the range of brightness levels. The histogram plots the number
of pixels with a particular brightness level against the brightness level. For 8 bit pixels, the
brightness ranges from zero (black) to 255 (white). Figure 3.1 shows an image of an eye and its
histogram. The histogram (Figure 3.1b) shows that not all the grey levels are used and the lowest
and highest intensity levels are close together, reflecting moderate contrast. The histogram has
a region between 100 and 120 brightness values which contains the dark portions of the image,
such as the hair (including the eyebrow) and the eye’s iris. The brighter points relate mainly to
the skin. If the image was darker, overall, the histogram would be concentrated towards black.
If the image was brighter, but with lower contrast, then the histogram would be thinner and
concentrated near the whiter brightness levels.

0 100 200

200

400

p_histogrambright

bright
(a) Image of eye (b) Histogram of eye image

Figure 3.1 An image and its histogram

This histogram shows us that we have not used all available grey levels. Accordingly,
we could stretch the image to use them all, and the image would become clearer. This is
essentially cosmetic attention to make the image’s appearance better. Making the appearance
better, especially in view of later processing, is the focus of many basic image processing
operations, as will be covered in this chapter. The histogram can also reveal whether there is
much noise in the image, if the ideal histogram is known. We might want to remove this noise,
not only to improve the appearance of the image, but also to ease the task of (and to present the
target better for) later feature extraction techniques. This chapter concerns these basic operations
which can improve the appearance and quality of images.

The histogram can be evaluated by the operator histogram, in Code 3.1. The operator first
initializes the histogram to zero. Then, the operator works by counting up the number of image
points that have an intensity at a particular value. These counts for the different values form the
overall histogram. The counts are then returned as the two-dimensional (2D) histogram (a vector
of the count values), which can be plotted as a graph (Figure 3.1b).

70 Feature Extraction and Image Processing

histogram(pic):= for bright∈0..255
pixels_at_levelbright←0

for x∈0..cols(pic)–1
for y∈0..rows(pic)–1

pixels_at_level

pixels_at_levellevel←pixels_at_levellevel+1

level←picy,x

Code 3.1 Evaluating the histogram

3.3 Point operators

3.3.1 Basic point operations

The most basic operations in image processing are point operations where each pixel value is
replaced with a new value obtained from the old one. If we want to increase the brightness to
stretch the contrast we can simply multiply all pixel values by a scalar, say by 2 to double the
range. Conversely, to reduce the contrast (although this is not usual) we can divide all point
values by a scalar. If the overall brightness is controlled by a level, l, (e.g. the brightness of
global light) and the range is controlled by a gain, k, the brightness of the points in a new
picture, N, can be related to the brightness in old picture, O, by:

Nx�y = k×Ox�y + l ∀x� y ∈ 1�N (3.1)

This is a point operator that replaces the brightness at points in the picture according to a
linear brightness relation. The level controls overall brightness and is the minimum value of the
output picture. The gain controls the contrast, or range, and if the gain is greater than unity, the
output range will be increased. This process is illustrated in Figure 3.2. So the image of the eye,
processed by k = 1�2 and l = 10, will become brighter (Figure 3.2a) and with better contrast,
although in this case the brighter points are mostly set near to white (255). These factors can
be seen in its histogram (Figure 3.2b).

b_eye_histbright

0 100 200
0

200

400

bright

(a) Image of brighter eye (b) Histogram of brighter eye

Figure 3.2 Brightening an image

Basic image processing operations 71

The basis of the implementation of point operators was given earlier, for addition in Code 1.3.
The stretching process can be displayed as a mapping between the input and output ranges,
according to the specified relationship, as in Figure 3.3. Figure 3.3(a) is a mapping where the
output is a direct copy of the input (this relationship is the dotted line in Figure 3.3c and d);
Figure 3.3(b) is the mapping for brightness inversion where dark parts in an image become
bright and vice versa. Figure 3.3(c) is the mapping for addition and Figure 3.3(d) is the mapping
for multiplication (or division, if the slope was less than that of the input). In these mappings,
if the mapping produces values that are smaller than the expected minimum (say negative when
zero represents black), or larger than a specified maximum, then a clipping process can be used
to set the output values to a chosen level. For example, if the relationship between input and
output aims to produce output points with intensity value greater than 255, as used for white,
the output value can be set to white for these points, as it is in Figure 3.3(c).

(a) Copy (b) Brightness inversion

(c) Brightness addition (d) Brightness scaling by multiplication

White

Output brightness

White
Input brightness

Black

Black

White

Output brightness

White
Input brightness

Black

Black

Output brightness

White

Input brightness
Black

WhiteBlack

Output brightness

White

White

Input brightness
Black

Black

Figure 3.3 Intensity mappings

The sawtooth operator is an alternative form of the linear operator and uses a repeated form
of the linear operator for chosen intervals in the brightness range. The sawtooth operator is used
to emphasize local contrast change (as in images where regions of interest can be light or dark).
This is illustrated in Figure 3.4, where the range of brightness levels is mapped into four linear
regions by the sawtooth operator (Figure 3.4b). This remaps the intensity in the eye image to

72 Feature Extraction and Image Processing

0 100 200

50

saw_toothbright

bright

(a) Image of ‘sawn’ eye (b) Sawtooth operator

Figure 3.4 Applying the sawtooth operator

highlight local intensity variation, as opposed to global variation, in Figure 3.4(a). The image is
now presented in regions, where the region selection is controlled by the intensity of its pixels.

Finally, rather than simple multiplication we can use arithmetic functions such as logarithm
to reduce the range or exponent to increase it. This can be used, say, to equalize the response of a
camera, or to compress the range of displayed brightness levels. If the camera has a known expo-
nential performance, and outputs a value for brightness which is proportional to the exponential
of the brightness of the corresponding point in the scene of view, the application of a logarith-
mic point operator will restore the original range of brightness levels. The effect of replacing
brightness by a scaled version of its natural logarithm (implemented as Nx�y = 20 ln�100Ox�y�)
is shown in Figure 3.5(a); the effect of a scaled version of the exponent (implemented as
Nx�y = 20 exp�Ox�y/100�) is shown in Figure 3.5(b). The scaling factors were chosen to ensure
that the resulting image can be displayed since the logarithm or exponent greatly reduces or
magnifies pixel values, respectively. This can be seen in the results: Figure 3.5(a) is dark with a
small range of brightness levels, whereas Figure 3.5(b) is much brighter, with greater contrast.
Naturally, application of the logarithmic point operator will change any multiplicative changes
in brightness to become additive. As such, the logarithmic operator can find application in
reducing the effects of multiplicative intensity change. The logarithm operator is often used to

(a) Logarithmic compression (b) Exponential expansion

Figure 3.5 Applying exponential and logarithmic point operators

Basic image processing operations 73

compress Fourier transforms, for display purposes. This is because the d.c. component can be
very large with contrast, too large to allow the other points to be seen.

In hardware, point operators can be implemented using look-up tables (LUTs), which exist in
some framegrabber units. LUTs give an output that is programmed, and stored, in a table entry
that corresponds to a particular input value. If the brightness response of the camera is known,
it is possible to preprogram a LUT to make the camera response equivalent to a uniform or flat
response across the range of brightness levels.

3.3.2 Histogram normalization

Popular techniques to stretch the range of intensities include histogram (intensity) normalization.
Here, the original histogram is stretched, and shifted, to cover all the 256 available levels. If the
original histogram of old picture O starts at Omin and extends up to Omax brightness levels, then
we can scale up the image so that the pixels in the new picture N lie between a minimum output
level Nmin and a maximum level Nmax, simply by scaling up the input intensity levels according to:

Nx�y = Nmax −Nmin

Omax −Omin

× (Ox�y −Omin

)+Nmin ∀x� y ∈ 1�N (3.2)

A Matlab implementation of intensity normalization, appearing to mimic Matlab’s imagesc
function, the normalize function in Code 3.2, uses an output ranging from Nmin = 0 to
Nmax = 255. This is scaled by the input range that is determined by applying the max and the min
operators to the input picture. Note that in Matlab, a 2D array needs double application of the
max and min operators, whereas in Mathcad max(image) delivers the maximum. Each point

function normalized=normalize(image)
%Histogram normalization to stretch from black to white

%Usage: [new image]=normalize(image)
%Parameters: image-array of integers
%Author: Mark S. Nixon

%get dimensions
[rows,cols]=size(image);

%set minimum
minim=min(min(image));

%work out range of input levels
range=max(max(image))-minim;

%normalize the image
for x=1:cols %address all columns
 for y=1:rows %address all rows
 normalized(y,x)=floor((image(y,x)-minim)*255/range);
 end
end

Code 3.2 Intensity normalization

74 Feature Extraction and Image Processing

in the picture is then scaled as in Equation 3.2 and the floor function is used to ensure an integer
output.

The process is illustrated in Figure 3.6, and can be compared with the original image
and histogram in Figure 3.1. An intensity normalized version of the eye image is shown in
Figure 3.6(a), which now has better contrast and appears better to the human eye. Its histogram
(Figure 3.6b) shows that the intensity now ranges across all available levels (there is actually
one black pixel!).

0 50 100 150 200

200

400

250

n_histbright

bright
(a) Intensity normalized eye (b) Histogram of intensity normalized eye

0 50 100 150 200

200

400

250

e_histbright

bright

(c) Histogram of equalized eye (d) Histogram of histogram equalized eye

Figure 3.6 Illustrating intensity normalization and histogram equalization

3.3.3 Histogram equalization

Histogram equalization is a non-linear process aimed to highlight image brightness in a way
particularly suited to human visual analysis. Histogram equalization aims to change a picture in
such a way as to produce a picture with a flatter histogram, where all levels are equiprobable. In
order to develop the operator, we can first inspect the histograms. For a range of M levels then
the histogram plots the points per level against level. For the input (old) and the output (new)
image, the number of points per level is denoted as O�l� and N�l� (for 0 ≤ l ≤ M), respectively.
For square images, there are N 2 points in the input and the output image, so the sum of points
per level in each should be equal:

M∑
l=0

O�l� =
M∑

l=0

N�l� (3.3)

Basic image processing operations 75

Also, this should be the same for an arbitrarily chosen level p, since we are aiming for an output
picture with a uniformly flat histogram. So the cumulative histogram up to level p should be
transformed to cover up to the level q in the new histogram:

p∑
l=0

O�l� =
q∑

l=0

N�l� (3.4)

Since the output histogram is uniformly flat, the cumulative histogram up to level p should be
a fraction of the overall sum. So the number of points per level in the output picture is the ratio
of the number of points to the range of levels in the output image:

N�l� = N 2

Nmax −Nmin

(3.5)

So the cumulative histogram of the output picture is:
q∑

l=0

N�l� = q × N 2

Nmax −Nmin

(3.6)

By Equation 3.4 this is equal to the cumulative histogram of the input image, so:

q × N 2

Nmax −Nmin

=
p∑

l=0

O�l� (3.7)

This gives a mapping for the output pixels at level q, from the input pixels at level p as:

q = Nmax −Nmin

N 2
×

p∑
l=0

O�l� (3.8)

This gives a mapping function that provides an output image that has an approximately flat
histogram. The mapping function is given by phrasing Equation 3.8 as an equalizing function
�E� of the level �q� and the image (O) as

E�q� O� = Nmax −Nmin

N 2
×

p∑
l=0

O�l� (3.9)

The output image is then

Nx�y = E�Ox�y� O� (3.10)

The result of equalizing the eye image is shown in Figure 3.6. The intensity equalized image,
Figure 3.6(c) has much better defined features (especially around the eyes) than in the origi-
nal version (Figure 3.1). The histogram (Figure 3.6d) reveals the non-linear mapping process
whereby white and black are not assigned equal weight, as they were in intensity normalization.
Accordingly, more pixels are mapped into the darker region and the brighter intensities become
better spread, consistent with the aims of histogram equalization.

Its performance can be very convincing since it is well mapped to the properties of human
vision. If a linear brightness transformation is applied to the original image then the equalized
histogram will be the same. If we replace pixel values with ones computed according to
Equation 3.1, the result of histogram equalization will not change. An alternative interpretation
is that if we equalize images (before further processing) then we need not worry about any
brightness transformation in the original image. This is to be expected, since the linear operation
of the brightness change in Equation 3.2 does not change the overall shape of the histogram,
only its size and position. However, noise in the image acquisition process will affect the shape
of the original histogram, and hence the equalized version. So the equalized histogram of a

76 Feature Extraction and Image Processing

picture will not be the same as the equalized histogram of a picture with some noise added to
it. You cannot avoid noise in electrical systems, however well you design a system to reduce its
effect. Accordingly, histogram equalization finds little use in generic image processing systems,
although it can be potent in specialized applications. For these reasons, intensity normalization
is often preferred when a picture’s histogram requires manipulation.

In implementation, the function equalize in Code 3.3, we shall use an output range where
Nmin = 0 and Nmax = 255. The implementation first determines the cumulative histogram for each
level of the brightness histogram. This is then used as a LUT for the new output brightness at that
level. The LUT is used to speed implementation of Equation 3.9, since it can be precomputed
from the image to be equalized.

newpic

for bright∈ 0..255

for x∈0..cols(pic)–1
for y∈0..rows(pic)–1

equalize(pic):= range 255←
number rows(pic).cols(pic)←

pixels_at_levelbright 0←

pixels_at_levelpicy,x pixels_at_levelpicy,x+1
←

for level∈0..255
sum 0←

sum sum+pixels_at_levellevel←

histlevel floor ·sum+0.00001range

number
←

for x∈0..cols(pic)–1
for y∈0..rows(pic)–1

newpicy,x histpicy,x←

⎛
⎝ ⎠

⎞

Code 3.3 Histogram equalization

An alternative argument against use of histogram equalization is that it is a non-linear process
and is irreversible. We cannot return to the original picture after equalization, and we cannot
separate the histogram of an unwanted picture. In contrast, intensity normalization is a linear
process and we can return to the original image, should we need to, or separate pictures,
if required.

3.3.4 Thresholding

The last point operator of major interest is called thresholding. This operator selects pixels that
have a particular value, or are within a specified range. It can be used to find objects within a

Basic image processing operations 77

picture if their brightness level (or range) is known. This implies that the object’s brightness
must be known as well. There are two main forms: uniform and adaptive thresholding. In
uniform thresholding, pixels above a specified level are set to white, those below the specified
level are set to black. Given the original eye image, Figure 3.7 shows a thresholded image where
all pixels above 160 brightness levels are set to white, and those below 160 brightness levels
are set to black. By this process, the parts pertaining to the facial skin are separated from the
background; the cheeks, forehead and other bright areas are separated from the hair and eyes.
This can therefore provide a way of isolating points of interest.

Figure 3.7 Thresholding the eye image

Uniform thresholding clearly requires knowledge of the grey level, or the target features might
not be selected in the thresholding process. If the level is not known, histogram equalization
or intensity normalization can be used, but with the restrictions on performance stated earlier.
This is, of course, a problem of image interpretation. These problems can only be solved by
simple approaches, such as thresholding, for very special cases. In general, it is often prudent to
investigate the more sophisticated techniques of feature selection and extraction, to be covered
later. Before that, we shall investigate group operators, which are a natural counterpart to
point operators.

There are more advanced techniques, known as optimal thresholding. These usually seek to
select a value for the threshold that separates an object from its background. This suggests that
the object has a different range of intensities to the background, in order that an appropriate
threshold can be chosen, as illustrated in Figure 3.8. Otsu’s method (Otsu, 1979) is one of the
most popular techniques of optimal thresholding; there have been surveys (Sahoo et al., 1988;
Lee et al., 1990; Glasbey, 1993) which compare the performance different methods can achieve.
Essentially, Otsu’s technique maximizes the likelihood that the threshold is chosen so as to split
the image between an object and its background. This is achieved by selecting a threshold that
gives the best separation of classes, for all pixels in an image. The theory is beyond the scope
of this section and we shall merely survey its results and give their implementation. The basis
is use of the normalized histogram where the number of points at each level is divided by the
total number of points in the image. As such, this represents a probability distribution for the
intensity levels as

p�l� = N�l�

N 2
(3.11)

78 Feature Extraction and Image Processing

No. of points

Background

Brightness

Object

Optimal threshold value

Figure 3.8 Optimal thresholding

This can be used to compute the zero- and first-order cumulative moments of the normalized
histogram up to the kth level as

��k� =
k∑

l=1

p�l� (3.12)

and

��k� =
k∑

l=1

l ·p�l� (3.13)

The total mean level of the image is given by

�T =
Nmax∑
l=1

l ·p�l� (3.14)

The variance of the class separability is then the ratio

�2
B�k� = ��T ·��k�−��k��2

��k��1−��k��
∀k ∈ 1�Nmax (3.15)

The optimal threshold is the level for which the variance of class separability is at its maximum,
namely the optimal threshold Topt is that for which the variance

�2
B�Topt� = max

1≤k<Nmax

(
�2

B�k�
)

(3.16)

A comparison of uniform thresholding with optimal thresholding is given in Figure 3.9 for
the eye image. The threshold selected by Otsu’s operator is actually slightly lower than the
value selected manually, and so the thresholded image does omit some detail around the eye,
especially in the eyelids. However, the selection by Otsu is automatic, as opposed to manual,
and this can be to application advantage in automated vision. Consider for example the need
to isolate the human figure in Figure 3.10(a). This can be performed automatically by Otsu as
shown in Figure 3.10(b). Note, however, that there are some extra points, due to illumination,
which have appeared in the resulting image together with the human subject. It is easy to
remove the isolated points, as we will see later, but more difficult to remove the connected
ones. In this instance, the size of the human shape could be used as information to remove
the extra points, although you might like to suggest other factors that could lead to their
removal.

Basic image processing operations 79

(a) Thresholding at level 160 (b) Thresholding by Otsu (level = 127)

Figure 3.9 Thresholding the eye image: manual and automatic

The code implementing Otsu’s technique is given in Code 3.4, which follows
Equations 3.11–3.16 to provide the results in Figures 3.9 and 3.10. Here, the histogram function
of Code 3.1 is used to give the normalized histogram. The remaining code refers directly to the
earlier description of Otsu’s technique.

μ (k,histogram):=
k

l·histograml – 1Σ
l=1

Σ l·histograml – 1μ T(histogram):=
256

l=1

ω(k,histogram):=
k

histograml – 1Σ
l=1

for k∈1..255

find_value(max(values),values)

Otsu(image):= image_hist
histogram(image)

rows(image)·cols(image)
←

2(μ T(image_hist)·ω(k,image_hist) – μ (k,image_hist))
valuesk ω(k,image_hist)·(1 – ω(k,image_hist))←

Code 3.4 Optimal thresholding by Otsu’s technique

So far, we have considered global techniques, methods that operate on the entire image. There
are also locally adaptive techniques that are often used to binarize document images before
character recognition. As mentioned before, surveys of thresholding are available, and one (more
recent) approach (Rosin, 2001) targets thresholding of images whose histogram is unimodal
(has a single peak). One survey (Trier and Jain, 1995) compares global and local techniques
with reference to document image analysis. These techniques are often used in statistical pattern
recognition: the thresholded object is classified according to its statistical properties. However,
these techniques find less use in image interpretation, where a common paradigm is that there
is more than one object in the scene, such as Figure 3.7 where the thresholding operator has

80 Feature Extraction and Image Processing

(a) Walking subject (b) Automatic thresholding by Otsu

Figure 3.10 Thresholding an image of a walking subject

selected many objects of potential interest. As such, only uniform thresholding is used in many
vision applications, since objects are often occluded (hidden), and many objects have similar
ranges of pixel intensity. Accordingly, more sophisticated metrics are required to separate them,
by using the uniformly thresholded image, as discussed in later chapters. Further, the operation
to process the thresholded image, say to fill in the holes in the silhouette or to remove the noise
on its boundary or outside, is morphology, which is covered in Section 3.6.

3.4 Group operations

3.4.1 Template convolution

Group operations calculate new pixel values from a pixel’s neighbourhood by using a ‘grouping’
process. The group operation is usually expressed in terms of template convolution, where the
template is a set of weighting coefficients. The template is usually square, and its size is usually
odd to ensure that it can be positioned appropriately. The size is usually used to describe the
template; a 3×3 template is 3 pixels wide by 3 pixels long. New pixel values are calculated by
placing the template at the point of interest. Pixel values are multiplied by the corresponding
weighting coefficient and added to an overall sum. The sum (usually) evaluates a new value
for the centre pixel (where the template is centred) and this becomes the pixel in a new output
image. If the template’s position has not yet reached the end of a line, the template is then
moved horizontally by one pixel and the process repeats.

This is illustrated in Figure 3.11, where a new image is calculated from an original one, by
template convolution. The calculation obtained by template convolution for the centre pixel of
the template in the original image becomes the point in the output image. Since the template
cannot extend beyond the image, the new image is smaller than the original image because
a new value cannot be computed for points in the border of the new image. When the tem-
plate reaches the end of a line, it is repositioned at the start of the next line. For a 3 × 3
neighbourhood, nine weighting coefficients wt are applied to points in the original image to
calculate a point in the new image. The position of the new point (at the centre) is shaded in the
template.

Basic image processing operations 81

Original image New image

XX

Figure 3.11 Template convolution process

To calculate the value in new image, N, at point with coordinates x,y, the template in
Figure 3.12 operates on an original image O according to:

Nx�y =
w0 ×Ox−1�y−1 + w1 ×Ox�y−1 + w2 ×Ox+1�y−1 +
w3 ×Ox−1�y + w4 ×Ox�y + w5 ×Ox+1�y + ∀x� y ∈ 2�N −1
w6 ×Ox−1�y+1 + w7 ×Ox�y+1 + w8 ×Ox+1�y+1

(3.17)

w0

w8

w5

w2

w4

w7

w1

w6

w3

Figure 3.12 3×3 Template and weighting coefficients

Note that we cannot ascribe values to the picture’s borders. This is because when we place
the template at the border, parts of the template fall outside the image and have no information
from which to calculate the new pixel value. The width of the border equals half the size of the
template. To calculate values for the border pixels, we now have three choices:

• set the border to black (or deliver a smaller picture)
• assume (as in Fourier) that the image replicates to infinity along both dimensions and

calculate new values by cyclic shift from the far border
• calculate the pixel value from a smaller area.

None of these approaches is optimal. The results here use the first option and set border
pixels to black. Note that in many applications the object of interest is imaged centrally or, at
least, imaged within the picture. As such, the border information is of little consequence to the
remainder of the process. Here, the border points are set to black, by starting functions with a
zero function which sets all the points in the picture initially to black (0).

82 Feature Extraction and Image Processing

An alternative representation for this process is given by using the convolution notation as

N = W ∗O (3.18)

where N is the new image which results from convolving the template W (of weighting
coefficients) with the image O.

The Matlab implementation of a general template convolution operator convolve is given
in Code 3.5. This function accepts, as arguments, the picture image and the template to be
convolved with it, template. The result of template convolution is a picture convolved.
The operator first initializes the temporary image temp to black (zero brightness levels). Then

function convolved=convolve(image,template)
%New image point brightness convolution of template with image
%Usage:[new image]=convolve(image,template of point values)
%Parameters:image-array of points
% template-array of weighting coefficients
%Author: Mark S. Nixon

%get image dimensions
[irows,icols]=size(image);

%get template dimensions
[trows,tcols]=size(template);

%set a temporary image to black
temp(1:irows,1:icols)=0;

%half of template rows is
trhalf=floor(trows/2);
%half of template cols is
tchalf=floor(tcols/2);

%then convolve the template
for x=trhalf+1:icols-trhalf %address all columns except border
 for y=tchalf+1:irows-tchalf %address all rows except border
 sum=0;
 for iwin=1:trows %address template columns
 for jwin=1:tcols %address template rows
 sum=sum+image(y+jwin-tchalf-1,x+iwin-trhalf-1)*

template(jwin,iwin);
 end
 end
 temp(y,x)=sum;
 end
end

%finally, normalize the image
convolved=normalize(temp);

Code 3.5 Template convolution operator

Basic image processing operations 83

the size of the template is evaluated. These give the range of picture points to be processed in
the outer for loops that give the coordinates of all points resulting from template convolution.
The template is convolved at each picture point by generating a running summation of the
pixel values within the template’s window multiplied by the respective template weighting
coefficient. Finally, the resulting image is normalized to ensure that the brightness levels are
occupied appropriately.

Template convolution is usually implemented in software. It can also be implemented in
hardware and requires a two-line store, together with some further latches, for the (input)
video data. The output is the result of template convolution, summing the result of multiplying
weighting coefficients by pixel values. This is called pipelining, since the pixels essentially
move along a pipeline of information. Note that two line stores can be used if the video fields
only are processed. To process a full frame, one of the fields must be stored since it is presented
in interlaced format.

Processing can be analogue, using operational amplifier circuits and charge coupled device
(CCD) for storage along bucket brigade delay lines. Finally, an alternative implementation is
to use a parallel architecture: for multiple instruction multiple data (MIMD) architectures, the
picture can be split into blocks (spatial partitioning); single instruction multiple data (SIMD)
architectures can implement template convolution as a combination of shift and add instructions.

3.4.2 Averaging operator

For an averaging operator, the template weighting functions are unity (or 1/9 to ensure that the
result of averaging nine white pixels is white, not more than white!). The template for a 3 × 3
averaging operator, implementing Equation 3.17, is given by the template in Figure 3.13, where

1/9

1/9

1/9

1/9

1/9

1/9 1/9 1/9

1/9

Figure 3.13 3×3 averaging operator template coefficients

Figure 3.14 Applying direct averaging

84 Feature Extraction and Image Processing

the location of the point of interest is again shaded. The result of averaging the eye image with a
3 × 3 operator is shown in Figure 3.14. This shows that much of the detail has now disappeared,
revealing the broad image structure. The eyes and eyebrows are now much clearer from the
background, but the fine detail in their structure has been removed.

For a general implementation, Code 3.6, we can define the width of the operator as winsize,
the template size is winsize×winsize. We then form the average of all points within
the area covered by the template. This is normalized (divided) by the number of points in the
template’s window. This is a direct implementation of a general averaging operator (i.e. without
using the template convolution operator in Code 3.5).

for x∈half..cols(pic)–half–1
for y∈half..rows(pic)–half–1

new

ave(pic,winsize):= new zero(pic)←

half floor
winsize⎛

⎝
⎛
⎝2

←

winsize–1 winsize–1

Σ Σ
jwin=0iwin=0

picy+iwin–half,x+jwin–half

(winsize·winsize)
newy,x floor←

Code 3.6 Direct averaging

To implement averaging by using the template convolution operator, we need to define a
template. This is illustrated for direct averaging in Code 3.7, even though the simplicity of
the direct averaging template usually precludes such implementation. The application of this
template is also shown in Code 3.7. (Note that there are averaging operators in Mathcad and
Matlab that can also be used for this purpose.)

averaging_template(winsize):= sum← winsize.winsize

for y∈0..winsize–1
for x∈0..winsize–1

←templatey,x 1

template
sum

smoothed:=tm_conv(p,averaging_template(3))

Code 3.7 Direct averaging by template convolution

The effect of averaging is to reduce noise; this is its advantage. An associated disadvantage
is that averaging causes blurring which reduces detail in an image. It is also a low-pass filter

Basic image processing operations 85

since its effect is to allow low spatial frequencies to be retained, and to suppress high-frequency
components. A larger template, say 3 × 3 or 5 × 5, will remove more noise (high frequencies)
but reduce the level of detail. The size of an averaging operator is then equivalent to the
reciprocal of the bandwidth of a low-pass filter that it implements

Smoothing was earlier achieved by low-pass filtering via the Fourier transform (Section 2.8).
The Fourier transform gives an alternative method to implement template convolution and to
speed it up, for larger templates. In Fourier transforms, the process that is dual to convolution is
multiplication (as in Section 2.3). So template convolution (denoted∗) can be implemented by
multiplying the Fourier transform of the template ��T� by the Fourier transform of the picture,
��P�, to which the template is to be applied. The result needs to be inverse transformed to
return to the picture domain.

P ∗T = �−1 �� �P�×� �T�� (3.19)

The transform of the template and the picture need to be the same size before we can perform
the point-by-point multiplication. Accordingly, the image containing the template is zero padded
before its transform, which simply means that zeros are added to the template in positions which
lead to a template of the same size as the image. The process is illustrated in Code 3.8 and starts by
calculation of the transform of the zero-padded template. The convolution routine then multiplies
the transform of the template by the transform of the picture point by point (using the vectorize
operator, symbolized by the arrow above the operation). When the routine is invoked, it is sup-
plied with a transformed picture. The resulting transform is reordered before inverse transforma-
tion, to ensure that the image is presented correctly. (Theoretical study of this process is presented
in Section 5.3.2, where we show how the same process can be used to find shapes in images.)

result

new_smooth:=conv(p,square)

conv(pic,temp):= pic_spectrum Fourier(pic)←
temp_spectrum Fourier(temp)←

result inv_Fourier(rearrange(convolved_spectrum))←
convolved_spectrum (pic_spectrum.temp_spectrum)←

Code 3.8 Template convolution by the Fourier transform

Code 3.8 is simply a different implementation of direct averaging. It achieves the same result,
but by transform domain calculus. It can be faster to use the transform rather than the direct
implementation. The computational cost of a 2D fast Fourier transform (FFT) is of the order of
N 2 log�N�. If the transform of the template is precomputed, there are two transforms required
and there is one multiplication for each of the N 2 transformed points. The total cost of the
Fourier implementation of template convolution is then of the order of

CFFT = 4N 2 log�N�+N 2 (3.20)

The cost of the direct implementation for an m×m template is then m2 multiplications for each
image point, so the cost of the direct implementation is of the order of

Cdir = N 2m2 (3.21)

86 Feature Extraction and Image Processing

For Cdir < CFFT, we require:

N 2m2 < 4N 2 log�N�+N 2 (3.22)

If the direct implementation of template matching is faster than its Fourier implementation, we
need to choose m so that

m2 < 4 log�N�+1 (3.23)

This implies that, for a 256×256 image, a direct implementation is fastest for 3×3 and 5× 5
templates, whereas a transform calculation is faster for larger ones. An alternative analysis
(Campbell, 1969) has suggested that (Gonzalez and Wintz, 1987) ‘if the number of non-zero
terms in (the template) is less than 132 then a direct implementation � � � is more efficient than
using the FFT approach’. This implies a considerably larger template than our analysis suggests.
This is in part due to higher considerations of complexity than our analysis has included. There
are further considerations in the use of transform calculus, the most important being the use of
windowing (such as Hamming or Hanning) operators to reduce variance in high-order spectral
estimates. This implies that template convolution by transform calculus should perhaps be used
when large templates are involved, and then only when speed is critical. If speed is indeed
critical, it might be better to implement the operator in dedicated hardware, as described earlier.

3.4.3 On different template size

Templates can be larger than 3 × 3. Since they are usually centred on a point of interest, to
produce a new output value at that point, they are usually of odd dimension. For reasons of
speed, the most common sizes are 3×3� 5×5 and 7×7. Beyond this, say 9×9, many template
points are used to calculate a single value for a new point, and this imposes high computational
cost, especially for large images. (For example, a 9×9 operator covers nine times more points
than a 3×3 operator.) Square templates have the same properties along both image axes. Some
implementations use vector templates (a line), either because their properties are desirable in a
particular application, or for reasons of speed.

The effect of larger averaging operators is to smooth the image more, to remove more detail
while giving greater emphasis to the large structures. This is illustrated in Figure 3.15. A 5×5
operator (Figure 3.15a) retains more detail than a 7×7 operator (Figure 3.15b), and much more
than a 9 × 9 operator (Figure 3.15c). Conversely, the 9 × 9 operator retains only the largest
structures such as the eye region (and virtually removing the iris), whereas this is retained more

(a) 5 × 5 (b) 7 × 7 (c) 9 × 9

Figure 3.15 Illustrating the effect of window size

Basic image processing operations 87

by the operators of smaller size. Note that the larger operators leave a larger border (since new
values cannot be computed in that region) and this can be seen in the increase in border size for
the larger operators, in Figure 3.15(b) and (c).

3.4.4 Gaussian averaging operator

The Gaussian averaging operator has been considered to be optimal for image smoothing. The
template for the Gaussian operator has values set by the Gaussian relationship. The Gaussian
function g at coordinates x� y is controlled by the variance �2 according to:

g�x� y��� = 1
2	�2

e
−
(

x2+y2

2�2

)

(3.24)

Equation 3.24 gives a way to calculate coefficients for a Gaussian template which is then
convolved with an image. The effects of selection of Gaussian templates of differing size are
shown in Figure 3.16. The Gaussian function essentially removes the influence of points greater
than 3� in (radial) distance from the centre of the template. The 3×3 operator (Figure 3.16a)
retains many more of the features than those retained by direct averaging (Figure 3.14). The
effect of larger size is to remove more detail (and noise) at the expense of losing features.
This is reflected in the loss of internal eye component by the 5 × 5 and the 7 × 7 operators in
Figure 3.16(b) and (c), respectively.

(a) 3 × 3 (b) 5 × 5 (c) 7 × 7

Figure 3.16 Applying Gaussian averaging

A surface plot of the 2D Gaussian function of Equation 3.24 has the famous bell shape, as
shown in Figure 3.17. The values of the function at discrete points are the values of a Gaussian
template. Convolving this template with an image gives Gaussian averaging: the point in the
averaged picture is calculated from the sum of a region where the central parts of the picture
are weighted to contribute more than the peripheral points. The size of the template essentially
dictates appropriate choice of the variance. The variance is chosen to ensure that template
coefficients drop to near zero at the template’s edge. A common choice for the template size is
5×5 with variance unity, giving the template shown in Figure 3.18.

This template is then convolved with the image to give the Gaussian blurring function. It is
possible to give the Gaussian blurring function antisymmetric properties by scaling the x and y

88 Feature Extraction and Image Processing

Gaussian_template(19, 4)

Figure 3.17 Gaussian function

0.002 0.013 0.220 0.013 0.002

0.013 0.060 0.098 0.060 0.013

0.220 0.098 0.162 0.098 0.220

0.013 0.060 0.098 0.060 0.013

0.002 0.013 0.220 0.013 0.002

Figure 3.18 Template for the 5×5 Gaussian averaging operator �� = 1�0�

coordinates. This can find application when an object’s shape, and orientation, is known before
image analysis.

By reference to Figure 3.16 it is clear that the Gaussian filter can offer improved performance
compared with direct averaging: more features are retained while the noise is removed. This
can be understood by Fourier transform theory. In Section 2.4.2 (Chapter 2) we found that the
Fourier transform of a square is a 2D sinc function. This has a non-even frequency response
(the magnitude of the transform does not reduce in a smooth manner) and has regions where the
transform becomes negative, called sidelobes. These can have undesirable effects since there are
high frequencies that contribute more than some lower ones, which is a bit paradoxical in low-
pass filtering to remove noise. In contrast, the Fourier transform of a Gaussian function is another
Gaussian function, which decreases smoothly without these sidelobes. This can lead to better
performance since the contributions of the frequency components reduce in a controlled manner.

In a software implementation of the Gaussian operator, we need a function implementing
Equation 3.24, the Gaussian_template function in Code 3.9. This is used to calculate the
coefficients of a template to be centred on an image point. The two arguments are winsize,
the (square) operator’s size, and the standard deviation � that controls its width, as discussed
earlier. The operator coefficients are normalized by the sum of template values, as before. This
summation is stored in sum, which is initialized to zero. The centre of the square template is
then evaluated as half the size of the operator. Then, all template coefficients are calculated by

Basic image processing operations 89

a version of Equation 3.24 which specifies a weight relative to the centre coordinates. Finally,
the normalized template coefficients are returned as the Gaussian template. The operator is used
in template convolution, via convolve, as in direct averaging (Code 3.5).

function template=gaussian_template(winsize,sigma)
%Template for Gaussian averaging

%Usage:[template]=gaussian_template(number, number)

%Parameters: winsize-size of template (odd, integer)
% sigma-variance of Gaussian function
%Author: Mark S. Nixon

%centre is half of window size
centre=floor(winsize/2)+1;

%we'll normalize by the total sum
sum=0;

*(i-centre)))/(2*sigma*sigma))

%so work out the coefficients and the running total
for i=1:winsize
 for j=1:winsize
 template(j,i)=exp(-(((j-centre)*(j-centre))+((i-centre)

 sum=sum+template(j,i);
 end
end

%and then normalize
template=template/sum;

Code 3.9 Gaussian template specification

3.5 Other statistical operators

3.5.1 More on averaging

The averaging process is actually a statistical operator since it aims to estimate the mean of
a local neighbourhood. The error in the process is high; for a population of N samples, the
statistical error is of the order of:

error = mean√
N

(3.25)

Increasing the averaging operator’s size improves the error in the estimate of the mean, but at
the expense of fine detail in the image. The average is an estimate optimal for a signal corrupted
by additive Gaussian noise (see Appendix 3, Section 11.1). The estimate of the mean maximizes
the probability that the noise has its mean value, namely zero. According to the central limit
theorem, the result of adding many noise sources together is a Gaussian distributed noise source.
In images, noise arises in sampling, in quantization, in transmission and in processing. By the

90 Feature Extraction and Image Processing

central limit theorem, the result of these (independent) noise sources is that image noise can
be assumed to be Gaussian. In fact, image noise is not necessarily Gaussian distributed, giving
rise to more statistical operators. One of these is the median operator, which has demonstrated
capability to reduce noise while retaining feature boundaries (in contrast to smoothing, which
blurs both noise and the boundaries), and the mode operator, which can be viewed as optimal
for a number of noise sources, including Rayleigh noise, but is very difficult to determine for
small, discrete, populations.

3.5.2 Median filter

The median is another frequently used statistic; the median is the centre of a rank-ordered
distribution. The median is usually taken from a template centred on the point of interest. Given
the arrangement of pixels in Figure 3.19(a), the pixel values are arranged into a vector format
(Figure 3.19b). The vector is then sorted into ascending order (Figure 3.19c). The median is the
central component of the sorted vector; this is the fifth component since we have nine values.

2 8 7

4 0 6

3 5 7

2 4 3 8 0 5 7 6 7

(a) 3 × 3 template (b) Unsorted vector

0 2 3 4 5 6 7 7 8

median↑

(c) Sorted vector, giving median

Figure 3.19 Finding the median from a 3×3 template

The median operator is usually implemented using a template. Here, we shall consider a
3×3 template. Accordingly, we need to process the nine pixels in a template centred on a point
with coordinates �x� y�. In a Mathcad implementation, these nine points can be extracted into
vector format using the operator unsorted in Code 3.10. This requires a integer pointer to
nine values, x1. The modulus operator is then used to ensure that the correct nine values are
extracted.

x1:=0..8

unsortedx1:=p
x+mod(x1,3)–1,x+floor

⎛
⎝

⎛
⎝

x1

3
–1

Code 3.10 Reformatting a neighbourhood into a vector

Basic image processing operations 91

We then arrange the nine pixels, within the template, in ascending order using the Mathcad
sort function (Code 3.11). This gives the rank ordered list and the median is the central
component of the sorted vector, in this case the fifth component (Code 3.12). These functions
can then be grouped to give the full median operator as in Code 3.13.

sorted:=sort(unsorted)

Code 3.11 Using the Mathcad sort function

our_median:=sorted4

Code 3.12 Determining the median

med(pic):=

for x∈1..cols(pic)–2
for y∈1..rows(pic)–2

for x1∈ 0..8

newpic

newpic zero(pic)←

unsortedx1 pic
y+mod(x1,3)–1,x+floor ⎛

⎝
⎛
⎝

x1

3
–1

←

sorted sort(unsorted)←
newpicy,x sorted4←

Code 3.13 Determining the median

The median can be taken from larger template sizes. It is available as the median operator in
Mathcad, but only for square matrices. The development here has aimed not only to demonstrate
how the median operator works, but also to provide a basis for further development. The rank
ordering process is computationally demanding (slow) and motivates study into the deployment
of fast algorithms, such as Quicksort (e.g. Huang et al., 1979, is an early approach). The
computational demand has also motivated use of template shapes, other than a square. A selection
of alternative shapes is shown in Figure 3.20. Common alternative shapes include a cross or a
line (horizontal or vertical), centred on the point of interest; these shapes can afford much faster
operation since they cover fewer pixels. The basis of the arrangement presented here could be
used for these alternative shapes, if required.

The median has a well-known ability to remove salt and pepper noise. This form of noise,
arising from say decoding errors in picture transmission systems, can cause isolated white and
black points to appear within an image. It can also arise when rotating an image, when points

92 Feature Extraction and Image Processing

(a) Cross (b) Horizontal line (c) Vertical line

Figure 3.20 Alternative template shapes for median operator

remain unspecified by a standard rotation operator (Appendix 2), as in a texture image, rotated
by 10� in Figure 3.21(a). When a median operator is applied, the salt and pepper noise points
will appear at either end of the rank-ordered list and are removed by the median process, as
shown in Figure 3.21(b). The median operator has practical advantage, owing to its ability to
retain edges (the boundaries of shapes in images) while suppressing the noise contamination.
As such, like direct averaging, it remains a worthwhile member of the stock of standard image
processing tools. For further details concerning properties and implementation, see Hodgson
et al. (1985). (Note that practical implementation of image rotation is a computer graphics issue,
and is usually done by texture mapping; further details can be found in Hearn and Baker, 1997.)

(a) Rotated fence (b) Median filtered

Figure 3.21 Illustrating median filtering

Finding the background to an image is an example application of statistical operators. Say we
have a sequence of images of a walking subject, and we want to be able to find the background
(so that we can separate the walking subject from it), such as the sequence of images shown in
Figure 3.22(a)–(f) where a subject is walking from left to right. We can average the images so
as to find the background. If we form a temporal average, an image where each point is the
average of the points in the same position in each of the six images, we achieve a result where
the walking subject appears to be in the background, but very faintly, as in Figure 3.22(g). The
shadow occurs since the walking subject’s influence on image brightness is reduced by one-
sixth, but it is still there. We could use more images, the ones in between the ones we already

Basic image processing operations 93

have, and then the shadow will become much fainter. We can also include spatial averaging as
in Section 3.3.2, to reduce further the effect of the walking subject, as shown in Figure 3.22(h).
This gives spatiotemporal averaging. For this, we have not required any more images, but the
penalty paid for the better improvement in the estimate of the background is lack of detail. We
cannot see the numbers in the clock, because of the nature of spatial averaging. However, if we
form the background image by taking the median of the six images, a temporal median, we get
a much better estimate of the background, as shown in Figure 3.22(i). A lot of the image detail
is retained, while the walking subject disappears. In this case, for a sequence of images where
the target walks in front of a static background, the median is the most appropriate operator. If
we did not have a sequence, we could just average the single image with a large operator and
that could provide some estimate of the background.

(a) Image 1 (b) Image 2 (c) Image 3 (d) Image 4 (e) Image 5 (f) Image 6

(g) Temporal averaging (h) Spatiotemporal averaging (i) Temporal median

Figure 3.22 Background estimation by mean and median filtering

3.5.3 Mode filter

The mode is the final statistic of interest, although there are more advanced filtering operators
to come. The mode is very difficult to determine for small populations and theoretically does
not even exist for a continuous distribution. Consider, for example, determining the mode of
the pixels within a square 5×5 template. It is possible for all 25 pixels to be different, so each
could be considered to be the mode. As such, we are forced to estimate the mode: the truncated
median filter, as introduced by Davies (1988), aims to achieve this. The truncated median filter
is based on the premise that for many non-Gaussian distributions, the order of the mean, the
median and the mode is the same for many images, as illustrated in Figure 3.23. Accordingly,
if we truncate the distribution (i.e. remove part of it, where the part selected to be removed in
Figure 3.23 is from the region beyond the mean) then the median of the truncated distribution
will approach the mode of the original distribution.

The implementation of the truncated median, trun_med, operator is given in Code 3.14.
The operator first finds the mean and the median of the current window. The distribution of
intensity of points within the current window is truncated on the side of the mean so that the
median now bisects the distribution of the remaining points (as such, not affecting symmetrical

94 Feature Extraction and Image Processing

No. of points

Mode
Median

Mean

Brightness

Figure 3.23 Arrangement of mode, median and mean

ha←floor
wsze

2

⎛
⎟
⎝

⎞
⎟
⎠

win←submatrix(p,y−ha,y+ha,x−ha,x+ha)
med←median(win)

upper←2⋅med−min(win)
lower←2⋅med−max(win)
cc←0

cc←cc+1

truncc←winj,i

truncc←winj,i

cc←cc+1

if (winj,i>lower)⋅(med>ave)

if (winj,i<upper)⋅(med<ave)

for i∈0..wsze−1
for j∈0..wsze−1

newpicy,x←median(trun) if cc>0
newpicy,x←med otherwise

for y∈ha..rows(p)−ha−1
for x∈ha..cols(p)−ha−1

newpic

trun_med(p,wsze):= newpic←zero(p)

ave←mean(win)

Code 3.14 The truncated median operator

distributions). So that the median bisects the remaining distribution, if the median is less than
the mean, the point at which the distribution is truncated, upper, is

upper = median+ �median−min�distribution��
= 2 ·median−min�distribution� (3.26)

Basic image processing operations 95

If the median is greater than the mean, then we need to truncate at a lower point (before the
mean), lower, given by

lower = 2 ·median−max�distribution� (3.27)

The median of the remaining distribution then approaches the mode. The truncation is performed
by storing pixels values in a vector trun. A pointer, cc, is incremented each time a new point
is stored. The median of the truncated vector is then the output of the truncated median filter
at that point. The window is placed at each possible image point, as in template convolution.
However, there can be several iterations at each position to ensure that the mode is approached.
In practice, only a few iterations are usually required for the median to converge to the mode.
The window size is usually large, say 7×7 or 9×9 or even more.

The action of the operator is illustrated in Figure 3.24 when applied to a 128 × 128 part
of the ultrasound image (Figure 1.1c), from the centre of the image and containing a cross-
sectional view of an artery. Ultrasound results in particularly noisy images, in part because the
scanner is usually external to the body. The noise is multiplicative Rayleigh noise, for which
the mode is the optimal estimate. This noise obscures the artery which appears in cross-section
in Figure 3.24(a); the artery is basically elliptical in shape. The action of the 9 × 9 truncated
median operator (Figure 3.24b) is to remove noise while retaining feature boundaries, whereas
a larger operator shows better effect (Figure 3.24c).

(a) Part of ultrasound image (b) 9 × 9 operator (c) 13 × 13 operator

Figure 3.24 Applying truncated median filtering

Close examination of the result of the truncated median filter shows that a selection of
boundaries are preserved which are not readily apparent in the original ultrasound image. This
is one of the known properties of median filtering: an ability to reduce noise while retaining
feature boundaries. There have been many other approaches to speckle filtering; the most popular
include direct averaging (Shankar, 1986), median filtering, adaptive (weighted) median filtering
(Loupas and McDicken, 1987) and unsharp masking (Bamber and Daft, 1986).

3.5.4 Anisotropic diffusion

The most advanced form of smoothing is achieved by preserving the boundaries of the image
features in the smoothing process (Perona and Malik, 1990). This is one of the advantages of the

96 Feature Extraction and Image Processing

median operator and a disadvantage of the Gaussian smoothing operator. The process is called
anisotropic diffusion, by virtue of its basis. Its result is illustrated in Figure 3.25(b), where the
feature boundaries (such as those of the eyebrows or the eyes) in the smoothed image are crisp
and the skin is more matt in appearance. This implies that we are filtering within the features and
not at their edges. By way of contrast, the Gaussian operator result in Figure 3.25(c) smooths
not just the skin but also the boundaries (the eyebrows in particular seem quite blurred), giving a
less pleasing and less useful result. Since we shall later use the boundary information to interpret
the image, its preservation is of much interest.

(a) Original image (b) Anisotropic diffusion (c) Gaussian smoothing

Figure 3.25 Filtering by anisotropic diffusion and the Gaussian operator

As ever, there are some parameters to select to control the operation, so we shall consider the
technique’s basis so as to guide their selection. Further, it is computationally more complex than
Gaussian filtering. The basis of anisotropic diffusion is, however, rather complex, especially
here, and invokes concepts of low-level feature extraction which are covered in the next chapter.
One strategy you might use is to mark this page, then go ahead and read Sections 4.1 and 4.2,
and then return here. Alternatively, you could just plough on, since that is exactly what we
shall do. The complexity is due to the process not only invoking low-level feature extraction
(to preserve feature boundaries) but also, as its basis, invoking concepts of heat flow, as well
as introducing the concept of scale space. So it will certainly be a hard read for many, but
comparison of Figure 3.25(b) with Figure 3.25(c) shows that it is well worth the effort.

The essential idea of scale space is that there is a multiscale representation of images, from
low resolution (a coarsely sampled image) to high resolution (a finely sampled image). This
is inherent in the sampling process, where the coarse image is the structure and the higher
resolution increases the level of detail. As such, we can derive a multiscale set of images by
convolving an original image with a Gaussian function, by Equation 3.24

Ix�y��� = Ix�y�0�∗g�x� y��� (3.28)

where Ix�y�0� is the original image, g�x� y� �� is the Gaussian template derived from
Equation 3.24, and Ix�y��� is the image at level � . The coarser level corresponds to larger values
of the standard deviation �; conversely, the finer detail is given by smaller values. We have
already seen that the larger values of � reduce the detail and are then equivalent to an image at a
coarser scale, so this is a different view of the same process. The difficult part is that the family
of images derived this way can equivalently be viewed as the solution of the heat equation

I
/

t = �Ix�y�t� (3.29)

Basic image processing operations 97

where � denotes del, the (directional) gradient operator from vector algebra, and with the initial
condition that I0 = Ix�y�0�. The heat equation itself describes the temperature T changing with
time t as a function of the thermal diffusivity (related to conduction) � as

T
/

t = �2T (3.30)

and in one-dimensional (1D) form this is

T
/

t =

2T

�x2
(3.31)

so the temperature measured along a line is a function of time, distance, the initial and boundary
conditions, and the properties of a material. The relation of this with image processing is clearly
an enormous ouch! There are clear similarities between Equations 3.31 and 3.29. They have
the same functional form and this allows for insight, analysis and parameter selection. The heat
equation (Equation 3.29) is the anisotropic diffusion equation

I
/

t = � · (cx�y�t��Ix�y�t�
)

(3.32)

where � · is the divergence operator (which essentially measures how the density within a
region changes), with diffusion coefficient cx�y. The diffusion coefficient applies to the local
change in the image �Ix�y�t� in different directions. If we have a lot of local change, we seek
to retain it since the amount of change is the amount of boundary information. The diffusion
coefficient indicates how much importance we give to local change: how much of it is retained.
(The equation reduces to isotropic diffusion – Gaussian filtering – if the diffusivity is constant,
since �c = 0.) There is no explicit solution to this equation. By approximating differentiation
by differencing (this is explored more in Section 4.2), the rate of change of the image between
time step t and time step t +1, we have

I
/

t = I�t +1�− I�t� (3.33)

This implies that we have an iterative solution, and for later consistency we shall denote the
image I at time step t +1 as I<t+1> = I�t +1�, so we then have

I<t+1> − I<t> = � · (cx�y �t��I<t>
x�y

)
(3.34)

and again by approximation, using differences evaluated this time over the four compass
directions north, south, east and west, we have

�N �Ix�y� = Ix�y−1 − Ix�y (3.35)

�S�Ix�y� = Ix�y+1 − Ix�y (3.36)

�E�Ix�y� = Ix−1�y − Ix�y (3.37)

�W �Ix�y� = Ix+1�y − Ix�y (3.38)

The template and weighting coefficients for these are shown in Figure 3.26.

98 Feature Extraction and Image Processing

1

1 1–4

1

Figure 3.26 Approximations by spatial difference in anisotropic diffusion

When we use these as an approximation to the right-hand side in Equation 3.34, we then
have � · (cx�y�t��I<t>

x�y

)= �
(
cNx�y�N �I�+ cSx�y�S�I�+ cEx�y�E�I�+ cWx�y�W �I�

)
, which gives

I<t+1> − I<t> = �
(
cNx�y�N �I�+ cSx�y�S�I�+ cEx�y�E�I�+ cWx�y�W �I�

) ∣∣I = I<t>
x�y (3.39)

where 0 ≤ � ≤ 1/4 and where cNx�y� cSx�y� cEx�y and cWx�y denote the conduction coefficients
in the four compass directions. By rearrangement of this we obtain the equation that we shall
use for the anisotropic diffusion operator

I<t+1> = I<t> +�
(
cNx�y�N �I�+ cSx�y�S�I�+ cEx�y�E�I�+ cWx�y�W �I�

) ∣∣I = I<t>
x�y (3.40)

This shows that the solution is iterative: images at one time step (denoted by <t+1>) are
computed from images at the previous time step (denoted <t>), given the initial condition
that the first image is the original (noisy) image. Change (in time and in space) has been
approximated as the difference between two adjacent points, which gives the iterative equa-
tion and shows that the new image is formed by adding a controlled amount of the local
change consistent with the main idea: that the smoothing process retains some of the boundary
information.

We are not finished yet, though, since we need to find values for cNx�y� cSx�y� cEx�y and
cWx�y. These are chosen to be a function of the difference along the compass directions, so that
the boundary (edge) information is preserved. In this way we seek a function that tends to zero
with increase in the difference (an edge or boundary with greater contrast) so that diffusion does
not take place across the boundaries, keeping the edge information. As such, we seek

cNx�y = g �	�N �I�	�

cSx�y = g �	�S�I�	�

cEx�y = g �	�E�I�	�

cWx�y = g �	�W �I�	�

(3.41)

and one function that can achieve this is

g �x� k� = e
−x2
/

k2 (3.42)

[There is potential confusion with using the same symbol as for the Gaussian function
(Equation 3.24), but we have followed the original authors’ presentation.] This function clearly
has the desired properties since when the values of the differences � are large the function g is
very small; conversely, when � is small then g tends to unity. k is another parameter whose

Basic image processing operations 99

value we have to choose: it controls the rate at which the conduction coefficient decreases with
increasing difference magnitude. The effect of this parameter is shown in Figure 3.27. Here,
the solid line is for the smaller value of k and the dotted one is for a larger value. Evidently, a
larger value of k means that the contribution of the difference reduces less than for a smaller
value of k. In both cases, the resulting function is near unity for small differences and near zero
for large differences, as required. An alternative to this is to use the function

g2�x� k� = 1

1+ x2
/

k2

(3.43)

which has similar properties to the function in Equation 3.42.

0 20 40

0.5

1

g (Δ, 10)

g (Δ, 30)

Δ

Figure 3.27 Controlling the conduction coefficient in anisotropic diffusion

This all looks rather complicated, so let’s recap. First, we want to filter an image by retaining
boundary points. These are retained according to the value of k chosen in Equation 3.42.
This function is operated in the four compass directions, to weight the brightness difference
in each direction (Equation 3. 41). These contribute to an iterative equation which calculates
a new value for an image point by considering the contribution from its four neighbouring
points (Equation 3.40). This needs the choice of one parameter, �. Further, we need to choose
the number of iterations for which calculation proceeds. For information, Figure 3.25(b) was
calculated over 20 iterations and we need to use sufficient iterations to ensure that convergence
has been achieved. We also need to choose values for k and �. By analogy, k is the conduction
coefficient and low values preserve edges and high values allow diffusion (conduction) to occur;
and how much smoothing can take place. The two parameters are interrelated, although � largely
controls the amount of smoothing. Given that low values of either parameter means that no
filtering effect is observed, we can investigate their effect by setting one parameter to a high
value and varying the other. In Figure 3.28(a)–(c) we use a high value of k, which means that
edges are not preserved, and we can observe that different values of � control the amount of
smoothing. (A discussion of how this Gaussian filtering process is achieved can be inferred
from Section 4.2.4.) Conversely, we can see how different values for k control the level of edge
preservation in Figure 3.28(d)–(f), where some structures around the eye are not preserved for
larger values of k.

100 Feature Extraction and Image Processing

(a) k = 100 and λ = 0.05 (b) k = 100 and λ = 0.15 (c) k = 100 and λ = 0.25

(d) k = 5 and λ = 0.25 (e) k = 15 and λ = 0.25 (f) k = 25 and λ = 0.25

Figure 3.28 Applying anisotropic diffusion

The original presentation of anisotropic diffusion (Perona and Malik, 1990) is extremely lucid
and well worth a read if you consider selecting this technique. It has greater detail on formulation
and on analysis of results than space here allows for (and is suitable at this stage). Among
other papers on this topic, one (Black et al., 1998) studied the choice of conduction coefficient
leading to a function which preserves sharper edges and improves automatic termination. As
ever, with techniques that require much computation there have been approaches that speed
implementation or achieve similar performance more rapidly (e.g. Fischl and Schwartz, 1999).

3.5.5 Force field transform

There are many more image filtering operators; we have so far covered those that are among the
most popular. Others offer alternative insight, sometimes developed in the context of a specific
application. By way of example, Hurley developed a transform called the force field transform
(Hurley et al., 2002, 2005) which uses an analogy to gravitational force. The transform pretends
that each pixel exerts a force on its neighbours which is inversely proportional to the square
of the distance between them. This generates a force field where the net force at each point is
the aggregate of the forces exerted by all the other pixels on a ‘unit test pixel’ at that point.
This very large-scale summation affords very powerful averaging which reduces the effect of
noise. The approach was developed in the context of ear biometrics, recognizing people by their
ears, which has unique advantage as a biometric in that the shape of people’s ears does not
change with age, and of course, unlike a face, ears do not smile! The force field transform of
an ear (Figure 3.29a) is shown in Figure 3.29(b). Here, the averaging process is reflected in the
reduction of the effects of hair. The transform itself has highlighted ear structures, especially
the top of the ear and the lower ‘keyhole’ (the notch).

Basic image processing operations 101

(a) Image of ear (b) Magnitude of force field transform

Figure 3.29 Illustrating the force field transform

The image shown is the magnitude of the force field. The transform itself is a vector operation,
and includes direction (Hurley, 2002). The transform is expressed as the calculation of the force
F between two points at positions ri and rj , which is dependent on the value of a pixel at point
ri as

Fi

(
rj

)= P �ri�
ri − rj∣∣ri − rj

∣∣3 (3.44)

which assumes that the point rj is of unit ‘mass’. This is a directional force (which is why
the inverse square law is expressed as the ratio of the difference to its magnitude cubed) and
the magnitude and directional information has been exploited to determine an ear ‘signature’
by which people can be recognized. In application, Equation 3.44 can be used to define the
coefficients of a template that is convolved with an image (implemented by the FFT to improve
speed); as with many of the techniques that have been covered in this chapter; a Mathcad
implementation is also given (Hurley et al., 2002). Note that this transform exposes low-level
features (the boundaries of the ears), which is the focus of the next chapter. How we can
determine shapes is a higher level process, and the processes by which we infer or recognize
identity from the low- and the high-level features will be covered in Chapter 8.

3.5.6 Comparison of statistical operators

The different image filtering operators are shown by way of comparison in Figure 3.30. All oper-
ators are 5×5 and are applied to the earlier ultrasound image (Figure 3.24a). Figure 3.30(a)–(d)
are the result of the mean (direct averaging), Gaussian averaging, median and truncated
median, respectively. We have just shown the advantages of anisotropic diffusion compared
with Gaussian smoothing, so we will not repeat them here. Each operator shows a different
performance: the mean operator removes much noise, but blurs feature boundaries; Gaussian
averaging retains more features, but shows little advantage over direct averaging (it is not
Gaussian-distributed noise anyway); the median operator retains some noise, but with clear
feature boundaries; and the truncated median removes more noise, but along with picture detail.
Clearly, the increased size of the truncated median template, by the results in Figure 3.24(b)

102 Feature Extraction and Image Processing

(a) Mean (b) Gaussian average (c) Median (d) Truncated
 median

Figure 3.30 Comparison of filtering operators

and (c), can offer improved performance. This is to be expected since, by increasing the size
of the truncated median template, we are essentially increasing the size of the distribution from
which the mode is found.

As yet, however, we have not yet studied any quantitative means to evaluate this comparison.
We can only perform subjective appraisal of the images in Figure 3.30. This appraisal has been
phrased in terms of the contrast boundaries perceived in the image, and on the basic shape
that the image presents. Accordingly, better appraisal is based on the use of feature extraction.
Boundaries are the low-level features studied in the next chapter; shape is a high-level feature
studied in Chapter 5.

3.6 Mathematical morphology

Mathematical morphology analyses images by using operators developed using set theory (Serra,
1986; Serra and Soile, 1994). It was originally developed for binary images and was extended to
include grey-level data. The word morphology concerns shapes: in mathematical morphology we
process images according to shape, by treating both as sets of points. In this way, morphological
operators define local transformations that change pixel values that are represented as sets.
The ways in which pixel values are changed is formalized by the definition of the hit or miss
transformation.

In the hit and miss transformation, an object represented by a set X is examined through a
structural element represented by a set B. Different structuring elements are used to change the
operations on the set X. The hit or miss transformation is defined as the point operator

X ⊗B = {
x
∣∣B1

x ⊂ X ∩B2
x ⊂ Xc

}
(3.45)

In this equation, x represents one element of X, that is a pixel in an image. The symbol Xc

denotes the complement of X (the set of image pixels that is not in the set X) and the structuring
element B is represented by two parts, B1 and B2, that are applied to the set X or to its
complement Xc. The structuring element is a shape and this is how mathematical morphology
operations process images according to shape properties. The operation of B1 on X is a hit; the
operation of B2 on Xc is a miss. The subindex x in the structural element indicates that it is
moved to the position of the element x. That is, in a manner similar to other group operators, B
defines a window that is moved through the image.

Basic image processing operations 103

Figure 3.31 illustrates a binary image and a structuring element. Image pixels are divided into
those belonging to X and those belonging to its complement Xc. The figure shows a structural
element and it decomposition into the two sets B1 and B2. Each subset is used to analyse the set
X and its complement. Here, we use black for the elements of B1 and white for B2 to indicate
that they are applied to X and Xc, respectively.

X = Xc
 =

B2B B1

Figure 3.31 Image and structural element

Equation 3.45 defines a process that moves the structural element B to be placed at each
pixel in the image and it performs a pixel-by-pixel comparison against the template B. If the
value of the image is the same as that of the structuring element, then the image’s pixel forms
part of the resulting set X ⊗B. An important feature of this process is that is not invertible. That
is, information is removed to suppress or enhance geometrical features in an image.

3.6.1 Morphological operators

The simplest forms of morphological operators are defined when either B1 or B2 are empty.
When B1 is empty Equation 3.45 defines an erosion (reduction) and when B2 is empty it defines
a dilation (increase). That is, an erosion operation is given by

X B = {
x
∣∣B1

x ⊂ X
}

(3.46)

and a dilation is given by

X ⊕B = {
x
∣∣B2

x ⊂ Xc
}

(3.47)

In the erosion operator, the hit or miss transformation establishes that a pixel x belongs to the
eroded set if each point of the element B1 translated to x is on X. Since all the points in B1

need to be in X, this operator removes the pixels at the borders of objects in the set X. Thus,
it erodes or shrinks the set. One of the most common applications of this is to remove noise
in thresholded images. This is illustrated in Figure 3.32, where in (a) we have a noisy binary
image, the image is eroded in (b), removing noise but making the letters smaller, and this is
corrected by dilation in (c). We shall show how we can use shape to improve this filtering
process: put the morph into morphology.

Figure 3.33 illustrates the operation of the erosion operator. Figure 3.33(a) contains a 3×3
template that defines the structural element B1. The centre pixel is the origin of the set.

104 Feature Extraction and Image Processing

(a) Original image (b) Erosion (c) Dilation

Figure 3.32 Filtering by morphology

(a) Structural element (b) Image (c) Erosion

Figure 3.33 Example of the erosion operator

Figure 3.33(b) shows an image containing a region of black pixels that defines the set X.
Figure 3.33(c) shows the result of the erosion. The eroded set is formed from black pixels only
and we use grey to highlight the pixels that were removed from X by the erosion operator. For
example, when the structural element is moved to the position shown as a grid in Figure 3.33(c),
the central pixel is removed since only five pixels of the structural element are in X.

The dilation operator defined in Equation 3.47 establishes that a point belongs to the dilated
set when all the points in B2 are in the complement. This operator erodes or shrinks the
complement and when the complement is eroded, the set X is dilated.

Figure 3.34 illustrates a dilation process. The structural element shown in Figure 3.34(a)
defines the set B2. We indicate its elements in white since it should be applied to the complement
of X. Figure 3.34(b) shows an image example and Figure 3.34(c) the result of the dilation.
The black and grey pixels belong to the dilation of X. We use grey to highlight the pixels
that are added to the set. During the dilation, we place the structural element on each pixel
in the complement. These are the white pixels in Figure 3.34(b). When the structural element
is not fully contained, it is removed form the complement, so it becomes part of X. For
example, when the structural element is moved to the position shown as a grid in Figure 3.34(c),
the central pixel is removed from the complement since one of the pixels in the template
is in X.

There is an alternative formulation for the dilation operator that defines the transformation
over the set X instead to its complement. This definition is obtained by observing that when all

Basic image processing operations 105

(a) Structural element (b) Image (c) Dilation

Figure 3.34 Example of the dilation operator

elements of B2 are in Xc, this is equivalent to none of the elements in the negation of B2 being
in X. That is, dilation can also be written as the intersection of translated sets, as

X ⊕B = {
x
∣∣x ∈ ¬B2

x

}
(3.48)

Here, the symbol ¬ denotes negation and it changes the structural element from being applied to
the complement to the set. For example, the negation of the structural element in Figure 3.34(a)
is the set in Figure 3.33(a). Thus, Equation 3.48 defines a process where a point is added to the
dilated set when at least one element of ¬B2 is in X. For example, when the structural element
is at the position shown in Figure 3.34(c), one element in X is in the template, thus the central
point is added to the dilation.

Neither dilation nor erosion specifies a required shape for the structuring element. In general,
it is defined to be square or circular, but other shapes such as a cross or a triangle can be used.
Changes in the shape will produce subtle changes in the results, but the main feature of the
structural element is given by its size, since this determines the strength of the transformation.
In general, applications prefer to use small structural elements (for speed) and perform a
succession of transformations until a desirable result is obtained. Other operators can be defined
by sequences of erosions and dilations. For example, the opening operator is defined by an
erosion followed by a dilation. That is,

X �B = �X B�⊕B (3.49)

Similarly, a closing operator is defined by a dilation followed of an erosion. That is,

X •B = �X ⊕B�B (3.50)

Closing and opening operators are generally used as filters that remove dots characteristic of
pepper noise and to smooth the surface of shapes in images. These operators are generally
applied in succession and the number of times they are applied depends on the structural element
size and image structure.

In addition to filtering, morphological operators can be used to develop other image processing
techniques. For example, edges can be detected by subtracting the original image and the one
obtained by an erosion or dilation. Other example is the computation of skeletons that are thin
representations of a shape. A skeleton can be computed as the union of subtracting images
obtained by applying erosions and openings with structural elements of increasing sizes.

106 Feature Extraction and Image Processing

3.6.2 Grey-level morphology

In the definition in Equation 3.45 pixels belong to either the set X or its complement. Thus,
it only applies to binary images. Greyscale or grey-level morphology extends Equation 3.45
to represent functions as sets, thus morphology operators can be applied to grey-level images.
There are two alternative representations of functions as sets: the cross-section (Serra, 1986;
Serra and Soile, 1994) and the umbra (Sternberg, 1986). The cross-section representation uses
multiple thresholds to obtain a pile of binary images. Thus, the definition of Equation 3.45 can
be applied to grey-level images by considering a collection of binary images as a stack of binary
images formed at each threshold level. The formulation and implementation of this approach
is cumbersome since it requires multiple structural elements and operators over the stack. The
umbra approach is more intuitive and it defines sets as the points contained below functions.
The umbra of a function f�x� consists of all points that satisfy f�x�. That is,

U �X� = ��x� z� �z < f�x�� (3.51)

Here, x represents a pixel and f�x� its grey level. Thus, the space �x� z� is formed by the
combination of all pixels and grey levels. For images, x is defined in two dimensions, thus all
the points of the form �x� z� define a cube in 3D space. An umbra is a collection of points in
this 3D space. Notice that morphological definitions are for discrete sets, thus the function is
defined at discrete points and for discrete grey levels.

Figure 3.35 illustrates the concept of an umbra. For simplicity we show f�x� as a 1D function.
In Figure 3.35(a), the umbra is drawn as a collection of points below the curve. The complement
of the umbra is denoted as Uc�X� and it is given by the points on and above the curve. The
union of U�X� and Uc�X� defines all the image points and grey-level values �x� z�. In grey-level
morphology, images and structural elements are represented by umbrae. Figure 3.35(b) illustrates
the definition of two structural elements. The first example defines a structural element for the
umbra, that is B1. Similar to an image function, the umbra of the structural elements is defined
by the points under the curve. The second example in Figure 3.35(b) defines a structural element
for the complement, that is B2. Similar to the complement of the umbra, this operator defines
the points on and over the curve.

z

x x

z

U

c(x)

B

1

z

x

B

2

f (x)

U (x)

(a) Umbra (b) Structural elements

U (B

1)

U (B

2)

Figure 3.35 Grey-level morphology

Basic image processing operations 107

The hit or miss transformation in Equation 3.45 is extended to grey-level functions by
considering the inclusion operator in the umbrae. That is,

U �X ⊗B� = {
�x� z�

∣∣U (B1
x�z

)⊂ U �X�∩U
(
B2

x�z

)⊂ Uc �X�
}

(3.52)

Similar to the binary case, this equation defines a process that evaluates the inclusion of the
translated structural element B. At difference of the binary definition, the structural element is
translated along the pixels and grey-level values; that is, to the points �x� z�. Thus, a point �x� z�
belongs to the umbra of the hit or miss transformation, if the umbrae of the elements B1 and B2

translated to �x� z� are included in the umbra and its complement, respectively. The inclusion
operator is defined for the umbra and its complement in different ways. An umbra is contained
in other umbra if corresponding values of its function are equal or lower. For the complement,
an umbra is contained if corresponding values of its function are equal or greater.

We can visualize the process in Equation 3.52 by translating the structural element in the
example in Figure 3.35. To determine whether a point �x� z� is in the transformed set, we move
the structural element B1 to the point and see whether its umbra fully intersects U�X�. If that
is the case, the umbra of the structural element is contained in the umbra of the function and
U�B1

x�t� ⊂ U�X� is true. Similarly, to test for U�B2
x�t� ⊂ Uc�X�, we move the structural element

B2 and see whether it is contained in the upper region of the curve. If both conditions are
true, then the point where the operator is translated belongs to the umbra of the hit or miss
transformation.

3.6.3 Grey-level erosion and dilation

Based on the generalization in Equation 3.52, it is possible to reformulate operators developed
for binary morphology so they can be applied to grey-level data. The erosion and dilation
defined in Equations 3.46 and 3.47 are generalized to grey-level morphology as

U �X B� = {
�x� z�

∣∣U (B1
x�z

)⊂ U �X�
}

(3.53)

and

U �X ⊕B� = {
�x� z�

∣∣U (B2
x�z

)⊂ Uc �X�
}

(3.54)

The erosion operator establishes that the point �x� z� belongs to the umbra of the eroded set if
each point of the umbra of the element B1 translated to the point �x� z� is under the umbra of X.
A common way to visualize this process is to think that we move the structural element upwards
in the grey-level axis. The erosion border is the highest point we can reach without going out
of the umbra. Similar to the binary case, this operator removes the borders of the set X by
increasing the separation in holes. Thus, it actually erodes or shrinks the structures in an image.
Figure 3.36(a) illustrates the erosion operator for the image in Figure 3.35(a). Figure 3.36(a)
shows the result of the erosion for the structural element shown on the right. For clarity we have
marked the origin of the structure element with a black spot. In the result, only the black pixels
form the eroded set, and we use grey to highlight the pixels that were removed from the umbra
of X. It is easy to see that when the structural element is translated to a point that is removed,
its umbra intersects Uc�X�.

Analogous to binary morphology, the dilation operator can be seen as an erosion of the
complement of the umbra of X. That is, a point belongs to the dilated set when all the points
in the umbra of B2 are in Uc�X�. This operator erodes or shrinks the set Uc�X�. When the
complement is eroded, the umbra of X is dilated. The dilation operator fills holes decreasing
the separation between prominent structures. This process is illustrated in Figure 3.36(b) for the

108 Feature Extraction and Image Processing

(a) Erosion (b) Dilation

z

x

z

x

Figure 3.36 Grey-level operators

example in Figure 3.36(a). The structural element used is shown to the right in Figure 3.36(b). In
the results, the black and grey pixels belong to the dilation. We use grey to highlight points that
are added to the set. Points are removed from the complement and added to U�X� by translating
the structural element looking for points where the structural element is not fully included in
Uc�X�. It is easy to see that when the structural element is translated to a point that is added to
the dilation, its umbra intersects U�X�.

Similar to Equation 3.48, dilation can be written as intersection of translated sets, thus it can
be defined as an operator on the umbra of an image. That is,

U �X ⊕B� = {
�x� z�

∣∣�x� z� ∈ U
(¬B2

x�z

)}
(3.55)

The negation changes the structural element from being applied to the complement of the umbra
to the umbra. That is, it changes the sing of the umbra to be defined below the curve. For the
example in Figure 3.36(b), it easy to see that if the structural element ¬B2 is translated to any
point added during the dilation, it intersects the umbra at least in one point.

3.6.4 Minkowski operators

Equations 3.53, 3.54 and 3.55 require the computation of intersections of the pixels of a structural
element that is translated to all the points in the image and for each grey-level value. Thus,
its computation involves significant processing. However, some simplifications can be made.
For the erosion process in Equation 3.53, the value of a pixel can be simply computed by
comparing the grey-level values of the structural element and corresponding image pixels. The
highest position that we can translate the structural element without intersecting the complement
is given by the minimum value of the difference between the grey level of the image pixel and
the corresponding pixel in the structural element. That is,

�x� = mini �f �x− i�−B �i�� (3.56)

Here, B�i� denotes the value of the ith pixel of the structural element. Figure 3.37(a) illustrates a
numerical example for this equation. The structural element has three pixels with values 0, 1 and
0, respectively. The subtractions for the position shown in Figure 3.37(a) are 4−0 = 4� 6−1 = 5
and 7−0 = 7. Thus, the minimum value is 4. As shown in Figure 3.37(a), this corresponds to
the highest grey-level value that we can move up to the structural element and it is still fully
contained in the umbra of the function.

Basic image processing operations 109

Figure 3.37 Example of Minkowski difference and addition

Similar to Equation 3.56, the dilation can be obtained by comparing the grey-level values of
the image and the structural element. For the dilation we have

⊕ �x� = maxi �f �x− i�+B �i�� (3.57)

Figure 3.37(b) illustrates a numerical example of this equation. For the position of the structural
element in Figure 3.37(b), the summation gives the values 8 + 0 = 8� 8 + 1 = 9 and 4 + 0 = 4.
As shown in the figure, the maximum value of 9 corresponds to the point where the structural
element still intersects the umbra; therefore, this point should be added to the dilation.

Equations 3.56 and 3.57 are known as the Minkowski operators and they formalize set oper-
ations as summations and differences. Thus, they provide definitions very useful for computer
implementations. Code 3.15 shows the implement of the erosion operator based on Equation 3.56.
Similar to Code 3.5, the value pixels in the output image are obtained by translating the operator

function eroded = Erosion(image,template)
%Implementation of erosion operator
%Parameters: Template and image array of points

%get the image and template dimensions
[irows,icols]=size(image);
[trows,tcols]=size(template);

%create result image
eroded(1:irows,1:icols)=uint8(0);

%half of template
trhalf=floor(trows/2);
tchalf=floor(tcols/2);

%Erosion
for x=trhalf+1:icols-trhalf %columns in the image except border

for y=tchalf+1:irows-tchalf %rows in the image except border
min=256;
for iwin=1:tcols %template columns

for jwin=1:trows %template rows
xi=x-trhalf-1+iwin;
yi=y-tchalf-1+jwin;

110 Feature Extraction and Image Processing

(a) Erosion (b) Dilation

z

x

6

8

10

1

4
3
2

5

7

9

11

0

z

x

6

8

10

1

4
3
2

5

7

9

11

0

sub=double(image(xi,yi))-double(template(iwin,jwin));
if sub<min & sub>0

min=sub;
end

end
end

eroded(x,y)=uint8(min);
end

end

Code 3.15 Erosion implementation

along the image pixels. The code subtracts the value of corresponding image and template pixels
and it sets the value of the pixel in the output image to the minima.

Code 3.16 shows the implement of the dilation operator based on Equation 3.57. This code
is similar to Code 3.15, but corresponding values of the image and the structural element are
added, and the maximum value is set as the result of the dilation.

function dilated = Dilation(image,template)
%Implementation of dilation operator
%Parameters: Template and image array of points

%get the image and template dimensions
[irows,icols]=size(image);
[trows,tcols]=size(template);

%create result image
dilated(1:irows,1:icols)=uint8(0);

%half of template
trhalf=floor(trows/2);
tchalf=floor(tcols/2);

%Dilation
for x=trhalf+1:icols-trhalf %columns in the image except border

for y=tchalf+1:irows-tchalf %rows in the image except border
max=0;
for iwin=1:tcols %template columns
for jwin=1:trows %template rows

xi=x-trhalf-1+iwin;
yi=y-tchalf-1+jwin;
sub=double(image(xi,yi))+double(template(iwin,jwin));
if sub>max & sub>0

max=sub;
end

end
end
dilated(x,y)=uint8(max);

end
end

Code 3.16 Dilation implementation

Basic image processing operations 111

(a) Original image (b) Erosion

(c) Dilation (d) Opening

Figure 3.38 Examples of morphology operators

Figure 3.38 shows an example of the results obtained from the erosion and dilation using
Codes 3.15 and 3.16. The original image shown in Figure 3.38(a) has 128 × 128 pixels and
we used a flat structural element defined by an image with 9 × 9 pixels set to zero. For its
simplicity, flat structural elements are very common in applications and they are generally
set to zero to avoid creating offsets in the grey levels. In Figure 3.38, we can see that the
erosion operation reduces the objects in the image while dilation expands white regions. We
also used the erosion and dilation in succession to perform the opening show in Figure 3.38(d).
The opening operation has a tendency to form regular regions of similar size to the original
image while removing peaks and small regions. The strength of the operators is defined by
the size of the structural elements. In these examples we use a fixed size and we can see that
it strongly modifies regions during dilation and erosion. Elaborate techniques have combined
multiresolution structures and morphological operators to analyse an image with operators of
different sizes (Montiel et al., 1995).

3.7 Further reading

Many texts cover basic point and group operators in much detail; in particular, some texts give
many more examples, such as Russ (1995) and Seul (2000). Books with a C implementation

112 Feature Extraction and Image Processing

often concentrate on more basic techniques, including low-level image processing (Lindley,
1991; Parker, 1994). Some of the more advanced texts include more coverage of low-level
operators (Rosenfeld and Kak, 1982; Castleman,1996). Parker (1994) includes C code for nearly
all the low-level operations in this chapter and Seul (2000) has code too, and there is Matlab
code in Gonzalez (2003). For study of the effect of the median operator on image data, see Bovik
et al. (1987). Some of the newer techniques receive little treatment in the established literature,
except for Chan and Shen (2005; with extensive coverage of noise filtering too). The truncated
median filter is covered again in Davies (2005). For further study of the effects of different
statistical operators on ultrasound images, see Evans and Nixon (1995, 1996). The concept of
scale-space allows for considerably more refined analysis than is given here and while we shall
revisit it later, it is rather unsuited to an introductory text. It was originally introduced by Witkin
(1983) and further developed by others, including Koenderink (1984) who also considers the
heat equation. There is even a series of conferences devoted to scale-space and morphology.

3.8 References

Bamber, J. C. and Daft, C., Adaptive Filtering for Reduction of Speckle in Ultrasonic Pulse-Echo
Images, Ultrasonics, 24(3), pp. 41–44, 1986

Black, M. J., Sapiro, G., Marimont, D. H. and Meeger, D., Robust Anisotropic Diffusion, IEEE
Trans. Image Process., 7(3), pp. 421–432, 1998

Bovik, A. C., Huang, T. S. and Munson, D. C., The Effect of Median Filtering on Edge
Estimation and Detection, IEEE Trans. PAMI, 9(2), pp. 181–194, 1987

Campbell, J. D., Edge Structure and the Representation of Pictures, PhD Thesis, University of
Missouri, Columbia, MO, 1969

Castleman, K. R., Digital Image Processing, Prentice Hall, Englewood Cliffs, NJ, 1996
Chan, T. and Shen, J., Image Processing and Analysis: Variational, PDE, Wavelet, and Stochas-

tic Methods, Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2005
Davies, E. R., On the Noise Suppression Characteristics of the Median, Truncated Median and

Mode Filters, Pattern Recog. Lett., 7(2), pp. 87–97, 1988
Davies, E. R., Machine Vision: Theory, Algorithms and Practicalities, 3rd edn, Morgan

Kaufmann (Elsevier), Amsterdam, Netherlands, 2005
Evans, A. N. and Nixon M. S., Mode Filtering to Reduce Ultrasound Speckle for Feature

Extraction, Proc. IEE – Vision, Image and Signal Processing, 142(2), pp. 87–94, 1995
Evans, A. N. and Nixon M. S., Biased Motion-Adaptive Temporal Filtering for Speckle Reduc-

tion in Echocardiography, IEEE Trans. Med. Imaging, 15(1), pp. 39–50, 1996
Fischl, B. and Schwartz, E. L., Adaptive Nonlocal Filtering: A Fast Alternative to Anisotropic

Diffusion for Image Enhancement, IEEE Trans. PAMI, 21(1), pp. 42–48, 1999
Glasbey, C. A., An Analysis of Histogram-Based Thresholding Algorithms, CVGIP–Graphical

Models Image Process., 55(6), pp. 532–537, 1993
Gonzalez, R. C. and Wintz P., Digital Image Processing, 2nd edn, Addison Wesley, Reading,

MA, 1987
Gonzalez, R. C., Woods, R. E. and Eddins, S., Digital Image Processing using MATLAB, 1st

edn, Prentice Hall, 2003
Hearn, D. and Baker, M. P., Computer Graphics C Version, 2nd edn, Prentice Hall, Upper

Saddle River, NJ, 1997
Hodgson, R. M., Bailey, D. G., Naylor, M. J., Ng, A. and McNeill, S. J., Properties, Implemen-

tations and Applications of Rank Filters, Image Vision Comput., 3(1), pp. 3–14, 1985

Basic image processing operations 113

Huang, T., Yang, G. and Tang, G., A Fast Two-Dimensional Median Filtering Algorithm, IEEE
Trans. ASSP, 27(1), pp. 13–18, 1979

Hurley, D. J., Nixon, M. S. and Carter, J. N., Force Field Energy Functionals for Image Feature
Extraction, Image Vision Comput., 20, pp. 311–317, 2002

Hurley, D. J., Nixon, M. S. and Carter, J. N., Force Field Feature Extraction for Ear Biometrics,
Comput. Vision Image Understand., 98(3), pp. 491–512, 2005

Koenderink, J., The Structure of Images, Biol.Cybern., 50, pp. 363–370, 1984
Lee, S. A., Chung, S. Y. and Park, R. H., A Comparative Performance Study of Several Global

Thresholding Techniques for Segmentation, CVGIP, 52, pp. 171–190, 1990
Lindley, C. A., Practical Image Processing in C, Wiley & Sons, New York, 1991
Loupas, T. and McDicken, W. N., Noise Reduction in Ultrasound Images by Digital Filtering,

Br. J. Radiol., 60, pp. 389–392, 1987
Montiel, M. E., Aguado, A. S., Garza, M. and Alarcón, J., Image Manipulation using M-filters

in a Pyramidal Computer Model, IEEE Trans. PAMI, 17(11), pp. 1110–1115, 1995
Otsu, N., A Threshold Selection Method from Gray-Level Histograms, IEEE Trans. SMC, 9(1),

pp. 62–66, 1979
Parker, J. R., Practical Computer Vision using C, Wiley & Sons, New York, 1994
Perona, P. and Malik, J., Scale-Space and Edge Detection using Anisotropic Diffusion, IEEE

Trans. PAMI, 17(7), pp. 629–639, 1990
Rosenfeld, A. and Kak, A. C., Digital Picture Processing, 2nd edn, Vols 1 and 2, Academic

Press, Orlando, FL, 1982
Rosin, P. L., Unimodal Thresholding, Pattern Recog., 34(11), pp. 2083–2096, 2001
Russ, J. C., The Image Processing Handbook, 4th edn, CRC Press (IEEE Press), Boca Raton,

FL, 1995
Sahoo, P. K., Soltani, S., Wong, A. K. C. and Chen, Y. C., Survey of Thresholding Techniques,

CVGIP, 41(2), pp. 233–260, 1988
Serra J., Introduction to Mathematical Morphology, CVGIP, 35, pp. 283–305, 1986
Serra, J. P. and Soille, P. (eds), Mathematical Morphology and its Applications to Image

Processing, Kluwer Academic,Springer, NY, USA, 1994
Seul, M., O’Gorman, L. and Sammon, M. J., Practical Algorithms for Image Analysis:

Descriptions, Examples, and Code, Cambridge University Press, Cambridge, 2000
Shankar, P. M., Speckle Reduction in Ultrasound B Scans using Weighted Averaging in

Spatial Compounding, IEEE Trans. Ultrasonics Ferroelectrics Frequency Control, 33(6),
pp. 754–758, 1986

Sternberg, S. R., Gray Scale Morphology, CVGIP, 35, pp. 333–355, 1986
Trier, O. D. and Jain, A. K., Goal-Directed Evaluation of Image Binarization Methods, IEEE

Trans. PAMI, 17(12), pp. 1191–1201, 1995
Witkin, A., Scale-Space Filtering: A New Approach to Multi-Scale Description, Proc. Int. Joint

Conf. Artificial Intelligence, pp. 1019–1021, 1983

114 Feature Extraction and Image Processing

. 4 .

Low-level feature
extraction (including

edge detection)

4.1 Overview

We shall define low-level features to be those basic features that can be extracted automatically
from an image without any shape information (information about spatial relationships). As
such, thresholding is a form of low-level feature extraction performed as a point operation.
All of these approaches can be used in high-level feature extraction, where we find shapes in
images. It is well known that we can recognize people from caricaturists’ portraits. That is the
first low-level feature we shall encounter. It is called edge detection and it aims to produce
a line drawing, like one of a face in Figure 4.1(a) and (d), something akin to a caricaturist’s
sketch, although without the exaggeration a caricaturist would imbue. There are very basic
techniques and more advanced ones and we shall look at some of the most popular approaches.
The first order detectors are equivalent to first order differentiation, and the second order edge
detection operators are equivalent to a one-higher level of differentiation. An alternative form
of edge detection is called phase congruency and we shall again see the frequency domain used
to aid analysis, this time for low-level feature extraction.

We shall also consider corner detection, which can be thought of as detecting those points
where lines bend very sharply with high curvature, as for the aeroplane in Figure 4.1(b) and
(e). These are another low-level feature that again can be extracted automatically from the
image. These are largely techniques for localized feature extraction, in this case the curvature,
and the more modern approaches extend to the detection of localized regions or patches of
interest. Finally, we shall investigate a technique that describes motion, called optical flow.
This is illustrated in Figure 4.1(c) and (f) with the optical flow from images of a walking man:
the bits that are moving fastest are the brightest points, like the hands and the feet. All of
these can provide a set of points, albeit points with different properties, but all are suitable for
grouping for shape extraction. Consider a square box moving through a sequence of images.
The edges are the perimeter of the box; the corners are the apices; the flow is how the box
moves. All these can be collected together to find the moving box. We shall start with the
edge detection techniques, with the first order operators, which accords with the chronology of
development. The first order techniques date back more than 30 years.

115

(a) Face image (b) Plane silhouette (c) Consecutive images of
walking subject

(d) Edge detection (e) Corner detection (f) Motion detection

Figure 4.1 Low-level feature detection

Table 4.1 Overview of Chapter 4

Main topic Sub topics Main points

First order
edge detection

What is an edge and how we detect it.
The equivalence of operators to first
order differentiation and the insight
this brings. The need for filtering and
more sophisticated first order
operators.

Difference operation; Roberts Cross,
smoothing, Prewitt, Sobel, Canny. Basis of
the operators and frequency domain
analysis.

Second order
edge detection

Relationship between first and second
order differencing operations. The
basis of a second order operator. The
need to include filtering and better
operations.

Second order differencing; Laplacian,
zero-crossing detection; Marr–Hildreth,
Laplacian of Gaussian, difference of
Gaussian. Scale space.

Other edge
operators

Alternative approaches and
performance aspects. Comparing
different operators.

Other noise models; Spacek. Other edge
models; Petrou.

Phase
congruency

Inverse Fourier transform; phase for
feature extraction. Alternative form of
edge and feature detection

Frequency domain analysis; detecting a
range of features; photometric invariance,
wavelets.

(Continued)

116 Feature Extraction and Image Processing

Table 4.1 (Continued)

Main topic Sub topics Main points

Localized
feature
extraction

Finding localized low-level features;
extension from curvature to patches.
Nature of curvature and computation
from: edge information; by change in
intensity; and by correlation. Motivation
of patch detection and principles of
modern approaches.

Planar curvature; corners. Curvature
estimation by: change in edge direction;
intensity change; Harris corner detector.
Modern feature detectors: SIFT operator
and saliency.

Optical flow
Estimation

Movement and the nature of optical flow.
Estimating the optical flow by differential
approach. Need for other approaches
(including matching regions).

Detection by differencing. Optical flow;
aperture problem; smoothness constraint.
Differential approach; Horn and Schunk
method; correlation.

4.2 First order edge detection operators

4.2.1 Basic operators

Many approaches to image interpretation are based on edges, since analysis based on edge
detection is insensitive to change in the overall illumination level. Edge detection highlights
image contrast. Detecting contrast, which is difference in intensity, can emphasize the boundaries
of features within an image, since this is where image contrast occurs. This is how human
vision can perceive the perimeter of an object, since the object is of different intensity to its
surroundings. Essentially, the boundary of an object is a step change in the intensity levels.
The edge is at the position of the step change. To detect the edge position we can use first
order differentiation, since this emphasizes change; first order differentiation gives no response
when applied to signals that do not change. The first edge detection operators to be studied here
are group operators which aim to deliver an output that approximates the result of first order
differentiation.

A change in intensity can be revealed by differencing adjacent points. Differencing horizon-
tally adjacent points will detect vertical changes in intensity and is often called a horizontal
edge-detector by virtue of its action. A horizontal operator will not show up horizontal changes
in intensity since the difference is zero. (This is the form of edge detection used within the
anisotropic diffusion smoothing operator in the previous chapter.) When applied to an image P
the action of the horizontal edge-detector forms the difference between two horizontally adjacent
points, as such detecting the vertical edges, Ex, as:

Exx�y = ∣∣Px�y −Px+1�y

∣∣ ∀x ∈ 1�N −1� y ∈ 1�N (4.1)

To detect horizontal edges we need a vertical edge-detector which differences vertically adjacent
points. This will determine horizontal intensity changes, but not vertical ones, so the vertical
edge-detector detects the horizontal edges, Ey, according to:

Eyx�y = ∣∣Px�y −Px�y+1

∣∣ ∀x ∈ 1�N� y ∈ 1�N −1 (4.2)

Figure 4.2(b) and (c) show the application of the vertical and horizontal operators to the
synthesized image of the square in Figure 4.2(a). The left-hand vertical edge in Figure 4.2(b)

Low-level feature extraction (including edge detection) 117

(a) Original image (b) Vertical edges, Equation 4.1

(c) Horizontal edges, Equation 4.2 (d) All edges, Equation 4.4

Figure 4.2 First order edge detection

appears to be beside the square by virtue of the forward differencing process. Likewise, the
upper edge in Figure 4.2(c) appears above the original square.

Combining the two gives an operator E that can detect vertical and horizontal edges together.
That is,

Ex�y = ∣∣Px�y −Px+1�y +Px�y −Px�y+1

∣∣ ∀x� y ∈ 1�N −1 (4.3)

which gives:

Ex�y = ∣∣2×Px�y −Px+1�y −Px�y+1

∣∣ ∀x� y ∈ 1�N −1 (4.4)

Equation 4.4 gives the coefficients of a differencing template which can be convolved with an
image to detect all the edge points, such as those shown in Figure 4.2(d). As in the previous
chapter, the current point of operation (the position of the point we are computing a new
value for) is shaded. The template shows only the weighting coefficients and not the modulus
operation. Note that the bright point in the lower right corner of the edges of the square in
Figure 4.2(d) is much brighter than the other points. This is because it is the only point to be
detected as an edge by both the vertical and the horizontal operators and is therefore much
brighter than the other edge points. In contrast, the top left-hand corner point is detected by
neither operator and so does not appear in the final image.

The template in Figure 4.3 is convolved with the image to detect edges. The direct
implementation of this operator, i.e. using Equation 4.4 rather than template convolution, is
given in Code 4.1. Template convolution could be used, but it is unnecessarily complex in
this case.

118 Feature Extraction and Image Processing

2

–1

–1

0

Figure 4.3 Template for first order difference

edge(pic):= newpic←zero(pic)
for x∈0.. cols(pic)–2
 for y∈0.. rows(pic)–2

newpicy,x← 2.picy,x–picy,x+1–picy+1,x
newpic

Code 4.1 First order edge detection

Uniform thresholding (Section 3.3.4) is often used to select the brightest points, following
application of an edge detection operator. The threshold level controls the number of selected
points; too high a level can select too few points, whereas too low a level can select too
much noise. Often, the threshold level is chosen by experience or by experiment, but it can be
determined automatically by considering edge data (Venkatesh and Rosin, 1995), or empirically
(Haddon, 1988). For the moment, let us concentrate on the development of edge detection
operators, rather than on their application.

4.2.2 Analysis of the basic operators

Taylor series analysis reveals that differencing adjacent points provides an estimate of the first
order derivative at a point. If the difference is taken between points separated by �x then by
Taylor expansion for f�x+�x� we obtain:

f�x+�x� = f�x�+�x×f ′�x�+ �x2

2! ×f ′′�x�+O��x3� (4.5)

By rearrangement, the first order derivative f ′�x� is:

f ′�x� = f�x+�x�−f�x�

�x
−O��x� (4.6)

This shows that the difference between adjacent points is an estimate of the first order derivative,
with error O��x�. This error depends on the size of the interval �x and on the complexity
of the curve. When �x is large this error can be significant. The error is also large when
the high-order derivatives take large values. In practice, the short sampling of image pixels
and the reduced high-frequency content make this approximation adequate. However, the error
can be reduced by spacing the differenced points by one pixel. This is equivalent to computing
the first order difference delivered by Equation 4.1 at two adjacent points, as a new horizontal
difference Exx, where

Exxx�y = Exx+1�y +Exx�y = Px+1�y −Px�y +Px�y −Px−1�y = Px+1�y −Px−1�y (4.7)

Low-level feature extraction (including edge detection) 119

This is equivalent to incorporating spacing to detect the edges Exx by:

Exxx�y = ∣∣Px+1�y −Px−1�y

∣∣ ∀x ∈ 2�N −1� y ∈ 1�N (4.8)

To analyse this, again by Taylor series, we expand f�x−�x� as:

f�x−�x� = f�x�−�x×f ′�x�+ �x2

2! ×f ′′�x�−O��x3� (4.9)

By differencing Equation 4.9 from Equation 4.5, we obtain the first order derivative as:

f ′�x� = f�x+�x�−f�x−�x�

2�x
−O��x2� (4.10)

Equation 4.10 suggests that the estimate of the first order difference is now the differ-
ence between points separated by one pixel, with error O��x2�. If �x < 1, this error is
clearly smaller than the error associated with differencing adjacent pixels, in Equation 4.6.
Again, averaging has reduced noise, or error. The template for a horizontal edge detection
operator is given in Figure 4.4(a). This template gives the vertical edges detected at its
centre pixel. A transposed version of the template gives a vertical edge detection operator
(Figure 4.4b).

1
1

–1
–1

0

(a) Mx (b) My

0

Figure 4.4 Templates for improved first order difference

The Roberts cross operator (Roberts, 1965) was one of the earliest edge detection operators. It
implements a version of basic first order edge detection and uses two templates which difference
pixel values in a diagonal manner, as opposed to along the axes’ directions. The two templates
are called M+ and M− and are given in Figure 4.5.

+1 +1

–1

(a) M

– (b) M

+

–10 0

0 0

Figure 4.5 Templates for Roberts cross operator

In implementation, the maximum value delivered by application of these templates is stored
as the value of the edge at that point. The edge point Ex�y is then the maximum of the two
values derived by convolving the two templates at an image point Px�y:

Ex�y = max
{∣∣M+ ∗Px�y

∣∣ � ∣∣M− ∗Px�y

∣∣} ∀x� y ∈ 1�N −1 (4.11)

120 Feature Extraction and Image Processing

The application of the Roberts cross operator to the image of the square is shown in Figure 4.6.
The two templates provide the results in Figure 4.6(a) and (b) and the result delivered by the
Roberts operator is shown in Figure 4.6(c). Note that the corners of the square now appear in
the edge image, by virtue of the diagonal differencing action, whereas they were less apparent
in Figure 4.2(d) (where the top left corner did not appear).

(a) M
– (b) M

+ (c) M

Figure 4.6 Applying the Roberts cross operator

An alternative to taking the maximum is simply to add the results of the two templates
together to combine horizontal and vertical edges. There are of course more varieties of edges
and it is often better to consider the two templates as providing components of an edge vector:
the strength of the edge along the horizontal and vertical axes. These give components of a
vector and can be added in a vectorial manner (which is perhaps more usual for the Roberts
operator). The edge magnitude is the length of the vector, and the edge direction is the vector’s
orientation, as shown in Figure 4.7.

M

Mx

θ

My

Figure 4.7 Edge detection in vectorial format

4.2.3 Prewitt edge detection operator

Edge detection is akin to differentiation. Since it detects change it is bound to respond to noise,
as well as to step-like changes in image intensity (its frequency domain analogue is high-pass
filtering, as illustrated in Figure 2.26c). It is therefore prudent to incorporate averaging within
the edge detection process. We can then extend the vertical template, Mx, along three rows,

Low-level feature extraction (including edge detection) 121

1 1 1 1
0 0

–1 –1 –1

–1
–1
–1

0
00

0
1
1

(a) Mx (b) My

Figure 4.8 Templates for Prewitt operator

and the horizontal template, My, along three columns. These give the Prewitt edge detection
operator (Prewitt and Mendelsohn, 1966), which consists of two templates (Figure 4.8).

This gives two results: the rate of change of brightness along each axis. As such, this is the
vector illustrated in Figure 4.7: the edge magnitude, M , is the length of the vector and the edge
direction, �, is the angle of the vector:

M�x�y� = √
Mx�x� y�2 +My�x� y�2 (4.12)

��x� y� = tan−1

(
My�x� y�

Mx�x� y�

)
(4.13)

Again, the signs of Mx and My can be used to determine the appropriate quadrant for the edge
direction. A Mathcad implementation of the two templates of Figure 4.8 is given in Code 4.2.
In this code, both templates operate on a 3×3 subpicture (which can be supplied, in Mathcad,
using the submatrix function). Again, template convolution could be used to implement this
operator, but (as with direct averaging and basic first order edge detection) it is less suited to
simple templates. Also, the provision of edge magnitude and direction would require extension
of the template convolution operator given earlier (Code 3.5).

Prewitt33_x(pic):=
2

y=0

picy,0 –
2

y=0

picy,2

2

x=0

pic0,x –
2

x=0

Prewitt33_ y(pic):= pic2,x

(a)Mx (b)My

∑ ∑ ∑ ∑

Code 4.2 Implementing the Prewitt operator

When applied to the image of the square (Figure 4.9a), we obtain the edge magnitude and
direction (Figure 4.9b and d, respectively, where part d does not include the border points, only
the edge direction at processed points). The edge direction in Figure 4.9(d) is shown measured
in degrees, where 0� and 360� are horizontal, to the right, and 90� is vertical, upwards. Although
the regions of edge points are wider owing to the operator’s averaging properties, the edge data
is clearer than the earlier first order operator, highlighting the regions where intensity changed
in a more reliable fashion (compare, for example, the upper left corner of the square which was
not revealed earlier). The direction is less clear in an image format and is better exposed by
Mathcad’s vector format in Figure 4.9(c). In vector format, the edge direction data is clearly

122 Feature Extraction and Image Processing

(a) Original image (b) Edge magnitude

prewitt_vec0, 1, prewitt_vec0, 0

dir =

313

298

273

269

242

225

331

315

276

268

225

210

3

1

13

199

181

183

3

2

43

117

178

179

24

42

88

91

133

155

47

63

88

92

116

132

(c) Vector format (d) Edge direction

Figure 4.9 Applying the Prewitt operator

less well defined at the corners of the square (as expected, since the first order derivative is
discontinuous at these points).

4.2.4 Sobel edge detection operator

When the weight at the central pixels, for both Prewitt templates, is doubled, this gives the
famous Sobel edge detection operator which, again, consists of two masks to determine
the edge in vector form. The Sobel operator was the most popular edge detection operator until
the development of edge detection techniques with a theoretical basis. It proved popular because
it gave, overall, a better performance than other contemporaneous edge detection operators,
such as the Prewitt operator. The templates for the Sobel operator can be found in Figure 4.10.

The Mathcad implementation of these masks is very similar to the implementation of the
Prewitt operator (Code 4.2), again operating on a 3×3 subpicture. This is the standard formu-
lation of the Sobel templates, but how do we form larger templates, say for 5 × 5 or 7 × 7?
Few textbooks state its original derivation, but it has been attributed (Heath et al., 1997) as
originating from a PhD thesis (Sobel, 1970). Unfortunately, a theoretical basis that can be used
to calculate the coefficients of larger templates is rarely given. One approach to a theoretical
basis is to consider the optimal forms of averaging and of differencing. Gaussian averaging
has already been stated to give optimal averaging. The binomial expansion gives the integer
coefficients of a series that, in the limit, approximates the normal distribution. Pascal’s triangle

Low-level feature extraction (including edge detection) 123

gives sets of coefficients for a smoothing operator which, in the limit, approach the coefficients
of a Gaussian smoothing operator. Pascal’s triangle is then:

Window size
2 1 1
3 1 2 1
4 1 3 3 1
5 1 4 6 4 1

This gives the (unnormalized) coefficients of an optimal discrete smoothing operator (it is
essentially a Gaussian operator with integer coefficients). The rows give the coefficients for
increasing template, or window, size. The coefficients of smoothing within the Sobel operator
(Figure 4.10) are those for a window size of 3. In Mathcad, by specifying the size of the
smoothing window as winsize, the template coefficients smoothx_win can be calculated at
each window point x_win according to Code 4.3.

1

1
2

1 2 1
0 0

–1 –2 –1

–1

–1
–2 0

0
0
0

(a) Mx (b) My

Figure 4.10 Templates for Sobel operator

smoothx_win:=
(winsize–1)!

(winsize–1–x_win)!.x_win!

Code 4.3 Smoothing function

The differencing coefficients are given by Pascal’s triangle for subtraction:

Window size
2 1 −1
3 1 0 −1
4 1 1 −1 −1
5 1 2 0 −2 −1

This can be implemented by subtracting the templates derived from two adjacent expansions
for a smaller window size. Accordingly, we require an operator that can provide the coefficients
of Pascal’s triangle for arguments which are a window size n and a position k. The operator is
the Pascal(k,n) operator in Code 4.4.

124 Feature Extraction and Image Processing

Pascal(k,n):= if(k≥0)⋅(k≤n)n!

(n–k)!⋅k!
otherwise0

Code 4.4 Pascal’s triangle

The differencing template, diffx_win, is then given by the difference between two Pascal
expansions, as given in Code 4.5.

diffx_win:= Pascal(x_win, winsize–2)–Pascal(x_win–1, winsize–2)

Code 4.5 Differencing function

These give the coefficients of optimal differencing and optimal smoothing. This general form
of the Sobel operator combines optimal smoothing along one axis, with optimal differencing
along the other. This general form of the Sobel operator is then given in Code 4.6, which
combines the differencing function along one axis, with smoothing along the other.

Sobel_x(pic):=
winsize–1

x_win=0

winsize–1

y_win=0
smoothy_win.diffx_win.picy_win,x_win

(a)Mx

Sobel_ y(pic):=
winsize–1

x_win=0

winsize–1

y_win=0
smoothx_win.diffy_win.picy_win,x_win

(b)My

∑

∑ ∑

∑

Code 4.6 Generalized Sobel templates

This generates a template for the Mx template for a Sobel operator, given for 5 × 5 in
Code 4.7.

Sobel_template_x =

1

4

6

4

1

2

8

12

8

2

0

0

0

0

0

–2

–8

–12

–8

–2

–1

–4

–6

–4

–1

Code 4.7 5×5 Sobel template Mx

Low-level feature extraction (including edge detection) 125

All template-based techniques can be larger than 5×5 so, as with any group operator, there
is a 7 × 7 Sobel, and so on. The virtue of a larger edge detection template is that it involves
more smoothing to reduce noise, but edge blurring becomes a great problem. The estimate of
edge direction can be improved with more smoothing since it is particularly sensitive to noise.
There are circular edge operators designed specifically to provide accurate edge direction data.

The Sobel templates can be invoked by operating on a matrix of dimension equal to the
window size, from which edge magnitude and gradient are calculated. The Sobel function
(Code 4.8) convolves the generalized Sobel template (of size chosen to be winsize) with
the picture supplied as argument, to give outputs which are the images of edge magnitude and
direction, in vector form.

Sobel(pic,winsize):=

edge_mag←zero(pic)
edge_dir←zero(pic)
for x∈w2.. cols(pic)–1–w2
 for y∈w2.. rows(pic)–1–w2
 x_mag←Sobel_x(submatrix(pic,y–w2,y+w2,x–w2,x+w2))
 y_mag←Sobel_y(submatrix(pic,y–w2,y+w2,x–w2,x+w2))

(edge_mag edge_dir)

w2←floor
winsize

2

⎛
⎝⎜

⎞
⎠⎟

edge_diry,x←direction(x_mag,y_mag)

edge_magy,x←floor
magnitude(x_mag,y_mag)

mag_normalise
⎛
⎝⎜

⎞
⎠⎟

Code 4.8 Generalized Sobel operator

The results of applying the 3 × 3 Sobel operator can be seen in Figure 4.11. The original
face image (Figure 4.11a) has many edges in the hair and in the region of the eyes. This is
shown in the edge magnitude image (Figure 4.11b). When this is thresholded at a suitable value,
many edge points are found (Figure 4.11c). Note that in areas of the image where the brightness

(a) Original image (b) Sobel edge magnitude (c) Thresholded magnitude

Figure 4.11 Applying the Sobel operator

126 Feature Extraction and Image Processing

remains fairly constant, such as the cheek and shoulder, there is little change, which is reflected
by low edge magnitude and few points in the thresholded data.

The Sobel edge direction data can be arranged to point in different ways, as can the direction
provided by the Prewitt operator. If the templates are inverted to be of the form shown in
Figure 4.12, the edge direction will be inverted around both axes. If only one of the templates
is inverted, the measured edge direction will be inverted around the chosen axis.

–1

–1
–2

–1

1
0

–1

1
0

–2

2
02

1

1

0
0
0

(a) –Mx (b) –My

Figure 4.12 Inverted templates for Sobel operator

This gives four possible directions for measurement of the edge direction provided by the
Sobel operator, two of which (for the templates of Figures 4.10 and 4.12) are illustrated
in Figure 4.13(a) and (b), respectively, where inverting the Mx template does not highlight

sobel_vec0,0, sobel_vec0,1

sobel_vec0,0
T, sobel_vec0,1

T –sobel_vec0,0
T, sobel_vec0,1

T

–sobel_vec0,0, sobel_vec0,1

(a) Mx, My (b) –Mx, My

(c) My, Mx (d) – My, – Mx

Figure 4.13 Alternative arrangements of edge direction

Low-level feature extraction (including edge detection) 127

discontinuity at the corners. (The edge magnitude of the Sobel applied to the square is not
shown, but is similar to that derived by application of the Prewitt operator; Figure 4.9b). By
swapping the Sobel templates, the measured edge direction can be arranged to be normal to the
edge itself (as opposed to tangential data along the edge). This is illustrated in Figure 4.13(c)
and (d) for swapped versions of the templates given in Figures 4.10 and 4.12, respectively. The
rearrangement can lead to simplicity in algorithm construction when finding shapes, as to be
shown later. Any algorithm that uses edge direction for finding shapes must know precisely
which arrangement has been used, since the edge direction can be used to speed algorithm
performance, but it must map precisely to the expected image data if used in that way.

Detecting edges by template convolution again has a frequency domain interpretation. The
magnitude of the Fourier transform of a 5×5 Sobel template of Code 4.7 is given in Figure 4.14.
The Fourier transform is given in relief in Figure 4.14(a) and as a contour plot in Figure 4.14(b).
The template is for horizontal differencing action, My, which highlights vertical change. Accord-
ingly, its transform reveals that it selects vertical spatial frequencies, while smoothing the
horizontal ones. The horizontal frequencies are selected from a region near the origin (low-pass
filtering) , whereas the vertical frequencies are selected away from the origin (high-pass) . This
highlights the action of the Sobel operator; combining smoothing of the spatial frequencies along
one axis with differencing of the other. In Figure 4.14, the smoothing is of horizontal spatial
frequencies, while the differencing is of vertical spatial frequencies.

T
Fourier_of_Sobel Fourier_of_Sobel

(a) Relief plot (b) Contour plot

0 2 4 6
0

2

4

6

⎛
⎝⎜

⎞
⎠⎟

Figure 4.14 Fourier transform of the Sobel operator

An alternative frequency domain analysis of the Sobel can be derived via the z-transform
operator. This is more the domain of signal processing courses in electronic and electrical
engineering, and is included here for completeness and for linkage with signal processing.
Essentially, z−1 is a unit time-step delay operator, so z can be thought of a unit (time-step)
advance, so f�t−�� = z−1f�t� and f�t+�� = zf�t�, where � is the sampling interval. Given that
we have two spatial axes x and y, we can express the Sobel operator of Figure 4.12(a) using
delay and advance via the z-transform notation along the two axes as

S�x� y� =
−z−1

x z−1
y +0+ zxz

−1
y

−2z−1
x +0+ 2zx

−z−1
x zy +0+ zxzy

(4.14)

128 Feature Extraction and Image Processing

including zeros for the null template elements. Given that there is a standard substitution (by
conformal mapping, evaluated along the frequency axis) z−1 = e−j	t to transform from the time
�z� domain to the frequency domain �	�, we have

Sobel
(
	x�	y

) = −e−j	xte−j	yt + ej	xte−j	yt −2e−j	xt +2ej	xt − e−j	xtej	yt + ej	xtej	yt

= (
e−j	yt +2+ ej	yt

) (−e−j	xt + ej	xt
)

=
(
e

−j	y t

2 + e
j	yt

2

)2 (−e−j	xt + ej	xt
)

(4.15)

= 8j cos2
(

	yt

2

)
sin �	xt�

where the transform Sobel is a function of spatial frequency, 	x�	y, along the x and the y axes.
This conforms rather well to the separation between smoothing along one axis (the first part
of Equation 4.15) and differencing along the other; here by differencing (high-pass) along the
x-axis and averaging (low-pass) along the y-axis. This provides an analytic form of the function
shown in Figure 4.14; the relationship between the discrete Fourier transform (DFT), and this
approach is evident by applying the DFT relationship (Equation 2.15) to the components of the
Sobel operator.

4.2.5 Canny edge detection operator

The Canny edge detection operator (Canny, 1986) is perhaps the most popular edge detection
technique at present. It was formulated with three main objectives:

• optimal detection with no spurious responses
• good localization with minimal distance between detected and true edge position
• single response to eliminate multiple responses to a single edge.

The first requirement aims to reduce the response to noise. This can be effected by optimal
smoothing; Canny was the first to demonstrate that Gaussian filtering is optimal for edge
detection (within his criteria). The second criterion aims for accuracy: edges are to be detected,
in the right place. This can be achieved by a process of non-maximum suppression (which is
equivalent to peak detection). Non-maximum suppression retains only those points at the top of
a ridge of edge data, while suppressing all others. This results in thinning: the output of non-
maximum suppression is thin lines of edge points, in the right place. The third constraint concerns
location of a single edge point in response to a change in brightness. This is because more than
one edge can be denoted to be present, consistent with the output obtained by earlier edge
operators.

Canny showed that the Gaussian operator was optimal for image smoothing. Recalling that
the Gaussian operator g�x� y�
� is given by:

g �x� y�
� = e
−�x2+y2�

2
2 (4.16)

Low-level feature extraction (including edge detection) 129

by differentiation, for unit vectors Ux = �1� 0� and Uy = �0� 1� along the coordinate axes, we
obtain:

g �x� y� = �g �x� y�
�

�x
Ux + �g �x� y�
�

�y
Uy

= − x

2
e

−�x2+y2�
2
2 Ux − y

2
e

−�x2+y2�
2
2 Uy

(4.17)

Equation 4.17 gives a way to calculate the coefficients of a derivative of Gaussian template
that combines first order differentiation with Gaussian smoothing. This is a smoothed image,
and so the edge will be a ridge of data. To mark an edge at the correct point (and to reduce
multiple response), we can convolve an image with an operator which gives the first derivative
in a direction normal to the edge. The maximum of this function should be the peak of the edge
data, where the gradient in the original image is sharpest, and hence the location of the edge.
Accordingly, we seek an operator, Gn, which is a first derivative of a Gaussian function g in
the direction of the normal, n⊥:

Gn = �g

�n⊥
(4.18)

where n⊥ can be estimated from the first order derivative of the Gaussian function g convolved
with the image P, and scaled appropriately as:

n⊥ = �P ∗g�

��P ∗g�� (4.19)

The location of the true edge point is then at the maximum point of Gn convolved with the
image. This maximum is when the differential (along n⊥) is zero:

��Gn ∗P�

�n⊥
= 0 (4.20)

By substitution of Equation 4.18 in Equation 4.20,

�2�G∗P�

�n⊥2
= 0 (4.21)

Equation 4.21 provides the basis for an operator which meets one of Canny’s criteria, namely
that edges should be detected in the correct place. This is non-maximum suppression, which is
equivalent to retaining peaks (and thus equivalent to differentiation perpendicular to the edge),
which thins the response of the edge detection operator to give edge points that are in the right
place, without multiple response and with minimal response to noise. However, it is virtually
impossible to achieve an exact implementation of Canny given the requirement to estimate the
normal direction.

A common approximation is, as illustrated in Figure 4.15:

1. Use Gaussian smoothing (as in Section 3.4.4) (Figure 4.15a).
2. Use the Sobel operator (Figure 4.15b).
3. Use non-maximal suppression (Figure 4.15c).
4. Threshold with hysteresis to connect edge points (Figure 4.15d).

130 Feature Extraction and Image Processing

(a) Gaussian
smoothing

(b) Sobel edge
detection

(c) Non-maximum
suppression

(d) Hysteresis
thresholding

Figure 4.15 Stages in Canny edge detection

Note that the first two stages can be combined using a version of Equation 4.17, but are
separated here so that all stages in the edge detection process can be shown clearly. An alternative
implementation of Canny’s approach (Deriche, 1987) used Canny’s criteria to develop two-
dimensional (2D) recursive filters, claiming performance and implementation advantage over
the approximation here.

Non-maximum suppression essentially locates the highest points in the edge magnitude data.
This is performed by using edge direction information, to check that points are at the peak of a
ridge. Given a 3×3 region, a point is at a maximum if the gradient at either side of it is less than
the gradient at the point. This implies that we need values of gradient along a line that is normal
to the edge at a point. This is illustrated in Figure 4.16, which shows the neighbouring points
to the point of interest, Px�y, the edge direction at Px�y and the normal to the edge direction at
Px�y. The point Px�y is to be marked as maximum if its gradient, M�x�y�, exceeds the gradient
at points 1 and 2, M1 and M2, respectively. Since we have a discrete neighbourhood, M1 and

Edge
direction
at Px,y

Normal
to edge
direction

Px –1,y –1

Px,y +1 Px +1,y +1

Px +1,y

Px +1,y –1
M1

M2

Mx

My Px,yPx –1,y

Px –1,y +1

Px ,y –1

Figure 4.16 Interpolation in non-maximum suppression

Low-level feature extraction (including edge detection) 131

M2 need to be interpolated, First order interpolation using Mx and My at Px�y, and the values of
Mx and My for the neighbours gives:

M1 = My

Mx
M�x+1� y −1�+ Mx−My

Mx
M�x� y −1� (4.22)

and

M2 = My

Mx
M�x−1� y +1�+ Mx−My

Mx
M�x� y +1� (4.23)

The point Px�y is then marked as a maximum if M�x�y� exceeds both M1 and M2�, otherwise
it is set to zero. In this manner the peaks of the ridges of edge magnitude data are retained,
while those not at the peak are set to zero. The implementation of non-maximum suppression
first requires a function that generates the coordinates of the points between which the edge
magnitude is interpolated. This is the function get_coords in Code 4.9, which requires the
angle of the normal to the edge direction, returning the coordinates of the points beyond and
behind the normal.

get_coords(angle):= δ←0.000000000000001

(x1 y1 x2 y2)

.cos angle+
π
8

2x1←ceil –0.5–δ
⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟

x2←ceil .cos angle–
π
8

2 –0.5–δ⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟

y2←ceil .–sin angle–
π
8

2 –0.5–δ⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟

.–sin angle–
π
8

y1←ceil 2 –0.5–δ⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟

Code 4.9 Generating coordinates for interpolation

The non-maximum suppression operator, non_max in Code 4.10, then interpolates the
edge magnitude at the two points either side of the normal to the edge direction. If the edge
magnitude at the point of interest exceeds these two then it is retained, otherwise it is dis-
carded. Note that the potential singularity in Equations 4.22 and 4.23 can be avoided by use
of multiplication in the magnitude comparison, as opposed to division in interpolation, as
it is in Code 4.10. In practice, however, this implementation, Codes 4.9 and 4.10, can suf-
fer from numerical imprecision and ill-conditioning. Accordingly, it is better to implement a
hand-crafted interpretation of Equations 4.22 and 4.23 applied separately to the four quadrants.
This is too lengthy to be included here, but a version is included with the Worksheets for
Chapter 4.

The transfer function associated with hysteresis thresholding is shown in Figure 4.17. Points
are set to white once the upper threshold is exceeded and set to black when the lower threshold
is reached. The arrows reflect possible movement: there is only one way to change from black
to white and vice versa.

132 Feature Extraction and Image Processing

non_max(edges):=

new_edge

for i∈1..cols(edges0,0)–2
for j∈1..rows(edges0,0)–2

Mx←(edges0,0)j,i

My← (edges0,1)j,i

otherwiseo←
–π

2
adds←get_coords(o)

M1←

+(Mx–My).(edges0,2)j+adds0,3,i+adds0,2

My.(edges0,2)j+adds0,1,i+adds0,0...

adds←get_coords(o+π)

+(Mx–My).(edges0,2)j+adds0,3,i+adds0,2

My.(edges0,2)j+adds0,1,i+adds0,0...M2←

new_edgej,i←(edges0,2)j,i
if isbigger

new_edgej,i←0 otherwise

isbigger←Mx.(edges0,2)j,i
>M1 Mx.(edges0,2)j,i

≥M2

+
.Mx.(edges0,2)j,i

< M1 Mx.(edges0,2)j,i
≤M2

if My ≠ 0o←atan
Mx
My

⎛
⎝⎜

⎞
⎠⎟

if(My=0).(Mx>0)o←
π

2
⎛
⎝⎜

⎞
⎠⎟

Code 4.10 Non-maximum suppression

Thresholded data

White

BrightnessBlack

Lower switching threshold
Upper switching threshold

Figure 4.17 Hysteresis thresholding transfer function

The application of non-maximum suppression and hysteresis thresholding is illustrated in
Figure 4.18. This contains a ridge of edge data, the edge magnitude. The action of non-maximum
suppression is to select the points along the top of the ridge. Given that the top of the ridge
initially exceeds the upper threshold, the thresholded output is set to white until the peak of

Low-level feature extraction (including edge detection) 133

Hysteresis thresholded edge data

Upper switching threshold

Lower switching threshold

Non-maximum suppression

Figure 4.18 Action of non-maximum suppression and hysteresis thresholding

the ridge falls beneath the lower threshold. The thresholded output is then set to black until the
peak of the ridge exceeds the upper switching threshold.

Hysteresis thresholding requires two thresholds, an upper and a lower threshold. The process
starts when an edge point from non-maximum suppression is found to exceed the upper threshold.
This is labelled as an edge point (usually white, with a value of 255) and forms the first point
of a line of edge points. The neighbours of the point are then searched to determine whether or
not they exceed the lower threshold, as in Figure 4.19. Any neighbour that exceeds the lower
threshold is labelled as an edge point and its neighbours are then searched to determine whether
or not they exceed the lower threshold. In this manner, the first edge point found (the one that
exceeded the upper threshold) becomes a seed point for a search. Its neighbours, in turn, become
seed points if they exceed the lower threshold, and so the search extends, along branches arising
from neighbours that exceeded the lower threshold. For each branch, the search terminates at
points that have no neighbours above the lower threshold.

≥ lower
≥ lower

≥ lower

≥ lower

seed ≥ upper

≥ lower

≥ lower
≥ lower

≥ lower

Figure 4.19 Neighbourhood search for hysteresis thresholding

In implementation, hysteresis thresholding clearly requires recursion, since the length of any
branch is unknown. Having found the initial seed point, the seed point is set to white and its
neighbours are searched. The coordinates of each point are checked to see whether it is within
the picture size, according to the operator check, given in Code 4.11.

check(xc,yc,pic):= 1 if (xc≥1)⋅(xc≤cols(pic)–2)⋅(yc≥1)⋅(yc≤rows(pic)–2)
0 otherwise

Code 4.11 Checking points are within an image

134 Feature Extraction and Image Processing

The neighbourhood (as in Figure 4.19) is then searched by a function connect (Code 4.12)
which is fed with the non-maximum suppressed edge image, the coordinates of the seed point
whose connectivity is under analysis and the lower switching threshold. Each of the neighbours
is searched if its value exceeds the lower threshold, and the point has not already been labelled
as white (otherwise the function would become an infinite loop). If both conditions are satisfied
(and the point is within the picture) then the point is set to white and becomes a seed point for
further analysis. This implementation tries to check the seed point as well, even though it has
already been set to white. The operator could be arranged not to check the current seed point,
by direct calculation without the for loops, and this would be marginally faster. Including an
extra Boolean constraint to inhibit check of the seed point would only slow the operation. The
connect routine is recursive: it is called again by the new seed point.

connect(x,y,nedg,low):=

nedgy1,x1←255

nedg←connect(x1,y1,nedg,low)

if(nedgy1,x1≥low)⋅(nedgy1,x1≠255)⋅check
 (x1,y1,nedg)

for x1∈x−1.. x+1
for y1∈y−1.. y+1

nedg

Code 4.12 Connectivity analysis after seed point location

The process starts with the point that exceeds the upper threshold. When such a point is
found, it is set to white and it becomes a seed point where connectivity analysis starts. The
calling operator for the connectivity analysis, hyst_thr, which starts the whole process, is
given in Code 4.13. When hyst_thr is invoked, its arguments are the coordinates of the
point of current interest, the non-maximum suppressed edge image, n_edg (which is eventually
delivered as the hysteresis thresholded image), and the upper and lower switching thresholds,
upp and low, respectively. For display purposes, this operator requires a later operation to
remove points which have not been set to white (to remove those points which are below the
upper threshold and which are not connected to points above the lower threshold). This is rarely
used in application since the points set to white are the only ones of interest in later processing.

hyst_thr(n_edg,upp,low):= for x∈1.. cols(n_edg)–2
for y∈1.. rows(n_edg)–2
if[(n_edgy,x

≥ upp)·(n_edgy,x ≠255)]

n_edgy,x←255

n_edg←connect(x,y,n_edg,low)

n_edg

Code 4.13 Hysteresis thresholding operator

Low-level feature extraction (including edge detection) 135

A comparison with the results of uniform thresholding is shown in Figure 4.20. Figure 4.20(a)
shows the result of hysteresis thresholding of a Sobel edge detected image of the eye with an
upper threshold set to 40 pixels, and a lower threshold of 10 pixels. Figure 4.20(b) and (c) show
the result of uniform thresholding applied to the image with thresholds of 40 pixels and 10 pixels,
respectively. Uniform thresholding can select too few points if the threshold is too high, and too
many if it is too low. Hysteresis thresholding selects all the points in Figure 4.20(b), and some
of those in Figure 4.20(c), those connected to the points in (b). In particular, part of the nose
is partly present in Figure 4.20(a), whereas it is absent in Figure 4.20(b) and masked by too
many edge points in Figure 4.20(c). Also, the eyebrow is more complete in (a), whereas it is
only partial in (b) and complete (but obscured) in (c). Hysteresis thresholding therefore has an
ability to detect major features of interest in the edge image, in an improved manner to uniform
thresholding.

(a) Hysteresis thresholding,
upper level = 40,
lower level = 10

(b) Uniform thresholding,
level = 40

(c) Uniform thresholding,
level = 10

Figure 4.20 Comparing hysteresis thresholding with uniform thresholding

The action of the Canny operator on a larger image is shown in Figure 4.21, in comparison
with the result of the Sobel operator. Figure 4.21(a) is the original image of a face, Figure 4.21(b)
is the result of the Canny operator (using a 5×5 Gaussian operator with
 = 1�0 and with upper
and lower thresholds set appropriately) and Figure 4.21(c) is the result of a 3×3 Sobel operator
with uniform thresholding. The retention of major detail by the Canny operator is very clear;
the face is virtually recognizable in Figure 4.21(b), whereas it is less clear in Figure 4.21(c).

(a) Original image (b) Canny (c) Sobel

Figure 4.21 Comparing Canny with Sobel

136 Feature Extraction and Image Processing

4.3 Second order edge detection operators

4.3.1 Motivation

First order edge detection is based on the premise that differentiation highlights change; image
intensity changes in the region of a feature boundary. The process is illustrated in Figure 4.22,
where Figure 4.22(a) is a cross-section through image data. The result of first order edge
detection, f ′�x� = df

/
dx in Figure 4.22(b), is a peak where the rate of change of the original

signal, f�x� in Figure 4.22(a), is greatest. There are higher order derivatives; applied to the
same cross-section of data, the second order derivative, f ′′�x� = d2f

/
dx2 in Figure 4.22(c), is

greatest where the rate of change of the signal is greatest and zero when the rate of change is
constant. The rate of change is constant at the peak of the first order derivative. This is where
there is a zero-crossing in the second order derivative, where it changes sign. Accordingly, an
alternative to first order differentiation is to apply second order differentiation and then find
zero-crossings in the second order information.

0 2 4

–2

–1

1

2

6
f (x)

x

(a) Cross-section through image data

0 2 4

1

2

d

6

dx
f (x)

x

(b) First order edge detection

0 2 4

–1

1

d2

6dx
2
f (x)

x

(c) Second order edge detection

Figure 4.22 First and second order edge detection

4.3.2 Basic operators: the Laplacian

The Laplacian operator is a template which implements second order differencing. The second
order differential can be approximated by the difference between two adjacent first order
differences:

f ′′�x� 	 f ′�x�−f ′�x+1� (4.24)

Low-level feature extraction (including edge detection) 137

which, by Equation 4.6, gives

f ′′�x� 	 −f�x�+2f�x+1�−f�x+2� (4.25)

This gives a horizontal second order template, as given in Figure 4.23.

–1 –12

Figure 4.23 Horizontal second order template

When the horizontal second order operator is combined with a vertical second order difference
we obtain the full Laplacian template, given in Figure 4.24. Essentially, this computes the
difference between a point and the average of its four direct neighbours. This was the operator
used earlier in anisotropic diffusion (Section 3.5.4), where it is an approximate solution to the
heat equation.

0
4

0 0

0–1
–1

–1
–1

Figure 4.24 Laplacian edge detection operator

Application of the Laplacian operator to the image of the square is given in Figure 4.25.
The original image is provided in numeric form in Figure 4.25(a). The detected edges are the
zero-crossings in Figure 4.25(b) and can be seen to lie between the edge of the square and its
background.

p =

1

2

3

4

1

2

1

2

2

0

1

2

0

2

3

3

38

40

43

39

0

4

0

39

44

44

41

2

1

1

37

41

40

42

2

1

2

36

42

39

40

3

2

2

3

2

1

2

1

1

1

0

1

3

0

1

0 2 1 3 1 0 4 2

(a) Image data (b) After Laplacian operator

L =

0

0

0

0

0

0

0

0

0

– 31

70

34

47

72

– 44

0

0

– 47

37

12

8

37

– 38

0

0

– 36

31

1

– 6

45

– 40

0

0

– 32

60

50

33

74

– 31

0

0

0

– 28

– 39

– 42

– 34

– 6

0

0

0

0

0

0

0

0

0

0

1

– 42

– 37

– 45

5

0

– 44

Figure 4.25 Edge detection via the Laplacian operator

138 Feature Extraction and Image Processing

An alternative structure to the template in Figure 4.24 is one where the central weighting
is 8 and the neighbours are all weighted as −1. This includes a different form of image
information, so the effects are slightly different. (Essentially, this now computes the difference
between a pixel and the average of its neighbouring points, including the corners.) In both
structures, the central weighting can be negative and that of the four or the eight neighbours
can be positive, without loss of generality. It is important to ensure that the sum of template
coefficients is zero, so that edges are not detected in areas of uniform brightness. One advantage
of the Laplacian operator is that it is isotropic (like the Gaussian operator): it has the same
properties in each direction. However, as yet it contains no smoothing and will again respond
to noise, more so than a first order operator since it is differentiation of a higher order. As
such, the Laplacian operator is rarely used in its basic form. Smoothing can use the averaging
operator described earlier, but a more optimal form is Gaussian smoothing. When this is
incorporated with the Laplacian we obtain a Laplacian of Gaussian (LoG) operator, which is
the basis of the Marr–Hildreth approach, to be considered next. A clear disadvantage with
the Laplacian operator is that edge direction is not available. It does, however, impose low
computational cost, which is its main advantage. Although interest in the Laplacian operator
abated with rising interest in the Marr–Hildreth approach, a non-linear Laplacian operator was
developed (Vliet and Young, 1989) and shown to have good performance, especially in low-noise
situations.

4.3.3 Marr–Hildreth operator

The Marr–Hildreth approach (Marr and Hildreth, 1980) again uses Gaussian filtering. In prin-
ciple, we require an image which is the second differential 2 of a Gaussian operator g�x� y�
convolved with an image P. This convolution process can be separated as:

2 �g�x� y�∗P� = 2 �g�x� y��∗P (4.26)

Accordingly, we need to compute a template for 2 �g�x� y�� and convolve this with the image.
By further differentiation of Equation 4.17, we achieve a LoG operator:

2g �x� y� = �2g �x� y�
�

�x2
Ux + �2g �x� y�
�

�y2
Uy

= �g �x� y�
�

�x
Ux + �g �x� y�
�

�y
Uy

=
(

x2

2
−1

)
e

−�x2+y2�
2
2

2
+
(

y2

2
−1

)
e

−�x2+y2�
2
2

2

= 1

2

((
x2 +y2

)

2
−2

)
e

−�x2+y2�
2
2

(4.27)

This is the basis of the Marr–Hildreth operator. Equation 4.27 can be used to calculate the
coefficients of a template which, when convolved with an image, combines Gaussian smoothing
with second order differentiation. The operator is sometimes called a ‘Mexican hat’ operator,
since its surface plot is the shape of a sombrero, as illustrated in Figure 4.26.

Low-level feature extraction (including edge detection) 139

LoG (4,31)

Figure 4.26 Shape of Laplacian of Gaussian operator

The calculation of the Laplacian of Gaussian can be approximated by the difference of
Gaussian, where the difference is formed from the result of convolving two Gaussian filters
with differing variance (Marr, 1982; Lindeberg, 1994).

2g �x� y�
� = �g

�

≈ g �x� y� k
�−g �x� y�
�

k
 −

(4.28)

where g�x� y�
� is the Gaussian function and k is a constant. Although similarly named, the
derivative of Gaussian (Equation 4.17) is a first order operator including Gaussian smoothing,
g�x� y�. It does seem counter-intuitive that the difference of two smoothing operators should
lead to second order edge detection. The approximation is illustrated in Figure 4.27, where in
one dimension, two Gaussian distributions of different variance are subtracted to form a one-
dimensional (1D) operator whose cross-section is equivalent to the shape of the LoG operator
(a cross-section of Figure 4.26).

(a) Two Gaussian distributions (b) After differencing

0 50 100

e

x − 50

8

2
−

x − 50

10

2
−

− 0.8⋅e

x

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

0 50 100

e

x − 50
8

2
−

0.8⋅e

x − 50

10

2
−

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

Figure 4.27 Approximating the Laplacian of Gaussian by difference of Gaussian

140 Feature Extraction and Image Processing

The implementation of Equation 4.27 to calculate template coefficients for the LoG operator
is given in Code 4.14. The function includes a normalization function which ensures that the sum
of the template coefficients is unity, so that edges are not detected in area of uniform brightness.
This is in contrast with the earlier Laplacian operator (where the template coefficients summed
to zero), since the LoG operator includes smoothing within the differencing action, whereas
the Laplacian is pure differencing. The template generated by this function can then be used
within template convolution. The Gaussian operator again suppresses the influence of points
away from the centre of the template, basing differentiation on those points nearer the centre;
the standard deviation,
 , is chosen to ensure this action. Again, it is isotropic consistent with
Gaussian smoothing.

LoG(σ,size):= cx ←
size–1

2
size–1

2
cy ←

for x∈0.. size–1
for y∈0.. size–1

nx ←x–cx

ny ←y–cy

templatey,x ← .e

–
.1

σ

2
nx2+ny2

σ
2

 – 2

nx
2
+ny

2

2.σ2

template ←normalize(template)

template

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

Code 4.14 Implementation of the Laplacian of Gaussian operator

Determining the zero-crossing points is a major difficulty with this approach. A variety of
techniques can be used, including manual determination of zero-crossing or a least squares fit
of a plane to local image data, which is followed by determination of the point at which the
plane crosses zero, if it does. The former is too simplistic, whereas the latter is quite complex
(see Section 11.2, Appendix 3).

The approach here is much simpler: given a local 3 × 3 area of an image, this is split into
quadrants. These are shown in Figure 4.28, where each quadrant contains the centre pixel.
The first quadrant contains the four points in the upper left corner and the third quadrant
contains the four points in the upper right. If the average of the points in any quadrant differs
in sign from the average in any other quadrant, there must be a zero-crossing at the centre
point. In zerox, Code 4.15, the average intensity in each quadrant is then evaluated, giving
four values and int0, int1, int2 and int3. If the maximum value of these points
is positive, and the minimum value is negative, there must be a zero-crossing within the
neighbourhood. If one exists, the output image at that point is marked as white, otherwise it is set
to black.

Low-level feature extraction (including edge detection) 141

1 • • • 3

• • •

• • •

2 4

Figure 4.28 Regions for zero crossing detection

zerox(pic):=
for x∈1.. cols(pic)–2

for y∈1.. rows(pic)–2

int0← Σ
y

y1= y–1

x

Σ
x1=x–1

picy1,x1

int1← picy1,x1Σ
x1=x–1

x

Σ
y1=y

y+1

int2← picy1,x1Σ
y1=y–1

y

Σ
x1=x

x+1

int3←
y+1

Σ
y1=y

picy1,x1Σ
x1=x

x+1

maxval←max(int)

minval←min(int)

newpicy,x ←255 if (maxval>0)⋅(minval<0)

newpic

newpic←zero(pic)

Code 4.15 Zero crossing detector

The action of the Marr–Hildreth operator is given in Figure 4.29, applied to the face image
in Figure 4.21(a). The output of the LoG operator is hard to interpret visually and is not shown
here (remember that it is the zero-crossings which mark the edge points and it is hard to see
them). The detected zero-crossings (for a 3 × 3 neighbourhood) are shown in Figure 4.29(b)
and (c) for LoG operators of size and variance 11×11 with
 = 0�8 and 15×15 with
 = 1�8,
respectively. These show that the selection of window size and variance can be used to provide
edges at differing scales. Some of the smaller regions in Figure 4.29(b) join to form larger
regions in Figure 4.29(c). Note that one virtue of the Marr–Hildreth operator is its ability to
provide closed edge borders, which the Canny operator cannot. Another virtue is that it avoids
the recursion associated with hysteresis thresholding that can require a massive stack size for
large images.

The Fourier transform of a LoG operator is shown in relief in Figure 4.30(a) and as a contour
plot in Figure 4.30(b). The transform is circular–symmetric, as expected. Since the transform
reveals that the LoG operator omits low and high frequencies (those close to the origin, and

142 Feature Extraction and Image Processing

(a) Face image (c) 15 × 15 LoG(b) 11 × 11 LoG

Figure 4.29 Marr–Hildreth edge detection

0
5 10 15

0

5

10

15

Fourier_of_LoGFourier_of_LoG
(a) Relief plot (b) Contour plot

Figure 4.30 Fourier transform of LoG operator

those far away from the origin) it is equivalent to a band-pass filter. Choice of the value of

 controls the spread of the operator in the spatial domain and the ‘width’ of the band in the
frequency domain: setting
 to a high value gives low-pass filtering, as expected. This differs
from first order edge detection templates which offer a high-pass (differencing) filter along one
axis with a low-pass (smoothing) action along the other axis.

The Marr–Hildreth operator has stimulated much attention, perhaps in part because it has an
appealing relationship to human vision, and its ability for multiresolution analysis (the ability
to detect edges at differing scales). In fact, it has been suggested that the original image can
be reconstructed from the zero-crossings at different scales. One early study (Haralick, 1984)
concluded that the Marr–Hildreth could give good performance. Unfortunately, the implemen-
tation appeared to be different from the original LoG operator (and has appeared in some texts
in this form), as noted by one of the Marr–Hildreth study’s originators (Grimson and Hildreth,
1985). This lead to a somewhat spirited reply (Haralick, 1985) clarifying concern, but also

Low-level feature extraction (including edge detection) 143

raising issues about the nature and operation of edge detection schemes which remain relevant
today. Given the requirement for convolution of large templates, attention quickly focused on
frequency domain implementation (Huertas and Medioni, 1986), and speed improvement was
later considered in some detail (Forshaw, 1988). Later, schemes were developed to refine the
edges produced via the LoG approach (Ulupinar and Medioni, 1990). Although speed and accu-
racy are major concerns with the Marr–Hildreth approach, it is also possible for zero-crossing
detectors to mark as edge points ones that have no significant contrast, motivating study of
their authentication (Clark, 1989). Gunn (1999) studied the relationship between mask size
of the LoG operator and its error rate. Essentially, an acceptable error rate defines a trun-
cation error, which in turn gives an appropriate mask size. Gunn also observed the paucity
of studies on zero-crossing detection and offered a detector slightly more sophisticated than
the one here (as it includes the case where a zero-crossing occurs at a boundary, whereas
the one here assumes that the zero-crossing can only occur at the centre). The similarity is
not coincidental: Mark developed the one here after conversations with Steve Gunn, who he
works with!

4.4 Other edge detection operators

There have been many approaches to edge detection. This is not surprising, since it is often
the first stage in a vision process. The most popular operators are the Sobel, Canny and Marr–
Hildreth operators. Clearly, in any implementation, there is a compromise between (computa-
tional) cost and efficiency. In some cases, it is difficult to justify the extra complexity associated
with the Canny and the Marr–Hildreth operators. This is in part due to the images: few images
contain the adverse noisy situations that complex edge operators are designed to handle. Also,
when finding shapes, it is often prudent to extract more than enough low-level information,
and to let the more sophisticated shape detection process use, or discard, the information as
appropriate. For these reasons, we will study only two more edge detection approaches, and
only briefly. These operators are the Spacek and the Petrou operators: both are designed to
be optimal and both have different properties and a different basis (the smoothing functional
in particular) to the Canny and Marr–Hildreth approaches. The Spacek and Petrou Operators
will be reviewed briefly, by virtue of their optimality. Essentially, while Canny maximized the
ratio of the signal-to-noise ratio with the localization, Spacek (1986) maximized the ratio of the
product of the signal-to-noise ratio and the peak separation with the localization. In Spacek’s
work, since the edge was again modelled as a step function, the ideal filter appeared to be
of the same form as Canny’s. Spacek’s operator can give better performance than Canny’s
formulation (Jia and Nixon, 1985), as such challenging the optimality of the Gaussian operator
for noise smoothing (in step edge detection), although such advantage should be explored in
application.

Petrou questioned the validity of the step-edge model for real images (Petrou and Kittler,
1991). Given that the composite performance of an image acquisition system can be considered
to be that of a low-pass filter, any step changes in the image will be smoothed to become a
ramp. As such, a more plausible model of the edge is a ramp, rather than a step. Since the
process is based on ramp edges, and because of limits imposed by its formulation, the Petrou
operator uses templates that much wider to preserve optimal properties. As such, the operator
can impose greater computational complexity, but is a natural candidate for applications with
the conditions for which its properties were formulated.

144 Feature Extraction and Image Processing

Of the other approaches, Korn (1988) developed a unifying operator for symbolic repre-
sentation of grey level change. The Susan operator (Smith and Brady, 1997) derives from
an approach aimed to find more that just edges, since it can also be used to derive corners
(where feature boundaries change direction sharply, as in curvature detection in Section 4.8) and
structure-preserving image noise reduction. Essentially, SUSAN derives from smallest univalue
segment assimilating nucleus, which concerns aggregating the difference between elements in
a (circular) template centred on the nucleus. The USAN is essentially the number of pixels
within the circular mask that have similar brightness to the nucleus. The edge strength is then
derived by subtracting the USAN size from a geometric threshold, which is, say, three-quarters
of the maximum USAN size. The method includes a way of calculating edge direction, which
is essential if non-maximum suppression is to be applied. The advantages are in simplicity (and
hence speed), since it is based on simple operations, and the possibility of extension to find
other feature types.

4.5 Comparison of edge detection operators

The selection of an edge operator for a particular application depends on the application itself.
As has been suggested, it is not usual to require the sophistication of the advanced operators
in many applications. This is reflected in analysis of the performance of the edge operators on
the eye image. To provide a different basis for comparison, we shall consider the difficulty
of low-level feature extraction in ultrasound images. As has been seen earlier (Section 3.5.4),
ultrasound images are very noisy and require filtering before analysis. Figure 4.31(a) is part
of the ultrasound image which could have been filtered using the truncated median operator
(Section 3.5.3). The image contains a feature called the pitus (the ‘splodge’ in the middle) and
we shall see how different edge operators can be used to detect its perimeter, although without
noise filtering. Earlier, in Section 3.5.4, we considered a comparison of statistical operators on
an ultrasound image. The median is perhaps the most popular of these processes for general
(i.e. non-ultrasound) applications. Accordingly, it is of interest that one study (Bovik et al., 1987)
has suggested that the known advantages of median filtering (the removal of noise with the
preservation of edges, especially for salt and pepper noise) are shown to good effect if it is used
as a prefilter to first and second order approaches, although with the cost of the median filter.
However, we will not consider median filtering here: its choice depends more on suitability to
a particular application.

The results for all edge operators have been generated using hysteresis thresholding, where
the thresholds were selected manually for best performance. The basic first order operator
(Figure 4.31b) responds rather nicely to the noise and it is difficult to select a threshold that
reveals a major part of the pitus border. Some is present in the Prewitt and Sobel operators’ results
(Figure 4.31c and d, respectively), but there is still much noise in the processed image, although
there is less in the Sobel. The Laplacian operator (Figure 4.31e) gives very little information
indeed, as to be expected with such noisy imagery. However, the more advanced operators
can be used to good effect. The Marr–Hildreth approach improves matters (Figure 4.31f), but
suggests that it is difficult to choose a LoG operator of appropriate size to detect a feature
of these dimensions in such noisy imagery, illustrating the compromise between the size of
operator needed for noise filtering and the size needed for the target feature. However, the
Canny and Spacek operators can be used to good effect, as shown in Figure 4.31(g) and (h),
respectively. These reveal much of the required information, together with data away from the

Low-level feature extraction (including edge detection) 145

(a) Original image (b) First order (c) Prewitt (d) Sobel

(e) Laplacian (f) Marr-Hildreth (g) Canny (h) Spacek

Figure 4.31 Comparison of edge detection operators

pitus itself. In an automated analysis system, for this application, the extra complexity of the
more sophisticated operators would clearly be warranted.

4.6 Further reading on edge detection

Few computer vision and image processing texts omit detail concerning edge detection operators,
although few give explicit details concerning implementation. Many of the earlier texts omit the
more recent techniques. Parker (1994) only includes C code for some of the most basic edge
detection techniques. Further information can be found in journal papers; Petrou’s excellent
study of edge detection (Petrou, 1994) highlights study of the performance factors involved in the
optimality of the Canny, Spacek and Petrou operators with extensive tutorial support (although
I suspect that Petrou junior may one day be embarrassed by the frequency with which his
youthful mugshot is used: his teeth show up very well!). There have been a number of surveys of
edge detection highlighting performance attributes in comparison. See, for example, Torre and
Poggio (1986), which gives a theoretical study of edge detection and considers some popular
edge detection techniques in light of this analysis. One survey (Heath et al., 1997) surveys
many approaches, comparing them in particular with the Canny operator (and states where code
for some of the techniques they compared can be found). This showed that best results can be
achieved by tuning an edge detector for a particular application and highlighted good results by
the Bergholm operator (Bergholm, 1987). Marr (1982) considers the Marr–Hildreth approach
to edge detection in the light of human vision (and its influence on perception), with particular
reference to scale in edge detection. More recently, Yitzhaky and Peli (2003) suggest ‘a general
tool to assist in practical implementations of parametric edge detectors where an automatic
process is required’ and use statistical tests to evaluate edge detector performance. Since edge

146 Feature Extraction and Image Processing

detection is one of the most important vision techniques, it continues to be a focus of research
interest. Accordingly, it is always worth looking at recent conference proceedings to see any
new techniques, or perhaps more likely performance comparison or improvement, that may help
you to solve a problem.

4.7 Phase congruency

The comparison of edge detectors highlights some of their innate problems: incomplete contours,
the need for selective thresholding, and their response to noise. Further, the selection of a
threshold is often inadequate for all the regions in an image, since there are many changes
in local illumination. We shall find that some of these problems can be handled at a higher
level, when shape extraction can be arranged to accommodate partial data and to reject spurious
information. There is, however, interest in refining the low-level feature extraction techniques
further.

Phase congruency is a feature detector with two main advantages: it can detect a broad
range of features; and it is invariant to local (and smooth) change in illumination. As the
name suggests, it is derived by frequency domain considerations operating on the considerations
of phase (i.e. time). It is illustrated detecting some 1D features in Figure 4.32, where the
features are the solid lines: a (noisy) step function in Figure 4.32(a), and a peak (or impulse)
in Figure 4.32(b). By Fourier transform analysis, any function is made up from the controlled
addition of sinewaves of differing frequencies. For the step function to occur (the solid line in
Figure 4.32a), the constituent frequencies (the dotted lines in Figure 4.32a) must all change at
the same time, so they add up to give the edge. Similarly, for the peak to occur, the constituent
frequencies must all peak at the same time; in Figure 4.32(b) the solid line is the peak and the
dotted lines are some of its constituent frequencies. This means that to find the feature in which
we are interested, we can determine points where events happen at the same time: this is phase
congruency. By way of generalization, a triangle wave is made of peaks and troughs: phase
congruency implies that the peaks and troughs of the constituent signals should coincide.

(a) Step edge (b) Peak

Figure 4.32 Low-level feature extraction by phase congruency

Low-level feature extraction (including edge detection) 147

The constituent sinewaves plotted in Figure 4.32(a) were derived by taking the Fourier
transform of a step and then determining the sinewaves according to their magnitude and phase.
The Fourier transform in Equation 2.15 delivers the complex Fourier components Fp. These
can be used to show the constituent signals xc by

xc �t� = �Fpu� ej� 2�
N ut+��Fpu�� (4.29)

where �Fpu� is again the magnitude of the uth Fourier component (Equation 2.7) and ��Fpu� =
�Fpu is the argument, the phase in Equation 2.8. The (dotted) frequencies displayed in Figure 4.32
are the first four odd components (the even components for this function are zero, as shown in
the Fourier transform of the step in Figure 2.11). The addition of these components is indeed
the inverse Fourier transform which reconstructs the step feature.

The advantages are that detection of congruency is invariant with local contrast: the sinewaves
still add up so the changes are still in the same place, even if the magnitude of the step edge
is much smaller. In images, this implies that we can change the contrast and still detect edges.
This is illustrated in Figure 4.33. Here, a standard image processing image, the ‘cameraman’
image from the early UCSD dataset, has been changed between the left and right sides so that
the contrast changes in the two halves of the image (Figure 4.33a). Edges detected by Canny
are shown in Figure 4.33(b) and by phase congruency in 4.33(c). The basic structure of the
edges detected by phase congruency is very similar to that structure detected by Canny, and
the phase congruency edges appear somewhat cleaner (there is a single line associated with
the tripod control in phase congruency); both detect the change in brightness between the two
halves. There is a major difference though: the building in the lower right side of the image is
barely detected in the Canny image, whereas it can clearly be seen by phase congruency. Its
absence is due to the parameter settings used in the Canny operator. These can be changed, but
if the contrast were to change again, then the parameters would need to be reoptimized for the
new arrangement. This is not the case for phase congruency.

(a) Modified cameraman
image

(b) Edges by the Canny
operator

(c) Phase congruency

Figure 4.33 Edge detection by Canny and by phase congruency

Such a change in brightness might appear unlikely in practical application, but this is not the
case with moving objects which interact with illumination or in fixed applications where illu-
mination changes. In studies aimed to extract spinal information from digital videofluoroscopic
X-ray images to provide guidance for surgeons (Zheng et al., 2004), phase congruency was

148 Feature Extraction and Image Processing

found to be immune to the changes in contrast caused by slippage of the shield used to protect
the patient while acquiring the image information. One such image is shown in Figure 4.34. The
lack of shielding is apparent in the bloom at the side of the images. This changes as the subject
is moved, so it proved difficult to optimize the parameters for Canny over the whole sequence
(Figure 4.34b), but the detail of a section of the phase congruency result (Figure 4.34c) shows
that the vertebrae information is readily available for later high-level feature extraction.

(a) Digital videofluoroscopic image of lower
spine showing vertebrae

(b) Edges by the
Canny operator

(c) Features by phase
congruency

Figure 4.34 Spinal contour by phase congruency (Zheng et al., 2004)

The original notions of phase congruency are the concepts of local energy (Morrone
and Owens, 1987), with links to the human visual system (Morrone and Burr, 1988). One
of the most sophisticated implementations was by Kovesi (1999), with added advantage
that his Matlab implementation is available on the web (http://www.csse.uwa.edu.au/∼pk/
Research/research.html), as well as much more information. Essentially, we seek to determine
features by detection of points at which Fourier components are maximally in phase. By exten-
sion of the Fourier reconstruction functions in Equation 4.29, Morrone and Owens defined a
measure of phase congruency PC as

PC �x� = max�̄�x�∈0�2�

⎛
⎝
∑
u

�Fpu� cos
(
�u �x�− �̄ �x�

)
∑
u

�Fpu�

⎞
⎠ (4.30)

where �u�x� represents the local phase of the component Fpu at position x. Essentially, this
computes the ratio of the sum of projections onto a vector (the sum in the numerator) to the total
vector length (the sum in the denominator). The value of �̄ �x� that maximizes this equation
is the amplitude weighted mean local phase angle of all the Fourier terms at the point being
considered. In Figure 4.35 the resulting vector is made up of four components, illustrating the
projection of the second onto the resulting vector. Clearly, the value of PC ranges from 0 to
1, the maximum occurring when all elements point along the resulting vector. As such, the
resulting phase congruency is a dimensionless normalized measure which is thresholded for
image analysis.

Low-level feature extraction (including edge detection) 149

Imaginary

Real

Fp4

F p 3

|Fp
2 |

|Fp2
| cos(φ2(x) – φ(x))

F p
1

φ(x)

φ2(x)

Figure 4.35 Summation in phase congruency

In this way, we have calculated the phase congruency for the step function in Figure 4.36(a),
which is shown in Figure 4.36(b). Here, the position of the step is at time step 40; this is the
position of the peak in phase congruency, as required. Note that the noise can be seen to affect
the result, although the phase congruency is largest at the right place.

0 50 100

0 50 100

(a) (Noisy) step function (b) Phase congruency of
step function

Figure 4.36 One-dimensional phase congruency

One interpretation of the measure is that since for small angles, cos � = 1 − �2, then
Equation 4.30 expresses the ratio of the magnitudes weighted by the variance of the difference
to the summed magnitude of the components. There is certainly difficulty with this measure,
apart from difficulty in implementation: it is sensitive to noise, as is any phase measure; it is
not conditioned by the magnitude of a response (small responses are not discounted); and it is
not well localized (the measure varies with the cosine of the difference in phase, not with the
difference itself, although it does avoid discontinuity problems with direct use of angles). In fact,
the phase congruency is directly proportional to the local energy (Venkatesh and Owens, 1989),

150 Feature Extraction and Image Processing

so an alternative approach is to search for maxima in the local energy. The notion of local
energy allows us to compensate for the sensitivity to the detection of phase in noisy situations.

For these reasons, Kovesi developed a wavelet-based measure which improved performance,
while accommodating noise. In basic form, phase congruency can be determined by convolving
a set of wavelet filters with an image, and calculating the difference between the average
filter response and the individual filter responses. The response of a (1D) signal I to a set of
wavelets at scale n is derived from the convolution of the cosine and sine wavelets (discussed
in Section 2.7.3), denoted Me

n and Mo
n , respectively

�en �x� � on �x�� = �I �x�∗Me
n� I �x�∗Mo

n� (4.31)

to deliver the even and odd components at the nth scale en�x� and on�x�, respectively. The
amplitude of the transform result at this scale is the local energy

An �x� =
√

en �x�2 +on �x�2 (4.32)

At each point x we will have an array of vectors which correspond to each scale of the
filter. Given that we are only interested in phase congruency that occurs over a wide range of
frequencies (rather than just at a couple of scales), the set of wavelet filters needs to be designed
so that adjacent components overlap. By summing the even and odd components we obtain

F �x� = ∑
n

en �x�

H �x� = ∑
n

on �x� (4.33)

and a measure of the total energy A as
∑
n

An �x� ≈ ∑
n

√
en �x�2 +on �x�2 (4.34)

Then a measure of phase congruency is

PC �x� =
√

F �x�2 +H �x�2

∑
n

An �x�+�
(4.35)

where the addition of a small factor � in the denominator avoids division by zero and any
potential result when values of the numerator are very small. This gives a measure of phase
congruency, which is essentially a measure of the local energy. Kovesi improved on this,
improving on the response to noise, developing a measure which reflects the confidence that
the signal is significant relative to the noise. Further, he considers in detail the frequency
domain considerations, and its extension to two dimensions (Kovesi, 1999). For 2D (image)
analysis, phase congruency can be determined by convolving a set of wavelet filters with an
image, and calculating the difference between the average filter response and the individual
filter responses. The filters are constructed in the frequency domain by using complementary
spreading functions; the filters must be constructed in the Fourier domain because the log-Gabor
function has a singularity at 	 = 0. To construct a filter with appropriate properties, a filter is
constructed in a manner similar to the Gabor wavelet, but here in the frequency domain and
using different functions. Following Kovesi’s implementation, the first filter is a low-pass filter,
here a Gaussian filter g with L different orientations

g ��� �l� = 1√
2�
s

e
− ��−�l�

2

2
2
s (4.36)

Low-level feature extraction (including edge detection) 151

where � is the orientation,
s controls the spread about that orientation and �l is the angle is
local orientation focus. The other spreading function is a band-pass filter, here a log-Gabor filter
lg with M different scales.

lg �	�	m� =

⎧
⎪⎨
⎪⎩

0 	 = 0

1√
2�
�

e
−

(
log

(
	

/
	m

))2

2�log����2 	 �= 0
(4.37)

where 	 is the scale, � controls bandwidth at that scale and 	m is the centre frequency at that
scale. The combination of these functions provides a 2D filter l2Dg which can act at different
scales and orientations.

l2Dg �	�	m��� �l� = g ��� �l�× lg �	�	m� (4.38)

One measure of phase congruency based on the convolution of this filter with the image P
is derived by inverse Fourier transformation �−1 of the filter l2Dg (to yield a spatial domain
operator) which is convolved as

S �m�x�y = �−1 �l2Dg �	�	m��� �l��x�y ∗Px�y (4.39)

to deliver the convolution result S at the mth scale. The measure of phase congruency over the
M scales is then

PCx�y =

∣∣∣∣
M∑

m=1
S �m�x�y

∣∣∣∣
M∑

m=1

∣∣S �m�x�y

∣∣+�

(4.40)

where the addition of a small factor � numerator again avoids division by zero and any potential
result when values of S are very small. This gives a measure of phase congruency, but is
certainly a bit of an ouch, especially as it still needs refinement.

Note that keywords recur within phase congruency: frequency domain, wavelets and con-
volution. By its nature, we are operating in the frequency domain and there is not enough
room in this text, and it is inappropriate to the scope here, to expand further. Despite this,
the performance of phase congruency certainly encourages its consideration, especially if local
illumination is likely to vary and if a range of features is to be considered. It is derived by
an alternative conceptual basis, and this gives different insight, as well as performance. Even
better, there is a Matlab implementation available, for application to images, allowing you to
replicate its excellent results. There has been further research, noting especially its extension in
ultrasound image analysis (Mulet-Parada and Noble, 2000) and its extension to spatiotemporal
form (Myerscough and Nixon, 2004).

4.8 Localized feature extraction

Two main areas are covered here. The traditional approaches aim to derive local features by
measuring specific image properties. The main target has been to estimate curvature: peaks
of local curvature are corners, and analysing an image by its corners is especially suited to
images of artificial objects. The second area includes more modern approaches that improve
performance by using region or patch-based analysis. We shall start with the more established
curvature-based operators, before moving to the patch or region-based analysis.

152 Feature Extraction and Image Processing

4.8.1 Detecting image curvature (corner extraction)
4.8.1.1 Definition of curvature
Edges are perhaps the low-level image features that are most obvious to human vision. They
preserve significant features, so we can usually recognize what an image contains from its
edge-detected version. However, there are other low-level features that can be used in computer
vision. One important feature is curvature. Intuitively, we can consider curvature as the rate of
change in edge direction. This rate of change characterizes the points in a curve; points where the
edge direction changes rapidly are corners, whereas points where there is little change in edge
direction correspond to straight lines. Such extreme points are very useful for shape description
and matching, since they represent significant information with reduced data.

Curvature is normally defined by considering a parametric form of a planar curve. The
parametric contour v �t� = x �t�Ux + y �t�Uy describes the points in a continuous curve as the
endpoints of the position vector. Here, the values of t define an arbitrary parameterization, the
unit vectors are again Ux = �1� 0� and Uy = �0� 1�. Changes in the position vector are given by
the tangent vector function of the curve v�t�. That is, v̇ �t� = ẋ �t�Ux + ẏ �t�Uy. This vectorial
expression has a simple intuitive meaning. If we think of the trace of the curve as the motion
of a point and t is related to time, the tangent vector defines the instantaneous motion. At
any moment, the point moves with a speed given by �v̇ �t�� = √

ẋ2 �t�+ ẏ2 �t� in the direction
��t� = tan−1

(
ẏ �t�

/
ẋ �t�

)
. The curvature at a point v�t� describes the changes in the direction

��t� with respect to changes in arc length. That is,

��t� = d��t�

ds
(4.41)

where s is arc length, along the edge itself. Here � is the angle of the tangent to the curve.
That is, � = � ± 90�, where � is the gradient direction defined in Equation 4.13. That is, if
we apply an edge detector operator to an image, we have for each pixel a gradient direction
value that represents the normal direction to each point in a curve. The tangent to a curve is
given by an orthogonal vector. Curvature is given with respect to arc length because a curve
parameterized by arc length maintains a constant speed of motion. Thus, curvature represents
changes in direction for constant displacements along the curve. By considering the chain rule,
we have

��t� = d��t�

dt

dt

ds
(4.42)

The differential ds/dt defines the change in arc length with respect to the parameter t. If we
again consider the curve as the motion of a point, this differential defines the instantaneous
change in distance with respect to time. That is, the instantaneous speed. Thus,

ds
/

dt = �v̇ �t�� = √
ẋ2 �t�+ ẏ2 �t� (4.43)

and

dt
/

ds = 1
/√

ẋ2 �t�+ ẏ2 �t� (4.44)

By considering that ��t� = tan−1
(
ẏ �t�

/
ẋ �t�

)
, then the curvature at a point v�t� in Equation 4.42

is given by

��t� = ẋ �t� ÿ �t�− ẏ �t� ẍ �t�

�ẋ2 �t�+ ẏ2 �t��3/2
(4.45)

This relationship is called the curvature function and it is the standard measure of curvature for
planar curves (Apostol, 1966). An important feature of curvature is that it relates the derivative

Low-level feature extraction (including edge detection) 153

of a tangential vector to a normal vector. This can be explained by the simplified Serret–Frenet
equations (Goetz, 1970) as follows. We can express the tangential vector in polar form as

v̇�t� = �v̇�t�� �cos �� �t��+ j sin �� �t��� (4.46)

If the curve is parameterized by arc length, then �v̇�t�� is constant. Thus, the derivative of a
tangential vector is simply given by

v̈ �t� = �v̇ �t�� �− sin �� �t��+ j cos �� �t���
(
d��t�

/
dt
)

(4.47)

Since we are using a normal parameterization, then d��t�
/

dt = d��t�
/

ds. Thus, the tangential
vector can be written as

v̈�t� = ��t�n�t� (4.48)

where n �t� = �v�t�� �− sin �� �t��+ j cos �� �t��� defines the direction of v̈�t�, while the cur-
vature ��t� defines its modulus. The derivative of the normal vector is given by ṅ�t� =
�v̇ �t�� �− cos �� �t��− i sin �� �t��� �d��t� /ds�, which can be written as

ṅ�t� = −��t�v̇�t� (4.49)

Clearly, n�t� is normal to v̇�t�. Therefore, for each point in the curve, there is a pair of orthogonal
vectors v̇�t� and n�t� whose moduli are proportionally related by the curvature.

In general, the curvature of a parametric curve is computed by evaluating Equation 4.45.
For a straight line, for example, the second derivatives ẍ�t� and ÿ�t� are zero, so the curvature
function is nil. For a circle of radius r, we have that ẋ �t� = r cos �t� and ẏ �t� = −r sin �t�. Thus,
ÿ �t� = −r cos �t�, ẍ �t� = −r sin �t� and ��t� = 1

/
r. However, for curves in digital images, the

derivatives must be computed from discrete data. This can be done in three main ways. The
most obvious approach is to calculate curvature by directly computing the difference between
angular direction of successive edge pixels in a curve. A second approach is to derive a measure
of curvature changes in image intensity. Finally, a measure of curvature can be obtained by
correlation.

4.8.1.2 Computing differences in edge direction
Perhaps the easier way to compute curvature in digital images is to measure the angular change
along the curve’s path. This approach was considered in early corner detection techniques
(Bennett and MacDonald, 1975; Groan and Verbeek, 1978; Kitchen and Rosenfeld, 1982)
and it merely computes the difference in edge direction between connected pixels forming
a discrete curve. That is, it approximates the derivative in Equation 4.41 as the difference
between neighbouring pixels. As such, curvature is simply given by

k �t� = �t+1 −�t−1 (4.50)

where the sequence � � � �t−1��t��t+1��t+2 � � � represents the gradient direction of a sequence of
pixels defining a curve segment. Gradient direction can be obtained as the angle given by an edge
detector operator. Alternatively, it can be computed by considering the position of pixels in the
sequence. That is, by defining �t = �yt−1 −yt+1�

/
�xt−1 −xt+1�, where �xt� yt� denotes pixel t in

the sequence. Since edge points are only defined at discrete points, this angle can only take eight

154 Feature Extraction and Image Processing

values, so the computed curvature is very ragged. This can be smoothed out by considering the
difference in mean angular direction of n pixels on the leading and trailing curve segment. That is,

kn�t� = 1
n

n∑
i=1

�t+i −
1
n

−1∑
i=−n

�t+i (4.51)

The average also gives some immunity to noise and it can be replaced by a weighted average
if Gaussian smoothing is required. The number of pixels considered, the value of n, defines
a compromise between accuracy and noise sensitivity. Notice that filtering techniques may
also be used to reduce the quantization effect when angles are obtained by an edge detection
operator. As we have already discussed, the level of filtering the filtering is related to the size
of the template (as in Section 3.4.3).

To compute angular differences, we need to determine connected edges. This can easily be
implemented with the code already developed for hysteresis thresholding in the Canny edge
operator. To compute the difference of points in a curve, the connect routine (Code 4.12)
only needs to be arranged to store the difference in edge direction between connected points.
Code 4.16 shows an implementation for curvature detection. First, edges and magnitudes are
determined. Curvature is only detected at edge points. As such, we apply maximal suppression.
The function Cont returns a matrix containing the connected neighbour pixels of each edge.
Each edge pixel is connected to one or two neighbours. The matrix Next stores only the
direction of consecutive pixels in an edge. We use a value of −1 to indicate that there is no
connected neighbour. The function NextPixel obtains the position of a neighbouring pixel

%Curvature detection
function outputimage=CurvConnect(inputimage)

 %Compute curvature in each pixel
for x=1:columns-1
for y=1:rows-1
if Mag(y,x)~=0
n=Next(y,x,1); m=Next(y,x,2);
if(n~=-1 & m~=-1)
[px,py]=NextPixel(x,y,n);
[qx,qy]=NextPixel(x,y,m);

outputimage(y,x)=abs(Ang(py,px)-Ang(qy,qx));
end

end
end

end

 [rows,columns]=size(inputimage); %Image size
 outputimage=zeros(rows,columns); %Result image
 [Mag,Ang]=Edges(inputimage); %Edge Detection

Next=Cont(Mag,Ang); %Next connected pixels
Mag=MaxSupr(Mag,Ang); %Maximal Suppression

Code 4.16 Curvature by differences

Low-level feature extraction (including edge detection) 155

by taking the position of a pixel and the direction of its neighbour. The curvature is computed
as the difference in gradient direction of connected neighbour pixels.

The result of applying this form of curvature detection to an image is shown in Figure 4.37.
Figure 4.37(a) contains the silhouette of an object; Figure 4.39(b) is the curvature obtained
by computing the rate of change of edge direction. In this figure, curvature is defined only
at the edge points. Here, by its formulation the measurement of curvature � gives just a
thin line of differences in edge direction which can be seen to track the perimeter points of
the shapes (at points where there is measured curvature). The brightest points are those with
greatest curvature. To show the results, we have scaled the curvature values to use 256 intensity
values. The estimates of corner points could be obtained by a uniformly thresholded version of
Figure 4.37(b), well in theory anyway!

(a) Image (b) Detected corners

Figure 4.37 Curvature detection by difference

Unfortunately, as can be seen, this approach does not provide reliable results. It is essentially a
reformulation of a first order edge detection process and presupposes that the corner information
lies within the threshold data (and uses no corner structure in detection). One of the major
difficulties with this approach is that measurements of angle can be severely affected by
quantization error and accuracy is limited (Bennett and MacDonald, 1975), a factor which will
return to plague us later when we study methods for describing shapes.

4.8.1.3 Measuring curvature by changes in intensity (differentiation)
As an alternative way of measuring curvature, we can derive the curvature as a function of
changes in image intensity. This derivation can be based on the measure of angular changes
in the discrete image. We can represent the direction at each image point as the function
�′ �x� y�. Thus, according to the definition of curvature, we should compute the change in these
direction values normal to the image edge (i.e. along the curves in an image). The curve at
an edge can be locally approximated by the points given by the parametric line defined by
x �t� = x + t cos ��′ �x� y�� and y �t� = y + t sin ��′ �x� y��. Thus, the curvature is given by the
change in the function �′ �x� y� with respect to t. That is,

��′�x� y� = ��′ �x� y�

� t
= ��′ �x� y�

�x

�x �t�

� t
+ ��′ �x� y�

�y

�y �t�

�t
(4.52)

156 Feature Extraction and Image Processing

where �x �t�
/

�t = cos��′� and �y �t�
/

�t = sin��′�. By considering the definition of the gra-
dient angle, we have that the normal tangent direction at a point in a line is given by
�′ �x� y� = tan−1

(
Mx

/
�−My�

)
. From this geometry we can observe that

cos ��′� = −My
/√

Mx2 +My2 and sin ��′� = Mx
/√

Mx2 +My2 (4.53)

By differentiation of �′ �x� y� and by considering these definitions we obtain

��′�x� y� = 1

�Mx2 +My2�
3
2

{
My2 �Mx

�x
−MxMy

�My

�x
+Mx2 �My

�y
−MxMy

�Mx

�y

}
(4.54)

This defines a forward measure of curvature along the edge direction. We can use an alternative
direction to measure of curvature. We can differentiate backwards (in the direction of −�′ �x� y��
giving �−�′�x� y�. In this case we consider that the curve is given by x �t� = x+ t cos �−�′ �x� y��
and y �t� = y + t sin �−�′ �x� y��. Thus,

�−�′�x� y� = 1

�Mx2 +My2�
3
2

{
My2 �Mx

�x
−MxMy

�My

�x
−Mx2 �My

�y
+MxMy

�Mx

�y

}
(4.55)

Two further measures can be obtained by considering the forward and a backward differential
along the normal. These differentials cannot be related to the actual definition of curvature, but
can be explained intuitively. If we consider that curves are more than one pixel wide, differenti-
ation along the edge will measure the difference between the gradient angle between interior and
exterior borders of a wide curve. In theory, the tangent angle should be the same. However, in dis-
crete images there is a change due to the measures in a window. If the curve is a straight line, then
the interior and exterior borders are the same. Thus, gradient direction normal to the edge does not
change locally. As we bend a straight line, we increase the difference between the curves defining
the interior and exterior borders. Thus, we expect the measure of gradient direction to change.
That is, if we differentiate along the normal direction, we maximize detection of gross curvature.
The value �⊥�′�x� y� is obtained when x �t� = x+ t sin ��′ �x� y�� and y �t� = y+ t cos ��′ �x� y��.
In this case,

�⊥�′�x� y� = 1

�Mx2 +My2�
3
2

{
Mx2 �My

�x
−MxMy

�My

�x
−MxMy

�My

�y
+MyMy

�Mx

�y

}
(4.56)

In a backward formulation along a normal direction to the edge, we obtain:

�−⊥�′�x� y� = 1

�Mx2 +My2�
3
2

{
−Mx2 �My

�x
+MxMy

�Mx

�x
−MxMy

�My

�y
+My2 �Mx

�y

}
(4.57)

This was originally used by Kass et al. (1988) as a means to detect line terminations, as
part of a feature extraction scheme called snakes (active contours), which are covered in
Chapter 6. Code 4.17 shows an implementation of the four measures of curvature. The function
Gradient is used to obtain the gradient of the image and to obtain its derivatives. The output
image is obtained by applying the function according to the selection of parameter op.

Low-level feature extraction (including edge detection) 157

%Gradient Corner Detector
%op=T tangent direction
%op=TI tangent inverse
%op=N normal direction
%op=NI normal inverse

function outputimage=GradCorner(inputimage,op)
 [rows,columns]=size(inputimage); %Image size
 outputimage=zeros(rows,columns); %Result image
 [Mx,My]=Gradient(inputimage); %Gradient images
 [M,A]=Edges(inputimage); %Edge Suppression
 M=MaxSupr(M,A);
 [Mxx,Mxy]=Gradient(Mx); %Derivatives of the
 %gradient image

 %compute curvature
 for x=1:columns

 for y=1:rows
if(M(y,x)~=0)
 My2=My(y,x)^2; Mx2=Mx(y,x)^2; MxMy=Mx(y,x)*My(y,x);

if((Mx2+My2)~=0)
if(op=='TI')

-MxMy*Myx(y,x)-Mx2*Myy(y,x)
+MxMy*Mxy(y,x));

outputimage(y,x)=(1/(Mx2+My2)^1.5)*(My2*Mxx(y,x)

 elseif (op=='N')
outputimage(y,x)=(1/(Mx2+My2)^1.5)*(Mx2*Myx(y,x)

-MxMy*Mxx(y,x)-MxMy*Myy(y,x)
+My2*Mxy(y,x));

 elseif (op=='NI')
outputimage(y,x)=(1/(Mx2+My2)^1.5)*(-Mx2*Myx(y,x)

+MxMy*Mxx(y,x)-MxMy*Myy(y,x)
+My2*Mxy(y,x));

else %tangential as default
outputimage(y,x)=(1/(Mx2+My2)^1.5)*(My2*Mxx(y,x)

-MxMy*Myx(y,x)+Mx2*Myy(y,x)
-MxMy*Mxy(y,x));

 end
end

 end
 end

end

 [Myx,Myy]=Gradient(My);

Code 4.17 Curvature by measuring changes in intensity

Let us see how the four functions for estimating curvature from image intensity perform for
the image given in Figure 4.37(a). In general, points where the curvature is large are highlighted
by each function. Different measures of curvature (Figure 4.38) highlight differing points on the
feature boundary. All measures appear to offer better performance than that derived by refor-
mulating hysteresis thresholding (Figure 4.37b), although there is little discernible performance
advantage between the direction of differentiation. As the results in Figure 4.38 suggest, detect-
ing curvature directly from an image is not a totally reliable way of determining curvature, and

158 Feature Extraction and Image Processing

(c) κ⊥ϕ

(a) κϕ (b) κ –ϕ

(d) κ−⊥ϕ

Figure 4.38 Comparing image curvature detection operators

hence corner information. This is in part due to the higher order of the differentiation process.
(Also, scale has not been included within the analysis.)

4.8.1.4 Moravec and Harris detectors
In the previous section, we measured curvature as the derivative of the function ��x� y� along
a particular direction. Alternatively, a measure of curvature can be obtained by considering
changes along a particular direction in the image P itself. This is the basic idea of Moravec’s
corner detection operator. This operator computes the average change in image intensity when
a window is shifted in several directions. That is, for a pixel with coordinates �x� y�, and a
window size of 2w+1 we have:

Eu�v �x� y� =
w∑

i=−w

w∑
j=−w

[
Px+i�y+j −Px+i+u�y+j+v

]2
(4.58)

This equation approximates the autocorrelation function in the direction (u, v). A measure of
curvature is given by the minimum value of Eu�v �x� y� obtained by considering the shifts (u, v)
in the four main directions. That is, by (1,0), (0,−1), (0,1) and (−1,0). The minimum is chosen
because it agrees with the following two observations. First, if the pixel is in an edge defining a
straight line, Eu�v �x� y� is small for a shift along the edge and large for a shift perpendicular to
the edge. In this case, we should choose the small value since the curvature of the edge is small.
Secondly, if the edge defines a corner, then all the shifts produce a large value. Thus, if we also
chose the minimum, this value indicates high curvature. The main problem with this approach

Low-level feature extraction (including edge detection) 159

is that it considers only a small set of possible shifts. This problem is solved in the Harris
corner detector (Harris and Stephens, 1988) by defining an analytic expression for the autocor-
relation. This expression can be obtained by considering the local approximation of intensity
changes.

We can consider that the points Px+i�y+j and Px+i+u�y+j+v define a vector (u, v) in the
image. Thus, in a similar fashion to the development given in Equation 4.58, the increment
in the image function between the points can be approximated by the directional derivative
u�Px+i�y+j

/
�x+ v�Px+i�y+j

/
�y. Thus, the intensity at Px+i+u�y+j+v can be approximated as

Px+i+u�y+j+v = Px+i�y+j + �Px+i�y+j

�x
u+ �Px+i�y+j

�y
v (4.59)

This expression corresponds to the three first terms of the Taylor expansion around Px+i�y+j (an
expansion to first order). If we consider the approximation in Equation 4.58 we have:

Eu�v �x� y� =
w∑

i=−w

w∑
j=−w

[
�Px+i�y+j

�x
u+ �Px+i�y+j

�y
v

]2

(4.60)

By expansion of the squared term (and since u and v are independent of the summations), we
obtain:

Eu�v �x� y� = A�x� y�u2 +2C �x� y�uv+B �x� y� v2 (4.61)

where

A�x� y� =
w∑

i=−w

w∑
j=−w

(
�Px+i�y+j

�x

)2

B �x� y� =
w∑

i=−w

w∑
j=−w

(
�Px+i�y+j

�y

)2

C �x� y� =
w∑

i=−w

w∑
j=−w

(
�Px+i�y+j

�x

)(
�Px+i�y+j

�y

) (4.62)

That is, the summation of the squared components of the gradient direction for all the pixels
in the window. In practice, this average can be weighted by a Gaussian function to make the
measure less sensitive to noise (i.e. by filtering the image data). To measure the curvature
at a point (x, y), it is necessary to find the vector (u, v) that minimizes Eu�v �x� y� given in
Equation 4.61. In a basic approach, we can recall that the minimum is obtained when the
window is displaced in the direction of the edge. Thus, we can consider that u = cos �� �x� y��
and v = sin �� �x� y��. These values were defined in Equation 4.53. Accordingly, the minima
values that define curvature are given by

�u�v �x� y� = min Eu�v �x� y� = A�x� y�My
2 +2C �x� y�MxMy +B �x� y�Mx

2

Mx
2 +My

2 (4.63)

In a more sophisticated approach, we can consider the form of the function Eu�v �x� y�. We can
observe that this is a quadratic function, so it has two principal axes. We can rotate the function
such that its axes have the same direction as the axes of the coordinate system. That is, we
rotate the function Eu�v �x� y� to obtain

Fu�v �x� y� = ��x� y�2 u2 +��x� y�2 v2 (4.64)

160 Feature Extraction and Image Processing

The values of � and � are proportional to the autocorrelation function along the principal axes.
Accordingly, if the point (x, y) is in a region of constant intensity, both values are small. If the
point defines a straight border in the image, then one value is large and the other is small. If the
point defines an edge with high curvature, both values are large. Based on these observations a
measure of curvature is defined as

�k �x� y� = ��−k ��+��2 (4.65)

The first term in this equation makes the measure large when the values of � and � increase.
The second term is included to decrease the values in flat borders. The parameter k must be
selected to control the sensitivity of the detector. The higher the value, the more sensitive the
computed curvature will be to changes in the image (and therefore to noise).

In practice, to compute �k �x� y� it is not necessary to compute explicitly the values of
� and �, but the curvature can be measured from the coefficient of the quadratic expres-
sion in Equation 4.61. This can be derived by considering the matrix forms of Equa-
tions 4.61 and 4.64. If we define the vector DT = �u� v�, then Equations 4.60 and 4.63 can be
written as

Eu�v �x� y� = DT MD and Fu�v �x� y� = DT QD (4.66)

where T denotes the transpose and where

M =
[
A�x� y� C �x� y�
C �x� y� B �x� y�

]
and Q =

[
� 0
0 �

]
(4.67)

To relate Equations 4.60 and 4.63, we consider that Fu�v �x� y� is obtained by rotating Eu�v �x� y�
by a transformation R that rotates the axis defined by D. That is,

Fu�v �x� y� = �RD�T MRD (4.68)

This can be arranged as

Fu�v �x� y� = DT RT MRD (4.69)

By comparison with Equation 4.66, we have:

Q = RT MR (4.70)

This defines a well-known equation of linear algebra and it means that Q is an orthogonal
decomposition of M. The diagonal elements of Q are called the eigenvalues. We can use
Equation 4.70 to obtain the value of ��, which defines the first term in Equation 4.65 by
considering the determinant of the matrices. That is, det �Q� = det

(
RT

)
det �M� det �R�. Since

R is a rotation matrix det
(
RT

)
det �R� = 1, thus

�� = A�x� y�B �x� y�−C �x� y�2 (4.71)

which defines the first term in Equation 4.65. The second term can be obtained by taking the
trace of the matrices on each side of this equation. Thus, we have:

�+� = A�x� y�+B �x� y� (4.72)

We can also use Equation 4.70 to obtain the value of � + �, which defines the first term in
Equation 4.65. By taking the trace of the matrices in each side of this equation, we have:

�k �x� y� = A�x� y�B �x� y�−C �x� y�2 −k �A�x� y�+B �x� y��2 (4.73)

Low-level feature extraction (including edge detection) 161

Code 4.18 shows an implementation for Equations 4.64 and 4.73. The equation to be used is
selected by the op parameter. Curvature is only computed at edge points; that is, at pixels whose
edge magnitude is different of zero after applying maximal suppression. The first part of the
code computes the coefficients of the matrix M. Then, these values are used in the curvature
computation.

%Harris Corner Detector
%op=H Harris
%op=M Minimum direction
function outputimage=Harris(inputimage,op)

 w=4; %Window size=2w+1
 k=0.1; %Second term constant

 [rows,columns]=size(inputimage); %Image size
 outputimage=zeros(rows,columns); %Result image

[difx,dify]=Gradient(inputimage); %Differential
 [M,A]=Edges(inputimage); %Edge Suppression
 M=MaxSupr(M,A);

%compute correlation
for x=w+1:columns-w %pixel (x,y)
for y=w+1:rows-w

if M(y,x)~=0
%compute window average
A=0;B=0;C=0;

for i=-w:w
for j=-w:w
A=A+difx(y+i,x+j)^2;
B=B+dify(y+i,x+j)^2;
C=C+difx(y+i,x+j)*dify(y+i,x+j);

end
end

if(op=='H')
outputimage(y,x)=A*B-C^2-k*((A+B)^2);;

else
dx=difx(y,x);
dy=dify(y,x);

if dx*dx+dy*dy~=0
 outputimage(y,x)=((A*dy*dy-
 2*C*dx*dy+B*dx*dx)/(dx*dx+dy*dy));
 end

end
 end

end
end

Code 4.18 Harris corner detector

Figure 4.39 shows the results of computing curvature using this implementation. The results
are capable of showing the different curvature in the border. We can observe that �k �x� y�

162 Feature Extraction and Image Processing

(a) κu,v (x,

y) (b) κk (x,

y)

Figure 4.39 Curvature via the Harris operator

produces more contrast between lines with low and high curvature than �u�v �x� y�. The reason is
the inclusion of the second term in Equation 4.73. In general, the measure of correlation is not
only useful to compute curvature; this technique has much wider application in finding points
for matching pairs of images.

4.8.1.5 Further reading on curvature
Many of the arguments earlier advanced on extensions to edge detection in Section 4.4 apply
to corner detection as well, so the same advice applies. There is much less attention paid by
established textbooks to corner detection through Davis (2005) devotes a chapter to the topic.
Van Otterloo’s fine book on shape analysis (van Otterloo, 1991) contains a detailed analysis of
measurement of (planar) curvature.

There are other important issues in corner detection. It has been suggested that corner extrac-
tion can be augmented by local knowledge to improve performance (Rosin, 1996). There are
many other corner detection schemes, each offering different attributes, although with differing
penalties. Important work has focused on characterizing shapes using corners. In a scheme anal-
ogous to the primal sketch introduced earlier, there is a curvature primal sketch (Asada and
Brady, 1986), which includes a set of primitive parameterized curvature discontinuities (such as
termination and joining points). There are many other approaches: one suggestion is to define
a corner as the intersection between two lines; this requires a process to find the lines. Other
techniques use methods that describe shape variation to find corners. We commented that filter-
ing techniques can be included to improve the detection process; however, filtering can also be
used to obtain a multiple detail representation. This representation is very useful to shape char-
acterization. A curvature scale space has been developed (Mokhtarian and Mackworth, 1986;
Mokhtarian and Bober, 2003) to give a compact way of representing shapes, and at differ-
ent scales, from coarse (low-level) to fine (detail), and with the ability to handle appearance
transformations.

4.8.2 Modern approaches: region/patch analysis
4.8.2.1 Scale invariant feature transform
The scale invariant feature transform (SIFT) (Lowe, 1999, 2004) aims to resolve many of the
practical problems in low-level feature extraction and their use in matching images. The earlier

Low-level feature extraction (including edge detection) 163

Harris operator is sensitive to changes in image scale and as such is unsuited to matching images
of differing size. SIFT involves two stages: feature extraction and description. The description
stage concerns use of the low-level features in object matching, and this will be considered
later. Low-level feature extraction within the SIFT approach selects salient features in a manner
invariant to image scale (feature size) and rotation, and with partial invariance to change in
illumination. Further, the formulation reduces the probability of poor extraction due to occlusion
clutter and noise. It also shows how many of the techniques considered previously can be
combined and capitalized on, to good effect.

First, the difference of Gaussians operator is applied to an image to identify features of
potential interest. The formulation aims to ensure that feature selection does not depend on
feature size (scale) or orientation. The features are then analysed to determine location and
scale before the orientation is determined by local gradient direction. Finally, the features are
transformed into a representation that can handle variation in illumination and local shape
distortion. Essentially, the operator uses local information to refine the information delivered
by standard operators. The detail of the operations is best left to the source material (Lowe,
1999, 2004), for it is beyond the level or purpose here. As such, we shall concentrate on
principle only.

The features detected for the Lena image are illustrated in Figure 4.40. Here, the major
features detected are shown by white lines, where the length reflects magnitude and the direction
reflects the feature’s orientation. These are the major features, which include the rim of the
hat, face features and the boa. The minor features are the smaller white lines: the ones shown
here are concentrated around a background feature. In the full set of features detected at all
scales in this image, there are many more of the minor features, concentrated particularly in the
textured regions of the image (Figure 4.43). Later, we shall see how this can be used within
shape extraction, but the purpose here is the basic low-level features extracted by this new
technique.

 (b) Output points with magnitude
and direction

 (a) Original image

Figure 4.40 Detecting features with the SIFT operator

164 Feature Extraction and Image Processing

In the first stage, the difference of Gaussians for an image P is computed in the manner of
Equation 4.28 as

D �x� y�
� = �g �x� y� k
�−g �x� y�
��∗P
k
 −

=L�x� y� k
�−L�x� y� k�

(4.74)

The function L is a scale-space function which can be used to define smoothed images at
different scales. Note again the influence of scale-space in the more modern techniques. Rather
than any difficulty in locating zero-crossing points, the features are the maxima and minima of
the function. Candidate keypoints are then determined by comparing each point in the function
with its immediate neighbours. The process then proceeds to analysis between the levels of
scale, given appropriate sampling of the scale-space. This then implies comparing a point with
its eight neighbours at that scale and with the nine neighbours in each of the adjacent scales,
to determine whether it is a minimum or a maximum, as well as image resampling to ensure
comparison between the different scales.

To filter the candidate points to reject those which are the result of low local contrast (low
edge strength) or which are poorly localized along an edge, a function is derived by local
curve fitting, which indicates local edge strength and stability as well as location. Uniform
thresholding then removes the keypoints with low contrast. Those that have poor localization,
i.e. their position is likely to be influenced by noise, can be filtered by considering the ratio of
curvature along an edge to that perpendicular to it, in a manner following the Harris operator in
Section 4.8.1.4, by thresholding the ratio of Equations 4.71 and 4.72.

To characterize the filtered keypoint features at each scale, the gradient magnitude is calcu-
lated in exactly the manner of Equations 4.12 and 4.13 as

MSIFT �x� y� =
√

�L �x+1� y�−L�x−1� y��2 + �L �x� y +1�−L�x� y −1��2 (4.75)

�SIFT �x� y� = tan−1

(
L�x� y +1�−L�x� y −1�

�L �x+1� y�−L�x−1� y�

)
(4.76)

The peak of the histogram of the orientations around a keypoint is then selected as the local
direction of the feature. This can be used to derive a canonical orientation, so that the resulting
descriptors are invariant with rotation. As such, this contributes to the process which aims to
reduce sensitivity to camera viewpoint and to non-linear change in image brightness (linear
changes are removed by the gradient operations) by analysing regions in the locality of the
selected viewpoint. The main description (Lowe, 2004) considers the technique’s basis in much
greater detail, and outlines factors important to its performance, such as the need for sampling
and performance in noise.

As shown in Figure 4.41, the technique can certainly operate well, and scale is illustrated by
applying the operator to the original image and to one at half the resolution. In all, 601 keypoints
are determined in the original resolution image and 320 keypoints at half the resolution. By
inspection, the major features are retained across scales (a lot of minor regions in the leaves
disappear at lower resolution), as expected. Alternatively, the features can be filtered further
by magnitude, or even direction (if appropriate). If you want more than results to convince
you, implementations are available for Windows and Linux (http://www.cs.ubc.ca/spider/lowe/
research.html): a feast for a developer. These images were derived using siftWin32, version 4.

Low-level feature extraction (including edge detection) 165

(a) Original image (b) Key points at full
resolution

(c) Key points at half
resolution

Figure 4.41 SIFT feature detection at different scales

4.8.2.2 Saliency
The new saliency operator (Kadir and Brady, 2001) was also motivated by the need to extract
robust and relevant features. In the approach, regions are considered salient if they are simultane-
ously unpredictable both in some feature and scale–space. Unpredictability (rarity) is determined
in a statistical sense, generating a space of saliency values over position and scale, as a basis
for later understanding. The technique aims to be a generic approach to scale and saliency
compared to conventional methods, because both are defined independent of a particular basis
morphology–meaning that it is not based on a particular geometric feature like a blob, edge or
corner. The technique operates by determining the entropy (a measure of rarity) within patches
at scales of interest and the saliency is a weighted summation of where the entropy peaks. The
new method has practical capability in that it can be made invariant to rotation, translation,
non-uniform scaling and uniform intensity variations and robust to small changes in viewpoint.
An example result of processing the image in Fig. 4.42(a) is shown in Figure 4.42(b) where the
200 most salient points are shown circled, and the radius of the circle is indicative of the scale.
Many of the points are around the walking subject and others highlight significant features in the
background, such as the waste bins, the tree or the time index. An example use of saliency was
within an approach to learn and recognize object class models (such as faces, cars or animals)

(a) Original image (b) Top 200 saliency matches circled

Figure 4.42 Detecting features by saliency

166 Feature Extraction and Image Processing

from unlabelled and unsegmented cluttered scenes, irrespective of their overall size (Fergus
et al., 2003). For further study and application, descriptions and Matlab binaries are available
from Kadir’s website (http://www.robots.ox.ac.uk/∼timork/).

4.8.2.3 Other techniques and performance issues
There has been a recent comprehensive performance review (Mikolajczyk and Schmid, 2005),
comparing established and new patch-based operators. The techniques that were compared
included SIFT, differential derivatives by differentiation, cross-correlation for matching, and
a gradient location and orientation-based histogram (an extension to SIFT, which performed
well); the saliency approach was not included. The criterion used for evaluation concerned the
number of correct matches, and the number of false matches, between feature points selected by
the techniques. The matching process was between an original image and one of the same scene
when subject to one of six image transformations. The image transformations covered practical
effects that can change image appearance, and were: rotation, scale change, viewpoint change,
image blur, JPEG compression, and illumination. For some of these there were two scene types
available, which allowed for separation of understanding of scene type and transformation. The
study observed that, within its analysis, ‘the SIFT-based descriptors perform best’, but this is
a complex topic and selection of technique is often application dependent. Note that there is
further interest in performance evaluation, and in invariance to higher order changes in viewing
geometry, such as invariance to affine and projective transformation.

4.9 Describing image motion

We have looked at the main low-level features that we can extract from a single image. In
the case of motion, we must consider more than one image. If we have two images obtained
at different times, the simplest way in which we can detect motion is by image differencing.
That is, changes or motion can be located by subtracting the intensity values; when there is not
motion, the subtraction will give a zero value and when an object in the image moves their
pixel’s intensity changes, so the subtraction will give a value different of zero.

To denote a sequence of images, we include a time index in our previous notation. That is,
P�t�x�y. Thus, the image at the origin of our time is P�0�x�y and the next image is P�1�x�y. As
such, the image differencing operation which delivered the difference image D is given by

D�t� = P�t�−P�t −1� (4.77)

(a) Difference image D (b) First image (c) Second image

Figure 4.43 Detecting motion by differencing

Low-level feature extraction (including edge detection) 167

Figure 4.43 shows an example of this operation. The image in 4.43(a) is the result of subtracting
the image in Figure 4.43(b) from the one in Figure 4.43(c). This shows rather more than just the
bits that are moving; we have not just highlighted the moving subject, we have also highlighted
bits above the subject’s head and around his feet. This is due mainly to change in the lighting
(the shadows around the feet are to do with the subject’s interaction with the lighting). However,
perceived change can also be due to motion of the camera and to the motion of other objects
in the field of view. In addition to these inaccuracies, perhaps the most important limitation of
differencing is the lack of information about the movement itself. That is, we cannot see exactly
how image points have moved. To describe the way in which the points in an image move, we
should study how the pixels’ position changes in each image frame.

4.9.1 Area-based approach

When a scene is captured at different times, 3D elements are mapped into corresponding pixels
in the images. Thus, if image features are not occluded, they can be related to each other
and motion can be characterized as a collection of displacements in the image plane. The
displacement corresponds to the project movement of the objects in the scene and it is referred
to as the optical flow. If you were to take an image, and its optical flow, you should be able
to construct the next frame in the image sequence. So optical flow is like a measurement of
velocity, the movement in pixels/unit of time, more simply pixels/frame. Optical flow can be
found by looking for corresponding features in images. We can consider alternative features
such as points, pixels, curves or complex descriptions of objects.

The problem of finding correspondences in images has motivated the development of many
techniques that can be distinguished by the features, the constraints imposed and the optimization
or searching strategy (Dhond and Aggarwal, 1989). When features are pixels, the correspon-
dence can be found by observing the similarities between intensities in image regions (local
neighbourhood). This approach is known as area-based matching and it is one of the most
common techniques used in computer vision (Barnard and Fichler, 1987). In general, pixels
in non-occluded regions can be related to each other by means of a general transformation of
the form

P �t +1�x+�x�y+�y = P �t�x�y +H �t�x�y (4.78)

where the function H�t�x�y compensates for intensity differences between the images, and
��x��y� defines the displacement vector of the pixel at time t +1. That is, the intensity of the
pixel in the frame at time t +1 is equal to the intensity of the pixel in the position (x, y) in the
previous frame plus some small change due to physical factors and temporal differences that
induce the photometric changes in images. These factors can be due, for example, to shadows,
specular reflections, differences in illumination or changes in observation angles. In a general
case, it is extremely difficult to account for the photometric differences, thus the model in
Equation 4.78 is generally simplified by assuming that

• the brightness of a point in an image is constant
• that neighbouring points move with similar velocity.

According to the first assumption, we have H �x� ≈ 0. Thus,

P�t +1�x+�x�y+�y = P�t�x�y (4.79)

168 Feature Extraction and Image Processing

Many techniques have used this relationship to express the matching process as an optimization
or variational problem (Jordan and Bovik, 1992). The objective is to find the vector ��x��y�
that minimizes the error given by

ex�y = S
(
P�t +1�x+�x�y+�y� P�t�x�y

)
(4.80)

where S() represents a function that measures the similarity between pixels. As such, the optimum
is given by the displacements that minimizes the image differences. Alternative measures of
similarity can be used to define the matching cost (Jordan and Bovik, 1992). For example, we
can measure the difference by taking the absolute of the arithmetic difference. Alternatively, we
can consider the correlation or the squared values of the difference or an equivalent normalized
form. In practice, it is difficult to try to establish a conclusive advantage of a particular measure,
since they will perform differently depending on the kind of image, the kind of noise and the
nature of the motion we are observing. As such, one is free to use any measure as long as it
can be justified based on particular practical or theoretical observations. The correlation and the
squared difference will be explained in more detail in the next chapter when we consider how a
template can be located in an image. We shall see that if we want to make the estimation problem
in Equation 4.80 equivalent to maximum likelihood estimation then we should minimize the
squared error. That is,

ex�y = (
P�t +1�x+�x�y+�y� P�t�x�y

)2
(4.81)

In practice, the implementation of the minimization is extremely prone to error since the
displacement is obtained by comparing intensities of single pixels; it is very likely that the
intensity changes or that a pixel can be confused with other pixels. To improve the performance,
the optimization includes the second assumption presented above. If neighbouring points move
with similar velocity, we can determine the displacement by considering not just a single pixel,
but pixels in a neighbourhood. Thus,

ex�y = ∑
�x′�y′�∈W

(
P�t +1�x′+�x�y′+�y� P�t�x′�y′

)2
(4.82)

That is, the error in the pixel at position (x, y) is measured by comparing all the pixels �x′� y′�
in a window W . This makes the measure more stable by introducing an implicit smoothing
factor. The size of the window is a compromise between noise and accuracy. The automatic
selection of the window parameter has attracted some interest (Kanade and Okutomi, 1994).
Another important problem is the amount of computation involved in the minimization when
the displacement between frames is large. This has motivated the development of hierarchical
implementations. Other extensions have considered more elaborate assumptions about the speed
of neighbouring pixels.

A straightforward implementation of the minimization of the square error is presented in
Code 4.19. This function has a pair of parameters that define the maximum displacement and
the window size. The optimum displacement for each pixel is obtained by comparing the error
for all the potential integer displacements. In a more complex implementation, it is possible to
obtain displacements with subpixel accuracy (Lawton, 1983). This is normally achieved by a
postprocessing step based on subpixel interpolation or by matching surfaces obtained by fitting
the data at the integer positions. The effect of the selection of different window parameters can
be seen in the example shown in Figure 4.44. Figure 4.44(a) and (b) show an object moving
up into a static background (at least for the two frames we are considering). Figure 4.44(c)–(e)
shows the displacements obtained by considering windows of increasing size. Here, we can
observe that as the size of the window increases, the result is smoother, but detail has been about

Low-level feature extraction (including edge detection) 169

%Optical flow by correlation
%d: max displacement., w:window size 2w+1
function FlowCorr(inputimage1,inputimage2,d,w)

%Load images
L1=double(imread(inputimage1, 'bmp'));
L2=double(imread(inputimage2,'bmp'));

%image size
[rows,columns]=size(L1); %L2 must have the same size

%result image
u=zeros(rows,columns);
v=zeros(rows,columns);

sum=0;
for i=-w:w% window

 %correlation for each pixel
for x1=w+d+1:columns-w-d
 for y1=w+d+1:rows-w-d

 min=99999; dx=0; dy=0;
 %displacement position
 for x2=x1-d:x1+d
 for y2=y1-d:y1+d

 for j=-w:w
sum=sum+(double(L1(y1+j,x1+i))-

double(L2(y2+j,x2+i)))^2;
 end
end
if (sum<min)
 min=sum;
 dx=x2-x1; dy=y2-y1;

 end
 end

 end
 u(y1,x1)=dx;
 v(y1,x1)=dy;

end
end

%display result
quiver(u,v,.1);

Code 4.19 Implementation of area-based motion computation

the boundary of the object. We can also observe that when the window is small, the are noisy
displacements near the object’s border. This can be explained by considering that Equation 4.78
supposes that pixels appear in both images, but this is not true near the border since pixels
appear and disappear (i.e. occlusion) from and behind the moving object. In addition, there are
problems in regions that lack of intensity variations (texture). This is because the minimization

170 Feature Extraction and Image Processing

(c) Window size 3 (d) Window size 5 (e) Window size 11

(a) First image (b) Second image

Figure 4.44 Example of area-based motion computation

function in Equation 4.81 is almost flat and there is no clear evidence of the motion. In general,
there is not a very effective way of handling these problems since they are caused by the lack
of information in the image.

4.9.2 Differential approach

Another popular way to estimate motion focuses on the observation of the differential changes
in the pixel values. There are many ways of calculating the optical flow by this approach (Nagel,
1987; Barron et al., 1994). We shall discuss one of the more popular techniques (Horn and
Schunk, 1981). We start by considering the intensity equity in Equation 4.79. According to this,
the brightness at the point in the new position should be the same as the brightness at the old
position. Like Equation 4.5, we can expand P�t +�t�x+�x�y+�y by using a Taylor series as

P�t +�t�x+�x�y+�y = P�t�x�y +�x
�P�t�x�y

�x
+�y

�P�t�x�y

�y
+�t

�P�t�x�y

�t
+� (4.83)

where � contains higher order terms. If we take the limit as �t → 0 then we can ignore � as it
also tends to zero, which leaves

P�t +�t�x+�x�y+�y = P�t�x�y +�x
�P�t�x�y

�x
+�y

�P�t�x�y

�y
+�t

�P�t�x�y

�t
(4.84)

Low-level feature extraction (including edge detection) 171

Now by Equation 4.79 we can substitute for P�t +�t�x+�x�y+�y to give

P�t�x�y = P�t�x�y +�x
�P�t�x�y

�x
+�y

�P�t�x�y

�y
+�t

�P�t�x�y

�t
(4.85)

which with some rearrangement gives the motion constraint equation

�x

�t

�P
�x

+ �y

�t

�P
�y

= −�P
�t

(4.86)

We can recognize some terms in this equation. �P
/

�x and �P
/

�y are the first order differentials
of the image intensity along the two image axes. �P

/
�t is the rate of change of image intensity

with time. The other two factors are the ones concerned with optical flow, as they describe
movement along the two image axes. Let us call u = �x

/
�t and v = �y

/
�t. These are the

optical flow components: u is the horizontal optical flow and v is the vertical optical flow. We
can write these into our equation to give

u
�P
�x

+ v
�P
�y

= −�P
�t

(4.87)

This equation suggests that the optical flow and the spatial rate of intensity change together
describe how an image changes with time. The equation can be expressed more simply in vector
form in terms of the intensity change P = �x y� = [

�P
/

�x �P
/

�y
]

and the optical flow
v = �u v�T , as the dot product

P ·v = − •
P (4.88)

We already have operators that can estimate the spatial intensity change, x = �P
/

�x and
y = �P

/
�y, by using one of the edge detection operators described earlier. We also have an

operator which can estimate the rate of change of image intensity, t = �P
/

�t, as given by
Equation 4.77. Unfortunately, we cannot determine the optical flow components from Equa-
tion 4.87 since we have one equation in two unknowns (there are many possible pairs of values
for u and v that satisfy the equation). This is called the aperture problem and makes the problem
ill-posed. Essentially, we seek estimates of u and v that minimize the error in Equation 4.90
over the entire image. By expressing Equation 4.87 as

ux+ vy +t = 0 (4.89)

we then seek estimates of u and v that minimize the error ec for all the pixels in an image

ec =
∫ ∫

�ux+ vy +t�2dxdy (4.90)

We can approach the solution (equations to determine u and v) by considering the second
assumption we made earlier, namely that neighbouring points move with similar velocity. This
is called the smoothness constraint as it suggests that the velocity field of the brightness varies in
a smooth manner without abrupt change (or discontinuity). If we add this in to the formulation,
we turn a problem that is ill-posed, without unique solution, to one that is well-posed. Properly,
we define the smoothness constraint as an integral over the area of interest, as in Equation 4.90.
Since we want to maximize smoothness, we seek to minimize the rate of change of the optical
flow. Accordingly, we seek to minimize an integral of the rate of change of flow along both
axes. This is an error es, as

es =
∫ ∫ ((�u

�x

)2

+
(

�u

�y

)2

+
(

�v

�x

)2

+
(

�v

�y

)2
)

dxdy (4.91)

172 Feature Extraction and Image Processing

The total error is the compromise between the importance of the assumption of constant bright-
ness and the assumption of smooth velocity. If this compromise is controlled by a regularization
parameter �, then the total error e is

e = �× ec+ es

=
∫ ∫ (

�×
(

u
�P
�x

+ v
�P
�y

+ �P
�t

)2

+
((

�u

�x

)2

+
(

�u

�y

)2

+
(

�v

�x

)2

+
(

�v

�y

)2
))

dxdy

(4.92)

There are several ways to approach the solution (Horn, 1986), but the most appealing is perhaps
also the most direct. We are concerned with providing estimates of optical flow at image
points. So we are interested in computing the values for ux�y and vx�y. We can form the error at
image points, like esx�y. Since we are concerned with image points, we can form esx�y by using
first order differences, just like Equation 4.1 at the start of this chapter. Equation 4.90 can be
implemented in discrete form as

esx�y =∑
x

∑
y

1
4

((
ux+1�y −ux�y

)2 + (
ux�y+1 −ux�y

)2 + (
vx+1�y − vx�y

)2 + (
vx�y+1 − vx�y

)2
)

(4.93)

The discrete form of the smoothness constraint is then that the average rate of change of flow
should be minimized. To obtain the discrete form of Equation 4.92 we then add in the discrete
of ec (the discrete form of Equation 4.90) to give

ecx�y = ∑
x

∑
y

(
ux�yxx�y + vx�yyx�y +tx�y

)2
(4.94)

where xx�y = �Px�y

/
�x, yx�y = �Px�y

/
�y and tx�y = �Px�y

/
�t are local estimates, at the point

with coordinates x,y of the rate of change of the picture with horizontal direction, vertical
direction and time, respectively. Accordingly, we seek values for ux�y and vx�y that minimize the
total error e as given by

ex�y =∑
x

∑
y

(
�×ecx�y +esx�y

)

=∑
x

∑
y

⎛
⎝�×(

ux�yxx�y +vx�yyx�y +tx�y

)2+
1
4

((
ux+1�y −ux�y

)2 +(
ux�y+1 −ux�y

)2 +(
vx+1�y −vx�y

)2 +(
vx�y+1 −vx�y

)2
)
⎞
⎠

(4.95)

Since we seek to minimize this equation with respect to ux�y and vx�y we differentiate it
separately, with respect to the two parameters of interest, and the resulting equations when
equated to zero should yield the equations we seek. As such,

�ex�y

�ux�y

= (
�×2

(
ux�yxx�y + vx�yyx�y +tx�y

)
xx�y +2

(
ux�y −ux�y

)) = 0 (4.96)

and
�ex�y

�vx�y

= (
�×2

(
ux�yxx�y + vx�yyx�y +tx�y

)
yx�y +2

(
vx�y − vx�y

)) = 0 (4.97)

This gives a pair of equations in ux�y and vx�y(
1+�

(
xx�y

)2
)

ux�y +�xx�yyx�yvx�y = ux�y −�xx�ytx�y

�xx�yyx�yux�y +
(

1+�
(
yx�y

)2
)

vx�y = vx�y −�xx�ytx�y

(4.98)

Low-level feature extraction (including edge detection) 173

This is a pair of equations in u and v with solution(
1+�

((
xx�y

)2 +(
yx�y

)2
))

ux�y =
(

1+�
(
yx�y

)2
)

ux�y −�xx�yyx�yvx�y −�xx�ytx�y(
1+�

((
xx�y

)2 +(
yx�y

)2
))

vx�y =−�xx�yyx�yux�y +
(

1+�
(
xx�y

)2
)

vx�y −�yx�ytx�y

(4.99)

The solution to these equations is in iterative form, where we shall denote the estimate of
u at iteration n as u<n>, so each iteration calculates new values for the flow at each point
according to

u<n+1>
x�y = u<n>

x�y −�

(
xx�yux�y +yx�yvx�y +tx�y(

1+�
(
xx�y

2 +yx�y
2
))

)
(
xx�y

)

v<n+1>
x�y = v<n>

x�y −�

⎛
⎝xx�yux�y +yx�yvx�y +tx�y(

1+�
(
xx�y

2 +yx�y
2
))

⎞
⎠(

yx�y

)
(4.100)

Now we have it, the pair of equations gives iterative means for calculating the images of optical
flow based on differentials. To estimate the first order differentials, rather than use our earlier
equations, we can consider neighbouring points in quadrants in successive images. This gives
approximate estimates of the gradient based on the two frames. That is,

xx�y =

(
P�0�x+1�y +P�1�x+1�y +P�0�x+1�y+1 +P�1�x+1�y+1

)−(
P�0�x�y +P�1�x�y +P�0�x�y+1 +P�1�x�y+1

)

8

yx�y =

(
P�0�x�y+1 +P�1�x�y+1 +P�0�x+1�y+1 +P�1�x+1�y+1

)−(
P�0�x�y +P�1�x�y +P�0�x+1�y +P�1�x+1�y

)

8

(4.101)

In fact, in a later reflection (Horn and Schunk, 1993) on the earlier presentation, Horn noted
with rancour that some difficulty experienced with the original technique had been caused by
use of simpler methods of edge detection which are not appropriate here, as the simpler versions
do not deliver a correctly positioned result between two images. The time differential is given
by the difference between the two pixels along the two faces of the cube, as

tx�y =

(
P�1�x�y +P�1�x+1�y +P�1�x�y+1 +P�1�x+1�y+1

)−(
P�0�x�y +P�0�x+1�y +P�0�x�y+1 +P�0�x+1�y+1

)

8
(4.102)

Note that if the spacing between the images is other than one unit, this will change the
denominator in Equations 4.101 and 4.102, but this is a constant scale factor. We also need
means to calculate the averages. These can be computed as

ūx�y = ux−1�y +ux�y−1 +ux+1�y +ux�y+1

2
+ ux−1�y−1 +ux−1�y+1 +ux+1�y−1 +ux+1�y+1

4

v̄x�y = vx−1�y + vx�y−1 + vx+1�y + vx�y+1

2
+ vx−1�y−1 + vx−1�y+1 + vx+1�y−1 + vx+1�y+1

4
(4.103)

The implementation of the computation of optical flow by the iterative solution in Equation 4.100
is presented in Code 4.20. This function has two parameters that define the smoothing parameter

174 Feature Extraction and Image Processing

%Optical flow by gradient method
%s = smoothing parameter
%n = number of iterations
function OpticalFlow(inputimage1,inputimage2,s,n)

%Load images
L1=double(imread(inputimage1, 'bmp'));
L2=double(imread(inputimage2, 'bmp'));

%Image size
[rows,columns]=size(I1); %I2 must have the same size

%Result flow
u=zeros(rows,columns);
v=zeros(rows,columns);

%Temporal flow
tu=zeros(rows,columns);
tv=zeros(rows,columns);

Ey=(L1(y+1,x)-L1(y,x)+L2(y+1,x)-L2(y,x)+L1(y+1,x+1)
 -L1(y,x+1)+L2(y+1,x+1)-L2(y,x+1))/4;
Et=(L2(y,x)-L1(y,x)+L2(y+1,x)-L1(y+1,x)+L2(y,x+1)
 L1(y,x+1)+L2(y+1,x+1)-L1(y+1,x+1))/4;
%average
AU=(u(y,x-1)+u(y,x+1)+u(y-1,x)+u(y+1,x))/4;
AV=(v(y,x-1)+v(y,x+1)+v(y-1,x)+v(y+1,x))/4;
%update estimates

%Flow computation
for k=1:n %iterations
 for x=2:columns-1
 for y=2:rows-1
 %derivatives

Ex=(L1(y,x+1)-L1(y,x)+L2(y,x+1)-L2(y,x)+L1(y+1,x+1)
 -L1(y+1,x)+L2(y+1,x+1)-L2(y+1,x))/4;

A=(Ex*AU+Ey*AV+Et);
B=(1+s*(Ex*Ex+Ey*Ey));
tu(y,x)= AU-(Ex*s*A/B);
tv(y,x)= AV-(Ey*s*A/B);
end%for (x,y)

end
%update
for x=2:columns-1

for y=2:rows-1
u(y,x)=tu(y,x); v(y,x)=tv(y,x);

end %for (x,y)
end

end %iterations

%display result
quiver(u,v,1);

Code 4.20 Implementation of gradient-based motion

Low-level feature extraction (including edge detection) 175

and the number of iterations. In the implementation, we use the matrices u, v, tu and tv
to store the old and new estimates in each iteration. The values are updated according to
Equation 4.100. Derivatives and averages are computed by using simplified forms of Equa-
tions 4.101–4.103. In a more elaborate implementation, it is convenient to include averages,
as we discussed in the case of single image feature operators. This will improve the accuracy
and reduce noise. In addition, since derivatives can only be computed for small displacements,
generally, gradient algorithms are implemented with a hierarchical structure. This will enable
the computation of displacements larger than one pixel.

Figure 4.45 shows some examples of optical flow computation. In these examples, we used
the same images as in Figure 4.44. The first row in the figure shows three results obtained
by different number of iterations and fixed smoothing parameter. In this case, the estimates
converged quite quickly. Note that at the start, the estimates of flow in are quite noisy, but
they quickly improve; as the algorithm progresses the results are refined and a more smooth
and accurate motion is obtained. The second row in Figure 4.45 shows the results for a fixed
number of iterations and a variable smoothing parameter. The regularization parameter controls
the compromise between the detail and the smoothness. A large value of � will enforce the
smoothness constraint, whereas a small value will make the brightness constraint dominate the
result. In the results we can observe that the largest vectors point in the expected direction,
upwards, while some of the smaller vectors are not exactly correct. This is because there are
occlusions and some regions have similar textures. We could select the brightest of these points

(a) Two iterations (b) Four iterations (c) Ten iterations

(d) λ = 0.001 (e) λ = 0.1 (f) λ = 10.0

Figure 4.45 Example of differential-based motion computation

176 Feature Extraction and Image Processing

by thresholding according to magnitude. That would leave the largest vectors (the ones that
point in exactly the right direction).

Optical flow has been used in automatic gait recognition (Little and Boyd, 1998; Huang
et al., 1999), among other applications, partly because the displacements can be large between
successive images of a walking subject, which makes the correlation approach suitable (note that
fast versions of area-based correspondence are possible; Zabir and Woodfill, 1994). Figure 4.46
shows the result for a walking subject where brightness depicts magnitude (direction is not
shown). Figure 4.46(a) shows the result for the differential approach, where the flow is clearly
more uncertain than that produced by the correlation approach shown in Figure 4.46(b). Another
reason for using the correlation approach is that we are not concerned with rotation as people
(generally!) walk along flat surfaces. If 360� rotation is to be considered then you have to
match regions for every rotation value and this can make the correlation-based techniques
computationally very demanding indeed.

(a) Flow by differential approach (b) Flow by correlation

Figure 4.46 Optical flow of walking subject

4.9.3 Further reading on optical flow

Determining optical flow does not get much of a mention in the established textbooks, even
though it is a major low-level feature description. Rather naturally, it is to be found in depth
in one of its early proponent’s textbooks (Horn, 1986). One approach to motion estimation
has considered the frequency domain (Adelson and Bergen, 1985) (yes, Fourier transforms get
everywhere!). For a further overview of dense optical flow, see (Bulthoff et al. 1989) and for
implementation, see (Little et al. 1988). The major survey (Beauchemin and Barron, 1995) of
the approaches to optical flow is rather dated now, as is their performance appraisal (Barron
et al., 1994). Such an (accuracy) appraisal is particularly useful in view of the number of ways
there are to estimate it. The nine techniques studied included the differential approach we have
studied here, a Fourier technique and a correlation-based method. Their conclusion was that a
local differential method and a phase-based method (Fleet and Jepson, 1990) offered the most
consistent performance on the datasets studied. However, there are many variables, not only in
the data but also in implementation, that might lead to preference for a particular technique.
Clearly, there are many impediments to the successful calculation of optical flow such as change

Low-level feature extraction (including edge detection) 177

in illumination or occlusion (and by other moving objects). In fact, there have been a number of
studies on performance, e.g. of affine flow in Grossmann and Santos-Victor (1997). A thorough
analysis of correlation techniques has been developed (Giachetti, 2000) with new algorithms for
sub-pixel estimation. One study (Liu et al., 1998) notes how developments have been made for
fast or for accurate techniques, without consideration of the trade-off between these two factors.
The study compared the techniques mentioned previously with two newer approaches (one fast
and one accurate), and also surveys real-time implementations that include implementation via
parallel computers and special purpose VLSI chips.

4.10 Conclusions

This chapter has covered the main ways to extract low-level feature information. In some cases
this can prove sufficient for understanding the image. Often, however, the function of low-level
feature extraction is to provide information for later higher level analysis. This can be achieved
in a variety of ways, with advantages and disadvantages and quickly or at a lower speed (or
requiring a faster processor/more memory!). The range of techniques presented here has certainly
proved sufficient for the majority of applications. There are other, more minor techniques, but
the main approaches to boundary, corner and motion extraction have proved sufficiently robust
and with requisite performance that they shall endure for some time.

Next, we move on to using this information at a higher level. This means collecting the
information so as to find shapes and objects, the next stage in understanding the image’s content.

4.11 References

Adelson, E. H. and Bergen, J. R., Spatiotemporal Energy Models for the Perception of Motion,
J. Opt. Soc. Am., A2(2), pp. 284–299, 1985

Apostol, T. M., Calculus, 2nd edn, Vol. 1, Xerox College Publishing, Waltham, 1966
Asada, H. and Brady, M., The Curvature Primal Sketch, IEEE Trans. PAMI, 8(1), pp. 2–14, 1986
Barnard, S. T. and Fichler, M. A., Stereo Vision, In: Encyclopedia of Artificial Intelligence,

John Wiley, New York, pp. 1083–2090, 1987
Barron, J. L., Fleet, D. J. and Beauchemin, S. S., Performance of Optical Flow Techniques, Int.

J. Comput. Vision, 12(1), pp. 43–77, 1994
Beauchemin, S. S. and Barron, J. L., The Computation of Optical Flow, Communs ACM,

pp. 433–467, 1995
Bennet, J. R. and MacDonald, J. S., On the Measurement of Curvature in a Quantized Environ-

ment, IEEE Trans. Comput., C-24(8), pp. 803–820, 1975
Bergholm, F., Edge Focussing, IEEE Trans. PAMI, 9(6), pp. 726–741, 1987
Bovik, A. C., Huang, T. S. and Munson, D. C., The Effect of Median Filtering on Edge

Estimation and Detection, IEEE Trans. PAMI, 9(2), pp. 181–194, 1987.
Bulthoff, H., Little, J. and Poggio, T., A Parallel Algorithm for Real-Time Computation of

Optical Flow, Nature, 337(9), pp. 549–553, 1989
Canny, J., A Computational Approach to Edge Detection, IEEE Trans. PAMI, 8(6),

pp. 679–698, 1986
Clark, J. J., Authenticating Edges Produced by Zero-Crossing Algorithms, IEEE Trans. PAMI,

11(1), pp. 43–57, 1989

178 Feature Extraction and Image Processing

Davies, E. R., Machine Vision: Theory, Algorithms and Practicalities, 3rd edn, Morgan
Kaufmann (Elsevier), 2005

Deriche, R., Using Canny’s Criteria to Derive a Recursively Implemented Optimal Edge Detec-
tor, Int. J. Comput. Vision, 1, pp. 167–187, 1987

Dhond, U. R. and Aggarwal, J. K., Structure From Stereo – A Review, IEEE Trans. SMC, 19(6),
pp. 1489–1510, 1989

Fergus, R., Perona, P. and Zisserman, A., Object Class Recognition by Unsupervised Scale-
Invariant Learning, Proc. CVPR 2003, II, pp. 264–271, 2003

Fleet, D. J. and Jepson, A. D., Computation of Component Image Velocity from Local Phase
Information, Int. J. Comput. Vision, 5(1), pp. 77–104, 1990

Forshaw, M. R. B., Speeding Up the Marr–Hildreth Edge Operator, CVGIP, 41,
pp. 172–185, 1988

Giachetti, A., Matching Techniques to Compute Image Motion, Image Vision Comput., 18(3),
pp. 247–260, 2000

Goetz, A., Introduction to Differential Geometry, Addison-Wesley, Reading, MA, 1970
Grimson, W. E. L. and Hildreth, E. C., Comments on ‘Digital Step Edges from Zero Crossings

of Second Directional Derivatives’, IEEE Trans. PAMI, 7(1), pp. 121–127, 1985
Groan, F. and Verbeek, P., Freeman-Code Probabilities of Object Boundary Quantized Contours,

CVGIP, 7, pp. 391–402, 1978
Grossmann, E. and Santos-Victor, J., Performance Evaluation of Optical Flow: Assessment of

a New Affine Flow Method, Robotics Auton. Syst., 21, pp. 69–82, 1997
Gunn, S. R., On the Discrete Representation of the Laplacian of Gaussian, Pattern Recog.,

32(8), pp. 1463–1472, 1999
Haddon, J. F., Generalized Threshold Selection for Edge Detection, Pattern Recog., 21(3),

pp. 195–203, 1988
Haralick, R. M., Digital Step Edges from Zero-Crossings of Second Directional Derivatives,

IEEE Trans. PAMI, 6(1), pp. 58–68, 1984
Haralick, R. M., Author’s Reply, IEEE Trans. PAMI, 7(1), pp. 127–129, 1985
Harris, C. and Stephens, M., A Combined Corner and Edge Detector, Proc. 4th Alvey Vision

Conference, pp. 147–151, 1988
Heath, M. D., Sarkar, S., Sanocki, T. and Bowyer, K. W., A Robust Visual Method of Assess-

ing the Relative Performance of Edge Detection Algorithms, IEEE Trans. PAMI, 19(12),
pp. 1338–1359, 1997

Horn, B. K. P., Robot Vision, MIT Press, Cambridge, MA, 1986
Horn, B. K. P. and Schunk, B. G., Determining Optical Flow, Artif. Intell., 17, pp. 185–203, 1981
Horn, B. K. P. and Schunk, B. G., Determining Optical Flow: A Retrospective, Artif. Intell., 59,

pp. 81–87, 1993
Huang, P. S., Harris, C. J. and Nixon, M. S., Human Gait Recognition in Canonical Space using

Temporal Templates, IEE Proc. Vision Image Signal Process., 146(2), pp. 93–100, 1999
Huertas, A. and Medioni, G., Detection of Intensity Changes with Subpixel Accuracy using

Laplacian–Gaussian Masks, IEEE Trans. PAMI, 8(1), pp. 651–664, 1986
Jia, X. and Nixon, M. S., Extending the Feature Vector for Automatic Face Recognition, IEEE

Trans. PAMI, 17(12), pp. 1167–1176, 1995
Jordan, J. R. III and Bovik, A. C. M. S., Using Chromatic Information in Dense Stereo Corre-

spondence, Pattern Recog., 25, pp. 367–383, 1992
Kadir, T. and Brady, M., Scale, Saliency and Image Description, Int. J. Comput. Vision, 45(2),

pp. 83–105, 2001

Low-level feature extraction (including edge detection) 179

Kanade, T. and Okutomi, M., A Stereo Matching Algorithm with an Adaptive Window: Theory
and Experiment, IEEE Trans. PAMI, 16, pp. 920–932, 1994

Kass, M., Witkin, A. and Terzopoulos, D., Snakes: Active Contour Models, Int. J. Comput. Vis.,
1(4), 321–331, 1988

Kitchen, L. and Rosenfeld, A., Gray-Level Corner Detection, Pattern Recog. Lett., 1(2),
pp. 95–102, 1982

Korn, A. F., Toward a Symbolic Representation of Intensity Changes in Images, IEEE Trans.
PAMI, 10(5), pp. 610–625, 1988

Kovesi, P., Image Features from Phase Congruency. Videre: J. Comput. Vision Res., 1(3),
pp. 1–27, 1999

Lawton, D. T., Processing Translational Motion Sequences, CVGIP, 22, pp. 116–144, 1983
Lee, C. K., Haralick, M. and Deguchi, K., Estimation of Curvature from Sampled Noisy Data,

ICVPR’93, pp. 536–541, 1993
Lindeberg, T., Scale-Space Theory: A Basic Tool for Analysing Structures at Different Scales,

J. Appl. Statist., 21(2), pp. 224–270, 1994
Little, J. J. and Boyd, J. E., Recognizing People By Their Gait: The Shape of Motion, Videre,

1(2), pp. 2–32, 1998, online at http://mitpress.mit.edu/e-journals/VIDE/001/v12.html
Little, J. J., Bulthoff, H. H. and Poggio, T., Parallel Optical Flow using Local Voting, Proc. Int.

Conf. Comput. Vision, pp. 454–457, 1988
Liu, H., Hong, T.-S., Herman, M., Camus, T. and Chellappa, R., Accuracy vs Effi-

ciency Trade-offs in Optical Flow Algorithms, Comput. Vision Image Understand., 72(3),
pp. 271–286, 1998

Lowe, D. G., Object Recognition from Local Scale-Invariant Features, Proc. Int. Conf. Comput.
Vision, pp. 1150–1157, 1999

Lowe, D. G., Distinctive Image Features from Scale-Invariant Key Points, Int. J. Comput. Vision,
60(2), pp. 91–110, 2004

Lucas, B. and Kanade, T., An Iterative Image Registration Technique with an Application to
Stereo Vision, Proc DARPA Image Understanding Workshop, pp. 121–130, 1981

Marr, D., Vision, W. H. Freeman and Co., New York, 1982
Marr, D. C. and Hildreth, E., Theory of Edge Detection, Proc. R. Soc. Lond., B207,

pp. 187–217, 1980
Mikolajczyk, K. and Schmid, C., A Performance Evaluation of Local Descriptors, IEEE Trans.

PAMI, 27(10), pp. 1615–1630, 2005
Mokhtarian, F. and Bober, M., Curvature Scale Space Representation: Theory, Applications and

MPEG-7 Standardization, Kluwer Academic, Dordrecht, 2003
Mokhtarian, F. and Mackworth, A. K., Scale-Space Description and Recognition of Planar

Curves and Two-Dimensional Shapes, IEEE Trans. PAMI, 8(1), pp. 34–43, 1986
Morrone, M. C. and Burr, D. C., Feature Detection in Human Vision: A Phase-Dependent

Energy Model, Proc. R. Soc. Lond. B, Biol. Sci., 235(1280), pp. 221–245, 1988
Morrone, M. C. and Owens, R. A., Feature Detection from Local Energy, Pattern Recog. Lett.,

6, pp. 303–313, 1987
Mulet-Parada, M. and Noble, J. A., 2D+T Acoustic Boundary Detection in Echocardiography,

Med. Image Analysis, 4, 21–30, 2000
Myerscough, P.J. and Nixon, M. S., Temporal Phase Congruency, Proc. IEEE Southwest Sym-

posium on Image Analysis and Interpretation SSIAI ’04, pp. 76–79, 2004
Nagel, H. H., On the Estimation of Optical Flow: Relations between Different Approaches and

Some New Results, Artif. Intell., 33, pp. 299–324, 1987

180 Feature Extraction and Image Processing

van Otterloo, P. J., A Contour-Oriented Approach to Shape Analysis, Prentice Hall International
(UK), Hemel Hempstead, 1991

Parker, J. R., Practical Computer Vision using C, Wiley & Sons, New York, 1994
Petrou, M., The Differentiating Filter Approach to Edge Detection, Adv. Electron. Electron

Phys., 88, pp. 297–345, 1994
Petrou, M. and Kittler, J., Optimal Edge Detectors for Ramp Edges, IEEE Trans. PAMI, 13(5),

pp. 483–491, 1991
Prewitt, J. M. S. and Mendelsohn, M. L., The Analysis of Cell Images, Ann. N. Y. Acad. Sci.,

128, pp. 1035–1053, 1966
Roberts, L. G., Machine Perception of Three-Dimensional Solids, In: Optical and Electro-Optical

Information Processing, MIT Press, Cambridge, MA, pp. 159–197, 1965
Rosin, P. L., Augmenting Corner Descriptors, Graphical Models Image Process., 58(3),

pp. 286–294, 1996
Smith, S. M. and Brady, J. M., SUSAN – A New Approach to Low Level Image Processing.

Int. J. Comput. Vision, 23(1), pp. 45–78, May 1997
Sobel, I. E., Camera Models and Machine Perception, PhD Thesis, Stanford University, 1970
Spacek, L. A., Edge Detection and Motion Detection, Image Vision Comput., 4(1), pp. 43–56,

1986
Torre, V. and Poggio, T. A., On Edge Detection, IEEE Trans. PAMI, 8(2), pp. 147–163, 1986
Ulupinar, F. and Medioni, G., Refining Edges Detected by a LoG Operator, CVGIP, 51,

pp. 275–298, 1990
Venkatesh, S. and Owens, R. A., An Energy Feature Detection Scheme. Proc. Int. Conf. Image

Process., Singapore, pp. 553–557, 1989
Venkatesh, S. and Rosin, P. L., Dynamic Threshold Determination by Local and Global Edge

Evaluation, Graphical Models Image Process., 57(2), pp. 146–160, 1995
Vliet, L. J. and Young, I. T., A Nonlinear Laplacian Operator as Edge Detector in Noisy Images,

CVGIP, 45, pp. 167–195, 1989
Yitzhaky, Y. and Peli, E., A Method for Objective Edge Detection Evaluation and Detector

Parameter Selection, IEEE Trans. PAMI, 25(8), pp. 1027–1033, 2003
Zabir, R. and Woodfill, J., Non-Parametric Local Transforms for Computing Visual Correspon-

dence, Proc. Eur. Conf.Comput. Vision, pp. 151–158, 1994
Zheng, Y., Nixon, M. S. and Allen, R., Automatic Segmentation of Lumbar Vertebrae in Digital

Videofluoroscopic Imaging, IEEE Trans. Med. Imaging, 23(1), pp. 45–52. 2004

Low-level feature extraction (including edge detection) 181

This page intentionally left blank

. 5 .

Feature extraction by
shape matching

5.1 Overview

High-level feature extraction concerns finding shapes in computer images. To be able to recog-
nize faces automatically, for example, one approach is to extract the component features. This
requires extraction of, say, the eyes, the ears and the nose, which are the major facial features.
To find them, we can use their shape: the white part of the eyes is ellipsoidal; the mouth can
appear as two lines, as do the eyebrows. Shape extraction implies finding their position, their
orientation and their size. This feature extraction process can be viewed as similar to the way
in which we perceive the world: many books for babies describe basic geometric shapes such
as triangles, circles and squares. More complex pictures can be decomposed into a structure of
simple shapes. In many applications, analysis can be guided by the way in which the shapes are
arranged. For the example of face image analysis, we expect to find the eyes above (and either
side of) the nose, and we expect to find the mouth below the nose.

In feature extraction, we generally seek invariance properties so that the extraction process
does not vary according to chosen (or specified) conditions. That is, techniques should find
shapes reliably and robustly whatever the value of any parameter that can control the appearance
of a shape. As a basic invariant, we seek immunity to changes in the illumination level: we seek
to find a shape whether it is light or dark. In principle, as long as there is contrast between a
shape and its background, the shape can be said to exist, and can then be detected. (Clearly, any
computer vision technique will fail in extreme lighting conditions; you cannot see anything when
it is completely dark.) Following illumination, the next most important parameter is position: we
seek to find a shape wherever it appears. This is usually called position, location or translation
invariance. Then, we often seek to find a shape irrespective of its rotation (assuming that the
object or the camera has an unknown orientation); this is usually called rotation or orientation
invariance. Then, we might seek to determine the object at whatever size it appears, which
might be due to physical change, or to how close the object has been placed to the camera. This
requires size or scale invariance. These are the main invariance properties we shall seek from
our shape extraction techniques. However, nature (as usual) tends to roll balls under our feet:
there is always noise in images. In addition, since we are concerned with shapes, there may be
more than one in the image. If one is on top of the other it will occlude, or hide, the other, so
not all of the shape of one object will be visible.

But before we can develop image analysis techniques, we need techniques to extract the
shapes. Extraction is more complex than detection, since extraction implies that we have a

183

description of a shape, such as its position and size, whereas detection of a shape merely implies
knowledge of its existence within an image.

The techniques presented in this chapter are outlined in Table 5.1. To extract a shape from
an image, it is necessary to identify it from the background elements. This can be done by
considering the intensity information or by comparing the pixels against a given template. In the
first approach, if the brightness of the shape is known, then the pixels that form the shape can
be extracted by classifying the pixels according to a fixed intensity threshold. Alternatively, if
the background image is known, this can be subtracted to obtain the pixels that define the shape
of an object superimposed on the background. Template matching is a model-based approach
in which the shape is extracted by searching for the best correlation between a known model
and the pixels in an image. There are alternative ways in which to compute the correlation
between the template and the image. Correlation can be implemented by considering the image
or frequency domains. In addition, the template can be defined by considering intensity values or
a binary shape. The Hough transform defines an efficient implementation of template matching
for binary templates. This technique is capable of extracting simple shapes such as lines and
quadratic forms, as well as arbitrary shapes. In any case, the complexity of the implementation
can be reduced by considering invariant features of the shapes.

Table 5.1 Overview of Chapter 5

Main topic Sub topics Main points

Pixel operations How we detect features at a pixel level. Moving
object detection. Limitations and advantages of
this approach. Need for shape information.

Thresholding. Background
subtraction.

Template
matching

Shape extraction by matching. Advantages
and disadvantages. Need for efficient
implementation.

Template matching. Direct and
Fourier implementations. Noise
and occlusion.

Hough
transform

Feature extraction by matching. Hough
transforms for conic sections. Hough transform
for arbitrary shapes. Invariant formulations.
Advantages in speed and efficacy.

Feature extraction by evidence
gathering. Hough transforms for
lines, circles and ellipses.
Generalized and Invariant Hough
transforms.

5.2 Thresholding and subtraction

Thresholding is a simple shape extraction technique, as shown in Section 3.3.4, where the images
could be viewed as the result of trying to separate the eye from the background. If it can be
assumed that the shape to be extracted is defined by its brightness, then thresholding an image
at that brightness level should find the shape. Thresholding is clearly sensitive to change in
illumination: if the image illumination changes then so will the perceived brightness of the target
shape. Unless the threshold level can be arranged to adapt to the change in brightness level,
any thresholding technique will fail. Its attraction is simplicity: thresholding does not require
much computational effort. If the illumination level changes in a linear fashion, using histogram
equalization will result in an image that does not vary. Unfortunately, the result of histogram

184 Feature Extraction and Image Processing

equalization is sensitive to noise, shadows and variant illumination; noise can affect the resulting
image quite dramatically and this will again render a thresholding technique useless.

Thresholding after intensity normalization (Section 3.3.2) is less sensitive to noise, since the
noise is stretched with the original image and cannot affect the stretching process by much.
It is, however, still sensitive to shadows and variant illumination. Again, it can only find
application where the illumination can be carefully controlled. This requirement is germane to
any application that uses basic thresholding. If the overall illumination level cannot be controlled,
it is possible to threshold edge magnitude data since this is insensitive to overall brightness
level, by virtue of the implicit differencing process. However, edge data is rarely continuous and
there can be gaps in the detected perimeter of a shape. Another major difficulty, which applies
to thresholding the brightness data as well, is that there are often more shapes than one. If the
shapes are on top of each other, one occludes the other and the shapes need to be separated.

An alternative approach is to subtract an image from a known background before thresh-
olding. (We saw how we can estimate the background in Section 3.4.2.) This assumes that the
background is known precisely, otherwise many more details than just the target feature will
appear in the resulting image; clearly, the subtraction will be unfeasible if there is noise on either
image, and especially on both. In this approach, there is no implicit shape description, but if the
thresholding process is sufficient, it is simple to estimate basic shape parameters, such as position.

The subtraction approach is illustrated in Figure 5.1. Here, we seek to separate or extract the
walking subject from the background. We saw earlier, in Figure 3.22, how the median filter can
be used to provide an estimate of the background to the sequence of images that Figure 5.1(a)
comes from. When we subtract the background of Figure 3.22(i) from the image of Figure 5.1(a),
we obtain most of the subject with some extra background just behind the subject’s head. This
is due to the effect of the moving subject on lighting. Also, removing the background removes
some of the subject: the horizontal bars in the background have been removed from the subject
by the subtraction process. These aspects are highlighted in the thresholded image (Figure 5.1c).
It is not a particularly poor way of separating the subject from the background (we have the
subject, but we have chopped out his midriff), but it is not especially good either.

(a) Image of walking subject (b) After background
subtraction

(c) After thresholding

Figure 5.1 Shape extraction by subtraction and thresholding

Even though thresholding and subtraction are attractive (because of simplicity and hence their
speed), the performance of both techniques is sensitive to partial shape data, noise, variation in
illumination and occlusion of the target shape by other objects. Accordingly, many approaches
to image interpretation use higher level information in shape extraction, namely how the pixels
are connected within the shape. This can resolve these factors.

Feature extraction by shape matching 185

5.3 Template matching

5.3.1 Definition

Template matching is conceptually a simple process. We need to match a template to an image,
where the template is a subimage that contains the shape we are trying to find. Accordingly, we
centre the template on an image point and count up how many points in the template matched
those in the image. The procedure is repeated for the entire image, and the point that led to
the best match, the maximum count, is deemed to be the point where the shape (given by the
template) lies within the image.

Consider that we want to find the template of Figure 5.2(b) in the image of Figure 5.2(a). The
template is first positioned at the origin and then matched with the image to give a count which
reflects how well the template matched that part of the image at that position. The count of
matching pixels is increased by one for each point where the brightness of the template matches
the brightness of the image. This is similar to the process of template convolution, illustrated
earlier in Figure 3.11. The difference here is that points in the image are matched with those in
the template, and the sum is of the number of matching points as opposed to the weighted sum
of image data. The best match is when the template is placed at the position where the rectangle
is matched to itself. This process can be generalized to find, for example, templates of different
size or orientation. In these cases, we have to try all the templates (at expected rotation and
size) to determine the best match.

(b) Template of target shape (a) Image containing shapes

Figure 5.2 Illustrating template matching

Formally, template matching can be defined as a method of parameter estimation. The
parameters define the position (and pose) of the template. We can define a template as a
discrete function Tx� y. This function takes values in a window. That is, the coordinates of
the points �x� y� ∈ W. For example, for a 2 × 2 template we have that the set of points W =
��0�0�� �0�1�� �1�0�� �1�1��.

Let us consider that each pixel in the image Ix� y is corrupted by additive Gaussian noise.
The noise has a mean value of zero and the (unknown) standard deviation is � . Thus, the

186 Feature Extraction and Image Processing

probability that a point in the template placed at coordinates �i� j� matches the corresponding
pixel at position �x� y� ∈ W is given by the normal distribution

pi�j�x� y� = 1√
2��

e
− 1

2

(Ix+i�y+j−Tx�y
�

)2

(5.1)

Since the noise affecting each pixel is independent, the probability that the template is at position
�i� j� is the combined probability of each pixel that the template covers. That is,

Li�j = ∏
�x�y�∈W

pi�j�x� y� (5.2)

By substitution of Equation 5.1, we have:

Li�j =
(

1√
2��

)n

e
− 1

2
∑

�x�y�∈W

(Ix+i�y+j−Tx�y
�

)2

(5.3)

where n is the number of pixels in the template. This function is called the likelihood function.
Generally, it is expressed in logarithmic form to simplify the analysis. Notice that the logarithm
scales the function, but it does not change the position of the maximum. Thus, by taking the
logarithm, the likelihood function is redefined as

ln�Li�j� = n ln
(

1√
2��

)
− 1

2

∑
�x�y�∈W

(
Ix+i�y+j −Tx�y

�

)2

(5.4)

In maximum likelihood estimation, we have to choose the parameter that maximizes the likelihood
function. That is, the positions that minimize the rate of change of the objective function

	 ln�Li�j�

	i
= 0 and

	 ln�Li�j�

	j
= 0 (5.5)

That is,
∑

�x�y�∈W

�Ix+i�y+j −Tx�y�
	Ix+i�y+j

	i
= 0

∑
�x�y�∈W

�Ix+i�y+j −Tx�y�
	Ix+i�y+j

	j
= 0 (5.6)

We can observe that these equations are also the solution of the minimization problem given by

min e = ∑
�x�y�∈W

(
Ix+i�y+j −Tx�y

)2
(5.7)

That is, maximum likelihood estimation is equivalent to choosing the template position that
minimizes the squared error (the squared values of the differences between the template points
and the corresponding image points). The position where the template best matches the image is
the estimated position of the template within the image. Thus, if you measure the match using the
squared error criterion, then you will be choosing the maximum likelihood solution. This implies
that the result achieved by template matching is optimal for images corrupted by Gaussian
noise. A more detailed examination of the method of least squares is given in Appendix 3,
Section 11.2. (Note that the central limit theorem suggests that practically experienced noise
can be assumed to be Gaussian distributed, although many images appear to contradict this
assumption.) You can use other error criteria, such as the absolute difference, rather than the
squared difference or, if you feel more adventurous, you might consider robust measures such
as M-estimators.

Feature extraction by shape matching 187

We can derive alternative forms of the squared error criterion by considering that Equation 5.7
can be written as

min e = ∑
�x�y�∈W

Ix+i�y+j
2 −2Ix+i�y+jTx�y +Tx�y

2 (5.8)

The last term does not depend on the template position �i� j�. As such, it is constant and cannot
be minimized. Thus, the optimum in this equation can be obtained by minimizing

min e = ∑
�x�y�∈W

Ix+i�y+j
2 −2

∑
�x�y�∈W

Ix+i�y+jTx�y (5.9)

If the first term
∑

�x�y�∈W

Ix+i�y+j
2 (5.10)

is approximately constant, then the remaining term gives a measure of the similarity between the
image and the template. That is, we can maximize the cross-correlation between the template
and the image. Thus, the best position can be computed by

max e = ∑
�x�y�∈W

Ix+i�y+jTx�y (5.11)

However, the squared term in Equation 5.10 can vary with position, so the match defined by
Equation 5.11 can be poor. In addition, the range of the cross-correlation is dependent on the
size of the template and it is non-invariant to changes in image lighting conditions. Thus, in
an implementation it is more convenient to use either Equation 5.7 or Equation 5.9 (in spite of
being computationally more demanding than the cross-correlation in Equation 5.11).

Alternatively, cross-correlation can be normalized as follows. We can rewrite Equation 5.8 as

min e = 1−2

∑
�x�y�∈W

Ix+i�y+jTx�y

∑
�x�y�∈W

Ix+i�y+j
2 (5.12)

Here, the first term is constant and, thus, the optimum value can be obtained by

max e =
∑

�x�y�∈W
Ix+i�y+jTx�y

∑
�x�y�∈W

Ix+i�y+j
2 (5.13)

In general, it is convenient to normalize the grey level of each image window under the template.
That is,

max e =
∑

�x�y�∈W

(
Ix+i�y+j − Ii�j

) (
Tx�y −T

)

∑
�x�y�∈W

(
Ix+i�y+j − Ii�j

)2 (5.14)

where Ii�j is the mean of the pixels Ix+i�y+j for points within the window (i.e. �x� y� ∈ W) and
T is the mean of the pixels of the template. An alternative form of Equation 5.14 is given by
normalizing the cross-correlation. This does not change the position of the optimum and gives an

188 Feature Extraction and Image Processing

interpretation as the normalization of the cross-correlation vector. That is, the cross-correlation
is divided by its modulus. Thus,

max e =
∑

�x�y�∈W

(
Ix+i�y+j − Ii�j

) (
Tx�y −T

)

√ ∑
�x�y�∈W

(
Ix+i�y+j − Ii�j

)2 (
Tx�y −T

)2
(5.15)

However, this equation has a similar computational complexity to the original formulation in
Equation 5.7.

A particular implementation of template matching is when the image and the template are
binary. In this case, the binary image can represent regions in the image or it can contain
the edges. These two cases are illustrated in the example in Figure 5.3. The advantage of
using binary images is that the amount of computation can be reduced. That is, each term in
Equation 5.7 will take only two values: it will be one when Ix+i�y+j = Tx�y, and zero otherwise.
Thus, Equation 5.7 can be implemented as

max e = ∑
�x�y�∈W

Ix+i�y+j ⊕Tx�y (5.16)

where the symbol ⊕ denotes the exclusive NOR operator. This equation can be easily imple-
mented and requires significantly less resource than the original matching function.

(a) Binary image (b) Edge image

(c) Binary template (d) Edge template

Figure 5.3 Example of binary and edge template matching

Template matching develops an accumulator space that stores the match of the template
to the image at different locations; this corresponds to an implementation of Equation 5.7. It
is called an accumulator, since the match is accumulated during application. Essentially, the
accumulator is a two-dimensional (2D) array that holds the difference between the template and
the image at different positions. The position in the image gives the same position of match in the

Feature extraction by shape matching 189

accumulator. Alternatively, Equation 5.11 suggests that the peaks in the accumulator resulting
from template correlation give the location of the template in an image: the coordinates of the
point of best match. Accordingly, template correlation and template matching can be viewed as
similar processes. The location of a template can be determined by either process. The binary
implementation of template matching (Equation 5.16) is usually concerned with thresholded
edge data. This equation will be reconsidered in the definition of the Hough transform, the topic
of the following section.

The Matlab code to implement template matching is the function TMatching given in
Code 5.1. This function first clears an accumulator array, accum, then searches the whole
picture, using pointers i and j, and then searches the whole template for matches, using pointers
x and y. Notice that the position of the template is given by its centre. The accumulator elements
are incremented according to Equation 5.7. The accumulator array is delivered as the result. The
match for each position is stored in the array. After computing all the matches, the minimum
element in the array defines the position where most pixels in the template matched those in the
image. As such, the minimum is deemed to be the coordinates of the point where the template’s
shape is most likely to lie within the original image. It is possible to implement a version of
template matching without the accumulator array, by storing the location of the minimum alone.
This will give the same result and it requires little storage. However, this implementation will
provide a result that cannot support later image interpretation that may require knowledge of
more than just the best match.

%Template Matching Implementation

function accum=TMatching(inputimage,template)

%Image size & template size
[rows,columns]=size(inputimage);
[rowsT,columnsT]=size(template);

 %Centre of the template
cx=floor(columnsT/2)+1; cy=floor(rowsT/2)+1;

%Accumulator
accum=zeros(rows,columns);
%Template Position
for i=cx:columns-cx
 for j=cy:rows-cy
 %Template elements
 for x=1-cx:cx-1
 for y=1-cy:cy-1

err=(double(inputimage(j+y,i+x))
-double(template(y+cy,x+cx)))^2;

accum(j,i)=accum(j,i)+err;

end
end

 end
end

Code 5.1 Implementation of template matching

190 Feature Extraction and Image Processing

The results of applying the template matching procedure are illustrated in Figure 5.4. This
example shows the accumulator arrays for matching the images shown in Figures 5.2(a), 5.3(a)
and 5.3(b) with their respective templates. The dark points in each image are at the coordinates
of the origin of the position where the template best matched the image (the minimum). Note
that there is a border where the template has not been matched to the image data. At these border
points, the template extended beyond the image data, so no matching has been performed. This
is the same border as experienced with template convolution (Section 3.4.1). We can observe
that a clearer minimum is obtained (Figure 5.4c) from the edge images of Figure 5.3. This is
because for grey-level and binary images, there is some match when the template is not exactly
in the best position. In the case of edges, the count of matching pixels is less.

(a) For the grey-level image (b) For the binary image (c) For the edge image

Figure 5.4 Accumulator arrays from template matching

Most applications require further degrees of freedom such as rotation (orientation), scale
(size) or perspective deformations. Rotation can be handled by rotating the template or by using
polar coordinates; scale invariance can be achieved using templates of differing size. Having
more parameters of interest implies that the accumulator space becomes larger; its dimensions
increase by one for each extra parameter of interest. Position-invariant template matching, as
considered here, implies a 2D parameter space, whereas the extension to scale- and position-
invariant template matching requires a 3D parameter space.

The computational cost of template matching is large. If the template is square and of size
m×m and is matched to an image of size N ×N , since the m2 pixels are matched at all image
points (except for the border) the computational cost is O�N 2m2�. This is the cost for position-
invariant template matching. Any further parameters of interest increase the computational cost
in proportion to the number of values of the extra parameters. This is clearly a large penalty and
so a direct digital implementation of template matching is slow. Accordingly, this guarantees
interest in techniques that can deliver the same result, but faster, such as using a Fourier
implementation based on fast transform calculus.

The main advantages of template matching are its insensitivity to noise and occlusion. Noise
can occur in any image, on any signal, just like on a telephone line. In digital photographs,
the noise might appear low, but in computer vision it is made worse by edge detection by
virtue of the differencing (differentiation) processes. Likewise, shapes can easily be occluded
or hidden: a person can walk behind a lamppost, or illumination can cause occlusion. The
averaging inherent in template matching reduces the susceptibility to noise; the maximization
process reduces susceptibility to occlusion.

These advantages are illustrated in Figure 5.5, which shows detection in the presence of
increasing noise. Here, we will use template matching to locate the vertical rectangle near

Feature extraction by shape matching 191

the top of the image (so we are matching a binary template of a black template on a white
background to the binary image). The lowest noise level is in Figure 5.5(a) and the highest is
in Figure 5.5(c); the position of the origin of the detected rectangle is shown as a black cross
in a white square. The position of the origin is detected correctly in Figure 5.5(a) and (b) but
incorrectly in the noisiest image, Figure 5.5(c). Clearly, template matching can handle quite high
noise corruption. (Admittedly this is somewhat artificial: the noise would usually be filtered out
by one of the techniques described in Chapter 3, but we are illustrating basic properties here.)
The ability to handle noise is shown by correct determination of the position of the target shape,
until the noise becomes too much and there are more points due to noise than there are due to
the shape itself. When this occurs, the votes resulting from the noise exceed those occurring
from the shape, and so the maximum is not found where the shape exists.

(a) Extraction (of the black
rectangle) in some noise

(b) Extraction in a lot of noise (c) Extraction in too much
noise (failed)

Figure 5.5 Template matching in noisy images

Occlusion is shown by placing a grey bar across the image; in Figure 5.6(a) the bar does
not occlude the target rectangle, whereas in Figure 5.6(c) the rectangle is completely obscured.
As with performance in the presence of noise, detection of the shape fails when the votes
occurring from the shape exceed those from the rest of the image, and the cross indicating the

(a) Extraction (of the black
rectangle) in no occlusion

(b) Extraction in some
occlusion

 (c) Extraction in complete
occlusion (failed)

Figure 5.6 Template matching in occluded images

192 Feature Extraction and Image Processing

position of the origin of the rectangle is drawn in completely the wrong place. This is what
happens when the rectangle is completely obscured in Figure 5.6(c).

So it can operate well, with practical advantage. We can include edge detection to concentrate
on a shape’s borders. Its main problem is speed: a direct implementation is slow, especially
when handling shapes that are rotated or scaled (and there are other implementation difficulties
too). Recalling that from Section 3.4.2 that template matching can be speeded up by using the
Fourier transform, let us see whether that can be used here too.

5.3.2 Fourier transform implementation

We can implement template matching via the Fourier transform by using the duality between
convolution and multiplication. This duality establishes that a multiplication in the space domain
corresponds to a convolution in the frequency domain and vice versa. This can be exploited
for faster computation by using the frequency domain, given the fast Fourier transform (FFT)
algorithm. Thus, to find a shape we can compute the cross-correlation as a multiplication in the
frequency domain. However, the matching process in Equation 5.11 is correlation (Section 2.3),
not convolution. Thus, we need to express the correlation in terms of a convolution. This can
be done as follows. First, we can rewrite the correlation in Equation 5.11 as

I ⊗T = ∑
�x�y�∈W

Ix′�y′ Tx′−i�y′−j (5.17)

where x′ = x+ i and y′ = y + j. Convolution is defined as

I ∗T = ∑
�x�y�∈W

Ix′�y′ Ti−x′�j−y′ (5.18)

Thus, to implement template matching in the frequency domain, we need to express Equa-
tion 5.17 in terms of Equation 5.18. This can be achieved by considering that

I ⊗T = I ∗T′ = ∑
�x�y�∈W

Ix′�y′ T′
i−x′�j−y′ (5.19)

where

T′ = T−x�−y (5.20)

That is, correlation is equivalent to convolution when the template is changed according to
Equation 5.20. This equation reverses the coordinate axes and it corresponds to a horizontal and
a vertical flip.

In the frequency domain, convolution corresponds to multiplication. As such, Equation 5.19
can be implemented by

I ∗T′ = �−1
(��I���T′�

)
(5.21)

where � denotes Fourier transformation as in Chapter 2 (and calculated by the FFT) and �−1

denotes the inverse FFT. This is computationally faster than its direct implementation, given
the speed advantage of the FFT. There are two ways of implementing this equation. In the first
approach, we can compute T′ by flipping the template and then computing its Fourier transform,
��T′�. In the second approach, we compute the transform of �(T) and then we compute the
complex conjugate. That is,

��T′� =
��T��∗ (5.22)

Feature extraction by shape matching 193

where
 �∗ denotes the complex conjugate of the transform data (yes, it is an unfortunate symbol
clash with convolution, but both are standard symbols). So conjugation of the transform of the
template implies that the product of the two transforms leads to correlation. That is,

I ∗T′ = �−1

(
��I�

[��T�
]∗)

(5.23)

For both implementations, Equations 5.21 and 5.23 will evaluate the match, and more quickly for
large templates than by direct implementation of template matching. Note that one assumption
is that the transforms are of the same size, even though the template’s shape is usually much
smaller than the image. There is a selection of approaches; a simple solution is to include extra
zero values (zero-padding) to make the image of the template the same size as the image.

The code to implement template matching by Fourier, FTConv, is given in Code 5.2. The
implementation takes the image and the flipped template. The template is zero-padded and then
transforms are evaluated. The required convolution is obtained by multiplying the transforms
and then applying the inverse. The resulting image is the magnitude of the inverse transform.
This could be invoked as a single function, rather than as procedure, but the implementation is
less clear. This process can be formulated using brightness or edge data, as appropriate. Should
we seek scale invariance, to find the position of a template irrespective of its size, then we need
to formulate a set of templates that range in size between the maximum expected variation.
Each of the templates of differing size is then matched by frequency domain multiplication.
The maximum frequency domain value, for all sizes of template, indicates the position of the
template and gives a value for its size. This can be a rather lengthy procedure when the template
ranges considerably in size.

%Fourier Transform Convolution

function FTConv(inputimage,template)

%image size
[rows,columns]=size(inputimage);

%FT
Fimage=fft2(inputimage,rows,columns);
Ftemplate=fft2(template,rows,columns);

%Convolution
G=Fimage.*Ftemplate;

%Modulus
Z=log(abs(fftshift(G)));

%Inverse
R=real(ifft2(G));

Code 5.2 Implementation of convolution by the frequency domain

Figure 5.7 illustrates the results of template matching in the Fourier domain. This example uses
the image and template shown in Figure 5.2. Figure 5.7(a) shows the flipped and padded template.
The Fourier transforms of the image and of the flipped template are given in Figure 5.7(b)

194 Feature Extraction and Image Processing

and (c), respectively. These transforms are multiplied, point by point, to achieve the image in
Figure 5.7(d). When this is inverse Fourier transformed, the result (Figure 5.7e) shows where
the template best matched the image (the coordinates of the template’s top left-hand corner).
The resulting image contains several local maxima (in white). This can be explained by the fact
that this implementation does not consider the term in Equation 5.10. In addition, the shape can
partially match several patterns in the image. Figure 5.7(f) shows a zoom of the region where
the peak is located. We can see that this peak is well defined. In contrast to template matching,
the implementation in the frequency domain does not have any border. This is due to the fact
that Fourier theory assumes picture replication to infinity. Note that in application, the Fourier
transforms do not need to be rearranged (fftshif) so that the d.c. is at the centre, since this
has been done here for display purposes only.

(a) Flipped and padded
template

(b) Fourier transform of
template

(c) Fourier transform of image

(d) Multiplied transforms (e) Result (f) Location of the template

Figure 5.7 Template matching by Fourier transformation

There are several further difficulties in using the transform domain for template matching
in discrete images. If we seek rotation invariance, then an image can be expressed in terms of
its polar coordinates. Discretization gives further difficulty since the points in a rotated discrete
shape can map imperfectly to the original shape. This problem is better manifest when an image
is scaled in size to become larger. In such a case, the spacing between points will increase in the
enlarged image. The difficulty is how to allocate values for pixels in the enlarged image which
are not defined in the enlargement process. There are several interpolation approaches, but it
can often appear prudent to reformulate the original approach. Further difficulties can include
the influence of the image borders: Fourier theory assumes that an image replicates spatially
to infinity. Such difficulty can be reduced by using window operators, such as the Hamming
or the Hanning windows. These difficulties do not arise for optical Fourier transforms and so
using the Fourier transform for position-invariant template matching is often confined to optical
implementations.

Feature extraction by shape matching 195

5.3.3 Discussion of template matching

The advantages associated with template matching are mainly theoretical since it can be very
difficult to develop a template matching technique that operates satisfactorily. The results
presented here have been for position invariance only. This can cause difficulty if invariance
to rotation and scale is also required. This is because the template is stored as a discrete
set of points. When these are rotated, gaps can appear owing to the discrete nature of the
coordinate system. If the template is increased in size then there will be missing points in the
scaled-up version. Again, there is a frequency domain version that can handle variation in size,
since scale-invariant template matching can be achieved using the Mellin transform (Bracewell,
1986). This avoids using many templates to accommodate the variation in size by evaluating
the scale-invariant match in a single pass. The Mellin transform essentially scales the spatial
coordinates of the image using an exponential function. A point is then moved to a position
given by a logarithmic function of its original coordinates. The transform of the scaled image is
then multiplied by the transform of the template. The maximum again indicates the best match
between the transform and the image. This can be considered to be equivalent to a change of
variable. The logarithmic mapping ensures that scaling (multiplication) becomes addition. By
the logarithmic mapping, the problem of scale invariance becomes a problem of finding the
position of a match.

The Mellin transform only provides scale-invariant matching. For scale and position invari-
ance, the Mellin transform is combined with the Fourier transform, to give the Fourier–Mellin
transform. The Fourier–Mellin transform has many disadvantages in a digital implementation,
owing to the problems in spatial resolution, although there are approaches to reduce these prob-
lems (Altmann and Reitbock, 1984), as well as the difficulties with discrete images experienced
in Fourier transform approaches.

Again, the Mellin transform appears to be much better suited to an optical implementation
(Casasent and Psaltis, 1977), where continuous functions are available, rather than to discrete
image analysis. A further difficulty with the Mellin transform is that its result is independent
of the form factor of the template. Accordingly, a rectangle and a square appear to be the same
to this transform. This implies a loss of information since the form factor can indicate that an
object has been imaged from an oblique angle. There is resurgent interest in log-polar mappings
for image analysis (e.g. Traver and Pla, 2003; Zokai and Wollberg, 2005).

So, there are innate difficulties with template matching, whether it is implemented directly
or by transform operations. For these reasons, and because many shape extraction techniques
require more than just edge or brightness data, direct digital implementations of feature extraction
are usually preferred. This is perhaps also influenced by the speed advantage that one popular
technique can confer over template matching. This is the Hough transform, which is covered next.

5.4 Hough transform

5.4.1 Overview

The Hough transform (HT) (Hough, 1962) is a technique that locates shapes in images. In
particular, it has been used to extract lines, circles and ellipses (or conic sections). In the case
of lines, its mathematical definition is equivalent to the Radon transform (Deans, 1981). The
HT was introduced by Hough (1962) and then used to find bubble tracks rather than shapes
in images. However, Rosenfeld (1969) noted its potential advantages as an image processing

196 Feature Extraction and Image Processing

algorithm. The HT was thus implemented to find lines in images (Duda and Hart, 1972) and it has
been extended greatly, since it has many advantages and many potential routes for improvement.
Its prime advantage is that it can deliver the same result as that for template matching, but
faster (Stockman and Agrawala, 1977; Sklansky, 1978; Princen et al., 1992b). This is achieved
by a reformulation of the template matching process, based on an evidence-gathering approach,
where the evidence is the votes cast in an accumulator array. The HT implementation defines
a mapping from the image points into an accumulator space (Hough space). The mapping is
achieved in a computationally efficient manner, based on the function that describes the target
shape. This mapping requires much fewer computational resources than template matching.
However, it still requires significant storage and has high computational requirements. These
problems are addressed later, since they give focus for the continuing development of the HT.
However, the fact that the HT is equivalent to template matching has given sufficient impetus
for the technique to be among the most popular of all existing shape extraction techniques.

5.4.2 Lines

We will first consider finding lines in an image. In a Cartesian parameterization, collinear points
in an image with coordinates �x� y� are related by their slope m and an intercept c according to:

y = mx+ c (5.24)

This equation can be written in homogeneous form as

Ay +Bx+1 = 0 (5.25)

where A = −1/c and B = m/c. Thus, a line is defined by giving a pair of values �A�B�.
However, we can observe a symmetry in the definition in Equation 5.25. This equation is
symmetric since a pair of coordinates �x� y� also defines a line in the space with parameters
�A�B�. That is, Equation 5.25 can be seen as the equation of a line for fixed coordinates �x� y�
or as the equation of a line for fixed parameters �A�B�. Thus, pairs can be used to define points
and lines simultaneously (Aguado et al., 2000a). The HT gathers evidence of the point �A�B�
by considering that all the points �x� y� define the same line in the space �A�B�. That is, if the
set of collinear points ��xi� yi�� defines the line �A�B�, then

Ayi +Bxi +1 = 0 (5.26)

This equation can be seen as a system of equations and it can simply be rewritten in terms of
the Cartesian parameterization as

c = −xim+yi (5.27)

Thus, to determine the line we must find the values of the parameters �m�c� [or �A�B� in
homogeneous form] that satisfy Equation 5.27 (or 5.26, respectively). However, we must notice
that the system is generally overdetermined. That is, we have more equations than unknowns.
Thus, we must find the solution that comes close to satisfying all the equations simultaneously.
This kind of problem can be solved, for example, using linear least squares techniques. The HT
uses an evidence-gathering approach to provide the solution.

The relationship between a point �xi� yi� in an image and the line given in Equation 5.27 is
illustrated in Figure 5.8. The points �xi� yi� and �xj� yj� in Figure 5.8(a) define the lines Ui and
Uj in Figure 5.8(b), respectively. All the collinear elements in an image will define dual lines
with the same concurrent point �A�B�. This is independent of the line parameterization used. The
HT solves it in an efficient way by simply counting the potential solutions in an accumulator

Feature extraction by shape matching 197

(a) Image containing a line (b) Lines in the dual space

y

x

(x j
, yj

)

(x i
, yi

)

A

B

Ui

(A,B)

Uj

Figure 5.8 Illustrating the Hough transform for lines

array that stores the evidence, or votes. The count is made by tracing all the dual lines for each
point �xi� yi�. Each point in the trace increments an element in the array; thus, the problem of
line extraction is transformed into the problem of locating a maximum in the accumulator space.
This strategy is robust and has been demonstrated to be able to handle noise and occlusion.

The axes in the dual space represent the parameters of the line. In the case of the Cartesian
parameterization m can take an infinite range of values, since lines can vary from horizontal
to vertical. Since votes are gathered in a discrete array, this will produce bias errors. It is
possible to consider a range of votes in the accumulator space that cover all possible values.
This corresponds to techniques of antialiasing and can improve the gathering strategy (Brown,
1983; Kiryati and Bruckstein, 1991).

The implementation of the HT for lines, HTLine, is given in Code 5.3. It is important
to observe that Equation 5.27 is not suitable for implementation since the parameters can
take an infinite range of values. To handle the infinite range for c, we use two arrays in the
implementation in Code 5.3. When the slope m is between −45	 and 45	� c does not take a
large value. For other values of m the intercept c can take a very large value. Thus, we consider
an accumulator for each case. In the second case, we use an array that stores the intercept with
the x-axis. This only solves the problem partially, since we cannot guarantee that the value of
c will be small when the slope m is between −45	 and 45	.

Figure 5.9 shows three examples of locating lines using the HT implemented in Code 5.3.
In Figure 5.9(a) there is a single line which generates the peak seen in Figure 5.9(d). The
magnitude of the peak is proportional to the number of pixels in the line from which it was
generated. The edges of the wrench in Figure 5.9(b) and (c) define two main lines. Image 5.9(c)
contains much more noise. This image was obtained by using a lower threshold value in the
edge detector operator which gave rise to more noise. The accumulator results of the HT for
the images in Figure 5.9(b) and (c) are shown in Figure 5.9(e) and (f), respectively. The two
accumulator arrays are broadly similar in shape, and the peak in each is at the same place. The
coordinates of the peaks are at combinations of parameters of the lines that best fit the image.
The extra number of edge points in the noisy image of the wrench gives rise to more votes
in the accumulator space, as can be seen by the increased number of votes in Figure 5.9(f)
compared with Figure 5.9(e). Since the peak is in the same place, this shows that the HT can
indeed tolerate noise. The results of extraction, when superimposed on the edge image, are
shown in Figure 5.9(g)–(i). Only the two lines corresponding to significant peaks have been
drawn for the image of the wrench. Here, we can see that the parameters describing the lines

198 Feature Extraction and Image Processing

%Hough Transform for Lines
function HTLine(inputimage)

%image size
[rows,columns]=size(inputimage);
%accumulator
acc1=zeros(rows,91);
acc2=zeros(columns,91);

%image
for x=1:columns

for y=1:rows
if(inputimage(y,x)==0)

b=round(y-tan((m*pi)/180)*x);
if(b<rows & b>0)

acc1(b,m+45+1)=acc1(b,m+45+1)+1;
end

end
for m=45:135

for m=–45:45

b=round(x-y/tan((m*pi)/180));
if(b<columns & b>0)

acc2(b,m-45+1)=acc2(b,m-45+1)+1;
end

end
end

end
end

Code 5.3 Implementation of the Hough transform for lines

have been extracted well. Note that the endpoints of the lines are not delivered by the HT, only
the parameters that describe them. You have to go back to the image to obtain line length.

The HT delivers a correct response; that is, correct estimates of the parameters used to
specify the line, so long as the number of collinear points along that line exceeds the number
of collinear points on any other line in the image. As such, the HT has the same properties
in respect of noise and occlusion as template matching. However, the non-linearity of the
parameters and the discretization produce noisy accumulators. A major problem in implementing
the basic HT for lines is the definition of an appropriate accumulator space. In application,
Bresenham’s line drawing algorithm (Bresenham, 1965) can be used to draw the lines of votes
in the accumulator space. This ensures that lines of connected votes are drawn, as opposed to
the use of Equation 5.27, which can lead to gaps in the drawn line. Backmapping (Gerig and
Klein, 1986) can be used to determine exactly which edge points contributed to a particular
peak. Backmapping is an inverse mapping from the accumulator space to the edge data and
can allow for shape analysis of the image by removal of the edge points that contributed to
particular peaks, and then by reaccumulation using the HT. Note that the computational cost of
the HT depends on the number of edge points �ne� and the length of the lines formed in the
parameter space �l�, giving a computational cost of O�nel�. This is considerably less than that
for template matching, given earlier as O�N 2m2�.

One way to avoid the problems of the Cartesian parameterization in the HT is to base the
mapping function on an alternative parameterization. One of the most proven techniques is

Feature extraction by shape matching 199

(a) Line (b) Wrench (c) Wrench with noise

(d) Accumulator for (a) (e) Accumulator for (b) (f) Accumulator for (c)

(g) Line from (d) (h) Lines from (e) (i) Lines from (f)

Figure 5.9 Applying the Hough transform for lines

called the foot-of-normal parameterization. This parameterizes a line by considering a point
�x� y� as a function of an angle normal to the line, passing through the origin of the image. This
gives a form of the HT for lines known as the polar HT for lines (Duda and Hart, 1972). The
point where this line intersects the line in the image is given by

� = x cos��+y sin�� (5.28)

where is the angle of the line normal to the line in an image and � is the length between the
origin and the point where the lines intersect, as illustrated in Figure 5.10.

By recalling that two lines are perpendicular if the product of their slopes is −1, and by
considering the geometry of the arrangement in Figure 5.10, we obtain

c = �

sin��
m = − 1

tan��
(5.29)

By substitution in Equation 5.24 we obtain the polar form (Equation 5.28). This provides a
different mapping function: votes are now cast in a sinusoidal manner, in a 2D accumulator
array in terms of and �, the parameters of interest. The advantage of this alternative mapping
is that the values of the parameters and � are now bounded to lie within a specific range.
The range for is within 180	; the possible values of � are given by the image size, since

200 Feature Extraction and Image Processing

ρ

x

y

θ

c

Figure 5.10 Polar consideration of a line

the maximum length of the line is
√

2 ×N , where N is the (square) image size. The range of
possible values is now fixed, so the technique is practicable.

As the voting function has now changed, we shall draw different loci in the accumulator
space. In the conventional HT for lines, a straight line mapped to a straight line as in Figure 5.8.
In the polar HT for lines, points map to curves in the accumulator space. This is illustrated
in Figure 5.11(a)–(c), which shows the polar HT accumulator spaces for one, two and three
points, respectively. For a single point in the upper row of Figure 5.11(a) we obtain a single
curve shown in the lower row of Figure 5.11(a). For two points we obtain two curves, which
intersect at a position which describes the parameters of the line joining them (Figure 5.11b).
An additional curve is obtained for the third point and there is now a peak in the accumulator
array containing three votes (Figure 5.11c).

(a) For one point (b) For two points (c) For three points

Figure 5.11 Images and the accumulator space of the polar Hough transform

Feature extraction by shape matching 201

The implementation of the polar HT for lines is the function HTPLine in Code 5.4. The
accumulator array is a set of 180 bins for value of in the range 0–180	, and for values of �
in the range 0 to

√
N 2 +M2, where N ×M is the picture size. Then, for image (edge) points

greater than a chosen threshold, the angle relating to the bin size is evaluated (as radians in
the range 0 to �) and then the value of � is evaluated from Equation 5.28 and the appropriate
accumulator cell is incremented so long as the parameters are within range. The accumulator
arrays obtained by applying this implementation to the images in Figure 5.9 are shown in
Figure 5.12. Figure 5.12(a) shows that a single line defines a well-delineated peak. Figure 5.12(b)

%Polar Hough Transform for Lines

function HTPLine(inputimage)

%image size
[rows,columns]=size(inputimage);

%accumulator
rmax=round(sqrt(rows^2+columns^2));
acc=zeros(rmax,180);

%image
for x=1:columns
 for y=1:rows
 if(inputimage(y,x)==0)
 for m=1:180

r=round(x*cos((m*pi)/180)
 +y*sin((m*pi)/180));
if(r<rmax & r>0)
 acc(r,m)= acc(r,m)+1; end

end
end

 end
end

Code 5.4 Implementation of the polar Hough transform for lines

(a) Accumulator for Figure 5.9(a) (b) Accumulator for Figure 5.9(b) (c) Accumulator for Figure 5.9(c)

Figure 5.12 Applying the polar Hough transform for lines

202 Feature Extraction and Image Processing

and (c) show a clearer peak compared with the implementation of the Cartesian parameterization.
This is because discretization effects are reduced in the polar parameterization. This feature
makes the polar implementation far more practicable than the earlier, Cartesian, version.

5.4.3 Hough transform for circles

The HT can be extended by replacing the equation of the curve in the detection process. The
equation of the curve can be given in explicit or parametric form. In explicit form, the HT can
be defined by considering the equation for a circle given by

�x−x0�
2 + �y −y0�

2 = r2 (5.30)

This equation defines a locus of points �x� y� centred on an origin �x0� y0� and with radius r.
This equation can again be visualized in two ways: as a locus of points �x� y� in an image, or
as a locus of points �x0� y0� centred on �x� y� with radius r.

Figure 5.13 illustrates this dual definition. Each edge point in Figure 5.13(a) defines a set of
circles in the accumulator space. These circles are defined by all possible values of the radius
and they are centred on the coordinates of the edge point. Figure 5.13(b) shows three circles

(a) Image containing a circle (b) Accumulator space

x

y
1

2

3

x0

y0

1

2

3

x0

y0

r

Circles of
votes

Original
circle

(c) 3D accumulator space

Figure 5.13 Illustrating the Hough transform for circles

Feature extraction by shape matching 203

defined by three edge points. These circles are defined for a given radius value. Each edge point
defines circles for the other values of the radius. This implies that the accumulator space is three
dimensional (for the three parameters of interest) and that edge points map to a cone of votes in
the accumulator space. Figure 5.13(c) illustrates this accumulator. After gathering evidence of
all the edge points, the maximum in the accumulator space again corresponds to the parameters
of the circle in the original image. The procedure of evidence gathering is the same as that for
the HT for lines, but votes are generated in cones, according to Equation 5.30.

Equation 5.30 can be defined in parametric form as

x = x0 + r cos�� y = y0 + r sin�� (5.31)

The advantage of this representation is that it allows us to solve for the parameters. Thus, the
HT mapping is defined by

x0 = x− r cos�� y0 = y − r sin�� (5.32)

These equations define the points in the accumulator space (Figure 5.13b) dependent on the
radius r . Note that is not a free parameter, but defines the trace of the curve. The trace of the
curve (or surface) is commonly referred to as the point spread function.

The implementation of the HT for circles, HTCircle, is shown in Code 5.5. This is similar
to the HT for lines, except that the voting function corresponds to that in Equation 5.32 and the
accumulator space is for circle data. The accumulator in the implementation is two dimensions,

%Hough Transform for Circles

function HTCircle(inputimage,r)

%image size
[rows,columns]=size(inputimage);

%accumulator
acc=zeros(rows,columns);

%image
for x=1:columns
 for y=1:rows
 if(inputimage(y,x)==0)

for ang=0:360
t=(ang*pi)/180;
x0=round(x-r*cos(t));
y0=round(y-r*sin(t));
if(x0<columns & x0>0 & y0<rows & y0>0)

acc(y0,x0)=acc(y0,x0)+1;
end

end
end

 end
end

Code 5.5 Implementation of the Hough transform for circles

204 Feature Extraction and Image Processing

in terms of the centre parameters for a fixed value of the radius given as an argument to the
function. This function should be called for all potential radii. A circle of votes is generated by
varying t (i.e. , but Matlab does not allow Greek symbols!) from 0	 to 360	. The discretization
of t controls the granularity of voting; too small an increment gives very fine coverage of the
parameter space, too large a value results in very sparse coverage. The accumulator space, acc
(initially zero), is incremented only for points whose coordinates lie within the specified range
(in this case the centre cannot lie outside the original image).

The application of the HT for circles is illustrated in Figure 5.14. Figure 5.14(a) shows
an image with a synthetic circle. In this figure, the edges are complete and well defined. The
result of the HT process is shown in Figure 5.14(d). The peak of the accumulator space is at
the centre of the circle. Note that votes exist away from the circle’s centre, and rise towards

(a) Circle (b) Soccer ball edges (c) Noisy soccer ball edges

(d) Accumulator for (a) (e) Accumulator for (b) (f) Accumulator for (c)

(g) Circle from (d) (h) Circle from (e) (i) Circle from (f)

Figure 5.14 Applying the Hough transform for circles

Feature extraction by shape matching 205

the locus of the actual circle, although these background votes are much less than the actual
peak. Figure 5.14(b) shows an example of data containing occlusion and noise. The image
in Figure 5.14(c) corresponds to the same scene, but the noise level has been increased by
changing the threshold value in the edge detection process. The accumulators for these two
images are shown in Figure 5.14(e) and (f) and the circles related to the parameter space peaks
are superimposed (in black) on the edge images in Figure 5.14(g)–(i). We can see that the HT
has the ability to tolerate occlusion and noise. Note that we do not have the earlier problem
with the start and the end of the lines since the circle is a closed shape. In Figure 5.14(c), there
are many edge points, which implies that the amount of processing time increases. The HT will
detect the circle (provide the right result) as long as more points are in a circular locus described
by the parameters of the target circle than there are on any other circle. This is exactly the same
performance as for the HT for lines, as expected, and is consistent with the result of template
matching.

In application code, Bresenham’s algorithm for discrete circles (Bresenham, 1977) can be
used to draw the circle of votes, rather than use the polar implementation of Equation 5.32. This
ensures that the complete locus of points is drawn and avoids the need to choose a value for
increase in the angle used to trace the circle. Bresenham’s algorithm can be used to generate
the points in one octant, since the remaining points can be obtained by reflection. Backmapping
can be used to determine which points contributed to the extracted circle.

An additional example of the circle HT extraction is shown in Figure 5.15. Figure 5.15(a)
is a real image (albeit one with low resolution) which was processed by Sobel edge detection
and thresholded to give the points in Figure 5.15(b). The circle detected by application of
HTCircle with radius 5 pixels is shown in Figure 5.15(c) superimposed on the edge data.
The extracted circle can be seen to match the edge data well. This highlights the two major
advantages of the HT (and of template matching): its ability to handle noise and occlusion.
Note that the HT merely finds the circle with the maximum number of points; it is possible
to include other constraints to control the circle selection process, such as gradient direction
for objects with known illumination profile. In the case of the human eye, the (circular) iris is
usually darker than its white surroundings.

(a) Image of eye (b) Sobel edges (c) Edges with HT detected
circle

Figure 5.15 Using the Hough transform for circles

Figure 5.15 also shows some of the difficulties with the HT, namely that it is essentially an
implementation of template matching, and does not use some of the richer stock of information

206 Feature Extraction and Image Processing

available in an image. For example, we might know constraints on size; the largest size and
iris would be in an image like Figure 5.15. We also know some of the topology: the eye
region contains two ellipsoidal structures with a circle in the middle. We may also might
know brightness information: the pupil is darker than the surrounding iris. These factors can
be formulated as constraints on whether edge points can vote within the accumulator array.
A simple modification is to make the votes proportional to edge magnitude; in this manner,
points with high contrast will generate more votes and hence have more significance in the
voting process. In this way, the feature extracted by the HT can be arranged to suit a particular
application.

5.4.4 Hough transform for ellipses

Circles are very important in shape detection since many objects have a circular shape. However,
because of the camera’s viewpoint, circles do not always look like circles in images. Images
are formed by mapping a shape in 3D space into a plane (the image plane). This mapping
performs a perspective transformation. In this process, a circle is deformed to look like an ellipse.
We can define the mapping between the circle and an ellipse by a similarity transformation.
That is,

[
x
y

]
=
[

cos��� sin���
− sin��� cos���

][
Sx

Sy

][
x′

y′

]
+
[
tx

ty

]
(5.33)

where �x′� y′� define the coordinates of the circle in Equation 5.31, � represents the orientation,
�Sx� Sy� a scale factor and �tx� ty� a translation. If we define

a0 = tx ax = Sx cos��� bx = Sy sin���

b0 = ty ay = −Sx sin��� by = Sy cos���
(5.34)

then we have that the circle is deformed into

x = a0 +ax cos��+bx sin��

y = b0 +ay cos��+by sin��
(5.35)

This equation corresponds to the polar representation of an ellipse. This polar form contains
six parameters

(
a0� b0� ax� bx� ay� by

)
that characterize the shape of the ellipse. is not a free

parameter and it only addresses a particular point in the locus of the ellipse (just as it was
used to trace the circle in Equation 5.32). However, one parameter is redundant since it can
be computed by considering the orthogonality (independence) of the axes of the ellipse (the
product axbx +ayby = 0, which is one of the known properties of an ellipse). Thus, an ellipse
is defined by its centre �a0� b0� and three of the axis parameters

(
ax� bx� ay� by

)
. This gives five

parameters, which is intuitively correct since an ellipse is defined by its centre (two parameters),
it size along both axes (two more parameters) and its rotation (one parameter). In total, this
states that five parameters describe an ellipse, so our three axis parameters must jointly describe
size and rotation. In fact, the axis parameters can be related to the orientation and the length
along the axes by

tan��� = ay

ax

a =
√

a2
x +a2

y b =
√

b2
x +b2

y (5.36)

where �a� b� are the axes of the ellipse, as illustrated in Figure 5.16.

Feature extraction by shape matching 207

y

x

b
a

ay

axbx

by

Figure 5.16 Definition of ellipse axes

In a similar way to Equation 5.31, Equation 5.35 can be used to generate the mapping function
in the HT. In this case, the location of the centre of the ellipse is given by

a0 = x−ax cos��+bx sin��

b0 = y −ay cos��+by sin��
(5.37)

The location is dependent on three parameters, thus the mapping defines the trace of a hyper-
surface in a five-dimensional (5D) space. This space can be very large. For example, if there
are 100 possible values for each of the five parameters, the 5D accumulator space contains 1010

values. This is 10 GB of storage, which is tiny nowadays (at least, when someone else pays!).
Accordingly, there has been much interest in ellipse detection techniques which use much less
space and operate much more quickly than direct implementation of Equation 5.37.

Code 5.6 shows the implementation of the HT mapping for ellipses. The function
HTEllipse computes the centre parameters for an ellipse without rotation and with fixed axis
length given as arguments. Thus, the implementation uses a 2D accumulator. In practice, to
locate an ellipse, it is necessary to try all potential values of axis length. This is computationally
impossible unless we limit the computation to a few values.

Figure 5.17 shows three examples of the application of the ellipse extraction process described
in the Code 5.6. The first example (Figure 5.17a) illustrates the case of a perfect ellipse in a
synthetic image. The array in Figure 5.17(d) shows a prominent peak whose position corresponds
to the centre of the ellipse. The examples in Figure 5.17(b) and (c) illustrate the use of the HT
to locate a circular form when the image has an oblique view. Each example was obtained by
using a different threshold in the edge detection process. Figure 5.17(c) contains more noise
data, which in turn gives rise to more noise in the accumulator. We can observe that there is
more than one ellipse to be located in these two figures. This gives rise to the other high values
in the accumulator space. As with the earlier examples for line and circle extraction, there is
scope for interpreting the accumulator space, to discover which structures produced particular
parameter combinations.

208 Feature Extraction and Image Processing

%Hough Transform for Ellipses

function HTEllipse(inputimage,a,b)

%image size
[rows,columns]=size(inputimage);

%accumulator
acc=zeros(rows,columns);

%image
for x=1:columns
 for y=1:rows

 if(inputimage(y,x)==0)
 for ang=0:360
 t=(ang*pi)/180;
 x0=round(x-a*cos(t));
 y0=round(y-b*sin(t));
 if(x0<columns & x0>0 & y0<rows & y0>0)

acc(y0,x0)=acc(y0,x0)+1;
 end
 end
 end
 end
end

Code 5.6 Implementation of the Hough transform for ellipses

(a) Ellipse (b) Rugby ball edges (c) Noisy rugby ball edges

(d) Accumulator for (a) (e) Accumulator for (b) (f) Accumulator for (c)

Figure 5.17 Applying the Hough transform for ellipses

Feature extraction by shape matching 209

5.4.5 Parameter space decomposition

The HT gives the same (optimal) result as template matching and even though it is faster, it still
requires significant computational resources. The previous sections showed that as we increase
the complexity of the curve under detection, the computational requirements increase in an
exponential way. Thus, the HT becomes less practical. For this reason, most of the research
in the HT has focused on the development of techniques aimed to reduce its computational
complexity (Illingworth and Kittler, 1988; Leavers, 1993). One important way to reduce the
computation has been the use of geometric properties of shapes to decompose the parameter
space. Several techniques have used different geometric properties. These geometric properties
are generally defined by the relationship between points and derivatives.

5.4.5.1 Parameter space reduction for lines
For a line, the accumulator space can be reduced from two dimensions to one dimension by
considering that we can compute the slope from the information of the image. The slope can be
computed either by using the gradient direction at a point or by considering a pair of points.
That is,

m = � or m = y2 −y1

x2 −x1

(5.38)

where � is the gradient direction at the point. In the case of two points, by considering
Equation 5.24 we have:

c = x2y1 −x1y2

x2 −x1

(5.39)

Thus, according to Equation 5.29, one of the parameters of the polar representation for lines, ,
is now given by

 = − tan−1

[
1
�

]
or = tan−1

[
x1 −x2

y2 −y1

]
(5.40)

These equations do not depend on the other parameter � and they provide alternative mappings
to gather evidence. That is, they decompose the parametric space, such that the two parameters
 and � are now independent. The use of edge direction information constitutes the base of
the line extraction method presented by O’Gorman and Clowes (1976). The use of pairs of
points can be related to the definition of the randomized Hough transform (Xu et al., 1990).
The number of feature points considered corresponds to all the combinations of points that form
pairs. By using statistical techniques, it is possible to reduce the space of points to consider
a representative sample of the elements; that is, a subset that provides enough information to
obtain the parameters with predefined and small estimation errors.

Code 5.7 shows the implementation of the parameter space decomposition for the HT for
lines. The slope of the line is computed by considering a pair of points. Pairs of points are
restricted to a neighbourhood of 5×5 pixels. The implementation of Equation 5.40 gives values
between −90	 and 90	. Since the accumulators can only store positive values, we add 90	 to all
values. To compute � we use Equation 5.28, given the value of � computed by Equation 5.40.

Figure 5.18 shows the accumulators for the two parameters and � as obtained by the
implementation of Code 5.7 for the images in Figure 5.9(a) and (b). The accumulators are now
one-dimensional, as in Figure 5.18(a), and show a clear peak. The peak in the first accumulator
is close to 135	. Thus, by subtracting the 90	 introduced to make all values positive, we find
that the slope of the line = −45	. The peaks in the accumulators in Figure 5.18(b) define

210 Feature Extraction and Image Processing

%Parameter Decomposition for the Hough Transform for Lines

function HTDLine(inputimage)

%image size
[rows,columns]=size(inputimage);

%accumulator
rmax=round(sqrt(rows^2+columns^2));
accro=zeros(rmax,1);
acct=zeros(180,1);

%image
for x=1:columns
 for y=1:rows

 if(inputimage(y,x)==0)
 for Nx=x-2:x+2
 for Ny=y-2:y+2

if(x~=Nx | y~=Ny)
if(Nx>0 & Ny>0 & Nx<columns & Ny<rows)

if(inputimage(Ny,Nx)==0)
if(Ny-y~=0)

t=atan((x-Nx)/(Ny-y)); %Equation (5.40)
else t=pi/2;

end
r=round(x*cos(t)+y*sin(t)); %Equation (5.28)

t=round((t+pi/2)*180/pi);
acct(t)=acct(t)+1;

if(r<rmax & r>0)
 accro(r)=accro(r)+1;
end

end
end

end
end

end
end

end
end

Code 5.7 Implementation of the parameter space reduction for the Hough transform for lines

two lines with similar slopes. The peak in the first accumulator represents the value of , while
the two peaks in the second accumulator represent the location of the two lines. In general,
when implementing parameter space decomposition it is necessary to follow a two-step process.
First, it is necessary to gather data in one accumulator and search for the maximum. Secondly,
the location of the maximum value is used as parameter value to gather data on the remaining
accumulator.

Feature extraction by shape matching 211

(a) Accumulators for Figure 5.9(a) (b) Accumulators for Figure 5.9(b)

2000

0 50 100 150

1500

1000

500

0

600

0 50 100 150 200 250

500

400

300

200

100

0

600

500

400

300

200

100

0
50 100 1500

150

100

50

0
0 50 100 150 200 250 300

Figure 5.18 Parameter space reduction for the Hough transform for lines

5.4.5.2 Parameter space reduction for circles
In the case of lines, the relationship between local information computed from an image and
the inclusion of a group of points (pairs) is in an alternative analytical description which can
readily be established. For more complex primitives, it is possible to include several geometric
relationships. These relationships are not defined for an arbitrary set of points, but include
angular constraints that define relative positions between them. In general, we can consider
different geometric properties of the circle to decompose the parameter space. This has motivated
the development of many methods of parameter space decomposition (Aguado et al., 1996). An
important geometric relationship is given by the geometry of the second directional derivatives.
This relationship can be obtained by considering that Equation 5.31 defines a position vector
function. That is,

��� = x��

[
1

0

]
+y��

[
0

1

]
(5.41)

where

x�� = x0 + r cos�� y�� = y0 + r sin�� (5.42)

In this definition, we have included the parameter of the curve as an argument to highlight the
fact that the function defines a vector for each value of . The endpoints of all the vectors trace a
circle. The derivatives of Equation 5.41 with respect to define the first and second directional
derivatives. That is,

�′�� = x′��

[
1

0

]
+y′��

[
0

1

]

�′′�� = x′′��

[
1

0

]
+y′′��

[
0

1

]
(5.43)

where

x′�� = −r sin�� y′�� = r cos��

x′′�� = −r cos�� y′′�� = −r sin�� (5.44)

Figure 5.19 illustrates the definition of the first and second directional derivatives. The first
derivative defines a tangential vector while the second one is similar to the vector function, but
it has reverse direction. The fact that the edge direction measured for circles can be arranged

212 Feature Extraction and Image Processing

so as to point towards the centre was the basis of one of the early approaches to reducing the
computational load of the HT for circles (Kimme et al., 1975).

(x 0, y0)

υ ′(θ)

υ (θ)υ ″(θ)

Figure 5.19 Definition of the first and second directional derivatives for a circle

According to Equations 5.42 and 5.44, we observe that the tangent of the angle of the first
directional derivative denoted as �′ �� is given by

�′�� = y′��

x′��
= − 1

tan��
(5.45)

Angles will be denoted by using the symbol ∧. That is,

�̂′�� = tan−1��′��� (5.46)

Similarly, for the tangent of the second directional derivative we have:

�′′�� = y′′��

x′′��
= tan�� and �̂′′�� = tan−1��′′��� (5.47)

By observing the definition of �′′ ��, we have:

�′′�� = y′′��

x′′��
= y��−y0

x��−x0

(5.48)

This equation defines a straight line passing through the points �x��� y��� and �x0� y0� and
is perhaps the most important relation in parameter space decomposition. The definition of the
line is more evident by rearranging terms. That is,

y�� = �′′���x��−x0�+y0 (5.49)

This equation is independent of the radius parameter. Thus, it can be used to gather evidence
of the location of the shape in a 2D accumulator. The HT mapping is defined by the dual form
given by

y0 = �′′���x0 −x���+y�� (5.50)

That is, given an image point �x��� y��� and the value of �′′ �� we can generate a line of
votes in the 2D accumulator �x0� y0�. Once the centre of the circle is known, a 1D accumulator
can be used to locate the radius. The key aspect of the parameter space decomposition is the
method used to obtain the value of �′′ �� from image data. We will consider two alternative

Feature extraction by shape matching 213

ways. First, we will show that �′′ �� can be obtained by edge direction information. Secondly,
we will show how it can be obtained from the information of a pair of points.

To obtain �′′ ��, we can use the definition in Equations 5.46 and 5.47. According to these
equations, the tangents �′′ �� and �′ �� are perpendicular. Thus,

�′′�� = − 1
�′��

(5.51)

Thus, the HT mapping in Equation 5.50 can be written in terms of gradient direction �′ �� as

y0 = y��+ x��−x0

�′��
(5.52)

This equation has a simple geometric interpretation, illustrated in Figure 5.20(a). We can see
that the line of votes passes through the points �x��� y��� and �x0� y0�. The slope of the line
is perpendicular to the direction of gradient direction.

(a) Relationship between angles (b) Two point angle definition

(x0, y0)

(x (θ), y (θ))

φ ′′(θ)

v

φ ′(θ)

v

(x (θ), y (θ))
(x (θ 1), y (θ1))

(x (θ 2), y (θ 2))

φ′′(θ)

v

φ ′(θ)

v

(xm, ym)

Figure 5.20 Geometry of the angle of the first and second directional derivatives

An alternative decomposition can be obtained by considering the geometry shown in
Figure 5.20(b). In the figure we can see that if we take a pair of points �x1� y1� and �x2� y2�,
where xi = x�i�, then the line that passes through the points has the same slope as the line at a
point �x��� y���. Accordingly,

�′�� = y2 −y1

x2 −x1

(5.53)

where

 = 1
2

�1 +2� (5.54)

Based on Equation 5.53 we have that

�′′�� = −x2 −x1

y2 −y1

(5.55)

The problem with using a pair of points is that by Equation 5.54 we cannot know the location
of the point �x��� y���. Fortunately, the voting line also passes through the midpoint of the
line between the two selected points. Let us define this point as

xm = 1
2

�x1 +x2� ym = 1
2

�y1 +y2� (5.56)

214 Feature Extraction and Image Processing

Thus, by substitution of Equation 5.53 in Equation 5.52 and by replacing the point �x��� y���
by �xm� ym�, the HT mapping can be expressed as

y0 = ym + �xm −x0��x2 −x1�

�y2 −y1�
(5.57)

This equation does not use gradient direction information, but it is based on pairs of points.
This is analogous to the parameter space decomposition of the line presented in Equation 5.40.
In that case, the slope can be computed by using gradient direction or, alternatively, by taking
a pair of points. In the case of the circle, the tangent (and therefore the angle of the second
directional derivative) can be computed by the gradient direction (i.e. Equation 5.51) or by a
pair of points (i.e. Equation 5.55). However, it is important to notice that there are some other
combinations of parameter space decomposition (Aguado, 1996).

Code 5.8 shows the implementation of the parameter space decomposition for the HT for
circles. The implementation only detects the position of the circle and it gathers evidence by
using the mapping in Equation 5.57. Pairs of points are restricted to a neighbourhood between
10 × 10 pixels and 12 × 12 pixels. We avoid using pixels that are close to each other since
they do not produce accurate votes. We also avoid using pixels that are far away from each
other, since by distance it is probable that they do not belong to the same circle and would only
increase the noise in the accumulator. To trace the line, we use two equations that are selected
according to the slope.

Figure 5.21 shows the accumulators obtained by the implementation of Code 5.8 for the
images in Figure 5.11(a) and (b). Both accumulators show a clear peak that represents the location

%Parameter Decomposition for the Hough Transform for Circles

function HTDCircle(inputimage)

%image size
[rows,columns]=size(inputimage);

%accumulator
acc=zeros(rows,columns);

%gather evidence
for x1=1:columns
 for y1=1:rows

if(inputimage(y1,x1)==0)
for x2=x1-12:x1+12

for y2=y1-12:y1+12
if(abs(x2-x1)>10 | abs(y2-y1)>10)

if(x2>0 & y2>0 & x2<columns & y2<rows)
if(inputimage(y2,x2)==0)

xm=(x1+x2)/2; ym=(y1+y2)/2;
if(y2-y1~=0) m=((x2-x1)/(y2-y1));

else m=99999999;
end

Feature extraction by shape matching 215

if(m>-1 & m<1)
for x0=1:columns

y0=round(ym+m*(xm-x0));
if(y0>0 & y0<rows)

acc(y0,x0)=acc(y0,x0)+1;
end

end
else

for y0=1:rows
x0= round(xm+(ym-y0)/m);
if(x0>0 & x0<columns)

acc(y0,x0)=acc(y0,x0)+1;
end

end
end

end
end

end
end

end
end

end
end

Code 5.8 Parameter space reduction for the Hough transform for circles

of the circle. Small peaks in the background of the accumulator in Figure 5.11(b) correspond to
circles with only a few points. In general, there is a compromise between the width of the peak
and the noise in the accumulator. The peak can be made narrower by considering pairs of points
that are more widely spaced. However, this can also increase the level of background noise.
Background noise can be reduced by taking points that are closer together, but this makes the
peak wider.

(a) Accumulator for Figure 5.11(a) (b) Accumulator for Figure 5.11(b)

Figure 5.21 Parameter space reduction for the Hough transform for circles

216 Feature Extraction and Image Processing

5.4.5.3 Parameter space reduction for ellipses
Part of the simplicity in the parameter decomposition for circles comes from the fact that circles
are isotropic. Ellipses have more free parameters and are geometrically more complex. Thus,
geometrical properties involve more complex relationships between points, tangents and angles.
However, they maintain the geometric relationship defined by the angle of the second derivative.
According to Equations 5.41 and 5.43, the vector position and directional derivatives of an
ellipse in Equation 5.35 have the components

x′�� = −ax sin��+bx cos�� y′�� = −ay sin��+by cos��

x′′�� = −ax cos��−bx sin�� y′′�� = −ay cos��−by sin��
(5.58)

The tangent of angle of the first and second directional derivatives are given by

�′�� = y′��

x′��
= −ay cos��+by sin��

−ax cos��+bx sin��

�′′�� = y′′��

x′′��
= −ay cos��−by sin��

−ax cos��−bx sin��

(5.59)

By considering Equation 5.58, Equation 5.48 is also valid for an ellipse. That is,

y��−y0

x��−x0

= �′′�� (5.60)

The geometry of the definition in this equation is illustrated in Figure 5.22(a). As in the case
of circles, this equation defines a line that passes through the points �x��� y��� and �x0� y0�.
However, in the case of the ellipse the angles �̂′ �� and �̂′′ �� are not orthogonal. This makes
the computation of �′′ �� more complex. To obtain �′′ �� we can extend the geometry presented
in Figure 5.20(b). That is, we take a pair of points to define a line whose slope defines the value
of �′′ �� at another point. This is illustrated in Figure 5.22(b). The line in Equation 5.60 passes
through the middle point �xm� ym�. However, it is not orthogonal to the tangent line. To obtain
an expression of the HT mapping, we will first show that the relationship in Equation 5.54 is
also valid for ellipses. Then we will use this equation to obtain �′′ ��.

 (a) Relationship between angles (b) Two point angle definition

(x0, y0)
(x0, y0)

(x (θ), y (θ))

φ′(θ)

v

φ ′′(θ)

v

φ ′′(θ)

v

(x (θ1), y (θ1))

(x (θ2), y (θ2))

φ ′(θ)

v

(xm, ym)

(xT, yT)

Figure 5.22 Geometry of the angle of the first and second directional derivatives

Feature extraction by shape matching 217

The relationships in Figure 5.22(b) do not depend on the orientation or position of the ellipse.
Thus, three points can be defined by

x1 = ax cos�1� x2 = ax cos�2� x�� = ax cos��

y1 = bx sin�1� y2 = bx sin�2� y�� = bx sin��
(5.61)

The point �x��� y��� is given by the intersection of the line in Equation 5.60 with the ellipse.
That is,

y��−y0

x��−x0

= ax

by

ym

xm

(5.62)

By substitution of the values of �xm� ym� defined as the average of the coordinates of the points
�x1� y1� and �x2� y2� in Equation 5.56, we have:

tan�� = ax

by

by sin�1�+by sin�2�

ax cos�1�+ax cos�2�
(5.63)

Thus,

tan�� = tan
(

1
2

�1 +2�

)
(5.64)

From this equation is evident that the relationship in Equation 5.54 is also valid for ellipses.
Based on this result, the tangent angle of the second directional derivative can be defined as

�′′�� = by

ax

tan�� (5.65)

By substitution in Equation 5.62, we have:

�′′�� = ym

xm

(5.66)

This equation is valid when the ellipse is not translated. If the ellipse is translated then the
tangent of the angle can be written in terms of the points �xm� ym� and �xT � yT � as

�′′�� = yT −ym

xT −xm

(5.67)

By considering that the point �xT � yT � is the intersection point of the tangent lines at �x1� y1�
and �x2� y2�, we obtain

�′′�� = AC +2BD

2A+BC
(5.68)

where

A = y1 −y2 B = x1 −x2

C = �1 +�2 D = �1 ·�2

(5.69)

and �1� �2 are the slope of the tangent line to the points. Finally, by considering Equation 5.60,
the HT mapping for the centre parameter is defined as

y0 = ym + AC +2BD

2A+BC
�x0 −xm� (5.70)

This equation can be used to gather evidence that is independent of rotation or scale. Once the
location is known, a 3D parameter space is needed to obtain the remaining parameters. However,
these parameters can also be computed independently using two 2D parameter spaces (Aguado

218 Feature Extraction and Image Processing

et al., 1996). You can avoid using the gradient direction in Equation 5.68 by including more
points. In fact, the tangent �′′ �� can be computed by taking four points (Aguado, 1996). How-
ever, the inclusion of more points generally leads to more background noise in the accumulator.

Code 5.9 shows the implementation of the ellipse location mapping in Equation 5.57. As
in the case of the circle, pairs of points need to be restricted to a neighbourhood. In the
implementation, we consider pairs at a fixed distance given by the variable i. Since we are
including gradient direction information, the resulting peak is generally quite wide. Again, the
selection of the distance between points is a compromise between the level of background noise
and the width of the peak.

%Parameter Decomposition for Ellipses
function HTDEllipse(inputimage)

%image size
[rows,columns]=size(inputimage);

%edges
[M,Ang]=Edges(inputimage);
M=MaxSupr(M,Ang);

%accumulator
acc=zeros(rows,columns);

%gather evidence
for x1=1:columns
for y1=1:1:rows

if(M(y1,x1)~=0)
for i=60:60

x2=x1-i; y2=y1-I;
incx=1; incy=0;
for k=0: 8*i-1
if(x2>0 & y2>0 & x2<columns & y2<rows)
if M(y2,x2)~=0

m1=Ang(y1,x1); m2=Ang(y2,x2);

if(abs(m1-m2)>.2)

xm=(x1+x2)/2; ym=(y1+y2)/2;
m1=tan(m1); m2=tan(m2);

A=y1-y2; B=x2-x1;

N=(2*A+B*C);
if N~=0
m=(A*C+2*B*D)/N;

else

end;

C=m1+m2; D=m1*m2;

m=99999999;

Feature extraction by shape matching 219

else
for y0=1:rows

x0= round(xm+(y0-ym)/m);
if(x0>0 & x0<columns)

acc(y0,x0)=acc(y0,x0)+1;
end

end
end % if abs

end % if M
end

x2=x2+incx; y2=y2+incy;

if x2>x1+I
x2=x1+i;
incx=0; incy=1;
y2=y2+incy;

end

if y2>y1+i
y2=y1+i;
incx=-1; incy=0;
x2=x2+incx;

end

if x2<x1-i
x2=x1-i;
incx=0; incy=-1;
y2=y2+incy;

end
end % for k

end % for I
end % if (x1,y1)

end % y1
end %x1

if(m>-1 & m<1)
for x0=1:columns

y0=round(ym+m*(x0-xm));
if(y0>0 & y0<rows)

acc(y0,x0)=acc(y0,x0)+1;
end

end

Code 5.9 Implementation of the parameter space reduction for the Hough transform for ellipses

Figure 5.23 shows the accumulators obtained by the implementation of Code 5.9 for the
images in Figure 5.17(a) and (b). The peak represents the location of the ellipses. In general,
there is noise and the accumulator is wide, for two main reasons. First, when the gradient
direction is not accurate, then the line of votes does not pass exactly over the centre of the ellipse.
This forces the peak to become wider with less height. Secondly, to avoid numerical instabilities

220 Feature Extraction and Image Processing

we need to select points that are well separated. However, this increases the probability that the
points do not belong to the same ellipse, thus generating background noise in the accumulator.

(a) Accumulators for Figure 5.17(a) (b) Accumulators for Figure 5.17(b)

Figure 5.23 Parameter space reduction for the Hough transform for ellipses

5.5 Generalized Hough transform

Many shapes are far more complex than lines, circles or ellipses. It is often possible to partition
a complex shape into several geometric primitives, but this can lead to a highly complex data
structure. In general, is more convenient to extract the whole shape. This has motivated the
development of techniques that can find arbitrary shapes using the evidence-gathering procedure
of the HT. These techniques give results equivalent to those delivered by matched template
filtering, but with the computational advantage of the evidence-gathering approach. An early
approach offered only limited capability only for arbitrary shapes (Merlin and Faber 1975). The
full mapping is called the generalized Hough transform (GHT) (Ballard, 1981) and can be used
to locate arbitrary shapes with unknown position, size and orientation. The GHT can be formally
defined by considering the duality of a curve. One possible implementation can be based on
the discrete representation given by tabular functions. These two aspects are explained in the
following two sections.

5.5.1 Formal definition of the GHT

The formal analysis of the HT provides the route for generalizing it to arbitrary shapes. We can
start by generalizing the definitions in Equation 5.41. In this way a model shape can be defined
by a curve

��� = x��

[
1

0

]
+y��

[
0

1

]
(5.71)

For a circle, for example, we have x�� = r cos�� and y�� = r sin��. Any shape can be
represented by following a more complex definition of x�� and y��.

In general, we are interested in matching the model shape against a shape in an image.
However, the shape in the image has a different location, orientation and scale. Originally, the

Feature extraction by shape matching 221

GHT defined a scale parameter in the x and y directions, but owing to computational complexity
and practical relevance the use of a single scale has become much more popular. Analogous to
Equation (5.33), we can define the image shape by considering translation, rotation and change
of scale. Thus, the shape in the image can be defined as

���b����� = b+�R������ (5.72)

where b = �x0� y0� is the translation vector, � is a scale factor and R��� is a rotation matrix
(as in Equation 5.31). Here, we have included explicitly the parameters of the transformation
as arguments, but to simplify the notation they will be omitted later. The shape of ���b�����
depends on four parameters. Two parameters define the location b, plus the rotation and scale.
It is important to notice that does not define a free parameter, it only traces the curve.

To define a mapping for the HT we can follow the approach used to obtain Equation 5.35.
Thus, the location of the shape is given by

b = ���−�R������ (5.73)

Given a shape ��� and a set of parameters b� � and �, this equation defines the location of
the shape. However, we do not know the shape ��� (since it depends on the parameters that
we are looking for), but we only have a point in the curve. If we call �i = (

�xi��yi

)
the point

in the image, then

b = �i −�R������ (5.74)

defines a system with four unknowns and with as many equations as points in the image. To
find the solution we can gather evidence by using a four-dimensional (4D) accumulator space.
For each potential value of b� � and �, we trace a point spread function by considering all the
values of . That is, all the points in the curve ���.

In the GHT the gathering process is performed by adding an extra constraint to the system
that allows us to match points in the image with points in the model shape. This constraint is
based on gradient direction information and can be explained as follows. We said that ideally,
we would like to use Equation 5.73 to gather evidence. For that we need to know the shape
��� and the model ���, but we only know the discrete points �i and we have supposed that
these are the same as the shape, i.e. that ��� = �i. Based on this assumption, we then consider
all the potential points in the model shape, ���. However, this is not necessary since we only
need the point in the model, ���, that corresponds to the point in the shape, ���. We cannot
know the point in the shape, ���, but we can compute some properties from the model and
from the image. Then, we can check whether these properties are similar at the point in the
model and at a point in the image. If they are indeed similar, the points might correspond: if
they do we can gather evidence on the parameters of the shape. The GHT considers as feature
the gradient direction at the point. We can generalize Equations 5.45 and 5.46 to define the
gradient direction at a point in the arbitrary model. Thus,

�′�� = y′��

x′��
and �̂′�� = tan−1��′��� (5.75)

Thus, Equation 5.73 is true only if the gradient direction at a point in the image matches the
rotated gradient direction at a point in the (rotated) model, that is

�′
i = �̂′��−� (5.76)

222 Feature Extraction and Image Processing

where �̂′
i is the angle at the point �i. Note that according to this equation, gradient direction is

independent of scale (in theory at least) and it changes in the same ratio as rotation. We can
constrain Equation 5.74 to consider only the points ��� for which

�′
i − �̂′��+� = 0 (5.77)

That is, a point spread function for a given edge point �i is obtained by selecting a subset of
points in ��� such that the edge direction at the image point rotated by � equals the gradient
direction at the model point. For each point �i and selected point in ��� the point spread
function is defined by the HT mapping in Equation 5.74.

5.5.2 Polar definition

Equation 5.74 defines the mapping of the HT in Cartesian form. That is, it defines the votes in
the parameter space as a pair of coordinates �x� y�. There is an alternative definition in polar
form. The polar implementation is more common than the Cartesian form (Hecker and Bolle,
1994; Sonka et al., 1994). The advantage of the polar form is that it is easy to implement since
changes in rotation and scale correspond to addition in the angle-magnitude representation.
However, ensuring that the polar vector has the correct direction incurs more complexity.

Equation 5.74 can be written in a form that combines rotation and scale as

b = ���−������ (5.78)

where �T����� =
�x������y������ and where the combined rotation and scale is

�x����� = ��x�� cos���−y�� sin����

�y����� = ��x�� sin���+y�� cos����
(5.79)

This combination of rotation and scale defines a vector, � �����, whose tangent angle and
magnitude are given by

tan��� = �y�����

�x�����
r =

√
�2

x�����+�2
y ����� (5.80)

The main idea here is that if we know the values for � and r, then we can gather evidence by
considering Equation 5.78 in polar form. That is,

b = ���− re� (5.81)

Thus, we should focus on computing values for � and r . After some algebraic manipulation,
we have:

� = ���+� r = ���� (5.82)

where

��� = tan−1

(
y��

x��

)
��� =√

x2��+y2�� (5.83)

In this definition, we must include the constraint defined in Equation 5.77. That is, we gather
evidence only when the gradient direction is the same. Notice that the square root in the definition
of the magnitude in Equation 5.83 can have positive and negative values. The sign must be
selected in a way that the vector has the correct direction.

Feature extraction by shape matching 223

5.5.3 The GHT technique

Equations 5.74 and 5.81 define an HT mapping function for arbitrary shapes. The geometry
of these equations is shown in Figure 5.24. Given an image point �i we have to find a
displacement vector � �����. When the vector is placed at �i, its end is at the point b. In the
GHT jargon, this point called the reference point. The vector � ����� can be easily obtained
as �R���� �� or alternatively as re�. However, to evaluate these equations, we need to
know the point ���. This is the crucial step in the evidence gathering process. Notice the
remarkable similarity between Figures 5.20(a), 5.22(a) and 5.24(a). This is not a coincidence,
but Equation 5.60 is a particular case of Equation 5.73.

(a) Displacement vector (b) R-table

α γ (λ , ρ)

Target shape

φi

ωi

Edge vector

b

r

Reference point

φ′i

v

0

... ...

......

Δφ
2Δ /φ

γ = (r, α)

(r 0, α 0), (r 1, α 1), (r 2, α 2)

Figure 5.24 Geometry of the GHT

The process of determining ��� centres on solving Equation 5.76. According to this equation,
since we know �̂′

i, then we need to find the point ��� whose gradient direction is �̂′
i +� = 0.

Then we must use ��� to obtain the displacement vector � �����. The GHT precomputes the
solution of this problem and stores it an array called the R-table. The R-table stores for each
value of �̂′

i the vector � ����� for � = 1 and � = 1. In polar form, the vectors are stored as a
magnitude direction pair and in Cartesian form as a coordinate pair.

The possible range for �̂′
i is between −�/2 and �/2 radians. This range is split into N

equispaced slots, or bins. These slots become rows of data in the R-table. The edge direction at
each border point determines the appropriate row in the R-table. The length, r, and direction,
�, from the reference point are entered into a new column element, at that row, for each border
point in the shape. In this manner, the N rows of the R-table have elements related to the border
information; elements for which there is no information contain null vectors. The length of each
row is given by the number of edge points that have the edge direction corresponding to that
row; the total number of elements in the R-table equals the number of edge points above a
chosen threshold. The structure of the R-table for N edge direction bins and m template border
points is illustrated in Figure 5.23 (b).

The process of building the R-table is illustrated in Code 5.10. In this code, we implement
the Cartesian definition given in Equation 5.74. According to this equation the displacement
vector is given by

��1� 0� = ���−b (5.84)

224 Feature Extraction and Image Processing

%R-Table

function T=RTable(entries,inputimage)

%image size
[rows,columns]=size(inputimage);

%edges
[M,Ang]=Edges(inputimage);
M=MaxSupr(M,Ang);

%compute reference point
xr=0; yr=0; p=0;
for x=1:columns
 for y=1:rows
 if(M(y,x)~=0)

 xr=xr+x;
 yr=yr+y;
 p=p+1;
 end
 end
end
xr=round(xr/p);
yr=round(yr/p);

%accumulator
D=pi/entries;

s=0; % number of entries in the table
t=[];
F=zeros(entries,1); % number of entries in the row

% for each edge point
for x=1:columns

for y=1:rows
if(M(y,x)~=0)

 phi=Ang(y,x);
i=round((phi+(pi/2))/D);

 if(i==0) i=1; end;

 V=F(i)+1;

 if(V>s)
 s=s+1;

T(:,:,s)=zeros(entries,2);
 end;

 T(i,1,V)=x-xr;
 T(i,2,V)=y-yr;
 F(i)=F(I)+1;

 end %if
 end % y
end% x

Code 5.10 Implementation of the construction of the R-table

Feature extraction by shape matching 225

The matrix T stores the coordinates of � (1, 0). This matrix is expanded to accommodate all of
the computed entries.

Code 5.11 shows the implementation of the gathering process of the GHT. In this case we
use the Cartesian definition in Equation 5.74. The coordinates of points given by evaluation of
all R-table points for the particular row indexed by the gradient magnitude are used to increment
cells in the accumulator array. The maximum number of votes occurs at the location of the
original reference point. After all edge points have been inspected, the location of the shape is
given by the maximum of an accumulator array.

%Generalized Hough Transform

function GHT(inputimage,RTable)

%image size
[rows,columns]=size(inputimage);

%table size
[rowsT,h,columnsT]=size(RTable);
D=pi/rowsT;

%edges
[M,Ang]=Edges(inputimage);
M=MaxSupr(M,Ang);

%accumulator
acc=zeros(rows,columns);

%for each edge point
for x=1:columns
 for y=1:rows
 if(M(y,x)~=0)

 phi=Ang(y,x);
i=round((phi+(pi/2))/D);

 if(i==0) i=1; end;

 for j=1:columnsT
 if(RTable(i,1,j)==0 & RTable(i,2,j)==0)
 j=columnsT; %no more entries

else
a0=x-RTable(i,1,j); b0=y-RTable(i,2,j);
if(a0>0 & a0<columns & b0>0 & b0<rows)

acc(b0,a0)=acc(b0,a0)+1;
end

end
end

end %if
 end % y
end% x

Code 5.11 Implementation of the GHT

226 Feature Extraction and Image Processing

Note that if we want to try other values for rotation and scale, then it is necessary to compute
a table � ����� for all potential values. However, this can be avoided by considering that � �����
can be computed from ��1� 0�. That is, if we want to accumulate evidence for � �����, then we
use the entry indexed by �̂′

i +� and we rotate and scale the vector ��1� 0�. That is,

�x����� = ���x�1� 0� cos���−�y�1� 0� sin����

�y����� = ���x�1� 0� sin���+�y�1� 0� cos����
(5.85)

In the case of the polar form, the angle and magnitude need to be defined according to
Equation 5.82.

The application of the GHT to detect an arbitrary shape with unknown translation is illustrated
in Figure 5.25. We constructed an R-table from the template shown in Figure 5.2(a). The table
contains 30 rows. The accumulator in Figure 5.25(c) was obtained by applying the GHT to the
image in Figure 5.25(b). Since the table was obtained from a shape with the same scale and
rotation as the primitive in the image, the GHT produces an accumulator with a clear peak at
the centre of mass of the shape.

(a) Model (b) Image (c) Accumulator space

Figure 5.25 Example of the GHT

Although the example in Figure 5.25 shows that the GHT is an effective method for shape
extraction, there are several inherent difficulties in its formulation (Grimson and Huttenglocher,
1990; Aguado et al., 2000b). The most evident problem is that the table does not provide
an accurate representation when objects are scaled and translated. This is because the table
implicitly assumes that the curve is represented in discrete form. Thus, the GHT maps a discrete
form into a discrete parameter space. In addition, the transformation of scale and rotation can
induce other discretization errors. This is because when discrete images are mapped to be larger,
or when they are rotated, loci which are unbroken sets of points rarely map to unbroken sets in
the new image. Another important problem is the excessive computations required by the 4D
parameter space. This makes the technique impractical. In addition, the GHT is clearly dependent
on the accuracy of directional information. By these factors, the results provided by the GHT
can become less reliable. A solution is to use of an analytic form instead of a table (Aguado
et al., 1998). This avoids discretization errors and makes the technique more reliable. This
also allows the extension to affine or other transformations. However, this technique requires
solving for the point ��� in an analytic way, increasing the computational load. A solution is

Feature extraction by shape matching 227

to reduce the number of points by considering characteristics points defined as points of high
curvature. However, this still requires the use of a 4D accumulator. An alternative to reduce this
computational load is to include the concept of invariance in the GHT mapping.

5.5.4 Invariant GHT

The problem with the GHT (and other extensions of the HT) is that they are very general.
That is, the HT gathers evidence for a single point in the image. However, a point on its own
provides little information. Thus, it is necessary to consider a large parameter space to cover all
the potential shapes defined by a given image point. The GHT improves evidence gathering by
considering a point and its gradient direction. However, since gradient direction changes with
rotation, the evidence gathering is improved in terms of noise handling, but little is done about
computational complexity.

To reduce the computational complexity of the GHT, we can consider replacing the gradient
direction by another feature; that is, by a feature that is not affected by rotation. Let us explain
this idea in more detail. The main aim of the constraint in Equation 5.77 is to include gradient
direction to reduce the number of votes in the accumulator by identifying a point ���. Once
this point is known, we obtain the displacement vector � �����. However, for each value of
rotation, we have a different point in ���. Now let us replace that constraint in Equation 5.76
by a constraint of the form

Q��i� = Q����� (5.86)

The function Q is said to be invariant and it computes a feature at the point. This feature can
be, for example, the colour of the point, or any other property that does not change in the model
and in the image. By considering Equation 5.86, Equation 5.77 is redefined as

Q��i� = Q����� = 0 (5.87)

That is, instead of searching for a point with the same gradient direction, we will search for the
point with the same invariant feature. The advantage is that this feature will not change with
rotation or scale, so we only require a 2D space to locate the shape. The definition of Q depends
on the application and the type of transformation. The most general invariant properties can be
obtained by considering geometric definitions. In the case of rotation and scale changes (i.e. sim-
ilarity transformations) the fundamental invariant property is given by the concept of angle.

An angle is defined by three points and its value remains unchanged when it is rotated and
scaled. Thus, if we associate to each edge point �i a set of other two points

{
�j��T

}
, we can

compute a geometric feature that is invariant to similarity transformations. That is,

Q��i� = XjYi −XiYj

XiXj +YiYj

� (5.88)

where Xk = �k −�T � Yk = �k −�T . Equation 5.88 defines the tangent of the angle at the point
�T . In general, we can define the points

{
�j��T

}
in different ways. An alternative geometric

arrangement is shown in Figure 5.26(a). Given the points �i and a fixed angle �, then we
determine the point �j such that the angle between the tangent line at �i and the line that joins
the points is �. The third point is defined by the intersection of the tangent lines at �i and �j .
The tangent of the angle � is defined by Equation 5.88. This can be expressed in terms of the
points and its gradient directions as

Q��i� = �′
i −�′

j

1+�′
i�

′
j

(5.89)

228 Feature Extraction and Image Processing

(a) Displacement vector (b) Angle definition (c) Invariant R-table

ωi

(x0, y0)

0

φ ′′(θ)

v

φ ′(θ)

v

ωi

β
β k

k

k 0,k 1,k 2...

ωj

α

ωT

φ ′(θi)

v

φ ′(θj)

v

Δφ
2Δ/φ
... ...

...
...

Figure 5.26 Geometry of the invariant GHT

We can replace the gradient angle in the R-table, by the angle �. The form of the new invariant
table is shown in Figure 5.26(c). Since the angle � does not change with rotation or change of
scale, then we do not need to change the index for each potential rotation and scale. However,
the displacement vectors changes according to rotation and scale (i.e. Equation 5.85) that. Thus,
if we want an invariant formulation, we must also change the definition of the position vector.

To locate the point b we can generalize the ideas presented in Figures 5.20(a) and 5.22(a).
Figure 5.26(b) shows this generalization. As in the case of the circle and ellipse, we can locate
the shape by considering a line of votes that passes through the point b. This line is determined
by the value of �′′

i . We will do two things. First, we will find an invariant definition of this
value. Secondly, we will include it on the GHT table.

We can develop Equation 5.73 as
[
x0

y0

]
=
[
�xi

�yi

]
+�

[
cos��� sin���

− sin��� cos���

][
x��
y��

]
(5.90)

Thus, Equation 5.60 generalizes to

�′′
i = �yi −y0

�xi −x0

=
− sin��� cos����y��

cos��� sin����x��
(5.91)

By some algebraic manipulation, we have:

�′′
i = tan�� −�� (5.92)

where

� = y��

x��
(5.93)

To define �′′
i , we can consider the tangent angle at the point �i. By considering the derivative

of Equation 5.72, we have:

�′
i =
− sin��� cos����y′��

cos��� sin����x′��
(5.94)

Thus,

�′
i = tan��−�� (5.95)

Feature extraction by shape matching 229

where

� = y′��

x′��
(5.96)

By considering Equations 5.92 and 5.95, we define

�̂′′
i = k+ �̂′

i (5.97)

The important point in this definition is that the value of k is invariant to rotation. Thus, if we use
this value in combination with the tangent at a point we can have an invariant characterization.
To see that k is invariant, we solve it for Equation 5.97. That is,

k = �̂′
i − �̂′′

i (5.98)

Thus,

k = � −�− ��−�� (5.99)

That is,

k = � −� (5.100)

This is independent of rotation. The definition of k has a simple geometric interpretation
illustrated in Figure 5.26(b).

To obtain an invariant GHT, it is necessary to know for each point �i, the corresponding
point �� and then compute the value of �′′

i . Then evidence can be gathered by the line in
Equation 5.91. That is,

y0 = �′′
i �x0 −�xi�+�yi (5.101)

To compute �′′
i we can obtain k and then use Equation 5.100. In the standard tabular form the

value of k can be precomputed and stored as function of the angle �.
Code 5.12 illustrates the implementation to obtain the invariant R-table. This code is based

on Code 5.10. The value of � is set to �/4 and each element of the table stores a single value
computed according to Equation 5.98. The more cumbersome part of the code is to search for
the point �j . We search in two directions from �i and we stop once an edge point has been
located. This search is performed by tracing a line. The trace is dependent on the slope. When
the slope is between −1 and +1 we determine a value of y for each value of x, otherwise we
determine a value of x for each value of y.

Code 5.13 illustrates the evidence-gathering process according to Equation 5.101. This code
is based in the implementation presented in Code 5.11. We use the value of � defined in
Equation 5.89 to index the table passed as parameter to the function GHTInv. The data k
recovered from the table is used to compute the slope of the angle defined in Equation 5.97.
This is the slope of the line of votes traced in the accumulators.

Figure 5.27 shows the accumulator obtained by the implementation of Code 5.13.
Figure 5.27(a) shows the template used in this example. This template was used to construct
the R-Table in Code 5.12. The R-table was used to accumulate evidence when searching for
the piece of the puzzle in the image in Figure 5.27(b). Figure 5.27(c) shows the result of the
evidence-gathering process. We can observe a peak in the location of the object. However, this
accumulator contains significant noise. The noise is produced since rotation and scale change the
value of the computed gradient. Thus, the line of votes is only approximated. Another problem

230 Feature Extraction and Image Processing

%Invariant R-Table

function T=RTableInv(entries,inputimage)

%image size
[rows,columns]=size(inputimage);

%edges
[M,Ang]=Edges(inputimage);
M=MaxSupr(M,Ang);

alfa=pi/4;
D=pi/entries;
s=0; %number of entries in the table
t=0;
F=zeros(entries,1); %number of entries in the row

 %compute reference point
xr=0; yr=0; p=0;
for x=1:columns
 for y=1:rows

 if(M(y,x)~=0)
xr=xr+x;
yr=yr+y;
p=p+1;

end
 end
end
xr=round(xr/p);
yr=round(yr/p);

%for each edge point
for x=1:columns
 for y=1:rows

if(M(y,x)~=0)
%search for the second point
x1=-1; y1=-1;
phi=Ang(y,x);
m=tan(phi-alfa);

 if(m>-1 & m<1)
for i=3:columns

c=x+i;
j=round(m*(c-x)+y);
if(j>0 & j<rows & c>0 & c<columns & M(j,c)~=0)

x1=c ; y1=j;
i= columns;

end

if(j>0 & j<rows & c>0 & c<columns & M(j,c)~=0)

c=x-i;
j=round(m*(c-x)+y);

i=columns;
end

end

x1=i ; y1=j;

Feature extraction by shape matching 231

else
for j=3:rows
c=y+j;
i=round(x+(c-y)/m);
if(c>0 & c<rows & i>0 & i< columns & M(c,i)~=0)

x1=i ; y1=c;
i=rows;

end
c=y-j;
i=round(x+(c-y)/m);
if(c>0 & c<rows & i>0 & i< columns & M(c,i)~=0)

x1=i ; y1=c;
i= rows;

end
end

end

if(x1~=-1)
%compute beta
phi=tan(Ang(y,x));
phj= tan(Ang(y1,x1));
if((1+phi*phj)~=0)

beta=atan((phi-phj)/(1+phi*phj));
else

beta=1.57;
end

%compute k
if((x-xr)~=0)

ph=atan((y-yr)/(x-xr));
else

ph=1.57;
end
k=ph-Ang(y,x);

%insert in the table
i=round((beta+(pi/2))/D);
if(i==0) i=1; end;

V=F(i)+1;

if(V>s)
s=s+1;
T(:,s)=zeros(entries,1);

end;

T(i,V)=k;
F(i)=F(i)+1;

end

end %if
end % y

end % x

Code 5.12 Construction of the invariant R-table

232 Feature Extraction and Image Processing

%Invariant Generalized Hough Transform

function GHTInv(inputimage,RTable)

%image size
[rows,columns]=size(inputimage);

%table size
[rowsT,h,columnsT]=size(RTable);
D=pi/rowsT;

%edges
[M,Ang]=Edges(inputimage);
M=MaxSupr(M,Ang);

alfa=pi/4;

%accumulator
acc=zeros(rows,columns);

% for each edge point
for x=1:columns
 for y=1:rows

if(M(y,x)~=0)
% search for the second point
x1=-1; y1=-1;
phi=Ang(y,x);
m=tan(phi-alfa);

if(m>-1 & m<1)
for i=3:columns
c=x+i;
j=round(m*(c-x)+y);
if(j>0 & j<rows & c>0 & c<columns & M(j,c)~=0)

x1=c ;y1=j;
i= columns;

end
c=x-i;
j=round(m*(c-x)+y);
if(j>0 & j<rows & c>0 & c<columns & M(j,c)~=0)

x1=c ;y1=j;
i=columns;

end
end

else
for j=3:rows
c=y+j;
i=round(x+(c-y)/m);
if(c>0 & c<rows & i>0 & i< columns & M(c,i)~=0)

x1=i ;y1=c;
i=rows;

end

Feature extraction by shape matching 233

c=y–j;
i=round(x+(c-y)/m);
if(c>0 & c<rows & i>0 & i< columns & M(c,i)~=0)

x1=i ;y1=c;
i=rows;

end
end

end

if(x1~=-1)
%compute beta

phi=tan(Ang(y,x));
phj=tan(Ang(y1,x1));
if((1+phi*phj)~=0)

beta=atan((phi-phj)/(1+phi*phj));
else

beta=1.57;
end

i=round((beta+(pi/2))/D);
if(i==0) i=1; end;

%search for k
for j=1:columnsT

if(RTable(i,j)==0)
j=columnsT; % no more entries

else
k=RTable(i,j);
%lines of votes
m=tan(k+Ang(y,x));

if(m>-1 & m<1)
for x0=1:columns

y0=round(y+m*(x0-x));
if(y0>0 & y0<rows)

acc(y0,x0)=acc(y0,x0)+1;
end

end
end

end
end

end
end

end %if
end % y

end % x

end
else

for y0=1:rows
x0= round(x+(y0-y)/m);
if(x0>0 & x0<columns)

acc(y0,x0)=acc(y0,x0)+1;

Code 5.13 Implementation of the invariant GHT

234 Feature Extraction and Image Processing

(a) Edge template (b) Image (c) Accumulator

Figure 5.27 Applying the invariant GHT

is that pairs of points �i and �j might not be found in an image, thus the technique is more
sensitive to occlusion and noise than the GHT.

5.6 Other extensions to the Hough transform

The motivation for extending the HT is clear: keep the performance, but improve the speed.
There are other approaches to reduce the computational load of the HT. These approaches aim
to improve speed and reduce memory, focusing on smaller regions of the accumulator space.
These approaches have included the fast HT (Li and Lavin, 1986), which uses successively
splits the accumulator space into quadrants and continues to study the quadrant with most
evidence; the adaptive HT (Illingworth and Kittler, 1987), which uses a fixed accumulator size
to focus iteratively on potential maxima in the accumulator space; the randomized HT (Xu et al.,
1990) and the probabilistic HT (Kälviäinen et al., 1995), which use a random search of the
accumulator space; and other pyramidal techniques. One main problem with techniques that do
not search the full accumulator space, but a reduced version to save speed, is that the wrong shape
can be extracted (Princen et al., 1992a), a problem known as phantom shape location. These
approaches can also be used (with some variation) to improve speed of performance in template
matching. There have been many approaches aimed to improve performance of the HT and
the GHT.

There has been a comparative study on the GHT (including efficiency) (Kassim et al., 1999)
and alternative approaches to the GHT include two fuzzy HTs: Philip (1991) and Sonka et al.
(1994) include uncertainty of the perimeter points within a GHT structure, and Han et al. (1994)
approximately fits a shape but requires application-specific specification of a fuzzy membership
function. There have been two major reviews of the state of research in the HT (Illingworth
and Kittler, 1988; Leavers, 1993), but they are rather dated now, and a textbook (Leavers,
1992) which cover many of these topics. The analytic approaches to improving the HT’s
performance use mathematical analysis to reduce size, and more importantly dimensionality, of
the accumulator space. This concurrently improves speed. A review of HT-based techniques for
circle extraction (Yuen et al., 1990) covered some of the most popular techniques available at
the time.

As techniques move to analysing moving objects, there is the velocity Hough transform for
detecting moving shapes (Nash et al., 1997). As in any HT, in the velocity HT a moving shape

Feature extraction by shape matching 235

needs a parameterization which includes the motion. For a circle moving with (linear) velocity
we have points which are a function of time t as

x�t� = cx + vxt + r cos

y�t� = cy + vyt + r sin
(5.102)

where cx� cy are the coordinates of the circle’s centre, vx� vy describe the velocity along the x-
and the y-axes, respectively, r is the circle’s radius, and allows us to draw the locus of the
circle at time t. We then construct a 5D accumulator array in terms of the unknown parameters
cx� cy� vx� vy� r and vote for each image of the sequence (after edge detection and thresholding) in
this accumulator array. By grouping the information across a sequence the technique was shown
to be more reliable in occlusion than extracting a single circle for each frame and determining the
track as the locus of centres of the extracted circles. This was extended to a technique for finding
moving lines, as in the motion of the thigh in a model-based approach to recognizing people
by the way they walk (gait biometrics) (Cunado et al., 2003). This is illustrated in Figure 5.28,
which shows a walking subject on whom is superimposed a line showing the extracted position
and orientation of the (moving) human thigh. It was also used in a generalized HT for moving
shapes (Grant et al., 2002), which imposed a motion trajectory on the GHT extraction, and in a
GHT which includes deforming moving shapes (Mowbray and Nixon, 2004).

(a) Image 5 (c) Image 7(b) Image 6

Figure 5.28 Detecting moving lines

5.7 Further reading

The majority of further reading in finding shapes concerns papers, many of which have already
been referenced. An excellent survey of the techniques used for feature extraction (including
template matching, deformable templates, etc.) can be found in Trier et al. (1996). Few of
the textbooks devote much space to shape extraction, sometimes dismissing it in a couple of
pages. This contrasts with the volume of research there has been in this area, and the HT finds
increasing application as computational power continues to increase (and storage cost reduces).
One text alone is dedicated to shape analysis (van Otterloo, 1991) and contains many discussions
on symmetry. For implementation, Parker (1994) includes C code for template matching and for
the HT for lines, but no more (the more recent version, Parker, 1996, omits it entirely). Other
techniques use a similar evidence-gathering process to the HT. These techniques are referred
to as geometric hashing and clustering techniques (Stockman, 1987; Lamdan et al., 1988).

236 Feature Extraction and Image Processing

In contrast to the HT, these techniques do not define an analytic mapping, but they gather
evidence by grouping a set of features computed from the image and from the model.

5.8 References

Aguado, A. S., Primitive Extraction via Gathering Evidence of Global Parameterised Models,
PhD Thesis, University of Southampton, 1996

Aguado, A. S., Montiel, E. and Nixon, M. S., On Using Directional Information for Parameter
Space Decomposition in Ellipse Detection, Pattern Recog. 28(3), pp. 369–381, 1996

Aguado, A. S., Nixon, M. S. and Montiel, M. E., Parameterizing Arbitrary Shapes via Fourier
Descriptors for Evidence-Gathering Extraction, Comput. Vision Image Understand., 69(2),
pp. 202–221, 1998

Aguado, A. S., Montiel, E. and Nixon, M. S., On the Intimate Relationship Between the Principle
of Duality and the Hough Transform, Proc. R. Soc. A, 456, pp. 503–526, 2000

Aguado, A. S., Montiel, E. and Nixon, M. S., Bias Error Analysis of the Generalized Hough
Transform, J. Math. Imaging Vision, 12, pp. 25–42, 2000

Altman, J. and Reitbock, H. J. P., A Fast Correlation Method for Scale- and Translation-Invariant
Pattern Recognition, IEEE Trans. PAMI, 6(1), pp. 46–57

Ballard, D. H., Generalizing the Hough Transform to Find Arbitrary Shapes, CVGIP, 13,
pp. 111–122, 1981

Bracewell, R. N., The Fourier Transform and its Applications, 2nd edn, McGraw-Hill Book
Co., Singapore, 1986

Bresenham, J. E., Algorithm for Computer Control of a Digital Plotter, IBM Syst. J., 4(1),
pp. 25–30, 1965

Bresenham, J. E., A Linear Algorithm for Incremental Digital Display of Circular Arcs, Communs
ACM, 20(2), pp. 750–752, 1977

Brown, C. M., Inherent Bias and Noise in the Hough Transform, IEEE Trans. PAMI, 5,
pp. 493–505, 1983

Casasent, D. and Psaltis, D., New Optical Transforms for Pattern Recognition, Proc. IEEE,
65(1), pp. 77–83, 1977

Cunado, D., Nixon, M. S. and Carter, J. N., Automatic Extraction and Description of Human Gait
Models for Recognition Purposes, Comput. Vision Image Understand., 90(1), pp. 1–41, 2003

Deans, S. R., Hough Transform from the Radon Transform, IEEE Trans. PAMI, 13, pp.
185–188, 1981

Duda, R. O. and Hart, P. E., Use of the Hough Transform to Detect Lines and Curves in Pictures,
Communs. ACM, 15, pp. 11–15, 1972

Gerig, G. and Klein, F., Fast Contour Identification Through Efficient Hough Transform and
Simplified Interpretation Strategy, Proc. 8th Int. Conf. Pattern Recog, pp. 498–500, 1986

Grant, M. G., Nixon., M. S. and Lewis, P. H., Extracting Moving Shapes by Evidence Gathering,
Pattern Recog., 35, pp. 1099–1114, 2002

Grimson, W. E. L. and Huttenglocher, D. P., On the Sensitivity of the Hough Transform for
Object Recognition, IEEE Trans. PAMI, 12, pp. 255–275, 1990

Han, J. H., Koczy, L. T. and Poston, T., Fuzzy Hough Transform, Pattern Recog. Lett., 15,
pp. 649–659, 1994

Hecker, Y. C. and Bolle, R. M., On Geometric Hashing and the Generalized Hough Transform,
IEEE Trans. SMC, 24, pp. 1328–1338, 1994

Feature extraction by shape matching 237

Hough, P. V. C., Method and Means for Recognizing Complex Patterns, US Patent
3969654, 1962

Illingworth, J. and Kittler, J., The Adaptive Hough Transform, IEEE Trans. PAMI, 9(5),
pp. 690–697, 1987

Illingworth, J. and Kittler, J., A Survey of the Hough Transform, CVGIP, 48, pp. 87–116, 1988
Kälviäinen, H., Hirvonen, P., Xu, L. and Oja, E., Probabilistic and Non-Probabilistic Hough

Transforms: Overview and Comparisons, Image Vision Comput., 13(4), May, 239–252, 1995
Kassim, A. A., Tan, T. and Tan K. H., A Comparative Study of Efficient Generalized Hough

Transform Techniques, Image Vision Comput., 17(10), pp. 737–748, 1999
Kimme, C., Ballard, D. and Sklansky, J., Finding Circles by an Array of Accumulators, Communs

ACM, 18(2), pp. 120–1222, 1975
Kiryati, N. and Bruckstein, A. M., Antialiasing the Hough Transform, CVGIP: Graphical Models

Image Process., 53, pp. 213–222, 1991
Lamdan, Y., Schawatz, J. and Wolfon, H., Object Recognition by Affine Invariant Matching,

Proc. IEEE Conf. Comput. Vision Pattern Recog., pp. 335–344, 1988
Leavers, V., Shape Detection in Computer Vision using the Hough Transform, Springer,

London, 1992
Leavers, V., Which Hough Transform? CVGIP: Image Understand., 58, pp. 250–264, 1993
Li, H. and Lavin, M. A., Fast Hough Transform: A Hierarchical Approach, CVGIP, 36,

pp. 139–161, 1986
Merlin, P. M. and Farber, D. J., A Parallel Mechanism for Detecting Curves in Pictures, IEEE

Trans. Comput., 24, pp. 96–98, 1975
Mowbray, S. D. and Nixon, M. S., Extraction and Recognition of Periodically Deforming Objects

by Continuous, Spatio-temporal Shape Description, Proc. CVPR 2004, 2, pp. 895–901, 2004
Nash, J. M., Carter, J. N. and Nixon, M. S., Dynamic Feature Extraction via the Velocity Hough

Transform, Pattern Recog. Lett., 18(10), pp. 1035–1047, 1997
O’Gorman, F. and Clowes, M. B., Finding Picture Edges Through Collinearity of Feature Points,

IEEE Trans. Comput., 25(4), pp. 449–456, 1976
Parker, J. R., Practical Computer Vision Using C, Wiley & Sons, New York, 1994
Parker, J. R., Algorithms for Image Processing and Computer Vision, Wiley & Sons,

New York, 1996
Philip, K. P., Automatic Detection of Myocardial Contours in Cine Computed Tomographic

Images, PhD Thesis, University of Iowa, 1991
Princen, J., Yuen, H. K., Illingworth, J. and Kittler, J., Properties of the Adaptive Hough

Transform, Proc. 6th Scandinavian Conf. Image Analysis, Oulu, Finland, June 1992a
Princen, J., Illingworth, J. and Kittler, J., A Formal Definition of the Hough Transform: Properties

and Relationships, J. Math. Imaging Vision, 1, pp. 153–168, 1992b
Rosenfeld, A., Picture Processing by Computer, Academic Press, London, 1969
Sklansky, J., On the Hough Technique for Curve Detection, IEEE Trans. Comput., 27,

pp. 923–926, 1978
Sonka, M., Hllavac, V. and Boyle, R, Image Processing, Analysis and Computer Vision,

Chapman Hall, London, 1994
Stockman, G. C. and Agrawala, A. K., Equivalence of Hough Curve Detection to Template

Matching, Communs ACM, 20, pp. 820–822, 1977
Stockman, G., Object Recognition and Localization via Pose Clustering, CVGIP, 40,

pp. 361–387, 1987
Traver V. J. and Pla, F., The Log-Polar Image Representation in Pattern Recognition Tasks,

Lecture Notes Comput. Sci., 2652, pp. 1032–1040, 2003

238 Feature Extraction and Image Processing

Trier, O. D., Jain, A. K. and Taxt, T., Feature Extraction Methods for Character Recognition –
A Survey, Pattern Recog., 29(4), pp. 641–662, 1996

van Otterloo, P. J., A Contour-Oriented Approach to Shape Analysis, Prentice Hall International
(UK), Hemel Hempstead, 1991

Yuen, H. K., Princen, J., Illingworth, J. and Kittler, J., Comparative Study of Hough Transform
Methods for Circle Finding, Image Vision Comput., 8(1), pp 71–77, 1990

Xu, L., Oja, E. and Kultanen, P., A New Curve Detection Method: Randomized Hough Trans-
form, Pattern Recog. Lett., 11, pp. 331–338, 1990

Zokai, S. and Wolberg, G., Image Registration using Log-Polar Mappings for Recovery
of Large-Scale Similarity and Projective Transformations, IEEE Trans. Image Process.,
14, pp. 1422–1434, 2005

Feature extraction by shape matching 239

This page intentionally left blank

. 6 .

Flexible shape extraction
(snakes and other

techniques)

6.1 Overview

The previous chapter covered finding shapes by matching. This implies knowledge of a model
(mathematical or template) of the target shape (feature). The shape is fixed in that it is flexible
only in terms of the parameters that define the shape, or the parameters that define a template’s
appearance. Sometimes, however, it is not possible to model a shape with sufficient accuracy,
or to provide a template of the target as needed for the generalized Hough transform (GHT). It
might be that the exact shape is unknown or that the perturbation of that shape is impossible to
parameterize. In this case, we seek techniques that can evolve to the target solution, or adapt
their result to the data. This implies the use of flexible shape formulations. This chapter presents
four techniques that can be used to find flexible shapes in images. These are summarized in
Table 6.1 and can be distinguished by the matching functional used to indicate the extent of

Table 6.1 Overview of Chapter 6

Main topic Sub topics Main points

Deformable
templates

Template matching for deformable shapes.
Defining a way to analyse the best match.

Energy maximization, computational
considerations, optimization.

Active contours
and snakes

Finding shapes by evolving contours.
Discrete and continuous formulations.
Operational considerations and new active
contour approaches.

Energy minimization for curve
evolution. Greedy algorithm. Kass
snake. Parameterization; initialization
and performance. Gradient vector
field and level set approaches.

Shape
skeletonization

Notions of distance, skeletons and symmetry
and its measurement. Application of
symmetry detection by evidence gathering.
Performance factors.

Distance transform and shape
skeleton. Discrete symmetry operator.
Accumulating evidence of
symmetrical point arrangements.
Performance: speed and noise.

Active shape
models

Expressing shape variation by statistics.
Capturing shape variation within feature
extraction.

Active shape model. Active
appearance model. Principal
components analysis.

241

match between image data and a shape. If the shape is flexible or deformable, so as to match
the image data, we have a deformable template. This is where we shall start. Later, we shall
move to techniques that are called snakes, because of their movement. We shall explain two
different implementations of the snake model. The first one is based on discrete minimization
and the second one on finite element analysis. We shall also look at determining a shape’s
skeleton, by distance analysis and by the symmetry of their appearance. This technique finds
any symmetric shape by gathering evidence by considering features between pairs of points.
Finally, we shall consider approaches that use of the statistics of a shape’s possible appearance
to control selection of the final shape, called active shape models.

6.2 Deformable templates

One of the earlier approaches to deformable template analysis (Yuille, 1991) aimed to find facial
features for purposes of recognition. The approach considered an eye to be comprised of an
iris that sits within the sclera and which can be modelled as a combination of a circle that lies
within a parabola. Clearly, the circle and a version of the parabola can be extracted by using
Hough transform techniques, but this cannot be achieved in combination. When we combine
the two shapes and allow them to change in size and orientation, while retaining their spatial
relationship (that the iris or circle should reside within the sclera or parabola), then we have a
deformable template.

The parabola is a shape described by a set of points �x� y� related by

y = a− a

b2
x2 (6.1)

where, as illustrated in Figure 6.1(a), a is the height of the parabola and b is its radius. As
such, the maximum height is a and the minimum height is zero. A similar equation describes
the lower parabola, it terms of b and c. The ‘centre’ of both parabolas is cp. The circle is as
defined earlier, with centre coordinates cc and radius r. We then seek values of the parameters
that give a best match of this template to the image data. Clearly, one match we would like
to make concerns matching the edge data to that of the template, as in the Hough transform.
The set of values for the parameters that give a template which matches the most edge points

(a) Eye template (b) Deformable template match
to an eye

cp
pe1 pe 2

a

cp1 p 2

rcc

bb

Figure 6.1 Finding an eye with a deformable template

242 Feature Extraction and Image Processing

(since edge points are found at the boundaries of features) could then be deemed to be the
best set of parameters describing the eye in an image. We then seek values of parameters that
maximize

{
cp� a� b� c� cc� r

}= max

(
∑

Ex�y

x�y∈circle�perimeter�parabolas�perimeter

)
(6.2)

This would prefer the larger shape to the smaller ones, so we could divide the contribution of
the circle and the parabolas by their perimeter to give an edge energy contribution Ee

Ee =

∑
Ex�y

x�y∈circle�perimeter

circle�perimeter
+

∑
Ex�y

x�y∈parabolas�perimeter

parabolas�perimeter
(6.3)

and we seek a combination of values for the parameters
{
cp� a� b� c� cc� r

}
which maximize this

energy. This, however, implies little knowledge of the structure of the eye. Since we know that
the sclera is white (usually) and the iris is darker than it, we could build this information into
the process. We can form an energy Ev functional for the circular region which averages the
brightness over the circle area as

Ev = −

∑
Px�y

x�y∈circle

circle�area
(6.4)

This is formed in the negative, since maximizing its value gives the best set of parameters.
Similarly, we can form an energy functional for the light regions where the eye is white
as Ep

Ep =

∑
Px�y

x�y∈parabolae−circle

parabolas− circle�area
(6.5)

where parabolas–circle implies points within the parabolas, but not within the circle. We can
then choose a set of parameters which maximize the combined energy functional formed by
adding each energy when weighted by some chosen factors as

E = ce ·Ee + cv ·Ev + cp ·Ep (6.6)

where ce� cv and cp are the weighting factors. In this way, we are choosing values for the
parameters which simultaneously maximize the chance that the edges of the circle and the
perimeter coincide with the image edges, that the inside of the circle is dark and that the insides
of the parabolas are light. The value chosen for each of the weighting factors controls the
influence of that factor on the eventual result.

The energy fields are shown in Figure 6.2 when computed over the entire image. The valley
image shows up regions with low image intensity and the peak image shows regions of high
image intensity, like the whites of the eyes. In its original formulation, this approach had five
energy terms and the extra two are associated with the points pe1 and pe2, either side of the iris
in Figure 6.1(a).

This is where the problem starts, as we now have 11 parameters (eight for the shapes and
three for the weighting coefficients). We could simply cycle through every possible value.
Given, say, 100 possible values for each parameter, we then have to search 1022 combina-
tions of parameters, which would be no problem given multithread computers with terrahertz

Flexible shape extraction (snakes and other techniques) 243

(a) Original image (b) Edge image (c) Valley image (d) Peak image

Figure 6.2 Energy fields over whole face image (Benn, 1999)

processing speed achieved via optical interconnect, but computers like that are not ready yet
(on our budgets at least). We can reduce the number of combinations by introducing constraints
on the relative size and position of the shapes, e.g. the circle should lie wholly within the
parabolas, but this will not reduce the number of combinations much. We can seek two alter-
natives: one is to use optimization techniques. The original approach (Yuille, 1991) favoured
the use of gradient descent techniques; currently, the genetic algorithm approach (Goldberg,
1988) seems to be most favoured and this has been shown to good effect for deformable
template eye extraction on a database of 1000 faces (Benn, 1999) (this is the source of the
images shown here). The alternative is to seek a different technique that uses fewer param-
eters. This is where we move to snakes, which are a much more popular approach. These
snakes evolve a set of points (a contour) to match the image data, rather than evolving
a shape.

6.3 Active contours (snakes)

6.3.1 Basics

Active contours or snakes (Kass et al., 1988) are a completely different approach to feature
extraction. An active contour is a set of points that aims to enclose a target feature, the feature
to be extracted. It is a bit like using a balloon to ‘find’ a shape: the balloon is placed outside
the shape, enclosing it. Then by taking air out of the balloon, making it smaller, the shape is
found when the balloon stops shrinking, when it fits the target shape. By this manner, active
contours arrange a set of points so as to describe a target feature, by enclosing it. Snakes are
quite recent compared with many computer vision techniques and their original formulation
was as an interactive extraction process, although they are now usually deployed for automatic
feature extraction.

An initial contour is placed outside the target feature, and is then evolved so as to enclose
it. The process is illustrated in Figure 6.3, where the target feature is the perimeter of the iris.
First, an initial contour is placed outside the iris (Figure 6.3a). The contour is then minimized
to find a new contour which shrinks so as to be closer to the iris (Figure 6.3b). After seven
iterations, the contour points can be seen to match the iris perimeter well (Figure 6.3d).

244 Feature Extraction and Image Processing

(a) Initial contour (b) After the first
iteration

(c) After four
iterations

(d) After seven
iterations

Figure 6.3 Using a snake to find an eye’s iris

Active contours are expressed as an energy minimization process. The target feature is a
minimum of a suitably formulated energy functional. This energy functional includes more than
just edge information: it includes properties that control the way in which the contour can stretch
and curve. In this way, a snake represents a compromise between its own properties (such as
its ability to bend and stretch) and image properties (such as the edge magnitude). Accordingly,
the energy functional is the addition of a function of the contour’s internal energy, its constraint
energy and the image energy; these are denoted Eint� Econ and Eimage, respectively. These are
functions of the set of points that make up a snake, v�s�, which is the set of x and y coordinates
of the points in the snake. The energy functional is the integral of these functions of the
snake, given s ∈ �0�1� is the normalized length around the snake. The energy functional Esnake

is then:

Esnake =
∫ 1

s=0
Eint�v�s��+Eimage�v�s��+Econ�v�s��ds (6.7)

In this equation, the internal energy, Eint, controls the natural behaviour of the snake and hence
the arrangement of the snake points; the image energy, Eimage, attracts the snake to chosen
low-level features (such as edge points); and the constraint energy, Econ, allows higher level
information to control the snake’s evolution. The aim of the snake is to evolve by minimizing
Equation 6.7. New snake contours are those with lower energy and are a better match to the
target feature (according to the values of Eint� Eimage and Econ) than the original set of points
from which the active contour has evolved. In this manner, we seek to choose a set of points
v�s� such that

dEsnake

dv�s�
= 0 (6.8)

This can select a maximum rather than a minimum, and a second order derivative can be used
to discriminate between a maximum and a minimum. However, this is not usually necessary as
a minimum is usually the only stable solution (on reaching a maximum, it would then be likely
to pass over the top to then minimize the energy). Before investigating how we can minimize
Equation 6.7, let us first consider the parameters that can control a snake’s behaviour.

The energy functionals are expressed in terms of functions of the snake, and of the image.
These functions contribute to the snake energy according to values chosen for respective

Flexible shape extraction (snakes and other techniques) 245

weighting coefficients. In this manner, the internal image energy is defined to be a weighted
summation of first and second order derivatives around the contour.

Eint = ��s�

∣∣∣∣
dv�s�

ds

∣∣∣∣
2

+��s�

∣∣∣∣
d2v�s�

ds2

∣∣∣∣
2

(6.9)

The first order differential, dv�s�/ds, measures the energy due to stretching, which is the elastic
energy since high values of this differential imply a high rate of change in that region of the
contour. The second order differential, d2v�s�/ds2, measures the energy due to bending, the
curvature energy. The first order differential is weighted by ��s�, which controls the contribution
of the elastic energy due to point spacing; the second order differential is weighted by ��s�,
which controls the contribution of the curvature energy due to point variation. Choice of the
values of � and � controls the shape the snake aims to attain. Low values for � imply that
the points can change in spacing greatly, whereas higher values imply that the snake aims to
attain evenly spaced contour points. Low values for � imply that curvature is not minimized
and the contour can form corners in its perimeter, whereas high values predispose the snake to
smooth contours. These are the properties of the contour itself, which is just part of a snake’s
compromise between its own properties and measured features in an image.

The image energy attracts the snake to low-level features, such as brightness or edge data,
aiming to select those with least contribution. The original formulation suggested that lines,
edges and terminations could contribute to the energy function. Their energies are denoted
Eline� Eedge and Eterm, respectively, and are controlled by weighting coefficients wline� wedge and
wterm, respectively. The image energy is then:

Eimage = wlineEline +wedgeEedge +wtermEterm (6.10)

The line energy can be set to the image intensity at a particular point. If black has a lower
value than white, then the snake will be extracted to dark features. Altering the sign of wline

will attract the snake to brighter features. The edge energy can be that computed by application
of an edge detection operator, the magnitude, say, of the output of the Sobel edge detection
operator. The termination energy, Eterm as measured by Equation 4.57, can include the curvature
of level image contours [as opposed to the curvature of the snake, controlled by ��s�], but this
is rarely used. It is most common to use the edge energy, although the line energy can find
application.

6.3.2 The greedy algorithm for snakes

The implementation of a snake, to evolve a set of points to minimize Equation 6.7, can use finite
elements, or finite differences, which is complicated and follows later. It is easier to start with
the greedy algorithm (Williams and Shah, 1992) which implements the energy minimization
process as a purely discrete algorithm, illustrated in Figure 6.4. The process starts by specifying
an initial contour. Earlier, Figure 6.3(a) used a circle of 16 points along the perimeter of a circle.
Alternatively, these can be specified manually. The greedy algorithm then evolves the snake in
an iterative manner by local neighbourhood search around contour points to select new ones
which have lower snake energy. The process is called greedy by virtue of the way the search
propagates around the contour. At each iteration, all contour points are evolved and the process
is repeated for the first contour point. The index to snake points is computed modulo S (the
number of snake points).

246 Feature Extraction and Image Processing

More
snake

points?

Finish iteration

Define snake points and:
parameters, α, β and γ

Start with first snake point

Initialize minimum energy
and coordinates

Set new snake point
coordinates to new minimum

Determine coordinates of
neighbourhood point with

lowest energy

No

Yes

Figure 6.4 Operation of the greedy algorithm

For a set of snake points vs� ∀s ∈ 0� S−1, the energy functional minimized for each snake
point is:

Esnake�s� = Eint�vs�+Eimage�vs� (6.11)

This is expressed as

Esnake�s� = ��s�

∣∣∣∣
dvs

ds

∣∣∣∣
2

+��s�

∣∣∣∣
d2vs

ds2

∣∣∣∣
2

+	�s�Eedge (6.12)

where the first order and second order differentials are approximated for each point searched in
the local neighbourhood of the currently selected contour point. The weighting parameters, �� �
and 	, are all functions of the contour. Accordingly, each contour point has associated values
for �� � and 	. An implementation of the specification of an initial contour by a function point
is given in Code 6.1. In this implementation, the contour is stored as a matrix of vectors. Each
vector has five elements: two are the x and y coordinates of the contour point, the remaining
three parameters are the values of �� � and 	 for that contour point, set here to be 0.5, 0.5

Flexible shape extraction (snakes and other techniques) 247

and 1.0, respectively. The no contour points are arranged to be in a circle, radius rad and
centre (xc, yc). As such, a vector is returned for each snake point, points, where �points�0,
�points�1, �points�2, �points�3, �points�4 are the x coordinate, the y coordinate and
�� � and 	 for the particular snake point s
 xs� ys, �s� �s and 	s, respectively.

points(rad,no,xc,yc):= for s∈0..no–1

x xc+floor rad cos
s2

no
+0.5s ← ⋅

⋅ ⋅⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

π

y yc+floor rad sin
s 2

no
+0.5s ← ⋅

⋅ ⋅⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

π

αs←0.5

βs←0.5

γs←1

point

x

y

s

s

s

s

s

s

←

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

α
β
γ

point

Code 6.1 Specifying an initial contour

The first order differential is approximated as the modulus of the difference between the
average spacing of contour points (evaluated as the Euclidean distance between them), and the
Euclidean distance between the currently selected image point vs and the next contour point. By
selection of an appropriate value of ��s� for each contour point vs, this can control the spacing
between the contour points:

∣∣∣∣
dvs

ds

∣∣∣∣
2

=
∣∣∣∣∣
S−1∑
i=0

�vi −vi+1�
/
S−�vs −vs+1�

∣∣∣∣∣

=
∣∣∣∣∣
S−1∑
i=0

√
�xi −xi+1�

2 + �yi −yi+1�
2

/
S−

√
�xs −xs+1�

2 + �ys −ys+1�
2

∣∣∣∣∣ (6.13)

as evaluated from the x and the y coordinates of the adjacent snake point �xs+1� ys+1� and
the coordinates of the point currently inspected �xs� ys�. Clearly, the first order differential, as
evaluated from Equation 6.13, drops to zero when the contour is evenly spaced, as required. This
is implemented by the function Econt in Code 6.2, which uses a function dist to evaluate the
average spacing and a function dist2 to evaluate the Euclidean distance between the currently
searched point �vs� and the next contour point �vs+1�. The arguments to Econt are the x and

248 Feature Extraction and Image Processing

dist(s,contour):= s1←mod(s,rows(contour))

s2←mod(s + 1,rows(contour))

[(contours1)0 – (contours2)0]
2
 + [(contours1)1 – (contours2)1]

2

s2←mod(s + 1,rows(contour))

[(contours2)0 – x]2 + [(contours2)1 – y]2

dist2(x,y,s,contour):=

Econt(x,y,s,cont):=

D – dist2(x,y,s,cont)

D .
1

rows(cont)
dist(s1, cont)

rows(cont)-1

Σ
s1=0

←

Code 6.2 Evaluating the contour energy

y coordinates of the point currently being inspected, x and y, the index of the contour point
currently under consideration, s, and the contour itself, con.

The second order differential can be implemented as an estimate of the curvature between
the next and previous contour points, vs+1 and vs−1, respectively, and the point in the local
neighbourhood of the currently inspected snake point vs:∣∣∣∣

d2vs

ds2

∣∣∣∣
2

= ��vs+1 −2vs +vs−1��2

= �xs+1 −2xs +xs−1�
2 + �ys+1 −2ys +ys−1�

2 (6.14)

This is implemented by a function Ecur in Code 6.3, whose arguments again are the x and
y coordinates of the point currently being inspected, x and y, the index of the contour point
currently under consideration, s, and the contour itself, cont.

Ecur(x, y, s, con) := s1 mod(s–1+rows(con), rows(con))

s3 mod(s+1, rows(con))

[(con) –2 x+(con)] +[(con) –2 y+(con)]s1 0 s3 0
2

s1 1 s3 1
2

←

←

⋅ ⋅

Code 6.3 Evaluating the contour curvature

Eedge can be implemented as the magnitude of the Sobel edge operator at point x� y. This is
normalized to ensure that its value lies between zero and unity. This is also performed for the
elastic and curvature energies in the current region of interest. This is achieved by normalization
using Equation 3.2 arranged to provide an output ranging between 0 and 1. The edge image
could also be normalized within the current window of interest, but this makes it more possible
that the result is influenced by noise. Since the snake is arranged to be a minimization process,

Flexible shape extraction (snakes and other techniques) 249

the edge image is inverted so that the points with highest edge strength are given the lowest edge
value (0), whereas the areas where the image is constant are given a high value (1). Accordingly,
the snake will be attracted to the edge points with greatest magnitude. The normalization process
ensures that the contour energy and curvature and the edge strength are balanced forces and
eases appropriate selection of values for �� � and 	. This is achieved by a balancing function
(balance) that normalizes the contour and curvature energy within the window of interest.

The greedy algorithm then uses these energy functionals to minimize the composite energy
functional (Equation 6.12), given in the function grdy in Code 6.4. This gives a single iteration
in the evolution of a contour wherein all snake points are searched. The energy for each snake
point is first determined and is stored as the point with minimum energy. This ensures that if
any other point is found to have equally small energy, then the contour point will remain in the
same position. Then, the local 3×3 neighbourhood is searched to determine whether any other
point has a lower energy than the current contour point. If it does, that point is returned as the
new contour point.

grdy(edg,con) := for s1∈0..rows(con)
s←mod(s1,rows(con))
xmin←(cons)0
ymin←(cons)1
forces←balance[(cons)0,(cons)1,edg,s,con]
Emin←(cons)2·Econt(xmin,ymin,s,con)
Emin←Emin+(cons)3·Ecur(xmin,ymin,s,con)
Emin Emin+(con) (edg)s 4 0 (con) ,(con)s 1 0

← ⋅
for x∈(cons)0–1..(cons)0+1

for y∈(cons)1–1..(cons)1+1
if check(x,y,edg0)

xx←x–(cons)0+1
yy←y–(cons)1+1
Ej←(cons)2·(forces0,0)yy,xx
Ej Ej+(con) (forces)s 3 0,1 yy,xx← ⋅
Ej Ej+(con) (edg)s 4 0 y,x← ⋅
if Ej<Emin

Emin←Ej
xmin←x
ymin←y

con

xmin

ymin

(con)

(con)

(con)

s s 2

s 3

s 4

←

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

con

s

Code 6.4 The greedy algorithm

250 Feature Extraction and Image Processing

A verbatim implementation of the greedy algorithm would include three thresholds. One is a
threshold on tangential direction and another on edge magnitude. If an edge point were adjudged
to be of direction above the chosen threshold, and with magnitude above its corresponding
threshold, then � can be set to zero for that point to allow corners to form. This has not been
included in Code 6.4, in part because there is mutual dependence between � and �. Also, the
original presentation of the greedy algorithm proposed to continue evolving the snake until it
becomes static, when the number of contour points moved in a single iteration is below the third
threshold value. This can lead to instability since it can lead to a situation where contour points
merely oscillate between two solutions and the process would appear not to converge. Again,
this has not been implemented here.

The effect of varying � and � is shown in Figures 6.5 and 6.6. Setting � to zero removes
influence of spacing on the contour points’ arrangement. In this manner, the points will become
to be unevenly spaced (Figure 6.5b), and eventually can be placed on top of each other. Reducing
the control by spacing can be desirable for features that have high localized curvature. Low
values of � can allow for bunching of points in such regions, giving a better feature description.

(a) Initial contour (b) After iteration 1 (c) After iteration 2 (d) After iteration 3

Figure 6.5 Effect of removing control by spacing

(a) Initial contour (b) After iteration 1 (c) After iteration 2 (d) After iteration 3

Figure 6.6 Effect of removing low curvature control

Setting � to zero removes influence of curvature on the contour points’ arrangement, allowing
corners to form in the contour, as illustrated in Figure 6.6. This is manifest in the first iteration
(Figure 6.6b), and since with � set to zero for the whole contour, each contour point can become
a corner with high curvature (Figure 6.6c), leading to the rather ridiculous result in Figure 6.6(d).

Flexible shape extraction (snakes and other techniques) 251

Reducing the control by curvature can clearly be desirable for features that have high localized
curvature. This illustrates the mutual dependence between � and �, since low values of � can
accompany low values of � in regions of high localized curvature. Setting 	 to zero would
force the snake to ignore image data and evolve under its own forces. This would be rather
farcical. The influence of 	 is reduced in applications where the image data used is known to
be noisy. Note that one fundamental problem with a discrete version is that the final solution
can oscillate when it swaps between two sets of points which both have equally low energy.
This can be prevented by detecting the occurrence of oscillation. A further difficulty is that as
the contour becomes smaller, the number of contour points constrains the result as they cannot
be compressed into too small a space. The only solution to this is to resample the contour.

6.3.3 Complete (Kass) snake implementation

The greedy method iterates around the snake to find local minimum energy at snake points.
This is an approximation, since it does not necessarily determine the ‘best’ local minimum
in the region of the snake points, by virtue of iteration. A complete snake implementation, or
Kass snake, solves for all snake points in one step to ensure that the snake moves to the best
local energy minimum. We seek to choose snake points �v�s� = �x�s�� y�s��� in such a manner
that the energy is minimized (Equation 6.8). Calculus of variations shows how the solution to
Equation 6.7 reduces to a pair of differential equations that can be solved by finite difference
analysis (Waite and Welsh, 1990). This results in a set of equations that iteratively provide new
sets of contour points. By calculus of variation, we shall consider an admissible solution v̂�s�
perturbed by a small amount, ��v �s�, which achieves minimum energy, as:

dEsnake �v̂�s�+��v�s��
d�

= 0 (6.15)

where the perturbation is spatial, affecting the x and y coordinates of a snake point:

�v�s� = ��x�s�� �y�s�� (6.16)

This gives the perturbed snake solution as

v̂�s�+��v�s� = (
x̂�s�+��x�s�� ŷ�s�+��y�s�

)
(6.17)

where x̂�s� and ŷ�s� are the x and y coordinates, respectively, of the snake points at the
solution �v̂�s� = �x̂�s�� ŷ�s���. By setting the constraint energy Econ to zero, the snake energy
(Equation 6.7) becomes:

Esnake�v�s�� =
∫ 1

s=0

{
Eint�v�s��+Eimage�v�s��

}
ds (6.18)

Edge magnitude information is often used (so that snakes are attracted to edges found by an
edge detection operator), so we shall replace Eimage by Eedge. By substitution for the perturbed
snake points, we obtain

Esnake�v̂�s�+��v�s�� =
∫ 1

s=0

{
Eint �v̂�s�+��v�s��+Eedge �v̂�s�+��v�s��

}
ds (6.19)

252 Feature Extraction and Image Processing

By substitution from Equation 6.9, we obtain

Esnake�v̂�s�+��v�s�� =
∫ s=1

s=0

{
��s�

∣∣∣∣
d �v̂�s�+��v�s��

ds

∣∣∣∣
2

+��s�

∣∣∣∣
d2 �v̂�s�+��v�s��

ds2

∣∣∣∣
2

+Eedge �v̂�s�+��v�s��

}
ds

(6.20)

By substitution from Equation 6.17,

Esnake �v̂ �s�+��v �s��

=
∫ s=1

s=0

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

��s�

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
dx̂ �s�

ds

)2

+2�
dx̂ �s�

ds
d�x �s�

ds
+
(
�

d�x �s�

ds

)2

+
(

dŷ �s�

ds

)2

+2�
dŷ �s�

ds

d�y �s�

ds
+
(
�

d�y �s�

ds

)2

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

+��s�

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
d2x̂ �s�

ds2

)2

+2�
d2x̂ �s�

ds2

d2�x �s�

ds2
+
(
�

d2�x �s�

ds2

)2

+
(

d2ŷ �s�

ds2

)2

+2�
d2ŷ �s�

ds2

d2�y �s�

ds2
+
(
�

d2�y �s�

ds2

)2

⎫
⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

+Eedge �v̂ �s�+��v �s��

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

ds

(6.21)

By expanding Eedge at the perturbed solution by Taylor series, we obtain

Eedge �v̂�s�+��v�s�� = Eedge

(
x̂�s�+��x�s�� ŷ�s�+��y�s�

)

= Eedge �x̂�s�� ŷ�s��+��x�s�
Eedge

x

∣∣∣∣
x̂�ŷ

+��y�s�
Eedge

y

∣∣∣∣
x̂�ŷ

+O��2� (6.22)

This implies that the image information must be twice differentiable, which holds for edge
information, but not for some other forms of image energy. Ignoring higher order terms in �
(since � is small), by reformulation Equation 6.21 becomes

Esnake �v̂�s�+��v�s�� = Esnake �v̂�s��

+2�
∫ s=1

s=0
��s�

dx̂�s�
ds

d�x�s�

ds
+��s�

d2x̂�s�

ds2

d2�x �s�

ds2
+ �x�s�

2

Eedge

x

∣∣∣∣
x̂�ŷ

ds

+2�
∫ s=1

s=0
��s�

dŷ�s�
ds

d�y�s�

ds
+��s�

d2ŷ�s�

ds2

d2�y �s�

ds2
+ �y�s�

2

Eedge

y

∣∣∣∣
x̂�ŷ

ds (6.23)

Flexible shape extraction (snakes and other techniques) 253

Since the perturbed solution is at a minimum, the integration terms in Equation 6.23 must be
identically zero:

∫ s=1

s=0
��s�

dx̂�s�
ds

d�x�s�

ds
+��s�

d2x̂�s�

ds2

d2�x �s�

ds2
+ �x�s�

2

Eedge

x

∣∣∣∣
x̂�ŷ

ds = 0 (6.24)

∫ s=1

s=0
��s�

dŷ�s�
ds

d�y�s�

ds
+��s�

d2ŷ�s�

ds2

d2�y �s�

ds2
+ �y�s�

2

Eedge

y

∣∣∣∣
x̂�ŷ

ds = 0 (6.25)

By integration we obtain

[
��s�

dx̂�s�
ds

�x�s�

]1

s=0

−
∫ s=1

s=0

d
ds

{
��s�

dx̂�s�
ds

}
�x�s�ds

[
��s�

d2x̂�s�

ds2

d�x�s�

ds

]1

s=0

−
[

d
ds

{
��s�

d2x̂�s�

ds2

}
�x�s�

]1

s=0

+
∫ s=1

s=0

d2

ds2

{
��s�

d2x̂�s�

ds2

}
�x�s�ds+ 1

2

∫ 1

s=0

Eedge

x

∣∣∣∣
x̂�ŷ

�x�s�ds = 0 (6.26)

As the first, third and fourth terms are zero (since for a closed contour, �x�1�−�x�0� = 0 and
�y�1�−�y�0� = 0), this reduces to

∫ s=1

s=0

{
− d

ds

{
��s�

dx̂�s�
ds

}
+ d2

ds2

{
��s�

d2x̂�s�

ds2

}
+ 1

2

Eedge

x

∣∣∣∣
x̂�ŷ

}
�x�s�ds = 0 (6.27)

Since this equation holds for all �x�s�,

− d
ds

{
��s�

dx̂�s�
ds

}
+ d2

ds2

{
��s�

d2x̂�s�

ds2

}
+ 1

2

Eedge

x

∣∣∣∣
x̂�ŷ

= 0 (6.28)

By a similar development of Equation 6.25 we obtain

− d
ds

{
��s�

dŷ�s�
ds

}
+ d2

ds2

{
��s�

d2ŷ�s�

ds2

}
+ 1

2

Eedge

y

∣∣∣∣
x̂�ŷ

= 0 (6.29)

This has reformulated the original energy minimization framework (Equation 6.7) into a pair of
differential equations. To implement a complete snake, we seek the solution to Equations 6.28
and 6.29. By the method of finite differences, we substitute for dx�s�/ds � xs+1 − xs, the
first order difference, and the second order difference is d2x�s�/ds2 � xs+1 − 2xs + xs−1 (as in
Equation 6.12), which by substitution into Equation 6.28, for a contour discretized into S points

254 Feature Extraction and Image Processing

equally spaced by an arc length h, (remembering that the indices s ∈ �1� S� to snake points are
computed modulo S) gives

− 1
h

{
�s+1

�xs+1 −xs�

h
−�s

�xs −xs−1�

h

}

+ 1
h2

{
�s+1

�xs+2 −2xs+1 +xs�

h2
−2�s

�xs+1 −2xs +xs−1�

h2
+�s−1

�xs −2xs−1 +xs−2�

h2

}

+ 1
2

Eedge

x

∣∣∣∣
xs�ys

= 0 (6.30)

By collecting the coefficients of different points, Equation 6.30 can be expressed as

fs = asxs−2 +bsxs−1 + csxs +dsxs+1 + esxs+2 (6.31)

where

fs = −1
2

Eedge

x

∣∣∣∣
xs �ys

as = �s−1

h4
bs = −2��s +�s−1�

h4
− �s

h2

cs = �s+1 +4�s +�s−1

h4
+ �s+1 +�s

h2
ds = −2��s+1 +�s�

h4
− �s+1

h2
es = �s+1

h4

This is now in the form of a linear (matrix) equation:

Ax = fx�x�y� (6.32)

where fx(x, y) is the first order differential of the edge magnitude along the x-axis and where

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

c1 d1 e1 0 �� a1 b1

b2 c2 d2 e2 0 �� a2

a3 b3 c3 d3 e3 0

eS−1 0 �� aS−1 bS−1 cS−1 dS−1

dS eS 0 �� aS bS cS

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Similarly, by analysis of Equation 6.29 we obtain:

Ay = fy�x�y� (6.33)

where fy(x, y) is the first order difference of the edge magnitude along the y-axis. These
equations can be solved iteratively to provide a new vector v<i+1> from an initial vector v<i>,
where i is an evolution index. The iterative solution is

�x<i+1> −x<i>�

�
+Ax<i+1> = fx�x<i>�y<i>� (6.34)

where the control factor � is a scalar chosen to control convergence. The control factor, �,
controls the rate of evolution of the snake: large values make the snake move quickly, small

Flexible shape extraction (snakes and other techniques) 255

values make for slow movement. As usual, fast movement implies that the snake can pass over
features of interest without noticing them, whereas slow movement can be rather tedious. So,
the appropriate choice for � is again a compromise, this time between selectivity and time. The
formulation for the vector of y coordinates is:

�y<i+1> −y<i>�

�
+Ay<i+1> = fy�x<i>�y<i>� (6.35)

By rearrangement, this gives the final pair of equations that can be used to evolve a contour
iteratively; the complete snake solution is then:

x<i+1> =
(

A+ 1
�

I
)−1(1

�
x<i> +fx�x<i>�y<i>�

)
(6.36)

where I is the identity matrix. This implies that the new set of x coordinates is a weighted
sum of the initial set of contour points and the image information. The fraction is calculated
according to specified snake properties, the values chosen for � and �. For the y coordinates
we have

y<i+1> =
(

A+ 1
�

I
)−1(1

�
y<i> +fy�x<i>�y<i>�

)
(6.37)

The new set of contour points then become the starting set for the next iteration. Note that this
is a continuous formulation, as opposed to the discrete (greedy) implementation. One penalty
is the need for matrix inversion, affecting speed. Clearly, the benefits are that coordinates are
calculated as real functions and the complete set of new contour points is provided at each
iteration. The result of implementing the complete solution is illustrated in Figure 6.7. The
initialization (Figure 6.7a) is the same as for the greedy algorithm, but with 32 contour points.
At the first iteration (Figure 6.7b) the contour begins to shrink, and move towards the eye’s iris.
By the sixth iteration (Figure 6.7c) some of the contour points have snagged on strong edge
data, particularly in the upper part of the contour. At this point, however, the excessive curvature
becomes inadmissible, and the contour releases these points to achieve a smooth contour again,
one that is better matched to the edge data and the chosen snake features. Finally, Figure 6.7(e)
is where the contour ceases to move. Part of the contour has been snagged on strong edge data
in the eyebrow, whereas the remainder of the contour matches the chosen feature well.

(a) Initialization (b) Iteration 1 (c) Iteration 6 (d) Iteration 7 (e) Final

Figure 6.7 Illustrating the evolution of a complete snake

Clearly, a different solution could be obtained by using different values for the snake param-
eters; in application the choice of values for �� � and � must be made very carefully. This is
part of the difficulty in using snakes for practical feature extraction; a further difficulty is that

256 Feature Extraction and Image Processing

the result depends on where the initial contour is placed. These difficulties are called param-
eterization and initialization, respectively. These problems have motivated much research and
development.

6.3.4 Other snake approaches

There are many further considerations to implementing snakes and there is a great wealth of
material. One consideration is that we have only considered closed contours. There are also open
contours. These require slight difference in formulation for the Kass snake (Waite and Welsh,
1990) and only minor modification for implementation in the greedy algorithm. One difficulty
with the greedy algorithm is its sensitivity to noise owing to its local neighbourhood action.
In addition, the greedy algorithm can end up in an oscillatory position where the final contour
simply jumps between two equally attractive energy minima. One solution (Lai and Chin, 1994)
resolved this difficulty by increasing the size of the snake neighbourhood, but this incurs much
greater complexity. To allow snakes to expand, as opposed to contracting, a normal force can
be included which inflates a snake and pushes it over unattractive features (Cohen, 1991; Cohen
and Cohen, 1993). The force is implemented by addition of

Fnormal = �n�s� (6.38)

to the evolution equation, where n�s� is the normal force and � weights its effect. This is
inherently sensitive to the magnitude of the normal force that, if too large, can force the contour
to pass over features of interest. Another way to allow expansion is to modify the elasticity
constraint (Berger, 1991) so that the internal energy becomes

Eint = ��s�

(∣∣∣∣
dv�s�

ds

∣∣∣∣
2

− �L+��

)2

+��s�

∣∣∣∣
d2v�s�

ds2

∣∣∣∣
2

(6.39)

where the length adjustment � when positive, � > 0, and added to the contour length L causes
the contour to expand. When negative, � < 0, this causes the length to reduce and so the contour
contracts. To avoid imbalance due to the contraction force, the technique can be modified to
remove it (by changing the continuity and curvature constraints) without losing the controlling
properties of the internal forces (Xu et al., 1994) (and which, incidentally, allowed corners to
form in the snake). This gives a contour no prejudice to expansion or contraction as required. The
technique allowed for integration of prior shape knowledge; methods have also been developed
to allow local shape to influence contour evolution (Berger, 1991; Williams and Shah, 1992).

Some snake approaches have included factors that attract contours to regions using statistical
models (Ronfard, 1994) or texture (Ivins and Porrill, 1995), to complement operators that
combine edge detection with region growing. The snake model can also be generalized to higher
dimensions and there are three-dimensional (3D) snake surfaces (Wang and Wang, 1992; Cohen
et al., 1992). Finally, a new approach has introduced shapes for moving objects, by including
velocity (Peterfreund, 1999).

6.3.5 Further snake developments

Snakes have not only been formulated to include local shape, but also phrased in terms of regu-
larization (Lai and Chin, 1995), where a single parameter controls snake evolution, emphasizing
a snake’s natural compromise between its own forces and the image forces. Regularization

Flexible shape extraction (snakes and other techniques) 257

involves using a single parameter to control the balance between the external and the inter-
nal forces. Given a regularization parameter �, the snake energy of Equation 6.36 can be
given as

Esnake�v�s�� =
1∫

s=0

{
�Eint�v�s��+ �1−��Eimage�v�s��

}
ds (6.40)

Clearly, if � = 1, the snake will use the internal energy only, whereas if � = 0, the snake
will be attracted to the selected image function only. Usually, regularization concerns selecting
a value in between zero and one guided, say, by knowledge of the likely confidence in the
edge information. In fact, Lai’s approach calculates the regularization parameter at contour
points as

�i =
�2
�

�2
i +�2

�

(6.41)

where �2
i appears to be the variance of the point i and �2

� is the variance of the noise at the point
(even digging into Lai’s PhD thesis provided no explicit clues here, save that ‘these parameters
may be learned from training samples’; if this is impossible a procedure can be invoked). As
before, �i lies between zero and one, and where the variances are bounded as

1

�2
i

+ 1
�2
�

= 1 (6.42)

This does actually link these generalized active contour models to an approach we shall meet
later, where the target shape is extracted conditional upon its expected variation. Lai’s approach
also addressed initialization, and showed how a GHT could be used to initialize an active
contour and built into the extraction process. A major development of new external force model,
which is called the gradient vector flow (GVF) (Xu and Prince, 1998). The GVF is computed
as a diffusion of the gradient vectors of an edge map. There is, however, a limitation on using
a single contour for extraction, since it is never known precisely where to stop.

Many of the problems with initialization with active contours can be resolved by using a dual
contour approach (Gunn and Nixon, 1997), which also includes local shape and regularization.
This approach aims to enclose the target shape within an inner and an outer contour. The outer
contour contracts while the inner contour expands. A balance is struck between the two contours
to allow them to let the target shape to be extracted. Gunn showed how shapes could be extracted
successfully, even when the target contour was far from the two initial contours. Further, the
technique was shown to provide better immunity to initialization, in comparison with the results
of a Kass snake, and Xu’s approach.

Later, the dual approach was extended to a discrete space (Gunn and Nixon, 1998), using
an established search algorithm. The search algorithm used dynamic programming which has
already been used within active contours to find a global solution (Lai and Chin, 1995) and in
matching and tracking contours (Geiger et al., 1995). This new approach has already been used
within an enormous study (using a database of over 20 000 images, no less) on automated cell
segmentation for cervical cancer screening (Bamford and Lovell, 1998), achieving more than
99% accurate segmentation. The approach is formulated as a discrete search using a dual contour
approach, illustrated in Figure 6.8. The inner and the outer contour aim to be inside and outside
the target shape, respectively. The space between the inner and the outer contour is divided into
lines (like the spokes on the wheel of a bicycle) and M points are taken along each of the N
lines. We then have a grid of M ×N points, in which the target contour (shape) is expected to

258 Feature Extraction and Image Processing

lie. The full lattice of points is shown in Figure 6.9(a). Should we need higher resolution, we
can choose large values of M and of N , but this in turn implies more computational effort. One
can envisage strategies that allow for linearization of the coverage of the space between the two
contours, but these can make implementation much more complex.

Outer contour

Target contour

Inner contour

3 of N radial lines

M points

Figure 6.8 Discrete dual contour point space

(a) Search space

(b) First stage open contour (c) Second stage open contour

End
point

Start
point

First
stage
contour

End
point

Start
point

Final
contour

Figure 6.9 Discrete dual contour point space

Flexible shape extraction (snakes and other techniques) 259

The approach again uses regularization, where the snake energy is a discrete form to Equa-
tion 6.40, so the energy at a snake point (unlike earlier formulations, e.g. Equation 6.11) is

E�vi� = �Eint�vi�+ �1−��Eext �vi� (6.43)

where the internal energy is formulated as

Eint �vi� =
(�vi+1 −2vi +vi−1�

�vi+1 −vi−1�
)2

(6.44)

The numerator expresses the curvature, seen earlier in the greedy formulation. It is scaled by a
factor that ensures the contour is scale invariant with no prejudice as to the size of the contour. If
there is no prejudice, the contour will be attracted to smooth contours, given appropriate choice
of the regularization parameter. As such, the formulation is simply a more sophisticated version
of the greedy algorithm, dispensing with several factors of limited value (such as the need
to choose values for three weighting parameters: one only now need be chosen; the elasticity
constraint has also been removed, and that is perhaps more debatable). The interest here is that
the search for the optimal contour is constrained to be between two contours, as in Figure 6.8.
By way of a snake’s formulation, we seek the contour with minimum energy. When this is
applied to a contour which is bounded, we seek a minimum cost path. This is a natural target
for the well-known Viterbi (dynamic programming) algorithm (for its application in vision, see,
for example, Geiger et al., 1995). This is designed precisely to do this: to find a minimum cost
path within specified bounds. To formulate it by dynamic programming we seek a cost function
to be minimized. We formulate a cost function C between one snake element and the next as

Ci�vi+1�vi� = min�Ci−1�vi�vi−1�+�Eint�vi�+ �1−��Eext�vi�� (6.45)

In this way, we should be able to choose a path through a set of snakes that minimizes the total
energy, formed by the compromise between internal and external energy at that point, together
with the path that led to the point. As such, we will need to store the energies at points within
the matrix, which corresponds directly to the earlier tessellation. We also require a position
matrix to store for each stage �i� the position �vi−1� that minimizes the cost function at that
stage �Ci�vi+1� vi��. This also needs initialization to set the first point, C1�v1�v0� = 0. Given a
closed contour (one which is completely joined together), then for an arbitrary start point, we
a separate optimization routine to determine the best starting and end points for the contour.
The full search space is illustrated in Figure 6.9(a). Ideally, this should be searched for a closed
contour, the target contour of Figure 6.8. It is computationally less demanding to consider an
open contour, where the ends do not join. We can approximate a closed contour by considering
it to be an open contour in two stages. In the first stage (Figure 6.9b), the midpoints of the two
lines at the start and end are taken as the starting conditions. In the second stage (Figure 6.9c),
the points determined by dynamic programming half way round the contour (i.e. for two lines
at N/2) are taken as the start and the end points for a new open-contour dynamic programming
search, which then optimizes the contour from these points. The premise is that the points half
way round the contour will be at, or close to, their optimal position after the first stage and it is
the points at, or near, the starting points in the first stage that require refinement. This reduces
the computational requirement by a factor of M2.

The technique was originally demonstrated to extract the face boundary, for feature extraction
within automatic face recognition, as illustrated in Figure 6.10. The outer boundary (Figure 6.10a)
was extracted using a convex hull which in turn initialized an inner and an outer contour
(Figure 6.10b). The final extraction by the dual discrete contour is the boundary of facial skin
(Figure 6.10c). The number of points in the mesh limits the accuracy with which the final

260 Feature Extraction and Image Processing

contour is extracted, but application could be followed by use of a continuous Kass snake to
improve final resolution. It has been shown that human faces could be discriminated by the
contour extracted by this technique, although the study highlighted potential difficult with facial
organs and illumination. As already mentioned, it was later deployed in cell analysis, where the
inner and the outer contour were derived by analysis of the stained cell image.

(a) Outer boundary
initialization

(b) Outer and inner
contours

(c) Final face boundary

Figure 6.10 Extracting the face outline by a discrete dual contour

6.3.6 Geometric active contours

Problems discussed so far with active contours include initialization and poor convergence
to concave regions. In addition, parametric active contours (the snakes discussed previously)
can have difficulty in segmenting multiple objects simultaneously, because of the explicit
representation of curve. Geometric active contour (GAC) models have been introduced to solve
this problem, where the curve is represented implicitly in a level set function. Essentially, the
main argument is that by changing the representation, we can improve the result, and there
have indeed been some very impressive results presented. Consider, for example, the result
in Figure 6.11, where we are extracting the boundary of the hand by using the initialization
shown in Figure 6.11(a). This would be hard to achieve by the active contour models discussed
so far: there are concavities, sharp corners and background contamination which it is difficult
for parametric techniques to handle. It is not perfect, but it is clearly much better (there are
techniques to improve on this result, but this is far enough for the moment). However, there are
no panaceas in engineering, and we should not expect them to exist. The new techniques can be
found to be complex to implement, even to understand, although by virtue of their impressive
results there are new approaches aimed to speed application and to ease implementation. As
yet, the techniques do not find routine deployment (certainly not in real-time applications), but
this is part of the evolution of any technique. The complexity and scope of this book mandate a
short description of these new approaches here, but as usual we shall provide pointers to more
in-depth source material.

Level set methods (Osher and Sethian, 1988) essentially find the shape without parameterizing
it, so the curve description is implicit rather than explicit, by finding it as the zero level set

Flexible shape extraction (snakes and other techniques) 261

(a) Initialization (b) Iteration 1 (c) Continuing...

(d) Continuing... (e) Continuing... (f) Final result

Figure 6.11 Extraction by curve evolution (a diffusion snake) (Cremers et al., 2002)

of a function (Sethian, 1999; Osher and Paragios, 2003). The zero level set is the interface
between two regions in an image. This can be visualized as taking slices through a surface
shown in Figure 6.12(a). As we take slices at different levels (as the surface evolves) then the
shape can split (Figure 6.12b). This would be difficult to parameterize (we would have to detect
when it splits), but it can be handled within a level set approach by considering the underlying

(b) Shapes at level 1

(a) Surface (c) Shape at level 2

Figure 6.12 Surfaces and level sets

262 Feature Extraction and Image Processing

surface. At a lower level (Figure 6.12c), we have a single composite shape. As such, we have an
extraction which evolves with time (to change the level). The initialization is a closed curve and
we shall formulate how we want the curve to move in a way analogous to minimizing its energy.

The level set function is the signed distance to the contour. This distance is arranged to be
negative inside the contour and positive outside it. The contour itself, the target shape, is where
the distance is zero, at the interface between the two regions. Accordingly, we store values for
each pixel representing this distance. We then determine new values for this surface, say by
expansion. As we evolve the surface, the level sets evolve accordingly, equivalent to moving the
surface where the slices are taken, in Figure 6.12. Since the distance map needs renormalization
after each iteration, it can make the technique slow in operation (or needs a fast computer).

Let us assume that the interface C is controlled to change in a constant manner and evolves
with time t by propagating along its normal direction with speed F , where F is a function of,
say, curvature (Equation 4.61) and speed, according to

C

t
= F · ��

���� (6.46)

Here, the term
��

���� is a vector pointing in the direction normal to the surface, as previously

discussed in Section 4.6, Equation 4.48. (The curvature at a point is measured perpendicular to
the level set function at that point.) The curve is then evolving in a normal direction, controlled
by the curvature. At all times, the interface C is the zero level set

��C�t�� t� = 0 (6.47)

The level set function � is positive outside the region and negative when it is inside, and it
is zero on the boundary of the shape. As such, by differentiation we get

��C�t�� t�

t
= 0 (6.48)

and by the chain rule we obtain

�

C

C

t
+ �

t
= 0 (6.49)

By rearrangement, and substitution from Equation 6.46, we obtain

�

t
= −F

��

�C
· ��

���� = −F ���� (6.50)

which suggests that the propagation of a curve depends on its gradient. In fact, we can include
a (multiplicative) stopping function of the form

S = 1
1+��P�n (6.51)

where �P is the magnitude of the image gradient giving a stopping function (like the one in
anisotropic diffusion in Equation 3.42) which is zero at edge points (hence stopping evolution)
and near unity when there is no edge data (allowing movement). This is a form of the Hamilton–
Jacobi equation, which is a partial differential equation that needs to be solved so as to obtain the
solution. One way to achieve this is by finite differences (as earlier approximating the differential

Flexible shape extraction (snakes and other techniques) 263

operation) and a spatial grid (the image itself). We then obtain a solution that differences the
contour at iterations < n+1 > and < n > (separated by an interval �t) as

��i� j��t�<n+1> −��i� j��t�<n>

�t
= −F

∣∣�ij��i� j�
<n>
∣∣ (6.52)

where �ij� represents a spatial derivative, leading to the solution

��i� j��t�<n+1> = ��i� j��t�<n> −�t
(
F
∣∣�ij��i� j�

<n>
∣∣) (6.53)

This is only an introductory view, rather simplifying a complex scenario, and much greater
detail is to be found in the two major texts in this area (Sethian, 1999; Osher and Paragios, 2003).
The real poser is how to solve it all. We shall concentrate on some of the major techniques, but
not go into their details. Caselles et al. (1993) and Malladi et al. (1995) were the first to propose
geometric active contour models, which use gradient-based information for segmentation. The
gradient-based geometric active contour can detect multiple objects simultaneously, but it has
other important problems, which are boundary leakage, noise sensitivity, computational ineffi-
ciency and difficulty of implementation. There have been formulations (Caselles et al., 1997;
Siddiqi et al., 1998; Xie and Mirmehdi, 2004) introduced to solve these problems; however, they
can just increase the tolerance rather than achieve an exact solution. Several numerical schemes
have also been proposed to improve computational efficiency of the level set method, includ-
ing narrow band (Adalsteinsson and Sethian, 1995) (to find the solution within a constrained
distance, i.e. to compute the level set only near the contour), fast marching methods (Sethian,
1999) (to constrain movement) and additive operator splitting (Weickert et al., 1998). Despite
substantial improvements in efficiency, they can be difficult to implement. These approaches
show excellent results, but they are not for the less than brave, although there are numerous
tutorials and implementations available on the web. Clearly there is a need for unified presen-
tation, and some claim this (e.g. Caselles et al., 1997), and linkage to parametric active contour
models.

The technique with which many people compare the result of their own new approach is a
GAC called the active contour without edges, introduced by Chan and Vese (2001), which is
based on the Mumford–Shah functional (Mumford and Shah, 1989). Their model uses regional
statistics for segmentation, and as such is a region-based level set model. The overall premise
is to avoid using gradient (edge) information since this can lead to boundary leakage and cause
the contour to collapse. A further advantage is that it can find objects when boundary data is
weak or diffuse. The main strategy is to minimize energy, as in an active contour. To illustrate
the model, let us presume that we have a bimodal image P which contains an object and a
background. The object has pixels of intensity Pi within its boundary and the intensity of the
background is P0, outside the boundary. We can then measure a fit of a contour, or curve, C to
the image as

Fi�C�+Fo�C� =
∫
inside�C�

�P�x� y�− ci�2 +
∫
outside�C�

�P�x� y�− co�2 (6.54)

where the constant ci is the average brightness inside the curve, depending on the curve, and co

is the brightness outside it. The boundary of the object CO is the curve that minimizes the fit
derived by expressing the regions inside and outside the curve as

CO = min
C

(
Fi�C�+FO�C�

)
(6.55)

[Note that the original description is excellent, although Chan and Vese are from a maths
department, which makes the presentation a bit terse. Also, the strict version of minimization is

264 Feature Extraction and Image Processing

the infimum or greatest lower bound; inf�X� is the biggest real number that is smaller than or
equal to every number in X.] The minimum is when

Fi�CO�+Fo�CO� ≈ 0 (6.56)

when the curve is at the boundary of the object. When the curve C is inside the object Fi�C�≈ 0
and Fo�C�>0; conversely when the curve is outside the object Fi�C�>0 and Fo�C� ≈ 0.
When the curves straddles the two and is both inside and outside the object then Fi�C�>0 and
Fo�C�>0; the function is zero when C is placed on the boundary of the object. By using regions,
we are avoiding using edges and the process depends finding the best separation between the
regions (and by the averaging operation in the region, we have better noise immunity). If we
constrain this process by introducing terms that depend on the length of the contour and the
area of the contour, we extend the energy functional from Equation 6.54 as

F�ci� co�C�=�·length�C�+� ·area�C�+�1 ·
∫
inside�C�

�P�x� y�−ci�2 +�2 ·
∫
outside�C�

�P�x� y�−co�2

(6.57)

where �� �� �1 and �2 are parameters controlling selectivity. The contour is then, for a fixed
set of parameters, chosen by minimization of the energy functional as

CO = min
ci�co�C

(
F
(
cico�C

))
(6.58)

A level set formulation is then used wherein an approximation to the unit step function (the
Heaviside function) is defined to control the influence of points within and without the contour,
which by differentiation gives an approximation to an impulse (the Dirac function), and with a
solution to a form of Equation 6.50 (in discrete form) is used to update the level set.

The active contour without edges model can address problems with initialization, noise and
boundary leakage (since it uses regions, not gradients), but still suffers from computational
inefficiency and difficulty in implementation, because of the level set method. An example
result is shown in Figure 6.13, where the target aim is to extract the hippo: the active contour
without edges aims to split the image into the extracted object (the hippo) and its background
(the grass). To do this, we need to specify an initialization which we shall choose to be within
a small circle inside the hippo, as shown in Figure 6.13(a). The result of extraction is shown in
Figure 6.13(b) and we can see that the technique has detected much of the hippo, but the result is
not perfect. The values used for the parameters here were: �1 = �2 = 1�0 (i.e. area was not used
to control evolution); �= 0�1∗2552 (the length parameter was controlled according to the image
resolution) and some internal parameters were h = 1 (a 1 pixel step space); �t = 1(a small time
spacing) and � = 1 (a parameter within the step, and hence the impulse functions). Alternative
choices are possible and can affect the result achieved. The result here has been selected to show
performance attributes; the earlier result (Figure 6.11) was selected to demonstrate finesse.

The regions with intensity and appearance that are most similar to the selected initialization
have been identified in the result: this is much of the hippo, including the left ear and the region
around the left eye, but omitting some of the upper body. There are some small potential problems
too: there are some birds extracted on the top of the hippo and a small region underneath it (was
this hippo’s breakfast, we wonder?). Note that by virtue of the regional level set formulation
the image is treated in its entirety and multiple shapes are detected, some well away from the
target shape. By and large, the result looks encouraging as much of the hippo is extracted in
the result and the largest shape contains much of the target; if we were to seek to obtain an

Flexible shape extraction (snakes and other techniques) 265

(a) Initialization (b) Result

Figure 6.13 Extraction by a level set-based approach

exact match then we would need to use an exact model such as the GHT, or impose a model
on the extraction, such as a statistical shape prior. That the technique can operate best when the
image is bimodal is reflected in the fact that extraction is most successful when there is a clear
difference between the target and the background, such as in the lower body. An alternative
interpretation is that the technique clearly can handle situations where the edge data is weak
and diffuse, such as in the upper body.

The technique have moved on and can now include statistical priors to guide shape extraction
(Cremers et al., 2007). One study shows the relationship between parametric and geometric
active contours (Xu et al., 2000). As such snakes and evolutionary approaches to shape extraction
remain an attractive and stimulating area of research, so as ever it is well worth studying the
literature to find new, accurate, techniques with high performance and low computational cost.
We shall now move to determining skeletons which, though more a form of low-level operation,
can use evidence gathering in implementation thus motivating its inclusion rather late in this
book.

6.4 Shape skeletonization

6.4.1 Distance transforms

It is possible to describe a shape not just by its perimeter, or its area, but also by it skeleton.
Here we do not mean an anatomical skeleton, more a central axis to a shape. This is then the
axis which is equidistant from the borders of a shape, and can be determined by a distance
transform. In this way we have a representation that has the same topology, the same size and
orientation, but contains just the essence of the shape. As such, we are again in morphology and
there has been interest for some time in binary shape analysis (Borgefors, 1986).

Essentially, the distance transform shows the distance from each point in an image shape
to its central axis. (We are measuring distance here by difference in coordinate values; other

266 Feature Extraction and Image Processing

measures of distance such as Euclidean are considered in Chapter 8.) Intuitively, the distance
transform can be achieved by successive erosion and each pixel is labelled with the number
of erosions before it disappeared. Accordingly, the pixels at the border of a shape will have a
distance transform of unity, those adjacent inside will have a value of two, and so on. This is
illustrated in Figure 6.14, where Figure 6.14(a) shows the analysed shape (a rectangle derived
by, say, thresholding an image; the superimposed pixel values are arbitrary here as it is simply
a binary image) and Figure 6.14(b) shows the distance transform, where the pixel values are the
distance. Here, the central axis has a value of 3, as it takes that number of erosions to reach it
from either side.

10 10 10 10 10 1 1 1 1 1

10 10 10 10 10 1 2 2 2 1

10 10 10 10 10 1 2 3 2 1

10 10 10 10 10 1 2 3 2 1

10 10 10 10 10 1 2 3 2 1

10 10 10 10 10 1 2 3 2 1

10 10 10 10 10 1 2 3 2 1

10 10 10 10 10 1 2 2 2 1

10 10 10 10 10 1 1 1 1 1

(a) Initial shape (b) Distance transform

Figure 6.14 Illustrating distance transformation

The application to a rectangle at higher resolution is shown in Figure 6.15(a) and (b). Here, we
can see that the central axis is quite clear and includes parts that reach towards the corners; and
the central axis can be detected (Niblack et al., 1992) from the transform data. The application
to a more irregular shape is shown applied to that of a card suit in Figure 6.15(c) and (d).

(a) Rectangle (b) Distance transform (c) Card suit (d) Distance transform

Figure 6.15 Applying the distance transformation

Flexible shape extraction (snakes and other techniques) 267

The natural difficulty is the effect of noise. This can change the result, as shown in Figure 6.16.
This can certainly be ameliorated by using the earlier morphological operators (Section 3.6)
to clean the image, but this can obscure the shape when the noise is severe. The major point
is that this noise shows that the effect of a small change in the object can be quite severe on
the resulting distance transform. As such, it has little tolerance of occlusion or change to its
perimeter.

(a) Noisy rectangle (b) Distance transform

Figure 6.16 Distance transformation on noisy images

The natural extension from distance transforms is to the medial axis transform (Blum, 1967),
which determines the skeleton that consists of the locus of all the centres of maximum disks in the
analysed region/shape. This has found use in feature extraction and description, so approaches
have considered improvement in speed (Lee, 1982). One more recent study (Katz and Pizer,
2003) noted the practically difficulty experienced in noisy imagery: ‘It is well documented how
a tiny change to an object’s boundary can cause a large change in its Medial Axis Transform’.
To handle this, and hierarchical shape decomposition, the new approach ‘provides a natural
parts-hierarchy while eliminating instabilities due to small boundary changes’. An alternative is
to seek an approach that is designed explicitly to handle noise, say by averaging, and we shall
consider this type of approach next.

6.4.2 Symmetry

The discrete symmetry operator (Reisfeld et al., 1995) uses a totally different basis to find shapes,
is intuitively very appealing and has links with human perception. Rather than rely on finding
the border of a shape, or its shape, it locates features according to their symmetrical properties.
The operator essentially forms an accumulator of points that are measures of symmetry between
image points. Pairs of image points are attributed symmetry values that are derived from a
distance weighting function, a phase weighting function and the edge magnitude at each of the
pair of points. The distance weighting function controls the scope of the function, to control
whether points that are more distant contribute in a similar manner to those that are close
together. The phase weighting function shows when edge vectors at the pair of points point to
each other. The symmetry accumulation is at the centre of each pair of points. In this way, the

268 Feature Extraction and Image Processing

accumulator measures the degree of symmetry between image points, controlled by the edge
strength. The distance weighting function D is

D�i� j��� = 1√
2��

e− �Pi−Pj �
2� (6.59)

where i and j are the indices to two image points Pi and Pj and the deviation � controls the
scope of the function, by scaling the contribution of the distance between the points in the
exponential function. A small value for the deviation � implies local operation and detection
of local symmetry. Larger values of � imply that points that are further apart contribute
to the accumulation process, as well as ones that are close together. In, say, application to
the image of a face, large and small values of � will aim for the whole face or the eyes,
respectively.

The effect of the value of � on the scalar distance weighting function expressed as Equa-
tion 6.60 is illustrated in Figure 6.17.

Di�j��� = 1√
2��

e
j√
2� (6.60)

Di (j, 0.6) Di (j, 5)

0 5 10

0.5

j
0 5 10

0.5

j

(a) Small σ (b) Large σ

Figure 6.17 Effect of � on distance weighting

Figure 6.17(a)shows the effect of a small value for the deviation, � = 0�6, and shows that the
weighting is greatest for closely spaced points and drops rapidly for points with larger spacing.
Larger values of � imply that the distance weight drops less rapidly for points that are more
widely spaced, as in Figure 6.17(b) where � = 5, allowing points that are spaced further apart
to contribute to the measured symmetry. The phase weighting function P is

P�i� j� = �1− cos��i +�j −2�ij��× �1− cos��i −�j�� (6.61)

where � is the edge direction at the two points and �ij measures the direction of a line joining
the two points:

�ij = tan−1

(
y�Pj�−y�Pi�

x�Pj�−x�Pi�

)
(6.62)

where x�Pi� and y�Pi� are the x and y coordinates of the point Pi, respectively. This function
is minimum when the edge direction at two points is in the same direction ��j = �i�, and is a
maximum when the edge direction is away from each other ��i = �j +��, along the line joining
the two points, ��j = �ij�.

Flexible shape extraction (snakes and other techniques) 269

The effect of relative edge direction on phase weighting is illustrated in Figure 6.18, where
Figure 6.18(a) concerns two edge points that point towards each other and describes the effect
on the phase weighting function by varying �ij . This shows how the phase weight is maximum
when the edge direction at the two points is along the line joining them, in this case when
�ij = 0 and �i = 0. Figure 6.18(b) concerns one point with edge direction along the line joining
two points, where the edge direction at the second point is varied. The phase weighting function
is maximum when the edge direction at each point is towards that of the other, in this case when
��j� = �.

4

–2 0 2

2(1 – cos(π – θ))⋅2

θ

4

(1 – cos(θ))⋅(1 – cos(– θ))

–2 0 2

2

θ

(a) θj = π and θi = 0, varying αij (b) θi = αij = 0, varying θj

Figure 6.18 Effect of relative edge direction on phase weighting

The symmetry relation between two points is then defined as

C�i� j��� = D�i� j���×P�i� j�×E�i�×E�j� (6.63)

where E is the edge magnitude expressed in logarithmic form as

E�i� = log�1+M�i�� (6.64)

where M is the edge magnitude derived by application of an edge detection operator. The
symmetry contribution of two points is accumulated at the midpoint of the line joining the two
points. The total symmetry SPm

at point Pm is the sum of the measured symmetry for all pairs
of points which have their midpoint at Pm, i.e. those points ��Pm� given by

��Pm� =
[
�i� j�

∣∣∣∣
Pi +Pj

2
= Pm ∧ i �= j

]
(6.65)

and the accumulated symmetry is then

SPm
��� = ∑

i�j∈��Pm�

C�i� j��� (6.66)

The result of applying the symmetry operator to two images is shown in Figure 6.19, for small
and large values of � . Figure 6.19(a) and (d) show the image of a rectangle and the image of
the club, respectively, to which the symmetry operator was applied, and Figure 6.19(b) and (e)
for the symmetry operator with a low value for the deviation parameter, showing detection of
areas with high localized symmetry. Figure 6.19(c) and (f) are for a large value of the deviation
parameter which detects overall symmetry and places a peak near the centre of the target shape.
In Figure 6.19(b) and (e) the symmetry operator acts as a corner detector where the edge
direction is discontinuous. (Note that this rectangle is one of the synthetic images we can use

270 Feature Extraction and Image Processing

(a) Original shape (b) Small σ (c) Large σ

(d) Shape edge magnitude (f) Large σ(e) Small σ

Figure 6.19 Applying the symmetry operator for feature extraction

to test techniques, since we can understand its output easily. We also tested the operator on the
image of a circle; since the circle is completely symmetrical, its symmetry plot is a single point,
at the centre of the circle.) In Figure 6.19(e), the discrete symmetry operator provides a peak
close to the position of the accumulator space peak in the GHT. Note that if the reference point
specified in the GHT is the centre of symmetry, the results of the discrete symmetry operator
and the GHT would be the same for large values of deviation.

This is a discrete operator; a continuous symmetry operator has been developed (Zabrodsky
et al., 1995), and a later clarification (Kanatani, 1997) aimed to address potential practical
difficulty associated with hierarchy of symmetry (namely that symmetrical shapes have subsets
of regions, also with symmetry). There has also been a number of sophisticated approaches to
detection of skewed symmetry (Gross and Boult, 1994; Cham and Cipolla, 1995), with later
extension to detection in orthographic projection (Vangool et al., 1995). Another generalization
addresses the problem of scale (Reisfeld, 1996) and extracts points of symmetry, together with
scale. A focusing ability has been added to the discrete symmetry operator by reformulating
the distance weighting function (Parsons and Nixon, 1999) and we able were to deploy this
when using symmetry to in an approach which recognizes people by their gait (the way they
walk) (Hayfron-Acquah et al., 2003). Why symmetry was chosen for this task is illustrated
in Figure 6.20: this shows the main axes of symmetry of the walking subject (Figure 6.20b),
that exist within the body, largely defining the skeleton. There is another axis of symmetry,
between the legs. When the symmetry operator is applied to a sequence of images, this axis
grows and retracts. By agglomerating the sequence and describing it by a (low-pass filtered)

Flexible shape extraction (snakes and other techniques) 271

(a) Walking subject’s silhouette (b) Symmetry plot

Figure 6.20 Applying the symmetry operator for recognition by gait (Hayfron-Acquah et al., 2003)

Fourier transform, we can determine a set of numbers which are the same for the same person
and different from those for other people, thus achieving recognition. No approach as yet has
alleviated the computational burden associated with the discrete symmetry operator, and some
of the process used can be used to reduce the requirement (e.g. judicious use of thresholding).

6.5 Flexible shape models: active shape and active appearance

So far, our approaches to analysing shape have concerned a match to image data. This has
usually concerned a match between a model (either a template that can deform or a shape that
can evolve) and a single image. An active contour is flexible, but its evolution is essentially
controlled by local properties, such as the local curvature or edge strength. The chosen value
for, or the likely range of, the parameters to weight these functionals may have been learnt
by extensive testing on a database of images of similar type to the one used in application,
or selected by experience. A completely different approach is to consider that if the database
contains all possible variations of a shape, such as its appearance or pose, the database can
form a model of the likely variation of that shape. As such, if we can incorporate this as a
global constraint, while also guiding the match to the most likely version of a shape, then we
have a deformable approach that is guided by the statistics of the likely variation in a shape.
These approaches are termed flexible templates and use global shape constraints formulated
from exemplars in training data.

This major new approach is called active shape modelling. The essence of this approach
concerns a model of a shape made up of points; the variation in these points is called the point
distribution model. The chosen landmark points are labelled on the training images. The set
of training images aims to capture all possible variations of the shape. Each point describes a
particular point on the boundary, so order is important in the labelling process. Example choices
for these points include where the curvature is high (e.g. the corner of an eye) or at the apex of
an arch where the contrast is high (e.g. the top of an eyebrow). The statistics of the variations
in position of these points describe the ways in which a shape can appear. Example applications

272 Feature Extraction and Image Processing

include finding the human face in images (e.g. for purposes of automatic face recognition).
The only part of the face for which a distinct model is available is the round circle in the iris,
and this can be small except at very high resolution. The rest of the face is made of unknown
shapes and these can change with changes in facial expression. As such, they are well suited to
a technique that combines shape with distributions, since we have a known set of shapes and
a fixed interrelationship, but some of the detail can change. The variation in detail is what is
captured in an active shape model.

Naturally, there is a lot of data. If we choose lots of points and we have lots of training
images, we shall end up with an enormous number of points. That is where principal components
analysis comes in, as it can compress data into the most significant items. Principal components
analysis is an established mathematical tool; help is available in Appendix 4, on the web and in
the literature (Press et al., Numerical Recipes, 1992). Essentially, it rotates a coordinate system
so as to achieve maximal discriminatory capability: we might not be able to see something if
we view it from two distinct points, but if we view it from some point in between then it is
quite clear. That is what is done here: the coordinate system is rotated so as to work out the
most significant variations in the morass of data. Given a set of N training examples where each
example is a set of n points, for the ith training example xi we have

xi = �x1i� x2i� � � � xni� i ∈ 1�N (6.67)

where xki is the kth variable in the ith training example. When this is applied to shapes, each
element is the two coordinates of each point. The average is then computed over the whole set
of training examples as

x̄ = 1
N

N∑
i=1

xi (6.68)

The deviation of each example from the mean �xi is then

 xi = xi − x̄ (6.69)

This difference reflects how far each example is from the mean at a point. The 2n×2n covariance
matrix S shows how far all the differences are from the mean as

S = 1
N

N∑
i=1

 xi xT
i (6.70)

Principal components analysis of this covariance matrix shows by how much these examples,
and hence a shape, can change. In fact, any of the exemplars of the shape can be approximated as

xi = x̄ +Pw (6.71)

where P = �p1�p2 � � �pt� is a matrix of the first t eigenvectors, and w = �w1�w2 � � �wt�
T is a

corresponding vector of weights where each weight value controls the contribution of a particular
eigenvector. Different values in w give different occurrences of the model, or shape. Given that
these changes are within specified limits, the new model or shape will be similar to the basic
(mean) shape. This is because the modes of variation are described by the (unit) eigenvectors
of S, as

Spk = �kpk (6.72)

where �k denotes the eigenvalues and the eigenvectors obey orthogonality such that

pkpk
T = 1 (6.73)

Flexible shape extraction (snakes and other techniques) 273

and where the eigenvalues are rank ordered such that �k ≥ �k+1. Here, the largest eigenvalues
correspond to the most significant modes of variation in the data. The proportion of the variance
in the training data, corresponding to each eigenvector, is proportional to the corresponding
eigenvalue. As such, a limited number of eigenvalues (and eigenvectors) can be used to encom-
pass the majority of the data. The remaining eigenvalues (and eigenvectors) correspond to modes
of variation that are hardly present in the data (like the proportion of very high-frequency con-
tribution of an image; we can reconstruct an image mainly from the low-frequency components,
as used in image coding). Note that in order to examine the statistics of the labelled landmark
points over the training set applied to a new shape, the points need to be aligned, and established
procedures are available (Cootes et al., 1995).

The process of application (to find instances of the modelled shape) involves an iterative
approach to bring about increasing match between the points in the model and the image. This
is achieved by examining regions around model points to determine the best nearby match.
This provides estimates of the appropriate translation, scale rotation and eigenvectors to best
fit the model to the data. This is repeated until the model converges to the data, when there
is little change to the parameters. Since the models only change to fit the data better, and are
controlled by the expected appearance of the shape, they were called active shape models. The
application of an active shape model to find the face features of one of the technique’s inventors
(yes, that’s Tim behind the target shapes) is shown in Figure 6.21, where the initial position is
shown in Figure 6.21(a), the result after five iterations in Figure 6.21(b) and the final result in
Figure 6.21(c). The technique can operate in a coarse-to-fine manner, working at low resolution
initially (and making relatively fast moves) while slowing to work at finer resolution before
the techniques result improves no further, at convergence. Clearly, the technique has not been
misled by the spectacles, or by the presence of other features in the background. This can be
used either for enrolment (finding the face, automatically) or for automatic face recognition
(finding and describing the features). The technique cannot handle initialization which is too
poor, although clearly by Figure 6.21(a) the initialization does not need to be too close either.

(a) Initialization (b) After five iterations (c) At convergence, the final
shapes

Figure 6.21 Finding face features using an active shape model

Active shape models (ASMs) have been applied in face recognition (Lanitis et al., 1997),
medical image analysis (Cootes et al., 1994), including 3D analysis (Hill et al., 1994), and

274 Feature Extraction and Image Processing

industrial inspection (Cootes et al., 1995). A similar theory has been used to develop a new
approach that incorporates texture, called active appearance models (AAMs) (Cootes et al.,
1998a,b). This approach again represents a shape as a set of landmark points and uses a set of
training data to establish the potential range of variation in the shape. One major difference is that
AAMs explicitly include texture and update model parameters to move landmark points closer
to image points by matching texture in an iterative search process. The essential differences
between ASMs and AAMs include:

• ASMs use texture information local to a point, whereas AAMs use texture information in a
whole region.

• ASMs seek to minimize the distance between model points and the corresponding image
points, whereas AAMs seek to minimize distance between a synthesized model and a
target image.

• AAMs search around the current position, typically along profiles normal to the boundary,
whereas AAMs consider the image only at the current position.

One comparison (Cootes et al., 1999) has shown that although ASMs can be faster in
implementation than AAMs, the AAMs can require fewer landmark points and can converge to
a better result, especially in terms of texture (wherein the AAM was formulated). We await with
interest further developments in these approaches to flexible shape modelling. An example result
by an AAM for face feature finding is shown in Figure 6.22. Although this cannot demonstrate
computational advantage, we can see that the inclusion of hair in the eyebrows has improved
segmentation there. Inevitably, interest has concerned improving computational requirements,
in one case by an efficient fitting algorithm based on the inverse compositional image alignment
algorithm (Matthews and Baker, 2004). Recent interest has concerned the ability to handle
occlusion (Gross et al., 2006), as occurring either by changing (3D) orientation or by gesture.

(a) Initialization (b) After one
iterations

(c) After two
iterations

(d) At convergence

Figure 6.22 Finding face features using an active appearance model

6.6 Further reading

The majority of further reading in finding shapes concerns papers, many of which have already
been referenced. An excellent survey of the techniques used for feature extraction (including
template matching, deformable templates, etc.) can be found in Trier et al. (1996), while a

Flexible shape extraction (snakes and other techniques) 275

broader view was taken later (Jain et al., 1998). A comprehensive survey of flexible extractions
from medical imagery (McInerney and Terzopolous, 1996) reinforces the dominance of snakes
in medical image analysis, to which they are particularly suited given a target of smooth shapes.
(An excellent survey of history and progress of medical image analysis is available (Duncan
and Ayache, 2000).) Few of the textbooks devote much space to shape extraction, and snakes,
especially level set methods, are too recent a development to be included in many textbooks.
One text alone is dedicated to shape analysis (van Otterloo, 1991) and contains many discussions
on symmetry. A visit to Professor Cootes’ website (http://www.isbe.man.ac.uk/∼bim/) reveals a
lengthy report on flexible shape modelling and a lot of support material (including Windows and
Linux code) in active shape modelling. For work on level set methods for image segmentation,
see Cremers et al. (2007).

6.7 References

Adalsteinsson, D. and Sethian, J., A Fast Level Set Method for Propagating Interfaces, J. Com-
putational Physics, 118(2), pp. 269–277, 1995

Bamford, P. and Lovell, B., Unsupervised Cell Nucleus Segmentation with Active Contours,
Signal Process., 71, pp. 203–213, 1998

Benn, D. E., Nixon, M. S. and Carter, J. N., Extending Concentricity Analysis by Deformable
Templates for Improved Eye Extraction. Proc. of the 2nd Int. Conf. on Audio- and Video-
Based Biometric Person Authentication AVBPA99, pp. 1–6, 1999

Berger, M. O., Towards Dynamic Adaption of Snake Contours, Proc. 6th Int. Conf. Image
Analysis and Processing, Como, Italy, pp. 47–54, 1991

Blum, H., A Transformation for Extracting New Descriptors of Shape, In: W. Wathen-Dunn
(Ed.), Models for the Perception of Speech and Visual Form, MIT Press, Cambridge,
MA, 1967

Borgefors, G., Distance Transformations in Digital Images, CVGIP, 34(3), pp. 344–371, 1986
Caselles, V., Catte, F., Coll, T. and Dibos, F., A Geometric Model for Active Contours.

Numerische Mathematic, 66, pp. 1–31, 1993
Caselles, V., Kimmel, R. and Sapiro, G., Geodesic Active Contours, Int. J. Comput. Vision,

22(1), pp. 61–79, 1997
Cham, T. J. and Cipolla, R., Symmetry Detection through Local Skewed Symmetries, Image

Vision Comput., 13(5), pp. 439–450, 1995
Chan, T. F. and Vese, L. A., Active Contours Without Edges, IEEE Trans. Image Process.,

10(2), pp. 266–277, 2001
Cohen, L. D., Note: On Active Contour Models and Balloons, CVGIP: Image Understand.,

53(2), pp. 211–218, 1991
Cohen, I., Cohen, L. D. and Ayache, N., Using Deformable Surfaces to Segment 3D Images

and Inter Differential Structures, CVGIP: Image Understand., 56(2), pp. 242–263, 1992
Cohen, L. D. and Cohen, I., Finite-Element Methods for Active Contour Models and Balloons

for 2D and 3D Images, IEEE Trans. PAMI, 15(11), pp. 1131–1147, 1993
Cootes, T. F., Hill, A., Taylor, C. J. and Haslam, J., The Use of Active Shape Models for

Locating Structures in Medical Images, Image Vision Comput., 12(6), pp. 355–366, 1994
Cootes, T. F., Taylor, C. J., Cooper, D. H. and Graham, J., Active Shape Models – Their

Training and Application, CVIU, 61(1), pp. 38–59, 1995

276 Feature Extraction and Image Processing

Cootes, T. F., Edwards, G. J. and Taylor, C. J., A Comparative Evaluation of Active Appearance
Model Algorithms, In: P. H. Lewis and M. S. Nixon (Eds), Proc. British Machine Vision
Conference 1998, BMVC98, 2, pp. 680–689, 1998a

Cootes, T., Edwards, G. J. and Taylor, C. J, Active Appearance Models, In: H. Burkhardt and
B. Neumann (Eds), Proc. ECCV 98, 2, pp. 484–498, 1998b

Cootes, T. F., Edwards, G. J. and Taylor, C. J., Comparing Active Shape Models with Active
Appearance Models, In: T. Pridmore and D. Elliman (Eds), Proc. British Machine Vision
Conference 1999, BMVC99, 1, pp. 173–182, 1999

Cremers, D., Tischhäuser, F., Weickert, J. and Schnörr, C., Diffusion Snakes: Introducing
Statistical Shape Knowledge into the Mumford–Shah Functional, Int. J. Comput. Vision,
50(3), pp. 295–313, 2002

Cremers, D., Rousson, M., and Deriche, R., A Review of Statistical Approaches to Level Set
Segmentation: Integrating Color, Texture, Motion and Shape, Int. J. Comput. Vision, 72(2),
pp. 195–215, 2007

Duncan, J. S. and Ayache, N., Medical Image Analysis: Progress Over Two Decades and the
Challenges Ahead, IEEE Trans. PAMI, 22(1), pp. 85–106, 2000

Geiger, D., Gupta, A., Costa, L. A. and Vlontsos, J., Dynamical Programming for Detecting,
Tracking and Matching Deformable Contours, IEEE Trans. PAMI, 17(3), pp. 294–302, 1995

Goldberg, D., Genetic Algorithms in Search, Optimization and Machine Learning, Addison-
Wesley, Reading, MA, 1988

Gross, A. D. and Boult, T. E., Analysing Skewed Symmetries, Int. J. Comput. Vision, 13(1),
pp. 91–111, 1994

Gross, R., Matthews, I. and Baker, S., Active Appearance Models with Occlusion, Image Vision
Comput., 24(6), pp. 593–604, 2006

Gunn, S. R. and Nixon, M. S., A Robust Snake Implementation; A Dual Active Contour, IEEE
Trans. PAMI, 19(1), pp. 63–68, 1997

Gunn, S. R. and Nixon, M. S., Global and Local Active Contours for Head Boundary Extraction,
Int. J. Comput. Vision, 30(1), pp. 43–54, 1998

Hayfron-Acquah, J. B., Nixon, M. S. and Carter, J. N., Automatic Gait Recognition by Symmetry
Analysis, Pattern Recog. Lett., 24(13), pp. 2175–2183, 2003

Hill, A., Cootes, T. F., Taylor, C. J. and Lindley, K., Medical Image Interpretation: A Generic
Approach using Deformable Templates, J. Med. Informatics, 19(1), pp. 47–59, 1994

Ivins, J. and Porrill, J., Active Region Models for Segmenting Textures and Colours, Image
Vision Comput., 13(5), pp. 431–437, 1995

Jain, A. K., Zhong, Y. and Dubuisson-Jolly, M.-P., Deformable Template Models: A Review,
Signal Process., 71, pp. 109–129, 1998

Kanatani, K., Comments on ‘Symmetry as a Continuous Feature’, IEEE Trans. PAMI, 19(3),
pp. 246–247, 1997

Kass, M., Witkin, A. and Terzopoulos, D., Snakes: Active Contour Models, Int. J. Comput.
Vision, 1(4), pp. 321–331, 1988

Katz, R. A. and Pizer, S. M., Untangling the Blum Medial Axis Transform, Int. J. Comput.
Vision, 55(2–3), pp. 139–153, 2003

Lai, K. F. and Chin, R. T., On Regularization, Extraction and Initialization of the Active Contour
Model (Snakes), Proc. 1st Asian Conference on Computer Vision, pp. 542–545, 1994

Lai, K. F. and Chin, R. T., Deformable Contours – Modelling and Extraction, IEEE Trans.
PAMI, 17(11), pp. 1084–1090, 1995

Lanitis, A., Taylor, C. J. and Cootes, T., Automatic Interpretation and Coding of Face Images
using Flexible Models, IEEE Trans. PAMI, 19(7), pp. 743–755, 1997

Flexible shape extraction (snakes and other techniques) 277

Lee, D. T., Medial Axis Transformation of a Planar Shape, IEEE Trans. PAMI, 4, pp.
363–369, 1982

McInerney, T. and Terzopolous, D., Deformable Models in Medical Image Analysis, a Survey,
Med. Image Analysis, 1(2), pp. 91–108, 1996

Malladi, R., Sethian, J. A. and Vemuri, B. C., Shape Modeling with Front Propagation: A Level
Set Approach, IEEE Trans. PAMI, 17(2), pp. 158–175, 1995

Matthews, I. and Baker, S., Active Appearance Models Revisited, Int. J. Comput. Vision, 60(2),
pp. 135–164, 2004

Mumford, D. and Shah, J., Optimal Approximation by Piecewise Smooth Functions and Asso-
ciated Variational Problems, Communs Pure Applied Math., 42, pp. 577–685, 1989

Niblack, C. W., Gibbons, P. B. and Capson, D. W., Generating skeletons and centerlines
from the distance transform, CVGIP: Graphical Models and Image Processing, 54(5),
pp. 420–437, 1992

Osher, S. J. and Paragios, N. (eds), Geometric Level Set Methods in Imaging, Vision and
Graphics, Springer, New York, 2003

Osher, S. J. and Sethian, J., Eds., Fronts Propagating with Curvature Dependent Speed:
Algorithms Based on the Hamilton–Jacobi Formulation, J. Computational Physics, 79, pp.
12–49, 1988

van Otterloo, P. J., A Contour-Oriented Approach to Shape Analysis, Prentice Hall International
(UK), Hemel Hempstead, 1991

Parsons, C. J. and Nixon, M. S., Introducing Focus in the Generalized Symmetry Operator,
IEEE Signal Process. Lett., 6(1), 1999

Peterfreund, N., Robust Tracking of Position and Velocity, IEEE Trans. PAMI, 21(6), pp.
564–569, 1999

Press, W. H., Teukolsky, S. A., Vettering, W. T. and Flannery, B. P., Numerical Recipes in
C – The Art of Scientific Computing, 2nd edn, Cambridge University Press, Cambridge, 1992

Reisfeld, D., The Constrained Phase Congruency Feature Detector: Simultaneous Localization,
Classification and Scale Determination, Pattern Recog. Lett., 17(11), pp. 1161–1169, 1996

Reisfeld, D., Wolfson, H. and Yeshurun, Y., Context-Free Attentional Operators: The General-
ized Symmetry Transform, Int. J. Comput. Vision, 14, pp. 119–130, 1995

Ronfard, R., Region-based Strategies for Active Contour Models, Int. J. Comput. Vision, 13(2),
pp. 229–251, 1994

Sethian, J. A., Level Set Methods: Evolving Interfaces in Computational Geometry,
Fluid Mechanics, Computer Vision, and Materials Science, Cambridge University Press,
Cambridge, 1996

Sethian, J., Level Set Methods and Fast Marching Methods, Cambridge University Press,
New York, 1999

Siddiqi, K., Lauziere, Y., Tannenbaum, A. and Zucker, S., Area and Length Minimizing Flows
for Shape Segmentation, IEEE Trans. Image Process., 7(3), pp. 433–443, 1998

Trier, O. D., Jain, A. K. and Taxt, T., Feature Extraction Methods for Character Recognition –
A Survey, Pattern Recog., 29(4), pp. 641–662, 1996

Vangool, L., Moons, T., Ungureanu, D. and Oosterlinck, A., The Characterization and Detection
of Skewed Symmetry, Comput. Vision Image Understand., 61(1), pp. 138–150, 1995

Waite, J. B. and Welsh, W. J., Head Boundary Location Using Snakes, Br. Telecom J., 8(3),
pp. 127–136, 1990

Wang, Y. F. and Wang, J. F., Surface Reconstruction using Deformable Models with Interior
and Boundary Constraints, IEEE Trans. PAMI, 14(5), pp. 572–579, 1992

278 Feature Extraction and Image Processing

Weickert, J., Ter Haar Romeny, B. M. and Viergever, M. A., Efficient and Reliable Schemes
for Nonlinear Diffusion Filtering, IEEE Trans. Image Process., 7(3), pp. 398–410, 1998

Williams, D. J. and Shah, M., A Fast Algorithm for Active Contours and Curvature Estimation,
CVGIP: Image Understand., 55(1), pp. 14–26, 1992

Xie, X., and Mirmehdi, M., RAGS: Region-Aided Geometric Snake, IEEE Trans. Image Process,
13(5), pp. 640–652, 2004

Xu, C. and Prince, J. L., Snakes, Shapes, and Gradient Vector Flow, IEEE Trans. Image Process,
7(3), 359–369, 1998

Xu, C., Yezzi, A. and Prince, J. L., On the Relationship Between Parametric and Geometric
Active Contours and its Applications, Proc. 34th Asimolar Conf. Sig. Sys. Comput., Pacific
Grove, CA, pp. 483–489, 2000

Xu, G., Segawa, E. and Tsuji, S., Robust Active Contours with Insensitive Parameters, Pattern
Recog., 27(7), pp. 879–884, 1994

Yuille, L., Deformable Templates for Face Recognition, J. Cognitive Neurosci., 3(1), pp. 59–70,
1991

Zabrodsky, H., Peleg, S. and Avnir, D., Symmetry as a Continuous Feature, IEEE Trans. PAMI,
17(12), pp. 1154–1166, 1995

Flexible shape extraction (snakes and other techniques) 279

This page intentionally left blank

. 7 .

Object description

7.1 Overview

Objects are represented as a collection of pixels in an image. Thus, for purposes of recognition we
need to describe the properties of groups of pixels. The description is often just a set of numbers:
the object’s descriptors. From these, we can compare and recognize objects by simply matching
the descriptors of objects in an image against the descriptors of known objects. However, to
be useful for recognition, descriptors should have four important properties. First, they should
define a complete set. That is, two objects must have the same descriptors if and only if they have
the same shape. Secondly, they should be congruent. As such, we should be able to recognize
similar objects when they have similar descriptors. Thirdly, it is convenient that they have
invariant properties. For example, rotation-invariant descriptors will be useful for recognizing
objects whatever their orientation. Other important invariance properties include scale and
position and also invariance to affine and perspective changes. These last two properties are very
important when recognizing objects observed from different viewpoints. In addition to these
three properties, the descriptors should be a compact set. Namely, a descriptor should represent
the essence of an object in an efficient way. That is, it should only contain information about
what makes an object unique, or different from the other objects. The quantity of information
used to describe this characterization should be less than the information necessary to have a
complete description of the object itself. Unfortunately, there is no set of complete and compact
descriptors to characterize general objects. Thus, the best recognition performance is obtained
by carefully selected properties. As such, the process of recognition is strongly related to each
particular application with a particular type of objects.

In this chapter, we present the characterization of objects by two forms of descriptors.
These descriptors are summarized in Table 7.1. Region and shape descriptors characterize
an arrangement of pixels within the area and the arrangement of pixels in the perimeter or
boundary, respectively. This region versus perimeter kind of representation is common in
image analysis. For example, edges can be located by region growing (to label area) or by
differentiation (to label perimeter), as covered in Chapter 4. There are many techniques that can
be used to obtain descriptors of an object’s boundary. Here, we shall just concentrate on three
forms of descriptors: chain codes and two forms based on Fourier characterization. For region
descriptors we shall distinguish between basic descriptors and statistical descriptors defined by
moments.

281

Table 7.1 Overview of Chapter 7

Main topic Sub topics Main points

Boundary
descriptions

How to determine the boundary and the
region it encloses. How to form a description
of the boundary and necessary properties in
that description. How we describe a
curve/boundary by Fourier approaches.

Basic approach: chain codes. Fourier
descriptors: discrete approximations;
cumulative angular function and
elliptic Fourier descriptors.

Region
descriptors

How we describe the area of a shape. Basic
shape measures: heuristics and properties.
Describing area by statistical moments: need
for invariance and more sophisticated
descriptions. What moments describe, and
reconstruction from the moments.

Basic shape measures: area; perimeter;
compactness; dispersion. Moments:
basic; centralized; invariant; Zernike.
Properties and reconstruction.

7.2 Boundary descriptions

7.2.1 Boundary and region

A region usually describes contents (or interior points) that are surrounded by a boundary (or
perimeter), which is often called the region’s contour. The form of the contour is generally
referred to as its shape. A point can be defined to be on the boundary (contour) if it is part of
the region and there is at least one pixel in its neighbourhood that is not part of the region. The
boundary itself is usually found by contour following: we first find one point on the contour
and then progress round the contour either in a clockwise direction, or anticlockwise, finding
the nearest (or next) contour point.

To define the interior points in a region and the points in the boundary, we need to con-
sider neighbouring relationships between pixels. These relationships are described by means of
connectivity rules. There are two common ways of defining connectivity: four-way (or four-
neighbourhood) where only immediate neighbours are analysed for connectivity; or eight-way
(or eight-neighbourhood) where all the eight pixels surrounding a chosen pixel are analysed for
connectivity. These two types of connectivity are illustrated in Figure 7.1. In this figure, the pixel

(a) Four-way connectivity (b) Eight-way connectivity

Figure 7.1 Main types of connectivity analysis

282 Feature Extraction and Image Processing

is shown in light grey and its neighbours in dark grey. In four-way connectivity (Figure 7.1a), a
pixel has four neighbours in the directions north, east, south and west, its immediate neighbours.
The four extra neighbours in eight-way connectivity (Figure 7.1b) are those in the directions
north-east, south-east, south-west and north-west, the points at the corners.

A boundary and a region can be defined using both types of connectivity and they are always
complementary. That is, if the boundary pixels are connected in four-way, the region pixels
will be connected in eight-way and vice versa. This relationship can be seen in the example
shown in Figure 7.2. In this figure, the boundary is shown in dark grey and the region in light
grey. We can observe that for a diagonal boundary, the four-way connectivity gives a staircase
boundary, whereas eight-way connectivity gives a diagonal line formed from the points at the
corners of the neighbourhood. Notice that all the pixels that form the region in Figure 7.2(b)
have four-way connectivity, while the pixels in Figure 7.2(c) have eight-way connectivity. This
is complementary to the pixels in the border.

(a) Original region (b) Boundary and region for
four-way connectivity

(c) Boundary and region for
eight-way connectivity

Figure 7.2 Boundaries and regions

7.2.2 Chain codes

To obtain a representation of a contour, we can simply store the coordinates of a sequence of
pixels in the image. Alternatively, we can just store the relative position between consecutive
pixels. This is the basic idea behind chain codes. Chain codes are one of the oldest techniques in
computer vision, originally introduced in the 1960s (Freeman, 1961; an excellent review came
later: Freeman, 1974). Essentially, the set of pixels in the border of a shape is translated into a
set of connections between them. Given a complete border, one that is a set of connected points,
then starting from one pixel we need to be able to determine the direction in which the next
pixel is to be found. Namely, the next pixel is one of the adjacent points in one of the major
compass directions. Thus, the chain code is formed by concatenating the number that designates
the direction of the next pixel. That is, given a pixel, the successive direction from one pixel to

Object description 283

the next pixel becomes an element in the final code. This is repeated for each point until the
start point is reached when the (closed) shape is completely analysed.

Directions in four-way and eight-way connectivity can be assigned as shown in Figure 7.3.
The chain codes for the example region in Figure 7.2(a) are shown in Figure 7.4. Figure 7.4(a)
shows the chain code for the four-way connectivity. In this case, we have that the direction from
the start point to the next is south (i.e. code 2), so the first element of the chain code describing
the shape is 2. The direction from point P1 to the next, P2, is east (code 1), so the next element
of the code is 1. The next point after P2 is P3, which is south, giving a code 2. This coding
is repeated until P23, which is connected eastwards to the starting point, so the last element
(the 12th element) of the code is 1. The code for eight-way connectivity shown in Figure 7.4(b)
is obtained in an analogous way, but the directions are assigned according to the definition in
Figure 7.3(b). Notice that the length of the code is shorter for this connectivity, given that the
number of boundary points is smaller for eight-way connectivity than it is for four-way.

(a) Four-way connectivity (b) Eight-way connectivity

North
0

North
0

North
West

7

South
West

5

South
East

3

North
East

1

West
3

West
6

East
1

East
2

South
2

South
4

Origin Origin

Figure 7.3 Connectivity in chain codes

{2,1,2,2,1,2,2,3,2,2,3,0,3,0,3,0,3,0,0,1,0,1,0,1} code = {3,4,3,4,4,5,4,6,7,7,7,0,0,1,1,2}

(a) Chain code given four-way connectivity (b) Chain code given eight-way connectivity

P23

P21

P19 P20

P18

P17 P16

P22 P1 P1P2

P2P3

P3P4

P4

P5

P5

P6

P6

P7

P7

P8

P8

P9 P9

P10

P10

P11

P11

P12

P12

P13

P13

P14

P14P14

P15

P15Start Start

Figure 7.4 Chain codes by different connectivity

284 Feature Extraction and Image Processing

Clearly, this code will be different when the start point changes. Accordingly, we need start
point invariance. This can be achieved by considering the elements of the code to constitute the
digits in an integer. Then, we can shift the digits cyclically (replacing the least significant digit
with the most significant one, and shifting all other digits left one place). The smallest integer
is returned as the start point invariant chain code description. This is illustrated in Figure 7.5,
where the initial chain code is that from the shape in Figure 7.4. Here, the result of the first
shift is given in Figure 7.5(b); this is equivalent to the code that would have been derived by
using point P1 as the starting point. The result of two shifts (Figure 7.5c) is the chain code
equivalent to starting at point P2, but this is not a code corresponding to the minimum integer.
The minimum integer code (Figure 7.5d) is the minimum of all the possible shifts and is the
chain code that would have been derived by starting at point P11. That fact could not be used
in application since we would need to find P11; it is much easier to shift to achieve a minimum
integer.

code = {3,4,3,4,4,5,4,6,7,7,7,0,0,1,1,2} code = {4,3,4,4,5,4,6,7,7,7,0,0,1,1,2,3}

code = {0,0,1,1,2,3,4,3,4,4,5,4,6,7,7,7}

(a) Initial chain code

(c) Result of two shifts

(b) Result of one shift

(d) Minimum integer chain code

code = {3,4,4,5,4,6,7,7,7,0,0,1,1,2,3,4}

Figure 7.5 Start point invariance in chain codes

In addition to starting point invariance, we can obtain a code that does not change with
rotation. This can be achieved by expressing the code as a difference of chain code, since relative
descriptions remove rotation dependence. Change of scale can complicate matters greatly, since
we can end up with a set of points that is of different size to the original set. As such, the
boundary needs to be resampled before coding. This is a tricky issue. Furthermore, noise can have
drastic effects. If salt and pepper noise were to remove, or to add, some points the code would
change. Such problems can lead to great difficulty with chain codes. However, their main virtue
is their simplicity and as such they remain a popular technique for shape description. Further
developments of chain codes have found application with corner detectors (Liu and Srinath,
1990; Seeger and Seeger, 1994). However, the need to be able to handle noise, the requirement
of connectedness, and the local nature of description motivate alternative approaches. Noise can
be reduced by filtering, which leads back to the Fourier transform, with the added advantage
of a global description.

7.2.3 Fourier descriptors

Fourier descriptors, often attributed to early work by Cosgriff (1960), allow us to bring the
power of Fourier theory to shape description. The main idea is to characterize a contour by a set
of numbers that represent the frequency content of a whole shape. Based on frequency analysis,
we can select a small set of numbers (the Fourier coefficients) that describe a shape rather than
any noise (i.e. the noise affecting the spatial position of the boundary pixels). The general recipe
to obtain a Fourier description of the curve involves two main steps. First, we have to define a

Object description 285

representation of a curve. Secondly, we expand it using Fourier theory. We can obtain alternative
flavours by combining different curve representations and different Fourier expansions. Here,
we shall consider Fourier descriptors of angular and complex contour representations. However,
Fourier expansions can be developed for other curve representations (van Otterloo, 1991).

In addition to the curve’s definition, a factor that influences the development and properties
of the description is the choice of Fourier expansion. If we consider that the trace of a curve
defines a periodic function, we can opt to use a Fourier series expansion. However, we could
also consider that the description is not periodic. Thus, we could develop a representation based
on the Fourier transform. In this case, we could use alternative Fourier integral definitions. Here,
we will develop the presentation based on expansion in Fourier series. This is the common way
used to describe shapes in pattern recognition.

It is important to notice that although a curve in an image is composed of discrete pixels,
Fourier descriptors are developed for continuous curves. This is convenient since it leads to a
discrete set of Fourier descriptors. We should also remember that the pixels in the image are
the sampled points of a continuous curve in the scene. However, the formulation leads to the
definition of the integral of a continuous curve. In practice, we do not have a continuous curve,
but a sampled version. Thus, the expansion is approximated by means of numerical integration.

7.2.3.1 Basis of Fourier descriptors
In the most basic form, the coordinates of boundary pixels are x and y point coordinates. A
Fourier description of these essentially gives the set of spatial frequencies that fit the boundary
points. The first element of the Fourier components (the d.c. component) is simply the average
value of the x and y coordinates, giving the coordinates of the centre point of the boundary,
expressed in complex form. The second component essentially gives the radius of the circle
that best fits the points. Accordingly, a circle can be described by its zero-order and first order
components (the d.c. component and first harmonic). The higher order components increasingly
describe detail, as they are associated with higher frequencies.

This is illustrated in Figure 7.6. Here, the Fourier description of the ellipse in Figure 7.6(a) is
the frequency components in Figure 7.6(b), depicted in logarithmic form for purposes of display.
The Fourier description has been obtained by using the coordinates of the ellipse boundary
points. Here we can see that the low-order components dominate the description, as to be

log Fcvn

n

(a) Original ellipse (b) Fourier components

Figure 7.6 An ellipse and its Fourier description

286 Feature Extraction and Image Processing

expected for such a smooth shape. In this way, we can derive a set a numbers that can be used
to recognize the boundary of a shape: a similar ellipse should give a similar set of numbers,
whereas a completely different shape will result in a completely different set of numbers.

We do, however, need to check the result. One way is to take the descriptors of a circle,
since the first harmonic should be the circle’s radius. A better way is to reconstruct the
shape from its descriptors; if the reconstruction matches the original shape then the description
would appear correct. We can reconstruct a shape from this Fourier description since the
descriptors are regenerative. The zero-order component gives the position (or origin) of a
shape. The ellipse can be reconstructed by adding in all spatial components, to extend and
compact the shape along the x- and y-axes, respectively. By this inversion, we return to the
original ellipse. When we include the zero and first descriptor, then we reconstruct a circle, as
expected, shown in Figure 7.7(b). When we include all Fourier descriptors the reconstruction,
Figure 7.7(c) is very close to the original Figure 7.7(a) with slight differences due to discretization
effects.

(a) Original ellipse (b) Reconstruction by zero
and first order components

(c) Reconstruction by all
Fourier components

Figure 7.7 Reconstructing an ellipse from a Fourier description

This is only an outline of the basis to Fourier descriptors, since we have yet to consider
descriptors that give the same description whatever an object’s position, scale and rotation.
Here we have just considered an object’s description that is achieved in a manner that allows
for reconstruction. To develop practically useful descriptors, we need to consider more basic
properties. As such, we first turn to the use of Fourier theory for shape description.

7.2.3.2 Fourier expansion
To define a Fourier expansion, we can start by considering that a continuous curve c�t� can be
expressed as a summation of the form

c�t� =∑
k

ckfk�t� (7.1)

where ck defines the coefficients of the expansion, and the collection of functions fk�t� defines
the basis functions. The expansion problem centres on finding the coefficients given a set of
basis functions. This equation is very general and different basis functions can also be used. For
example, fk�t� can be chosen such that the expansion defines a polynomial. Other bases define

Object description 287

splines, Lagrange and Newton interpolant functions. A Fourier expansion represents periodic
functions by a basis defined as a set of infinite complex exponentials. That is,

c�t� =
�∑

k=−�
cke

jk�t (7.2)

Here, � defines the fundamental frequency and it is equal to T/2�, where T is the period of
the function. The main feature of the Fourier expansion is that it defines an orthogonal basis.
This simply means that

∫ T

0
fk�t�fj�t�dt = 0 (7.3)

for k �= j. This property is important for two main reasons. First, it ensures that the expansion
does not contain redundant information (each coefficient is unique and contains no information
about the other components). Secondly, it simplifies the computation of the coefficients. That
is, to solve for ck in Equation 7.1, we can simply multiply both sides by fk�t� and perform
integration. Thus, the coefficients are given by

ck =
∫ T

0
c�t�fk�t�

/∫ T

0
f 2

k �t� (7.4)

By considering the definition in Equation 7.2 we have:

ck = 1
T

∫ T

0
c�t�e−jk�t (7.5)

In addition to the exponential form given in Equation 7.2, the Fourier expansion can be expressed
in trigonometric form. This form shows that the Fourier expansion corresponds to the summation
of trigonometric functions that increase in frequency. It can be obtained by considering that

c�t� = c0 +
�∑

k=1

(
cke

jk�t + c−ke
−jk�t

)
(7.6)

In this equation the values of ejk�t and e−jk�t define a pairs of complex conjugate vectors. Thus,
ck and c−k describe a complex number and its conjugate. Let us define these numbers as

ck = ck�1 − jck�2 and c−k = ck�1 + jck�2 (7.7)

By substitution of this definition in Equation 7.6 we obtain

c�t� = c0 +2
�∑

k=1

(
ck�1

(
ejk�t + e−jk�t

2

)
+ jck�2

(−ejk�t + e−jk�t

2

))
(7.8)

That is,

c�t� = c0 +2
�∑

k=1

�ck�1 cos�k�t�+ ck�2 sin�k�t�� (7.9)

If we define

ak = 2ck�1 and bk = 2ck�2 (7.10)

we obtain the standard trigonometric form given by

c�t� = a0

2
+

�∑
k=1

�ak cos �k�t�+bk sin �k�t�� (7.11)

288 Feature Extraction and Image Processing

The coefficients of this expansion, ak and bk, are known as the Fourier descriptors. These
control the amount of each frequency that contributes to make up the curve. Accordingly, these
descriptors can be said to describe the curve, since they do not have the same values for different
curves. Notice that according to Equations 7.7 and 7.10 the coefficients of the trigonometric
and exponential form are related by

ck = ak − jbk

2
and c−k = ak + jbk

2
(7.12)

The coefficients in Equation 7.11 can be obtained by considering the orthogonal property in
Equation 7.3. Thus, one way to compute values for the descriptors is

ak = 2
T

∫ T

0
c �t� cos �k�t� dt and bk = 2

T

∫ T

0
c �t� sin �k�t� dt (7.13)

To obtain the Fourier descriptors, a curve can be represented by the complex exponential form
of Equation 7.2 or by the sin/cos relationship of Equation 7.11. The descriptors obtained by
using either of the two definitions are equivalent, and they can be related by the definitions of
Equation 7.12. In general, Equation 7.13 is used to compute the coefficients since it has a more
intuitive form. However, some works have considered the complex form (e.g. Granlund, 1972).
The complex form provides an elegant development of rotation analysis.

7.2.3.3 Shift invariance
Chain codes required special attention to give start point invariance. Let us see whether that
is required here. The main question is whether the descriptors will change when the curve is
shifted. In addition to Equations 7.2 and 7.11, a Fourier expansion can be written in another
sinusoidal form. If we consider that

�ck� =
√

a2
k +b2

k and �k = a tan−1 �bk/ak� (7.14)

then the Fourier expansion can be written as

c �t� = a0

2
+

�∑
k=0

�ck� cos �k�t +�k� (7.15)

Here, �ck� is the amplitude and �k is the phase of the Fourier coefficient. An important property of
the Fourier expansion is that �ck� does not change when the function c�t� is shifted (i.e. translated),
as in Section 2.6.1. This can be observed by considering the definition of Equation 7.13 for a
shifted curve c�t +��. Here, � represents the shift value. Thus,

a′
k = 2

T

∫ T

0
c �t′ +�� cos �k�t′� dt and b′

k = 2
T

∫ T

0
c �t′ +�� sin �k�t′� dt (7.16)

By defining a change of variable by t = t′ +	, we have

a′
k = 2

T

∫ T

0
c �t� cos �k�t −k��� dt and b′

k = 2
T

∫ T

0
c �t� sin �k�t −k��� dt (7.17)

After some algebraic manipulation we obtain

a′
k = ak cos �k���+bk sin �k��� and b′

k = bk cos �k���−ak sin �k��� (7.18)

Object description 289

The amplitude �c′
k� is given by

�c′
k� =

√
�ak cos �k���+bk sin �k����2 + �bk cos �k���−ak sin �k����2 (7.19)

That is,

�c′
k� =

√
a2

k +b2
k (7.20)

Thus, the amplitude is independent of the shift �. Although shift invariance could be incorrectly
related to translation invariance, as we shall see, this property is related to rotation invariance
in shape description.

7.2.3.4 Discrete computation
Before defining Fourier descriptors, we must consider the numerical procedure necessary to
obtain the Fourier coefficients of a curve. The problem is that Equations 7.11 and 7.13 are
defined for a continuous curve. However, given the discrete nature of the image, the curve c�t�
will be described by a collection of points. This discretization has two important effects. First, it
limits the number of frequencies in the expansion. Secondly, it forces numerical approximation
to the integral defining the coefficients.

Figure 7.8 shows an example of a discrete approximation of a curve. Figure 7.8(a) shows a
continuous curve in a period, or interval, T . Figure 7.8(b) shows the approximation of the curve
by a set of discrete points. If we try to obtain the curve from the sampled points, we will find
that the sampling process reduces the amount of detail. According to the Nyquist theorem, the
maximum frequency fc in a function is related to the sample period
 by

 = 1
2fc

(7.21)

(a) Continuous curve (b) Discrete approximation

c (t)

T0

Sampling points

Fourier approximation

c (t)

T0 τ

Figure 7.8 Example of a discrete approximation

Thus, if we have m sampling points, then the sampling period is equal to
 = T/m. Accord-
ingly, the maximum frequency in the approximation is given by

fc = m

2T
(7.22)

290 Feature Extraction and Image Processing

Each term in Equation 7.11 defines a trigonometric function at frequency fk = k/T . By compar-
ing this frequency with the relationship in Equation 7.15, we have that the maximum frequency
is obtained when

k = m

2
(7.23)

Thus, to define a curve that passes through the m sampled points, we need to consider only
m/2 coefficients. The other coefficients define frequencies higher than the maximum frequency.
Accordingly, the Fourier expansion can be redefined as

c �t� = a0

2
+

m/2∑
k=1

�ak cos �k�t�+bk sin �k�t�� (7.24)

In practice, Fourier descriptors are computed for fewer coefficients than the limit of m/2.
This is because the low-frequency components provide most of the features of a shape. High
frequencies are easily affected by noise and only represent detail that is of little value to
recognition. We can interpret Equation 7.22 the other way around: if we know the maximum
frequency in the curve, then we can determine the appropriate number of samples. However,
the fact that we consider c�t� to define a continuous curve implies that to obtain the coefficients
in Equation 7.13, we need to evaluate an integral of a continuous curve. The approximation of
the integral is improved by increasing the number of sampling points. Thus, as a practical rule,
to improve accuracy, we must try to have a large number of samples even if it is theoretically
limited by the Nyquist theorem.

Our curve is only a set of discrete points. We want to maintain a continuous curve analysis to
obtain a set of discrete coefficients. Thus, the only alternative is to approximate the coefficients
by approximating the value of the integrals in Equation 7.13. We can approximate the value of the
integral in several ways. The most straightforward approach is to use a Riemann sum. Figure 7.9
illustrates this approach. In Figure 7.9(b), the integral is approximated as the summation of
the rectangular areas. The middle point of each rectangle corresponds to each sampling point.
Sampling points are defined at the points whose parameter is t = i
, where i is an integer
between 1 and m. We consider that ci defines the value of the function at the sampling point i.
That is,

ci = c �i
� (7.25)

(a) Continuous curve

Σ(T/m)ci cos(k ωi τ)

0 τ T

Σ(T/m)ci cos(k ωi τ)

τ0 T

c (t)cos(k ωt)

0 T

c (t)cos(k ωt)dt

(b) Riemann sum (c) Linear interpolation

Figure 7.9 Integral approximation

Object description 291

Thus, the height of the rectangle for each pair of coefficients is given by ci cos�k�i
� and
ci sin�k�i
�. Each interval has a length
 = T/m. Thus,

∫ T

0
c�t� cos�k�t�dt ≈

m∑
i=1

T

m
ci cos�k�i
�

and
∫ T

0
c�t� sin�k�t�dt ≈

m∑
i=1

T

m
ci sin�k�i
� (7.26)

Accordingly, the Fourier coefficients are given by

ak = 2
m

m∑
i=1

ci cos�k�i
� and bk = 2
m

m∑
i=1

ci sin�k�i
� (7.27)

Here, the error due to the discrete computation will be reduced with increase in the number of
points used to approximate the curve. These equations correspond to a linear approximation to
the integral. This approximation is shown in Figure 7.9(c). In this case, the integral is given by
the summation of the trapezoidal areas. The sum of these areas leads to Equation 7.26. Notice
that b0 is zero and a0 is twice the average of the ci values. Thus, the first term in Equation 7.24
is the average (or centre of gravity) of the curve.

7.2.3.5 Cumulative angular function
Fourier descriptors can be obtained by using many boundary representations. In a straightforward
approach we could consider, for example, that t and c�t� define the angle and modulus of a
polar parameterization of the boundary. However, this representation is not very general. For
some curves, the polar form does not define a single valued curve, and thus we cannot apply
Fourier expansions. A more general description of curves can be obtained by using the angular
function parameterization. This function was defined in Chapter 4 in the discussion about
curvature.

The angular function ��s� measures the angular direction of the tangent line as a function
of arc length. Figure 7.10 illustrates the angular direction at a point in a curve. In (Cosgriff,
1960) this angular function was used to obtain a set of Fourier descriptors. However, this first
approach to Fourier characterization has some undesirable properties. The main problem is that
the angular function has discontinuities even for smooth curves. This is because the angular
direction is bounded from zero to 2�. Thus, the function has discontinuities when the angular

y

x

z (s)

z (0)

ϕ (s) ϕ (0)

γ (s)

Figure 7.10 Angular direction

292 Feature Extraction and Image Processing

direction increases to a value of more than 2� or decreases to be less than zero (since it will
change abruptly to remain within bounds). In Zahn and Roskies’ (1972) approach, this problem
is eliminated by considering a normalized form of the cumulative angular function.

The cumulative angular function at a point in the curve is defined as the amount of angular
change from the starting point. It is called cumulative, since it represents the summation of the
angular change to each point. Angular change is given by the derivative of the angular function
��s�. We discussed in Chapter 4 that this derivative corresponds to the curvature ��s�. Thus,
the cumulative angular function at the point given by �s� can be defined as

�s� =
∫ S

0
��r�dr −��0� (7.28)

Here, the parameter s takes values from zero to L (i.e. the length of the curve). Thus, the initial
and final values of the function are �0� = 0 and �L� = −2�, respectively. It is important to
notice that to obtain the final value of −2�, the curve must be traced in a clockwise direction.
Figure 7.10 illustrates the relation between the angular function and the cumulative angular
function. In the figure, z�0� defines the initial point in the curve. The value of �s� is given
by the angle formed by the inclination of the tangent to z�0� and that of the tangent to the
point z�s�. If we move the point z�s� along the curve, this angle will change until it reaches the
value of −2�. In Equation 7.28, the cumulative angle is obtained by adding the small angular
increments for each point.

The cumulative angular function avoids the discontinuities of the angular function. However,
it still has two problems. First, it has a discontinuity at the end. Secondly, its value depends on
the length of curve analysed. These problems can be solved by defining the normalized function
∗�t�, where

∗�t� =

(
L

2�
t

)
+ t (7.29)

Here, t takes values from 0 to 2�. The factor L/2� normalizes the angular function such that
it does not change when the curve is scaled. That is, when t = 2�, the function evaluates the
final point of the function �s�. The term t is included to avoid discontinuities at the end of the
function (remember that the function is periodic). That is, it makes that ∗ �0� = ∗ �2�� = 0.
In addition, it causes the cumulative angle for a circle to be zero. This is consistent as a
circle is generally considered the simplest curve and, intuitively, simple curves will have simple
representations.

Figure 7.11 illustrates the definitions of the cumulative angular function with two examples.
Figure 7.11(b)–(d) define the angular functions for a circle in Figure 7.11(a). Figure 7.11(f)–(h)
define the angular functions for the rose in Figure 7.11(e). Figure 7.11(b) and (f) define the
angular function ��s�. We can observe the typical toroidal form. Once the curve is greater than 2�
there is a discontinuity while its value returns to zero. The position of the discontinuity depends
on the selection of the starting point. The cumulative function �s� shown in Figure 7.11(c)
and (g) inverts the function and eliminates discontinuities. However, the start and end points are
not the same. If we consider that this function is periodic, there is a discontinuity at the end of
each period. The normalized form ∗�t� shown in Figure 7.11(d) and (h) has no discontinuity
and the period is normalized to 2�.

The normalized cumulative functions are very nice indeed. However, it is tricky to compute
them from images. In addition, since they are based on measures of changes in angle, they
are very sensitive to noise and difficult to compute at inflexion points (e.g. corners). Code 7.1
illustrates the computation of the angular functions for a curve given by a sequence of pixels.

Object description 293

(a) Curve (e) Curve

(b) Angular function (f) Angular function

(c) Cumulative (g) Cumulative

(d) Normalized (h) Normalized

250

250

200

200

150

150

100

100

50

50
0

0

6

4

2

0

250 300200150100500

1

0

–1

–2

–3

–4

–5

–6

–7
250 300200150100500

6

4

2

0

–2

–4

–6
0 1 2 3 4 5 6

250

200

150

100

50

0
250200150100500

6

4

2

0

0 100 200 300 400

1
0

–1

–2

–3

–4

–5

–6

–7
0 100 200 300 400

6

4

2

0

–2

–4

–6
0 1 2 3 4 5 6

Figure 7.11 Angular function and cumulative angular function

294 Feature Extraction and Image Processing

%Angular function
function AngFuncDescrp(curve)

%Function
X=curve(1,:); Y=curve(2,:);
M=size(X,2); %number points

%Arc length
 S=zeros(1,m);
 S(1)=sqrt((X(1)-X(m))^2+(Y(1)-Y(m))^2);
 for i=2:m

S(i)=S(i-1)+sqrt((X(i)-X(i-1))^2+(Y(i)-Y(i-1))^2);
End
L=S(m);

%Normalized Parameter
t=(2*pi*S)/L;

%Graph of the curve
subplot(3,3,1);
plot(X,Y);
mx=max(max(X),max(Y))+10;
axis([0,mx,0,mx]); axis square; %Aspect ratio

%Graph of the angular function y’/x’

subplot(3,3,2);

avrg=10;
A=zeros(1,m);
for i=1:m

x1=0; x2=0; y1=0; y2=0;
for j=1:avrg

pa=i-j; pb=i+j;
if(pa<1) pa=m+pa; end

end

if(pb>m) pb=pb-m; end
x1=x1+X(pa); y1=y1+Y(pa);
x2=x2+X(pb); y2=y2+Y(pb);

x1=x1/avrg; y1=y1/avrg;
x2=x2/avrg; y2=y2/avrg;
dx=x2-x1; dy=y2-y1;

if dx>0 & dy>0
A(i)=atan(dy/dx);
elseif dx>0 & dy<0
A(i)=atan(dy/dx)+2*pi;

else
A(i)=atan(dy/dx)+pi;

end
end

if(dx==0) dx=.00001; end

Object description 295

plot(S,A);
axis([0,S(m),-1,2*pi+1]);

%Cumulative angular G(s)=-2pi
G=zeros(1,m);
for i=2:m

 d=min(abs(A(i)-A(i-1)),abs(abs(A(i)-A(i-1))-2*pi));

if d>.5
G(i)=G(i-1);

elseif (A(i)-A(i-1))<-pi
G(i)=G(i-1)-(A(i)-A(i-1)+2*pi);

elseif (A(i)-A(i-1))>pi
G(i)=G(i-1)-(A(i)-A(i-1)-2*pi);

else
G(i)=G(i-1)-(A(i)-A(i-1));

end
end

subplot(3,3,3);

plot(S,G);
axis([0,S(m),-2*pi-1,1]);

%Cumulative angular Normalized
F=G+t;

subplot(3,3,4);
plot(t,F);
axis([0,2*pi,-2*pi,2*pi]);

Code 7.1 Angular functions

The matrices X and Y store the coordinates of each pixel. The code has two important steps.
First, the computation of the angular function stored in the matrix A. In general, if we use
only the neighbouring points to compute the angular function, then the resulting function is
useless owing to noise and discretization errors. Thus, it is necessary to include a procedure
that can obtain accurate measures. For purposes of illustration, in the presented code we aver-
age the position of pixels to filter out noise; however, other techniques such as the fitting
process discussed in Section 4.8.2 can provide a suitable alternative. The second important
step is the computation of the cumulative function. In this case, the increment in the angle
cannot be computed as the simple difference between the current and precedent angular values.
This will produce as a result a discontinuous function. Thus, we need to consider the peri-
odicity of the angles. In the code, this is achieved by checking the increment in the angle.
If it is greater than a threshold, we consider that the angle has exceeded the limits of zero
or 2�.

Figure 7.12 shows an example of the angular functions computed using Code 7.1, for a discrete
curve. These are similar to those in Figure 7.11(a)–(d), but show noise due to discretization which

296 Feature Extraction and Image Processing

250

200

150

100

50

0
200 250150100500

1

0

–1

–2

–3

–4

–5

–6

–7
200 250 300150100500

6

4

2

0

–2

–4

–6
0 1 2 3 4 5 6

6

4

2

0

200 250 300150100500

(a) Curve (b) Angular function

(c) Cumulative (d) Normalized

Figure 7.12 Discrete computation of the angular functions

produces a ragged effect on the computed values. The effects of noise will be reduced if we use
more points to compute the average in the angular function. However, this reduces the level of
detail in the curve. It also makes it more difficult to detect when the angle exceeds the limits
of zero or 2�. In a Fourier expansion, noise will affect the coefficients of the high-frequency
components, as seen in Figure 7.12(d).

To obtain a description of the curve we need to expand ∗�t� in Fourier series. In a straight-
forward approach we can obtain ∗�t� from an image and apply the definition in Equation 7.27
for c�t� = ∗�t�. However, we can obtain a computationally more attractive development with
some algebraically simplifications. By considering the form of the integral in Equation 7.13
we have:

a∗
k = 1

�

∫ 2�

0
∗�t� cos�kt�dt and b∗

k = 1
�

∫ 2�

0
∗�t� sin�kt�dt (7.30)

By substitution of Equation 7.29 we obtain

a∗
0 = 1

�

∫ 2�

0
��L/2��t�dt + 1

�

∫ 2�

0
tdt

a∗
k = 1

�

∫ 2�

0
��L/2��t� cos�kt�dt + 1

�

∫ 2�

0
t cos�kt�dt (7.31)

b∗
k = 1

�

∫ 2�

0
��L/2��t� sin�kt�dt + 1

�

∫ 2�

0
t sin�kt�dt

Object description 297

By computing the second integrals of each coefficient, we obtain a simpler form as

a∗
0 = 2� + 1

�

∫ 2�

0
��L/2��t�dt

a∗
k = 1

�

∫ 2�

0
��L/2��t� cos�kt�dt (7.32)

b∗
k = −2

k
+ 1

�

∫ 2�

0
��L/2��t� sin�kt�dt

In an image, we measure distances, thus it is better to express these equations in arc-length
form. For that, we know that s = �L/2��t. Thus,

dt = 2�

L
ds (7.33)

Accordingly, the coefficients in Equation 7.32 can be rewritten as

a∗
0 = 2� + 2

L

∫ L

0
�s�ds

a∗
k = 2

L

∫ L

0
�s� cos

(
2�k

L
s

)
ds (7.34)

b∗
k = −2

k
+ 2

L

∫ L

0
�s� sin

(
2�k

L
s

)
ds

In a similar way to Equation 7.26, the Fourier descriptors can be computed by approximating
the integral as a summation of rectangular areas. This is illustrated in Figure 7.13. Here, the
discrete approximation is formed by rectangles of length
i and height i. Thus,

a∗
0 = 2� + 2

L

m∑
i=1

i
i

a∗
k = 2

L

m∑
i=1

i
i cos
(

2�k

L
si

)
(7.35)

b∗
k = −2

k
+ 2

L

m∑
i=1

i
i sin
(

2�k

L
si

)

(a) Continuous curve (b) Riemann sum

0 T

γ (t)

0 S1 S2 S3 S4τ1 τ2 τ3
T

∫γ (t) Σ γ (t)

Figure 7.13 Integral approximations

298 Feature Extraction and Image Processing

where si is the arc-length at the ith point. Note that

si =
i∑

r=1

r (7.36)

It is important to observe that although the definitions in Equation 7.35 only use the discrete
values of �t�, they obtain a Fourier expansion of ∗�t�. In the original formulation (Zahn and
Roskies, 1972), an alternative form of the summations is obtained by rewriting the coefficients
in terms of the increments of the angular function. In this case, the integrals in Equation 7.34 are
evaluated for each interval. Thus, the coefficients are represented as a summation of integrals
of constant values as

a∗
0 = 2� + 2

L

m∑
i=1

∫ si

si−1

ids

a∗
k = 2

L

m∑
i=1

∫ si

si−1

i cos
(

2�k

L
s

)
ds (7.37)

b∗
k = −2

k
+ 2

L

m∑
i=1

∫ si

si−1

i sin
(

2�k

L
s

)
ds

By evaluating the integral we obtain

a∗
0 = 2� + 2

L

m∑
i=1

i�si − si−1�

a∗
k = 1

�k

m∑
i=1

i

(
sin
(

2�k

L
si

)
− sin

(
2�k

L
si−1

))
(7.38)

b∗
k = −2

k
+ 1

�k

m∑
i=1

i

(
cos

(
2�k

L
si

)
− cos

(
2�k

L
si−1

))

A further simplification can be obtained by considering that Equation 7.28 can be expressed in
discrete form as

i =
i∑

r=1

�r
r −�0 (7.39)

where �r is the curvature (i.e. the difference of the angular function) at the rth point. Thus,

a∗
0 = −2� − 2

L

m∑
i=1

�isi−1

a∗
k = − 1

�k

m∑
i=1

�i
i sin
(

2�k

L
si−1

)
(7.40)

b∗
k = −2

k
− 1

�k

m∑
i=1

�i
i cos
(

2�k

L
si−1

)
+ 1

�k

m∑
i=1

�i
i

Since
m∑

i=1

�i
i = 2� (7.41)

Object description 299

thus,

a∗
0 = −2� − 2

L

m∑
i=1

�isi−1

a∗
k = − 1

�k

m∑
i=1

�i
i sin
(

2�k

L
si−1

)
(7.42)

b∗
k = − 1

�k

m∑
i=1

�i
i cos
(

2�k

L
si−1

)

These equations were originally presented in Zahn and Roskies (1972) and are algebraically
equivalent to Equation 7.35. However, they express the Fourier coefficients in terms of
increments in the angular function rather than in terms of the cumulative angular func-
tion. In practice, both implementations (Equations 7.35 and 7.40) produce equivalent Fourier
descriptors.

It is important to notice that the parameterization in Equation 7.21 does not depend on the
position of the pixels, but only on the change in angular information. That is, shapes in different
position and with different scale will be represented by the same curve ∗�t�. Thus, the Fourier
descriptors obtained are scale and translation invariant. Rotation-invariant descriptors can be
obtained by considering the shift-invariant property of the coefficients’ amplitude. Rotating
a curve in an image produces a shift in the angular function. This is because the rotation
changes the starting point in the curve description. Thus, according to Section 7.2.3.2, the
values

�c∗
k� =

√
�a∗

k�
2 + �b∗

k�
2 (7.43)

provide a rotation-, scale- and translation-invariant description. The function AngFourier
Descrp in Code 7.2 computes the Fourier descriptors in this equation by using the definitions
in Equation 7.35. This code uses the angular functions in Code 7.1.

%Fourier descriptors based on the Angular function
function AngFuncDescrp(curve,n,scale)

%n=number coefficients
%if n=0 then n=m/2
%Scale amplitude output

%Angular functions
AngFuncDescrp(curve);

%Fourier Descriptors
if(n==0) n=floor(m/2); end; %number of coefficients

a=zeros(1,n); b=zeros(1,n); %Fourier coefficients

for k=1:n
a(k)=a(k)+G(1)*(S(1))*cos(2*pi*k*S(1)/L);
b(k)=b(k)+G(1)*(S(1))*sin(2*pi*k*S(1)/L);

300 Feature Extraction and Image Processing

%Graphs
subplot(3,3,7);
bar(a);
axis([0,n,-scale,scale]);

subplot(3,3,8);
bar(b);
axis([0,n,-scale,scale]);

%Rotation invariant Fourier descriptors
CA=zeros(1,n);
for k=1:n

CA(k)=sqrt(a(k)^2+b(k)^2);
end

%Graph of the angular coefficients
subplot(3,3,9);
bar(CA);
axis([0,n,-scale,scale]);

for i=2:m
a(k)=a(k)+G(i)*(S(i)-S(i-1))*cos(2*pi*k*S(i)/L);
b(k)=b(k)+G(i)*(S(i)-S(i-1))*sin(2*pi*k*S(i)/L);

end
a(k)=a(k)*(2/L);
b(k)=b(k)*(2/L)-2/k;

end

Code 7.2 Angular Fourier descriptors

Figure 7.14 shows three examples of the results obtained using the Code 7.2. In each
example, we show the curve, the angular function, the cumulative normalized angular function
and the Fourier descriptors. The curves in Figure 7.14(a) and (e) represent the same object
(the contour of an F-14 fighter), but the curve in Figure 7.14(e) was scaled and rotated. We
can see that the angular function changes significantly, while the normalized function is very
similar but with a remarkable shift due to the rotation. The Fourier descriptors shown in
Figure 7.14(d) and (h) are quite similar since they characterize the same object. We can see a clear
difference between the normalized angular function for the object presented in Figure 7.14(i)
(the contour of a different plane, a B1 bomber). These examples show that Fourier coefficients
are indeed invariant to scale and rotation, and that they can be used to characterize different
objects.

7.2.3.6 Elliptic Fourier descriptors
The cumulative angular function transforms the two-dimensional (2D) description of a curve into
a one-dimensional periodic function suitable for Fourier analysis. In contrast, elliptic Fourier
descriptors maintain the description of the curve in a 2D space (Granlund, 1972). This is
achieved by considering that the image space defines the complex plane. That is, each pixel is

Object description 301

(a) Curve (e) Curve (i) Curve

(b) Angular function (f) Angular function (j) Angular function

(c) Normalized (k) Normalized(g) Normalized

(d) Fourier descriptors (h) Fourier descriptors (I) Fourier descriptors

200

150

100

50

0
0 100 200

6

4

2

0

0 200 400 600 800

5

0

–5

0 2 4 6

–1
0 5 10 15 20

0.5

1

0

–0.5

200

150

100

50

0
0 100 200

6

4

2

0

0 200 400 600

0.5

1

0

–1

–0.5

0 5 10 15 20

200

150

100

50

0
0 100 200

6

4

2

0

0 200 400 600 800

5

0

–5

0 2 4 6

0.5

1

0

–1

–0.5

0 5 10 15 20

5

0

–5

0 2 4 6

Figure 7.14 Example of angular Fourier descriptors

represented by a complex number. The first coordinate represents the real part, while the second
coordinate represents the imaginary part. Thus, a curve is defined as

c�t� = x�t�+ jy�t� (7.44)

Here, we will consider that the parameter t is given by the arc-length parameterization.
Figure 7.15 shows an example of the complex representation of a curve. This example illustrates

302 Feature Extraction and Image Processing

two periods of each component of the curve. In general, T = 2�, thus the fundamental frequency
is � = 1. It is important to notice that this representation can be used to describe open curves.
In this case, the curve is traced twice in opposite directions. In fact, this representation is
very general and can be extended to obtain the elliptic Fourier description of irregular curves
(i.e. those without derivative information) (Montiel et al., 1996, 1997).

Imaginary

Real 0 T 2T

0

T

2T

x (t)

y (t)

Figure 7.15 Example of complex curve representation

To obtain the elliptic Fourier descriptors of a curve, we need to obtain the Fourier expansion
of the curve in Equation 7.44. The Fourier expansion can be performed by using the complex
or trigonometric form. In the original work, in Granlund (1972), the expansion is expressed in
the complex form. However, other works have used the trigonometric representation (Kuhl and
Giardina, 1982) . Here, we will pass from the complex form to the trigonometric representation.
The trigonometric representation is more intuitive and easier to implement.

According to Equation 7.5, the elliptic coefficients are defined by

ck = cxk + jcyk (7.45)

where

cxk = 1
T

∫ T

0
x�t�e−jk�t and cyk = 1

T

∫ T

0
y�t�e−jk�t (7.46)

By following Equation 7.12, we notice that each term in this expression can be defined by a
pair of coefficients. That is,

cxk = axk − jbxk

2
cyk = ayk − jbyk

2

cx−k = axk − jbxk

2
cy−k = ayk − jbyk

2

(7.47)

Object description 303

Based on Equation 7.13, the trigonometric coefficients are defined as

axk = 2
T

∫ T

0
x�t� cos�k�t�dt and bxk = 2

T

∫ T

0
x�t� sin�k�t�dt

ayk = 2
T

∫ T

0
y�t� cos�k�t�dt and byk = 2

T

∫ T

0
y�t� sin�k�t�dt

(7.48)

which, according to Equation 7.27, can be computed by the discrete approximation given by

axk = 2
m

m∑
i=1

xi cos�k�i
� and bxk = 2
m

m∑
i=1

xi sin�k�i
�

ayk = 2
m

m∑
i=1

yi cos�k�i
� and byk = 2
m

m∑
i=1

yi sin�k�i
�

(7.49)

where xi and yi define the value of the functions x�t� and y�t� at the sampling point i. By
considering Equations 7.45 and 7.47, we can express ck as the sum of a pair of complex numbers.
That is,

ck = Ak − jBk and c−k = Ak + jBk (7.50)

where

Ak = axk + jayk

2
and Bk = bxk + jbyk

2
(7.51)

Based on the definition in Equation 7.45, the curve can be expressed in the exponential form
given in Equation 7.6 as

c�t� = c0 +
�∑

k=1

�Ak − jBk�e
jk�t +

−1∑
k=−�

�Ak + jBk�e
jk�t (7.52)

Alternatively, according to Equation 7.11 the curve can be expressed in trigonometric form as

c�t� = ax0

2
+

�∑
k=1

�axk cos�k�t�+bxk sin�k�t��

+ j

(
ay0

2
+

�∑
k=1

(
ayk cos�k�t�+byk sin�k�t�

)
)

(7.53)

In general, this equation is expressed in matrix form as

[
x�t�

y�t�

]
= 1

2

[
ax0

ay0

]
+

�∑
k=1

[
axk bxk

ayk byk

][
cos�k�t�

sin�k�t�

]
(7.54)

Each term in this equation has an interesting geometric interpretation as an elliptic phasor
(a rotating vector). That is, for a fixed value of k, the trigonometric summation defines the locus

304 Feature Extraction and Image Processing

of an ellipse in the complex plane. We can imagine that as we change the parameter t the point
traces ellipses moving at a speed proportional to the harmonic number k. This number indicates
how many cycles (i.e. turns) give the point in the time interval from zero to T . Figure 7.16(a)
illustrates this concept. Here, a point in the curve is given as the summation of three vectors that
define three terms in Equation 7.54. As the parameter t changes, each vector defines an elliptic
curve. In this interpretation, the values of ax0/2 and ay0/2 define the start point of the first vector
(i.e. the location of the curve). The major axes of each ellipse are given by the values of �Ak�
and �Bk�. The definition of the ellipse locus for a frequency is determined by the coefficients,
as shown in Figure 7.16(b).

(a) Sum of three frequencies (b) Elliptic phasor

A
B

byk

bxk axk

ayk

2

ay 0

2

ax 0 ,

Figure 7.16 Example of a contour defined by elliptic Fourier descriptors

7.2.3.7 Invariance
As in the case of angular Fourier descriptors, elliptic Fourier descriptors can be defined such
that they remain invariant to geometric transformations. To show these definitions we must
first study how geometric changes in a shape modify the form of the Fourier coefficients.
Transformations can be formulated by using both the exponential or trigonometric form. We
will consider changes in translation, rotation and scale using the trigonometric definition in
Equation 7.54.

Let us denote c′�t� = x′�t�+ jy′�t� as the transformed contour. This contour is defined as
[

x′�t�

y′�t�

]
= 1

2

[
a′

x0

a′
y0

]
+

�∑
k=1

[
a′

xk b′
xk

a′
yk b′

yk

][
cos�k�t�

sin�k�t�

]
(7.55)

If the contour is translated by tx and ty along the real and the imaginary axes, respectively,
we have:

[
x′�t�

y′�t�

]
= 1

2

[
ax0

ay0

]
+

�∑
k=1

[
axk bxk

ayk byk

][
cos�k�t�

sin�k�t�

]
+
[

tx

ty

]
(7.56)

That is,
[

x′�t�

y′�t�

]
= 1

2

[
ax0 +2tx

ay0 +2ty

]
+

�∑
k=1

[
axk bxk

ayk byk

][
cos�k�t�

sin�k�t�

]
(7.57)

Object description 305

Thus, by comparing Equations 7.55 and 7.57, the relationship between the coefficients of the
transformed and original curves is given by

a′
xk = axk b′

xk = bxk a′
yk = ayk b′

yk = byk for k �= 0

a′
x0 = ax0 +2tx a′

y0 = ay0 +2ty

(7.58)

Accordingly, all the coefficients remain invariant under translation except for ax0 and ay0. This
result can be intuitively derived by considering that these two coefficients represent the position
of the centre of gravity of the contour of the shape and translation changes only the position of
the curve.

The change in scale of a contour c�t� can be modelled as the dilation from its centre of
gravity. That is, we need to translate the curve to the origin, scale it and then return it to its
original location. If s represents the scale factor, then these transformations define the curve as[

x′�t�

y′�t�

]
= 1

2

[
ax0

ay0

]
+ s

�∑
k=1

[
axk bxk

ayk byk

][
cos�k�t�

sin�k�t�

]
(7.59)

Notice that in this equation the scale factor does not modify the coefficients ax0 and ay0 since
the curve is expanded with respect to its centre. To define the relationships between the curve
and its scaled version, we compare Equations 7.55 and 7.59. Thus,

a′
xk = saxk b′

xk = sbxk a′
yk = sayk b′

yk = sbyk for k �= 0

a′
x0 = ax0 a′

y0 = ay0

(7.60)

That is, under dilation, all the coefficients are multiplied by the scale factor except for ax0 and
ay0, which remain invariant.
Rotation can be defined in a similar way to Equation 7.59. If � represents the rotation angle,
then we have:[

x′�t�
y′�t�

]
= 1

2

[
ax0

ay0

]
+
[

cos��� sin���
− sin��� cos���

] �∑
k=1

[
axk bxk

ayk byk

][
cos�k�t�
sin�k�t�

]
(7.61)

This equation can be obtained by translating the curve to the origin, rotating it and then returning
it to its original location. By comparing Equations 7.55 and 7.61, we have:

a′
xk = axk cos���+ayk sin��� b′

xk = bxk cos���+byk sin���

a′
yk = −axk sin���+ayk cos��� b′

yk = −bxk sin���+byk cos��� (7.62)

a′
x0 = ax0 a′

y0 = ay0

That is, under translation, the coefficients are defined by a linear combination dependent on
the rotation angle, except for ax0 and ay0, which remain invariant. It is important to notice that
rotation relationships are also applied for a change in the starting point of the curve.

Equations 7.58, 7.60 and 7.62 define how the elliptic Fourier coefficients change when the
curve is translated, scaled or rotated, respectively. We can combine these results to define the
changes when the curve undergoes the three transformations. In this case, transformations are
applied in succession. Thus,

a′
xk = s�axk cos���+ayk sin���� b′

xk = s�bxk cos���+byk sin����

a′
yk = s�−axk sin���+ayk cos���� b′

yk = s�−bxk sin���+byk cos���� (7.63)

a′
x0 = ax0 +2tx a′

y0 = ay0 +2ty

306 Feature Extraction and Image Processing

Based on this result we can define alternative invariant descriptors. To achieve invariance to
translation, when defining the descriptors the coefficient for k = 0 is not used. In Granlund
(1972), invariant descriptors are defined based on the complex form of the coefficients. Alter-
natively, invariant descriptors can be simply defined as

�Ak�
�A1�

+ �Bk�
�B1�

(7.64)

The advantage of these descriptors with respect to the definition in Granlund (1972) is that
they do not involve negative frequencies and that we avoid multiplication by higher frequencies
that are more prone to noise. By considering the definitions in Equations 7.51 and 7.63 we can
prove that

�A′
k�

�A′
1�

=
√

a2
xk +a2

yk√
a2

x1 +a2
y1

and
�B′

k�
�B′

1�
=
√

b2
xk +b2

yk√
b2

x1 +b2
y1

(7.65)

These equations contain neither the scale factor, s, nor the rotation, �. Thus, they are invariant.
Notice that if the square roots are removed, invariance properties are still maintained. However,
high-order frequencies can have undesirable effects.

The function EllipticDescrp in Code 7.3 computes the elliptic Fourier descriptors of
a curve. The code implements Equations 7.49 and 7.64 in a straightforward way. By default,

%Elliptic Fourier Descriptors
function EllipticDescrp(curve,n,scale)

%n=num coefficients
%if n=0 then n=m/2
%Scale amplitud output

%Function from image
X=curve(1,:);
Y=curve(2,:);
m=size(X,2);

%Graph of the curve
subplot(3,3,1);
plot(X,Y);
mx=max(max(X),max(Y))+10;
axis([0,mx,0,mx]); %Axis of the graph pf the curve
axis square; %Aspect ratio

%Graph of X
p=0:2*pi/m:2*pi-pi/m; %Parameter

subplot(3,3,2);
plot(p,X);
axis([0,2*pi,0,mx]); %Axis of the graph pf the curve

%Graph of Y
subplot(3,3,3);
plot(p,Y);
axis([0,2*pi,0,mx]); %Axis of the graph pf the curve

Object description 307

%Graph coefficient ax
subplot(3,3,4);
bar(ax);
axis([0,n,-scale,scale]);

%Graph coefficient ay
subplot(3,3,5);
bar(ay);
axis([0,n,-scale,scale]);

%Graph coefficient bx
subplot(3,3,6);
bar(bx);
axis([0,n,-scale,scale]);

%Graph coefficient by
subplot(3,3,7);
bar(by);
axis([0,n,-scale,scale]);

%Invariant
CE=zeros(1,n);
for k=1:n
CE(k)=sqrt((ax(k)^2+ay(k)^2)/(ax(1)^2+ay(1)^2))

+sqrt((bx(k)^2+by(k)^2)/(bx(1)^2+by(1)^2));
end

%Graph of Elliptic descriptors
subplot(3,3,8);
bar(CE);
axis([0,n,0,2.2]);

for k=1:n
for i=1:m
ax(k)=ax(k)+X(i)*cos(k*t*(i-1));
bx(k)=bx(k)+X(i)*sin(k*t*(i-1));
ay(k)=ay(k)+Y(i)*cos(k*t*(i-1));

end
by(k)=by(k)+Y(i)*sin(k*t*(i-1);

ax(k)=ax(k)*(2/m);
bx(k)=bx(k)*(2/m);
ay(k)=ay(k)*(2/m);
by(k)=by(k)*(2/m);

end

%Fourier Coefficients
ax=zeros(1,n); bx=zeros(1,n);
ay=zeros(1,n); by=zeros(1,n);

t=2*pi/m;

%Elliptic Fourier Descriptors
if(n==0) n=floor(m/2); end; %number of coefficients

Code 7.3 Elliptic Fourier descriptors

308 Feature Extraction and Image Processing

the number of coefficients is half of the number of points that define the curve. However, the
number of coefficients can be specified by the parameter n. The number of coefficients used
defines the level of detail of the characterization. To illustrate this idea, we can consider the
different curves that are obtained by using a different number of coefficients. Figure 7.17 shows
an example of the reconstruction of a contour. In Figure 7.17(a) we can observe that the first
coefficient represents an ellipse. When the second coefficient is considered (Figure 7.17b), the
ellipse changes into a triangular shape. When adding more coefficients the contour is refined
until the curve represents an accurate approximation of the original contour. In this example,
the contour is represented by 100 points. Thus, the maximum number of coefficients is 50.

(a) One coefficient

200

150

100

50

0
0 100 200

(b) Two coefficients

0 100 200

200

150

100

50

0

(c) Four coefficients

0 100 200

200

150

100

50

0

(d) Six coefficients

0 100 200

200

150

100

50

0

(e) Eight coefficients

200

150

100

50

0
0 100 200

(f) Twelve coefficients

0 100 200

200

150

100

50

0

(g) Twenty coefficients

0 100 200

200

150

100

50

0

(h) Fifty coefficients

0 100 200

200

150

100

50

0

Figure 7.17 Fourier approximation

Figure 7.18 shows three examples of the results obtained using Code 7.3. Each example
shows the original curve, the x and y coordinate functions and the Fourier descriptors defined
in Equation 7.64. The maximum in Equation 7.64 is equal to two and is obtained when k = 1.
In the figure we have scaled the Fourier descriptors to show the differences between higher
order coefficients. In this example, we can see that the Fourier descriptors for the curves in
Figure 7.18(a) and (e) (F-14 fighter) are very similar. Small differences can be explained by
discretization errors. However, the coefficients remain the same after changing the location,
orientation and scale. The descriptors of the curve in Figure 7.18(i) (B1 bomber) are clearly
different, showing that elliptic Fourier descriptors truly characterize the shape of an object.

Fourier descriptors are one of the most popular boundary descriptions. As such, they have
attracted considerable attention and there are many further aspects. We can use the descrip-
tions for shape recognition (Aguado et al., 1998). It is important to mention that some work
has suggested that there is some ambiguity in the Fourier characterization. Thus, an alterna-
tive set of descriptors has been designed specifically to reduce ambiguities (Crimmins, 1982).
However, it is well known that Fourier expansions are unique. Thus, Fourier characterization
should uniquely represent a curve. In addition, the mathematical opacity of the technique in
Crimmins (1982) does not lend itself to tutorial type presentation. There has not been much

Object description 309

(a) Plane 1 curve (e) Rotated and scaled plane 1
curve

(i) Plane 2 curve

(b) x (t) (f) x (t) (j) x (t)

(c) y (t) (g) y (t) (k) y (t)

(d) Fourier descriptors (h) Fourier descriptors (l) Fourier descriptors

6
0

0 2 4

200

150

100

50

6

200

150

100

50

0
0 2 4

0.6

0.4

0.2

0
0 5 10 15 20

2000 100

200

150

100

50

0

60 2 4

200

150

100

50

0

0
0 2 4 6

200

150

100

50

0.6

0.4

0.2

0
0 5 10 15 20

0 100 200

200

150

100

50

0

0 2 4 6

200

150

100

50

0

150

100

0

200

50

0 2 4 6

0.4

0.2

0
0 5 10 15 20

0.6

200

150

100

50

0
0 100 200

Figure 7.18 Example of elliptic Fourier descriptors

study on alternative decompositions to Fourier, although Walsh functions have been suggested
for shape representation (Searle, 1970) and recently wavelets have been used (Kashi et al., 1996)
(although these are not an orthonormal basis function). Three-dimensional Fourier descriptors
were introduced for analysis of simple shapes (Staib and Duncan, 1992) and have been found to

310 Feature Extraction and Image Processing

give good performance in application (Undrill et al., 1997). Fourier descriptors have also been
used to model shapes in computer graphics (Aguado et al., 1999). Fourier descriptors cannot be
used for occluded or mixed shapes, relying on extraction techniques with known indifference to
occlusion (e.g. the Hough transform). However, there have been approaches aimed at classifying
partial shapes using Fourier descriptors (Lin and Chellappa, 1987).

7.3 Region descriptors

So far, we have concentrated on descriptions of the perimeter, or boundary. The natural coun-
terpart is to describe the region, or the area, by regional shape descriptors. Here, there are two
main contenders that differ in focus: basic regional descriptors characterize the geometric prop-
erties of the region, whereas moments concentrate on the density of the region. First, though,
we shall look at the simpler descriptors.

7.3.1 Basic region descriptors

A region can be described by considering scalar measures based on its geometric properties.
The simplest property is given by its size or area. In general, the area of a region in the plane
is defined as

A�S� =
∫

x

∫
y
I�x� y�dydx (7.66)

where I�x� y� = 1 if the pixel is within a shape, �x� y� ∈ S, and 0 otherwise. In practice, integrals
are approximated by summations. That is,

A�S� =∑
x

∑
y

I�x� y��A (7.67)

where �A is the area of one pixel. Thus, if �A = 1, then the area is measured in pixels.
Area changes with changes in scale. However, it is invariant to image rotation. Small errors
in the computation of the area will appear when applying a rotation transformation owing to
discretization of the image.

Another simple property is defined by the perimeter of the region. If x�t� and y�t� denote
the parametric coordinates of a curve enclosing a region S, then the perimeter of the region is
defined as

P�S� =
∫

t

√
x2�t�+y2�t�dt (7.68)

This equation corresponds to the sums all the infinitesimal arcs that define the curve. In the
discrete case, x�t� and y�t� are defined by a set of pixels in the image. Thus, Equation 7.68 is
approximated by

P�S� =∑
i

√
�xi −xi−1�

2 + �yi −yi−1�
2 (7.69)

where xi and yi represent the coordinates of the ith pixel forming the curve. Since pixels are
organized in a square grid, the terms in the summation can only take two values. When the pixels
�xi� yi� and �xi−1� yi−1� are four-neighbours (as shown in Figure 7.1a), the summation term is
unity. Otherwise, the summation term is equal to

√
2. Notice that the discrete approximation in

Equation 7.69 produces small errors in the measured perimeter. As such, it is unlikely that an
exact value of 2�r will be achieved for the perimeter of a circular region of radius r.

Object description 311

Based on the perimeter and area it is possible to characterize the compactness of a region.
Compactness is an oft-expressed measure of shape given by the ratio of perimeter to area.
That is,

C�S� = 4�A�S�

P2�S�
(7.70)

To show the meaning of this equation, we can rewrite it as

C�S� = A�S�

P2�S�/4�
(7.71)

Here, the denominator represents the area of a circle whose perimeter is P�S�. Thus, compactness
measures the ratio between the area of the shape and the circle that can be traced with the same
perimeter. That is, compactness measures the efficiency with which a boundary encloses area. In
mathematics, it is known as the isoperimetric quotient, which smacks rather of grandiloquency.
For a perfectly circular region (Figure 7.19a) we have C�circle� = 1, which represents the
maximum compactness value: a circle is the most compact shape. Figure 7.19(b) and (c) show
two examples in which compactness is reduced. If we take the perimeter of these regions and
draw a circle with the same perimeter, we can observe that the circle contains more area. This
means that the shapes are not compact. A shape becomes more compact if we move region
pixels far away from the centre of gravity of the shape to fill empty spaces closer to the centre
of gravity. For a perfectly square region, C�square� = �/4. Note that for neither a perfect
square nor a perfect circle does the measure include size (the width and radius, respectively). In
this way, compactness is a measure of shape only. Note that compactness alone is not a good
discriminator of a region; low values of C are associated with convoluted regions such as the
one in Figure 7.19(b) and also with simple but highly elongated shapes. This ambiguity can be
resolved by employing additional shape measures.

(a) Circle (b) Convoluted region (c) Ellipse

Figure 7.19 Examples of compactness

Another measure that can be used to characterize regions is dispersion. Dispersion (irregular-
ity) has been measured as the ratio of major chord length to area (Chen et al., 1995). A simple
version of this measure can be defined as irregularity:

I�S� =
� max

(
�xi − x̄�2 + �yi − ȳ�2

)

A�S�
(7.72)

where �x̄� ȳ� represent the coordinates of the centre of mass of the region. Notice that the
numerator defines the area of the maximum circle enclosing the region. Thus, this measure

312 Feature Extraction and Image Processing

describes the density of the region. An alternative measure of dispersion can also be expressed as
the ratio of the maximum to the minimum radius. That is an alternative form of the irregularity

IR�S� =
max

(√
�xi − x̄�2 + �yi − ȳ�2

)

min
(√

�xi − x̄�2 + �yi − ȳ�2

) (7.73)

This measure defines the ratio between the radius of the maximum circle enclosing the region
and the maximum circle that can be contained in the region. Thus, the measure will increase
as the region spreads. In this way, the irregularity of a circle is unity, IR�circle� = 1; the
irregularity of a square is IR�square� = √

2, which is larger. As such the measure increases
for irregular shapes, whereas the compactness measure decreases. Again, for perfect shapes
the measure is irrespective of size and is a measure of shape only. One disadvantage of the
irregularity measures is that they are insensitive to slight discontinuity in the shape, such as a
thin crack in a disk. However, these discontinuities will be registered by the earlier measures
of compactness since the perimeter will increase disproportionately with the area. This property
might be desired and so irregularity is to be preferred when this property is required. In fact, the
perimeter measures will vary with rotation owing to the nature of discrete images and are more
likely to be affected by noise than the measures of area (since the area measures have inherent
averaging properties). Since the irregularity is a ratio of distance measures and compactness is
a ratio of area to distance, intuitively it would appear that irregularity will vary less with noise
and rotation. Such factors should be explored in application, to check that desired properties
have indeed been achieved.

Code 7.4 shows the implementation for the region descriptors. The code is a straightforward
implementation of Equations 7.67, 7.69, 7.70, 7.72 and 7.73. A comparison of these measures for

%Region descriptors (compactness)

function RegionDescrp(inputimage)

%Image size
[rows,columns]=size(inputimage);

%area
A=0;

for x=1:columns
for y=1:rows

if inputimage(y,x)==0 A=A+1; end
end

end

%Obtain Contour
C=Contour(inputimage);

%Perimeter & mean
X=C(1,:); Y=C(2,:); m=size(X,2);

Object description 313

mx=mx/m; my=my/m;

%Compactness
Cp=4*pi*A/P^2;

%Dispersion
max=0; min=99999;

for i=1:m
d=((X(i)-mx)^2+(Y(i)-my)^2);
if (d>max) max=d; end
if (d<min) min=d; end

end
I=pi*max/A;
IR=sqrt(max/min);

%Results
disp('perimeter='); disp(P);
disp('area='); disp(A);
disp('Compactness='); disp(Cp);
disp('Dispersion='); disp(I);
disp('DispersionR='); disp(IR);

mx=X(1); my=Y(1);
P=sqrt((X(1)-X(m))^2+(Y(1)-Y(m))^2);
for i=2:m
P=P+sqrt((X(i)-X(i-1))^2+(Y(i)-Y(i-1))^2);
mx=mx+X(i); my=my+Y(i);

end

Code 7.4 Evaluating basic region descriptors

the three regions shown in Figure 7.19 is shown in Figure 7.20. Clearly, for the circle the com-
pactness and dispersion measures are close to unity. For the ellipse the compactness decreases
while the dispersion increases. The convoluted region has the lowest compactness measure and
the highest dispersion values. Clearly, these measurements can be used to characterize, and
hence discriminate between areas of differing shape.

A (S) = 4917

P (S) = 259.27

C (S) = 0.91

I (S) = 1.00

IR (S) = 1.03

A (S) = 6104

P (S) = 310.93

C (S) = 0.79

I (S) = 1.85

IR (S) = 1.91

A (S) = 2316

P (S) = 498.63

C (S) = 0.11

I (S) = 2.24

IR (S) = 6.67

(a) Descriptors for the circle (b) Descriptors for the
convoluted region

(c) Descriptors for the ellipse

Figure 7.20 Basic region descriptors

314 Feature Extraction and Image Processing

Other measures, rather than focus on the geometric properties, characterize the structure of a
region. This is the case of the Poincarré measure and the Euler number. The Poincarré measure
concerns the number of holes within a region. Alternatively, the Euler number is the difference
of the number of connected regions from the number of holes in them. There are many more
potential measures for shape description in terms of structure and geometry. Recent interest has
developed a measure (Rosin and Zunic, 2005) that can discriminate rectilinear regions, e.g. for
discriminating buildings from within remotely sensed images. We could evaluate global or local
curvature (convexity and concavity) as a further measure of geometry; we could investigate
proximity and disposition as a further measure of structure. However, these do not have the
advantages of a unified structure. We are simply suggesting measures with descriptive ability,
but this ability is reduced by the correlation between different measures. We have already seen
the link between the Poincarré measure and the Euler number; there is a natural link between
circularity and irregularity. However, the region descriptors we have considered so far lack
structure and are largely heuristic, although clearly they may have sufficient descriptive ability
for some applications. As such, we shall now look at a unified basis for shape description which
aims to reduce this correlation and provides a unified theoretical basis for region description, with
some similarity to the advantages of the frequency selectivity in a Fourier transform description.

7.3.2 Moments
7.3.2.1 Basic properties
Moments describe a shape’s layout (the arrangement of its pixels), a bit like combining area,
compactness, irregularity and higher order descriptions together. Moments are a global descrip-
tion of a shape, accruing this same advantage as Fourier descriptors since there is selectivity,
which is an in-built ability to discern, and filter, noise. Further, in image analysis, they are
statistical moments, as opposed to mechanical ones, but the two are analogous. For example, the
mechanical moment of inertia describes the rate of change in momentum; the statistical second
order moment describes the rate of change in a shape’s area. In this way, statistical moments
can be considered as a global region description. Moments for image analysis were originally
introduced in the 1960s (Hu, 1962) (an exciting time for computer vision researchers too!) and
an excellent and a review is available (Prokop and Reeves, 1992).

Moments are often associated more with statistical pattern recognition than with model-based
vision, since a major assumption is that there is an unoccluded view of the target shape. Target
images are often derived by thresholding, usually one of the optimal forms that can require a
single object in the field of view. More complex applications, including handling occlusion,
could presuppose feature extraction by some means, with a model to in-fill for the missing
parts. However, moments do provide a global description with invariance properties and with
the advantages of a compact description aimed at avoiding the effects of noise. As such, they
have proved popular and successful in many applications.

The two-dimensional Cartesian moment is associated with an order that starts from low
(where the lowest is zero) up to higher orders. The moment of order p and q� mpq of a function
I�x� y� is defined as

mpq =
∫ �

−�

∫ �

−�
xpyqI�x� y�dxdy (7.74)

For discrete images, Equation 7.74 is usually approximated by

mpq =∑
x

∑
y

xpyqI�x� y��A (7.75)

Object description 315

where �A is again the area of a pixel. These descriptors have a uniqueness property in that
it can be shown that if the function satisfies certain conditions, then moments of all orders
exist. Also, and conversely, the set of descriptors uniquely determines the original function, in a
manner similar to reconstruction via the inverse Fourier transform. However, these moments are
descriptors, rather than a specification that can be used to reconstruct a shape. The zero-order
moment, m00, is

m00 =∑
x

∑
y

I�x� y��A (7.76)

which represents the total mass of a function. Notice that this equation is equal to Equa-
tion 7.67 when I�x� y� takes values of zero and one. However, Equation 7.76 is more gen-
eral since the function I�x� y� can take a range of values. In the definition of moments,
these values are generally related to density. The two first order moments, m01 and m10, are
given by

m10 =∑
x

∑
y

xI�x� y��A m01 =∑
x

∑
y

yI�x� y��A (7.77)

For binary images, these values are proportional to the shape’s centre coordinates (the values
merely require division by the shape’s area). In general, the centre of mass �x̄� ȳ� can be
calculated from the ratio of the first order to the zero-order components as

x̄ = m10

m00

ȳ = m01

m00

(7.78)

The first 10 x-axis moments of an ellipse are shown in Figure 7.21. The moments rise expo-
nentially, so are plotted in logarithmic form. Evidently, the moments provide a set of descrip-
tions of the shape: measures that can be collected together to differentiate between different
shapes.

0 5 10

10

20

30

log(ellipse_momentp , 0)

p

Figure 7.21 Horizontal axis ellipse moments

Should there be an intensity transformation that scales brightness by a particular factor, say
�, such that a new image I ′�x� y� is a transformed version of the original one I�x� y�, given by

I ′�x� y� = �I�x� y� (7.79)

316 Feature Extraction and Image Processing

Then the transformed moment values m′
pq are related to those of the original shape mpq by

m′
pq = �mpq (7.80)

Should it be required to distinguish mirror symmetry (reflection of a shape about a chosen axis),
then the rotation of a shape about the, say, the x-axis gives a new shape I ′�x� y�, which is the
reflection of the shape I�x� y� given by

I ′�x� y� = I�−x� y� (7.81)

The transformed moment values can be given in terms of the original shape’s moments as

m′
pq = �−1�p mpq (7.82)

However, we are usually concerned with more basic invariants than mirror images, namely
invariance to position, size and rotation. Given that we now have an estimate of a shape’s centre
(in fact, a reference point for that shape), the centralized moments, �pq which are invariant to
translation, can be defined as

�pq =∑
x

∑
y

�x− x̄�p �y − ȳ�q I�x� y��A (7.83)

Clearly, the zero-order centralized moment is again the shape’s area. However, the first order
centralized moment �01 is given by

�01 =∑
x

∑
y

�y − ȳ�1I �x� y��A

=∑
x

∑
y

yI �x� y��A−∑
x

∑
y

ȳI �x� y��A (7.84)

= m01 − ȳ
∑

x

∑
y

I �x� y��A

From Equation 7.77, m01 =∑
x

∑
y

yI �x� y��A and from Equation 7.78, ȳ = m01/m00, so

�01 = m01 − m01

m00

m00

= 0 (7.85)

= �10

Clearly, neither of the first order centralized moments has any description capability since they
are both zero. Going to higher order, one of the second order moments, �20, is

�20 =∑
x

∑
y

�x− x̄�2I �x� y��A

=∑
x

∑
y

(
x2 −2xx̄+ x̄2

)
I �x� y��A (7.86)

=∑
x

∑
y

x2I �x� y��A−2x̄
∑

x

∑
y

xI �x� y��A+ x̄2
∑

x

∑
y

I �x� y��A

Object description 317

since m10 =∑
x

∑
y

xI �x� y��A and since x̄ = m10/m00

�20 = m20 −2
m10

m00

m10 +
(

m10

m00

)2

m00

= m20 − m10
2

m00

(7.87)

and this has descriptive capability.
The use of moments to describe an ellipse is shown in Figure 7.22. Here, an original

ellipse (Figure 7.22a) gives the second order moments in Figure 7.22(d). In all cases, the first
order moments are zero, as expected. The moments (Figure 7.22e) of the translated ellipse
(Figure 7.22b) are the same as those of the original ellipse. In fact, these moments show that
the greatest rate of change in mass is around the horizontal axis, as consistent with the ellipse.
The second order moments Figure 7.22(f) of the ellipse when rotated by 90
 (Figure 7.22c)
are simply swapped around, as expected: the rate of change of mass is now greatest around the
vertical axis. This illustrates how centralized moments are invariant to translation, but not to
rotation.

(a) Original ellipse (b) Translated ellipse (c) Rotated ellipse

μ 02 = 2.4947⋅106

μ 20 = 6.4217⋅105
μ 02 = 6.4217⋅105

μ 20 = 2.4947⋅106
μ 02 = 2.4947⋅106

μ 20 = 6.4217⋅105

(d) Second order centralized
moments of original ellipse

(f) Second order centralized
moments of rotated ellipse

(e) Second order centralized
moments of translated ellipse

Figure 7.22 Describing a shape by centralized moments

7.3.2.2 Invariant moments
Centralized moments are only translation invariant: they are constant only with change in
position, and no other appearance transformation. To accrue invariance to scale and rotation,
we require normalized central moments, �pq, defined as (Hu, 1962):

�pq = �pq

�

00

(7.88)

where

 = p+q

2
+1 ∀p+q ≥ 2 (7.89)

318 Feature Extraction and Image Processing

Seven invariant moments can be computed from these given by

M1 = �20 +�02

M2 = ��20 −�02�
2 +4�2

11

M3 = ��30 −3�12�
2 + �3�21 −�03�

2

M4 = ��30 +�12�
2 + ��21 +�03�

2

M5 = ��30 −3�12���30 +�12�+ ���30 +�12�
2 −3��21 −�03�

2� (7.90)

+ �3�21 −�03���21 +�03��3��30 +�12�
2 − ��21 +�03�

2�

M6 = ��20 −�02����30 +�12�
2 − ��21 +�03�

2�+4�11��30 +�12���21 +�03�

M7 = �3�21 −�03���30 +�12����30 +�12�
2 −3��21 +�03�

2�

+ �3�12 −�30���21 +�03��3��12 +�30�
2 − ��21 +�03�

2�

The first of these, M1 and M2, are second order moments, those for which p+ q = 2. Those
remaining are third order moments, since p + q = 3. (The first order moments are of no
consequence since they are zero.) The last moment, M7, is introduced as a skew invariant
deigned to distinguish mirror images.

Code 7.5 shows the Mathcad implementation that computes the invariant moments M1� M2
and M3. The code computes the moments by straight implementation of Equations 7.83 and 7.90.
The use of these invariant moments to describe three shapes is illustrated in Figure 7.23.
Figure 7.23(b) corresponds to the same plane in Figure 7.23(a) but with a change of scale

μ (p,q,shape):= cmom←

cmom←cmom+[(shapes)0–xc]
p⋅[(shapes)1–yc]

q⋅(shapes)2

xc← .1

rows(shape)

rows(shape)–1

Σ
i=0

(shapei)0

yc← .1

rows(shape)

rows(shape)–1

Σ
i=0

(shapei)1

for s∈0..rows(shape)–1

cmom

0

η(p,q,im):=
μ (p,q,im)

μ (0,0,im)
p+q

2
+1

M1(im):=η(2,0,im)+η(2,0,im)

M2(im):=(η(2,0,im)–η(0,2,im))2+4⋅η(1,1,im)2

M3(im):=(η(3,0,im)–3⋅η(1,2,im))2+(3⋅η(2,1,im)–η(0,3,im))2

Code 7.5 Computing M1� M2 and M3

Object description 319

(a) F-14 fighter (b) F-14 fighter rotated and
scaled

(c) B1 bomber

M 1 = 0.2199

M 2 = 0.0035

M 3 = 0.0070

M 1 = 0.2202

M 2 = 0.0037

M 3 = 0.0070

M 1 = 0.2764

M 2 = 0.0176

M 3 = 0.0083

(d) Invariant moments for (a) (e) Invariant moments for (b) (f) Invariant moments for (c)

Figure 7.23 Describing a shape by invariant moments

and a rotation. Thus, the invariant moments for these two shapes are very similar. In contrast,
the invariant moments for the plane in Figure 7.23(c) differ. These invariant moments have
the most important invariance properties. However, these moments are not orthogonal, and as
such there is potential for reducing the size of the set of moments required to describe a shape
accurately.

7.3.2.3 Zernike moments
Invariance can be achieved by using Zernike moments (Teague, 1980), which give an orthogonal
set of rotation-invariant moments. These find greater deployment where invariant properties
are required. Rotation invariance is achieved by using polar representation, as opposed to the
Cartesian parameterization for centralized moments. The complex Zernike moment, Zpq, is

Zpq = p+1
�

∫ 2�

0

∫ �

0
Vpq �r� ��∗f �r� �� rdrd� (7.91)

where p is now the radial magnitude and q is the radial direction and where ∗ again denotes the
complex conjugate (as in Section 5.3.2) of a Zernike polynomial, Vpq, given by

Vpq�r� �� = Rpq�r�e
jq� where p−q is even and 0 ≤ q ≤ �p� (7.92)

where Rpq is a real-valued polynomial given by

Rpq �r� =
p−�q�

2∑
m=0

�−1�m �p−m�!
m!
(

p+�q�
2 −m

)
!
(

p−�q�
2 −m

)
!
rp−2m (7.93)

The order of the polynomial is denoted by p and the repetition by q. The repetition q can
take negative values (since q ≤ �p��, so the radial polynomial uses its magnitude and thus the
inverse relationship holds: Rp�q �r� = Rp�−q �r� (changing the notation of the polynomial slightly

320 Feature Extraction and Image Processing

by introducing a comma to make clear that the moment just has the sign of q inverted). The
polynomials of lower degree are

R00 �r� = 1

R11 �r� = r

R22 �r� = r2

R20 �r� = r2 −1 (7.94)

R31 �r� = 3r2 −2r

R40 �r� = 6r4 −6r2 +1

and some of these are plotted in Figure 7.24. In Figure 7.24(a) we can see that the frequency
components increase with the order p and the functions approach unity as r → 1. The frequency
content reflects the level of detail that can be captured by the particular polynomial. The change
between the different polynomials shows how together they can capture different aspects of an
underlying signal, across the various values of r. The repetition controls the way in which the
function approaches unity: the influence along the polynomial and the polynomials for different
values of q are shown in Figure 7.24(b).

0 0.25 0.5 0.75

–1

–0.5

0.5

1

R (8, 0, r)

R (8, 2, r)

R (8, 4, r) 1

R (8, 6, r)

r

(a) Different orders (b) Different repetitions

r

0 0.25 0.5 0.75 1

R (4, 0, r)

R (6, 0, r)

R (8, 0, r)

R (2, 0, r)

1

–1

Figure 7.24 Zernike polynomials

These polynomials are orthogonal within the unit circle, so the analysed shape (the area of
interest) has to be remapped to be of this size before calculation of its moments. This implies
difficulty in mapping a unit circle to a Cartesian grid. As illustrated in Figure 7.25, the circle
can be within the area of interest, losing corner information (but that is information rarely of
interest) (Figure 7.25a); or around (encompassing) the area of interest, which then covers areas
where there is no information, but ensures that all the information within the area of interest is
included (Figure 7.25b).

Object description 321

(a) Unit circle within area of interest (b) Area of interest within unit circle

Figure 7.25 Mapping a unit circle to an area of interest

The orthogonality of these polynomials assures the reduction in the set of numbers used to
describe a shape. More simply, the radial polynomials can be expressed as

Rpq �r� =
p∑

k=q

Bpqkr
k (7.95)

where the Zernike coefficients are

Bpqk = �−1�
p−k

2
��p+k�/2�!

��p−k�/2�!��k+q�/2�!��k−q�/2�! (7.96)

for p−k = even. The Zernike moments can be calculated from centralized moments as

Zpq = p+1
�

p∑
k=q

t∑
l=0

q∑
m=0

�−j�m

(
t
l

)(
q
m

)
Bpqk��k−2l−q+m��q+2l−m� (7.97)

where t = �k−q�/2 and where(
t
l

)
= t!

l!�t − l�! (7.98)

A Zernike polynomial kernel is illustrated in Figure 7.26. This shows that the kernel can
capture differing levels of shape detail (and that multiple kernels are needed to give a shape’s

(a) Surface plot (b) Image

1

0.5

0

0.5

Figure 7.26 Zernike polynomial kernel

322 Feature Extraction and Image Processing

description). This kernel is computed in radial form, which is how it is deployed in shape
analysis. Note that differing sets of parameters such as order and repetition control the level of
detail that is analysed by application of this kernel to a shape. The plot shows the real part of
the kernel; the imaginary part is similar, but rotated.

Analysis (and by Equation 7.83), assuming that x and y are constrained to the interval
�−1� 1�, gives

Z00 = �00

�

Z11 = 2
�

��01 − j�10� = 0 (7.99)

Z22 = 3
�

��02 − j2�11 −�20�

which can be extended further (Teague, 1980), and with remarkable similarity to the Hu invariant
moments (Equation 7.90).

The magnitude of these Zernike moments remains invariant to rotation, which affects only
the phase; the Zernike moments can be made scale invariant by normalization. An additional
advantage is that there is a reconstruction theorem. For Nm moments, the original shape f can
be reconstructed from its moments and the Zernike polynomials as

f�x� y� ≈
Nm∑
p=0

∑
q

ZpqVpq�x� y� (7.100)

This is illustrated in Figure 7.27 for reconstructing a simple binary object, the letter A, from
different numbers of moments. When reconstructing this up to the 10th order of a Zernike
moment description (this requires 66 moments) we achieve a grey-level image, which contains

(a) Original shape,
the letter A

(b) Reconstruction
up to 10th order

(d) Reconstruction
up to 20th order

(c) Reconstruction
up to 15th order

(e) Thresholded (b) (f) Thresholded (c) (g) Thresholded (d)

Figure 7.27 Reconstructing a shape from its moments (Prismall et al., 2002)

Object description 323

much of the overall shape (7.27b). This can be thresholded to give a binary image (Figure 7.27e),
which shows the overall shape, without any corners. When we use more moments, we increase the
detail in the reconstruction: Figure 7.27(c) is up to 15th order (136 moments) and Figure 7.27(d)
is 20th order (231 moments). The latter of these is much closer to the original image, especially in
its thresholded form (Figure 7.27d). This may sound like a lot of moments, but the compression
from the original image is very high. Note also that even though we can achieve recognition from
a smaller set of moments, these may not represent the hole in the shape, which is not present at
the 10th order, which just shows the overall shape of the letter A. As such, reconstruction can
give insight as to the shape contribution of selected moments: their significance can be assessed
by this and other tests.

These Zernike descriptors have been shown to good effect in application by reconstructing
a good approximation to a shape with only few descriptors (Boyce and Hossack, 1983) and in
recognition (Khotanzad and Hong, 1990). As ever, fast computation has been of (continuing)
interest (Mukundan and Ramakrishnan, 1995; Gu et al., 2002).

7.3.2.4 Other moments
Pseudo Zernike moments (Teh and Chin, 1988) aim to relieve the restriction on normalization
to the unit circle. Complex moments (Abu-Mostafa and Psaltis, 1985) aim to provide a simpler
moment description with invariance properties. In fact, since there is an infinite variety of
functions that can be used as the basis function, we also have Legendre (Teague, 1980) and,
more recently, Tchebichef (although this is sometimes spelt Chebyshev) moments (Mukundan,
2001). There is no detailed comparison yet available, but there are advantages and disadvantages
to the differing moments, often exposed by application. As an extension into the time domain,
Shutler and Nixon (2006) developed velocity moments, which can be used to recognize moving
objects over a sequence of images, applied in that case to recognizing people by their gait. The
moments sum over a sequence of I images as

vmpq� = N
I∑

i=2

∑
x∈P

∑
y∈P

U�i����S�i�p� q�Pix�y
(7.101)

where N is a scaling coefficient, Pix�y
is the ith image in the sequence, S are the moments

describing a shape’s structure (and can be Cartesian or Zernike), and U are moments that
describe the movement of the shape’s centre of mass between frames. Rotation was not included;
the technique was shown to be capable for use in recognizing walking subjects, not gymnasts.

Finally, there are affine invariant moments, which do not change with position, rotation and
different scales along the coordinate axes, as a result, say, of a camera not being normal to
the object plane. Here, the earliest approach appears to be by Flusser and Suk (1993). One
of the reviews (Teh and Chin, 1988) concentrates on information content (redundancy), noise
sensitivity and representation ability, comparing the performance of several of the more popular
moments in these respects.

It is possible to explore the link between moments and Fourier theory (Mukundan and
Ramakrishnan, 1998). The discrete Fourier transform of an image (Equation 2.22), can be
written as

FPu�v = 1
N

N−1∑
x=0

N−1∑
y=0

Px�ye
−j

2�
N

uxe−j
2�
N

vy (7.102)

324 Feature Extraction and Image Processing

By using the Taylor expansion of the exponential function

ez =
�∑

p=0

zp

p! (7.103)

we can substitute for the exponential functions as

FPu�v = 1
N

N−1∑
x=0

N−1∑
y=0

Px�y

�∑
p=0

(−j 2�
N

ux
)p

p!
�∑

q=0

(−j 2�
N

vy
)q

q! (7.104)

which, by collecting terms, gives

FPu�v = 1
N

N−1∑
x=0

N−1∑
y=0

xpyqPx�y

�∑
p=0

�∑
q=0

(−j 2�
N

)p+q

p!q! upvq (7.105)

and by the definition of Cartesian moments, Equation 7.74, we have

FPu�v = 1
N

�∑
p=0

�∑
q=0

(−j 2�
N

)p+q

p!q! upvqmpq (7.106)

This implies that the Fourier transform of an image can be derived from its moments. There is
then a link between the Fourier decomposition and that by moments, showing the link between
the two. But we can go further, since there is the inverse Fourier transform, Equation 2.23,

Px�y =
N−1∑
u=0

N−1∑
v=0

FPu�ve
j

2�
N

uxej
2�
N

vy (7.107)

So the original image can be computed from the moments as

Px�y =
N−1∑
x=0

N−1∑
y=0

ej
2�
N

uxej
2�
N

vy 1
N

�∑
p=0

�∑
q=0

(−j 2�
N

)p+q

p!q! upvqmpq (7.108)

and this shows that we can get back to the image from our moment description, although care
must be exercised in the choice of windows from which data are selected. This is reconstruction:
we can reconstruct an image from its moment description. There has not been much study
on reconstruction from moments, despite its apparent importance in understanding the potency
of the description that has been achieved. Potency is usually investigated in application by
determining the best set of moment features to maximize recognition capability (and we shall
turn to this in the next chapter). Essentially, reconstruction from basic geometric (Cartesian)
moments is impractical (Teague, 1980) and the orthogonal bases functions such as the Zernike
polynomials offer a simpler route to reconstruction, but these still require thesholding. More
recently, Prismall et al. (2002) used (Zernike) moments for the reconstruction of moving objects.

7.4 Further reading

This chapter has essentially been based on unified techniques for border and region description.
There is much more to contour and region analysis than indicated at the start of the chapter, for
this is one the starting points of morphological analysis. There is an extensive review available
(Loncaric, 1998) with many important references in this topic. The analysis neighbourhood
can be extended to be larger (Marchand and Sharaiha, 1997) and there is consideration of
appropriate distance metrics for this (Das and Chatterji, 1988). A much more detailed study
of boundary-based representation and application can be found in van Otterloo’s fine text

Object description 325

(1991). There are many other ways to describe features, although few have the unique attributes
of moments and Fourier descriptors. There is an interrelation between boundary and region
description: curvature can be computed from a chain code (Rosenfeld, 1974); Fourier descriptors
can also be used to calculate region descriptions (Kiryati and Maydan, 1989). There have been
many approaches to boundary approximation by fitting curves to the data. Some of these use
polynomial approximation, and there are many spline-based techniques. A spline is a local
function used to model a feature in sections. There are quadratic and cubic forms (for a good
review of spline theory, try Ahlberg et al., 1967, or Dierckx, 1995); of interest, snakes are
energy-minimizing splines. There are many methods for polygonal approximations to curves,
and recently a new measure has been applied to compare performance on a suitable curve of
techniques based on dominant point analysis (Rosin, 1997). To go with the earlier-mentioned
review (Prokop and Reeves, 1992), there is a book available on moment theory (Mukundan
and Ramakrishnan, 1998) showing the whole moment picture. As in the previous chapter, the
skeleton of a shape can be used for recognition. This is a natural target for thinning techniques
that have not been covered here. An excellent survey of these techniques, as used in character
description following extraction, can be found in Trier et al. (1996), describing use of moments
and Fourier descriptors.

7.5 References

Abu-Mostafa, Y. S. and Psaltis, D., Image Normalization by Complex Moments, IEEE Trans.
PAMI, 7, pp. 46–55, 1985

Aguado, A. S., Nixon, M. S. and Montiel, E., Parameterizing Arbitrary Shapes via Fourier
Descriptors for Evidence-Gathering Extraction, CVIU: Comput. Vision Image Understand.,
69(2), pp. 202–221, 1998

Aguado, A. S., Montiel, E. and Zaluska, E., Modelling Generalized Cylinders via Fourier
Morphing, ACM Trans. Graphics, 18(4), pp. 293–315, 1999

Ahlberg, J. H., Nilson, E. N. and Walsh, J. L., The Theory of Splines and Their Applications,
Academic Press, New York, 1967

Boyce, J. F. and Hossack, W. J., Moment Invariants for Pattern Recognition, Pattern Recog.
Lett., 1, pp. 451–456, 1983

Chen, Y. Q., Nixon, M. S. and Thomas, D. W., Texture Classification using Statistical Geometric
Features, Pattern Recog., 28(4), pp. 537–552, 1995

Cosgriff, R. L., Identification of Shape, Rep. 820-11, ASTIA AD 254792, Ohio State University
Research Foundation, Columbus, OH, 1960

Crimmins, T. R., A Complete Set of Fourier Descriptors for Two-Dimensional Shapes, IEEE
Trans. SMC, 12(6), pp. 848–855, 1982

Das, P. P. and Chatterji, B. N. Knight’s Distances in Digital Geometry, Pattern Recog. Lett., 7,
pp. 215–226, 1988

Dierckx, P., Curve and Surface Fitting with Splines, Oxford University Press, Oxford, 1995
Flusser, J. and Suk, T., Pattern Recognition by Affine Moment Invariants, Pattern Recog., 26(1),

pp. 167–174, 1993
Freeman, H., On the Encoding of Arbitrary Geometric Configurations, IRE Trans., EC-10(2),

pp. 260–268, 1961
Freeman, H., Computer Processing of Line Drawing Images, Comput. Surv., 6(1),

pp. 57–95, 1974

326 Feature Extraction and Image Processing

Granlund, G. H., Fourier Preprocessing for Hand Print Character Recognition, IEEE Trans.
Comput., 21, pp. 195–201, 1972

Gu, J., Shua, H. Z., Toumoulinb, C. and Luoa, L. M., A Novel Algorithm for Fast Computation
of Zernike Moments, Pattern Recog., 35(12), pp. 2905–2911, 2002

Hu, M. K., Visual Pattern Recognition by Moment Invariants, IRE Trans. Inform. Theory, IT-8,
pp. 179–187, 1962

Kashi, R. S., Bhoj-Kavde, P., Nowakowski, R. S. and Papathomas, T. V., 2-D Shape
Representation and Averaging using Normalized Wavelet Descriptors, Simulation, 66(3),
pp. 164–178, 1996

Khotanzad, A. and Hong, Y. H., Invariant Image Recognition by Zernike Moments, IEEE Trans.
PAMI, 12, pp. 489–498, 1990

Kiryati, N. and Maydan, D., Calculating Geometric Properties from Fourier Representation,
Pattern Recog., 22(5), pp. 469–475, 1989

Kuhl, F. P. and Giardina, C. R., Elliptic Fourier Descriptors of a Closed Contour, CVGIP, 18,
pp. 236–258, 1982

Lin C. C. and Chellappa, R., Classification of Partial 2D Shapes using Fourier Descriptors,
IEEE Trans. PAMI, 9(5), pp. 686–690, 1987

Liu, H. C. and Srinath, M. D., Corner Detection from Chain-Coded Curves, Pattern Recog.,
23(1), pp. 51–68, 1990

Loncaric, S., A Survey of Shape Analysis Techniques, Pattern Recog., 31(8), pp. 983–1001, 1998
Marchand, S. and Sharaiha, Y. M., Discrete Convexity, Straightness and the 16-Neighbourhood,

Comput. Vision Image Understand., 66(3), pp. 416–429, 1997
Montiel, E., Aguado, A. S. and Zaluska, E., Topology in Fractals, Chaos Solitons Fractals, 7(8),

pp. 1187–1207, 1996
Montiel, E., Aguado, A. S. and Zaluska, E., Fourier Series Expansion of Irregular Curves,

Fractals, 5(1), pp. 105–199, 1997
Mukundan, R., Image Analysis by Tchebichef Moments, IEEE Trans. Image Process., 10(9),

pp. 1357–1364, 2001
Mukundan, R. and Ramakrishnan, K. R., Fast Computation of Legendre and Zernike Moments,

Pattern Recog., 28(9), pp. 1433–1442, 1995
Mukundan, R. and Ramakrishnan, K. R., Moment Functions in Image Analysis: Theory and

Applications, World Scientific, Singapore, 1998
van Otterloo, P. J., A Contour-Oriented Approach to Shape Analysis, Prentice Hall International

(UK), Hemel Hempstead, 1991
Persoon, E. and Fu, K.-S., Shape Description Using Fourier Descriptors, IEEE Trans. SMC, 3,

pp. 170–179, 1977
Prismall, S. P., Nixon, M. S. and Carter, J. N., On Moving Object Reconstruction by Moments,

Proc. BMVC 2002, pp. 83–82, 2002
Prokop, R. J. and Reeves A. P., A Survey of Moment-Based Techniques for Unoccluded

Object Representation and Recognition, CVGIP: Graphical Models Image Process., 54(5),
pp. 438–460, 1992

Rosenfeld, A., Digital Straight Line Segments, IEEE Trans. Comput., 23, pp. 1264–1269, 1974
Rosin, P., Techniques for Assessing Polygonal Approximations to Curves, IEEE Trans. PAMI,

19(6), pp. 659–666, 1997
Rosin, P. and Zunic, J., Measuring Rectilinearity, Comput. Vision Image Understand., 99(2),

pp. 175–188, 2005
Searle, N. H., Shape Analysis by use of Walsh Functions, In: B. Meltzer and D. Mitchie (Eds),

Machine Intelligence 5, Edinburgh University Press, Edinburgh, 1970

Object description 327

Seeger, U. and Seeger, R., Fast Corner Detection in Gray-Level Images, Pattern Recog. Lett.,
15, pp. 669–675, 1994

Shutler, J. D. and Nixon, M. S., Zernike Velocity Moments for Sequence-Based Description of
Moving Features, Image Vision Comput., 24(4), pp. 343–356, 2006

Staib, L. and Duncan, J., Boundary Finding with Parametrically Deformable Models, IEEE
Trans. PAMI, 14, pp. 1061–1075, 1992

Teague, M. R., Image Analysis by the General Theory of Moments, J. Opt. Soc. Am., 70,
pp. 920–930, 1980

Teh, C. H. and Chin, R. T., On Image Analysis by the Method of Moments, IEEE Trans. PAMI,
10, pp. 496–513, 1988

Trier, O. D., Jain, A. K. and Taxt, T., Feature Extraction Methods for Character Recognition –
A Survey, Pattern Recog., 29(4), pp. 641–662, 1996

Undrill, P. E., Delibasis, K. and Cameron, G. G., An Application of Genetic Algorithms
to Geometric Model-Guided Interpretation of Brain Anatomy, Pattern Recog., 30(2),
pp. 217–227, 1997

Zahn, C. T. and Roskies, R. Z., Fourier Descriptors for Plane Closed Curves, IEEE Trans.
Comput., C-21(3), pp. 269–281, 1972

328 Feature Extraction and Image Processing

. 8 .

Introduction to texture
description,

segmentation
and classification

8.1 Overview

This chapter is concerned with how we can use many of the feature extraction and description
techniques presented earlier to characterize regions in an image. The aim here is to describe
how we can collect together measurements for purposes of recognition, using texture by way of
introduction and as a vehicle for using feature extraction in recognition.

We shall look first at what is meant by texture and then how we can use Fourier transform
techniques, statistics and region measures to describe it. We shall then look at how the measure-
ments provided by these techniques, the description of the texture, can be collected together to
recognize it. Finally, we shall label an image according to the texture found within it, to give a
segmentation into classes known to exist within the image. Since we could be recognizing shapes
described by Fourier descriptors, region measures, or other feature extraction and description
approaches, the material is general and could be applied for purposes of recognition to measures
other than texture.

Table 8.1 Overview of Chapter 8

Main topic Sub topics Main points

Texture
description

What is image texture and how do we
determine sets of numbers that allow
us to be able to recognize it.

Feature extraction: Fourier transform;
co-occurrence; regions. Feature
descriptions: energy; entropy and
inertia.

Texture
classification

How to associate the numbers we
have derived with those that we have
already stored for known examples.

k-Nearest neighbour rule; support
vector machines and other
classification approaches.

Texture
segmentation

How to find regions of texture within
images.

Convolution; tiling; thresholding.

329

8.2 What is texture?

Texture is a very nebulous concept, often attributed to human perception, as either the feel or
the appearance of (woven) fabric. Everyone has their own interpretation as to the nature of
texture; there is no mathematical definition of texture, it simply exists. By way of reference, let
us consider one of the dictionary definitions (Oxford Dictionary, 1996):

texture n., & v�t. 1. n. arrangement of threads etc. in textile fabric; characteristic feel
due to this; arrangement of small constituent parts, perceived structure, (of skin, rock,
soil, organic tissue, literary work, etc.); representation of structure and detail of objects
in art;� � �

That covers quite a lot. If we change ‘threads’ for ‘pixels’, the definition could apply to images
(except for the bit about artwork). Essentially, texture can be what we define it to be. Why
might we want to do this? By way of example, analysis of remotely sensed images is now a
major application of image processing techniques. In such analysis, pixels are labelled according
to the categories of a required application, such as whether the ground is farmed or urban in
land-use analysis, or water for estimation of surface analysis. An example remotely sensed
image is given in Figure 8.1(a), which is of an urban area (in the top left) and some farmland.
Here, the image resolution is low and each pixel corresponds to a large area of the ground.
Square groups of pixels have then been labelled either as urban or as farmland, according to
their texture properties as shown in Figure 8.1(b), where black represents the area classified as
urban and white represents farmland. In this way we can assess the amount of area that urban
areas occupy. As such, we have used real textures to label pixels, the perceived textures of the
urban and farming areas.

(a) Remotely sensed image (b) Classification result

Figure 8.1 Example texture analysis

As an alternative definition of texture, we can consider it as a database of images that
researchers use to test their algorithms. Many texture researchers have used a database of
pictures of textures (Brodatz, 1968), produced for artists and designers, rather than for digital
image analysis. Parts of three of the Brodatz texture images are given in Figure 8.2. Here, the
French canvas (Brodatz index D20) in Figure 8.2(a) is a detail of Figure 8.2(b) (Brodatz index

330 Feature Extraction and Image Processing

D21), taken at four times the magnification. The beach sand in Figure 8.2(c), Brodatz index
D29, is clearly of a different texture to that of cloth. Given the diversity of texture, there are
now many databases available on the web, at the sites given in Chapter 1 or at this book’s
website.

(a) French canvas (detail) D20 (b) French canvas D21 (c) Beach sand D29

Figure 8.2 Three Brodatz textures

Alternatively, we can define texture as a quantity for which texture extraction algorithms
provide meaningful results. One study (Karru et al., 1996) suggests

The answer to the question ‘is there any texture in the image?’ depends not only on the
input image, but also on the goal for which the image texture is used and the textural
features that are extracted from the image.

As we shall find, texture analysis has a rich history in image processing and computer vision
and there is now even a book devoted to texture analysis (Petrou and Sevilla, 2006). Despite
this, approaches that synthesize texture are relatively recent. This is motivated also by graphics,
and the need to include texture to improve the quality of the rendered scenes (Heckbert, 1986).
By way of example, one well-known approach to texture synthesis is to use a Markov random
field (Efros and Leung, 1999), but we shall not dwell on that here.

Essentially, there is no unique definition of texture and there are many ways to describe and
extract it. It is a very large and exciting field of research and there continue to be many new
developments.

Images will usually contain samples of more than one texture. Accordingly, we would like
to be able to describe texture (texture descriptions are measurements that characterize a texture)
and then to classify it (classification is attributing the correct class label to a set of measurements)
and then, perhaps, to segment an image according to its texture content. We have used similar
classification approaches to characterize the shape descriptions in the previous chapter. These
are massive fields of research that move on to the broad subject of pattern recognition. We shall
look at an introduction here; later references will point you to topics of particular interest and to
some of the more recent developments. The main purpose of this introduction is to show how the
measurements can be collected together to recognize objects. Texture is used as the vehicle for

Introduction to texture description, segmentation and classification 331

this since it is a region-based property that has not as yet been covered. Since texture itself is an
enormous subject, you will find plenty of references to established approaches and to surveys of
the field. First, we shall look at approaches to deriving the features (measurements) that can be
used to describe textures. Broadly, these can be split into structural (transform-based), statistical
and combination approaches. The frequency content of an image will reflect its texture; we
shall start with Fourier. First, though, we shall consider some of the required properties of the
descriptions.

8.3 Texture description

8.3.1 Performance requirements

The purpose of texture description is to derive some measurements that can be used to classify a
particular texture. As such, there are invariance requirements on the measurements, as there were
for shape description. The invariance requirements for feature extraction, namely invariance
to position, scale and rotation, can apply equally to texture extraction. After all, texture is a
feature, albeit a rather nebulous one as opposed to the definition of a shape. Clearly, we require
position invariance: the measurements describing a texture should not vary with the position of
the analysed section (of a larger image). We also require rotation invariance, but this is not as
strong a requirement as position invariance; the definition of texture does not imply knowledge
of orientation, but could be presumed to. The least strong requirement is that of scale, for this
depends primarily on application. Consider using texture to analyse forests in remotely sensed
images. Scale invariance would imply that closely spaced young trees should give the same
measure as widely spaced mature trees. This should be satisfactory if the purpose was only to
analyse foliage cover. It would be unsatisfactory if the purpose was to measure age for purposes
of replenishment, since a scale-invariant measure would be of little use as it could not, in
principle, distinguish between young and old trees.

Unlike feature extraction, texture description rarely depends on edge extraction, since one
main purpose of edge extraction is to remove reliance on overall illumination level. The higher
order invariants, such as perspective invariance, are rarely applied to texture description. This
is perhaps because many applications are like remotely sensed imagery, or are in constrained
industrial applications where the camera geometry can be controlled.

8.3.2 Structural approaches

The most basic approach to texture description is to generate the Fourier transform of the image
and then to group the transform data in some way so as to obtain a set of measurements. The size
of the set of measurements is smaller than the size of the image’s transform. In Chapter 2 we saw
how the transform of a set of horizontal lines was a set of vertical spatial frequencies (since
the point spacing varies along the vertical axis). Here, we must remember that for display we
rearrange the Fourier transform so that the d.c. component is at the centre of the presented image.

The transforms of the three Brodatz textures of Figure 8.2 are shown in Figure 8.3.
Figure 8.3(a) shows a collection of frequency components which are then replicated with the
same structure (consistent with the Fourier transform) in Figure 8.3(b). (Figure 8.3a and b also
show the frequency scaling property of the Fourier transform: greater magnification reduces the
high frequency content.) Figure 8.3(c) is clearly different in that the structure of the transform

332 Feature Extraction and Image Processing

(a) French canvas (detail) (b) French canvas (c) Beach sand

Figure 8.3 Fourier transforms of the three Brodatz textures

data is spread a different manner to that of Figure 8.3(a) and (b). These images have been
derived by application of the fast Fourier transform, which we shall denote as

FP = ��P� (8.1)

where FPu�v and Px�y are the transform and pixel data, respectively. One clear advantage of the
Fourier transform is that it possesses shift invariance (Section 2.6.1): the transform of a bit of
(large and uniform) cloth will be the same, whatever segment we inspect. This is consistent with
the observation that phase is of little use in Fourier-based texture systems (Pratt, 1992), so the
modulus of the transform (its magnitude) is usually used. The transform is of the same size as
the image, even though conjugate symmetry of the transform implies that we do not need to use
all of its components as measurements. As such, we can filter the Fourier transform (Section 2.8)
so as to select those frequency components deemed to be of interest to a particular application.
Alternatively, it is convenient to collect the magnitude transform data in different ways to
achieve a reduced set of measurements. First, though, the transform data can be normalized
by the sum of the squared values of each magnitude component (excepting the zero-frequency
components, those for u = 0 and v = 0), so that the magnitude data is invariant to linear shifts
in illumination to obtain normalized Fourier coefficients NFP as

NFPu�v =
∣∣FPu�v

∣∣
√ ∑

�u�=0�∧�v �=0�

∣∣FPu�v

∣∣2
(8.2)

Alternatively, histogram equalization (Section 3.3.3) can provide such invariance, but is more
complicated than using Equation 8.2. The spectral data can then be described by the entropy,
h, as

h =
N∑

u=1

N∑
v=1

NFPu�v log
(
NFPu�v

)
(8.3)

or by their energy, e, as

e =
N∑

u=1

N∑
v=1

(
NFPu�v

)2
(8.4)

Introduction to texture description, segmentation and classification 333

Another measure is their inertia, i, defined as

i =
N∑

u=1

N∑
v=1

�u− v�2 NFPu�v (8.5)

These measures are shown for the three Brodatz textures in Code 8.1. In a way, they are like
the shape descriptions in the previous chapter: the measures should be the same for the same
object and should differ for a different one. Here, the texture measures are different for each of
the textures. Perhaps the detail in the French canvas (Code 8.1a) could be made to give a closer
measure to that of the full resolution (Code 8.1b) by using the frequency scaling property of
the Fourier transform, discussed in Section 2.6.3. The beach sand clearly gives a different set of
measures from the other two (Code 8.1c). In fact, the beach sand in Code 8.1(c) would appear
to be more similar to the French canvas in Code 8.1(b), since the inertia and energy measures
are much closer than those for Code 8.1(a) (only the entropy measure in Code 8.1a is closest to
Code 8.1b). This is consistent with the images: each of the beach sand and French canvas has
a large proportion of higher frequency information, since each is a finer texture than that of the
detail in the French canvas.

entropy(FD20)=–253.11 entropy(FD21)=–196.84 entropy(FD29)=–310.61
inertia(FD20)=5.55·105 inertia(FD21)=6.86·105 inertia(FD29)=6.38·105

energy(FD20)=5.41 energy(FD21)=7.49 energy(FD29)=12.37

(a) French canvas (detail) (b) French canvas (c) Beach sand

Code 8.1 Measures of the Fourier transforms of the three Brodatz textures

By Fourier analysis, the measures are inherently position invariant. Clearly, the entropy,
inertia and energy are relatively immune to rotation, since order is not important in their cal-
culation. The measures can also be made scale invariant, as a consequence of the frequency
scaling property of the Fourier transform. Finally, the measurements (by virtue of the normal-
ization process) are inherently invariant to linear changes in illumination. The descriptions will
be subject to noise. To handle large datasets we need a larger set of measurements (larger
than the three given here) to discriminate better between different textures. Other measures can
include:

• the energy in the major peak
• the Laplacian of the major peak
• the largest horizontal frequency
• the largest vertical frequency.

Among others, these are elements of Liu’s features (Liu and Jernigan, 1990) chosen in a way
aimed to give Fourier transform-based measurements good performance in noisy conditions.

There are many other transforms and these can confer different attributes in analysis. The
wavelet transform is very popular since it allows for localization in time and frequency (Laine
and Fan, 1993; Lu et al., 1997). Other approaches use the Gabor wavelet (Bovik et al., 1990; Jain
and Farrokhnia, 1991; Daugman, 1993; Dunn et al., 1994), as introduced in Section 2.7.3. One
comparison between Gabor wavelets and tree- and pyramidal-structured wavelets suggested that
Gabor has the greater descriptional ability, with the penalty of greater computational complexity

334 Feature Extraction and Image Processing

(Pichler et al., 1996), and more recent work is available (Grigorescu et al., 2002). There has
also been renewed resurgence of interest in Markov random fields (Gimmel’farb and Jain, 1996;
Wu and Wei, 1996). Others, such as the Walsh transform (where the basis functions are 1s and
0s) appear to await application in texture description, no doubt owing to basic properties. In
fact, one survey (Randen and Husoy, 2000) includes the use of Fourier, wavelet and discrete
cosine transforms (Section 2.7.1) for texture characterization. These approaches are structural in
nature: an image is viewed in terms of a transform applied to a whole image, as such exposing
its structure. This is like the dictionary definition of an arrangement of parts. Another part of
the dictionary definition concerned detail; this can be exposed by analysis of the high-frequency
components, but these can be prone to noise. An alternative way to analyse the detail is to
consider the statistics of an image.

8.3.3 Statistical approaches

The most famous statistical approach is the co-occurrence matrix. This was the result of the
first approach to describe, and then classify, image texture (Haralick et al., 1973). It remains
popular today, by virtue of good performance. The co-occurrence matrix contains elements that
are counts of the number of pixel pairs for specific brightness levels, when separated by some
distance and at some relative inclination. For brightness levels b1 and b2 the co-occurrence
matrix C is

Cb1�b2 =
N∑

x=1

N∑
y=1

(
Px�y = b1

)∧ (Px′�y′ = b2
)

(8.6)

where the x coordinate x′ is the offset given by the specified distance d and inclination � by

x′ = x+d cos��� ∀ �d ∈ 1� max�d��∧ �� ∈ 0� 2�� (8.7)

and the y coordinate y′ is

y′ = y +d sin��� ∀ �d ∈ 1� max�d��∧ �� ∈ 0� 2�� (8.8)

When Equation 8.6 is applied to an image, we obtain a square, symmetric, matrix whose
dimensions equal the number of grey levels in the picture. The co-occurrence matrices for
the three Brodatz textures of Figure 8.2 are shown in Figure 8.4. In the co-occurrence matrix

(a) French canvas (detail) (b) French canvas (c) Beach sand

Figure 8.4 Co-occurrence matrices of the three Brodatz textures

Introduction to texture description, segmentation and classification 335

generation, the maximum distance was 1 pixel and the directions were set to select the four nearest
neighbours of each point. Now the results for the two samples of French canvas (Figure 8.4a
and b) appear to be much more similar to each other, and quite different from the co-occurrence
matrix for sand (Figure 8.4c). As such, the co-occurrence matrix looks like it can expose
the underlying nature of texture better than the Fourier description. This is because the co-
occurrence measures spatial relationships between brightness, as opposed to frequency content.
This clearly gives alternative results. To generate results more quickly, the number of grey
levels can be reduced by brightness scaling of the whole image, reducing the dimensions of the
co-occurrence matrix, but this reduces discriminatory ability.

These matrices have been achieved by the implementation in Code 8.2. The subroutine
tex_cc generates the co-occurrence matrix of an image im given a maximum distance d
and a number of directions dirs. If d and dirs are set to 1 and 4, respectively (as was
used to generate the results in Figure 8.4), then the co-occurrence will be evaluated from a
point and its four nearest neighbours. First, the co-occurrence matrix is cleared. Then, for
each point in the image and for each value of distance and relative inclination (and so long
as the two points are within the image), the element of the co-occurrence matrix indexed
by the brightnesses of the two points is incremented. There is a dummy operation after the
incrementing process: this has been introduced for layout reasons (otherwise the Mathcad code
would stretch out too far sideways). Finally, the completed co-occurrence matrix is returned.
Note that even though the co-occurrence matrix is symmetric, this factor cannot be used to
speed its production.

tex_cc(im,dist,dirs):=
for x∈0..maxbri
for y∈0..maxbri

coccy,x←0
for x∈0..cols(im)–1
for y∈0..rows(im)–1
for r∈1..dist

for θ∈0,

xc←floor(x+r·cos(θ))
yc←floor(y+r·sin(θ))
if(0≤yc)·(yc<rows(im))·(0≤xc)·(xc<cols(im))

coccim y,x,im yc,xc
←coccim y,x,im yc,xc

+1

I←1

..2·π2·π
dirs

cocc

Code 8.2 Co-occurrence matrix generation

Again, we need measurements that describe these matrices. We shall use the measures of
entropy, inertia and energy defined earlier. The results are shown in Code 8.3. Unlike visual
analysis of the co-occurrence matrices, the difference between the measures of the three textures
is less clear: classification from them will be discussed later. Clearly, the co-occurrence matrices

336 Feature Extraction and Image Processing

have been reduced to only three different measures. In principle, these measurements are again
invariant to linear shift in illumination (by virtue of brightness comparison) and to rotation
(since order is of no consequence in their description and rotation only affects co-occurrence
by discretization effects). As with Fourier, scale can affect the structure of the co-occurrence
matrix, but the description can be made scale invariant.

entropy(CCD20)=7.052·105 entropy(CCD21)=5.339·105 entropy(CCD29)=6.445·105

inertia(CCD20)=5.166·108 inertia(CCD21)=1.528·109 inertia(CCD29)=1.139·108

energy(CCD20)=5.16·108 energy(CCD21)=3.333·107 energy(CCD29)=5.315·107

(a) French canvas (detail) (b) French canvas (c) Beach sand

Code 8.3 Measures of co-occurrence matrices of the three Brodatz textures

Grey-level difference statistics (a first order measure) were later added to improve descrip-
tional capability (Weszka et al., 1976). Other statistical approaches include the statistical feature
matrix (Wu and Chen, 1992), with the advantage of faster generation.

8.3.4 Combination approaches

The previous approaches have assumed that we can represent textures by purely structural or
purely statistical description, combined in some appropriate manner. Since texture is not an exact
quantity, and is more a nebulous one, there are many alternative descriptions. One approach
(Chen et al., 1995) suggested that texture combines geometric structures (e.g. in patterned cloth)
with statistical ones (e.g. in carpet) and has been shown to give good performance in comparison
with other techniques, and using the whole Brodatz dataset. The technique is called statistical
geometric features (SGF), reflecting the basis of its texture description. This is not a dominant
texture characterization: the interest here is that we shall now see the earlier shape measures
in action, describing texture. Essentially, geometric features are derived from images, and then
described by using statistics. The geometric quantities are derived from NB – 1 binary images
B which are derived from the original image P (which has NB brightness levels). These binary
images are given by

B���x�y =
∣∣∣∣
1 if Px�y = �

0 otherwise
∀� ∈ 1�NB (8.9)

Then, the points in each binary region are connected into regions of 1s and 0s. Four geometric
measures are made on these data. First, in each binary plane, the number of regions of 1s and
0s (the number of connected sets of 1s and 0s) is counted to give NOC1 and NOC0. Then, in
each plane, each of the connected regions is described by its irregularity, which is a local shape
measure of a region R of connected 1s giving irregularity I1 defined by

I1�R� =
1+√

� max
i∈R

√
�xi −x�2 + �yi −y�2

√
N�R�

−1 (8.10)

Introduction to texture description, segmentation and classification 337

where xi and yi are coordinates of points within the region, x and y are the region’s centroid
(its mean x and y coordinates), and N is the number of points within (i.e. the area of) the
region. The irregularity of the connected 0s, I0�R�, is similarly defined. When this is applied
to the regions of 1s and 0s it gives two further geometric measures, IRGL1�i� and IRGL0�i�,
respectively. To balance the contributions from different regions, the irregularity of the regions
of 1s in a particular plane is formed as a weighted sum WI1��� as

WI1��� =
∑

R∈B���

N�R�I�R�

∑
R∈P

N�R�
(8.11)

giving a single irregularity measure for each plane. Similarly, the weighted irregularity of the
connected 0s is WI0. Together with the two counts of connected regions, NOC1 and NOC0, the
weighted irregularities give the four geometric measures in SGF. The statistics are derived from
these four measures. The derived statistics are the maximum value of each measure across all
binary planes, M . Using m��� to denote any of the four measures, the maximum is

M = max
�i∈1�NB

�m���� (8.12)

the average, m, is

m = 1
255

NB∑
�=1

m��� (8.13)

the sample mean, s, is

s = 1
NB∑
�=1

m���

NB∑
�=1

�m��� (8.14)

and the final statistic is the sample standard deviation, ssd, is

ssd =
√√√√√

1
NB∑
�=1

m���

NB∑
�=1

��− s�2 m��� (8.15)

The irregularity measure can be replaced by compactness (Section 7.3.1), but compactness varies
with rotation, although this was not found to influence results much (Chen et al., 1995).

To implement these measures, we need to derive the sets of connected 1s and 0s in each
of the binary planes. This can be achieved by using a version of the connect routine in
hysteresis thresholding (Section 4.2.5). The reformulation is necessary because the connect
routine just labels connected points, whereas the irregularity measures require a list of points
in the connected region so that the centroid (and hence the maximum distance of a point from
the centroid) can be calculated. The results for four of the measures (for the region of 1s,
the maximum and average values of the number of connected regions and of the weighted
irregularity) are shown in Code 8.4. Again, the set of measures is different for each texture.
Note that the last measure, m�WI1�, does not appear to offer much discriminatory capability
here, whereas the measure M�WI1� appears to be a much more potent descriptor. Classification,
or discrimination, is used to select which class the measures refer to.

338 Feature Extraction and Image Processing

M(NOC1)=81

M(WI1)=1.00
m(WI1)=0.37

m(NOC1)=22.14
_

M(NOC 1)=52.0

M(WI1)=1.50
m(WI1)=0.40

m(NOC1)=8.75
_

_

M(NOC1)=178

M(WI1)=1.42
m(WI1)=0.35

m(NOC1)=11.52
_

_ _

(a) French canvas (detail) (b) French canvas (c) Beach sand

Code 8.4 Four of the SGF measures of the three Brodatz textures

8.4 Classification

8.4.1 The k -nearest neighbour rule

In application, usually we have a description of a texture sample and we want to find which
element of a database best matches that sample. This is classification: to associate the appropriate
class label (type of texture) with the test sample by using the measurements that describe it.
One way to make the association is by finding the member of the class (the sample of a known
texture) with measurements that differ by the least amount from the test sample’s measurements.
In terms of Euclidean distance, the difference d between the M descriptions of a sample, s, and
the description of a known texture, k, is

d =
√

M∑
i=1

�si −ki�
2 (8.16)

which is also called the L2 norm. Alternative distance metrics include the L1 norm, which is the
sum of the modulus of the differences between the measurements

L1 =
M∑

i=1

	si −ki	 (8.17)

and the Bhattacharyya distance B

B = − ln
M∑

i=1

√
si ×ki (8.18)

but this appears to be used less, like other metrics such as the Matusita difference.
If we have M measurements of N known samples of textures and we have O samples of

each, we have an M-dimensional feature space that contains the N × O points. If we select
the point in the feature space that is closest to the current sample, then we have selected the
sample’s nearest neighbour. This is illustrated in Figure 8.5, where we have a two-dimensional
feature space produced by the two measures made on each sample, measure 1 and measure 2.
Each sample gives different values for these measures, but the samples of different classes
give rise to clusters in the feature space where each cluster is associated with a single class.
In Figure 8.5 we have seven samples of two known textures: class A and class B, depicted by
X and O, respectively. We want to classify a test sample, depicted by +, as belonging either
to class A or to class B (i.e. we assume that the training data contains representatives of all
possible classes). Its nearest neighbour, the sample with least distance, is one of the samples of
class A, so we could say that our test appears to be another sample of class A (i.e. the class
label associated with it is class A). The clusters will be far apart for measures that have good

Introduction to texture description, segmentation and classification 339

discriminatory ability, whereas they will be overlap for measures that have poor discriminatory
ability. That is how we can choose measures for particular tasks. Before that, let us look at how
best to associate a class label with our test sample.

Measure 2

Measure 1

7 samples (X)
of class A

Nearest neighbour

3-nearest neighbours

7 samples (O)
of class BTest sample

Figure 8.5 Feature space and classification

Classifying a test sample as the training sample to which it is closest in feature space is a
specific case of a general classification rule known as the k-nearest neighbour rule. In this rule,
the class selected is the mode of the sample’s nearest k neighbours. By the k-nearest neighbour
rule, for k = 3, we select the nearest three neighbours (those three with the least distance) and
their mode, the maximally represented class, is attributed to the sample. In Figure 8.5, the
3-nearest neighbour is class B, since the three nearest samples contain one from class A (its
nearest neighbour) and two from class B. Since there are two elements of class B, the sample is
attributed to this class by the 3-nearest neighbour rule. As such, selection from more than one
point introduces a form of feature space smoothing and allows the classification decision not
to be affected by noisy outlier points. This smoothing has greater effect for larger values of k.
(Further details concerning a modern view of the k-nearest neighbour rule can be found in
Michie et al., 1994).

A Mathcad implementation of the k-nearest neighbour rule is given in Code 8.5. The argu-
ments are test (the vector of measurements of the test sample), data (the list of vectors of
measurements of all samples), size (the value of k) and no. The final parameter no dictates
the structure of the presented data and is the number of classes within that data. The training
data is presumed to have been arranged so that samples of each class are all stored together. For
two classes in the training data, no = 2, where each occupies one half (the same situation as
in Figure 8.5). If no= 3 then there are three classes, each occupying one-third of the complete
dataset; the first third contains the first class, the second third contains samples of another class
and the remaining third contains samples of the final class. In application, first the distances
between the current sample, test, and all other samples are evaluated by using the function

340 Feature Extraction and Image Processing

distance. Then the k nearest neighbours are selected to form a vector of distances min; these
are the k neighbours that are closest (in the feature space) to the sample test. The number of
feature space splits fsp is the spacing between the classes in the data. The class that occurs
the most number of times in the set of size nearest neighbours is then returned as the k-nearest
neighbour, by incrementing the class number to which each of the k neighbours is associated.
(If no such decision is possible, i.e. there is no maximally represented class, the technique can
be arranged to return the class of the nearest neighbour, by default.)

k_nn(test,data,size,no):=
for i∈0..rows(data)–1

disti←0
for j∈0..cols(data)–1

for i∈0..size–1
disti←distance(test,data,i)

posmin←coord(min(dist),dist)
distposmin←max(dist)+1
mini←posmin

fsp←
rows(data)

no
for j∈1..no

classj←0
for i∈0..size–1
for j∈1..no

classj←classj+1 if [mini≥(j–1)·fsp]·(mini<j·fsp)
test_class←coord(max(class),class)
test_class

Code 8.5 Implementing the k-nearest neighbour rule

The result of testing the k-nearest neighbour routine is illustrated on synthetic data in Code 8.6.
Here, there are two different datasets. The first (Code 8.6a) has three classes of which there
are three samples (each sample is a row of data, so this totals nine rows) and each sample is
made up of three measurements (the three columns). As this is synthetic data, it can be seen that
each class is quite distinct: the first class is for measurements around [1,2,3], the second class
is around [4,6,8] and the third is around [8,6,3]. A small amount of noise has been added to the
measurements. We then want to see the class associated with a test sample with measurements
[4,6,8] (Code 8.6b). The 1-nearest nearest neighbour (Code 8.6c) associates it with the class with
the closest measurements, which is class 2 as the test sample’s nearest neighbour is the fourth
row of data. (The result is class 1, class 2 or class 3.) The 3-nearest neighbour (Code 8.6d) is
again class 2 as the nearest three neighbours are the fourth, fifth and sixth rows, and each of
these is from class 2.

The second dataset (Code 8.6e) is two classes with three samples each made up of four
measures. The test sample (Code 8.6f) is associated with class 1 by the 1-nearest neighbour
(Code 8.6g), but with class 2 for the 3-nearest neighbour (Code 8.6h). This is because the test
sample is closest to the sample in the third row. After the third row, the next two closest samples
are in the fourth and sixth rows. The nearest neighbour is in a different class (class 1) to that

Introduction to texture description, segmentation and classification 341

population1:=

1

1.1

1

4

3.9

4.1

8.8

7.8

8.8

2

2

2.1

6

6.1

5.9

6.1

5.9

6.4

3

3.1

3

8

8.1

8.2

2.8

3.3

3.1

population2:=

2

2.1

2.3

2.5

3.4

2.3

4

3.9

3.6

4.5

4.4

4.6

6

6.2

5.8

6.5

6.6

6.4

8

7.8

8.3

8.5

8.6

8.5

test_ point1:=(4 6 8) test_ point2:=(2.5 3.8 6.4 8.3)

k_nn(test_ point2,population2,1,2)=1

k_nn(test_ point2,population2,3,2)=2

k_nn(test_ point1,population1,1,3)=2

k_nn(test_ point1,population1,3,3)=2

 (h) 3-nearest neighbour (d) 3-nearest neighbour

 (c) 1-nearest neighbour

 (b) First test sample

 (a) Three classes, three samples, three features

 (g) 1-nearest neighbour

 (f) Second test sample

 (e) Two classes, three samples, four features

Code 8.6 Applying the k-nearest neighbour rule to synthetic data

of the next two nearest neighbours (class 2); a different result has occurred when there is more
smoothing in the feature space (when the value of k is increased).

The Brodatz database contains 112 textures, but few descriptions have been evaluated on the
whole database, usually concentrating on a subset. It has been shown that the SGF description
can afford better classification capability than the co-occurrence matrix and the Fourier transform
features (described by Liu’s features) (Chen et al., 1995). For experimental procedure, the
Brodatz pictures were scanned into 256×256 images which were split into 16 64×64 subimages.
Nine of the subimages were selected at random and results were classified using leave-one-out
cross-validation (Lachenbruch and Mickey, 1968). Leave-one-out refers to a procedure where
one of the samples is selected as the test sample and the others form the training data (this
is the leave-one-out rule). Cross-validation is where the test is repeated for all samples: each
sample becomes the test data once. In the comparison, the eight optimal Fourier transform
features were used (Liu and Jernigan, 1990), and the five most popular measures from the
co-occurrence matrix. The correct classification rate, the number of samples attributed to the
correct class, showed better performance by the combination of statistical and geometric features
(86%), as opposed to the use of single measures. The enduring capability of the co-occurrence
approach was reflected by its performance (65%) in comparison with Fourier (33%; whose
poor performance is rather surprising). An independent study (Walker and Jackway, 1996)
has confirmed the experimental advantage of SGF over the co-occurrence matrix, based on a
(larger) database of 117 cervical cell specimen images. Another study (Ohanian and Dubes,
1992) concerned the features that optimized classification rate and compared co-occurrence,
fractal-based, Markov random field and Gabor-derived features. By analysis on synthetic and

342 Feature Extraction and Image Processing

real imagery, via the k-nearest neighbour rule, the results suggested that co-occurrence offered
the best overall performance. Wavelets (Porter and Canagarajah, 1996), Gabor wavelets and
Gaussian Markov random fields have been compared (on a limited subset of the Brodatz
database) to show that the wavelet-based approach had the best overall classification performance
(in noise as well), together with the smallest computational demand.

8.4.2 Other classification approaches

Classification is the process by which we attribute a class label to a set of measurements.
Essentially, this is the heart of pattern recognition: intuitively, there must be many approaches.
These include statistical and structural approaches; a review can be found in Shalkoff (1992)
and a more modern view in Cherkassky and Mulier (1998). One major approach is to use
a neural network, which is a common alternative to using a classification rule. Essentially,
modern approaches centre around using multilayer perceptrons with artificial neural networks
in which the computing elements aim to mimic properties of neurons in the human brain. These
networks require training, typically by error back-propagation, aimed to minimize classification
error on the training data. At this point, the network should have learnt how to recognize the
test data (they aim to learn its structure): the output of a neural network can be arranged to
be class labels. Approaches using neural nets (Muhamad and Deravi, 1994) show how texture
metrics can be used with neural nets as classifiers, while another uses cascaded neural nets for
texture extraction (Shang and Brown, 1994). Neural networks lie within a research field that
has shown immense growth in the past two decades. Further details may be found in Michie
et al. (1994) and Bishop (1996; often a student favourite), and information more targeted at
vision in Zhou and Chellappa (1992). Support vector machines (SVMs) (Vapnik, 1995) are one
of the more popular approaches to data modelling and classification, more recently subsumed
within kernel methods (Shawe-Taylor and Cristianini, 2004). Their advantages include excellent
generalization capability, which concerns the ability to classify correctly samples that are not
within feature space used for training. SVMs have found application in texture classification
(Kim et al., 2002). Recently, interest in biometrics has focused on combining different classifiers,
such as face and speech, and there are promising new approaches to accommodate this (Kittler,
1998; Kittler et al., 1998).

There are also methods aimed to improve classification capability by pruning the data to
remove that which does not contribute to the classification decision. Guided ways that investigate
the potency of measures for analysis are known as feature (subset) selection. Principal com-
ponents analysis (Appendix 4) can reduce dimensionality, orthogonalize and remove redundant
data. There is also linear discriminant analysis (also called canonical analysis) to improve class
separability, while concurrently reducing cluster size (it is formulated concurrently to minimize
the within-class distance and maximize the between-class distance). There are also algorithms
aimed at choosing a reduced set of features for classification: feature selection for improved
discriminatory ability; a comparison can be found in Jain and Zongker (1997). Alternatively,
the basis functionals can be chosen in such a way as to improve classification capability.

8.5 Segmentation

To segment an image according to its texture, we can measure the texture in a chosen region
and then classify it. This is equivalent to template convolution, but where the result applied to
pixels is the class to which they belong, as opposed to the usual result of template convolution.

Introduction to texture description, segmentation and classification 343

Here, we shall use a 7 × 7 template size: the texture measures will be derived from the 49
points within the template. First, though, we need data from which we can make a classification
decision, the training data. This depends on a chosen application. Here, we shall consider the
problem of segmenting the eye image into regions of hair and skin.

This is a two-class problem for which we need samples of each class, samples of skin and
hair. We will take samples of each of the two classes; in this way, the classification decision
is as illustrated in Figure 8.5. The texture measures are the energy, entropy and inertia of the
co-occurrence matrix of the 7×7 region, so the feature space is three-dimensional. The training
data is derived from regions of hair and from regions of skin, as shown in Figure 8.6(a) and (b),
respectively. The first half of this data is the samples of hair, the other half is samples of the
skin, as required for the k-nearest neighbour classifier of Code 8.5.

We can then segment the image by classifying each pixel according to the description obtained
from its 7×7 region. Clearly, the training samples of each class should be classified correctly.
The result is shown in Figure 8.7(a). Here, the top left corner is first (correctly) classified as
hair, and the top row of the image is classified as hair until the skin commences (note that

(a) Hair (b) Skin

Figure 8.6 Training regions for classification

(a) Convolved (b) Tiled (c) Thresholded

Figure 8.7 Segmenting the eye image into two classes

344 Feature Extraction and Image Processing

the border inherent in template convolution reappears). In fact, much of the image appears to
be classified as expected. The eye region is classified as hair, but this is a somewhat arbitrary
decision; it is simply that hair is the closest texture feature. Some of the darker regions of skin
are classified as hair, perhaps the result of training on regions of brighter skin.

This is a computationally demanding process. An alternative approach is simply to clas-
sify regions as opposed to pixels. This is the tiled approach, with the result shown in
Figure 8.7(b). The resolution is very poor: the image has effectively been reduced to a set of
7 × 7 regions, but it is much faster, requiring only 2% of the computation of the convolution
approach.

A comparison with the result achieved by uniform thresholding is given, for comparison,
in Figure 8.7(c). This is equivalent to pixel segmentation by brightness alone. There are no
regions where the hair and skin are mixed and in some ways the result appears superior.
This is in part due to the simplicity in implementation of texture segmentation. However, the
result of thresholding depends on illumination level and on appropriate choice of the threshold
value. The texture segmentation method is completely automatic and the measures are known
to have invariance properties to illumination, as well as other factors. In addition, in uniform
thresholding there is no extension possible to separate more classes (except perhaps to threshold
at differing brightness levels).

8.6 Further reading

There is much further reading in the area of texture description, classification and segmentation,
as evidenced by the volume of published work in this area. The best place to start is Maria
Petrou’s book (Petrou and Sevilla, 2006) (the same author as in edge detection). There is one
fairly comprehensive, but dated, survey (Reed and du Buf, 1993). An updated review has a
wide bibliography (Tuceryan and Jain, 1998). Another (Zhang and Tan, 2002) offers a review
of the approaches that are invariant to rotation, translation, and affine or projective transforms,
but texture is a large field of work to survey with many applications. Even though it is a large
body of work, it is still only a subset of the field of pattern recognition. In fact, reviews of
pattern recognition give many pointers to this fascinating and extensive field (e.g. Jain et al.,
2000). In this text, the general paradigm is to extract features that describe the target and then
to classify them for purposes of recognition. In vision-based systems such approaches are used
in biometrics: ways of recognizing a person’s identity by some innate human properties. The
biometrics of major recent interest are signatures, speech, irises and faces, although there is
work in other areas including hand geometry (as used in US immigration) and gait. The first
text on biometrics is not very old (Jain et al., 1999) and surveys all major biometric approaches.
(It has just been updated.) There is much interest in automatic target recognition in both military
and commercial applications. This translates to medical studies, where the interest is in either
diagnosis or therapy. Here, researchers seek to be able to identify and recognize normal or
abnormal features within one of the many medical imaging modalities, for surgical purposes.
This is the world of image processing and computer vision. But all these operations depend
on feature extraction, which is why this text has concentrated on these basic methods, for no
practical vision-based system yet exists without them. We finish here; we hope you enjoyed
the book and will find it useful in your career or study. Certainly have a look at our website,
http://www.ecs.soton.ac.uk/∼msn/book/, as you will find more material there. Don’t hesitate to
send us your comments or any suggestions. À bientôt!

Introduction to texture description, segmentation and classification 345

8.7 References

Bishop, C. M., Neural Networks for Pattern Recognition, Oxford University Press, Oxford, 1996
Bovik, A. C., Clark, M. and Geisler, W. S., Multichannel Texture Analysis using Localized

Spatial Filters, IEEE Trans. PAMI, 12(1), pp. 55–73, 1990
Brodatz, P., Textures: A Photographic Album for Artists and Designers, Reinhold,

New York, 1968
Chen, Y. Q., Nixon, M. S. and Thomas, D. W., Texture Classification using Statistical Geometric

Features, Pattern Recog., 28(4), pp. 537–552, 1995
Cherkassky, V. and Mulier, F., Learning from Data, Wiley, New York, 1998
Daugman, J., G., High Confidence Visual Recognition of Persons using a Test of Statistical

Independence, IEEE Trans. PAMI, 18(8), pp. 1148–1161, 1993
Dunn, D., Higgins, W. E. and Wakely, J., Texture Segmentation using 2-D Gabor Elementary

Functions, IEEE Trans. PAMI, 16(2), pp. 130–149, 1994
Efros, A. and Leung, T., Texture Synthesis by Non-Parametric Sampling, Proc. ICCV,

pp. 1033–1038, 1999
Gimmel’farb, G. L. and Jain, A. K., On Retrieving Textured Images from an Image Database,

Pattern Recog., 28(12), pp. 1807–1817, 1996
Grigorescu, S. E., Petkov, N. and Kruizinga, P., Comparison of Texture Features based on Gabor

Filters, IEEE Trans. Image Process., pp. 1160–1167, 11(10), 2002
Haralick, R. M., Shanmugam, K. and Dinstein, I., Textural Features for Image Classification,

IEEE Trans. SMC, 2, pp. 610–621, 1973
Heckbert, P. S., Survey of Texture Mapping, IEEE Comput. Graphics Applic., pp. 56–67, 1986
Jain, A. K. and Farrokhnia, F., Unsupervised Texture Segmentation using Gabor Filters, Pattern

Recog., 24(12), pp. 1186–1191, 1991
Jain, A. K. and Zongker, D., Feature Selection: Evaluation, Application and Small Sample

Performance, IEEE Trans. PAMI, 19(2), pp. 153–158, 1997
Jain, A. K., Bolle, R. and Pankanti, S. (Eds), Biometrics – Personal Identification in Networked

Society, Kluwer Academic Publishers, Norwell, MA, 1999
Jain, A. K., Duin, R. P. W. and Mao, J., Statistical Pattern Recognition: A Review, IEEE Trans.

PAMI, 22(1), pp. 4–37, 2000
Karru, K., Jain, A. K. and Bolle, R., Is There any Texture in an Image?, Pattern Recog, 29(9),

pp. 1437–1446, 1996
Kim, K. I., Jung K., Park, S. H. and Kim, H. J., Support Vector Machines for Texture Classifi-

cation, IEEE Trans. PAMI, 24(11), pp. 1542–1550, 2002
Kittler, J., Hatef, M., Duin, R. P. W. and Matas, J., On Combining Classifiers, IEEE Trans.

PAMI, 20(3), pp. 226–239, 1998
Kittler, J., Combining Classifiers: A Theoretical Framework, Pattern Analysis Applic., 1(1),

pp. 18–27, 1998
Lachenbruch, P. A. and Mickey, M. R., Estimation of Error Rates in Discriminant Analysis,

Technometrics, 10, pp. 1–11, 1968
Laine, A. and Fan, J., Texture Classification via Wavelet Pattern Signatures, IEEE Trans. PAMI,

15(11), pp. 1186–1191, 1993
Liu, S. S. and Jernigan, M. E., Texture Analysis and Discrimination in Additive Noise, CVGIP,

49, pp. 52–67, 1990
Lu, C. S., Chung, P. C. and Chen, C. F., Unsupervised Texture Segmentation via Wavelet

Transform, Pattern Recog., 30(5), pp. 729–742, 1997

346 Feature Extraction and Image Processing

Michie, D., Spiegelhalter, D. J. and Taylor, C. C. (Eds), Machine Learning, Neural and Statistical
Classification, Ellis Horwood, Hemel Hempstead, 1994

Muhamad, A. K., Deravi, F., Neural Networks for the Classification of Image Texture, Engng
Applic. Artif. Intell., 7(4), pp. 381–393, 1994

Ohanian, P. P. and Dubes, R. C., Performance Evaluation for Four Classes of Textural Features,
Pattern Recognition, 25(8), pp. 819–833, 1992

Petrou, M. and Sevilla, O. G., Image Processing: Dealing with Texture, Wiley, New York, 2006
Pichler, O., Teuner, A. and Hosticka, B. J., A Comparison of Texture Feature Extraction

using Adaptive Gabor Filtering, Pyramidal and Tree Structured Wavelet Transforms, Pattern
Recog., 29(5), pp. 733–742, 1996

Porter, R. and Canagarajah, N., Robust Rotation-Invariant Texture Classification: Wavelet,
Gabor Filter and GRMF Based Schemes, IEE Proc. Vision Image Signal Process., 144(3),
pp. 180–188, 1997

Pratt, W. K., Digital Image Processing, Wiley, New York, 1992
Randen, T. and Husoy, J. H., Filtering for Texture Classification: A Comparative Study, IEEE

Trans. PAMI, 21(4), pp. 291–310, 2000
Reed, T. R. and du Buf, H., A Review of Recent Texture Segmentation and Feature Extraction

Techniques, CVGIP: Image Understanding, 57(3) pp. 359–372, 1993
Shalkoff, R. J., Pattern Recognition – Statistical, Structural and Neural Approaches, Wiley and

Sons, New York, 1992
Shang, C. G. and Brown, K., Principal Features-Based Texture Classification with Neural

Networks, Pattern Recog., 27(5), 675–687, 1994
Shawe-Taylor, J. and Cristianini, N., Kernel Methods for Pattern Analysis, Cambridge University

Press, Cambridge, 2004
Tuceryan, M. and Jain, A. K., Texture Analysis, In: C. H. Chen, L. F. Pau and P. S. P. Wang

(Eds), The Handbook of Pattern Recognition and Computer Vision, 2nd edn, pp. 207–248,
World Scientific Publishing Co., Singapore, 1998

Vapnik, V., The Nature of Statistical Learning Theory, Springer, New York, 1995
Walker, R. F. and Jackway, P. T., Statistical Geometric Features – Extensions for Cytological

Texture Analysis, Proc. 13th ICPR, Vienna, Vol. II (Track B), pp. 790–794, 1996
Weska, J. S., Dyer, C. R. and Rosenfeld, A., A Comparative Study of Texture Measures for

Terrain Classification, IEEE Trans. SMC, SMC-6(4), pp. 269–285, 1976
Wu, C. M. and Chen, Y. C., Statistical Feature Matrix for Texture Analysis, CVGIP: Graphical

Models Image Process., 54, pp. 407–419, 1992
Wu, W. and Wei, S., Rotation and Gray-Scale Transform-Invariant Texture Classification using

Spiral Resampling, Subband Decomposition and Hidden Markov Model, IEEE Trans. Image
Process., 5(10), pp. 1423–1434, 1996

Zhang, J. and Tan T., Brief review of invariant texture analysis methods, Pattern Recog., 35,
pp. 735–747, 2002

Zhou, Y.-T. and Chellappa, R., Artificial Neural Networks for Computer Vision, Springer,
New York, 1992

Introduction to texture description, segmentation and classification 347

This page intentionally left blank

. 9 .

Appendix 1: Example
worksheets

9.1 Example Mathcad worksheet for Chapter 3

The Mathcad worksheet has been typeset in this edition and the worksheets could be made to
look (something) like this (but currently do not).

The appearance of the worksheets depends on the configuration of your system and of the
Mathcad set up. To show you how they look, but as black and white only, here is part of a
typeset version of the shortest worksheet. Note that the appearance of the real worksheet will
depend largely on the setup of your machine.

Chapter 3 Basic image processing operations: CHAPTER3.MCD

This worksheet is the companion to Chapter 3 and implements the basic image processing
operations described therein. The worksheet follows the text directly and allows you to process
the eye image.

This chapter concerns basic image operations, essentially those which alter a pixel’s value
in a chosen way. We might want to make an image brighter (if it is too dark), or to remove
contamination by noise. For these, we would need to make the pixel values larger (in some
controlled way) or to change the pixel’s value if we suspect it to be wrong, respectively. Let’s
start with images of pixels, by reading in the image of a human eye.

eye := READBMP(eye_orig)

We can view (part) of the image as a matrix of pixels

eye =

0 31 2 4 5 6 7 8 9

0 115 117 130 155 155 146 146 135 115 132

1 135 130 139 155 141 146 146 115 115 135

2 139 146 146 152 152 155 117 117 117 139

3 139 144 146 155 155 146 115 114 117 139

4 139 146 146 152 150 136 117 115 135 139

5 146 146 146 155 149 130 115 137 135 145

6 147 146 142 150 136 115 132 146 146 146

7 146 141 155 152 130 115 139 139 146 146

8 136 145 160 141 115 129 139 147 146 141

9 117 146 155 130 115 115 137 149 141 139

10 132 152 150 130 115 115 142 149 141 118

11 137 149 136 130 130 114 135 139 141 139

12 137 145 130 117 115 115 117 117 132 132

349

or we can view it as an image (viewed using Mathcad’s picture facility) as
This image is a 64 pixels wide and 64 pixels in height. Let’s check:

cols(eye)=64 rows(eye)=64

The gives us 4096 pixels. Each pixel is an eight bit byte (NB. it’s stored in .BMP format),
so this gives us 256 possible intensity levels, starting at zero and ending at 255. It is more
common to use larger (say 256 × 256) images, but you won’t be tempted to use much larger
ones in Mathcad. It’s very common to use 8 bits for pixels, as this is well suited to digitized
video information.

We describe the occupation of intensity levels by a histogram. This is a count of all pixels
with a specified brightness level, plotted against brightness level. As a function, we can calculate
it by:

8 bits give 256 levels, 0..255
Initialize histogram
Cover whole picture

Find level
Increment points at
specified levels
Return histogram

histogram(pic):= for bright∈0..255
pixels_at_levelbright←0

for x∈0..cols(pic)–1
for y∈0 ..rows(pic)–1
level←picy,x
pixels_at_levellevel
←pixels_at_levellevel+1

pixels_at_level

So let’s work out the histogram of our eye image:

eye_histogram := histogram(eye)

To display it, we need a horizontal axis which gives the range of brightness levels

bright := 0..255

0 100 200
0

200

400

eye_histogrambright

Bright

So here’s the histogram of our picture of the eye image, p. The bright pixels relate mainly
to the skin, the darker ones to the hair.

350 Feature Extraction and Image Processing

The most common point operator replaces each pixel by a scaled version of the original
value. We therefore multiply each pixel by a number (like a gain), by specifying a function scale
which is fed the picture and the gain, or a level shift (upwards or downwards). The function
scale takes a picture pic and multiplies it by gain and adds a level

Address the whole picture

Multiply pixel
by gain and add level
Output the picture

scale(pic,gain,level):= for x∈0..cols(pic)–1
for y∈0..rows(pic)–1
newpicy,x←floor
 (gain.picy,x+level)

newpic

So let’s apply it: brighter := scale(eye, 1.2, 10)
You can change the settings of the parameters to see their effect; that’s why you’ve got this

electronic document. Try making it brighter and darker. What happens when the gain is too big
�>1�23�?

So our new picture looks like (using Mathcad’s picture display facility):

brighter =

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

10

11

12

148 150 166 196 196 185 185 172 148 168

172 166 176 196 179 185 185 148 148 172

176 185 185 192 192 196 150 150 150 176

176 182 185 196 196 185 148 146 150 176

176 185 185 192 190 173 150 148 172 176

185 185 185 196 188 166 148 174 172 184

186 185 180 190 173 148 168 185 185 185

185 179 196 192 166 148 176 176 185 185

173 184 202 179 148 164 176 186 185 179

150 185 196 166 148 148 174 188 179 176

168 192 190 166 148 148 180 188 179 151

174 188 173 166 166 146 172 176 179 176

174 184 166 150 148 148 150 150 168 168

Processed

brighter

Original

eyeeye

The difference is clear in the magnitude of the pixels; those in the ‘brighter’ image are
much larger than those in the original image, as well as by comparison of the processed with
the original image. The difference between the images is much clearer when we look at the
histogram of the brighter image.

So let’s have a look at our scaled picture: b_eye_hist := histogram(brighter)

Appendix 1: Example worksheets 351

0 100 200
0

200

400

b_eye_histbright

Bright

Which is what we expect; it’s just been moved along the brightness axis (it now starts well
after 100), and reveals some detail in the histogram which was obscured earlier.

Do you want to read more for this and other Chapters? Then download the worksheets, and
have a go!

9.2 Example Matlab worksheet for Chapter 4

This is part of the Matlab worksheet for Chapter 4. Essentially, the text is a Matlab script and
the subroutines called and the images provided are set into figures.

%Chapter 4 Low-Level Feature Extraction and Edge Detection: CHAPTER4.M
%Written by: Mark S. Nixon

disp (‘Welcome to the Chapter4 script’)
disp (‘This worksheet is the companion to Chapter 4 and is an
introduction.’)
disp (‘The worksheet follows the text directly and allows you to
process basic images.’)

%Let’s first empty the memory
clear

%Let’s initialise the display colour
colormap(gray);

disp (‘ ’)
disp (‘Let us use the image of an eye.’)
disp (‘When you are ready to move on, press RETURN’)
%read in the image
eye=imread(‘eye.jpg’,‘jpg’);
%images are stored as integers, so we need to double them for Matlab
%we also need to ensure we have a greyscale, not three colour planes
eye=double(eye(:,:,1));
%so let’s display it
subplot(1,1,1), imagesc(eye);
plotedit on, title (‘Image of an eye’), plotedit off
pause;
disp(‘ ’)

352 Feature Extraction and Image Processing

10

Image of an eye

20

30

40

50

60

10 20 30 40 50 60

Figure 9.1 Image of an eye

disp (‘We detect vertical edges by differencing horizontally adjacent’)
disp (‘points. Note how clearly the edge of the face appears’)
%so we’ll call the edge_x operator.

vertical=edge_x(eye);
imagesc(vertical);
plotedit on, title (‘Vertical edges of an eye’), plotedit off
pause;

function vertical_edges=edge_x(image)
%Find edges by horizontal differencing
%
%Usage: [new image]=edge_x(image)
%
%Parameters: image-array of points
%
%Author: Mark S. Nixon

%get dimensions
[rows,cols]=size(image);

%set the output image to black
vertical_edges=zeros(rows,cols);
%this is equivalent to
vertical_edges(1:rows,1:cols)=0

%then form the difference between
horizontal successive points
for x=1:cols-1 %address all columns
 except border
 for y=1:rows %address all rows
 vertical_edges(y,x)=
 abs(image(y,x)-image(y,x+1));
 end
end

10

Vertical edges of an eye

20

30

40

50

60

10 20 30 40 50 60

Figure 9.2 Vertical edge detection

Appendix 1: Example worksheets 353

disp (‘ ’)
disp (‘We detect horizontal edges by differencing vertically adjacent
points’)
disp (‘Notice how the side of the face now disappears, whereas the’)
disp (‘eyebrows appear’)
%so we’ll call the edge_y operator
subplot(1,2,2), horizontal=edge_y(eye);
subplot(1,2,1), imagesc(horizontal);
plotedit on, title (‘Horizontal edges of an eye’), plotedit off
subplot(1,2,2), imagesc(vertical);
plotedit on, title (‘Vertical edges of an eye’), plotedit off
pause;

function horizontal_edges=edge_ y(image)
%Find edges by vertical differencing
%
%Usage: [new image]=edge_ y(image)
%
%Parameters: image-array of points
%
%Author: Mark S. Nixon

%get dimensions
[rows,cols]=size(image);

%set the output image to black
horizontal_edges=zeros(rows,cols);

%then form the difference between vertical
successive points
for x=1:cols %address all columns
 for y=1:rows-1 %address all rows
 except border
 horizontal_edges(y,x)=
 abs(image(y,x)-image(y+1,x));
 end
end

10

Horizontal edges of an eye

20

30

40

50

60

10 20 30 40 50 60

Vertical edges of an eye

10

20

30

40

50

60

10 20 30 40 50 60

Figure 9.3 Vertical edge detection

Do you want to read more for this and other chapters? Then download the worksheets, and
have a go!

354 Feature Extraction and Image Processing

. 10 .

Appendix 2: Camera
geometry fundamentals

10.1 Image geometry

This book has focused on techniques of image processing that use intensity or colour values of
pixels to enhance and analyse images. Other image techniques include information about the
geometry of image acquisition. These techniques are studied in the computer vision area and
are mainly applied to three-dimensional (3D) scene analysis (Trucco and Verri, 1998; Hartley
and Zisserman, 2001). This appendix does not cover computer vision techniques, but gives
an introduction to the fundamental concepts of the geometry of computer vision. It aims to
complement the concepts in Chapter 1 by increasing the background knowledge of how camera
geometry is mathematically modelled.

As discussed in Chapter 1, an image is formed by a complex process involving optics, elec-
tronics and mechanical devices. This process maps information in a scene into pixels in an image.
A camera model uses mathematical representations to describe this process. Different models
include different aspects of the image formation and they are based on different assumptions or
simplifications. This appendix explains basic aspects of common camera geometry models.

10.2 Perspective camera

Figure 10.1 shows the model of the perspective camera. This model is also known as the pinhole
camera, since it describes the image formation process of a simple optical device with a small
hole. This device is known as a camera obscura and it was developed in the sixteenth century
as an artist’s aid. Light going through a pinhole projects an image of a scene onto a back screen.
The pinhole is called the centre of projection. Thus, a pixel is obtained by intersecting the image
plane with the line between the 3D point and the centre of projection. In the projected image,
parallel lines intersect at infinity, giving a correct perspective.

Although based on an ancient device, this model represents an accurate description of modern
cameras where light is focused in a single point using lenses. In Figure 10.1, the centre of
projection corresponds to the pinhole. Light passes through the point and is projected in the
image plane. Figure 10.2 illustrates an alternative configuration where light is focused back to
the image plane. The models are equivalent: the image is formed by projecting points through
a single point; the point xp is mapped into the point xi in the image plane and the focal length
determines the zoom distance.

355

Image plane Focal length

Optical or principal axis
Centre of
projection

Principal point

xi

xp

Figure 10.1 Pinhole model of perspective camera

Image plane

Focal length

Optical axis

Centre of
projection Principal point

xp
xi

Figure 10.2 Perspective camera

The perspective camera model is formulated by an equation that describes how a point in
space is mapped into an image, where the centre of projection is behind the image plane. This
formulation can be developed using algebraic functions; nevertheless, the notation is greatly
simplified by using matrix representations. In matrix form, points can be represented in Euclidean
coordinates, yet a simpler notation is developed using homogeneous coordinates. Homogeneous
coordinates simplify the formulation since translations and rotations are represented as matrix
multiplications. In addition, homogeneous coordinates represent the projection of points and
planes as a simple multiplication. Thus, before formulating the model of the perspective camera,
we first review the basic concepts of homogeneous coordinates.

356 Feature Extraction and Image Processing

10.3 Perspective camera model

10.3.1 Homogeneous coordinates and projective geometry

Euclidean geometry is algebraically represented by the Cartesian coordinate system, in which
points are defined by tuples of numbers. Each number is related to one axis and a set of
axes determines the dimension. This representation is a very natural way of describing our
3D world and is very useful in image processing to describe pixels in two-dimensional (2D)
images. Cartesian coordinates are convenient to describe angles and lengths and they are simply
transformed by matrix algebra to represent translations, rotations and changes of scale. However,
the relationship defined by projections cannot be described with the same algebraic simplicity.

Projective geometry is algebraically represented by the homogeneous coordinate system. This
representation is a natural way of formulating how we relate camera coordinates to ‘real-world’
coordinates: the relation between image and physical space. Its major advantages are that image
transformations such as rotations, change of scale and projections become matrix multiplications.
Projections provide perspective, which corresponds to the distance of objects and affects their
size in the image.

It is possible to map points from Cartesian coordinates into the homogeneous coordinates.
The 2D point with Cartesian coordinates

xc = �x y�T (10.1)

is mapped into homogeneous coordinates to the point

xh = �wx wy w�T (10.2)

where w is an arbitrary scalar. Notice that a point in Cartesian coordinates is mapped into several
points in homogeneous coordinates; one point for any value of w. This is why homogeneous
coordinates are also called redundant coordinates. We can use the definition in Equation 10.2
to obtain a mapping from homogeneous coordinates to Cartesian coordinates. That is,

x = wx/w and y = wy/w (10.3)

The homogeneous representation can be extended to any dimension. For example, a 3D point
in Cartesian coordinates

xc = �x y z�T (10.4)

is mapped into homogeneous form as

xh = �wx wy wz w�T (10.5)

This point is mapped back to Cartesian coordinates by

x = wx/w� y = wy/w and z = wz/w (10.6)

Although it is possible to map points from Cartesian coordinates to homogeneous coordinates and
vice versa, points in both systems define different geometric spaces. Cartesian coordinates define
the Euclidean space and the points in homogeneous coordinates define the projective space. The
projective space distinguishes a particular class of points defined when the last coordinate is
zero. These are known as ideal points, and to understand them we need to understand how a
line is represented in projective space. This is related to the concept of duality.

Appendix 2: Camera geometry fundamentals 357

10.3.1.1 Representation of a line and duality
The homogeneous representation of points has a very interesting connotation that relates points
and lines. Let us consider the equation of a 2D line in Cartesian coordinates:

Ax+By +C = 0 (10.7)

The same equation in homogeneous coordinates becomes

Ax+By +Cz = 0 (10.8)

What is interesting is that points and lines now become indistinguishable. Both a point �x y z�T

and a line �A B C�T are represented by triplets and they can be interchanged in the homogeneous
equation of a line. Similarly, in the 3D projective space, points are indistinguishable from planes.
This symmetry is known as the duality of the projective space, which can be combined with
the concept of concurrence and incidence to derive the principle of duality (Aguado et al.,
2000). The principle of duality constitutes an important concept for understanding the geometric
relationship in the projective space and the definition of the line can be used to derive the
concept of ideal points.

10.3.1.2 Ideal points
We can use the algebra of homogeneous coordinates to find the intersection of parallel lines,
planes and hyperplanes. For simplicity, let us consider lines in the 2D plane. In the Cartesian
coordinates in Equation 10.7, two lines are parallel when their slopes y′ = −A/B are the
same. Thus, to find the intersection between two parallel lines in the homogeneous form in
Equation 10.8, we need to solve the following system of equations:

A1x+B1y +C1z = 0

A2x+B2y +C2z = 0
(10.9)

for A1/B1 = A2/B2. By dividing the first equation by B1 and the second equation by B2, and
subtracting the second equation from the first, we have:

�C2 −C1� z = 0 (10.10)

Since we are considering different lines, C2 �= C1 and consequently z = 0. That is, the intersection
of parallel lines is defined by points of the form

xh = �x y 0�T (10.11)

Similarly, in 3D, the intersection of parallel planes is defined by the points given by

xh = �x y z 0�T (10.12)

Since parallel lines are assumed to intersect at infinity, points with the last coordinate equal to
zero are called points at infinity. They are also called ideal points and these points plus all the
other homogeneous points form the projective space.

The points in the projective space can be visualized by extending the Euclidean space as
shown in Figure 10.3. This figure illustrates the 2D projective space as a set of points in the 3D
Euclidean space. According to Equation 10.3, points in the homogeneous space are mapped into
the Euclidean space when z = 1. In the figure, this plane is called the Euclidean plane. Figure 10.3
shows two points in the Euclidean plane. These points define a line that is shown as a dotted line
and it extends to infinity in the plane. In homogeneous coordinates, points in the Euclidean plane
become rays from the origin in the projective space. Each point in the ray is given by a different

358 Feature Extraction and Image Processing

value of z. The homogeneous coordinates of the line in the Euclidean plane define the plane
between the two rays in the projective space. When two lines intersect in the Euclidean plane,
they define a ray that passes through the intersection point in the Euclidean plane. However, if
the lines are parallel, then they define an ideal point. That is, a point in the plane z = 0.

Ideal points z = 0

Euclidean plane z = 1

Projective line

x

xc

y

z

1

0

xh

Figure 10.3 Model of the 2D projective space

Notice that the origin �0 0 0�T is ambiguous since it can define any point in homogeneous
coordinates or an ideal point. To avoid this ambiguity this point is not considered to be part of
the projective space. Also remember that the concepts of point and line are indistinguishable,
so it is possible to draw a dual diagram, where points become lines and vice versa.

10.3.1.3 Transformations in the projective space
In practice, perhaps the most relevant aspect of homogeneous coordinates is the way in which
transformations are algebraically represented. Transformations in Cartesian coordinates are
known as similarity or rigid transformations since they do not change angle values. They define
rotations, changes in scale and translations (position), and they can be algebraically represented
by matrix multiplications and additions. A 2D point x1 is transformed to a point x2 by a similarity
transformation as[

x2

y2

]
=
[

cos��� sin���
− sin��� cos���

][
sx

sy

][
x1

y1

]
+
[
tx

ty

]
(10.13)

where � is a rotation angle, S = �sx sy�
T defines the scale and T = �tx ty�

T the translation along
each axis. This transformation can be generalized to any dimension and it is written in short
form as

x2 = R S x1 +T (10.14)

Notice that in these transformations R is an orthogonal matrix. That is, its transpose is equal to
its inverse, or RT = R−1.

There is a more general type of transformation known as affine transformations, where the
matrix R is replaced by a matrix A that is not necessarily orthogonal. That is,

x2 = A S x1 +T (10.15)

Appendix 2: Camera geometry fundamentals 359

Affine transformations do not preserve the value of angles, but they preserve parallel lines. The
principles and theorems studied under similarities define Euclidean geometry and the principles
and theorems under affine transformations define affine geometry.

In the projective space, transformations are called homographies. They are more general
than similarity and affine transformations; they only preserve collinearities and cross ratios and
they are defined in homogeneous coordinates. A 2D point x1 is transformed to a point x2 by a
homography as

⎡
⎣

x2

y2

w2

⎤
⎦=

⎡
⎣

h1�1 h1�2 h1�3

h2�1 h2�2 h2�3

h3�1 h3�2 h3�3

⎤
⎦
⎡
⎣

x1

y1

w1

⎤
⎦ (10.16)

This transformation can be generalized to other dimensions and it is written in short form as

x2 = H x1 (10.17)

Notice that a similarity transformation is a special case of an affine transformation and that an
affine transformation is a special case of a homography. Thus, rigid and affine transformations
can be expressed as homographies. For example, a rigid transformation for a 2D point can be
defined as⎡

⎣
x2

y2

1

⎤
⎦=

⎡
⎣

sx cos��� sx sin��� tx

−sy sin��� sy cos��� ty

0 0 1

⎤
⎦
⎡
⎣

x1

y2

1

⎤
⎦ (10.18)

Or in a more general form as

x2 =
[

R S T
0 1

]
x1 (10.19)

An affine transformation is defined as

x2 =
[

A T
0 1

]
x1 (10.20)

The zeros in the last row define a transformation in a plane; the plane where z = 1. Accord-
ing to the discussion in Section 10.3.2, this plane defines the Euclidean plane. Thus these
transformations are limited to Euclidean points.

10.3.2 Perspective camera model analysis

The perspective camera model uses the algebra of the projective space to describe the way
in which space points are mapped into an image plane. The mapping can also be defined
using Euclidean transformations, but the algebra becomes too elaborate. By using homogeneous
coordinates, the geometry of image formation is simply defined by the projection of a 3D point
into the plane by one special type of homography known as a projection. In a projection the
matrix H is not square, so a point in a higher dimension is mapped into a lower dimension. The
perspective camera model is defined by a projection transformation:

⎡
⎣

wixi

wiyi

wi

⎤
⎦=

⎡
⎣

p1�1 p1�2 p1�3 p1�4

p2�1 p2�2 p2�3 p2�4

p3�1 p3�2 p3�3 p3�4

⎤
⎦

⎡
⎢⎢⎣

xp

yp

zp

1

⎤
⎥⎥⎦ (10.21)

360 Feature Extraction and Image Processing

This equation can be written in short form as

xi = Pxp (10.22)

Here, we have changed the elements from h to p to emphasize that we are using a projection.
Also, we use xi and xp to denote the space and image points, as introduced in Figure 10.1.
Notice that the point in the image is in homogeneous form, so the coordinates in the image are
given by Equation 10.3.

The matrix P models three geometric transformations, so it can be factorized as

P = V Q M (10.23)

The matrix M transforms the 3D coordinates of xp to make them relative to the camera system.
That is, it transforms world coordinates into camera coordinates. Notice that the point is not
transformed, but we obtain its coordinates as if the camera were the origin of the coordinate
system.

If the camera is posed in the world by a rotation R and a translation T, then the transformation
between world and camera coordinates is given by the inverse of rotation and translation. We
define this matrix as

M = �R T� (10.24)

or more explicitly as

M =
⎡
⎣

r1�1 r1�2 r1�3 tx

r2�1 r2�2 r2�3 ty

r3�1 r3�2 r3�3 tz

⎤
⎦ (10.25)

The matrix R defines a rotation matrix and T a translation vector. The rotation matrix is
composed by rotations along each axis. If ��	 and
 are the rotation angles, then

R =
⎡
⎣

cos��� − sin��� 0
sin��� cos��� 0

1 0 1

⎤
⎦
⎡
⎣

cos�	� 0 − sin�	�
0 1 0

sin�	� 0 cos�	�

⎤
⎦
⎡
⎣

1 0 0
0 cos�
� − sin�
�
0 sin�
� cos�
�

⎤
⎦ (10.26)

Once the points are made relative to the camera frame, the transformation Q obtains the
coordinates of the point projected in the image. As illustrated in Figure 10.1, the focal length of
a camera defines the distance between the centre of projection and the image plane. If f denotes
the focal length of a camera, then

Q =
⎡
⎣

f 0 0
0 f 0
0 0 1

⎤
⎦ (10.27)

To understand this projection, let us consider the way in which a point is mapped into the
camera frame as shown in Figure 10.4. This figure illustrates the side view of the camera; to
the right is the depth z-axis and from the top down is the y-axis. The image plane is shown
as a dotted line. The point xp is projected into xi in the image plane. The tangent of the angle
between the line from the centre of projection to xp and the principal axis is given by

yi

f
= yp

zp

(10.28)

That is,

yi = yp

zp

f (10.29)

Appendix 2: Camera geometry fundamentals 361

Using a similar rationale we can obtain the value

xi = xp

zp

f (10.30)

That is, the projection is obtained by multiplying by the focal length and by dividing by the
depth of the point. Equation 10.27 multiplies each coordinate by the focal length and copies
the depth value into the last coordinate of the point. However, since Equation 10.21 is in
homogeneous coordinates, the depth value is used as a divisor when obtaining coordinates of
the point according to Equation (10.3). Thus, projection can be simply defined by a matrix
multiplication factor defined in Equation 10.27.

xi

f

xp

yi

yp

zp

Centre of
projection

Principal axis

Image plane

Figure 10.4 Projection of a point

The factors M and Q define the coordinates of a point in the image plane. However,
the coordinates in an image are given in pixels. Thus, the last factor V is used to change
from image coordinates to pixels. This transformation also includes a skew deformation to
account for missed alignments that may occur in the camera system. The transformation V is
defined as

V =
⎡
⎣

ku ku cot��� u0

0 kv sin��� v0

0 0 1

⎤
⎦ (10.31)

The constants ku and kv define the number of pixels in a world unit, the angle � defines the
skew angle and �u0� v0� is the position of the principal point in the image.

Figure 10.5 illustrates the transformation in Equation 10.30. The image plane is shown as
a dotted rectangle, but it actually extends to infinity. The image is delineated by the axes
u and v. A point �x1� y1� in the image plane has coordinates �u1� v1� in the image frame. As
previously discussed for Figure 10.1, the coordinates of �x1� y1� are relative to the principal

362 Feature Extraction and Image Processing

point �u0� v0�. As shown in Figure 10.5, the skew displaces the point form �u0� v0� by an amount
given by

a1 = y1 cot��� and c1 = y1/ sin��� (10.32)

Thus, the new coordinates of the point after skew are

x1 +y1 cot��� and y1/ sin��� (10.33)

To convert these coordinates to pixels, we need to multiply by the number of pixels to form
a unit in the image plane. Finally, the point in pixel coordinates is obtained by adding the
displacement �u0� v0� in pixels. That is,

u1 = kux1 +kuy1 cot���+u0 and v1 = kvy1/ sin���+ v0 (10.34)

These algebraic equations are expressed in matrix form in Equation 10.31.

Image plane

Pixels

v1

x1

a1

c1

ϕ

u1

u

(u0,v0)

(x1,y1)

v

Figure 10.5 Image plane to pixels transformation

10.3.3 Parameters of the perspective camera model

The perspective camera model in Equation 10.21 has 12 elements. Thus, a particular camera
model is completely defined by giving values to 12 unknowns. These unknowns are determined
by the parameters of the transformations M, Q and V. The transformation M has three rotation
angles ���	�
� and three translation parameters �tx� ty� tz�. The transformation V has a single
parameter, f , while the transformation Q has the two translation parameters �u0� v0�, two scale
parameters �ku� kv� and one skew parameter �. Thus, we need to set up 12 parameters to
determine the elements of the projection matrix. However, one parameter can be eliminated

Appendix 2: Camera geometry fundamentals 363

by combining the matrices V and Q. That is, the projection matrix in Equation 10.23 can be
written as

P =
⎡
⎣

ku ku cot��� u0

0 kv sin��� v0

0 0 1

⎤
⎦
⎡
⎣

f 0 0
0 f 0
0 0 1

⎤
⎦
⎡
⎣

r1�1 r1�2 r1�3 tx

r2�1 r2�2 r2�3 ty

r3�1 r3�2 r3�3 tz

⎤
⎦ (10.35)

or

P =
⎡
⎣

su su cot��� u0

0 sv sin��� v0

0 0 1

⎤
⎦
⎡
⎣

r1�1 r1�2 r1�3 tx

r2�1 r2�2 r2�3 ty

r3�1 r3�2 r3�3 tz

⎤
⎦ (10.36)

for

su = fku and sv = fkv (10.37)

Thus, the camera model is defined by the 11 camera parameters ���	�
� tx� ty� tz� u0� v0� su�
sv���.

The camera parameters are divided into two groups to indicate the parameters that are internal
or external to the camera. The intrinsic parameters are �u0� v0� su� sv��� and the extrinsic ones are
���	�
� tx� ty� tz�. In general, the intrinsic parameters do not change from scene to scene, so they
are inherent to the system; they depend on the camera characteristics. The extrinsic parameters
change by moving the camera in the world.

10.4 Affine camera

Although the perspective camera model is probably the most common model used in computer
vision, there are alternative models that are useful in particular situations. One alternative model
of reduced complexity that is useful in many applications is the affine camera model. This model
is also called the paraperspective or linear model and it reduces the perspective model by setting
the focal length f to infinity. Figure 10.6 illustrates how the perspective and affine camera
models map points into the image plane. The figure illustrates the projection of points from a
side view and it projects the corner points of a pair of objects represented by two rectangles.
In the projective model, the projection produces changes of size in the objects according to
their distance to the image plane; the far object is projected into a smaller area than the close
object. The size and distance relationship is determined by the focal length f . As we increase
the focal length, projection lines decrease their slope and become horizontal. As illustrated
on the right of Figure 10.6, in the limit when the centre of projection is infinitely far away
from the image plane, the lines not intersect and the objects have the same projected area in
the image.

In spite of not accounting for changes in size due to distances, the affine camera provides a
useful model when the depth position of objects in the scene with respect to the camera frame
does not change significantly. This is the case in many indoor scenes and in many industrial
applications where objects are aligned to a working plane. It is very useful to represent scenes
on layers, that is, planes of objects with similar depth. In addition, affine models are simple
and thus algorithms more stable, and an affine camera is linear since it does not include the
projection division in Equations 10.28, 10.29 and 10.30.

364 Feature Extraction and Image Processing

Image plane

Image plane

Centre of
projection

f

(a) Perspective

(b) Affine

Figure 10.6 Perspective and affine camera models

10.4.1 Affine camera model

In the affine camera model, Equation 10.21 is changed to

⎡
⎣

xi

yi

1

⎤
⎦=

⎡
⎣

p1�1 p1�2 p1�3 p1�4

p2�1 p2�2 p2�3 p2�4

0 0 0 1

⎤
⎦

⎡
⎢⎢⎣

xp

yp

zp

1

⎤
⎥⎥⎦ (10.38)

This equation can be written in short form as

xi = PAxp (10.39)

Here, we use the subindex A to indicate that the affine camera transformation is given by a
special form of the projection P. The last row in Equation 10.39 can be omitted. It is shown in
the notation to emphasize that it is a special case of the perspective model. However, unlike the
case for perspective camera, points in the image plane are in Euclidean coordinates. That is, the
affine camera maps points from the projective space to the Euclidean plane.

Appendix 2: Camera geometry fundamentals 365

Similar to the projection transformation, the transformation A can be factorized in three
factors that account for the camera’s rigid transformation, the projection of points from
space into the image plane, and the mapping of points on the image plane into image
pixels.

A = V QA MA (10.40)

Here, the subindex A indicates that these matrices are the affine versions of the transformations
defined in Equation 10.23. We start by a rigid transformation as defined in Equation 10.25. As
in the case of the perspective model, this transformation is defined by the position of the camera
and makes the coordinates of a point in 3D space relative to the camera frame.

MA =

⎡
⎢⎢⎣

r1�1 r1�2 r1�3 tx

r2�1 r2�2 r2�3 ty

r3�1 r3�2 r3�3 tz

0 0 0 1

⎤
⎥⎥⎦ (10.41)

That is,

MA =
[

R T
0 1

]
(10.42)

The last row is added so the transformation QA can have four rows. We need four rows in
QA to define a parallel projection into the image plane. Similar to the transformation Q, the
transformation QA projects a point in the camera frame into the image plane. The difference
is that in the affine model, points in space are orthographically projected into the image plane.
This can be defined by

QA =
⎡
⎣

1 0 0 0
0 1 0 0
0 0 0 1

⎤
⎦ (10.43)

This defines a projection when the focal length is set to infinity. Intuitively, you can see that
when transforming a point xT

p = [
xp yp zp 1

]
by Equation 10.43, the x and y coordinates are

copied and the depth zp value does not change the projection. Thus, Equations 10.29 and 10.30
for the affine camera become

xi = xp and yi = yp (10.44)

That is, the points in the camera frame are projected along the line zp = 0. This is a line parallel
to the image plane. The transformation V in Equation 10.40 provides the pixel coordinates of
points in the image plane. This process is exactly the same in the perspective and affine models
and is defined by Equation 10.31.

10.4.2 Affine camera model and the perspective projection

It is possible to show that the affine model is a particular case of the perspective model by
considering the alternative camera representation illustrated in Figure 10.7. This figure is similar
to the one used to illustrate Equation 10.27. The difference is that in the previous model, the
centre of the camera frame was in the centre of projection, whereas in Figure 10.7 it is considered
to be the principal point; that is, on the image plane. In general, the camera frame does not need

366 Feature Extraction and Image Processing

to be located at a particular position in the camera, but can be arbitrarily set. When set in the
image plane, as illustrated in Figure 10.7, the z camera coordinate of a point defines the depth
in the image plane. Thus, Equation 10.28 is replaced by

yi

f
= h

zp

(10.45)

From Figure 10.7, we can see that yp = yi +h. Thus,

yp = yi + zp

yi

f
(10.46)

Solving for yi, we have:

yi = f yp

f + zp

(10.47)

We can use a similar development to find the xi coordinate. That is,

xi = f xp

f + zp

(10.48)

Centre of
projection

Principal axis

xp

yi

yp

zp

f

h

xi

Image plane

Figure 10.7 Projection of a point

Using homogeneous coordinates, Equations 10.47 and 10.48 can be written in matrix form as

⎡
⎣

xi

yi

zi

⎤
⎦=

⎡
⎣

f 0 0 0
0 f 0 0
0 0 1 f

⎤
⎦

⎡
⎢⎢⎣

xp

yp

zp

1

⎤
⎥⎥⎦ (10.49)

This equation is an alternative to Equation 10.27; it represents a perspective projection. The
difference is that in Equation 10.49 we assume that the camera axis is the located at the principal
point of a camera. Using Equation 10.49 it is easy to see the projection in the affine camera model

Appendix 2: Camera geometry fundamentals 367

as a special case of projection in the perspective camera model. To show that Equation 10.29
becomes an affine model when f is set to be infinite, we define B = 1/f . Thus,

yi = yp

1+B zp

and xi = xp

1+B zp

(10.50)

or

⎡
⎣

xi

yi

zi

⎤
⎦=

⎡
⎣

1 0 0 0
0 1 0 0
0 0 B 1

⎤
⎦

⎡
⎢⎢⎣

xp

yp

zp

1

⎤
⎥⎥⎦ (10.51)

When f tends to infinity B tends to zero. Thus, the projection in Equation 10.51 for the affine
camera becomes

⎡
⎣

xi

yi

zi

⎤
⎦=

⎡
⎣

1 0 0 0
0 1 0 0
0 0 0 1

⎤
⎦

⎡
⎢⎢⎣

xp

yp

zp

1

⎤
⎥⎥⎦ (10.52)

The transformation in this equation is defined in Equation 10.43. Thus, the projection in the
affine model is a special case of the projection in the perspective model obtained by setting the
focal length to infinity.

10.4.3 Parameters of the affine camera model

The affine camera model in Equation 10.38 is composed of eight elements. Thus, a particular
camera model is completely defined by giving values to eight unknowns. These unknowns are
determined by the 11 parameters ���	�
� tx� ty� tz� u0� v0� ku� kv��� defined in the matrices in
Equation 10.40. However, since we are projecting points orthographically into the image plane,
the translation in depth is lost. This can be seen by combining the matrices QA and MA in
Equation 10.40. That is,

G =
⎡
⎣

1 0 0 0
0 1 0 0
0 0 0 1

⎤
⎦

⎡
⎢⎢⎣

r1�1 r1�2 r1�3 tx

r2�1 r2�2 r2�3 ty

r3�1 r3�2 r3�3 tz

0 0 0 1

⎤
⎥⎥⎦ (10.53)

or

GA =
⎡
⎣

r1�1 r1�2 r1�3 tx

r2�1 r2�2 r2�3 ty

0 0 0 1

⎤
⎦ (10.54)

Thus, Equation 10.40 becomes

A = V GA (10.55)

Similar to Equation 10.42, the matrix GA can be written as

GA =
[

RA TA

0 1

]
(10.56)

368 Feature Extraction and Image Processing

and it defines the orthographic projection of the rigid transformation MA into the image plane.
According to Equation 10.53,

TA =
⎡
⎢⎣

tx

ty

1

⎤
⎥⎦ (10.57)

Since we do not have tz we cannot determine whether objects are far away or close to the camera.
Just because an object is small does not mean that it is far away. According to Equation 10.53,
we also have that

RA =
⎡
⎣

cos��� − sin��� 0
sin��� cos��� 0

0 0 0

⎤
⎦
⎡
⎣

cos�	� 0 − sin�	�
0 1 0
0 0 0

⎤
⎦
⎡
⎣

1 0 0
0 cos�
� − sin�
�
0 0 0

⎤
⎦ (10.58)

Thus, the eight elements of the affine camera projection matrix are determined by the intrinsic
parameters �u0� v0� su� sv��� and the extrinsic parameters

(
��	�
� tx� ty

)
.

10.5 Weak perspective model

The weak perspective model defines a geometric mapping that stands between the perspective
and affine models. This model considers that the distance between points in the scene is small
relative to the focal length. Thus, Equations 10.29 and 10.30 are approximated by

yi = yp

�z

f and xi = xp

�z

f (10.59)

where �z is the average z coordinate of all the points in a scene.
Figure 10.8 illustrates two possible geometric interpretations for the relationships defined in

Equation 10.59. Figure 10.8(a) illustrates a two-step process wherein, first, all points are affine
projected to a plane orthogonal to the image plane and at a distance �z. Points on this plane are
then mapped into the image plane by a perspective projection. The projection on the plane z = �z

simply replaces the z coordinates of the points by �z. Since points are assumed to be close,
this projection is a good approximation of the scene. Thus, the weak perspective model corre-
sponds to a perspective model for scenes approximated by planes parallels to the image plane.

A second geometric interpretation of Equation 10.59 is illustrated in Figure 10.8(b). In
Equation 10.59, we can combine the values f and �z into a single constant. Thus, Equation 10.59
corresponds to a scaled version of Equation 10.44. In Figure 10.8(b), first, objects in the scene
are mapped into the image plane by an affine projection and then the image is rescaled by a
value f/�z. Thus, the affine model can be seen as a particular case of the weak perspective
model when f/�z = 1.

By following the two geometric interpretations discussed above, the weak perspective model
can be formulated by changing the projection equations of the perspective or the affine models.
It can also be formulated by considering the camera model presented in Section 10.3.2. For
simplicity, we consider the weak perspective from the affine model. Thus, Equation 10.43 should
include a change in scale. That is,

QA =
⎡
⎢⎣

f/�z 0 0 0

0 f/�z 0 0

0 0 0 1

⎤
⎥⎦ (10.60)

Appendix 2: Camera geometry fundamentals 369

Centre of
projection

(a) Special case of perspective model

(b) Special case of affine model

Image plane

Image planeScaled image

µz

f

Figure 10.8 Weak perspective camera model

By considering the definition in Equation 10.40, we can move the scale factor in this matrix to
the matrix V. Thus, the model for the weak perspective model can be expressed as

P =
⎡
⎣

su su cot��� u0

0 sv sin��� v0

0 0 1

⎤
⎦
⎡
⎣

1 0 0 0
0 1 0 0
0 0 0 1

⎤
⎦

⎡
⎢⎢⎣

r1�1 r1�2 r1�3 tx

r2�1 r2�2 r2�3 ty

r3�1 r3�2 r3�3 tz

0 0 0 1

⎤
⎥⎥⎦ (10.61)

for

su = fku/�z and sv = fkv/�z (10.62)

Thus, the weak perspective is a scaled version of the affine model. The scale is a function of
the f that defines the distance from the centre of the camera to the image plane and the average
distance �z.

370 Feature Extraction and Image Processing

10.6 Example of camera models

This section illustrates the mapping of points into an image frame for the per-
spective and affine camera models. Code 10.1 contains the functions used to create

%***
%Draw a set of points
%---
function DrawPoints(P,colour)
%---

[r,c]=size(P);
plot3(P(1,1:c),P(2,1:c),P(3,1:c),'+','color',colour);

%***
%Draw a set of Image points
%--
function DrawImagePoints(P,C,colour)
%--

[r,c]=size(P);

for column=1:c
 P(1:r-1,column)=P(1:r-1,column)/P(3,column);
end

plot(P(1,1:c),P(2,1:c),'+','color',colour);
axis([0 C(10) 0 C(11)]);

%***
%Draw a coordinate frame
%---
function DrawWorldFrame(x0,x1,y0,y1,z0,z1);
%---

axis equal; %same aspect ratio
axis([x0,x1,y0,y1,z0,z1]);

xlabel('X','FontSize',14);
ylabel('Y','FontSize',14);
zlabel('Z','FontSize',14);

grid on;
hold on;

%***
%Draw an image plane
%---
function DrawImagePlane(C,dx,dy);
%---

Appendix 2: Camera geometry fundamentals 371

%CW: Camera to world transformation
CW=CameraToWorld(C);

%transform coordinates to world coordinates
P(:,1)=CW*p(:,1);
P(:,2)=CW*p(:,2);
P(:,3)=CW*p(:,3);
P(:,4)=CW*p(:,4);

%Draw image plane
patch(P(1,:),P(2,:),P(3,:),[.9,.9,1]);

%***
%Draw a line between optical centre and 3D points
%
%---
function DrawPerspectiveProjectionLines (o,P,colour);
%---

[r,c]=size(P);
for i=1:c
 plot3([o(1) P(1,i)],[o(2) P(2,i)],[o(3) P(3,i)],'color',colour);
%optic centre
end;

%***
%Draw a line between image plane and 3D points
%
%---
function DrawAffineProjectionLines(z,P,colour);
%---

[r,c]=size(P);
for column=1:c
 plot3([P(1,column) P(1,column)],[P(2,column) P(2,column)],[z(3)
P(3,column)],'color',colour); %optic centre
end;

%coordinates of 4 points on the
%image plane (to draw a rectangle)
p(1,1)=-dx/2; p(2,1)=-dy/2; p(3,1)=C(7); p(4,1)=1;
p(1,2)=-dx/2; p(2,2)=+dy/2; p(3,2)=C(7); p(4,2)=1;
p(1,3)=+dx/2; p(2,3)=+dy/2; p(3,3)=C(7); p(4,3)=1;
p(1,4)=+dx/2; p(2,4)=-dy/2; p(3,4)=C(7); p(4,4)=1;

%Draw camera origin
plot3(C(1),C(2),C(3),'o'); %optic centre
plot3(C(1),C(2),C(3),'+'); %optic centre

Code 10.1 Drawing functions

372 Feature Extraction and Image Processing

figures: DrawPoints, DrawImagePoints, DrawWorldFrame, DrawImagePlane,
DrawPerspectiveProjectionLines and DrawAffineProjectionLines.

The function DrawPoints draws a set of points given its three world coordinates. In our
example, it is used to draw points in the world. The function DrawImagePoints draws points
on the image plane. It uses homogeneous coordinates, so it implements Equation 10.3. The
function DrawWorldFrame draws the three axes given the location of the origin. This is used to
illustrate the world frame and the origin is always set to zero. The function DrawImagePlane
draws a rectangle that represents the image plane. It also draws a point to illustrate the location
of the centre of the camera. In our examples, we assume that the centre of the camera is at the
position of the focal point, for both the perspective and the affine model.

The functions DrawPerspectiveProjectionLines and DrawAffine
ProjectionLines are used to illustrate the projection of points into the image plane for
the perspective and affine projections, respectively. These functions take a vector of points and
trace a line to the image plane that represent the projection. For perspective, the lines intersects
the focal point and for affine they are projected parallel to the image plane.

In the example implementation, we group the camera parameters in the vector
C = �x0� y0� z0� a� b� g� f�u0� v0� kx� ky�. The first six elements define the location and rotation
parameters. The value of f defines the focal length. The remaining parameters define the loca-
tion of the optical centre and the pixel size. For simplicity, we assume that there is no skew.
Code 10.2 contains the functions that compute camera transformations from camera parameters.
The function CameraToWorld computes a matrix that defines the position of the camera.

%***
%Compute matrix that transforms coordinates
%in the camera frame to the world frame%
%---
function CW=CameraToWorld(C);
%---

%rotation
Rx=[cos(C(6)) sin(C(6)) 0
 -sin(C(6)) cos(C(6)) 0
 0 0 1];

Ry=[cos(C(5)) 0 sin(C(5))
 0 1 0
 -sin(C(5)) 0 cos(C(5))];

Rz=[1 0 0
 0 cos(C(4)) sin(C(4))
 0 -sin(C(4)) cos(C(4))];

%translation
T=[C(1) C(2) C(3)]';

%transformation
CW=(Rz*Ry*Rx);
CW(:,4)=T;

Appendix 2: Camera geometry fundamentals 373

 %***
%Convert from homogeneous coordinates in pixels
%to distance coordinates in the camera frame
%--
function p=ImageToCamera(P,C);
%--

%inverse of K
Ki=[1/C(10) 0 -C(8)/C(10)
 0 1/C(11) -C(9)/C(11)
 0 0 1];

%coordinate in distance units
p=Ki*P;

%coordinates in the image plane
p(1,:)=p(1,:)./p(3,:);
p(2,:)=p(2,:)./p(3,:);
p(3,:)=p(3,:)./p(3,:);

%the third coordinate gives the depth
%the focal length C(7) defines depth
p(3,:)=p(3,:).*C(7);

%include homogeneous coordinates
p(4,:)=p(1,:)/p(1,:);

Rz=[1 0 0
 0 cos(C(4)) -sin(C(4))
 0 sin(C(4)) cos(C(4))];

T=[-c(1) -c(2) -c(3)]';

%transformation
WC=(Rz*Ry*Rx); %rotation inverse
Tp=WC*T; %translation
WC(:,4)=Tp; %compose homogeneous form

%***
%Compute matrix that transforms coordinates
%in the world frame to the camera frame
%--
function WC=WorldToCamera(c);
%--

%translation T'=-R'T
%for R'=inverse rotation
Rx=[cos(C(6)) -sin(C(6)) 0
 sin(C(6)) cos(C(6)) 0
 0 0 1];

Ry=[cos(C(5)) 0 –sin(C(5))
 0 1 0
 sin(C(5)) 0 cos(C(5))];

Code 10.2 Transformation function

374 Feature Extraction and Image Processing

It poses the camera in the world. Its inverse is computed in the function WorldToCamera and it
defines the matrix in Equation 10.25. The inverse is simply obtained by the transpose of the rota-
tion and by changing the signs of the translation. The matrix obtained from WorldToCamera
can be used to obtain the coordinates of world points in the camera frame.

The function ImageToCamera in Code 10.2 obtains the inverse of the transformation
defined in Equation 10.31. This is used to draw points in pixel coordinates. The pixel’s coordi-
nates are converted into world coordinates, which are then drawn to show its position.

Code 10.3 contains the two functions that compute the projection matrices for the perspective
and affine camera models. Both functions start by computing the matrix that transforms the world
points into the camera frame. For the affine model, the dimensions of the matrix transformation
are augmented according to Equation 10.42. For the perspective model, the world to camera

%***
%Obtain the projection matrix parameters
%from the camera position
%--
function M=PerspectiveProjectionMatrix(C);
%--

%World to camera
WC=WorldToCamera(C);

%Project point in the image
F=[C(7) 0 0
 0 C(7) 0
 0 0 1];

%Distance units to pixels
K=[C(10) 0 C(8)
 0 C(11) C(9)
 0 0 1];

%Projection matrix
M=K*F*WC;

%***
%Obtain the projection matrix parameters
%from the camera position
%---
function M=AffineProjectionMatrix(C);
%---

%world to camera
WC=WorldToCamera(C);
WC(4,1:4)=[0 0 0 1];

%project point in the image
F=[1 0 0 0
 0 1 0 0
 0 0 0 1];

Appendix 2: Camera geometry fundamentals 375

%distance units to pixels
K=[C(10) 0 C(8)
 0 C(11) C(9)
 0 0 1];

%projection matrix
M=K*F*WC;

Code 10.3 Camera models

matrix is multiplied by the projection defined in Equation 10.27. The affine model implements
the projection defined in Equation 10.43. In the perspective and affine functions, coordinates
are transformed to pixels by the transformation defined in Equation 10.31.

Code 10.4 uses the previous functions to generate figures that illustrate the projection of a
pair of points in the image plane for the perspective and affine models. The camera is defined
with a translation of 1 in y and the focal length is 0.5 from the camera plane. The image is
defined to be 100 × 100 pixels and the principal point is in the middle of the image. That is,
at a pixel of coordinates (50, 50). After the definition of the camera, the code defines two 3D

%***
%Example of the computation projection of points
%for the perspective and affine camera models
%---
 function ProjectionExample();
%---

%
%C=[x0,y0,z0,a,b,g,f,u0,v0,kx,ky]

%Camera parameters:
%x0,y0,z0: location
%a,b,g : orientation
%f : focal length
%u0,v0 : optical centre
%kx,ky : pixel size

C=[0,1,0,0,0,0,0.5,50,50,100,100];

%3D points in homogeneous form
XYZ=[0, .2 %x
 1, .6 %y

1.7 2 %z
1 1];

%Perspective example
figure(1);
clf;

%Draw world frame
DrawWorldFrame(-.5,2,-.5,2,-.5,2);

376 Feature Extraction and Image Processing

%Draw camera
DrawImagePlane(C,1,1);

%3D points in homogeneous form
DrawPoints(XYZ,[0,1,0]);

%Affine projection matrix
P=AffineProjectionMatrix(C);

%Project into camera frame, in pixels
UV=P*XYZ;

%Convert to camara coordinates
PC=ImageToCamera(UV,C);

%Draw image points
figure(2);
clf;
DrawImagePoints(UV,C,[0,0,0]);

%Affine example
figure(3);
clf;

%Draw world frame
DrawWorldFrame(-.5,2,-.5,2,-.5,2);

%Convert to world frame
MI=CameraToWorld(C);
PW=MI*PC;

%Draw Projected points in world frame
DrawPoints(PW,[1,0,0]);

%Draw projection lines
DrawPerspectiveProjectionLines([C(1),C(2),C(3)],XYZ,[.3,.3,.3]);

%Draw world points
DrawPoints(XYZ,[0,0,0]);

%Perspective projection matrix
P=PerspectiveProjectionMatrix(C);

%Project into camera frame, in pixels
UV=P*XYZ;

%Convert to camera coordinates
PC=ImageToCamera(UV,C);

%Draw camera
DrawImagePlane(C,1,1);

Appendix 2: Camera geometry fundamentals 377

%Draw Projected points in world frame
DrawPoints(PW,[0,0,0]);

%Draw projection lines
DrawAffineProjectionLines([C(1),C(2),C(3)],XYZ,[.3,.3,.3]);

%Draw image points
figure(4);
clf;
DrawImagePoints(UV,C,[0,0,0]);

%Convert to world frame
PW=MI*PC;

Code 10.4 Main example

points in homogeneous form. These points will be used to illustrate how camera models map
world points into images.

The example first draws a frame to represent the world frame. The parameters are chosen to show
the image plane and the world points. These are drawn using the functionsDrawWorldFrame and
DrawImagePlane defined in Code 10.1. After the drawing, the code computes the projection
matrix by calling the function PerspectiveProjectionMatrix discussed in Code 10.3.
This transformation is used to project the 3D points into the image. In the code, the matrix UV
contains the coordinates of the points in pixels. To draw these points in the 3D space, first they are
converted to the camera coordinates by calling ImageToCamera and then they are converted to
the world frame. The function DrawPerspectiveProjectionLines draws the lines from
the world points to the centre of projection.

The result of the perspective projection example is shown in Figure 10.9. Here, we can
see the projection lines pass through the points obtained by the projection matrix. The image

0
0 10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

1.5

2

21.510.50–0.5

1

0.5

0

–0.5
Y

X

–0.5

(a) 3D projection (b) Image

0
0.5
1

1.5
2

80

90

100

Figure 10.9 Perspective camera example

378 Feature Extraction and Image Processing

shown in Figure 10.9(b) was obtained by calling the function DrawImagePoints defined in
Code 10.1. This function draws the points obtained by the projection matrix. One of the points
is projected into the centre of the image. This is because its x and y coordinates are the same
as those of the principal point.

The last two figures created in Code 10.4 illustrate the projection for the affine matrix.
The process is similar to the perspective example, but they use the projection obtained by the
function AffineProjectionMatrix defined in Code 10.3. The resulting figures are shown
in Figure 10.9. Here, we can see that the projection matrix transforms the points by following
rays perpendicular to the image plane. As such, the points in Figure 10.9(b) are further apart
than the points in Figure 10.10(b). In the perspective model the distance between the points
depends on the distance from the image plane, while in the affine model this information is lost.

0
0 10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

0

–0.5

21.510.50–0.5

0.5

1

1.5

2
Y

X
2

(a) 3D projection (b) Image

1.5
1

0.5
0

–0.5

80

90

100

Figure 10.10 Affine camera example

10.7 Discussion

In this appendix we have formulated the most common models of camera geometry. However,
in addition to perspective and affine camera models there exist other models that consider
different camera properties. For example, cameras built from a linear array of sensors can be
modelled by particular versions of the perspective and affine models obtained by considering
a one-dimensional (1D) image plane. These 1D camera models can also be used to represent
strips of pixels obtained by cameras with 2D image planes and they have found an important
application in mosaic construction from video images.

Besides image plane dimensionality, perhaps the most evident extension of camera models is
in considering lens distortions. Small geometric distortions are generally ignored or dealt with
as noise in computer vision techniques. Strong geometric distortions such as those produced by
wide-angle or fish-eye lenses can be modelled by considering a spherical image plane or by

Appendix 2: Camera geometry fundamentals 379

non-linear projections. The model of wide-angle cameras has found applications in environmental
map capture and panoramic mosaics.

The formulation of camera models is the basis of two central problems of computer vision.
The first problem is known as camera calibration and it centres on computing the camera
parameters from image data. There are many camera calibration techniques based on the camera
model and different types of data. However, camera calibration techniques are grouped into two
main classes. Strong camera calibration assumes knowledge of the 3D coordinates of image
points. Weak calibration techniques do not know 3D coordinates, but they assume knowledge
of the type of motion of a camera. In addition, some techniques focus on intrinsic or extrinsic
parameters. The second central problem in computer vision is called scene reconstruction and
centres on recovering the coordinates of points in the 3D scene from image data. Techniques
have been developed for each camera model.

10.8 References

Aguado, A. S., Montiel, E. and Nixon, M. S., On the Intimate Relationship Between the Principle
of Duality and the Hough Transform, Proc. R. Soc. Lond. A, 456, pp. 503–526, 2000

Hartley, R. and Zisserman, A., Multiple View Geometry in Computer Vision, Cambridge
University Press, Cambridge, 2001

Trucco, E. and Verri, A., Introductory Techniques for 3-D Computer Vision, Prentice Hall, New
Jersey, 1998

380 Feature Extraction and Image Processing

. 11 .

Appendix 3: Least
squares analysis

11.1 The least squares criterion

The least squares criterion is one of the foundations of estimation theory. This theory concerns
extracting the true value of signals from noisy measurements. Estimation theory techniques have
been used to guide Exocet missiles and astronauts on moon missions (where navigation data was
derived using sextants!), all based on techniques that use the least squares criterion. The least
squares criterion was originally developed by Gauss when he was confronted by the problem of
measuring the six parameters of the orbits of planets, given astronomical measurements. These
measurements were subject to error, and Gauss realized that they could be combined together
in some way to reduce a best estimate of the six parameters of interest.

Gauss assumed that the noise corrupting the measurements would have a normal distribution;
indeed, such distributions are often now called Gaussian to honour his great insight. As a
consequence of the central limit theorem, it may be assumed that many real random noise
sources are normally distributed. In cases where this assumption is not valid, the mathematical
advantages that accrue from its use generally offset any resulting loss of accuracy. In addition,
the assumption of normality is particularly invaluable in view of the fact that the output of a
system excited by Gaussian-distributed noise is also Gaussian distributed (as seen in Fourier
analysis, Chapter 2). A Gaussian probability distribution of a variable x is defined by

p�x� = 1

�
√

2�
e

−�x−x̄�2

�2 (11.1)

where x̄ is the mean (loosely the average) of the distribution and �2 is the second moment or
variance of the distribution. Given many measurements of a single unknown quantity, when that
quantity is subject to errors of a zero-mean (symmetric) normal distribution, it is well known
that the best estimate of the unknown quantity is the average of the measurements. In the case of
two or more unknown quantities, the requirement is to combine the measurements in such a way
that the error in the estimates of the unknown quantities is minimized. Clearly, direct averaging
will not suffice when measurements are a function of two or more unknown quantities.

Consider the case where N equally precise measurements, f1� f2 � � � fN , are made on a linear
function f�a� of a single parameter a. The measurements are subject to zero-mean additive
Gaussian noise vi�t�; as such, the measurements are given by

fi = f�a�+ vi�t� ∀i ∈ 1�N (11.2)

381

The differences f̃ between the true value of the function and the noisy measurements of it
are then

f̃i = f�a�−fi ∀i ∈ 1�N (11.3)

By Equation 11.1, the probability distribution of these errors is

p�f̃i� = 1

�
√

2�
e

−�f̃i�
2

�2 ∀i ∈ 1�N (11.4)

Since the errors are independent, the compound distribution of these errors is the product of
their distributions, and is given by

p�f̃ � = 1

�
√

2�
e

−��f̃1�2+�f̃2�2+�f̃3�2+···+�f̃N �2�
�2 (11.5)

Each of the errors is a function of the unknown quantity, a, which is to be estimated. Different
estimates of a will give different values for p�f̃ �. The most probable system of errors will be
that for which p�f̃ � is a maximum, and this corresponds to the best estimate of the unknown
quantity. Thus, to maximize p�f̃ �,

max �p�f̃ �	 = max

{
1

�
√

2�
e

−��f̃1�2+�f̃2�2+�f̃3�2+···+�f̃N �2�
�2

}

= max

{
e

−��f̃1�2+�f̃2�2+�f̃3�2+···+�f̃N �2�
�2

}

= max
{
−
(
�f̃1�

2 + �f̃2�
2 + �f̃3�

2 +· · ·+ �f̃N �2
)}

= min
{
�f̃1�

2 + �f̃2�
2 + �f̃3�

2 +· · ·+ �f̃N �2
}

(11.6)

Thus, the required estimate is that which minimizes the sum of the differences squared and this
estimate is the one that is optimal by the least squares criterion.

This criterion leads on to the method of least squares, which follows in the next section.
This is a method commonly used to fit curves to measured data. It concerns estimating the
values of parameters from a complete set of measurements. There are also techniques that
provide estimate of parameters at time instants, based on a set of previous measurements. These
techniques include the Weiner filter and the Kalman filter. The Kalman filter was the algorithm
chosen for guiding Exocet missiles and moon missions (an extended square root Kalman filter,
no less).

11.2 Curve fitting by least squares

Curve fitting by the method of least squares concerns combining a set of measurements to derive
estimates of the parameters which specify the curve that best fits the data. By the least squares
criterion, given a set of N (noisy) measurements fi i ∈ 1�N which are to be fitted to a curve
f�a�, where a is a vector of parameter values, we seek to minimize the square of the difference

382 Feature Extraction and Image Processing

between the measurements and the values of the curve to give an estimate of the parameters â
according to

â = min
N∑

i=1

�fi −f�xi� yi� a��2 (11.7)

Since we seek a minimum, by differentiation we obtain

N∑

i=1
�fi −f�xi� yi� a��2

a
= 0 (11.8)

which implies that

2
N∑

i=1

�fi −f�xi� yi� a��

f�a�

a
= 0 (11.9)

The solution is usually of the form

Ma = F (11.10)

where M is a matrix of summations of products of the index i and F is a vector of summations
of products of the measurements and i. The solution, the best estimate of the values of a, is then
given by

â = M−1F (11.11)

By way of example, let us consider the problem of fitting a two-dimensional surface to a set of
data points. The surface is given by

f�x� y� a� = a+bx+ cy +dxy (11.12)

where the vector of parameters a = �ab c d�T controls the shape of the surface, and �x� y� are
the coordinates of a point on the surface. Given a set of (noisy) measurements of the value of
the surface at points with coordinates �x� y�� fi = f�x� y�+vi, we seek to estimate values for the
parameters using the method of least squares. By Equation 11.7 we seek

â =
[
â b̂ ĉ d̂

]T = min
N∑

i=1

�fi −f�xi� yi� a��2 (11.13)

By Equation 11.9 we require

2
N∑

i=1

�fi − �a+bxi + cyi +dxiyi��

f�xi� yi� a�

a
= 0 (11.14)

By differentiating f�x� y� a� with respect to each parameter we have

f�xi� yi�

a
= 1 (11.15)

f�xi� yi�

b
= x (11.16)

f�xi� yi�

c
= y (11.17)

and

f�xi� yi�

d
= xy (11.18)

Appendix 3: Least squares analysis 383

and by substitution of Equations 11.15–11.18 in Equation 11.14, we obtain four simultaneous
equations:

N∑
i=1

�fi − �a+bxi + cyi +dxiyi��×1 = 0 (11.19)

N∑
i=1

�fi − �a+bxi + cyi +dxiyi��×xi = 0 (11.20)

N∑
i=1

�fi − �a+bxi + cyi +dxiyi��×yi = 0 (11.21)

and
N∑

i=1

�fi − �a+bxi + cyi +dxiyi��×xiyi = 0 (11.22)

Since
N∑

i=1
a = Na, Equation 11.19 can be reformulated as

N∑
i=1

fi −Na−b
N∑

i=1

xi − c
N∑

i=1

yi −d
N∑

i=1

xiyi = 0 (11.23)

and Equations 11.20–11.22 can be reformulated likewise. The simultaneous equations can be
expressed in matrix form:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

N
N∑

i=1
xi

N∑
i=1

yi

N∑
i=1

xiyi

N∑
i=1

xi

N∑
i=1

�xi�
2

N∑
i=1

xiyi

N∑
i=1

�xi�
2yi

N∑
i=1

yi

N∑
i=1

xiyi

N∑
i=1

�yi�
2

N∑
i=1

xi�yi�
2

N∑
i=1

xiyi

N∑
i=1

�xi�
2yi

N∑
i=1

xi�yi�
2

N∑
i=1

�xi�
2�yi�

2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

a
b
c
d

⎤
⎥⎥⎦=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

N∑
i=1

fi

N∑
i=1

fixi

N∑
i=1

fiyi

N∑
i=1

fixiyi

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(11.24)

This is the same form as Equation 11.10 and can be solved by inversion, as in Equation 11.11.
Note that the matrix is symmetric and its inversion, or solution, does not impose such a great
computational penalty as appears. Given a set of data points, the values need to be entered in
the summations, thus completing the matrices from which the solution is found. This technique
can replace the one used in the zero-crossing detector within the Marr–Hildreth edge detection
operator (Section 4.3.3), but appears to offer no significant advantage over the (much simpler)
function implemented there.

384 Feature Extraction and Image Processing

. 12 .

Appendix 4: Principal
components analysis

12.1 Introduction

This appendix introduces principal components analysis (PCA). This technique is also known
as the Karhunen Loeve (KL) transform or the Hotelling transform. It is based on factorization
techniques developed in linear algebra. Factorization is commonly used to diagonalize a matrix,
so its inverse can be easily obtained. PCA uses factorization to transform data according to
its statistical properties. The data transformation is particularly useful for classification and
compression.

Here we will give an introduction to the mathematical concepts and give examples and
simple implementations, so you should be able to understand the basic ideas of PCA, to develop
your own implementation and to apply the technique to your own data. We use simple matrix
notations to develop the main ideas of PCA. If you want to have a more rigorous mathematical
understanding of the technique, you should review concepts of eigenvalues and eigenvectors in
more detail (Anton, 2005).

You can think of PCA as a technique that takes a collection of data and transforms it such
that the new data has given statistical properties. The statistical properties are chosen such that
the transformation highlights the importance of data elements. Thus, the transformed data can be
used for classification by observing important components of the data. Data can also be reduced
or compressed by eliminating (filtering out) the less important elements. The data elements can
be seen as features, but in a mathematical sense they define the axes in the coordinate system.

Before defining the data transformation process defined by PCA, we need to understand how
data is represented and also have a clear understanding of the statistical measure known as the
covariance.

12.2 Data

Generally, data is represented by a set of m vectors:

X = �x1� x2� � � � � xm� (12.1)

Each vector xi has n elements or features. That is,

xi = {
xi�1� xi�2� � � � � xi�n

}
(12.2)

385

The way you interpret each vector xi depends on your application. For example, in pattern
classification, each vector can represent a measure and each component of the vector a feature
such as colour, size or edge magnitude.

We can group features by taking the elements of each vector. That is, the feature column
vector k for the set X can be defined as

cX�k =

⎡
⎢⎢⎢⎣

x1�k

x2�k

���
xm�k

⎤
⎥⎥⎥⎦ (12.3)

for k ranging from 1 to n. The subindex X may seem unnecessary now; however, this will help
us to distinguish features of the original set and of the transformed data.

We can group all the features in the feature matrix by considering each vector cX�k to be a
column in a matrix. That is,

cX = [
cX�1 cX�2 · · · cX�n

]
(12.4)

The PCA technique transforms the feature vectors cX�k to define new vectors defining components
with better classification capabilities. Thus, the new vectors can be grouped by clustering
according distance criteria on the more important elements, that is, the elements that define
important variations in the data. PCA ensures that we highlight the data that accounts for the
maxima variation measured by the covariance.

12.3 Covariance

Broadly speaking, the covariance measures the linear dependence between two random variables
(DeGroot and Schervish, 2001). So, by computing the covariance, we can determine whether
there is a relationship between two sets of data. If we consider that the data defined in the
previous section has only two components, then the covariance between features can be defined
by considering the component of each vector. That is, if xi = {

xi�1� xi�2

}
, then the covariance is

�X�1�2 = E
⌊(

cX�1 −�X�1

) (
cX�2 −�X�2

)⌋
(12.5)

Here, the multiplication is assumed to be element by element and E[] denotes the expectation,
which is loosely the average value of the elements of the vector. We denote as �X�k a column
vector obtained by multiplying the scalar value E

[
cx�k

]
by a unitary vector. That is, �X�k is

a vector that has the mean value on each element. Thus, according to Equation 12.5, we first
subtract the mean value for each feature and then compute the mean of the multiplication of
each element.

The definition of covariance can be expressed in matrix form as

�X�1�2 = 1
m

((
cX�1 −�X�1

)T (
cX�2 −�X�2

))
(12.6)

Here, T denotes the matrix transpose. Sometimes, features are represented as rows, so you
can find the transpose operating on the second factor rather than on the first. Notice that the
covariance is symmetric, thus �X�1�2 = �X�2�1.

386 Feature Extraction and Image Processing

In addition to Equations 12.5 and 12.6, there is a third alternative definition of covariance
that is obtained by developing the products in Equation 12.6. That is,

�X�1�2 = 1
m

(
cX�1

T cX�2 −�X�1
T cX�2 − cX�1

T �X�2 +�X�1
T �X�2

)
(12.7)

Since

�X�1
T cX�2 = cX�1

T �X�2 = �X�1
T �X�2 (12.8)

then

�X�1�2 = 1
m

(
cX�1

T cX�2 −�X�1
T �X�2

)
(12.9)

This can be written in short form as

�X�1�2 = E�cX�1� cX�2�−E�cX�1�E�cX�2� (12.10)

for

E
[
cX�1� cX�2

]= 1
m

(
cT

X�1cX�2

)
(12.11)

Equations 12.5, 12.6 and 12.11 are alternative ways to compute the covariance. They are obtained
by expressing products and averages in algebraic equivalent definitions.

As a simple example of the covariance, you can think of one variable representing the value
of a spectral band of an aerial image, while the other the amount of vegetation in the ground
region covered by the pixel. If you measure the covariance and you get a positive value, then
for new data you should expect that an increase in the pixel intensity means an increase in
vegetation. If the covariance value is negative, then you should expect that an increase in the
pixel intensity means a decrease in vegetation. When the values are zero or very small, the
values are uncorrelated; the pixel intensity and vegetation are independent and we cannot tell
whether the change in intensity is related to any change in vegetation. Recall that the probability
of two independent events happening together is equal to the product of the probability of each
event. Thus, E�cX�1� cX�2� = E�cX�1�E�cX�2� is characteristic of independent events.

The covariance value ranges from 0 to indicate no relationship, to large positive and negative
values that reflect strong dependences. The maximum and minimum values are obtained by
using the Cauchy–Schwarz inequality and they are given by

∣∣�X�1�2

∣∣≤ �X�1�X�2 (12.12)

Here, � � denotes the absolute value and �2
X�1 = E

[
cX�1� cX�1

]− E
[
cX�1

]
E
[
cX�1

]
defines the

variance of cX�1. Remember that the variance is a measure of dispersion; therefore, this inequality
indicates that the covariance will be large if the data has large ranges. When the sets are totally
dependent,

∣∣�X�1�2

∣∣= �X�1�X�2.
It is important to stress that the covariance measures a linear relationship. In general, data

can be related to each other in different ways. For example, the colour of a pixel can increase
exponentially as the heat of a surface increases, or the area of a region can increase in square
proportion to its radius. However, the covariance only measures the degree of linear dependence.
If features are related by another relationship, for example quadratic, then the covariance will
produce a low value, even if there is perfect relationship. Linearity is generally considered to be
the main limitation of PCA; however, PCA has proved to give a simple and effective solution
in many applications; linear modelling is a very common model for many data and covariance
is particularly good if you are using some form of linear classification.

Appendix 4: Principal components analysis 387

To understand the linearity in the covariance definition, we can consider that features cX�2

are a linear function of cX�1. That is, cX�2 = AcX�1 + B for A, an arbitrary constant, and B, an
arbitrary column vector. Thus, according to Equation 12.11,

E
[
cX�1� cX�2

]= E
[
AcT

X�1cX�1 + cT
X�1B

]
(12.13)

We also have that

E
[
cX�1

]
E
[
cX�2

]= AE
[
cX�1

]2 +E �B	E
[
cX�1

]
(12.14)

By substitution of these equations in the definition of covariance in Equation 12.10, we have:

�X�1�2 = A
(
E
[
cT

X�1cX�1

]−E
[
cX�1

]2
)

(12.15)

That is,

�X�1�2 = A�2
X�1 (12.16)

That is, when features are related by a linear function, the covariance is a scalar value of the
variance. We can follow a similar development to find the covariance as a function of �2

X�2. If
we consider that cX�1 = 1

A
cX�2 − B

A
, then

�X�1�2 = 1
A

�2
X�2 (12.17)

Thus, we can use Equations 12.16 and 12.17 to solve for A. That is,

A = �X�2

�X�1

(12.18)

By substitution in Equation 12.16, we have:

�X1�2 = �X�1�X�2 (12.19)

That is, the covariance value takes its maximum value given in Equation 12.12 when the features
are related by a linear relationship.

12.4 Covariance matrix

When data has more than two dimensions, the covariance can be defined by considering every
pair of components. These components are generally represented in a matrix that is called the
covariance matrix. This matrix is defined as

�X =

⎡
⎢⎢⎢⎣

�X�1�1 �X�1�2 �� �X�1�n

�X�2�1 �X�2�2 �� �X�2�n

 ��

�X�n�1 �X�n�2 �� �X�n�n

⎤
⎥⎥⎥⎦ (12.20)

388 Feature Extraction and Image Processing

According to Equation 12.5, the element �i� j� in the covariance matrix is given by

�x�i�j = E
⌊(

cX�i −�X�i

) (
cX�j −�X�j

)⌋
(12.21)

By generalizing this equation to the elements of the feature matrix, and by considering the
notation used in Equation 12.6, the covariance matrix can be expressed as

X = 1
m

(
�cX −�X�T �cX −�X�

)
(12.22)

Here, �X is the matrix that has columns �X�i. If you observe the definition of the covariance
given in the previous section, you will notice that the diagonal of the covariance matrix defines
the variance of a feature and that given the symmetry in the definition of the covariance, the
covariance matrix is symmetric.

A third way of defining the covariance matrix is by using the definition in Equation 12.10.
That is,

X = 1
m

(
cT

XcX

)−�T
X�X (12.23)

The covariance matrix gives important information about the data. For example, by observing
values close to zero we can highlight independent features useful for classification. Very high
or low values indicate dependent features that will not give any new information useful for
distinguishing groups in the data. PCA exploits this type of observation by defining a method
to transform data in a way that the covariance matrix becomes diagonal. That is, all the values
but the diagonal are zero. In this case, the data has no dependences, so features can be used to
form groups. Imagine that you have a feature that is not dependent on others; then by choosing
a threshold you can clearly distinguish between two groups independently of the values of other
features. PCA also provides information about the importance of elements in the new data. So
you can distinguish between important data for classification or compression.

12.5 Data transformation

We are looking for a transformation W that maps each feature vector defined in the set X into
another feature vector for the set Y, such that the covariance matrix of the elements in Y is
diagonal. The transformation is linear and it is defined as

cY = cXWT (12.24)

or more explicitly
⎡
⎢⎢⎢⎢⎣

y1�1 y1�2 � � � y1�n

y2�1 y2�2 � � � y2�n

���
��� � � �

���

ym�1 ym�2 � � � ym�n

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

x1�1 x1�2 � � � x1�n

x2�1 x2�2 � � � x2�n

���
��� � � �

���

xm�1 xm�2 � � � xm�n

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

w1�1 w2�1 �� wn�1

w1�2 w2�2 �� wn�2

 ��

w1�n w2�n �� wn�n

⎤
⎥⎥⎥⎥⎦

(12.25)

Notice that

cT
Y = WcT

X (12.26)

Appendix 4: Principal components analysis 389

or more explicitly
⎡
⎢⎢⎢⎢⎣

y1�1 y2�1 � � � ym�1

y1�2 y2�2 � � � ym�2

���
��� � � �

���

y1�n y2�n � � � ym�n

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

w1�1 w1�2 �� w1�n

w2�1 w2�2 �� w2�n

 ��

wn�1 wn�2 �� wn�n

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

x1�1 x2�1 � � � xm�1

x1�2 x2�2 � � � xm�2

���
��� � � �

���

x1�n x2�n � � � xm�n

⎤
⎥⎥⎥⎥⎦

(12.27)

To obtain the covariance of the features in Y based on the features in X, we can substitute cY

and cT
Y in the definition of the covariance matrix as

Y = 1
m

[(
WcT

X −E
[
WcT

X

]) (
cXWT −E

[
cXWT

])]
(12.28)

By factorizing W, we have:

�Y = 1
m

[
W �cX −�X�T �cX −�X� WT

]
(12.29)

or

�Y = W�xWT (12.30)

Thus, to transform feature vectors, we can use this equation to find the matrix W such that �Y

is diagonal. This problem is known in matrix algebra as matrix diagonalization.

12.6 Inverse transformation

In the previous section we defined a transformation from the features in X into a new set
Y whose covariance matrix is diagonal. To map Y into X we should use the inverse of the
transformation. However, this is greatly simplified since the inverse of the transformation is
equal to its transpose. That is,

W−1 = WT (12.31)

This definition can been proven by considering that

�X = W−1�Y

(
WT

)−1
(12.32)

But since the covariance is symmetric, �x = �T
x and

W−1�Y

(
WT

)−1 = (
W−1

)T
�Y

((
WT

)−1
)T

(12.33)

which implies that

W−1 = (
W−1

)T
and

(
WT

)−1 =
((

WT
)−1
)T

(12.34)

These equations can only be true if the inverse of W is equal to its transpose.
Thus, to obtain the features in X from the Y we have that cT

Y = WcT
X can be written as

W−1cT
Y = W−1WcT

X (12.35)

That is,

WT cT
Y = cT

X (12.36)

390 Feature Extraction and Image Processing

This equation is important for reconstructing data in compression applications. In compression,
the data cX is approximated by using this equation by considering only the most important
components of cY.

12.7 Eigenproblem

By considering that W−1 = WT , we can write Equation 12.30 as

�XWT = WT �Y (12.37)

We can write the right-hand side in more explicit form as

WT �Y =

⎡
⎢⎢⎢⎣

w1�1 w2�1 �� wn�1

w1�2 w2�2 �� wn�2

 ��

w1�n w2�n �� wn�n

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

�1 0 �� 0

0 �2 �� 0

0 0 �� �n

⎤
⎥⎥⎥⎦

= �1

⎡
⎢⎢⎢⎣

w1�1

w1�2

w1�n

⎤
⎥⎥⎥⎦+�2

⎡
⎢⎢⎢⎣

w2�1

w2�2

w2�n

⎤
⎥⎥⎥⎦+· · ·+�n

⎡
⎢⎢⎢⎣

wn�1

wn�2

wn�n

⎤
⎥⎥⎥⎦ (12.38)

Here, diagonal elements of the covariance have been named � using the notation used in matrix
algebra.

Similarly, for the left-hand side we have:

�XWT = �X

⎡
⎢⎢⎢⎣

w1�1

w1�2

w1�n

⎤
⎥⎥⎥⎦+X

⎡
⎢⎢⎢⎣

w2�1

w2�2

w2�n

⎤
⎥⎥⎥⎦+· · ·+X

⎡
⎢⎢⎢⎣

wn�1

wn�2

wn�n

⎤
⎥⎥⎥⎦ (12.39)

That is,

�X

⎡
⎢⎢⎢⎣

w1�1

w1�2

w1�n

⎤
⎥⎥⎥⎦+X

⎡
⎢⎢⎢⎣

w2�1

w2�2

w2�n

⎤
⎥⎥⎥⎦+· · ·+X

⎡
⎢⎢⎢⎣

wn�1

wn�2

wn�n

⎤
⎥⎥⎥⎦= �1

⎡
⎢⎢⎢⎣

w1�1

w1�2

w1�n

⎤
⎥⎥⎥⎦+�2

⎡
⎢⎢⎢⎣

w2�1

w2�2

w2�n

⎤
⎥⎥⎥⎦+· · ·+�n

⎡
⎢⎢⎢⎣

wn�1

wn�2

wn�n

⎤
⎥⎥⎥⎦ (12.40)

Thus, W can be found by solving the following equations

Xwi = �iwi (12.41)

Appendix 4: Principal components analysis 391

for wi, the ith row of W. �i define the eigenvalues and wi define the eigenvectors. ‘Eigen’ is a
German word meaning ‘hidden’, and there are alternative names such as characteristic values
and characteristic vectors.

12.8 Solving the eigenproblem

In the eigenproblem formulated in the previous section, we know �X and we want to determine
wi and �i. To find them, first you should notice that �iwi = �iIwi, where I is the identity matrix.
Thus, we can write the eigenproblem as

�iIwi −�Xwi = 0 (12.42)

or

��iI −�X� wi = 0 (12.43)

A trivial solution is obtained for wi equal to zero. Other solutions exist when the determinant
det is given by

det ��iI −�X� = 0 (12.44)

This is known as the characteristic equation and it is used to solve for the values of �i. Once the
values of �i are known, they can be used to obtain the values of wi. According to the previous
formulations, each �i is related to one in wi. However, several �i can have the same value.
Thus, when a value �i is replaced in ��iI −�X� wi = 0, the solution should be determined by
combining all the independent vectors obtained for all �i. According to the formulation in the
previous section, once the eigenvectors wi are known, the transformation W is simply obtained
by considering wi as its columns.

12.9 PCA method summary

The mathematics of PCA can be summarized in the following steps.

1. Obtain the feature matrix cX from the data. Each column of the matrix defines a feature
vector.

2. Compute the covariance matrix �X. This matrix gives information about the linear indepen-
dence between the features.

3. Obtain the eigenvalues by solving the characteristic equation det ��iI −�X� = 0. These
values form the diagonal covariance matrix �Y. Since the matrix is diagonal, each element
is the variance of the transformed data.

4. Obtain the eigenvectors by solving for wi in ��iI −�X� wi = 0 for each eigenvalue. Eigen-
vectors should be normalized and linear independent.

5. The transformation W is obtained by considering the eigenvectors as their columns.
6. Obtain the transform features by computing cY = cXWT . The new features are linearly

independent.
7. For classification applications, select the features with large values of �i. Remember that �i

measures the variance and features that have large range of values will have large variance.

392 Feature Extraction and Image Processing

For example, two classification classes can be obtained by finding the mean value of the
feature with largest �i.

8. For compression, reduce the dimensionality of the new feature vectors by setting to zero
components with low �i values. Features in the original data space can be obtained by
cT

X = WT cT
Y .

12.10 Example

Code 12.1 is a Matlab implementation of PCA, illustrating the method by a simple example
with two features in the matrix cx.

In the example code, the covariance matrix is called CovX and it is computed by the Matlab
function cov. The code also computes the covariance by evaluating the two alternative definitions
given by Equations 12.22 and 12.23. Notice that the implementation of these equations divides
the matrix multiplication by m−1 instead of m. In statistics, this is called an unbiased estimator
and it is the estimator used by Matlab in the function cov. Thus, we use m− 1 to obtain the
same covariance values as the Matlab function.

To solve the eigenproblem, we use the Matlab function eig. This function solves the
characteristic equation det ��iI −�X� = 0 to obtain the eigenvalues and find the eigenvectors. In
the code the results of this function are stored in the matrices L and W, respectively. In general,
the characteristic equation defines a polynomial of higher degree requiring elaborate numerical
methods to find its solution. In our example, we have only two features, thus the characteristic
equation defines the quadratic form

�2
i −1�208�i +0�039 = 0 (12.45)

for which the eigenvalues can be easily obtained as �1 = 0�0331 and �1 = 1�175. The eigenvectors
can be obtained by substitution of these values in the eigenproblem. For example, for the first
eigenvector, we have:

[
0�033−0�543 −0�568

−0�568 0�033−0�665

]
w1 = 0 (12.46)

Thus,

w1 =
[−1�11s

s

]
(12.47)

where s is an arbitrary constant. After normalizing this vector, we obtain the first eigenvector

w1 =
[−0�74

0�66

]
(12.48)

Similarly, the second eigenvector is obtained as

w2 =
[

0�66

0�74

]
(12.49)

Appendix 4: Principal components analysis 393

%PCA

%Feature Matrix cx. Each column represents a feature and
%each row a sample data
cx= [1.4000 1.55000
 3.0000 3.2000
 0.6000 0.7000
 2.2000 2.3000
 1.8000 2.1000
 2.0000 1.6000
 1.0000 1.1000
 2.5000 2.4000
 1.5000 1.6000
 1.2000 0.8000
 2.1000 2.5000];
[m,n]=size(cx);

%Data Graph
figure(1);
plot(cx(:,1),cx(:,2),'k+'); hold on; %Data
plot(([0,0]),([-1,4]),'k-'); hold on; %X axis
plot(([-1,4]),([0,0]),'k-'); %Y axis
axis([-1,4,-1,4]);
xlabel('Feature 1');
ylabel('Feature 2');
title('Original Data');
%Covariance Matrix
covX=cov(cx)

%Covariance Matrix using the matrix definition
meanX=mean(cx) %mean of all elements of each row

cx1=cx(:,1)-meanX(1); %substract mean of first row in cx
cx2=cx(:,2)-meanX(2); %substract mean of second row in cx

Mcx=[cx1 cx2];
covX=(transpose(Mcx)*(Mcx))/(m-1) %definition of covariance

%Covariance Matrix using alternative definition
meanX=mean(cx); %mean of all elements of each row

cx1=cx(:,1); %substract mean of first row in cx
cx2=cx(:,2); %substract mean of second row in cx

covX=((transpose(cx)*(cx))/(m-1))-
((transpose(meanX)*meanX)*(m/(m-1)))

[W,L]=eig(covX) %W=Eigenvalues L=Eigenvector
%Compute Eigenvalues and Eigenvector

394 Feature Extraction and Image Processing

%Eigenvector Graph
figure(2);
plot(cx(:,1),cx(:,2),'k+'); hold on;
plot(([0,W(1,1)*4]),([0,W(1,2)*4]),'k-'); hold on;
plot(([0,W(2,1)*4]),([0,W(2,2)*4]),'k-');
axis([-4,4,-4,4]);
xlabel('Feature 1');
ylabel('Feature 2');
title('Eigenvectors');

%Transform Data
cy=cx*transpose(W)

%Graph Transformed Data
figure(3);
plot(cy(:,1),cy(:,2),'k+'); hold on;
plot(([0,0]),([-1,5]),'k-'); hold on;
plot(([-1,5]),([0,0]),'k-');
axis([-1,5,-1,5]);
xlabel('Feature 1');
ylabel('Feature 2');
title('Transformed Data');

%Classification example
meanY=mean(cy);

%Graph of classification example
figure(4);
plot(([-5,5]),([meanY(2),meanY(2)]),'k:'); hold on;
plot(([0,0]),([-5,5]),'k-'); hold on;
plot(([-1,5]),([0,0]),'k-'); hold on;
plot(cy(:,1),cy(:,2),'k+'); hold on;
axis([-1,5,-1,5]);
xlabel('Feature 1');
ylabel('Feature 2');
title('Classification Example');
legend('Mean',2);

%Compression example
cy(:,1)=zeros;
xr=transpose(transpose(W)*transpose(cy));

%Graph of compression example
figure(5);
plot(xr(:,1),xr(:,2),'k+'); hold on;
plot(([0,0]),([-1,4]),'k-'); hold on;
plot(([-1,4]),([0,0]),'k-');
axis([-1,4,-1,4]);
xlabel('Feature 1');
ylabel('Feature 2');
title('Compression Example');

Code 12.1 Matlab PCA implementation

Appendix 4: Principal components analysis 395

Figure 12.1 shows the original data and the eigenvectors. The eigenvector with the largest
eigenvalue defines a line that goes through the points. This is the direction of the largest variance
of the data.

4

3.5

3

2.5

2

1.5

1

0.5

0

–0.5

–1
–1 –0.5 0 0.5 1 1.5 2 2.5 3 3.5 4

Feature 1

Original data

F
ea

tu
re

 2

–1 –3 –2 –1 0 1 2 3 4

Feature 1

Eigenvectors
4

3

2

1

0

–1

–2

–3

–4

F
ea

tu
re

 2

(a) Original data
(b) Eigenvectors

Figure 12.1 Data samples and the eigenvectors

Figure 12.2 shows the results obtained by transforming the features cY = cXWT . Basically, the
eigenvectors become our main axes. The second feature has points more spread along the axis,
and this is related to a higher value in the eigenvector. Remember that for the transformed data,
the covariance matrix is diagonal, thus there is not any linear dependence between the features.

5

4

3

2

1

0

0 1 2
Feature 1

F
ea

tu
re

 2

Transformed data

3 4 5
–1

–1

Figure 12.2 Transformed data

396 Feature Extraction and Image Processing

If we want to classify our data in two classes, we should consider the variation along
the second transformed feature. Since we are using the axis with the highest eigenvalue, the
classification is performed along the axis with highest variation in the data. In Figure 12.3, we
divide the points by the line defined by the mean value.

5

4

3

2

1

0

–1
–1 0 1 2

Feature 1

Classification example

F
ea

tu
re

 2

3 4 5

Mean

Figure 12.3 Classification via PCA

For compression, we want to eliminate the components that have less variation, so in our
example, we eliminate the first feature. In the last part of the Matlab implementation, data is
reconstructed by setting to zero the vales of the first feature in the matrix cy. The result is
shown in Figure 12.4. Notice that the loss of one dimension in the transformed set produces

4

3.5

3

2.5

2

1.5

1

0.5

0

–0.5

–1
–1 –0.5 0 0.5 1 1.5

Feature 1

Compression example

F
ea

tu
re

 2

2 2.5 3 3.5 4

Figure 12.4 Compression via PCA

Appendix 4: Principal components analysis 397

data aligned in the original space. So some variation in the data has been lost. However, the
variation along the first eigenvector is maintained.

Data with two features, as shown in this example, may be useful in some applications such
as reducing a stereo signal into a single channel. Other low-dimensional data such as three
features can be used to reduce colour images to grey level. However, in general, PCA is applied
to data with many features. In these cases, the implementation is practically the same, but it
should compute the eigenvalues by solving a characteristic equation defining a polynomial of
high degree.

Data with many features are generally used for image classification wherein features are
related to image metrics or to pixels. For example, face classification has been done by repre-
senting pixels in an image as features. Pixels are arranged in a vector and a set of eigenfaces
is obtained by PCA. For classification, a new face is compared to the others by computing a
new image according to the transformation obtained by PCA. The advantage is that PCA has
independent features.

Another area that has used PCA extensively is image compression. In this case, pixels with
the same position are used for the vectors. That is, the first feature vector is formed by grouping
all the values of the first pixel in all the images. Thus, when PCA is applied, the pixel value
on each image can be obtained by reconstructing data with a reduced set of eigenvalues. As
the number of eigenvalues is reduced, most information is lost. However, if you choose low
eigenvalues, then the information that is lost represents low data variations.

Although classification and compression are perhaps the most important areas of application
for PCA, this technique can be used to analyse any kind of data. Applications of PCA are
continuously being developed in many areas of research. For example, PCA has been used in
applications as diverse as compressing animation in 3D models and analysing data in spec-
troscopy. The difference in each application is how data is interpreted, but the fundamentals of
PCA are the same.

12.11 References

Anton, H., Elementary Linear Algebra: With Applications, John Wiley and Sons, New
York, 2005

DeGroot, M. H. and Schervish, M. J., Probability and Statistics, 3rd edn, Addison Wesley,
Reading, MA, 2001

398 Feature Extraction and Image Processing

. Index .

accumulator array, 189–191, 197–206
active appearance models, 272–275
active contours (see snakes), 244–266

parametric, 244–261
geometric, 261–266

active pixel, 11
active shape models, 272–275

comparison, 275
active contour without edges, 264–265
acuity, 5
adaptive Hough transform, 235
addition, 20, 72
additive operator splitting, 264
Adoculos, 15
affine

invariance, 167, 178, 227, 281, 324
moments, 324
transformation 359

ageing, 11
aliasing, 45–46

antialiasing, 198
analysis of 1st order edge operators,

119–129
anisotropic diffusion, 96–101
antialiasing, 198
aperture problem, 172
arbitrary shape extraction, 186–193, 221–235
area description, 311
artificial neural networks, 343
aspect ratio, 14
associative cortex, 7
autocorrelation, 41, 159
averaging error, 90
averaging operator, 84–90

direct, 84–88
Gaussian, 88–90

backmapping, 199, 206
background

estimation, 93–94, 167
subtraction, 167

band-pass filter, 65, 125, 152

bandwidth, 6, 12, 34, 65, 86, 152
basis functions, 51, 59, 61, 63
Benham’s disk, 8
Bhattacharyya distance, 339
binary morphology, 103–107
biometrics, 2, 101, 236, 343
blind spot, 5
blooming, 12
boundary, 282
boundary descriptors, 282–311
Bresenham’s algorithm

lines, 199
circles, 206

brightness, 16, 34
addition, 72
clipping, 72
division, 72
inversion, 16–18, 72
multiplication, 72
scaling, 72

Brodatz texture images, 330
burn, 11

C implementation, 14
C++, 14
camera, 10–12

ageing, 11
blooming, 12
burn, 11
CCD, 10–12
CCIR standard, 10
CMOS, 10–12
digital, 10, 14
digital video, 14
high resolution, 12
hyperspectral, 12
infrared, 12
interlacing, 13
lag, 11
low-light, 12
progressive scan, 14
readout effects, 12
vidicon, 10

399

Canny edge detection operator, 129–136
canonical analysis, 343
cartesian moments, 315–320
CCD camera, 10–12
CCIR standard, 10
CMOS camera, 10–12
central limit theorem, 90, 187, 331
centralised moments, 316
chain codes, 283–285
charge coupled device, 10–12
Chebyshev moments, 324
choroid, 4
chrominance, 7
ciliary muscles, 4
circle drawing, 206
circle finding, 203–207, 212–216
classification, 339–343
clipping, 72
closing operator, 106

closure, 106
coding, 14, 36, 59, 63, 274
colour, 34–36
compactness, 312–314, 338
comparison

active shape, 275
circle extraction, 235
corner extraction, 158, 167
deformable shapes, 275
edge detection, 145, 156
filtering images, 97, 102
Hough transform, 210, 235
moments, 315, 324
optical flow, 177
statistical operators, 102
template matching, 275
texture, 335, 343
thresholding, 136

complete snake implementation, 251
complementary metal oxide silicon, 10
complex magnitude, 39
complex moments, 324
complex phase, 39
computer software, 14
computer vision system, 10–14
computer interface, 12–14
computerised tomography, 2
cones, 5

types, 5
connectivity analysis, 135, 282
continuous Fourier transform, 37–42
continuous signal, 37
continuous symmetry operator, 271

convolution, 41, 59, 86, 186–192
duality, 41, 86
template, 81–84, 118–119, 186

co-occurrence matrix, 335–337
co-ordinate systems, 16, 355–380
corner detection, 153–163

chain code, 295
comparison, 158, 167
differencing, 154–156
differentiation, 156–158
Harris operator, 159–163
improvement, 163
Moravec operator, 159
performance, 158, 163

correlation, 41, 159, 170, 188, 193–194
function, 159

correlation optical flow, 167, 170
cosine transform, 58–59, 335
cross-correlation, 167, 188, 193
cubic splines, 326
curvature, 145, 152, 246, 249, 263, 326

definition, 153–154
primal sketch, 163
scale space, 163

curve fitting, 165, 382
CVIP tools, 15

d.c. component, 48, 52, 64
deformable template, 242–243
delta function, 41
demonstrations, 25, 28
Deriche operator, 131
descriptors

3D Fourier, 310
elliptic Fourier, 301–310
Fourier, 286–310
real Fourier, 290–292
region, 311–326, 337
texture, 332–339

digital camera, 14
video, 14

difference of Gaussian, 140, 164
differential optical flow, 171–176
digital video camera, 12, 14
dilation, 104–109
direct averaging, 84–88
discrete cosine transform, 58–59, 335
discrete Fourier transform, 47–54, 129, 324,
discrete Hartley transform, 59–61
discrete sine transform, 59
discrete symmetry operator, 268–272

400 Index

distance measure, 325, 339–340
Euclidean, 248, 339

distance transform, 266–268
drawing lines, 199
drawing circles, 206
dual snake (active contour), 258–260
duality convolution, 41, 86

Ebbinghaus illusion, 8
edge detector, 117–147

Canny, 129–136
comparison, 145, 156
Deriche, 131
first order, 117–136
horizontal, 117
Laplacian, 137–139, 145
Laplacian of Gaussian, 139
Marr-Hildreth, 139–144, 147
Petrou, 144
Prewitt, 121–123, 145
Roberts cross, 120–121
second order, 137–144
Sobel, 123–129, 145
Spacek, 144
survey, 156
Susan, 145
surveys, 146
vertical, 117

edge
direction, 121–123, 126–128, 131, 139
magnitude, 121–123
vectorial representation, 121

eigenvalue, 161, 273, 385
eigenvector, 273, 385
ellipse finding, 207–209, 216–221
elliptic Fourier descriptors, 301–310
energy, 149, 333
energy minimisation, 243, 245, 326
entropy, 166, 333
equalisation, 75–77
erosion, 104–109
estimation of background, 93–94, 167
estimation theory, 381
Euclidean distance, 248, 339
Euler number, 315
evidence gathering, 197
example worksheets, 21, 24, 349–354
eye, 4–6

face recognition, 2, 28, 63, 260, 274
fast Fourier transform, 50, 86, 193, 295

fast Hough transform, 235
fast marching methods, 264
feature space, 339
feature extraction, 2–347(!)
feature subset selection, 343
FFT application, 102, 193, 332
fields, 13
filter

averaging, 84–90
band-pass, 65, 125, 152
high-pass, 65, 121, 128, 143
low-pass, 64, 85, 128, 143
median, 91–93, 102, 113
mode, 94–96
truncated median, 94–96, 102

filtering image comparison, 97, 102
firewire, 13
first order edge detection, 117–136
fixed pattern noise, 12
flash A/D converter, 12
fexible shape extraction, 241–279
flexible shape models, 272
flow detection, 167–178
foot-of-normal description, 200
force field transform, 101–102
form factor, 196
fovea, 5
Fourier descriptors, 285–311

3D, 310
elliptic, 301–310
real Fourier, 290–292

Fourier transform, 37–42
applications, 64–66, 86, 147, 332
display, 52, 332
discrete, 47–54, 129, 324
frequency scaling, 56–57, 332
inverse, 38–39, 49, 149
log polar, 196
Mellin, 196
moments, 324
of Sobel operator, 128–129
of Marr-Hildreth operator, 142–143
ordering, 52
pair, 40, 42, 47, 53
phase congruency, 147
pulse, 38
reconstruction, 38–39, 49, 149, 324
replication, 50
reordering, 52
rotation, 56
separability, 51
shift invariance, 54–55, 289–290

Index 401

Fourier transform, (Cont’d)
superposition, 57
texture analysis, 332

Fourier-Mellin transform, 196
frames, 12
framegrabber, 13
frequency domain, 36
frequency scaling, 56–57, 332
frequency, 36
fuzzy Hough Transform, 235

Gabor wavelet, 61–62, 151, 334
log-Gabor, 151–152

gait recognition, 177, 236, 271, 324
Gaussian

averaging, 88–90
function, 41, 53, 88–90
noise, 90, 186, 381
operator, 88–90
smoothing, 97, 103, 124, 130

general form of Sobel operator, 125
generalized Hough transform, 221–228
Generic Image Library, 15
genetic algorithm, 244
geometric active contour, 261–266
GIL, 15
greedy algorithm, 246

implementation, 248–227
greedy snake, 246–252
greyscale, 17, 34
grey level morphology, 107–112
group operations, 81–90

Hamming window, 87, 195
Hanning window, 87, 195
Harris corner detector, 159–163
Hartley transform, 59–61
high resolution camera, 12
high-pass filter, 65, 121, 128, 143
histogram, 70

equalisation, 75–77
normalisation, 74–75

hit or miss operator, 103–104
homogeneous co-ordinate system, 16, 357–379
homography, 360
horizontal edge detection, 117
horizontal optical flow, 172
Hotelling transform, 63, 385
Hough Transform (HT), 196–236

adaptive, 235

antialiasing, 198
backmapping, 199, 206
circles, 205–207, 212–216
ellipses, 207–210, 217–221
fast, 235
fuzzy, 235
generalised, 221–228
invariant, 228–235
lines, 197–205
mapping, 197
noise, 198, 206
occlusion, 198, 206
polar lines, 200–202
probabilistic, 235
randomized, 235
reviews, 235
velocity, 235

human eye, 4–6
human vision, 1–9
hyperspectral camera, 12
hysteresis thresholding, 132–136

IEEE 1394, 13
illumination, 117, 164, 177, 183, 332
image coding, 14, 36, 59, 63
image filtering comparison, 97, 102
image formation, 34–36
image processing, 2–347(!)
image texture, 2, 57, 257, 330–339
inclusion operator, 108
inertia, 334
infrared camera, 12
interlacing, 14
intensity normalization, 74–75
invariance, 167, 183, 281, 332

affine, 167, 178, 227, 281, 324
illumination, 117, 164, 177, 183, 332
location, 164, 169, 183, 281, 294, 317
position, 165, 169, 183, 281, 294, 317
projective, 167, 281
rotation, 164, 172, 196, 281, 305, 317
shift, 54–55, 164, 196, 289–290, 332
start point, 285
scale, 164, 183, 191, 196, 305, 317 332

invariant Hough transform, 228–235
inverse Fourier transform, 38–39, 49, 149
inversion of brightness, 16–18, 72
iris, 4
irregularity, 312, 337
isochronous transfer, 11

402 Index

Java, 14
journals, 24–25
JPEG coding, 14, 36, 59, 167

Karhunen-Loeve transform, 63, 273, 385–398
Kass snake, 252–257
kernel methods, 343
Khoros, 14
k-nearest neighbour rule, 339–343

L1 and L2 norms, 339
Laboimage, 15
lag, 11
Laplacian edge detection operator, 137–139
Laplacian of Gaussian, 139

Fourier transform, 143
Laplacian operator, 137
lateral inhibition, 6
lateral geniculate nucleus, 7
least squares criterion, 381–382
Legendre moments, 324
lens, 4
level sets, 261–266, 276
line drawing, 199
line finding, 197–205, 210–212
line terminations, 157, 246
linearity, 41, 57–58
local energy, 149–151
location invariance, 164, 169, 183, 281, 294, 317
log-polar mappings, 196
logarithmic point operator, 73
look-up table, 12, 74
low-light camera, 12
low-pass filter, 64, 85–86, 128, 143
luminance, 7

Mach bands, 5
magazines, 25
magnetic resonance, 2
Maple mathematical system, 16
Marr-Hildreth edge detection, 139–144, 147

Fourier transform, 142–143
Mathcad, 16–21

example worksheet, 349–352
mathematical systems, 15

Maple, 16
Mathcad, 15–21
Mathematica, 15
Matlab, 15, 21–24

Matlab mathematical system, 15, 21–24
example worksheet, 352–354

Matusita distance, 339
medial axis, 268
median filter, 91–93, 102, 113
Mellin transform, 196
mexican hat, 139
Minkowski operator, 109–112
mode, 94
mode filter, 94–96
moments, 315–325

affine invariant, 324
Cartesian, 315–320
centralised, 316
Chebyshev, 324
complex, 324
centralised, 316
Fourier, 324
Legendre, 324
normalised central, 318–320
pseudo-Zernike, 324
reconstruction, 325
reviews, 315, 324
statistical, 315
Tschebichef, 324
velocity, 324
Zernike, 320–324

Moravec corner operator, 159
morphology,

binary, 103–107
grey level, 107–112

motion detection, 167–177, 185
area, 168–171
differencing, 171–177, 185
optical flow, 168–177

MPEG coding, 14, 59
multiplication of brightness, 72

narrow band, 264
nearest neighbour, 339
neighbours, 282
neural

model, 8
networks, 8, 305
signals, 6
system, 6–7

noise
Gaussian, 90, 186, 381
Rayleigh, 91, 96
salt and pepper, 92, 145
speckle, 96

Index 403

non-maximum suppression, 130–133
normal force, 257
norms (distance), 339
normalisation, 74–75, 250
normalized central moments, 318–320
normal distribution, 123, 187, 381
NTSC, 13
Nyquist sampling criterion, 44

occipital cortex, 7
occlusion, 192–193
open contour, 257
opening operator, 106
open CV, 15
optical flow, 167–178

comparison, 177
differential, 171–176
correlation, 167, 170
horizontal, 172
matching, 167
vertical, 172

optical Fourier transform, 49, 195
optimal smoothing, 125, 129
optimal thresholding, 78–81
ordering of Fourier transform, 52
orthogonality, 207, 273, 322
orthographic projection, 16, 271, 366

PAL system, 13
palette, 34
parameter space reduction, 210–218
parametric active contour, 244–261
passive pixel, 11
pattern recognition, 25, 343–345

statistical, 80, 315, 93, 315
structural, 286, 343–345

perimeter, 311
descriptors, 282–311

perspective, 16, 355–357
camera model, 355–357

Petrou operator, 144, 146
phase, 39, 55
phase congruency, 147–152
photopic vision, 5
picture elements, 2,17
pixels, 2,17

active, 11
passive, 11

Poincarré measure, 317
point operators, 71–75

point distribution model, 272
polar co-ordinates, 191, 172
polar HT lines, 200–202
position invariance, 164, 169, 183, 281, 294, 317
Prewitt edge detection, 121–123, 145
projective invariance, 167, 281
primal sketch,

curvature, 163
principal components analysis, 63, 273, 385–398
probabilistic Hough transform, 235
progressive scan camera, 14
pseudo Zernike moments, 324
pulse, 37

quadratic splines, 326
quantisation, 34–37
quantum efficiency, 12

Radon transform, 196
randomised HT, 235
rarity, 166
Rayleigh noise, 91, 96
readout effects, 12
real Fourier descriptors, 290–292
reconstruction,

Fourier transform, 38–39, 49, 149, 324
moments, 325

rectilinearity, 315
region, 282
region descriptors, 311–325, 337
regularization, 257
remote sensing, 2
reordering Fourier transform, 52
replication, 50
research journals, 24–25
retina, 5
review

chain codes, 283
circle extraction, 235
corners, 167
deformable shapes, 236, 276
education, 26
edge detection, 146
Hough transform, 235
level set methods, 276
moments, 315, 324
optical flow, 177
pattern recognition, 343
shape analysis, 326
shape description, 326

404 Index

template matching, 235
texture, 345
thresholding, 78

Roberts cross edge detector, 120–121
rods, 5
rotation invariance, 164, 172, 196, 281, 305, 317
rotation matrix, 161, 222, 361–362
R-table, 224

saliency, 166
salt and pepper noise, 92, 145
sampling criterion, 43–46, 290
sampling, 36–37, 290–291
sawtooth operator, 70
scale invariance, 164, 183, 191, 196, 305, 317
scale invariant feature transform

SIFT, 164–166
scale space, 97, 113, 163, 165

curvature, 163
scaling of brightness, 72
scotopic vision, 5
second order edge operators, 137–144
separability, 51
shape descriptions, 281–328
shape extraction,

circle, 203–207, 212–216
ellipses, 207–209, 216–221
lines, 197–205, 210–212
unknown shapes, 241–266

shape reconstruction, 287, 309, 323
shift invariance, 54–55, 164, 196, 289–290, 332
SIFT operator, 164–166
sinc function, 38, 41, 54
sine transform, 59
skeletonization, 266–272
skewed symmetry, 271
smoothness constraint, 172
snake, 244–266

3D, 257
active contour without edges, 264–265
dual, 258–260
geometric active contour, 261–266
greedy 246–252
Kass, 252–257
normal force, 257
open contour, 257
parametric active contour, 244–261
regularization, 257

Sobel edge detection operator, 123–129
general form, 125
Fourier transform 128–129

Spacek operator, 144, 146
speckle noise, 96
spectrum, 5, 38
splines, 326
start point invariance, 285
statistical geometric features, 337
statistical moments, 315
statistical pattern recognition, 80, 315,

93, 315
structural pattern recognition, 286,

343–345
structuring element, 103, 106
subtraction of background, 167
superposition, 57
support vector machine, 343
survey, see review
Susan operator, 145
symmetry, 268–272

continuous operator, 271
discrete operator, 268–271
focus, 271
skewed, 271

synthetic computer images, 3

television
aspect ratio, 14
interlacing, 14
signal, 13

template
convolution, 81–84, 118–119, 186
matching, 186–196
computation, 191
Fourier transform, 193–195
noise, 194
occlusion, 194
optimality, 187
shape, 92
size, 84, 87–88, 92

terminations, 157, 246
textbooks, 25–27
texture, 2, 57, 257, 330–339

definition, 330
classification, 339–343
description, 332–339
segmentation, 343–345

texture mapping, 93
thinning, 129, 326
thresholding, 77–81, 132–136, 184

hysteresis, 132–136
optimal, 78–81
uniform, 77–78, 136, 119

Index 405

TN-image, 15
transform

adaptive Hough transform, 235
continuous Fourier, 37–42
discrete cosine, 58–59, 335
discrete Fourier, 47–54, 129, 324
discrete Hartley, 59–61
discrete sine, 59
distance, 266–268
fast Fourier transform, 50, 86, 193, 295
fast Hough transform, 235
force field, 101–102
Fourier-Mellin, 196
Gabor wavelet, 61–63, 151–152,
generalised Hough, 221–228
Hotelling, 63, 385
Hough, 196–236
inverse Fourier, 38–39, 49, 149
Karhunen Loève, 63, 273, 385–398
Mellin, 196
one-dimensional Fourier, 47–49
optical Fourier, 49, 195
Radon, 196
two-dimensional Fourier, 49–54
Walsh, 63, 310, 335
wavelet transform, 61–66, 334

transform pair, 40, 42, 47, 53
translation invariance, 164, 169, 183, 281,

294, 317
true colour, 34
truncated median filter, 94–96, 102
Tschebichef moments, 324
two-dimensional Fourier transform, 49–54

ultrasound, 2, 96, 102, 145
filtering, 96, 102, 145

umbra approach, 107
uniform thresholding, 77–78, 136, 119
unpredictability, 166

velocity, 168–176
Hough transform, 235
moments, 324

vertical edge detection, 117
vertical optical flow, 172
vidicon camera, 10
Visiquest, 14
vision, 1–9
VXL, 15

Walsh transform, 63, 310, 335
wavelets, 60–62, 277, 296, 305
wavelet transform, 61–66, 334

Gabor, 61–63, 151–152,
weak perspective model, 369
windowing operators, 87, 195
worksheets, 21, 24, 349–354

z transform, 128
Zernike moments, 320–324
Zernike polynomials, 321
zero crossing detection, 137, 141–143, 384
zero padding, 194
Zollner illusion, 8

406 Index

	Front Cover
	Feature Extraction and Image Processing
	Copyright Page
	Table of Contents
	Preface
	Chapter 1 Introduction
	1.1 Overview
	1.2 Human and computer vision
	1.3 The human vision system
	1.3.1 The eye
	1.3.2 The neural system
	1.3.3 Processing

	1.4 Computer vision systems
	1.4.1 Cameras
	1.4.2 Computer interfaces
	1.4.3 Processing an image

	1.5 Mathematical systems
	1.5.1 Mathematical tools
	1.5.2 Hello Mathcad, hello images!
	1.5.3 Hello Matlab!

	1.6 Associated literature
	1.6.1 Journals and magazines
	1.6.2 Textbooks
	1.6.3 The web

	1.7 Conclusions
	1.8 References

	Chapter 2 Images, sampling and frequency domain processing
	2.1 Overview
	2.2 Image formation
	2.3 The Fourier transform
	2.4 The sampling criterion
	2.5 The discrete Fourier transform
	2.5.1 One-dimensional transform
	2.5.2 Two-dimensional transform

	2.6 Other properties of the Fourier transform
	2.6.1 Shift invariance
	2.6.2 Rotation
	2.6.3 Frequency scaling
	2.6.4 Superposition (linearity)

	2.7 Transforms other than Fourier
	2.7.1 Discrete cosine transform
	2.7.2 Discrete Hartley transform
	2.7.3 Introductory wavelets: the Gabor wavelet
	2.7.4 Other transforms

	2.8 Applications using frequency domain properties
	2.9 Further reading
	2.10 References

	Chapter 3 Basic image processing operations
	3.1 Overview
	3.2 Histograms
	3.3 Point operators
	3.3.1 Basic point operations
	3.3.2 Histogram normalization
	3.3.3 Histogram equalization
	3.3.4 Thresholding

	3.4 Group operations
	3.4.1 Template convolution
	3.4.2 Averaging operator
	3.4.3 On different template size
	3.4.4 Gaussian averaging operator

	3.5 Other statistical operators
	3.5.1 More on averaging
	3.5.2 Median filter
	3.5.3 Mode filter
	3.5.4 Anisotropic diffusion
	3.5.5 Force field transform
	3.5.6 Comparison of statistical operators

	3.6 Mathematical morphology
	3.6.1 Morphological operators
	3.6.2 Grey-level morphology
	3.6.3 Grey-level erosion and dilation
	3.6.4 Minkowski operators

	3.7 Further reading
	3.8 References

	Chapter 4 Low-level feature extraction (including edge detection)
	4.1 Overview
	4.2 First order edge detection operators
	4.2.1 Basic operators
	4.2.2 Analysis of the basic operators
	4.2.3 Prewitt edge detection operator
	4.2.4 Sobel edge detection operator
	4.2.5 Canny edge detection operator

	4.3 Second order edge detection operators
	4.3.1 Motivation
	4.3.2 Basic operators: the Laplacian
	4.3.3 Marr–Hildreth operator

	4.4 Other edge detection operators
	4.5 Comparison of edge detection operators
	4.6 Further reading on edge detection
	4.7 Phase congruency
	4.8 Localized feature extraction
	4.8.1 Detecting image curvature (corner extraction)
	4.8.1.1 Definition of curvature
	4.8.1.2 Computing differences in edge direction
	4.8.1.3 Measuring curvature by changes in intensity (differentiation)
	4.8.1.4 Moravec and Harris detectors
	4.8.1.5 Further reading on curvature

	4.8.2 Modern approaches: region/patch analysis
	4.8.2.1 Scale invariant feature transform
	4.8.2.2 Saliency
	4.8.2.3 Other techniques and performance issues

	4.9 Describing image motion
	4.9.1 Area-based approach
	4.9.2 Differential approach
	4.9.3 Further reading on optical flow

	4.10 Conclusions
	4.11 References

	Chapter 5 Feature extraction by shape matching
	5.1 Overview
	5.2 Thresholding and subtraction
	5.3 Template matching
	5.3.1 Definition
	5.3.2 Fourier transform implementation
	5.3.3 Discussion of template matching

	5.4 Hough transform
	5.4.1 Overview
	5.4.2 Lines
	5.4.3 Hough transform for circles
	5.4.4 Hough transform for ellipses
	5.4.5 Parameter space decomposition
	5.4.5.1 Parameter space reduction for lines
	5.4.5.2 Parameter space reduction for circles
	5.4.5.3 Parameter space reduction for ellipses

	5.5 Generalized Hough transform
	5.5.1 Formal definition of the GHT
	5.5.2 Polar definition
	5.5.3 The GHT technique
	5.5.4 Invariant GHT

	5.6 Other extensions to the Hough transform
	5.7 Further reading
	5.8 References

	Chapter 6 Flexible shape extraction (snakes and other techniques)
	6.1 Overview
	6.2 Deformable templates
	6.3 Active contours (snakes)
	6.3.1 Basics
	6.3.2 The greedy algorithm for snakes
	6.3.3 Complete (Kass) snake implementation
	6.3.4 Other snake approaches
	6.3.5 Further snake developments
	6.3.6 Geometric active contours

	6.4 Shape skeletonization
	6.4.1 Distance transforms
	6.4.2 Symmetry

	6.5 Flexible shape models: active shape and active appearance
	6.6 Further reading
	6.7 References

	Chapter 7 Object description
	7.1 Overview
	7.2 Boundary descriptions
	 7.2.1 Boundary and region
	7.2.2 Chain codes
	7.2.3 Fourier descriptors
	7.2.3.1 Basis of Fourier descriptors
	7.2.3.2 Fourier expansion
	7.2.3.3 Shift invariance
	7.2.3.4 Discrete computation
	7.2.3.5 Cumulative angular function
	7.2.3.6 Elliptic Fourier descriptors
	7.2.3.7 Invariance

	7.3 Region descriptors
	7.3.1 Basic region descriptors
	7.3.2 Moments
	7.3.2.1 Basic properties
	7.3.2.2 Invariant moments
	7.3.2.3 Zernike moments
	7.3.2.4 Other moments

	7.4 Further reading
	7.5 References

	Chapter 8 Introduction to texture description, segmentation and classification
	8.1 Overview
	8.2 What is texture?
	8.3 Texture description
	8.3.1 Performance requirements
	8.3.2 Structural approaches
	8.3.3 Statistical approaches
	8.3.4 Combination approaches

	8.4 Classification
	8.4.1 The k-nearest neighbour rule
	8.4.2 Other classification approaches

	8.5 Segmentation
	8.6 Further reading
	8.7 References

	Chapter 9 Appendix 1: Example worksheets
	9.1 Example Mathcad worksheet for Chapter 3
	9.2 Example Matlab worksheet for Chapter 4

	Chapter 10 Appendix 2: Camera geometry fundamentals
	10.1 Image geometry
	10.2 Perspective camera
	10.3 Perspective camera model
	10.3.1 Homogeneous coordinates and projective geometry
	10.3.1.1 Representation of a line and duality
	10.3.1.2 Ideal points
	10.3.1.3 Transformations in the projective space

	10.3.2 Perspective camera model analysis
	10.3.3 Parameters of the perspective camera model

	10.4 Affine camera
	10.4.1 Affine camera model
	10.4.2 Affine camera model and the perspective projection
	10.4.3 Parameters of the affine camera model

	10.5 Weak perspective model
	10.6 Example of camera models
	10.7 Discussion
	10.8 References

	Chapter 11 Appendix 3: Least squares analysis
	11.1 The least squares criterion
	11.2 Curve fitting by least squares

	Chapter 12 Appendix 4: Principal components analysis
	12.1 Introduction
	12.2 Data
	12.3 Covariance
	12.4 Covariance matrix
	12.5 Data transformation
	12.6 Inverse transformation
	12.7 Eigenproblem
	12.8 Solving the eigenproblem
	12.9 PCA method summary
	12.10 Example
	12.11 References

	Index

