
Rafael C. Gonzalez
University of Tennessee

Richard E. Woods
MedData Interactive

Steven L. Eddins
The MathWorks, Inc.

Upper Saddle River, NJ 07458

Digital Image
Processing
Using MATLAB®



Library of Congress Cataloging-in-Publication Data on File

Vice President and Editorial Director, ECS: Marcia Horton
Vice President and Director of Production and Manufacturing, ESM: David W. Riccardi
Publisher: Tom Robbins
Editorial Assistant: Carole Snyder
Executive Managing Editor: Vince O’Brien
Managing Editor: David A. George
Production Editor: Rose Kernan
Director of Creative Services: Paul Belfanti
Creative Director: Carole Anson
Art Director: Jayne Conte
Cover Designer: Richard E. Woods
Art Editor: Xiaohong Zhu
Manufacturing Manager: Trudy Pisciotti
Manufacturing Buyer: Lisa McDowell
Senior Marketing Manager: Holly Stark

© 2004 by Pearson Education, Inc.
Pearson Prentice-Hall
Pearson Education, Inc.
Upper Saddle River, New Jersey 07458

All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means,
without permission in writing from the publisher.

Pearson Prentice Hall® is a trademark of Pearson Education, Inc.
MATLAB is a registered trademark of The MathWorks, Inc., 3 Apple Hill Drive, Natick, MA 01760-2098

The author and publisher of this book have used their best efforts in preparing this book. These efforts 
include the development, research, and testing of the theories and programs to determine their effectiveness.
The author and publisher shall not be liable in any event for incidental or consequential damages with, or 
arising out of, the furnishing, performance, or use of these programs.

Printed in the United States of America
10 9 8 7 6 5 4 3 2 1

ISBN 0-13-008519-7

Pearson Education Ltd., London
Pearson Education Australia Pty., Ltd., Sydney
Pearson Education Singapore, Pte. Ltd.
Pearson Education North Asia Ltd., Hong Kong
Pearson Education Canada, Inc., Toronto
Pearson Education de Mexico, S.A. de C.V.
Pearson Education—Japan, Tokyo
Pearson Education Malaysia, Pte. Ltd.
Pearson Education, Inc., Upper Saddle River, New Jersey



65

3 Intensity Transformations
and Spatial Filtering

Preview
The term spatial domain refers to the image plane itself, and methods in this cat-
egory are based on direct manipulation of pixels in an image. In this chapter we
focus attention on two important categories of spatial domain processing:
intensity (or gray-level) transformations and spatial filtering. The latter approach
sometimes is referred to as neighborhood processing, or spatial convolution. In
the following sections we develop and illustrate MATLAB formulations repre-
sentative of processing techniques in these two categories. In order to carry a
consistent theme, most of the examples in this chapter are related to image en-
hancement. This is a good way to introduce spatial processing because enhance-
ment is highly intuitive and appealing, especially to beginners in the field.As will
be seen throughout the book, however, these techniques are general in scope and
have uses in numerous other branches of digital image processing.

Background

As noted in the preceding paragraph, spatial domain techniques operate di-
rectly on the pixels of an image. The spatial domain processes discussed in this
chapter are denoted by the expression

where is the input image, is the output (processed) image, and
T is an operator on defined over a specified neighborhood about point

In addition, T can operate on a set of images, such as performing the ad-
dition of K images for noise reduction.

The principal approach for defining spatial neighborhoods about a point
is to use a square or rectangular region centered at as Fig. 3.1 shows.

The center of the region is moved from pixel to pixel starting, say, at the top, left
1x, y2,1x, y2

1x, y2.
f,

g1x, y2f1x, y2

g1x, y2 = T3f1x, y24

3.1



66 Chapter 3 � Intensity Transformations and Spatial Filtering

y

x

Origin

(x, y)

Image f (x, y)

FIGURE 3.1 A
neighborhood of
size about a
point in an
image.

1x, y2
3 * 3

corner, and, as it moves, it encompasses different neighborhoods. Operator T is
applied at each location to yield the output, g, at that location. Only the
pixels in the neighborhood are used in computing the value of g at .

The remainder of this chapter deals with various implementations of the
preceding equation. Although this equation is simple conceptually, its compu-
tational implementation in MATLAB requires that careful attention be paid
to data classes and value ranges.

Intensity Transformation Functions

The simplest form of the transformation T is when the neighborhood in
Fig. 3.1 is of size (a single pixel). In this case, the value of g at de-
pends only on the intensity of at that point, and T becomes an intensity or
gray-level transformation function. These two terms are used interchangeably,
when dealing with monochrome (i.e., gray-scale) images. When dealing with
color images, the term intensity is used to denote a color image component in
certain color spaces, as described in Chapter 6.

Because they depend only on intensity values, and not explicitly on 
intensity transformation functions frequently are written in simplified form as

where r denotes the intensity of and s the intensity of g, both at any corre-
sponding point in the images.

3.2.1 Function imadjust
Function imadjust is the basic IPT tool for intensity transformations of gray-
scale images. It has the syntax

g = imadjust(f, [low_in high_in], [low_out high_out], gamma)

As illustrated in Fig. 3.2, this function maps the intensity values in image f
to new values in g, such that values between low_in and high_in map to

1x, y2
f

s = T1r2

1x, y2,

f
1x, y21 * 1

3.2

1x, y2
1x, y2

imadjust



3.2 � Intensity Transformation Functions 67

low_in high_in

low_out

high_out

low_in high_inlow_in high_in

gamma � 1 gamma � 1 gamma � 1 FIGURE 3.2 The
various mappings
available in
function
imadjust.

EXAMPLE 3.1:
Using function
imadjust.

values between low_out and high_out. Values below low_in and above
high_in are clipped; that is, values below low_in map to low_out, and those
above high_in map to high_out. The input image can be of class uint8,
uint16, or double, and the output image has the same class as the input. All
inputs to function imadjust, other than f, are specified as values between 0
and 1, regardless of the class of f. If f is of class uint8, imadjust multiplies
the values supplied by 255 to determine the actual values to use; if f is of class
uint16, the values are multiplied by 65535. Using the empty matrix ([ ]) for
[low_in high_in] or for [low_out high_out] results in the default values
[0 1]. If high_out is less than low_out, the output intensity is reversed.

Parameter gamma specifies the shape of the curve that maps the intensity
values in f to create g. If gamma is less than 1, the mapping is weighted toward
higher (brighter) output values, as Fig. 3.2(a) shows. If gamma is greater than 1,
the mapping is weighted toward lower (darker) output values. If it is omitted
from the function argument, gamma defaults to 1 (linear mapping).

� Figure 3.3(a) is a digital mammogram image, f, showing a small lesion, and
Fig. 3.3(b) is the negative image, obtained using the command

>> g1 = imadjust(f, [0 1], [1 0]);

This process, which is the digital equivalent of obtaining a photographic nega-
tive, is particularly useful for enhancing white or gray detail embedded in a
large, predominantly dark region. Note, for example, how much easier it is to
analyze the breast tissue in Fig. 3.3(b). The negative of an image can be ob-
tained also with IPT function imcomplement:

g = imcomplement(f)

Figure 3.3(c) is the result of using the command

>> g2 = imadjust(f, [0.5 0.75], [0 1]);

which expands the gray scale region between 0.5 and 0.75 to the full [0, 1]
range. This type of processing is useful for highlighting an intensity band of
interest. Finally, using the command

>> g3 = imadjust(f, [ ], [ ], 2);

imcomplement

a b c



68 Chapter 3 � Intensity Transformations and Spatial Filtering

FIGURE 3.3 (a)
Original digital
mammogram.
(b) Negative
image. (c) Result
of expanding the
intensity range
[0.5, 0.75].
(d) Result of
enhancing the
image with 
gamma = 2.
(Original image
courtesy of G. E.
Medical Systems.)

log
log2
log10

produces a result similar to (but with more gray tones than) Fig.3.3(c) by compress-
ing the low end and expanding the high end of the gray scale [see Fig. 3.3(d)]. �

3.2.2 Logarithmic and Contrast-Stretching Transformations
Logarithmic and contrast-stretching transformations are basic tools for dy-
namic range manipulation. Logarithm transformations are implemented using
the expression

g = c*log(1 + double(f))

where c is a constant.The shape of this transformation is similar to the gamma
curve shown in Fig. 3.2(a) with the low values set at 0 and the high values set to
1 on both scales. Note, however, that the shape of the gamma curve is variable,
whereas the shape of the log function is fixed.

log is the natural
logarithm. log2 and
log10 are the base 2
and base 10 loga-
rithms, respectively.

a b
c d



3.2 � Intensity Transformation Functions 69

One of the principal uses of the log transformation is to compress dynamic
range. For example, it is not unusual to have a Fourier spectrum (Chapter 4)
with values in the range [0, ] or higher.When displayed on a monitor that is
scaled linearly to 8 bits, the high values dominate the display, resulting in lost
visual detail for the lower intensity values in the spectrum. By computing the
log, a dynamic range on the order of, for example, is reduced to approxi-
mately 14, which is much more manageable.

When performing a logarithmic transformation, it is often desirable to
bring the resulting compressed values back to the full range of the display. For
8 bits, the easiest way to do this in MATLAB is with the statement

>> gs = im2uint8(mat2gray(g));

Use of mat2gray brings the values to the range [0, 1] and im2uint8 brings
them to the range [0, 255]. Later, in Section 3.2.3, we discuss a scaling function
that automatically detects the class of the input and applies the appropriate
conversion.

The function shown in Fig. 3.4(a) is called a contrast-stretching transforma-
tion function because it compresses the input levels lower than m into a nar-
row range of dark levels in the output image; similarly, it compresses the
values above m into a narrow band of light levels in the output.The result is an
image of higher contrast. In fact, in the limiting case shown in Fig. 3.4(b), the
output is a binary image. This limiting function is called a thresholding func-
tion, which, as we discuss in Chapter 10, is a simple tool used for image seg-
mentation. Using the notation introduced at the beginning of this section, the
function in Fig. 3.4(a) has the form

where r represents the intensities of the input image, s the corresponding in-
tensity values in the output image, and E controls the slope of the function.
This equation is implemented in MATLAB for an entire image as

g = 1./(1 + (m./(double(f) + eps)).^E)

s = T1r2 =

1

1 + 1m>r2E

106,

106

s � T(r)

T(r)

r
m

D
ar

k 
   

   
   

  L
ig

ht

Dark            Light

s � T(r)

T(r)

r
m

D
ar

k 
   

   
   

  L
ig

ht

Dark            Light

FIGURE 3.4
(a) Contrast-
stretching
transformation.
(b) Thresholding
transformation.

a b

eps



70 Chapter 3 � Intensity Transformations and Spatial Filtering

Note the use of eps (see Table 2.10) to prevent overflow if f has any 0 values.
Since the limiting value of is 1, output values are scaled to the range [0, 1]
when working with this type of transformation. The shape in Fig. 3.4(a) was
obtained with E = 20.

� Figure 3.5(a) is a Fourier spectrum with values in the range 0 to 
displayed on a linearly scaled, 8-bit system. Figure 3.5(b) shows the result ob-
tained using the commands

>> g = im2uint8(mat2gray(log(1 + double(f))));
>> imshow(g)

The visual improvement of g over the original image is quite evident. �

3.2.3 Some Utility M-Functions for Intensity Transformations
In this section we develop two M-functions that incorporate various aspects
of the intensity transformations introduced in the previous two sections. We
show the details of the code for one of them to illustrate error checking, to
introduce ways in which MATLAB functions can be formulated so that
they can handle a variable number of inputs and/or outputs, and to show
typical code formats used throughout the book. From this point on, detailed
code of new M-functions is included in our discussions only when the pur-
pose is to explain specific programming constructs, to illustrate the use of a
new MATLAB or IPT function, or to review concepts introduced earlier.
Otherwise, only the syntax of the function is explained, and its code is in-
cluded in Appendix C. Also, in order to focus on the basic structure of the
functions developed in the remainder of the book, this is the last section in
which we show extensive use of error checking. The procedures that follow 
are typical of how error handling is programmed in MATLAB.

1.5 * 106,

T1r2

EXAMPLE 3.2:
Using a log
transformation to
reduce dynamic
range.

FIGURE 3.5 (a) A
Fourier spectrum.
(b) Result
obtained by
performing a log
transformation.

a b



3.2 � Intensity Transformation Functions 71

nargin

nargout

Handling a Variable Number of Inputs and/or Outputs

To check the number of arguments input into an M-function we use function
nargin,

n = nargin

which returns the actual number of arguments input into the M-function. Sim-
ilarly, function nargout is used in connection with the outputs of an M-
function. The syntax is

n = nargout

For example, suppose that we execute the following M-function at the prompt:

>> T = testhv(4, 5);

Use of nargin within the body of this function would return a 2, while use of
nargout would return a 1.

Function nargchk can be used in the body of an M-function to check if the
correct number of arguments were passed. The syntax is

msg = nargchk(low, high, number)

This function returns the message Notenoughinputparameters if number is less
than low or Too many input parameters if number is greater than high. If
number is between low and high (inclusive),nargchk returns an empty matrix.A
frequent use of function nargchk is to stop execution via the error function if the
incorrect number of arguments is input.The number of actual input arguments is
determined by the nargin function. For example, consider the following code
fragment:

function G = testhv2(x, y, z)...
error(nargchk(2, 3, nargin));...

Typing

>> testhv2(6);

which only has one input argument would produce the error

Not enough input arguments.

and execution would terminate.

nargchk



72 Chapter 3 � Intensity Transformations and Spatial Filtering

Often, it is useful to be able to write functions in which the number of input
and/or output arguments is variable. For this, we use the variables varargin
and varargout. In the declaration, varargin and varargout must be lower-
case. For example,

function [m, n] = testhv3(varargin)

accepts a variable number of inputs into function testhv3, and

function [varargout] = testhv4(m, n, p)

returns a variable number of outputs from function testhv4. If function
testhv3 had, say, one fixed input argument, x, followed by a variable number
of input arguments, then

function [m, n] = testhv3(x, varargin)

would cause varargin to start with the second input argument supplied by
the user when the function is called. Similar comments apply to varargout. It
is acceptable to have a function in which both the number of input and output
arguments is variable.

When varargin is used as the input argument of a function, MATLAB sets it
to a cell array (see Section 2.10.5) that accepts a variable number of inputs by the
user. Because varargin is a cell array, an important aspect of this arrangement is
that the call to the function can contain a mixed set of inputs. For example, as-
suming that the code of our hypothetical function testhv3 is equipped to handle
it, it would be perfectly acceptable to have a mixed set of inputs, such as

>> [m, n] = testhv3(f, [0  0.5  1.5], A, 'label');

where f is an image, the next argument is a row vector of length 3, A is a ma-
trix, and 'label' is a character string. This is indeed a powerful feature that
can be used to simplify the structure of functions requiring a variety of differ-
ent inputs. Similar comments apply to varargout.

Another M-Function for Intensity Transformations

In this section we develop a function that computes the following transforma-
tion functions: negative, log, gamma and contrast stretching.These transforma-
tions were selected because we will need them later, and also to illustrate the
mechanics involved in writing an M-function for intensity transformations. In
writing this function we use function changeclass, which has the syntax

g = changeclass(newclass, f)changeclass

changeclass is an
undocumented IPT
utility function. Its
code is included in
Appendix C.

varargin
varargout



3.2 � Intensity Transformation Functions 73

This function converts image f to the class specified in parameter newclass
and outputs it as g. Valid values for newclass are 'uint8', 'uint16',
and'double'.

Note in the following M-function, which we call intrans, how function op-
tions are formatted in the Help section of the code, how a variable number of
inputs is handled, how error checking is interleaved in the code, and how the
class of the output image is matched to the class of the input. Keep in mind
when studying the following code that varargin is a cell array, so its elements
are selected by using curly braces.

function g = intrans(f, varargin)
%INTRANS Performs intensity (gray-level) transformations.
%   G = INTRANS(F, 'neg') computes the negative of input image F.
%
%   G = INTRANS(F, 'log', C, CLASS) computes C*log(1 + F) and
%   multiplies the result by (positive) constant C. If the last two
%   parameters are omitted, C defaults to 1. Because the log is used
%   frequently to display Fourier spectra, parameter CLASS offers the
%   option to specify the class of the output as 'uint8' or
%   'uint16'. If parameter CLASS is omitted, the output is of the
%   same class as the input.
%
%   G = INTRANS(F, 'gamma', GAM) performs a gamma transformation on
%   the input image using parameter GAM (a required input).
%
%   G = INTRANS(F, 'stretch', M, E) computes a contrast-stretching
%   transformation using the expression 1./(1 + (M./(F +
%   eps)).^E). Parameter M must be in the range [0, 1]. The default
%   value for M is mean2(im2double(F)), and the default value for E
%   is 4.
%
%   For the 'neg', 'gamma', and 'stretch' transformations, double
%   input images whose maximum value is greater than 1 are scaled
%   first using MAT2GRAY. Other images are converted to double first
%   using IM2DOUBLE. For the 'log' transformation, double images are
%   transformed without being scaled; other images are converted to
%   double first using IM2DOUBLE.
%
%   The output is of the same class as the input, except if a
%   different class is specified for the 'log' option.

% Verify the correct number of inputs.
error(nargchk(2, 4, nargin))

% Store the class of the input for use later.
classin = class(f);

intrans



74 Chapter 3 � Intensity Transformations and Spatial Filtering

% If the input is of class double, and it is outside the range
% [0, 1], and the specified transformation is not 'log', convert the
% input to the range [0, 1].
if strcmp(class(f), 'double') & max(f(:)) > 1 & . . .

~strcmp(varargin{1}, 'log')
f = mat2gray(f);

else % Convert to double, regardless of class(f).
f = im2double(f);

end

% Determine the type of transformation specified.
method = varargin{1};

% Perform the intensity transformation specified.
switch method
case 'neg'

g = imcomplement(f);

case 'log'
if length(varargin) == 1

c = 1;
elseif length(varargin) == 2

c = varargin{2};
elseif length(varargin) == 3

c = varargin{2};
classin = varargin{3};

else
error('Incorrect number of inputs for the log option.')

end
g = c*(log(1 + double(f)));

case 'gamma'
if length(varargin) < 2

error('Not enough inputs for the gamma option.')
end
gam = varargin{2};
g = imadjust(f, [ ], [ ], gam);

case 'stretch'
if length(varargin) == 1

% Use defaults.
m = mean2(f);
E = 4.0;

elseif length(varargin) == 3
m = varargin{2};
E = varargin{3};

else error('Incorrect number of inputs for the stretch option.')
end
g = 1./(1 + (m./(f + eps)).^E);

otherwise
error('Unknown enhancement method.')

end

% Convert to the class of the input image.
g = changeclass(classin, g);



3.2 � Intensity Transformation Functions 75

EXAMPLE 3.3:
Illustration of
function intrans.

� As an illustration of function intrans, consider the image in Fig. 3.6(a), which
is an ideal candidate for contrast stretching to enhance the skeletal structure.The
result in Fig. 3.6(b) was obtained with the following call to intrans:

>> g = intrans(f, 'stretch', mean2(im2double(f)), 0.9);
>> figure, imshow(g)

Note how function mean2 was used to compute the mean value of f directly
inside the function call. The resulting value was used for m. Image f was con-
verted to double using im2double in order to scale its values to the range 
[0, 1] so that the mean would also be in this range, as required for input m. The
value of E was determined interactively. �

An M-Function for Intensity Scaling

When working with images, results whose pixels span a wide negative to posi-
tive range of values are common. While this presents no problems during in-
termediate computations, it does become an issue when we want to use an
8-bit or 16-bit format for saving or viewing an image, in which case it often is
desirable to scale the image to the full, maximum range, [0, 255] or [0, 65535].
The following M-function, which we call gscale, accomplishes this. In addi-
tion, the function can map the output levels to a specified range. The code for
this function does not include any new concepts so we do not include it here.
See Appendix C for the listing.

mean2

FIGURE 3.6 (a)
Bone scan image.
(b) Image
enhanced using a
contrast-stretching
transformation.
(Original image
courtesy of G. E.
Medical Systems.)

a b

m = mean2 (A)
computes the mean
(average) value of
the elements of 
matrix A.



gscale

76 Chapter 3 � Intensity Transformations and Spatial Filtering

The syntax of function gscale is

g = gscale(f, method, low, high)

where f is the image to be scaled. Valid values for method are 'full8' (the de-
fault), which scales the output to the full range [0, 255], and 'full16', which
scales the output to the full range [0, 65535]. If included, parameters low and
high are ignored in these two conversions. A third valid value of method is
'minmax', in which case parameters low and high, both in the range [0, 1], must
be provided. If 'minmax' is selected, the levels are mapped to the range [low,
high]. Although these values are specified in the range [0, 1], the program per-
forms the proper scaling, depending on the class of the input, and then converts
the output to the same class as the input. For example, if f is of class uint8 and
we specify 'minmax' with the range [0, 0.5], the output also will be of class
uint8, with values in the range [0, 128]. If f is of class double and its range of
values is outside the range [0, 1], the program converts it to this range before
proceeding. Function gscale is used in numerous places throughout the book.

Histogram Processing and Function Plotting

Intensity transformation functions based on information extracted from image
intensity histograms play a basic role in image processing, in areas such as en-
hancement, compression, segmentation, and description. The focus of this sec-
tion is on obtaining, plotting, and using histograms for image enhancement.
Other applications of histograms are discussed in later chapters.

3.3.1 Generating and Plotting Image Histograms
The histogram of a digital image with L total possible intensity levels in the
range [0, G] is defined as the discrete function

where is the kth intensity level in the interval [0, G] and is the number of
pixels in the image whose intensity level is The value of G is 255 for images of
class uint8, 65535 for images of class uint16, and 1.0 for images of class double.
Keep in mind that indices in MATLAB cannot be 0, so corresponds to intensi-
ty level 0, corresponds to intensity level 1, and so on, with corresponding to
level G. Note also that for images of class uint8 and uint16.

Often, it is useful to work with normalized histograms, obtained simply by
dividing all elements of by the total number of pixels in the image, which
we denote by n:

 =

nk

n

 p1rk2 =

h1rk2

n

h1rk2

G = L - 1
rLr2

r1

rk .
nkrk

h1rk2 = nk

3.3

See Section 4.5.3 for
a discussion of 2-D
plotting techniques.



3.3 � Histogram Processing and Function Plotting 77

imhist

for From basic probability, we recognize as an estimate
of the probability of occurrence of intensity level 

The core function in the toolbox for dealing with image histograms is
imhist, which has the following basic syntax:

h = imhist(f, b)

where f is the input image, h is its histogram, and b is the number of bins
used in forming the histogram (if b is not included in the argument, b = 256 is
used by default). A bin is simply a subdivision of the intensity scale. For exam-
ple, if we are working with uint8 images and we let b = 2, then the intensity
scale is subdivided into two ranges: 0 to 127 and 128 to 255. The resulting his-
togram will have two values: equal to the number of pixels in the image
with values in the interval [0, 127], and equal to the number of pixels with
values in the interval [128, 255].We obtain the normalized histogram simply by
using the expression

p = imhist(f, b)/numel(f)

Recall from Section 2.10.3 that function numel(f) gives the number of ele-
ments in array f (i.e., the number of pixels in the image).

� Consider the image, f, from Fig. 3.3(a). The simplest way to plot its his-
togram is to use imhist with no output specified:

>> imhist(f);

Figure 3.7(a) shows the result. This is the histogram display default in the tool-
box. However, there are many other ways to plot a histogram, and we take this
opportunity to explain some of the plotting options in MATLAB that are rep-
resentative of those used in image processing applications.

Histograms often are plotted using bar graphs. For this purpose we can use
the function

bar(horz, v, width)

where v is a row vector containing the points to be plotted, horz is a vector
of the same dimension as v that contains the increments of the horizontal
scale, and width is a number between 0 and 1. If horz is omitted, the hori-
zontal axis is divided in units from 0 to length(v). When width is 1, the
bars touch; when it is 0, the bars are simply vertical lines, as in Fig. 3.7(a).
The default value is 0.8. When plotting a bar graph, it is customary to reduce
the resolution of the horizontal axis by dividing it into bands. The following
statements produce a bar graph, with the horizontal axis divided into
groups of 10 levels:

h122
h112

h1rk2,

rk .
p1rk2k = 1, 2, Á , L.

EXAMPLE 3.4:
Computing and
plotting image
histograms.

bar



78 Chapter 3 � Intensity Transformations and Spatial Filtering

0

� 104

50 100 150 200 250

0

1

2

3

4

5

6

0 50 100 150 200 250
0

2000

4000

6000

8000

10000

12000

14000

0 50 100 150 200 250
0

2000

4000

6000

8000

10000

12000

14000

0 50 100 150 200 250
0

2000

4000

6000

8000

10000

12000

14000

FIGURE 3.7
Various ways to
plot an image
histogram.
(a) imhist,
(b) bar,
(c) stem,
(d) plot.

>> h = imhist(f);
>> h1 = h(1:10:256);
>> horz = 1:10:256;
>> bar(horz, h1)
>> axis([0 255 0 15000])
>> set(gca, 'xtick', 0:50:255)
>> set(gca, 'ytick', 0:2000:15000)

Figure 3.7(b) shows the result. The peak located at the high end of the intensi-
ty scale in Fig. 3.7(a) is missing in the bar graph as a result of the larger hori-
zontal increments used in the plot.

The fifth statement in the preceding code was used to expand the lower
range of the vertical axis for visual analysis, and to set the orizontal axis to the
same range as in Fig. 3.7(a). The axis function has the syntax

axis([horzmin  horzmax  vertmin  vertmax])

which sets the minimum and maximum values in the horizontal and vertical
axes. In the last two statements, gca means “get current axis,” (i.e., the axes of
the figure last displayed) and xtick and ytick set the horizontal and vertical
axes ticks in the intervals shown.

Axis labels can be added to the horizontal and vertical axes of a graph using
the functions

set
gca
xtick
ytick

a b
c d

axis



3.3 � Histogram Processing and Function Plotting 79

xlabel('text string', 'fontsize', size)
ylabel('text string', 'fontsize', size)

where size is the font size in points. Text can be added to the body of the fig-
ure by using function text, as follows:

text(xloc, yloc, 'text string', 'fontsize', size)

where xloc and yloc define the location where text starts. Use of these three
functions is illustrated in Example 3.5. It is important to note that functions
that set axis values and labels are used after the function has been plotted.

A title can be added to a plot using function title, whose basic syntax is

title('titlestring')

where titlestring is the string of characters that will appear on the title,
centered above the plot.

A stem graph is similar to a bar graph. The syntax is

stem(horz, v, 'color_linestyle_marker', 'fill')

where v is row vector containing the points to be plotted, and horz is as de-
scribed for bar. The argument,

color_linestyle_marker

is a triplet of values from Table 3.1. For example, stem(v, 'r– –s') produces
a stem plot where the lines and markers are red, the lines are dashed, and the
markers are squares. If fill is used, and the marker is a circle, square, or dia-
mond, the marker is filled with the color specified in color. The default color
is black, the line default is solid, and the default marker is a circle. The
stem graph in Fig. 3.7(c) was obtained using the statements

>> h = imhist(f);
>> h1 = h(1:10:256);

xlabel
ylabel

text

title

stem

Symbol Color Symbol Line Style Symbol Marker

k Black – Solid + Plus sign
w White – – Dashed o Circle
r Red : Dotted * Asterisk
g Green –. Dash-dot . Point
b Blue none No line x Cross
c Cyan s Square
y Yellow d Diamond
m Magenta none No marker

TABLE 3.1
Attributes for
functions stem and
plot. The none
attribute is
applicable only to
function plot, and
must be specified
individually. See the
syntax for function
plot below.

See the stem help
page for additional
options available for
this function.



80 Chapter 3 � Intensity Transformations and Spatial Filtering

>> horz = 1:10:256;
>> stem(horz, h1, 'fill')
>> axis([0 255 0 15000])
>> set(gca, 'xtick', [0:50:255])
>> set(gca, 'ytick', [0:2000:15000])

Finally, we consider function plot, which plots a set of points by linking
them with straight lines. The syntax is

plot(horz, v, 'color_linestyle_marker')

where the arguments are as defined previously for stem plots. The values of
color, linestyle, and marker are given in Table 3.1.As in stem, the attributes
in plot can be specified as a triplet. When using none for linestyle or for
marker, the attributes must be specified individually. For example, the command

>> plot(horz, v, 'color', 'g', 'linestyle', 'none', 'marker', 's')

plots green squares without connecting lines between them. The defaults for
plot are solid black lines with no markers.

The plot in Fig. 3.7(d) was obtained using the following statements:

>> h = imhist(f);
>> plot(h)   % Use the default values.
>> axis([0 255 0 15000])
>> set(gca, 'xtick', [0:50:255])
>> set(gca, 'ytick', [0:2000:15000])

Function plot is used frequently to display transformation functions (see
Example 3.5). �

In the preceding discussion axis limits and tick marks were set manually. It
is possible to set the limits and ticks automatically by using functions ylim and
xlim, which, for our purposes here, have the syntax forms

ylim('auto')
xlim('auto')

Among other possible variations of the syntax for these two functions (see on-
line help for details), there is a manual option, given by

ylim([ymin  ymax])
xlim([xmin  xmax])

which allows manual specification of the limits. If the limits are specified for
only one axis, the limits on the other axis are set to 'auto' by default. We use
these functions in the following section.

plot

ylim
xlim

See the plot help
page for additional
options available for
this function.



3.3 � Histogram Processing and Function Plotting 81

Typing hold on at the prompt retains the current plot and certain axes
properties so that subsequent graphing commands add to the existing graph.
See Example 10.6 for an illustration.

3.3.2 Histogram Equalization
Assume for a moment that intensity levels are continuous quantities normal-
ized to the range [0, 1], and let denote the probability density function
(PDF) of the intensity levels in a given image, where the subscript is used for
differentiating between the PDFs of the input and output images. Suppose
that we perform the following transformation on the input levels to obtain
output (processed) intensity levels, s,

where is a dummy variable of integration. It can be shown (Gonzalez and
Woods [2002]) that the probability density function of the output levels is
uniform; that is,

In other words, the preceding transformation generates an image whose in-
tensity levels are equally likely, and, in addition, cover the entire range [0, 1].
The net result of this intensity-level equalization process is an image with in-
creased dynamic range, which will tend to have higher contrast. Note that
the transformation function is really nothing more than the cumulative dis-
tribution function (CDF).

When dealing with discrete quantities we work with histograms and call
the preceding technique histogram equalization, although, in general, the
histogram of the processed image will not be uniform, due to the discrete na-
ture of the variables. With reference to the discussion in Section 3.3.1, let

denote the histogram associated with the intensity lev-
els of a given image, and recall that the values in a normalized histogram are
approximations to the probability of occurrence of each intensity level in the
image. For discrete quantities we work with summations, and the equaliza-
tion transformation becomes

for where is the intensity value in the output (processed)
image corresponding to value in the input image.rk

skk = 1, 2, Á , L,

 = a
k

j = 1
 

nj

n

 = a
k

j = 1
 pr1rj2

 sk = T1rk2

j = 1, 2, Á , L,pr1rj2,

ps1s2 = b1
0

for 0 … s … 1
otherwise

w

s = T1r2 = L
r

0
 pr1w2 dw

pr1r2

hold on



82 Chapter 3 � Intensity Transformations and Spatial Filtering

histeq

Histogram equalization is implemented in the toolbox by function histeq,
which has the syntax

g = histeq(f, nlev)

where f is the input image and nlev is the number of intensity levels specified
for the output image. If nlev is equal to L (the total number of possible levels
in the input image), then histeq implements the transformation function,

directly. If nlev is less than L, then histeq attempts to distribute the
levels so that they will approximate a flat histogram. Unlike imhist, the de-
fault value in histeq is nlev = 64. For the most part, we use the maximum
possible number of levels (generally 256) for nlev because this produces a
true implementation of the histogram-equalization method just described.

� Figure 3.8(a) is an electron microscope image of pollen, magnified approx-
imately 700 times. In terms of needed enhancement, the most important fea-
tures of this image are that it is dark and has a low dynamic range. This can be
seen in the histogram in Fig. 3.8(b), in which the dark nature of the image is ex-
pected because the histogram is biased toward the dark end of the gray scale.
The low dynamic range is evident from the fact that the “width” of the his-
togram is narrow with respect to the entire gray scale. Letting f denote the
input image, the following sequence of steps produced Figs. 3.8(a) through (d):

>> imshow(f)
>> figure, imhist(f)
>> ylim('auto')
>> g = histeq(f, 256);
>> figure, imshow(g)
>> figure, imhist(g)
>> ylim('auto')

The images were saved to disk in tiff format at 300 dpi using imwrite, and the
plots were similarly exported to disk using the print function discussed in
Section 2.4.

The image in Fig. 3.8(c) is the histogram-equalized result. The improve-
ments in average intensity and contrast are quite evident. These features also
are evident in the histogram of this image, shown in Fig. 3.8(d).The increase in
contrast is due to the considerable spread of the histogram over the entire in-
tensity scale.The increase in overall intensity is due to the fact that the average
intensity level in the histogram of the equalized image is higher (lighter) than
the original. Although the histogram-equalization method just discussed does
not produce a flat histogram, it has the desired characteristic of being able to
increase the dynamic range of the intensity levels in an image.

As noted earlier, the transformation function is simply the cumulative
sum of normalized histogram values.We can use function cumsum to obtain the
transformation function, as follows:

>> hnorm = imhist(f)./numel(f);
>> cdf = cumsum(hnorm);

T1rk2

T1rk2,

EXAMPLE 3.5:
Histogram
equalization.

cumsum

If A is a vector,
B = cumsum(A)
gives the sum of its
elements. If A is a
higher-dimensional
array,
B = cumsum(A, dim)
given the sum along
the dimension speci-
fied by dim.



3.3 � Histogram Processing and Function Plotting 83

0 50 100 150 200 250

� 104

� 104

0 50 100 150 200 250

0

2

1

4

3

6

5

7

8

0

2

1

4

3

6

5

7

8

FIGURE 3.8
Illustration of
histogram
equalization.
(a) Input image,
and (b) its
histogram.
(c) Histogram-
equalized image,
and (d) its
histogram. The
improvement
between (a) and
(c) is quite visible.
(Original image
courtesy of Dr.
Roger Heady,
Research School
of Biological
Sciences,
Australian
National
University,
Canberra.)

A plot of cdf, shown in Fig. 3.9, was obtained using the following commands:

>> x = linspace(0, 1, 256);   % Intervals for [0, 1] horiz scale. Note
% the use of linspace from Sec. 2.8.1.

>> plot(x, cdf)             % Plot cdf vs. x.
>> axis([0 1 0 1])           % Scale, settings, and labels:
>> set(gca, 'xtick', 0:.2:1)
>> set(gca, 'ytick', 0:.2:1)
>> xlabel('Input intensity values', 'fontsize', 9)
>> ylabel('Output intensity values', 'fontsize', 9)
>> % Specify text in the body of the graph:
>> text(0.18, 0.5, 'Transformation function', 'fontsize', 9)

We can tell visually from this transformation function that a narrow range of
input intensity levels is transformed into the full intensity scale in the output
image. �

a b
c d



84 Chapter 3 � Intensity Transformations and Spatial Filtering

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Input intensity values

O
ut

pu
t i

nt
en

si
ty

 v
al

ue
s

Transformation function

FIGURE 3.9
Transformation
function used to
map the intensity
values from the
input image in
Fig. 3.8(a) to the
values of the
output image in
Fig. 3.8(c).

3.3.3 Histogram Matching (Specification)
Histogram equalization produces a transformation function that is adaptive, in
the sense that it is based on the histogram of a given image. However, once the
transformation function for an image has been computed, it does not change un-
less the histogram of the image changes. As noted in the previous section, his-
togram equalization achieves enhancement by spreading the levels of the input
image over a wider range of the intensity scale. We show in this section that this
does not always lead to a successful result. In particular, it is useful in some appli-
cations to be able to specify the shape of the histogram that we wish the
processed image to have. The method used to generate a processed image that
has a specified histogram is called histogram matching or histogram specification.

The method is simple in principle. Consider for a moment continuous levels
that are normalized to the interval [0, 1], and let r and z denote the intensity
levels of the input and output images. The input levels have probability densi-
ty function and the output levels have the specified probability density
function We know from the discussion in the previous section that he
transformation

results in intensity levels, s, that have a uniform probability density function,
Suppose now that we define a variable z with the property

H1z2 = L
z

0
 pz1w2 dw = s

ps1s2.

s = T1r2 = L
r

0
 pr1w2 dw

pz1z2.
pr1r2



3.3 � Histogram Processing and Function Plotting 85

Keep in mind that we are after an image with intensity levels z, which have the
specified density From the preceding two equations, it follows that

We can find from the input image (this is the histogram-equalization
transformation discussed in the previous section), so it follows that we can use
the preceding equation to find the transformed levels z whose PDF is the spec-
ified as long as we can find When working with discrete variables,
we can guarantee that the inverse of H exists if is a valid histogram (i.e.,
it has unit area and all its values are nonnegative), and none of its components
is zero [i.e., no bin of is empty].As in histogram equalization, the discrete
implementation of the preceding method only yields an approximation to the
specified histogram.

The toolbox implements histogram matching using the following syntax in
histeq:

g = histeq(f, hspec)

where f is the input image, hspec is the specified histogram (a row vector of
specified values), and g is the output image, whose histogram approximates
the specified histogram, hspec. This vector should contain integer counts cor-
responding to equally spaced bins. A property of histeq is that the histogram
of g generally better matches hspec when length(hspec) is much smaller
than the number of intensity levels in f.

� Figure 3.10(a) shows an image, f, of the Mars moon, Phobos, and
Fig. 3.10(b) shows its histogram, obtained using imhist(f).The image is dom-
inated by large, dark areas, resulting in a histogram characterized by a large
concentration of pixels in the dark end of the gray scale. At first glance, one
might conclude that histogram equalization would be a good approach to en-
hance this image, so that details in the dark areas become more visible. How-
ever, the result in Fig. 3.10(c), obtained using the command

>> f1 = histeq(f, 256);

shows that histogram equalization in fact did not produce a particularly good
result in this case. The reason for this can be seen by studying the histogram of
the equalized image, shown in Fig. 3.10(d). Here, we see that that the intensity
levels have been shifted to the upper one-half of the gray scale, thus giving the
image a washed-out appearance. The cause of the shift is the large concentra-
tion of dark components at or near 0 in the original histogram. In turn, the cu-
mulative transformation function obtained from this histogram is steep, thus
mapping the large concentration of pixels in the low end of the gray scale to
the high end of the scale.

pz1z2

pz1z2
H-1.pz1z2,

T1r2

z = H-11s2 = H-13T1r24

pz1z2.

EXAMPLE 3.6:
Histogram
matching.



86 Chapter 3 � Intensity Transformations and Spatial Filtering

0 50 100 150 200 250

0

1

2

3

4

5

6

� 104

0 50 100 150 200 250

0

1

2

3

4

5

6

� 104

FIGURE 3.10
(a) Image of the
Mars moon
Phobos.
(b) Histogram.
(c) Histogram-
equalized image.
(d) Histogram 
of (c).
(Original image
courtesy of
NASA).

One possibility for remedying this situation is to use histogram matching,
with the desired histogram having a lesser concentration of components in the
low end of the gray scale, and maintaining the general shape of the histogram
of the original image. We note from Fig. 3.10(b) that the histogram is basically
bimodal, with one large mode at the origin, and another, smaller, mode at the
high end of the gray scale. These types of histograms can be modeled, for ex-
ample, by using multimodal Gaussian functions. The following M-function
computes a bimodal Gaussian function normalized to unit area, so it can be
used as a specified histogram.

function p = twomodegauss(m1, sig1, m2, sig2, A1, A2, k)
%TWOMODEGAUSS Generates a bimodal Gaussian function.
%   P = TWOMODEGAUSS(M1, SIG1, M2, SIG2, A1, A2, K) generates a bimodal,
%   Gaussian-like function in the interval [0, 1]. P is a 256-element
%   vector normalized so that SUM(P) equals 1. The mean and standard
%   deviation of the modes are (M1, SIG1) and (M2, SIG2), respectively.
%   A1 and A2 are the amplitude values of the two modes. Since the

twomodegauss

a b
c d



3.3 � Histogram Processing and Function Plotting 87

%   output is normalized, only the relative values of A1 and A2 are
%   important. K is an offset value that raises the "floor" of the
%   function. A good set of values to try is M1 = 0.15, SIG1 = 0.05,
%   M2 = 0.75, SIG2 = 0.05, A1 = 1, A2 = 0.07, and K = 0.002.

c1 = A1 * (1 / ((2 * pi) ^ 0.5) * sig1);
k1 = 2 * (sig1 ^ 2);
c2 = A2 * (1 / ((2 * pi) ^ 0.5) * sig2);
k2 = 2 * (sig2 ^ 2);
z  = linspace(0, 1, 256);

p = k + c1 * exp(–((z – m1) .^ 2) ./ k1) + ...
c2 * exp(–((z – m2) .^ 2) ./ k2);

p = p ./ sum(p(:));

The following interactive function accepts inputs from a keyboard and plots
the resulting Gaussian function. Refer to Section 2.10.5 for an explanation of
the functions input and str2num. Note how the limits of the plots are set.

function p = manualhist
%MANUALHIST Generates a bimodal histogram interactively.
%   P = MANUALHIST generates a bimodal histogram using
%   TWOMODEGAUSS(m1, sig1, m2, sig2, A1, A2, k). m1 and m2 are the means
%   of the two modes and must be in the range [0, 1]. sig1 and sig2 are
%   the standard deviations of the two modes. A1 and A2 are
%   amplitude values, and k is an offset value that raises the
%   "floor" of histogram. The number of elements in the histogram
%   vector P is 256 and sum(P) is normalized to 1. MANUALHIST
%   repeatedly prompts for the parameters and plots the resulting
%   histogram until the user types an 'x' to quit, and then it returns the
%   last histogram computed.
%
%   A good set of starting values is: (0.15, 0.05, 0.75, 0.05, 1,
%   0.07, 0.002).

% Initialize.
repeats = true;
quitnow = 'x';

% Compute a default histogram in case the user quits before
% estimating at least one histogram.
p = twomodegauss(0.15, 0.05, 0.75, 0.05, 1, 0.07, 0.002);

% Cycle until an x is input.
while repeats

s = input('Enter m1, sig1, m2, sig2, A1, A2, k OR x to quit:', 's');
if s == quitnow

break
end

% Convert the input string to a vector of numerical values and
% verify the number of inputs.
v = str2num(s);
if numel(v) ~= 7

manualhist



88 Chapter 3 � Intensity Transformations and Spatial Filtering

disp('Incorrect number of inputs.')
continue

end

p = twomodegauss(v(1), v(2), v(3), v(4), v(5), v(6), v(7));
% Start a new figure and scale the axes. Specifying only xlim
% leaves ylim on auto.
figure, plot(p)
xlim([0 255])

end

Since the problem with histogram equalization in this example is due pri-
marily to a large concentration of pixels in the original image with levels near 0,
a reasonable approach is to modify the histogram of that image so that it does
not have this property. Figure 3.11(a) shows a plot of a function (obtained with
program manualhist) that preserves the general shape of the original his-
togram, but has a smoother transition of levels in the dark region of the
intensity scale. The output of the program, p, consists of 256 equally spaced
points from this function and is the desired specified histogram. An image with
the specified histogram was generated using the command

>> g = histeq(f, p);

0 50 100 150 200 250

0

1

2

3

4

5

6

� 104

0 50 100 150 200 250
0

0.005

0.01

0.015

0.02

FIGURE 3.11
(a) Specified
histogram.
(b) Result of
enhancement by
histogram
matching.
(c) Histogram 
of (b).

a b
c



3.4 � Spatial Filtering 89

Figure 3.11(b) shows the result. The improvement over the histogram-
equalized result in Fig. 3.10(c) is evident by comparing the two images. It is of
interest to note that the specified histogram represents a rather modest
change from the original histogram. This is all that was required to obtain a
significant improvement in enhancement. The histogram of Fig. 3.11(b) is
shown in Fig. 3.11(c). The most distinguishing feature of this histogram is how
its low end has been moved closer to the lighter region of the gray scale, and
thus closer to the specified shape. Note, however, that the shift to the right was
not as extreme as the shift in the histogram shown in Fig. 3.10(d), which corre-
sponds to the poorly enhanced image of Fig. 3.10(c). �

Spatial Filtering

As mentioned in Section 3.1 and illustrated in Fig. 3.1, neighborhood process-
ing consists of (1) defining a center point, (2) performing an operation
that involves only the pixels in a predefined neighborhood about that center
point; (3) letting the result of that operation be the “response” of the process
at that point; and (4) repeating the process for every point in the image. The
process of moving the center point creates new neighborhoods, one for each
pixel in the input image. The two principal terms used to identify this opera-
tion are neighborhood processing and spatial filtering, with the second term
being more prevalent. As explained in the following section, if the computa-
tions performed on the pixels of the neighborhoods are linear, the operation is
called linear spatial filtering (the term spatial convolution also used); otherwise
it is called nonlinear spatial filtering.

3.4.1 Linear Spatial Filtering
The concept of linear filtering has its roots in the use of the Fourier transform
for signal processing in the frequency domain, a topic discussed in detail in
Chapter 4. In the present chapter, we are interested in filtering operations that
are performed directly on the pixels of an image. Use of the term linear spatial
filtering differentiates this type of process from frequency domain filtering.

The linear operations of interest in this chapter consist of multiplying each
pixel in the neighborhood by a corresponding coefficient and summing the re-
sults to obtain the response at each point If the neighborhood is of size

coefficients are required.The coefficients are arranged as a matrix,
called a filter, mask, filter mask, kernel, template, or window, with the first three
terms being the most prevalent. For reasons that will become obvious shortly,
the terms convolution filter, mask, or kernel, also are used.

The mechanics of linear spatial filtering are illustrated in Fig. 3.12. The
process consists simply of moving the center of the filter mask from point to
point in an image, At each point the response of the filter at that
point is the sum of products of the filter coefficients and the corresponding
neighborhood pixels in the area spanned by the filter mask. For a mask of size

we assume typically that and where a and bn = 2b + 1,m = 2a + 1m * n,

1x, y2,f.
w

mnm * n,
1x, y2.

1x, y2;

3.4



90 Chapter 3 � Intensity Transformations and Spatial Filtering

are nonnegative integers.All this says is that our principal focus is on masks of
odd sizes, with the smallest meaningful size being (we exclude from our
discussion the trivial case of a mask). Although it certainly is not a re-
quirement, working with odd-size masks is more intuitive because they have a
unique center point.

There are two closely related concepts that must be understood clearly
when performing linear spatial filtering. One is correlation; the other is
convolution. Correlation is the process of passing the mask by the image
array in the manner described in Fig. 3.12. Mechanically, convolution is the
same process, except that is rotated by 180° prior to passing it by These
two concepts are best explained by some simple examples.

f.w
f

w

1 * 1
3 * 3

f (x�1, y) f (x�1, y�1)

f (x, y�1) f (x, y) f (x, y�1)

f (x�1, y�1) f (x�1, y) f (x�1, y�1)

f (x�1, y�1)

x

Image f (x, y)

Mask coefficients, showing
coordinate arrangement

Pixels of image
section under mask

Mask

Image origin

y

w(1, 0) w(1, 1)

w(0, �1) w(0, 0) w(0, 1)

w(�1, �1) w(�1, 0) w(�1, 1)

w(1, �1)

FIGURE 3.12 The
mechanics of linear
spatial filtering.
The magnified
drawing shows a

mask and
the corresponding
image
neighborhood
directly under it.
The neighborhood
is shown displaced
out from under the
mask for ease of
readability.

3 * 3



3.4 � Spatial Filtering 91

Figure 3.13(a) shows a one-dimensional function, and a mask, The ori-
gin of is assumed to be its leftmost point. To perform the correlation of the
two functions, we move so that its rightmost point coincides with the origin
of as shown in Fig. 3.13(b). Note that there are points between the two func-
tions that do not overlap. The most common way to handle this problem is to
pad with as many 0s as are necessary to guarantee that there will always be
corresponding points for the full excursion of past This situation is shown
in Fig. 3.13(c).

We are now ready to perform the correlation. The first value of correlation
is the sum of products of the two functions in the position shown in
Fig. 3.13(c).The sum of products is 0 in this case. Next, we move one location
to the right and repeat the process [Fig. 3.13(d)]. The sum of products again is
0. After four shifts [Fig. 3.13(e)], we encounter the first nonzero value of the
correlation, which is If we proceed in this manner until moves
completely past [the ending geometry is shown in Fig. 3.13(f)] we would get
the result in Fig. 3.13(g). This set of values is the correlation of and Note
that, had we left stationary and had moved past instead, the result
would have been different, so the order matters.

wfw
f.w

f
w122112 = 2.

w

f.w
f

f,
w

f
w.f,

Correlation Convolution

'full' correlation result

(a) 0 0 0 1 0 0 0 0 1 2 3 2 0
Origin

Starting position alignment

Zero padding

f w

(b)  0 0 0 1 0 0 0 0
1 2 3 2 0

Position after one shift

(c) 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 2 3 2 0

(d) 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 2 3 2 0

Position after four shifts

(e) 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 2 3 2 0

Final position

(f) 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 2 3 2 0

(g) 0 0 0 0 2 3 2 1 0 0 0 0

'same' correlation result
(h) 0 0 2 3 2 1 0 0

'full' convolution result

(i)0 0 0 1 0 0 0 0 0 2 3 2 1
Origin f w rotated 180�

 0 0 0 1 0 0 0 0
0 2 3 2 1

(j)

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 2 3 2 1

(k)

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 2 3 2 1

(l)

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 2 3 2 1

(m)

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 2 3 2 1

(n)

0 0 0 1 2 3 2 0 0 0 0 0 (o)

'same' convolution result
0 1 2 3 2 0 0 0 (p)

FIGURE 3.13
Illustration of
one-dimensional
correlation and
convolution.



92 Chapter 3 � Intensity Transformations and Spatial Filtering

The label 'full' in the correlation shown in Fig. 3.13(g) is a flag (to be dis-
cussed later) used by the toolbox to indicate correlation using a padded image
and computed in the manner just described. The toolbox provides another op-
tion, denoted by 'same' [Fig. 3.13(h)] that produces a correlation that is the
same size as This computation also uses zero padding, but the starting posi-
tion is with the center point of the mask (the point labeled 3 in ) aligned with
the origin of The last computation is with the center point of the mask
aligned with the last point in .

To perform convolution we rotate by 180° and place its rightmost point at
the origin of as shown in Fig. 3.13(j). We then repeat the sliding/computing
process employed in correlation, as illustrated in Figs. 3.13(k) through (n). The
'full' and 'same' convolution results are shown in Figs. 3.13(o) and (p), re-
spectively.

Function in Fig. 3.13 is a discrete unit impulse function that is 1 at one
location and 0 everywhere else. It is evident from the result in Figs. 3.13(o) or
(p) that convolution basically just “copied” at the location of the impulse.
This simple copying property (called sifting) is a fundamental concept in lin-
ear system theory, and it is the reason why one of the functions is always ro-
tated by 180° in convolution. Note that, unlike correlation, reversing the
order of the functions yields the same convolution result. If the function
being shifted is symmetric, it is evident that convolution and correlation
yield the same result.

The preceding concepts extend easily to images, as illustrated in Fig. 3.14.
The origin is at the top, left corner of image (see Fig. 2.1). To perform
correlation, we place the bottom, rightmost point of so that it coin-
cides with the origin of as illustrated in Fig. 3.14(c). Note the use of 0
padding for the reasons mentioned in the discussion of Fig. 3.13. To perform
correlation, we move in all possible locations so that at least one of its
pixels overlaps a pixel in the original image This 'full' correlation is
shown in Fig. 3.14(d). To obtain the 'same' correlation shown in Fig. 3.14(e),
we require that all excursions of be such that its center pixel overlaps
the original 

For convolution, we simply rotate by 180° and proceed in the same
manner as in correlation [Figs. 3.14(f) through (h)]. As in the one-dimensional
example discussed earlier, convolution yields the same result regardless of
which of the two functions undergoes translation. In correlation the order
does matter, a fact that is made clear in the toolbox by assuming that the filter
mask is always the function that undergoes translation. Note also the impor-
tant fact in Figs. 3.14(e) and (h) that the results of spatial correlation and con-
volution are rotated by 180° with respect to each other. This, of course, is
expected because convolution is nothing more than correlation with a rotated
filter mask.

The toolbox implements linear spatial filtering using function imfilter,
which has the following syntax:

g = imfilter(f, w, filtering_mode, boundary_options, size_options)

w1x, y2
f1x, y2.

w1x, y2

f1x, y2.
w1x, y2

f1x, y2,
w1x, y2

f1x, y2

w

f

f,
w

f
f.

w
f.

imfilter



3.4 � Spatial Filtering 93

0 0 0 0 0
0 0 0 0 0
0 0 1 0 0 1 2 3
0 0 0 0 0  4 5 6
0 0 0 0 0  7 8 9

Origin of f(x, y)

w(x, y)

Initial position for w

(a)

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Padded f

(b)

1 2 3 0 0 0 0 0 0
4 5 6 0 0 0 0 0 0
7 8 9 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

(c)

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 9 8 7 0 0 0
0 0 0 6 5 4 0 0 0
0 0 0 3 2 1 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

'full' correlation result

(d)

0 0 0 0 0
0 9 8 7 0
0 6 5 4 0
0 3 2 1 0
0 0 0 0 0

'same' correlation result

(e)

Rotated w
9 8 7 0 0 0 0 0 0
6 5 4 0 0 0 0 0 0
3 2 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

(f)

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 1 2 3 0 0 0
0 0 0 4 5 6 0 0 0
0 0 0 7 8 9 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

'full' convolution result

(g)

0 0 0 0 0
0 1 2 3 0
0 4 5 6 0
0 7 8 9 0
0 0 0 0 0

'same' convolution result

(h)

FIGURE 3.14
Illustration of
two-dimensional
correlation and
convolution. The
0s are shown in
gray to simplify
viewing.

where f is the input image, w is the filter mask, g is the filtered result, and the
other parameters are summarized in Table 3.2. The filtering_mode specifies
whether to filter using correlation ('corr') or convolution ('conv'). The
boundary_options deal with the border-padding issue, with the size of the
border being determined by the size of the filter. These options are explained
further in Example 3.7. The size_options are either 'same' or 'full', as
explained in Figs. 3.13 and 3.14.

The most common syntax for imfilter is

g = imfilter(f, w, 'replicate')

This syntax is used when implementing IPT standard linear spatial filters.
These filters, which are discussed in Section 3.5.1, are prerotated by 180°, so we
can use the correlation default in imfilter. From the discussion of Fig. 3.14,
we know that performing correlation with a rotated filter is the same as per-
forming convolution with the original filter. If the filter is symmetric about its
center, then both options produce the same result.



94 Chapter 3 � Intensity Transformations and Spatial Filtering

rot90(w, k) ro-
tates w by k*90 de-
grees, where k is an
integer.

When working with filters that are neither pre-rotated nor symmetric, and
we wish to perform convolution, we have two options. One is to use the syntax

g = imfilter(f, w, 'conv', 'replicate')

The other approach is to preprocess by using the function rot90(w, 2) to
rotate it 180°, and then use imfilter(f, w, 'replicate'). Of course these
two steps can be combined into one statement.The preceding syntax produces
an image g that is of the same size as the input (i.e., the default in computation
is the 'same' mode discussed earlier).

Each element of the filtered image is computed using double-precision,
floating-point arithmetic. However, imfilter converts the output image to
the same class of the input. Therefore, if is an integer array, then output ele-
ments that exceed the range of the integer type are truncated, and fractional
values are rounded. If more precision is desired in the result, then should be
converted to class double by using im2double or double before using
imfilter.

� Figure 3.15(a) is a class double image, f, of size pixels. Consider
the simple filter

>> w = ones(31);

31 * 31
512 * 512

f

f

wrot90

Options Description

Filtering Mode
'corr' Filtering is done using correlation (see Figs. 3.13 and 3.14). This is

the default.
'conv' Filtering is done using convolution (see Figs. 3.13 and 3.14).
Boundary Options
P The boundaries of the input image are extended by padding with a

value, P (written without quotes). This is the default, with value 0.
'replicate' The size of the image is extended by replicating the values in its

outer border.
'symmetric' The size of the image is extended by mirror-reflecting it across its

border.
'circular' The size of the image is extended by treating the image as one

period a 2-D periodic function.
Size Options
'full' The output is of the same size as the extended (padded) image

(see Figs. 3.13 and 3.14).
'same' The output is of the same size as the input. This is achieved by

limiting the excursions of the center of the filter mask to points
contained in the original image (see Figs. 3.13 and 3.14). This is
the default.

TABLE 3.2
Options for
function
imfilter.

EXAMPLE 3.7:
Using function
imfilter.



3.4 � Spatial Filtering 95

FIGURE 3.15
(a) Original image.
(b) Result of using
imfilter with
default zero padding.
(c) Result with the
'replicate'
option. (d) Result
with the
'symmetric'
option. (e) Result
with the 'circular'
option. (f) Result of
converting the
original image to
class uint8 and then
filtering with the
'replicate'
option.A filter of
size with 
all 1s was used
throughout.

31 * 31

which is proportional to an averaging filter. We did not divide the coefficients
by to illustrate at the end of this example the scaling effects of using
imfilter with an image of class uint8.

Convolving filter w with an image produces a blurred result. Because the fil-
ter is symmetric, we can use the correlation default in imfilter. Figure 3.15(b)
shows the result of performing the following filtering operation:

>> gd = imfilter(f, w);
>> imshow(gd, [ ])

where we used the default boundary option, which pads the border of the image
with 0’s (black). As expected the edges between black and white in the filtered
image are blurred, but so are the edges between the light parts of the image and
the boundary. The reason, of course, is that the padded border is black. We can
deal with this difficulty by using the 'replicate' option

>> gr = imfilter(f, w, 'replicate');
>> figure, imshow(gr, [ ])

As Fig. 3.15(c) shows, the borders of the filtered image now appear as ex-
pected. In this case, equivalent results are obtained with the 'symmetric'
option

>> gs = imfilter(f, w, 'symmetric');
>> figure, imshow(gs, [ ])

13122

a b c
fd e



96 Chapter 3 � Intensity Transformations and Spatial Filtering

Figure 3.15(d) shows the result. However, using the 'circular' option

>> gc = imfilter(f, w, 'circular');
>> figure, imshow(gc, [ ])

produced the result in Fig. 3.15(e), which shows the same problem as with zero
padding. This is as expected because use of periodicity makes the black parts
of the image adjacent to the light areas.

Finally, we illustrate how the fact that imfilter produces a result that is of
the same class as the input can lead to difficulties if not handled properly:

>> f8 = im2uint8(f);
>> g8r = imfilter(f8, w, 'replicate');
>> figure, imshow(g8r, [ ])

Figure 3.15(f) shows the result of these operations. Here, when the output was
converted to the class of the input (uint8) by imfilter, clipping caused
some data loss. The reason is that the coefficients of the mask did not sum to
the range [0, 1], resulting in filtered values outside the [0, 255] range. Thus, to
avoid this difficulty, we have the option of normalizing the coefficients so that
their sum is in the range [0, 1] (in the present case we would divide the coeffi-
cients by so the sum would be 1), or inputting the data in double for-
mat. Note, however, that even if the second option were used, the data usually
would have to be normalized to a valid image format at some point (e.g., for
storage) anyway. Either approach is valid; the key point is that data ranges
have to be kept in mind to avoid unexpected results. �

3.4.2 Nonlinear Spatial Filtering
Nonlinear spatial filtering is based on neighborhood operations also, and the
mechanics of defining neighborhoods by sliding the center point
through an image are the same as discussed in the previous section. However,
whereas linear spatial filtering is based on computing the sum of products
(which is a linear operation), nonlinear spatial filtering is based, as the name
implies, on nonlinear operations involving the pixels of a neighborhood. For
example, letting the response at each center point be equal to the maximum
pixel value in its neighborhood is a nonlinear filtering operation. Another
basic difference is that the concept of a mask is not as prevalent in nonlinear
processing. The idea of filtering carries over, but the “filter” should be visual-
ized as a nonlinear function that operates on the pixels of a neighborhood, and
whose response constitutes the response of the operation at the center pixel of
the neighborhood.

The toolbox provides two functions for performing general nonlinear filter-
ing: nlfilter and colfilt. The former performs operations directly in 2-D,
while colfilt organizes the data in the form of columns. Although colfilt
requires more memory, it generally executes significantly faster than nlfilter.

m * n

13122,



3.4 � Spatial Filtering 97

colfilt

@ (function handle)

†A always has mn rows, but the number of columns can vary, depending on the size of the input. Size se-
lection is managed automatically by colfilt.

In most image processing applications speed is an overriding factor, so
colfilt is preferred over nlfilt for implementing generalized nonlinear
spatial filtering.

Given an input image, f, of size and a neighborhood of size 
function colfilt generates a matrix, call it A, of maximum size ,† in
which each column corresponds to the pixels encompassed by the neighbor-
hood centered at a location in the image. For example, the first column corre-
sponds to the pixels encompassed by the neighborhood when its center is
located at the top, leftmost point in f. All required padding is handled trans-
parently by colfilt (using zero padding).

The syntax of function colfilt is

g = colfilt(f, [m n], 'sliding', @fun, parameters)

where, as before, m and n are the dimensions of the filter region, 'sliding' in-
dicates that the process is one of sliding the region from pixel to pixel
in the input image f, @fun references a function, which we denote arbitrarily
as fun, and parameters indicates parameters (separated by commas) that
may be required by function fun. The symbol @ is called a function handle, a
MATLAB data type that contains information used in referencing a function.
As will be demonstrated shortly, this is a particularly powerful concept.

Because of the way in which matrix A is organized, function fun must oper-
ate on each of the columns of A individually and return a row vector, v, con-
taining the results for all the columns. The kth element of v is the result of the
operation performed by fun on the kth column of A. Since there can be up to

columns in A, the maximum dimension of v is 
The linear filtering discussed in the previous section has provisions for

padding to handle the border problems inherent in spatial filtering. When
using colfilt, however, the input image must be padded explicitly before fil-
tering. For this we use function padarray, which, for 2-D functions, has the
syntax

fp = padarray(f, [r c], method, direction)

where f is the input image, fp is the padded image, [r c] gives the number of
rows and columns by which to pad f, and method and direction are as ex-
plained in Table 3.3. For example, if f = [1 2; 3 4], the command

>> fp = padarray(f, [3 2], 'replicate', 'post')

1 * MN.MN

m * n

mn * MN
m * n,M * N,

padarray



98 Chapter 3 � Intensity Transformations and Spatial Filtering

EXAMPLE 3.8:
Using function
colfilt to
implement a
nonlinear spatial
filter.

prod

produces the result

fp =

1   2   2   2
3   4   4   4
3   4   4   4
3   4   4   4
3   4   4   4

If direction is not included in the argument, the default is 'both'. If method
is not included, the default padding is with 0’s. If neither parameter is included
in the argument, the default padding is 0 and the default direction is 'both'.
At the end of computation, the image is cropped back to its original size.

� As an illustration of function colfilt, we implement a nonlinear filter
whose response at any point is the geometric mean of the intensity values of
the pixels in the neighborhood centered at that point.The geometric mean in a
neighborhood of size is the product of the intensity values in the neigh-
borhood raised to the power First we implement the nonlinear filter
function, call it gmean:

function v = gmean(A)
mn = size(A, 1); % The length of the columns of A is always mn.
v = prod(A, 1).^(1/mn);

To reduce border effects, we pad the input image using, say, the 'replicate'
option in function padarray:

>> f = padarray(f, [m n], 'replicate');

1>mn.
m * n

prod(A) returns the
product of the ele-
ments of A. prod
(A, dim) returns the
product of the
elements of A along
dimension dim.

Options Description

Method
'symmetric' The size of the image is extended by mirror-reflecting it across its

border.
'replicate' The size of the image is extended by replicating the values in its

outer border.
'circular' The size of the image is extended by treating the image as one

period of a 2-D periodic function.
Direction
'pre' Pad before the first element of each dimension.
'post' Pad after the last element of each dimension.
'both' Pad before the first element and after the last element of each

dimension. This is the default.

TABLE 3.3
Options for
function
padarray.



3.5 � Image Processing Toolbox Standard Spatial Filters 99

Finally, we call colfilt:

>> g = colfilt(f, [m n], 'sliding', @gmean);

There are several important points at play here. First, note that, although
matrix A is part of the argument in function gmean, it is not included in the
parameters in colfilt. This matrix is passed automatically to gmean by
colfilt using the function handle. Also, because matrix A is managed auto-
matically by colfilt, the number of columns in A is variable (but, as noted ear-
lier, the number of rows, that is, the column length, is always mn).Therefore, the
size of A must be computed each time the function in the argument is called by
colfilt. The filtering process in this case consists of computing the product of
all pixels in the neighborhood and then raising the result to the power 
For any value of the filtered result at that point is contained in the ap-
propriate column in v.The function identified by the handle,@, can be any func-
tion callable from where the function handle was created.The key requirement
is that the function operate on the columns of A and return a row vector con-
taining the result for all individual columns. Function colfilt then takes those
results and rearranges them to produce the output image, g. �

Some commonly used nonlinear filters can be implemented in terms of
other MATLAB and IPT functions such as imfilter and ordfilt2 (see
Section 3.5.2). Function spfilt in Section 5.3, for example, implements the
geometric mean filter in Example 3.8 in terms of imfilter and the MATLAB
log and exp functions. When this is possible, performance usually is much
faster, and memory usage is a fraction of the memory required by colfilt.
Function colfilt, however, remains the best choice for nonlinear filtering
operations that do not have such alternate implementations.

Image Processing Toolbox Standard Spatial Filters

In this section we discuss linear and nonlinear spatial filters supported by IPT.
Additional nonlinear filters are implemented in Section 5.3.

3.5.1 Linear Spatial Filters
The toolbox supports a number of predefined 2-D linear spatial filters, ob-
tained by using function fspecial, which generates a filter mask, w, using the
syntax

w = fspecial('type', parameters)

where 'type' specifies the filter type, and parameters further define the
specified filter. The spatial filters supported by fspecial are summarized in
Table 3.4, including applicable parameters for each filter.

3.5

1x, y2,
1>mn.

fspecial



100 Chapter 3 � Intensity Transformations and Spatial Filtering

Type Syntax and Parameters

'average' fspecial('average', [r c]). A rectangular averaging filter of
size r × c. The default is A single number instead of 
[r c] specifies a square filter.

'disk' fspecial('disk', r). A circular averaging filter (within a
square of size 2r + 1) with radius r. The default radius is 5.

'gaussian' fspecial('gaussian', [r c], sig). A Gaussian lowpass filter
of size r × c and standard deviation sig (positive). The defaults
are and 0.5. A single number instead of [r c] specifies a
square filter.

'laplacian' fspecial('laplacian', alpha). A Laplacian filter whose
shape is specified by alpha, a number in the range [0, 1]. The
default value for alpha is 0.5.

'log' fspecial('log', [r c], sig). Laplacian of a Gaussian (LoG)
filter of size r × c and standard deviation sig (positive). The
defaults are and 0.5. A single number instead of [r c]
specifies a square filter.

'motion' fspecial('motion', len, theta). Outputs a filter that, when
convolved with an image, approximates linear motion (of a
camera with respect to the image) of len pixels. The direction of
motion is theta, measured in degrees, counterclockwise from the
horizontal. The defaults are 9 and 0, which represents a motion of
9 pixels in the horizontal direction.

'prewitt' fspecial('prewitt'). Outputs a Prewitt mask, wv, that
approximates a vertical gradient. A mask for the horizontal
gradient is obtained by transposing the result: wh = wv'.

'sobel' fspecial('sobel'). Outputs a Sobel mask, sv, that
approximates a vertical gradient. A mask for the horizontal
gradient is obtained by transposing the result: sh = sv'.

'unsharp' fspecial('unsharp', alpha). Outputs a unsharp filter.
Parameter alpha controls the shape; it must be greater than 0 and
less than or equal to 1.0; the default is 0.2.

3 * 3

3 * 3

3 * 3

5 * 5

3 * 3

3 * 3

3 * 3.

� We illustrate the use of fspecial and imfilter by enhancing an image
with a Laplacian filter. The Laplacian of an image denoted 
is defined as

Commonly used digital approximations of the second derivatives are

and

0
2

 f

0y2 = f1x, y + 12 + f1x, y - 12 - 2f1x, y2

0
2

 f

0x2 = f1x + 1, y2 + f1x - 1, y2 - 2f1x, y2

§
2

 f1x, y2 =

0
2f1x, y2

0x2 +

0
2

 f1x, y2

0y2

§
2f1x, y2,f1x, y2,

EXAMPLE 3.9:
Using function
imfilter.

TABLE 3.4
Spatial filters
supported by
function
fspecial.



3.5 � Image Processing Toolbox Standard Spatial Filters 101

so that

This expression can be implemented at all points in an image by con-
volving the image with the following spatial mask:

An alternate definition of the digital second derivatives takes into account di-
agonal elements, and can be implemented using the mask

Both derivatives sometimes are defined with the signs opposite to those shown
here, resulting in masks that are the negatives of the preceding two masks.

Enhancement using the Laplacian is based on the equation

where is the input image, is the enhanced image, and c is 1 if the
center coefficient of the mask is positive, or if it is negative (Gonzalez and
Woods [2002]). Because the Laplacian is a derivative operator, it sharpens the
image but drives constant areas to zero. Adding the original image back re-
stores the gray-level tonality.

Function fspecial('laplacian', alpha) implements a more general
Laplacian mask:

which allows fine tuning of enhancement results. However, the predominant
use of the Laplacian is based on the two masks just discussed.

We now proceed to enhance the image in Fig. 3.16(a) using the Laplacian.
This image is a mildly blurred image of the North Pole of the moon. En-
hancement in this case consists of sharpening the image, while preserving as
much of its gray tonality as possible. First, we generate and display the
Laplacian filter:

a

1 + a

1 - a

1 + a

a

1 + a

1 - a

1 + a

-4
1 + a

1 - a

1 + a

a

1 + a

1 - a

1 + a

a

1 + a

-1
g1x, y2f1x, y2

g1x, y2 = f1x, y2 + c3§2
 f1x, y24

1
1
1

1
-8
1

1
1
1

0
1
0

1
-4
1

0
1
0

1x, y2

§
2

 f = 3f1x + 1, y2 + f1x - 1, y2 + f1x, y + 12 + f1x, y - 124 - 4f1x, y2



102 Chapter 3 � Intensity Transformations and Spatial Filtering

FIGURE 3.16
(a) Image of the
North Pole of the
moon.
(b) Laplacian
filtered image,
using uint8
formats.
(c) Laplacian
filtered image
obtained using
double formats.
(d) Enhanced
result, obtained
by subtracting (c)
from (a).
(Original image
courtesy of
NASA.)

>> w = fspecial('laplacian', 0)
w =

0.0000   1.0000   0.0000
1.0000  –4.0000   1.0000
0.0000   1.0000   0.0000

Note that the filter is of class double, and that its shape with alpha = 0 is the
Laplacian filter discussed previously.We could just as easily have specified this
shape manually as

>> w = [0 1 0; 1 –4 1; 0 1 0];

a b
c d



3.5 � Image Processing Toolbox Standard Spatial Filters 103

EXAMPLE 3.10:
Manually
specifying filters
and comparing
enhancement
techniques.

Next we apply w to the input image, f, which is of class uint8:

>> g1 = imfilter(f, w, 'replicate');
>> imshow(g1, [ ])

Figure 3.16(b) shows the resulting image. This result looks reasonable, but has
a problem: all its pixels are positive. Because of the negative center filter coef-
ficient, we know that we can expect in general to have a Laplacian image with
negative values. However, f in this case is of class uint8 and, as discussed in
the previous section, filtering with imfilter gives an output that is of the
same class as the input image, so negative values are truncated. We get around
this difficulty by converting f to class double before filtering it:

>> f2 = im2double(f);
>> g2 = imfilter(f2, w, 'replicate');
>> imshow(g2, [ ])

The result, shown in Fig. 3.15(c), is more what a properly processed Laplacian
image should look like.

Finally, we restore the gray tones lost by using the Laplacian by subtracting
(because the center coefficient is negative) the Laplacian image from the orig-
inal image:

>> g = f2 – g2;
>> imshow(g)

The result, shown in Fig. 3.16(d), is sharper than the original image. �

� Enhancement problems often require the specification of filters beyond
those available in the toolbox. The Laplacian is a good example. The toolbox
supports a Laplacian filter with a in the center. Usually, sharper en-
hancement is obtained by using the Laplacian filter that has a in the
center and is surrounded by 1s, as discussed earlier. The purpose of this exam-
ple is to implement this filter manually, and also to compare the results ob-
tained by using the two Laplacian formulations. The sequence of commands is
as follows:

>>  f = imread('moon.tif');
>>  w4 = fspecial('laplacian', 0);  % Same as w in Example 3.9.
>>  w8 = [1 1 1; 1 –8 1; 1 1 1]; 
>>  f = im2double(f);
>>  g4 = f – imfilter(f, w4, 'replicate');
>>  g8 = f – imfilter(f, w8, 'replicate');
>>  imshow(f)
>>  figure, imshow(g4)
>>  figure, imshow(g8)

-83 * 3
-43 * 3



104 Chapter 3 � Intensity Transformations and Spatial Filtering

FIGURE 3.17 (a)
Image of the North
Pole of the moon.
(b) Image
enhanced using the
Laplacian 
filter 'laplacian',
which has a in
the center. (c)
Image enhanced
using a Laplacian
filter with a in
the center.

-8

-4

Figure 3.17(a) shows the original moon image again for easy comparison.
Fig. 3.17(b) is g4, which is the same as Fig. 3.16(d), and Fig. 3.17(c) shows g8.
As expected, this result is significantly sharper than Fig. 3.17(b). �

3.5.2 Nonlinear Spatial Filters
A commonly-used tool for generating nonlinear spatial filters in IPT is func-
tion ordfilt2, which generates order-statistic filters (also called rank filters).
These are nonlinear spatial filters whose response is based on ordering (rank-
ing) the pixels contained in an image neighborhood and then replacing the
value of the center pixel in the neighborhood with the value determined by the

a
b c



3.5 � Image Processing Toolbox Standard Spatial Filters 105

median

†Recall that the median, of a set of values is such that half the values in the set are less than or equal 
to and half are greater than or equal to j.j,

j,

ranking result.Attention is focused in this section on nonlinear filters generat-
ed by ordfilt2. A number of additional nonlinear filters are developed and
implemented in Section 5.3.

The syntax of function ordfilt2 is

g = ordfilt2(f, order, domain)

This function creates the output image g by replacing each element of f by the
order-th element in the sorted set of neighbors specified by the nonzero ele-
ments in domain. Here,domain is an matrix of 1s and 0s that specify the
pixel locations in the neighborhood that are to be used in the computation. In
this sense, domain acts like a mask. The pixels in the neighborhood that corre-
spond to 0 in the domain matrix are not used in the computation. For example,
to implement a min filter (order 1) of size we use the syntax

g = ordfilt2(f, 1, ones(m, n))

In this formulation the 1 denotes the 1st sample in the ordered set of sam-
ples, and ones(m, n) creates an matrix of 1s, indicating that all samples
in the neighborhood are to be used in the computation.

In the terminology of statistics, a min filter (the first sample of an ordered
set) is referred to as the 0th percentile. Similarly, the 100th percentile is the last
sample in the ordered set, which is the sample.This corresponds to a max
filter, which is implemented using the syntax

g = ordfilt2(f, m*n, ones(m, n))

The best-known order-statistic filter in digital image processing is the
median† filter, which corresponds to the 50th percentile.We can use MATLAB
function median in ordfilt2 to create a median filter:

g = ordfilt2(f, median(1:m*n), ones(m, n))

where median(1:m*n) simply computes the median of the ordered sequence
Function median has the general syntax

v = median(A, dim)

where v is vector whose elements are the median of A along dimension dim.
For example, if dim = 1, each element of v is the median of the elements along
the corresponding column of A.

1, 2, Á , mn.

mnth

m * n
mn

m * n

m * n

ordfilt2



106 Chapter 3 � Intensity Transformations and Spatial Filtering

Because of its practical importance, the toolbox provides a specialized im-
plementation of the 2-D median filter:

g = medfilt2(f, [m n], padopt)

where the tuple [m n] defines a neighborhood of size m × n over which the
median is computed, and padopt specifies one of three possible border
padding options: 'zeros' (the default), 'symmetric' in which f is extended
symmetrically by mirror-reflecting it across its border, and 'indexed', in
which f is padded with 1s if it is of class double and with 0s otherwise. The de-
fault form of this function is

g = medfilt2(f)

which uses a neighborhood to compute the median, and pads the border
of the input with 0s.

� Median filtering is a useful tool for reducing salt-and-pepper noise in an
image. Although we discuss noise reduction in much more detail in Chapter 5,
it will be instructive at this point to illustrate briefly the implementation of
median filtering.

The image in Fig. 3.18(a) is an X-ray image, f, of an industrial circuit board
taken during automated inspection of the board. Figure 3.18(b) is the same
image corrupted by salt-and-pepper noise in which both the black and white
points have a probability of occurrence of 0.2. This image was generated using
function imnoise, which is discussed in detail in Section 5.2.1:

>> fn = imnoise(f, 'salt & pepper', 0.2);

Figure 3.18(c) is the result of median filtering this noisy image, using the
statement:

>> gm = medfilt2(fn);

Considering the level of noise in Fig. 3.18(b), median filtering using the de-
fault settings did a good job of noise reduction. Note, however, the black
specks around the border. These were caused by the black points surrounding
the image (recall that the default pads the border with 0s). This type of effect
can often be reduced by using the 'symmetric' option:

>> gms = medfilt2(fn, 'symmetric');

The result, shown in Fig. 3.18(d), is close to the result in Fig. 3.18(c), except that
the black border effect is not as pronounced. �

3 * 3

imnoise

medfilt2

EXAMPLE 3.11:
Median filtering
with function
medfilt2.



� Summary 107

FIGURE 3.18
Median filtering,
(a) X-ray image.
(b) Image
corrupted by salt-
and-pepper noise.
(c) Result of
median filtering
with medfilt2
using the default
settings.
(d) Result of
median filtering
using the
'symmetric'
image extension
option. Note the
improvement in
border behavior
between (d) and
(c). (Original
image courtesy 
of Lixi, Inc.)

Summary
In addition to dealing with image enhancement, the material in this chapter is the foun-
dation for numerous topics in subsequent chapters. For example, we will encounter spa-
tial processing again in Chapter 5 in connection with image restoration, where we also
take a closer look at noise reduction and noise-generating functions in MATLAB.
Some of the spatial masks that were mentioned briefly here are used extensively in
Chapter 10 for edge detection in segmentation applications. The concept of convolu-
tion and correlation is explained again in Chapter 4 from the perspective of the fre-
quency domain. Conceptually, mask processing and the implementation of spatial
filters will surface in various discussions throughout the book. In the process, we will
extend the discussion begun here and introduce additional aspects of how spatial filters
can be implemented efficiently in MATLAB.

a b
c d




