
Fundamentals of Digital Image Processing

Roger L. Easton, Jr.

22 November 2010

Contents

Preface ix

1 Basic Principles of Digital Image Processing 1
1.1 Digital Processing . 4
1.2 Digitization . 4

2 Review of Sampling 7
2.0.1 Ideal Sampling of 1-D function 8

2.1 Aliasing — Whittaker-Shannon Sampling Theorem 11
2.2 Realistic Sampling — Averaging by the Detector 12

3 Review of Quantization 21
3.1 Quantization: A/D Conversion . 21

3.1.1 Tone Transfer Function . 21
3.2 Quantization Error (“Noise”) . 25

3.2.1 Signal-to-Noise Ratio . 28
3.2.2 Example: Variance of a Sinusoid 29
3.2.3 Example: Variance of a Square Wave: 30
3.2.4 Variance of “Noise” from a Gaussian Distribution 30
3.2.5 Approximations to SNR . 31
3.2.6 SNR of Quantization . 32

3.3 Quantization to Few Bits . 35
3.3.1 Improved Gray Scale (IGS) Quantization 35
3.3.2 Quantizers with Memory — Error Diffusion 36
3.3.3 Halftoning . 38

4 Image Processing Operations 41
4.1 Geometrical Operations . 42

4.1.1 Common Geometrical Operations 43
4.1.2 Power Series for Coordinates 44
4.1.3 Affine Transformation . 45
4.1.4 Bilinear Transformation — Pseudoinverse Calculation 46

4.2 Least-Squares Solution for Affine Transformation 47
4.3 Pixel Transfers . 53
4.4 Pixel Interpolation . 54

v

vi CONTENTS

5 Point Operations 59
5.1 Image Histograms . 59

5.1.1 Histograms of Typical Images 61
5.1.2 Other Examples of Histograms 65
5.1.3 Histogram Modification for Image Enhancement 66
5.1.4 Jones Plots . 67

5.2 Cumulative Histogram . 73
5.2.1 Nonlinear Nature of Histogram Equalization 82
5.2.2 Histogram Specification or “Matching” 85

5.3 Examples of Point Operations . 86
5.4 Application of Histograms to Tone-Transfer Correction 87
5.5 Application of Histograms to Image Segmentation 87

6 Point Operations on Multiple Images 91
6.1 Color and “Spectral” Images . 92
6.2 Multispectral Histograms for Segmentation 94

6.2.1 Multidimensional Histograms of Color Images 95
6.2.2 Spectral Images . 96
6.2.3 Principal Component Analysis — PCA 99

6.3 Color Spaces . 104
6.3.1 Red, Green, Blue . 104
6.3.2 Hue, Saturation, Lightness (or Brightness, or Value): 105
6.3.3 Conversion from RGB to HSL 110
6.3.4 Example: Wax “Coat of Arms” in a French Epic Poem 113

6.4 Time-Sequence Images: Video . 115
6.5 Color-Space Transformations for Video Compression 116
6.6 Segmentation by Logical Operations on Multiple Images 120
6.7 Arithmetic Operations on Multiple Images 121

6.7.1 Multiple-Frame Averaging . 121
6.7.2 Required Number of Bits for image Sums, Averages, and Dif-

ferences . 125
6.7.3 Image Subtraction . 126
6.7.4 Difference Images as Features 126
6.7.5 “Mask” or “Template” Multiplication: Image Mattes 129
6.7.6 Image Division . 129

7 Local Operations 133
7.1 Window Operators — Correlation . 133
7.2 Convolution . 135

7.2.1 Convolutions — Edges of the Image 139
7.2.2 Convolutions — Computational Intensity 140
7.2.3 Smoothing Kernels — Lowpass Filtering 141
7.2.4 Differencing Kernels — Highpass Filters 143

7.3 Effiects of Averaging and Differencing on Noisy Images 150
7.3.1 Application of the Laplacian to Texture Segmentation 151

CONTENTS vii

7.4 . 152
7.5 Applications of Differencing — Image Sharpening 152

7.5.1 Unsharp Masking . 152
7.5.2 Other Image Sharpeners . 153
7.5.3 Generalized Laplacian . 156

7.6 Directional Derivatives: Gradient . 158
7.6.1 Roberts’ Gradient . 160
7.6.2 “Laplacian of Gaussian” . 161

7.7 Nonlinear Filters . 165
7.7.1 Median Filter . 165
7.7.2 Example of Median Filter of Uniform Distribution 167

7.8 Median Filter and Gaussian Noise . 170
7.9 Comparison of Histograms after Mean and Median Filter 172

7.9.1 Effect of Window “Shape” on Median Filter 172
7.9.2 Other Statistical Filters (Mode, Variance, Maximum, Minimum)174
7.9.3 Examples of Nonlinear Filters 175
7.9.4 Nonlinear Filters on Images with Additive Gaussian Noise . . 177

7.9.5 Nonlinear Filters on Noise-Free Gray-Level Image 177
7.10 Adaptive Operators . 178
7.11 Convolution Revisited — Bandpass Filters 179

7.11.1 Bandpass Filters for Images 183
7.12 Pattern Matching . 183

7.12.1 Other Matching Kernels . 186
7.12.2 Normalization of Contrast of Detected Features 188

7.13 Implementation of Filtering . 189
7.13.1 Nonlinear and Shift-Variant Filtering 189

7.14 Neighborhood Operations on Multiple Images 190
7.14.1 Image Sequence Processing . 190
7.14.2 Spectral + Spatial Neighborhood Operations 191
7.14.3 “Pseudounsharp Masking” . 191

8 Global Operations 195
8.1 Relationship to Neighborhood Operations 195
8.2 Discrete Fourier Transform (DFT) . 196
8.3 Fast Fourier Transform (FFT) . 197
8.4 Fourier Transforms of Images . 200
8.5 Image Restoration via Fourier Transforms 210

8.5.1 Examples of Inverse Filters in 1-D 211
8.5.2 Spectrum and Impulse Response of Inverse Filter 212
8.5.3 Inverse Filter for SINC-Function Blur 213

8.6 Other Global Operations . 213
8.7 Discrete Cosine Transform (DCT) . 214

8.7.1 Steps in Forward DCT . 217
8.7.2 Steps in Inverse DCT . 217

viii CONTENTS

8.8 Walsh-Hadamard Transform . 218

Preface

References

Center for Image Processing in Education: lots of links to software and images
http://www.evisual.org/homepage.html

ImageJ software for image processing and analysis in Java, evolution of NIHImage
http://rsb.info.nih.gov/ij/

Image 2000 (from NASA)
http://www.ccpo.odu.edu/SEES/ozone/oz_i2k_soft.htm

Scion Image Processing Software (for PC and MAC-OS)
http://www.scioncorp.com/frames/fr_scion_products.htm

Hypercube Image Analysis Software (for PC and MAC-OS)
http://www.tec.army.mil/Hypercube/

GIMP Image Processing Software (Gnu-IMP) (free for PC, MacOS, Linux)
http://www.gimp.org/

Irfanview (free image processing viewer with some processing capability)
http://www.irfanview.com/

Gregory A. Baxes, Digital Image Processing, Principles and Applications,
John Wiley & Sons, New York, 1994.
Ronald N. Bracewell, Two-Dimensional Imaging, Prentice Hall, Englewood

Cliffs, 1995.
Ronald N. Bracewell, The Fourier Transform and Its Applications (Second

Edition, Revised), McGraw-Hill, 1986.
Ronald N. Bracewell, The Hartley Transform, Oxford University Press, New

York, 1986.
R.N. Bracewell, “The Fourier Transform”, Scientific American, June 1989,

pp.86-95.
Kenneth R. Castleman, Digital Image Processing, Prentice Hall, Englewood

Cliffs, 1996.
E.O.Brigham, The Fast Fourier Transform and its Applications, Prentice

Hall, Englewood Cliffs, 1988.
Michael P. Ekstrom, (Ed.), Digital Image Processing Techniques, Academic

Press, New York, 1984.
B.R. Frieden, Probability, Statistical Optics, and Data Testing, Third Edi-

tion, Springer-Verlag, Berlin, 2002.
Jack D. Gaskill, Linear Systems, Fourier Transforms, and Optics, John

Wiley & Sons, New York, 1978.
Rafael C. Gonzalez and Richard E. Woods, Digital Image Processing, Second

Edition, Prentice Hall, Upper Saddle River, 2002.
Jae S. Lim, Two-Dimensional Signal and Image Processing, Prentice Hall,

Englewood Cliffs, 1990.
Paul J. Nahin, An Imaginary Tale, Princeton University Press, Princeton NJ,

1998.

ix

x Preface

A. Nussbaum and R. Phillips, Contemporary Optics for Scientists and En-
gineers, Prentice-Hall, 1976.
Wayne Niblack, An Introduction to Digital Image Processing, Prentice

Hall, Englewood Cliffs, 1986.
J. Anthony Parker, Image Reconstruction in Radiology, CRC Press, Boca

Raton FL, 1990.
William K. Pratt, Digital Image Processing, Second Edition, John Wiley &

Sons, New York, 1991.
Azriel Rosenfeld and Avinash C. Kak, Digital Picture Processing, Second

Edition, Academic Press, San Diego, 1982.
Craig Scott, Introduction to Optics and Optical Imaging, IEEE Press, New

York, 1998.
J.S.Walker, Fast Fourier Transforms 2nd Edition, CRC Press, New York, 1996.

Chapter 1

Basic Principles of Digital Image
Processing

During the last two decades or so, inexpensive and powerful digital computers have
become widely available and have been applied to a multitude of tasks. By hitching
computers to new imaging detectors and displays, very capable systems for creating,
analyzing, and manipulating imagery have been constructed and are being applied
in many arenas. For example, they now are used to reconstruct X-ray and magnetic
resonance images (MRI) in medicine, to analyze multispectral aerial and satellite
images for environmental and military uses, to read Universal Product Codes that
specify products and prices in retail stores, to name just a few.
Since I first taught a predecessor of this course in 1987, the capabilities of inex-

pensive imaging tools (cameras, printers, computers) have exploded (no surprise to
you, I’m sure). This has produced a wide and ever-expanding range of applications
that we could not even envision in those days. To give an idea of the change over the
last two decades, consider the set of data shown below, which is copied directly from
the first edition of Digital Image Processing by Gonzalez and Woods:
These data represent a 64× 64 5-bit image (25 = 32 gray values). This data set

was entered by hand (with only 4 mistakes) in 1988 by Ranjit Bhaskar, an imaging
science graduate student for use by students. The image was rendered using the so-
called “overstrike” routine on a line printer, where “dark” pixels were printed using
several overprinted characters and lighter pixels by sparse characters (e.g. “.” and
“-”). The subject of the image is shown on the next page:
This course will investigate the basic principles of digital imaging systems and

introduce useful applications; many simple examples will be provided to illustrate the
concepts. First, a definition:

IMAGE: A reproduction or imitation of form of a person or thing.
The optical counterpart of an object produced by a lens, mirror, etc.

..................................Noah Webster

We normally think of an image in the sense of a picture, i.e., a planar represen-
tation of the brightness, , i.e., the amount of light reflected or transmitted by an
object.

1

2CHAPTER 1 BASIC PRINCIPLESOFDIGITAL IMAGEPROCESSING

Figure 1.1: Coded 64× 64 5-bit image (32 gray values)

Figure 1.2: Data in previous photo rendered using “overstrike” printout with line
printer — this is how we used to do it, folks!

3

An image is usually a function of two spatial variables, e.g., f [x, y], which rep-
resents the brightness f at the Cartesian location [x, y]. Obviously, it also may be
graphed in three dimensions, with brightness displayed on the z-axis.

Function of Two Spatial Coordinates
f [x, y]

Image Representation of
f [n,m]

It is more and more common to deal with images that have more than two coor-
dinate dimensions, e.g.,

f [x, y, tn] monochrome “movie”, discrete set of images over time

f [x, y, λ] spectral image with continuous domain of wavelengths

f [x, y, λn] multispectral image, discrete set of wavelengths

f [x, y, t] time-varying monochrome image over continuous time domain

f [x, y, tn] time-varying monochrome image with discrete time samples (cinema)

f [x, y, z] 3-D monochrome image (e.g., optical hologram)

f [x, y, tn, λm] discrete samples in time and wavelength, e.g., color movie

f [x, y, z, t, λ] reality
It is generally fesible to “cut” 2-D slices from these multidimensional functions to cre-
ate images, but the images need not be “pictorial.” For example, consider the 2-D
slices “cut” from the 3-D function spatial-temporal function f [x, y, t]; the 2-D slice
f [x, y; t = t0] is pictorial but f [x, y = y0, t] is not. That said, the units of the axes
have no effect on the computations; it is perfectly feasible for computers to process
and display f [x, y = y0, t] as to do the same for f [x, y; t0].

After converting image information into an array of integers, the image can be
manipulated, processed, and displayed by computer. Computer processing is used
for image enhancement, restoration, segmentation, description, recognition, coding,
reconstruction, transformation

4CHAPTER 1 BASIC PRINCIPLESOFDIGITAL IMAGEPROCESSING

1.1 Digital Processing

The general digital image processing system may be divided into three components:
the input device (or digitizer), the digital processor, and the output device (image
display).

1. The digitizer converts a continuous-tone and spatially continuous brightness
distribution f [x, y] to an discrete array (the digital image) fq[n,m], where n,m,
and fq are integers.

2. The digital processor operates on the digital image fq[n,m] to generate a new
digital image gq[k,], where k, , and gq are integers. The output image may be
represented in a different coordinate system, hence the use of different indices
k and .

3. The image display converts the digital output image gq[k,] back into a continuous-
tone and spatially continuous image g [x, y] for viewing. It should be noted that
some systems may not require a display (e.g., in machine vision and artificial
intelligence applications); the output may be a piece of information. For ex-
ample, a digital imaging system that was designed to answer the question, Is
there evidence of a cancerous tumor in this x-ray image?, ideally would have
two possible outputs (YES or NO), , i.e., a single bit of information.

Note that the system includes most of the links in what we call the imaging chain.
We shall first consider the mathematical description of image digitizing and display

devices, and follow that by a long discussion of useful processing operations.

1.2 Digitization

Digitization is the conversion of a continuous-tone and spatially continuous brightness
distribution f [x, y] to an discrete array of integers fq[n,m] by two operations which
will be discussed in turn:

1.2 DIGITIZATION 5

(A) SAMPLING — a function of continuous coordinates f [x, y] is evaluated on
a discrete matrix of samples indexed by [n,m]. You probably saw some discussion of
sampling in the course on linear and Fourier mathematics.
(B) QUANTIZATION — the continuously varying brightness f at each sample

is converted to a one of set of integers fq by some nonlinear thresholding process.
The digital image is a matrix of picture elements, or pixels if your ancestors are

computers. Video descendents (and imaging science undergraduates) often speak of
pels (often misspelled pelz). Each matrix element is an integer which encodes the
brightness at that pixel. The integer value is called the gray value or digital count of
the pixel.
Computers store integers as BInary digiTS, or bits (0,1)

2 bits can represent: 004 = 0., 014 = 1, 104 = 2., 114 = 3.;a total of 22 = 4
numbers.

(where the symbol “4” denotes the binary analogue to the decimal point “.” and
thus may be called the “binary point,” which separates the ordered bits with positive
and negative powers of 2).

m BITS can represent 2m numbers
=⇒ 8 BITS = 1 BYTE =⇒ 256 decimal numbers, [0, 255]

=⇒ 12 BITS = 4096 decimal numbers, [0, 4095]
=⇒ 16 BITS = 216 = 65536 decimal numbers, [0, 65535]

Digitized images contain finite numbers of data “bits” and it probably is apparent
that the process of quantization discards some of the content of the image, i.e., the
quantized image differs from the unquantized image, so errors have been created.
Beyond that, we can consider the ”amount” of “information” in the quantized image,
which is defined as the number of bits required to store the image. The number
of bits of “information” usually is smaller than the the number of bits of “data”
(which is merely the product of the number of image pixels and the number of bits
per pixel). The subject of information content is very important in imaging and will
be considered in the section on image compression. We will discuss digitizing and
reconstruction errors after describing the image display process.

Chapter 2

Review of Sampling

The process of “sampling” derives a discrete set of data points at (usually) uniform
spacing. In its simplest form, sampling is expressed mathematically as multiplication
of the original image by a function that “measures” the image brightness at discrete
locations of infinitesimal width/area/volume in the 1-D/2-D/3-D cases:

fs [n ·∆x] = f [x] · s [x;n ·∆x]

where:

f [x] = brightness distribution of input image

s [x;n ·∆x] = sampling function

fs [n ·∆x] = sampled input image defined at coordinates n ·∆x

The ideal sampling function for functions of continuous variables is generated from
the so-called “Dirac delta function” δ [x], which is defined by many authors, including
Gaskill. The ideal sampling function is the sum of uniformly spaced “discrete” Dirac
delta functions, which Gaskill calls the COMB while Bracewell calls it the SHAH :

COMB [x] ≡
+∞X

n=−∞
δ [x− n]

s [x;n ·∆x] ≡
+∞X

n=−∞
δ [x− n ·∆x] ≡ 1

∆x
COMB

h x

∆x

i

7

8 CHAPTER 2 REVIEW OF SAMPLING

The COMB function defined by Gaskill (called the SHAH function by Bracewell).

For the (somewhat less rigorous) purpose we have here, we may consider the
sampling function to just “grab” the value of the continuous input function f [x, y] at
the specific locations separated by the uniform intervals ∆x and ∆y, where ∆x = ∆y:

fs [n,m] = f [n ·∆x,m ·∆y]

In other words, we are sweeping some unimportant and possibly confusing mathe-
matical details under the rug.

2.0.1 Ideal Sampling of 1-D function

Multiplication of the input f [x] by a COMB function merely evaluates f [x] on the
uniform grid of points located at n ·∆x, where n is an integer. Because it measures
the value of the input at an infinitesmal point, this is a mathematical idealization
that cannot be implemented in practice. Even so, the discussion of ideal sampling
usefully introduces some essential concepts.
Consider ideal sampling of a sinusoidal input function with spatial period X0 that

is ideally sampled at intervals separated by ∆x:

f [x] =
1

2

µ
1 + cos

∙
2πx

X0
+ φ0

¸¶
The amplitude of the function at the sample indexed by n is:

fs [n ·∆x] =
1

2
·
µ
1 + cos

∙
2π

µ
n ·∆x

X0

¶
+ φ0

¸¶
=
1

2
·
µ
1 + cos

∙
2πn ·

µ
∆x

X0

¶
+ φ0

¸¶
The dimensionless parameter ∆x

X0
in the second expression is the ratio of the sampling

interval to the spatial period (wavelength) of the sinusoid and is a measurement of

9

the fidelity of the sampled image. For illustration, examples of sampled functions
obtained for several values of ∆x

X0
are:

Case I: X0 = 12 ·∆x =⇒ ∆x

X0
=
1

12
, φ0 = 0 =⇒ fs [n] =

1

2
·
³
1 + cos

hπn
6

i´
Case II: X0 = 2 ·∆x =⇒ ∆x

X0
=
1

2
, φ0 = 0 =⇒ fs [n] =

1

2
· (1 + cos [πn]) = 1

2
[1 + (−1)n]

Case III: X0 = 2 ·∆x =⇒ ∆x

X0
=
1

2
, φ0 = −

π

2
=⇒ fs [n] =

1

2
· (1 + sin [πn]) = 1

2

Case IV: X0 =
4

3
·∆x =⇒ ∆x

X0
=
3

4
, φ0 = 0

=⇒ fs [n] =
1

2
·
µ
1 + cos

∙
2πn

4/3

¸¶
=
1

2
·
³
1 + cos

h
3π

n

2

i´
Case V: X0 =

4

5
·∆x =⇒ ∆x

X0
=
5

4
, φ0 = 0

=⇒ fs [n] =
1

2
·
µ
1 + cos

∙
2πn

5/4

¸¶
=
1

2
·
³
1 + cos

h
8π

n

5

i´

10 CHAPTER 2 REVIEW OF SAMPLING

Illustration of samples of the biased sinusoids with the different values of ∆x
X0
listed

in the table. The last three cases illustrate “aliasing.”

The output evaluated for ∆x
X0
= 1

2
depends on the phase of the sinusoid; if sampled

at the extrema, then the sampled signal has the same dynamic range as f [x] (i.e.,
it is fully modulated), show no modulation, or any intermediate value. The interval
∆x = X0

2
defines the Nyquist sampling limit. If ∆x

X0
> 1

2
sample per period, then the

same set of samples could have been obt5ained from a sinusoid with a longer period
and a different sampling interval ∆x. For example, if ∆x

X0
= 3

4
, then the reconstructed

function appears as though obtained from a sinudoid with periodX 0
0 = 3X0 if sampled

with ∆x
X0
0
= 1

4
. In other words, the data set of samples is ambiguous; the same samples

2.1 ALIASING — WHITTAKER-SHANNON SAMPLING THEOREM11

could be obtained from more than one input, and thus we cannot distinguish among
the possible inputs based only on knowledge of the samples.

2.1 Aliasing — Whittaker-Shannon Sampling The-
orem

As just demonstrated, the sample values obtained from a sinusoid which has been
sampled fewer than two times per period will be identical to those obtained from a
sinusoid with a longer period. This ambiguity about which original function produced
the set of samples is called aliasing in sampling, but similar effects show up whenever
periodic functions are multiplied or added. In other disciplines, these go by different
names such as beats, Moiré fringes, and heterodyning. To illustrate, consider the
product of two sinusoidal functions with the different periods X1and X2(and thus
spatial frequencies ξ1 =

1
X1
, ξ2 =

1
X2
), which may be written as the sum of two

sinusoids with different spatial frequencies:

cos [2πξ1x] · cos [2πξ2x] =
1

2
cos [2π(ξ1 + ξ2)x] +

1

2
cos [2π(ξ1 − ξ2)x]

(note that the converse is also true; the sum of two sinusoids with the same amplitude
and different frequencies may be written as the product of two sinusoids). The second
term in the expression for the product oscillates slowly and is the analog of the aliased
signal.
Though the proof is beyond our mathematical scope at this time, we can state

that a sinusoidal signal that has been sampled without aliasing may be reconstructed
without error from the (infinite set of) its ideal samples. This will be demonstrated
in the section on image displays. Also without proof, we make the following claim:

Any 1-D or 2-D function may be expressed as a unique sum of 1-D or 2-D
sinusoidal components

with (generally) different amplitudes, frequencies, and phases.

This is the principle of Fourier analysis, which determines the set of sinusoidal
components from the function. The set of amplitudes and phases of the sinusoidal

12 CHAPTER 2 REVIEW OF SAMPLING

components expressed as a function of frequency are the Fourier components of the
function.
If the sinusoidal representation of f [x] has a component with a maximum spatial

frequency ξmax, and if we sample f [x] so that this component is sampled without alias-
ing, then all sinusoidal components of f [x] will be adequately sampled and f [x]can
be perfectly reconstructed from its samples. Such a function is band-limited and
ξmax is the cutoff frequency of f [x]. The corresponding minimum spatial period is
Xmin =

1
ξmax

. Thus the sampling interval ∆x can be found from:

∆x

Xmin
<
1

2
=⇒ ∆x <

Xmin

2
=⇒ ∆x <

1

2ξmax

This is the Whittaker-Shannon sampling theorem. The limiting value of the sam-
pling interval ∆x = 1

2ξmax
defines the Nyquist sampling limit. Sampling more or less

frequently than the Nyquist limit is oversampling or undersampling, respectively.

∆x >
1

2ξmax
=⇒ undersampling

∆x <
1

2ξmax
=⇒ oversampling

The Whittaker-Shannon Sampling Theorem is valid for all types of sampled sig-
nals. An increasingly familiar example is digital recording of audio signals (e.g., for
compact discs or digital audio tape). The sampling interval is determined by the
maximum audible frequency of the human ear, which is generally accepted to be
approximately 20kHz. The sampling frequency of digital audio recorders is 44,000
samples
second which translates to a sampling interval of

1
44,000 s

= 22.7μs. At this sampling
rate, sounds with periods greater than 2 · 22.7μs = 45.4μs (or frequencies less than
(45.4μs)−1 = 22 kHz) can theoretically be reconstructed perfectly, assuming that
f [t] is sampled perfectly (i.e., at a point). Note that if the input signal frequency is
greater than the Nyquist frequency of 22 kHz, the signal will be aliased and will ap-
pear as a lower-frequency signal in the audible range. Thus the reconstructed signal
will be wrong. This is prevented by ensuring that no signals with frequencies above
the Nyquist limit is allowed to reach the sampler; higher frequencies are filtered out
before sampling.

2.2 Realistic Sampling — Averaging by the Detec-
tor

In fact, it is not possible to “grab” the amplited of a signal at specific locations with
infinitesimal “width” (infinitesimal “support”). The measurement of a finite signal
over the infinitesimally small area in the real world would produce an infinitesimal
result. Rather a real system performs “realistic sampling,” where the continuous input
is measured over finite areas located at uniformly spaced samples by using a detector

2.2 REALISTIC SAMPLING — AVERAGING BY THE DETECTOR 13

with finite spatial (or temporal) size. The measured signal is a spatial integral of
the input signal over the detector area, which blurs the image. For example, in the
common case where we assume that each sensor element has the same response over
its full area, we can calculate the sample value by integrating the signal over the
detector size. In the figure, the sensor elements are separated by ∆x and each has
width d0:

For a biased sinusoidal signal of the form:

f [x] =
1

2

µ
1 + cos

∙
2πx

X0
+ φ0

¸¶
we define its modulation as:

m =
fmax − fmin
fmax + fmin

; 0 ≤ m ≤ 1 if fmin ≥ 0

Note that modulation is only defined for nonnegative (i.e., biased) sinusoids. The
analogous quantity for a nonnegative square wave is called contrast.

The biased sinusoidal signal is averaged over the detector area, e.g., the sampled
value at n = 0 is:

fs [n = 0] =
1

d0

Z +
d0
2

−d0
2

f [x] dx

=
1

d0

Z +∞

−∞
f [x] ·RECT

∙
x

d0

¸
dx

where: RECT
∙
x

d0

¸
≡

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 if |x| < d0

2
1
2
if |x| = d0

2
=⇒ x = ±d0

2

0 if |x| > d0
2

14 CHAPTER 2 REVIEW OF SAMPLING

For f [x] as defined above, the set of samples is derived by integrating f [x] over the
area of width d centered at coordinates that are integer multiples of ∆x:

1

d0

Z n·∆x+
d0
2

n·∆x−d0
2

1

2

µ
1 + cos

∙
2πx

X0
+ φ0

¸¶
dx

=
1

2d0

ÃZ n·∆x+
d0
2

n·∆x− d0
2

dx+

Z n·∆x+
d0
2

n·∆x− d0
2

cos

∙
2πx

X0
+ φ0

¸
dx

!

=
1

2d0

∙µ
n ·∆x+

d0
2

¶
−
µ
n ·∆x− d0

2

¶¸
+

1

2d0

sin
h
2πx
X0
+ φ0

i
2π
X0

¯̄̄̄
¯̄
x=n·∆x+

d0
2

x=n·∆x− d0
2

=
1

2
+

1

2d0

sin
h
2πn · ∆x

X0
+ πd0

X0
+ φ0

i
− sin

h
2πn · ∆x

X0
− πd0

X0
+ φ0

i
³
2π
X0

´
By defining

α = 2πn · ∆x

X0
+ φ0

β =
πd0
X0

and applying the trigonometric identities:

sin [α± β] = sinα cosβ ± cosα sinβ
=⇒ sin [α+ β]− sin [α− β] = 2 cosα sinβ,

we find an expression for the integral over the detector area:

fs [n] =
1

2
+

1

2d0

⎛⎝2 cos ∙2πn · ∆x

X0
+ φ0

¸
·
sin
h
πd0
X0

i
2π
X0

⎞⎠
=
1

2
+

1

2d0

⎛⎝2 cos ∙2πn · ∆x

X0
+ φ0

¸
· d0 ·

sin
h
πd0
X0

i
2π d0

X0

⎞⎠
The last multiplicative termmay be simplified by applying the definition of the special
function

SINC [α] ≡ sin [πα]
πα

=⇒ fs [n] =
1

2

µ
1 + SINC

∙
d0
X0

¸
· cos

∙
2πn · ∆x

X0
+ φ0

¸¶
which varies with period X0 and detector width d0.

2.2 REALISTIC SAMPLING — AVERAGING BY THE DETECTOR 15

SINC [x] ≡ sin [πx]
πx

; note that the value at the origin is unity, which may be

demonstrated via l’Hôpital’s rule.

Note that for constant functions, the period X0 = ∞ and the resulting value of
the SINC function is:

lim
X0→∞

½
SINC

µ
d0
X0

¶¾
= 1

which means that uniform weighted averaging has no effect on any constant input
function. The samples of cosine of period X0 obtained with sampling interval ∆x in
the two cases are:

Realistic:fs [n] =
1

2
·
µ
1 + SINC

∙
d0
X0

¸
· cos

∙
2π · n · ∆x

X0
+ φ0

¸¶
Ideal : fs [n] =

1

2
·
µ
1 + cos

∙
2π · n · ∆x

X0
+ φ0

¸¶
where d0 is the width of the detector. The amplitude of the realistic case is multiplied

by a factor of SINC

∙
d0
X0

¸
, which is less than unity everywhere except at the origin,

, i.e., where d0 = 0 or X0 = ∞. As the detector size increases relative to the

spatial period of the cosine (i.e., as
d0
X0

increases) , then SINC

∙
d0
X0

¸
→ 0 and the

modulation of the sinusoid decreases.

The modulation of the image of a sine-wave of period X0, or spatial frequency

ξ =
1

X0
, is reduced by a factor SINC

∙
d0
X0

¸
= SINC [d0ξ0].

16 CHAPTER 2 REVIEW OF SAMPLING

Example of Reduced Modulation due to Prefiltering

The input function f [x] has a period of 128 units with two periods plotted. It is the
sum of six sinusoidal components plus a constant:

f [x] =
1

2
+
1

2

6X
n=1

(−1)n−1

n
sin

∙
2π
(2n− 1)x
256

¸
.

The periods of the component sinusoids are:

X1 =
128

1
units =⇒ ξ1 =

1

128

cycles
unit

' 0.0078cycles
unit

X2 =
128

3
units ' 42.7 units =⇒ ξ2 =

3

128

cycles
unit

' 0.023cycles
unit

X3 =
128

5
units = 25.6 units =⇒ ξ3 =

5

128

cycles
unit

' 0.039cycles
unit

X4 =
128

7
units ' 18.3 units =⇒ ξ4 =

7

128

cycles
unit

' 0.055cycles
unit

X5 =
128

9
units ' 14.2 units =⇒ ξ4 =

9

128

cycles
unit

' 0.070cycles
unit

X6 =
128

11
units ' 11.7 units =⇒ ξ4 =

11

128

cycles
unit

' 0.086cycles
unit

The constant bias of 0.5 ensures that the function is positive. The first sinusoidal
component (X01 = 128 units) is the fundamental and carries most of the modulation
of the image; the other components (the higher harmonics) have less amplitude. The
spatial frequency of each component is much less than the Nyquist limit of 0.5.

2.2 REALISTIC SAMPLING — AVERAGING BY THE DETECTOR 17

Illustration of the reduction in modulation due to “prefiltering”: (a) input function
f [n]; (b) result of prefiltering with uniform averagers of width d = 0, d = X0

16
, and

d = X0

8
; (c) magnified view of (b), showing the change in the signal; (d) result

offiltering with uniform averagers of width d = X0

2
, d = X0, and d = X0

0.75
, showing

the “contrast reversal” in the last case.

18 CHAPTER 2 REVIEW OF SAMPLING

SINC

∙
d0
X01

¸
= SINC [d0ξ1] = SINC

∙
8 · 1
128

¸
' 0.994

SINC

∙
d0
X02

¸
= SINC [d0ξ2] = SINC

∙
8 · 3
128

¸
' 0.943

SINC

∙
d0
X03

¸
= SINC [d0ξ3] = SINC

∙
8 · 5
128

¸
' 0.847

SINC

∙
d0
X04

¸
= SINC [d0ξ4] = SINC

∙
8 · 7
128

¸
' 0.714

SINC

∙
d0
X05

¸
= SINC [d0ξ5] = SINC

∙
8 · 9
128

¸
' 0.555

SINC

∙
d0
X06

¸
= SINC [d0ξ6] = SINC

∙
8 · 11
128

¸
' 0.385

Note that the modulation of sinusoidal components with shorter periods (higher
frequencies) are diminished more severely by the averaging. A set of prefiltered images
for several different averaging widths is shown on a following page. If the detector
width is 32 units, the resulting modulations are:

SINC [d0ξ1] = SINC

∙
32 · 1

128

¸
' 0.900

SINC [d0ξ2] = SINC

∙
32 · 3

128

¸
' 0.300

SINC [d0ξ3] ' −0.180
SINC [d0ξ4] ' −0.129
SINC [d0ξ5] ' −0.100
SINC [d0ξ6] ' +0.082

Note that the components with periods X04 and X05 have negative modulation,
, i.e., fmax < fmin. The contrast of those components is reversed. As shown, the
sampled image looks like a sawtooth with a period of 128 units.
If the detector size is 128, each component is averaged over an integral number of

periods and the result is just the constant bias; the modulation of the output is zero:

SINC [d0ξ1] = SINC

∙
128

128

¸
= SINC [1] = 0

SINC [d0ξ2] = SINC

∙
128· 7

42

¸
= SINC [3] = 0

For a detector width of 170 units, the modulations are:

2.2 REALISTIC SAMPLING — AVERAGING BY THE DETECTOR 19

SINC [d0ξ1] = SINC

∙
170 · 1

128

¸
' −0.206

SINC [d0ξ2] = SINC

∙
170 · 3

128

¸
' −0.004

SINC [d0ξ3] = SINC

∙
170 · 5

128

¸
' +0.043

SINC [d0ξ4] = SINC

∙
170 · 7

128

¸
' −0.028

SINC [d0ξ5] ' −0.004
SINC [d0ξ6] ' +0.021

Because the first (largest amplitude) sinusoidal component has negative modula-
tion, so does the resulting image. The overall image contrast is reversed; darker areas
of the input become brighter in the image.

Chapter 3

Review of Quantization

3.1 Quantization: A/D Conversion

The process of quantization converts the continuously valued irradiance (“lightness”
or “brightness”) measured at a sample (or a derived signal, such as the voltage mea-
sured from that signal) to one of a discrete set of gray levels (sometimes called dig-
ital counts though its acronym of “DC” may be confused with that for “direct cur-
rent”). For example, the measured signal at the sample located at [x0, y0] might be
f [x0, y0] = 1.234567890 · · · W

mm2
. This number is converted to some integer value, per-

haps fq = 42. The range of allowed integers is determined by various factors in the
quantizer. For example, we might have 0 ≤ fq ≤ (fq)max where the maximum value
(fq)max is determined by the number of bits in the quantizer: (fq)max = 255 = 2

8 − 1
for an 8-bit quantizer and (fq)max = 2

12 − 1 = 4095 for the (increasingly common)
12-bit quantizer in scientific digital cameras.

3.1.1 Tone Transfer Function

1. Quantization is significantly affected by detector parameters, including its dy-
namic range and linearity. The dynamic range of a detector image may be
defined as the range of brightness (irradiance) over which a change in the in-
put signal produces a detectable change in the measured output of the sensor.
Note that the input and output quantities need not be identical; for example,
in old-fashioned emulsion photography, the input might be measured as power
per unit area (e.g., W

mm2
) and the resulting output in the dimensionless optical

density D where 0 ≤ D ≤ ∞. The effect of the detector on the measurement
may be described by a transfer characteristic or tone-transfer function (TTF,
also called the tone-transfer curve TTC), which is merely a graph of the out-
put value as a function of the various inputs to the sensor. The shape of the
transfer characteristic may be used as a figure of merit for the measurement
process. A detector is linear if the TTC is a straight line, i.e., if an incremen-
tal change in input from any level produces a fixed incremental change in the
output. Of course, all real detectors have a limited dynamic range, i.e., they
will not respond at all to light intensity below some minimum value and their

21

22 CHAPTER 3 REVIEW OF QUANTIZATION

response will not change for intensities above some maximum. All realistic de-
tectors are therefore nonlinear, but there may be some regions over which they
are more-or-less linear, with nonlinear regions at either end. A common such
example is photographic film; the TTC is the Hurter-Driffield (H&D) curve,
which is a graph of the recorded optical density of the emulsion as a function
of the logarithm of the input irradiance (which might be measured in W

mm2
).

Another very important example in digital imaging is the video camera, whose
TTC maps input light intensity to output voltage. The transfer characteristic
of a video camera is approximately a power law:

Vout = c1B
γ
in + V0

where V0 is the threshold voltage for a dark input and γ (gamma) is the exponent
of the power law. The value of γ depends on the specific detector but typical
values are γ ' 1.7 for a vidicon camera and γ ' 1 for an image orthicon. The
value of gamma for a digital sensor (CCD) is inherently very close to unity, but
are often modified in software to approximate photographic emulsions.

Possible tone-transfer function of quantizer applied to photographic emulsion,
showing the “toe” on the left, “linear region” in the center, and “shoulder” on the

right.

The resolution, or step size b0, of the quantizer is the difference in the measured
signal at the center of adjacent gray levels. It makes little sense to quantize the
sampled signal with a resolution b0 that is smaller than the signal uncertainty due to
noise in the detector system. Thus the effective number of levels is often less than
the maximum available as determined by the number of bits.
Conversion from a continuous range to discrete levels requires a thresholding op-

eration (e.g.,truncation or rounding). Some range of input brightnesses will map to
a single output level, e.g., all measured irradiances between 0.76 and 0.77 W

mm2
might

3.1 QUANTIZATION: A/D CONVERSION 23

map to gray level 59. Threshold conversion is a nonlinear operation, i.e., the thresh-
old of a sum of two inputs is not necessarily the sum of the thresholded outputs. The
concept of linear operators will be discussed extensively later, but we should say at
this point that the nonlinearity due to quantization makes it inappropriate to analyze
the complete digital imaging system (digitizer, processor, and display) by common
linear methods. This problem is usually ignored, as is appropriate for large numbers
of quantized levels that are closely spaced so that the digitized image appears con-
tinuous. Because the brightness resolution of the eye-brain is limited, quantizing to
only 50 levels is satisfactory for many images; in other words, 6bits of data is often
sufficient for images to be viewed by humans.

Quantization is performed by some kind of digital comparator, which is an inher-
ently nonlinear electronic device that accepts an analog input and produces one of
two possible output values that depend on whether the analog input is smaller or
larger than some reference signal; if smaller, the output is a value that may be nor-
malized to “0” and if) or if larger, the output is a “1”. For example, if the reference
of the comparator is set at 0.5V and if the input is finput = 0.3V, then the output
is Q{0.3V} = 0. If the input voltage is doubled finput = 0.6V, then the output is
Q{0.6V} = 1. Note that this behavior clearly does not satisfy the requirement for a
linear operator L, where the output is doubled if the input is doubled:

if L{f} = g, then L{2f} = 2g for a linear operator L

The more general expression for a linear operator is::

if L{fn} = gn, then L
(

NX
n=1

αnfn

)
=

NX
n=1

αngn for a linear operator L

where {αn} is a set of numerical (generally complex-valued) weights.

The simplest quantizer converts an analog input voltage to a 1-bit digital output
and can be constructed from an ideal differential amplifier, where the output voltage
Vout is proportional to the difference of the input signal Vin and some reference Vref
that is provided by a calibrated source:

Vout = α(Vin − Vref)

If the weighting factor α is sufficiently large to approximate ∞, then the output
voltage will be +∞ if Vin > Vref and −∞ if Vin < Vref. In this simple example,
we would assign the digital value “0” to a negative output where Vin < Vref and
“1” to a positive output such that Vin > Vref. A quantizer with better resolution
may be constructed by cascading several such digital comparators with different (but
generally evenly spaced) reference voltages. A digital translator converts the set of
comparator signals to the binary code. The 1-bit comparator and a 2-bit analog-to-
digital converter (ADC) are shown in the figure:

24 CHAPTER 3 REVIEW OF QUANTIZATION

Comparator and 2-Bit analog-to-digital converter (ADC). The comparator may be
interpreted as an amplifier with “infinite” gain, so that its output is a “high” voltage
if Vin > Vref and a “low” voltage otherwise. The schematic of the ADC consists of
4 comparators whose reference voltages are determined by the voltage divider with

the resistor ladder.

In the most common scheme of uniform quantization, the step size b is fixed at
the value:

b =
fmax − fmin
2m − 1

where fmax and fmin are the extrema of the measured irradiances of the image samples
and m is the number of bits of the quantizer.
If the darkest and brightest samples of a continuous-tone image have measured

irradiances fmin and fmax respectively, and the image is to be quantized using m bits
(2m graylevels), then we may define a set of uniformly spaced levels fqthat span the
dynamic range via:

fq [x, y] = Q
½
f [x, y]− fmin

b

¾
= Q

½
f [x, y]− fmin
fmax − fmin

· (2m − 1)
¾

whereQ{ } represents the nonlinear truncation or rounding operation, e.g.,Q{3.657} =
3 if Q is truncation or 4 if Q is rounding. The form of Q determines the location of
the decision levels where the quantizer jumps from one level to the next. The image
irradiances are reconstructed by assigning all pixels with a particular gray level fq to
the same irradiance value E [x, y], which might be defined by “inverting” the quan-
tization relation. The reconstruction level is often placed between the decision levels

by adding a factor
b

2
:

Ê [x, y] =

µ
fq [x, y] ·

Emax −Emin
2m − 1

¶
+Emin +

b

2

Usually (of course), Ê [x, y] 6= E [x, y] due to the quantization, i.e., there will be
quantization error. The goal of optimum quantization is to adjust the quantization

3.2 QUANTIZATION ERROR (“NOISE”) 25

scheme to reconstruct the set of image irradiances which most closely approximates
the ensemble of original values. The criterion which defines the goodness of fit and the
statistics of the original irradiances will determine the parameters of the quantizer,
e.g., the set of thresholds between the levels.
The quantizer just described is memoryless, i.e., the quantization level for a pixel

is computed independently that for any other pixel. The schematic of a memoryless
quantizer is shown below. As will be discussed, a quantizer with memory may have
significant advantages.

Effect of different bit depths (numbers of gray values) on image appearance from 8
bits (256 levels) down to 1 bit (2 levels). Not the “contouring” apparent for 2 and 3

bits (4 and 8 levels).

3.2 Quantization Error (“Noise”)

The difference between the true input irradiance (or brightness) and the corresponding
irradiance corresponding to the computed digital level is the quantization error at that
pixel:

[n ·∆x,m ·∆y] ≡ f [n ·∆x,m ·∆y]− fq [n ·∆x,m ·∆y] .

Note that the quantization error is bipolar in general, i.e., may take on positive
or negative values. It often is useful to describe the statistical properties of the
quantization error, which will be a function of both the type of quantizer and the
input image. However, if the difference between quantization steps (i.e., the width
of a quantization level) is b, is constant, the quantization error for most images may
be approximated as a uniform distribution with mean value h [n]i = 0 and variance
h(1[n])2i =

b2

12
. The error distribution will be demonstrated for two 1-D 256-sample

images. The first is a section of a cosine sampled at 256 points and quantized to 64
levels separated by b = 1:

26 CHAPTER 3 REVIEW OF QUANTIZATION

Statistics of quantization noise: (a) f [n] = 63 · cos
£
2π n

1024

¤
where 0 ≤ n ≤ 255 (one

quarter of a cycle); (b) after quantization by rounding to nearest integer; (c)
quantization error ε [n] = f [n]− fq [n], showing that −12 ≤ ε ≤ +1

2
; (d) histogram of

256 samples of quantization error, which shows that the error is approximately
uniformly distributed.

The computed mean of the error 1[n] = f1[n] − Q{f1[n]} is h 1[n]i = −5.1 ·
10−4 and the variance is h 21[n]i = 0.08 ' 1

12
. That the distribution of the errors is

approximately uniform is shown by the histogram.

The second image is comprised of 256 samples of Gaussian distributed random
noise in the interval [0,63]. The image is quantized to 64 levels.Again, the error 2[n]
is uniformly distributed in the interval [−0.5,+0.5] with mean 4.09 · 10−2 ' 0 and
variance σ2 = h 22[n]i >= 0.09 ' 1

12
.

3.2 QUANTIZATION ERROR (“NOISE”) 27

Statistics of quantization error for Gaussian distributed random noise: (a) f [n] with
μ ∼= 27.7, σ ∼= 11; (b) after quantization by rounding to nearest integer; (c)

quantization error ε [n] = f [n]− fq [n], showing that −12 ≤ ε ≤ +1
2
; (d) histogram of

256 samples of quantization error, which shows that the error is approximately
uniformly distributed.

The total quantization error is the sum of the quantization error over all pixels in
the image:

=
X
i

X
j

[n ·∆x,m ·∆y] .

An image with large bipolar error values may thus have a small total error. The
mean-squared error (the average of the squared error) is a better descriptor of the
fidelity of the quantization:

2 =
1

N

X
i

X
j

2 [n ·∆x,m ·∆y] ,

28 CHAPTER 3 REVIEW OF QUANTIZATION

where N is the number pixels in the image. If the irradiance is measured in W
mm2

, 2

will have units of
¡
W
mm2

¢2
, so it is common to evaluate the square root to compute

the root-mean-squared error (RMS), which has the same dimensions as the error (or
as the signal):

RMS Error =
√

2 =

s
1

N

X
i

X
j

2 [n ·∆x,m ·∆y].

It should be obvious that the RMS error obtained for one image using different quan-
tizers will depend on the choice used, and that the RMS error from one quantizer will
differ for different images. It should also be obvious that it is desirable to minimize
the RMS error in an image. The brute-force method for minimizing quantization
error is to add more bits to the ADC, which increases the cost of the quantizer and
the memory required to store the image. There also is a limit to the effectiveness of
such an approach, since the output from a quantizer with a very small step size will
be noisy.

3.2.1 Signal-to-Noise Ratio

The signal-to-noise power ratio of an analog signal is most rigorously defined as the
dimensionless ratio of the variances of the signal and noise:

SNR ≡
σ2f
σ2n

where the variance σ2 of a signal is a measure of the spread of its amplitude about
the mean value:

σ2f =

Z +∞

−∞
[f [x]− hf [x]i]2 dx→ 1

X0

Z +
X0
2

−X0
2

[f [x]− hf [x]i]2 dx

Thus a large SNR means that there is a larger variation of the signal amplitude
than of the noise amplitude. The definition of SNR as the ratio of variances may
have a large range of values — easily several orders of magnitude — and the numerical
values may become unwieldy. The range of SNR may be compressed by expressing it
on a logarithmic scale as a dimensionless quantity called a bel :

SNR = log10

µ
σ2f
σ2n

¶
= log10

µ
σf
σn

¶2
= 2 log10

µ
σf
σn

¶
[bels]

This definition of SNR is even more commonly expressed in units of tenths of a bel,
or decibels, so that the integer value is more precise:

SNR = 10 log10

µ
σ2f
σ2n

¶
= 20 log10

µ
σf
σn

¶
[decibels]

3.2 QUANTIZATION ERROR (“NOISE”) 29

Under this definition, the SNR is 10 dB if the signal variance is ten times larger than
the noise variance and 20 dB if the standard deviation is ten times larger than that
of the noise.

The variances obviously depend on the independent statistics (specifically on the
histograms) of the signal and noise. The variances do not depend on the “arrange-
ment” of the gray levels (i.e., the numerical “order” or “pictorial” appearance of the
pixel gray values) in the image. Since the noise often is determined by the mea-
surement equipment, a single measurement of the noise variance often is used for
many signal amplitudes. However, the signal variance must be measured each time.
Consider a few examples of common 1-D signals.

3.2.2 Example: Variance of a Sinusoid

The variance of a sinusoid with amplitude A0 is easily computed by direct integration:

f [x] = A0 cos

∙
2π

x

X0

¸
=⇒ hf [x]i = 0

σ2f =
1

X0

Z +
X0
2

−X0
2

[f [x]− hf [x]i]2 dx = 1

X0

Z +
X0
2

−X0
2

µ
A0 cos

∙
2π

x

X0

¸¶2
dx

=
A20
X0

Z +
X0
2

−X0
2

1

2

µ
1 + cos

∙
4π

x

X0

¸¶
dx =

A20
2X0

(X0 + 0)

where the trigonometric identity

cos2 [θ] =
1

2
(1 + cos [2θ])

has been used. The final result is:

σ2f =
A20
2
for sinusoid with amplitude A0

Note that the variance of the sinusoid does not depend on the period (i.e., on the
spatial frequency) or on the initial phase — it is a function of the histogram of the
values in a period and not of the “ordered” values. It also does not depend on any
“bias” (additive constant) in the signal. The standard deviation of the sinusoid is
just the square root of the variance:

σf =
A0√
2
for sinusoid with amplitude A0

30 CHAPTER 3 REVIEW OF QUANTIZATION

3.2.3 Example: Variance of a Square Wave:

The variance of a square wave also is easily evaluated by integration of the thresholded
sinusoid:

f [x] = A0 SGN

∙
cos

∙
2π

x

X0

¸¸
=⇒ hf [x]i = 0

σ2f =
1

X0

Z +
X0
2

−X0
2

[f [x]− hf [x]i]2 dx = 1

X0

ÃZ +
X0
4

−X0
4

(−A0)2 dx+
Z +

3X0
4

+
X0
4

(+A0)
2 dx

!

=
1

X0

µ
A20

X0

2
+A20

X0

2

¶
= A20

=⇒ σ2f = A20 for square wave with amplitude A0

=⇒ σf = A0 for square wave with amplitude A0

Note that:
(σf)square wave, amplitude A0 > (σf)sinusoid, amplitude A0

which makes intuitive sense, because the amplitude of the square wave is often more
“distant” from its mean than the sinusoid is.

3.2.4 Variance of “Noise” from a Gaussian Distribution

A set of amplitudes selected at random from a probability distribution with a Gaussian
“shape” is call Gaussian noise. The most common definition of the Gaussian distrib-
ution is:

p [n] =
1√
2πσ2

exp

"
−(x− μ)2

2σ2

#
where μ is the mean value of the distribution and σ2 is the variance. This shows
that the Gaussian distribution is completely specified by these two parameters. The
standard deviation σ is a measure of the “width” of the distribution and so influences
the range of output amplitudes.

3.2 QUANTIZATION ERROR (“NOISE”) 31

One exemplar and the histogram of 8192 samples from the Gaussian distribution
with mean value μ = 4 and standard deviation σ = 2:

p [n] =
1√
2π
exp

"
−
µ
n− 4
2

¶2#

3.2.5 Approximations to SNR

Since the variance depends on the statistics of the signal, it is common (though less
rigorous) to approximate the variance by the square of the dynamic range (peak-to-
peak signal amplitude fmax − fmin ≡ ∆f). In most cases, (∆f)2 is larger (and often
much larger) than σ2f . In the examples of the sinusoid and the square wave already
considered, the approximations are:

Sinusoid with amplitude A0 =⇒ σ2f =
A20
2
, (∆f)2 = (2A0)

2 = 4A20 = 8 · σ2f
Square wave with amplitude A0 =⇒ σ2f = A20, (∆f)2 = (2A0)

2 = 4A20 = 4 · σ2f

For Gaussian noise with variance σ2 = 1 and mean μ, the dynamic range of the noise
technically is infinite, but since few amplitudes exist that are outside of the interval
of four standard deviations measured from the mean. This means that the extrema
of the Gaussian distribution may be approximated by fmax ∼= μ+ 4σ, fmin ∼= μ− 4σ,
leading to ∆f ∼= 8σ. The estimate of the variance of the signal is then (∆f)2 ∼= 64σ2f ,
which is (obviously) 64 times larger than the actual variance. Because this estimate
of the signal variance is too large, the estimates of the SNR thus obtained will be too
optimistic.
Often, the signal and noise of images are measured by photoelectric detectors as

differences in electrical potential in volts; the signal dynamic range is Vf = Vmax−Vmin,
the average noise voltage is Vn, and the signal-to-noise ratio is:

SNR = 10 log10

µ
V 2
f

V 2
n

¶
= 20 log10

µ
Vf
V

¶
[dB]

32 CHAPTER 3 REVIEW OF QUANTIZATION

As an aside, we mention that the signal amplitude (or level) of analog electrical signals
often is described in terms of dB measured relative to some fixed reference signal. If
the reference level is V = 1V (regardless of the impedance), then the signal level is
measured in units of “dBV:”

level = 10 log10
¡
V 2
f

¢
dBV = 20 log10 (Vf) dBV

The level is measured relative to 1 mV (across an impedance of 75Ω) is in units of
“dBmV:”

level = 10 log10

Ãµ
Vf

10−3V

¶2!
dBV = 60 log10 (Vf) dBmV

3.2.6 SNR of Quantization

We now finally get to the goal of this section: to determine the signal-to-noise ratio
of quantization of a signal. Clearly the quantized signal exhibits an error from the
original analog signal, which leads to the quantity of “noise” and thus a measure of
SNR. . Though in a strict sense the input signal and the type of quantizer determine
the probability density function of the quantization error, it usually is appropriate to
assume that the error due to quantization is uniformly distributed, i.e., the probability
density function is a rectangle. In the case of an m-bit uniform quantizer (2m gray
levels) where the levels are spaced by intervals of width b0 over the full analog dynamic
range of the signal, the error due to quantization will be (approximately) uniformly
distributed over this interval b0; this will be demonstrated in the following examples.
If the nonlinearity of the quantizer is rounding, the mean value of the error is 0; if
truncation to the next lower integer, the mean value is − b0

2
. Any book on probability

and statistics likely will demonstrate that the variance and standard deviation of
uniformly distributed noise over a range b0 are:

σ2n =
b20
12

σn =

r
b20
12
=

b0√
12

This also may be derived quite easily by evaluating the terms in the expression for
the variance:

σ2n =

n2
®
− hni2

where the noise function is

pn =
1

b0
RECT

"
n− b0

2

b0

#

3.2 QUANTIZATION ERROR (“NOISE”) 33

This means that the mean value hni = b0
2
and the mean value of n2 is:

n2
®
=

Z +∞

−∞
n2 · p [n] dn = 1

b0

Z +∞

−∞
n2 ·RECT

"
n− b0

2

b0

#
dn

=
1

b0

Z b0

0

n2 dn =
1

b0
· n

3

3

¯̄̄̄n=b0
n=0

=
1

b0
· b

3
0

3
=

b20
3

So the variance is:

σ2n =

n2
®
− hni2

=
b20
3
−
µ
b0
2

¶2
= b20

µ
1

3
− 1
4

¶
=

b20
12

QED

σ2n =
b20
12
for uniformly distributed noise over range b0

For anm-bit quantizer and a signal with with maximum and minimum amplitudes
fmax and fmin (and range ∆f = fmax− fmin), the width b0 of a quantization level (the
step size) has the value:

b0 =
fmax − fmin

2m
≡ ∆f

2m
= (∆f) · 2−m

If we can assume that the quantization noise is uniformly distributed, then the vari-
ance of the quantization noise is well defined:

σ2n =
b20
12
=
1

12

µ
∆f

2m

¶2
= (∆f)2 ·

¡
12 · 22m

¢−1
The SNR is the ratio of the variance of the signal to that of the noise due to quanti-
zation:

σ2f
σ2n
= σ2f ·

12 · 22m

(∆f)2

This may be expressed on a logarithmic scale to yield the (sort of) simple expression:

SNR = 10 · log10
£
σ2f · 12 · 22m

¤
− 10 · log10

£
(∆f)2

¤
= 10 · log10

£
σ2f
¤
+ 10 · log10 [12] + 20 ·m · log10 [2]− 10 · log10

£
(∆f)2

¤
∼= 10 · log10

£
σ2f
¤
+ 10 · 1.079 + 20 ·m · 0.301− 10 · log10

£
(∆f)2

¤
∼= 6.02 ·m+ 10.8 + 10 · log10

∙µ
σ2f

(∆f)2

¶¸
[dB]

The third term obviously depends on the parameters of both the signal and the quan-
tizer. This equation demonstrates one result immediately — that the SNR of quan-
tization increases by ' 6 dB for every bit added to the quantizer (again, assuming
uniform distribution of the noise). If using the (poor) estimate that σ2f = (∆f)2, then

34 CHAPTER 3 REVIEW OF QUANTIZATION

the third term evaluates to zero and the approximate SNR is:

SNR for quantization to m bits ∼= 6.02 ·m+ 10.8 + 10 · log10 [1]) = 6.02 ·m+ 10.8 [dB]

The statistics (and thus the variance) may be approximated for many types of
signals (e.g., music, speech, realistic images) as resulting from a random process.
The histograms of these signals usually are peaked at or near the mean value μ and
the probability of a gray level decreases for values away from the mean; the signal
approximately is the output of a gaussian random process with variance σ2f . By
selecting the dynamic range of the quantizer ∆f to be sufficiently larger than σf , few
(if any) levels should be clipped by the quantizer. For a Gaussian random process,
virtually none of the values will be clipped if the the maximum and minimum levels
of the quantizer are four standard deviations from the mean level:

fmax − μf = μf − fmin =
∆f

2
= 4 · σf

In other words, we may choose the step size between levels of the quantizer to satisfy
the criterion:

∆f = 8 · σf =⇒
σ2f

(∆f)2
=
1

64

In this case, the SNR of the quantization process becomes:

SNR = 6.02 ·m+ 10.8 + 10 · log10
∙
1

64

¸
= 6.02 ·m+ 10.8 + 10 · (−1.806)
= 6.02 ·m− 7.26 [dB]

which is ∼= 18 dB less than the (optimistic) estimate obtained by assuming that
σ2f
∼= (∆f)2.

This expression for the SNR of quantizing a Gaussian-distributed random signal
with measured variance σ2f may be demonstrated by quantizing that signal to m bits
over the range fmin = μ− 4σf to fmax = μ+ 4σf , and computing the variance of the
quantization error σ2n. The resulting SNR should satisfy the relation:

SNR = 10 · log10
∙
σ2f
σ2n

¸
= (6.02 ·m− 7.26) dB

This equation may be applied to demonstrate that the SNR of a noise-free analog
signal after quantizing to 8 bits is ∼= 41 dB. The SNR of the same signal quantized
to 16 bits (common in CD players) is approximately 89 dB. The best SNR that can
be obtained from analog recording (such as on magnetic tape) is about 65 dB, which
is equivalent to that from a signal digitized to 12 bits per sample or 4096 levels.

The flip side of this problem is to determine the effective number of quantization
bits after digitizing a noisy analog signal. This problem was investigated by Shannon

3.3 QUANTIZATION TO FEW BITS 35

in 1948. The analog signal is partly characterized by its bandwidth ∆ν [Hz], which
is the analog analogue of the concept of digital data rate [bits per second]. The
bandwidth is the width of the region of support of the signal spectrum (its Fourier
transform).

3.3 Quantization to Few Bits

If quantizing to a small number of bits, say 4 or fewer so that the number of gray
values is 16 or fewer, then the image appearance often suffers markedly. This was
visible in the example of bit depth shown earlier; the examples for 2 and 3 bits are
repeated below. The “false contouring” shown was a common occurence in the “old
days” when display capabilities were much more limited than currently. A special
case is quantization to a single bit for two gray values (black and white); this is called
halftoning from its original use to convert gray-scale images (photographs) to bitonal
images for printing in newspapers or books.

False contouring becomes visible in an image with slowly varying gray values if
quantized to few bits.

3.3.1 Improved Gray Scale (IGS) Quantization

The IGS quantization is a standard technique (considered in Gonzalez and Woods)
that has a rather glorified name for a fairly simple concept. The process is well
defined and reduces the effects of false contouring by adding a random number of
size approximately equal to the quantization step size to the gray value of each pixel
BEFORE quantization. The recipe for the process is:

1. Set initial SUM to binary value (0000 0000)2

2. If most signficant four bits of current pixel evaluate to 1111, then set the new
sum to those four bits + 0000, otherwise set new sum with the four most
significant bits plus the 4 least signficant bits of the old sum.

Example

36 CHAPTER 3 REVIEW OF QUANTIZATION

Index Gray Binary Code Sum of 8-bit binary and 4-bit error 4-bit Gray

n− 1 N/A 00002 0000 0000 N/A

n 108 0110 11002 0110 1100 + 0000 0000 = (0110) (1100) 01102= 6.

n+ 1 139 1000 10112 1000 1011 + 0000 (1100)= (1001) (0111) 10012= 9.

n+ 2 135 1000 01112 1000 0111 + 0000 (0111)= (1000) (1110) 10002= 8.

n+ 3 244 1111 01002 1111 0100 + 0000 (1110)= (1111) (1111)+ 0000 0011 11112= 15.

n+ 4 200 1100 10002 1100 1000 + 0000 (0011)= (1100) 1011 11002= 12.

3.3.2 Quantizers with Memory — Error Diffusion

Another way to reduce quantization error is to use a quantizer with memory, so that
the quantized value at a pixel is determined in part by the quantization error at
nearby pixels. A schematic diagram of the quantizer with memory is shown below:

Flow chart for “quantizer with memory” = error-diffusion quantization

A simple method for quantizing with memory that generally results in reduced
total error without a priori knowledge of the statistics of the input image and without
adding much additional complexity of computation was introduced by Floyd and
Steinberg (SID 36, 1976) as a means to simulate gray level images on binary image
displays and is known as error diffusion. It is easily adapted to multilevel image
quantization. As indicated by the name, in error diffusion the quantization error is
from one pixel is used to in the computation of the levels of succeeding pixels. In its
simplest form, all quantization error at one pixel is subtracted from the gray level of
the next pixel. The subsequent quantization of the next pixel therefore reduces the
local quantization error.

3.3 QUANTIZATION TO FEW BITS 37

1-D Error Diffusion of 1-D Functions

In the 1-D case, the quantization level at sample location x is the gray level of the
sample minus the error [x− 1] at the preceding pixel:

fq [x] = Q {f [x]− [x− 1]}
[x] = f [x]− fq [x]

= f [x]−Q {f [x]− [x− 1]}

Usually, the error is reset to zero at the beginning of each line. You can see that
this is simple to implement and the results are often very useful. Several years back,
John Knapp (CIS undergraduate and graduate student) used 1-D error diffusion to
improve the reconstructions of computer-generated holograms for several different
applications and the results were often excellent (§23.4 in my book Fourier Methods
in Imaging).

2-D Error Diffusion

In the 2-D case, it is possible (and often desirable) to divide and apply the resulting
quantization error weight among different as-yet unquantized pixels. The “standard”
Floyd-Steinberg algorithm quantizes the N × N image in a raster from the upper
left corner (sequence of pixels: first row from left to right, then second row from left
to right, etc. to the bottom line of pixels). At each pixel, the quantization error is
evaluated and divided among four pixels yet to be quantized: 7

16
of this result is added

to the next pixel in line, 5
16
to the pixel below, 3

16
to the pixel below and “forward”,

and 1
16
to the pixel below and “afterward.” A figure is helpful:

¤ 7
16

3
16

5
16

1
16

These errors are subtracted from the subsequent pixels, and the ensemble of results
can significantly affect the quantized state of a pixel. The end result is an array
of bitonal pixels (black and white) where the density of white pixels is proportional
to the gray value. The examples demonstrate the effects of binary quantization on
gray-level images. The images of the ramp demonstrate that why the binarizer with
memory is often called pulse-density modulation. Note that more fine detail is pre-
served in binarized images from the quantizer with memory (e.g.,the sky in Liberty
and the shoulder in Lincoln). This is accomplished by possibly enhancing the local
binarization error.

38 CHAPTER 3 REVIEW OF QUANTIZATION

2-D error-diffused quantization for three gray-scale images: (a) linear ramp, after
quantizing at the midgray level, after Floyd-Steinberg error diffusion at the midgray
level; (b) same sequence for "Lincoln"; (c) same sequency for "Liberty." The
error-diffused images convey more information about the more raplidly varying

structure in the scenes.

Error diffusion has applications beyond quantization — for example, Eschbach and
Knox have used it to create algorithms for edge enhancement.
A discussion of the use of error diffusion in ADC was given by Anastassiou (IEEE

Trans. Circuits and Systems, 36, 1175, 1989).

3.3.3 Halftoning

This is the process of converting a gray-scale image to a bitonal (1-bit) image. All
processes do some kind of thresholding operation and depend on the limited resolution
of the eye to “locally average” the resulting bits to give the illusion of gray scale.
The “pattern dithering” processes are standard in newspaper reproduction, while the
error-diffused dithering works well on electronic displays.

3.3 QUANTIZATION TO FEW BITS 39

Figure 3.1: Results of different halftoning algorithms: (a) original image; (b) after
thresholding at 50% gray; (c) pattern “dither”; (d) error-diffused “dither.”

Chapter 4

Image Processing Operations

Once the image data has been sampled, quantized, and stored in the computer, the
next task is change the image for whatever purpose, e.g., to extract additional infor-
mation from the data, to make the image appear better. The various image processing
operations O{ } are applied to the digital input image fs[n ·∆x, m ·∆y] to obtain
a (generally) different output gs[n0 · ∆x,m0 · ∆y]. From this point on, all images
may be considered as sampled data and thus the subscript s will be ignored and the
coordinates will be labeled by [x, y]. The general operator has the form

O{f [n,m]} = g [k,]

though most often the input and output indices will be identical: [k,] = [n,m].
The various operators O can categorized based on the number and location of the

pixels of the input image f that affect the computation of a particular output pixel
[x, y]. One possible set of categories is:

1. Geometrical Operations: The gray value f at pixel [n,m] is remapped to the
new location [k,]. This may be interpreted as a mapping of f [n,m] to obtain
g [n,m] = f [k,]: this class of operator may be used to magnifiy, minify, ro-
tate, or warp images and is essential in many disciplines, including cartography,
medical imaging, . . .

2. Point Operations on single images: The gray value of the output image g
at a particular pixel [n0,m0] depends ONLY on the gray value of the same pixel
in f ; examples of these operations include contrast stretching, segmentation
based on gray value, and histogram equalization;

3. Point Operations on multiple images: The gray value of the output pixel
g [n0,m0] depends on the gray values of the same pixel in a set of input images
f [x0, y0, tn] or f [x0, y0, λn]; examples are segmentation based on variations in
time or color; multiple-frame averaging for noise smoothing, change detection,
and spatial detector normalization;

4. Neighborhood Operations on one image: The gray value of g at a par-
ticular pixel [n0,m0] depends on the gray values of pixels in the neighborhood

41

42 CHAPTER 4 IMAGE PROCESSING OPERATIONS

of of the same pixel in f [n0,m0]; examples include convolution (as for image
smoothing or sharpening), and spatial feature detection (e.g., line, edge, and
corner detection);

5. Neighborhood Operations on multiple images: This is just a generaliza-
tion of (3); the pixel g [n0,m0] depends on pixels in the spatial and temporal
(or spectral) neighborhood of [x0, y0, tn or λn]. spatial / temporal convolution
or spatial / spectral convolution

6. Operations based on Object “Shape” (e.g., “structural” or “morphologi-
cal”) operations: The gray level of the output pixel is determined by the object
class to which a pixel belongs; examples include classification, segmentation,
data compression, character recognition;

7. “Global” Operations: The gray value of the output image at a specific pixel
depends on the gray values of all of the pixels of f [n,m]; these include image
transformations, e.g., Fourier, Hartley, Hough, Haar, Radon transforms

4.1 Geometrical Operations

Schematic of geometrical operation; the gray values of pixels of f [n,m] are
“unchanged” (except for interpolation effects) by the operation, but the gray values

are moved to different locations.

Geometrical operations change the spatial relationships between image pixels and
may be used to correct distortions due to recording geometry, scale changes, rotations,
perspective (keystoning), or due to curved or irregular object surfaces. In this section,
we will define the procedures for specifying and implementing a range of geometrical
operations.

4.1 GEOMETRICAL OPERATIONS 43

4.1.1 Common Geometrical Operations

[x0, y0] are the coordinates of the input image that are mapped to [x, y] in the output
image.

x0 = x, y0 = y =⇒ g [x, y] = f [x0, y0] = f [x, y] =⇒ identity transformation

x0 = x+ x0, y0 = y + y0 =⇒ g [x, y] = f [x+ x0, y + y0] =⇒ translation by [x0, y0]

x0 = ax, y0 = by =⇒ g [x, y] = f [Mxx,Myy] =⇒ spatial scaling

x0 = −x, y0 = +y =⇒ g [x, y] = f [−x,+y] =⇒ left-right reversal, mirror image

x0 = −x, y0 = −y =⇒ g [x, y] = f [−x,−y] =⇒ rotation by 180◦

x0 = x+ αy, y0 = y =⇒ g [x, y] = f [x+ αy, y] =⇒ skew

x0 = x+ αxy, y0 = y =⇒ g [x, y] = f [x+ αxy, y] =⇒ perspective distortion

⎧⎨⎩ x0 = α [x, y] = x cos θ − y sin θ

y0 = β [x, y] = x sin θ + y cos θ

⎫⎬⎭ =⇒ rotation thru θ

cosπ = −1, sinπ = 0 =⇒ x0 = −x, y0 = −y =⇒ g [x, y] = f [−x,−y] =⇒ rotation by 180◦

Examples of useful geometrical operations.

We can think of two obvious cases, where the operation is specified at the outset
(e.g., you need to rotate the image by θ = 30◦) or where you need to determine the

44 CHAPTER 4 IMAGE PROCESSING OPERATIONS

mathematical operation necessary to “warp” an “input” image to match a second
image (the “reference”).
In theory, it is possible (though exhausting!) to describe geometric transforma-

tions via a lookup table of input/output coordinates, i.e., the table would specify new
output coordinates [x0, y0] for each input location [x, y]. Equivalently, the coordinate
lookup table could specify the input coordinates [x, y] that map to a specific output
pixel [x0, y0]. For example, the lookup table moves pixels upward and to the right by
one in each direction is:

n m k

0 0 +1 +1

−1 −1 0 0

1 2 2 3
...

...
...

...

For an N × M image, such a lookup table would contain N · M ordered pairs
(=⇒ 262, 144 pairs for a 512 × 512 image). Such a lookup table could specify
any arbitrary geometric transform, i.e., input pixels in the same neighborhood could
move to locations that are very far apart in the output image. Besides using large
blocks of computer memory, coordinate lookup tables are more general than usually
necessary.
In realistic applications, neighboring pixels in the input image will remain in close

proximity in the output image, i.e., the coordinates of pixels in the same neighborhood
will be transformed in similar manner (adjacent input pixels remain adjacent in the
output image). Such coordinate mappings are also called rubber-sheet transformations
or image warping and may be specified by a set of parametric equations that specify
the output coordinates for a given input position. For example, the transformed
coordinates x0 and y0 could be specified as a function of both the x and y coordinates
by functions α and β:

x0 = α [x, y]

y0 = β [x, y] .

The gray level f at the location [x, y] is transferred to the new coordinates [x0, y0] to
create the output image f [x0, y0]. This sequence of operations equivalent to defining
a “new” image g [x, y] in the same coordinates [x, y] but with different gray levels;
hence:

O{f [x, y]} = g [x, y] = f [x0, y0] = f [α [x, y] , β [x, y]] .

4.1.2 Power Series for Coordinates

In nearly all imaging appliations, the output image preserves the arrangement of pixel
gray values in neighborhoods, which means that the transformation of the continuous
coordinates must be continuous, i.e., the derivatives of the functions α [x, y] and

4.1 GEOMETRICAL OPERATIONS 45

β [x, y] must be finite everywhere. Such a requirement is automatically satisfied if the
functions have the forms of power series of the input coordinates with nonnegative
powers:

x0 = α [x, y] ≡
∞X
n=0

∞X
m=0

anmx
nym = a00 + a10x+ a01y + a11xy + a20x

2 + · · ·

y0 = β [x, y] ≡
∞X
n=0

∞X
m=0

bnmx
nym = b00 + b10x+ b01y + b11xy + b20x

2 + · · ·

In theory, any geometrical operation may be specifed in this way. In practice, the
infinite series must be truncated, and the upper limits determine the rage of possible
transformations.
For example, if we select:

a10 = b01 = 1

a00 = x0

b00 = y0

anm = bnm = 0 otherwise

The operation reduces to:

x0 = x+ x0

y0 = y + y0

which is a translation of the origin from [0, 0] to [x0, y0]. If we select

a00 = b00 = 0

a10 =Mx

b01 =My

anm = bnm = 0 otherwise

=⇒ x0 =Mx · x
y0 =My · y

then the operation is a magnification along the two axes by scale factors of Mx and
My such that the origin is unchanged.

4.1.3 Affine Transformation

Under many conditions, only three terms are needed in each series:

x0 = a00 + a10x+ a01y

y0 = b00 + b10x+ b01y

46 CHAPTER 4 IMAGE PROCESSING OPERATIONS

This defines an affine transformation and may be considered as a linear transfor-
mation (specified by the scale factors) followed by a translation (specified by the
constants a00 and b00). Note that the affine transformation does not describe the
skew and perspective examples.

4.1.4 Bilinear Transformation — Pseudoinverse Calculation

If we add the fourth term in both series, i.e., anm and bnm = 0 for n,m ≥ 2, then we
have a bilinear transformation:

x0 ∼= a00 + a10x+ a01y + a11xy

y0 ∼= b00 + b10x+ b01y + b11xy

There are eight unknown coefficients in the transformation, and thus (at least) eight
independent equations of [x, y] and [x0, y0] are needed to find a solution for the coef-
ficients anm and bnm. Knowledge of the coordinate transformation of the vertices of
a quadrilateral is sufficient to find a solution for this transformation. In other words,
knowledge of the mapping at (at least) four locations

[x1, y1]→ [x01, y
0
1]

[x2, y2]→ [x02, y2]

[x3, y3]→ [x03, y
0
3]

[x4, y4]→ [x04, y4]

will allow calculation of the eight coefficients. These four locations are sometimes
called control points.

The solution may be cast in matrix notation where the known inputs [xn, yn] and
outputs [x0n, y

0
n] are arranged as column vectors in the matrices X and X0, respec-

tively, and the unknown coefficients aij and bij are the rows of the matrix A in this
expression:

A (unknown) •X (known) = X0 (known)

⎡⎣ a00 a10 a01 a11

b00 b10 b01 b11

⎤⎦
⎡⎢⎢⎢⎢⎢⎢⎣

1 1 1 1

x1 x2 x3 x4

y1 y2 y3 y4

x1y1 x2y2 x3y3 x4y4

⎤⎥⎥⎥⎥⎥⎥⎦ =
⎡⎣ x01 x02 x03 x04

y01 y02 y03 y04

⎤⎦

If the matrixX is square (and if no three of the known points lie on the same straight
line), then the inverse matrix X−1 exists and may be found via a straightforward

4.2 LEAST-SQUARES SOLUTIONFORAFFINETRANSFORMATION47

calculation:

(A •X•)X−1 = X0 •X−1

=⇒ A = X0 •X−1

More control points may be used in a bilinear fit, thus making the problem “overde-
termined” (more equations than unknowns). A unique solution of an overdetermined
problem may not exist if there is uncertainty (“noise”) in the data. Under such con-
ditions, either a least-squares solution (which minimizes the total squared error, and
thus the mean-squared error) may be calculated. Alternatively, it is possible to apply
the control points locally to determine appropriate local transformations for different
sections of the image. If the distortion cannot be adequately represented by a power
series with eight coefficents, then more than four control points are required.

4.2 Least-Squares Solution for Affine Transforma-
tion

The procedure for computing the least-squares solution for the coefficients of a geo-
metric transformation is quite easy in matrix notation. For example, consider the
simpler affine transformation that adds a constant translation to the coordinate and
applies a magnification in each orthogonal direction. The coordinate equations are:

x0 = a00 + a10x+ a01y

y0 = b00 + b10x+ b01y

where the coefficients anm and bnm must be calculated. The system of equations has
six unknown quantities and so requires six equations to obtain a solution. Since each
control point (input-output coordinate pair) yields equations for both xand y, three
control points are needed. If more control points (say five) are available and consistent,
the extras may be ignored and the the matrix inverse computed as before. If the
positions of the control points are uncertain, the equations will be inconsistent and
the matrix inverse will not exist. Under these conditions, the additional control points
will improve the estimate of the transformation. The computation of the coefficients
which minimizes the squared error in the transformation is called the least-squares
solution, and is easily computed using matrix algebra as a pseudoinverse.

Now consider the process if we have measured five pairs of known control points,
the matrix transformation is composed of the (as-yet unknown) 2 row by 3 column
matrix A, the known 3 row by 5 column matrix X of input locations, and the 2 row

48 CHAPTER 4 IMAGE PROCESSING OPERATIONS

by 5 column matrix X0 of measured output locations of the control points:

A •X = X0

⎡⎣ a00 a10 a01

b00 b10 b01

⎤⎦
⎡⎢⎢⎢⎣
1 1 1 1 1

x1 x2 x3 x4 x5

y1 y2 y3 y4 y5

⎤⎥⎥⎥⎦ =
⎡⎣ x01 x02 x03 x04 x05

y01 y02 y03 y04 y05

⎤⎦
If X were square (and invertible), we would compute X−1to find A via:

A = X0 •X−1

However, X is NOT square in this case, and thus its inverse X−1 does not exist. We
may evaluate a pseudoinverse of X that implements a least-squares solution for A
via the following steps for the the general case where X has p rows and q columns
(p = 3 and q = 5 in the example above).

1. multiply both sides of the equation from the right by the transpose matrix XT ,
which is obtained from X by exchanging the rows and columns to obtain a
matrix with q rows and p columns. The result is:

(A •X) •XT = X0 •XT

2. The associativity of vector multiplication allows the second and third matrices
on the left-hand side to be multiplied first:

(A •X) •XT = A •
¡
X •XT

¢

3. The matrix X •XT is p× p square. In the example above, the product of the

4.2 LEAST-SQUARES SOLUTIONFORAFFINETRANSFORMATION49

two matrices is 3× 3 square:

X•XT=

⎡⎢⎢⎢⎣
1 1 1 1 1

x1 x2 x3 x4 x5

y1 y2 y3 y4 y5

⎤⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 x1 y1

1 x2 y2

1 x3 y3

1 x4 y4

1 x5 y5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎣
5 x1+x2+x3+x4+x5 y1+y2+y3+y4+y5

x1+x2+x3+x4+x5 x21+x
2
2+x

2
3+x

2
4+x

2
5 x1y1+x2y2+x3y3+x4y4+x5y5

y1+y2+y3+y4+y5 x1y1+x2y2+x3y3+x4y4+x5y5 y21+y
2
2+y

2
3+y

2
4+y

2
5

⎤⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

5
5X

n=1

xn

5X
n=1

yn

5X
n=1

xn

5X
n=1

x2n

5X
n=1

xnyn

5X
n=1

yn

5X
n=1

xnyn

5X
n=1

y2n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Since X•XT is square, there is some chance that its inverse

¡
X •XT

¢−1
exists.

If this is the case, then we can multiply the left-hand side of the equation by
this inverse from the right; the result yields the desired coefficients ak and bk
within the matrix A:

A •
¡
X •XT

¢
•
¡
X •XT

¢−1
= A

4. If we perform the same series of steps on the right-hand side, we obtain the
desired formula for the pseudoinverse X†

X† ≡ XT •
¡
X •XT

¢−1
=⇒ A = X0 •

³
XT •

¡
X •XT

¢−1´ ≡ X0 •X†

The expression for the affine transformation obtained from five control points

50 CHAPTER 4 IMAGE PROCESSING OPERATIONS

is:⎡⎣ a00 a10 a01

b00 b10 b01

⎤⎦ =
⎡⎣ x01 x02 x03 x04 x05

y01 y02 y03 y04 y05

⎤⎦

•

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 x1 y1

1 x2 y2

1 x3 y3

1 x4 y4

1 x5 y5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
•

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎣
1 1 1 1 1

x1 x2 x3 x4 x5

y1 y2 y3 y4 y5

⎤⎥⎥⎥⎦ •

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 x1 y1

1 x2 y2

1 x3 y3

1 x4 y4

1 x5 y5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−1⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Example: Exact Control Points

Consider an example where we select four control points in a square that are mapped
exactly without error

[x1, y1] = [0, 0]→ [x01, y
0
1] = [0, 0]

[x2, y2] = [100, 0]→ [x02, y
0
2] = [100, 100]

[x3, y3] = [100, 100]→ [x03, y
0
3] = [0, 200]

[x3, y3] = [0, 100]→ [x03, y
0
3] = [−100, 100]

4.2 LEAST-SQUARES SOLUTIONFORAFFINETRANSFORMATION51

X =

⎡⎢⎢⎢⎣
1 1 1 1

x1 x2 x3 x4

y1 y2 y3 y4

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
1 1 1 1

0 100 100 0

0 0 100 100

⎤⎥⎥⎥⎦
X0 =

⎡⎣ x01 x02 x03 x04

y01 y02 y03 y04

⎤⎦ =
⎡⎣ 0 100 0 −100

0 100 200 100

⎤⎦

¡
X •XT

¢
=

⎡⎢⎢⎢⎣
1 1 1 1

0 100 100 0

0 0 100 100

⎤⎥⎥⎥⎦ ·
⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0

1 100 0

1 100 100

1 0 100

⎤⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
4 200 200

200 20 000 10 000

200 10 000 20 000

⎤⎥⎥⎥⎦

¡
X •XT

¢−1
=

⎡⎢⎢⎢⎣
3
4
− 1
200
− 1
200

− 1
200

1
10 000

0

− 1
200

0 1
10 000

⎤⎥⎥⎥⎦

X† ≡ XT •
¡
X •XT

¢−1
=

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0

1 100 0

1 100 100

1 0 100

⎤⎥⎥⎥⎥⎥⎥⎦ ·
⎡⎢⎢⎢⎣

3
4
− 1
200
− 1
200

− 1
200

1
10 000

0

− 1
200

0 1
10 000

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎣

3
4
− 1
200
− 1
200

1
4

1
200

− 1
200

−1
4

1
200

1
200

1
4
− 1
200

1
200

⎤⎥⎥⎥⎥⎥⎥⎦
:

A =

⎡⎣ a00 a10 a01

b00 b10 b01

⎤⎦ = X0 •
³
XT •

¡
X •XT

¢−1´

=

⎡⎣ 0 100 0 −100

0 100 200 100

⎤⎦ ·
⎡⎢⎢⎢⎢⎢⎢⎣

3
4
− 1
200
− 1
200

1
4

1
200

− 1
200

−1
4

1
200

1
200

1
4
− 1
200

1
200

⎤⎥⎥⎥⎥⎥⎥⎦ =
⎡⎣ 0 1 −1
0 1 1

⎤⎦

=⇒ a00 = b00 = 0, a10 = b10 = b01 = 1, a01 = −1

This is a rotation and a scaling, which we can see by factoring out a constant:⎡⎣ a10 a01

b10 b01

⎤⎦ =
⎡⎣ 1 −1
1 1

⎤⎦ = √2 ·
⎡⎣ 1√

2
− 1√

2

1√
2

1√
2

⎤⎦ = √2 ·
⎡⎣ cos π

4
− sin π

4

+sin π
4
cos π

4

⎤⎦

52 CHAPTER 4 IMAGE PROCESSING OPERATIONS

So the image is scaled (magnified) by
√
2 and rotated by θ = +π

4
= 45◦.

Check :

x0 = a00 + a10x+ a01y

y0 = b00 + b10x+ b01y

[0, 0]→ [0, 0]

[100, 0] =⇒ 100→ 0 + 1 · 100 + (−1) · 0 = 100, 0
→ 0 + 1 · 100 + 1 · 0 = 100 =⇒ [x02, y

0
2] = [100, 100]

[100, 100] =⇒ 100→ 0 + 1 · 100 + (−1) · 100 = 0, 100
→ 0 + 1 · 100 + 1 · 100 = 200 =⇒ [x03, y

0
3] = [0, 200]

[0, 100] =⇒ 100→ 0 + 1 · 0 + (−1) · 100 = −100, 100
→ 0 + 1 · 0 + 1 · 100 = 100 =⇒ [x04, y

0
4] = [−100, 100]

Example: Control Points with Small Error

If the four control points are not exactly located, we obtain an approximate solution
with the smallest least-squares error. The same input points are mapped to incorrect
output points

[x1, y1] = [0, 0]→ [x01, y
0
1] = [1,−1]

[x2, y2] = [100, 0]→ [x02, y
0
2] = [95, 98]

[x3, y3] = [100, 100]→ [x03, y
0
3] = [2, 196]

[x3, y3] = [0, 100]→ [x03, y
0
3] = [−98, 99]

4.3 PIXEL TRANSFERS 53

X =

⎡⎢⎢⎢⎣
1 1 1 1

x1 x2 x3 x4

y1 y2 y3 y4

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
1 1 1 1

0 100 100 0

0 0 100 100

⎤⎥⎥⎥⎦
X0 =

⎡⎣ x01 x02 x03 x04

y01 y02 y03 y04

⎤⎦ =
⎡⎣ 1 95 2 −98

−1 98 196 99

⎤⎦

X† ≡ XT •
¡
X •XT

¢−1
=

⎡⎢⎢⎢⎢⎢⎢⎣
3
4
− 1
200
− 1
200

1
4

1
200

− 1
200

−1
4

1
200

1
200

1
4
− 1
200

1
200

⎤⎥⎥⎥⎥⎥⎥⎦
:

A =

⎡⎣ a00 a10 a01

b00 b10 b01

⎤⎦ = X0 •
³
XT •

¡
X •XT

¢−1´

=

⎡⎣ 1 95 2 −98

−1 98 196 99

⎤⎦ ·
⎡⎢⎢⎢⎢⎢⎢⎣

3
4
− 1
200
− 1
200

1
4

1
200

− 1
200

−1
4

1
200

1
200

1
4
− 1
200

1
200

⎤⎥⎥⎥⎥⎥⎥⎦ =
⎡⎣−12 97

100
−24
25

−1
2

49
50

99
100

⎤⎦

=⇒ a00 = b00 = −
1

2
, a10 =

97

100
, a01 = −

24

25
, b10 =

49

50
, b01 =

99

100

This is indicates that we need to add a translation of the function by −1
2
along each

direction.

4.3 Pixel Transfers

As already mentioned, a geometrical transformation may be implemented by spec-
ifying the where each pixel of the input image is located in the output grid, or by
specifying the location of each output pixel on the input grid. Except for certain (and
usually uninteresting) transformations, pixels of the input image will rarely map ex-
actly to pixels of the output grid. It is therefore necessary to interpolate the gray
value from pixels with noninteger coordinates (i.e., nongrid points) to pixels with
integer coordinates that lie upon the grid. The method that transfers the input pixel
coordinates and interpolates the gray value on the output grid is called pixel carry-
over by K.R. Castleman in his book Digital Image Processing. It may also be called
an input-to-output mapping. The algorithm that locates the output pixel upon the
input grid and interpolates the gray value of the input pixels is called pixel filling or

54 CHAPTER 4 IMAGE PROCESSING OPERATIONS

an output-to-input mapping.

Interpolation of pixel gray value in geometrical transformation: (a) pixel
“carryover,” where the gray value of a single input pixel is interpolated in the output
array; (b) pixel “filling,” where the interpolation is performed at the transformed

location of the output pixel in the input array.

4.4 Pixel Interpolation

Gray-value interpolation is based on the relative distances of the nearest neighbors to
or from the geometrically transformed pixel. In the simplest case of nearest-neighbor
or zeroth-order interpolation), all of the gray value is transferred to or from the near-
est pixel. However, since the distances of the four neighbors must be evaluated to
determine which is closest, it generally is quite easy to “upgrade” nearest-neighbor
calculations to bilinear interpolation. This method divides the gray level of the non-
integer pixel among its four nearest “integer” neighbors in inverse proportion to the
distance; if the transferred pixel is equidistant from the four neighbors, then its gray
value is divided equally, if it is much closer to one of the four grid points, most of
its gray value is transferred to that pixel. For pixel filling, the gray value at the
output pixel g [x0, y0] is determined from the following equation, where xn, yn are the
coordinates of the nearest pixel of the input grid to the transformed pixel, and dn are

4.4 PIXEL INTERPOLATION 55

the respective distances:

g [x0, y0] =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

4X
n=1

f [xn, yn]

dn
4X

n=1

1

dn

if all dn > 0

f [xn, yn] if dn = 0

=

1

d1
f [x1, y1] +

1

d2
f [x2, y2] +

1

d3
f [x3, y3] +

1

d4
f [x4, y4]

1

d1
+
1

d2
+
1

d3
+
1

d4

Note that if the transformed location is identical to a pixel site, the distance to that
site is d = 0 and the entire gray value is assigned to that location.

Schematic of interpolation of pixel gray value. The input and output grids of pixels
are shown as solid and dashed lines, respectively. The distances of the output pixel

from the four nearest neighbors are labeled d1 − d4.

The gray level of the transformed pixel can be divided among more of the neigh-
boring pixels by using higher-order interpolation, e.g., cubic spline, etc.

56 CHAPTER 4 IMAGE PROCESSING OPERATIONS

Figure 4.1: The outputs obtained by rotating the image of Lincoln by θ = 30◦ using
four different pixel mappings: the first row are from pixel carryover (input to output)
with 0th-order interpolation (“nearest neighbor”) and 1st-order (“linear”); the second
row are from pixel filling (output to input) with 0th and 1st-order interpolation. Note
that the linear interpolation slightly “blurs” the image.

4.4 PIXEL INTERPOLATION 57

Figure 4.2: Same operations applied to “Liberty”

Chapter 5

Point Operations

The gray value of each pixel in the output image g [x, y] depends on the gray value
of only the corresponding pixel of the input image f [x, y]. Every pixel of f [x, y]
with the same gray level maps to a single (usually different) gray value in the output
image.
In a point operation, the only available parameter to be processed is the gray value

of that one pixel. Therefore, the action of a point operation affects all pixels with the
same input gray level f0 the same; they are changed to the same output gray value
g0. When designing the action of the point operation, it often is very useful to know
the pixel population H as a function of gray level f ; such a plot is the histogram
H [f] of the image. The amplitude of the histogram at gray value f is proportional
to the probability of occurrence of that gray value.

5.1 Image Histograms

The histogram of the 2-D image f [x, y] plots the population of pixels with each gray
level f .

The histogram may be represented as a 1-D function H [f], where the independent
variable is the gray value f and the dependent variable is the number of pixels H with
that level. The histogram depicts a particular feature of the image: the population

59

60 CHAPTER 5 POINT OPERATIONS

of gray levels. It represents the simplest feature of the image, where a feature is a
metric of some useful distinguishing characteristic of the image. The histogram may
be called a feature space and it is possible to construct image processing operations
to segment image pixels into component groups based on that feature.

The histogram often contains valuable global information about the image. For
example, most pixels in a low-contrast image are contained in a few gray levels over a
narrow range, so the histogram is concentrated within that small range of gray levels..
An image with a bimodal histogram (the histogram of gray values exhibits two modes
=⇒ a histogram with two “peaks”) often consists of a foreground object (whose pixels
are concentrated around a single average gray value) on top of a background object
whose pixels have a different average gray value.

Because all pixels in the image must have some gray value in the allowed range,
the sum of populations of the histogram bins must equal the total number of image
pixels N :

fmaxX
f=0

H [f] = N

where fmax is the maximum gray value (fmax = 255 for an 8-bit quantizer). The
histogram function is a scaled replica of the probability distribution function of gray
levels in that image. The discrete probability distribution function p [f] must satisfy
the constraint:

fmaxX
f=0

p [f] = 1

and therefore the probability distribution and the histogram are related by the simple
expression:

p [f] =
1

N
H [f]

5.1 IMAGE HISTOGRAMS 61

5.1.1 Histograms of Typical Images

In realistic images, the gray values of an object are not identical but are “spread”
about some mean value. The shape of the histogram for a realistic case follows the
familiar “bell curve” or Gaussian distribution. The mathematical expression for a
Gaussian distribution of gray values is an expression of the probability of occurence
of gray value f where the mean value (and also most likely) is specified by μ. The
“width” of a cluster may be quantified by metrics such as the full width at half
maximum (FWHM) or half width at half maximum (HWHM), which are easy to
measure but less useful than a true statistical measure. A more appropriate metric of
cluster width is standard deviation σ (or its square σ2, which is called the variance).
The Gaussian probability has the form:

p [f] =

r
1

2πσ2
· exp

"
−(f − μ)2

2σ2

#

The factor (f − μ)2 in the exponent indicates that the Gaussian curve is symmetric
about its mean value. Consider an example of gray values that follow a Gaussian
distribution centered about a mean value μ = 155 with standard deviation σ = 25 for
a total number of pixels N = 2048 The histogram of this theoretical case indicates
that gray values near the mean value (e.g., for |f − μ| / 50 = 2 · σ) occur most
frequently, while those far from the mean (e.g., |f − μ| ' 3 · σ) are much less likely.

Simulation of histogram of a single object class with gray value centered at f = 155.
The histogram has a Gaussian shape with standard deviation σ = 25.

62 CHAPTER 5 POINT OPERATIONS

Since every pixel in the image takes on one of the allowed gray values, the summation
of the histogram values must equal the number of pixels in the image:

fmaxX
f=0

H [f] = N

In real images with more than one object, the histograms tend to include multiple
Gaussian curves added together. Consider a theoretical example that simulates the
histogram of the image of Greek text. The histogram is composed of two Gaussian
clusters with means and standard deviations:

N1 = 1536 : μ1 = 151, σ1 = 25

N2 = 512 : μ2 = 70, σ2 = 30

so that the cluster with the larger mean has three times as many pixels. The histogram
of the individual clusters is shown (red and blue, respectively) and their sum, which
shows the overlap of the clusters.

Simulation of the histogram of the Greek text image. The histograms (probability
density functions) of the individual clusters are shown individually (red and blue)

and as the sum (black). Note that the histogram clusters “overlap.”

This theoretical histogram is very similar to the histogram of a real image of a man-
uscript with dark pixels on a lighter background. This is perhaps the most common
class of image: a “smallish foreground” object (with a narrowish range of gray values)
on top of a “larger background” object with a different range of gray values:

5.1 IMAGE HISTOGRAMS 63

Image of historical manuscript with faded dark text on a lighter background; the
histogram shows evidence of two “peaks:” a small darker peak (foreground text) and

a large lighter peak (background parchment)

Note that many pixels belonging to the “lightish” background parchment form a
“tall” cluster in the histogram whose shape follows the common “bell curve” of proba-
bility, which also called a Gaussian curve. In the example shown, the darker pixels in
the image due to the handwritten characters form a broader cluster (indicating that
the cluster has a larger variance) centered about a smaller gray value. The broad
cluster has a smaller maximum value since there are fewer dark pixels than light.

Segmentation by Thresholding

It often is desirable to construct an image where the spread of gray values is elim-
inated by “segmenting” the pixels belonging to one object from those belonging to
the other(s). The most common method for doing this is to “threshold” the image,
i.e., set the gray values of pixels below some chosen threshold level to BLACK and
those above that level to WHITE. For example, we can threshold the image of text
to produce a bitonal output; two examples are shown:

64 CHAPTER 5 POINT OPERATIONS

Gray-scale image of old Greek text thresholded at two different gray values; if
thresholded at the lower level (top), then most of the background is correctly

identified as “white” while some of the text is misidentified as “white”; if thresholded
at the higher level, much of the background is misidentified as foreground (black).

Note that the process did not work well in this example; the “spread” in gray
value due to the illumination dominated the second thresholded image. These results
demonstrate the (obvious) fact that segmentation should work best if the peaks in
the histogram are “narrow” and “far apart.” The pixels that are correctly identified
as belonging to the class of interest (e.g., if a dark text pixel is dark in the thresh-
olded image) are “true positives” and those correctly identified as NOT belonging to
that class are “true negatives.” Obviously the incorrectly identified pixels are “false
positives” (if a parchment pixel is thresholded to “dark” and thus identified as text)
and “false negatives.”

5.1 IMAGE HISTOGRAMS 65

5.1.2 Other Examples of Histograms

Consider the histogram of a an aerial photogram of a parking lot. The histogram
exhibits two obvious clusters, but we can see that these do not correspond to a neat
foreground and background.

Histogram of “low-contrast” image shows that most of the pixels are concentrated in
a narrow range of gray value.

Histogram of an image with better contrast better fills the available dynamic range of
the image.

From these results, it is possible to see that more information is conveyed to the
viewer if more gray values are occupied. From this observation, it is a “short hop” to
see that images with every gray value occupied equally convey the maximum possible
amount of “information” about the scene. This is the basis for an important concept
in information theory that was pioneered by Claude Shannon in the 1940s. Shannon
showed that an appropriate definition of the quantity of information in an image
f [x, y] such that the probability of the particular gray value f is represented as p [f]:

I[f] = −
fmaxX
f=0

p [f] · log2[p [f]]
∙
bits
pixel

¸
As we shall see shortly, this equation may be analyzed to see that the maximum
information content in an image results when all gray levels are equally populated ; in
other words, a flat histogram corresponds to maximum information content.

66 CHAPTER 5 POINT OPERATIONS

5.1.3 Histogram Modification for Image Enhancement

In point processing, the only parameter in the pixel transformation is the pixel gray
value, which means that all pixels of the same gray level are transformed identically.
An example of a such an operation is the “spreading out” of a compact histogram
(resulting from a low-contrast image) over the available dynamic range to make the
pixel contrast more visible. The mapping from input gray level f to output level
g is called a lookup table, or LUT. Lookup tables may be graphically plotted as
transformations g [f] that relate the input gray level (plotted on the x-axis) to the
output gray level (on the y-axis). For example, the output resulting from the first
mapping below is identical to the input, while the output derived from the second
mapping has inverted contrast, i.e., white→black.

First row: The identity lookup table g [f] = f , the resulting image g [x, y] = f [x, y]
and its histogram; second row: the “negative” lookup table g [f] = 255− f , the

resulting image, and its histogram.

As already mentioned, the image histogram is proportional to the probability
distribution of gray levels in the image. The action of any lookup table on an image
may be modeled as a transformation of probabilities. Recall that the area under any
continuous probability density p [f] or discrete probability distribution pf is unity:Z ∞

0

p [f] df = 1 =⇒
∞X
n=0

pn = 1

For histograms, the corresponding equations are:Z fmax

0

H [f] df =

fmaxX
f=0

H [f] = N (total number of pixels),

5.1 IMAGE HISTOGRAMS 67

which merely states that every image pixel has some gray level between 0 and fmax.
Similarly for the output image:

gmaxX
g=0

H [g] = N.

The input and output histograms H [f] and H [g] may be easily related to the
lookup table transformation g [f] by using the basic principles of probability the-
ory. Conservation of pixel number requires that incremental areas under the two
histograms must match, i.e., if input gray level f0 becomes output level g0, then:

H [f0] df = H [g0] dg (continuous gray levels) =⇒ H [f0] = H [g0] (discrete gray levels)

These equations merely state that all input pixels with level f0 are mapped to level
g0 in the output.

A lookup table that decreases the contrast, the resulting image, and the concentrated
histogram; the linear contrast enhancement lookup table, its result when applied to

the low-contrast image, and the “spread-out” histogram.

5.1.4 Jones Plots

It may be useful to plot the histogram of the input image, the lookup table (“gray-
level transformation”), and the histogram of the output image as shown below. The
input histogram (upside down) is at the lower-right; the output histogram (rotated
90◦ counterclockwise) is at the upper left; the lookup table is at the upper right. The
new gray level g0 is determined by mapping the value f0 through the curve g [f] onto
the vertical axis. In this case, the gray levels of the original low-contrast image are
spread out to create a higher-contrast image.

68 CHAPTER 5 POINT OPERATIONS

Figure 5.1: Identity lookup table: the input image f [x, y] and its histogram H [f] are
shown along the bottom. The lookup table g [f] = f is shown as the red line at the
rising angle of 45◦. The mappings of two gray values are shown in blue; the line from
the input histogram is “reflected” through the lookup table to create the value in the
output histogram H [g] (on the right). The output image is g [x, y] = f [x, y].

Identity Lookup Table

The first example of a point operation is the (trivial) identity operator, where the
gray value of the “output” pixel is identical to that of the input pixel, i.e., level “0”
maps to “0,” “1” to “1,” etc. The lookup table is the line g = f , which rises at an
angle of 45◦.

“Inversion” or “Negative” Lookup Table

The second example computes the “inverse” or “negative” of the digital image. Ac-
tually, both of these names are somewhat misleading, since the output value remains
a positive integer within the available dynamic range. The lookup table evaluates the
new gray value

g [f] = fmax − f

where fmax = 255 in these 8-bit images. This indicates this lookup table is more
appropriately called the “complement” instead of the “negative” or “inverse.”

5.1 IMAGE HISTOGRAMS 69

Figure 5.2: Jones plot for contrast enhancement for a continuous histogram.

70 CHAPTER 5 POINT OPERATIONS

Figure 5.3: Complement lookup table: The lookup table g [f] = fmax − f is shown as
the red line at the falling angle of 45◦. “Dark” input pixels (at the left side of the
histogram) are mapped to “bright” values. The output histogram H [g] is “reversed”
(flipped end for end).

5.1 IMAGE HISTOGRAMS 71

As already mentioned, the image histogram is proportional to the probability distri-
bution of gray levels in the image. The action of any lookup table on an image may
be modeled as a transformation of probabilities. The probability of a pixel having
one of the available gray values must be unity:

fmaxX
f=0

pf = 1

The corresponding equation for the histogram is:

fmaxX
f=0

H (f) = N (total number of pixels),

which merely states that every image pixel has some gray level between 0 and fmax.
Similarly for the output image:

gmaxX
g=0

H (g) = N.

The input and output histograms H (f) and H (g) are related by the lookup table
transformation g (f) via the basic principles of probability theory. The fact that the
number of pixels must be conserved requires that the values of the two histograms at
corresponding gray levels must match, so that if input gray level f0 becomes output
level g0, then:

H [f0] = H [g0] (discrete gray levels)

These equations merely state that all input pixels with level f0 are mapped to level
g0 in the output.

Contrast Enhancement

Probably the most common use of digital image processing is to enhance the contrast
of images. In other words, the input image f [x, y] is transformed to the output image
g [x, y] via a mapping g [f]. The histograms of the input and output images, H (f)
andH (g), are related by the lookup table transformation g (f) via the basic principles
of probability theory. The fact that the number of pixels must be conserved requires
that the values of the two histograms at corresponding gray levels must match, so
that if input gray level f0 becomes output level g0, then:

H [f0] = H [g0] (discrete gray levels)

These equations merely state that all input pixels with level f0 are mapped to level
g0 in the output.The schematic of the process is shown:

72 CHAPTER 5 POINT OPERATIONS

Figure 5.4: Demonstration of contrast enhancement: the input image f (x, y) and its
histogram H (f) are shown along the bottom. The lookup table g (f) exhibits a steep
linear slope over the range of occupied gray values f . Adjacent gray values are “spread
apart” by the action of the lookup table (blue lines show the mapping for two levels).

5.2 CUMULATIVE HISTOGRAM 73

Ad Hoc Pixel Operations for Image Enhancement

Many images have low contrast at small gray values (in the “shadows”) and fewer
pixels with large gray values (“highlights”). These images should have their small gray
values “spread out” and the large gray values “pushed together.” An appropriate ad
hoc lookup table is the appropriately scaled square root function:

g [f] = 255 ·
r

f

255
=
p
255 · f

√
255 · 200

: 225. 83 : 195. 58 : 5
√
510 = 112. 92

Possible lookup table for “ad hoc” enhancement of common 8-bit images. The curve
g [f] =

√
255 · f (red) is compared to the identity lookup table g [f] = f (black). The

square-root LUT enhances contrast in shadow regions (dark values, where dg
df

> 1)

while compressing gray values in highlights (light values where dg
df

< 1).

5.2 Cumulative Histogram

Given an N -pixel image f [x, y] with gray values in the range 0 ≤ f ≤ fmax and
having histogram H [f], then the Cumulative Histogram evaluated at specific gray
value f0 is the number of pixels with gray value ≤ f0:

C [f0] =

f0X
f=0

H [f] =
1

N

f0X
f=0

p [f]

Clearly, the cumulative histogram evaluated at the maximum gray value must yield
the number of pixels in the image:

74 CHAPTER 5 POINT OPERATIONS

C [M] =

fmaxX
f=0

H [f] = N

In the case of a continuous probability distribution, the cumulative histogram is an
integral over gray level:

C [f0] =

Z f0

f=0

H [f] df

If the image f has the “flat” histogram just described, so that H [f] is constant for
all values of f , then the value in each bin must be the ratio of the number of pixels
and the number of gray values:

flat histogram =⇒ H [f] =
N

fmax + 1

The corresponding cumulative histogram is:

C [f0] =

f0X
f=0

H [f] =

µ
N

fmax + 1

¶
·

f0X
f=0

1 =
N

fmax + 1
· f0

which increases by equal numbers of pixels as f0 is incremented. On the appropriately
scaled histogram graph, the cumulative histogram resulting from a flat histogram
(maximum information content) is a straight line at 45◦.
The cumulative histogram is used to derive the mapping that maximizes the global

visibility of changes in image gray value (histogram equalization) and for deriving an
output image with a specific histogram (histogram specification).

If H [f] is “flat” (meaning that every gray level “has” the same number of pixels),
then the associated cumulative histogram C [f] increases by the same number of
pixels for each gray value, and thus forms a linear “ramp” function. Such an image
has maximum “contrast” of pixels, meaning that such an image exhibits the most
subtle changes over the entire range of gray value; the information content of the
image is maximized. The cumulative histogram of an image with less information
will rises more rapidly at those gray levels where most pixels lie (often about the

5.2 CUMULATIVE HISTOGRAM 75

“mid-gray” value) and more slowly over the other levels. Examples are shown in the
figure.

Cumulative histograms: (a) of an image with the same number of pixels in each gray
value (thus maximizing the ability to distinguish small changes in gray value); (b) of

an image with the pixels concentrated at a mid-gray value.

76 CHAPTER 5 POINT OPERATIONS

Histogram Equalization (“Flattening”)

We just mentioned that the maximum “quantity” of information is determined by the
probability distribution of gray values, and thus by the histogram. The quantity of
information I in an image f [x, y] was specified by Claude Shannon in the late 1940s:

I[f] = −
fmaxX
f=0

p [f] · log2 (p [f])
∙
bits
pixel

¸
where p [f] is the probability of occurence of gray value f . The meaning of informa-
tion content is very important in image compression, which is the task of discarding
“unnecessary” (or “redundant”) image data to reduce the required storage space or
transmission time. As it happens, the information content in an image is maximized
if all gray levels are equally populated, so that H (f0) = H (f1) = · · · = H (fmax).
This ensures that the differences in gray level within the image are spread out over
the widest possible range and thus maximizes the ability to distinguish differences in
gray values.

5.2 CUMULATIVE HISTOGRAM 77

Figure 5.5: Cumulative histogram of input function f [x, y], which is scaled to produce
the (nonlinear) lookup table for histogram equalization.

The process of maximizing the visibility of image information is called histogram
equalization or flattening, and is an operation available in many computer image
processing programs. It is easy to describe and implment, BUT it is not appropriate
for all applications and it is important to understand the reason why.

The lookup table g (f) for histogram flattening is proportional to the cumulative
histogram of the input image C [f]. The mathematical derivation of the appropriate
g [f] is straightforward. Assume the point operation (lookup table) O{f [x, y]} =
g [x, y] equalizes the output histogram, i.e., the output histogram is “flat,” so that
H (g) is some constant. For simplicity, assume that gray levels are continuous and
that the lookup transformation g [f] is monotonically increasing:

g [f0] = g0

g [f0 +∆f] = g0 +∆g

Since the lookup table g [f] must be a monotonically increasing function, then the
corresponding inverse operation must exist (call it g−1), so that g−1 [g0] = f0. Because
the number of pixels must be conserved (each pixel in f [x, y] is also in g [x, y]), then
the probabilities must satisfy the relation:

p [f] ∆f = p [g] ∆g

=⇒ H [f]

N
·∆f =

H [g]

N
·∆g

=⇒ H [f] ·∆f = H [g] ·∆g

78 CHAPTER 5 POINT OPERATIONS

but H [g] is constant by assumption (flat histogram), so substitute H [g] = k, a
constant:

H ·∆f = k ·∆g

Sum (or integrate in the continuous case) both sides over the range of allowed levels
from f = 0 to f = f0. The summation evaluates the output gray level g0 for input
level f0:

f0X
0

H [f] = k ·
f0X
0

∆g = k · g [f0]

but
f0X
0

H [f] = C [f0] by definition of cumulative histogram

=⇒ k · g [f0] = C [f0]

=⇒ g [f0] =
1

k
· C [f0]

where the value The proportionality constant k may be evaluated for the number R
of available gray levels (dynamic range) and the number of pixels N

k =
N

R

The lookup table that equalizes the image histogram is:

gflat [f0] =
R

N
· C [f0]

Note that gray value “0” of the equalized image takes on the scaled value of the
cumulative histogram:

gflat [f = 0] =
R

N
· C [f = 0] = R

N
·H [0]

because the first element of the cumulative histogram is identical to the first element
of the histogram: C [0] = H [0]. If lots of pixels in the original image have gray value
“0”, then H [0] would be large, and perhaps so large that the first occupied gray value
of the equalized image would not be zero. For example, if half of the pixels of f [x, y]
are black with value “0”, then the first occupied level of g [x, y] would be the midgray
value. This clearly is not an efficient use of gray values, so the first occupied gray
value of g [x, y] often is set to zero by subtracting g [0] from the computed gray values:

gflat [f = f0] =
R

N
· (C [f0]− C [0])

=
R

N
· C [f0]−

R

N
·H [0]

which ensures that gflat [f = 0] = 0.

5.2 CUMULATIVE HISTOGRAM 79

Figure 5.6: Jones plot for contrast enhancement for a continuous histogram.

Since all pixels with the same discrete gray level f0 are treated identically by
the transformation, the histogram is “flattened” by spreading densely occupied gray
values into “neighboring,” yet sparsely occupied, gray levels. The resulting histogram
is as “flat” as can be obtained without basing the mapping on features other than
gray level.

The local areas under the input and flattened histograms must match; whereH [f]
is large, the interval ∆f is spread out to a larger ∆g, thus enhancing contrast. Where
H [f] is small, the interval ∆f maps to a smaller ∆g, thus reducing the differences in
gray value.

Adjacent well-populated gray levels are spread out, thus leaving gaps (i.e. unpop-
ulated levels) in the output histogram. Pixels in adjacent sparsely populated gray
levels of f [x, y]often are merged into a single level in g [x, y]. In practice, information
about gray-level differences at gray values with few pixels may be lost in the output
image, due to combining those pixels into single levels.

80 CHAPTER 5 POINT OPERATIONS

Jones plot for contrast enhancement in the discrete case.

Example of Histogram Equalization — 1-D “Image” Because the equalization
process acts on the histograms (and thus only indirectly on the image), the mathe-
matical operation does not depend on the number of spatial dimensions in the input
image; the process works as well for 1-D as 2-D images (or 3-D or 4-D or ...). For
simplicity of presentation, consider equalization of the histogram of a 1-D function.
This case considers an “image” in the form of a decaying exponential with 256 pixels
quantized to 6 bits (so that 0 ≤ f ≤ 63). The object is shown in (a) its histogram in
(b), and its cumulative histogram in (c). Note that the histogram exhibits significant
clustering; there are more “dark” than “light” pixels. The lookup table for histogram
equalization is a scaled replica of the cumulative histogram and is shown in (d). The
cumulative histogram of the equalized output image is C [g] in (e), and the output
histogramH [g] in (f). Note that the form of the output image in (g) is approximately
linear, significantly different from the decaying exponential object in (a). In other
words, the operation of histogram equalization changed BOTH the spatial character
as well as the quantization. The gray levels with large populations (dark pixels) pixels
have been spread apart in the equalized image, while levels with few pixels have been
compressed together.

Example of Histogram Equalization — 2-D “Image” An example of equalizing
of the histogram of a 2-D image is shown, where again the cumulative histogram is

5.2 CUMULATIVE HISTOGRAM 81

flattening of 1-D function.jpg

Figure 5.7: Illustration of histogram flattening of a 1-D function: (a) 256 samples of
f [n], which is a decaying exponential quantized to 64 levels; (b) its histogram H [f],
showing that the smaller population of larger gray values; (c) cumulative histogram
C [f]; (d) Lookup table, which is scaled replica of C [f] (note that it is nonlinear); (e)
Cumulative histogram of output C [g], which more closely resembles a linear ramp;
(f) histogram H [g], which shows the wider “spacing” between levels with large popu-
lations; (g) .Output image g [n] after quantization.

82 CHAPTER 5 POINT OPERATIONS

Figure 5.8: Schematic of histogram equalization: the input image f [x, y] and its
histogram H [f] are shown along the bottom. The lookup table g [f] is a scaled replica
of the cumulative histogram C [f]. The output image g [f] and histogram H [g] are
shown on the right. Adjacent gray values with many pixels are spread apart due to
the steepness of the cumulative histogram.

not a linear function.

5.2.1 Nonlinear Nature of Histogram Equalization

Clearly the equalization lookup tables in the 1-D and 2-D examples just considered
are not straight lines, which means that the gray value g of the “output” pixel is NOT
proportional to f ; this ensures that the gray-scale mapping of histogram equalization
is (usually) NOT linear. Also, histogram equalization is based on the histogram of the
image, it is a “custom” process for each image and the lookup table is almost never a
straight-line graph. In other words, histogram equalization is inherently “nonlinear,”
which has significant impact on the “character” of the processed image.

Though the details of the effect of a nonlinear operation on an image are beyond
the scope of this class, it is easy to see one significant impact of a nonlinear operation.

5.2 CUMULATIVE HISTOGRAM 83

Consider a 1-D input that is a biased cosine function:

f [x] =
1

2
+
1

2
cos [2πξ0x]

=
1

2
· 1 [x] + 1

2

µ
exp [+2πiξ0x] + exp [−2πiξ0x]

2

¶
=
1

2
· exp [+2πi · 0 · x] + 1

2

µ
exp [+2πiξ0x] + exp [−2πiξ0x]

2

¶

f [x] = 1
2
+ 1

2
cos [2πξ0x]

which is composed of complex exponential functions with spatial frequencies ξ = 0
and ξ = ±ξ0. Now perform a simple nonlinear operation by evaluating the square of
f [x]:

(f [x])2 =

µ
1

2
+
1

2
cos [2πξ0x]

¶2

84 CHAPTER 5 POINT OPERATIONS

(f [x])2 =
¡
1
2
+ 1

2
cos [2πξ0x]

¢2
The square has the same limits 0 ≤ (f [x])2 ≤ 1, but the function looks “different.”
We can re-express it using the same method for f [x]:

(f [x])2 =

µ
1

2
+
1

2
cos [2πξ0x]

¶2
=
3

8
+
1

2
cos [2πξ0x] +

1

8
cos [4πξ0x]

=
3

8
+
1

2
cos [2πξ0x] +

1

8
cos [2π · (2ξ0) · x]

=
3

8
· 1 [x] + 1

2

µ
exp [+2πiξ0x] + exp [−2πiξ0x]

2

¶
+
1

8
·
µ
exp [+2πi · (2ξ0) · x] + exp [−2πi · (2ξ0) · x]

2

¶

(f [x])2 =
3

8
· 1 [x] + 1

2

µ
exp [+2πiξ0x] + exp [−2πiξ0x]

2

¶
+
1

8
·
µ
exp [+2πi · (2ξ0) · x] + exp [−2πi · (2ξ0) · x]

2

¶
which shows it to be composed of complex exponential functions with spatial frequen-
cies ξ = 0, ξ = ±ξ0, AND ξ = ±2ξ0. In other words, the squaring operation “added”
two additional spatial frequencies (that is, an additional real-valued sinusoidal func-
tion) “out of thin air.” This is a fundamental effect on any nonlinear operation (not
just of evaluating the square). The addition of other sinusoidal components compli-
cates the process of comparing two images before and after a nonlinear operation.
For subjective applications, where the visual “appearance” of the output image

5.2 CUMULATIVE HISTOGRAM 85

is the only concern, the nonlinearity typically poses no problem. However, if two
images with different histograms are to be compared in a quantitatively meaningful
way (e.g., to detect seasonal changes from images taken from an airborne platform),
then independent histogram equalization of the two images before comparison is not
appropriate because the two operations are (generally) different. Nonlinear operations
produce unpredictable effects on the spatial frequency content of the scene, as you
will see in the class in linear mathematics. Images should either be compared after
applying linear mappings are based on pixels of known absolute “brightness”, or after
the histogram specification process discussed next.

Nonlinear mappings are used deliberately in many applications — a complete non-
linear system is a “compandor”, a composite word including “compressor” and “ex-
pandor”. The process of companding is used to maintain the signal dynamic range
and thus improve the “signal-to-noise” ratio in a noise reduction system. A common
companding system used in audio systems is the well-known Dolby noise reduction
system which is still used for recording analog audio signals on magnetic tape, which
generates an audible noise signal (called tape “hiss”) even if no signal is recorded.
The Dolby system works by boosting the amplitude of low-level high-frequency input
signals before recording; this is called “pre-emphasis.” The unavoidable tape hiss is
recorded along with the boosted signal. The boost decreases with increasing level of
the input signal. The inverse process of de-emphasis (attenuation) is performed on
playback, so that the recorded signal is faithfully reproduced but the recorded tape
hiss is attenuated by the de-emphasis. Compandors are also used in digital imaging
systems to preserve highlights and shadow detail in digital imaging systems.

5.2.2 Histogram Specification or “Matching”

It is often useful to transform the histogram of an image to create a new image
whose histogram “matches” match that of some reference image fref [x, y]. This
process, histogram specification, is a generalization of histogram equalization and
allows direct comparison of images perhaps taken under different conditions, e.g.,
LANDSAT images taken through different illuminations or atmospheric conditions.
The required transformation of the histogram of f1 to H [fRef] may be derived by
first equalizing the histograms of both images:

OREF {fREF [x, y]} = eREF [x, y]

O1 {f1 [x, y]} = e1 [x, y]

where en [x, y] is the image of fn [x, y] with a flat histogram obtained from the operator
O{ }; the histograms of eREF and e1 are “identical” (both are flat). The inverse of
the lookup table tranformation for the reference image is O−1 {gREF} = fREF . The
lookup table for histogram specification of the input image is obtained by first deriving
the lookup tables that would flatten the histograms of the input and reference image.
It should be noted that some gray levels will not be specified by this transformation

86 CHAPTER 5 POINT OPERATIONS

and so must be interpolated. The functional form of the operation is:

g1 [x, y] (with specified histogram) = O−1REF {O1 {f1}} =
£
O−1REF · O1

¤
{f1} ∝ C−1REF {C1 {f1}}

Schematic of Histogram Specification: given input image f1 [x, y] and desired
“reference” histogram H [f0], the input gray value is mapped through its cumulative
histogram C [f1] and the “inverse” of the reference cumulative histogram C [f0] to

find the “output” gray value f0.

5.3 Examples of Point Operations

In point processing, the only parameter available in the pixel transformation is the
gray value of that pixel; all pixels of the same gray level must be transformed iden-
tically by a point process. The mapping from input gray level f to output level g is
called a lookup table or LUT. Lookup tables often are graphed as functions g (f) that
relate the input gray level f (plotted on the x-axis) to the output gray level g (on
the y-axis). One such lookup-table operation is the “spreading out” of the compact
histogram of a low-contrast image over the full available dynamic range to make the
image information more visible; as shown in a subsequent example.

5.4 APPLICATIONOFHISTOGRAMSTOTONE-TRANSFERCORRECTION87

5.4 Application of Histograms to Tone-Transfer Cor-
rection

Histogram specification may be used to correct a nonlinear tone-transfer curve of
the digitizer to ensure that the overall tone transfer is linear. The recorded im-
age g1 [n ·∆x,m ·∆y] is obtained from the sampled input image f [n ·∆x,m ·∆y]
through the transfer curve (lookup table) g1 [f], which may be measured by digitizing
a linear step wedge. The inverse of the transfer curve may be calculated and cascaded
as a second lookup table g2 to linearize the total transfer curve:

g2 [g1 (f [n ·∆x,m ·∆y])] = f [n ·∆x,m ·∆y]

=⇒ g2 [g1] = 1

=⇒ g2 [x] = g−11 [x]

Note that the display may be linearized in similar fashion. Consider a nonlinear
digitizer transfer curve of the form g1 [f] =

√
f . The correction curve necessary to

linearize the system is:

g2 [f1 [f]] = g2
hp

f
i
= f

=⇒ g2 [x] = x2

5.5 Application of Histograms to Image Segmen-
tation

Obviously, histograms may be used to distinguish among objects in the image that
differ in gray level; this is the simplest example of segmentation in a feature space.
Consider the bimodal histogram that often indicates the presence of a brighter object
on a darker background. A gray value fT may be determined form the histogram
and used as a threshold to segment the “foreground” object. The threshold lookup
table maps all pixels with gray levels greater than fT to white and all others to
black. If the histogram clusters are disjoint and the threshold is well chosen (and
if the image really DOES contain a bright foreground object), a binary image of
the foreground object will result. In this case, the histogram likely is composed of
two overlapping Gaussian clusters, and thus some pixels likely will be misclassified
by the threshold. Segmentation based on gray level only will be imperfect; there
will be false positive pixels (background pixels classified as foreground), and false
negative (foreground classified as background). In the crude 64 × 64 5-bit image
shown below, several objects are distinguishable, but the histogram exhibits only
two obvious clusters (“dark” and “bright”). Segmentation based on this histogram
will be unsatisfactory. A theme of the study of image processing operations will be
to improve segmentation by gathering or processing data to create histograms with
compact and distinguishable clusters.

88 CHAPTER 5 POINT OPERATIONS

Bimodal histogram, showing the intermixing of the “tails” of the clusters for the two
object classes, which produce false identifications in the image created by the

thresholding lookup table.

Segmentaion of noisy image using histogram that contains four “obvious” clusters of
pixels. The histogram is thresholded at f = 158, which segmented the sky, clouds,
and door from the grass, house, and tree, but some white pixels appear in the grass

(“false positives”) and some black pixels in the sky (“false negatives”)

5.5 APPLICATIONOFHISTOGRAMSTO IMAGE SEGMENTATION89

Mahalanobis Distance

The relative separation of the histogram peaks (and thus the ability to segment by
thresholding) is sometimes characterized by a metric known as the “Mahalanobis
distance.” It is used to estimate the likelihood that a “test pixel” belongs to a specific
set of pixels (e.g., to the foreground or to the background). If we specify the “location”
of the pixel as its gray value f and the mean and standard deviation of the histogram
peak of the class n of pixels (e.g., the foreground might be class 1 and the background
would be class 2) as μn and σn, respectively. then we can think of the Mahalanobis
distance in an intuitive way. Calculate a normalized distance on the histogram to be:

dn ≡
f − μn
σn

The minimum of the set of distances {dn} determines the most likely class to which
the pixel might belong.
Other nonlinear mappings may be used for segmentation. For example, the upper

LUT on the left maps background pixels to black and foreground pixels to their
original gray level. The other is a level slicer ; gray levels below f1 and above f2 map
to zero while those with f1 < f [x, y] < f2 are thresholded to white.

Since a very common task of digital image analysis is segmenting object classes,
this indicates that a goal is to find an image histogram where the clusters are “narrow”
and spaced “far apart;” so that the Mahalonobis distance is (very) large. A recurring
theme in the rest of the course will be methods for increasing the Mahalonobis dis-
tance, either by processing the existing image or by rendering the image in a different
way..

Chapter 6

Point Operations on Multiple
Images

g [x, y] = O{f [x, y, tn]}
g [x, y] = O{f [x, y, λn]}
g [x, y] = O{f [x, y, zn]}

The output pixel g [x, y] is a function of the gray value of that pixel in several input
images. The input frames may differ in time, wavelength, depth (if they are slices of a
3-D scene), resolution, etc. Most commonly, the gray values of the multiple inputs are
combined by arithmetic operations (e.g. addition, multiplication); binary images (i.e.
two gray values) may be combined via logical operators (e.g. AND, XOR, etc.). It is
also very common to generate a multidimensional histogram from the multiple inputs
and use the interpreted data to segment the image via multispectral thresholding.

Applications:

1. Image segmentation using multispectral information

2. Averaging multiple frames for noise reduction

3. Change detection by subtraction

4. Windowing images by mask or template multiplication

5. Correct for detector nonuniformity by division

91

92 CHAPTER 6 POINT OPERATIONS ON MULTIPLE IMAGES

6.1 Color and “Spectral” Images

You are no doubt already familiar with the concept of combining images taken in red,
green, and blue light to make a color image. If we call the three images f [x, y, λn],
where n is an index referring to red, green, and blue, then the color image may be
written as:

g [x, y] = α · f [x, y, λr] + β · f [x, y, λg] + γ · f [x, y, λb]
≡ α · fR [x, y] + β · fG [x, y] + γ · fB [x, y] ,

where the coefficients [α, β, γ] are weighting constants determined by the original
spectral filtration and sensitivity of the recording process. Normally, the gray values
of the same pixel in the three images are different, but values for nearby pixels are
typically correlated. For example, a red object will be bright in the red image and
darker in the green and blue. The component images for a crude color image in
red-green-blue (RGB) space is shown below; note that the histograms do not exhibit
easily distinguishable clusters which we already know means that it will be difficult
to segment the objects from the image.

6.1 COLOR AND “SPECTRAL” IMAGES 93

Simple 3-band color image, the individual monochromatic images, and their
histograms. Note that the gray values of the “tree” are approximately equal to those
of “sky” in the red band and approximately equal to those of both “sky” and “grass”

in the green band. The tree is difficult to segment from a single image.

None of the 1-D histograms exhibits distinct pixel clusters for each of the objects
(house, tree, grass, sky, and white clouds with the door), which leads to the conclusion
that the five objects cannot be segmented from any of these single gray-scale images.
That said, it is clear that the spectral reflectance of the pixels belonging to “house”
is significantly different from that of the other objects, which means that the “house”
pixels may be segmented from the other objects fairly easily in a single image, (e.g.
by a simple threshold in the blue image, as shown in the figure for a threshold level
of 112). However, the reflectance of the pixels belonging to tree and to sky in the red
image are virtually identical (since the tree “disappeared” into the sky in that image),
and is only slightly different in the blue image. We will have no luck segmenting tree
from sky in the red image, and results of attempts to do so in the blue image are
shown:

94 CHAPTER 6 POINT OPERATIONS ON MULTIPLE IMAGES

Two attempts to segment “tree” from blue image alone. The first sets all pixels to
black in the range 112 ≤ b ≤ 140, which produces a very noisy “tree.” Pixels in the
second image are thresholded to black if they lie in the range 112 ≤ b ≤ 167. The

segmented pixels include the “grass.”

The results are quite “noisy,” with lots of incorrectly identified pixels., so we need to
find a different way.

6.2 Multispectral Histograms for Segmentation

To successfully segment the “Tree” pixels from the color image, it is very helpful to
combine the information in two or more colors to produce histograms with larger
Mahalonobis distances. One way is to use a multidimensional (2-D or 3-D) histogram
generated from the triplet [fR, fG, fB] of gray values at each pixel. Often only two
colors are used to generate a 2-D histogram because of the difficulty of displaying
three dimensions of information by conventional means. For example, pixels having a
particular gray level fR in the red image and a level fG in the green image are counted
in bin [fR, fG]. The resulting matrix is the image of a 2-D feature space, i.e., the bin
with the largest number of pixels can be displayed as white and unpopulated bins as
black. The histogram can be used for image segmentation as before, but the extra
information obtained from the second color usually ensures better results.

6.2 MULTISPECTRAL HISTOGRAMS FOR SEGMENTATION 95

6.2.1 Multidimensional Histograms of Color Images

Since the color image is “three-dimensional”, the corresponding histogram should
have three Cartesian axes: “R”, “G”, and “B”. This is difficult to display, so we
shall introduce the idea by looking at the histograms of pairs of color bands. The
2-D histograms (“scatterplots”) of pairs of the grayscale images of the “house-tree”
scene were plotted using the Hypercube Image Analysis Software (available for free
from http://www.tec.army.mil/Hypercube/).

The three 2-D histograms of each pair of channels of the three color bands. You
should be able to identify the objects in each of the histograms.

Note the cluster of pixels with large gray values (i.e., towards the upper right
corner) in all images, which are generated by the pixels that are bright in all three
bands (the white clouds and door). From the appearance of the single bands, you
should be able to identify clusters for the house, tree, sky, etc. The image can
be segmented by setting pixels within certain intervals of red, green, and blue to
white and the others to black. In other words, we threshold pixel clusters within the
histogram.
The multidimensional histogram concept may be extended easily any number

of dimensions, though visual representation becomes difficult even for three. The
concept of the multidimensional histogram is the basis for multispectral segmentation
in many areas of image processing.

96 CHAPTER 6 POINT OPERATIONS ON MULTIPLE IMAGES

Segmentation from 3-D Histogram

It is often easier to identify distinct and well-separated clusters from the multidimen-
sional histogram rather than from the individual images. The tree segmented from
the B-G histogram is shown:

Segmentation of “tree” pixels from 3-D histogram of RGB image. The black pixels
satisfy three constraints: r ≥ 106, g ≥ 195, and b ≤ 167.

6.2.2 Spectral Images

It has become increasingly common to collect images in more than three spectral
bands, including bands that are invisible to the human eye. Astronomers utilized the
idea for many years to classify stars based on color by measuring the brightness on
photographic plates taken through color filters. The technology has advanced to the
point where the technique is now quite common and is variously called “multispectral”
or “hyperspectral” imaging. The dividing line between these two classes is historical
and is based on the fact that it was difficult to collect registered images in many
spectral bands. Loosely speaking, “multispectral” imaging involves images in 3-10
fairly broad passbands, while hyperspectral images have many more (often 200 or
more) and narrower bands. I try to avoid the controversy by just calling it “spectral”
imaging..

Concept of a spectral image; registered (i.e., “aligned”) images are collected in
multiple bands of wavelengths.

6.2 MULTISPECTRAL HISTOGRAMS FOR SEGMENTATION 97

Sequence of monochrome images of a page of the Archimedes palimpsest taken under
illumination at different wavelengths from 365 nm (in the near-ultraviolet region of
the spectrum) to 870 nm (in the near-infrared region). Note the variation in

appearance with wavelength.

Images of a small section of a page at different wavelengths, showing the variation in
appearance due to the variation in spectral reflectivity of the various object classes.

The additional bands complicates the display and analysis of the histogram with-
out a high-powered computer. Several different analysis techniques are available; we
will focus on principal component analysis (PCA) and introduce it using the simplest
2-D case.

Example: Pseudocolor Rendering of the Archimedes Palimpsest

One of the most successful tools applied to assist the reading of the original texts
in the 10th-century parchment manuscript known as the Archimedes Palimpsest ren-
dered the two texts in “pseudocolor.” The technique is based on two observations:
that the “reddish” traces of erased text virtually disappear if viewed under red il-
lumination, while the later overtext remains visible, and that both texts are visible
in the visible fluorescent emission when the page is illuminated by ultraviolet light.
The pseudocolor image is created by combining the red band of a color image under
low-wattage tungsten illumination (a very “reddish” light) with the blue channel of a
color image under ultraviolet illumination. Though not discussed here, both images
are “preprocessed” to enhance the contrast and balance the average gray value. The
image rendering scheme is shown in the figure:

98 CHAPTER 6 POINT OPERATIONS ON MULTIPLE IMAGES

Schematic of pseudocolor rendering of the Archimedes palimpsest (Creative
Commons Attribution License, Copyright retained by the Owner of the Archimedes

Palimpsest).

Since the pixels corresponding to the original undertext are “bright” in the red channel
and darker in the blue and green, these pixels appear “reddish” in the pseudocolor
image, while the overtext pixels are dark in both images and appear neutral “gray”
or “black” in the final image. The result of the process is shown by comparison to
the visual appearance; note that the color of the original text provides a “cue” to the
scholar of the source of the text; this is perhaps most visible near the top of the page.

Comparison of visual appearance of gutter region of f.093v-092r (left) with
pseudocolor rendering (right), which shows the color reddish “cue” for the scholars
about the source of the original text (Creative Commons license, copyright retained

by the Owner of the Archimedes Palimpsest)

6.2 MULTISPECTRAL HISTOGRAMS FOR SEGMENTATION 99

6.2.3 Principal Component Analysis — PCA

Reference: Schowengerdt, Remote Sensing
The information in the different bands of a multispectral image (e.g., an RGB color

image) often are highly correlated, meaning that some or many bands may be visually
similar. In other words, the information content of a multispectral image often is quite
“redundant.” It often is convenient to reduce or even eliminate this redundancy by
expressing the image in terms of “axes” other than the original “bands.” The data
image is transformed to a new coordinate system by rigidly rotating axes to align
with these other “directions” and the image data then projected onto these new axes.
In principal components, the rotation produces a new multispectral image with a
diagonal covariance matrix, so that there is no covariance between the various bands.
One axis of the rotated coordinate system is aligned with the direction of maximum
variance of the image, the second axis is perpendicular to the first and aligned with the
direction of the second largest variance, etc. The bands in the principal component
image are thus arranged in order from largest to smallest variance.

For example, consider a 2-band image that was created from the blue and green
bands of the simple image, with zeros inserted into the red band. The 2-D histogram,
blue vs. green, also is shown. The principal components were evaluated using “Hyper-
cube.” Since the third component image was black, only two principal components are
needed to fully represent the two-band image. In the outputs, note that the “lightest”
objects in the image, the clouds and door, appear in the first PC as “white,” while
the darkest structure in the two images is the house, which appears “black” in the
1st PC. In the second PC, the door has “faded into the house” because its projected
gray value is in the mid range along this axis.

100 CHAPTER 6 POINT OPERATIONS ON MULTIPLE IMAGES

Principal components of a two-band image, computed in “Hypercube”: the image is
created by inserting zeros in the red band. The 2-D histogram blue vs. green is

shown. The first principal component projects the gray values onto the “cyan” axis
that includes most of the image variance. The second principal component projects
the data onto the magenta axis. The images are shown. Note that the first principal
component shows the clouds and door as white and the house as black. The door is
not visible in the second principal component, as its gray value is the same as that of

the house.

The principal components of the 3-band RGB image are also shown. The “sky”
is quite dark in the first PC of the 3-D scene — the maximum contrast is between the
sky and clouds in the 3-band histogram. Note that the 3rd PC is quite noisy — this
image depicts the smallest range of variance, where the image noise dominates.

6.2 MULTISPECTRAL HISTOGRAMS FOR SEGMENTATION 101

The three principal components of the RGB house+tree image. Note that the third
component image is quite noisy.

Since PCA decomposes the N bands of data into orthogonal (i.e., independent)
components, the high-order bands (with small variances) of many realistic scenes are
dominated by small random fluctuations (“noise”) in the data. This reason for this
effect is that the N bands of image generally are not truly independent, but rather
exhibit correlations between the bands. PCA thus provides

Example: PCA Processing of one Treatise in the Archimedes Palimpsest

The text of one of the original manuscripts in the Archimedes Palimpsest did not
respond to the pseudocolor rendering. These pages comprised a commentary by
Alexander of Aphrodisias on Aristotle’s “Categories.” Virtually the only characters
that indicated the source of the text spelled out “Aristotle” in the gutter of one page.

The text on these pages was eventually revealed by principal component analysis
applied only to the RGB image collected under ultraviolet illumination. This fluo-
rescent image is dominated by blue emission, so the blue band is noticeably brighter
than the green, which is in turn brighter than the red. Therefore, the first PCA band
(largest variance) approximates the blue channel of the fluorescence image. The sec-
ond and third bands that are orthogonal to the first convey the low-variance text
information

ENVI eigenvectors — first vector is first row, ordered by band

102 CHAPTER 6 POINT OPERATIONS ON MULTIPLE IMAGES

Comparison of original appearance of f.120v-121r of the Archimedes Palimpsest to
PCA band 3 from the RGB image under UV illumination, showing the visibility of
the original text. (Creative Commons Attribution License, Copyright retained by the

Owner of the Archimedes Palimpsest).

The components of the three eigenvectors ordered by projection on the red, green,
and blue axes, respectively are:

PCA1 =⇒

⎡⎢⎢⎢⎣
projection onto “red” axis

projection onto “green” axis

projection onto “blue” axis

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
+0.366

+0.447

+0.829

⎤⎥⎥⎥⎦ ; |PCA1| = 1

PCA2 =⇒

⎡⎢⎢⎢⎣
+0.857

+0.220

−0.467

⎤⎥⎥⎥⎦ ; |PCA2| = 1

PCA3 =⇒

⎡⎢⎢⎢⎣
−0.391

+0.867

−0.308

⎤⎥⎥⎥⎦ ; |PCA3| = 1

6.2 MULTISPECTRAL HISTOGRAMS FOR SEGMENTATION 103

As expected, the first principal component is pointed within the octant in the 3-D
volume defined by the positive color axes, which means that the pixel values in first
PCA are weighted sums of the red, green, and blue pixel values (all projections are
positive). Since the three vectors are scaled to have unit length, the three components
are the direction cosines of the lines measured relative to the three axes, so the angles
of a PCA axis measured from the color axes may be evaluated via the inverse cosine
function:

angle of PCA1 from blue axis: cos−1
µ
0.829

1

¶
∼= 0.593 radians ∼= 34◦

angle of PCA1 from green axis: cos−1
µ
0.447

1

¶
∼= 1.074 radians ∼= 63.5◦

angle of PCA1 from red axis: cos−1
µ
0.336

1

¶
∼= 1.228 radians ∼= 70.4◦

Note that the components of the first eigenvector are ordered with the largest pro-
jection in the direction of the “blue” axis (so that the angle of PCA1 from the blue
axis is smallest), the second largest along “green,” and the third largest along “red.”
This confirms the hypothesis that the UV fluorescence is dominated by emission in
the blue region of the spectrum, which was expected because this region is closest in
wavelength to the UV stimulation at λ0 = 365 nm.
Two graphical renderings of the three PCA eigenvectors are shown in the plots,

where the Cartesian red, green, and blue axes are shown in their corresponding colors
and the three PCA bands are rendered in black, magenta, and cyan, respectively

One rendering of axes of 3-band PCA of Alexander page under ultraviolet
illumination compared to RGB axes: PCA band 1 in black, band 2 in magenta, and
band 3 in cyan. Note that PCA band 1 (in black) is a weighted sum of RGB and is

pointed more in the direction of the blue axis,

104 CHAPTER 6 POINT OPERATIONS ON MULTIPLE IMAGES

Different orientation of display for axes of 3-band PCA of Alexander page under
ultraviolet illumination compared to RGB axes: PCA band 1 in black, band 2 in

magenta, and band 3 in cyan.

6.3 Color Spaces

6.3.1 Red, Green, Blue

This representation is usually graphed in a Cartesian system analogous to [x, y, z], as
shown:

6.3 COLOR SPACES 105

RGB coordinates (8 bit) displayed as a Cartesian system. Locations with the same
value in each coordinate are “neutral”, e.g., [0, 0, 0] is “black”, [255, 255, 255] is
“white”, and others are “gray.” The additive primaries (red, green blue) form the
Cartesian axes and the “subtractive” primaries are sums of pairs of additive
primaries: magenta = red + blue; yellow = red + green, cyan = green + blue.

6.3.2 Hue, Saturation, Lightness (or Brightness, or Value):

This is the representation that led to Thomas Young’s theory of color in the early
1800s:

• Hue corresponds to the common definition of color, e.g., “red”, “orange”, “vi-
olet” etc., specified by the dominant wavelength in a spectrum distribution,
though a “dominant” may not actually be present

• Saturation (also called chroma): an expression for the “strength” or “purity”
of a color. The intensity of a very saturated color is concentrated near the
dominant wavelength. Looked at another way, saturation is measured as the
amount of “gray” in proportion to the hue. All colors formed from one or two
primaries have 100% saturation; if some amount of the third primary is added
to a color formed from the other two, then there is at least some “gray” in
the color and the saturation decreases. The saturation of a pure white, gray,
or black scene (equal amounts of all three primaries) is zero. A mixture of a

106 CHAPTER 6 POINT OPERATIONS ON MULTIPLE IMAGES

purely saturated color (e.g., “red”) and white produces a “desaturated red”, or
“pink”. Saturation is reduced if surface reflections are present.

R

G

B

=

0

204

153

=⇒
H

S

L

=

116

255

102

=⇒ S =
255

255
= 100%

R

G

B

=

25

204

153

=

25

25

25

+

0

179

128

=⇒
H

S

L

=

115

199

115

=⇒ S =
199

255
= 78%

S =
hue− gray

hue
=
115− 25
115

= 78%

In more scientific terms, the saturation is the relative bandwidth of the visible
output from a light source. A source with a narrow bandwidth emits a “purer”
color and thus has a large saturation. As saturation decreases, colors appear
more “washed-out”.

— Brightness: sensation of intensity of a light, from dark through dim to
bright.

— Lightness: a relative expression of the intensity of the energy output re-
flected by a surface; “blackness”, “grayness”, “whiteness” of a visible light
source. It can be expressed as a total energy value or as the amplitude at
the wavelength where the intensity is greatest.

HSB is often represented in a cylindrical coordinate system analogous to (r, θ, z).
The saturation coordinate is plotted along the radial axis, the hue in the azimuthal
direction, and the lightness as the vertical (z) axis. The hue determines the frequency
of light or the position in the spectrum or the relative amounts of red, green and
blue. The hue is a continuous and periodic scale that often is measured in an “angle”
in angular degrees (e.g., the “hue angle”), though it also may be normalized to be
compatible with 8-bit numerical representations. The hue located at the extrema
(e.g., angles of ±180◦) are identical, as shown in the figure from the hue adjustment
in Adobe PhotoshopTM. Microsoft Windows color dialogs use HSB but call the third
dimension “luminosity” or “lightness”. It ranges from 0% (black) to 100% (white).
A pure hue is 50% luminosity, 100% saturation. The hue angles are shown, where red
corresponds to an angle of 0◦.

6.3 COLOR SPACES 107

Schematic view of RGB and HSV coordinate systems: the RGB system is Cartesian
and HSV is cylindrical with the “value” axis along the diagonal “gray” axis in RGB.
The radial distance from the “gray” axis defines the “saturation” (two examples
near the ends of the “lightness” axis are shown) and the azimuth angle about the

“lightness” (“gray”) axis is the “hue angle.”

108 CHAPTER 6 POINT OPERATIONS ON MULTIPLE IMAGES

Coordinate system for “Hue, Saturation, Lightness (value, intensity)” which
corresponds to the cylindrical system (r, θ, z)→ (S,H,L)

Hue angle representation used in Adobe PhotoshopTM. The hue at angle 0◦ is “red”
, “blue” is at θ = −120◦, “magenta” at θ = −60◦, yellow at θ = +60◦, and green at

θ = +120◦; the hues at at θ = ±180◦ are identically “cyan”.

The hue may be rotated about the azimuth and “wraps around” at cyan (θ = 180◦).

The hue axis after rotation by 180◦, showing the “wraparound” at the edge of the
axis.

6.3 COLOR SPACES 109

Hue is represented by 8-bit integer values in other applications, such as PowerpointTM.
A list of the primary colors for different hue angles is shown in the table.Note that
the additive primaries Red, Green, and Blue are located at 0◦ and ∓120◦, while the
subtractive primaries Magenta, Yellow, and Cyan are at ∓60◦ and 180◦. Colors at
opposite sides of the hue circle (separated by 180◦) are complementary, so that the
sum of two complementary colors produces white.

The sum of monochromatic yellow (λ = 580 nm) and monochromatic blue (λ =
480 nm) produces white light that looks just as while as the sum of all visible wave-
lengths

Color PhotoshopTM Hue Angle θ (◦) PowerpointTM Hue [0, 255]

cyan ±180◦ 127 =⇒ 1
2

green +120◦ 85 =⇒ 1
3

yellow +60◦ 42 =⇒ 1
6

red 0◦ 0

magenta −60◦ 213 =⇒ 5
6

blue −120◦ 170 =⇒ 2
3

The table of colors in PhotoshopTM are:

Color R G B H S L

cyan 0 255 255 127 255 128

green 0 255 0 85 255 128

yellow 255 255 0 42 255 128

red 255 0 0 0 255 128

magenta 255 0 255 213 255 128

blue 0 0 255 170 255 128

110 CHAPTER 6 POINT OPERATIONS ON MULTIPLE IMAGES

As another set of cxamples, consider the HSL coordinatges for different “yellows”:

Color R G B H S L

yellow 255 255 0 42 255 128

yellow 131 128 0 42 255 64

yellow 129 255 255 42 255 192

yellow 246 240 0 42 255 120

yellow 195 192 64 42 128 128

gray 128 128 128 42 0 128

The RGB model scores on its simplicity, so what are the advantages of the HSL
colour model? I think there are several:

• You can generate grey scales using only one parameter - the luminosity when
saturation is set to 0.

• You can vary the colour by varying the hue alone such that the brightness
remains unchanged

• You can fade or darken several colours, or whole bitmaps, such that the lightness
(or darkness) stay in step

• I suppose it comes down to that the HSL model is easier to use visually because
it suits the eye, whereas the RGB model is easier to use in programming.

The classic RGB colour space used in GDI+ is excellent for choosing or defining a
specific colour as a mixture of primary colour and intensity values but what happens
if you want to take a particular colour and make it a bit lighter or a bit darker or
change its saturation. For this you need to be able to use the HSL (Hue, Saturation
and Luminance) colour space.

6.3.3 Conversion from RGB to HSL

Recall the transformations between Cartesian and cylindrical coordinates:

r =
p
x2 + y2 x = r cos [θ]

θ = tan−1
£
y
x

¤
y = r sin [θ]

z = z z = z

These cannot be written as matrix-vector products and thus are nonlinear transfor-
mations. This observation suggests that the transformation between RGB and HSL
also is nonlinear, as is in fact true. The scheme for computing HSL from RGB is:

6.3 COLOR SPACES 111

1. Normalize the three values [R,G,B] to the interval [0, 1];

2. Find the maximum and minimum of the three values for a pixel; these are
colormax and colormin;

3. If all three RGB values are identical, then the hue and saturation for that pixel
are both 0 (the pixel is “gray”);

4. Compute the “lightness” L via

L =
colormax + colormin

2

5. Test the lightness value L to find the saturation S using the conditions:

If L < 0.5 then S =
colormax − colormin
colormax + colormin

If L > 0.5 then S =
colormax − colormin

2− (colormax + colormin)

6. Compute the hue H via:

(a) If colormax = R then

H =
G−B

colormax − colormin

(b) If colormax = G then

H = 2 +
B −R

colormax − colormin

(c) If colormax = B then

H = 4 +
R−G

colormax − colormin

7. Convert L and S back to percentages, and H into an angle in degrees (i.e., scale
it from −180◦ ≤ H ≤ +180◦).

Example: [R,G,B] = [25, 204, 53]

R = 25→ 25

255
∼= 0.098,

G = 204→ 204

255
= 0.800,

B = 53→ 53

255
∼= 0.208

112 CHAPTER 6 POINT OPERATIONS ON MULTIPLE IMAGES

colormax = 0.800

colormin = 0.098

L =
0.8 + 0.098

2
= 0.449 < 0.5

S =
0.8− 0.098
0.8 + 0.098

∼= 0.782

H = 2 +
0.208− 0.098
0.8− 0.098

∼= 2.157 radians

L = 0.449 · 255 = 115
S = 0.782 · 255 = 199

H =
2.157

π
· 180◦ = 123.6◦

Conversion from HSL to RGB

1. If S = 0, define L = R = G = B,Otherwise, test L :

If L < 0.5, then α = L · (S + 1)
If L ≥ 0.5, then α = L+ S − L · S

2. Set
β = 2.0 · L− α

3. Normalize hue angle H to the range [0, 1] by dividing by 360◦

4. For each of R, G, B, compute γ as follows:

for R, γ = H +
1

3
for G, γ = H

for B, γ = H − 1
3

5.
If γ < 0, then γ = 1 + γ

6.3 COLOR SPACES 113

6. For each of [R,G,B], do the following test:

If γ <
1

6
, then color = β + (α− β) · 6 · γ

If
1

6
≤ γ <

1

2
, then color = α

If
1

2
≤ γ <

2

3
, then color = β + (α− β) · (4− 6γ)

7. Scale back to the range [0, 100]

8. Repeat steps 6 and 7 for the other two colors.

Word Descriptors of Colors

• Hue: a “pure” color, i.e. one containing no black or white.

• Shade: a “dark” color, i.e. one produced by mixing a hue with black

• Tint: a “light” color, i.e. one produced by mixing a hue with white

• Tone: color produced by mixing a hue with a shade of grey.

6.3.4 Example: Wax “Coat of Arms” in a French Epic Poem

The color spaces just considered may be combined with PCA analysis to make an
image tool that is useful for enhancing image features. The 14th-century epic poem
“Les Esches d’Amour” (the Chess of Love), written in Middle French, was damaged
during the Allied bombing raids on Dresden in February 1945. Though these raids
are famous for the firestorm inflicted upon the city, the damage to the manuscript
was actually by water from fractured supply mains. The first page of the manuscript
includes a wax “Armorial Achievement” (more commonly known as a coat of arms)
that is now not decipherable to the eye.

114 CHAPTER 6 POINT OPERATIONS ON MULTIPLE IMAGES

First page of "Les Esches d’Amour" (The Chess of Love), showing coat of arms at
the bottom of the page.

In an attempt to enhance the visibility of any internal structure in the coat of arms,
the RGB histogram of the color image was equalized. Other than confirming the
suspicion that the top of the coat of arms was a unicorn, little additional information
was revealed.

Images were collected under 13 bands of illumination from light emitting diodes
that spanned the wavelength region from ultraviolet at λ ∼= 365nm through infrared
at λ ∼= 1050 nm. The 13 PCA bands were evaluated and examined, where it was
noted that the first band with the largest variance conveyed little information about
the structure in the coat of arms. PCA bands 2-4 were inserted in the blue, green,
and red bands, respectively, of a color image and the hue angle was rotated to reveal
structure.

6.4 TIME-SEQUENCE IMAGES: VIDEO 115

Processed images of of coat of arms in “Les Esches d’Amour”: (a) after equalizing
the histogram, showing unicorn at top; (b) RGB pseudocolor of PCA bands 2-4 from
a 12-band spectral image after rotating the hue angle; note the enhanced visibility of
the unicorn at top, the shield with a second unicorn at the bottom, and a “lion

rampant” to the left of the shield.

6.4 Time-Sequence Images: Video

The other common example a 3-D image plots time on the third image axis. Perhaps
the most obvious use is in motion pictures, where the different frames of the movie are
the time samples of the 3-D spatial image f [x, y, tn]. The illusion of continuous motion
is created because of the photochemical response of the rods and cones in the retina.
The time duration of the process is the source of the phenomenon of “persistence of
vision.” The persistence is shorter if image is brighter (movie projectors have rotary
shutters that show each frame two or even three times). Movies were originally taken
at 16 frames per second, later increased to 24 fps in US. This is the reason why motion
in old movies is too fast. The frame rate in Europe) is 25 fps, related to the AC
frequency of rate is 50Hz. For this reason, American movies shown in Europe finish
in only 96% of the time in the US.
The second most familiar example of time-sampled imagery is video, where the

3-D scene f [x, y, t] is sampled in both time and space to convert the scene to a 1-D
function of time that I shall call s [t]. It took more than 50 years to develop video
hardware to scan scenes. The first scanning systems were mechanical, using either
a system that scanned light reflected from an illuminated scene, or an illumination
system that scanned a beam of light over the scene and collected any reflected light.
One of the primary developers of mechanically scanned video was the Scotsman John

116 CHAPTER 6 POINT OPERATIONS ON MULTIPLE IMAGES

Logie Baird. The hardware of electronic scanning was developed through the efforts
of such “illuminaries” as the American Philo T. Farnsworth, who demonstrated a
working video system in the 1920s.
Video systems commonly use an “interlaced scan” that alternates scans of the

even and odd lines of the full frame, so that the eye is presented with half of the
image information every 1/60 s. This is less objectionable to the eye than the original
“progressive-scanning” systems that presented a full frame every 1/30 s.
cathode rays (stream of electrons from the “cathode” to the anode)
http://www.ee.washington.edu/conselec/CE/kuhn/ntsc/95x4.htm??
Response of retina through chemical process, implies a time to occur, implies

persistence of vision,
movies originally 16 frames per second, increased to 24 fps in US (reason why old

movies move too fast), 25 fps in Europe (AC rate is 50Hz — American movies shown
in Europe finish faster than here — one way to save time!)
persistence is shorter if image is brighter (movie projectors have rotary shutter to

show each frame twice, or even three times)
reason for interlacing video

Interlaced format of NTSC video raster: one frame in 1/30 second is composed of
two fields, each taking 1/60 second. The first “field” includes 262.5 odd lines and the
second “field” has 262.5 even lines. Lines 248-263 in the first field and lines 511-525
in the second field are “blanked” — this is the “retrace” time for the CRT beam and
is the time when additional information (e.g., closed captioning) is transmitted.

Note that lines number 248 to 263 and 511 to 525 are typically blanked to provide
time for the beam to return to the upper left hand corner for the next scan; this is
the “flyback” time that is used to transmit other signals (such as closed captioning
or the second audio program SAP).
However lines number 248 to 263 and 511 to 525 are typically blanked to provide

time for the beam to return to the upper left hand corner for the next scan.

6.5 Color-Space Transformations for Video Com-
pression

References:

6.5 COLOR-SPACETRANSFORMATIONS FORVIDEOCOMPRESSION117

Pratt, Digital Image Processing, Second Edition, §2,3
Falk, Brill, Stork, Seeing the Light, §10
Glassner, Principles of Digital Image Synthesis, §1
As indicated by the previous discussion, visible-light color images are represented

by triads of monochrome images. Decomposition of color images into RGB is very
common, as it resembles the color detection mechanism of the eye that uses three types
of color-sensitive detectors (the trichromatic cones) that have broad-band responses
centered at approximately 420, 530, and 560nm. The color community specifies the
cones as S, M, and L, for “short”, “medium”, and “long”. The corresponding colors at
the wavelengths of maximum sensitivity are roughly blue, green, and yellow, though
type L has significant sensitiivity in the red. Within the neural network of the eye, the
three cone signals are weighted and combined to generate the three channels that are
transmitted to the brain. Roughly speaking, one channel corresponds to the lightness
or luminance of the scene (i.e., the black-and-white video signal), and is a weighted
sum (integral) of S,M, and L. This information is transmitted to the brain with full
resolution. The other two transmitted signals are weighted differences (derivatives)
of the S, M, and L and describe the chrominance of the scene; these are transmitted
with reduced resolution, thus preserving information deemed more important during
evolutionary development. Broadcast transmission of color video signals is roughly
modeled on the weighted summing of cone signals for transmission to the brain.
In digital imaging, the three raw cone signals generated by the human visual

system can be represented as three digital images: roughly the brightness in blue,
green, and red light. The weighted summing of the cone signals for transmission to the
brain may be modeled as a linear operation applied to the 3-element vector (R,G,B).
The operation is implemented by an invertible 3 × 3 matrix. The requirement that
the matrix be invertible ensures that the 3-element output vector is equivalent to the
[R,G,B] input vector; the input [R,G,B] vector may be generated from the output
vector. However, note that if the output values are quantized, as required before
subsequent digital processing, then the cascade of forward and inverse transformations
may not yield the identical triplet of RGB values.
Particular color transformations have been developed for use in many different

applications, including various schemes for image transmission. Consider the trans-
formation used in the color video standard in North America, that was developed
by the National Television Standards Committee (NTSC), which converts RGB val-
ues to “luminance” Y (used by “black-and-white” receivers).and two “chrominance”
channels I and Q via:⎡⎢⎢⎢⎣

0.299 0.587 0.114

0.596 −0.274 −0.322

0.211 −0.523 0.312

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
R

G

B

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
Y

I

Q

⎤⎥⎥⎥⎦
Note that the sum of the weights applied to the luminance channel Y is 1, while the
sums of the weights of the two chrominance channels are both 0. In other words,
the luminance channel is a weighted sum of RGB, while the chrominance channels

118 CHAPTER 6 POINT OPERATIONS ON MULTIPLE IMAGES

are weighted differences. If the input R, G, and B are in the range [0,255], so will
be the range of Y. The chrominance signals (I-Q in the former, U-V in the latter)
are weighted differences; in both cases, the sum of the weights is zero, so that both
chrominance channels of any gray input pixel (where R = G = B) is zero. The range
of allowed chrominances is bipolar and fills the dynamic range: for 8-bit RGB inputs,
−103 ≤ I ≤ 152, a total of 256 levels. The positive polarity of “I” is reddish (often
described as “orange”), and the negative polarity is “green+blue” or cyan; hence the
Q information is sometimes called the “orange-cyan” axis. The positive polarity of
“Q” is “red+blue”, or purple, and the negative polarity is green, so the I information
is the “purple-green” axis.

In the context of linear systems, Y is the result of “spectral lowpass filtering,”
while I and Q are the outputs of what may be loosely described as “spectral highpass
filters.”

The transformation of a “mid-gray” pixel where the red, green, and blue images
are identically α is: ⎡⎢⎢⎢⎣

0.299 0.587 0.114

0.596 −0.274 −0.322

0.211 −0.523 0.312

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
α

α

α

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
α

0

0

⎤⎥⎥⎥⎦
so that the luminance is the gray value of the three colors and the two chrominance
channels are both zero.

The transformation from YIQ back to RGB is the inverse of the forward matrix
operator: ⎡⎢⎢⎢⎣

0.299 0.587 0.114

0.596 −0.274 −0.322

0.211 −0.523 0.312

⎤⎥⎥⎥⎦
−1

∼=

⎡⎢⎢⎢⎣
1.0 0.956 0.621

1.0 −0.273 −0.647

1.0 −1.104 1.701

⎤⎥⎥⎥⎦ (rounded)

⎡⎢⎢⎢⎣
1.0 0.956 0.621

1.0 −0.273 −0.647

1.0 −1.104 1.701

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
Y

I

Q

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
R

G

B

⎤⎥⎥⎥⎦
Note that the R, G, and B channels all include 100% of the luminance channel Y.

Other color transformations are used in other video systems. The two common
systems used in Europe and Asia are PAL (“Phase Alternation by Line”) and SECAM
(“Systeme Electronique Couleur Avec Memoire”). Each broadcasts 625 lines at 25
frames per second and uses the YUV triad of luminance and chrominance, which is

6.5 COLOR-SPACETRANSFORMATIONS FORVIDEOCOMPRESSION119

similar but not identical to YIQ. The transformation to YUV is:⎡⎢⎢⎢⎣
0.299 0.587 0.114

−0.148 −0.289 0.437

0.615 −0.515 −0.100

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
R

G

B

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
Y

U

V

⎤⎥⎥⎥⎦
The range of allowed chrominances is bipolar: for 8-bit RGB inputs −144 ≤ U ≤ 111
and −98 ≤ V ≤ 157 (each with 256 levels). The NTSC YIQ standard was selected
over the YUV because tests indicated that more I-Q data could be discarded without
affecting the subjective quality of the image presented to the viewer.

Obviously there exists an infinite number of invertible 3× 3 matrices, and thus of
invertible color transformations. The 3-D histograms of a particular input image be-
fore and after transformation generally will differ. Therefore segmentation of objects
with particular similar colors likely will be easier or more successful in a particular
color space.

120 CHAPTER 6 POINT OPERATIONS ON MULTIPLE IMAGES

Color image decomposition; all images displayed with full dynamic range (i.e.,
maximum possible gray value is mapped to “white” and minimum to “black”); first
row shows the RGB images, second row the NSTC analog video transmission YIQ;

the third row shows YUV.

6.6 Segmentation by Logical Operations on Mul-
tiple Images

It is quite feasible to segment a multispectral image by combining binary images
by logical operations, e.g., the Boolean AND, OR, NAND (Not AND), and XOR
(eXclusive OR) operators. These can be applied in the example just discussed to
combine the segmented images obtained from 1-D histograms. Below are shown the

6.7 ARITHMETIC OPERATIONS ON MULTIPLE IMAGES 121

images obtained from the green and blue image after thresholding pixels in the ranges
13 ≤ fg ≤ 18 and 16 ≤ fb ≤ 21 to white. By combining these images via a Boolean
AND the result on the right is obtained. Note the noise (false identifications) are still
quite prevalent in the segmented image.

6.7 Arithmetic Operations on Multiple Images

6.7.1 Multiple-Frame Averaging

Consider a series of video or movie images of an invariant (i.e. stationary) object
f [x, y] corrupted by additive noise which changes from pixel to pixel and frame to
frame:

g [x, y, ti] = f [x, y] + n [x, y, ti]

where n [x, y, ti] is a random number selected from a Gaussian distribution with μ = 0.
The additive noise will tend to obscure the “true” image structure f [x, y]. One com-
mon problem in image processing is to enhance the visibility of the invariant objects
in the image by attenuating the noise. If the gray values n are truly random, i.e., all
values of n in the range (−∞,∞) can exist with equal likelihood, then little can be
done to improve the image. Fortunately, in realistic imaging problems the probability
of each value of n is determined by some probability density function (histogram) p [n]
and we say that the noise is stochastic. The most common probability distributions
in physical or imaging problems are the uniform, Poisson, and normal. Less common,
but still physically realizable, distributions are the Boltzmann (negative exponential)
and Lorentzian. A general discussion of stochastic functions is beyond the scope of
the immediate discussion, though we will go into more detail later while reviewing
statistical filters. Interested readers should consult Frieden’s book Probability, Sta-
tistical Optics, and Data Testing (Springer-Verlag, 1991) for detailed discussions of
physically important stochastic processes. At this point, we will state without proof
that the important probability density function in physical problems is the normal
distribution N [μ, σ2], which may be completely characterized by two parameters: its
mean value μ and the variance σ2 (or its equivalent, the standard deviation σ). The
histogram of noise gray values in the normal distribution is:

p [n] = H [n [x, y, ti]] ∝ p [n]

=
1√
2πσ2

exp

"
−(n− μ)2

2σ2

#
≡ N

¡
μ, σ2

¢
This is the equation for the familiar bell curve with maximum value located at n = μ
and with full width of 2σ measured at approximately 20% of the maximum amplitude.
In the special case where the mean value μ = 0, the normal distribution commonly
is called a Gaussian distribution. The remainder of the discussion in this section will
assume that the additive noise has been selected at random from a normal distribu-
tion.

122 CHAPTER 6 POINT OPERATIONS ON MULTIPLE IMAGES

It is probably clear intuitively that an image created by averaging a collection of
noise images n [x, y, ti] over time will tend toward a uniform image whose gray level is
the mean μ of the noise, i.e., the variations in gray level about the mean will “cancel
out”:

1

N

N−1X
i=1

n [x, y.ti] ∼= μ · 1 [x, y]

If the sequence of input images includes an invariant object on a background of
additive normal noise, the visibility of the object will be enhanced in the average
image:

1

N

N−1X
i=1

(f [x, y] + n [x, y.ti]) =
1

N

N−1X
i=1

f [x, y] +
1

N

N−1X
i=1

n [x, y.ti]

∼= f [x, y] + μ · 1 [x, y]

This result is proven directly below, but may be seen more easily if the reader is
familiar with the statistical concept that the probability density function of the sum
of N random variables is the N -fold convolution of the individual probability density
functions.
To quantify the visibility of the object in a noisy image, it is necessary to quantify

the visibility of the noise, i.e., the variability of gray level due to the stochastic signal.
The average gray value due to noise is:

hn [x, y]i =
Z +∞

−∞
n [x, y] p [n] dn = μ

where h i denotes the averaged value of the quantity and p [n] is the probability density
function of the noise. This is obviously not appropriate to the problem because it
does not describe the variability of gray value. A useful quantity is the variance of
the noise which describes the average of the difference between the square of the gray
value due to the noise and the mean:

σ2 [n] =

(n− μ)2

®
=

Z +∞

−∞
(n− μ)2 p [n] dn

=

Z +∞

−∞

¡
n2 − 2nμ+ μ2

¢
p [n] dn

=

Z +∞

−∞
n2 p [n] dn− 2μ

Z +∞

−∞
n p [n] dn+ μ2

Z +∞

−∞
p [n] dn

=

Z +∞

−∞
n2 p [n] dn− 2μ · μ+ μ2 · 1

=

n2
®
− 2μ2 + μ2

σ2 [n] =

n2
®
− μ2

A measure of the relative visibility of the signal and the noise is the ratio of the signal

6.7 ARITHMETIC OPERATIONS ON MULTIPLE IMAGES 123

to the noise variance, and is often called the signal-to-noise ratio (S/N or SNR). It
may be expressed as amplitude or power:

Power SNR ≡ f2 [x, y]

σ2 [n]

Amplitude SNR ≡
s

f2 [x, y]

σ2 [n]
=

f [x, y]

σ [n]

After averaging P frames of signal plus noise, the gray level at the pixel [x, y] will
approach:

g [x, y] =
1

P

PX
i=1

(f [x, y] + n [x, y, ti])

=
1

P

PX
i=1

f [x, y] +
1

P

PX
i=1

n [x, y, ti]

=
PX
i=1

f [x, y]

P
+

NX
i=1

n [x, y, ti]

P

∼= f [x, y] + μ

The variance of the noise at pixel [x, y] after averaging P frames is:

σ2 [n] =

n2 [x, y]

®
− μ2 =

PX
i=1

µ
n [x, y, ti]

P

¶2
− μ2

=
1

P 2

PX
i=1

n [x, y, ti]
PX
j=1

n [x, y, tj]− μ2

=
1

P 2

PX
i=1

(n [x, y, ti])
2 +

2

P 2

PX
i>j

n [x, y, ti] · n [x, y, tj]− μ2

If the noise values are selected from the same distribution, all terms in the first sum
on the right are identical:

1

P 2

PX
i=1

(n [x, y, ti])
2 =

1

P 2

PX
i>j

¡
σ2i + μ2

¢
=
1

P 2
¡
P ·
¡
σ2i + μ2

¢¢
=
(σ2i + μ2)

P

Because the noise values are uncorrelated by assumption, the second term on the

124 CHAPTER 6 POINT OPERATIONS ON MULTIPLE IMAGES

right is just the square of the mean:

1

P 2

PX
i=1

(n [x, y, ti])
2 +

2

P 2

PX
i>j

n [x, y, ti] · n [x, y, tj]− μ2 = 2 ·
³μ · μ
2

´
= μ2

The variance of the average image is:

σ2 [n] =
(σ2i + μ2)

P
+ μ2 − μ2 =

σ2i + μ2

P

If the mean value μ of noise is 0 (Gaussian noise), then the variance of the sum is
reduced by a factor of N and standard deviation is reduced by

√
P :

σ2 [n] =
σ2i
P

σ [n] =
p
σ2 [n] =

1√
P
σi [n]

The amplitude SNR of the averaged image is:

SNRout =
f [x, y]p
σ2 [n]

=
f [x, y]³
σi[n]√
P

´ = √P · f [x, y]
σi

=
√
P · SNRin

SNRout =
√
P · SNRin

Thus the effect of averaging multiple frames which include additive noise from
a Gaussian distribution is to decrease the width of the histogram of the noise by a

factor of
³√

P
´−1

, which increases the signal-to-noise ratio of the image by
√
P . For

example, a video image from a distant TV station is often contaminated by random
noise (“snow”). If the image is stationary (i.e., does not vary with time), its signal-to-
noise ratio can be increased by averaging; if 90 frames of video (∼= 3 sec) are averaged,
the SNR of the output image will increase by a factor of

√
90 ∼= 9.5.

If the noise is correlated to some degree from frame to frame (i.e., is not totally
random), then averaging will not improve the SNR so rapidly. For example, consider
imaging of a submerged object through a water surface. Wave motion will distort the
images but there will be some correlation between frames. The improvement in SNR
might be only P 0.25 ∼= 3 for P = 90 frames.

6.7 ARITHMETIC OPERATIONS ON MULTIPLE IMAGES 125

Averaging of independent noise samples: (a) signal f [x]; (b) one realization of
Gaussian noise n1 [x] with μ = 0 and σ = 1; (c) f [x] + n1 [x]; (d)

1
9

P9
i=1 (f [x] + ni [x]), showing the improved signal-to-noise ratio of the averaged

image.

6.7.2 Required Number of Bits for image Sums, Averages,
and Differences

If two 8-bit images are added, then the gray value of the output image lies in the
interval [0, 510]; these 511 possible gray values require 9 bits of data to represent
fully. If constrained to 8 useful bits of data in the output image, half of the gray-
scale variations data in the summation must be discarded. In short, it is necessary
to requantize the summation image to fit is within the same dynamic range. If two
8-bit images are averaged, then the gray values of the resulting image are in the
interval [0, 255], but half-integer values are virtually guaranteed, thus ensuring that
the average image also has 9 bits of data unless requantized.

The central limit theorem indicates that the histogram of an image resulting from
a summation and/or average should approach a Gaussian form.

126 CHAPTER 6 POINT OPERATIONS ON MULTIPLE IMAGES

6.7.3 Image Subtraction

Change Detection

Subtraction of images of the same scene recorded at different times will highlight
pixels whose gray value has changed in the interval:

g [x, y] = f [x, y, t1]− f [x, y, t0] .

Invariant pixels will subtract to 0, pixels that have

⎧⎨⎩ brighteneddimmed

⎫⎬⎭ will have⎧⎨⎩ positive

negative

⎫⎬⎭ gray level. This technique is applied to motion/change detection and

may be interpreted as a time derivative.

∂f [x, y, t]

∂t
= lim

∆t→0

f [x, y, t+∆t]− f [x, y, t]

∆t

For multitemporal digital images, the smallest nonvanishing time interval ∆t is
the interval between frames (∆t = t1−t0). The time derivative is the difference image
of adjacent frames:

∂f [x, y, t]

∂t
→ ∂t {f [x, y, t]} ≡

f [x, y, t0 + (t1 − t0)]− f [x, y, t0]

t1 − t0
=

f [x, y, t1]− f [x, y, t0]

t1 − t0
.

f [x, y, t1]− f [x, y, t0]

The difference image g[x, y] is bipolar and must be scaled to fit the available
discrete dynamic range [0-255] for display. Often g0 = 0 is mapped to the mid-level
gray (e.g. 127), the maximum negative level is mapped to 0, the brightest level to
255, and the intervening grays are linearly compressed to fit.

6.7.4 Difference Images as Features

In feature extraction and recognition applications (e.g. remote sensing), linear com-
binations (i.e. sums and differences) of multispectral imagery may supply additional
useful information for classification. For example, the difference image of spectral
band 3 (red) and 4 (infrared) (out of a total of seven bands) imaged by LANDSAT
helps classify urban vs. rural features in the image. In the simple house-tree image,
the visibility of the house is enhanced in Red-Green and Blue-Red images.

6.7 ARITHMETIC OPERATIONS ON MULTIPLE IMAGES 127

Note that the difference images are noticeably noisier, especially Blue-Green; dif-
ference images enhance all variations in gray value, whether desired or not. The
concerns about displaying bipolar gray values of time derivatives exist here as well.

Example: Spectral Differences in the Archimedes Palimpsest

If the “foreground” object of interest has a different spectrum than the “background,”
then it may be possible to segment or enhance the foreground by displaying a differ-
ence of the two images. One useful example is the Archimedes palimpsest, where the
erased original “undertext” is faint and reddish, while the later “overtext” is darker
and more neutral. The reddish original text “disappears” into the parchment under
red light, but shows rather well in the blue channel of a color image taken under
fluorescent illumination. These two images are “balanced” to equalize the local mean
value and variance over a window size that is larger than a character and then the
UV blue channel is subtracted from the tungsten red channel; since the Archimedes
text is brighter in the red and the later text is approximately the same value in both,
the desired undertext has a positive value in the difference image, while the later
prayerbook text and the parchment both appear with approximate value “0”. The
image is then scaled (the contrast is enhanced) to the full available dynamic range.

128 CHAPTER 6 POINT OPERATIONS ON MULTIPLE IMAGES

Example of spectral image subtraction in the Archimedes palimpsest; the blue
channel of a color image under ultraviolet illumination is subtracted from the red
channel of a color image under tungsten illumination, yielding a result where the
pixels with equal brightness subtract to “0” and pixels that are brighter in the red
tungsten image (such as the original text) generate positive values that appear as
“white.” (Creative Commons Attribution license, copyright retained by the Owner of

the Archimedes Palimpsest)

Example: Time Differences in Imagery of Mallory Expedition

The British expedition to Mount Everest in 1924 ended with the deaths of George
Mallory and Andrew Irvine. John Noel, the expedition cinematographer, set up his
camera with a telephoto lens at base camp, approximately a 3-mile line of sight
from the summit. Two frames of the movie film, spaced with ∆t ∼= 3 s are shown.
The images were subtracted in an attempt to segment pixels that had changed over
that time span, with the goal of identifying any pixels that might correspond to the
climbers. From the result, it is apparent that pixels had changed due to imperfections
in the imaging system or due to refractive translations of the scene.

6.7 ARITHMETIC OPERATIONS ON MULTIPLE IMAGES 129

Difference of two images of the same scene taken with ∆t ∼= 3 s; the images are from
a movie made by John Noel of the summit cone of Mount Everest during the British
expedition of 1924, during which George Mallory and Andrew Irvine died on the
mountain (Mallory’s body was discovered on 1 May 1999). One image has been
translated by a small distance due to camera or optical effects, creating “edge”

regions. Pixels with the same gray value are mapped to “midgray” and pixels in the
second image that are brighter or darker map to whiter or darker, respectively.

Number of Bits in Difference Image

If two 8-bit images with values in the intervals [0, 255] are subtracted, then the gray
values of the resulting image lie in the range [−255,+255], for 511 possible values,
requiring 9 bits of data to represent. Thus if we want to obtain 8 useful bits of data
in the output image, we have to discard potentially half of the data in the difference
image.

6.7.5 “Mask” or “Template” Multiplication: Image Mattes

Pixel-by-pixel multiplication of two images is useful to mask out sections of an image,
perhaps to be replaced by objects from other images. This is occasionally useful in
segmentation and pattern recognition, but is essential in image synthesis, such as
for special effects in movies. Pixel-by-pixel image multiplication also is an essential
part of local neighborhood and global image operations, which will be discussed in
subsequent sections.
Lumière brothers
Green screen

6.7.6 Image Division

Images recorded by a system with spatially nonuniform response are functions of both
the input distribution f [x, y] and the spatial sensitivity curve s[x, y], 0 ≤ s[x, y] ≤ 1 :

130 CHAPTER 6 POINT OPERATIONS ON MULTIPLE IMAGES

g[x, y] = f [x, y] · s[x, y]

This is a deterministic multiplicative degradation of the image; the image may be
restored by dividing out the noise. An estimate of the true image brightness can be
computed at each pixel by division:

f̂ [x, y] =
g[x, y]

s[x, y]
∼= f [x, y]

(n.b., no image information is recorded at pixels where s[x, y] = 0 and thus the
true value cannot be recovered at those pixels). This technique has been applied to
remotely sensed imagery where information about image brightness is critical. Note
that errors in the sensitivity function greatly distorts the recovered signal. Similarly,
additive noise creates big problems in image division.

Image Division to Correct Spatial Sensitivity

Imaging systems often suffer from a consistent multiplicative error. One very common
example is the variation in sensitivity of the pixels in a CCD sensor due to unavoidable
variability in the properties of the substrate or in the manufacturing. It is possible
to measure this error and correct for it via a subsequent division.

Consider a biased sine wave f [x] recorded by an imaging system whose sensitivity
falls off away from the origin. The image may be recovered completely if the sensitivity
curve is nonzero everywhere and there is no noise in either the recorded signal or the
estimate of the sensitivity.

6.7 ARITHMETIC OPERATIONS ON MULTIPLE IMAGES 131

1-D simulation of spatial compensation to correct for detector sensitivity: (a)
original signal f [x] is a biased sinusoid; (b) sensitivity function s [x]; (c)

g [x] = f [x] · s [x]; (d) correction f̂ [x] =
g [x]

s [x]
.

Spatial correction in the presence of noise: (a) g [x] + n [x], where n [x] is zero-mean

Gaussian noise with σ = 0.005 (VERY small); (b) f̂ [x] =
g [x] + n [x]

s [x]
, showing the

large errors where |g [x]| ' 0 due to the incorrect division of two small values.

Noise in the estimate of the sensitivity results in distortion of the recovered signal;
the effect is more severe where the SNR is low. The deviation of the added noise is
0.005.

132 CHAPTER 6 POINT OPERATIONS ON MULTIPLE IMAGES

Some other examples of image subtraction and division are considered after dis-
cussing convolution in the next chapter.

Chapter 7

Local Operations

In many common image processing operations, the output pixel is a weighted com-
bination of the gray values of pixels in the neighborhood of the input pixel, hence
the term local neighborhood operations. The size of the neighborhood and the pixel
weights determine the action of the operator. This concept has already been intro-
duced when we considered image prefiltering during the discussion of realistic image
sampling. It will now be formalized and will serve as the basis of the discussion of
image transformations.

g[x, y] = O{f [x±∆x, y ±∆y]}

7.1 Window Operators — Correlation

To introduce local neighborhood operators, consider the following process that acts
on a 1-D input function f [x] that is defined over a continuous domain:

O{f [x]} =
Z +∞

−∞
f [α] · γ [α− x] dα

In words, this process computes the area of the product of two functions for each
output location x: the input f and a second function γ that has been translated
(shifted) by a distance x. The result of the operation is determined by the function
γ[x].
The process may be recast in a different form by defining a new variable of inte-

gration u ≡ α− x:Z +∞

−∞
f [α] · γ [α− x] dα→

Z u=+∞

u=−∞
f [x+ u] · γ [u] du

which differs from the first expression in that the second function γ[u] remains fixed
in position and the input function f is shifted by a distance −x. If the amplitude
of the function γ is zero outside some interval in this second expression, then the
integral need be computed only over the region where γ[u] 6= 0. The region where

133

134 CHAPTER 7 LOCAL OPERATIONS

the function γ[x] is nonzero is called the support of γ, and functions that are nonzero
over only a finite domain are said to exhibit finite or compact “support.”
The 2-D versions of these expressions are:

O{f [x, y]} =
Z +∞

−∞

Z +∞

−∞
f [α, β] · γ [α− x, β − y] dα dβ

=

Z +∞

−∞

Z +∞

−∞
f [x+ u, y + v] · γ [u, v] du dv.

The analogous process for sampled functions requires that the integral be converted
to a discrete summation:

g [n,m] =
+∞X

i=−∞

+∞X
j=−∞

f [i, j] · γ [i− n, j −m] =
+∞X

i=−∞

+∞X
j=−∞

f [i+ n, j +m] · γ [i, j] .

In the common case where γ has compact support of size 3 × 3 samples, it may
be considered to be a 3× 3 matrix or window function:

γ [n,m] =

γ−1,1 γ0,1 γ1,1

γ−1,0 γ0,0 γ1,0

γ−1,−1 γ0,−1 γ1,−1

,

The second expression reduces to:

g [n,m] =
+1X

i=−1

+1X
j=−1

f [i+ n, j +m] · γ [i, j] .

7.2 CONVOLUTION 135

In words, this process scales the shifted function by the values of the matrix γ,
and thus computes a weighted average of the input image f [n,m]. The operation
derfined by this last equation is called the cross-correlation of the image with the
window funtion γ [n,m]. The correlation operation often is denoted by g [n,m] =
f [n,m]F [n,m]. The output image g at pixel indexed by [n,m] is computed by
centering the window γ [n,m] on that pixel of the input image f [n,m], multiplying the
window and input image pixel by pixel, and summing the products. This operation
produces an output extremum at shifts [n,m] where the gray-level pattern of the input
matches that of the window.
Examples of 3× 3 windows:

γ1 [n,m] =

0 0 0

0 +1 0

0 0 0

γ2 [n,m] =

0 0 0

0 +2 0

0 0 0

γ1 [n,m] =

0 0 0

0 0 +1

0 0 0

γ1— the only pixel that influences the output g [n,m] is the identical pixel in the
input f [n,m]— this is the identity operator.

γ2— the output pixel has twice the gray value of the input pixel — this is a uniform
contrast stretching operator.

γ3— the output pixel is identical to its right-hand neighbor in the input image —
this operator moves the image one pixel to the left.

Once the general cross-correlation algorithm is programmed, many useful opera-
tions on the image f [n,m] can be performed simply by specifying different values for
the window coefficients.

7.2 Convolution

A mathematically equivalent but generally more convenient neighborhood operation
is the CONVOLUTION, which has some very nice mathematical properties.
The definition of the convolution of a 1-D continuous input function f [x] with a

136 CHAPTER 7 LOCAL OPERATIONS

1-D continuous function h[x] is:

g [x] = f [x] ∗ h [x] ≡
Z ∞

−∞
dα f [α] h [x− α] .

where α is a dummy variable of integration. As for the cross-correlation, the function
h[x] defines the action of the system on the input f [x]. By changing the integration
variable to u ≡ x− α, an equivalent expression for the convolution is found:

g [x] =

Z ∞

−∞
f [α] h [x− α] dα

=

Z u=+∞

u=+∞
f [x− u] h [u] (−du)

=

Z ∞

−∞
f [x− u] h [u] du

=

Z ∞

−∞
h [α] f [x− α] dα

where the dummy variable was renamed from u to α in the last step. Note that
the roles of f [x] and h[x] have been exchanged between the first and last expres-
sions, which means that the input function f [x] and system function h[x] can be
interchanged.
The convolution of a continuous 2-D function f [x, y] with a system function h[x, y]

is defined as:

g [x, y] = f [x, y] ∗ h [x, y] ≡
ZZ ∞

−∞
f [α, β] · h [x− α, y − β] dα dβ

=

ZZ ∞

−∞
f [x− α, y − β] · h [α, β] dα dβ

Note the difference between the first forms for the convolution and the cross-
correlation:

f [x, y]F [x, y] =
ZZ ∞

−∞
f [α, β] · γ [α− x, β − y] dα dβ

f [x, y] ∗ h [x, y] ≡
ZZ ∞

−∞
f [α, β] · h [x− α, y − β] dα dβ

and between the second forms:

f [x, y]F [x, y] ≡
ZZ ∞

−∞
f [x+ u, y + v] · γ [u, v] du dv

f [x, y] ∗ h [x, y] ≡
ZZ ∞

−∞
f [x− α, y − β] · h [α, β] dα dβ

The changes of the order of the variables in the first pair says that the function

7.2 CONVOLUTION 137

γ is just shifted before multiplying by f in the cross-correlation, while the function h
is flipped about its center (or equivalently rotated about the center by 180o) before
shifting. In the second pair, the difference in sign of the integration variables says
that the input function f is shifted in different directions before multiplying by the
system function γ for cross-correlation and h for convolution. In convolution, it is
common to speak of filtering the input f with the kernel h. For discrete functions,
the convolution integral becomes a summation:

g [n,m] = f [n,m] ∗ h [n,m] ≡
∞X

i=−∞

∞X
j=−∞

f [i, j] · h [n− i,m− j] .

Again, note the difference in algebraic sign of the action of the kernel h [n,m] in
convolution and the window γij in correlation:

f [n,m]Fγ [n,m] =
∞X

i=−∞

∞X
j=−∞

f [i, j] · (γ [i− n, j −m])

f [n,m] ∗ h [n,m] =
∞X

i=−∞

∞X
j=−∞

f [i, j] · (h [n− i,m− j]).

This form of the convolution results in the very useful property that convolution of an
impulse function δ [n,m] with a system function h [n,m] yields the system function:

δ [n,m] ∗ h [n,m] = h [n,m]

where δ [n,m] ≡ 1 for n = m = 0, and 0 otherwise. Consider a 1-D example of
convolution:

Schematic of the sequence of calculations in 1-D discrete convolution. The 3-pixel

138 CHAPTER 7 LOCAL OPERATIONS

kernel h [n] =
1 2 3

is convolved with the input image that is 1 at one pixel and

zero elsewhere. The output is a replica of h [n] centered at the location of the
impulse.

The same type of result applies in two dimensions:

Schematic of 2-D discrete convolution with the 2-D kernel h [n,m].

δ [i− n, j −m] ∗ h[n,m] = h [n,m]

Persons with signal/image processing background refer to h [n,m] as the impulse
response instead of the kernel, since it is the output of convolution with an impulse;
optickers call it the point spread function (psf). The psf is often nonzero only in a
finite neighborhood — e.g., 3× 3 or 5× 5.

Examples:

0 0 0

0 +1 0

0 0 0

=⇒ identity

0 0 0

0 0 +1

0 0 0

=⇒ shifts image one pixel to right

Discrete convolution is linear because it is defined by a weighted sum of pixel gray

7.2 CONVOLUTION 139

values, i.e.,

f [n,m] ∗ (h1 [n,m] + h2 [n,m]) ≡
+∞X

i=−∞

+∞X
j=−∞

f [i, j] · (h1 [n− i,m− j] + h2 [n− i,m− j])

=
+∞X

i=−∞

+∞X
j=−∞

(f [i, j] · h1 [n− i,m− j] + f [i, j] · h2 [n− i,m− j])

=
+∞X

i=−∞

+∞X
j=−∞

f [i, j] · h1 [n− i,m− j]

+
+∞X

i=−∞

+∞X
j=−∞

f [i, j] · h2 [n− i,m− j]

f [n,m] ∗ (h1 [n,m] + h2 [n,m]) = f [n,m] ∗ h1 [n,m] + f [n,m] ∗ h2 [n,m]

Sums or differences of kernels therefore create new kernels. For example, consider
the sum of three 3× 3 kernels:

h [n,m] =
1

3

0 0 0

0 +1 0

0 0 0

+
1

3

0 +1 0

0 0 0

0 0 0

+
1

3

0 0 0

0 0 0

0 +1 0

The output image g [n,m] is the average of three images: the input and copies shifted
one pixel up and down. Therefore, each pixel in g [n,m] is the average of three
pixels in a vertical line; g [n,m] is blurred vertically. Note that the kernels have been
normalized so that the sum of the elements is unity. This ensures that the gray level
of the filtered image will fall within the dynamic range of the input image, but they
may not be integers. The output of a lowpass filter must typically be requantized.

7.2.1 Convolutions — Edges of the Image

Because a convolution is the sum of weighted gray values in the neighborhood of the
input pixel, there is a question of what to do near the edge of the image, i.e., when
the neighborhood of pixels in the kernel extends “over the edge” of the imgae. The
common solutions are:

1. consider any pixel in the neighborhood that would extend off the image to have
gray value “0”;

2. consider pixels off the edge to have the same gray value as the edge pixel;

3. consider that the convolution in any such case to be undefined; and

4. define any pixels over the edge of the image to have the same gray value as
pixels on the opposite edge.

140 CHAPTER 7 LOCAL OPERATIONS

On the face of it, the fourth of these alternatives may seem to be ridiculous, but
it is simply a statement that the image is assumed to be periodic, i.e., that:

f [n,m] = f [n+ kN,m+ M]

where N and M are the numbers of pixels in a row or column, respectively, and k,
are integers. In fact, this is the most common case, and will be treated in depth when
global operators are discussed.

Possible strategies for dealing with the edge of the image in 2-D convolution: (a) the
input image is padded with zeros; (b) the input image is padded with the same gray
values “on the edge;” (c) values “off the edge” are ignored; (d) pixels off the edge are

assigned the values on the opposite edge, this assumes that the input image is
periodic.

The 3×3 image f [n,m] is bold face, the assumed gray values of pixels off the edge
of the image are in light face for the four cases. (If an “x” falls within the window,
the output gray value is undefined)

7.2.2 Convolutions — Computational Intensity

Convolution with a serial processor can be very slow, especially for large kernels. For
example, convolution of a 5122-pixel image with anM×M kernel requires: 2·5122·M2

operations (multiplications and additions) for a total of 4.7 · 106 operations with a
3 × 3 kernel and 25.7 · 106 operations with a 7 × 7. Of course, it should be noted
that the operations are performed on integer rather than floating-point data (at least
to the point of image scaling). The increase in computations as M2 ensures that
convolution of large images with large kernels is not very practical by serial brute-
force means. In the discussion of global operations to follow, we will introduce an
alternative method for computing convolutions via the Fourier transform that requires
many fewer operations for large images.

7.2 CONVOLUTION 141

7.2.3 Smoothing Kernels — Lowpass Filtering

If all elements of a convolution kernel have the same algebraic sign, the operator O
sums gray values of input pixels in the neighborhood; if the sum of the elements is
zero, then the process computes a weighted average of the gray values. Averaging
reduces the variability of the gray values of the input image; it smooths the function:

Local averaging decreases the “variability” (variance) of pixel gray values

Local averaging “pushes” gray values towards the mean

For a uniform averaging kernel of a fixed size, rapidly varying functions (e.g.,
short-period, high-frequency sinusoids) will be averaged more than slowly varying
terms. In other words, local averaging attenuates the high sinusoidal frequencies
while passing the low frequencies relatively undisturbed — local averaging operators
are lowpass filters. If the kernel size doubles, input sinusoids with twice the period
(half the spatial frequency) will be equivalently affected. This action was discussed in
the section on realistic sampling; a finite detector averages the signal over its width
and reduces modulation of the output signal to a greater degree at higher frequencies.

Local averaging operators are lowpass filters

Obviously, averaging kernels reduce the visibility of additive noise by spreading
the difference in gray value of noise pixel from the background over its neighbors.
By analogy with temporal averaging, spatial averaging of noise increases SNR by the
square-root of the number of pixels averaged if the noise is random and the averaging
weights are identical.
Averaging can be directional, e.g.,:

h [n,m] =
1

3
·
0 +1 0

0 +1 0

0 +1 0

blurs vertically

h [n,m] =
1

3
·
0 0 0

+1 +1 +1

0 0 0

blurs horizontally

The elements of the kernel need not be identical, e.g.,

h [n,m] =
1

3

+0.25 +0.25 +0.25

+0.25 +1 +0.25

+0.25 +0.25 +0.25

142 CHAPTER 7 LOCAL OPERATIONS

averages over the entire window but the output is primarily influenced by the center
pixel; the output blurred less than in the case when all elements are identical.

Lowpass-Filtered Images

Examples of lowpass-filtered images: (a) original; (b) after 3× 3 local average; (c)
after 5× 5 local average.

Effect of Lowpass Filtering on the Histogram

Because an averaging kernel reduces pixel-to-pixel variations in gray level, and hence
the visibility of additive random noise in the image, we would expect that clusters
of pixels in the histogram of an averaged image to be taller and thinner than in the
original image. It should be easier to segment objects based on average gray level
from the histogram of an averaged image. To illustrate, we reconsider the example
of the house-tree image. The image in blue light and its histogram before and after
averaging with a 3× 3 kernel are shown below:

Note that there are four fairly distinct clusters in the histogram of the averaged
image, corresponding to the house, grass/tree, sky, and clouds/door (from dark to
bright). The small clusters at the ends are more difficult to distinguish on the original
histogram.

7.2 CONVOLUTION 143

Effect of blurring on the histogram: the 64× 64 color image, the histograms of the 3
bands, and the 3 2-D histograms are shown at top; the same images and histograms
after blurring with a 3× 3 kernel are at the bottom, showing the concentration of

histogram clusters resulting from image blur.

Note that the noise visible in uniform areas of the images (e.g., the sky in the
blue image) has been noticeably reduced by the averaging, and thus the widths of the
histogram clusters have decreased.

7.2.4 Differencing Kernels — Highpass Filters

From the previous discussion, it may be clear that the converse of the statement that
local averaging reduces variability is also true:

Local Differencing increases the variance of pixel gray values

144 CHAPTER 7 LOCAL OPERATIONS

Local Differencing “pushes” the gray values away from the mean
(and the new mean may be zero)

A kernel with both positive and negative terms computes differences of neighboring
pixels. Adjacent pixels with identical gray levels will tend to cancel, while differences
between adjacent pixels will tend to be emphasized. Since high-frequency sinusoids
vary over shorter distances, differencing operators will enhance them and attenuate
slowly varying (i.e., lower-frequency) terms.

Differencing operators are highpass filters

Subtraction of adjacent pixels results in output gray levels with values less than
0, just as in the case of image differencing for change detection considered in the last
chapter. The output image must be biased up for display by adding some constant
gray level to all image pixels, e.g., if the range of gray values of the difference image is,
say, [−g0, g0], then the negative gray values may be displayed in the interval [0, 2 · g0]
by adding the level g0 to all pixels. Note that the maximum gmax = 2 · g0 may be
larger than the available range, so the output image generally must be requantized.
For an important example, consider the kernel:

h [n,m] =

0 0 0

+1 -1 0

0 0 0

=

0 0 0

+1 0 0

0 0 0

+

0 0 0

0 -1 0

0 0 0

=

0 0 0

+1 0 0

0 0 0

−
0 0 0

0 +1 0

0 0 0

The output image is equivalent to the difference between an image shifted one
pixel to the left and an unshifted image, which may be written in the form:

∂

∂x
f [x, y] = lim

∆x→0

f [x+∆x, y]− f [x, y]

∆x

=⇒ ∂

∂x
f [x, y] ≡ f [(n+ 1) ·∆x,m ·∆y]− f [n ·∆x,m ·∆y]

=⇒ ∂x ∗ f [n,m] = f [n+ 1,m]− f [n,m]

because the minimum nonzero value of the translation ∆x = 1 sample. The corre-
sponding discrete partial derivative in the y-direction is:

∂y ∗ f [n,m] ≡ f [n,m+ 1]− f [n,m]

7.2 CONVOLUTION 145

Discrete derivatives may be implemented via convolution with two specific discrete
kernels that compute the differences of a translated replica of an image and the
original:

∂x =

0 0 0

+1 -1 0

0 0 0

∂y =

0 0 0

0 -1 0

0 +1 0

This definition of the derivative effectively “locates” the edge of an object at the pixel
immediately to the right or above the “crack” between pixels that is the actual edge.

2-D Edge image on top (black on left, white on right) and the first derivative on
bottom obtained by convolving with the 3× 3 first-derivative kernel in the

x-direction, showing that the edge in the derivative image is located at the pixel to
the right of the edge transition.

A symmetric version of the derivative operators is sometimes used which takes
the difference across two pixels:

∂x =

0 0 0

+1 0 -1

0 0 0

∂y =

0 -1 0

0 0 0

0 +1 0

146 CHAPTER 7 LOCAL OPERATIONS

These operators locate the edge of an object between two pixels symmetrically.

2-D Edge image and the first derivative obtained by convolving with the 3× 3
“symmetric” first-derivative kernel in the x-direction, showing that the edge is a

two-pixel band symmetrically placed about the transition.

7.2 CONVOLUTION 147

First derivatives as edge detectors: (a) 1-D object with edges that both increase and

decrease in brightness; (b) bipolar output from discrete first derivative
+1 -1 0

where the dashed red line shows the location of the actual edge; (c) output of

antisymmetric first derivative
+1 0 -1

, showing that the “edges” are two

pixels wide. The ranges of the output images are ±1 and so are usually rescaled to
render the maximum value as white, “0” as midgray, and the minimum as black.

148 CHAPTER 7 LOCAL OPERATIONS

Higher-Order Derivatives

The kernels for higher-order derivatives are easily computed since convolution is as-
sociative. The convolution kernel for the 1-D second derivative is obtained by auto-
convolving the kernel for the 1-D first derivative:

∂2

∂x2
f [x, y] =

∂

∂x

µ
∂

∂x
f [x, y]

¶
=

∂

∂x

µ
lim
∆x→0

f [x+∆x, y]− f [x, y]

∆x

¶
= lim

∆x→0

µ
lim
∆x→0

µ
f [x+ 2∆x, y]− f [x+∆x, y]

∆x

¶
− lim

∆x→0

µ
f [x+∆x, y]− f [x, y]

∆x

¶¶
= lim

∆x→0

µ
f [x+ 2∆x, y]− 2f [x+∆x, y] + f [x, y]

∆x

¶
=⇒ ∂2x ∗ f [n,m] ≡ f [n+ 2,m]− 2f [n+ 1,m]− f [n,m]

which may be evaluated by convolution with a five-element symmetric kernel:

∂2x =

0 0 0 0 0

0 0 0 0 0

+1 -2 +1 0 0

0 0 0 0 0

0 0 0 0 0

Usually, the kernel is translated to the right by one pixel to “center” the weights in
a 3× 3 kernel:

∂̂2x =

0 0 0

+1 -2 +1

0 0 0

which generates the same image as cascaded first derivatives but for a shift to the
right by a pixel. The corresponding 2-D second partial derivative kernels are:

∂2y =

0 0 0 0 0

0 0 0 0 0

0 0 +1 0 0

0 0 -2 0 0

0 0 +1 0 0

7.2 CONVOLUTION 149

∂̂2y =

0 +1 0

0 -2 0

0 +1 0

1-D rectangle object and the location of its edges obtained by convolving with the

“centered” second derivative kernel
+1 -2 +1

in the x direction; the location of

the true edges are shown as dashed lines. The edge in the output image is a pair of
impulses with opposite signs. Again, the bipolar dynamic range must be rescaled.

150 CHAPTER 7 LOCAL OPERATIONS

The derivation may be extended to derivatives of still higher order by convolving
kernels to obtain the kernels for the 1-D third and fourth derivatives:

∂3x ≡ ∂x ∗ ∂x ∗ ∂x

=

0 0 0

+1 -1 0

0 0 0

∗
0 0 0

+1 -1 0

0 0 0

∗
0 0 0

+1 -1 0

0 0 0

=

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

+1 -3 +3 -1 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

Of course, the higher-order derivatives are usually translated to reduce the size of
the 1-D kernel and obtain:

∂̂3x = +1 -3 +3 -1 0

The gray-level extrema of the image produced by a differencing operator indicate
pixels in regions of rapid variation, e.g., edges. The visibility of these pixels can be
further enhanced by a subsequent thresholding operation.

7.3 Effiects of Averaging and Differencing on Noisy
Images

Because they compute weighted differences in pixel gray value, differencing operators
will enhance the visibility of noise in an image. Consider the 1-D example where
the input image f [x]is a 3-bar chart with added noise, so that the signal-to-noise
ratio (SNR) of 4.The convolution of the input f [x]with an averaging kernel h1[x] =
1
3 1 1 1 and with differencing kernel h2[x] = -1 +3 -1 are shown below:

7.3 EFFIECTSOFAVERAGINGANDDIFFERENCINGONNOISY IMAGES151

Effect of averaging and of sharpening applied to an image with noise: (a)
f [x] + n [x]; (b) after averaging over 3-pixel neighborhood, showing reduction in

noise; (c) after sharpening over 3-pixel neighborhood with
-1 +3 -1

, showing

increased noise variance.

Note that the noise is diminished by the averaging kernel and enhanced by the
differencing kernel. The 2-D case is shown below with a 3×3 uniform averager and a
3× 3 sharpening kernel. The images were scaled to the same dynamic range. Again,
note that the visibility of the letters is enhanced by averaging and diminished by
differencing.

Effect of averaging and differencing operations on noisy image: (a) original image +
noise; (b) after local averaging, showing the enhanced visibility of the letters; (c)
after applying Laplacian sharpener (and extending the dynamic range), which

enhances the noise relative to the signal.

7.3.1 Application of the Laplacian to Texture Segmentation

Since the Laplacian operator evaluates differences of gray values in the neighborhood,
the values depend on both the pattern and magnitude of the local changes. For this
reason, it may be used to segment regions that have the same average gray value but
different “textures.” Consider an image composed of two regions with the same mean
value but different patterns of gray value

152 CHAPTER 7 LOCAL OPERATIONS

7.4

7.5 Applications of Differencing — Image Sharpen-
ing

7.5.1 Unsharp Masking

This digital technique that was adapted from a tool of photographic imaging that was
developed in the 1930s to increase the apparent “sharpness” (the so-called “acutance”)
of images. It may be concisely described as the difference of an image and a blurry
replica, where the difference operation was originally implemented as the sum of the
blurry image and the original photographic negative. The steps in the photographic
process are:

1. make a transparent positive contact print of the original scene by placing the
copy emulsion in contact with the back of the original negative; the additional
distance of the copy emulsion from the original slightly “blurs” the positive
reproduction.

2. Place the blurred positive transparency just made in contact with the back of
the original negative so that the two images are registered.

3. Make a positive print of the sandwich, which is the difference of the “sharply
focused” positive print from the negative and a slightly blurry negative print
from the blurred positive transparency.

In the resulting image, low-frequency features are partially canceled by the blurred
transparency, thus relatively enhancing the high-frequency information in the original.
In other words, the sinusoidal components of resulting image have larger amplitudes
at the larger spatial frequencies, so the image appears “sharper.” The “amount” of
sharpening (i.e., the spatial frequency where enhancement is first noticed) is controlled
by adjusting the amount of blurring; the more blurry the positive transparency, the
sharper the final image.

Action of unsharp masking: (a) original appearance; (b) after unsharp masking
(note highlight details at right side of eye and the lower lashes; (c) “oversharp”

image. (credit, Wikipedia Commons)

7.5 APPLICATIONS OF DIFFERENCING — IMAGE SHARPENING153

We can think of unsharp masking in terms of the convolution operators that
form the individual component images. The sharply focused image is produced by
convolution with the identity kernel:

f [x, y] ∗
0 0 0

0 +1 0

0 0 0

= f [x, y]

We can generate the blurry image by convolution with the uniform averaging operator:

f [x, y] ∗ 1
9

1 1 1

1 1 1

1 1 1

= f1 [x, y]

And the difference image may be written as

g [x, y] = f [x, y] ∗
0 0 0

0 +1 0

0 0 0

− f [x, y] ∗ 1
9

1 1 1

1 1 1

1 1 1

= f [x, y] ∗

⎛⎜⎜⎜⎝
0 0 0

0 +1 0

0 0 0

− 1
9

1 1 1

1 1 1

1 1 1

⎞⎟⎟⎟⎠

= f [x, y] ∗ 1
9

-1 -1 -1

-1 +8 -1

-1 -1 -1

This is single convolution operator h [x, y] that will implement unsharp masking in in
one step. Note that sum of the weights is zero, which means that the mean value of
the output image will be zero.

7.5.2 Other Image Sharpeners

A different way to construct a sharpener is to add “positive” edge information to the
original image. The edge information may be determined by applying some variety of
edge detector. A very common edge detector is 2-D second derivative, which is called

154 CHAPTER 7 LOCAL OPERATIONS

the “Laplacian”. Recall the second derivative operator in the x- and y-directions:

µ
∂

∂x

¶2
=⇒ ∂2x =

0 0 0

+1 -2 +1

0 0 0

µ
∂

∂y

¶2
=⇒ ∂2y =

0 +1 0

0 -2 0

0 +1 0

The sum of these two is:µ
∂

∂x

¶2
+

µ
∂

∂y

¶2
≡ ∇2

=⇒ ∂2x + ∂2y =

0 0 0

+1 -2 +1

0 0 0

+

0 +1 0

0 -2 0

0 +1 0

=

0 +1 0

+1 -4 +1

0 +1 0

This is the most common form of Laplacian operator. Note that the weights sum to
zero, which means that the mean gray value of the image produced by this operator
will be zero.
Now consider the result of subtracting the iamge produced by the Laplacian oper-

ator just specified from the original image. The convolution kernel may be specified
as the difference of the identity and Laplacian operators:

0 0 0

0 +1 0

0 0 0

−
0 +1 0

+1 -4 +1

0 +1 0

=

0 -1 0

-1 +5 -1

0 -1 0

Note that the weights sum to one, which means that this operator will preserve the
average gray value of the image.
We can also construct other variants of the Laplacian operator
The 1-D analogue of the Laplacian sharpener will subtract the 1-D second deriv-

ative from the identity:

0 +1 0 − +1 -2 +1 = -1 +3 -1

It may be useful to apply this operator to a 1-D blurred edge to see the effect. In
the vicinity of a blurred edge, the second derivative operator will enhance the edge
information to sharpen the image

7.5 APPLICATIONS OF DIFFERENCING — IMAGE SHARPENING155

Action of 1-D 2nd-derivative sharpening operator on a “blurry” edge. The angle of
the slope of the sharpened edge is “steeper”, but the amplitude “overshoots” the
correct value on both sides of the edge. In short, the output is not the ideal sharp

edge.

156 CHAPTER 7 LOCAL OPERATIONS

7.5.3 Generalized Laplacian

We just showed how the isotropic Laplacian may be written as the difference of a
3× 3 average and a scaled discrete delta function:

+1 +1 +1

+1 −8 +1

+1 +1 +1

=

+1 +1 +1

+1 +1 +1

+1 +1 +1

− 9 ·
0 0 0

0 +1 0

0 0 0

which suggests that the Laplacian operator may be generalized to include all operators
that compute differences between a weighted replica of the original image and a copy
blurred by some averaging kernel. One example of a generalized Laplacian may be

7.5 APPLICATIONS OF DIFFERENCING — IMAGE SHARPENING157

constructed from the 2-D circularly symmetric continuous Gaussian impulse response:

h [x, y] = A exp

∙
−π

µ
x2 + y2

α2

¶¸
where the decay parameter α determines the rate of attenuation of kernel values
with radial distance from the origin. The amplitude parameter A often is selected
to normalize the sum of the elements of the kernel to unity, thus ensuring that the
process computes a weighted average that preserves the average gray value of the
images. Amplitudes smaller than some threshold value are often set to zero. For
example, a normalized discrete approximation of the Gaussian kernel with α = 2 ·∆x
might be approximated as:

h1 [n,m] =
1

2047

1 11 23 11 1

11 111 244 111 11

23 244 535 244 23

11 111 244 111 11

1 11 23 11 1

∼= 1

21

0 0 1 0 0

0 1 2 1 0

1 2 5 2 1

0 1 2 1 0

0 0 1 0 0

A corresponding generalized Laplacian operator is constructed by subtracting the
5× 5 identity kernel from this discrete Gaussian:

h2 [n,m] =
1

21

0 0 1 0 0

0 1 2 1 0

1 2 5 2 1

0 1 2 1 0

0 0 1 0 0

− 1
21

0 0 0 0 0

0 0 0 0 0

0 0 21 0 0

0 0 0 0 0

0 0 0 0 0

=
1

21

0 0 +1 0 0

0 +1 +2 +1 0

+1 +2 −16 +2 +1

0 +1 +2 +1 0

0 0 +1 0 0

Note that the sum of the elements of this generalized Laplacian kernel is zero because
of the normalization of the Gaussian kernel, which means the output will be a null
image if the input is a uniform gray field.

The analogue of the Laplacian sharpening operator is constructed in the same
manner as before, by subtracting the Laplacian (second derivative). In the original
case:

0 0 0

0 +1 0

0 0 0

−
0 +1 0

+1 -4 +1

0 +1 0

=

0 -1 0

-1 +5 -1

0 -1 0

158 CHAPTER 7 LOCAL OPERATIONS

With the generalized Laplacian:

0 0 0 0 0

0 0 0 0 0

0 0 1 0 0

0 0 0 0 0

0 0 0 0 0

− 1

21

0 0 +1 0 0

0 +1 +2 +1 0

+1 +2 −16 +2 +1

0 +1 +2 +1 0

0 0 +1 0 0

=
1

21

0 0 −1 0 0

0 −1 −2 −1 0

−1 −2 +37 −2 −1

0 −1 −2 −1 0

0 0 −1 0 0

7.6 Directional Derivatives: Gradient

The gradient of a 2-D continuous function f [x, y] constructs a 2-D vector at each
coordinate whose components are the x- and y-derivatives:

g [x, y] = ∇f [x, y] =
∙
∂f

∂x
,
∂f

∂y

¸
This is a discrete version of a common operation in physics (particularly in electro-
magnetism). The image f [n,m] is a scalar function which assigns a numerical gray
value f to each coordinate [n,m]. The gray value f is analogous to terrain “eleva-
tion” in a map. In physics, the gradient of a scalar “field” f [x, y] is the product of
the vector operator ∇ (pronounced del) and the scalar “image” f , yielding ∇f [x, y].
This process calculates a vector for each coordinate [x, y] whose Cartesian compo-
nents are ∂f

∂x
and ∂f

∂y
. Note that the 2-D vector ∇f may be represented in polar form

as magnitude |∇f | and direction Φ {∇f}:

|∇f [x, y]| =

sµ
∂f

∂x

¶2
+

µ
∂f

∂y

¶2

Φ {∇f [n,m]} = tan−1
⎡⎣
³
∂f
∂y

´
¡
∂f
∂x

¢
⎤⎦

The vector points “uphill” in the direction of the maximum “slope” in gray level.

g [n,m] = ∇f [n,m] =

⎡⎣ (∂x ∗ f [n,m])
(∂y ∗ f [n,m])

⎤⎦
In image processing, the magnitude of the gradient often is approximated as the sum
of the magnitudes of the components:

7.6 DIRECTIONAL DERIVATIVES: GRADIENT 159

¯̄
g [n,m]

¯̄
= |∇f [n,m] | =

q
(∂x ∗ f [n,m])2 + (∂y ∗ f [n,m])2

∼= |∂x ∗ f [n,m]|+ |∂y ∗ f [n,m]|

The magnitude |∇f | is the “slope” of the 3-D surface f at pixel [n,m]. The azimuth
Φ {∇f [n,m]} defines the compass direction where this slope points “uphill.” The
gradient is not a linear operator, and thus can neither be evaluated as a convolution
nor described by a transfer function. The largest values of the magnitude of the
gradient correspond to the pixels where the gray value “jumps” by the largest amount,
and thus the thresholded magnitude of the gradient may be used to identify such
pixels. In this way the gradient may be used as an “edge detection operator.” An
example of the gradient operator is shown.

Example of the discrete gradient operator ∇f [n,m]. The original object is the

160 CHAPTER 7 LOCAL OPERATIONS

nonnegative function f [n,m] shown in (a), which has amplitude in the interval
0 ≤ f ≤ +1. The gradient at each pixel is the 2-D vector with components bipolarh
∂f
∂x
, ∂f
∂y

i
. The two component images are shown in (b) and (c). These also may be

displayed as the magnitude

r¡
∂f
∂x

¢2
+
³
∂f
∂y

´2
in (c) and the angle φ = tan−1

∙
∂f
∂y
∂f
∂x

¸
in

(d). The extrema of the magnitude are located at corners and edges in f [n,m].

7.6.1 Roberts’ Gradient

Often the gradient magnitude is approximated by replacing the Pythagorean sum of
the derivatives by the sum of their magnitudes:

|∇f [x, y]| =

sµ
∂f

∂x

¶2
+

µ
∂f

∂y

¶2
∼=
¯̄̄̄
∂f

∂x

¯̄̄̄
+

¯̄̄̄
∂f

∂y

¯̄̄̄
The magnitude of the gradient is always positive, which removes any difficulty from
displaying bipolar data.
The gradient computed from the absolute values of the derivatives will preferen-

tially emphasize outputs where both derivatives are “large,” which will happen for
diagonal edges. In short, the magnitude gradient will produce larger outputs for
diagonal edges than for horizontal or vertical edges. A change of ±1 gray value in
the horizontal or vertical direction will product a gradient magnitude |∇f | = 1 gray
value, while changes of ±1 gray values along a 45◦ diagonal will generate a gradient
magnitude of:

|∇f | =
q
(±1)2 + (±1)2 = 1.4 gray values >

q
(±1)2 + (0)2 ∼= |±1|+|±1| = 2 gray values

If the image structure is primarily horizontal or vertical, it may be desirable to re-
place the kernels for the x- and y-derivatives in the gradient operator by kernels for
derivatives across the diagonals (by rotating by ±π

4
radians):

∂π/4 =

0 0 0

0 -1 0

+1 0 0

, ∂−π/4 =

0 0 0

0 -1 0

0 0 +1

The component operators for the Roberts’ gradient are often considered to be:

∂1 =

0 0 -1

0 +1 0

0 0 0

, ∂2 =

0 -1 0

0 0 +1

0 0 0

The gradient magnitude is computed as before and the result is the Roberts’ gradient,

7.6 DIRECTIONAL DERIVATIVES: GRADIENT 161

which preferentially emphasizes horizontal or vertical features. A gradient magnitude
which responds without preferential emphasis may be generated by summing the
outputs of all four derivative kernels. For this application, the “untranslated” rotated
operators are prefered to ensure that edges computed from all four kernels will overlap:

|∇f [x, y]| =
q
(∂x ∗ f)2 + (∂y ∗ f)2 +

¡
∂π/4 ∗ f

¢2
+
¡
∂−π/4 ∗ f

¢2
∼= |∂x ∗ f |+ |∂y ∗ f |+

¯̄
∂π/4 ∗ f

¯̄
+
¯̄
∂−π/4 ∗ f

¯̄
Because the gradient operators compute gray-level differences, they will generate
extreme values (positive or negative) where there are “large” changes in gray level,
e.g., at edges. However, differencing operators also generate nonzero outputs due to
“noise” in the images due to random signasl, quantization error, etc. If the variations
due to noise are of similar size as the changes in gray level at an edge, identification
of edge pixels will suffer.

7.6.2 “Laplacian of Gaussian”

The so-called “Laplacian of Gaussian” (LoG) operator was introduced by Marr and
Hildreth (“Theory of Edge Detection” Proc. Royal Soc. London B207, pp. 187-
217, 1980) which blurs the images with a Gaussian averager and then performs a
Laplacian edge detector. These are sometimes called “Marr operators.” The output
may be written as:

g [x, y] = ∇2 {f [x, y] ∗ h [x, y]}

=

µ
∂2

∂x2
+

∂2

∂y2

¶µ
f [x, y] ∗ 1

2πσ2
exp

∙
−x

2 + y2

2σ2

¸¶
where h [x, y] is the impulse response of the Gaussian function with standard deviation
σ; the value of σ may be selected as a free parameter; the larger the value of σ, the
wider the averaging of the Gaussian.

Since both operations (Laplacian and Gaussian blur) are implemented by convo-
lution, we can get the same result by applying the Laplacian to the Gaussian kernel
FIRST, thus producing a single kernel for the entire operation. Consider a 1-D ex-

162 CHAPTER 7 LOCAL OPERATIONS

ample with continuous (nonsampled) coordinates, which we can easily extend to 2-D:

∂2

∂x2

µ
1

2πσ2
exp

∙
− x2

2σ2

¸¶
=

1

2πσ2
· ∂2

∂x2

µ
exp

∙
− x2

2σ2

¸¶
=

1

2πσ2
· ∂

∂x

µ
∂

∂x
exp

∙
− x2

2σ2

¸¶
=

1

2πσ2
· ∂

∂x

µ
− x

σ2
exp

∙
− x2

2σ2

¸¶
=

1

2πσ2
·
µ
− 1
σ2
exp

∙
− x2

2σ2

¸
− x

σ2

µ
− x

σ2
exp

∙
− x2

2σ2

¸¶¶
= − 1

2πσ4

µ
x2

σ2
− 1
¶
exp

∙
− x2

2σ2

¸

Profile of the LoG operator along the x-axis for σ = 1.4

The corresponding 2-D kernel isµ
∂2

∂x2
+

∂2

∂y2

¶µ
1

2πσ2
exp

∙
−x

2 + y2

2σ2

¸¶
=

µ
∂2

∂x2
+

∂2

∂y2

¶µ
1

2πσ2
exp

∙
−x

2 + y2

2σ2

¸¶
=

1

πσ4

µ
1− x2 + y2

2σ2

¶
exp

∙
−x

2 + y2

2σ2

¸

7.6 DIRECTIONAL DERIVATIVES: GRADIENT 163

2-D impulse response of LoG operator with σ = 1.4

Because of the lateral extent of the kernel, the sampled version of the impulse
response should be generated in a fairly large array, say 9 × 9 or larger. A 9 × 9
approximation of the LoG kernel with σ = 1.4 is

h [x, y] =

0 -1 -1 -2 -2 -2 -1 -1 0

-1 -2 -4 -5 -5 -5 -4 -2 -1

-1 -4 -5 -3 0 -3 -5 -4 -1

-2 -5 -3 +12 +24 +12 -3 -5 -2

-2 -5 0 +24 +40 +24 0 -5 -2

-2 -5 -3 +12 +24 +12 -3 -5 -2

-1 -4 -5 -3 0 -3 -5 -4 -1

-1 -2 -4 -5 -5 -5 -4 -2 -1

0 -1 -1 -2 -2 -2 -1 -1 0

The sum of the weights is zero, which means that the application of this operator will
produce an image with mean gray value of zero.

The case of the 1-D LoG applied to an edge is shown below:

164 CHAPTER 7 LOCAL OPERATIONS

(a) 1-D edge; (b) 1-D impulse response of Laplacian of Gaussian; (c) output
showing double response at edge.

Difference of Gaussians

A difference of Gaussians (DoG) operation:

h [x, y] =
1

2πσ21

µ
σ21
σ22
exp

∙
−x

2 + y2

2σ22

¸
− exp

∙
−x

2 + y2

2σ21

¸¶
where σ1 > σ2. If σ1 > 1.6 · σ2, then h [x, y] closely approximates the LoG:

h [x, y] =
1

2π · (1.6)2
µ
(1.6)2 exp

∙
−x

2 + y2

2

¸
− exp

∙
− x2 + y2

2 · (1.6)2
¸¶

Profile of h [x, 0] for the “difference of Gaussians” kernel with σ1 = 1.6 and σ2 = 1
(in red) compared to LoG for σ = 1.5 (blue)

7.7 NONLINEAR FILTERS 165

7.7 Nonlinear Filters

7.7.1 Median Filter

Probably the most useful nonlinear statistical filter is the local median, i.e., the gray
value of the output pixel is the median of the gray values in a neighborhood, which
is obtained by sorting the gray values in numerical order and selecting the middle
value. To illustrate, consider the 3× 3 neighborhood centered on the value “3” and
the 9 values sorted in numerical order; the median value of “2” is indicated by the
box and replaces the “3” in the center of the window:

1 2 6

2 3 5

1 5 2

=⇒ ordered sequence is 1 1 2 2 2 3 5 5 6 and the median is 2

The nonlinear nature of the median can be recognized by noting that the median of
the sum of two images is generally not equal to the sum of the medians. For example,
the median of a second 3× 3 neighborhood is “3”

4 5 6

3 1 2

2 4 3

=⇒ 1 2 2 3 3 4 4 5 6

The sum of the two medians is 2+3 = 5, but the sum of the two 3×3 neighborhoods
produces a third neighborhood whose median of 6 6= 2 + 3

5 7 12

6 3 7

3 9 5

=⇒ 3 3 5 5 6 7 7 9 12

confirming that the median of the sum is not the sum of the medians in this case.
The median requires sorting of the gray values, which may not be computed as a

convolution. Its computation typically requires more time than a mean filter, but it
has the advantage of reducing the modulation of signals that oscillate over a period
less than the width of the median window while preserving the gray values of signals
that are constant or monatonically increasing on a scale larger than the window size.
This implies that the variance of additive noise will be reduced in a fashion similar
to the mean filter, BUT it also tends to preserve edge structure. Unlike the mean
filter, all gray values generated by the median must have been present in the original
image, thus eliminating any need to requantize the processed gray values.
The statistics of the median-filtered image depend on the probability density func-

tion of the input signal, including the deterministic part and any noise. Thus predic-

166 CHAPTER 7 LOCAL OPERATIONS

tions of the effect of the filter cannot be as specific as for the mean filter, i.e., given
an input image with known statistics (mean, variance, etc.), the statistics of the out-
put image are more difficult to predict. However, Frieden analyzed the statistical
properties of the median filter by modeling it as a limit of a large number of discrete
trials of a binomial probability distribution, which are often called “Bernouilli trials”
(Frieden, “Probability, Statistical Optics, and Data Testing,” Springer, p.257).
The median of an odd number N of a set of samples for a set of gray values fi taken
from an input distribution with probability law (i.e., the histogram) pf [x] must be
determined. Frieden applied the principles of Bernoulli trials to determine the prob-
ability density of the median of several independent sets of numbers. In other words,
he sought to determine the probability that the median of the N numbers {fn} is x
by evaluating the median of many independent such sets of N numbers selected from
a known probability distribution pf [x]. Frieden reasoned that, for each placement of
the median window, a specific amplitude fn of the N values is the median if three
conditions are satisfied:

1. one of the N numbers satisfies the condition x ≤ fn < x+∆x

2. of the remaining N − 1 numbers, N − 1
2

exceed x and

3.
N − 1
2

of the remaining numbers are less than x.

The probability of the simultaneous occurence of these three events is the prob-
ability density of the output of the median window. For an arbitrary x, any one
value fn must either lie in the interval (x ≤ f < x +∆x), be larger than x, or less
than x. In other words, each trial has three possible outcomes. These conditions
define a sequence of Bernoulli trials with three outcomes, which produce results akin
to those from the flipping of a “three-sided” coin where the probabilities of the three
outcomes are not equal. In the more familiar case, the probability that N coin flips
with two possible outcomes that have associated probability p and q will produce m
“successes” (say, m heads) and N −m “failures” (tails) is:

PN [m] =
N !

(N −m)!m!
· pm · (1− p)N−m

The formula is easy to extend to the more general case of three possible outcomes;
the probability that the result yields m1 instances of the first possible outcome (say,
“heads #1), m2 of the second outcome (“head #2”) and m3 = N − (m1 +m2) of the
third (“head #3”) is

PN [m1,m2,m3] = PN [m1,m2, N − (m1 +m2)]

=
N !

m1!m2! (N − (m1 +m2))!
· pm1
1 · pm2

2 · pm3
3

=
N !

m1!m2! (N − (m1 +m2))!
· pm1
1 · pm2

2 · (1− (p1 + p2))
N−(m1+m2)

7.7 NONLINEAR FILTERS 167

where p1, p2, and p3 = 1 − (p1 + p2) are the respective probabilities of the three
outcomes.
When applied to one sample of data, the median filter has three possible outcomes

whose probabilities are known: (1) the sample amplitude may be the median (proba-
bility p1) (2) the sample amplitude may be smaller than the median (probability p2),
and (3) it may be larger than the median (probability p3).

p1 = P [x ≤ fn ≤ x+∆x] = pf [x]

p2 = P [fn < x] = Cf [x]

p3 = P [fn > x] = 1− Cf [x]

where Cf [x] is the cumulative probability distribution of the continuous probability
density function pf [x]:

Cf [x] =

Z x

−∞
pf [α] dα

In this case, the distibutions are continuous (rather than discrete), so the probability
is the product of the probability density function pmed [x] and the infinitesmal element
dx. We substitute the known probabilities and the known number of occurences of
each into the Bernoulli formula for three outcomes:

pmed [x] dx =
N !¡

N−1
2

¢
! ·
¡
N−1
2

¢
! · 1!

(Cf [x])
N−1
2 · (1− Cf [x])

N−1
2 · pf [x] dx

=
N !¡¡

N−1
2

¢
!
¢2 (Cf [x])

N−1
2 · [1− Cf [x]]

N−1
2 pf [x] dx

If the window includes N = 3, 5, or 9 values, the following probability laws for the
median result:

N = 3 =⇒ pmed [x] dx =
3!

(1!)2
(Cf [x])

1 · (1− Cf [x])
N−1
2 · pf [x] dx

= 6(Cf [x]) · (1− Cf [x]) pf [x] dx

N = 5 =⇒ pmed [x] dx =
5!

(2!)2
(Cf [x])

2 · [1− Cf [x]]
2 pf [x] dx

= 30(Cf [x])
2 · (1− Cf [x])

2 pf [x] dx

N = 9 =⇒ pmed [x] dx = 630(Cf [x])
4 · (1− Cf [x])

4 pf [x] dx

7.7.2 Example of Median Filter of Uniform Distribution

The statistical properties of the median will now be demonstrated for some simple
examples of known probabilities. If the original pdf pf [x] is uniform over the interval
[0, 1], then it may be written as a rectangle function:

pf [x] = RECT

∙
x− 1

2

¸

168 CHAPTER 7 LOCAL OPERATIONS

pdf of noise that is uniformly distributed over the interval [0, 1] and its associated
cumulative probability distribution Fc [x] = x ·RECT

£
x− 1

2

¤
+ STEP [x− 1]

The associated cumulative probability distribution may be written in several ways,
including:

Cf [x] =

Z x

−∞
pf(α)dα

= x ·RECT
∙
x− 1

2

¸
+ STEP [x− 1]

so the product of the cumulative distribution and its complement is windowed by the
rectangle to yield:

pmedian [x] dx =
N !¡¡

N−1
2

¢
!
¢2 ³xN−1

2 · (1− x)
N−1
2

´
RECT

∙
x+

1

2

¸
dx

The pdfs of the output of median filters for N = 3, 5, and 9 are:

N = 3 =⇒ pmedian [x] dx = 6
¡
x− x2

¢
RECT

∙
x− 1

2

¸
dx

N = 5 =⇒ pmedian [x] dx = 30
¡
x4 − 2x3 + x2

¢
RECT

∙
x− 1

2

¸
dx

N = 9 =⇒ pmedian [x] dx = 630 ·
¡
x8 − 4x7 + 6x6 − 4x5 + x4

¢
RECT

∙
x− 1

2

¸
dx

are compared to the pdfs of the output of the mean filters in the figure:

7.7 NONLINEAR FILTERS 169

Comparison of pdfs of mean and median filter for uniform probability density
function pf [x] = RECT

£
x+ 1

2

¤
for N = 3, 5, and 9. Note that the pdf of the mean

filter is “taller” and “skinnier” in all three cases, showing that it will reduce the
variance more than the median filter.

Just like the mean filter, the maximum value of pmedian [x] increases and its width
decreases as the number of input values in the median window increases (as N ↑).
The calculated pdfs for the median and mean filters over N = 3 and N = 5 samples
for input values from a uniform probability distribution are shown below to the same
scale. Note that the output distributions from the mean filter are taller than for the
median, which indicates that the median filter does a poorer job over averaging noise
than the mean (Frieden determined that the S/N ratio of the median filter is smaller
than that of the mean by a factor of loge [2] ∼= 0.69, so that there is a penalty in S/N
of about 30% for the median filter relative to the averaging filter. Put another way,

the standard deviation of the median of N samples decreases as
³√

N · log2 [2]
´−1

instead of
³√

N
´−1

. The lesser noise reduction of the median filter is offset by its
ability to preserve the sharpness of edges.

170 CHAPTER 7 LOCAL OPERATIONS

Comparison of mean and median filter: (a) bitonal object f [m] defined over 1000
samples; (b) output of mean filter over 25 samples, showing reduction in contrast
with decreasing period; (c) median of f [m] over 25 samples, which is identical to

f [m]; (d) f [m] + n [m], which is uniformly distributed over interval [0, 1]; (e) mean
over 25 samples; (f) median over 25 samples. Note that the highest-frequency bars

are better preserved by the median filter.

7.8 Median Filter and Gaussian Noise

Probably the most important application of the median filter is to attenuate Gaussian
noise (i.e., the gray values are selected from a normal distribution with zero mean)
without blurring edges. The central limit theorem indicates that the statistical char-
acter of noise which has been generated by summing random variables from different
distributions will be Gaussian in character. The probability distribution function is
the Gaussian with mean value μ and variance σ2 normalized to unit area:

pf [x] =
1√
2πσ2

exp

"
−(x− μ)2

2σ2

#

7.8 MEDIAN FILTER AND GAUSSIAN NOISE 171

The cumulative probability density of this noise is the integral of the Gaussian prob-
ability law, which is proportional to the error function:

erf [x] ≡ 2√
π

Z x

0

e−t
2

dt

We can evaluate the cumulative density in terms of erf [x]:

Cf [x] =

Z x

−∞
pc [x] dx ≡

1

2
− 1

2
√
2σ
erf

∙
x− μ√
2σ

¸
for x ≤ μ

Cf [x] =

Z x

−∞
pc [x] dx ≡

1

2
+

1

2
√
2σ
erf

∙
x− μ√
2σ

¸
for x ≥ μ

Therefore the probabilities of the different outcomes of the median filter are:

pmed [x] dx =
N !¡¡

N−1
2

¢
!
¢2 µ12 + 1

2
√
2σ
erf

∙
x− μ√
2σ

¸¶N−1
2

·
µ
1

2
− 1

2
√
2σ
erf

∙
x− μ√
2σ

¸¶N−1
2

· 1√
2πσ

exp

∙
− x2

2σ2

The error function is compiled and may be evaluated to plot the probability pmedian [x]

pdf of Gaussian noise with μ = 1, σ = 2 (black) and of the median for N = 3 (red),
N = 9 (blue).

The graphs illustrate the theoretical averaging effects of the mean and median filters
on Gaussian noise. The graphs are plotted on the same scale and show the pdf of the
original Gaussian noise (on the left) and the output resulting from mean and median
filtering over 3 pixels (center) and after mean and median filtering over 5 pixels (right).
The calculated mean gray value and standard deviation for 2048 samples of filtered

172 CHAPTER 7 LOCAL OPERATIONS

Figure 7.1: Comparison of histograms resulting from mean and median filtering of
noise that is uniformly distributed after averaging over N = 3 and N = 5. The
histogram obtained from the mean filter is “taller” and “skinnier” than that from the
median, showing that mean filters reduce the variance more than median filters for
both cases. This advantage is offset by the edge-preserving property of the median.

Gaussian noise yielded the following values:

μin = 0.211

σin = 4.011

μ3 −mean = 0.211

σ3 −mean = 2.355

μ3 −median = 0.225

σ3 −median = 2.745

7.9 Comparison of Histograms afterMean andMe-
dian Filter

The input is the blue house image. The first set is the original image and histogram,
followed by the 3×3 mean-filtered image and the 3×3 median filtered. Note that the
median does a better job of segmenting the peaks of the histogram while maintaining
image sharpness (e.g. around the door of the house).

7.9.1 Effect of Window “Shape” on Median Filter

In the 2-D imaging case, the shape of the window over which the median is computed
also affects the output image. For example, if the 2-D median is computed over a

7.9 COMPARISONOFHISTOGRAMSAFTERMEANANDMEDIANFILTER173

5× 5 window at the corner of a dark object on a bright background, the median will
be the background value:

median of

0 0 0 0 0

0 0 0 0 0

1 1 1 0 0

1 1 1 0 0

1 1 1 0 0

= 0

The median calculated over a full square window (3x3, etc.) will convert bright
pixels at outside corners of bright object to dark pixels, i.e., the corners will be clipped;
it will also convert a dark background pixel at the inside corner of a bright object
to a bright pixel. It will also eliminate lines less than half as wide as the window.
Corner clipping may be prevented by computing the median over a window that only
includes 9 values arrayed along horizontal and vertical lines:

- - 1 - -

- - 1 - -

1 1 1 1 1

- - 1 - -

- - 1 - -

If applied to the pixel in the corner, we obtain

median of

0 0 0 0 0

0 0 0 0 0

1 1 1 0 0

1 1 1 0 0

1 1 1 0 0

×

- - 1 - -

- - 1 - -

1 1 1 1 1

- - 1 - -

- - 1 - -

= median of

- - 0 - -

- - 0 - -

1 1 1 0 0

- - 1 - -

- - 1 - -

= 1

174 CHAPTER 7 LOCAL OPERATIONS

This pattern also is effective when applied to thin lines without elimating them:

median of

0 0 0 0 0

0 0 0 0 0

1 1 1 1 1

0 0 0 0 0

0 0 0 0 0

×

- - 1 - -

- - 1 - -

1 1 1 1 1

- - 1 - -

- - 1 - -

= median of

- - 0 - -

- - 0 - -

1 1 1 1 1

- - 0 - -

- - 0 - -

= 1

Other patterns of medians are also useful [?, Castleman, Digital Image Processing,
Prentice-Hall, 1996, p. 249].

7.9.2 Other Statistical Filters (Mode, Variance, Maximum,
Minimum)

The statistical mode in the window (i.e., the most common gray level) is a useful op-
erator on binary images corrupted by isolated noise pixels (“salt-and-pepper noise”).
The mode is found by computing a mini-histogram of pixels within the window and
assigning the most common gray level to the center pixel. Rules must be defined if
two or more gray levels are equally common, and particularly if all levels are popu-
lated by a single pixel. If two levels are equally populated, the gray level of center
pixel is usually retained if it is one of those levels; otherwise one of the most common
gray levels may be selected at random.
The variance filter σ2 and standard deviation filter σ replace the center pixel with

the variance or standard deviation of the pixels in the window, respectively. The
variance filtering operation is

g [x, y] =
X

window

(f [x, y]− μ)2

where μ is the mean value of pixels in the window. The output of a variance or
standard deviation operation will be larger in areas where the image is busy and
small where the image is smooth. The output of the σ-filter resembles that of the
isotropic Laplacian, which computes the difference of the center pixel and the average
of the eight nearest neighbors.
The Maximum or Minimum filter obviously replace the gray value in the center

with the highest or lowest value in the window. The MAX filter will dilate bright
objects, while the MIN filter erodes them. These provide the basis for the so-called
morphological operators. A “dilation” (MAX) followed by an “erosion” (MIN) de-
fines the morphological “CLOSE” operation, while the opposite (erosion followed by
dilation) is an “OPEN” operation. The “CLOSE” operation fills gaps in lines and
removes isolated dark pixels, while OPENING removes thin lines and isolated bright
pixels. These nonlinear operations are useful for object size classification and distance
measurements.

7.9 COMPARISONOFHISTOGRAMSAFTERMEANANDMEDIANFILTER175

Figure 7.2: E (upper left) and after 3×3 filtering by mean (upper right), 3×3 median
(lower left), and 3× 3 median with clipped corners (lower right)

E (upper left) and after 3× 3 maximum filter (upper right), 3× 3 minimum (lower
left), and 3× 3 variance (lower right).

7.9.3 Examples of Nonlinear Filters

Consider 1-D examples of the filtering operations just reviewed:

176 CHAPTER 7 LOCAL OPERATIONS

Comparison of mean and median filter: (a) bitonal (two-level) object f [m] defined
over 1000 samples; (b) mean of f [m] over 25 samples; (c) median of f [m] over 25
samples, which is identical to f [m] since the median evaluates to the bitonal values;
(d) f [m] + n [m], where the noise is uniformly distributed over interval [0, 1]; (e)
mean over 25 samples; (f) median over 25 samples. Note that the highest-frequency

bars are (slightly) better preserved by the median filter.

Below are pictured the results of the filtering operations just reviewed. In each
example, the upper-left quadrant is the original image and the other three are the
outputs of the filters.

In the first sequence, the images were filtered with 3×3 operators. The first image
includes the result of the 3 × 3 mean filter (upper right), 3 × 3 median (lower left),
and 3× 3 median with clipped corners (lower right). The second image is comprised
of the 3 × 3 maximum filter (upper right), 3 × 3 minimum (lower left), and 3 × 3
variance.

7.9 COMPARISONOFHISTOGRAMSAFTERMEANANDMEDIANFILTER177

The second set of images is the same sequence of operations for 5× 5 windows.

7.9.4 Nonlinear Filters on Images with Additive Gaussian
Noise

The dynamic range of the original image is in the range [0, 1] with added Gaussian
noise (σ = 0.5). The image sequences are just as before.

7.9.5 Nonlinear Filters on Noise-Free Gray-Level Image

Note that the points of the crown are clipped by the 3× 3 median filter, and that the
edges are apparent in the 3× 3 variance filter.

178 CHAPTER 7 LOCAL OPERATIONS

7.10 Adaptive Operators

In applications such as edge enhancement or segmentation, it is often useful to
“change”, or “adapt” the operator based on conditions in the image. One exam-
ple has already been considered: the nonlinear normalization used while convolving
with a bipolar convolution kernel. For another example, it is possible to enhance
differences in the direction of the local gradient (e.g. via a 1-D Laplacian) while aver-
aging in the orthogonal direction. In other words, the operator used to enhance the
edge information is determined by the output of the gradient operator. As another
example, the size of an averaging neighborhood could be varied based on the statistics
(e.g., the variance) of gray levels in the neighborhood.

In some sense, these adaptive operators resemble cascaded convolutions, but the
resulting operation is not space invariant and may not be desribed by convolution
with a single kernel. By judicious choice of algorithm, significant improvement of
image quality may be obtained.

7.11 CONVOLUTION REVISITED — BANDPASS FILTERS 179

7.11 Convolution Revisited — Bandpass Filters

The parameters of a filter that determine its effect on the image are the size of the
kernel and the algebraic sign of its coefficients. Kernels whose elements have the
same algebraic sign are lowpass filters that compute spatial averages and attenuate
the modulation of spatial structure in the image. The larger the kernel, the greater the
attenuation. On the other hand, kernels that compute differences of neighboring gray
levels will enhance the modulation of spatially varying structure while attenuating
the brightness of constant areas. Note that the largest number of elements in a kernel
with different algebraic signs is two; the spatial first derivative is an example.
We will now construct a hybrid of these two extreme cases that will attenuate the

modulation of image structure that varies more slowly or rapidly than some selectable
rate. In other words, the filter will pass a band of spatial frequencies and attenuate
the rest of the spectrum; this is a bandpass filter. The bandpass filter will compute
differences of spatial averages of gray level. For example, consider a 1-D image:

f [n] = 1 +
2X

i=0

cos

∙
2πn(2i)

128

¸
= 1 + cos

∙
2πn

∞

¸
+ cos

∙
2πn

128

¸
+ cos

∙
2πn

64

¸
+ cos

∙
2πn

32

¸
= 2 + cos

∙
2πn

128

¸
+ cos

∙
2πn

64

¸
+ cos

∙
2πn

32

¸
The spatial frequencies of the cosines are:

ξ0 =
1
∞ = 0 cycles per sample =⇒ X0 =∞

ξ1 =
1
128
' 7.8 · 10−2 cycles per sample =⇒ X1 = 128 samples

ξ2 =
1
64
cycles per sample =⇒ X2 = 64 samples

ξ3 =
1
32
cycles per sample =⇒ X3 = 32 samples

This function is periodic over 128 samples, which is a common multiple of all of
the finite-period cosines. The extreme amplitudes are +5 and +0.2466. Consider
convolution of f [n] with several kernels; the first set are 3-pixel averagers whose
weights sum to unity, therefore preserving the mean gray level of f [n]:

h1[n] = 0 1 0

h2[n] = 1
4

1
2

1
4

h3[n] = 1
3

1
3

1
3

Obviously, h1[n] is the identity kernel, h2 is a tapered averager that applies more
weight to the center pixel, while h3 is a uniform averager. Based on our experience
with averaging filters, we know that g1[n] = f [n]∗h1[n]must be identical to f [n], while
the modulation of the output from h2[n] will be reduced a bit in g2 and somewhat

180 CHAPTER 7 LOCAL OPERATIONS

more in g3. This expectation is confirmed by the computed maximum and minimum
values:

fmax = 5 (g1)max = 5 (g2)max
∼= 4.987 (g3)max

∼= 4.983

fmin ∼= 0.2466 (g1)min
∼= 0.2466 (g2)min

∼= 0.2564 (g3)min
∼= 0.2596

The mean gray values of these images are identical:

hfi = hg1i = hg2i = hg3i = 2

We can define a contrast factor based on these maximum and minimum values that
is analogous to the modulation, except that the image is not sinusoidal:

cf ≡
fmax − fmin
fmax + fmin

The corresponding factors are:

cf = 0.906 c1 ∼= 0.906 c2 ∼= 0.9022 c3 ∼= 0.9019

which confirms the expectation.
Now consider three 5-pixel averagers:

h4 [n] = 0 0 1 0 0

h5 [n] = 1
9

2
9

3
9

2
9

1
9
,

h6 [n] = 1
5

1
5

1
5

1
5

1
5

Again, h4 is the identity kernel that reproduces the modulation of the original im-
age, h2 is a tapered averager, and h6 is a uniform averager. The computed maximum
and minimum values for the images are:

fmax = 5 (g4)max = 5 (g5)max
∼= 4.967 (g6)max

∼= 4.950

fmin ∼= 0.2466 (g4)min
∼= 0.2466 (g5)min

∼= +0.272 (g6)min
∼= 0.285

hfi = 2 hg4i = 2 hg5i = 2 hg6i = 2

cf = 0.906 c4 = 0.906 c5 = 0.896 c6 = 0.891

The average over a larger number of samples reduces the modulation further but
does not affect the mean gray values.

Now consider a kernel of significantly larger width:

h7 [n] = A7 cos

∙
2πn

64

¸
·RECT

h n
32

i

7.11 CONVOLUTION REVISITED — BANDPASS FILTERS 181

where the scale factor A7 is used to normalize h7 [n] to unit area. The RECT function
limits the support of the cosine to a finite width of 32 pixels. Note that the kernel is
large and is nonnegative everywhere; this is another example of a tapered averaging
kernel that weights pixels in the vicinity more heavily than more distant pixels. The
corresponding uniform averaging kernel is:

h8 [n] =
1

32
RECT

h n
32

i
To simplify comparison of the results of h7 and h8, we will set A7 = 1

32
instead of

a factor that ensures a unit area. The exact value of the scale factor will affect
the output amplitudes and not the modulation. Based on the experience gained
for h1, h2, · · · , h6, we expect that both h7 and h8 will diminish the modulation of
spatially varying patterns, and that h8 will have the larger effect. In fact, because
the width of h8 matches the period X3 = 32, this cosine term will be attenuated to
null amplitude. The effects on the amplitudes of the array are:

fmax = 5 (g7)max ' 2.585 (g8)max
∼= 3.536

fmin ∼= 0.2466 (g7)min
∼= 0.593 (g8)min

∼= +1.205

hfi = 2 hg7i = 2 hg8i = 2

cf = 0.906 c7 ∼= 0.627 c8 ∼= 0.492

which again confirms the expectation that the uniform averager reduces the con-
trast to a greater degree than the tapered averager, but neither affects the mean gray
value.

If the width of the RECT function in the tapered averaging kernel h7 is increased
while the period of the constituent cosine function is retained, negative weights are
added to the kernel. For example:

h9 [n] = A9 cos
h
2π

n

64

i
RECT

h n
48

i
The constant A9 may be chosen so that the area of h9 is unity, yielding A9 =

0.06948, or A9 may be set to 1
48
, matching the normalization factor for the uniform

averager:

h10 [n] =
1

48
RECT

h n
48

i
which simplifies comparison of the resulting amplitudes. Kernel h9 computes the same
weighted average as h7 in the neighborhood of the pixel, but then subtracts a weighted
average of distant pixels from it; it computes differences of average amplitudes. The
effects of these operations on the extrema are:

182 CHAPTER 7 LOCAL OPERATIONS

fmax = 5 (g9)max ' 1.532 (g10)max
∼= 2.940

fmin ∼= 0.2466 (g9)min
∼= 0.118 (g10)min

∼= +1.420

hfi = 2 hg9i ∼= 0.5997 hg10i = 2

cf = 0.906 c9 ∼= 0.857 c10 ∼= 0.349

Kernel h10 retained the mean value but further attenuated the contrast by push-
ing the amplitudes toward the mean. However, the difference-of-averages kernel h9
actually increased the contrast and decreased the mean value.
This trend may be continued by increasing the width of the RECT and using

equal scale factors:

h11 [n] =
1

64
cos
h
2π

n

64

i
RECT

h n
64

i
h12 [n] =

1

64
RECT

h n
64

i
Because the width of the RECT matches the period of the cosine in h1, it may not
be normalized to unit area. The extrema of these two processes are:

fmax = 5 (g11)max ' 0.712 (g12)max = 2 +
2
π
∼= 2.637

fmin ∼= 0.2466 (g11)min
∼= −0.511 (g12)min

∼= +1.364

hfi = 2 hg11i ∼= 0 hg12i = 2

cf = 0.906 c11 ∼= 6.08 (?!!) c12 ∼= 0.318

The uniform averager h1 continues to push the amplitudes toward the mean value
of 2 and decreases the contrast, while the mean amplitude generated by the difference
of averages kernel is now zero, which means that the minimum is less than zero.
Note that the output g11 [n] looks like the kernel h11 [n]; in other words, the portion

of f [n] that was transmitted to g11 [n] largely is a cosine of period 64. The distortion
is due to cosines at other frequencies. Now, consider filters whose widths are equal
to the period of f [n]:

h13 [n] = cos
h
2π

n

128

i
· 1
128

RECT
h n

128

i
h14 [n] =

1

128
RECT

h n

128

i
.

The figures of merit for the gray values of these arrays are:

7.12 PATTERN MATCHING 183

fmax = 5 (g13)max = 0.5 (g14)max = +2

fmin ∼= 0.2466 (g13)min
∼= −0.5 (g14)min = +2

hfi = 2 hg13i = 0 hg14i = 2

cf = 0.906 c13 =∞ c14 = 0.0

The output of the bipolar kernelh13is a sinusoid with period 64 and zero mean,
while that of the averager h14 is the constant average value of f [n]. Note that the
contrast parameter c13 is undefined because fmin = −fmax, while c14 = 0.
To summarize, kernels that compute differences of averages are wide and bipolar,

and typically yield bipolar outputs. As the width of a difference-of-averages kernel is
increased, the output resembles the kernel itself to a greater degree, which is bipolar
with zero mean. On the other hand, increasing the width of an averaging opera-
tor results in outputs that approach a constant amplitude (the average value of the
input); this constant is a cosine with infinite period. The difference-of-averages oper-
ator rejects BOTH slowly and rapidly varying sinusoids, and preferentially passes a
particular sinusoidal frequency or band of frequencies. Thus, differences of averages
operators are called bandpass filters.

Kernels of bandpass filters are wide, bipolar, and resemble the signal to be detected.

7.11.1 Bandpass Filters for Images

We can extend the concept of the bandpass filter to images. For example, consider
the cases shown below:
Because bandpass kernels are large, the computation will be time-consuming and

the kernel will run over the edge of the image for small translations. These problems
are by performing the convolution via the discrete Fourier transform.

7.12 Pattern Matching

We now explore the principles of the matched filter that may be applied to design ker-
nels for locating specific gray-level patterns, such as edges at particular orientations,
corners, isolated pixels, particular shapes, you name it. Particularly in the early days
of digital image processing when computers were less capable than they are today,
the computational intensity of the calculation often was an important issue. It was
desirable to find the least intensive method for common tasks such as pattern detec-
tion, which generally meant that the task was performed in the space domain using a
small convolution kernel rather than calculating a better approximation to the ideal
result in the frequency domain. That said, the process of designing and applying
a pattern-matching kernel illuminates some of the concepts and thus is worth some
time and effort.

184 CHAPTER 7 LOCAL OPERATIONS

A common technique for pattern matching convolves the input image with a kernel
of the same size as the reference pattern. The process and its limitations will be
illustrated by example. Consider an input image f [n,m] that is composed of two
replicas of a real-valued nonnegative pattern p [n,m] centered at coordinates [n1,m1]
and [n2,m2] with respective amplitudes A1 and A2. The image also includes a bias
b · 1 [n,m]:

f [n,m] = A1 · p [n− n1,m−m1] +A2 · p [n− n2,m−m2] + b · 1 [n,m]

Consider a kernel that is identical to the pattern but “reversed”:

m̂ [n,m] = p [−n,−m]

which also is real valued and nonnegative within its region of support. The output
from this matched filter autocorrelation of the pattern centered at those coordinates:

g [n,m] = f [n,m] ∗ m̂ [n,m]
= A1 · p [n,m]Fp [n,m]|n=n1,m=m1

+A2 · p [n,m]Fp [n,m]|n=n2,m=m2

+ b · (1 [n,m] ∗ p [−n,−m])
= A1 · p [n,m]Fp [n,m]|n=n1,m=m1

+A2 · p [n,m]Fp [n,m]|n=n2,m=m2

+ b ·
X
n,m

p [n,m]

The last term is the spatially invariant output due to the constant bias convolved
with the matched filter, which produces the sum of the product of the bias and the
weights at each sample. The spatially varying autocorrelation functions rest on a
bias proportional to the sum of the gray values p in the pattern. If the output bias is
large, it can reduce the “visibility” of the autocorrelations in exactly the same way
as the modulation of a nonnegative sinusoidal function. Therefore it is convenient
to construct a matched filter kernel whose weights sum to zero by subtracting the
average value:

m̂ [n,m] = p [−n,−m]− paverage =⇒
X
n,m

m̂ [−n,−m] =
X
n,m

m̂ [n,m] = 0

This condition ensures that the constant bias in the third term vanishes. This result
determines the strategy for designing convolution kernels that produce outputs that
have large magnitudes at pixels centered on neighborhoods that contain these patterns
and small magnitudes in neighborhoods where the feature does not exist. For example,
consider an image containing an “upper-right corner” of a brighter object on a darker
background:

7.12 PATTERN MATCHING 185

f [n,m] =

. . .
...

...
...

...
... · · ·

· · · 50 50 50 50 50 · · ·

· · · 50 50 50 50 50 · · ·

· · · 100 100 100 50 50 · · ·

· · · 100 100 100 50 50 · · ·

· · · 100 100 100 50 50 · · ·
...

...
...

...
...

...
. . .

The task is to design a 3× 3 kernel for locating this pattern in a scene:

p [n,m] =

50 50 50

100 100 50

100 100 50

The recipe tells us to rotate the pattern by π radians about its center to create
p [−n,−m]:

p [−n,−m] =
50 100 100

50 100 100

50 50 50

The average weight in this 3×3 kernel is 650
9
∼= 72.222, which is subtracted from each

element:

−22.222 +27.778 +27.778

−22.222 +27.778 +27.778

−22.222 −22.222 −22.222

= (+22.222)

−1 +1.25 +1.25

−1 +1.25 +1.25

−1 −1 −1

The multiplicative factor may be ignored since it just scales the output of the convo-
lution by this constant. Thus one realization of the unamplified 3× 3 matched filter
for upper-right corners is:

m̂ [n,m] ∼=
−1 +1.25 +1.25

−1 +1.25 +1.25

−1 −1 −1

Though not really an issue now with faster computers, it was once considered more

186 CHAPTER 7 LOCAL OPERATIONS

convenient to restrict the weights in the kernel to integer values. This may be done by
redistributing the weights slightly. In this example, the fraction of the positive weights
often is concentrated in the center pixel to produce the Prewitt corner detector :

m̂ [n,m] ∼=
−1 +1 +1

−1 +2 +1

−1 −1 −1

Note that that the upper-right corner detector contains a bipolar pattern that looks
like a lower-left corner because of the rotation (“reversal”) inherent in the convolution.
Because m̂ is bipolar, so generally is the output of the convolution with the input
f [n,m]. The linearity of convolution ensures that the output amplitude at a pixel is
proportional to the contrast of the feature. If the contrast of the upper-right corner
is large and “positive,” meaning that the corner is much brighter than the dark
background, the output at the corner pixel will be a large and positive extremum.
Conversely, a dark object on a very bright background will produce a large negative
extremum. The magnitude of the image shows the locations of features with either
contrast. The output image may be thresholded to specify the pixels located at the
desired feature.

This method of feature detection is not ideal. The output of this unamplified filter
at a corner is the autocorrelation of the feature rather than the ideal 2-D discrete Dirac
delta function. If multiple copies of the pattern with different contrasts are present
in the input, it will be difficult or impossible to segment the desired features by
thresholding the convolution alone. Another consequence of the unamplified matched
filter is that features other than the desired pattern produce nonnull outputs, as shown
in the output of the corner detector applied to a test object consisting of “E” at two
different amplitudes as shown. The threshold properly locates the upper-right corners
of the bright “E” and one point on the sampled circle, but misses the corners of the
fainter “E”. This shows that corners of some objects are missed (false negatives). If
the threshold were set at a lower level to detect the corner of the fainter “E”, other
pixels will be incorrectly identified as corners (false positives). A simple method for
reducing misidentified pixels is considered in the next section.

7.12.1 Other Matching Kernels

Prewitt Edge Detectors (gradients): (horizontal and vertical)

1

3

+1 0 −1

+1 0 −1

+1 0 −1

,
1

3

−1 −1 −1

0 0 0

+1 +1 +1

7.12 PATTERN MATCHING 187

Figure 7.3: Thresholding to locate features in the image: (a) f [n,m], which is the
nonnegative function with 0 ≤ f ≤ 1; (b) f [n,m] convolved with the “upper-right
corner detector”, producing the bipolar output g [n,m] where −5 ≤ g ≤ 4. The largest
amplitudes occur at the upper-right corners, as shown in (c) after thresholding at level
4 along with a “ghost” replica of the original image. This demonstrates detection of
the upper-right corners of the high-contrast “E” and of the circle, but the corner of
the low-contrast “E” is missed.

188 CHAPTER 7 LOCAL OPERATIONS

Sobel Edge Detectors (gradients): (horizontal and vertical)

1

4

+1 0 −1

+2 0 −2

+1 0 −1

,
1

4

−1 −1 −1

0 0 0

+1 +1 +1

Line Detectors: (horizontal and vertical)

−1 +2 −1

−1 +2 −1

−1 +2 −1

,

−1 −1 −1

+2 +2 +2

−1 −1 −1

“Spot” Detectors:

∇2 =
−1 −1 −1

−1 +8 −1

−1 −1 −1

7.12.2 Normalization of Contrast of Detected Features

The recipe just developed allows creation of kernels for detecting pixels in neighbor-
hoods that are “similar” to some desired pattern. However, the sensitivity of the
process to feature contrast can significantly limit its utility. A simple modification
can improve the classification. A normalized correlation measure R [n,m] was defined
by Hall (1979):

R[n,m] =
f [n,m] ∗ h[n,m]sX

n,m

(f [n,m])2
sX

n,m

(h[n,m])2

where the sums in the denominator are over ONLY the values of the input and kernel
within the support of the latter. Note that the sum of the squares of the elements of
the kernel h [n,m] results in a constant scale factor k and may be ignored:

R[n,m] = k

⎛⎜⎜⎜⎜⎝ f [n,m]sX
n,m

(f [n,m])2

⎞⎟⎟⎟⎟⎠ ∗ h[n,m]
In words, this operation divides the convolution by the geometric or Pythagorean
sum of gray levels under the kernel. The modification to the filter makes the entire

7.13 IMPLEMENTATION OF FILTERING 189

Figure 7.4: The action of the nonlinear normalization of detected features using
the same object: (a) f [n,m] convolved with the upper-right corner detector with
normalization by the image amplitude, producing the bipolar output g [n,m] where
−0.60 ≤ g ≤ +0.75; (b) image after thresholding at +0.6, with a “ghost” of the orig-
inal image, showing the detection of the upper-right corners of both “E”s despite the
different image contrasts.

process shift variant and thus may not be performed by a simple convolution. The
denominator may be computed by convolving (f [n,m])2 with a uniform averaging
kernel s [n,m] of the same size as the original kernel h [n,m] and then evaluating the
square root

R [n,m] = k
f [n,m] ∗ h [n,m]q
(f [n,m])2 ∗ s [n,m]

The upper-right corner detector with normalization is shown in the figure, where the
features of both “E”s are located with a single threshold.

7.13 Implementation of Filtering

7.13.1 Nonlinear and Shift-Variant Filtering

Special-purpose hardware (array processors) is readily available for implementing lin-
ear operations. These contain several memory planes and can store multiple copies

190 CHAPTER 7 LOCAL OPERATIONS

of the input. By shifting the addresses of the pixels in a plane and multiplying the
values by a constant, the appropriate shifted and weighted image can be generated.
These are then summed to obtain the filtered output. A complete convolution can be
computed in a few clock cycles.
Other than the mean filter, the statistical filters are nonlinear, i.e., the gray value

of the output pixel is obtained from those of the input pixel by some method other
than multiplication by weights and summing. In other words, they are not convo-
lutions and thus cannot be specified by a kernel. Similarly, operations that may be
linear (output is a sum of weighted inputs) may use different weights at different
locations in the image. Such operations are shift-variant and must be specified by
different kernels at different locations. Nonlinear and shift-variant operations are
computationally intensive and thus slower to perform unless special single-purpose
hardware is used. However, as computer speeds increase and as prices fall, this is be-
coming less of a problem. Because of the flexibility of operations possible, nonlinear
shift-variant filtering is a very active research area.

7.14 Neighborhood Operations onMultiple Images

7.14.1 Image Sequence Processing

It should now be obvious that we can combine the gray levels in neighborhoods of the
input pixel in multiple images to obtain the output image g[x, y]. The multiple copies
of f [x, y]may have been spread over time (e.g. video), over wavelength (e.g. RGB
images), or some other parameter. In these cases, the image and kernel are functions
of three coordinates.

7.14 NEIGHBORHOOD OPERATIONS ON MULTIPLE IMAGES 191

7.14.2 Spectral + Spatial Neighborhood Operations

Additive noise is a common corrupter of digital images and may disrupt classifica-
tion algorithms based on gray-level differences, e.g. in multispectral differencing to
segment remote-sensing images. The noise can be attenuated by combining spatial
averaging and spectral differencing, i.e.

g [x, y] = f [x, y, λ1] ∗ h [x, y]− f [x, y, λ2] ∗ h [x, y]

where

h[x, y] =
1

9

+1 +1 +1

+1 +1 +1

+1 +1 +1

. Since convolution and subtraction are linear, the order of operations can be inter-
changed:

g [x, y] = (f [x, y, λ1]− f [x, y, λ2]) ∗ h [x, y]

These can be combined into a single 3-D operation using a 3-D kernel h [x, y, λ]

g[x, y] = f [x, y, λi] ∗ h[x, y, λi]

where

h[x, y, λi] = −
1

9

+1 +1 +1

+1 +1 +1

+1 +1 +1

,
1

9

+1 +1 +1

+1 +1 +1

+1 +1 +1

,
1

9

0 0 0

0 0 0

0 0 0

7.14.3 “Pseudounsharp Masking”

A very different variant of unsharp masking was developed by a group of astronomers,
who needed to examine fine structure with low contrast (i.e. features distinguished
by small brightness differences over short distance scales) that are hidden by a larger-
scale brightness gradient across of the object or scene. Included among the significant
low-contrast structural features are streamers in the solar corona that radiate out-
ward from the solar surface. The details in the structure provide clues about the
physical nature of the solar atmosphere and magnetic fields. However, the radial
brightness gradient of the corona makes it very difficult to image the full length of
the coronal streamers. The overall dynamic range of ground-based imagery of the
solar corona is approximately three orders of magnitude (limited by atmospheric sky
brightness). Imagery from air- or spacecraft may add an order of magnitude for a
total dynamic range of 10,000. This may be recorded on a wide-range photographic
negative (∆D > 4), but it is not possible to print that dynamic range by normal
photographic techniques.

192 CHAPTER 7 LOCAL OPERATIONS

The problem of enhancing the visibility of small changes in coronal image bright-
ness is similar to correction of detector sensitivity just considered and may be attacked
by digital methods. The brightness gradient of the corona is analogous to the 1-D
sensitivity function s [x]; division of the original image by the brightness gradient
equalizes the background so that the variations across the image may be displayed on
a medium with limited dynamic range. An estimate of the coronal brightness gradient
may be estimated by averaging fitted curves of the radial brightness or by making
a low-resolution (blurred) image. The latter is more commonly used, as it may be
derived via simple local neighborhood digital operations to be considered next. The
recovered image is the ratio of the measured high-resolution image and the image
of the brightness gradient. This technique may be applied to archival photographic
negatives of historical eclipses to provide additional information about the history of
solar conditions and thus their effects on the earth’s climate.
The process may be viewed in terms of the convolution operators. We start with

the original image r [x, y] which includes the coarse brightness gradient function s [x, y]
overlying the desired image f [x, y] of the fine structure:

r [x, y] = f [x, y] · s [x, y]

We can estimate s [x, y] by blurring the image r [x, y] sufficiently so that the fine
details are all blurred together:

r [x, y] ∗ h [x.y] ∼= s [x, y]

where h [x, y] is a “large” averaging kernel, perhaps as large as 101× 101 pixels or so.
The output image is:

r [x, y]

r [x, y] ∗ h [x.y]
∼= f [x, y] · s [x, y]

s [x, y]
∼= f [x, y]

where the ratio image must be scaled to the available dynamic range of the display.

Examples of Image Division for Local Contrast Enhancement

Examples of recovered information from old imagery of a solar eclipse and a comet
are shown below. The pictures are from Enhancement of Solar Corona and Comet
Details by Matuska, et al., Proc. SPIE, 119, pp. 28-35, 1977 and in Optical
Engineering, 17(6), 661-665, 1978. The images are scans of xerographic prints from
microfilm, which is the reason for the poor quality.

7.14 NEIGHBORHOOD OPERATIONS ON MULTIPLE IMAGES 193

Chapter 8

Global Operations

If a pixel in the output image g is a function of (almost) all of the pixels in f [x, y], then
O{f [x, y]} is a global operator. This category includes image coordinate transforma-
tions, of which the most important is the Fourier transform. These transformations
derive new, usually equivalent, representations of images; for example, the Fourier
transform maps from the familiar coordinate-space representation f [x, y] to a new
representation (a new image) whose brightness at each coordinate describes the quan-
tity of a particular sinusoidal spatial frequency component present in f [x, y]. The
sum of the component sinusoids is the original image. In other words, the Fourier
transform generates the frequency-space representation F [ξ, η] of the image f [x, y].
The coordinates of the image [x,y] have dimensions of length (e.g., mm) while the
coordinates of the frequency representation [ξ, η] have units of inverse length (e.g.,
cycles
mm

). Global gray-level properties of
the image map to local properties in the Fourier transform, and vice versa. The

frequency-space representation is useful for many applications, including segmenta-
tion, coding, noise removal, and feature classification. It also provides an avenue for
performing other image operations, particularly convolution. Each output pixel is a
function of the gray levels of all input pixels.

8.1 Relationship to Neighborhood Operations

The concept of a linear global operator is a simple extension of that of the linear local
neighborhood operator. In that case, an output pixel was calculated by point-by-
point multiplication of pixels in the input image by a set of weights (the kernel) and
summing the products. The convolution at different pixels is computed by shifting
the kernel. Recall that some accommodation must be made for cases where one or
more elements of the the kernel are off the edge of the image.
In the case of a global operator, the set of weights is as large as the image and

constitutes a “mask function”, say q [x, y]. The output value obtained by applying a
mask q [x, y] to an input image f [x, y] is:

g =

ZZ
f [x, y] q [x, y] dx dy

195

196 CHAPTER 8 GLOBAL OPERATIONS

In the discrete case, the integral becomes a summation:

g =
X
n

X
n

f [n,m] q [n,m]

Note that a translation of the mask by one pixel in any direction shifts some of
its elements over the edge of the image. If we assume that the output in such cases
is undefined, only a single output pixel is calculated from one mask function q [n,m].
In general, different outputs result from different masks, i.e., we can define an output
pixel by using different masks for each coordinate pair [x’,y’]:

g [k,] =
X
n

X
m

f [n,m] q [n,m; k,]

In general, the coordinates of g are different from those of f , and often even have
different dimensions (units). The action of the operator is obviously determined by
the form of the mask function. The most common example is the Fourier transform,
where the mask function is:

q [x, y; ξ, η] = cos [2π (ξx+ ηy)]− i sin [2π (ξx+ ηy)] = exp [−2πi (ξx+ ηy)]

8.2 Discrete Fourier Transform (DFT)

If the input signal has been sampled at discrete intervals (of width ∆x, for example),
the Fourier integral over x reduces to a sum:

F [ξ] =
+∞X

n=−∞
f [n ·∆x] exp [−2πiξ (n ·∆x)]

Recall that the Whittaker-Shannon sampling theorem states that a sinusoidal func-
tion must be sampled at a rate greater than than two samples per period (Nyquist
frequency) to avoid aliasing. Thus, the minimum period Xmin of a sampled sinusoidal

8.3 FAST FOURIER TRANSFORM (FFT) 197

function is two sample intervals (2 ·∆x in the example above), which implies that the
maximum spatial frequency in the sampled signal is:

ξmax = ξNyq =
1

Xmin
=

1

2 ·∆x

ξmax is measured in cycles per unit length (typically cycles per millimeter). Often the
absolute scale of the digital image is not important, and the frequency is scaled to
∆x = 1 pixel, i.e., the maximum spatial frequency is 1

2
cycle
pixel . The range of meaningful

spatial frequencies of the DFT is 1
2·∆x

> |ξ|.
If the input function f [x] is limited to N samples, the DFT becomes a finite sum:

F [ξ] ≡
N−1X
n=0

f [n ·∆x] exp [−2πiξ (n ·∆x)]

or

N
2X

n=−N
2
−1

f [n ·∆x] exp [−2πiξ (n ·∆x)]

The DFT of a 1-D sequence of N samples at regular intervals∆x can be computed
at any spatial frequency ξ. However, it is usual to calculate the DFT of a sequence
of frequencies (e.g., a total M) separated by a constant interval ∆ξ. Each sample
of the DFT of a real sequence of N pixels requires that N values each of the cosine
and sine be computed, followed by 2N multiplications and 2N sums, i.e., of the
order of N operations. The DFT at M spatial frequencies requires of the order of
M · N operations. Often, the DFT is computed at N frequencies, thus requiring of
the order of N2 operations. This intensity of computation made calculation of the
DFT a tedious and rarely performed task before digital computers. For example, a
Fourier deconvolution of seismic traces for petroleum exploration was performed by
Enders Robinson in 1951; it took the whole summer to do 32 traces by hand with a
memoryless mechanical calculator. This task could now be done with the cheapest PC
in less than a second. Even with mainframe digital computers into the 1960s, digital
Fourier analysis was unusual because of the computation time. In 1965, J.W. Cooley
and J.W. Tukey developed the Fast Fourier Transform algorithm, which substantially
cut computation times and made digital Fourier analysis feasible.

8.3 Fast Fourier Transform (FFT)

The FFT was developed to compute discrete Fourier spectra with fewer operations
than the DFT by sacrificing some flexibility. The DFT may compute the amplitude
of sinusoidal components at any frequency within the Nyquist window, i.e., the DFT
maps discrete coordinates n ·∆x to a continuous set of frequencies ξ in the interval
[−ξNyq, ξNyq]. The DFT may be computed at a single spatial frequency if desired.
The FFT is a recursive algorithm that calculates the spectrum at a fixed discrete set
of frequencies with a minimum number of repetitive calculations. The spectrum must

198 CHAPTER 8 GLOBAL OPERATIONS

be computed at all frequencies to obtain the values of individual spectral components.
In the FFT, the amplitudes at N discrete equally spaced frequencies are computed in
the interval [−ξNyq, ξNyq] from N input samples. The frequency samples are indexed
by the integer k and the interval between frequency samples is:

∆ξ =
1

N
· 2ξNyq =

1

N
· 2

2 ·∆x
=

1

N ·∆x

=⇒ ξk = k ·∆ξ =
k

N ·∆x
,

∙
−N
2
≤ k ≤ N

2
− 1
¸

=⇒ N ·∆x ·∆ξ = 1

If we substitute these specific frequencies into the DFT:

F [k ·∆ξ] =

N
2
−1X

n=−N
2

f [n ·∆x] exp [−2πik ·∆ξ · (n ·∆x)]

=

N
2
−1X

n=−N
2

f [n ·∆x] exp

∙
−2πikn · ∆x

N ·∆x

¸

but ∆ξ =
1

N ·∆x
=⇒ F [k ·∆ξ] =

N
2
−1X

n=−N
2

f [n ·∆x] exp

∙
−2πikn

N

¸

If ∆x is assumed to be a dimensionless sample, then the Nyquist frequency is fixed
at:

ξNyquist =
1

2

cycle
sample

= π
radians
sample

Recall that the DFT assumes that the sample interval is ∆x and computes a periodic
spectrum with period 1

∆x
. In the FFT, the spectrum is assumed to be sampled at

intervals ∆ξ = 1
N ·∆x

, which implies in turn that the input function is periodic with
period N ·∆x. If N is a power of 2 (e.g., 128, 256, 512, · · ·), there are only N distinct
values of the complex exponential exp

£
−2πink

N

¤
to calculate. By using this fact, the

number of required operations may be reduced and processing speeded up. The FFT
of N samples requires of the order N · log2 [N] operations vs. O{N2} for the DFT.

Since both representations f [n ·∆x] and F [k ·∆ξ] are sampled and periodic, the
inverse FFT is a finite summation and is proportional to:

f [n ·∆x] = C ·
N
2
−1X

k=−N
2

F [k ·∆ξ] exp

∙
+
2πink

N

¸

The proportionality constant C is required to ensure that F {F [k]} = f [n], and may
be found by substituting the formula for the forward FFT for F [k ·∆ξ]:

8.3 FAST FOURIER TRANSFORM (FFT) 199

f [n ·∆x] = C · |∆x|
+N

2
−1X

k=−N
2

⎛⎝+N
2
−1X

p=−N
2

f [p ·∆x] exp

∙
−2πipk

N

¸⎞⎠ exp ∙+2πink
N

¸

f [n ·∆x] = C · |∆x|
N
2
−1X

k=−N
2

⎛⎝ N
2
−1X

p=−N
2

f [p ·∆x] exp

∙
−2πipk

N

¸⎞⎠ exp ∙+2πink
N

¸

= C ·
N
2
−1X

k=−N
2

N
2
−1X

p=−N
2

f [p ·∆x] exp

∙
−2πik

N
(n− p)

¸

= C ·
N
2
−1X

p=−N
2

f [p ·∆x]

N
2
−1X

k=−N
2

exp

∙
−2πik

N
(n− p)

¸
N
2
−1X

k=−N
2

exp

∙
−2πik

N
(n− p)

¸
=

⎧⎨⎩N if n = p

0 if n 6= p
≡ δ [n− p]

C ·
N
2
−1X

p=−N
2

f [p ·∆x] · (N · δ [n− p]) = C ·N · f [n ·∆x]

= f [n ·∆x] if C = N−1

Thus C = N−1 and the inverse FFT may be defined as:

f [n ·∆x] =
1

N

N
2
−1X

k=−N
2

F [k ·∆ξ] exp

∙
+
2πink

N

¸

The proportionality constant is a scale factor that is only significant when cas-
cading forward and inverse transforms and may be applied in either direction. Many

200 CHAPTER 8 GLOBAL OPERATIONS

conventions (including mine) include the proportionality constant in the forward FFT:

F [k ·∆ξ] = F

∙
k

N ·∆x

¸
=
1

N

N
2
−1X

n=−N
2

f [n ·∆x] exp

∙
−2πink

N

¸

f [n ·∆x] =

N
2
−1X

k=−N
2

F [k ·∆ξ] exp

∙
+
2πink

N

¸
N ·∆x ·∆ξ = 1

ξNyq = N · ∆ξ

2

xmax = N · ∆x

2

8.4 Fourier Transforms of Images

The concept of a 1-D Fourier transform can be easily extended to multidimensional
continuous or discrete signals. The continuous 2-D transform is defined as:

F2 {f [x, y]} ≡ F [ξ, η] =

ZZ +∞

−∞
f [x, y] exp [−2πi (ξx+ ηy)] dxdy

For a uniformly sampled discrete 2-D function f [, k], the transform is a summation:

F2 {f [n ·∆x,m ·∆y]} =
+∞X

n=−∞

+∞X
m=−∞

f [n,m] exp [−2πi (ξn ·∆x+ ηm ·∆y)]

The Fourier transform of a real-valued 2-D function is Hermitian (even real part and
odd imaginary part. The Fourier transform of the image of a 2-D cosine is a pair
of delta-function spikes at a distance from the origin proportional to the frequency
of the cosine, as shown on the next page. The polar angle of the spikes relative to
the origin indicates the direction of variation of the cosine, while the brightness of
the spikes is proportional to the amplitude of the cosine. Notice that the Fourier
transform of the sum of two cosine waves is the sum of the individual transforms (i.e.,
the Fourier transform is linear).
The 2-D transform has the same properties mentioned before, including that global

properties become local properties and vice versa. This is the primary reason why the
Fourier transform is such a powerful tool for image processing and pattern recognition;
F [ξ, η] is uniquely defined for each f [x, y], and the global properties of f [x, y] are
concentrated as local properties of F [ξ, η].
Local modification of F [ξ, η] is called filtering and is intimately related to the local

operation of convolution that we’ve already discussed. In fact, it is easily proven that

8.4 FOURIER TRANSFORMS OF IMAGES 201

the Fourier transform of a convolution is the product of the Fourier transforms of the
component functions. This result is called the Filter Theorem:

F2 {f [x, y] ∗h [x, y]} = F2 {f [x, y]} · F2 {h [x, y]}
=⇒ f∗h = F−12 {F [ξ, η] ·H [ξ, η]}

We have already given the name impulse response or point spread function to h [x, y];
the representation H [ξ, η] is called the transfer function of the system.The most
common reason for computing Fourier transforms of digital signals or images is the
to use this path for convolution.

202 CHAPTER 8 GLOBAL OPERATIONS

Local averaging of a 2-D image along a vertical direction in the frequency domain.
The top row shows the real and imaginary parts of the object (a letter “E”) and the
kernel (a vertical averager). The next two rows show the Fourier transforms as real,

imaginary, magnitude, and phase. The next row shows the products (real,
imaginary, magnitude, phase), and the final row shows the output image as real,

imaginary, magnitude, and phase.

8.4 FOURIER TRANSFORMS OF IMAGES 203

Lowpass filtering of “Liberty” in the frequency domain. In this case, sinusoidal
frequencies outside of the circle are blocked completely. Since these frequencies that

are necessary to reproduce edges are missing, the image is very blurry.

204 CHAPTER 8 GLOBAL OPERATIONS

Derivative with respect to x of two “E” characters implemented in the frequency
domain. This is a local differencer, and therefore a highpass filter, that amplifies the

high-frequency terms in the spectrum of the object.

8.4 FOURIER TRANSFORMS OF IMAGES 205

Translation of the image by two pixels in the vertical direction by actions in the
frequency domain. The filter passes all spatial frequency components with change in
magnitude, but it does change the phase by increments proportional to the spatial

frequency.

206 CHAPTER 8 GLOBAL OPERATIONS

Derivative of “Liberty” with respect to x, which amplifies sinusoids with large
frequencies that oscillate along the x-direction.

8.4 FOURIER TRANSFORMS OF IMAGES 207

Laplacian of “Liberty”, which is another example of highpass (or “highboost”) filter
that amplifies the sinusoids with large spatial frequencies in proportion.

208 CHAPTER 8 GLOBAL OPERATIONS

Lowpass filtering of “Liberty” in the frequency domain. In this case, sinusoidal
frequencies outside of the circle are blocked completely. Since these frequencies that

are necessary to reproduce edges are missing, the image is very blurry.

8.4 FOURIER TRANSFORMS OF IMAGES 209

Laplacian sharpener applied to a blurry version of “Liberty”

